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Abstract

In modeling Inverted Annular Film Boiling (IAFB), several important phenomena such as interaction
between the liquid and the vapor phases and irregular nature of the interface, which greatly influence
the momentum and heat transfer at the interface, need to be accounted for. However, due to the
complexity of these phenomena, they were not modeled in previous studies. Since two-phase heat
transfer equations and relationships rely heavily on experimental data, many closure relationships that
were used in previous studies to solve the problem are empirical in nature. Also, in deriving the
relationships, the experimental data were often extrapolated beyond the intended range of conditions,
causing errors in predictions. In some cases, empirical correlations that were derived from situations
other than IAFB, and whose applicability to IAFB was questionable, were used. Moreover, arbitrary
constants were introduced in the model developed in previous studies to provide good fit to the
experimental data. These constants have no physical basis, thereby leading to questionable accuracy

in the model predictions.

In the present work, modeling of Inverted Annular Film Boiling (IAFB) is done using Integral
Method. Two-dimensional formulation of IAFB is presented. Separate equations for the conservation
of mass, momentum and energy are derived from first principles, for the vapor film and the liquid
core. Turbulence is incorporated in the formulation. The system of second-order partial differential
equations is integrated over the radial direction to obtain a system of integral differential equations. In
order to solve the system of equations, second order polynomial profiles are used to describe the non-
dimensional velocity and temperatures. The unknown coefficients in the profiles are functions of the
axial direction alone. Using the boundary conditions that govern the physical problem, equations for
the unknown coefficients are derived in terms of the primary dependent variables: wall shear stress,
interfacial shear stress, film thickness, pressure, wall temperature and the mass transfer rate due to

evaporation. A system of non-linear first order coupled ordinary differential equations is obtained.

Due to the inherent mathematical complexity of the system of equations, simplifying assumptions are
made to obtain a numerical solution. The system of equations is solved numerically to obtain values
of the unknown quantities at each subsequent axial location. Derived quantities like void fraction and
heat transfer coefficient are calculated at each axial location. The calculation is terminated when the
void fraction reaches a value of 0.6, the upper limit of IAFB. The results obtained agree with the
experimental trends observed. Void fraction increases along the heated length, while the heat transfer

coefficient drops due to the increased resistance of the vapor film as expected.
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Chapter 1

Introduction

1.1 Background

Safety analysis is performed on nuclear reactor power plants to ensure safety from accidents that are
postulated to occur. Accidents that may occur over the lifetime of the plant, as well as hypothetical
accidents which are not expected to occur, are postulated to determine the mitigating failures of the

particular reactor design.

Within the reactor design basis, the most challenging accident that is examined is a large-break Loss
of Coolant Accident (LOCA). Analysis of this particular accident can result in limits in the reactor
total core power as well as the allowable peak linear fuel rod power in the hottest rods. For this type
of accident, the initial coolant in the reactor core is lost through the broken piping and the core
cooling is dependant on the Engineered Safeguards Systems. The analysis carried out verifies whether
the design of the Engineered Safeguards Systems will mitigate the accident. In a large-break LOCA,
the fuel rod cladding is calculated to rupture at high temperature, and the primary piping is assumed
to have failed. Without adequate core cooling, the reactor will continue to overheat and this can lead

to the failure and release of fission products from the fuel.

Study of the equilibrium pool boiling curve indicates that film boiling occurs beyond the transition
region. The lowest heat flux associated with film boiling is called the minimum film boiling heat flux.
The temperature associated with this point is the minimum film boiling temperature. It is the
temperature at which a stable continuous vapor blanket can first exist between the surface and the
bulk liquid. Film boiling is a very inefficient heat transfer process, as large temperature differences

are required to produce small heat transfer rates.

1.2 Inverted Annular Film Boiling

During cooling of nuclear reactors, film boiling is expected to occur during a transient induced by a

postulated large break Loss of Coolant Accident (LOCA). After the coolant has been lost from the

core, the fuel elements are surrounded by vapor providing relatively poor natural convection heat



transfer environment. Since the fuel elements are still generating heat, the temperatures become very
high. To cool the core and to limit the fuel element temperature, emergency core cooling coolant is
flooded from the bottom of the vessel into the core. However, at this time, the temperature of the fuel
cladding can be well above the minimum film boiling temperature. Therefore, initial cooling of the
reactor is accomplished through film boiling heat transfer. Several factors like liquid velocity and
liquid subcooling influence the heat transfer rate in film boiling. A good understanding of the heat
transfer processes occurring during reflooding stage is of paramount importance for the determination

of peak cladding temperature that is likely to occur.

At relatively high flooding rates, typically 6 inches/sec (0.15 m/sec), when the wall temperature is too
high for the liquid to rewet the wall, and particularly if the liquid at the axially progressing quench
front is subcooled, a liquid column is formed downstream from the quench front separated from the

hot wall by a thin vapor film. This flow regime is known as Inverted Annular Film Boiling (IAFB).

Inverted annular film boiling is characterized by a vapor film covering the heating surface. This film
separates the liquid core, at or below the saturation temperature at that pressure, from the heating
surface. IAFB involves convective heat transfer from the hot wall to the vapor blanket and from the
vapor to the liquid core. Heat may also be transferred from the hot rods to the liquid core by radiation.
The heat transfer coefficient associated with this mode of film boiling is relatively small primarily

because of the low thermal conductivity of the vapor.

In the IAFB regime, heat is transported by conduction and radiation through the vapor film to the
interface from where it is conducted into the subcooled core. For a subcooled liquid, part of the heat
is used for vaporization and part for reducing the subcooling by condensing the vapor film and
keeping it thin. For a saturated liquid, the heat is used exclusively for vaporization, hence rapidly
increasing the vapor film thickness. Modeling of IAFB depends critically upon the interfacial heat
transfer between the vapor and the liquid core. The net interfacial heat transfer determines the rate of
vapor generation and hence the film thickness. Rapid steam generation accelerates the low-viscosity,
low density vapor more easily than the liquid core and produces a high steam velocity such that the
liquid column gets sheared into liquid ligaments, thus drastically increasing the interfacial heat

transfer surface area.

Experimental observations show that heat transfer in IAFB region increases rapidly with the liquid

subcooling. Higher subcooling promotes heat transfer to the liquid in the core and reduces vapor



generation and hence thickness of the vapor film, thus enhancing heat transfer. At high flow rates, a

strong increase of the heat transfer coefficient with mass flux is observed.

IAFB regime will terminate due to the growth of the vapor film. As IAFB region progresses, the
difference between the velocities of the liquid and vapor increases, eventually, the liquid core will
break up into droplets. Typically the IAFB region can be more than 0.3 m (1 ft), but it depends on the
flooding rate into the bundle. The void fraction will change from near zero to very high values as the

flow regime transitions from IAFB to dispersed flow film boiling.

For low flooding rates, typically around 0.0254 m/sec (1 inch/sec), there may be no subcooled
inverted annular film boiling region. Because of low injection flow rate, the liquid quickly reaches
saturation and there is bulk boiling of fluid below the quench front. In the region between the quench
front and above it, there is a froth region in which void fraction changes from a low value, just below
the quench front and a very high value, close to unity in the dispersed flow regions above the quench
front. The dominant flow regime for the low flooding rate case is a dispersed flow film boiling region
in which the heat transfer rates are very small. The heat transfer in this region occurs between the
heated wall and the superheated steam. The liquid droplets in the superheated steam evaporate
reducing the steam temperature as well as increasing the steam flow rate. As a result, calculated peak
cladding temperature usually occurs in this region. Figure 1-1 shows a schematic of low and high

flooding rate situations. The figure to the right represents IAFB situation.

1.3 Scope and Objectives of the Proposed Study and the Current Approach

Full analytical solution of the conservation equations for IAFB are too complex, hence empirical
correlations best describing the physics of the phenomenon are needed to bring closure to the problem
of modeling of Inverted Annular Film Boiling. Current models for Inverted Annular Film Boiling
involve use of empirical correlations that were derived from situations other than IAFB, and whose

applicability to IAFB was questionable.

There are various complex physical phenomena that contribute to enhancement of interfacial
momentum and heat transfers in IAFB. The effect of various complex physical processes, such as
interfacial waves, oscillations of the liquid core, droplet entrainment and redeposition and turbulence

in the vapor film may significantly improve interfacial transport. Not all these are accounted for in



earlier studies. The recent work by Cachard [4] models these phenomena using empirical correlations

based on experimental data.

In the present work, the physical problem is formulated in two dimensions. Separate equations for the
conservation of mass, momentum and energy are derived from first principles, for the vapor film and
the liquid core. Turbulence is incorporated in the formulation. The system of second-order partial
differential equations is integrated over the radial direction to obtain a system of integral differential

equations. In order to solve the system of equations, non-dimensional axial component of velocity

1
and temperature profiles of the form, A, + A7+ A2772 are assumed, where 77 = (y+)/7 , 1s a definition

commonly used in turbulence formulations. The unknown coefficients in the profiles for the velocity
and temperature are functions of the axial direction alone. Equations for the coefficients are derived
in terms of the primary dependant variables: wall shear stress, interfacial shear stress, film thickness,

pressure, wall temperature and the mass transfer rate due to evaporation.

Due to the inherent complexity of the system, simplifying assumptions are made to obtain a
numerical solution to the system of equations. At each axial location, the simplified system of
equations is solved numerically to obtain values of the dependant variables. Derived quantities like
void fraction, heat transfer coefficient are evaluated. This procedure is repeated for successive axial

locations. IAFB regime is assumed to terminate when the void fraction reaches 0.6.
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Chapter 2

Literature Survey

2.1 Introduction

In order to understand the processes involved in Inverted Annular Film Boiling (IAFB), an extensive
survey of available literature was conducted. Though film boiling has been studied for over fifty
years, the information pertaining to IAFB is restricted to a few classical models. This is mainly due to
the inherent complexity associated with the phenomenon of IAFB. This chapter presents a brief
summary of the available information in the field of Film boiling in general and Inverted Annular

Film Boiling in particular.

2.2 Classical Models in Film Boiling

Amongst the earliest references is the classical paper by Bromley [3]. Although the model is very
restrictive because of several assumptions, this is nevertheless a primary source of reference in the

field of film boiling.

Bromley studied laminar vertical film boiling following the approach of Nusselt for film-wise

condensation.

The Bromley correlation is based on the following assumptions:

1. The wall temperature is constant.

2. The vapor flow is laminar and is controlled by the balance between shear and buoyancy forces
only.

3. Heat transfer is by conduction only, and all of the heat supplied to the vapor goes into evaporation
of the liquid phase.

4. The liquid-vapor interface is smooth and the vapor film is continuous.

5. The liquid is uniformly maintained at its saturation temperature,

6. The physical properties of the vapor can be evaluated at a temperature equal to the arithmetic

average of the wall and liquid temperature.



The interfacial shear stress is evaluated considering two extreme cases:
1. The vapor flows between two stationary parallel planes.

2. The liquid moves in such a way that there is no interfacial shear.

These two assumptions alter the magnitude of the numerical coefficient in the expression obtained for

the heat transfer coefficient.

The equation is developed based on experiments carried out on the boiling of liquid from the outside
of horizontal tubes. The correlation for a vertical surface is obtained by applying the same theory as
for the horizontal tube. Vapor film from outside the horizontal tube is in dynamic equilibrium as it
rises under the action of the buoyant forces. Heat is supplied by conduction and radiation across the

film.

The Bromley correlation for a vertical plate is given by

ﬁfggpgkg (pf _pg)
ATu,L

2-1)

}%

h= 0.943[

where the value of the constant 0.943 is obtained from Y.Y. Hsu and Westwater [16].

pand p, are the densities of the vapor and the liquid in ft*/Ibm.

k, is the thermal conductivity of the vapor in Btu/hr-ft-F.

L is the length of the vertical surface in the direction of vapor flow, ft. (This is actually the distance
from the location of the quench front to the point of interest in the IAFB region).

AT is the temperature difference between hot surface and the liquid at boiling point, °F.

. e, T -1,)7T
Iy =y | 1+0.34-20200 s (2-2)
hfg

Equation 2-2 represents the effective latent heat of vaporization accounting for the sensible heat of the

vapor.



It is seen that the actual Bromley model incorporates a characteristic length term, which changes with
the motion of the quench front. As the quench front advances, this value of L decreases, thereby

indicating an increase in the heat transfer coefficient with advancing quench front.

The work by Hsu and Westwater [16] is another classical reference for film boiling studies based on
Y.Y. Hsu’s Ph.D. thesis [17]. Hsu argues that the Nusselt’s model for condensation, which forms the
basis for the Bromley model is not valid at the onset of turbulence because of the high liquid-vapor
velocity difference that exists once turbulence begins. Hsu and Westwater postulate that Bromley’s
assumption of smooth, viscous film is incorrect, especially at and beyond a critical Reynolds number,

when the flow becomes turbulent. The critical Reynolds number is given to be 100.

Their model considers vapor flow between a vertical solid heating surface and a body of liquid at its
saturation temperature. The vapor flows upward because of buoyancy and flow is resisted by the drag
at the hot solid and the vapor — liquid interface. The model states that in the lower portion of a vertical
solid heating surface, the amount of vapor flow is small, so it is reasonable to assume that the flow is
viscous, the film is thin and the film thickness changes with height as predicted by the Bromley
model. This simple flow situation is seen to exist until a critical Reynolds number is reached after
which a sharp transition to turbulence occurs. For this region, Hsu and Westwater used the universal
velocity profile of Prandtl and Nikuradze. The buffer layer as assumed by Prandtl and Nikuradze is

omitted, only the laminar sublayer and the turbulent core are considered. Most theoretical studies

indicate that the laminar and turbulent regions show an intersection at y* =10. So, Hsu assumed that

the transition from the laminar sub-layer to turbulent core occurs aty” =10. Thus, the critical

Reynolds number is 100. The schematic used for the model development is shown in Figure 2-1.

The temperature in the turbulent core is assumed to be nearly constant and equal to the saturation
temperature due to the good mixing achieved there. The velocity profile in the turbulent core is also
flat. The laminar sublayer that exists next to the solid surface is assumed to provide the entire
resistance to heat transfer. Based on a simple force balance and energy balance on a vapor element in
the turbulent core of the vapor film, bounded by the laminar turbulent core interface on one side and

the liquid-vapor interface on the other, an integral differential equation is obtained.
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following equations [16]:
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Re =2 %P 2-7)
A,
[ =#Re Ay (2-8)
2k AT
2
and A= z{n%} (2.9)

In the above set of equations, A refers to the latent heat of vaporization and A" refers to the latent heat
plus the sensible heat content of the vapor. L, refers to the location of critical Reynolds number equal

to 100. The other symbols are defined in the nomenclature section.

10



Tests were conducted using stainless steel and copper tubes of outside diameter 0.375” to 0.75”,
length between 2 to 6.3 inches. Five different liquids (methanol, benzene, carbon tetrachloride,
nitrogen and air) were used for the experiments. It must be noted that water, with a high value of

latent heat of vaporization was not tested.

This model predicts an increase in heat transfer coefficient with increase in length and increase in
temperature difference. However the experimental data show the contrary. The equations predict heat
transfer coefficients, which agree with experimental values within about + 32%. This could be due to
the fact that the model assumes the entire resistance to be in the laminar sublayer. In reality, the
turbulent core also contributes to the resistance. The resistance to heat transfer increases along the

axial direction, an aspect not considered by Hsu in his model.

The work by Dougall and Rohsenow [8] is another classical reference for film boiling studies. They
developed a model to predict the local wall temperature and heat transfer coefficients for film boiling
heat transfer inside a vertical tube with upward flow. The model was based on the following

assumptions:

1. The wall heat flux is constant.

2. The entire heated length is in film boiling.

3. The liquid is saturated at entry into the heated portion of the tube.

4. Flow in the vapor film is turbulent except at entry.

5. Vapor flow is considered as flow between parallel plates (plane wall and liquid vapor interface).
6. Momentum forces are very much less than pressure and viscous forces.

7. Velocity distribution in vapor film is very similar to the universal velocity distribution profile. This

is given as

Viscous sublayer: ut=y"; 0<y"<5 (2-10)

Buffer region: u"=-3.05+5.0lny"; 5<y"<30 (2-11)
5+

Turbulent core: ut=55+25lny"; 30<y* S? (2-12)

This distribution is for half the vapor film thickness. Its mirror image is used for the other half.
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The shear stress at the interface is postulated to have a value between zero and the wall shear stress.
However, it is seen that for the case with zero shear stress at the interface and universal velocity
profile that reached the maximum at the interface, heat transfer coefficients obtained were
significantly higher than the experimental results. Therefore, it is assumed that the interface shear

stress is the same as the wall shear stress.

Prandtl number for most vapors is about unity, hence the eddy diffusivities for momentum and heat
transfer are assumed to be equal. The shear stress is assumed to be equal to the wall shear stress for
the viscous sublayer and the buffer layer. The shear stress is assumed to be linear for the turbulent

core region. It is given by

+

r=7,|1--2 (2-13)

%

The distribution of eddy diffusivity for the vapor film is given by

Viscous sublayer: £ 0; 0<y*<5 (2-14)
Buffer region: i:y?—l; 5<y"<30 (2-15)
v,
+ + +
Turbulent core: £_|1-2 R 30<y* < L (2-16)
v, 5% 2.5 2

The thermal resistance in the other half of the vapor film, next to the liquid vapor interface is called
the interface resistance. Dougall and Rohsenow considered three different expressions for the
interface resistance.

1. A LBT interface theory where the interface resistance is equal to the complete resistance in the
other half of the film.

2. A BT interface resistance theory where the interface resistance is equal to the sum of the turbulent
and the buffer resistances in the other half of the film.

3. A T interface resistance theory where the interface resistance is equal to just the turbulent

resistance in the other half of the film.
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This theory, based on an annular flow model with turbulent vapor flow agreed well with experimental
data at low qualities and indicated an asymptotic behavior towards the DFFB regime. Flow regimes,
local wall temperatures and local heat transfer coefficient for film boiling inside a vertical tube with
upward flow of saturated liquid (Freon-113) were studied by using a transparent test section made of
electrically conducting glass tubing so that the flow could be visualized. They used two different
diameter test sections: 0.408 inch I.D. and 0.180 inch 1.D. The entire region of boiling at constant
wall heat flux in the tube was by film boiling. The flow involved only low vapor qualities and with
small liquid velocities. Visual observations indicated that the flow regime was inverted annular with a

liquid core surrounded by vapor at the walls.

The work by Takenaka et al. [26] is another effort in the modeling of Inverted Annular Flow. The

following are the salient features of the model:

1. One dimensional energy balance, neglecting axial heat conduction.

2. Neglecting effects of phase change, radial distributions of the velocity and temperature of both
phases are calculated by a developed turbulent boundary layer model. Reynolds analogy is assumed.
3. Reichardt’s equation for the turbulent diffusivity coefficient is employed.

4. Radiation heat transfer is neglected.

5. Void fraction is assumed small.

6. Physical properties are evaluated at saturation temperature.

Within the film, the shear stress is zero at the location of maximum velocity. The eddy diffusivity of
momentum is also symmetrical about the location of maximum velocity. Unlike Dougall and
Rohsenow’s work this location is not at half the film thickness. The eddy diffusivity does not reach
zero at the interface but is some finite value. This is the unique feature of this model and is similar to

observed phenomenon.

The shear stress is related to the gradient of velocity as

du
r=ple+v)=—
dy
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Reichardt’s equation near the wall is used for the vapor film from the wall to the location of
maximum velocity. Reichardt’s equation is again used for this region from the location of maximum

velocity to the interface.

For the liquid core, eddy diffusivity obtained using Reichardt’s equation for wall region is equated to
the eddy diffusivity obtained from the equation for the center region. This gives the location up to
which each equation can be used so that the eddy diffusivity is continuous. Using this limiting

location, the velocity distribution is obtained for the liquid core.

Thus the entire region from the wall to the centerline is split into 4 regions:

1. Vapor Film split into two regions: One region of the vapor film from the wall to the location of
maximum vapor velocity and the other region from the location of maximum velocity to the liquid-
vapor interface.

2. Liquid Core split into two regions: One part from the liquid-vapor interface to the location where

the eddy diffusivity is continuous, while the other part is from this location to the centerline.

Velocity profile is obtained for each region. Temperature distribution is calculated by Reynolds

analogy.

Figure 2-2 shows the radial distributions of shear stress, velocity and temperature from the model and

comparison of analytical heat transfer coefficients with experimental data.

14



' FLOW PATTERNS AND HEAT TRANSFER IN IAF 779
5 l’ (a) 7] 5 &(b}
,D .

s

_5[ J
z=0.1 i . z=0.3 m
T "]
5
g 5 4
0 .

(| . |

L 1 1 1 1 ol L 1 1 L 1 i
5 0] 5 7 0
WALL CH L CENTER WALL mm

CENTER.

. |

N |
R e

-5

: z=0.5 m
10 : 7
]
~
E 5 -
= R
0
400
&
200
B
0
L 1

N/m?

1 1 1 o |

i} 0
r mm
WALL CENTER

Figure 8. Examples of analytical radial distributions of the shear stress, velocity and temperature of IAF;
g =60kW/m?, G = 6.3 x 10kg/m?s, AT, =10K: (a) z =0.1m; (b) z=03m; (€) z=0.5m.

(b)
i \O/ i 750
o o o
FF o5 00 O _ © 0 o 0
O Experimental results q,:=73 kW/m2 s q'=373 kw,/m:
T G= 316 kg/ mEs
e . z g .
Calculated G=z633 kg/mZs B ATsup 220K
; ATwup =10K
o~ i i | i 1
1 |
.y # o.lz o.!5 0‘14 0.5 0.6 o 0.1 0.2 0.3 04 0.5 0.8
z(m) z¢m?
-amples of experimental and analytical axial distributions of the heat transfer coefficient
‘ of IAF.

Figure 2-2: Radial distributions of shear stress, velocity and temperature from Takenaka’s model and

comparison of analytical heat transfer coefficients with experimental data.

15



Based on a two fluid formulation, a mechanistic model for the Inverted Annular Film Boiling region

was developed by Analytis and Yadigaroglu [1].

Interfacial velocity is assumed to be the same as the liquid velocity. To account for the effect of non-
smoothness of the interface on the interfacial exchanges, the model includes an enhancement factor

given by Wallis [30]. This is given in the equation below:

/1=1+150(£) 2-17)
R
where & denotes the film thickness and R the tube diameter. This factor is applied to both the vapor

interface momentum and heat transfer equations. Also, this enhancement factor A, is applied only to

the vapor-interface heat flux and not to the wall-vapor heat flux.

The entrance length effect is approximately accounted by applying the following enhancement factor,

to the interface-liquid heat transfer:

F :1+1.4(£J (2-18)
Z

In the above equation, R denotes the tube radius and z denotes the distance from the quench front. In
addition to this, another enhancement factor is needed (a constant value of 2.5 is used) in some cases,
in order to get acceptable agreement between experimental data and computational work. This is

attributed to “roughness” effect.

The predictions of the model have been successfully compared to heat transfer coefficients from
experimental data from a series of single tube reflooding experiments. The model predictions agree
with experimental data for a number of cases. However, it does not do a good job of predicting cases
with high subcooling, high flooding rate and high wall temperature. In order to fit the data well, a
factor of 2.5 is used along with the enhancement factor F, as discussed above. Samples of the results

are shown in Figures 2-3 and 2-4.
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The authors recommend detailed analysis around the quench front region and an additional

enhancement factor for high flooding rates.

The work by Cachard [4] builds on the work by Yadigaroglu and Analytis [1]. This work is the most
recent and complete work related to Inverted Annular Film Boiling. A six-equation model is
implemented with closure laws specific to the IAFB regime. Closure laws applicable to both tubes

and various bundle geometries have been proposed.

In the model proposed, convective liquid heating is related to the liquid velocity relative to the
interface, and not to the absolute liquid velocity as in the previous models. This relative velocity is
deduced from the interfacial shear stress, using the liquid - interface friction law. With this
modification, the prediction of the experimental trends is greatly improved. The vapor is treated as

flow between two parallel plates (wall and the liquid interface).

In the closure laws proposed, the effects of non-smoothness of the liquid vapor interface (waves,
oscillations of the liquid core, droplet entrainment and redeposition, and turbulence in the vapor film)
are also accounted by semi-empirical laws based on physical models. These phenomena significantly

affect interfacial transfer.

The model introduces three enhancement factors, A,4,, and 4; which represent enhancement

factors for vapor interface momentum transfer, vapor film heat transfer and interface liquid transfers
respectively. These are the key points of the model by Cachard. A non-dimensional film thickness %
is used as a correlating parameter for the vapor-interface transfer enhancement during IAFB in

reflooding situations. The enhancement factors are given by the following relations.

A, =0.0362(6" ) (2-19)

4, =0.679(5° " (2-20)

A = 4.18(1 +0.7 ﬂj 2-21)
Z
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%
M,

Dy, represents the hydraulic diameter and z represents distance from the quench front.

The correlation obtained for A (interface transfers) does not fit well with available experimental data.
This is due to the lack of proper understanding of the physical phenomena. In addition to this, when z

is small, the value of the enhancement factor is maximized to 10. This has no physical basis.

The work considers three possible geometries: flow in a tube and flow in square or triangular lattice
rod bundles. Heat transfer within the liquid core is deduced from momentum transfer using the
Chilton Colburn analogy. The model can be applied to steady state as well as reflooding conditions,
with very different geometries, i.e. tubes and rod bundles with hydraulic diameters ranging from 4 to
14 mm, and for large parameter ranges, i.e. 3 to 50 cm/s in flooding rate, 0 to 30°C in subcooling, 1 to
4 bar in pressure, and 300 to 1000°C in wall temperature. Forced flow subcooled film boiling
experimental results from four different sources were analyzed. The model was successfully assessed
against 57 experiments corresponding to very different geometries and parameter ranges. IAFB was
assumed to end when the void fraction reached 60%. Calculations were stopped arbitrarily at this

point.

Thus, even the model provided by Cachard has a lot of empirical factors, some of which satisfy a
wide range of experimental data. Here too, the factor accounting for the vapor-liquid interaction is
questionable and needs further analysis based on physical phenomena. This work also recommends a
thorough study of the region near the quench front to account for the physical phenomena involved in

that region.

