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ABSTRACT 

Modeling hydrodynamics, sediment and pollutant transport over a wide range of spatial 

scales and hydrological events (e.g., inland flood and storm surges) remains a fundamental 

impediment to flood risk prediction, water resources management, and environmental protection. 

In addition, forecasting of extreme hydrologic events caused by severe weather and climate 

change [Milly et al., 2002] is a growing challenge. The goal of this study is to develop a modeling 

system appropriate to predict the multiple scale hydrodynamics, sediment and pollutant transport 

as well as extreme hydrological events for rivers, floodplains, coastal areas and their watersheds. 

Two major contributions are made in this dissertation. First, a two-dimensional (2-D) 

finite volume model (PIHM-Hydro) was developed to fully couple the hydrodynamics, pollutant 

transport, and sediment transport at the scale of river, floodplain, and coastal area. This is the first 

2-D high-order model to fully couple shallow water flow and sediment transport in the successful 

simulation of a real flow field. The model is based on standard upwind finite volume methods 

using Roe’s and HLL approximate Riemann solvers on unstructured triangular grids. A 

multidimensional linear reconstruction technique and multidimensional slope limiter were 

implemented to achieve second-order spatial accuracy. Model efficiency and stability are treated 

using an explicit-implicit method for temporal discretization with operator splitting.  

The advantages of the present model are that (1) it can handle complicated geometry by 

using the Delaunay triangulation based on Shewchuk’s algorithm; (2) it is capable of producing 

accurate and stable solutions over a wide range of spatial scales and hydrological events such as 

discontinuous flow and wetting/drying process by using the approximate Riemann solver and the 

semi-implicit time integration technique based on the CVODE; and (3) it can accurately simulate 

the interactions of hydrodynamics, sediment transport and pollutant transport by fully coupling 

these processes physically and numerically. These advantages of PIHM-Hydro have been 
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illustrated by its successful application on the test cases where multiscale physical processes are 

dominant over a wide range of spatial scales. 

The second contribution of this dissertation is to develop a spatially-distributed 

physically-based sediment transport modeling component at the watershed scale (PIHM-Sed) 

which is fully coupled with the hydrological processes within the Penn State Integrated 

Hydrologic Model system (PIHM) [Qu and Duffy, 2007]. This is the first spatially-distributed 

physically-based model to “fully-couple” hydrology and sediment transport in terms of physical 

and numerical coupling. It integrates the hillslope and channel processes, and is capable of 

predicting major surface/subsurface hydrological processes, sediment yield as well as spatial 

distribution of erosion/deposition. For the hillslope, the erosion processes of rain splash and 

sediment transport by overland flow are simulated; for the channel, it simulates the erosion of bed 

material and sediment transport by channel flow. An algorithm for bed armoring was also 

implemented in the channel component. In the model system, all hydrological and sediment 

transport processes are defined on discretized unit elements as a fully-coupled system of ordinary 

differential equations (ODEs) using a semi-discrete finite volume method (FVM) on unstructured 

grids. The implementation of the model has been performed on a hypothetical storm event at the 

Shale Hill watershed for demonstrating the capability of the model in multi-process simulation at 

watershed scale. 
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Chapter 1 
 

INTRODUCTION 

Near surface hydrologic processes, which occur within the water cycle of the lower 

atmosphere, land surface and subsurface zones, are of great significance to the natural 

environment and human life. In addition, hydrologically-driven sediment and pollutant transport 

processes, influencing the hydrodynamics directly and/or indirectly, are critical to water resources 

management, ecological environment, and engineering infrastructure, and fundamental to 

understanding the longer time scales of landscape evolution. Modeling these hydrologic processes 

and their interaction with the natural and human environment will continue to receive more 

attention given the potential for extreme hydrological events (floods and drought) caused by 

climate change [Milly et al., 2002].  

At the scale of river, floodplain and coastal area, significant advances have been made in 

modeling hydrodynamics in recent years [e.g., Katopodes and Strelkoff, 1978; Molls and 

Chardhry, 1995; Hervouet and Petitjean, 1999; Alcrudo and Garcia-Navarro, 1993; Zhao et al., 

1994; Anastasiou and Chan, 1997; Sleigh et al., 1998; Toro, 2001], sediment transport [Bennett 

and Nordin, 1977; Armanini and Di Silvio, 1988; Holly and Rahuel, 1990; Spasojevic and Holly, 

1990; Capart and Young, 1998; Wu et al., 2000; Wu and Vieira, 2002; Cao et al., 2002; 

Fraccarollo and Capart, 2002; Wu, 2004; Wu et al., 2004;Cao et al., 2004;Wu and Wang, 2007], 

and pollutant transport [Aizinger et al., 2001;Aizinger and Dawson, 2002; Murillo et al., 

2005;Benkhaldoun et al., 2007; Ebrahimiet al., 2007]. However, significant computational 

problems remain in predicting hydrodynamics, sediment and pollutant transport processes over a 

large range of spatial scales and for extreme events (e.g. drying/wetting, inland flooding, storm 

surge etc.). In particular, it requires special strategies for reliable solutions to (1) predict real flow 
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fields with wetting/drying process, complex geometry and topography, (2) implement “full 

coupling” in multi-process simulation in order to faithfully represent the natural processes, and 

(3) solve very stiff system equations for the resulting fast and very slow processes, and where the 

model must work over wide range of spatial scales. 

At the watershed scale, there has been considerable work modeling hydrologically-driven 

sediment transport [Horton, 1945; Bennett, 1974; Kirkby, 1978; Wischmeier and Smith, 1978; 

Beasley et al., 1980; Knisel, 1980; Ross et al, 1980; Park et al., 1982; Simons et al., 1982; Storm 

et al, 1987; Lane et al., 1988; Woolhiser et al., 1990; Gerits et al., 1990; Wicks and Bathurst, 

1996; Morgan et al., 1998; Merritt et al., 2003; Heppner et al., 2005]. It seems clear that the next 

generation of models must represent hydrologic processes with better physical representations, 

coupling, and feedbacks before sediment transport codes will produce reasonable results. There 

have been very few existing physically-based models which can work at the full watershed scale 

considering both surface and subsurface flow. The effects of subsurface flow on erosion can be 

very important [Wicks and Bathurst, 1996; Heppner et al., 2006], but few models consider it. 

With advances in computing technology and deeper understanding in the physics of hydrology, 

new strategies to characterize hydrologic responses have been put forward, especially integrated 

hydrologic modeling [Abbot, 1986; VanderKwaak, 1999; Panday and Huyakorn, 2004; Qu and 

Duffy, 2007]. In the long term we make the assumption that coupling the sediment transport 

processes with integrated hydrologic models will be necessary to improve the performance of 

hydrodynamics and sediment transport modeling. 

The objectives of this study are: 

(1) To develop a fully-coupled model of multi-scale hydrodynamics, sediment transport, 

and pollutant transport at the scale of river, floodplain, and coastal area using upwind 

finite volume methods on unstructured grids, and to predict flood damage and 
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interactions between water flow and sediment/pollutant transport over a range of 

spatial scales.  

(2) To develop a spatially-based physically-based sediment transport modeling 

component at the watershed scale which will be fully coupled with the hydrological 

processes in the PIHM system. 

Corresponding to the two specific objectives, this dissertation consists of three research 

papers designated by chapters respectively. Chapter 2 is the first paper and presents a finite 

volume model (PIHM-Hydro) for micro- and meso-scale shallow water flow and sediment 

transport. Chapter 3 presents a coupled model of shallow water flow and pollutant transport on 

unstructured grids which is also a part of PIHM-Hydro. Chapter 4 presents an integrated model of 

hydrology and sediment transport at the watershed scale (PIHM-Sed). 

References 

[1]  Abbott, M.B., J.A. Bathurst, P.E. and Cunge. 1986. An Introduction to the European 

Hydrological System-Systeme Hydrologicque Europeen “SHE” 2: Structure of a physically 

based distributed modeling system, Journal of Hydrology, 87, 61-77. 

[2] Aizinger,V.  and C. Dawson. 2002. A discontinuous Galerkin method for two-dimensional 

flow and transport in shallow water. Advances in Water Resources, 25: 67-84. 

[3] Aizinger, V., C. Dawson, B. Cockburn, and P. Castillo. 2001. The local discontinuous 

Galerkin method for contaminant transport. Advances in Water Resources, 24: 73-87. 

[4] Alcrudo,F. and P. Garcia-Navarro. 1993. A high-resolution Godunov-type scheme in finite 

volumes for the 2D shallow-water equations. International Journal for Numerical Methods in 

Fluids, 16 (6): 489-505. 



4 

 

[5] Anastasiou, K., and C. T. Chan. 1997. Solution of the 2D shallow water equations using the 

finite volume method on unstructured triangular meshes. International Journal for Numerical 

Methods in Fluids, 24: 1225-1245. 

[6] Armanini, A., and Di Silvio, G. 1988. A one-dimensional model for the transport of a 

sediment mixture in non-equilibrium conditions. J. Hydraul. Res., 26 (3): 275–292. 

[7] Benkhaldoun, F., I.Elmahi,and M.Seaid. 2007. Well-balanced finite volume schemes for 

pollutant transport by shallow water equations on unstructured meshes. Journal of 

Computational Physics, 226: 180-203. 

[8] Beasley, D.B., Huggins, L.F., Monke E.J. 1980. ANSWERS: a model for watershed 

planning. Trans Am Soc Agric Eng, 23: 938–44. 

[9] Bennett, J.P.  1974.  Concepts of mathematical modeling of sediment yield. Water Resources 

Research, 10(3): 485-492. 

[10] Bennett, J.P. and Nordin, C.F. 1977. Simulation of sediment transport and armouring. 

IAHS Hydrol. Sci. Bull., 22(4): 555-569. 

[11] Cao, Z., Day, R., and Egashira, S. 2002. Coupled and decoupled numerical modeling of 

flow and morphological evolution in alluvial rivers. J. Hydraul. Eng., 128 (3): 306–321. 

[12] Cao, Z., G. Pender, S. Wallis, and P. Carling. 2004. Computational dam-break hydraulics 

over erodible sediment bed. Journal of Hydraulic Engineering, 130 (7): 689-703. 

[13] Capart, H. and D.L.Young. 1998. Formation of a jump by the dam-break wave over a 

granular bed. Journal of Fluid Mechanics, 372: 165-187. 

[14] Ebrahimi, E., R.A. Falconer, B. Lin. 2007. Flow and solute fluxes in integrated wetland 

and coastal systems. EnvironmentalModelling& Software, 22: 1337-1348. 

[15] Fraccarollo, L., H. CAPART, and Y. ZECH. 2003. A Godunov method for the 

computation of erosional shallow water transients.International Journal for Numerical 

Methods in Fluids, 41 (9): 951-976. 



5 

 

[16] Gerits, J..J.P, de Lima, J.L.M.P., van den Broek, T.M.W. 1990.  Overland flow and 

erosion. In: Anderson, Burt, editors. Process studies in hillslope hydrology. Chichester, West 

Sussex, England: John Wiley and Sons Ltd.  

[17] Heppner, C.S., Ran, Q., VanderKwaak, J.E., Loague, K. 2006. Adding sediment transport 

to the integrated hydrology model (InHM): Development and testing. Advances in Water 

Resources, 26: 930-943. 

[18] Hervouet, J. M., and A. Petitijean. 1999. Malpasset dam-break revisited with two-

dimensional computations. J. Hydraul. Res., 37 (6): 777-788. 

[19] Holly, Jr., F. M., and Rahuel, J. L. 1990. New numerical/physical framework for mobile-

bed modeling, Part I: Numerical and physical principles. J. Hydraul. Res., 28(4): 401–416. 

[20] Horton, R. E. 1945. Erosional development of streams and their drainage basins: 

hydrophysical approach to quantitative morphology. Bull Geol Soc Am: 275–370. 

[21] Katopodes, N. and T. Strelkoff. 1978. Computing two-dimensional dam-break flood 

waves. Journal of the Hydraulics Division, ASCE 104: 1269-1288.  

[22] Kirkby, M. J. 1978. Implications for sediment transport. In: Kirkby, editor. Hillslope 

hydrology. Chichester, West Sussex, England: John Wiley and Sons Ltd.  

[23] Knisel, W. G. 1980. CREAMS: a field scale model for chemicals, runoff and erosion 

from agricultural management systems. US Department of Agriculture, Conservation 

Research Report No. 26. 

[24] Lane, L.J., Shirley, E.D., Singh, V.P. 1988. Modeling erosion on hillslopes. In: Anderson, 

editor. Modellinggeomorphological systems. Chichester, West Sussex, England: John Wiley 

and Sons Ltd. 

[25] Merritt, W.S., Letcher, R.A., Jakeman, A.J. 2003. A review of erosion and sediment 

transport models. Environ Model Software;18: 761–99. 



6 

 

[26] Milly, P., R. Wetherald, K. Dunne, and T. Delworth. 2002. Increasing risk of great floods 

in a changing climate. Nature (London), 415: 514–517. 

[27] Molls, T. and M.H. Chaudhry. 1995. Depth averaged open channel flow model. Journal 

of Hydraulic Engineering, 121: 453-465. 

[28] Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., Auerswald, K., 

Chisci, G., Torri, D., Styczen, M.E. 1998.The European soil erosion model (EUROSEM): a 

process-based approach for predicting sediment transport from fields and small catchments. 

Earth Surface Processes and Landforms 23, 527–544. 

[29] Murillo, J.,  J. Burguete, P. Brufau, abdP. García-Navarro. 2005. Coupling between 

shallow water and solute flow equations: analysis and management of source terms in 2D. 

International Journal for Numerical Methods in Fluids, 49 (3): 267-299. 

[30] Panday, S., Huyakorn, P.S. 2004. A fully coupled physically-based spatially-distributed 

model for evaluating surface/subsurface flow. Advances in Water Resources 27, 361-382. 

[31] Park, S.W., Mitchell, J.K. and Scarborough, J.N. 1982. Soil erosion simulation on small 

watersheds: a modified ANSWERS model. Trans. ASAE, 25: 1581-1588. 

[32] Qu, Y., and C. J. Duffy. 2007. A semidiscrete finite volume formulation for multiprocess 

watershed simulation, Water Resources Research, 43, W08419, doi:10.1029/2006WR005752. 

[33] Ross, B.B., Shanholtz, V.O. and Contractor, D.N., 1980. A spatially responsive 

hydrologic model to predict erosion and sediment transport. Water Resour. Bull., 16(3): 538-

545. 

[34] Simons, D.B., E.V. Richardson, and C.F. Nordin, 1965. Bedload equation for ripples and 

dunes, U.S. Geol. Surv. Prof. Pap. 462-H, 9 pp. 

[35] Sleigh, P.A., M. Berzins, P.H. Gaskell and N.G. Wright. 1998. An unstructured finite-

volume algorithm for predicting flow in rivers and estuaries. Computers and Fluids, 27 (4): 

479-508. 



7 

 

[36] Spasojevic, M. and Holly Jr, M.. 1990. 2-D evolution in natural watercourses-new 

simulation approach. Journal of Waterway, Port, Coastal, and Ocean Engineering, 116(4): 

425-433. 

[37] Storm, B., Jorgensen, G.H. and Styczen, M. 1987. Simulation of water flow and soil 

erosion processes with a distributed physically-based modelling system. IAHS Publ. 167, pp. 

595-608. 

[38] Toro, E.F. 2001. Shock-capturing Methods for Free-surface Shallow Flows. John Wiley 

& Sons: Chichester. 

[39] VanderKwaak, J., 1999. Numerical simulation of flow and chemical transport in 

integrated surface-subsurface hydrologic systems. Ph.D Thesis in Earth Sciences, University 

of Waterloo, Waterloo, Ontario, Canada, 217pp. 

[40] Wicks, J.M. and Bathurst, J.C. 1996. SHESED: a physically based, distributed erosion 

and sediment yield component for the SHE hydrological modeling system. Journal of 

Hydrology, 175: 213-238. 

[41] Wischmeier, W.H., Smith, D.D., 1978. Predicting Soil Erosion Losses: A Guide to 

Conservation Planning. USDA Agricultural Handbook No. 537, 58 pp. 

[42] Woolhiser, D. A., Smith, R. E. and Goodrich, D. C. 1990. KINEROS: A kinematic runoff 

and erosion model: documentation and user manual, USDA Agricultural Research Service 

ARS-77. 

[43] Wu, W. 2004. Depth-Averaged Two-Dimensional Numerical Modeling of Unsteady 

Flow and Nonuniform Sediment Transport in Open Channels. J. Hydraul. Eng., 130(10): 

1013-1024. 

[44] Wu, W., Rodi, W., and Wenka, T. 2000. 3-D numerical modeling of water flow and 

sediment transport in open channels. J. Hydraul. Eng., 126 (1): 4–15. 



8 

 

[45] Wu, W., and Vieira, D. A. 2002. One-dimensional channel network model CCHE1D 

3.0—Technical manual. Technical Rep. No. NCCHE-TR-2002-1, National Center for 

Computational Hydroscience and Engineering, The Univ. of Mississippi, University, Miss. 

[46] Wu, W., Vieira, D. A., Wang, S.S.Y.  2004. One-Dimensional Numerical Model for 

Nonuniform Sediment Transport under Unsteady Flows in Channel Networks. J. Hydraul. 

Eng., 130 (9): 914–923. 

