
The Pennsylvania State University

The Graduate School

PERFORMANCE MODELING AND RESOURCE ALLOCATION FOR

ADAPTIVE AGENT-BASED SYSTEMS

A Thesis in

Industrial Engineering

by

Shanmuga-Nathan Gnanasambandam

c© 2007 Shanmuga-Nathan Gnanasambandam

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

December 2007

The thesis of Shanmuga-Nathan Gnanasambandam was reviewed and approved*

by the following:

Soundar R.T. Kumara
Allen E., and Allen, M., Pearce Professor of Industrial Engineering
Thesis Adviser
Chair of Committee

M. Jeya Chandra
Professor of Industrial Engineering

Tao Yao
Assistant Professor of Industrial Engineering

Jun Shu
Assistant Professor of Supply Chain

and Information Systems

Natarajan Gautam
Associate Professor of Industrial Engineering
Texas A&M, College Station
Special Member

M. Jeya Chandra
Professor of Industrial Engineering
Acting Head of the Harold and Inge Marcus

Department of Industrial and Manufacturing
Engineering

*Signatures are on file in the Graduate School.

Abstract

Applications are increasingly becoming networks of individual application compo-

nents spread over an infrastructure of physical resources (servers and computing

entities). Such distributed agent-based applications are not only prevalent in mil-

itary domains but also in commercial domains such as data centers. To assure the

survivability of a distributed application, repeatedly estimating what sort of multi-

dimensional guarantees (such as response time or availability) can be made as a

function of the offered load and environmental conditions is paramount. This thesis

studies how such guarantees can be computed and negotiated in a distributed MAS

that is situated on an unreliable infrastructure.

Firstly, this work concentrates on identifying relevant service-level attributes that

can be estimated for the failure-prone infrastructure. Queueing models with single and

multi-class traffic are studied in scenarios with breakdown, repair and catastrophic

failure, and are utilized for the estimation of performance and reliability attributes in

steady state. These analytical results serve as internal models for the agents which

aid them in evaluating the quality of service that can be attained given the environ-

mental conditions (stresses and information load). Secondly, two resource allocation

mechanisms are studied that are used to assign the agents to the nodes forming the in-

frastructure which are constrained by capacity, and are non-homogeneous in terms of

iii

their capability and the stresses experienced. Since the assignment problem is in gen-

eral NP-hard, a few allocation heuristics with varying roles on the part of the agents

and the infrastructure are proposed. Finally, in order to use resources efficiently,

a usage price is computed based on the applications demand for the service-level

attributes (which are the information goods sold by the infrastructure).

The main contributions of this work are the analytical solutions for the queueing

models which include multi-class traffic, service disruption (both temporary and

catastrophic failure) and non-preemptive priority scheduling. The analytical models

pave the way for rapid negotiation between the MAS and the infrastructure as opposed

to relatively slower simulation models. The analytical solutions are applicable to other

domains including web-servers and hosting. The other contribution is the study of

decentralized mechanisms that aid in the negotiation of quantitative service-level

agreements in multi-agent systems and, in general, service-oriented architectures.

While negotiation protocols and methods are widely studied, automatic negotiation

using internal models are novel to this work, especially to distributed MAS.

iv

Contents

List of Figures ix

List of Tables xi

Acknowledgments xii

Chapter 1 Introduction 1
1.1 Distributed Application And its Multi-Scale Nature 3

1.1.1 Abstraction . 3
1.1.2 Research overview . 5
1.1.3 Multi-Agent Application . 6

1.2 Research Objectives . 6
1.2.1 Problem 1: Performance models for the MAS 7
1.2.2 Problem 2: Allocation of agents on the computing infrastructure 8
1.2.3 Solution Methodology and Scope 9

1.3 Organization of Research and Problems Addressed 11

Chapter 2 Problem Description and Literature 13
2.1 Analytical Queueing Models for Determining QoS 13

2.1.1 Queueing systems with breakdown: single-class case 14
2.1.2 Queueing systems with catastrophic failure: multi-class case . 15

2.2 Brief Tutorial on Generating Functions 16
2.2.1 Generating functions . 16
2.2.2 Quasi-Birth and Death Processes 18

2.2.2.1 Examples of QBD processes 19
2.2.3 Matrix Geometric Method (MGM) 21
2.2.4 Systems with breakdown . 22
2.2.5 Using Generating functions 23

2.3 Allocation Problems . 24
2.4 Pricing Information Goods . 26
2.5 Negotiation of Price and QoS . 28

v

2.6 Non-Pricing Based Control Mechanisms for MAS 29
2.7 Distributed computing versus agent-based computing 32

Chapter 3 Research Methodology 34
3.1 Introduction . 34

3.1.1 The Problem at a Glance . 34
3.1.2 Practical Questions . 36
3.1.3 Structure of this chapter . 36

3.2 Definitions and Domain Information 37
3.2.1 Definitions . 38
3.2.2 Model Parameters . 42
3.2.3 Objectives of the Application and the Infrastructure 42

3.2.3.1 Infrastructure’s Problem 44
3.2.3.2 Application’s Problem 45
3.2.3.3 Who controls what? 46

3.3 Overview of UltraLog . 47
3.4 DMAS based Application Development: A Case Study 48

3.4.1 Continuous Planning and Execution Society Overview 49
3.4.2 Terminology . 50
3.4.3 The Concept of TechSpecs Based Design 51
3.4.4 CPE Society TechSpecs . 52

3.4.4.1 Description of CPE Society Components 53
3.4.4.2 TechSpecs Organization 55
3.4.4.3 TechSpecs Representation 57

3.4.5 Translating TechSpecs to the Queueing Domain 57
3.4.6 Queueing Network Models (QNMs) 60
3.4.7 Jackson Network Model . 62

Chapter 4 Analyzing a Single-Class Agent-Based System 66
4.1 Introduction . 66

4.1.1 Agent-based computing in harsh environments 67
4.1.2 Definitions . 68
4.1.3 Performance model with temporary and catastrophic breakdowns 69
4.1.4 Organization of this chapter 70

4.2 Modeling details . 70
4.2.1 Summary of solution technique 71
4.2.2 Analysis . 72

4.3 Measures of Effectiveness . 77
4.4 Numerical Examples and Validation 79
4.5 Conclusions . 85

vi

Chapter 5 A Multi-Class Performance Model for an Agent-Based Sys-
tem with Breakdown 86

5.1 Introduction . 86
5.1.1 Overview of the modeled scenario: Agent-Based System 87
5.1.2 Modeling Objectives . 88

5.1.2.1 Performance model with catastrophic and temporary
breakdowns, and multiple classes: Model parameters 89

5.1.2.2 Measures of effectiveness 90
5.2 Queueing Model . 91

5.2.1 Two-Class Model . 91
5.2.1.1 Modeling considerations 92
5.2.1.2 Analysis . 92

5.2.2 Finding the boundary probabilities 97
5.2.3 Class-switching case . 98
5.2.4 Case where n=2 . 98

5.3 Measures of Effectiveness . 100
5.4 Numerical Examples and Validation 107

5.4.1 Validation of two-class model with temporary and catastrophic
breakdown . 112

5.5 Conclusions and Future Work . 118

Chapter 6 Model-Based Allocation and Pricing for a Multi-Agent Net-
work 124

6.1 Introduction . 124
6.1.1 Scope . 126
6.1.2 Chapter Organization . 127

6.2 Model-based allocation . 128
6.2.1 MAS Allocation Problem . 129
6.2.2 Model-Based Allocation . 131

6.3 Design of Mechanism A . 132
6.3.1 Formal definitions . 133
6.3.2 Queueing Model . 140

6.3.2.1 QoS Components . 140
6.3.2.2 Normalization . 142

6.3.3 Solution to the Principal’s problem 144
6.3.3.1 Exhaustive search 145
6.3.3.2 Greedy allocation heuristic 145
6.3.3.3 Algorithm Complexity 145

6.4 Design of Mechanism B . 147
6.4.1 Negotiation Mechanism Formalisms 148
6.4.2 Queueing Model . 154

vii

6.4.3 Solution to the Principal’s and the Agents’ problems 154
6.4.4 Algorithm Complexity . 155

6.5 Numerical Examples . 155
6.6 Conclusions . 162

6.6.1 Service Contract . 163
6.6.2 An Application: Automatic deployment and configuration for

software agents . 164
6.6.2.1 The need for a model 165
6.6.2.2 The need for a distributed mechanism 165
6.6.2.3 Self-Management . 166
6.6.2.4 The need for prices 166

6.6.3 Using the mechanisms . 166

Chapter 7 Conclusions and Future Research 185
7.1 Contributions . 186

7.1.1 Summary . 186
7.1.2 Description of major contributions 186

7.2 Future Work . 188
7.3 Practical Significances . 190

Bibliography 192

viii

List of Figures

1.1 An agent-based application and its infrastructure 4
1.2 Operational Layers forming the Application and the Infrastructure:

Agents located on a logical node (i.e. middle-ware) send task packets
to CPU which get processed and returned to the agents. In case the
CPU breaks down, all tasks currently in the queue are lost but the
agents can be moved and rehydrated on another logical node on a
different CPU. 5

1.3 Organization of this thesis . 11

2.1 A birth-and-death process . 18
2.2 A quasi-birth-and-death process . 19

3.1 Structure of the Chapters 3-6 . 38
3.2 Interactions in the MAS . 43
3.3 Agent Hierarchy in CPE Society . 49
3.4 TechSpecs based MAS Design . 52
3.5 The World Model . 53
3.6 Task Flow in the MAS . 62
3.7 Maneuver Plan Freshness using Jackson Network 64

4.1 Rate diagram of a system with catastrophic and temporary breakdown 70
4.2 L and W versus β - theoretical and simulation 81
4.3 ploss, pblock, and ptemp versus β - theoretical and simulation 82
4.4 variation of response time (W) with λ and β 83

5.1 Rate diagram of an agent with temporary and catastrophic breakdown,
and two classes of traffic on a computing resource 91

5.2 Drop class 2 packets at threshold n 101
5.3 Switch class 2 to class 1 at threshold n 104
5.4 Li versus β . 109
5.5 Wi versus β . 110
5.6 Li, Wi, pT and R versus β . 111
5.7 switching probabilities versus β . 112

ix

5.8 blocking probabilities versus β . 113
5.9 loss probabilities versus β . 114
5.10 Li versus β . 115
5.11 Wi versus β . 116
5.12 pT and R versus β . 117
5.13 switching probabilities versus β . 118
5.14 blocking probabilities versus β . 119
5.15 loss probabilities versus β . 120

6.1 Model-Based Allocation . 131
6.2 Schematic of Model-Based Allocation Mechanism 133
6.3 Schematic of Model-Based Negotiation Mechanism 149
6.4 Total Value to Principal . 173
6.5 Value to Principal (broken down by nodes) 174
6.6 Availability at nodes . 175
6.7 Relative waiting time at nodes . 176
6.8 Average β experienced by the agents and provided by the Principal . 177
6.9 Value to Principal (alg 2) . 178
6.10 QoS at the nodes (alg 2) . 179
6.11 Quality of Allocation at the nodes (alg 2) 180
6.12 Value to Principal (alg 3) . 181
6.13 QoS at the nodes (alg 3) . 182
6.14 Quality of Allocation at the nodes (alg 3) 183
6.15 Mechanism-driven application deployment and pricing 184

x

List of Tables

3.1 Parameters controlled by the Application and the Infrastructure for
Mechanism A . 46

3.2 TechSpecs Categories: Application Perspective 58
3.3 TechSpecs: Infrastructure Perspective 59
3.4 Queuing Model Abstraction from TechSpecs for CPY Agent 65

4.1 Summary of results . 84

5.1 Notation . 93
5.2 Single class case . 121
5.3 Two class case . 122

6.1 Parameters controlled by the Application and the Infrastructure for
Mechanism A . 139

6.2 Description of Model Parameters as Applicable to Military Logistics . 141
6.3 Parameters controlled by the Application and the Infrastructure for

Mechanism B . 153
6.4 Optempo experienced by the nodes 156
6.5 Prices for optimal QoS . 159
6.6 Prices for optimal QoS . 160
6.7 Prices for negotiation algorithm (alg − 3) 162

xi

Acknowledgments

I am deeply indebted to my adviser, Professor Soundar Kumara for his guidance and

support during my stay at Penn State. Working with him on this dissertation has

been a rewarding experience, and I am very grateful for his flexibility and co-operation

during the course of this research. I thank Professor Kumara for including me in the

DARPA UltraLog team and introducing me to several research topics in advanced

information systems and logistics.