Elias and Chambre [9] studied IAFB from vertical surfaces. The study is based on the existence of
two distinct regions of inverted annular film boiling. The first region is assumed to occur immediately
following the quench front and is characterized by a smooth vapor film of constant thickness
separating the bulk liquid from the hot wall. The vapor layer thickness depends upon the flow
velocity and subcooling. The second region is considered to be the region where a wavy and unstable

liquid vapor interface is observed.
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The result of the study is a model based on the solution of the energy conservation equations of the
liquid and the vapor regions downstream of the quench front. The model is developed for the region
of constant vapor thickness only. The region of wavy liquid vapor interface is not considered in the

analysis. The following assumptions are also made:

1. All the vapor is generated in the region at the quench front and the vapor is at the saturation
temperature at this location.

2. The liquid core and the liquid-vapor interface are below the saturation temperature, so that no
evaporation occurs from the liquid, hence there is no interfacial mass transfer.

3. A constant (uniform) velocity profile is assumed for the annular vapor film.

The model also uses two existing correlations for determining the quench front velocity that is needed

to determine the vapor velocity.

The predictions of the model have been compared to some experimental data by choosing values of
vapor film thickness. The value of vapor film thickness is not verified experimentally and hence
could be a source of error. The region of applicability of the model is relatively small compared to the
region where the interface begins to get wavy and eventually transitions to high void fraction DFFB

region. Thus, the model is applicable to a very small portion of the IAFB region.

Denham [7] extended the Bromley model to account for the effects of flow rate and quality. Net rate

of evaporation of water is determined by the net flux to the steam-vapor interface. This is given by:

drg — (¢w +f)r _¢1) (2_23)
dz g

where I, is the mass flow rate of vapor per unit width of plate, @, is the heat flux from the wall by

conduction to the vapor film, ¢,is the heat transferred by radiation and ¢, is the heat flux across the

vapor film-liquid interface removed by conduction in to the subcooled liquid core. These heat fluxes

are given by the following expressions:

4, =—<AT (2-24)
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where «,is the thermal diffusivity of liquid, the thickness of the vapor film used in the Bromley

equation is given by

5_{ ALt r (2-27)
gpg(;f_pg]

and where r is the radius of the liquid core (approximately D/2) and the time t is that taken by the

liquid core to rise from the start of the film boiling region (z = 0).

These equations form a system of first-order non-linear differential equations that are solved using
different boundary conditions. Four different ‘options’ are considered for the initial flow rate and core
thermal properties. Experimental measurements of heat flux and wall temperature just ahead of the
quench front are obtained from the single tube reflooding experiments. Data from the single tube
reflooding experiments compared well with the predictions when the constant in the equation for & is
changed from 4 to 5.20. Values of the emissivity for the wall and the film are 0.8 and 0.95
respectively. Inverted annular flow is said to break down when the core Weber number exceeds the

order of 20. The result of the analysis is shown in Figure 2-5.
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2.3 Other Relevant Works in Film Boiling

De Jarlais and Ishii [19] studied IAFB experimentally. They observed that Inverted annular flow
occurs when low quality flow is coupled with wall surface temperature and heat flux values too high
to allow liquid/wall contact. The resulting flow pattern is a liquid core surrounded by a blanketing
annulus of vapor. Inverted annular flow occurs in light water reactor accident situations in which,
after a Loss of Coolant Accident (LOCA) core reflood brings coolant into the confined regions
between very hot rods. For inverted annular flow, the shape of the liquid/vapor interface, the stability
of the liquid jet core and the disintegration of the liquid core must be understood and their predictive
methods established, so that the modeling of this regime and the development of interfacial transfer

correlations for mass, momentum and energy can be done.

A two-fluid model was developed by Hammouda et. al. [12] to predict the wall temperature of a tube
during Inverted Annular Film Boiling (IAFB). The two-fluid model predictions of heat transfer in
IAFB are based on the concept of reduction of the number of degrees of freedom of the system. The
model is based on general constitutive relations, with a minimum of empirical coefficients. The

mathematical modeling involved the following:

- conservation equations for mass, momentum, and energy for each phase;
- relevant constitutive relations for mass, momentum and energy transfer

- boundary and initial conditions.

The constitutive relations are different from those developed in earlier two-fluid models. The
relations for the shear stress and heat transfer rates are the major components in this model. The
model predictions were compared to experimental data from four fluids (water, Freon-12, Freon-22
and Freon-134a). Instead of developing closure relationships for each unknown quantity, Hammouda
et. al. attempt to provide physically sound relationships between groups of the unknown quantities -
various heat flux terms are related to each other; similarly terms relating to shear stress (wall,
interface) are related to each other. This reduces the number of degrees of freedom. However, in
doing so, they make certain assumptions that are questionable. For example, they assume that the heat
transfer coefficient from the wall to the vapor and the vapor to the interface are of the same order of
magnitude. This could be true, but not in all situations, especially in extreme situations of very high

subcooling or mass flux.
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Figure 2-6: Comparison of results from Hammouda’s model with other models and experimental

data.
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The authors acknowledge that despite several simplifying assumptions, the model agrees well with
experimental data. This could be due to compensating errors too. Also, for high subcooling cases, this
model overpredicts the wall temperature by a significant margin. This suggests that the heat transfer
relations used in the prediction methods are no longer applicable and that the film thickness is over
predicted. They suggest that reliable equations for flow in very small gaps be used to overcome this

deficiency.

Jensen and Holdredge [20] outlined a mechanism for inception of liquid entrainment and derived a
mathematical model was derived for the prediction of the inception of the liquid entrainment. They
concluded that the mechanism for liquid entrainment was the breakup of the liquid phase due to the
instability of the vapor-liquid interface in the film-boiling regime. The liquid vapor interface was
assumed sinusoidal and the equations were derived by the simultaneous solution of the continuity and
momentum equations. Equations were derived to calculate the growth rate of the unstable interface
and the length the wave must travel before liquid entrainment occurs. The model was compared to

available data from Emergency Core Cooling experiments.

Liquid entrainment is defined as the disintegration of the liquid phase in the inverse annular flow

regime due to the instability of the liquid-vapor interface.

Review of several high-speed moving pictures of the emergency core coolant injection suggested that
liquid entrainment results from the instability of the liquid vapor interface and the subsequent

breakdown of the continuous liquid phase into large droplets of slugs of water.

The liquid phase break up progresses in the following manner: At a given location and at some time,
the amplitude of the unstable wavy interface formed in the inverted annular regime is not yet large
enough for liquid phase break up to occur. After some time, at that location; break up of the liquid
phase occurs and the resulting length of the liquid slug is some multiple of the wavelength. After
some time, further disintegration of the slug occurs. Further disintegration of the droplets is controlled

by droplet inertia and surface tension forces.

Assumptions made in the derivation of the mathematical model are as follows:

1. Rectangular coordinates.

25



. Both phases are ideal frictionless fluids.

. Irrotational flow, velocity is uniform across each phase.

. Mass transfer at the interface is neglected.

. Interfacial shear is neglected.

. Change in velocity of each phase in axial direction is negligible.
. Film thickness remains constant.

. Incompressible.

O 0 9 N L K~ W

. Interface is of the form b = B COS(Ky - G[).

where:

b is the location of the wave surface in the x-direction, in.

B is the wave amplitude, in.

K is the wave number (2%) in.

t 1S time, sec.

G is the wave frequency, sec.

These assumptions are not entirely physically true but they do simplify the continuity and momentum
equations to a great extent and eliminate the energy equation altogether. The interface was modeled

by a cosine function.

Neglecting mass transfer at the interface implies that there is no phase change occurring at the
interface. This implies that the energy equation that couples the two phases does not play a role in the
analysis. Neglecting interfacial shear also simplifies the momentum equation greatly. The momentum
equations for the liquid and vapor phases are decoupled from one another. Assumption of constant
film thickness implies that the interface is not moving in the x-direction, thereby fixing the

coordinates to obtain a boundary condition to solve the system of equations.

The continuity equations for the liquid and vapor phases respectively are:

%4_%:0 and al/tg +ai

=0 (2-28)
ox dy ox dy
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The simplified momentum equation for the x-direction is written as:

1 ap, au, . au, +y al/t, (Liquid phase) (2-29)
_— = 1Jqu1 ase -
o, ax o Tox gy AP

1 dp, Ou, ou
- —f=_f,

p, ox o

8 aué’
u, o +v, > (Gas phase) (2-30)

Because of the simplifying assumption of no phase change at the interface, there is no energy

equation involved in the analysis.

These equations were then solved simultaneously to determine the growth rate of the interface waves.
Based on some previous experimental work and basic wave propagation equations, they derived an
expression for the entrainment length (length required to initiate entrainment). The dimensionless

growth rate was found to be

b

pip. k| p

2
_ We —
P “Lp

I1 =22R

(2-31)

where the overbars indicate that the properties are void fraction weighted. Thus, the growth rate of the
interface waves as a function of the system parameters: phase velocity, void fraction, pressure and

wavelength.

The dimensionless Weber number is given as :

dv?
We = % (2-32)

where

T is the surface tension

d =0, + 3, (3 refer to the thickness of the appropriate phase)
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They also performed a parametric study of the growth rate. The effects of pressure, wavelengths, void
fractions and Weber number were studied. It showed the existence of a maximum growth rate and a

corresponding wavelength

Jensen and Holdredge also obtained an equation which related the wave growth rate to the length
which a wave travels before the wave amplitude required to initiate liquid entrainment is achieved.
This is called the entrainment length, which is also a function of the wave velocity and wave growth

rate.

The trend of the predictions by the model agreed with the experimental results. However, the
entrainment length predicted by the model was much smaller than the actual entrainment lengths
observed. Since interfacial shear was neglected in the model development, they found that the wave
velocity was nearly independent of the vapor velocity and was approximately equal to the liquid

velocity. This is quite different from the actual observations in experiments.

This study by Jensen and Holdredge is quite useful in understanding the mathematical complexity of
the problem. An analytical solution was obtained by making several assumptions, many of which
cannot be made in modeling of reflood heat transfer. For example, neglecting interfacial mass transfer
amounts to no interaction between the two phases and no phase change. This also means that the
vapor film thickness would remain constant as assumed. Thus, one assumption may actually imply
several other assumptions in the analysis. This model is a good simplified starting step in the
modeling of the onset of entrainment. A more realistic model should consider the mass transfer at the
interface, phase change at the interface and interfacial shear. This would bring in the energy equation
and couple it with a more complex momentum equation. Analytical solution of such a system of

equations may not be possible.

Barnea et. al. [2] used stability analysis to develop a criterion for transition from a steady inverted
annular flow (IAF) to inverted slug flow during the rewetting of a heated vertical surface surrounded
by an annular channel. The analysis was based on the Kelvin-Helmholtz instability using small

perturbations on the main velocities due to the waviness of the liquid-vapor interface. Vapor velocity
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was calculated assuming that evaporation takes place only at the quench front. The analysis indicated
that the stable wavelength depends upon velocities and film thickness of the two phases. The stable
wavelength was calculated using an empirical parameter that was used to account for the heat transfer

between the phases. The model predictions compared favorably to experimental results.

The work by Fung [10] is a complete theoretical and experimental work on inverted annular film
boiling. Unlike previous experimental works, water was used as the working fluid. Fung obtained
steady state, post dryout heat transfer data for vertical flow of water inside electrically heated tubes of
about 12 mm inside diameter and 800 mm length. The data was obtained using the hot patch
technique, in which an indirectly heated copper block brazed onto the inlet of the test section supplied
the critical heat flux. The wall temperatures were measured at ten different locations and the heat
transfer rates derived from these measurements taking into account axial conduction and heat losses.
Gamma densitometer was used to measure the void fraction at five locations. The outcome of the
experimental work was subcooled film boiling data for water under forced flow conditions inside a
tube. The data covered a wide range of mass flux and inlet subcooling similar to those expected to
exist in a nuclear fuel channel under accident conditions. Most previous data were using cryogenic

fluids and not with water.

A theoretical model developed used a one-dimensional integral technique similar to the analysis of
single phase boundary layers. The model predicts the surface temperature of a tube during Inverted
Annular Film Boiling. The model considers each phase to flow separately without any entrainment of
the other phase. It incorporates the effects of mass flux, inlet subcooling, pressure and hydraulic
diameter. The model considers initial stage of the vapor film to be in laminar flow and as the film
thickens, it changes to turbulent flow. A subcooled, rather than a saturated liquid core is considered
for the analysis. The model assumed a uniform velocity in the liquid core, and the liquid core to be
turbulent. In other words, the velocity boundary layer of the liquid core at the liquid-vapor interface is
neglected. The eddy diffusivities of heat and momentum have been assumed to be equal in the
analysis. An empirical relation from Wallis [30] is used for the interfacial friction factor. The

predictions from the model have been compared to experimental results.

2.4 Models in COBRA-TF for Inverted Annular Film Boiling [28]

Heat transfer in film boiling is assumed to result from one of the two mechanisms: inverted annular

film boiling (IAFB) or dispersed flow film boiling (DFFB).
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Dispersed flow film boiling differs from IAFB in that there is no continuous liquid flow present in the
flow field. Rather, the liquid phase is in the form of droplets that are dispersed in a continuous vapor
phase. The void fraction is greater than 0.9. DFFB is modeled using a two-step method where the
dominant heat transfer mode is forced convection to superheated steam. Heat fluxes due to wall to
droplet radiation and droplet impingement are super-imposed on the vapor convective heat flux. Thus,

the total heat flux is

q;)FFB = q;c + ‘J;Q + q"/'V—D (2-33)
where
(];c = Vapor convection heat flux
q;e = Radiation heat flux
q;v_ p = Drop impingement heat flux

Vapor convection heat flux:
The superheat for the calculation of the vapor convection heat flux is determined by the interfacial

heat transfer rate to the entrained droplets as a part of the hydrodynamic solution.

The vapor convection heat flux is given by:

Gre =Wlhgy (T, -T,)] (2-34)

The heat transfer coefficient hgpy is calculated using the maximum of the values obtained by the

following equations:

Dittus Boelter (Steam)

0.8

D

htc = 0.023£(b] (Pr, )™ (2-35)
h Il’lv

FLECHT SEASET 161-rod bundle
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k G D 0..6774
htc = 0.0797 ( v ”j (Pr, )™ (2-36)

Laminar Flow

k . .
htc = Nu[D” j , where a value of 10 is assigned to the Nusselt number.
H
Some DFFB studies have shown that interfacial shear between dispersed particles and a continuous
phase increases the turbulence levels and enhances the convective heat transfer. The two-phase

enhancement factor for dispersed flow, ¥, is approximated by an extension of the analogy between

wall shear stress and heat transfer, wherein the turbulent convection heat transfer coefficient is, to a

first approximation, proportional to the square root of the shear stress.

hgy = (2,)" (2-37)
Then,
7.
W= oy = |22 (2-38)
hgpy 7,

Heat transfer due to droplets striking the wall, q;‘,_ p » 1s evaluated using the drop deposition models

of Ganic and Rohsenow [11].

Gwer = SpehTl (2-39)

where S ;E is the drop migration rate towards wall and is calculated as:

S, =Ck, (2-40)
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where

]
. - _ M, % f /2 G,
the deposition coefficient, k,, =0.102| ——
DHO-pl 2 pv

and the droplet concentration, C = L%J 0,

v

G, and G, are the droplet and vapor mass flux values respectively.

The drop evaporation efficiency, 1, is approximated by

2

TW

n=exp|l-| *
[Tf}

The radiative heat transfer, q;q , is calculated using the subchannel based model.

(2-41)

(2-42)

Inverted annular film boiling is assumed to occur if void fraction is less than 0.4. The heat flux for the

IAFB regime is computed from the larger of either the value calculated for dispersed flow film

boiling or the value from the modified Bromley correlation:

0.172 3 ' _ %
q;ROM _ 062(%} [kgghfg (pf pg )pg :| (Tw _Tj)

DHlug(Tw _Tf)

(o

where

K mh, {1 | 0de,, (r, -1, )}

hfg

and
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The work by Momoki et. al. [23] involved prediction of the heat transfer around a finite length
vertical cylinder using a separate model for each of the top, bottom and the circumferential surfaces
of the cylinder. The results were also compared to experiments conducted using cylinders of six
different materials and known aspect ratio. A simple explicit finite difference scheme was employed
for predicting the temperature distribution inside the cylinder. The convective boundary condition
was obtained from a modified Bromley equation with the effect of the vapor from the bottom surface
for the vertical surface around the lower corner and another model for the region when the liquid
vapor interface becomes wavy. The numerical results obtained from the predictions agreed with the

conducted experiments quite well.

2.5 Models for Eddy Diffusivity of Momentum

Measured velocity profiles for fully developed turbulent flows in smooth circular ducts are well fitted

by relations of the type

ut = C(yJr )l/n

as pointed out by Schlichting. C and n are somewhat dependant on the Reynolds number

Re, = UnD . For Re,, =10°, C = 8.74 and n = 7. For turbulent pipe flows, the following definitions
14

are commonly used
r
=R-r,n=—
y n R

where R is the radius of the pipe. ‘y’ is the distance from the wall. Dimensionless quantities are

formed by defining the following

T, .. .
u"=_ |2, called friction velocity.
u yu'*
+ +
u = —* . y = —
u |4
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Prandtl and Taylor introduced the concept of a transition between the laminar sublayer (a layer which
allows turbulence effects to exist), where viscous effects prevail, and a fully turbulent core where the

turbulent forces are dominant.

In turbulent flow formulations, time averaging results in terms that include product of fluctuating

quantities. As is the convention, the product of the fluctuating components of the velocity is related to
—= ou r . . ..
the turbulent shear stress as — pu'v' = u > where the ' = pe,,. €, 1s called the eddy diffusivity of

momentum, which is an unknown quantity.

Several researchers have developed empirical relations for eddy viscosity and consequently, the

velocity distribution. The basic requirements of such models are:

1. The eddy viscosity must be represented by a smooth, continuous curve.

2. The eddy viscosity vanishes with the third power of the distance from the wall.
3. The gradient of the mean velocity distribution vanishes at the center of the pipe.
4. The continuity equation is satisfied.

5. The ratio of the bulk velocity to the centerline velocity must agree with the experimental data.

In 1877, Boussinesq postulated that the eddy viscosity of momentum is a constant. This was probably
guided by the fact that molecular viscosity is a constant. But in reality, the eddy diffusivity of
momentum is not a constant. Particularly near solid surfaces, it is dependant on velocity and

geometry. Nevertheless, a constant &,,is used for convenience. Later on, Prandtl devised the Prandtl

mixing length theory based on ideas from kinetic theory of gases. It is given by:

dit

g, =1
dy

, where /= K,y is the mixing length. K, =0.36. (2-46)

Later on von Karman gave the mixing length as

du/dy
d%i/ dy*

with K; =04 (2-47)

3
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Even with Prandtl’s mixing length theory, there is an unwarrantedly large discrepancy between data

and prediction observed in the region very close to the wall.

von Karman introduced the concept of buffer region between the viscous sublayer and the turbulent

core. Using the velocity distribution data of Nikuradse, the following regions were defined:

Viscous sublayer: ut=y"; 0<y"<5 (2-48)
Buffer region: u"=-3.05+5.0lny"; 5<y"<30 (2-49)
Turbulent core: ut=55+25Iny"; yt>30 (2-50)

This three-region profile suffers from a discontinuity in slope at y" =30; moreover, the velocity

gradient does not vanish at the center of the pipe. Thus, the logarithmic velocity distribution, although
useful and often used for approximate predictions of turbulent velocity profiles, violates a number of

physical conditions. Therefore, it cannot form a completely accurate description of the flow field.

After von karman, Deissler proposed that the eddy viscosity approaches zero as the square of the

distance from the wall. His expression for the eddy viscosity in the neighborhood of the wall is:
£_ mu®y”* (2-51)
v

where m was determined as 0.0119. Deissler’s two region velocity profile is given by:

y* = /%exp(m; ]erf(bﬁ\/%} y* <26 (2-51)

ut=38+278Iny"; y*>26 (2-52)

This profile also suffers from the same disadvantages as the standard logarithmic velocity profile

given by von karman.

Reichardt assumed the following relations:
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En| _ 0.4{ y -1 1tanh(i’—lﬂ , for the region near the wall and (2-53)
V w

Enm| % : RTC (1 -n’ Xl + 2772) , for the turbulent core. (2-54)
V c

These equations satisfy the basic requirements given above, however the momentum equation cannot
be solved in a closed form. Values of eddy viscosity rise from the wall to a maximum value
approximately midway between the wall and the centerline. It then decreases at the centerline to a

value that is generally 50% or more of the maximum value in the pipe. Reichardt’s profile gives

. E, . . . E, . . Lo
nearly uniform — in the central region. The high value of — in the central region testifies the
14 14

effectiveness of vigorous turbulent mixing in increasing the effective viscosity there. Since turbulent
viscosity is about two orders of magnitude more than the molecular value, the central core very nearly

behaves as a solid slug.

Travis [29] proposed a modification of Reichardt’s two region eddy viscosity model to describe mean

velocity and eddy viscosity distributions in steady, fully developed isothermal pipe flows
(4><103 <Re, <5><106). Travis used Reichardt’s two-region empirical equations without the

numerical constants as:

Em| _ ]{ yr A tanh[yjﬂ for the wall region and, (2-55)
V w

En| _ % . RTG [1 —(F 77)2 [% +2(F 77)2} for the turbulent core. (2-56)
V c

The factor F in the above equation is greater than 1. It has the effect of reducing the radius over which
the central equation applies from 7=1 to 7 :%. This is done so that the two equations for eddy

diffusivity may be equal at some distance away from the wall and that they join in a smooth fashion

(i.e.. equal slopes). The ratio of the eddy viscosity of the centerline to the maximum value is chosen
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to be 0.75, because it agrees better with the shape of the velocity profiles. The factor 2/3 in the

equation for the turbulent core is introduced for this purpose.

In addition to the above equations for eddy diffusivity of momentum, continuity equation

j-Re” jndnden (2-57)

and the equation for the centerline velocity

u Re? | n
1= =2 d 2-58
(ﬁmJZRe!(gm/v)H g (2-58)

require to be satisfied. Thus, four non-linear equations should be solved for the four unknowns: k, A,

F and the non-dimensional 7. Travis obtained plots of k, A, F, 17 as a function of Reynolds number.

The model used by Travis provides excellent agreement with Laufer’s experimental data and a better

mean velocity distribution than Van Driest’s analytical investigation.

2.6 Concluding Remarks

The study of literature in the field of IAFB suggests that modeling of IAFB still has several
empirically dependent models and correlations, some of which should not be used due to lack of

physical explanation or extrapolation beyond the range of parameters for which they were developed.

The work done by Bromley [3], Dougall and Rohsenow [8] represent classical studies in film boiling
while those of Analytis [1] and Cachard [4] are the more recent and complete works in modeling

IAFB. Despite the efforts put in, all the phenomena of interest are not modeled accurately.
The main challenge in implementing IAFB models into two-fluid codes is the proper choice of the

interfacial heat and momentum transfer relationships. Interfacial heat exchange enhancements may be

due to turbulence in the vapor film, violent vaporization at the quench front, liquid contacts with the
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wall at the quench front. Also, there is a large amount of vapor generated at the quench front (release
of heat stored in the wall due to quenching). There is a great deal of uncertainty about this, since the
vapor at the quench front is generated violently under highly non-equilibrium conditions. In general
there are several adjustable parameters and assumptions influencing the results (introducing degrees

of freedom into the model).
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Chapter 3

Problem Formulation

3.1 Introduction

The physical phenomenon of Inverted Annular Film Boiling (IAFB) has been explained in Chapter 1.
Models from the earliest, the Bromley model to the most recent ones are reviewed in Chapter 2. In
addition to this, various models for eddy diffusivity of momentum have been described in the

previous chapter.

A schematic for Inverted Annular Film Boiling is shown in Figure 3-1. In this chapter, the differential
equations that describe the physical phenomena are derived from fundamental principles. The liquid
core and the vapor film are considered separately. Governing equations of mass, momentum and
energy conservation are derived for the liquid and vapor considering a differential control volume in
each region. The effect of turbulence is introduced in the governing equations by defining the
velocities, temperature, shear stress and pressure as the sum of a mean component and fluctuating
component. Time averaging of the governing equations result in terms that can be re-defined in terms
of eddy diffusivity of momentum and eddy diffusivity of heat. By definition, some of the terms are

zero, thereby simplifying the governing equations.

The resulting set of governing equations is a system of eight partial differential equations in r and z.

3.2 Derivation of Governing Equations
Consider a control volume in the form of an elemental cylindrical ring of radius r, thickness dr and

height dz. A schematic of the control volume chosen is shown in Figure 3-2. It must be noted that

both the liquid and vapor velocities and the temperatures are all functions of both r and z.
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Figure 3-2: Control Volume for Analysis
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3.2.1 Assumptions

1. The flow is quasi-steady. In the reflooding process, the quench front progresses slowly along the
heated rods. Thus the phenomena change slowly relative to the frame of reference moving with the
quench front.

2. The flow is two dimensional and axisymmetric. This is usually the case for channels in the center
of the heated bundle.

3. p, = p, = constant

4. Constant thermal conductivities of liquid and vapor phases.

Liquid region: 0<r<R-9

Vapor region: R—d<r<R

3.2.2 Turbulence Fundamentals

While describing a turbulent flow in mathematical terms, it is convenient to separate it into mean and
fluctuating component. Denoting the time-average of the x-component of the velocity by # and its

fluctuating component by u”, the instantaneous velocity is given by:

where Atis a time interval large enough relative to the turbulent fluctuations, so that the mean values

are completely independent of time. The time averages of all fluctuating quantities are equal to zero.

3.2.3 Conservation of Mass
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Based on the assumptions and for the control volume chosen, the conservation of mass for the liquid

and vapor phases based on the mean velocities are given below:

Liquid Phase: aﬂ + li(rﬁ, ) =0
0z ror
Vapor Phase: a(p Vﬁ”) + li (rp‘,VV ) =0

0z r or

3.2.4 Conservation of Momentum

(3-1)

(3-2)

Since both the liquid and vapor velocities are functions of both r and z, the momentum equations will

have two components for each phase.

3.2.4.1 Z direction Liquid Phase Equation
0 0
Rate of change of momentum: > [, 2mrdrYu,u, Jdz +a—[p, (mrdz)uy, ldr
Z r
The above expression can be re-written as:
(2727’517”511){i (o, )"‘li(”pz”lvz)}
0z ror
Forces acting on the control volume:
Pressure: P(27r)dr — (P + g—szj(Zm)dr = —?)—P (27rdr)dz
Z Z

Gravity: —p,8 (27rdrdz)

Shear: —7,_, (2mrdz)+ {Tm ,2mrdz)+ ai [Trz, 2mrdz )]dr} = ai [T,Z! (2mrdz )]dr
r r
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From Newton’s second Law, the rate of change of momentum is equal to the sum of the forces.