[47] Wu, W. and S.Wang. 2007. One-Dimensional Modeling of Dam-Break Flow over 

Movable Beds. Journal of Hydraulic Engineering, 133(1):48-58. 

[48] Zhao, D. H. and H. W. Shen, G. Q. Tabios III, J. S. Lai, andW. Y. Tan. 1994. Finite-

volume two-dimensional unsteady-flow model for river basins. Journal of Hydraulic 

Engineering: 120 (7): 863-883. 

 

 



9 

 

Chapter 2 
 

A FINITE VOLUME MODEL FOR MULTI-SCALE SHALLOW WATER 
FLOW AND SEDIMENT TRANSPORT (PIHM-Hydro) 

Abstract 

In recent years significant advances have been made in modeling hydrodynamics and 

sediment transport in rivers, floodplains, and estuaries. For the case of rapidly varying flow and 

where it is necessary to simulate sediment transport processes over a large range of spatial scales, 

and for extreme events (dry bed to overbank floods to storm surge), significant computational 

problems remain. In particular, prediction of real flow fields with wetting/drying process, 

complex geometry and topography require special strategies for reliable solutions. To overcome 

this kind of problems this research incorporated a range of recent advances into a fully-coupled 

model of hydrodynamics, sediment transport, and morphological evolution in rivers and 

floodplains (PIHM-Hydro). The model is based on a standard upwind finite volume method using 

Roe’s approximate Riemann solver on unstructured triangular grids. A multidimensional linear 

reconstruction technique and multidimensional slope limiter were implemented to achieve a 

second-order spatial accuracy. Model efficiency and stability were treated using an explicit-

implicit method for temporal discretization with operator splitting. The model has been 

successfully applied to the hydrodynamics and/or sediment transport and morphological changes 

in rivers and floodplains including cases where multiscale physical processes are dominant. 
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Introduction 

Water flow and sediment transport are simultaneous and interactive processes in rivers, 

flood plains, and coastal areas. The balance between these processes is influenced by both human 

activities and extreme natural events, resulting in aggradation and degradation in channels and 

harbors, deterioration of water quality and fisheries among other environmental effects and many 

other forms of ecological disturbance. One example is a dam removal or a flood event which 

initiates a dam break with rapid varying flow and sediment flushing. The disturbance is complex 

due to the uneven and changing bottom topography, irregular boundaries, rapid and strong 

erosion with abrupt bed and flow variations, and even more complicated and uncertain sediment 

transport mechanisms. These conditions cannot easily be simulated by a one-dimensional model. 

A two-dimensional model approach should be capable of handling complicated geometry, rapidly 

varying flow, and treating the processes in a fully-coupled mode is examined here. 

The shallow water equations are typically used to represent the hydrodynamics of river 

floods, storm surges, tidal fluctuations, tsunami waves, forces acting on off-shore structures 

[Aizinger and Dawson, 2002].There are several challenges to numerical solutions to the shallow 

water equations in real field conditions with complex domains and irregular bed topography. A 

range of methods have been developed for solving the shallow water equations, such as method 

of characteristics [e.g., Katopodes and Strelkoff, 1978], finite difference method [e.g., Molls and 

Chardhry, 1995], finite element method [e.g., Hervouet, 2000], and finite volume method [e.g., 

Alcrudo and Garcia-Navarro, 1993; Zhao et al., 1994; Anastasiou and Chan, 1997; Sleigh et al., 

1998; Toro, 2001; Bradford and Sanders, 2002; Valianiet al., 2002; Yoon and Kang, 2004; 

Begnudelli and Sanders, 2006]. Each method has its own limitations. For the method of 

characteristics, it is found that solutions cannot be found for certain cases of complex natural 
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geometries. The finite difference method is widely used to solve shallow water equations, 

however, it may not guarantee strict conservation of mass and momentum, and structured (often 

regular) grids can be a poor representation for natural channels. In practice, the complex domain 

boundary makes domain decomposition a major issue [Sleigh et al., 1998]. Compared to 

structured grids, unstructured grids can easily adapt to the complex geometry in real flow fields 

and are flexible for changing the spatial resolution locally. The finite element method is used for 

unstructured grids, but it has been found to have problems when both subcritical and supercritical 

flows are encountered [Akanbi and Katopodes, 1988], and can produce solutions with local mass 

balance errors [Horrit, 2000]. In contrast, the finite volume method allows for the local and global 

mass conservation. It can also be applied to irregular domains and unstructured grids, and 

requires less memory for explicit calcuation [Loukili and Soulaimani, 2007]. There have been a 

few publications to solve the shallow water equations on unstructured grids using finite volume 

methods [Zhao et al., 1994; Anastasiou and Chan, 1997; Sleigh et al., 1998; Yoon and Kang, 

2004]. No sediment transport, however, was considered in these models. Suspended sediment and 

bed elevation changes can significantly affect the dynamics of the flow [Capart and Young, 

1998].The advantage of handling irregular flow geometries and the mass balance properties led 

the author to adopt the finite volume method in this research. 

Mass conservation equations are used to describe the sediment transport and 

morphological evolution process. There are two approaches to coupled sediment routing and bed 

evolution i.e., non-capacity and capacity models (or customarily, non-equilibrium and 

equilibrium). The non-capacity models represent the sediment in a single mode as the total load. 

Compared to capacity models, non-capacity models treat entrainment and deposition as 

independent processes, the difference between which influences the sediment discharge and 

morphological evolution. The non-capacity models facilitate the numerical formulation since the 
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empirical entrainment and deposition functions can be treated as source terms. Based on this 

discussion, the non-capacity model is adopted here. 

Although there have been a large number of models for hydrodynamics and sediment 

transport, few of them are capable of predicting the rapid changing flow and the interactions 

between hydrodynamics and sediment transport over a wide range of spatial scales under extreme 

events such as heavy floods. Recently, several 1-D models were developed to simulate the dam 

break-induced sediment transport or high-concentration sediment transport as in hyper-

concentrated flow and debris flow [Bellos and Hrissanthou, 1998; Fraccarollo et al., 2003; Cao et 

al., 2004; Ottevanger, 2005;Rosatti and Fraccarollo, 2006; Wu and Wang, 2007]. Hudson and 

Sweby [2003] and Castro Diaz et al. [2008] discussed 1-D bed load transport models coupled 

with shallow water equations by finite volume methods. Only a few studies were found in the 2-D 

case. Hudson and Sweby [2005] and Simpson and Castelltort [2006] extended the 1-D models of 

Hudson and Sweby [2003] and Cao et al. [2004] to 2-D on structured grids, although the models 

were not tested in lab experiments or real flow fields in the field. A major challenge of field 

applications is complex geometry and topography. Another challenge is the wetting/drying 

process which is common to most field applications. To the best of the authors’ knowledge, the 

dynamics of sediment with the wetting/drying processes were rarely studied in the existing 

models.  

The objective of this paper is to develop a multi-scale fully-coupled model of 

hydrodynamics, sediment transport, and morphological evolution of rivers and floodplain (PIHM-

Hydro). The model is based on a cell-centered upwind finite volume method using Roe’s 

approximate Riemann solver on unstructured triangular grids. A multidimensional linear 

reconstruction technique and multidimensional slope limiter [Jawahar and Kamath, 2000] are 

implemented to achieve a second-order spatial accuracy. In order to make the model efficient and 

stable, an explicit-implicit method is used in temporal discretization by an operator splitting 
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technique, i.e., the advection part and non-stiff source terms are solved using an explicit scheme 

while the stiff source terms are handled by a fully implicit scheme. A number of test cases over a 

range of spatial scales and hydrological events are used to test the model and demonstrate the 

potential applications. 

Methodology 

Mathematical Formulation 

The mathematical formulation in the model consists of the two-dimensional shallow 

water equations coupled with equations for sediment mass conservation and bed topography 

evolution (Figure 2-1). The 2-D shallow water equations are derived from the Navior-Stokes 

equations by assuming negligible velocity change and hydrostatic pressure distribution in vertical 

direction, and an incompressible fluid. The shallow water equations are appropriate to describe 

flow in vertically well-mixed water bodies where the horizontal length scales are much greater 

than the fluid depth. The shallow water equations in conservative form are written:  
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 The conservation of suspended sediment in the water column is given by: 
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 The mass balance equation linking the local variation in bed level to the sediment 

removed or accumulated at the bottom is as follows: 

( ) ED
t
zp −=
∂
∂

−1                  (5) 

In Equations (1) – (5),  t = time (T), x and y = horizontal coordinates (L),  h = flow depth (L), u 

and v = depth-averaged flow velocity in x- and y-directions (L/T),  z = bed elevation (L), ψ = 

flux-averaged volumetric sediment concentration (L3/L3),  g = gravitational acceleration (L/T2), p 

= bed sediment porosity, ρz = density of saturated bed, ρ = density of water-sediment mixture, S0x 

and S0y= bed slopes in x-and y-directions (L/L), Sfx and Sfy = friction slopes in x-and y-directions 

(L/L), Sp= the additional source/sink including precipitation, infiltration etc., Ss= the additional 

source/sink for the sediment , D and E = sediment deposition and entrainment fluxes between 

water flow and river bed (L/T), Txx, Txy, Tyx, and Tyy = depth-averaged turbulent stresses, Dx and 

Dy= turbulent diffusion coefficient of sediment particles(L2/T), Fx and Fy  = the additional forces 

arising from wind stress, tidal potential, atmospheric pressure etc., fc = the coefficient of the 

Coriolis force resulting from the earth’s rotation (1/T) which is calculated from: 

ϖsin2Ω=cf                                       (6) 

where Ω is the angular rotation rate of the Earth = π/12 radians/hour, and ω is the latitude. ρ and 

ρz = densities of water-sediment mixture and saturated bed respectively: 

( ) ψρψρρ sw +−= 1                                                    (7a) 

( )pp swz −+= 1ρρρ                                                    (7b) 

where ρw and ρs are densities of water and sediment respectively. In comparison to the effects of 

other processes in Equation (4), diffusion is normally negligible in sediment transport [Bennett, 
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1974]. Considering the scales of this model, turbulence effects, Coriolis force, and wind stress are 

also neglected in Equation (2) and (3). 

 

Figure 2-1:  Definition sketch for surface flow and sediment transport with dynamic bed 
topography. h is water depth, z is bed elevation, and u is flow velocity. 

 

It is noted that Equations (1) – (3) differ from the single-phase clear-water flows because 

of the interaction between the water flow, sediment transport, and morphological change. 

Equation (1) describes the mass conservation for the water-sediment mixture. It differs from the 

traditional mass conservation equation for clear shallow water in the right-hand term which is 

used to account for the morphological change.  It is also important to point out that the fluid 

density is not constant in Equations (1) – (3) considering that is important where fluvial processes 

from extreme events can initiate concentrated debris flow. 

 Following the approach of Cao et al. [2004] we manipulate the system of the equations 

(1) – (5) such that the mixture density disappears in the left hand side (now treated as a source 

term) and equations (1) – (3) become:  

u 

h 

z 
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In Equation (2a) and (3a), there are two additional source terms. The second and third 

terms on the right-hand side account for the spatial variations in sediment column concentration 

and the momentum transfer due to sediment exchange between the water and the erodible bottom 

boundary. 

Auxiliary equations for bottom slope are given by 
x
zS x ∂
∂

=0  and 
y
zS y ∂
∂

=0 . The friction 

slope is estimated by the Manning equation: 

3/4

222

h
vuunS fx

+
=                  (8) 

3/4

222

h
vuvnS fy

+
=                  (9) 

with n = Manning coefficient.  

 For the sediment flux, there exist an extensive literature of empirical formulae [e.g., 

Fagherazzi and Sun, 2003; Capart and Young, 1998; Cao et al., 2004; Wu and Wang, 2007]. A 

form which captures the empirical physics for entrainment and deposition in a minimum of 

parameters is proposed by the authors: 

( ) 22 vuhE c +−= θθα                (10) 

βωψ=D                 (11) 
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where =α constant to be calibrated, == sgdu /2
*θ Shields parameter, =cθ critical Shields 

parameter for initiation of sediment movement, =β parameter which depends on the distribution 

of the sediment in water column, =ω settling velocity of sediment particles in water, 

=+= 22
* fyfx SSghu friction velocity, =d sediment diameter, =ν kinematic viscosity of 

water, 1-/s ws ρρ= .In this paper, following Cao et al. [2004], β  is set as 

β = min[2, (1-p)/ ψ].               (12) 

And ω   is calculated using 

d
dgs

d
ννω 95.131.0913.95

2

−+⎟
⎠
⎞

⎜
⎝
⎛=             (13)    

Domain Decomposition 

Delaunay Triangulation [Delaunay, 1934; Voronoi, 1908] is applied to decompose the 2-

D domain (Figure 2-2). A 2-D TIN (triangular irregular network) is formed over the model 

domain with constraints in order to incorporate domain boundaries, observation points, elevation 

contours or other features particular to the domain. Another advantage of conditional unstructured 

grid generation is the flexibility to handle multi-scale, multi-resolution, and/or nested modeling 

domains [Qu and Duffy, 2007]. Shewchuk [2001] has developed an algorithm for generating 

quality numerical grids, with constraints. This algorithm has been incorporated in PIHMgis [Bhatt 

et al., 2008] to facilitate the generation of unstructured meshes using GIS feature objects. In this 

research, PIHMgis is used to produce the unstructured grids for all the test cases in this paper. 
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Figure 2-2:  Delaunay triangulation [Delanunay, 1934] and Voronoi diagram [Voronoi, 1908]. 
The solid lines form Delaunay triangulation, and the dashed lines form Voronoi diagram [Qu, 

2004]. This approach is used to insure quality numerical grids. 

Numerical Model 

The system of equations (1a), (2a), (3a), (4) and (5) is hyperbolic and nonlinear and 

subject to discontinuities (shocks). Extending the one-dimensional formulation of transportational 

cyclic steps by Fagherazzi and Sun [2002], Equation (5) is rewritten as: 
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with 
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The system can thus be reformulated as: 
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where U is the vector of the conservative variables, E and G are the flux vectors in x- and y-

direction, and S is the vector of source terms. 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

ϕ
ψh
vh
uh
h

U ,

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+
=

uh
uh

uvh
ghhu

uh

ψ
ψ

2/22

E , 

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+=

vh
vh

ghhv
uv
vh

ψ
ψ

2/22G , 

( )

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−

+−−

=

0

)1/(

s

y

x

p

SED

S
S

SpDE

S          (16) 

with 

( ) ( ) ( )( )
( ) vhf

p
uDE

x
gh

SSghS c
zws

fxoxx +
−

−−
−

∂
∂−

−+−=
12

2

ρ
ρρψ

ρ
ρρ

         (17) 

( ) ( ) ( )( )
( ) uhf

p
vDE

y
gh

SSghS c
zws

fyoyy −
−

−−
−

∂
∂−

−+−=
12

2

ρ
ρρψ

ρ
ρρ

           (18) 

 The source term vector is split into five parts: bed slope S0, friction slope Sf, sediment 

concentration variations Sc, sediment exchange Se, and the additional source/sink term Sp 

respectively: 
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It is now convenient to write the system as:  
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with ( )TGEF   ,= . The system can be integrated over an arbitrary control volume Vi: 
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                     (20) 

and applying the Gauss theorem, the second integral on the left-hand side is replaced by a line 

integral around the control volume, which changes Equation (19) into:  
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t
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                    (21) 

where Γ =boundary of the control volume and ( )Tyx nn  =n = the unit outward vector normal to 

the boundary.  

A cell-centered finite volume method is formulated for Equation (21) over a Delaunay-

type triangle-shaped control volume, where the dependent variables of the system are stored at 

the center of the control volume and represented as piecewise constant. The association of these 

variables with the centers enables the implementation of a high-order interpolation scheme 

[Sleigh et al., 1998]. Using the mid-point rule to Equation (20), it can be rewritten as: 
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with iU  being the average values over the control volume Vi, ∫=
iV

i
i dV

V
SS 1

 being the 

numerical approximation of the source term, ijn  being the unit outward normal vector to the edge 

j, and ijF  is the numerical flux vector through the edge j, which is calculated using an 

approximate Riemann solver.  

To evaluate the flux using approximate Riemann solver, the Jacobian of the normal flux 

( nF ⋅ ) is calculated: 
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where 
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with ghc =  being the celerity of small amplitude gravitational waves. The corresponding 

eigenvectors are: 
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This hyperbolic system is degenerate since one eigenvalue is zero. The system consists of 

two shocks, two rarefaction waves, or a shock plus a rarefaction wave in addition to a contact 

discontinuity. The contact discontinuity is produced based on the assumption of negligible flow 

turbulence and sediment diffusion. For more detailed analysis, see Toro [2001] or Fagherazzi and 

Sun [2003].  

There are many formulations for the numerical flux on the solution of a Riemann 

problem at the boundary of two elements [Toro, 2001]. Most of them proved satisfactory, but the 

Roe’s formulation was consistently more stable, producing solutions at extreme conditions where 

others fail [Sleigh et al, 1997], and it is more flexible, working for quite a few hyperbolic 

systems.  