I am very thankful to Dr.Gautam for introducing me to the field of queueing and

mathematical modeling of agent-based systems as well as for being a constant source

of inspiration throughout my graduate school years.

I would like to thank Professor Jeya Chandra and Dr. Tao Yao for serving on

my committee and helping me overcome several stumbling blocks during my thesis.

I have greatly benefited from the discussions I have had with Professor Chandra and

Professor Yao.

I would like to thank Dr. Jun Shu for serving on my committee, his insightful

comments and helping me with aspects of my thesis relating to game theory.

I would like to thank Dr. Naveen Sharma for guiding me during my internship in

the summer of 2005 and for continously providing encouragement afterwords.

I would like to thank Dr. Hari Srihari for advising me to pursue my Ph.D. and in

xii

particular at Penn State.

I would like to thank DARPA for their generous support and the UltraLog grant

(MDA972-1-1-0038) through which I was supported. I owe thanks to Dr. Mark

Greaves and Mr. Marshall Brinn who have helped me in the initial stages of problem

formulation. I would like to thank Dr. Vikram Manikonda and Dr. Wilbur Peng

for helping me understand COUGAAR and other software aspects of agent-based

computing.

My excellent labmates are wonderful friends and have always helped me and kept

me exposed to various exciting research problems.

I am deeply indeted to my wife for her love, support, enthusiasm and advice. She

has helped me in innumerable ways during my thesis including coding and typeset-

ting. She has been a constant source of motivation for me and we have had several

interesting technical discussions. I thank her for her utmost patience and trust.

None of this would have been possible without the constant love and support of

my parents and parents-in-law. I will always be indebted to them. My brother has

always been supportive and helpful in all my endeavors and I thank him very much

for his love and affection.

xiii

To my wife

xiv

Chapter 1

Introduction

Consider this example from everyday life. Imagine a personal assistant software

application such as the ones on hand-held devices and PDAs. These applications are

increasingly becoming more sophisticated with software features such as web-services,

location- and context- aware functionalities and highly intuitive interfaces. In fact,

with continuing technological advances, applications started on a desktop can be

continued on a hand-held and subsequently finished back on the desktop, with barely

noticeable transitions. These highly sophisticated software applications are possible

because of a gamut of proliferating information and content sources (search engines,

semantic knowledge bases, mobile databases etc), and highly self- and peer-aware

software.

Let us assume that this trend is going to continue and the demand for such software

is going to increase. Then it is natural to assume that there are going to be more

such software components on our PDAs, laptops and desktops. To scale better, the

algorithms for accessing and retrieving data and information from all the sources, as

well as planning (scheduling calendar appointments, looking for travel deals, booking

1

tickets) from them have to improve constantly. The other important consideration

is that these applications have to be cognizant of their resources’ capabilities and

the quality of service (QoS) that can be delivered when transitioning from device to

device and context to context. Why is that an important consideration? It is because

devices are extremely non-homogeneous and contexts are dissimilar. In other words,

QoS sensitive resource allocation is extremely important for context-sensitive mobile

applications - otherwise these applications will be unusable inspite of their usefulness.

Matters are further complicated if the application considered is mission-critical

such as those in military logistics. Being situated (in a battle-field environment/context),

embedded with increased autonomy (to take decisions locally) and mobility, the ap-

plication components tend resemble agents more closely than traditional software

components (see [1, 2] for agent definitions). The number of agents are higher,

the environment is harsher and ridden with catastrophes, and the performance re-

quirements are more stringent. The actual applications may be distributed logistics

planning and mission control instead of, perhaps more forgiving, personal assistance

software. Failure, such as the distributed agent network not being able to plan or

perform effectively, is usually met with very high costs.

Performance analysis is the domain for this thesis and the agent-based military

logistics application is the one under consideration. The problem we address

is that of modeling the performance and reliability interactions of these

software agents in harsh environments, and subsequently allocating them

to computing resources (such as those in military transportation hard-

ware) in an autonomous fashion. The solution must consider the QoS sensitiv-

ity of the agents in different contexts (with varying battle-field stresses) and allocate

them in such a way that the overall application experiences the desired QoS. The

2

goal, therefore, is to estimate the performance of the agents using queueing models

and subsequently use the predictions for QoS-sensitive resource allocation.

1.1 Distributed Application And its Multi-Scale

Nature

We refer to the agents in the logistics application as the Multi Agent System (MAS)

or the application. The hardware and middle-ware is referred to as infrastructure

(providing computing power). Figure 1.1 is a depiction of our domain i.e. mili-

tary logistics. Groups of agents are invoked on military vehicles which are engaged

in battle-field operations in a remote location. Being in a harsh environment, the

computing infrastructure in these vehicles experiences heavy informational load and

catastrophic failure. The agents present on this infrastructure form the backbone of

a multi-agent application involved in logistics planning. UltraLog is one such applica-

tion [3]. The challenge here is that, inspite of battle-field conditions, the MAS must

function effectively.

1.1.1 Abstraction

Figure 1.2 presents a multi-scale abstracted view of our domain. The application

(top layer) is a network of individual agents spread over an infrastructure of phys-

ical resources (CPU, network bandwidth). The agents send tasks of various kinds

(or classes) to the infrastructure through their respective nodes. The infrastructure

consisting of a logical layer (COUGAAR nodes) and physical layer process the tasks.

Catastrophic failure occurs in the physical layer. When this occurs, nodes can be re-

3

Figure 1.1: An agent-based application and its infrastructure

hydrated (reinvoked from existing data snap-shots) on other resources. Other failures

are usually repairable through reconfiguration in software. We consider such failures

in the logical layer. The agents experience a certain degree of QoS, performance

and reliability, while the tasks are processed. The variation is because of resource

availability at each node and different stress levels. Since nodes keep breaking down,

the agents prefer to request a certain repair rate (through software - alternate algo-

rithms, priority scheduling etc) for functioning effectively. If the demand cannot be

met, the agents will migrate to a different node. For the QoS experienced, agents

are willing pay a monetary price. To assure the survivability of such a distributed

application, repeatedly estimating what sort of multi-dimensional guarantees (such

as performance or reliability) can be made as a function of the offered load and en-

vironmental conditions is paramount. This thesis studies how such guarantees can

be negotiated and priced in a distributed MAS that is situated on an unreliable and

4

I n f r a s t r u c t u r e
L o g i c a l L a y e r(e g . C o u g a a r)P h y s i c a l N e t w o r k L i n k b e t w e e n n o d e a n d a g e n tL i n k s w i t h i n t h e s a m e l a y e r

A g e n t C l u s t e r
I nf rastructure

A gent)b ased A ppli cati on P r i c e Q o S
C P U L o g i c a l N o d e

L i n k b e t w e e n n o d e a n d C P UN e g o t i a t i o n o f Q o S a n d P r i c eT a s k s
(a) Before catastrophic failure

I n f r a s t r u c t u r e
L o g i c a l L a y e r(e g . C o u g a a r)P h y s i c a l N e t w o r k L i n k b e t w e e n n o d e a n d a g e n tL i n k s w i t h i n t h e s a m e l a y e r

A g e n t C l u s t e r
I nf rastructure

A gent]b ased A ppli cati on P r i c e Q o S
C P U L o g i c a l N o d e

L i n k b e t w e e n n o d e a n d C P UN e g o t i a t i o n o f Q o S a n d P r i c eT a s k s
c a t a s t r o p h i cf a i l u r e

(b) After catastrophic failure

Figure 1.2: Operational Layers forming the Application and the Infrastructure:
Agents located on a logical node (i.e. middle-ware) send task packets to CPU which
get processed and returned to the agents. In case the CPU breaks down, all tasks
currently in the queue are lost but the agents can be moved and rehydrated on another
logical node on a different CPU.

failure-prone infrastructure.

1.1.2 Research overview

Firstly, this work concentrates identifying relevant service level attributes that can be

provided and estimated in this domain. Queueing models with single and multi-class

traffic are studied in scenarios with breakdown, repair and catastrophic failure, and

are utilized for the estimation of performance and reliability attributes. Secondly, a

pricing scheme is studied that is used to sell the service-level attributes as information

goods to an application that is willing to pay varying amounts to ensure it will survive.

Pricing provides an incentive for the application to use the resources efficiently, a

mechanism to control the congestion of the infrastructure and also a contract for the

5

infrastructure to get compensated for the service it is providing. Thirdly, reaching a

contract between the parties involved is studied as a multi-agent negotiation problem.

The specific focus is on agents autonomously negotiating contracts using the QoS

estimation methods developed in the first step.

1.1.3 Multi-Agent Application

A multi-agent application means that distributed agents are used as the backbone

of an application. MASs are becoming preferred choices of large-scale application

deployment in an increasing number of scenarios including supply networks, data-

centers and sensor networks [4, 5, 6]. Due to the inherent distributed nature of these

scenarios, agents are spread across non-homogeneous infrastructures each possessing

varying degrees of performance and robustness (resistance to failure) capability. How-

ever, the MAS’s performance and robustness needs are still high, thereby requiring

the application to be survivable in dynamic and loss-prone situations. Often times,

the entire multi-agent application (such as UltraLog [3] with thousands of agents) is

so huge that they cannot be controlled centrally - hence the larger society of agents

is subdivided into smaller communities. We present a prototypical multi-agent appli-

cation in Chapter 3.

1.2 Research Objectives

The main research objective of the proposed work is to negotiate QoS contracts

between a group of agents (viz. the application) and an infrastructure that charges

the former a price to provide service. We divide this into two sub-problems. The

first problem will investigate models that aid the prediction of expected quality of

6

service. The second sub-problem will examine collaborative mechanisms that the

application (the agents) and the infrastructure (the principal) engage in for achieving

the allocation of the agents to the principal’s nodes. We formally define the sub-

problems and present a birds-eye view of the solution methodology.

1.2.1 Problem 1: Performance models for the MAS

Agents need a tool to predict the performance impact of various parameters on them-

selves and their peers. Once agents are allocated onto the infrastructure, agents are

subject to the environmental conditions faced by that node. Since they are co-located

with other agents, they are impacted by the load caused by their peers. Moreover,

every agent is an adaptive program that requests support from infrastructure for re-

pairing itself. In total, there are several parameters and interactions that need to

taken into account to compute the expected steady state performance at a node.

In the first problem, we develop two models based on queueing theory. These are

listed as sub-problems below.

1. Sub-problem 1.1 - Single-class Queueing Model M1
j (Chapter 4)

• To develop a single class model M1
j (βj , λj, φj) for node j containing i

agents, where βj is the repair rate provided by the infrastructure node j

to the i agents, λj is the total rate at which requests from all the i agents

arrive and φj is a collection of parameters that characterize the node and

the environment, assumed not to be under the agents’ control.

• Using the model, certain quality of service metrics need to be analytically

derived. The metrics of interest are response time (Wj), loss probability

(LPj) and availability (Rj).

7

2. Sub-problem 1.2 - Multi-class Queueing Model M2
j (Chapter 5)

• To develop a two-class model M2
j (βj , λ

1
j , λ

2
j , φj) where λk

j is the total

arrival rate of requests from all the i agents with k indicating the type

(or class) of the request, and all other parameters are the same as the

single-class model.

• The quality of metrics that will be derived analytically are W k
j , LP k

j and

Rj where k = {1, 2}. These quantities have the same meanings as above

with k referring to the class of the request (or task).

We will henceforth refer to QoS enjoyed by the ith agent as xi which, in general, is a

vector comprising of the various QoS components such as response time or availability.

All agents on node j will receive the same QoS when we consider the single-class

case. However, in the multi-class case, agents on the same node j may experience

differentiated service.

1.2.2 Problem 2: Allocation of agents on the computing in-

frastructure

Let there be n agents that need to be allocated. Let there be m nodes that comprise

the infrastructure (the principal). Assuming that agents can predict the expected

QoS using M1
j or M2

j , the question we seek to answer now is as follows. What

infrastructural nodes (among the M nodes) do the agents reside on and what QoS

do they receive, if the principal has to maximize its revenue? Therefore, we design

a mechanism using game theory for the agents and the principal to negotiate a QoS

contract. By mechanism, we refer to a set of rules according to which the agents and

8

the infrastructure (the principal) play the game of determining the allocation [7, 8].

We list the sub-problems below along with the research objectives.

1. Sub-problem 2.1 - Mechanism A (Chapter 6)

• To develop a mechanism by which agents can participate in a game and

self-select the QoS they will attain on the infrastructure. To utilize the

predictive models Mp
j , p = {1, 2} in the allocation of the agents and esti-

mation of QoS levels which are not precomputed (to propose algorithms

for computing allocation-dependent QoS levels).