Combining terms given by 3-3a, 3-4, 3-5 and 3-6, we get:

0 19 oP 19
|:_(plulul)+7$(rplulvl):| =—pP8 __+__(”'rz,1)

3-7
0z Jdz ror G-7)

Equation 3-7 represents the z direction momentum equation for the liquid phase.

3.2.4.2 R direction Liquid Phase Equation

With no body forces in the ‘r’ direction, the only forces of interest in the radial direction are the

pressure forces and shear forces.

The resultant pressure force in the radial direction: —3—P(27£rdz)dr (3-8)
r

Shear Forces: {— T,,+7T,,+ airzr! ,dz}27zrdr = ai (TZ,! . )2727drdz (3-9)
F4 F4
) 0
Rate of change of momentum: P (o, 27rdr)u,v, Jdz + > (o, 2mrdz)vy, ldr (3-10)
2 r

The above expression can be re-written as:
0 10

(27rdrdz) _(pzuzvz )+__(rp1VzV1) (3-10a)
0z ror

Combining 3-8, 3-9 and 3-10a, the momentum equation for the liquid phase in r direction can be

written as:
0 10 oP 0
[a_z(pzulvl)"‘;g(”pzvlvl)}:_E"‘a_z(rzr,l) (3-11)
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Equations 3-7 and 3-11 represent the liquid momentum equations in the z and r directions

respectively.

3.2.5 Turbulent Flow Formulation

3.2.5.1 Z direction momentum Equation

Expressing Equation 3-7 in terms of mean and fluctuating quantities, we can write:

) SN Y | e, 0 (= 197 ,
_[pl(ul +u )(“1 +u,)]+——[rp,(u, +”1)(V1 +V1)]=__(P +P )_ng +__[r(rrz,l +7,., )] (3-12)
0z r or 0z r or

Statistically averaging, and invoking #u =uv, =iy, =0, 7.; =0 and P’ =0, we get:

0 —_ =) . 19 = oP 10/ _

a_[pz (“z“z +”1“1)]+_8_[er (“1"1 +uv, )]z—a—P—plg +_a_(rTrzl) (3-13)
Z r or 7z r or

Re-arranging, we get:

0, __\ 1o, __ oP 10 _ 1o0( —\ 0(. —

a_z(pl I 1)+7a_(”plulvl)—_a_z_ng +7a ( rz,l) 7§(rplulvl)_a_z(plulul) (3-14)

As is the convention, the product of the fluctuating components of the velocity is related to the

— u . Ju )
turbulent shear stress as — o, u/v, = 4! —- and using7,_, = 4, —, the two terms can be combined
Py, =M 3 87, = H 3
r r
to give:
— ou ou ou
= 77 _ ! o !
Tg — PV = 1 Y + 4, Y =P (Vl +€m,l) Y (3-15)

Using the above simplification, Equation 3-14 can be re-written as:
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d, __\y 10, __ oP 1|9 i, Jd(. ——
_(quluz)"‘_g(”pz”lvz): __Z_ng +7{$[”P1 (Vz T Em )ﬂ}__(pz“z“z) (3-16)

The last term in Equation 3-16 can be written as:
au, du,

i r oy
—puy =1 ——= P&,
0z ™9z

Thus the z direction momentum equation for the liquid phase is given by:

o, __\ 1o, __ oP 1o o, 0 o,
a_z(plulul)-’_;g(rplulvl): _a_z_plg +;{§[”pl (Vz +E, )a_rl}"'a_z(plgm,z a_zlj (3-17)

3.2.5.2 ‘R’ direction Momentum Equation

Equation 3-11, expanded in terms of mean and fluctuating components can be written as:

a — 2\[— ’ 1 a — 2\(— 7’ a k= 7’ a — ’
_[/7/ (“1 +u )(V/ tv, )]+——[r,0, (Vz +v, )(V/ tv, )]= __(P +P )"“ (7zr,1 + rzr,l) (3-18)
0z r or or 0z

Statistically averaging, and invoking v,v, =u/v, =it,v] =0, 7'y =0 and P'=0, we get:

P2,

d __ ==\ 10 =

a_[Pz (“sz +u,v, )]"'_a_[rpz (Vz"z +Vvy )]:_ +8_ 2l (3-19)
Z r ar Z

Re-arranging, we get:

d, __y 190 __ oP 0 [_ 0( —) 1d -
a_z(plulvl)+7§(rplvlv1)=_E+a_z(rzr,l)_a_z(plulvl)_7$(rplvlvl) (3-20)

As is the convention, the product of the fluctuating components of the velocity is related to the

v % . v .
turbulent shear stress as — p,u;v; = {; a—Z’ and using 7., = 4, a_zl , the two terms can be combined

to give:
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al:pz(vz e )5 (3-21)

- = W, v,
Ty —P UV =1 a_z+/‘1 Y ) ) py

Using the above simplification, Equation 3-20 can be re-written as

d 1o, __ aﬁ d o | 1d( —
P = (P, 1)+7$(”pl"1v1): 5 az |:pl (Vz +tE, ) azl} o (I”pl Vlvz) (3-22)
, 9y, v

The last term in Equation 3-22 can be written as — p, V1V1 U — 5 =PiE 5

Thus the R-direction momentum equation for the liquid phase is given by

2 (pam)+ - o)== 24 2
ror or 0z

oP 0 0 10 )
|:pl(VZ ) VI}"‘__( TPE,, v’j (3-23)
0z Jd

0z r or

Thus, Equations 3-17 and 3-23 represent the liquid phase momentum equations in z and r directions

respectively. The equations for the vapor phases can be derived in a similar manner and have the

same form, except that the velocities and properties are for the vapor phase

d 19 oP 1[0 ou 0 ou

2 -2 = 212 R | G v 3-24
)+ o)== pvg+r{ar{rpv(vv+€m,v) - }}+az(pv€m,v azj (3-24)
d 19 P 2 ] 19 o,

9 L L2 9 3-25
aZ (pV v l )+ r (rpv ‘ l) ar + aZ [pV(VV +gm,v) az } r ar( pV m,v a j ( )

Equations 3-24 and 3-25 represent the vapor phase momentum equations in the z and r directions

respectively.

3.2.6 Energy Equations
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3.2.6.1 Liquid Phase Energy Equation

The energy equation can be obtained from a simple energy balance of a fluid element in the form of a

ring. It is given in Equation 3-26 below.

0 0 0 0
a_z (qcomz )dZ + E(qcond )dr + & [pz (2717’dr)uch,le ]dz + 5 [pz (2727’d”)vch,lTl ]dr =0 (3-26)

Applying Fourier’s Law, Equation 3-26 can be written as:

9 {kl (27zrdr)£}dz 9 [k, (2mrdz)—-

oT, 0
0z 0z or or

0
dr = a_z bz (27zrdr)ulcp!lT, ]dZ + W [,01 (27Z7”d’”)"ch,17} ]dr (3-27)

Dividing throughout by 27rdrdz , the above equation becomes

0 oT, | 19 oT, 0 10
a_z{kl a_zl} +7§[k,ra—rl} =a—Z[PIM;C,,,IY“[]Jr;g[PIVV;C,,,ﬂ?] (3-28)

Assuming constant properties, Equation 3-28 becomes:

0 (dT, 10( o, 0 19
k, {a—z(a—;j +;g("a—r[j} =PIy {a—z [, ]+ 75[""1@ ]} (3-29)

3.2.6.2 Turbulent Flow Formulation

In terms of mean and fluctuating quantities, the liquid phase energy equation, 3-29, can be written

k, {%[M}li{@}} =Pic,, {3 @, +u)(T; +T/)]+%[r(vz )T, +T/)]} (3-30)

0z ror or 0z

Statistically averaging, and invoking ﬁ =y
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o (a7, 10( 0T, 0(—= ==\ 190[(L= —=
E T BTN B

Re-arranging

p,cp,,[a%(ﬁﬁ)f ally T,)}za%HaaU p,cpz(_T’)}%%{rKkzaa—ﬂ prc N(T)}} (3-32)

As is the convention, the product of the fluctuating components of the velocity and temperature is

related as follows:
oT,

5 o7, o
=Py T =k a_zl and — p;c,,viT/ =k E)_rl (3-33)

Using the above definitions, Equation 3-32 becomes:

d(_=) 10 0 of, | 10 aT,

c, /| =T )+——\mT )| ==k, +k +——|rlk, +k; 3-34
P p,l|:az(ll) rar( I )} az|:(l )az} rar{( )ar:| ( )
Invoking the definition of thermal diffusivity ¢, = , Prandtl number Pr, =ﬁand defining

PiCpy 4]

klt gml
—_— =P— where Pr/is the turbulent Prandtl number for liquid phase and &, ,is the eddy
plcp,l ]

diffusivity of momentum for liquid phase, Equation 3-34 can be written as:

d —\ 19 a|(v oT, | 10| (v J7,
o [ 19| (v 3-35
az(ul l)+rar( ) az[[Prl+PrljaZ]+ra {[Pr,-‘_Prljar] ( |

Equation 3-35 represents the energy equation for the liquid phase. The energy equation for the vapor
phase is identical in form, except that properties and temperatures correspond to those for. vapor
phase. The specific heat of vapor can be treated as constant, hence can be factored out as in the liquid
energy equation, however, the density of vapor cannot be treated as a constant. It needs to remain

inside the differential sign.
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d -\, 10 —\_0d|[Vv, & oT, | 19 v, & oT,
(o T )+——\rov.T )=—|| - +-2Y |p =2 |4 ——| | =4 2Y |p v 3-36
(pl ul V) (rpvvx v ) {( Pr Pr‘[y jpv aZ :| r ar |:r{ Prv Pr‘[y jpl ar } ( )

v

Equation 3-36 represents the vapor phase energy equation.

3.2.7 Unknowns in the Governing Equations

Equations 3-1, 3-2, 3-17, 3-23, 3-24, 3-25, 3-35 and 3-36 represent the governing mass, momentum
and energy conservation equations. There are 11 unknowns in the above system of equations. These

are:

® Velocity distribution of liquid and vapor phases, u,,v,,%, and v, .
e Temperature distribution of liquid and vapor phases, T, and T, .

¢ Eddy diffusivities of momentum for liquid and vapor phases, €,,, and€,, .

e Turbulent Prandtl number of liquid and vapor phases, Pr, and Pr. .

® Pressure, P .

The boundary conditions needed for the solution of the set of above equations are presented in
Appendices B through G. It should be noted that the actual boundary conditions used are suitably
non-dimensionalized to reflect the modified nature of the set of equations. The modification of the
governing equations and the boundary conditions are presented in the succeeding chapters and
Appendices B through G. As mentioned earlier, the liquid phase extends from the centerline to
r =R —J . This radial location represents the liquid-vapor interface. The phenomena occurring at the
interface serve as boundary conditions to the liquid region. The vapor phase extends from r=R-0,

the liquid-vapor interface to r = R, which is the surface of the rod.
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Chapter 4

Integral Formulation

4.1 Introduction

In order to account for the dominating effects near the heated surface and away from it, the vapor film
is split into a wall region where viscous effects dominate and a turbulent core where the effects of
turbulence are predominant. The governing equations derived in Chapter 3 are recast to account for
the dominant effects. These are integrated over the radial location at a particular axial location. It may
be recalled, that the governing equations derived in Chapter 3 are partial differential equations in both
r and z. On integration over the radial direction, these are transformed to ordinary differential

equations with the axial location, z, as the independent variable.

4.2 Simplification of Governing Equations

The continuity equations derived earlier remain the same.

Ju, 19, _

el B =0 3-1

=t (rv,) (3-1)

Ap,) 19 (r0.7.)=0 32)
0z r or

The momentum and energy equations can be simplified to account for the effects of the dominating

terms in the liquid core and the vapor film.

4.2.1 Equations for Liquid Core

Liquid occupies the central core in IAFB, thus it is far from the solid surfaces, where viscous effects

are seen to dominate. Since the flow is fully turbulent and sinceé,,; >>V,, the liquid momentum

equations can be simplified by neglecting v, as compared to ,,,. Density of liquid can be treated as a
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constant and hence, it is factored out. The simplified forms of the momentum equation are given

below.

Z-Momentum: i(ﬁ,ﬁ,)+li(rﬁlvl)=_ia_P_g+li ,»gml% _,_i gmlaﬂ (4-1)
dz ror P, 0z ror Tor | dz\ 7 oz

R-Momentum: i(b_tlvl)+li(ﬁl\71)=—ia—})+i gml% +li r(c/‘ml% (4-2)
0z ror p, Or dz| " 0z | ror " or

The energy equation for liquid simplifies as follows

d( =\ 10 (_=\ 0|&,0T,| 19| &, 0T,

— —mWT)=—| —— |+ ——| r—— 4-3

az(ul l - or rv; 1) 3Z{Prl’ 9z or rPrlt o (4-3)

4.2.2 Equations for Vapor Film

The vapor region, which extends from r=R—3J to r = Ris split into two regions, the turbulent vapor

core extending from r=R—J to a location corresponding to y’ =5and a wall region extending

from the location of y’ =5 tor=R.

For the turbulent core of the vapor film that exists beyond y* =35, viscous effects can be treated as

negligible compared to the effects of turbulence. Thus, the vapor momentum equations simplify as

shown below.

Z-Momentum:

P 19 oP 1{2 Jit P ol
Lpiaa)+-(puayv)=-2"C -1 vy @ v 4-4
% (pvuvuv)+r > (rp,u,7,) > pvg+r{ar[rpv€m,v Y }+az (pvé‘m,v azj (4-4)

R-Momentum:
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9 10 oP 0 o, 10 oV,
Tloav)r——(rpvv )=—2+ 2L T v 4-5
(p,u,v,)+ e (ro,,9,) =3 {pvem,v % } ; ar(rpvem,v arJ (4-5)

The simplified energy equation for the turbulent core of the vapor film is given below.

d( N 19, — e, oT] 10[ &, 0T
_(pvuv]—;’)-i-__(rpvvv]—;’):_|:P_I:;pv 5% }‘;g{rpvp—r’,g} (4-6)

The region near the wall is where viscous effects dominate compared to the effects of turbulence.

Hence for the region near the wall y* <5, the vapor momentum equations simplify as shown below.

Z-Momentum:

d 19 oP 1[0 o,

—\ouu )+——— Uy )J=———-— —— > 4-7
R-Momentum:

J 10 oP 0 ov.
—lpouyv, )J+—— VY J=——t+— u 4-8
az (quVVV )+ r ar (rpVVVVV) ar + aZ {pl’vv az } ( )

The energy equation for the wall region of vapor film is as given below

d —\ 10 —\ d| vV oT. 10 v. oT,
paT)+~L(rpiT)=L| Yo p Qo 190, Yo oL 49
0z (PVMV V)+ ror (rpvvv V) aZ{Prv P dz }_ ror {rpv Pr, or } @

The governing equations 4-1 through 4-9 are partial differential equations in r and z. These equations
are converted to a system of ordinary differential equations in z, by integrating the equations over the
appropriate radial region of interest. The detailed derivation is shown in Appendix A, while the

complete set of integrated governing equations is shown below.
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Vapor Film Turbulent Core

- (rpvl’_‘vvv XR_g }:

__ dl _ do —_
) R_l d_z - (rquVuV xR_& d_z + {(rquVVV ) R_l

dz s
d| 5 = — dl (= dS o, o,
v-zZ) &) [(Pr |-(P) ZE+(P
( ) dZ [R_é(r )dr] (I" XR—[ dZ + (I" ]R—é‘ dZ {[ pv m,y a j [ pl my a j }
2P, a o, dl aﬁ,J dé
8B R-1P - (R-6)|+= v g v i e

R-1
i[ j rpvl’_tvvv)dri|+(rpvl’_tv\7va_lZ_i_(rpvl’_tvvv)hg_ flé‘ {rpvv )|R 1 rpv vV ]R_g}z
R

(
)
(aﬁj d R"( avj ( avj
r— |dr |[+— J. rp.E, ,—= |dr |+| rp £, , —*
s\ or dz| 2 Yoz " a
v

dl (,0 avj d_5
dZ vCm,v a s

dz

d . _ =y _ =y do =7 5T
dz j(rpvuvTv )dr] " (rpvuvTle_l dz (rpvuVTVXR—ﬁ d_z+ {(rpvaTVXR—z a (rvaVTVXR—ﬁ}:
R
R €, oT, €, oT,
(V-E) — Z _.[ (vap—rv, % Jdr]Jf(er Pl EJ N

+ p gm,v af} p gm,v af\;
T - |7 .
Y Prvt or o Y Prvt or R
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Vapor Film Wall Region

d|'¢ _y dl _
(V'C) d_Z[r_if:-pvuv )dr:l - (rpvule_l d_Z - (rpvvv HR—I =0
dl 't __ .y dl _
d_[ J.(rpvuvuv )dr] - (rpvuvuv )|R—l d_ - (rpvuvvv MR—[ =
(V-Z) “Li )
d| = —y dl gp ) ( il j ( it j
-=| [P P) =S pRi-1 3 g v
d U ‘ )dr} ), 2=}l B [ |
dl t,  __ oy d __
d_Z|: J-(rpvuvvv )dr] - (rpvuvvv )|R—l d_Z - (rpVVVVV )|R—l =
R-1
VR oP d| | v, o, dl
— J- (r—jdr+— J. (rp‘,vv z jdr —(rpvvv ”j —
o\ or dz| 7, 0z 07 ), dz
al - oy dl =
o oo |-oat),, 4 o5, -
R-I
(V-E) _
dz| d \ """ Pr, oz "Pr, oz )| dz "Pr, oo ), "Pr, or )
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Liquid Core

d r:R—ﬁ_ a d5 ~
(L-O) d_z{ J.(rul)dr]+(ru,)|r_R_5d—Z+(rvllr_R_5 =0
r=0
d| __ I 14| = )| ds g(R-6)
— I(ru,u,)dr +(ru,u,lR_5—+(ru,leR_5=——— j(rP)dr —u __—g( )
dz| dz P dz| Pr s dz 2
(L-Z)
[ aﬁ,} d “( aﬁlj { aﬁl} ds
+rE, — +— I rE,; — |dr|+|rE,,, — —
Coor s dz| T oz T 07 g5 dz
| oy ds 1 [*°( oP
A E[(””l"l)dr]+(rulvl)|R—5d_Z+(’”VlvllR_a:_Fl{E[ r=" dr |+

¢
z

R-6 _ 3 B
- J- (rgm ! %jdr + |:rgm ! %} d—5+ [ré'm ! %}
dz| 3 "oz 10z s dz T s

d R_ﬁ__ o ds | _— 4 [%2e e, oT,
_[ l(mlTl )dr} )y g 0T )5 = d_ZI ! [r = a_zl}h} '

74

d
(s 0T | dS | &, 0T
Py dz |, ,dz Py or | o

(L-E)
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Chapter 5
Simplification and Numerical Solution
5.1 Introduction

In order to solve the system of integral differential governing equations derived in Appendix A using
an Integral Method, suitable second order polynomial profiles of the form A, + A7+ A,p” is assumed

for the non-dimensional axial component of the vapor and liquid velocities, the liquid and vapor

)}
temperatures. 77=(y+)/7is a definition commonly used in turbulence formulations. Detailed

derivation of the profiles is presented in Appendices B through G. Based on the physical phenomena
occurring and the boundary conditions the coefficients occurring in the non-dimensional profiles are

expressed in terms of the variables: 7,,7;,0, F,Tw,m,”. The equations for the liquid and vapor

w?
velocities and temperature are substituted in the integrated governing equations to obtain a system of

non-linear first order ordinary differential equations. These are shown in Appendices H through K.

5.2 Simplification of the Integrated Governing Equations

In order to solve the system of integrated governing equations numerically, some assumptions need to
be made to simplify the same. Since the axial direction is the predominant direction compared to the
radial direction, an order of magnitude analysis shows that the second derivatives with respect to z
can be neglected in comparison to the second derivatives with respect to r. Based on this assumption,

the governing equations derived in Chapter 4 simplify as shown below.

Equations 5-1 through 5-3 represent the simplified equations for the turbulent core of the vapor film.

Z-Momentum: _8 (IOVI/TVL_!V )+ l—a (rpvb_tjv)z __E)P -pP,8 +l _8 [rpvem v i, } (5-1)
0z r or 0z r|or v oor

R-Momentum: 9 (p,it,v, )+ 19 (rp,v.v,)= _oP + li(rpvem , o, j (5-2)
0z r or or ror v oor
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ai(pﬁvi)+l§(rpvﬂi)=lai{pvrg’"’” aT”} (5-3)
Z r ar r or

Energy:

For the wall region of the vapor film, the equations simplify as shown in Equations 5-4 through 5-6.

Z-Momentum: - (p i, )+ 1i(rpvﬁvvv )= o _ p,8+ 119 oV, 9, (5-4)
0z ror 0z r|or or
R-Momentum: i(pvﬁviv)+li(rpvx7v\7v)=—a—1) (5-5)
0z ror or
0 =\ 10 -y 10 v, oT,
E . — 7 4+ vT |J=—— v v 5-6
nergy az (quV V) r a," (rvaV V) r a”‘ |:rpv Prv ar } ( )
The simplified liquid phase equations are given below.
Z-Momentum: i(:01"71"71)"‘li(’”pzﬁzvl): _a_P_Pzg +l 9 P (Vl +€m1)% (5-7)
0z ror 0z r|or T or
R-Momentum: - (pz7,)+ -2 (o) =~ 2L+ 2 2L 1pe,, DL (5:8)
0z ror or ror " or
d( =y 19 _= 120 v, &, |07,
E : — @)+ —— T )=——| | =L+ 2L | =L 5-9
e e )<L 2 e S O )

Assuming that the velocity in the radial direction v is negligible, the r-direction momentum equations
show that pressure is only a function of the axial direction. This assumption is made so that the

system of integrated differential equations is mathematically solvable.

Based on these assumptions, the system of integral differential equations derived in Chapter 4 can be

simplified considerably.
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5.2.1 Vapor Film Turbulent Core

The simplified governing equations for the turbulent core of the vapor film are presented below:

T dl dé
Oz —lpit, ) 5~ = 5-10
(V-C) { J; rp,u, dr:|+ rp,u v)| Udz (rpvuv)|R_5 7 0 (5-10)
d|e dl d5 g% ol
d_z|:R[5(rpvﬁvl/_lv)d}']'i'(rpvl’_lvﬁvl (rpv V' VHR ' dZ = dz|: J-(rP)dr:l_(rPXR_[d_Z-i-
Ve (5-11)
— do ou ol
(FPXR—J dZ {[rpv my au j [rpvgm,v ab:vj }_ngv[(R_l)z_(R_é‘)z]
R-6
d R—l( _ :| e Jl L s
e rp"u‘TV)dr +(rptuVTt __(rpvu‘Tv -
(V-E) dz |:R_5 ]R—l dz 1R—6 dz 512
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Substituting Equations H-4 through H-17 into Equation 5-11 and simplifying yields:

2
a

—[\R-! R 5
2( )

E
7+ 20| 6P 0f 1o |-V 60 25 v
L e G R “
rall 40 (g~ -0 Vool -4
(Rt ~r= 07} % | (R-0) 52 R-1)
S (),
14aoa{s%£%—§);’—i—<a+%(f—§—§)2—f—%(%—%<w>-%%}
o )
ooz 5 (a2 2 B
+14[(5)%(1 %—%}—(ﬁ%(é 2- ff)ﬂ(a‘zizw%}
R i e G
- oV R )
6 (%-—Ji—i-w(?—?-ﬂ%-?(%-’fl o
—%(R—l)l[a§+2a0a1( V4 (a2 + 200, 5 + 20, ()7 + a2(5) ]df

—Z'W(R—é')[ag+2a0al( +)/V7 (al +2a0a2X5 )/+2a1a2 5+)/+ 5+)/}d5

]+14aoa{5/ (1 )(——

60

ool

dz

|

(5-13)



—”V”‘:‘Q%(R_(S)[al(&)% +2a2(5+m—87””[(1e-1)2 ~(R-5)]
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Substituting Equations J-3, J-4, J-5, J-11 and J-12 in Equation 5-12 yields:

s Aol T,

"o L) o P 22 i e &
r—tf o=t 7[54%—2)—@ o -2
”{ E_E W%‘gﬂcf
i a (k=042 - (r=1) % |+ ;
S L
e s
o et} ~(-F Jertacs raan) 70 -8 |-V ol 35 )
Tl v+ aocz{(s)% ( {%_gj (5P (5{%_%} "
e L e AL ] “
| 00 -2 |- 0 -2
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2 2
[(R_l) ~(R=9) ](aoﬁ o_oj"'aoco[(R_é‘)d_é‘_(R_l)ﬂ}
2 dz Z z z
dc da dc da y I R R
7 a4, %0 g ¢, 2 e, Do) s/ LB (s7)7(s) 2 -2
" (“‘ & g g T dzj{ ()(15 8) (o) )(15 sﬂ
dc, da dc da dc da 2 I R 2 R
7 a0 GG, 4 ddy 4G dan ) LR (sefr(s) LB
"‘(azdz"‘odz"'odz"'zdz"'ldZ ldz)[() ()(16 9j ( )/( )(16 9ﬂ
de da dc da 3 I R 3 5 R
700, %2 e, % g, Y YR ) L () (o) 2 -2
[aldz Pdr Cde ldzj{()( 17 10} o) 17 10}}
q, dc, da, s L _R VY 5 R
+70 a4, %2 e, Y2 | V) - B ()7 (0) 2 - &
con [az dz zdzj{() ()(18 11 (o) 18 11
2 _ +
+7(a,co +c,a, 5%(%—§j§—(5+)%(2—5—£jd—5—1 o _Ro (5+)%£
z 15 8)dz 7(15 8 dz
¥(21 R\dl 2%(28 R\dS 2(8° RS |(o.Y¥%ds'
+7 +a,c, + s 2L_RYdl_(5eps(20_R)do_ 200 — %) T —
(acy +are aOCZ){ [16 9jdz ( V[m 9jdz 7(16 9]( ) dz}
2 _ +
+7(a,c, +ayc, 5%(%—%j%—(5+)%(2—5—£jd—5—2 o _Ro (5+)%£
z 17 10)dz 717 10 dz
2 _ +
+7azc{5%(%_%§_(5+%(@_Ejd_ff_i(ff__lﬁ](y)%ﬁ}
z 18 11)dz 718 11 dz
ayCy + (0100 +ay¢ )(5)%
Ry B 2L (5 a5 ||y e N +
4 T.C

w w p,v

(e, +aye, )(5)% T a6, (5)%

1
.
ayc, +(a,cy + aocl)(é' )/7 +
2
(ayc, +ac, + aocz)(5+)/7 +
4
4

(a,c, +a,c, )(5+ )% +a,c, (5 + )/

”

9w

Py

dé

(R-5)

- pvu:Tw|:a0 +a1(5+)% +a2(5+)%}+

”

£

m,v

t
Pr,

w

(R—5)[c1(5+)y7 +202(5+)%} ) [6,1(5)% +202(5)%kR_l)

5-14
76 7l ( )

=p,

q
pic

*
p,vuv

|
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5.2.2 Vapor Film Wall Region

The simplified governing equations for the turbulent core of the vapor film are presented below.