The Roe’s method is a Godunov scheme. The numerical flux is calculated as 
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( ) ( ) ( )( )LRnRLn UUJnUFnUFF −−⋅+⋅= ~
2
1

                (26) 

where UL and UR are the left and right conserved variables,   nJ~  is the modified Jacobian of the 

similar form as nJ  and must meet the following requirements [Roe, 1981]: 

(1) nJ~  depends on the left and right states; 

(2) nJ~  is diagonalizable with real eigenvalues and a set of eigenvectors; 

(3) ( ) ( ) ( )LRnLR UUJnFnF −=⋅−⋅ ~
; 

(4) ( )UJJ ~~
nn →  as UUU ~, →RL . 

nJ~  can be evaluated as ( )UJJ ~~
nn =  with U~ being some average values based on the left and 

right states. A change of variable approach is used to find the Jacobian matrix meeting the 

requirement [Roe, 1981; Leveque, 2002]. The detailed derivation is given in the supplement. It is 

noted that the bottom elevation is always continuous at the shock and contact discontinuity 

locations according to the Rankine-Hugoniot conditions [Fagherazzi and Sun, 2003]. The 

intermediate states are calculated as: 

RL

RRLL

RL

RRLL

RL

RRLLRL

hh
hh

hh
hvhv

v
hh

huhu
u

hh
h

+

+
=

+

+
=

+

+
=

+
=

ψψ
ψ~  ,~  ,~  ,

2
~

     (27) 

The eigenvalues of nJ~  are 

cnvnu yx
~~~~

1 ++=λ , yx nvnu ~~~
2 +=λ , cnvnu yx

~~~~
3 −+=λ , yx nvnu ~~~

4 +=λ , 0~
5 =λ        (28) 

with hgc ~~ =  and the corresponding eigenvectors 
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The difference in the left and right conserved variables can be expressed as the Jacobian 

eigenvectors as 

∑
=

=−=
5

1

~
k

kkLRd eUUU α                (30) 

with 
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( ) ( ) ( )ψψψα ~
4 LRLR hhhh −−−=  

( ) ( ) ( )( )LRLR hh ψψϕϕα −−−=5  

Therefore  ( ) ∑
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k

kkkLRn eUUJ αλ  and the numerical flux is calculated as: 
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 To avoid entropy violation at the sonic point or the critical flow condition, the fix 

proposed by Harten and Hyman [1983] is incorporated 
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Delis et al. [2000] suggest the following formula for δ  
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( ) ( )( )kRkLkk λλλλδ ~ ,~ ,0max −−=                    (34) 

Linear Reconstruction 

To preserve a high spatial accuracy in the flow simulation, a second order or higher 

piecewise linear reconstruction is necessary. Many second-order numerical schemes have been 

implemented in shallow water equations on unstructured triangular grids [e.g., Anastasiou and 

Chan, 1997; Sleigh et al., 1998; Hubbard, 1999; Wang and Liu, 2000; Yoon and Kang, 2004] and 

other types of grids [e,g., Alcrudo and Garcia-Navarro, 1993; Ambrosi, 1995; Valiani et al., 2002; 

Caleffi et al., 2003].  Extension of structured techniques, such as the MUSCL approach, to 

unstructured grids have achieved only partial success due to the pronounced grid sensitivity 

[Jawahar and Kamath, 2000] and therefore poor results are obtained on highly distorted grids. 

The reconstruction techniques proposed by Jawahar and Kamath [2000] has been successfully 

applied with HLL approximate Riemann solve in shallow water equation [Yoon and Kang, 2004].  

Compared to other multidimensional linear reconstruction techniques, it uses a wide 

computational stencil and does not strongly depend on vertex values. This reconstruction 

technique is adopted here. 

For a given cell with center i, the values of a variable can be calculated 

( ) r⋅∇+= ii UUyxU ,                       (35) 

where r is the vector extending from the cell center i to any point (x, y) within the cell, Ui is the 

cell-averaged values stored at the centroid, and iU∇ is the cell-centered gradient which is 

described as below. 

Applying the Green-Gauss theorem, the gradient based on a certain closed path, say the 

boundary of the cell i, can be calculated as 
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∫Γ Γ=∇ dU
A

U
i

i n1
                      (36) 

where Γ is the boundary of the cell, and Ai is the area.  

The stencil used to calculate the gradient is shown in Figure 2-3. The first step is to 

calculate the gradients for two triangles on either side of an edge. For example, the two triangles 

Δ1a2 and Δ12i for edge j = 1. The above-described method is used to calculate ( ) 21aU∇  and 

( ) iU 12∇ . The next step is to obtain the face gradient using the area-weighted average of these 

two gradients.  

( ) ( ) ( )
ia

iiaa

AA
UAUA

U
1221

12122121
1 +

∇+∇
=∇                    (37) 

 

Figure 2-3:  The stencil used to calculate the gradients of the state variables. 

 

The same approach can be used to compute the face gradients ( )2U∇  and ( )3U∇  at 

edges j= 2 and 3 respectively. Finally the gradient for the cell is then constructed using the area-

weighted average of the three face gradients as follows 

a 

b 

c 3 
2 

1 
1 

2 
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It is noted that the values of the conserved variables at the vertexes are needed in the first 

step. A pseudo-Laplacian procedure is used to obtain the vertex values from the corresponding 

centroid values to assure second-order accuracy [Frink, 1994], as proposed by Holmes and 

Connell [1989]. 

Multidimensional Slope Limiter 

High order schemes may lead to a nonphysical oscillatory solution near discontinuities 

without suitable adjustment [Toro, 1999]. Therefore, it is necessary to limit the solution slope 

during the linear reconstruction in order to avoid oscillations. The multidimensional slope limiter 

proposed by Jawahar and Kamath [2000] has the advantages that: (1) the limiter is inherently 

multidimensional in construction which fits unstructured grids, and (2) it is continuously 

differentiable. Based on these properties, it is adopted in the paper. The limited gradient is 

constructed as follows: 

ccbbaa
L
i UUUU ∇+∇+∇=∇ ωωω                    (39) 

where L
iU∇  is the limited gradient for cell i, and aω , bω , cω  are the weights given by the 

multidimensional limiter function. aU∇ , bU∇ , and cU∇  are the unlimited gradient for three 

neighboring triangles. The three weights are computed as: 
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where 2

2aa Ug ∇= , 2

2bb Ug ∇= , 2

2cc Ug ∇=  and ε << 1 prevents zero in the denominator. 

Source Terms 

It is of great importance to correctly treat the source terms in (18). Friction slope Sf and 

sediment exchange Se can be discretized in a point-wise manner, say, evaluated at the centroid. 

The sediment concentration Sc terms are also discretized at the centroid, and the linear 

reconstruction procedure readily provides the sediment concentration (ψ) spatial gradients: 

( )
h

hh ii
i

∇−∇
=∇

ψψ
ψ                       (41) 

For discretization of the bed slope term, a surface gradient method is used, where the 

water surface elevation (H=h+z) instead of the water depth (h) is reconstructed. The water depth 

values at left and right sides of an edge are calculated by subtracting the corresponding bed 

elevation from water surface elevation. This can prevent the strong depth fluctuations due to the 

arbitrary bed geometry [Farshi and Komaei, 2004].  

Time Integration 

In order to reduce the numerical instabilities related to the friction slope and the sediment 

exchange for shallow depths, a semi-implicit method is used. The system (Eqs (1) – (5)) is split 

into two ordinary differential equations: 

( ) piii
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jijij
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3

1
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            (43) 
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In the first step, advection (48) with source terms for bed slope and sediment concentration is 

solved by an explicit method. Next, the values obtained from the first step define initial 

conditions for (49) and the system is solved using an implicit method (BDF). Here we use the 

advanced ODE solver CVODE [Hindmarsh and Serban, 2005]. 

The explicit time integration is performed by the first-order Euler method, or a total 

variation diminishing (TVD) Runge-Kutta method [Shu and Osher, 1988] which have been 

shown to improve stability and have high-order accuracy (third): 
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where f is the right hand side of Equation (49). 

It is well known that the explicit scheme has a stability restriction on the Courant–

Friedrichs-Lewy (CFL) condition. An adaptive Δt is used in the model according to the following 

formula: 

( )
( )( )i

i

cvu

d
t

++
≤Δ

22max2

min
              (46) 

Where i is the cell index, and di represents the whole set of distances between the ith centroid and 

those of its neighboring cells. 
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Boundary Conditions 

Open and solid wall boundary conditions have been implemented. The (slip) solid wall 

boundary condition is given by: 
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where u denotes (u, v)T, and the subscripts L and * are the variables at the left side and boundary 

respectively. From Equation (47), the velocity components can be calculated 
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The open boundary conditions are more complicated. A simple one is the free outfall 

condition, where the waves pass the boundary without reflection. It can be describes as 

LUU =∗ . For other cases, sometimes the physical boundary condition(s) is not enough for the 

model, therefore is combined with equations obtained from theory of characteristics to derive 

sufficient information at the boundaries.  

A flow chart shown in Figure 2-4 is used to illustrate the numerical algorithm. 
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Figure 2-4:  Flow chart for the numerical algorithm of PIHM-Hydro. 

Y

Y

t=t+dt 

Implicit Time Integration 

Calculate the source term 

Calculate the solution at t+dt 

Explicit Time Integration 

t<T 

Read the initial and boundary conditions 

Start calculation at t 

2nd order 

Calculate the limited gradient and  
reconstruct the values at the edges 

Calculate the numerical flux 

N

N
End 



31 

 

Results and Discussion 

In order to demonstrate the accuracy and flexibility of PIHM-Hydro, a number of test 

cases over a range of spatial scales are examined. The first three examples are used to test the 

capability of the model to predict microscale hydrodynamics and sediment transport, while the 

other two examples are used to study the performance of the model in mesoscale applications.  

Small-scale applications 

A 2-D microscale dam-break with dry-wet and converging-diverging channel 

This experiment is used to test the capability of PIHM-Hydro to predict flow dynamics in 

an irregular flow domain, an initially dry bed, with non-zero bed slope and roughness. Bellos et 

al. [1992] performed several simulations of an instantaneous dam failure and a range of initial 

conditions. The 21.2 m long by 1.4 m wide experimental flume had a rectangular, converging-

diverging cross-section as shown in Figure 2-5. A movable gate (x=0 m) was used to simulate the 

instantaneous dam break. Eight probes were installed along the center line of the channel to 

measure the flow depths. More details can be found in Bellos et al. [1992].  

The initial water level is 0.15 m upstream of the dam and zero downstream of the dam 

with the bed slope of 0.002. The solid wall boundary condition was applied at the upstream end 

and side walls, and a free out-fall condition was applied at the downstream boundary. The domain 

was discretized into 3,886 triangles (Figure 2-5). The Nash-Sutcliffe model efficiency coefficient 

(NSE) [Nash and Sutcliffe, 1970] was used to quantitatively evaluate the predictive accuracy of 

the model: 
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where qo and qp are the observed and predicted values respectively. oq~  denote the observed mean 

value, and N is the total number of time steps. The data from t=0 to 60 seconds were used in the 

calculation of NSEs. Table 2-1 shows the predictions with n = 0.010 are the best especially 

downstream of the dam. Therefore n = 0.010 was used. The predicted and measured flow depths 

at the different positions are shown in Figure 2-6. 

 

 

Figure 2-5:  Plan view (a) and computational mesh (b) of the converging-diverging channel in 
Bellos et al. [1992] experiment. 

 

Table 2-1:  NSEs (Nash-Sutcliffe model efficiency coefficient) for different Manning’s n at the 
Bellos experiment. 

 
 

 

 

 

n -8.5 m -4.0 m -0.0 m +5.0 m +10.0 m 

0.009 0.99 0.999 0.968 0.68 0.83 
0.01 0.99 0.999 0.96 0.77 0.91 

0.011 0.99 0.998 0.95 0.70 0.84 
0.012 0.99 0.997 0.93 0.52 0.82 
0.013 0.98 0.996 0.91 0.17 0.75 
0.014 0.98 0.99 0.89 -0.34 0.64 

a 

b 
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Figure 2-6:  2-D microscale dam-break with dry-wet and converging-diverging channel: 
measured (circle) and predicted (solid line) temporal variations of flow depth at different 
locations as indicated, i.e., upstream of the dam, at the dam, and downstream of the dam. 

 

Upstream of the dam the predictions match the measurement very well with NSEs larger 

than 0.96. Even at the downstream locations characterized by the critical to supercritical flow and 

the wetting process, the flow depths are well reproduced. However, the predictions are not as 

good as upstream of the dam. In addition, Table 2-1 displays that the downstream locations 

especially at x = +5.0 m are very sensitive to the Manning’s roughness coefficient. That is due to 

the depth averaging the model neglects the vertical velocity information which is important in the 

transition from subcritical to supercritical flow [Martin and Gorelick, 2005]. Additionally, a close 

look at Figure 2-6 reveals that the arrival times of the wave front are also accurately predicted. 

Overall, PIHM-Hydro is accurate and stable to simulate the wetting/drying process and the 

supercritical flow.  

2D Rainfall-runoff wetting/drying numerical experiment 

A rainfall and runoff example [diGiammarco, 1996] is adapted here to test the capability 

of PIHM-Hydro in simulating the rainfall-driven surface flow with intensive wetting/drying 
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processes. In this example, the surface flow from a tilted V-shape catchment (Figure 2-7) is 

generated by one 90-minute duration, 10.8 mm/hr intensity rainfall event. The catchment is 

composed of two 100 meters by 800 meters planes connected to a 1000 m-long and 20 m-wide 

channels. In this test case the channel depth is set to 0 which means the planes and channel are 

smoothly connected so that the backwater effect can be considered. The bed slopes are 0.05 and 

0.02, perpendicular to and parallel to the channel respectively. Manning roughness coefficients 

are 0.015 for the plane and 0.15 for the channel. The simulation was run for 180 minutes with 

free fall boundary condition at the channel outlet and no flow boundary conditions elsewhere. 

Initially the water depth is zero over the entire domain. Only half of the domain was simulated 

and the discharge was multiplied by two to obtain the one for the entire domain thanks to 

symmetry. 

 

Figure 2-7:  2D Rainfall-runoff dry to wet numerical experiment: tilted V-shape catchment (not to 
scale). The red lines represent the no-flow boundaries. The blue line denotes the channel outlet, 
where the free outfall boundary is applied. The black lines are for the interfaces between planes 

and the channel. 

 

The relatively steep slope in this test case is expected to produce close results for this 

model and the kinematic or diffusive wave approximations [Tayfur et al., 1993]. So the 

simulation on the decomposed domain of 740 triangles was compared with those from IFD 

(integrated finite difference) [diGiammarco, 1996], MIKE-SHE [Abbot et al., 1986], IHM 



36 

 

[VanderKwaak, 1999], and MODHMS [Panday and Huyakorn, 2004] which use kinematic or 

diffusive approximations. In these models, IFD, MIKE-SHE, and MODHMS weakly couple the 

2-D flow on the plane with the 1-D flow in the channel while IHM fully couples the 2-D flows on 

the plane and in the channel. The hydrograph predicted by PIHM-Hydro is first compared with 

the multi-model average in Figure 2-8 (a). The multi-model average is derived from weighted 

averaging of all model outputs. Here we assume the weight is the same for each model. PIHM-

Hydro is also compared individually with IFD, MIKE-SHE, IHM, and MODHMS in Figure 2-8 

(a). The simulation data from these models were obtained by digitalizing the figures from the 

publications.  

Excellent agreement is illustrated between PIHM-Hydro and the multi-model average 

(NSE = 0.996) as well as the other models, especially for the peak discharge and receding limb. 

Although there is a slight discrepancy in the rising limb for these models, the times to peak 

discharge are almost equal. According to Figure 2-8 (a), PIHM-Hydro predicts a constant and 

stable plateau of the peak discharge (4.86 m3/s), which is analytically correct and shows this 

model is very stable. Among these simulations, PIHM-Hydro has the best agreement with IHM 

(NSE = 0.999) as compared to MODHMS (NSE = 0.991), MIKE-SHE (NSE = 0.982), and IFD 

(NSE = 0.990). This might be expected since only PIHM-Hydro and IHM fully couple the 2-D 

overland and channel flow to consider the backwater effect.  Figure 2-8 (b) shows the 

accumulative mass balance errors calculated using the equation: 

( )
onprecipitai

storagedischargeonprecipitaierrh
−−

=                   [50] 

The mass balance error is very small with the maximum value less than 0.8% at t=45 minutes and 

almost zero at t=180 minutes. For this benchmark test case, the results indicate that PIHM-Hydro 

is very stable, robust and mass-conservative for cases of rainfall-driven overland-channel flow 

with intensive wetting/drying processes. 
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Figure 2-8:  Evaluation of model performance for the 2D rainfall-runoff dry to wet numerical 
experiment: (a) Comparison of simulated hydrograph with the ones modeled by MODHMS 

[Panday and Huyakorn, 2004], IHM [VanderKwaak, 1999], MIKE-SHE [Abbot et al., 1986], and 
IFD [diGiammarco et al., 1996]; (b) mass balance errors. 

a 

b 
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2D Microscale flow and sediment transport following dam break 

To demonstrate the ability to predict the flow dynamics with fully coupled sediment 

transport, PIHM-Hydro is applied to two microscale dam break experiments with flow over 

movable beds, the Taipei experiment [Capart and Young, 1998] and the Louvain experiment 

[Fraccarollo and Capart, 2002]. In the Taipei experiment, artificial spherical pearls of uniform 

size were used as the sediment particles with diameter of 6.1 mm, specific gravity of 1.048, and 

settling velocity in water of 7.6 cm/s. In the Louvain experiment, the sediment particles were 

replaced by cylindrical PVC pellets with equivalent spherical diameter of 3.5 mm, specific 

gravity of 1.54, and settling velocity in water of 18 cm/s. Horizontal prismatic flumes were used 

in both experiments. The test reach was 1.2 m long, 70 cm high, and 20 cm wide for the Taipei 

experiment, and 2.5 m long, 25 cm high, and 10 cm wide for the Louvain experiment. The sluice 

gates were place in the middle of flumes in both test cases to represent the idealized dam break. 