• To compute the usage prices pj, where j = {1, 2, . . . , m} that will be

paid to the principal for the QoS delivered.

2. Sub-problem 2.2 - Mechanism B (Chapter 6)

• To develop a decentralized mechanism by which agents bargain at each of

the j nodes to select the QoS they will attain on the infrastructure.

• To propose an algorithm that will simultaneously determine the allocation

and QoS levels by utilizing the models Mp
j , p = {1, 2}.

• To contrast Mechanism B with Mechanism A.

1.2.3 Solution Methodology and Scope

For the queueing models in Problem 1, we will utilize the properties of generating

functions to derive the steady state performance measures of the Markov process that

describes the models. We will validate the models using simulation. The models are

subsequently used in the allocation problem (Problem 2). Assigning an agent to a

9

node affects the QoS of the other agents already present on the node. So, the model

is used to determine the impact on QoS at the time of allocation as well as to check

constraints based on quantities that the model estimates. To the extent the model

helps the allocation process, we may refer to the related algorithms as model-based

allocation algorithms and problem as the model-based allocation problem. This is

in some sense is similar to model-predictive control (see [9, 10]) where a model is

utilized to evaluate the space for candidate solutions. In this work we use queueing

models for resource allocation and not (real-time) control. The models capture various

interactions (explained in Chapter 3) in the MAS and assist in quantifying the impact,

so that a good allocation is possible. So the control of the MAS and, for that matter,

agent-based planning are outside the scope of this research.

In the second problem, we try to address mechanism design for the allocation

problem from a game theoretic perspective. Model-based allocation algorithms form

part of the mechanism, because the QoS levels available cannot be efficiently precom-

puted. While more explanation is offered in Chapter 6, it should be said that agents’

private information (such as bids), the participants and the environmental conditions

are revealed only at the time of allocation. This renders statistical models less useful

in this domain, especially when a predictive analytical model is available to probe the

solution space (of allocation) rapidly.

10

Figure 1.3: Organization of this thesis

1.3 Organization of Research and Problems Ad-

dressed

This organization of this thesis is shown in Figure 1.3. In Chapter 2, we relate our

problem to various approaches in literature. In Chapter 3, we address two main goals.

One of them is to provide a crisp definition for a MAS, describe associated constraints

and optimization problems from the perspectives of both the infrastructure and the

MAS. The second goal is to provide a more practical understanding by means of

an implementation example of an agent-based system.The two main problems that

are addressed in this thesis are in Chapters 4-6. In Chapter 4 and Chapter 5 , we

address the problem of performance modeling of an agent-based system (Problem 1).

In Chapter 6, we solve a version of the resource allocation problem (Problem 2) as

11

applied to MASs.

12

Chapter 2

Problem Description and

Literature

Although MASs, performance modeling or negotiation have been individually focused

on by several researchers, there is not much work that connects these areas. We

examine a representative body of work and describe how our problem is related to

these in an effort to connect the aforementioned areas.

2.1 Analytical Queueing Models for Determining

QoS

Our work is related to the problem of single server queueing models under breakdown

and catastrophes. The QoS metrics are the information goods used for pricing are

computed analytically from the queueing models. We examine work by Li et al.

[11] and Chao [12] where the nodes can undergo breakdown and subsequent repair

without loss of customers, or face catastrophes thereby losing all the customers in

13

the server. In the former case an M/G/1 queue is examined while the latter is

analyzed as a queueing network with product form solutions. In [13], a single server

queue with catastrophes (customers are lost in this case) is studied as a continuous

time Markov chain for deriving steady state performance metrics. The proposed

research will extend [13] by having (1) breakdowns without customer loss in addition

to catastrophes and (2) more than one class of customers. For transient analysis in

related problems see for example [14, 15].

2.1.1 Queueing systems with breakdown: single-class case

Chao examines a server with catastrophic failures where all customers are lost [12].

But his assumptions are different in the following ways: (1) the catastrophe occurs

with the arrivals, however in this thesis catastrophe randomly toggles the server into a

state where processing does not occur; (2) repair times from catastrophic breakdowns

are zero, however in this work rehydration (restarting logical node) can occur from

catastrophic breakdowns; (3) Chao considers the breakdown and catastrophe synony-

mous, although this thesis differentiates them; and (4) the methodologies considered

in this thesis are different. Gautam [13] considers a server with breakdown and repair

where all customers are lost when the server breaks down. In this research, we differ-

entiate breakdown and catastrophe and allow the system to accept customers while

in breakdown - while the CPU is down requests can still fill the data buffers. In this

way, we hope to extend the work done in [13]. This type of system with catastrophic

breakdowns have received little attention - as has also been noted in [12, 13]. Other

recent work (such as [15, 14, 11] etc.) consider transient analysis of such systems.

14

2.1.2 Queueing systems with catastrophic failure: multi-class

case

When analyzing multiple classes of traffic for the aforementioned system, we generally

encounter multi-dimensional Markov chains. Determining closed form solutions for

multi-dimensional Markov chains is hard. In examples where a special structure is

seen, for example, a QBD process, then we could resort to approximation techniques

such as MGM [16]. A common method to deal with the state space is to often

truncate it along some dimensions. For example, in the case of the two-dimensional

state space we encounter for the two-class model it is feasible to truncate it along

the y-axis. For example, Green [17] and Stanford and Grassman [18] analyze cycle

stealing without switching cost in a multi-processor scenario by truncating the state

space. Instead of simple truncation, one could resort to approximating the state

space beyond a particular phase using moment matching algorithms. Osogami [19]

has shown this type of dimensionality reduction for multi-dimensional Markov chains

with QBD structure. Another approach that is seen is the use of generating functions

to solve for the stationary probabilities using uniformization [20] or by reducing the

functional equation to a boundary value problem [21]. Generating functions also seem

to address a specific class of problems, wherein there seem to be no examples for state-

spaces with more than two dimensions. Our approach reduces the dimensionality by

truncation because approximating the state space would require a special structure

which our problem seems to lack. Subsequently, we employ generating functions to

solve for the steady state “boundary” probabilities. Note that the size of the queue

can be truncated at a suitable value of n (where n is the maximum number of class 2

packets upon truncation). As such the use of generating functions in this way allows

15

for a convenient representation for the derivation of many performance measures.

2.2 Brief Tutorial on Generating Functions

2.2.1 Generating functions

Generating functions have been widely used in the literature [22, 23]. In particular,

they are useful in queueing problems for compactly representing summations of com-

binatorial state probabilities. We will review some relevant concepts and list some

examples of generating functions that may be useful for this work.

Definition 2.2.1. Let a0, a1, a2 be an arbitrary (infinite) sequence of numbers. The

generating function (generating series) for this sequence is the expression of the form

a0 + a1z + a2z
2 + . . . ,

or, briefly,

∑∞
n=0 anz

n .

If beyond a certain n, the coefficients an+1, an+2, . . . are zero then the generating

function is called a generating polynomial. The elements of the sequence an may be

of arbitrary nature. Of interest to this work is when these elements are real because

they denote probabilities.

Example 2.2.2. φ(z) =
∑

n pnz
n is the generating function of the probabilities pn.

For example, upon simplification of the balance equations for the Markov chain in

16

[13], we get a generating function of the form:

φ(z) =
c0 − c1z

z2 − c
′

1z + c
′

0

where {c0, c1, c
′

0, c
′

1} are all constants that can be represented in terms of the

parameters in the Markov chain and the pns.

Example 2.2.3. A case where the ans are integer valued is the Fibonacci sequence

1, 1, 2, 3, 5, 8, . . ., which can be represented as Fib(z) = 1 + z + 2z2 + 3z3 +

Upon simplification this sequence can be written as Fib(z) = 1
1−z−z2 .

Let X be a non-negative integer valued random variable. From the probability

perspective the generating function can be written as follows.

φX(z) = E(zX)

=

∞∑

k=0

zkP{X = k}

Properties of Generating Functions

1. The probability mass function is uniquely defined by its generating function. If

two random variables have the same generating function, then must have the

same probability mass function.

2. The probability mass function can be derived from the generating function as

follows:

P{X = k} =
1

k!

dk

dz
φX(z) |z=0.

17

0 1 2x λ x xλλ
Figure 2.1: A birth-and-death process

3. Moments of X can be derived from its generating function as follows. Let

(X)r = X (X − 1) . . . (X − r + 1) be the rth factorial power of X. Then

E((X)r) =
dr

dxr
φX(z) |z=1.

In particular,

E(X) =
d

dz
φX(z) |z=1,

E(X2) = E(X(X − 1)) + E(X) =
d2

dz2
φX(z) |z=1 +

d

dz
φX(z) |z=1.

4. Let X1 and X2 be independent random variables. Then

φX1+X2
(z) = φX1

(z) φX2
(z)

2.2.2 Quasi-Birth and Death Processes

In this section, we will provide a brief tutorial on quasi-birth-and-death (QBD) pro-

cesses. We will also provide an overview on using generating functions with QBD

processes.

18

zλ z λλλ z λz12
0 1 2l e v e l

p h a s e
Figure 2.2: A quasi-birth-and-death process

2.2.2.1 Examples of QBD processes

We provide a few illustrative examples of QBD processes. A birth-and-death (BD)

process is a QBD process. Figure 2.1 shows an example of a BD process. This BD

process models the number of customers in an M/M/1 queue where the customers

arrive according to a Poisson process with rate λ and are serviced according to an

exponential distribution with parameter µ. In general, a BD process is a Markov

chain on the states {0, 1, 2, 3, . . .}, where transitions can occur between neighboring

states. The generator matrix of a BD process is of the form:




−f0 f0 0

b1 −(b1 + f1) f1

b2 −(b2 + f2)
. . .

. . .
. . .




,

where fl is the transition from state l to l+ 1, and bl denotes the transition from l to

l − 1. In the figure fl = λ and bl = µ for all l.

Figure 2.2 is a QBD process but not a BD process. In a QBD process, transitions

are allowed between neighboring levels and between neighbors within each level. This

19

process models the number of customers in a M/Er/1 queue where customers arrive

according to a Poisson process with rate λ and are processed according to an Erlang-2

distribution which has parameter µ. In other words, the Erlang-2 distribution is the

distribution of the time until absorption into state 0 in a Markov chain on the states

{0, 1, 2} with initial probability vector (0, 1, 0) and infinitesimal generator:




0 0 0

0 −µ µ

µ 0 −µ




.

Generally speaking, a QBD process is a Markov chain on the state space {(i, l) | 1 ≤

i ≤ nl, l ≥ 0}, where the Markov chain is divided into levels and each level l has nl

states. For example, in Figure 2.2, n0 = 1 and nl = 2 ∀ l ≥ 1. Thus, a QBD process

will have a generator matrix has the form:

Q =




L(0) F (0) 0

B(1) L(1) F (1)

B(2) L(2) F (2)

. . .
. . .

. . .




,

where sub-matrix F (l) denotes the forward transitions from level l to level l + 1 for

l ≥ 0, sub-matrix B(l) denotes the backward transitions from level l to level l− 1 for

l ≥ 1 and sub-matrix L(l)denotes the transitions within level l for l ≥ 0. For example,

in Figure 2.2,

F (0) =

(
λ 0

)
and F (l) =




λ 0

0 λ


 for l ≥ 1

20

B(1) =




0

µ


 and B(l) =




0 0

µ 0


 for l ≥ 2

L(0) = −λ and L(l) =




−(λ + µ) u

0 −(λ+ µ)


for l ≥ 1.

Since transitions can occur only between neighboring levels, the process is said to

be “skip-free between levels”.

2.2.3 Matrix Geometric Method (MGM)

The structure of QBD processes enables these systems to be solved using matrix

geometric methods. It is to be noted that the application of MGM requires that

we deal with QBD processes. In MGM, an auxiliary matrix called R is utilized for

computing steady state performance measures such as waiting time or mean queue

length. The matrix R is often determined numerically using the following relation

(Ramaswami [24], Riska [25]):

F (l) +RL(l+1) +R2B(l+2) = 0. (2.1)

Equation (2.1) is used recursively to solve for R. Neuts [16] defines infinite -state

Markov chains with a repetitive structure with states partitioned into the boundary

states S(0) = {s1
0, . . . , s

n
0} and a set of states S(i) = {s1

i , . . . , s
n
i } ∀i ≥ 1, that corre-

spond to the repetitive portion of the chain. Let π(i)be the steady state probability

vector of states S(i). Then

π(i) = π(1)Ri−1 ∀i ≥ 1.