=0 (5-15)

o fonmayr|-Goaa), == [P

(V-Z) - (5-16)

(P), ﬁ_ng”[le —12]+ {(rpvvv o, j

dz or

T, 5 oT,
— —_— r ) —
"Pr, or

R

} (5-17)
R-1

Substituting Equations H-20 through H-27 in Equation 5-16, the simplified z-momentum equation for

the vapor wall region becomes:

2(sn R)as, [ (slop o] o 1
2 u 3 dZ 2’Mv dZ 2u

v v

Substituting Equations J-15, J-16, J-20 and J-21 in Equation 5-17, the simplified wall region vapor

energy equation becomes:

(R SVVJdTW 25PrV[R SVVqu:;
5p, + —= —+

E_SMj dz cp’vuj 3 4u ) dz
(5-19)
SP.RT, 25 pyvT, 125 Prv,gl 25 RPrq) |d7, __ 4l ( s j
ZTW 3 Twu: 4 cp,vz'w(u:)z 3 TWM:CP’V dz Cpv u:
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5.2.3 Liquid Core

The simplified governing equations for the turbulent core of the vapor film are presented below:

d r=R-0 _ _ d§
(L-C) d—i [ G )dr} +(rit,) s 0 (5-20)
r=0
d| 5 __ ds
d_z{ I(mlul )dr}+(m,u,l Py =
(L-Z) 0 (5-21)
1 a5 = | (P) a5 g(R-6) o
———{ J'(rP)dr}—— “@_s +[r€m,, —l}
P dz| Pr \ps dz 2 o Jp s
d | _~ -y dé | &, 0T,
(L-E) d_z{ [ (rit,T, )dr} +(aT) o {r o a—rll 5 (5-22)
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Substituting Equations I-4 through I-9 in Equation 5-21, the simplified z-momentum equation for the

vapor wall region becomes:

b; (R-6) +14b0b1{( +W(5)(£—5J+

15 8

e )]

120
7R?

16 9

14b1b{( P15

b, o,

dz

+14[b db,
dz

17 10

(R-6) by (R—

b, db2
dz

+14(b by
dz

db,

+14b d—{( +V(5)(
+14b0b1{( +W[2—5—

15

20
17

) RJ
——— |+

2
+7(p? +2b0b2{( +V(

+7(b2 + 2b0b2{( +%(5){£—5j

7R?
170

dé

db
dz

doé
dz

25 R
16 9

R

10)

do
dz

144

db

&z j{( %(5)(%_%}

) Rj
——— |+
18 11

TR
198

1[0 _
7015
jdé‘ 2
dz

3

52
7[?‘

5)—+14[b —Lip
dz

j{( Vo[

16

RS

?J‘S
e

RS

52
16

10

7R?

e+
! om0 tof - o

0 R
18

o

_gj 7R2(

()]

11

170

)]

dz

il

97 A8 R ()97 dRT
(1) 7 s R

198

o Rj
——— |+
15 8

7R?
120

-

72

K(m)ﬂ

idz'
p, dz

W}

Ao A () ‘2—}

J(5+)‘%d_5++%(13+)‘%£

dz

dz

+14b,b, {( +V(

V4(26 RYdS 4(8° RS \(o\¥%dST 2R*( .\¥%dR
b {( V(E 11jdz+ (18 11J(5T7d_z+¥(R T7d_z}
+ F(r- 5){b§ 2 (677 + (b + 280, N5 V7 + 2, (57 )7 4 02(57 V}

dod
dz
* + + 2
(R-6F aP  g(R—5) (R_5)5m,1”v[b1(5 )%+2b1(5 )/7}
2, dz 2 75
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Substituting Equations K-3, K-4 and K-8 in Equation 5-22 yields the liquid core energy equation

by
2

+7b{( +%(

pvcp,v

(R-

7R?
120

),

144
d_5+7

s

52

5)%71{( +)y7(15

J+

by(R— )

52
E_

rs
9
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71{( +%(

oo

o

52
15

25 R)dS R

o

8 )dz
ks

ier

8

7R?
144

52
E_
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26 R 5° RS

7&{( +V(

(R-6)

(d
2 dz
dd

7(191 ddy | 4 9y
d

16 9 16 9

jdé‘ 2(
+

dz

+b ﬂj bydy(R—-5)
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dd,
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d_
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— +
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z dz
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{
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20 R
17 10
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2

15 8 120

budo (g _ 5 +7(b,d, +d1bo)[(5+%(5)(i‘£j+ 50 (R%}

+7(byd, +byd, +b0d2){(5+)%(5)(i—£j+ LS (R+)%} +

1 16 9) 144 dq’,
P 7(b1d2+b2d1){(5+)%(5 %‘%)"'ZTR;(IF)%} «
Ry 5 R TR [ .V
+7b2d2[(5 %(5)(E—Hj+ 03 (R )A}
+(R-6)u’ {bo b (57)7 40, (57)7 HTW + (‘1_3*}[610 vd(57) 7 +a, (50 }}2_5 (5-24)
v pvty <
i , {d1(5+)%+2d2(5+)%}
il
Pr | pc, ., 76

53 Solution Methodology

Equations 5-13, 5-14, 5-18, 5-19, 5-23 and 5-24 represent the system of six non-linear first order

ordinary differential equations. Substituting for the coefficients a,,a,,a, ,b,,b,,b,,c,,c;,¢,,d,.d,,d,

and their derivatives along with the expressions for the derivatives of d"and R* in the above
equations results in a system with 7, ,7;,9, P.T m," as the dependent variables (unknowns) and z as

w?

the independent variable. These need to be solved numerically.
In order to solve the system of equations, they are cast in the form
(5-25)

[a]x]=(c]

where the coefficient matrix, [A] is a non-singular 6X 6 square matrix with known coefficients. The

matrices [X ] and [C ] are single column matrices with 6 rows. These are symbolically shown below,
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dr ]
dz
- 5 dr; -
a, an . . . Qg pa ¢
Ay, Gy . . . Gy ds C,
a, . . . . Gy d c
A= X = < C= (5-26)
Ay - .. Oy dp Cy
as; . . . . s dz Cs
daT,
L %1 e Aee L 1 S6 |
dz
dm;
L dz |

The matrix [X ] represents the solution that needs to be obtained, is called the solution vector, while
the right hand side matrix [C] is the known constants that appear in the governing equations. The
solution vector [X ] is obtained by converting coefficient matrix, [A], into an upper triangular matrix

by Gaussian elimination. The solution vector can then be obtained using back substitution. The value
of the dependent variable can be evaluated at a subsequent z location by a simple first-order method.

Thus,

dr,
Tl ope =Tl (d—Z)Az

where

T is the value of the wall shear stress at the location z+ Az .

W|1+Az

TWL is the value of the wall shear stress at the location z.

dr, )\ . . o .
( p = ) is the value of the gradient calculated from the matrix inversion procedure.
Z

Az is the step size.
The other variables can also be calculated in a similar manner. Once the values of the dependent

variables are calculated, quantities like void fraction, heat transfer coefficient can be calculated at the

new location. The procedure is repeated until IAFB is terminated when the void fraction reaches 0.6.
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In order to start the calculation, initial values of the dependant variables 7, ,7;,9, P ,T, m," need to be

y o

specified. Also, the wall heat flux, ¢/ and the gradient of the heat flux a4, need to be specified. It

dz
must be noted that the initial value of the interfacial shear stress is calculated using the fact that
interfacial shear is a fraction of the wall shear at the same axial location. This is an input by the user.
The initial values of the film thickness and the mass flux due to evaporation should be a value higher
than zero. The value of initial wall shear stress is calculated using single-phase liquid flow and is
multiplied by a two-phase multiplier to account for the two-phase flow situation. The initial wall
temperature is chosen to be 922 K (1200 deg F) or 1144 K (1600 deg F). The eddy diffusivity of
momentum of the liquid and vapor are assumed to be identical to each other. These are evaluated
using Travis’ model. It was found that Travis’ model gives realistic predictions of the eddy

diffusivity.

Once the calculation is started, it proceeds until the value of void fraction reaches 0.6 at which the
IAFB region is assumed to terminate. The convective heat transfer coefficient is estimated by the

following relation:
h="v (5-27)

where J1is the vapor film thickness and k, is the thermal conductivity of vapor. The effect of heat

transfer due to radiation is added by evaluating a radiative heat transfer coefficient, which is given by:

w sat) (5-28)

The total heat transfer coefficient is the sum of the convective and the radiative components.
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Chapter 6
Results and Discussion
6.1 Introduction

Inverted annular film boiling is characterized by a vapor film covering the heating surface. This film
separates the liquid core, at or below the saturation temperature at that pressure, from the heating
surface. IAFB involves convective heat transfer from the hot wall to the vapor blanket and from the
vapor to the liquid core. Heat is also transferred from the hot rods to the liquid core by radiation. The
heat transfer coefficient associated with this mode of film boiling is very small primarily because of

the low thermal conductivity of the vapor.

6.2 Results and Discussion

The solution methodology outlined in Chapter 5 was used and the model was executed for a couple of
test cases. Due to the highly coupled nature of the equations, numerical stability issues were observed

1n some cases.

For a set of input conditions given in Table 6-1, two test cases with wall temperatures of 922 K (1200
deg F) and 1144 K (1600 deg F) were considered. Plots of void fraction and vapor film thickness as a
function of the axial direction are made. These are shown in Figure 6-1 and 6-2 for the case with wall
temperature of 922 K (1200 deg F). Figure 6-3 shows the plot of heat transfer coefficient as a function
of void fraction for the same case. Figures 6-4 and 6-5 show the zoomed in void fraction and heat

transfer coefficient plots for the same case.

Table 6-1 provides a listing of the conditions for the runs. The values of wall shear stress that is

needed as an input quantity is calculated using the relation given by Equation 6-1.

pv?

7,=C,— 6-1
w f 2 ( )
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Figure 6-2: Film Thickness as function of axial distance, T, = 922K (1200deg F )
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Figure 6-4: Void Fraction as a function of axial distance - detail, 7, =922K (1200deg F)
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The value of C, is obtained from the Equation 6-2.

c, =215 (6-2)
°  Rej
The Reynolds number is defined by
.D,V
ep = P (6-3)
My

The wall heat flux needed as input is calculated from FLECHT-SEASET experiment 31701. This is a

typical high flooding rate experiment with conditions given in Table 6-2.
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Table 6-1: Summary of Initial Conditions

Quantity SI Units British Units
Pressure, P 275.786 kPa 40 psia
Wall shear stress, 7, 441.788 Pa 9.227 Ibf/ft”
. T, 0.1 0.1
Fraction, —-
7’-\'V
Initial Film thickness, 0 0.3048 mm 0.001 ft

Initial mass flux rate, 727 | 0.00488 kg/sec-m’ 0.001 Ibm/sec-ft*

Wall temperature, T, 922 K 1200 deg F
Wall heat flux, ¢/, 139.89 kW/m® 12.322 Btu/sec-ft’
dq., -740 kW/m’ -19.87 Btu/sec-ft’
dz

From Figures 6-1 and 6-4, it is seen that void fraction increases along the length as expected. This is
due to the vaporization of liquid as it moves along the length of the bundle. The vapor film thickness
increases as seen from Figure 6-2. The plot of heat transfer coefficient Vs. void fraction shows that at
low void fractions, heat transfer coefficient is quite high and it decreases quite rapidly as we move
along the length of the heated bundle. This is due to the fact that at the beginning, the vapor film is
thin, and hence the resistance due to the film thickness is smaller. Also, as seen from Figure 6-6, the
heat transfer due to radiation is very significant at the lower elevations. At higher elevations, due to
the heat removal and hence reduction in the wall temperature, radiation contribution becomes much

smaller. This is seen in Figure 6-6.

Table 6-2: Conditions for FLECHT-SEASET Experiment 31701

Upper Plenum Pressure 0.28 MPa (40 psia)
Rod Peak Power 2.3 kW/m (0.7 kW/ft)
Flow Rate 155 mm/sec (6.1 inch/sec)
Coolant Temperature 53°C (127 deg F)
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Figure 6-6: Comparison of convective and radiative heat transfer coefficient components,

T, =922K(1200deg F)

Figures 6-7 through 6-12 show the plots for case with the same conditions as given in Table 6-1

except that the initial wall temperature was assumed to be 1144 K (1600 deg F)
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Figure 6-13: Comparison of Heat transfer coefficients for cases with different initial wall temperature.

6.3 Effect of Variation of Input Parameters

Comparison of the cases, with different initial wall temperature reveals that, for the case with higher
initial wall temperature, IAFB regime exists for a greater distance as compared to the case with lower

wall temperature. The heat transfer coefficient for the case with 7, =1144K (1600deg F) starts off at
a higher value than the case with7,K =922K (1200deg F). This is mainly due to the radiation

component, which is higher due to the higher initial wall temperature. The heat transfer coefficient

then drops off in the same manner for both cases. This is shown in Figure 6-13.

The interfacial shear is taken to be a fraction of the wall shear stress. The initial value of the
interfacial shear can be varied by changing the value of this fraction parameter. As the fraction is
made larger, it is found that the IAFB regime gets shorter, this can be explained by the fact that as the
initial interfacial shear is made larger, the destabilizing force that leads to the break up of the liquid

core is made larger. This effect propagates in the axial direction, thereby causing the IAFB regime to

terminate earlier.
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As expected, the IAFB region is shorter for a case with higher wall heat flux, with all other input
parameters remaining the same due to the fact that more heat is available for evaporation of the

liquid.

The results are not very significant to changes in the step size. The accuracy of the results is

significantly poorer with a coarser step size. However, making the step size finer than 0.01 ft, does

not increase the accuracy of the results. Hence, calculations are done with a step size of 0.01 ft.

6.4 Comparison with Experimental Data

The model predictions have been compared to experimental data from two Penn State — NRC Rod

Bundle Heat Transfer (RBHT) experiments. These are

Experiment 1223: 40 psia, 6 inch/sec, 1600 deg F initial temperature and 20 deg F subcooling.
Experiment 1285: 40 psia, 6 inch/sec, 1600 deg F initial temperature and 150 deg F subcooling.

Of the several experiments performed in the RBHT series, these experiments come closest to the

conditions wherein IAFB could exist.

The plots of heat transfer coefficient as a function of the axial distance, z, are shown in Figures 6-14

through 6-16.
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As seen from the above figures, comparison of model prediction with RBHT data is conservative. It
should be noted that the experiments chosen were the ones in which IAFB would have existed, if at
all, though it was not clear if the experiment actually simulated IAFB. The present model does not
account for the liquid subcooling, where as both RBHT experiments chosen were with initial
subcooling. As seen from the graphs, higher the subcooling, greater is the difference between data
and predictions. Presence of spacer grids enhance turbulence and increase heat transfer due to good
mixing. The current model does not account for spacer grid effects whereas the RBHT experimental
setup had spacer grids for better mixing. The increase in the heat transfer coefficient downstream of
the spacer grid shown on the plots is not accounted for by the model. Also, wall temperature predicted
by model is lower than what is observed, thereby reducing heat transfer coefficients. The liquid-vapor
interface in IAFB is typically wavy. This causes an increased heat transfer, due to the larger surface
area. The effect of waviness of the interface is not considered in the model, thereby making the

predictions conservative.
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Chapter 7

Conclusions and Recommendations for Future Work

7.1 Conclusions

Models for Inverted Annular Film Boiling have been developed over the last few decades. Due to the
inherent complexity of the problem, none of the models have been comprehensive. The current work
employs a slightly different approach to modeling the phenomenon. The derivation of the governing

equations and using an Integral Method technique for the solution is the unique to this work.

Inverted Annular Film Boiling phenomenon has been modeled from first principles. The governing
equations were derived in two dimensions assuming axisymmetric behavior. Turbulence was
incorporated in the formulation by use of eddy diffusivity of momentum and energy. Second order
partial differential equations for the conservation of mass, momentum and energy were derived for
both the liquid core and the vapor film. The vapor film was split into two regions — the wall region
near the heated surface where the effects of viscosity dominate and a turbulent core away from the
wall where the effect of turbulence is predominant. These equations were then integrated over the

radial direction to obtain a system of first order integral differential equations.

In order to solve this system of equations, the axial component of the non-dimensional liquid and

vapor velocity, non-dimensional liquid and vapor temperature was assumed to be represented by a

1
second order polynomial of the form A,+ A7+ A7” where 7= (y+)/7 and y"'represents the

dimensionless distance from the wall. Based on the physical phenomena and boundary conditions,

expressions for the coefficients that appear in the assumed polynomial profiles were derived in terms

of the six dependent variables: 7,,7;,0, P, Tw,m,”. Using the assumed profiles, the system of integral

w?
differential equations was converted into a system of non-linear first order ordinary differential

equations.

2

An order of magnitude analysis ensured that the terms of the form o0 were negligible compared to
Z

2
terms of the formaa—2 . Although the assumption of one-dimensional flow is not physically realistic, it
r

84



was necessary to obtain a set of solvable non-linear first order ordinary differential equations from the
original set of equations, which contained terms with products of derivatives of the dependent

variable making it a very complicated set of equations mathematically.

A simple numerical solution of the now simplified governing system of equations resulted in
reasonable results. Plots of void fraction as a function of the distance from the quench front show an
increase as expected, with the void fraction increasing slowly at the beginning, and then more rapidly
later on. The IAFB region was assumed to end when the void fraction reached a value of 0.6 at which
the calculations were terminated. The vapor film thickness also increased as the distance from the
quench front increases. This is due to continuous evaporation of the liquid, which is at saturation
temperature into vapor, thereby increasing the film thickness. It must be noted that in the present
analysis there was no provision for dealing with liquid subcooling effects. The plot of heat transfer
coefficient as a function of the void fraction shows a sharp decrease at low void fractions and a slow
decrease later on. Nevertheless the heat transfer coefficient continually decreased with increasing
void fraction. This trend is along expected lines, as the resistance to heat transfer is significantly
increased as the vapor film gets thicker due to the poor thermal conductivity of the vapor. For cases
with higher initial wall temperature, the heat transfer coefficient starts higher due to the increased

effect of radiation. IAFB region extends to a greater length along the bundle.

7.2 Recommendations for Future Work

Modeling of Inverted Annular Film Boiling is a very challenging task due to the complex nature of
the phenomena involved. The current modeling effort is quite unique when compared with existing
models in this area. This is, by no means a complete work in itself and there are several aspects that
can be improved upon. Subcooling of the liquid is an important parameter in the analysis of IAFB.
The current modeling approach does not account for the inlet subcooling effects. In order to make the
system of equations mathematically tractable, the radial component of the velocity is assumed to be
negligible. This is not true, especially near the interface where the liquid that is vaporized will have
radial component of velocity as it enters the vapor film. For simplicity of derivation, the eddy
diffusivities were treated as a constant. This is also not realistic. The variation of the eddy diffusivity
can be incorporated in the integral equations. The current model does not account for the waviness of
the liquid-vapor interface. Waviness of the interface contributes to enhanced heat transfer due to

higher interfacial area. If the waviness can be modeled and incorporated, the predictions of the model
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can be improved. There are studies in the literature on interfacial structure in vertical upwards annular
flow. These can be used as a starting point for such an analysis. Modeling of IAFB using Integral
Method has not been accomplished in this level of detail so far. This can be used as a starting point

for further improvements future work in this area.
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Appendix A

Integration of Simplified Governing Equations

A.l Introduction

The governing equations for mass, momentum and energy conservation derived earlier in Chapter 3
are partial differential equations with r and z as the independent variables. Integrating these over the
radial direction at a given elevation yield terms which are regular derivatives with respect to z or

terms which involve both integration and differentiation.

The liquid region extends from r =0 tor=R—¢ . The vapor region, which extends from r=R—-9 to

r=Ris split into two regions, the turbulent vapor core extending from r=R—-J to a location

corresponding to y. =5 and a wall region extending from the location of y” =5 tor=R.

The location corresponding to y. =5 needs to be written in terms of the radial coordinate. Using the

%

u

v

- , S5v
definition for y; = 2 and y=R-r, y’ =5can be transformed tor = R —[ . J . It must be noted
Vv

v

that the location of y =5 is a function of the axial location, z. As the thickness of the vapor film

. . . Sv,
changes, the location of y' =5also changes. For convenience, let us define ! =[ = J, to represent

uV

the demarcation between the vapor wall region and the turbulent core of the vapor film.

The integration is carried out by multiplying the governing equations by dA =2zrdr and applying the
appropriate limits for the independent variable, r, as described above. The integration is with respect
to the independent variable r, while the limits of integration are also functions of the other
independent variable, z. Thus, one needs to employ Leibnitz formula to carry out the integration of

some of the terms in the governing equations.
Leibnitz’s formula is given as follows:

d x=p(z) _ x:ﬁ(z)af(r’ Z) dﬂ(Z) da(z)
d_zU _a(z)f(r,z)dr} _L:a(z)—dr+f['B(Z)’Z]d—_f[a(Z)’Z]d—Z (A-1)

x aZ Z
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A2 Continuity Equations

The continuity equations for the liquid core and vapor film are integrated over the radial direction. As

discussed, the vapor film is split into the wall region and the fully turbulent region.

A.2.1 Liquid Core

The liquid continuity equation is given by:

ou, 10, _
L= ()

5 Ty =0 G-

Integrating the above, within specified limits over the radial direction

dz ror
r=R-0 _ r=R-0

(%jzzzrdw j [1i(rv, )}27zrdr:0 (A-2)
2 0z 2o Lr or

Canceling out 27 , the above equation can be integrated term by term. The second term is relatively

straightforward, as it simplifies to the difference between the values of (rvl)at the upper and the

lower limits.

r=R-6

r=R-8
10 _ 0 _ _ \\r=R-0 _ _ _
j {——(rv, )}rdr = I g(rv, Yir = (rv, )|r:§ = (rv, )L:R_& - (rv, ]r:O = (rv, )|r:R_5 (A-3)
The integration of the first term involves use of Leibnitz formula.

V—T—ﬁ (@err _ r_]e’_(swdr :di{r_ff(‘srﬁ, )dr] - (rb_t, )|R_5 diz(R - 5)+ (”_‘z )|0 di(o)

0z 0z 2

r=0 r=0
Since R is a constant, the above equation simplifies to:
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r=R-6 — r=R-8
[ a(ml)dr:di[ [ (rﬁ,)dr}(rﬁl]R_ 4o (A-4)

r=R-6
i[ [ (ra,)dr}(n—,,xr: B0 ) =0 (A-5)

A.2.2 Vapor Phase
The vapor continuity equation is given by:

Mpit) 19 (5 )0 (A-6)
0z r or

The vapor equation needs to be integrated in two parts: the turbulent core from r=R-J to

r =R —1[ and the wall region from r=R—[ tor =R, over the radial direction.

For the fully turbulent core region, the vapor continuity equation can be integrated as shown below.

R-I
[ [a(pv”v) 19 (o v)}27zrdr=0
s 0z ror

Splitting into two the two terms, canceling 277 , the equation becomes:
j '0“ d+j rpvvrdrO (A-7)
R-5

The second term is relatively straightforward, as it simplifies to the difference between the values of

(rvav ) at the upper and the lower limits.
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r=R-I 1 a r=R-I a —R—
J {__(VPVVV)}MF: | 5 owdir=(on ) 205 =000 =027, s A9
R R

r=R-I r=R-l -
J. ai(,o‘u‘)rdr= j a(r'gvu”)d —i{ J-(r vuv)clr}—(r,l’vuv)he ,i(R—l)+
r=R-0 < r=R-0 < dZ r=R-0 dZ
_ d
i)y, L (r-0)

Since R is a constant, the above equation simplifies to

d dl dé
- Y o a0 A-
l P —(p, i, Jrdr = { l o, dr:|+ rp, i ‘l ' 2 (rpvule_ﬁ = (A-9)

Using the same explanation as given in the derivation of the integral continuity equation for the liquid
phase, the term for mass addition due to generation of vapor needs to appear on the right hand side of
the vapor continuity equation. This is of the same form as the term in the integrated liquid continuity
equation, except that the sign is reversed, indicating a mass addition due to vapor generation. If
condensation of vapor occurred due to the presence of a subcooled liquid, the sign would change to

negative to indicate depletion of vapor.

Combining Equations A-8 and A-9, the integrated form of the vapor continuity equation for the

turbulent core is

d| =t .y d _
_{ J.(rpvuv )dr} + (rpVMV XR_I d_Z - (rpVMV )

do _ B ,
dz RS R_5d_z+ (FPVVV)LH —(rpvvle_(s = mlPi (A-IO)

For the wall region of the vapor film, the integration is performed in the same manner. In this case,

the limits of integration are different from that for the turbulent core.

R —
i [a(pvuv) L9 )}27z7fdr =0 (A-11)
oL ooz ror
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Thus, the integrated form of the vapor continuity equation for the wall region is of the same form as

that for the turbulent core with the limits being different.

| fopi VR oy dR=D)
d_Z[r_RE;’pvuv )dr} - (rpvuv HR d_Z + (rpvuv XR—Z dZ + (I’pvvv XR — (}"pvvv HR_] = 0

Also, the derivative of R with respect to z is zero. No slip condition at the wall implies that vapor

velocity at r = R is zero. Thus, the above equation simplifies to:
a7 .y dl _
- I(rpvuv)dr _(rp"u”’xR—ld_z_(rp"v”’XR—l =0 (A-lZ)

Equation A-12 represents the integrated form of the vapor continuity equation for the wall region.