The initial water depth was 10 cm upstream and 0 cm downstream for both experiments.  

The 2D model was used in the numerical simulation of both cases. The computational 

meshes are shown in Figure 2-9, with 745 and 764 triangles for the Taipei and Louvain 

experiments respectively. In this model, several parameters need to be determined. The sediment 

porosity (p) and Manning’s roughness coefficient (n) were obtained from the publications [Wu 

and Wang, 2007]. p the was given as 0.28 and 0.3 for the Taipei and Louvain experiments 

respectively while n was set as 0.025 for both experiments. For the parameters α  and cθ , 

calibration was done to obtain the best values. In this study, the measured data at 5t0 and 3t0 (t0 = 

0.101s) were used in the Taipei and Louvain experiments respectively to calibrate these two 

parameters which were then used to predict the flow and sediment dynamics in the other two 

times. α  and cθ  were calibrated to 2.2 and 0.15 for the Taipei case, and 5.0 and 0.05 for the 

Louvain case.  
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Figure 2-9:  Computational mesh of the Louvain experiment (a) and the Taipei experiment (b). 
The red lines denote the dams. 

 

In Figures 2-10 and 2-11, the predicted water (H) and bed (z) surface elevations along the 

center line of the channel are compared with the measured ones. Table 2-2 lists the NSEs of the 

water (NSEH) and bed (NSEz) surface elevations for the two experiments. In the Louvain 

experiment, the measured data at 5t0 were used to calibrate the model (NSEH = 0.99 and NSEz = 

0.73). The results show the model reproduced the flow dynamics over movable beds very well 

(NSEH >= 0.96 and NSEz >= 0.56).  Although the prediction of bed surface elevations is not as 

good as the water surface, it can be considered satisfactory considering the complexity of the bed 

evolution, the small time scale, the small magnitude of the bed elevation change, and the 

measurement uncertainty. According to Figure 2-10, the model accurately predicted the wave 

front locations and the erosion magnitude in this experiment. The hydraulic jump was formed 

near the initial dam sites due to rapid bed erosion. In the Louvain experiment, the locations of the 

hydraulic jump were well predicted by PIHM-Hydro. It can be observed from both the 

predictions and measurements that the hydraulic jump propagated upstream in Louvain 

experiment. 

a
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In the Taipei experiment, the measured data at 3t0 were used to calibrate the model 

(NSEH = 0.7 and NSEz = 0.3). It is evident that the calibration is not as good as that in the 

Louvain experiment. By using the calibrated parameters, Figure 2-11 shows PIHM-Hydro 

predicted the wave front locations and the erosion magnitude very well. However, Figure 2-11 

and Table 2-2 shows the agreement between the prediction and measurement was not as good 

with respect to the magnitude and the locations of the hydraulic jump. The hydraulic jump moved 

upstream in the prediction but remains stationary in the experiment. This might be partly due to 

the very light bed material with large diameter used in this experiment, which is very different 

from the bed materials in natural rivers. Further lab experiment need to be done to examine this 

phenomenon. 

The mass balance errors of sediment transport are also calculated to evaluate the model 

using the following equation: 
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AhcpAz
err

1
                  [51] 

where ( )izΔ  and ( )ihcΔ  are the change of bed elevation and sediment load per area at each grid 

i. In the Louvain experiment, the zerr  values are 0.05%, 0.007%, and 0.05% at 5t0, 7t0, and 10t0 

respectively. In the Taipei experiment, the zerr  values are 0.02%, 0.005%, and 0.001% at 3t0, 4t0, 

and 5t0 respectively. It is evident that the mass balance errors are very small and the model 

preserves the mass very well. 

Table 2-2:  NSEs (Nash-Sutcliffe model efficiency coefficient) at different times for the Louvain 
and Taipei experiments (unit: m). 

 
 

 

 Louvain Taipei 
 t H z t H z 

Calibration 5t0 0.99 0.73 3t0 0.70 0.30 
7t0 0.97 0.79 4t0 0.75 0.48 Validation 10t0 0.96 0.56 5t0 0.80 0.54 
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Figure 2-10:  Water and bed surface levels along the center line in the Louvain experiment (t0 = 
0.101 s). The blue dash line is the dam site. 

t=5t0

t=7t0

t=10t0
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Figure 2-11:  Water and bed surface levels along the center line in the Taipei experiment (t0 = 
0.101 s). The blue dash line is the dam site. 

 

Figure 2-12 shows the predicted sediment concentration profiles in both experiments at 

different times. PIHM-Hydro predicted sharp forefronts of the sediment concentration profile, 

which were caused by extremely high sediment concentrations in the dam break wave fronts. 

t=3t0

t=4t0

t=5t0
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Similar predictions were also made by several 1-D models [Fraccarollo and Capart, 2002; Wu 

and Wang, 2007] in the Taipei case at 4t0. In the Wu and Wang model, however, a small initial 

downstream flow depth was specified rather than the actual dry bed condition, which may have 

caused errors in mass balance and wave arrival time. By comparing Figures 2-12 (a) and (b), it is 

noted that the peak concentrations in the Taipei case were much higher than those in the Louvain 

case. The difference is due to the smaller density and lower settling velocity of sediment particles 

in the Taipei case which make erosion easier and deposition slower. It is also noted that the peak 

sediment concentration decreased with time in the Louvain case while it increased with time in 

the Taipei case. This difference is partly related to the different time scales of the two cases, 

where the Taipei experiment is run for a shorter duration than the Louvain experiment. 

 

 

Figure 2-12:  Predicted sediment concentration profiles in Louvain (left) and Taipei (right) 
experiments. 
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Figure 2-13:  Predicted temporal variations of flow depth ((a) and (b)), flow discharge ((c) and 
(d)), and sediment discharge ((e) and (f)) in Louvain (left) and Taipei (right) experiments. 

 

Figure 2-13 illustrates the temporal variations of flow depths, flow discharge, and 

sediment discharge predicted by this model at x = 0.03 m, 0.2 m, and 0.4 m. One can observe that 

(a) 

(c) 

(e) 

(b) 

(d) 

(f) 



45 

 

flow depth and flow/sediment discharge were all approaching some equilibrium values after a 

period of time.  In Figures 2-12 and 2-13 it is also demonstrated that volumetric sediment 

concentration, flow depth and sediment discharge are very sensitive to particle size and density 

while discharge is not. As discussed above, that the volumetric sediment concentration is 

sensitive is due to the fact that the sediment particle properties influence the erosion and 

deposition. For the same reason, sediment discharge is also influenced by the sediment particle 

properties indirectly. The erosion/deposition will significantly change the bed surface which in 

turn influences the flow depth profile. 

Mesoscale applications 

River and floodplain dynamics during Malpasset dam break event 

This test case is used to show the capability of PIHM-Hydro to predict the large-scale 

hydrodynamics over a dry bed with complex topography and boundary. The Malpasset dam was 

located in a narrow gorge of the Reyran river valley, about 12 km upstream of Frejus on the 

French Rivira. The maximum reservoir capacity was 55106 m3.  In December 1959, the dam 

failed explosively at night partly due to exceptionally heavy rain. The flood wave ran along the 

Reyran valley to Frejus and 433 casualties were reported. More detail can be found in Soares 

Frazao et al. [1999].  

The topography of the computation domain is shown in Figure 2-14 with the location of 

dams, transformers, gauges, and police survey points. The overall dimensions are 175000×9000 

m2, with the sea included in the domain. The bottom elevation ranges from -20 m below sea level 

to 100 m. The domain was discretized into different-resolution meshes using the domain 

boundary and the 13541 topography survey points as the constraints. The 38208-triangle mesh 
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and a close-up view of the computational mesh near the dam are presented in Figure 2-15. The 

mesh is much finer immediately downstream of the dam and along the river, where the fast and 

abrupt flow happened.  The initial water level in the reservoir is 100 m above sea level and the 

bottom downstream of the dam is set dry (Figure 2-16). The solid boundary condition is imposed 

along all boundaries. The Strickler coefficient ranges from 30 m1/3s-1 to 40 m1/3s-1[e.g., Soares 

Frazao et al., 1999; Hervouet and Petitjean, 1999], corresponding to Manning’s coefficient from 

0.033 s/m1/3 to 0.025 s/m1/3.  A uniform Manning coefficient of 0.033 s/m1/3 was advised by other 

researchers [e.g., Goutal, 1999; Hervouet, 2000; Valiani et al., 2002]. The sensitivity of the model 

to the Manning’s coefficient was first studied on a 26000-traingle mesh (Table 2-3). It shows that 

PIHM-Hydro does work best at n = 0.033 which is in agreement with the previous studies as well 

as the recommendation for winding natural rivers by Henderson [1966]. 

 

Figure 2-14:  Topography of the Reyran valley and coastal zone for Malpasset dam break event. 

 

 

 

 

 



47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2-15:  Close-up view of the 38208-grid mesh near the dam for Malpasset dam break 
simulation. 

 

Figure 2-16:  River and floodplain dynamics during Malpasset dam break event: initial condition. 
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Table 2-3:  Flood arrival times at three electric transformers with different Manning’s n on the 
26000-grid mesh during Malpasset dam break event (unit: s). 

 
 

Tables 2-4 and 2-5 show how the grid resolution or terrain resolution influences the 

numerical solutions. Due to the large magnitude of the water surface elevations, both NSE and 

RMSE (Root Mean Squared Error) are used here to quantitatively assess the prediction errors. It 

is evident that the finer spatial resolutions will result in more precise solutions. When the grid 

resolution reaches a threshold, say 38208 in this case, however, the accuracy does not improve 

much even if the grids get much finer. By comparing Table 2-4 and Table 2-5, we can see that the 

maximum water surface elevations (H) at the gauge points are more sensitive to the grid/terrain 

resolutions than those at the police survey points. This is due to the fact that the magnitude of the 

water depths (h) in the river are larger than the bed elevation (z) while at the banks the bed 

elevations are larger. From this analysis, we can say that the maximum water surface elevations 

are the better metric to assess the model accuracy. These two tables illustrate that when the grid 

number reach 26000 the prediction are already satisfactory at all of those measure locations 

(NSE>=0.97 and RMS<=3.99). A finer resolution to 38208 grids can still improve the solution 

remarkably. After that, the resolutions does not improve much even the resolution is significantly 

increased. Therefore the 38208-grid mesh with n = 0.033 is used to compare PIHM-Hydro with 

the others. 

 

 

 

n 
No Measured 

0.033 0.032 0.031 0.03 0.029 0.028 0.027 0.026 0.025 
A 100 130 132 135 139 142 143 144 145 146 
B 1240 1225 1209 1191 1174 1156 1137 1119 1100 1079 
C 1420 1400 1381 1361 1340 1319 1296 1275 1252 1227 
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Table 2-4:  Maximum water level at the gauge points with Manning’s n = 0.033 on different 
spatial resolutions during Malpasset dam break event (unit: m). 

Grids number No Measured 5344 9100 18533 26000 38208 62549 
6 79.15 58.66 60.14 59.80 88.89 86.48 86.42 
7 87.2 54.84 56.93 57.30 52.76 53.00 53.00 
8 54.9 46.42 45.69 47.30 53.51 53.58 53.84 
9 38.6 46.27 39.07 46.00 48.52 48.87 48.77 

10 31.9 32.22 31.48 35.64 37.68 36.99 37.20 
11 24.15 23.24 24.61 24.34 25.54 25.01 25.17 
12 24.9 16.72 15.63 17.61 18.07 18.75 18.86 
13 17.25 8.99 10.38 15.25 18.35 16.64 16.78 
14 14 11.39 12.02 13.08 12.66 12.79 13.11 

NSE 0 0.78 0.8 0.81 0.97 0.97 0.97 
RMSE 0 9.89 9.42 9.22 3.84 3.55 3.52 

 
 

Table 2-5:  Maximum water level at the police survey points with Manning’s n = 0.033 on 
different spatial resolutions during Malpasset dam break event (unit: m) 

Grids number No Measured 5344 9100 18533 26000 38208 62549 
1 79.15 77.36 80.13 74.96 88.09 81.01 80.60 
2 87.2 70.23 68.88 75.67 84.99 90.04 91.00 
3 54.9 52.29 56.84 56.52 52.92 52.90 52.27 
4 64.7 67.79 61.64 57.80 56.98 56.83 60.72 
5 51.1 58.00 55.04 47.93 47.61 46.75 44.92 
6 43.75 42.81 42.22 41.46 45.67 43.89 45.18 
7 44.35 43.19 43.56 42.93 42.49 42.41 41.76 
8 38.6 34.18 36.03 34.18 31.73 31.84 32.22 
9 31.9 31.70 31.75 32.01 33.10 32.71 32.99 

10 40.75 34.31 38.30 36.54 37.70 37.39 38.10 
11 24.15 21.26 22.94 23.11 23.77 23.57 24.82 
12 24.9 26.59 27.70 26.91 28.23 28.06 26.93 
13 17.25 21.85 21.83 21.82 21.82 21.82 21.82 
14 20.7 21.36 21.23 21.21 21.28 21.42 21.31 
15 18.6 18.89 17.48 18.37 19.36 19.43 18.60 
16 17.25 20.10 20.83 19.99 20.20 20.13 20.15 
17 14 16.27 15.68 15.66 15.87 15.66 15.94 

NSE 0 0.94 0.95 0.96 0.97 0.97 0.98 
RMSE 0 5.23 5.02 4.14 3.99 3.44 3.19 

 
 

The predicted evolution of flood inundation is shown with the police-surveyed points in 

Figure 2-17.  The cells with a water depth smaller than 0.01 m are considered dry.  The police-
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surveyed points are the high-water marks which may also be considered as the flooded boundary. 

As can be seen from Figure 2-17, the boundary of the flooded area agrees with that survey by 

police quite well. To further demonstrate the advantage of PIHM-Hydro in predicting the flood 

wave, Table 2-6 compared the computed arrival times of the flood waves to the three electronic 

transformers with those from Hervouet and Petitijean [1999], Valiani et al. [2002], and Yoon and 

Kang [2004]. Hervouet and Petitijean’s model is based on the finite element method (FE) on 

unstructured triangular grids while Valiani et al. and Yoon and Kang’s models were developed by 

the HLL finite volume method (FV) on unstructured triangular and quadrilateral grids 

respectively.  The exact arrival times of flood wavefront are unknown, and the measurements 

were affected by some uncertainties, e.g, in the rupture time of the dam. Therefore, in addition to 

the arrival times, the travel times of the flood wave between two points are also the important 

criterion for judging the performance of a model. 

 

Table 2-6:  Flood arrival times at three electric transformers with Manning’s n = 0.033 on the 
38208-grid mesh during Malpasset dam break event (unit: s). FV and FE denotes the finite 

volume and finite element methods respectively. B-A is for the travel time of the flood wave from 
transformers to B, and C-B is for the travel time from C-B. 

 

No Measured PIHM-Hydro Hervouet 
& Petitijean (1999) 

Valiani et al. 
[2002] 

Yoon and 
Kang [2004] 

A 100 98 (-2%) 111 (+11%) 98 (-2.0%) 103 (+3.0%) 

B 1240 1226 (-1.1%) 1287 (+3.8%) 1305 
(+5.2%) 1273 (+2.7%) 

C 1420 1402 (-1.3%) 1436 (+1.1%) 1401 (-
1.3%) 1432 (+0.8%) 

B-A 1140 1128 (-1.1%) 1176 (+3.2%) 1207 
(+5.9%) 1170 (+2.6%) 

C-B 180 176 (-2.2%) 149 (-17.2%) 96 (-46.7%) 159 (-11.7%) 
Method N/A FV FE FV FV 

Grid type N/A Triangle Triangle Quadrilateral Triangle 
Grid no. N/A 38208 26000 10696 67719 
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t=2000s 

t=1500s 

t=1000s 
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Figure 2-17:  Flood inundation map at different times during Malpasset dam break event with 
Manning’s n = 0.033 on the 38208-grid mesh. 

 

Firstly, from Table 2-6 we can see that the arrival times and travel times of the flood 

waves predicted by PIHM-Hydro are in excellent agreement with the measurement with the 

maximum error about 2%. More importantly, this model shows its advantage over the other 

models including both FE and FV-based ones with respect to these two criteria.  For example, the 

transformers B and C are far away downstream of the dam. The travel time of the flood wave 

between them should be less affected by the rupture time of the dam. From Table 2-6, we can see 

that our model is way better than all the other models. Although it is impossible to directly 

compare the computational resources that these models consume due to the unavailability of the 

t=3000s 

t=2500s 
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codes, we still can do some comparisons based on the grids number, grid type, and numerical 

methods. For example, compared to Yoon and Kang’s FV model which used almost 7000 

triangles, this model only about half of grids to achieve more accurate solutions.  

The water level is another important criterion for judging whether a model reproduces 

flow phenomena accurately or not in addition to the arrival times and travel times of flood waves. 