21

For π = [π(0) π(1) . . .], solving πQ = 0 will give both π(0) and π(1). Let e be a column

vector of ones. The following set of equations are obtained:

π(0)L(0) + π(1)B(1) = 0,

π(0)F (0) + π(1)(L(1) +RB(2)) = 0,

π(0)e+ π(1)(I − R)−1e = 1.

2.2.4 Systems with breakdown

A system with breakdown can go into breakdown from any state. For example, in [13]

a Markov chain is described on states {D, 0, 1, 2, . . .} where there can be transitions

between levels and states that are not necessarily neighbors. In particular, there is

a transition for every state i to state D (which denotes the breakdown state). The

generator matrix of this system will have the form:




−δ δ

γ −(γ + λ) λ

γ µ −(γ + λ+ µ) λ

γ µ −(γ + λ+ µ)
. . .

...
. . .

. . .




.

From the generator matrix, it is obvious that ?? is not a QBD process. We stated

that a QBD process has to be skip-free in the levels which does not seem to be the

case here. This lack of structure is the reason why we cannot apply MGMs to the

above problem.

22

2.2.5 Using Generating functions

We give an example of how a generating function is used for a QBD. Consider the

example in Figure 2.1 which represents an M/M/1 queue. Let X(t) represent the

number in system at time t. {X(t), t ≥ 0} is a CTMC on state-space {0, 1, 2, 3, . . .}.

Let pj = limt→∞ P{X(t) = j}. The balance equations are as follows.

p0λ = p1µ

p1(λ+ µ) = p2µ+ p0λ

p2(λ+ µ) = p3µ+ p1λ

... =
...

We multiply the first equation by z0, second by z1, third by z2, and so on add up

both sides of the equations. If we denote ψ(z) =
∑∞

0 piz
i, we can more compactly

represent the summation on both sides on the equation as follows:

(λ+ µ)ψ(z) − µp0 =
µ

z
ψ(z) − µ

z
p0 + λzψ(z).

Rearranging,

ψ(z) =
µp0

µ− λz
.

So we get a very compact notation for probabilities multiplied by zi. It we let z = 1,

then ψ(z) = 1 since we are summing up all probabilities in the Markov chain. This

23

fact will allow us to find the value of p0 as follows:

µp0

µ− λ
= 1,

therefore p0 = 1− λ
µ
. Using this expression for ψ(z) we can determine the performance

measures of the M/M/1 queue. However, we will see later in models discussed in

Chapter 4 and Chapter 5, the expression ψ(1) = 1 does not yield the desired benefits.

Moreover, in we will use more than one generating function for each of the models

which are not QBDs such as the one we discussed.

2.3 Allocation Problems

The allocation problem is so rich that it has attracted the interest of researchers from

Artificial Intelligence, Software Engineering, Economics and Operations Research to

name just a few. With the proliferation of large-scale computing applications in seem-

ingly diverse areas such as net-centric logistics [26], commercial data centers, and elas-

tic computing clouds (Amazon EC2[27]) , the problem of efficiently and dynamically

allocating software components to hardware resources is gaining prominence. The

Generalized Assignment Problem (GAP) can be described using terminology from

the familiar Knapsack Problem. The 0-1 Multiple Knapsack Problem arises when n

items (or agents) have to assigned to m containers (or servers), each of given given

capacity cj j = {1, 2, . . . , m}. Let xij be the binary decision variable that is 1 when

item i is assigned to container j , 0 otherwise. It is formulated as Problem 1 where

pi and wi are the profit and weight associated with item i.

If the profit and weight associated with item i depends on the container j, the

24

max

m∑

j=1

n∑

i=1

pixij

subject to
n∑

i=1

wixij ≤ cj ∀ j ∈ {1, ... , m}

m∑

j=1

xij ≤ 1 ∀ i ∈ {1, ... , n}

xij = 0 or 1 ∀ i ∈ {1, ... , n}, ∀ j ∈ {1, ... , m}

Problem 1

max

m∑

j=1

n∑

i=1

pijxij

subject to
n∑

i=1

wijxij ≤ cj ∀ j ∈ {1, ... , m}

m∑

j=1

xij ≤ 1 ∀ i ∈ {1, ... , n}

xij = 0 or 1 ∀ i ∈ {1, ... , n}, ∀ j ∈ {1, ... , m}.

Problem 2

GAP arises, which is formulated similarly as Problem 2. pij , wij and cj are normally

known in advance. Both problems above are combinatorial in nature as it involves

making choices from a total of mn choices for (i, j) pairs. The problem we discuss in

Chapter 6 is one in which the profit pij (also wij) are dependent not only on i but also

the allocation of other items. Because of the dependencies amongst the allocations

(i.e. xijs), we have to allocate as a set x̃ = (x̃1, x̃2, . . . , x̃n) comprising of all the

individual assignments for every agent (here, if the value of x̃i = j it would correspond

to xij = 1 in the above GAP). Since wij (perhaps a QoS measure) varies for every x̃,

25

we will use a model to dynamically determine them during the allocation process.

There is a separate literature on stochastic knapsack problems (SKP) [28, 29, 30,

31]. Some of them are the so called online stochastic knapsack problems (SKPs)

(see for example [32, 30, 28]) where items arrive over time. In several of these online

SKPs the weights (wij) and profits (pij) are independent random variables with known

distribution.

2.4 Pricing Information Goods

Pricing provides an incentive for the application to use the resources efficiently, a

mechanism to control the congestion of the infrastructure and also a contract for the

infrastructure to get compensated for the service it is providing. Congestion sensitive

pricing can cause the user to consume resources more conservatively, thereby reducing

the load on the infrastructure. Pricing is also a means by which the infrastructure

can collect money or charge the application for the information goods it is consuming.

Another motivation for pricing is that an application’s cost savings can be an indicator

of how well it can survive stressful environments, particularly because applications are

becoming increasingly resourceful in selecting operational settings. However, issues of

who should be in control of which component is always under question. Traditionally,

the service provider has been the one that provides whatever quality he can provide

and prices it in a rather monopolistic way. For example, consider data centers or

supply networks - where they charge for response time (in ms) or delay (in days)

through posted-price negotiation. The consumer has little role to play than to accept

or reject.

Within the problem of negotiation of contracts in MAS, we explore pricing be-

26

cause of its ability to influence or control a multitude of attributes especially in large

decentralized systems. Pricing and its applications has been widely studied in a va-

riety of areas including Internet, computer networks and services for the web (see

[33, 34, 35, 36, 37, 38]). More recently pricing has been applied in the contexts of

pricing of web servers, services oriented computing and congestion control of net-

works. These schemes involve pricing based on the QoS experienced, the congestion

faced by the network, a flat fee or combinations thereof. Davies et al. study a frame-

work for capacity planning and pricing IP networks support various kinds of services

[39]. Caesar et al. compare usage based pricing methods to charge the user on the

basis of QoS received, congestion or both as applied to IP telephony [40]. Gautam

considers a three-tier architecture consisting of users, a client application and the

infrastructure that hosts it, and provides a mechanism for the pricing the client on

the basis of QoS received by the client’s users [13]. Yaucoubi et al. discuss pricing

in network access providers where a queueing model is used to reserve a minimum

bandwidth for each customer such that the provider’s revenue is maximized while

request blocking is guaranteed to be under a negotiated percentage [41]. Chen et

al. study pricing policies and admission control methodologies that impact perfor-

mance of web-servers [42]. Henderson et al. discuss the pros and cons of existing

congestion based pricing mechanisms which primarily aims at internalizing economic

externalities (eg. using a toll in the highway system). They mention that congestion

based pricing may actually replace flat and usage based pricing, but is also fraught

with issues such as complexity in the case of bidding based methods, inaccurately

charging based on expected congestion in edge mechanisms and routers adding their

own marks on IP packets in the case of ECN [43]. Paschalidis and Tsitsiklis use a

dynamic programming formulation for determining a congestion-dependent fee in the

27

case of a communication network by using concepts of welfare maximization. They

also note that an appropriately chosen time-of-day pricing may be enough in many

cases with the advantage of being very simple to implement [44]. Lin and Shroff show

that when a large enough network exists an appropriate static pricing scheme will be

close to a dynamic pricing scheme [45].

Numerous market-based control mechanisms are available in literature such as

[46, 47, 48, 49]. In market-based control systems, agents emulate buyers and sellers

in a market acting only with locally available information yet helping us realize global

behavior for the community of agents. While these methods are very effective and

offer desirable properties such as decentralization, autonomy and control hierarchy,

they have been used for resource allocation [46, 47] and resource control [49]. The

Challenger [47] system seeks to minimize mean flow time (job completion time - job

origination time), the task is allocated to an agent providing least processing time.

Load balancing is another application as applied by Ferguson et al. [48]. Within

large information systems, Wellman has studied market based methods as well as

illustrated the concepts of competitive equilibria and auction-based methodologies

[50, 51].

2.5 Negotiation of Price and QoS

Once QoS and price are determined, the application and the infrastructure have to

negotiate the prices such that the infrastructure is compensated for the service pro-

vided. This problem leads us in to the realm of Microeconomic analysis where the

negotiation of prices and commodities are generally studied [52, 38]. In studies such

as [41, 42] the server is responsible for setting the prices and its resources, thereby

28

restricting the negotiation capability of the customers. In [13], the server gets paid ac-

cording to QoS experienced by the users of a web-server application (viz. the client).

Here the activity of negotiation happens between the client and server for deciding the

price and acceptable service level. Other market-based methods involving scheduling

to achieve better QoS has been examined in [53] in the context of component-based

systems. One aspect of negotiation deals with identifying the quantitative parameters

involved (such as delay, response time or reliability). Another aspect of negotiation

dealing with protocols, representation and languages has received considerable at-

tention in literature (see for example, [54, 55], more recently [56]). Many studies

incorporate Rao and Georgeff’s BDI model [57, 58] in some form and are primarily

logic based.

2.6 Non-Pricing Based Control Mechanisms for MAS

Because of the diversity of literature on control frameworks and performance evalua-

tion, we examined a representative subset primarily on the basis of control objective,

(component) interdependence and autonomy, generality, composability, real-time ca-

pability (off-line/on-line control) and layering in control architecture.

In some AI based approaches such as [59, 60], behavioral or rule based controllers

are employed to make the system exhibit particular behavior based upon logical

reasoning or learning. While performance is not the objective, layered learning is

an interesting capability that may be helpful in a large scale MAS. Learning may

be from a statistical sense as well where the parameters of a transfer function are

learnt from empirical data to subsequently enforce feedback control [61]. Another

architectural framework called MONAD [62], utilizes a hierarchical and distributed

29

behavior-based control module, with immense flexibility through scripting for role

and resource allocation, and co-ordination. While many of these approaches favor

the “sense-plan-act” or “sense and respond” paradigm and some partially support

flexibility through scripting, some important unanswered questions are what happens

when system size changes, can all axioms and behaviors be learnt a priori and what

is the performance impact of size (i.e. scalability)?

Control theoretic approaches in software performance optimization are becoming

important [63, 64], with software becoming increasingly more complex, multi-layered

and having real-time requirements. However, because of the dynamic system bound-

aries, size, varying measures of performance and non-linearity in DMAS it is very

complex to adopt a strict control theoretic process [65]. Some approaches such as

[65, 5] take the heuristic path, with occasional analogs to control theory, with an em-

phasis on application or domain-specific utility. Kokar et al. [63] refer to this utility

as benefit function and elaborate on various analogs between software systems and

traditional control systems. From the perspective of autonomic control of computer

systems, Bennani and Menasce [66] study the robustness of self-management tech-

niques for servers under highly variable workloads. Although queueing theory has

been used in this work, any notion of components being distributed or agent-based

along with the occurrence of catastrophes seems to be absent. Furthermore, exponen-

tial smoothing or regression based load-forecasting may not be sufficient to address

situations caused by wartime dynamics, catastrophic failure and distributed com-

puting. Nevertheless, in our approach we have a notion of controlling a distributed

application’s utility using queueing theory.

Using finite state machines, hybrid automata and their variants have been the

foci of many research paths in agent control as in [67, 68]. The idea here is to utilize

30

the states of the multi-agent system to represent, validate, evaluate, and choose plans

that lead the system towards the goal. Often, the drawback here is that as the number

of agents increase, the state-space approaches tend to become intractable.

Heuristics have widely been used in controlling multi-agent systems primarily in

the following sense: searching and evaluating options based on domain knowledge

and picking a course of action (maybe a compound action composed of a schedule

of individual actions) eventually. The main idea in recent heuristics based control

as exemplified by [69, 70, 71] is that schedules of actions are chosen based upon

requirements such as costs, feasibilities for real-time contexts, complexity, quality

etc. Opportunistic planning is an interesting idea as mentioned in Soto et al. [71]

refers to the best-effort planning (maximum quality) considering available resources.