A3 Momentum and Energy Equations

The momentum and energy equations for the liquid and vapor phase can be integrated in a similar
manner. The vapor region is split into two regions — the wall and the turbulent core regions as before.
Only a few intermediate steps and the final result are presented for each equation.

A.3.1 Liquid Phase

For the liquid core which is assumed to be fully turbulent, £, , >>v,, also the liquid density can be

assumed to be a constant and pulled out of the differential sign.

The z-direction liquid momentum equation is given by:

0, _\ 10,__ 1 oP 19 ou, | 9 o,
- +-— = g4 —L+= — 4-1
0z (@in) ror i) P, 0z & ror {rgm’l or } 0z (gm'l 0z j *-D

Integrating the above, within specified limits, r =0 to r=R— 0 over the radial direction gives
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r=R-0 r=R-0 — — —
I {i(ﬁ,ﬁ,)+lai(rﬁ,\7,)}2ﬂrdr= I {—ia—P—g+li[r€m aul} 8(8 aulﬂZﬂTdr

—_t +_ —_t
L or oz "™ 9z

Upon integration, and employing Leibnitz formula to simplify terms with ai, the z direction
Z

momentum equation integrates to

R-6 R-6 Y 2
L ar [+l |, i)y ==L [Pk P ds_glR=0)
dz| dz P dz| Pr s dz 2
(A-13)
o, a|*’(  om, ] ds
+| e, — +— .[ rgm,—dr+rgml_ i
8y ar R-S dZ 0 ’ aZ ’ aZ RS dz
The r-direction liquid momentum equation is given by
i(b_tlvl)+li(ﬁl\71)=—ia—})+i gmlal +li reml% (4-2)
0z ror p, or dz| " 0z | ror " or

Integrating the above, within specified limits, r =0 to r =R -0 over the radial direction gives

r=R-J r=R-6 =~
0, _\ 1o, __ 1 0P 9 av, | 19 v,
! |:—(MIV1)+—8—(I’VZVZ )}2727’09’: |:—E$+?Z|:€W!ZTZ:|+7$(F€W!I a—‘:ji|27l7"dr

The final integrated form of the r-direction liquid momentum equation is

T
5%

S~
O C—y

__ __y ds  __ 1% oP
(rulvl)dr}+(ru,v,)|R_5d—Z+(rv,v )|R_5:_P_1[ '([ (rngr}+

d ”( av,j { av,} ds [ av,}
— ré,, — |dr |+| €, — — | €, —
dz | 0z 0z |, 5 dz or |, s

Energy Equation for Liquid Phase

(A-14)

O ey
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0 =\ 10(_—=\ 0|& 0| 19| &, 0T,
9 19 (57)=2 | Ems Ol | 1O Eni OF 43
az(ul Z)+rar(rvl ) az{PrZ' az}-ra/[rPrf ar} 9

Integrating the above, within specified limits, r =0 to r = R—0 over the radial direction gives

r=R-6 r=R-0 — _
e R e e
2, Loz ror 2 |9z Py 0z | ror| Py or

Applying Leibnitz theorem, the integrated form of the liquid energy equation is

T
5%

R=0 dz

= = do =
<mlwr]+<m,nx L) -

S
© ey

d "¢ &, o, £ O, | a6 | €., 0T,
— r — |dr |+|r —— —+|r ——
dz Pr/ 0z Prj dz | dz Pr/ or |

A.3.2 Vapor Film

(A-15)

O© ey

The turbulent core of the vapor film is now considered for integration. In this region, the effects of

turbulence are dominating as compared to the viscous effects.

A.3.2.1 Turbulent Core

The z-direction vapor momentum equation is given by

N T () Sy L A P S AP (@4
ror r|or oor 0z "oz

The turbulent core equations are integrated over the radial direction from r=R—Jto r =R —1 where

u

v

Sv
[= (—:j , as described earlier in this chapter.
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r=R-1
P (p,5,)+ -2 (v, )}mr -
5 0z ror
I (A-16)

—E— +l 9 rp,E oL, +i £ oL, 27rdr
aZ pvg r ar pv m,v al" az pv m,v aZ

Integrating and using Leibnitz formula, the z direction momentum equation for the turbulent core of

the vapor film becomes

dle oy dl , __\ dS o __
_[ (r UL, )dr} + (rpvuvuv ] . d_z - (rpvuvuv )| rs d_z + {(rpvuvvv ] T (rpvuvvv )|R_5}=

dz| 2 s
Rl _ _
_4 (r]3 r —(rISX ﬂ+(l’ﬁx d—5+ (rpvé‘mv 8uvj —(rpvé‘mv 8uvj (A-17)
dz| J s R dz R-6 Toor ), T s
Rl _ _ _
—g—'ov[(R—l)2 —(R—5)2]+i j (rpvemv ok, Jdr +(rpvemv au”j ﬂ—(rpvemv au”) 4o
2 dz| 2 Yoz T 0z ), dz Y0z ), s dz
The r-direction vapor momentum equation is given by
0 19 oP 9 o, | 19 v,
B ’_’_V +__ V_V_V = __+_ ng v 3 +__ ngV 2 4_5
az(p‘u‘V) rar(rpvv) or az[p ’ az} rar(rp ’ arj ()
Integrating this in the radial direction between limits »r=R—Jdto r=R—1
r=R-1
| P(pm)+1i(rpvvvvv)}2m»dr=
o sL0Z ror
= (A-18)

r_f_ —£+i{pe av‘}+li(rpe av"j 2mrdr
s or ozl "™ 9z ror\ " "™" or

Integrating and using Leibnitz formula, the r-direction momentum equation for the turbulent core of

the vapor film becomes
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d|" s
o oo sonsl 4-boasl, S osn), -bosn )
R-5
R-1 - R-1 _ _ —
_[ .[ (ra_PJdr:| +i|: J. (rpvgm,v avv Jdr]-i-(rpvgm,v avv) dl (rpvgm,v avvj d_5 (A_19)
osLoor dz| 2 0z 0z dz 07 ), 5 dz
+ {rp £ av”j —(rp £ BVVJ }
vom,y a o vom,y ar R_5
The turbulent core vapor energy equation is given by
0 -\ 10 —\ 0|€& oT, | 19 oT,
. — +__ - T - m,v m,v _my "7y 4_6
0z (PVMV V) ror (rpvvv V) 0z { Pr! Py 0z } r 81[ 0y P! or } (+6)

Integrating this in the radial direction between limits r=R—Jto r=R—1

r=R-I

I

P) 19 =t £ of. | 19 &,, o7,
—\ouT |)+—— 27rdr = ld - oY v 1 2ardr (A-20
5[8 (pu )+r8 (rpvv :|7rrr r!j@z{ Vaz]i-rar{rpv Pr! ri|}ﬂ'rr ( )

r

Integrating and using Leibnitz formula, the energy equation for the turbulent core of the vapor film

becomes
d_R—l _ __ J i 5 o -
o _R_(grpvuvTv )dr} + (rpvuvTv XR—I dz (r/)vuvTv ] RS g + {(rpvvav ]R_l - (rpvvav ]R_5}=
d R-I Eny ai v oT dl €m,v a]_-vv ds
d RJ—-J( CPr O Jdr]J{ CPr oz ] dz (rpv P! a_Z}R-ad_z (A-2D)

+
—
=
S
o | M

e
QU
Sl
A
i
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A.3.2.2 Wall Region of Vapor Film

Vv

Sv
The turbulent core equations are integrated over the radial direction from r=R—[ where [ = ( p
uv

tor =R . It should be noted that R is a constant, henceZ—R:O. Also, no slip condition atr =R,
Z

implies that the velocities at that location are zero. These conditions will be used to simplify the

integrated equations.

The z direction vapor momentum equation for the wall region is given by

i(ﬂﬁﬁﬁ%%ﬁﬂﬁ%ﬁ—%—Z—p‘,g+Haa {rp‘ vaa” }} 4-7)

Integrating over the radial direction

r=R r=R = —
[i(pvgvb—,v)di(rpvﬁvvv )}272Tdr= [ {_B_P_ pg+t { J (rpv on jHZiszr (A-22)
L0z ror rlor or

Using Leibnitz formula and the boundary conditions specified above, the equation upon integration

becomes

el

?'—.x

— __ dl _
(rpv )dri|_(rpx vuva_ld__(rpvuV V)|R—l =

dz b4
. (A-23)
d dl gp aﬁ,J ( aﬁ,j
— P Jdr |+\r — ==L PRRI-I"|+4| 7 o R A
dZ[J: )d] g ori-1] (pvvar A
The r-direction vapor momentum equation for the wall region is given by
0 19 oP 9 oy,
—puy, )J+——rp vy, )J=——+—| pV, = 4-8
P R e U ey az{p”az} (4-8)

Integrating over the radial direction and using Leibnitz formula and the boundary conditions specified

above, the equation becomes
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%L_l(rpvﬁvvv )dr]—(rpvﬁvvv ). j—i—(rpvvvvv ). =

_ (A-24)
T oP dl|f v, v\ d
= [ eS| [ o S far | o 5]
R-1 Jr dz| 2, Z Z Np 92
The energy equation for the wall region of vapor film is given below
0 —\, 10 — 9[v, 9T ] 12 v oT
5 ’_’T;’ - V_VY-;/ =—|— v ol —— V—V—V 4-9
o PET )5 baRT) az[Prvp az} rar{rp Pr, ar} (4-9)

Integrating over the radial direction and using Leibnitz formula and the boundary conditions specified

above, the equation becomes

R
4 j (rpii T, )dr} ~(rpaT,) Z—i R

dz
- . B - - (A-25)
dz| 2\ 7" Pr, oz "Pr, 0z )| dz "Pr, oor ), "Pr,oor )

Thus, a system of twelve ordinary differential equations has been obtained by integrating the original
system of partial differential governing equations over the radial direction. The vapor film was split
into two regions — the turbulent core, where the effects of turbulence dominate; and the wall region,

where the viscous effects dominate.
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Appendix B
Derivation of Vapor Phase Axial Velocity Profile

The following definitions typical for turbulent flow are used through this analysis.

cyt=2h y=R-r (B-1)

n= (y*% (B-2)

dy
m

Therefore dn=—— (B-3)

The vapor film being turbulent, the axial component of the velocity is assumed to be of the form

given by Equations B-4 and B-5.
u’=y* (Wall Region) (O <y*t< 5) (B-4)
u! =ay+an+a,n* (Turbulent Core) (5 <yt< 5+) (B-5)

In order to evaluate the unknown coefficients a,,a,and a,, three conditions are needed on the
velocity or its derivative. Differentiating Equation B-5, with respect to 77, and invoking Equation B-3

yields:

du’
dn =a, +2a,n

du;, 1 du, 1

dy* p® dn  1p°

(@, +2a,m) (B-6)
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Condition 1:

The velocity is continuous at y* =5 . Using this condition in Equations B-4 and B-5 yields:

ur =5=aq, +a1(5)% +a2(5)%

a,+a,(5)7 +a,(517 =5 (B-7)
Condition 2:

The derivative of the velocity is continuous at y* =5 . Using this condition in Equations B-4 and B-6

yields
+
From Equation B-4, du: =1
dy"| ._
Y =5
+ +
From Equation B-6, 4% —_L 4w _ (o + 2661277)|
dy'| .t dn| s MMt |
Combining these, Equation B-8 is obtained as below
a,+2a,(5)7 =7(5) (B-8)

Condition 3:

The third condition needed is obtained by evaluating the shear stress at the liquid-vapor interface.

Shear stress at y* =" is 7,, which is also an unknown.

Using Equations B-2, B-3 and B-4 to non-dimensionalize, the above equation can be written as

1 du’

Vv

" dn

du®

Vv

dy*

=5 (B-9)
p=lr)r

yt=6*
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Using Equation B-6, the above equation can be re-written as

a +2a,(6° )7 =7;—f(5+ﬂ (B-10)

w

Equations B-7, B-8 and B-10 are the three equations for the vapor film that can be used to determine

the unknown coefficients a,a, and a, . Eliminating a, from equations B-8 and B-10 and re-arranging

gives
7{” (o) -5 }
T
¢ g=-—+2" (B-11)
26)7-(5)" |
Using Equation B-8, g, can be obtained as
7o) -6l 2
T
a, = u (B-12)
[( - (s) }
Substituting the values of a, and a, in Equation B-7, a,can be obtained as
{— 60(5* )7 +(5)% +7(5(57)7 Tt}
* g,= b (B-13)

267751

Equations B-11, B-12 and B-13 give the coefficients a,,a,and a, respectively. These are not

constants, but functions of the axial coordinate, z alone.

B.1 Gradients of the Vapor Velocity

Derivatives of the axial component of the vapor velocity, i, with respect to z and r occur in the

integrated form of the governing conservation equations.

103



B.1.1 Gradient with respect to the radial coordinate

The derivative of u, with respect to r is given as

CCE e Quy , o+ uy (B-14)

Yor U or

or or

*

The friction velocity u, is only a function of z, and independent of r, hence —-=0.
r

v - 7 |,t — v B-1
o or b= o (B-15)

The turbulent core of the vapor film

Substituting for the dimensionless vapor velocity profile for the turbulent core (Equation B-5),

Equation B-15 can be re-written as

ou, =« 8u+ S ad da, da ad ad da
arv =i, =, (a0+a177+a277 ) [a—r"+na—r1+ a, 877+2a2na—77+7728—r2} (B-16)

The coefficients are not functions of r, hence their derivatives with respect to r is equal to zero. The

other terms involve the derivative of 7 with respect to r. Equation B-16 simplifies to

aﬁ:u:[al +2a277]a—77 (B-17)
or or

Using Equation B-2 and B-1, the non-dimensional variable 7 is defined as

%
77=(y+)% ={Vl T—W} (B-18)

In the above equation, all quantities, except the independent variable y are functions of z alone. Hence
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(T/jlm
on__dn_\/p~) _n (B-19)

and

A%
on (%j 1 dr, 1 ndr
o 21_\Y w17 4T, B-20
0z 14 71%4 Ma| dz 14, dr ( )

In deriving Equations B-19 and B-20, the properties of vapor are treated as constant, although, strictly
speaking, they are functions of temperature, which is a function of r and z.
Using Equation B-19 in Equation B-17 yields

du, —_ uyla, +2a,7ly (B-21)

or Ty

The wall region of the vapor film

Using the velocity profile for the wall region from Equation B-4, and the definitions from Equation

B-1
+ + +
duy _V,Ou, _ Vv, o _, (B-22)
dy" u, dy u, or
Using Equations B-15 and B-22
i, . o fu) W)
v -~ |,* — V —y | % |=—Y B-23
or ar[v V] " or V[ij v, ( )

B.1.2 Gradient with respect to the axial coordinate

The derivative of u, with respect to z is given as
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Jdu, 0 . ou.  .ou’
L o ) B-24
dz 0z [MVMV] "y 0z iy 0z ( )

The turbulent core of the vapor film

Substituting for the dimensionless vapor velocity profile for the turbulent core, and using the fact that

the friction velocity u,, and the coefficientsa,,a, and a,are functions of z alone, Equation B-24

Vv

becomes

s _ 9 Lw|=(ay +am+ag?) ™+ u; 2 (ay +am+ap?) (B-25)
dz 0Jz dz 0z

ou, Ndu, o[ da, da, an on daz}

—=\a,+an+ . —+ +a +2a —
9z (ao an+a,n ) &z u |: 2z n—- &z a, Py a)— o +7 &

ou, ( ) )du: | day da, 5 an

=lao +am +a,n ul| Lo @2 D (400, ) O (B-26)

0z dz dz dz dz 0z

The friction velocity u, is a function of z. Its derivative with respect to z is given as

*

du 1 dt u dr.
v — w — v w (B_27)

dz 2z, p, dz 27, dz

Equation B-26 requires the derivatives of the coefficients a,,a,and a, with respect to z. Taking

derivative of Equation B-11 with respect to z gives

da, drt dt dé

—= =\(da2tw +(da2ti)—-+da2d B-28
dz (a )dz (al)dz ( )dz ( )
where
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da2tw = > >
(5+ 7_(5)%:| TW 4
Y 1 55,67 3(5 5+)/T +)V 5)77
B 2l 201 7,0 276
(o)1= L2 "
+\%
da2ti = 7( )7

22, (57)7-6)"

(B-28a)

(B-28b)

(B-28¢)

d
Substituting Equations B-28a, B-28b and B-28c in Equation B-28 yields an expression for%. In

74

deriving Equation B-28, the derivative of the non-dimensional film thickness & is required. Using

the definition of & from Equation B-1 and differentiating with respect to z and using Equation B-27

gives

dé* [ 0" dTW+ u, \do
dz 2t, ) dz \v, )dz

Differentiating Equation B-8 gives

day 4 257 ( day j =0
dz dz
Re-arranging

day _ o5 [ﬁj
dz dz

Combining Equations B-28 and B-30 gives %
Z

Differentiating Equation B-7 gives
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day __(5)7 94 _ (57 4 :
o —(5)7 o (5)7dZ (B-31)

Using Equation B-30 into Equation B-31 gives

day _ (55 4

B-32
dz dz ( )
da, da,
Knowing —2 from Equation B-28 — can be obtained.
dz dz
Substituting Equations B-19, B-27, B-28, B-30 and B-32 in Equation B-26 yields
du, _ (a0+a177+a2772)d2'w o (a1+2a27]) n [ /]Z daz
0z 2z,p, dz ' 14 T,
Using the definition for friction velocity and re-arranging gives
— 2
° %: (a0+a177+a277 )dTw + (CllT]+26lzT] ) 7y +u *[77 (5)%12& (B-33)
0z 2J7.p, dz 147,p, dz dz
This is the gradient of the turbulent core vapor velocity in the axial direction.
The wall region of the vapor film
Using the velocity profile for the wall region from Equation B-4, we get:
u:— — y+ — 777
_7p 91 (B-34)
Z 0z

Using Equation B-20, the above equation becomes
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oul 71’ dr,
Sy A Ztw B-35
Jdz 2t dz ( )

+

Substituting in Equation B-24 for%,u:
Z

and using the fact that the friction velocity u,, is a

function of z alone, gives

o, Of . « T 777 dr
v =n’ v a4 T w B-36
aZ aZ [uv uv] 77 aZ +uv£2fw dZ ( )

Using Equation B-27 in the above

— * 7
. a”v:[ 1 +”_v]’7_ﬂ (B-37)

iz \4Jr,p, T,)2 dz

Equations B-21 and B-23 give the gradient of the axial component of the vapor velocity with respect
to the radial coordinate, r, while Equations B-33 and B-37 give the derivatives with respect to the

axial coordinate, z.
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Appendix C
Derivation of Liquid Phase Axial Velocity Profile

The liquid core being turbulent, the axial component of the velocity is assumed to be of the form

given by equation C-1.

+_ W

wf =—L=by+bn+bn’ (C-1)

v

The non-dimensional variable 7 is defined in the same manner
]
n=")"

In order to evaluate the unknown coefficients b,,b, and b,, three conditions are needed on the liquid

velocity or its derivative.
Condition 1:

The velocity gradient is zero at the center of the hydraulic channel. Mathematically, this can be

written as given below

.30,

; =0 C-2
or €2

r=0

At r=0o0ry" =R

Differentiating Equation C-1, with respect to 77, and invoking Equation B-3 yields:

du;
dn

()7

(b +2b,77) (- =0

b +26,(R")7 =0 (C3)

Condition 2:
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The velocity is continuous at the liquid-vapor interface. Mathematically, it can be written as

.
yt =5 - uv

At y"=0" u

yt=6*

Using the assumed velocity profiles, the above condition becomes

a0+a1(5+)%+a2(5+)%=b0+b1(§+)%+b2(5+)% (C-4)

Condition 3:

The third condition needed is obtained by evaluating the shear stress at the liquid-vapor interface.

Shear stress at y* =0" is 7,, which is also an unknown. Mathematically, it can be written as:

ou,
#za— =T
Vs
() o] _
T
A
% \2
lLlV _Ti
M) v, oyT
y+:5+

The wall shear stress is given by 7, =p, (u: )2, using Equation B-1. Using this, the above equation
becomes

u; _TU,

l

" ay+ y+:5+ lul

From Equation B-3, the above condition can be re-written as
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oy”*

1 duf

— — 7’-ill’lv
= Zilty,
yoosr T dn|

(5+ )% Tw:l’ll

Differentiating Equation C-1 and substituting in the above equation gives

— Ti/uv

1
—(» +2b77)(
e T eyt Tt

b, +2b, (5+)y7 _ LM,

erfr mm
b+ 20,677 =7 W(lj (C-5)

z'W/u 1

Equations C-3, C-4 and C-5 represent the three conditions that need to be satisfied. These can be

solved to obtain the unknown coefficients.

Subtracting Equation C-3 from C-5 yields

o5 -0 ocn )
7[ ij
_ Tk (C-6)

& -5

\l

° b2

From Equation C-3, b, =-2b, (R+ )%

_7(%@5%
TW lul R+%

2(R+” 5" j

b =-2
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7(71' ”V}T% R
° b = 7, H (C-7)

Substituting b, and b, in Equation C-4 along with values of a,a a, gives b, in terms of

+ o+t
R™,07,7,,7, 1, 1 .

° b0:a0+(al_bl)( +)%"'(az_bz)( +)% (C-8)

Equations C-6, C-7 and C-8 give the coefficients b,,b and b, respectively. These are not constants,

but functions of the axial coordinate, z alone.

C.1 Gradients of the Liquid Axial Velocity

Derivatives of the axial component of the liquid velocity, u, with respect to z and r occur in the

integrated form of the governing conservation equations.

or

i[+ *]= +8L:+ . Ou;’

C9
la va ( )

The friction velocity u, is only a function of z, and independent of r, hence aauv =0. Using this, and
r

substituting for the dimensionless vapor velocity profile, Equation C-9 can be re-written as

L 2 (b, + b7+ by )=u [aiﬂyab 877+2

a77 2 abz}
_ b 9b, C-10
o o Mo or g T TG T (€-10)

or or

The coefficients are not functions of r, hence their derivatives with respect to r is equal to zero. The

other terms involve the derivative of 7 with respect to r. Equation C-10 simplifies to

. d
=u'[b + 2b277]a—7r7 (C-11)
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Using Equation B-19 in Equation C-11 yields

% — l/t: [bl + 2b277]77 (C-12)
or Ty

The derivative of u, with respect to z is given as

dz oz U oz ooz

(C-13)

Substituting for the dimensionless vapor velocity profile, and using the fact that the friction velocity

u, , and the coefficients b, b and b, are functions of z alone, Equation C-13 becomes

%zi[uﬁt:]= (b, + 57 +b2772)du” +u:i(b0 +by+bn?) (C-14)
dz 0z dz 0z

oit, \du,  .[db, db, 97y on  ,db,

— =\, +bn+b “tu,| —+N—+b—+2nb, —+n —=

P (0 W71+ 0,77 )dz “v{ &z n 2z 0 110, P n &z

o _

* 3 (by + b7+ ,7°)

v

du, [db, db ~ ,db, an}
Ltu,| —+n—+n"—=+\b +2b,n7)— C-15
d [dz T T 4 (by+26,1) Jz (15

Equation C-15 requires the derivatives of the coefficients b,,b, and b, with respect to z. Taking

derivative of Equation C-6 requires the derivative of the non-dimensional radius R with respect to z.
. . + Ru: .
Using the definition R™ = gives
| 4

v

dR ™ _ R* drt, (C-16)
dz 2t dz

w

Using Equations B-29 and C-16 and the definition of b, yields
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db, b(de b, [dij b (R+)% [dffJ (C-17)
dz dz ) t,\ dz 75 R* 7 (5+)ﬁ

Using Equation C-3, % can be obtained as
4

b __ +%(&J_E w9, | 4R
= ARY | T =R Ty

Z dz

which can be simplified using Equations C-16 and C-17 to give

db, _b (dr} gﬂ(ﬂ}ri ( )y (djj (C-18)
75| (r*

dz dz ) 147,\ dz )%

Differentiating Equation C-8 yields

%=%+i[(al—bl)( +W}+i[(a2—bz)( +)%}

dz dz dz dz

Simplifying, we get

%_%4_(5%)%(%_%)4_ (a, _bl)(5+)_% ds”
7

dz  dz dz dz dz

( +)/(da2 db2j+2(a27—b2)(5+)—%d_5+

dz dz dz

(C-19)

Using the derivatives of a,a,,a,,b,and b, with respect to z, which are already known, and

substituting from Equation B-29, %can be evaluated from Equation C-19 as
Z

db, dr, dr, doé
— = (dbOrw db0ti db0d C-20
dz ( ) dz ( ) dz ( )dz ( )
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where

dbony = G +12b o )%1152“2 e120, ') +(5-6*F (da2ew) (C-20a)

1 2
db0ti = {(5 _ 5" Plda2ei) -2 (i ) _nlo) } (C-20b)

7;

76
P )l ) nle )| (€209
13 (&) -7}

(5_5+)2(da2d)+{(al _bl)(éur)% +2(a2 —bz)(é“r)%]

Using Equations B-20 foraa—n, B-27 for%, C-17, C-18 and C-20 in Equation C-15 yields an
Z Z

. ou,
expression for 5

<
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Appendix D
Derivation of Vapor Phase Radial Velocity Profile

The continuity equation for the vapor phase is given by
0
=L = (rp,9,)=0 ®-1)

The radial component of the vapor velocity, just like the axial component, is non-dimensionalized by

the friction velocity. Thus,

=2 (D-2)
uV
where the friction velocity and the other terms are defined in Equation B-1.
up= = uf =2, =2 y= Ry (B-1)
Py u, v,

The vapor film being turbulent, the axial component of the velocity is assumed to be of the form

given by equations B-4 and B-5.
ur=y" (0 <y' SS) (B-4)
u =ay+an+an’ (5 <y'< §+) (B-5)

Using the definitions in Equations B-1 and D-2, the vapor continuity equation becomes

2 )= e
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In the above, the vapor density, though not a constant, can be factored out for simplicity. The friction
velocity is a function of z alone, hence it can be treated as constant, when differentiating with respect

to r. Employing the product rule of differentiation, Equation D-3 becomes

. +—V—(rvf)=0 (D-4)

Thus, the continuity equation becomes

i(rv+)=—i{u+ du, +u a”:}
! I R A

8( +)__ru;' duj_rau:

=\, )J=—— D-5
or ' u, dz 0z (D-5)
Wall Region of Vapor Film
. . . ) L du ou’ . )
Using Equations B-4, B-27 and B-35 in Equation D-5 for u, 7 - and a—” respectively gives
Z Z

i(rf _rm’ 1 dr, rydg,
or " u, 2\/% p, dz 2t dz
Using the definition of u, = i

Py
o( + rn’ dr,
—\rV. = _f W D‘6
o)== (D-6)
Integrating Equation D-6 with respect to r gives

1 (R r\dr, K . dt,(Rr r*) K
v::_L x_r _W+ﬁ or v::_L_W ar_r + 3(Z) (D-7)
v, Jt,p, \2 3) dz r ve, dz {2 3 r
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where K, is a function of z, which can be evaluated by using the fact that at the wall, r =R, the

velocity is zero. Thus,

Ky(z)= “or Ky(z)=————* (D-8)

w4 w (D-9)

. 1 Rr r?\dr R? dr
dz  6rv,\Jt,p, dz

An alternate form of the expression for v is

%

3 2
v::iﬂ R__&+r_ (D-10)
v, dz\6r 2 3

Equation D-9 or D-10 represents the radial component of the vapor velocity for the wall region.