Table 2-7 and Figure 2-18 present The comparisons between the predicted maximum water levels 

with the measured ones and the results calculated from the above-mentioned models are 

presented in Table 2-7 and Figure 2-18 for the gauge points in the river, and in Table 2-8 and 

Figure 2-19 for the police survey points at the left and right banks. As discussed above, the 

maximum water surface elevations in Table 2-7 are the better metric to assess model accuracy. 

According to Table 2-7, this model produced improved predictions than the other finite volume 

models with smaller RMSEs while achieved similar accuracy with the commercial finite-element 

model. Especially, the improvement is achieved by using much fewer grids than the Yoon and 

Kang’s finite volume model. From both Tables 2-7 and 2-8, we can see that PIHM-Hydro 

perform very well in terms of stability, accuracy, and robustness on the complicated geometry 

and topography as well as intensive wetting/drying processes.  

Table 2-7:  Maximum water level at the gauge points with Manning’s n = 0.033 on the 38208-
grid mesh during Malpasset dam break event (unit: m). 

No Measured PIHM-Hydro Hervouet 
&Petitijean (1999) 

Valiani et 
al. [2002] 

Yoon & 
Kang [2004] 

6 84.2 86.48 81.98 88.35 80.85 
7 49.1 53.00 53.86 54.44 55.8 
8 54 53.58 53.8 53.26 53.54 
9 40.2 48.87 48.39 47.93 48.68 

10 34.9 36.99 36.88 36.52 37 
11 27.4 25.01 25.54 25.38 25.7 
12 21.5 18.75 18.48 19.14 19.23 
13 16.1 16.64 17.43 17.66 17.12 
14 12.9 12.79 12.6 12.76 12.86 

NSE 0 0.97 0.97 0.97 0.96 
RMSE 0 3.55 3.54 3.66 3.97 
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Figure 2-18:  Maximum water level at the gauge points with Manning’s n = 0.033 on the 38208-
grid mesh during Malpasset dam break event. 

 

Table 2-8:  Maximum water level at the police survey points with Manning’s n = 0.033 on the 
38208-grid mesh during Malpasset dam break event (unit: m). 

No Measured PIHM-Hydro Valiani et 
al. (2002) 

Yoon & 
Kang (2004) 

1 79.15 81.01 75.96 75.13 
2 87.2 90.04 89.34 87.38 
3 54.9 52.90 53.77 55.09 
4 64.7 56.83 59.64 57.41 
5 51.1 46.75 45.56 47.11 
6 43.75 43.89 44.85 45.74 
7 44.35 42.41 42.86 40.47 
8 38.6 31.84 34.61 32.58 
9 31.9 32.71 32.44 33.16 

10 40.75 37.39 38.12 38.29 
11 24.15 23.57 25.37 25.16 
12 24.9 28.06 27.35 25.96 
13 17.25 21.82 23.58 24.41 
14 20.7 21.42 23.19 20.58 
15 18.6 19.43 19.37 19.08 
16 17.25 20.13 20.39 17.04 
17 14 15.66 14.23 16 

NSE 0 0.97 0.98 0.97 
RMSE 0 3.44 3.10 3.48 
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Figure 2-19:  Maximum water level at the police survey points with Manning’s n = 0.033 on the 
38208-grid mesh during Malpasset dam break event. 

Mesoscale dam break and sediment dynamics 

In a previous section PIHM-Hydro was applied to predict the small-scale water-sediment 

flow dynamics in the Louvain and Taipei experiments. To further examine the capability of the 

model in large-scale prediction, the model is applied to a hypothetical 2-D dam break in a wide 

river over a movable bed. A 1-D test case were simulated by Cao et al. [2004] and Wu and Wang 

[2007]. The river is 50 km-long and 1000 m-wide, and the dam was initially located at the middle 

of the channel. The initial water depths upstream and downstream of the dam are 40 m and 2 m 

respectively at static state. Initially the channel bed is horizontal, and composed of noncohesive 

uniform sediment with grain size 4 mm. The computational domain was discretized into 3329 

triangles. According to Cao et al. [2004], the values are set as 0.045 for the critical Shields 

parameter ( cθ ), 0.4 for the bed material porosity (p), 2.65 for the specific gravity of sediment 
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particle, and 0.03 for the Manning’s coefficient (n). The constant α  was set as 8.5e-6. The 

entrainment/deposition equations (10) and (11) were also compared with Cao’s [Cao et al., 2004] 

and their limited version proposed by Wu and Wang [2007].  

The computed water surface elevation and bed elevation along the center line at different 

times after dam break are presented in Figure 2-20. Firstly one can see that the hypothetic dam-

break flow caused serious erosion. The sediment transport process had significant impact on the 

flow dynamics such as the water surface profiles and wave speeds. The results show a similar 

feature in an early stage (e.g., t = 2 min) as observed in the small scale experiments.  A hydraulic 

jump is formed near the dam site due to rapid bed erosion. However, this jump attenuates 

progressively as it propagates upstream and eventually disappears after about 8 minutes. 

Compared to the flow without sediment transport, the forward wave fronts with sediment 

transport move slowly at the early stage while the backward wave propagated essentially at the 

same speed, which were also observed by other researchers [Cao et al., 2004; Wu and Wang, 

2007]. However, after a certain period of time, e.g., 20 min, the forward wave fronts using 

Equations (10) and (11) propagated at the same speed as those without sediment transport while 

the ones using Cao’s and Wu’s entrainment/deposition equations propagated faster. 

At the early stage, the results based on Equations (10) and (11) are close to Wu’s. After 

that, there is big difference between them especially with respect to the bed surface. From the 

simulation using Equations (10) and (11), an interesting feature of the PIHM-Hydro solution is 

the erosion-deposition which occurs just after the wave fronts passed, which is not observed in 

the other models. For example, Cao’s model shows excessive erosion deposition occurs while 

Wu’s model shows attenuated erosion near wave front. From Figure 2-20, it is also noted that 

only Cao’s equations predicted a separate bore upstream of the wave front. This is caused by the 

over-prediction of sediment entrainment by Cao’s equations [Wu and Wang, 2007]. 
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t= 2 min 

t= 8 min 

t= 20 min 
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Figure 2-20:  Predicted water and bed surface levels along the center line in the large-scale wide 
river test case. The blue line represents the dam site. 

Conclusions 

In this study, the first 2-D high-order model (PIHM-Hydro) to fully couple shallow water 

flow, sediment transport and morphological evolution in the successful simulation of a real flow 

field is developed over a wide range of physical and numerical conditions. The sediment transport 

module simulates the non-equilibrium total-load sediment transport. New formulations for 

deposition and erosion are also proposed. A stable and second-order accurate numerical algorithm 

was implemented on unstructured grids using an upwind finite volume method combined with a 

multidimensional gradient reconstruction and slope limiter technique. This is the first 2-D high-

order model to fully couple shallow water flow and sediment transport in the successful 

simulation of a real flow field. The NSE (Nash-Sutcliffe model efficiency coefficient) and RMSE 

(Root mean squared error) were used as a metric to examine the fit of the model to multiple-sale 

test cases of hydrodynamics and sediment transport. 

The advantages of the present model are that (1) it can handle complicated geometry by 

using the Delaunay triangulation based on Shewchuk’s algorithm; (2) it is capable of producing 

accurate and stable solutions over a wide range of spatial scales and hydrological events such as 

discontinuous flow and wetting/drying process by using the approximate Riemann solver and the 

semi-implicit time integration technique based on the CVODE; and (3) it can accurately simulate 

the interactions of hydrodynamics, sediment transport and morphological evolution by fully 

coupling these processes physically i.e., considering the multi-phase flow dynamics, and 

numerically.  

The successful application of this model on the test cases across multiple scales is just the 

illustration of those advantages. The microscale Bellos experiment shows this model is accurate 
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and stable to simulate the wetting/drying process and the supercritical flow.  The rainfall-runoff 

experiment indicates that this model is very robust and mass-conservative in rainfall-driven 

overland-channel flow with intensive wetting/drying processes.  

The model is further applied to a mesoscale flood event, Malpasset dam break accident, 

with complex topography and geometry as well as discontinuous rapid flow and wetting/drying 

processes. The results show this model is in excellent agreement with the measurement including 

the arrival times and travel times of flood wave, the maximum water surface at the river and the 

banks as well as the boundary of flood area. More importantly, this model shows its advantage 

over the other models in terms of accuracy. Comparison of this model to another finite volume 

model on unstructured triangular grids further indicates the computational efficiency of PIHM-

Hydro. 

The model was also applied to simulate the interactions of water flow, sediment transport 

and morphological evolution over different spatial scales. The microscale experiment of flow and 

sediment transport following dam break demonstrate the model predicted the interaction between 

hydrodynamics and sediment transport fairly well. Applications of PIHM-Hydro to both the 

microscale and mesoscale test cases show that (1) the hydraulic jumps are formed near the initial 

dam sites due to rapid bed erosion caused by heavy flood and propagated upstream; (2) the 

extremely high sediment concentrations in the dam break wave fronts lead to the sharp forefronts 

of the sediment concentration profile; and (3) after long time relative to the wave front duration 

(e.g. 20 minutes in the large river case) deposition occurs due to the very high sediment 

concentration in the water column, which was not observed in other models studied here. 
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Chapter 3 
 

FULLY-COUPLED MODELING OF SHALLOW WATER FLOW AND 
POLLUTANT TRANSPORT ON UNSTRUCTURED GRIDS 

Abstract 

Understanding the space-time dynamics of pollutant transport remains an essential 

impediment to accurate prediction of impacts on the ecology of rivers and coastal areas and also 

for establishing efficient strategies for pollution control and environmental protection. Numerical 

models are a powerful tool to study the water flows and pollutant transport, and recently a new 

generation of models is being developed to simulate the coupled flow and pollutant transport in 

shallow water. In this paper, a two-dimensional fully-coupled model of shallow water flows and 

pollutant transport was developed using a triangular unstructured grid (TIN: triangular irregular 

network), which is also an important module of the PIHM-Hydro modeling system. The model is 

based on a cell-centered upwind finite volume method using the HLL approximate Riemann 

solver. A multidimensional linear reconstruction technique and multi-dimensional slope limiter 

was implemented to achieve a second-order spatial accuracy. In order to make the model efficient 

and stable, an explicit-implicit method was used in temporal discretization by an operator 

splitting technique. A test case of the pollutant transport in a square cavity is used to validate the 

model. Then the model was further applied to two pollutant transport scenarios: microscale 

pollutant transport following dam break and mesoscale pollutant transport driven by storm surge 

in Galveston Bay. The numerical results show that the model could accurately predict the flow 

dynamics and pollutant transport in extreme events such as a dam break and a storm surge.  
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According to the prediction of the model, the storm surge caused by the Hurricane Ike 

significantly extended the polluted area. 
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Introduction 

Understanding the dynamics of pollutants and their impacts on water quality is essential 

to establishing scientifically justified and practically efficient management strategies for pollution 

control and environmental protection.  

This paper examines a two dimensional representation of the shallow water equations and 

the advection-diffusion equation for the pollutant transport. Earlier approaches decouples the flow 

from the dynamics of contaminant transport assuming that flow is not influenced at low 

concentrations, and the non-conservative forms of the equations can be used by assuming the 

flow depth, velocities, and bed elevation vary smoothly in time and space [Murillo et al., 2005]. 

These approaches are inappropriate and lead to inaccurate solution in some practical situations, 

e.g., when the flow changes fast in time and/or space. Under these conditions it may be necessary 

to develop a fully coupled model in conservative form. According to Murillo et al. [2005] it is 

conditions of rapidly varying flow that can lead to numerical instabilities in the pollutant 

concentration, and therefore this system should be treated as a hyperbolic system with the 

diffusion term as the source term.  

It is challenging to numerically solve this kind of hyperbolic equations within a system of 

coupled nonlinear partial differential equations. In many practical applications, the numerical 

solution is made even more difficult by the complexity of non-flat and rough bed forms. 

Numerous methods have been developed for solving the shallow water equations, including the 

method of characteristics [e.g., Katopodes and Strelkoff, 1978], finite difference [e.g., Molls and 

Chardhry, 1995], finite element [e.g., Aizinger and Dawson, 2002], and finite volume methods 

[e.g., Toro, 2001]. As discussed in Chapter 2, compared to the other methods, the finite volume 

method conserves the local and global masses, can be flexibly applied to irregular domains and 
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unstructured grids, and require less memory. Therefore, the finite volume method is used in this 

paper.  

Recently, several models were developed to simulate coupled flow and pollutant 

transport in shallow water using finite volume methods. Murillo et al. [2005] applied the first-

order Roe’s scheme to study the pollutant transport by a shallow water flow in a microscale test 

case did not verify the results against lab experiments or a real flow field. Another drawback is 

that this model is based on the Roe’s scheme without an entropy fix which may produce 

nonphysical entropy-violating solutions for the critical and supercritical flows. Benkhaldoun et al. 

[2007] used a well-balanced finite volume non-homogeneous Riemann solver (SRNH). The 

principal drawback of this method is that one parameter must be evaluated by an empirical 

equation and it is also difficult to implement compared to the traditional approximate Riemann 

solvers. To solve these problems in existing models, the objective of this paper is to develop a 

two-dimensional fully-coupled model of shallow water flows and pollutant transport based on a 

cell-centered upwind finite volume method using the HLL approximate Riemann solver on 

unstructured triangular grids (TIN). This is also an important module of the PIHM-Hydro 

modeling system. Compared to the above methods, the HLL approximate Riemann solvers 

[Harten et al., 1983] modified by Toro [1999] are robust and produce excellent results for a wide 

range of flow conditions [Zopou and Roberts, 2003]. It also avoids the entropy violating solution 

and explicitly includes the contact discontinuity which is ignored in other Riemann solvers except 

Osher’s [Osher and Solomen, 1982]. However, the HLL scheme is much simpler to implement 

compared to Osher’s scheme. A multidimensional linear reconstruction technique and multi-

dimensional slope limiter [Jawahar and Kamath, 2000] are implemented to achieve a second-

order spatial accuracy. The technique introduced by Bradford and Sanders [2002] is adopted to 

mitigate the unbalanced approximation problems over bed slopes. In order to make the model 

efficient and stable, an explicit-implicit method is used in temporal discretization by an operator 
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splitting technique, i.e., the advection part and non-stiff source terms are solved using explicit 

scheme while the diffusion term and the stiff source terms are handled by fully implicit scheme. 

A test case of the pollutant transport in a square cavity is first used to validate the model. In order 

to demonstrate its capability to provide accurate and efficient predictions for pollutant transport 

by shallow water flows, the model was further applied to two test cases over different scales 

including microscale pollutant transport following dam break and mesoscale pollutant transport 

driven by storm surge in Galveston Bay.  

Methodology 

Mathematical Formulation 

The model is represented by the two-dimensional shallow water equations coupled with 

the advection-dispersion equation for pollutant transport. The 2-D shallow water equations are 

derived from the Navior-Stokes equations by assuming negligible velocity change and hydrostatic 

pressure distribution in vertical direction, and incompressibility of water [e.g., Tan, 1992; Liggett, 

1994]. The shallow water equations written in conservative form are as follows:  
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In this two-dimensional model, the depth-averaged pollutant transport is of primary 

interest.  The advection-dispersion equation is defined as: 
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where t = time (T), x and y = horizontal coordinates (L),  h = flow depth (L), u and v = depth-

averaged flow velocity in x- and y-directions (L/T), ψ = depth-averaged volumetric pollutant 

concentration (L3/L3),  g = gravitational acceleration (L/T2), S0x and S0y= bed slopes in x-and y-

directions (L/L), Sfx and Sfy = friction slopes in x-and y-directions (L/L), Kxx, Kxy, Kyx, and Kyy = 

empirical dispersion coefficients accounting for turbulent diffusion and shear flow dispersion 

(L2/T), Sp= the additional source/sink including precipitation, infiltration etc., Sc= the additional 

source/sink for the pollutant, Txx, Txy, Tyx, and Tyy = depth-averaged turbulent stresses, ρ= the 

water density, Fx and Fy  = the additional forces arising from wind stress, tidal potential, 

atmospheric pressure etc., fc = the coefficient of the Coriolis force resulting from the earth’s 

rotation (1/T) which is calculated from: 

ϖsin2Ω=cf                                       (5) 

where Ω is the angular rotation rate of the Earth = π/12 radians/hour, and ω is the latitude. The 

wind stress and the diffusion of momentum caused by turbulence and viscosity are neglected in 

this model. 

Traditionally, the shallow water equations and the pollutant transport equation were 

solved independently in a sequential form, i.e., solving the shallow water equations first and the 

pollutant transport equation next. To improve the accuracy and keep the conservation properties, 

these processes are fully coupled in a single system as: 
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where U is the vector of the conservative variables, E and G are the flux vectors in x- and y-

direction, S is the vector of source terms, ( )TGEF   ,= . 
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with the empirical dispersion matrix  
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 Bed slope is calculated using 
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There are several equations available for friction slope calculation such as Darcy-

Weisbach equation for laminar flow and Manning equation for turbulent flow. Here the friction 

slope is estimated by the Manning equation 
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with n = Manning coefficient.  

The source term vector in the equations system (7) consists of three parts:  bed slope S0, 

friction slope Sf, pollutant diffusion Sd, and the additional source/sink term Sp: 

( )Tyx ghSghS 00 00 −−=0S  

( )Tfxfx ghSghS 00 −−=fS              (13) 
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Numerical Model 

The domain decomposition method discussed in Chapter 2 is also used here to produce 

the unstructured triangular grids. Over each grid Vi, the system can be integrated as: 
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Applying the Gauss theorem, the second integral on the left-hand side is replaced by a 

line integral around the control volume, which changes Equation (14) into:  
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withΓ =boundary of the control volume and ( )Tyx nn  =n = the unit outward vector normal to the 

boundary.  