These meta-heuristics offer very effective, special-purpose solutions to control agent

behavior, however to be more flexible, we separate the performance evaluation and

the domain-specific application utility computation.

Given that we have a model for performance estimation (whose parameters and

state-space are known), dynamic programming (DP) and its adaptive version - rein-

forcement learning (RL), and model predictive control (MPC) have been used to find

the control policy [72, 73, 74, 9, 10]. The complexity of finding the optimal policy

grows exponentially with the state space [72] and convergence has to be ensured in

RL [73, 74].

In large scale MAS applications, performance estimation and modeling itself can

be a formidable task as illustrated by [75] in the UltraLog [3] context. UltraLog

[3], built on Cougaar [76], uses for heuristic control a host of architectural features

such as operating modes, conditions, and plays and play-books as described in [65].

Helsinger et al. [77] incorporate the aforementioned features into their closed-loop

31

heuristic framework that balances the different dimensions of system survivability

through targeted defense mechanisms, trade-offs and layered control actions. The

importance of high-level, system specifications (interchangeably called TechSpecs,

specification database, component database) has been emphasized in many places

such as [2, 65, 78]. These specifications contain component-wise, static input/output

behavior, operating requirements and control actions of agents along with domain

measures of performance and computation methodologies [78]. Also, queueing net-

work based methodologies for offline and design-time performance evaluation have

been applied and validated in [78, 79].

2.7 Distributed computing versus agent-based com-

puting

Distributed computing traditionally involves allocating jobs from a central location

to various computing entities and then accumalating the results. The inherent as-

sumption for executing this paradigm of distributed computing is that these entities

forming the computing infrastructure have to connected using highly specialized soft-

ware as determined by the application in question (see for example, [50, 51]). An-

other paradigm, agent-based software engineering [1, 2], uses software agents as the

building blocks of distributed computing. In other words, instead of the distribut-

ing light-weight jobs, interconnected software agents form a network of functionally-

distinct components. The agent network, also referred to a distributed multi-agent

system, acts like a traditional software application, except that its components are

distributed on various computing entities (for example, servers). The agent net-

32

work can handle relatively general purpose problems such as maneuver planning for

logistics, distributed numerical computations in mathematics and task-assignments

without major reconfiguration by suitably adapting to contexts and users [76].

While new applications of agent-based computing are growing by the day, large-

scale commercial deployments of agent-based computing are scarce. This is because

this field is relatively new and is fraught with problems. Below, we examine the

questions surrounding one such problem for agents operating in harsh environments,

i.e. agent allocation and its control.

The natural question that arises is who allocates these agents on the computing

entities? Typically, the allocation of these agents is done manually on the chosen

collection of nodes. These agents once coupled to the infrastructure, act somewhat

like brokers (say for multiple users, a collection of sensors etc.) and send tasks to the

CPU for processing and receive the results. Understandably, the manual technique

of agent allocation does not scale well - i.e. when there are a large number of agents,

manual allocation is not practical. Secondly, what if the computing entities are not

operating under normal environmental settings? Often times, agent-based computing

is applied to, military logistics scenarios where there are many abnormal types of loads

and breakdowns. Under such situations, allocation is an even more difficult problem

because the state of the computing infrastructure has to be factored in. Thirdly,

what if the agents themselves are overloading the computing infrastructure? Since

this is plausible, the allocation problem has to deal with mechanisms to control over-

usage because the resulting can serverely affect the performance of the computing

infrastructure.

33

Chapter 3

Research Methodology

3.1 Introduction

In this chapter, we provide a high-level description of the research problem, discuss

the sub-problems relate to each other. Simultaneously, we will describe the motivating

scenarios that this research draws from. We introduce terminology that will be used

subsequent chapters in two ways:

1. by providing mathematical definitions and other descriptions, and

2. by providing an example of a multi-agent application.

3.1.1 The Problem at a Glance

The research problem studied in this thesis can be divided broadly into two areas.

The first area studied relates to distributed software components and the impact of

harsh environmental conditions on these components. These software entities, known

as agents, operate as a group (community) and achieve their goals collectively, giving

34

rise to the term multi-agent system (MAS). Due to particular nature of the goal and

collective functioning of the agents, the MAS is not unlike a software application ex-

cept for differences in the scale of distribution and the characteristics of the agents.

The goal of a MAS could be a mission-critical application such as military logistic

planning (our motivation). The scale of the application is of the order of thousands

of agents (UltraLog, the military logistics multi-agent based planner used over 10,000

agents for battle-field scenarios [3]). Agents have many characteristics such as situat-

edness, autonomy, interactivity and adaptivity as described in [1, 2]. In this thesis we

focus on the characteristic of adaptivity when there are changes in the performance

experienced by agents while operating in a stressful environment.

The second area relates to analyzing the process of reaching a (service) contract

between the agents and the computing infrastructure (say, a collection of servers).

Agents being software programs, require hardware to situate them and provide pro-

cessing power. This processing is provided by the computing infrastructure. However,

infrastructure capacity is constrained and various (battle-field) stresses bring down

either the agents, the computing infrastructure or both. In order to prevent con-

gestion and hence degraded service, agents look to the infrastructure to propose a

mechanism through which a contract can be negotiated and subsequently adhered to.

On one side of the contract is the quality of service (QoS) the agents request while

on the other side there is the payment they make for experiencing that QoS. With

these characteristics in mind, this thesis seeks to formalize the process of negotiating

quantitative performance contracts automatically within the realm of autonomous

software agents.

35

3.1.2 Practical Questions

If we combine the aforementioned areas, certain practical issues come to mind. Fore-

most among them - is distributed computing effective in harsh operating environ-

ments? To what extent can agent-based software systems be of help in this sort dis-

tributed computing - given their characteristics of autonomy, self- and peer-awareness

and cooperation? While we cannot say anything conclusive, we can definitely claim

that it may be effective in certain domains. In particular, the domain of military

logistics and, in general, commercial supply chains seems to promising. The design

of UltraLog using an agent-based backbone is based on the aforementioned claim. In

this work, we augment the claim by developing models and mechanisms pertinent

to this domain, which the agents can adopt or internalize into their knowledge bank

and/or playbooks (strategy pool) to maximize the performance they experience.

3.1.3 Structure of this chapter

This chapter provides a definition for an agent-based application and lists several

constraints that such an application may face. This is followed by a concise descrip-

tion of the application’s and the infrastructure’s problems. The application and the

infrastructure are primarily responsible for the software and hardware respectively.

The two parties control different variables that affect the performance achieved by

the agent-based application.

First, it is important for the agent-based application to be capable of predicting its

own performance. The performance prediction is used by the application to select and

tune the parameters under its control. So it is assumed that certain analytical models

are contained within the application that are run rapidly to evaluate the alternatives

36

(different parameter settings in the space of parameters) and select the parameters.

This concept is similar to model-predictive control (MPC) [72, 73] where, for example,

a policy may be used to guide the course of future action in a fine-grained time-scale

(i.e. real-time control). We use steady state estimates from queueing models because

the application is selecting parameters for a courser time-scale (window to window

operation). After explaining the attributes of the application in this chapter, we go

into the details for the queueing models (single- and two-class) in Chapter 4 and

Chapter 5 respectively. In Chapter 6, we discuss how the models are used in the

context of the MAS.

The second goal in this chapter is to give a birds-eye view of a multi-agent applica-

tion. The application we provide as an example is actually a MAS designed within the

UltraLog framework. We start from defining what is referred to as the Continuous,

Planning and Execution (CPE) agent society. We describe the agents and list their

Technical Specifications (TechSpecs). The case-study highlights agent-based software

design steps, TechSpecs formulation and a simple performance estimation example.

While the case-study illustrates a systematic method to approach the MAS design and

performance estimation problem, it is an example distinct from the single- and two-

class queueing models that explicitly factor breakdowns in operation. As mentioned

earlier, the queueing models (Chapter 4 and Chapter 5) and their utilization (Chap-

ter 6) are the main topics in subsequent chapters. This structure is also explained in

Figure 3.1.

3.2 Definitions and Domain Information

In this section, we define some terms and describe the model parameters.

37

Figure 3.1: Structure of the Chapters 3-6

3.2.1 Definitions

Definition 3.2.1. Application. An agent-based application is a set of interacting

software agents A = {a1, a2, . . . , an} having the specialized requirements tuple

{I, C, S, U, M, T} where

• ai refers to agent i, i ∈ {1, 2, . . . , n} ;

• If {n1, n2, . . . , nn} is an assignment of each of the n agents belonging to

the application to one of the m nodes that constitute the infrastructure where

ni ∈ {1, 2, . . . , m} ∀i ∈ {1, 2, . . . , n}, I is the set of all such assignments;

• C = {c1, c2, . . . , ck} constitute a set of constraints demanded by the agents;

• S is a set of strategies (also called play-books), say for bidding, adaptation or

self-healing;

• U = {u1, u2, . . . , uN} is a set of private utility functions for the agents (defined

in Chapter 6);

38

• Mj(pj, φj) is a shared performance model used by the agents belonging to nj ,

j ∈ {1, 2, . . . , m}(pj is decided by the agents on node j, φj describes node j’s

characteristics which are not under application control);

• T = {t1, t2, . . . , tn} is a set of technical specifications (TechSpecs) for the

agents that, among many domain specific needs, details the required processing

speeds, types of requests, desired repair rates and so on.

By interacting agents, we do not necessarily refer to a group of agents through which a

specific task is routed. Agent interactions might also refer to communication between

agents to share model Mj ’s parameters. At other times, the agents may communicate

to share and compose individual TechSpecs, into a group specification. For example,

if the set of agents {a1, a2, a3} are assigned to n1, the group specification for repair

rate is {β1, β2, β3} - which are the only acceptable repair rates on node n1. By

self-healing, we mean a set of actions that an agent can implement to improve the

performance or availability it offers to the whole system i.e. the application. For

example, the agent could request software reconfiguration from the operating system,

thereby repairing states such as deadlocks or thread contentions and therefore im-

proving the performance it experiences. In Section 3.4, we go through a case study

of an agent-based application where in concepts such as TechSpecs are explained in

detail for a particular case.

Definition 3.2.2. Agent Constraints. The set of all constraints (quantitative or

qualitative) required by individual agents or groups of interacting agents for the

application to function. If all constraints are satisfied, the application is said to

function normally.

39

Without domain-specific information, it is hard to describe agent constraints are

important. Hence, we give few examples from our domain of military logistics.

Definition 3.2.3. Flow Constraint. A flow constraint is an upper bound (∆) on the

absolute value of worst-case average delay for a set of agents Λ = {Λ1, Λ2, . . . , Λk},

i.e.

k∑

i=1

d(ai) ≤ ∆

where d(ai) denotes the average delay of agent i.

When two agents are assigned to nodes p and q having an average response time

wp and wq respectively, the worst case average delay for a flow consisting of these

two agents is wp + wq. This is because it can be assumed that in the worst case the

tasks are processed with zero parallelism - say all tasks of node p are processed after

node q. This constraint is a strong one because in most cases there is some degree

of parallelism even though the asynchronous computation is common in the agent

literature. In the limiting case, when there is only agent per flow, the flow constraint

becomes the delay constraint for an individual agent (because the flow is a sum of

delays).

Certain types of agents may not be co-located i.e. residing on the same node.

This could be because of security reasons. Nevertheless, it affects the allocation of

agents. We call this type of constraint a grouping constraint.

Definition 3.2.4. Grouping Constraint. If the set G = {Λ1, Λ2, . . . , Λk} is a set of

agents and IG = {ig1, ig2, . . . , ig3} are the nodes to which the agents are assigned,

40

then

igr 6=igs ∀ {gr, gs} ∈ G, IG ⊆ I, G ⊆ A.

The constraint could be defined in terms of the allocation of agents as well (see

Chapter 6).

Definition 3.2.5. Fairness Constraint. If bi denotes the bid of agent i,.

bi ≥ bi+1 =⇒ xi ≥ xi+1 ∀ i ∈ (1, . . . , n− 1),

which denotes that a higher bidding agent is entitled to atleast as much QoS as

another agent with a lesser or equal bid.

In addition, the principal may have constraints on its own (see Chapter 6).

Definition 3.2.6. Allocation. An allocation of the application A is one choice Î ∈ I,

i.e.

Î = {n1, n2, . . . , nn} ∀ni ∈ {1, 2, . . . , m}, i ∈ {1, 2, . . . , n}

which is one among mn such possibilities.