Turbulent Core of Vapor Film

Equation D-4 can be re-arranged to become

The friction velocity, u_ is a function of z alone

v

(. +)__T 0 ]
FRATaa ey

From Equation B-33,
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BL _ (ao +an+ azﬂz) dr,
aZ 2\/Twpv dZ

{( ) )5 [n—(s)%]zﬁ}

14 T, ) dz dz

w

Substituting Equation B-33 in Equation D-11

e 2e 1 05 (o)} Z—H

or u, 2\/ T,P, dz

v

+)=_L{(a0 +a177+a2772)d7’-w

Substituting for the friction velocity

i(rv+)=— (ao +a177+a2772)r dr, (a177+2a2772)r dz, _[772 _277(5)% +(5)%}%

v

(D-12)

or 2z, dz l4z, dz dz
. . . . dt, da, .
Integrating the above equation with respect to r and realizing that rw,d—w,d— are functions of z
7 dz
alone, yields
[ 2 2 2
L dn a2 R g LR
27, dz | 2 15 8 16 9
N 1 dr,| (y Ry o[ ¥* Ry
=1 - ———|+2 ——— +K
T o, al”[lS SJ “T\16 " 9 ()
da, o[y Ry VA y> Ry 2 r’
——=| 7| ———|-14(5) | ——— |+ (5)7| —
dz{nm 9J ()7715 8 ) 2
Collecting like terms and dividing both sides by r gives
2 2
_ L dn el 2R g R
1 27, dz 2 15 8 1 9 K (Z)
vi=— +—4
"\ _day| of ¥' Ry v [y Ry r
——=| | ———|-145)"n| ———|+5)7| —
dz { 7 [16 9 5y 15 8 ) 2
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Equation D-13 represents the radial component of the vapor velocity for the turbulent core. K 4(z) can
be evaluated by equating the velocity of the vapor at the junction of the wall region and the turbulent
core. In other words, the velocity obtained from Equation D-9 or D-10 at y* =5 should equal the

Sv,

velocity obtained by Equation D-13. The location y* =35 corresponds to 77=(5)%, y= . The

%
uv
Sv,

oa
v

corresponding radial coordinate is given by the definition from Equation B-1 as r =R —

u

From Equation D-13 and Equation D-10, at y* =5or r:R—5liv or y= 5‘/*” =l or 77=(5)% .
u

v v

Substituting the values of r, y, y* and 7 in the above equations gives

S i [“O(R =1 4 505" {%—%}9%(5)% z[é—ﬁﬂ

. ZTW dZ 2 9 I/t;klz R i d’Z'w
" y (1 R (1 RY, (5)71(R-1)} R e Y
_day 7(5%1(___)_ 14(5)41[___]+ T
dz 16 9 15 8 2
Thus,
2
ay(R-1) +8a1(5)%1(i—5)
1 dr, 2 15 8
2t d
. v +9a2(5)%l(L—£j
K()_u‘,l (R leTW_’_ 16 9 (D-14)
\ r_!
v \2 3)dz
n 7(5)%1[L—5J—14(5)%1[L_£j
da, 16 9 15 8
+ 5 ,
de | (5)7(R-1)
2

Substituting the value of K 4(z)in Equation D-13 yields an expression for the non-dimensional radial

component of the vapor velocity, v, as given below.
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[ 2
1 drz,| a,r

A — 772 y_z_&
27, dz | 2 8 e 9 +u:lz(£_£
? 2 2 v, (2 3
- y——&J—14(5)%n(y——ﬂj+(s)%(r—J
L e 16 9 15 8 )
y, =— -
r _ 2
L dt, (R0 g 1(5)%1(L—£)+9a2(5)%l(L—£)
27, dz 8 6 9
. i
2 (1P
L day 7(5)%,[L_£j_14(5)%,[ s _5}(5) (R-1)
dz 16 9 15 8 2

Collecting similar terms together gives

- s
u,l

V,T,

ot

“—0[(R—z>2—r2]+8a{(s>%z(§—§j—n(y—z-&ﬂ

2 )’2
i

1 dr, 2
27, dz

dr,,
dz

16

+ 9a{(5)%l(i—

R

9

I fertasoti-s)

%2 ~14 (5)%1(%—9— (5)%77[%—&”
A iy

15 8

¥

8

J

dr,
dz

Equation D-15 represents the non-dimensional radial component of the vapor velocity.
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Appendix E
Derivation of Liquid Phase Radial Velocity Profile

The continuity equation for the liquid phase is given by

dz ror i

9,19 5y (E-1)

The radial component of the liquid velocity, just like the axial component, is non-dimensionalized by

the friction velocity. Thus,

yr =2 (E-2)

v
.
where the friction velocity and the other terms are defined in Equation B-1.

» Y ==, y=R-r (B-1)

The vapor film being turbulent, the axial component of the velocity is assumed to be of the form

given by equation C-1.
) =by+bp+byn’ (C-1)
Using the definitions in Equations B-1 and E-2, the vapor continuity equation becomes

9 19

dz ror (rv,*uj)=0 (E5)

The friction velocity is a function of z alone, hence it can be treated as constant, when differentiating
. . . o .oy .
with respect to r. Employing the product rule of differentiation, and using a—’from Equation C-15,
Z

Equation E-3 becomes
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u, d( .\ O Ndu, W[ db, db, ~ ,db, on
i 2 =——l—-_ v 04 =2 2b.n)—L E-4
- or (Wl) Py {(b0+b177+b277 )dz +“v{ &z +7 &z +7n & +(b1+ bzn) P (E-4)

o ( . r du, [ db, db 0
g(rv, ):_u_:{(b0+bln+bznz)d_z { dZO +7 dzl +77 db,y +(b +2b277) a’ﬂ}

Substituting Equations B-20 and B-27 in the above equation gives

8( +)=_(b0+b177+b2772)r dr,, %_i_ db, 2&+(b1+2b277)id7w -
dz dz dz 14 T, dz

—\rv : +
A 7
Substituting for the friction velocity

0 (rv+)= _ (bo +b177+b2772)r dr,

® (E5)

+7

[av, b, b, (bm+2607) 1z, |
! 21, dz | dz ' dz dz 14 7, dz

dT db, db, db

-2 bo,b and b, are functions of z
d dz dz

Integrating with respect to r, and noting that 7,

alone, gives

2 2 2
Ldi bol" 17] y__R_y +7b2772 y__R_y +
2r, dz 2 15 8 16 9

N 1 dr, y> Ry ,( ¥y> Ry (E-6)
S v | 7| S — == |+ 14b,n% = - =2 +K
i 4z, dz { ! [ 5 8) ? 1(e)

2 2 2
+ dbor_+(ﬂj777 y__R_y +db2 7772 y__R_y
dz 2 dz 15 8 dz 16 9
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Therefore, the non-dimensional liquid velocity is

L de, \byr 8nb(y* Ry} 9 (y' Ry
2¢, dz | 2 r (15 8 ro\16 9 K, ()

t—
v, = +

4 dbo L.}.ﬂ& y_z_R_y +Edb_2 i_R_y 4
dz 2 r dz \15 8 r dz \ 16 9

(E-7)

In order to obtain K 1(z), the radial component of the non-dimensional liquid velocity, v,” and the

]
radial component of the non-dimensional vapor velocity v; at y=96 ory" =6"; 7= (5+ )A

r=R-0 are equal.

Thus, rv, = rv, at the liquid-vapor interface.

2 2 2 ]
! ﬂ{—bor +877b1[y——&j+9b2772 y R J

27, di | 2 15 8 6 9

B 2 2 2 . +K1(Z)
+ %V_+7ﬂ% y__& +7772& y__&
dz 2 dz\ 15 8 dz (16 9

2 2 2
Ldfw aor +877al y__& +977202 y__&
2t, dz | 2 15 8 16 8

- - +K4(Z)

2 2 2
f| a0 gpdal Yy Ry gpda [y Ry
dz 2 dz\15 8 dz \16 9

Rearranging,

K, (o)- 4% {(ao ~bo)r” +87](y—2—&J(a1 _b1)+9n2(y_2_ﬂ](a2 —bz)}

15 8 16 9
[ gy B )R )
2\ dz dz 15 8 dz dz 16 9 dz dz

Substitutefory:5,77=(5+)y7,r:R—5
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N [ R A )
Ta e {9( %[a_z_ze_aj(%_bz)}

4Z

16 9

O L P

R

(E-8)

K, (z) is defined in Equation D-14. Substituting Equation E-8 in Equation E-7 gives an expression

for the non-dimensional liquid radial velocity component.
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Appendix F

Derivation of Vapor Temperature Profile

In addition to the definitions in Equation B-1, the vapor temperature is non-dimensionalized as

1 =(7 -1, )2 e (E-1)
qVV

The radial heat flux is given by

—p C _gm,v +L a_i
4r=PiCpy Pr., Pr, |y

v

For the wall region (OS y* 35), E,., <<V, and assuming Reynolds analogy to be valid, the non-

dimensional vapor temperature in the wall region is given by

T =(Pr,)y* (0<y* <5) (F-2)
For the turbulent vapor core, the non-dimensional temperature profile is given by Equation F-3.

T" =c,+eqp+en’ (5<y" <67) (F-3)

In the above equation, the coefficients ¢,,c, and ¢, are unknown and need to be determined.
For the turbulent core, the derivative of 7," with respect to 7 is given by
dr;’

d;} =c,+2¢,1 (F-4)

Using Equation B-3 and F-4
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dr;’

Vv

Cldry 1
dy* 1° dn Tn

(e, +2¢,m) (F-5)

In order to evaluate the unknown coefficients c,,c, andc,, three conditions are needed on the vapor

temperature or its derivative.

Condition 1:

The temperature is continuous at y* =5

From Equations F-2 and F-3, at y" =5o0r7 = (5)% ,
T* =5Pr, =c, +¢,(5)7 +¢,(5)7 (F-6)
Condition 2:

The gradient of the temperature is continuous at y* =35.

+

From Equation F-2, aT,

= =Py,
yt=5
+ +
From Equation F-5, dTV+ = 16 dt, - (¢ +2§277)|
dy'| . T dn| ot
Combining these, Equation F-7 is obtained as below
¢ +2¢,(5)7 =7(5)7 Pr, )

Condition 3:

The third condition is obtained by setting the interface temperature to the saturation temperature.

Aty =6",T, =T,

sat
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-T )—pvc,,,vu: =¢,+¢ (5+)% +c, (5+)% (F-8)

”

T =

sat _( sat w
w

Equations F-6, F-7 and F-8 represent the three conditions that need to be satisfied to obtain the

coefficients c¢,,c,andc, .

Equation F-6 subtracted from Equation F-8 yields

1 Y 2 %
C1|:( +)A—5/}+Cz[( +)/7—5/}= war — P, (F-9)
Solving Equations F-7 and F-9 simultaneously gives

1
" _ 7
Tw, +30Pr,—7Pr, 5 ( )/ (F-10)

er-6r]

Using F-7, ¢, =—2c, (5)% + 7(5)% Pr,

{ 5+)/ Pr,— mit—ZS( )Y Pr}

¢ = 3 (F-11)
=
Using Equations F-6 and F-7 ¢, can be obtained as
Co=Cy (5)% -30Pr,
fasen(o)7(5)' 4 6771, -30ms o)
- (F-12)

)5
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Equations F-10, F-11 and F-12 give the coefficients c,,c, and ¢, respectively. These are not constants,
but functions of the axial coordinate, z alone. Derivatives of the axial component of the vapor
velocity, T,with respect to z and r occur in the integrated form of the governing conservation

equations.

F.1 Gradient in the Radial Direction

Rearranging Equation F-1 and differentiating with respect to r gives

aT, :ﬂ_i_i q, I (F-13)
or  dr adr|| pc,.u,

F.1.1 Vapor Film Turbulent Core

Wall temperature, wall heat flux, friction velocity are not functions of y (or r), hence they can be

treated as constants.

For the turbulent core of the vapor film, using Equation F-3, the above relation becomes

% = (L*}i(co +on+ 02772)
or

al" pvcp,vuv

The coefficients ¢,,c, and c, are functions of z alone, hence

a7, _ ( 4w }(01 9 +2¢,1m 8_77) (F-14)

pvcp,vuv

Substituting for a—77fr0m Equation B-19, we get
r
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o 9T _ _L—qw _ J(c1 + 2c2n)(ij (F-15)
Ty

ar pvcp,vuv
F.1.2 Vapor Film Wall Region

For the wall region of the vapor film, differentiating Equation F-2 with respect to y* gives

I _ _(hJ Pr. (F-16)

Substituting Equation F-16 in Equation F-13 and knowing that the wall temperature, wall heat flux,

friction velocity are not functions of y (or r), we get

I, _|_4an Pr,
or pvcp,vvv

. L O . v, V,p,C
Using the definition of Prandtl number and the thermal diffusivity, we can write Pr, =—-= YPrCpy

a, k,
Thus, substituting in the above equation gives
oT, q,
o v__ 9w F-17
or k ( )

v

Equations F-15 and F-17 represent the gradients of the vapor temperature with respect to the radial

direction.
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F.2 Gradient in the Axial Direction

Rearranging Equation F-1 and differentiating with respect to z gives

of, 90, , || v |- (F-18)
dz  dz dz|( p,c,u,

The wall temperature, friction velocity and the wall heat flux are all functions of z alone. Thus

Equation F-18 becomes

— ” + + ” + 7 *
%szwJ{ 1 j{q_waTv L dg, T, qw%] (F-19)

oz dz \pc,, |u, 0z u, dz (u’:)z dz

v v

F.2.1 Vapor Film Turbulent Core

Substituting for the non-dimensional temperature using Equation F-3, the above equation becomes

o, dT, 1 q, 0 N\ Trdg, T'q du.
=T - —\cten+e,n [+ 45— - —+ F-20
Jdz  dz [pvcp,v}{uv az( o tanten ) (F-20)

Using the fact that the coefficients c,,c, and ¢, are functions of z alone, the above equation becomes

gy | deq de, | ,dc, on 877}
| —+n—+n —=+c,—+2c,n—
' { dz g dz g dz “ dz il 0z

T dgl, T, q. du,

(F-21)

Equation F-21 requires the derivatives of coefficients c,,c, andc, with respect to z. These are

evaluated below.
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Using Equation F-8 for the non-dimensional saturation temperature, 7T,

derivative of T

sat

invoking Equation B-27 yields

dTth — T;t drw T;t dq;,z _Lp"c[’avu:JdTw

dz  2t, dz 4, dz ¢ | dz

Using Equation F-10 for the definition of c¢,, and Equations B-29 and F-22 gives

0;_22 = (dc2tw) d;ZW +(d02d)i—j+(d02wt)d;’” + (chqw)%
7, -(6)7(67) Prv—gcz(a%[(&)% )4 }
dc2tw = l :
22'W|:( +)A _(5)%}
(5)% (5+)% Pr‘,+3c2(5+)%[(5+)% _ (5)%}
dc2d =— i
5[(&)% _(5)4 }
de2wt =— /Ovlcp.v”:j —
q:v[(y% —(5*%}
dc2qw = — T;r

Using Equation F-7
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(F-22)

(F-23)

(F-23a)

(F-23b)

(F-23c)

(F-23d)



de, _ _2(5)% de,y
dz dz

(F-24)

Combining Equations F-6 and F-7 to express ¢, in terms of ¢, and differentiating with respect to z

yields

ey _ (55 9c2
dz dz

Using Equations B-20, B-27, F-23, F-24 and F-25 in Equation F-21,
turbulent core of the vapor film.

F.2.2 Vapor Film Wall Region

Equation F-2 can be re-written as

Therefore
+
CR P WL
0z 0z
I . on .
Substituting from Equation B-20 for 5. yields
Z

oT (n'Pr, \dr,
0z 2z, ) dz

(F-25)

v

can be obtained for the

0z

(F-26)

(F-27)

oT,
Substituting Equations F-27, F-2 in F-19 yields 3 ~for the wall region in the vapor film as

4
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of, _dr, [ n'Pr, | 4} o7, dq, g du,
az dZ pvcp,vu: :

27, 0z dz u, dz

%

Using Equation B-27 for ou, and the definition of friction velocity in the above and simplifying
Z
yields
_ ; .
%: dT, L7 Prv* dq,, (F-28)
oz  dz |\ pc,u, ) dz

. Cov vVvC v
Using the definitions from B-1 and B-2 7’ = y* =2 and the definition of Pr, = ,u‘k ro P p -
VV v v
in Equation F-28 gives
I, _dT, [y |d4, (F-29)
Jdz  dz \k, ) dz

Equation F-29 represents the gradient of the vapor temperature in the axial direction for the wall

region.
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Appendix G

Derivation of Liquid Temperature Profile

The temperature of the liquid core is non-dimensionalized in the same manner as the vapor

temperature. Thus,

%
pvcp,vuv
”

T =7 -7,) =dy+dm+dyn’ (G-1)

w

The derivative of 7," with respect to 77 is given by

dT*
d;] =d, +2d,7 (G-2)

Rearranging Equation G-1 and differentiating with respect to y* gives

oT, _ T, +[ 9y JaT; (G-3)

'ty pe,u oyt

Wall temperature, wall heat flux, friction velocity are not functions of y, hence they can be treated as

constants. Using the definition of y*, Equation B-1 and Equation B-3, the above equation becomes

O _ o _w of i a0 \om_ 1 [ & \ag 6
ay ar Vv ay+ Vv pvcp,vu: ay+ 7776 pvcp,vvv d77

Coefficients d,,,d,and d, are unknowns and need to be determined. Three conditions are needed to

obtain these coefficients.

Condition 1:

The interface temperature to the saturation temperature. At y* =0", T, =T,

sat

136



Tt = (1, ~1,)2e™ _ g v a(67)7 +a, (6 ) (G-5)
Condition 2:

o,

The gradient of the temperature is equal to zero at the centerline. At y* =R", =0

Using the definitions in Equation B-1, B-2 and B-3, this condition can be written as

L1y

6 =0
T dn r=(&)

This can be written using Equation G-2 as

1
d +24,(R*)7 =0 (G6)
Condition 3:

Performing an energy balance at the interface, this condition can be given as

” aTL aT . M
CuthSH =k S iy (G-7)
r r=R-06 r r=R-06

The left hand side of the above equation refers to the heat coming into the interface from the wall by
radiation and from the vapor by conduction. The right hand side refers to the heat transfer from the
interface to the liquid core by conduction and the heat transfer due to mass transfer. This mass

transfer term needs to be evaluated. Writing Equation G-7 in terms of the variable y gives

” aT

9rad — kv -
dy yes

o7,

Ty

=nh % (G-8)
y=6
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Substituting Equation G-4 in Equation G-8 yields

” +
k, 4, dTv} = rit/hy, (G-9)

Arad {7776 pic, v, dn

J{ ko gy ar? }
6
7]:(§+)% 777 pvcp,vvv dﬂ

n=ls)7

Using the definitions of thermal diffusivity, ¢, = , and Pr, = Yo in Equation G-9 yields
p € p.v a’v

» 71\ dTt k, \dT* »
o e e
n v v ”:(5+ )%

+ +

Invoking Equations F-4 and G-2 for C;TV and C;T’ respectively, Equation G-10 becomes
n n

Rearranging

v (& 7(5* V7 pr (7, =itk )
[cl+2c2(5+)/7}—[k—’}[dl+2d2(5+)%}: v\ Draa ~ MM p (G-11)

q,

v

Equations G-5, G-6 and G-11 represent the system of equations that need to be solved to obtained
dy,d,and d, .

Using Equations F-10, F-11 and G-6, d, can be obtained as

- (%j o1+ +25Pr —7Pr (57)7(5)"7 +7Prv(5+)%
2 2[(5+1 —(Rﬂﬂ [(5+W_(5)%} a,

litth, — ) (G-12)

~
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Using Equation G-6, d, can be obtained as

d,=-2d;(R")"

sat

() -(&)" ] () -6)"]

—(R%(kv j . V1 (5)% <)
4= k) |or, 25,7 )%(5)7+7Pr((§ Pl - @

Solving for d,using Equation G-5 yields

+ _ + 7 + Y
d =T +)%(kvj oT?, +25Pr,~7Pr, (57)7(5)" +7Pr(€ 1 ih, — o] (G-14)

W e -e] i

kl

Equations G-12, G-13 and G-14 give the coefficients d,,d,and d, respectively. These are not
constants, but functions of the axial coordinate, z alone. Derivatives of the axial component of the
vapor velocity, 7, with respect to z and r occur in the integrated form of the governing conservation

equations.

In Equations G-7 to G-14, term ¢/, represents the radiation heat flux from the wall to the interface.

For a rod bundle, the radiation heat transfer rate is given by

(G-15)

The radiation absorption in the vapor film is neglected. A value of &, =0.96 is used for the water

emittance (assumed to be equal to the absorbance), according to Eckert’s recommendation for 0.1 mm
or more thick water (in Rohsenow and Hartnett, 1973 pp. 15-23). Wall emittance of Inconel 600 is

given by the following relation:

£,=1979x107T, +0.5735 (G-16)
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where 7, is in deg K. It is a linear approximation between 580 K and 1260 K, of the values

recommended by Kawaji (1984, pp. 31), based on a report from The International Nickel Company,

Inc.

Differentiating Equation G-15 with respect to z and noting that the interfacial perimeter is also a

function of z, as it is a function of the vapor film thickness, J yields

” 3 ”
dqmd — 40Tw dTw _ 9rad R > i -1 d_5 (G-17)
dz 1 prP(1 dz 1 pP(1 (R-6)\ g dz
[ R U [ TR U p—)
€W Pl 8! €W Pz 8[
G.1  Gradient in the Radial Direction
Rearranging Equation G-1 and differentiating with respect to r gives
_ , .
9 O, | _aw |9 (G-18)
or  dar | pc,u, | or

Wall temperature, wall heat flux, friction velocity are not functions of y (or r), hence they can be

treated as constants. Using Equation G-1, the above relation becomes

pVCP,VuV

o7, . d
G| e\ (g +dn+dn?)
or or
The coefficients d,,d, and d, are functions of z alone, hence

o, [ _4q on 877}
LETR BT R YR G-19
or (pvcp’vuj }( ' or it or ( )
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Substituting for 3877

—-from Equation B-19, we get
r

9T, :_[ 9y, *J(dl +2d2,7){71J (G-20)
y

ar pVC[?,VuV

G.2 Gradient in the Axial Direction

Rearranging Equation G-1 and differentiating with respect to z gives

R 4+ — -
dz  dz  dz|| pc, u,

of, 3T, 2 { s ]Tﬁ G

Substituting for the non-dimensional temperature profile from Equation G-1 and proceeding in the

a7,
same manner as was done for the turbulent core of the vapor film, — can be obtained as
<

qf[%+ﬂ%+ﬂ2%+cla—n+2czﬂa—n:|

oT, dT 1 u, | dz dz dz 0z 0z G22)
— =W N -
Iz dz \pe,, )|, T dgy T'q, du,

The above equation requires derivatives of the coefficients d,d,andd,with respect to z. Using

T,
Equations B-20, B-27 and the derivatives of the coefficients d,,,d, and d, with respect to z, a—’ can
<

be obtained.

The above equation requires derivatives of the coefficients d,,d,andd, with respect to z. Using

Equation F-21 and other definitions, these are evaluated below.
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it o) [ranmir]
s (R i i

[2@; +25Pr,~7Px +)%(5)%}( ok N
a7 ()7 )7 -6 | =

+[T;, _5)%(6) 7 ey, !

"o ][< Tl oo

6167 (i ~g7) 6)(5°) P,

&l o)1 =) ] o) -lw) | )7 -0 o
dd;‘izzzk—]; " _[2_19] ol57) _[ZT +25Pc —7Pr (57)7(5) %}(ﬁw dz

o E 73/ (67) " ~(&)" | 1367 -6 [ 67) R+72

B 2p,¢, .1, ] dTW+ 7 5+Vhfg dm,

| o) ) )67 ||

__ 7e ()7 g, (€2
q”[( +%—(R+%} =

| 7PV b~ ) o1, i

PV )| ) =) ) 0 ||

Using Equation G-17 for the derivative of the radiation heat flux in the above equation yields the

expression for %

Z

Differentiating Equation G-6 gives
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dd1 )/ dd2 g / dR*
dz

which on simplification using Equation C-16 becomes

dz 14t

dd, —[ 4 j V dd, (G-24)

Substituting from Equation G-24 for d—2 gives an equation for d—l
74 74

Differentiating Equation D-5 gives

A2) ol (o) |
dd, | _
dz 5+)Vd { /d; e df}z[(m%;( +)ﬂd2 (5+)_%dd_5+ (G-25)

oT,
Using Equations B-20, B-27, B-29, F-22, G-17 and G-23 in Equation G-22, a—’ can be obtained.
Z
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Appendix H

Integrated Vapor Momentum Equations

There are a total of four momentum equations for the vapor film, which is split into wall region and

the fully turbulent core. The wall region extends from y = O(y+ = 0) to y" =5. The turbulent core is

assumed to extend from y" =5to0 y=4 (yJr =0" )

l= (SV*V ] has been defined in Appendix A.
u

v

Assuming constant properties, using Equation B-27 and the definition of friction velocity from

Equation B-1 gives

a_ v | 1 dz, (H-1)
dz u, )2, dz

The four equations derived in Appendix A are considered separately here.