A cell-centered finite volume method is formulated for Equation (15) over a Delaunay-

type triangle-shaped control volume, where the dependent variables of the system are stored at 

the center of the control volume and represented as piecewise constant. The association of these 

variables with the centers enables the implementation of a high-order interpolation scheme 

[Sleigh et al., 1998]. Using the mid-point rule to Equation (15), it can be rewritten as: 
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with iU  being the average values over the control volume Vi, ∫=
iV

i
i dV

V
SS 1

 being the 

numerical approximation of the source term, ijn  being the unit outward normal vector to the edge 

j, ijF  is the numerical flux vector through the edge j, which is calculated using the HLL 

approximate Riemann solver.  

To solve the system in a fully-coupled mode using HLL scheme, the approach of Zoppou 

and Roberts [1999] is followed to manipulate the flux terms. The rotation matrix is introduced: 
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The application of this matrix aligns the normal n with the x-axis. Using the rotational 

invariance property of the 2D shallow water equations, then: 
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Applying Equation (18), Equation (15) becomes: 
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where E~  is the numerical flux vector through the edge j. 

It is noted that the solution for h and u is unaffected by v and ψ , the complete solution of 

the Riemann problem for the conservative quantities h and uh in the 2D shallow water equations 

is identical o that for the 1D ones [Zoppou and Roberts, 1999; Toro, 2001]. The following 
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formulations are used to calculate the normal fluxes for the conservative variables h and uh, 

which are also the first two components of the numerical flux E~ : 
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where inL ji
UTU

,
=  and jnR ji

UTU
,

= , SL and SR are the wave speed estimates. Several 

formulations are available for calculation of SL and SR. The approach proposed by Toro [1992] is 

used here: 
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Finally, the normal flux for the conservative variable uh and hψ  are calculated from: 
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and 



76 

 

( )
⎪⎩

⎪
⎨
⎧

<

≥
=

∗

∗

0       ~
0       ~

,~

1

1
4

uif

uif

R

L
RL

ψ

ψ

E

E
UUE              (24) 

where E1 is the normal flux calculated using (5) for the conservative variable h. E3and E4 are the 

third and fourth components of E(UL, UR) respectively.  

Source Terms 

The source term vector consists of bed slope, pollutant diffusion, and friction slope. It is 

of great importance to correctly treat the source terms in order to obtain accurate results. 

Bed Slope 

For the treatment of bed slope, there have been a few discussions in the literature [e.g., 

Bermudez and Vazquez-Cendon, 1994; Bermudez et al., 1998; Leveque, 1998; Zhou et al., 2001; 

Bradford and Sanders, 2002; Delis, 20003]. In this paper, the triangular grids facilitate the 

computation of the bed slope. Denote ),,( iii zyx  as local coordinates associated with vertex i of 

a certain triangle grid, where iz is the bed elevation (Fig 2).The plane is defined by  
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or cbyaxz ++=  in compact form with a and b = the coefficients. Now, the slopes of the 

triangular grid are simply calculated as: 
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In order to alleviate the numerical errors in still water situations, a combination of two 

techniques is used. Firstly, the water surface elevation (H) instead of the water depth (h) is 

reconstructed. The water depth values at left and right sides of an edge are calculated by 

subtracting the corresponding bed elevation from water surface elevation. This can prevent the 

strong depth fluctuations due to the arbitrary bed geometry [Farshi and Komaei, 2004]. In next 

step, the approach suggested by Bradford and Sanders [2002] is used in the calculation of the bed 

slope term: 
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Diffusion Source Term 

The integral of the diffusion term is modified by applying the Gauss theorem:  

( ) ( )∫∫ Γ
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ii

dhdVh
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nKK ψψ              (29) 

This line integral is approximated by: 
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( )ijh ψ∇K can be approached by: 

( ) ( )( ) ( ) ( )( )( )jRLj
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ijij hhhhh ∇−∇
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≈∇−∇=∇ ψψψψψψ ,min
2

KKKK         (31) 

where ( ) jhψ∇ and is the face gradient calculated during the linear reconstruction. h is evaluated 

as ( )RL ψψ ,min  in order to avoid diffusion in dry/wet edges.  
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Friction Slope 

Friction slope is discretized in a point-wise manner, say, evaluated at the centroid. 

Time Integration 

If a purely explicit scheme is used to solve the equations system (20), the stability is 

determined by the combination of advection and diffusion. It is well known that the time step is 

restricted by Courant–Friedrichs-Lewy (CFL) number and the Peclet (Pe) number, so that 

1≤+ PeCFL                 (32) 

with 
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where i is the cell index and j denotes the edge, di represents the whole set of distances between 

the ith centroid and the those of its neighboring cells, and ( ) jii Vl Γ= /min . 

In order to reduce the numerical instabilities related to the friction slope when the water 

depth is very small and circumvent the time constraint by Peclet number, a semi-implicit method 

is used. The system can be split into two ordinary differential equations: 
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The right hand side (RHS) of Equation (35) consists of advection and bed slope source 

term while the RHS of Equation (36) includes friction slope and pollutant diffusion source terms.  

In the first step, Equation (35) is solved by an explicit method as described below. In next step, 

using the values obtained from the first step as the initial conditions, Equation (36) is solved 

using an implicit method (BDF) provide by an advanced ODE solver CVODE [Hindmarsh and 

Serban, 2005]. 

The explicit time integration is performed by the first-order Euler method or a total 

variation diminishing (TVD) Runge-Kutta method [Shu and Osher, 1988] which have been used 

in many literatures thanks to its stability and high-order accuracy (third-order): 
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where f is the right hand side of Equation (35). 

Since the explicit scheme is only applied to advection, the time step is limited by CFL 

condition. Therefore, an adaptive Δt is used in the model according to the formula 
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              (38) 

Boundary Conditions 

Two types of boundaries, open boundary and solid wall boundary, are considered in the 

model. Details of their implementation were discussed in Chapter 2. 
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Results and Discussion 

In order to test the stability and accuracy of the model, it has been applied in three test 

cases. The first one solves a pollutant transport in a square cavity, which is used to validate model 

in simulating pollutant advection. The second test case involves a microscale pollutant transport 

scenario following an asymmetric dam break. The objective of this test case is to test the ability 

of the model in prediction pollutant transport by shocks or sharp fronts under different magnitude 

of diffusion. The third one is a mesoscale application, i.e., modeling pollutant transport by tidal 

flow and storm surge in Galveston Bay off the coast of Texas during hurricane Ike. 

Advection of Pollutant in a Square Cavity 

The first example is about the advection-dominant pollutant transport (K = 0) in a square 

cavity with smooth topography [Komatsu et al., 1997], which is used to validate the model. The 

computational domain is a 9 kilometer by 9 kilometer square channel with the Manning’s 

roughness of 0.025 s/m1/3 and the bed slope S0x = S0y = -0.001. The domain was decomposed into 

85264 triangles. Initially, the uniform flow conditions were imposed on the whole domain, i.e., u 

= v = 0.5 m/s and h = 0.2485 m. The initial pollutant concentration was given by the 

superposition of two Gaussian distribution: 
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with x1 = y1 = 1400 m, and x2 = y2 = 2400 m, ψ1 = 10 and ψ2 = 6.5, and δ1=δ2=264. The free 

outfall or transmissive flow conditions were applied at all the boundaries. Analytically the 

pollutant concentration moves along the diagonal (x = y) of the domain at the constant speed u = v 

= 0.5 m/s with its shape preserved. 
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Figure 3-1 shows the contour maps of pollutant concentration at three simulation times t 

= 1628, 5235, and 9600 s. The profiles of pollutant concentration are given in Figure 3-2. Close 

examination of the results indicates that the shape of pollutant plume was preserved fairly well. A 

further comparison with the published simulations of SRNH [Benkhaldoun et al., 2007] 

demonstrates the performance of this model is satisfactory with the error of -9.0% for the 

maximum concentration (Table 1). The accuracy of this model is almost same with that of SRNH 

on the fixed meshes. The advantage of this model is that it is easy to implement. The numerical 

results, however, are still affected by numerical diffusion as the simulation time increases. 

Overall, this simulation is convincing confirmation of the model’s ability to predict advection of 

pollutant by shallow water flow. 

 

 

t = 1628 s

Min = -0.0007 
Max =9.6537 
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Figure 3-1:  Spatial distributions of pollutant concentration over the square cavity at three 
simulation times. 

t = 9600 s

t = 5235 s

Min = -0.0014 
Max = 9.1021 

Min = -0.0013 
Max = 9.3260 
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Figure 3-2:  Pollutant concentrations along the diagonal of the square cavity at three simulation 
times. 

 

Table 3-1:  Comparison of this model with the exact solutions and the SRNH scheme with Van 
Albada limiter for the pollutant transport in a square cavity at t = 9600 s. 

 
 

Pollutant Transport Following an Asymmetric Dam Break 

This is a microscale test case used to demonstrate the capability of the model in 

predicting pollutant transport by shocks or sharp fronts under different magnitude of diffusion. 

This example was adapted from Murillo et al. [2005]. The laboratory set-up plan view is shown in 

Figure 3-3 with flat bed (S0x = S0y = 0) and a Manning roughness of 0.01 s/m1/3. The 

 Exact SRNH Model 
# of elements  85504 85264 

# of nodes  43073 42749 
Minimum of 
concentration 

0.0 -0.0054 -0.0014 

Maximum of 
concentration 

10.0 9.12 (-8.8%) 9.10 (-9.0%) 



85 

 

computational domain was decomposed into 2330 triangles. Initially the flow depth was set to 0.5 

m and 0.1 m respectively at the lower and upper half which were separated by a gate (dam) 

shown in Figure 3-3. Flow velocities were set to zero. The initial concentration is a circular step 

distribution around the gate, defined as: 
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⎨
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0

       1
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rrif
rrif

yxψ  with ( ) ( )( )2
1
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Figure 3-3:  Plan view of the laboratory set-up of the asymmetric dam break experiment (from 
Murillo et al. [2005]). 

 

Three numerical experiments were conducted with different dispersion coefficients: (1) 
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K . Figure 3-4 shows the numerical 

results. In the advection-dominant case (e.g., K = 0), the pollutant concentration varies 

remarkably across the domain. At t = 15 s, the concentration varies from 1 to 1.9. In the second 

experiment, the dispersion effect is included. The spatial variations of pollutant concentration 

diminished. In the third test case where the dispersion was dominant, the pollutant concentration 
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is almost same across the domain in a short period of time, say, t = 5 s. One advantage of this 

model is that the time step is not restricted by the Peclet number by implicit treatment of the 

diffusion term. 

 

 

 

 

 

 

t = 5 s, Kxx= Kyy= 0 t = 15 s, Kxx= Kyy= 0 

t = 5 s, Kxx= Kyy= 0.01 t = 15 s, Kxx= Kyy= 0.01



87 

 

 

 

 

Figure 3-4:  Spatial distribution of pollutant concentration following an asymmetric dam break 
under different magnitude of dispersion. 

Pollutant Transport in Galveston Bay 

This test case involves a contamination scenario in Galveston Bay of Texas, which 

connects the Port of Houston and the Gulf of Mexico. It is used to demonstrate the capabilities of 

the model in predicting the mesoscale flow and pollutant dynamics driven by a storm surge and 

tidal flow. The area of the bay is about 2805 km2 and its bathymetry is shown in Figure 3-5. The 

domain is quite complicated with respect to both geometry and topography. There are 17 islands 

included in the domain, and the bathymetry varies from very deep in the coastal area and the 

Houston ship channel to very shallow within the bay.  

The domain is decomposed into 3397 triangles (Figure 3-5) with the structure slightly 

different from the one used in Aizinger and Dawson [2002]. Following Aizinger and Dawson 

[2002], the bottom friction coefficient was set as 0.004. The Coriolis parameter was 7.07E-5 

t = 5 s, Kxx= Kyy= 1 t = 15 s, Kxx= Kyy= 1 
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according to Equation (5). The solid wall boundary condition was imposed on the land and island 

boundaries. An open boundary condition was applied at the interface between the bay and the 

Gulf of Mexico as shown in Figure 3-5. The measured tidal data from 0:00 of September 1 to 

19:00 of September 15, 2008 (local time) at the Galveston Pleasure Pier, TX 

(http://tidesandcurrents.noaa.gov/) was used. The tidal elevations were influenced by Hurricane 

Ike during September 12 and 13 as can be observed in Figure 3-6. It is also noted that there were 

several unusually high spikes on September 8, 9 and 15 with very short duration, which may be 

caused by the measurement errors. At 19:00 of day 6, a pollutant source was placed at a point 

(3.28E+5, 3.25E+6) meters of the ship channel, with a steady rate of 500 m3/s. 

 

 

Figure 3-5:  The bathymetry (left) and computational mesh (right) of the Galveston Bay. The 
green points represent three stations where the simulation is done. 
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Figure 3-6:  Time series of water elevations at the open boundary. Note that the spikes are 
measurement errors since the NOAA tide gauge data was not verified at the time the model was 

developed and were not removed for the simulation 

 

Figure 3-7 shows the predicted elevations and pollutant concentration from day 6 to day 

15 at three locations, Station 1 (2.94E+5, 3.22E+6), Station 2 (3.31E+5, 2.25E+6), and Station 3 

(3.53E+5, 3.27E+6) meters (Figure 3-5). Station 1 is located at the narrow inlet from the Gulf in 

the bottom left of the domain. Station 2 is at the inlet in the deep ship channel from Gulf to the 

Galveston Bay. Station 3 is located at a shallow narrow channel within the bay in the bottom right 

of the domain. The results indicate a phase lag of approximately 1.2 hours between the open 

boundary and the three locations, which is consistent to the observations by NOAA 

(http://tidesandcurrents.noaa.gov/). The phase lags between these three stations are negligible 

which are reasonable based on the uniform boundary conditions and the similar distances 

between the open boundary and the station.  
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Figure 3-7:  Time series of predicted water elevations from day 6 to day 15 (left) at the 3 stations. 
The zoom-in figure on the right shows the temporal variation of water surface elevations in 1 day.  

 

Additional insight into the flow dynamics is gained by considering the spatial distribution 

of water surface elevation and pollutant over the entire domain. Figures 3-8 (a), (b) and (c) show 

three snapshots of the water surface elevations at different computational times. Figure 3-8 (a) 

shows the middle of an ebb tide. The tides are relatively low out in the Gulf, somewhat higher in 

the middle part of the bay, and even higher in bottom left of the bay which is due to the narrow 

outlets to the other parts of the bay and the Gulf. The variation in tidal amplitude becomes fairly 

small within the bay. Figures 3-8 (b) and (c) are two snapshots of the tidal elevation at the middle 

and peak of a flood tide during the Hurricane Ike. The tidal waves were still progressing up into 

the bay, with the water surface elevation much higher than normal tidal cycles. As can be 

observed in Figure 3-8 (c), the water surface elevations were between 0.5 m to 1 m in most parts 

of the bay.  

Corresponding to the times for the figures on the left of Figure 3-8, three snapshots are 

shown on the figures on the right to demonstrate the spread of pollutant caused by tidal flow. It is 

easy to see that the storm surge caused by the Hurricane Ike significantly extended the polluted 

area. The comparison between the polluted area before the Hurricane (Figure 3-9 (a)) and after 
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(Figures 3-9 (b) and (c)) indicates the storm surge propagated the pollutant much deeper into the 

Bay and out to the Gulf.  The experiment shows that the model is very stable and robust in 

simulating the mesoscale flow dynamics and pollutant transport driven by storm surge. 

 

 

a 

b 

d 

e 
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Figure 3-8:  Spatial distribution of predicted water elevations (left) and pollutant concentrations 
(right) over Galveston Bay at 3 computational times as indicated, i.e., before the storm surge and 

during storm surge. 

Conclusions 

In this study, a fully-coupled model of shallow water flow and pollutant transport was 

developed as an important module of PIHM-Hydro and tested over a range of physical and 

numerical conditions. The model is based on a cell-centered upwind finite volume method using 

the HLL approximate Riemann solver. The multidimensional linear reconstruction technique and 

multi-dimensional slope limiter discussed in Chapter 2 were also used here to achieve a second-

order spatial accuracy.  

The advantages of this model are that (1) it is capable of accurately simulating the 

pollutant transport by shallow water flow by fully coupling these processes physically and 

numerically; and (2) the time step is not restricted by the Peclet number by implicit treatment of 

the diffusion term. As a module of the PIHM-Hydro modeling system, this model also shows its 

c f 
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advantages as discussed in Chapter 2 in terms of handling complicated geometry by using the 

Delaunay triangulation based on Shewchuk’s algorithm, and producing accurate and stable 

solutions over a wide range of spatial scales and hydrological events such as dam break and storm 

surge stably by using the approximate Riemann solver and the semi-implicit time integration 

technique based on the CVODE.  