Some allocations may be infeasible given the constraints of the agent and the

principal. Let Aij denote the decision variable that agent i is allocated to node j such

that,

Aij =





1 if agent i is allocated to node j

0 otherwise





41

for all 1 ≤ i ≤ n and 1 ≤ j ≤ m (here i is the index for agents and j for nodes). For

the allocation Î, only Aini
= 1.

3.2.2 Model Parameters

Here we present, what we call, a multi-scale view of a system of computing agents.

Typically, each scale in a large system would have its own self-healing capabilities.

For modeling the interactions in our MAS, we use queueing models because of our

particular interest in performance. After sensing the environment, planning for the

future actions would based on predictions from appropriate queueing models. These

queueing models at a single node are sometimes referred to as “micro-models” (refer

Cohen [20]). The queueing models that are developed here describe a scenario of

partial operation in the agent as is typical for a software entity. The agent can

be partially incapacitated by software issues such as thread contentions, deadlocks

and exceptions all of which would degrade performance without disrupting the agent

completely.

We now describe the model Mj and the interactions it seeks to capture. The

interactions are diagrammatically represented in Figure 3.2.

3.2.3 Objectives of the Application and the Infrastructure

Since we are developing a pricing scheme that models the economic interaction be-

tween an application that buys services and an infrastructure that sells them in the

form of information goods, we examine their individual objectives.

42

Figure 3.2: Interactions in the MAS

43

3.2.3.1 Infrastructure’s Problem

The revenue Υ earned by the infrastructure by selling information goods is based on

the usage fee charged on a per request basis for the agents served. The information

good is a vector of expected QoS components (usually a mixture of performance

and reliability guarantees) and is denoted xi for agent i. Some examples of QoS

components are response time, queue lengths, loss probability, mean time to failure

(MTTF) and availability. Let â be an allocation of n agents and βp the repair rate

provided by the principal. The total expected revenue per unit time is

Υ(â, βp) =

n∑

i=1

λi{pixi(â, β
p) − p̂ix̂i(â, β

p)}. (3.1)

Equation (3.1) forms the objective function of the optimization problem of the in-

frastructure. Usually, the infrastructure control the tuple (â, βp). The infrastructure

is expected to satisfy the agents’ constraints as well as those of its own. We discuss

all the constraints in the context of the mechanism in Chapter 6. p̂ix̂i can be thought

of as a production or penalty cost. This cost could be such that it drastically brings

down the Principal’s profit, if it delivers poor service. For example, one component

of x̂i could be response time which will be high if the infrastructure delivers poor per-

formance. As seen in Chapter 6, we will predict x̂i using the same queueing model.

However, it remains to be seen as to how p̂i can be computed. We will assume that

p̂i is known for each agent i and only compute pi. (However, we offer some intuitive

explanation1 as to how p̂i can be computed).

1Since we are talking about software agents, p̂i could be a function of qualitative aspects such

44

Given this pricing structure, the variables under the control of the infrastructure

are â, βp and pi. By controlling these variables the infrastructure ensures that the

application traffic is well-behaved while accumulating revenue for the performance

and reliability offered. We will provide details on how to compute each of the above

in Chapter 6.

3.2.3.2 Application’s Problem

The application’s utility2 U depends on its valuation of the negotiated contract x =

{x1, x2, . . . , xn} and the micro-payments p = {p1, p2, . . . , pn} it has to make

to the infrastructure. In other words, x is the QoS bundle consumed by the entire

application and p is overall payment per request. purchased by it. The total utility

to the application per unit time is

U(λ, b, θ, x) =

n∑

i=1

λi{θixi − pi(b)}

where θi is the true type of agent i, b = {b1, b2, . . . , bn} are the bids. Notice

that price paid depends the market valuation of the good - i.e. p depends on all

bids in b. This utility is not optimized centrally. In fact, the bids bi are the agents’

private information. xi is predicted using the model. The λivalues are computed

using historical information (say, from the arrival rates from previous time periods)

by the principal. Table 6.1 summarizes the parameters controlled by the application

as the type of the agent (i.e. defaulting on the QoS of mission-critical agents results in loss of
revenue). Another factor that could affect p̂i is its memory footprint which we do not explicitly
model. Generally speaking, the computation of this quantity can take into account marketing and
historical data, especially when we are discussing about commercial infrastructure. Understandably,
users in the commercial realm migrate away from web-servers if the response time is too high. This
results in loss of revenue to the infrastructure which can be reflected in the penalty p̂i.

2also called consumer surplus (CS)

45

Table 3.1: Parameters controlled by the Application and the Infrastructure for Mech-
anism A

Controlling Entity Controlled Quantities
Application / MAS {b,βa} i.e. the bids and the associated re-

pair rates
Infrastructure { p, βp, â} i.e. the infrastructure controls

the prices, the assigned repair rates and
the allocation

and the infrastructure.

3.2.3.3 Who controls what?

While we are not talking about a control problem, we have to specify the roles or

who is in charge of which action. For the most part, the mechanism design problem

answers this question. However, we make the following comment. Once the bids bi

are announced, every aspect of the allocation is in the Principal’s control. Notice that

this case is not unlike the take-it-or-leave-it option usually provided to the customer -

there is no room for negotiating the contractual parameters. There are checks in place

to ensure that the principal is truthful. For example, the penalties p̂ are precisely

for this reason. Moreover, the agents’ can choose not to participate. But the main

point is that it is too complex computationally for the principal to allocate the agents

because it faces a combinatorial optimization problem which is known to be NP-Hard

because it can be reduced to the GAP [80]. We provide heuristics to mitigate this

problem. But in a different vein, we also propose a paradigm where the application is

in almost full control of the allocation (rather than the infrastructure). We call this

the negotiation problem where the role of the principal is to accept or reject an offer

made by the application. We will revisit this topic in detail in Chapter 6.

46

3.3 Overview of UltraLog

A distributed (software) application can be considered as consisting of several com-

ponents allocated on a distributed (service-providing) infrastructure, each performing

its pre-established function. Each component (or agent) or group of components is

located on a computing resource (eg. a server) whose computing power is limited.

The computing powers of different resources are usually non-homogeneous3. Each

agent can be thought of as a user supplying requests to the infrastructure node on

which it is located. Each infrastructure node processes tasks from its users thereby

providing service. The varying processing requirements of the tasks imposes load on

the infrastructure. Although the memory footprint of agents may also cause loading

of the infrastructure, we assume that processing causes greater loading and hence is

the subject of our analysis. Furthermore, we consider that the computing resources

on which the agents are located are under attack. These attacks may cause temporary

(and so recoverable) loss of processing capability or permanent loss of information. In

case of permanent damage, the only recourse is to replace the agent (by re-spawning

it), sometimes on a different computing resource. Every node is equipped with ca-

pability to recover from some damage. Systems that are capable of recovering from

damage incurred while operation are sometimes referred to as self-healing systems.

We are interested in analyzing the performance of every such computing resource.

In the next section, we discuss the design process of a real multi-agent system. The

goal is to explain by way of example terms such as classes of tasks, class-switching,

TechSpecs and so on.

3i.e. servers can vary in the processing capability of their CPUs and operating conditions.

47

3.4 DMAS based Application Development: A Case

Study

If the modeling problems we state in Chapter 1 are of immediate interest, readers

may choose to revisit this section. In this section, we illustrate the development of a

multi-agent application in military logistics and examine the relevance of specifying

an agent system using a case-study called CPE. This section would serve a quick

primer for the TechSpecs based MAS design.

Within the research domain of military logistics, we are conducted our studies

using a continuous planning and execution (CPE) agent society. The CPE society

is constructed using the COUGAAR MAS development platform developed under

DARPA’s leadership [76]. From the modeling perspective, the CPE society (or oth-

erwise) is nothing but a collection of distributed agents that lend themselves to be

represented by a network of queues. With this motivation, we analytically modeled

the CPE society using queueing theory. In doing so, we realized that if the TechSpecs

were suitably specified, the generation of the queueing model could be accomplished

with lesser human intervention. The primary function of the model is to help evalu-

ate the performance of the MAS and provide alternatives to steer the agent society

towards optimal regions of operation boosting performance in a distributed environ-

ment. Therefore the main focus of this research lies in specifying the MAS in a

systematic fashion so that queueing models can be derived from the specification.

48

Figure 3.3: Agent Hierarchy in CPE Society

3.4.1 Continuous Planning and Execution Society Overview

The CPE society comprises of agents and a world model. Agents in the CPE so-

ciety assume a combination of command and control, and customer-supplier roles

as required in a military logistics scenario. The world model is an artificial source

that provides the agents with external stimuli. Figure 3.3 represents the superior-

subordinate and the customer-supplier relations between the brigade (BDE), battal-

ion (BN), company (CPY) and supplier (SUPP) agents as modeled in this research.

Each agent in the society constantly performs one or more of the following tasks:

1) Evaluates its own perception of the world state through local sensors and remote

inputs; 2) Performs planning, re-planning, plan reconciliation and plan refinement; 3)

Executing plans, either through local actuators or through sending messages to other

agents; 4) Adapting to the environment, e.g. centralizing or decentralizing planning

as computational resources permit.

49

3.4.2 Terminology

The following definitions are in order when relating to the system under consideration.

Stresses occur due to the operation of the MAS in battlefield environments where

events such as permanent infrastructure damage and information attacks adversely

affect overall system performance.

Based on the planning activity in CPE, we simply base our measures of perfor-

mance (MOPs) on timeliness or freshness of a plan at the point of usage and on

the quality of the plan. Based on the requirements of UltraLog [3], a broad series

of performance measures categorized according to timeliness, completeness, correct-

ness, accountability and confidentiality is available but is outside the requirements of

CPE. Some insights about these MOPs can be gained from [81]. The MOPs are the

components of the quality of service (QoS) expected from the system.

Survivability of a distributed agent based system (or otherwise) is the extent to

which the quality of service (QoS) of the system is maintained under stress [81].

Although we consider a survivable MAS, we only concern ourselves with perfor-

mance analysis in this work. We assume that a global controller exists that coordi-

nates between threads relating to performance, robustness and security. The contents

of this paper are organized in the following way. In Section 3.4.3, we introduce the

concept of TechSpecs based design and some of the benefits associated with this ap-

proach. We then discuss the components of the CPE society in detail and organize

the TechSpecs for CPE into various categories in Section 3.4.4. The discussion on

TechSpecs leads us further in the direction of how to utilize them to form models.

We discuss an analytical method using queueing networks to model a small example

in CPE in Section 3.4.6 and verify it using an Arena simulation.

50

3.4.3 The Concept of TechSpecs Based Design

Technical Specifications (or TechSpecs) refer to component-wise, static information

relating to agent input/output behavior, operating requirements, control actions and

their consequences for adaptivity [82]. In addition to outlining a comprehensive set

of functionalities, the TechSpecs are responsible for the definition of domain MOPs,

their respective computational methodologies and QoS measurement points. The

construction of TechSpecs helps us proceed in the following direction:

1. Use the specs to ensure a close mapping between MAS functionality and an

abstracted model. An apparent choice here is a queueing model because of

similarities between multi-class traffic in queueing networks and the different

types of flows in CPE.

2. Establish the parameters of the queueing model - from TechSpecs directly (eg.

update rate at a node) as well as by collecting empirical data from sample runs

(eg. processing times).

3. As the queueing model provides an indication of system performance for a given

configuration, use it to quickly explore options for control (choices resulting from

adjusting (queueing) parameters or configurations). Once a suitable candidate

is obtained, this choice is translated back into the application level knob settings

(for control) to result in better QoS for the MAS.

The direction that TechSpecs motivates us to take is illustrated in Figure 3.4. Fig-

ure 3.4 indicates that we could use the specs in an online or offline fashion. Because

the functionality is clearly defined using TechSpecs, offline analysis can be indepen-

dently carried out to remove instabilities from the MAS design. Assuming automatic

51

Figure 3.4: TechSpecs based MAS Design

conversion from TechSpec to a model is feasible, TechSpecs have a real-time use as

well - i.e. use the specs as a template to derive the model. As noted above, the candi-

date parameters from the queueing model (parameters that may lead to performance

improvement) cannot be used directly. Reconverting these choices to actual control

knob settings may be handled by a separate global controller. We allude to this in

Section 3.4.5.

It can be noted that the idea of TechSpecs bears analogy to the conventional

control problems in electronic or hardware realms where the technical specification

or rating could be leveraged to effect better design and control. This was one of the

motivating factors for TechSpecs based design for MAS.