H.1 Z direction Momentum Equations

The Z-direction momentum equation for the turbulent core and the wall region of the vapor film are
now considered. Using the definitions of the non-dimensional velocities, each term in the integrated

equation is written in terms of the primary independent variables.
H.1.1 Turbulent Core

The integrated form of the Z-direction vapor momentum equation for the turbulent core is given by
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dle oy dl , __y ds __ __
_{ (r U )dr} + (rpvuvuv )| Rl d_z - (rpvuvuv ] rs d_z + {(rpvuvvv ] R (rpvuvvv )|R—5}=

< Rls
Terml Term?2 Term3 Term4 Term5
d| e - v dl (= dS ( aﬁj ( aﬁj
- rP|dr |—\rP —+\rP —+3| 1P,E,, = —| P&, , =
dzL'_':g ) } ( XR‘Z dz ( XR“? dz { Py, e Py, s (A-17)
Term6 Term7 Term§ Term9 Term10
R-1 _ _ _
_g_pv[(R_l)z _(R_5)2]+i J. (rpvgm,v auv )dr +(rpv€m,v au\/) ﬂ_(rpvgm,v au\/) d_5
2 dz| 25 0z 0z )|, dz 07 )|, 5 dz
Terml1 Terml12 Terml3 Terml4
The turbulent core extends from
y* =5, which corresponds to y=1= SMV; ,Fr=R— Su‘i‘ = (5)% (H-2)
1
y =3, which corresponds to y" =8, r=R-0,n= (5+)A (H-3)

Term 1:

Using Equations B-1 and B-5 gives

u,= (“: )(”:): (”: )(ao +an+ a2772)

Thus, uu, = (u:)z (ag +2apa,n +ain® + 2a,a,m* +2a,a,n° + a22774)

Substituting the above in the expression for Term 1, using the definition for friction velocity and

assuming constant properties and integrating using Equations H-2 and H-3 for the limits gives
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=

fp1p (ko)

15

+14aya, {5% (1 )(i— R

gJ—(F)%(é)(i—E
+7(a? +2a0a2{(5)% (l)(

17

+14a1a2[(5)% o L-R

'

1

R
10

6 9

j—(ﬁ%a

15 8

l Rj—(ﬁ%é{

o
17

)

R

10

0 R

16 9

)

+7a5{(s)%(z{i—5j—(cf%(a{i—ﬁﬂ

18 11 18 11

In the above expression, the coefficients a,,q,,a,, the friction velocity and the vapor film thickness

are all functions of z. Differentiating the above expression gives an equation for Term 1. This is given

in Equation H-4.
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+14a, {(5)/(1 LR

7a22[(5)/ (l)(é—l—RJ (5+%(5)(%‘%ﬂ
(R—17 ~(r- )}, %+

Term 2:

Using Equations B-1 and B-5 gives

7, = (Yo )= ) ’)
uv= uv uv = uv a0+a177+a27]

ol et

el (- )2

dz

_%(
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“—25[(R—1)2—R—52]+14 {5/()(—5—— sY1(s
T zaoaz{(s)/ (z)&-gj (5%(5)(2
i—ﬁj (577 i—%j v

“ya, ddaOJ
/4

s’ R5J(5 K @}

dr,,
dz

+

dz

o )
e (- 0 P (30423 0T

N AL AL G G

el o (- - M-S 4]

(gl %)

o (iR (e

|
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Evaluating the above at y=I[= v, ,Fr=R-— v, = (5)% and invoking the definition for friction

* *

u, u,

velocity, Term 2 becomes

iy va(5)7 (5] 4

*

dl Sv
rp,u i, —=|R-—"1[,
(pVVV)R_le ( u}w
Using Equation H-1 in the above gives Term 2 as

R"d_z=_2

7) dl I(R—SLJ[SLJ a; +2a0a1(5)% + dr, E55)

(rpvﬁvuv * *
u (alz +2a,a, X5)% +2a,a, (5)% +a; (5)% dz

v

u

v

Term 3:
Using Equations B-1 and B-5 gives

+

u, = (”v )(”:)z (”: )(ao +an+ a2772)

]
Evaluating the above at y" =d",r=R-6,17= (5 " )/7 and invoking the definition for friction velocity,

Term 3 becomes

TW(R—5)[a§ +2a,a, (5+)% + (alz + 2a0a2)(5+)% + 2ala2(5+)% +a§( +)%}2—5 (H-6)
4

Term 4:

Using the definition of axial component of vapor velocity from Equation B-5 and the radial
component of the vapor velocity from Equation D-2, along with the definitions from Equation B-1

yields

A 7 T )] =T e + -+ a7 )

(rp,it,v,)

R-1
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The radial component of the vapor velocity was derived in Equation D-13. Substituting in the above

and using Equation H-2 yields

(roa,v, ), =
i+ (5 + a5

2
K(o)- 5 | =2 | 8(5) 7 22 | 200y (57| 22 | 25
2z, dz | 2 u u, \15u, 8 u, \16u, 9

2
_(5)%% 7 Sﬁ va*_ﬁ —14 54 va* _R .,.l R_Sv*v
dz u, \16u, 9 u, \15u, 8 ) 2 u,

Substituting for K,(z) from Equation D-14 and simplifying yields

_ v’ (R 1\dr
(ro1,9,) ., =[ao+a1(5)%+a2(5)ﬁ ;v (E‘EJ " (H-7)

Term 5:

Using the definition of axial component of vapor velocity from Equation B-5 and the radial
component of the vapor velocity from Equation D-2, along with the definitions from Equation B-1

yields

(rp,i1,7,)

R-6

rs Py (u: )2 [”: (”V:r )]R_a =7, [(ao +an+ 612772 X”V: )]

The radial component of the vapor velocity was derived in Equation D-13. Substituting in the above

and using Equation H-3 yields
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(rpvl’_tvvv MR_& =

f{%+%bﬂ%+%®ﬁ%} (H-8)
m&)—Lﬂ[%(R—a)hs%( V6| 25 rou %(5){%%}}

27, dz
day| (W 6 R Vs( S RY, ()7 )
_d_zl7( )/(5)(E—§j—14( )/(5)y(5)(E—EJ+T(R—5)}

Substituting for K,(z) from Equation D-14 in the above yields an expression for Term 5.

Term 6:

Assuming pressure to be a weak function of the radial direction, performing integration and using

Equations H-2 and H-3 gives

Differentiating with respect to z gives

{m—W—M—ﬂﬂd

2 dz

BR5W5(Rqu

dz dz

Substituting from Equation H-1, Term 6 becomes

[l [ sttt ]
Term 7:

Using Equations H-1 and H-2 yields
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(7)., L= —(R _ J( v, J P dz, (H-10)

|
u u, )2t, dz

v

Term 8:
Using Equation H-3 yields

(rﬁ)R_ai—a=(R—5)ﬁd—5 (H-11)

Z dz
Term 9:

Using Equation B-21 for the gradient of the vapor axial velocity with respect to r along with Equation

H-2, Term 9 becomes

(e )
pv m,v al"

u

v

- —MLR 2 J[‘”(S)% +20,(5)9] (H-12)

R-1 7 5Vv
i

Term 10

Using Equation B-21 for the gradient of the vapor axial velocity with respect to r along with Equation

H-3, Term 10 becomes

(rpvgm’” aaﬁrij_ ; :_M&;’—V;R_J)[al(ﬁ)% +2a2(5+)%} (H-13)
Term 11:
gT’()”[(R—l)z ~(R-57] (H-14)
Term 12:
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Equation B-33 gives the gradient of u,in the z direction. Assuming constant properties, a constant

value of the eddy diffusivity of momentum and integrating using Equation H-2 and H-3 for the limits
gives

R-1 —
di J- (rpvgm,v %jdr] =
Z| s 0z

5 550 -2 - 2
To 670 -5 )- 0T o[ -2

- pvgm,v + -

dz l4ypz, & 144(5)% (l)(%_gj_( +)%(5)(£_£_H

Simplifying gives
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‘ {(R—l)z—(R—&z}a R _
. :
i el el
e o0 (P50 1o |-V 66 25
i oo S| G R
2
+ f‘il—a; +7{(5)%(1)(%—§j—(5+)%( )(%_gﬂ
)0 L) 22|

In the above expression, the coefficients a,,q,,a,, the friction velocity, wall shear stress and the

vapor film thickness are all functions of z. Differentiating the above expression gives an equation for

Term 12.

Term 13:

Equation B-33 gives the gradient of u,in the z direction. Substituting Equations B-33 and H-1 in

Term 13, and evaluating using Equation H-2 yields

apta (5)% ta, (5)%
m 2 2.7,
(rpvsm,v%j L e pe,, (Sl}(R— . J[L](dij M (H-16)
0z )|, dz u, u, \27, \ dz a, (5)% +2a, (5)%
+
14/z,p,
Term 14:

Using Equation B-33 in Term 14 and evaluating using Equation H-3 yields
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)]
_a0+a1(5+)%+a2(§+)%+a1(§+)y7+2a2(5+)%

2
da,

Z

)

dr,

2J7,p,
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|

dz
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H.1.2 Wall Region

The integrated form of the Z-direction vapor momentum equation for the wall region is given by

d|f dl
d_Z|: J-(rpvl’_tvﬁv )dr] - (rpvl’_tvl’_tv )|R—l d_Z - (rpvﬁvvv MR—I =

R-1

Term1 Term 2 Term 3 (A23)
R
d — = dl  gp ) ou, ou,
——| |P)r |+\rP) — == 2RI=I"|+{|rpV,— | —| PV, —=
a’z[j( )d} ( ]R"dz 2 [ ] Py or 4 or ).
R-1 R R-1
Term 4 Term5 Term 6 Term 7 Term 8
The wall region extends from
y =0 which corresponds to y" =0,r =R, =0 (H-18)
+ ) Sv, Sv, V4
y* =5 which corresponds to y=1="2r=R-"x n=(5)"7 (H-19)
MV uV

Term 1:

Using the definitions from Equation B-1 and the dimensionless vapor velocity profile for the wall

region from Equation B-4, gives

Integrating the above expression and applying the limits using Equations H-18 and H-19 yields

£\2 R 2
d 7 u, .[(y)zrdr _d IZSRZWVV _ 6257, V_:
dz Vi) 2, dz 3u, 4 \u,

Using the definition of friction velocity, assuming constant properties and differentiating yields
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R
di[ [Go i, )dr} = E[R—VJ 9z, (H-20)

Term 2:

Using the definitions from Equation B-1 and the dimensionless axial velocity profile for the wall

region from Equation B-4 gives

Using Equation H-1 and evaluating the above using H-19 yields

dl 25( 5v Sv, \dt
o U U —=——| 2| R-——|— H-21
o, V)|R‘Z dz 2 [u J( u J dz ( )

Term 3:

Using the definitions from Equation B-1 and D-2 gives
—_ = — +. .+

(rpvuvvv MR—Z =7, (l"l/tv vy ]R—Z

Using the dimensionless axial velocity profile for the wall region from Equation B-4, the

dimensionless radial velocity profile from Equation D-10 and evaluating the above using Equation H-

19 gives

S5v. \ R 5v, \drt
OV, =25 — || ———% |—x H-22
o, V)|R" [uv J[Z SMV] dz ( )
Term 4:

Assuming pressure to be a weak function of the radial direction and performing integration and using

Equations H-18 and H-19 gives
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i{ jf(rﬁ)dr} =ilﬁ

dz| 2 dz

t | d|s|R=(R-1)
fla =5

Differentiating with respect to z gives

dz 2 dz dz

i{ T(rﬁ)dr]={w}£+ﬁ(R—l)ﬂ

R-1

Using Equation H-1 gives

i{ jf(rﬁ)dr]z{Rz _(R—l)z}cfi_ﬁ_ﬁ(R_l)[vaJL dr,

dz i 2

Term 5:

Using Equations H-1 and H-2 yields

(P o {30 ) P,
dz u u, )2t, dz

v

Term 6:

Evaluating the term using the definition in Equation H-19 gives

2 ) oo 252

2u,

Term 7:
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Using Equation B-23 for Ok,

, simplifying and using the definition of friction velocity and Equation
B

H-18 yields

(rpvvv aqu =-R7, (H-26)
oar ),

Term 8:

Using Equation B-23 for —*, simplifying and using the definition of friction velocity and Equation

r

H-19 yields

or )|, u,
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H.2 R direction Momentum Equations

H.2.1 Turbulent Core

The integrated form of the r-direction vapor momentum equation for the turbulent core is given by

4[5 dl _ dod — ==
d_Z|: j TP, dr] " rpv v )| -l d__ (rpvuvvv MR—ﬁ d_Z + {(rpvvvvv MR—Z B (rp"v"v" MR—ts }=

d Z
Term1 Term 2 Term 3 Term 4 Term 5
—[le(rEJdr_+i{Rf(rp & o, jdr]+(rp & BVVJ dl [rp £ BVVJ d—5
s or | dz| 2 oz oz dz Y0z ), s dz
Term 6 Term 7 Term 8 Term9
+{rp , avvj (rp v, j }
vEm,y al" e vEem,v a
Term10 Term11
Terms 7, 8 and 9 can be neglected by order of magnitude approximation.
Term 1:
Using the definitions from Equation B-1 and D-2, Term 1 becomes
- 4 [® e . d R-I X
“lR-s < k=s Sl ks
Substituting for the non-dimensional velocities using Equations B-5 and D-13 gives
d R-1 L. B
g{fw RI(SMV rv,, )dr} =
2 2 2
Ko (2)m oL @7 gl 2 RV g 2 2R
PR 2z, dz | 2 15 8 16 9
2 T, (ao +an+ a27]2 , , , dr
o I da, | [y~ Ry v [y~ Ry 2l r
S 2 a5 - 2 |+ (5)7| =
dzl:n(m 9 G| 5% 1075
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Evaluating the product and then integrating, applying the limits using Equations H-2 and H-3 gives

aolR-1)-(R=-8)-La| 57 (0)- (5" (6) |-
Lk, (), s { }

&z Tl 570 60)]
.
_ %(R—I)S—(R—5)3] |
-l Tl 20Dy - -2
a0 (i) V075 )
e i RO e S ROy |
raa] 05 |0V 0 (50
| OO Ve )
S SO (g OV R (52
vl O (g )0V Y ()
.
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D [R-1) - (R-5)]
%d;_; +7a{5%(1)[%—%2—%}(5+W(5)(¥‘%2_%H
AR A L]
o0k ) V(-
_j—zrw -98(5) d;; +a[5%(1)2(%_#j_(5+%(5)2 %_%H
a0 (o2 ]
o0 0T (55 )
ot o ()
a0 (e

In the above expression, the coefficients a,,a,,a,, the friction velocity and the vapor film thickness,

wall shear stress are all functions of z. Differentiating the above expression gives an equation for

Term 1.
Term 2:

Using the definitions from Equations B-1 and D-2, Term 2 becomes

el

(o7, =] 2l 7))

.

Substituting for the non-dimensional velocity profiles from Equations B-5, D-13, using Equation H-1

and evaluating these using Equation H-2 gives Term 2 as
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15 8 16 9
da, I R I R\ (R-1) dz
()/Z{( 6o 051 5 }

Substituting for K, (z) from Equation D-14, Term 2 can be simplified as

0 (o) ooy (2 1Y 5. ha
(rp.ii 7, . [2][a°+a1(5) +a,(5) vz (2 3][ dzj )

Term 3:

Using the definitions from Equations B-1 and D-2, Term 3 becomes

Substituting for the non-dimensional velocity profiles from Equation B-5 and D-13 and evaluating

these using Equation H-3 gives Term 3 as

( ds _
rp\)\\R(gdZ

[aﬁa ()7 +asl 5+V} (H-30)
Ky(2)- = dﬁ{‘;—“(R—é)%Sal( Vi %_{;j 90,5 V(5 i_ﬁﬂ

27, dz

(R 5) ya
{j;[ﬂ Frof Sog -l Ve 2 ¢ 50 (® 5)] ‘

Substituting for K, (z) from Equation D-14, Term 3 can be obtained.

Term 4:
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Using Equations D-2 and D-13 for the non-dimensional vapor velocity and evaluating Term 4 using

Equation H-2 gives

(ro 27, ), =

| dz, | a, 84,(5)70)( 1 RY 9a4,(57(1)( 1 R ’
( )27wd_z[7(Rl)+ (R-1) (E_§]+ (R-1) (E_Eﬂ (H-31)
T, (R-1

dz | 2 (R-1)

da,| 577 76V70)(5R 17v, )| K,(2)
__[_(R_l)+ [£_48ujJ R-1)

Substituting for K, (z) from Equation D-14, Term 4 can be obtained.

Term 5:

Using Equations D-2 and D-13 for the non-dimensional vapor velocity along with Equation D-14 for

K, (z) and evaluating Term 5 using Equation H-3 gives

(2,77, )5 =

1 dz, [a—O(R—é‘)+ SaI(é‘*)% (5)(1_£j+9a2(5+)% (6)(£ Ej] 2

) 2r, dz | 2 (R-6) 15 8 (R-96) 16 9 (H-32)
7,(R-0

da, | 706V (5 R 14(6)757 , (5 R 7(R-8)| K.(2)
‘E[(R_s)w)(ﬁﬁj‘—(k_a) “”(E‘?j* > T R-0)
Term 6:

Since pressure was assumed to be a weak function of the radial direction, Term 6 becomes equal to

Z€ro.

Term 10:
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Terms 10 and 11 require the gradient of the radial component of the vapor velocity in the radial

av,

direction, . Instead of taking the derivative of the radial component of the vapor velocity with

r

respect to r, an alternate approach can be used.

Assuming density to be a constant, the vapor continuity equation can be re-written as

Employing the product rule of differentiation, the above equation can be recast as

o, ¥, _ o

v | — v

or r 0z

Rearranging and using Equation D-2

ov. -
o, Wy H-33
or oz r 0z ¥ ( )

Substituting Equation H-33, Term 10 becomes

(r £ av"j =—|rp,E [aﬁ"+ij
,0\, m,v ar o pv m,v az r

Using Equation B-32 for aauv
Z

= [— 0,E,, o, —p e v )}
"oz ’ R-1

R-1

, Equation D-13 for the non-dimensional radial component of vapor

velocity and evaluating using Equation H-2, Term 10 can be written as
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J+

94,(5)% (1)
(R-1)

-

K4(Z)

(R-1)

[7’,0 £ E\J =
vEm,v ar .
1 dr,|a, 84,5)7(1)( 1 R
__ L dryay gy 3SR
|27, dz |2 (R—1) 15 8
_pvgm,vl’t:
da,| 577 767 ()(5R 17V,
-2 = (R-1)+ e 1 | S
dz | 2 (R-1) | 36  48u,
_pvgm«v(R_l)dTw a0+a1(5)%+a2(5)% + a1(5)%+2a2(5)%
\/7va dz 2 14
Term 11:

|

(H-34)

Following the same approach as done for Term 10, and evaluating using Equation H-3, Term 11

becomes
(rpe 817‘,) =
v&m,v ar s
2
' dz
_pvgm,v(R—5) a0+a1(5+)y7 +a2(5+)%+a1(5+)% +2a2(5+)% dr,
Je.p. 2 14 dz (H-35)
2
__L dz, @(R_5)+M(5)[£_EJ+M(5)(£_EJ
21, dz | 2 (R-0) 15 8 (R-0) 16 9
_pv‘s‘m,vu;k 2 2
da, 7(5+W(5)(£_5j_14(5+)%5% (5)(2_5}5%(1{—5) LK)
dz| R-6 16 9 (R-96) 15 8 2 (R-96)

K,(z) can be substituted from Equation D-14.
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H.2.2 Wall Region

The integrated form of the r-direction vapor momentum equation for the wall region is given by

MR
— rp,u, dr — (rp‘ )|R—l —dl — (rpvvv\?v )|R—l =
J- dz

dz
Term1 Term 2 Term 3 (A24)
R R
oV av, dl
J: (r—jdr+—{ .[ (rp‘ . jdr}—(rp‘ 5 j
Term4 Term5 Term 6
Term 1:

Using the definitions from Equation B-1 and D-2, Term 1 becomes

_{ [ ]_{ i [pxu:)%u:.w:)}dr}_ { flcnh }

Using Equations B-4 and D-10 for the non-dimensional velocities, and carrying out the integration

using Equations H-18 and H-19 and then differentiating with respect to z gives

4 2 2
SPYL RS T A 30
PV 8 15) dz 8 10\ dz

Term 2:

Using the definitions from Equations B-1 and D-2, Term 2 becomes

dl

_ + o+
- Tw (uv .WV )R-l d_Z

(P3| 2Vl )

Substituting for the non-dimensional velocity profiles from Equation B-4 and D-10, using Equation

H-1, evaluating these using Equation H-19 and simplifying gives Term 2 as
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dl 251°(1 R\ dr.Y
av) - AR (Rt H-37
(rp‘uVVVMR" dz 2rt, (3 2}( dz} ( )

Term 3:
Using definitions from Equations B-1 and D-2 gives

o+

(rpvvvvle_l =rp, (uvvv Xuvvv IR— =1, (rvv Yy XR—I

1

Using Equation D-10 for the radial component of the vapor velocity in the above, evaluating using

Equation H-19 and simplifying gives

l4 R I 2 dr :
e (R V(e H-38
(rpvvaVMR—l vaVZ(R—l)(Z 3} ( dz j | |

Term 4:

Since pressure was assumed to be a weak function of the radial direction, Term 6 becomes equal to

Z€10.

Terms 5 and 6 are neglected using an order of magnitude approach.
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Appendix I

Integrated Liquid Momentum Equations

The equations for the liquid core derived in Appendix A are considered separately here. The liquid

core extends from y =0 (y+ = 5+) to y=R (y+ = R+).

L1 Z direction Liquid Momentum Equation

The Z-direction momentum equation is now considered. Using the definitions of the non-dimensional

velocities, each term in the integrated equation is written in terms of the primary independent

variables.

The integrated form of the Z-direction liquid momentum equation is given by

d dé  __ P) dS5 g(R-6)
Iru,u, dr |+ ru,u,)'R_5—+(ru,v,XR_5= j( P)d ( ) __M
Z 0 dZ pl dZ pl R-S 2
Term 1 Term 2 Term 3 Term 4 Term 5 Term 6
_ R-6 _ _
+{r€ au,} +— d I(re‘mZ%Jdi’ +{r€m,%} 40
or Jps dz oz T 07 ps dz
Term 7 Term 8 Term 9

In the integrated form of the liquid energy equation,
r=0correspondsto y=R,y " =R",n= (R+)% and

)
r=R—9 corresponds to y=5,y+:5+,77:( +)/7

Term 1:

The product i, is evaluated using the definition of u,” and using Equation B-1 and C-1 gives

ajit, = gy Yot )= by + b + by
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uju, = ("‘: )2 (bg +2bybin + b12772 + 2bobz772 + 2l’1bz773 + b22774) (I-3)

Substituting the above in the expression for Term 1, integrating using Equations I-1 and I-2 for the

limits gives

by )
2L(R-0
2 (r-6)
! § R) 7R? !
14b,b | (577 (0) ———= RT)7
+ 01{( )/( 5 8j+120( )/}

R-6 2
i{ ‘([(”Pvﬁzﬁz)d’l:i ("“*)Z +7(b12+2b0b2{(5+)%(5 %‘%j"‘%(RJr)%}

dz dz
2
+14blb2{(§+)%(5 %_%}FZ% (RJ’)%}
2
+7b;{(5+w(5 L L (Rﬂ

In the above expression, the coefficients b,,b,,b,, friction velocity and the vapor film thickness are

all functions of z. Differentiating the above with respect to z yields an expression for Term 1.
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d%ﬁ?rp@ﬁ, )dr] =

0

oy s1ans] )4

17 10

db,

R—-6)"b,—2—-b,
( ) dz

+14(b dby +b0&+
dz dz

2(R-

+14(b %H)
dz

+14b, 7 {( +V(5){

15

+7(p2 + 2b0b2{( +V(

17

18 11

Term 2:

+7(b2 + 28,0, {( i (5)(2 - 5} TR

16 9

14b1b{( : %(5){£ —ﬁj +

+14bb, {( +V(25 R
+7b2{( +V(25 Rjd5+i(5_2_

7R?

120 (R+)%}
144 (R )/7}-
(k" V}”b [(

5)d5+14[b ‘2—b+b

5{£—£J+
15 8

7R?
170

17 10) 170

el

198

Prio) Z- ) 28

dz 15 8

16 9 )dz 16 9

)d5+3 8 RS
dz 7\17 10

25 R)d5+2(52 RS

RS \( i\
o)

dz T\ 18

e

o Rl
ol
)

+14b0b{( +V(2_5 R]d5 [52

]<a+ )

i t)
(m)
ad

120

¥

dz 120

R5](5+)—%d_5++R_2(R+)—% ddL*}
Z

72

7R2
198

1 dr
Py

y}

Y% dSt R (v dRY
j(a) 4R ) d—z}

$d8" | 3R” (o) dR

dz 170 dz

+ 2 3 +
dd L 2R (R*)ﬁdR
dz 99 dz

7;}

dz

(I-4)

The product iz, is evaluated using the definition of u,” and using Equations B-1 and C-1 is given in

Equation I-3. Evaluating Term 2 using Equation I-2 yields
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Term 3:

Using the definition of axial component of liquid velocity from Equation C-1 along with the

definitions from Equation B-1 yields

mz"z ( )Z[ul (rv, ] = (Mj )2 [(bo +bn+ b2772 X” v )] R

The radial component of the liquid velocity was derived in Equation E-7. Substituting in the above

and using Equation I-2 gives

() 5= o007} o, (o) |

K\(2)- 2; ddTZ {b (R-6) +8b1(5+)%(5)(%_§j+% (5+V(5)(%_§ﬂ e
ool V- e o

K l(z) is defined in Equation E-8.