The model has been applied to various cases across multiple scales. The test case of 

pollutant transport in a square cavity shows the model can predict advection of pollutant by 

shallow water flow very well. Application of the model in a microscale pollutant transport 

following dam break compared the effects of advection and dispersion on pollutant transport, and 

show the advantage of the model in that the implicit treatment of the diffusion term makes it 

stable and it time step restricted by the Peclet number. The model is further applied to a 

mesoscale experiment about pollutant transport in Galveston Bay. This test case shows that the 

model is very stable and robust in simulating the mesoscale flow dynamics and pollutant transport 

driven by storm surge. It also indicates that he storm surge caused by the Hurricane Ike 

significantly extended the polluted area. 
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Chapter 4 
 

INTEGRATED MODELING OF HYDROLOGY AND SEDIMENT 
TRANSPORT AT WATERSHED SCALES 

Abstract 

The Penn State Integrated Hydrologic Model (PIHM) is a spatially-distributed physically-

based hydrological modeling system for multi-process simulation [Qu and Duffy, 2007]. In this 

study, a physically-based non-equilibrium non-uniform sediment transport modeling component 

(PIHM-Sed) was developed and added to PIHM at the watershed scale. It integrates sediment 

transport for hillslope and channel processes, including the effects of surface/subsurface 

hydrological processes on hydrologic performance and sediment yield and the spatial distribution 

of erosion/deposition. At the hillslope scale (10-1000 m), the erosion processes by rain splash and 

overland flow, and sediment transport by overland flow are simulated; for the channel, the 

erosion of bed material and sediment transport by channel flow is simulated. An algorithm for 

bed armoring was also implemented in the channel component. In the model system, all 

hydrological and sediment transport processes are defined on discretized unit elements as a fully-

coupled system of ordinary differential equations (ODEs) using a semi-discrete finite volume 

method (FVM) on unstructured grids. The implementation of PIHM-Sed has been performed on a 

hypothetical storm event at the Shale Hill watershed for demonstrating the capability of the model 

in multi-process simulation at watershed scale. 
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Introduction 

From a physical point of view, sediment transport is a consequence of hydrologic 

processes operating over a wide range of time scales. In fact, the two processes are so interrelated 

that sediment transport cannot be modeled without flow modeling. 

There has been considerable work studying the linkage between hydrology and erosion 

[Horton, 1945; Bennett, 1974; Kirkby, 1978; Wischmeier and Smith, 1978; Beasley et al., 1980; 

Knisel, 1980; Ross et al, 1980; Park et al., 1982; Simons et al., 1982; Storm et al, 1987; Lane et 

al., 1988; Woolhiser et al., 1990; Gerits et al., 1990; Wicks and Bathurst, 1996; Morgan et al., 

1998; Merritt et al., 2003; Heppner et al., 2006, 2007]  and not to mention a huge amount of 

research on in-stream sediment transport [Bennett and Nordin, 1977; Han, 1980;  Chang, 1982; 

Thomas, 1982; Armanini and Di Silvio, 1988; Holly and Rahuel, 1990; Spasojevic and Holly, 

1990; Wu et al., 2000; Cao et al., 2002; Wu, 2004; Wu et al., 2004]. 

With advance in technology and a deeper understanding in the physics of hydrology, new 

strategies to characterize hydrologic responses have been put forward. Of particular note is the 

integrated hydrologic modeling [Abbot, 1986a; Abbot, 1986b; VanderKwaak, 1999; Panday and 

Huyakorn, 2004; Qu and Duffy, 2007]. According to Heppner et al. [2006, 2007], subsurface 

flow not only contributes to the surface flow but also affects erosion. Where the hydrologic 

processes and the sediment transport processes interact so frequently and intensively, it is difficult 

if not impossible to understand and predict hydrologic behavior unless they are considered as 

parts of an integrated system. The Penn State Integrated Hydrologic Model (PIHM) provides an 

integrated modeling framework for multi-process multi-scale watershed simulation using the 

semi-discrete finite volume method [Qu and Duffy, 2007]. It provides better representation of 

hydrology and may improve the performance of modeling on both hydrology and sediment 
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transport. Table 1 compares the PIHM-Sed with other physically-based hydrology and sediment 

transport models. It clearly shows that the PIHM provides a sound hydrologic modeling 

framework for sediment transport modeling. The primary objective of this paper is to develop a 

physically-based sediment transport modeling component (PIHM-Sed) for PIHM to predict 

erosion and sediment transport at the watershed scale. Table 4-1 briefly shows this framework 

that represents the processes and their interaction more faithfully by physical and numerical 

coupling. The model has been tested in a hypothetical storm event at the Shale Hill watershed.  

Table 4-1:  Characteristics of selected physically-based models of hydrology and sediment 
transport. Notations: 1D (one dimension), 2D (two dimension), U (unsaturated), S (saturated), 

U/S (unsaturated/saturated), KW (kinematice wave), DW (diffusion wave), SQ (sequential), FO 
(first-order). 

Model Hydrologic Processes Sediment Transport

  Subsurface Overland Channel Hydrological
Coupling Overland Channel

Hydrology-
Sediment 
Coupling 

KINEROS2 1D, U 1D, KW 1D, KW SQ 1D 1D SQ 
SHESED 1D, U; 2D, S; 2D, DW 1D, DW SQ 2D 1D SQ 

InHM 3D, U/S 2D, DW 2D, DW FO 2D 2D SQ 
PIHM-Sed 2D, U/S 2D, KW/DW 1D, KW/DW FO 2D 1D FO 

 

Methodology 

PIHM is a multi-process, multi-scale hydrologic model where the major hydrological 

processes are fully coupled using the semi-discrete finite volume method (FVM) on unstructured 

triangular grids (TIN) including evaporation, interception, snowmelt, overland flow, river flow, 

subsurface flow and macropore flow [Qu and Duffy, 2007]. PIHM has been successfully applied 

to watersheds of different scales [Qu and Duffy, 2007] and provides a sound hydrological 

framework for sediment transport modeling. The numerical coupling strategy is presented below, 

followed by the modeling framework. 
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Semi-Discrete FVM approach 

PIHM uses a semi-discrete finite volume formulation for coupling hydrologic processes 

[Qu and Duffy, 2007]. It discretizes rivers into linear elements, and the watershed into Delauney 

triangular elements that are generated by the domain decomposition method discussed in 

Chapters 2 and 3. A general form of the mass conservation equation for an arbitrary scalar 

variable χ can be described by the partial differential equation (PDE): 
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where χ  denotes the mass fraction of storage (dimensionless). The velocity vector is divided into 

a horizontal component U = [u, v]T and a vertical component w. By first integrating over the depth 

of a layer and then over the area of an arbitrary control volume Vi which is either a prismatic 

element or a linear element as described above, we obtain the semi-discrete finite volume form: 
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where χ  represents the average volumetric storage of χ  per unit planimetric control volume 

area Ai, Qk  is the net volumetric flux across the upper and lower boundaries (k = 1, 2), and Qj is 

the net volumetric flux through the horizontal sides. qk and qj are the volumetric fluxes Qk and Qj 

normalized by the area of the control volume respectively. The number of horizontal sides 

depends on the elements, i.e., j = 3 for prismatic elements and j = 6 for river elements (Figure 4-

1). 
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Figure 4-1:  Schematic view of the domain decomposition of a hillslope scale example. Basic 
prism element is shown to the left with multiple hydrological processes. Channel segment is 

shown to the right. The major hydrologic processes associated with elements and their 
connections are also shown [Qu and Duffy, 2007]. 

 

The vector form of equation (2) represents all processes [ ]Tpχχχ ,...,, 11=χ  within the 

control volume and forms a fully coupled local ODE system through the vertical fluxes and 

lateral fluxes. The fluxes are evaluated by appropriate constitutive relationships for specific 

processes and applications. It is noted that the semi-discrete finite volume method used here can 
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guarantee mass conservation [Leveque, 2002] and reduces all equations to a standard form [Qu 

and Duffy, 2007]. 

Model Kernel 

As discussed above, the domain is decomposed into Delauney triangles for watershed and 

lines for rivers, forming prismatic volumes in 3D which are further subdivided into layers to 

account for the physical process equations and material layers (Figure 4-1).  In each prism the 

semi-discrete FVM approach provides a convenient way to couple the mixtures of PDEs and 

ODEs for multiple hydrological processes. The PDEs are firstly reduced to ODEs by using this 

approach, and then all ODEs are associated with layers within a prism forming the “local system” 

(Figure 4-1). The prism and the local system of ODEs together are referred to as the kernel [Qu 

and Duffy, 2007]. Assembling the local systems over the entire domain leads to a “global” system 

which is solved with a state-of-the-art ODE solver. According to Qu and Duffy [2007], this 

approach is a flexible and efficient strategy for multi-process modeling in that (1) the model 

kernel represents all hydrological processes within the prism and can be easily modified for 

different applications or processes without altering the ODE solver and the domain 

decomposition for the data structure of PIHM is independent of the ODE solver; (2) the ODE 

system is solved in a fully-coupled way with no time lagging or iterative linking of processes. 

Numerical Solver 

In solving the global ODEs system, all state variables are solved simultaneously and 

advanced together temporally. The time step is adaptively determined by the fastest times scale of 

the interaction processes. Typically this ODEs system consists of very slow processes (e.g., 
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groundwater flow) and very fast ones (e.g., overland flow and channel flow), which makes it stiff. 

It requires a stiff solver. The Newton-Krylov implicit solver is a typical choice for large non-

linear stiff ODE systems [Jones et al., 2000; Jones et al, 2001]. CVODE [Cohen and Hindmarsh, 

1994] from the SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic equation Solvers) is 

used here. For stiff non-linear systems, CVODE uses the Backward Differentiation Formula 

(BDF) combined with Newton iterations, which in turn requires solution of the linear system by a 

preconditioned Krylov solver, GMRES. It is noted that CVODE runs automatically with an 

adaptive time step and order-adjustment during simulation, adjusting the step size to meet the 

local error test. This algorithm provides stable and accurate solutions for the stiff system in the 

model. 

Model Framework 

The major hydrological and sediment transport processes along with governing equations 

in PIHM are presented below. A brief discussion of the hydrological processes is first given. 

Details can be found in Qu and Duff [2007]. Then the sediment transport processes are described 

in detail. 

Hydrologic Processes 

In this version of PIHM (2.0), we consider the following hydrological processes: two-

dimensional (2-D) surface overland flow, 1-D channel flow, and 2-D subsurface flow, canopy 

interception, evapotranspiration along with their interactions. Snowmelt, macropore infiltration, 

and macroporous stormflow are not considered in this study. 
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Surface overland flow 

The transient flow of water on the land surface is simulated by the diffusion wave 

approximation of the 2-D depth-averaged shallow water equations. The kinematic wave 

approximation is also available in PIHM but not considered in this study. In diffusion wave 

approximation, the friction slope is approximated by the Manning equation and the inertial force 

including local acceleration and convective acceleration is neglected [Gottardi and Venutelli, 

1993]. It is given by  
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where oh  is local flow depth, so zhH +=  is the water surface elevation above an horizontal 

datum with zs = elevation of overland surface of grid i, 1n  and 2n are Manning roughness 

coefficients in the x and y direction, xk  and yk are the conductivities in the x and y 

direction, Hs∇ is the gradient of surface overland flow head along the direction of maximum 

slope of the triangular plane i, and kq  are the layer top and bottom input/output. Applying the 

semi-discrete FVM approach to Equation (4) yields the semi-discrete ODE: 

∑
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so qqep
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h
                                                    (6) 

where p , se  and +q  are through-fall precipitation, evaporation from the overland surface, and 

infiltration/exfiltration respectively. s
ijq  is the normalized lateral flow rate from the grid i to its 

neighbor j, calculated by: 
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where ( )ijsk  is the harmonic mean of the conductivities between the grids i and its neighbor j, 

( ) jnH∇ is the gradient between grids i and j along the normal direction of the edge j, ijL  is the 

length of edge j. 

Channel flow 

Flow through a network of rivers and channels is simulated by the diffusion wave 

approximation to the 1-D shallow water equations. The semi-discrete ODE for 1-D shallow water 

equations reduces to: 
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where ch  is the flow depth in the channel. ce  and lq  are evaporation from river and flux 

between river and sub-channel groundwater respectively. s
jq  and g

jq  are the lateral interaction 

terms for the aquifer and surface flow from each side of the channel. c
upq  and c

dnq  are the flow 

from/to upstream and downstream channel segments respectively, which are estimated using 

Equation (7). 

Unsaturated zone 

The subsurface layer is partitioned into two parts by groundwater table, unsaturated zone 

and saturated zone separated. The unsaturated zone is governed by gravitational and surface 

tension forces, while the saturated zone is governed by the gravitation alone. Generally, flow in a 
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porous medium is much slower than surface flow. Water movement in an unsaturated zone is 

even slower than in a saturated zone. Applying the semi-discrete FVM approach to Richard’s 

equation [Richard, 1931] leads to the ODE in the unsaturated zone: 

tuu eeqq
t

h
−−−=

∂
∂ −+                 (9) 

where uh  is the equivalent depth of moisture storage in the unsaturated zone. −q  is the flux 

between saturated and unsaturated zones using Richard’s equation, referred to as recharge to/from 

the water table. ue  and te  represent the evaporation from upper soil layer and the transpiration 

respectively. 

Groundwater flow 

Applying the semi-discrete FVM approach to Richard’s equation also yields the ODE for 

Darcy-type groundwater flow in the saturated zone: 
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where gh  is the equivalent depth of moisture storage in the saturated zone. g
ijq  is the normalized 

lateral groundwater flow rate from the grid i to its neighbor j, which can be calculated by an 

equation similar to (7): 
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where ( )
ijgk  is the harmonic mean of the hydraulic conductivities between the grids i and its 

neighbor j, ggg zhH +=  is the water surface elevation above an horizontal datum with zg = 
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elevation of datum of grid i, and ( )jgnH∇  is the gradient between grids i and j along the normal 

direction of the edge j. 

Interception 

A fraction of precipitation is intercepted by vegetation and canopy before it impacts the 

ground. Water intercepted by vegetation is a function of precipitation ( vp ), evaporation from 

canopy ( ve ), as well as through-fall and stemflow or effective precipitation to soil surface ( p ): 

pep
dt

dh vvv −−=                      (12) 

where vh  is the interception storage. p  is estimated based on an exponential formulation [Rutter 

and Morton, 1977]. 

Infiltration 

Infiltration is estimated based on the approach of Freeze [1978]: 

( ) ( )
d

zhzh
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q
+−+

=+               (13) 

where qk  is the hydraulic conductivity of the top soil layer and sl  is a specified vertical distance 

across which the head gradient is calculated. This formulation is based on continuity in hydraulic 

head across the surface skin thickness ( sl2 ). 
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Evapotranspiration 

Actual evapotranspiration (ET) is the sum of transpiration ( te ), and evaporation from 

vegetation interception ( ve ), overland flow ( se ), river surfaces ( ce ), and upper soil layer ( ue ). 

ve , se and ce  are estimated using the Pennman Equation [Bras, 1990] while ue is estimated using 

the modified Pennman Equation [Schmidt et al., 2005]. te is calculated based on the formulation 

of Blondin [1991]. Readers interested in detail are referred to Qu and Duffy [2007]. 

Surface overland flow to river 

The surface flow across the bank is approximated by the formulation developed by 

Robertson [1986]. 

Unsaturated-saturated flux 

The flux between the unsaturated and saturated zone is based on Richard’s Equation by 

assuming a vertical exchange across a moving boundary (water table interface). The 

approximation equation developed by Duffy [1996] is used. 

River-aquifer flux 

The interaction items between aquifer and river in the vertical and lateral directions are 

calculated using the similar equation as (10). 
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Sediment Transport Processes 

Sediment yield from a watershed is a result of erosion, transport, and deposition by water 

flow. Within a watershed these processes can be generally partitioned into those acting on 

hillslopes and those acting in channels. On hillslopes, the rainfall events are of major importance 

in determining sediment yield. Actually, it is the rainfall and runoff during rainfall events that 

causes the sediment transport. In channels, rainfall is of minor, even negligible, importance to 

sediment transport. Channel flow continuously transports sediment. For both hillslopes and 

channels, available sediment or erodible material is one of the important factors in determining 

sediment yield.  

The principle sediment transport processes on hill slopes include (1) detachment by 

raindrop impact, (2) detachment by overland flow, and (3) overland sediment routing, which are 

also commonly incorporated in other physically-based sediment transport models [e.g., 

KINEROS2, SHESED, EUROSEM].  

Overland sediment routing 

Mass balance equation(s) can be used to represent the sediment dynamics in the water 

flow. There are two different approaches to sediment routing, one is to treat the bed material as a 

total load  as, for example, in many physically-based models at the watershed scale[e.g., 

Kennedy, 1963; Simon et al., 1965; Bennett, 1972; Foster and Meyer, 1972; Kirkby, 1980; 

Knisel, 1980; Woolhiser et al., 1990; Flanagan and Nearing, 1995; Lane et al., 1995; Wicks and 

Bathurst, 1996; Morgan et al., 1998; Heppner et al., 2006, 2007]. The other approach is to 

differentiate the bed material into bed load and suspended load as is common in river simulations 

[Bennet and Nordin, 1977; van Rijn, 1984; van Rijn, 1986; van Rijn, 1987; Armanini and Di 
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Silvio, 1988; Celik et al., 1988; Rahuel et al., 1989; Holly Jr. and Rahuel, 1990; Spasojevic and 

Holly Jr., 1990; Kassem and Chaudhry, 1998; Wu et al., 2000; Fagherazzi and Sun, 2003; Wu, 

2004]. The suspended-bed load approach can provide more information than the total load 

method but causes the additional cost of solving one more equation. It also introduces more 

parameters and may introduce extra errors since the sediment transport mechanism is so 

complicated that it is hard to tell what types of sediment should move in suspended form or in bed 

form. Moreover, it gets more difficult to solve the equation system due to the different time scales 

between bed deformation, bed load transport, and suspended load transport.  