3.4.4 CPE Society TechSpecs

In this section we discuss the formulation of TechSpecs. In order to build TechSpecs,

the functionalities of the components of the CPE society are defined. We then cate-

gorize the capabilities of CPE components in a manner that would lend itself to easy

52

Figure 3.5: The World Model

translation into the queueing models. We then show through examples how the map-

ping process between TechSpecs and a queueing model could be interpreted. This

would enable us to analyze the MAS using the models we develop in Section 3.4.6.

3.4.4.1 Description of CPE Society Components

• The World Model: The world model refers to the conceptual set-up that pro-

vides the agents with external stimuli. It captures a military engagement sce-

nario using a 2-dimensional model of the world. As shown in Figure 3.5, CPY

agents moving along the x-axis engage an unlimited supply of targets that move

along the y-axis. The targets move at a fixed rate but engagement slows them

down. While a probabilistic model is chosen to create targets and engaging

them, a deterministic model is chosen for fuel consumption (which is depen-

dent on the distance moved). A logistics model for resupplying the units with

fuel or ammunition is based on the demand generation from maneuver plans.

53

Currently, the world model is also implemented as an agent.

• CPY Agent: Each CPY unit is designated a target area for engaging in combat

actions. These action require a superior agent (BN) to supply a maneuver plan

to each of the CPY agents. This plan enables the CPY agent to move along the

x-axis and engage the enemy by firing. Each of these agents simulate sensors

and actuators. The CPY agents consume resources and subsequently forward

the demand to SUPP agents. The current status is reported to superior agents

to enable replanning.

• BN Agent: The BN agent maintains situational awareness of all the agents un-

der its direct command and performs (re)planning for them using a consistent

set of observations that is collected continuously. The BN agent has to exe-

cute a branch and bound algorithm of a specified planning depth and breadth

to generate a maneuver plan for its subordinates. The BN agent serves as a

medium for transferring orders from superiors to subordinates.

• BDE Agent: The BDE agent is responsible for generating maneuver plans for

the BN and CPY agents although this implementation does not empower the

BDE with that functionality.

• SUPP Agent: SUPP agents represent an abstracted set of supply and inventory

and sustainment services. These agents take maneuver plans from the CPY

agents and supply them with fuel or ammunition. It is currently assumed that

the SUPP units have infinite inventory. Projected and actual consumption

depend on the sustainment plan generated from orders and the presence of

enemy targets.

54

3.4.4.2 TechSpecs Organization

Right at the outset, our goal is to embed enough transparency in the TechSpecs to al-

low the generation of models (queueing models). Hence, we extract the input/output

behavior, state, actions and QoS for each entity within CPE and form the following

categories within the TechSpecs :

• Internal State of an Agent: Corresponds to continuously updated variables or

data structures corresponding to the actual working of the agent.

• Inputs: Relates to distinct classes of information received or sent to or from an

agent respectively.

• Outputs: Information provided to other agents.

• Actions: Determines the actions that need to be taken as a result of state

changes or the dependencies introduced by input/output operations.

• Operating Modes: The fidelity or the rate at which outputs are sent may relate

to the operating mode of an agent. Switching operating modes may be necessary

to alter QoS requirements or as counter-measure for stress.

• QoS Measurement (QoS Measurement Points): Indicates the measure of per-

formance that needs to be monitored or measured in order to compute the QoS

at the designated measurement point. For example, when we consider queue-

ing models, we would be interested in measuring the average waiting times at

different agents to compute a quantity such as the freshness of the maneuver

plan.

55

• Tradeoffs: While these may not pertain to every agent, some agents have the

capability to trade-off a certain measure of performance to gain another. These

are specified explicitly in TechSpecs.

This categorization facilitates the delineation of specific flows of jobs between agents.

For example, consider the following flow : External stimuli at CPY gets converted to

update tasks at CPY, delivered to BN as updates, converted to a maneuver plan at

BN, delivered to CPY and then forwarded to SUPP for sustainment. From a queueing

theory perspective, the update tasks that originates at CPY and end up at BN for

the purpose of planning could constitute a class of traffic with CPY and BN acting

as servers to process these tasks. Similarly, consider the flow where external stimuli

received at CPY end up as updates at BDE through BN. This could be regarded as

another class of traffic. At this point it is important to notice that classes of traffic

could be derived form the input/output details embedded within TechSpecs. We

describe how we handle these flows in the queueing network formulation in Section

3.4.6.

Another example of how we could describe something in the application domain

(say a QoS metric) with the queueing model is as follows. If one is interested in how

fresh a maneuver plan is at its usage point (i.e. CPY), the model could describe it in

terms of the queueing delays for a particular class of traffic. In our application, this

very quantity happens to be a QoS metric called maneuver plan freshness. In the

actual MAS, this metric is calculated directly from the timestamps that are tagged

to the tasks.

56

3.4.4.3 TechSpecs Representation

Although an elaborate discussion of the format of TechSpecs representation is outside

the scope of this discussion, we present some aspects of the specification directly

relating to the application and some infrastructural requirements that need to be

part of the specification.

Table 3.2 represents some TechSpecs categories specific to this application. Sim-

ply speaking, this is a tabular representation of the information contained in Section

3.4.4.1 organized using the aforementioned categories. From Table 3.2 one can un-

derstand that an output called update originates from CPY agent and travels up at

BN because BN is CPY’s superior. Similarly, an output called maneuver plan would

reach CPY from BN. One assumption that is being made here is that updates travel

up the hierarchy and plans downward. These outputs form part of the different classes

of traffic if observed from a queueing perspective. Another example would be that

the plan action in the BN agent relates to a functionality in the MAS domain and

would simply be abstracted by a processing time in the queueing domain.

In addition to the above specification, static requirements of the agents in terms

of infrastructure are also embedded into TechSpecs. Some of these requirements for

BDE, BN, CPY and BDE agents shown in Table 3.3.

3.4.5 Translating TechSpecs to the Queueing Domain

In order to translate the specs into queueing models we first use the following rules:

1. Inputs and outputs are regarded as tasks;

2. The rate at which external stimuli are received is captured by the arrival rate

(λ);

57

Table 3.2: TechSpecs Categories: Application Perspective
Property /
Attribute

BDE BN CPY SUPP

Superior - BDE BN CPY
Internal State Overall

Status
World State Maneuver

Plan, Fuel,
Ammunition

Sustainment
Plan, World

State
Inputs Update Update Update,

Maneuver
Plan

Maneuver
Plan

Outputs Update Update,
Maneuver

Plan

Update,
Maneuver

Plan

Maneuver
Plan

Actions Update Plan, Update Update Plan, Update
QoS

Measurement
Points

- - Maneuver
plan freshness

(MPF)

Sustainment
plan freshness

(SPF)
Operating

Modes
- High,

Medium, Low
High,

Medium, Low
-

Operating Mode
Trade-offs

- Planning
depth versus

breadth

- -

3. Actions take time to perform so they get abstracted by processing times (µi);

4. QoS Metrics such as freshness are in terms of average waiting times at several

nodes (
∑
Wij, i is the node, j is the class of traffic);

5. If tasks follow a particular route (or flow as described in Section 3.4.4.2), then

that route gets associated to a class of traffic;

6. If a particular task goes into the node and gets converted to another task, we

say class-switching has occurred. For example, in our application update tasks

go to BN and get converted to plan tasks;

7. If a connection exists between two nodes, this is converted to a transition prob-

58

Table 3.3: TechSpecs: Infrastructure Perspective
Property/Attribute Node Agent Plug-in

hasProcessor Yes depends on node depends on agent
hasBandwidth Yes depends on node depends on agent

Processor Speed update depends on node depends on agent
Bandwidth 1 Mb/s depends on node depends on agent
Location IP address NodeID AgentID

Operating System Win2000/Linux - -
Memory 1GB depends on node depends on agent

ability pij , where i is the source and j is the target node.

Using the above rules as well as the aforementioned representations of TechSpecs

we develop a mapping between the TechSpecs and a queueing model. Although the

current procedure is manual, in theory this procedure could be automated. Such an

automatic capability of translating TechSpecs would prove very beneficial for pre-

dicting performance of the MAS in real-time. Table 3.4 captures the queueing model

abstraction from TechSpecs for the CPY agents. Similarly, we can establish the map-

ping for other agents as well. Some useful guidelines that were followed in order to

translate the TechSpecs into models are as follows:

• Identify flows of traffic: Trace the route followed by each type of packet com-

pletely within the system boundary i.e. from the entry into the system until

it exits the system. These would subsequently form classes of traffic in the

queueing model. Care has to be taken to note any class switching.

• Identify the network type: The network could be closed (fixed number of tasks)

or open. The CPE is an open system because tasks constantly enter and exit

the system.

• Does any parameter of the model require empirical data from the actual society?

59

Although some aspects in this research are currently being resolved, the following

observations can be made.

• Who does the TechSpecs translation? Where does the model run? In our case

the translation is done manually at present. The model would run at a place

visible to the controller (possibly as a separate agent at the highest level). The

controller we refer to here is the actual effector of control actions throughout

the CPE society and is separate from all we have discussed so far. The role of

the controller is also to balance between other threads such as robustness and

security.

• The identification of control alternatives is currently centralized. However, we

visualize a decentralized, hierarchical controller for effecting the changes.

3.4.6 Queueing Network Models (QNMs)

A complex logistics system such as the CPE society has numerous interactions. Yet, if

the functionalities are abstracted to capture some application level specifics in terms

of queueing model elements (example as shown in Table 3.4), analytical predictions

on the behavior of the MAS can be made. Analytical models are good candidates

for enforcing adaptive control quickly and in real-time. Each agent behaves like a

server that process jobs waiting in line. Hence, the mapping between an agent and

a server with a queue is easily established. Because of the task flow structure and

the superior-subordinate relationships in the TechSpecs, queues can be connected in

tandem with jobs entering and exiting the system. This results in the formation of

an open queuing network.

60

We conducted initial experiments using an actual COUGAAR based MAS, an an-

alytical formulation and an Arena simulation. We used this experiment to bootstrap

our modeling process in terms of parameter estimation and calibration. However,

working with the MAS was time-consuming as our goal was to identify modeling al-

ternatives and control ramifications. Hence we continued our experimentation with a

scaled up queueing model and simulation with the insight gained from working with

the actual society.

Thus the open queueing network’s parameters were carefully chosen and tasks

sub-divided into mutiple-classes to denote a particular task within the MAS. The

TechSpecs clearly delineate the input and output tasks facilitating the mapping to

arrivals and services in a queueing network. Application level QoS measures of the

MAS are calcuated in terms of the waiting times (or other equivalent perfromance

measures) at the individual nodes of the QNM.

Figure 3.6 is a representation of the CPE society from a queueing perspective. We

show two types of tasks flowing in the network namely the plan (denoting maneuver

and sustainment) and the update tasks. These tasks can be divided further into three

classes of traffic. The first class refers to update packets entering at the CPY nodes

and proceeding further as updates to BDE through BN. Class 2 relates to those update

packets that are converted to plan tasks. There is class-switching at nodes 2 and 3

and we introduce approximations to deal with this later in the paper. The third class

relates to the maneuver plan tasks that reach SUPP nodes through CPY. Although

we know multiple task types exist in the MAS, by making the simplifying assumption

and treating all job classes alike we analyze the MAS using Jackson networks [83] in

Section 3.4.7.

61

BDE

1

BN

2

BN

3

CPY

5

CPY

4

CPY

6

CPY

7

SUPP

9

SUPP

8

Update

Plan

Figure 3.6: Task Flow in the MAS

3.4.7 Jackson Network Model

We apply a single class Jackson network [83] formulation for open queuing networks

to our example by choosing a weighted average service time for nodes with multiple

classes. The nine agents of the MAS considered here can then be assumed to be

M/M/1 systems. The arrival rates of the open network can be computed by solv-

ing the traffic equations. Assuming the load is balanced to start-with, the routing

probabilities are also known. If each node of the system is ergodic, we can calculate

the steady state probabilities and performance measures of the entire network by

computing these measures for every agent exactly as in an M/M/1 system.

We consider a simple example. For this queueing model, we assume all tasks are

of a single type and do not distinguish between classes as shown in Figure 3.6. Let

λ0i and λi0 be the rate of arrival and exit into and from the ith node respectively.

Since the routing probabilities are known we can calculate the arrival rates λi of each

of the nodes of the open network by solving the following traffic equations:

62

λi = λ0i +

9∑

j=1

λjpji , i = 1, ..., 9 .