Term 4:

Assuming pressure to be a constant over the radial direction gives

|-
S
1
O'—ualj
/¢%
~|
=
I;I
|~
S
1
]

m—wﬂ

2

v {T(rﬁ)dr] (R-56) dP _(R-O)P d5 @

2p, dZ P dz
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Term 5:

Term 5 can be simplified as

(P)|  ds _(R-0)P d5 (1-8)
P |p_s dz P dz

Term 7:

Using Equation C-12 for the gradient of the axial component of the liquid velocity, i, with respect to

r and evaluating Term 7 using Equation I-2 yields

(R—a)em,zu’i[bl( 5)7 4 2b2(5+)%}

o,
_— = — 1'9
[rgm!l or L—& 78 )

Using Equation C-15 for the gradient of the axial component of the liquid velocity i, with respect to

z. Assuming a constant value of the eddy diffusivity of momentum and integrating using Equation I-1

and I-2 for the limits gives
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2
by (R-9) +
2
1 drt 1 1) R
w 7b + V7 5 - + 7 +
2pz, dz 1{( V( 15 8 120 }
2 ) R 7R2
b5V (8) =-= R+ 7
2{( V( )[16 9 ) Taz }
0| (5 0f & |+ T8 ()
d | dr 15 8 120
£, 9+ —*

dz| ™| 14 pz, dz . 5 R N
ol Fio( £ 8)- ey

(R=oF
2 dz

2
+iy +7‘Z {( +)%(5)(1i_§j+150 (R+)%}
db, | (2 5 R) TR*(. .\
”d—z{( Pl g Jriagte 4

<

Simplifying the above gives
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d_R—é' o
d_z (ré‘m,, alzljdr} =
2
by (R—9) +
2
1 dr ! 5 R\ 7TR? !
— S lgp |8t (8) = - |+ —=(rR*)7 |+
2p,z, dz ‘{( V( )(15 sj 120( V}
2 5 R) 7R? 2
9%, 67V (0) =—=— R}
J 2{( V( )(16 9J+144( V}
d_ gm,l
) (R=0) db,
2 dz
. db 5 R\ TR?
7T—L67)7(8) —-— R )7
T dz{( P )(15 8j+120( )y}
db 2 5 R) 7TR? 2
72157V (S) ———= R}
- dz [( V( )(16 9)+144( V}

In the above expression, the coefficients b,,b,,b,, the friction velocity, wall shear stress and the vapor

film thickness are all functions of z. Differentiating the above expression gives an equation for Term
8.

Term 9:

Using Equation C-15 for the gradient of the axial component of the liquid velocity u, with respect to z

along with Equation B-20, assuming constant eddy diffusivity of momentum and using Equation I-2

yields

Jdby b (VY dby (o}

u”{d_zoer_zl(a %+T;(5 %}+ s

b0+b1(5+)%+b2(5+)%+b1(5+)y7+2b2(5+)% az, [z Y
2\z,p, 1447, p, dz

di, | dé
G| 49 (R-§
|:r€m,l aZ :|R_5 dZ gm,l( )
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1.2 R direction Liquid Momentum Equation

The final integrated form of the r-direction liquid momentum equation is

[R-6

d | ds 1 %¢°( oP
— w,v, )dr |+ \ru,v, —+ vy, =—— — |dr |+
o Jo) r] () s 225, p,[ j ] r]
Term1 Term 2 Term 3 Term 4
[R-6 _ _ _
4 j (re‘m,,%jdr +[r€m,,%} d—5+{r8m,,%}
dz| 3 Jz 0z Jp_s dz or Jx_s
Term 5 Term 6 Term 7

(A-14)

Terms 5 and 6 have been neglected by order of magnitude analysis. Using the definitions of the non-

dimensional velocities, each term in the integrated equation is written in terms of the primary

independent variables.

Term 1:

Using the definition of axial component of liquid velocity from Equation C-1 along with the

definitions from Equation B-1 yields

di{j(— )dr]:dizﬁ‘s[(u:)zw}dr}

Substituting for the axial component of the liquid velocity from Equation C-1 and radial component

of the liquid velocity from Equation E-7 gives

d R-5
< Furng Jar|=
dz_ 0
i 2 2 2
s KI(Z)_Lﬂ bo_r+87]bl y__& +9b27]2 y_
d 2 r 5 27, dz 2 15 8 16
d_z (“») j(bo+b1ﬂ+bzﬁ R 2 ,
0 Ay b Y Ry g dh | Ry
dz 2 dz\15 8 dz\{16 9
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Integrating and applying limits from Equations I-1 and I-2 gives

[( P @fr-0)-Lo[ () 70)- rle ) |

+
dz

w

2r, dz

L 030 ) dz,

4z, +b12{(5+)%(5)2(
(
bob{(ﬁ*)%(ﬁ)z[
4%@{®ﬂ%wf

+ bel[(y }7(5)

+b;{<fs%5){

49 R?
1320

22

49R?
1656

1320

3
R 217R R+y4

128 345

330
]_44m0
3

TR o+ 4

i
e
g

._H9R3R+y1

: }

136 360

+

1530
R

144 368

(

R

162 400

\l

R

153 384

%)

77R?
19584

32400

176




%“(R—a)»*
) 2 +%{( Yo 22 e (Rﬂ
+%{( +)%(5)(¥_%2_§_;]+;‘2§ (R%}
w0V 0¥ 5 ) s
_j_z +49(u$)”2—";1 +b{( +%(5){%_%)_iz§; (R+%}
oo Por(-)- e
bo[(ﬁ)%(a)z(%_%j_%(m)ﬂ
+49(”:)2% +bl[(5+)%(5)2(%_%j_179751; (R+%}
+b{(§*%(5){%—%j_ ;123(1)?; (R%}

In the above expression, the coefficients b,,b,,b,, the friction velocity and the vapor film thickness,

wall shear stress are all functions of z. Differentiating the above expression gives an equation for

Term 1.

Term 2:

Using the definition of axial component of liquid velocity from Equation C-1 along with the

definitions from Equation B-1 yields

A T e

v

R-S dZ -5d_Z

The radial component of the liquid velocity was derived in Equation E-7. Substituting in the above

and using Equation I-2 yields
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dé

(n_‘lv/)he—&d_z:
(“:)z[bo+b1(5+)%+b2(5+)%}
K, (z)-—- 9% b—°(R—5)2+8b5(5+)%(£—£j+9b 5(5%(3—5) ds -
N0 Tz | 2 ! 15 8) - 16 9)| |z
_%(R_&Z by (5+Y7 (i_ﬁj b, (5+ V7 )(i_ﬁ)
{dz 2 +7dz(§ /') 15 8 +7dz(5)/(5 16 9
Term 3:

Using the definition of axial component of liquid velocity from Equation C-1 gives

(59 )y =| (P 7))

R-6

Substituting from Equation E-7 for the radial component of the liquid velocity and using Equation I-2

gives Term 3 as

K(z) 1 dr,|b, 8,57 ) (s RY 6otV (S R 2
R-0) 22, it [E(R‘(”*—(Ra) (25 ) e (24
(R-5)u. 1 2 (-14)
| vy (R=5),75(6") " an (5 &) 76l ab( 5 R
d_z( 2 ) (R-9) d_z(E §j (R-9) d_z(ﬁ 3)
Term 4:

Since pressure was assumed to be a weak function of the radial direction, Term 4 becomes equal to

Z€10.

Term 7:

Using an approach similar to that used to obtain Equation H-33,
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— —_— pa— p— %
o, _ Oy v __dw _uv

or oz r 0z r

Using the above equation in Term 7 yields

a_
- |:rgm,l a + gm %y l
Z R-6

: : ou; . : o . . .
Using Equation C-15 for —Lin the above equation, substituting for the non-dimensional radial
Z

velocity of liquid from Equation E-7, using Equation I-2 and assuming the eddy diffusivity of

momentum to be a constant gives Term 7 as

st ]
brnl6r)7 0 5+V 5*)/+2b P |(R-0)e,, dz,

: T @ (1-15)
k() 1 ds, bO(R—5)+8b1(5+)% 5(£_£j+9b2(5+)% 5(£_§j
R-6 2r, dz 2 (R-5) 15 8 (R-0) 16 9
—£, u, )
) %[R—é‘j 5+V i [5‘£j+7( - 7@@3_5}
dz \ 2 (R-0) 15 8) (R-6) dz 16 9

In all the above equations, the expression for K, (z) can be substituted from Equation E-8.
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Appendix J

Integrated Vapor Energy Equations

The integrated form of the vapor energy equation for the turbulent core is given by

d| % - oy d _—y dé = -
d_Z J.(Srpvu»Tt )dr:| + (rp»u»Tv XR—I d_Z - (rpvuvTv XR—(? Z + {(rpvvav XR—I - (rpvvav XR—(? }:
LR~
Term 1 Term 2 Term 3 Term 4 Term 5
4T, L AN | [ Enw L) L[ ) E0n 0T, ) 45 A-21
dz| 2\ 7" Pr) 0z " Pr! oz dz " Pr] oz dz (A-21)
LAK— R-1 R-6
Term 6 Term 7 Term 8
+ gm,v E - r gm,v E
" Pr! or Py Pr! or
R-1 R-6
Term 9 Term 10
The turbulent core extends from
+ ) Sv, Sv, )
y" =5, which corresponds to y=I/=—>,r=R——-,77 =(5)7 J-n
uV uV
. 1
y =3, which corresponds to y" =8, r=R-0,n= (5+)A J-2)

Re-arranging Equations B-1 and F-1

T =T, + —% I
pvcp,vuv

Tv:T + CI—W* (CO+C177+CZ772)
pvcp,vuv

Term 1:
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Using the definitions for the vapor temperature from Equation F-1 and the axial component of the

vapor velocity from Equation B-1, assuming constant vapor density, Term 1 becomes

J Rl - 4 o (Twu: Xaor +anr+ aznzr)+
d_z{ J. (pvrﬁvTv )dr] =—1p, J‘ q, {aocor +(ayc, + cag )+ (ayc, + aye, +age, p*r+ | |dr
R-6 —

dz s s .
PCpy (alc2 +a,c, )77 r+a,c,n’r

Integrating the above with respect to r and applying limits using Equations J-1 and J-2 yields

 [R-1) - (R0

() o7a) 570 55 -V 0l 25| f+
1] 6750 - |- o[ -5 )
4 [(R-1) - (R0 ]
z i I R AP
Sl v )] 0770 1o |-V 0 -5 )
) L EC Y S Fasay]
G ]

In the above expression, the coefficients a,,a,,a, and c,,c,,c,, the wall heat flux, friction velocity
and the wall temperature are all functions of z. Differentiating the above expression gives an equation

for Term 1. This is shown in Equation J-3.
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ooty (o), 750 Rl o - 4|
ol A

pTuda {(R 5)2—?—(1% I)Zﬂ
o (- e
PRI s

fir-1) (k- 5P}+7a [5/()[L—EJ (5+%(5>(£_5ﬂ
(e

j(pf )dr}

15 8 15 8

«dT,

T, dr,

0 R

R A B
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dz - 2/p, dz
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[(R‘l)z‘z(R‘@z](aoi_jwo‘Z’Zoj OC{(R )% (- z)jﬂ
B R R AL G|
o G v v e o va a2 | 070 5 |l P 5
O A ey ]
o e e )
+7(alco+clao{5%(%_g)g_i_<5+)%(f_g_g)z_f_;(g_%ﬂ(m—%dd_ﬂ
+7(a2%+alqWz{5%(%_53_;_<5+>%(%_§j§_f_;(§_%ﬂ(5+)—%dd_f
+7(alcz+azcl{5/[%_ﬁjg_§_<5 V[ff—%}i—j-i(g—fj—g}wﬂ‘%%}
R T G G
Term 2:

Multiplying re-arranged form of Equations B-1 and F-1 yields

q; *}(Co+6177+02772)]}
R-1

pvcp,vuv

dl

dz

= {rpv (uf )(ao +an+a,n’ )[Tw +[

Evaluating the above using Equation J-1, and substituting for ? using Equation H-1 gives
Z
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AL a5V +ay(5)5 |+

2T
_ dl Sv, | 5v, |dr, v
ul —=— R—— el [ I
(rpvuv VXR_ ( J( ] dz q, |apc+ (ayco +ayc, )(5)% +(ac, +ay, )(5)% o

2T,Cp0 | + (a,c, +ayc, +ayc, )5 )% +a,c, (5)%

Term 3:

Multiplying re-arranged form of Equations B-1 and F-1 yields

(rpVﬁV]TV }R_a ill_f = {rpv (”: )(ao +a +ayn’ )[Tw + (—Pqupwvuj J(CO +em+on’ )ﬂ Z—j
’ R-6

Evaluating the above using Equation J-2 gives

pvuiTw{ao +a (5+)% +a, (5+ )%} +
= dé dé
(V'OVMVT‘ XR—LS d_z - q_:: aycy +(a,cy + aocl)(5+ )% +(a,c, + azcl)(5+)% + (R B 5)d_z J-5)
Cpv (ayco +ac, + aocz)(é'+ )% +a,c, (5+ )%
Term 4:

Using the re-arranged form of Equation F-1 for the vapor temperature, the expression for the radial

component of the vapor velocity from Equation D-13 and evaluating them using Equation J-1 yields

*
u, P\, dz

2 ”
(p57). —i[f— >, J(Sj {TW el o)+ ]} dr, -6
Term 5:

Using the re-arranged form of Equation F-1 for the vapor temperature, the expression for the radial

component of the vapor velocity from Equation D-13 and evaluating them using Equation J-2 yields
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(ovu;f){m @

pvcpvuv

[co+cl(5+)%+cz(5+)%}}
1 dr,|a > (6% RS (00 RS
—2—1Wd—z|:?0(R—5) +8a1(5 %(E—?J+9a2(5 %(E—TJ}

—ﬂ[ﬂ&*%(f—;—%5}—14(5+)%(5)%[%—%5}—5%(1;_5)2]

dz

Substituting for K, (z) from Equation D-14 yields

[c0+cl(§+)%+cz(§+)%}}

_“_20[(R—1)2 —(R—5)2]+8a1{(5)%(%_&J_(E)%LJ_Z_R_&H_

(pvu:{m G

v pvty

ul? (R zjdrw 1 dr,
_+__

2 3)dz 2z, dz a7

16 9

(e 5]

o) 1 S P (5 oG-S ()
+29
_ e i -ty |
Term 6:

Using Equation F-21 for the gradient of the vapor temperature in the axial direction, assuming

constant properties and eddy diffusivity of momentum for the vapor phase and performing integration

using Equations J-1 and J-2 gives
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R-1 =
di J‘ [rpng’:EJdr =
2| s Prl oz

dz

QW dCZ
pvcp,vuv dZ

~

gm,v d
P Pr’ )dz 1 q

<

dTw{(R—l)z—(R—a)z}r

2

o7 =1

-1l5)"| 00 55

*

pvcp,vuv 14Tw

n{@%u{’ R

—@—&1

2

()
(]
(-]

15 8

dz 14%{(5)%(1)(%—5)—( %(a)[ﬁﬁﬂ

I (dq, _
pvcp,vu: dZ

q;’ dTW
27, dz

16 9

J-8)

Differentiating the above with respect to z gives an expression for Term 6. In the above equation, the

vapor film thickness, friction velocity, wall heat flux, wall temperature, the wall shear stress and the

coefficients c,,c;,c, are all functions of the axial variable z.

Term 7:

Using Equation F-21 for the gradient of the vapor temperature in the axial direction, evaluating Term

7 using Equation J-1 and substituting for ? using Equation H-1 gives
Z
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o Emv oT, dl
"Prl 0z ) dz
ey a5V a5 J 22+
| 2 | e | Pefe e L (542 5| S LB L @-9)
u, u, )2t,Pr, | dz  pc,u, 14z, dz dz
(Co+c1( )/+C2(5)/)q_wd2'
i 27, dz
Term 8:

Using Equation F-21 for the gradient of the vapor temperature in the axial direction, evaluating Term

8 using Equation J-2 gives

_q”[( +)%—(5)%}&+
Y dz

e dT | (co+cl(5+)y7+cz(5+)%j%+ 5

\FvEm,y W - -
(R-6) P | d pvc,,” [ (5°)7 +2¢ (5+Vj qn dr, || dz (J-10)

? 147, dz
[ )y"'cz 5+)/j%dd_?

Term 9:

Using Equation F-15 for oT, and evaluating Term 9 using Equation J-1 gives
r

kip [ d. chl(s)%ucz(s)%l o

pvcpx v 7 SVV
u,

Term 10:
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Using Equation F-15 for oT, and evaluating Term 10 using Equation J-2 gives
r

~(R-6)p, (-12)

. Lp : , J[cl(&)% +2c2(5+)%}

q w
Pr! 78

*
p,vuv
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Wall Region

The integrated form of the energy equation for the wall region of vapor film

R
4 JonaThr |boaT), 2o, -
| R—1

dz
] Term1 Term 2 Term3 (A-25)
ijfrpvafr_rpvvafv dl p , T, —rpV”E
dz| 2 \ """ Pr, oz "Pr, oz dz ' P or "Pr, or )
Term 4 Term 5 Term 6 Term 7
r =R corresponds to y=0 and J-13)
r=R~—1 correspondsto y=1[/= SV*" ,y =5n= (5)% J-14)

v

Term 1:

Using Equations B-4 and F-2 for the vapor velocity and temperature profiles for the wall region

yields

Using definitions from Equation B-1, integrating using specified limits and Equations J-13 and J-14,

then differentiating with respect to z and simplifying gives

o R 5v,\dT, SVPr R 5v, dqw
"l 3u, dz cu 34u dz

dl f( =
= i = J-15
& { .[(rpvuvTv )dr} 25 J-15)

R-1

s5v, [ pVv,T, 5v Pr, , 1RPrgq, |dz,
2cu, | 3 2u c, CIW 3 ¢ dz

p.v

Term 2:
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Using Equations B-4 and F-2 for the vapor velocity and temperature profiles for the wall region in

conjunction with Equation J-14 and H-1 gives

(rpvﬁv_v)R_,ﬂLM R—% Tww az,, (J-16)
dz 2t u p.c, u, ) dz

w v

Term 3:

Substituting for the radial velocity profile for the wall region from Equation D-10 and using Equation

F-2 for the non-dimensional wall temperature distribution, and evaluating Term 3 using Equation J-14

gives
2 ”
(0,71, S LIV RV g 24P 1T, J-17)
Ry u, 2 3u, p.c, i, ) dz
Term 4:

Using Equation F-29 for aaT" , Term 4 becomes
Z

R — R »
i j rpv VV E dr = i j rpv VV ﬂ + l % dr
dz| 2, Pr, oz dz |2, Pr, dz \k, ) dz

Using the definitions from Equation B-1 and Equations J-13 and J-14 gives

L(E_LJ d’q, _(R—z)lz(drwj(dq;j
d{ ( v, oT J d] e, \2 3\ a2 | 2rc,, \de \ dz
_ rp. —L—V

= J-18
e (-18)

L[ PVLY R d’T, | ( pv,l Y R-21dT,) dz,
Pr, 2 dz’ 7, Pr, 4 dz N\ dz

Term 5:
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Using Equation F-29 and evaluating the gradient at r =R —1

oT, _dr, [, dq’,
i, dz \uk, ) dz

Substituting Equation H-1 along with the above in Term 5 yields

rp, L O | dL_[ W | g SV, [ Av | L) AT, | SV, \dg, |dT, (1-19)
Pr, oz o 4z u, u, \ Pr, \2z, )| dz \uk, ) dz | dz

Term 6:

Substituting for aaT" using Equation F-17 and using the definition of Prandtl number, Term 6
r

simplifies to

o Yo 0L ) __duR
"Pr, or

¢ (J1-20)

R p.v

Term 7:

Term 7 is similar to Term 6 except that it is evaluated at a different radial location. Thus, Term 7

:_Q{R_Lﬁf; H J-21)
C u
R-1 Py v

simplifies to

"Pr, or
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Appendix K
Integrated Liquid Energy Equation

The integrated form of the liquid energy equation is given by

4 J_. m,T )dr} + m,T 1 s i—f + (erY_",XR_a =
0

dz
Terml Term?2 Term3
[R-6 — — —
£ £ £
dz| o\ Pr oz Py oz | o dz P or |
Term4 Term5 Term 6

In the integrated form of the liquid energy equation,
1
r=0correspondsto y=R,y " =R",p= (R+)A and

]
r=R—0 corresponds to y=5,y+:5+,77:( +)/7

Re-arranging C-1 and G-1

Equation A-15 is now considered term-by-term.

Term 1:

Substituting from Equations C-1 and G-1 and evaluating the product gives

(A-15)

(K-1)

(K-2)



is (Twui )(bor +bnr+ bzﬂzr)+

d| 7 = d
d_i [ (m,T,)dr]:d—Z [| a2 [oudor+(bdy+diy i+ (bsdy + b, +body P+ | fdr
° ’ (b, +byd, P r +bydyr

pvcp,v

In the above expression, the coefficients b,,b,,b, and d,,.d,.d,, the wall heat flux, friction velocity
and the wall temperature are all functions of z alone. Also, the variable 77 is a function of r.

Integrating the above with respect to r and applying limits using Equations K-1 and K-2 yield

b

( g(R—a)z+7a[(&%(5)[%—§j+%(w)ﬂ
Twu: +
+7b{(§+)%(5)(%—§j+%(ﬁ)%}

J R_? ] bojo (R—5)2+7(b1d0+d1b0)[(5+)%(5)[%_§j+%(lg+)%}
_{ ! o r}d_z +7(b2d0+b1d1+b0d2){(5+)%(5)(£_£J+7_R2(R+)%}_

q; 16 9 144
2
P 7(b1d2+b2d1){(6+)%(6{%—%}%@)%}
2
ot (0 2 )2 (e

Differentiating the above expression with respect to z yields an expression for Term 1. This is given

in Equation K-3.
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2 2
b—O(R—a)mb{( +W(‘5——R—‘5j+m (Rﬂ
2 15 8 ) 120 [u dr, T, dr,
»( 8% RS\ TR:(,.\ Ydi 2pg, dz
+7b,| 07| ——— [+——|\R")"
{( V{m 9} 144( V}
(R-5) db, dé 5> RS 7R db
— R-6)—+7|67)7| —- i A
2 dz ( )dz ( )y 15 8 120( )/ dz
2 _6 + 2 _6 +
7o) | +y[25 Rjdcni 8 RS54 d0" | R iyt dR”
. 15 8 )dz 7\(15 8 dz 120 dz
dir) L0 2
( +)% 5__R_5 +7L(R+)% &.’_
16 9 144 dz
2 _ -+ 2 _ +
| %(2_5_5)61_%2 O RS540 R ()3 dR
16 9)dz 7\16 9 dz 72 dz
2
(R=0)" (d0%+b dd, j bydo(R—8)C +
2 dz dz dz
2 2
[l,ﬂ by, ddy do&} (55 & _RE) TR ey,
dz dz dz dz 15 8 120
2 _ + 2 . +
Thd, ( +)%(2_5_Rjd5 5 R5 (5+)%£+R_(R+)%di
15 8 )/dz 15 8 dz 120 dz
2
7[1, ddy |, ddy ) ddy by dz%j (555 RS
dz dz dz dz dz dz 16 9
“ 26 R\YdS 2(6* RS
w__27(b,d,+bd, +b,d YT == += )
£.C,, (bady + b “){( V(16 9jdz (16 9J dz
2 2
[l,ﬂ Ly e, 4 dl&j (55 & RS TR ey ],
dz dz dz dz 17 10 170
26 R\dS 3(8° RS

o)

17 dz

7(byd, +b,d, ){ (

[d Dy i,
dz

26 R)dS 4(5°

T s

18 11)dz 7\18

(o)
wer -

Sicy
)

RO
11

e

17 10 dz

5o
}
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%ﬁ

dz 99
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}

|

}

7 R (e

72

%do" | 2R’ (R*)_% d:;*
Z

)07 3

|

144

dz

}

dz

}
}




by

O (R-5Y +7(bd, +d1b0)[( +

V((S)(

5 R
15 8

)

7R?
120

W}

2
+7(bydy + byd, + byd, (+)%(5)(£—5J+7R &)V |+
1 16 9) 144 dq’
+,0 5 , d—w (K-3)
vCpv 3 R 7R 3 z
" (bd, +b,d N 6T (6 ———J —(R")7
(bd, +byd, ( )/( 17 10 +170( )/
4 5 R\ TR (,.\
+7b,d,| 077 (6) ——— |+—\R")’
G e
Term 2:
Substituting from Equations C-1 and G-1 and evaluating Term 2 using Equation K-2 yields
(R—5)(ui{b0+b1(5+)% +b2(§+)%HTw+[ i *J[d0+d (67)7 +a, 5+V}} do (K-4)
pvcp,vuv

Term 3:

Using definitions from Equation G-1 and E-2, Term 3 can be re-arranged as

oty

Substituting for the non-dimensional temperature distribution from Equation G-1 and the

”
4
pvcp vy

(w1,

dimensionless radial component of the liquid velocity from Equation E-6 and evaluating using

Equation K-2 gives
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_ {T +{d +d 5*)/+d 5*)/}/) 9, } |
(), =m0~ 2 o %(g-gj ol (55| || - ®9
Tl (-5 e Pl (-5 |

Substituting for K, (z) from Equation E-8 gives an expression for Term 3.

Term 4:

Using Equation G-22 for % , assuming constant values for the turbulent Prandtl number for liquid

and the eddy diffusivity of momentum for liquid phase, and performing the integration using

Equations K-1 and K-2 gives

dz 2
(R—5)2 dad dd LB 5_R TR (v
q 2 dz0+7 dzz[( W‘”(E 5)*@@ %}
— v .
pvvv N\ dd ny 5 R\ TR u
P —14(R )Ad_;{(a %(J{E—§j+m(R )A:|
) 5 R) 7R?
dlsty(s) === R
drj_ﬁ[ aTJd} s d I 4 de, 1[( )/( )[15 8) 120( )/} )
e r
dz Pr 0z Pt dz | p.c, 1, 2T, dz 5 5 R TR (¢
0 1 1 P, 2d2|:(y%(5)(g—§}+m(lg )A:|
(R_é)zd +
2 0
1 (dq, gq, dr, N4 8 RYTR ()
e AU ERI R
5 R) 7R’
WfeFo( 22w ]
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Differentiating the above with respect to z gives an expression for Term 4. In the above equation, the
vapor film thickness, friction velocity, wall heat flux, wall temperature, the wall shear stress and the

coefficients d,),d,,d, are all functions of the axial variable z.

Term 5:

Using Equation G-22 for ? along with Equations B-20 and B-27 and evaluating Term 5 using
Z

Equation K-2 yields

£ 7 1 2
(R-g)me)dle L | 4 [dl(5%+zd2(5%)ﬂ+ 45 (K-7)
Py, | dz  pc,u,|l47, dz dz

(do +d,(s7) +2d2(§+%j[%_£ﬂj

dz 2t, dz

Term 6:

Using Equation G-20, ? can be evaluated at r =R -0 as
r

o,

or

76

:_( - J[dl(y% +2d2(5+)%}

3
pvcp,vuv

Therefore, Term 6 becomes

75 &-8)

J{ , *}[dl(ﬁ)% +2d2(5+)%}
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