Based on this discussion the total load approach is adopted in this watershed-scale 

physically-based model. By neglecting diffusion, the mass balance equations for sediment 

transport can be written as 
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where hc is the volume of sediment per unit area and p is the porosity of bed material. Dr and Dh 

are the detachment rates by raindrop splash and surface overland flow respectively. Equation (14) 

states that the temporal variation of sediment volume suspended in the water column is equal to 

the sum of the divergence of the sediment flux and the sediment entrainment/deposition while 

Equation (15) links the local variation in bed level to the sediment removed or accumulated at the 

bottom.   

Applying the semi-discrete FVM approach to Equations (14) and (15) yields the ODE for 

sediment routing by surface overland flow:  
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where st
ijq  is the normalized volumetric transport rate of sediment suspended in surface overland 

flow from the grid i to its neighbor j, calculated by: 

( ) ijijc
st
ij Lhq nU ⋅=                (18)  

with ijn  being the unit outward normal vector to the edge j. 

Detachment by raindrop splash 

Raindrops contribute to the sediment transport by breaking the cohesive bonds between 

soil particles and making them available for transport by overland flow [Wicks and Bathurst, 

1996]. Rainsplash detachment rate (Dr) may be a function of rainfall intensity [Meyer and 

Wischmeier, 1969; Woolhiser et al., 1990], momentum [Wicks and Bathurst, 1996], and kinetic 

energy [Morgan et al., 1998]. According to Kirkby (1980), the rainsplash detachment is 

commonly correlated to rainfall intensity although it may be related to storm energy and 

momentum. In this study, modeling this process is based on the relationships between splash 

erosion rate and the rainfall intensity. 

( ) 2phkeD orr =                                     (19) 

in which er is a constant related to soil and surface properties, k(ho) is a reduction factor 

representing the reduction in splash erosion caused by increasing depth of water. The reduction 

function takes similar although a little bit different forms. One general form is: 

( ) )exp( odo hehk −=                                     (20)  

with ed being the damping effectiveness of surface water. 
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It is evident that the equations are mostly based on empirical work. A few assumptions 

are made about these equations (e.g., drop size distribution) [Wicks and Bathurst, 1996] and some 

parameters are hard to explain physically and be measured such as soil erodibility. Therefore 

calibration needs to be done to obtain the appropriate values of these parameters. 

Detachment by surface overland flow 

Overland flows typically consist of a combination of the shallow flows of large width 

(sheet flow) and the concentrated flows in small eroding channels (rills). The soil erosion process 

is described as the sequence of (1) detachment of soil particles by raindrop, (2) transport of the 

detached soil to rills by sheet flow, and (3) transport of soil particles by rill flow. The soil erosion 

model such as RUSLE (Foster et al., 1981), ANSWERS (Beasley et al., 1980), and WEPP 

(Nearing et al., 1989) differentiate between the rill and interrill detachment. Due to the element-

based calculation of flow in PIHM, however, it is impossible to separate the subgrid processes of 

rill and sheet flows.  

The detachment by flow (Dh) essentially consists of two continuous counteracting 

processes of erosion and deposition. One common approach to their cumulation is to relate the 

flow detachment to the difference between transport capacity concentration and current sediment 

concentration [e.g., Woolhiser et al., 1990; Morgan et al., 1998; Heppner et al., 2006, 2007]. It is 

based on the assumption that the ability of water flow to erode the river bed is independent of the 

sediment it carries and is only a function of energy expended by the flow: 

( ) 0hcceD smhh −=                                    (21)  

where eh is a transfer rate coefficient, cs is the current local sediment concentration, and cm is the 

concentration at equilibrium transport capacity. Based on the analysis of Woolhiser et al. [1990] 

and Heppner et al. [2006, 2007], the following equation is used to calculate eh: 
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where sω  is the settling velocity of sediment particle, ζ  and ξ  are the coefficients for 

deposition [-] and entrainment [L-1] respectively. 

The sediment discharge at the watershed outlet gives the sediment yield from the entire 

watershed. It is determined by the sediment availability and the transport capacity of the river 

flow. The sediment available at a river reach comes from the sediment input from overland flow, 

sediment inflow from upstream, detachment of local river bed by channel flow with bank erosion 

ignored in this version of model. Usually sediment particles are not uniform in natural rivers. 

Therefore the sediment size distribution is considered in calculation of sediment transport 

capacity and sediment routing. It makes the model capable of simulating the vertical variation in 

particle size distribution of the bed material, the bed armouring process. The principle sediment 

transport processes in channel are nearly the same as those for hillslope except that raindrop 

splash erosion is neglected in channel flow and the lateral inflow of sediment from overland 

surface flow is important.  

Channel sediment routing 

Sediment routing through a network of rivers and channels is simulated using the same 

approach on hillslope. The semi-discrete ODE for 1-D channel sediment routing reduces to: 
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where ct
upq  and ct

dnq  are the normalized volumetric transport rate of sediment suspended in channel 

flow from/to upstream and downstream channel segments respectively, which are estimated using 

Equation (18). 

Detachment by channel flow 

Detachment by channel flow is calculated based on the same equation (21) for surface 

overland flow. 

Sediment transport capacity by surface overland flow and channel flow 

There are numerous equations for sediment transport capacity, and most have been 

developed and tested for relatively deep and mildly sloping flow conditions, such as streams and 

flumes [Woolhiser et al., 1990]. Overland flow transport capacity is influenced by many factors 

including runoff rate, flow velocity, slope steepness, transportability of detached soil particles, 

and even the raindrop impact [Tayfur, 2002]. Typical formulations can be divided into shear 

stress-based, stream power-based, and unit stream power-based.  

According to the experimental work by Alonso et al. [1981], Julien and Simons [1985], 

and Govers [1990], the transport capacity equation of Engelund-Hansen [1967] is appropriate for 

overland flow as for example in KINEROS2 [Woolhiser et al., 1990], SHESED [Wicks and 

Bathurst, 1996], and InHM [Heppner et al., 2006, 2007]:  
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where fghSu =* is the shear velocity with Sf the energy slope, d is the sediment particle 

diameter, and wss ρργ =  is the sediment specific gravity.  

 For a channel, there are a large number of sediment transport equations. All of them 

contain some empirical components and no single equation yielded good results for all river and 

sediment conditions. However, according to White et al. [1975], Alonso [1980], and Bathurst et 

al. [1987], the Engelund-Hansen [1967] total load equation (25) is one of those that appear more 

generally applicable. Therefore, Equation (25) is used to calculate transport capacity for both 

surface overland flow and channel flow. 

Bed Armoring Process 

This model considers a sediment size distribution, thereby enabling simulation of the bed 

armoring process. This process is important in river and channel sediment transport modeling, 

especially for gravel-bed rivers. In this model the river bed is divided into layers and the bed 

armoring is done by transporting the sediment by size fraction. This leads to vertical variations in 

particle size distribution in river bed material [e.g., Bennett and Nordin, 1977].  

In this model, the available bed depth is divided into two or three layers depending on 

erosion or deposition: active layer and parent layer, or active layer, middle layer, and parent layer. 

The active layer is set to 2d50 of the parent layer particle distribution, where 2d50  is the particle 

diameter for which 50% of the bed material is finer. The algorithm is described as follows: 

 (1) Initial condition: the bed is divided into two layers, i.e., active layer and parent layer. 

(2) If erosion occurs at time step it , the flow will detach the sediment from the active 

layer according to the residual transport capacity (RTC) for different size classes, where the RTC 

denotes the difference between the existing sediment suspended in the water column and the 
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transport capacity. At the end of it , if any size of sediment still exists, the active layer will exist 

even if the RTC for a certain particular size is larger than the available in the active layer. 

Otherwise, jump to step (4). 

(3) If the active layer still exists, the corresponding lost volume of sediment fills the 

active layer from the lower layer (middle layer or parent layer depending on two or three layers) 

with the same composition as that layer.  

If there is not enough sediment in the lower layer: for the case of two layers all available 

sediment fills the active layer and the parent layer vanishes; for the case of three layers, the 

middle layer vanishes, the sediment of parent layer also comes into the active layer, and if there is 

still not enough sediment, the parent layer vanishes. When there is not enough sediment from 

below to replenish the active layer, the thickness of the active layer will be less than 2d50. 

(4) If the active layer is eroded away, a thickness of lower layer equal to 2d50 will become 

the active layer if there is enough in the lower layer. If there is not enough in all the lower 

layer(s), the thickness of the active layer will be less than 2d50. Then steps 2 to 4 are repeated. 

(5) In the case of deposition occurring at time step itΔ , if the thickness of active layer is 

less than 2d50, the composition of the active layer will change and there is no further action; 

otherwise if the deposition depth is less than 2d50, then a part of active layer will turn into the 

middle layer, and the rest of the active layer and the deposited sediment will be mixed as the new 

active layer (2d50  thick) ; otherwise if the deposition depth is greater than 2d50, then all the active 

layer and part of the deposited layer will turn into the middle layer, and the rest of the deposited 

sediment becomes the new active layer (2d50  thick). 
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Results and Discussion 

Next we apply the model to a hypothetical rainfall event in the Shale Hills watershed. 

The objective of this example is to demonstrate the capability of the model in a multi-process 

simulation at watershed scale. The Shale Hills watershed is 19.8 acres in area in the Valley and 

Ridge physiographic province of central Pennsylvania (Figure 4-2). The elevation ranges from 

258.2 m to 310.2 m (Figure 4-2). The watershed is decomposed into 566 triangles and the river is 

discretized into 21 segments (Figure 4-3). A 60-minute hypothetical rainfall event is designed as 

shown in Figure 4-4. 

 

 

 

 

Figure 4-2:  The DEM (digital elevation map) of the Shale Hill watershed. 
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Figure 4-3:  Domain decomposition of the Shale Hill watershed. 

 

 

Figure 4-4:  A hypothetical rainfall event for the Shale Hill watershed experiment. 

 

The initial conditions for ground water table, unsaturated soil moisture equivalent depth, 

surface overland flow depth, stream flow depth, and sediment load are 0.30 m, 0.08 m, 0.000001 

m 0.000001 m, and 0 respectively. No-flow boundary conditions are forced on the surface flow, 
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subsurface flow, and sediment flow around the watershed perimeter. The zero-depth-gradient 

boundary condition is set at the stream outlet. The bed material is assumed composed of 60% of 

coarse silt (0.0004 m), 30% of coarse sand (0.002 m), and 10% of shale chips (0.02 m). 

Figure 4-5 shows the hydrograph and sedigraph at the outlet. Comparison of the Figure 4-

4 (a) and (b) illustrates how the water flow controls the sediment discharge. The water discharge 

and sediment discharge increase from early times to the time of peak flow, converging on the 

channel, and then decrease thereafter. The temporal variations in sediment discharge follow those 

in water discharge. Another interesting phenomenon is that although the first period of rainfall is 

very small, it doe increase the antecedent moisture preceding the second intense rainfall event. It 

makes more rainfall in the second event quickly turn into runoff and produces more severe 

erosion as will be discussed next.  

Figure 4-6 shows areas of cumulative erosion and deposition at t=60 min. It is evident 

that erosion occurs in most area of the watershed due to the intense short-duration rainfall. 

Apparently the spatial distribution of cumulative erosion and deposition follows a certain pattern. 

By comparing Figure 4-6 and the bed slope in Figure 4-7, we can see that the spatial distribution 

of cumulative erosion and deposition follows the one of the bed slope. Erosion occurs on where 

the slope gradient is high while sediment deposits in the areas near the stream where the slope 

gradient is small and sediment concentration in the water flow is high.   
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Figure 4-5:  The hydrograph and sedigraph at the outlet of the Shale Hills watershed. 
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Figure 4-6:  The spatially variable sediment transport process over the watershed. 

 

Figure 4-7:  The slope gradient (degree) of the Shale Hills watershed. 

Conclusions 

In this study, PIHM-Sed, a spatially-distributed, physically-distributed sediment transport 

component at the watershed scale, is developed and fully coupled with the hydrological processes 

in the PIHM modeling system. It makes a unique contribution to sediment transport modeling in 
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that for the first time PIHM-Sed “fully-couples” hydrology and sediment transport physically and 

numerically. It integrates sediment transport for hillslope and channel processes, including the 

effects of surface/subsurface hydrological processes on hydrologic performance and sediment 

yield and the spatial distribution of erosion/deposition. PIHM, a pioneer work of Qu and Duffy 

[2007], integrates the major hydrological processes at the watershed scale using the semi-discrete 

finite volume method, providing a sound hydrologic modeling framework for sediment transport 

modeling.  

A preliminary testing of PIHM-Sed has been done using a hypothetical storm event at the 

Shale Hill watershed. This example shows how this model captures the dynamics of multiple 

processes including hydrology and sediment transport at the watershed scale. 

This is only the first step in the development of PIHM-Sed. Future efforts will rigorously 

test PIHM-Sed in simulating multiple processes against the field measurement at the different 

scales of watersheds such as small-, meso- and large-scale. It is doubtless that there are very few 

data sets appropriate to such tests. It was very difficult to find one when this study presented here 

was done.  With the continuing evolution of the PIHM modeling system, PIHM-Sed, as one of its 

component, will be integrated with the new-version of hydrology model so that its capability in 

sediment transport modeling will be enhanced. 
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Chapter 5 
 

SUMMARY AND FUTURE WORK 

Summary 

Accurate prediction of the hydrodynamics, sediment and pollutant transport over a wide 

range of spatial scales and the extreme hydrological events (e.g., inland flood, storm surge) has 

been a challenge and has been receiving more attention given the potential occurrence of extreme 

hydrological events caused by climate change and their catastrophic nature which has caused 

huge loss of life and wealth. To solve this challenge, the overall goal of this study is to develop a 

modeling system to predict the hydrodynamics, sediment and pollutant transport in rivers, 

floodplains, coastal areas and their watersheds. The main conclusions obtained from this study 

are summarized below. 

In Chapters 2 and 3, a two-dimensional (2-D) finite volume model (PIHM-Hydro) was 

developed to fully couple the hydrodynamics, sediment and pollutant transport at the scale of 

river, floodplain, and coastal area. This is the first 2-D high-order model to fully couple shallow 

water flow and sediment transport in the successful simulation of a real flow field. The model is 

based on standard upwind finite volume methods using approximate Riemann solvers on 

unstructured triangular grids. A multidimensional linear reconstruction technique and 

multidimensional slope limiter were implemented to achieve second-order spatial accuracy. 

Model efficiency and stability are treated using an explicit-implicit method for temporal 

discretization with operator splitting. PIHM-Hydro is capable of handling complicated geometry, 

producing accurate and stable solutions over a wide range of spatial scales and hydrological 

events, and simulating accurately the interactions of hydrodynamics, sediment and pollutant 
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transport. These advantages of PIHM-Hydro have been illustrated by its successful application on 

the test cases where multiscale physical processes are dominant over a wide range of spatial 

scales.  

In Chapter 4, I developed a spatially-distributed physically-based sediment transport 

modeling component at the watershed scale (PIHM-Sed) which is fully coupled with the 

hydrological processes within the Penn State Integrated Hydrologic Model system (PIHM). This 

is the first spatially-distributed physically-based model to “fully-couple” hydrology and sediment 

transport in terms of physical and numerical coupling. It integrates the hillslope and channel 

processes, and is capable of predicting major surface/subsurface hydrological processes, sediment 

yield as well as spatial distribution of erosion/deposition. In the model system, all hydrological 

and sediment transport processes are defined on discretized unit elements as a fully-coupled 

system of ordinary differential equations (ODEs) using a semi-discrete finite volume method 

(FVM) on unstructured grids. Application of PIHM-Sed to a hypothetical storm event at the Shale 

Hill watershed illustrates its capability in multi-process simulation at watershed scale. 

In addition to the three papers presented in this dissertation, two C codes named PIHM-

Hydro and PIHM-Sed have been developed to implement these models. The PIHM-Hydro is the 

implementation for the first two papers while PIHM-Sed is corresponding to the third papers.  

Future Work 

In the light of the main findings in this dissertation, some suggestions are given as 

follows for improvement of the existing works: 

(1) A comprehensive comparisons need to be done in future. First, PIHM-Hydro needs be 

compared with other numerical methods such as finite element methods and finite difference 

methods such as MacCormack method and composite method. Second, the performance of the 
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numerical methods needs to be compared on the unstructured grids and structured grids. Third, 

PIHM-Hydro needs to be compared the approximation methods or hydrologic routing methods 

including diffusion, kinematic approximation, Muskingum etc. 

(2) The source code of PIHM-Hydro needs to be further examined to test its stability and 

robustness. A more user-friendly version of PIHM-Hydro should be developed and further 

embedded in PIHMgis. 

(3) PIHM-Hydro should be applied to more gauged rivers and estuaries to test its 

performance in prediction of sediment and pollutant transport in natural flow fields. 

(4) The transport capacity equations for channel flow should be further explored in 

PIHM-Sed works.  

(5) PIHM-Sed should be applied to some gauged watersheds to test its performance. 
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