The routing probabilities (pji: probability from i (column index) to j (row index))

for the balanced case are as follows:

0 1/5 1/5 0 0 0 0 0 0

0 0 0 1/4 1/4 1/4 1/4 0 0

0 0 0 1/4 1/4 1/4 1/4 0 0

0 1/5 1/5 0 0 0 0 0 0

0 1/5 1/5 0 0 0 0 0 0

0 1/5 1/5 0 0 0 0 0 0

0 1/5 1/5 0 0 0 0 0 0

0 0 0 1/4 1/4 1/4 1/4 0 0

0 0 0 1/4 1/4 1/4 1/4 0 0

Note that the customer exits from a node i with probability 1 − ∑
j pji. Once the

arrival rates are known, we can calculate the average waiting times at the nodes by

using the following formula:

Wi =
1/µi

1 − (λi/µi)
, i = {1, ..., 9 }.

The QoS metrics namely maneuver plan freshness (MPF) and sustainment plan fresh-

ness (SPF) are calculated in terms of the average waiting times of the nodes at each

level (WCPY ,WBN ,WSUPP) as follows:

MPF = 2WCPY +WBN ,

SPF = 2WCPY +WBN +WSUPP .

63

Figure 3.7: Maneuver Plan Freshness using Jackson Network

If the load is not balanced and the waiting times are different for the different

branches, the QoS measures are accordingly calculated. It can be observed that two

methods of control are straightaway obvious: 1) Adjust the µi so that we could process

faster if possible, 2) Alter the transition probabilities pji to divert traffic to nodes that

are less loaded.

We studied the impact of changing the processing rates at the nodes to illustrate

the benefit of deriving a online queueing model that could form an integral part of

a controller. The Jackson network model is used to compute the maneuver plan and

sustainment plan freshness from the average waiting times of the individual nodes.

We assume the processing rate for class 1 tasks, µupdate_tasks = 10Mb/s at all the

nodes. We assume that the overall arrival rate from the environment is according to

a Poisson Process with λ = 2Mb/s.

64

Table 3.4: Queuing Model Abstraction from TechSpecs for CPY Agent
TechSpecs Entry Description Queueing Model

Abstraction

Update (input) input called update
arrives from BN

update packet enters
CPY node from

environment
Update (output) update packet leaves

CPY and enters BN
route exists from
CPY to BN for
update packet,

reflects as a
probability of

transition
New Maneuver Plan (input) Input received at

CPY from BN, yet
to be processed

plan packet enters
CPY and waits in

queue
Maneuver Plan (output) output from CPY to

SUPP. Plan is
processed.

Plan packet is ready
to exit queue after

service
Update (action) perform this action

at CPY
maneuver plan is

processed at a
particular rate.
determined by
experiments.

Maneuver Plan Freshness (QoS point) compute this QoS at
this node by

respective agent sing
timestamps for the

flows.

sum of waiting times
in the system that

the packet has
visited

Status update rate (operating mode) rate at which stimuli
from the

environment is
received

queueing model’s
arrival and

processing rate is
adjusted

65

Chapter 4

Analyzing a Single-Class

Agent-Based System

4.1 Introduction

In this chapter, we develop a performance model for an agent-based system that can

cope with different types of breakdown (in service) and process tasks all of the same

kind. The main motivation for developing this model is to analyze agents functioning

on a single computing resource (or CPU node) and to quantify the impact of their self-

healing behavior on performance. We assume that the CPU infrastructure on which

agents function is inherently unstable, which is typical in most computing domains

now-a-days. As a result, the waiting line models developed here are applicable to

other computing domains prone to interruptions in service.

The basic premise is that if an agent can influence (by requesting the service

provider, negotiating etc.) how frequently or quickly a breakdown is repaired, it can

improve the performance of the system. Software components, and in particular,

66

agent-based systems, exhibit many adaptive capabilities among which self-healing is

crucial. Due to harsh operating conditions, the agent system should be able to heal

from different kinds of failure having varying impact on the service received. The

goal in this chapter is to explicitly factor two kinds of failure (see Section 4.1.2) into

the model and gauge the failures’ impact on performance. To validate our claim

that self-healing affects the measures of effectiveness of the agent, we propose waiting

line models to predict the extent to which performance and availability are affected.

Subsequently, in Chapter 6 we illustrate how the agents can use these predictive

models internally for decision-making in the context of an multi-agent allocation

problem.

4.1.1 Agent-based computing in harsh environments

A distributed (software) application can be considered as consisting of several com-

ponents allocated on a distributed (service-providing) infrastructure, each performing

its pre-established function. Each component (or agent1) or group of components is

located on a computing resource (eg. a server) whose computing power is limited.

The computing powers of different resources are usually non-homogeneous2. Each

agent can be thought of as a user supplying requests to the infrastructure node on

which it is located. Each infrastructure node processes tasks from its users thereby

providing service. The varying processing requirements of the tasks imposes load on

the infrastructure. Although the memory footprint of agents may also cause loading

of the infrastructure, we assume that information load and processing demanding

tasks stresses the resources more. Furthermore, we consider that the computing re-

1An agent based intelligent supply chain is the application considered.
2i.e. servers can vary in the processing capability of their CPUs.

67

sources on which the agents are located fail frequently due to the heavy loads and

other disruptions. There is either temporary (and so recoverable) loss of processing

capability or permanent loss of information. In case of permanent damage, the re-

course is to replace the software agent (by re-spawning it), sometimes on a different

computing resource. Every node is equipped with capability to recover from some

damage by performing software reconfiguration. This recovery process is abstracted

for the purpose of modeling using the term repair. Such systems that are capable of

recovering from damage incurred during operation are referred to as self-healing sys-

tems. In this chapter, we are interested in analyzing the performance and availability

of a self-healing agent from the queueing persepctive.

4.1.2 Definitions

We will now describe a few terms that we will use throughout. Depending on the

types of breakdown and the processing requirements for tasks, the choice of model will

vary. However, we will assume that all tasks have similar processing requirements (i.e.

single-class) in this chapter. We consider multi-class traffic in Chapter 5. Further,

we assume that there are two kinds of breakdown.

Definition 4.1.1. Catastrophic Breakdown: A catastrophic breakdown in a queue

will lead to loss of tasks in the queue. Service will be disrupted until the agent is

restarted.

Definition 4.1.2. Temporary Breakdown: A temporary breakdown in a queue will

lead to the queue’s capability to service tasks. However, the queue will continue to

accept tasks and maintain state information.

This means that the queue is in a state of partial failure and hence is not fully

68

operational.

Definition 4.1.3. Class of traffic: A class of traffic refers to the particular type of

tasks whose service time requirement, x will conform to a given probability distribu-

tion F (x).

A model that contains both these two types of breakdown is described below.

4.1.3 Performance model with temporary and catastrophic

breakdowns

In this model, we have both catastrophic and temporary breakdowns. We have a

queue whose state-space is a combination of a birth-death process, a (pure) birth

process and a breakdown state. There states constituting the birth only proces are

the states in which the system is in temporary breakdown. However, while in these

states the number in queue is increased by newly arriving tasks. Tasks arrive accord-

ing to a Poisson process PP (λ) and get serviced for a mean time of 1/µ distributed

exponenentially. The queue goes into breakdown after a mean time of 1/γ and gets

repaired from the down state after a mean time of 1/δ, both times distributed expo-

nentially. In addition, there are transitions to states of temporary breakdown after

an exponentially distributed mean time of 1/α. From these states, the system heals

after a mean time of 1/β, distributed exponentially. The rate diagram for this model

is shown in Figure 4.1. In Figure 4.1, T and D refer to temporary and catastrophic

breakdown respectively.

69

0 , 0 , 0 1 , 0 , 0 2 , 0 , 0�λ � �λλ
0 , 0 , 1 0 , 1 , 0 1 , 1 , 0 2 , 1 , 0λ λλ�δ 2

δ 1 α βT T T
D

p h a s e s l e v e l s
Figure 4.1: Rate diagram of a system with catastrophic and temporary breakdown

4.1.4 Organization of this chapter

The details of the modeling are presented in the next section. We provide a solution

technique for computing the steady state probabilities in Section 4.2.2. We will obtain

measures of effectiveness based on the model in Section 4.3. The provide numerical

examples and validate the theoretical model against an Arena simulation model in

Section 5.4. Conclusions are provided in Section 4.5.

4.2 Modeling details

We first consider a node in which all requests are identically distributed and hence

belong to a single class. The arrival of tasks3 from a particular agent i is according to

a Poisson Process with parameter λi (represented by PP (λi)). Summing the arrivals

from all the agents on the node, the total arrival at the node can be computed as

λ =
∑N

i=1 λi if there areN agents allocated to this node. The service time requirement

3Used interchangeably with packets to denote a quantum of work. From the queueing sense, we
will refer to each task as a customer waiting in the queue.

70

is assumed to be exponentially distributed with mean 1/µ.

Each node on which tasks are processed may be under attack. Whatever the cause

of attack may be, the effect of the attack is either temporary disruption or permanent

destruction of the node. Every node is attacked repeatedly separated by random

amounts of time, so attacks can be considered to be according to a PP (α) process.

Since the nodes are self-healing, they repair some damage and are up again after an

exponential time with mean 1/β. Furthermore, we consider catastrophic attacks on

regular or damaged nodes (according to PP (γ)) leading to loss of information with no

chance of repair. In this situation, replacement of nodes is an option. In agent-based

systems, replacement of agents is synonymous to restarting them on other fully (or

partially) functional nodes. This process is referred to as re-hydration and occurs

after a switch-over time distributed exponentially with mean 1/δ.

4.2.1 Summary of solution technique

Firstly we represent the queueing system as a Markov chain4. Subsequently, we write

the balance equations of the system. Several generating functions are defined for

different phases in the Markov chain. We obtain the generating functions, which sum

up the state space probabilities, in terms of known quantities. In this step, a set

of simultaneous equations of the form A(z)ψ(z) = B(z) have to be solved, where

ψ(z) represents the matrix of generating functions from all the phases, and A(z)

and B(z) are both matrices representing model parameters. After obtaining ψ(z),

the boundary probabilties cannot be obtained using usual techniques (see 4.2.1).

First we find z∗ = {z∗1 , z∗2 , ..., z∗n} where Det(A(z∗)) = 0, z∗ ∈ [0, 1). Then, an

arbitrary row j of A(z) and B(z) is selected into which z∗is plugged to give the

4Throughout, a Markov chain is assumed to be a continuous time Markov chain.

71

Aj(z
∗)ψ(z) = Bj(z

∗). Using this equation (set of equations in general), we can

obtain the boundary probabilities such as p000. At this point, the expressions for

the generating functions are obtained. Subsequently, the measures of effectiveness,

such as W (response time in the system) and L (number of tasks in the system), are

derived.

4.2.2 Analysis

This model is described by the stochastic process {P (t), Q(t), R(t)} where P (t)

denotes the number in the system, and Q(t) and R(t) are binary variables indicating

whether or not a temporary and catastrophic breakdown have occured respectively

(1 implies breakdown). We assume that there is infinite room to wait and that the

system can accept (but not process) packets when it is in temporary breakdown.

We can analyze this stochastic process as a continuous time Markov chain (CTMC).

Let Z(t) = {P (t), Q(t), R(t)} = (p, q, r) (for p = 0, 1, 2, ..., q ∈ {0, 1}, r ∈ {0, 1}).

Clearly, {Z(t), t ≥ 0} is a CTMC with rate diagram shown in Figure ??. The CTMC

is ergodic, and for p = 0, 1, 2, ...; q = 0, 1; r = 0, 1, let

ppqr = lim
t→∞

P{Z(t) = (p, q, r)}.

72

Consider the balance equations:

p001(δ1 + δ2) = (1 − p001)γ

p000(γ + α+ λ) = p100µ+ p010β + p001δ1

p100(γ + α + λ+ µ) = p200µ+ p110β + p000λ

p200(γ + α + λ+ µ) = p300µ+ p210β + p100λ

... =
...

and

p010(γ + β + λ) = p000α+ p001δ2

p110(γ + β + λ) = p100α+ p010λ

p210(γ + β + λ) = p200α+ p110λ

... =
...

Let ψ(z) =
∑

i pi00z
i and φ(z) =

∑
i pi10z

i. Multiplying the above system by zi

and summing we get the following.

ψ(z)[(γ + α + λ+ µ) − µ

z
− λz] = (−µ

z
+ µ)p000 + βφ(z) + p001δ1 (4.1)

φ(z)(γ + β + λ− λz) = p001δ2 + αψ(z). (4.2)

We know from the first equation that

p001 =
γ

δ1 + δ2 + γ
. (4.3)

73

Let (γ + α + λ − λz + µ − µ

z
) ≡ (A0 − λz − µ

z
) and (γ + β + λ − λz) ≡ B0 − λz.

Equation (4.1) and Equation (4.2) can be represented as



A0 − λz − µ

z
−β

−α B0 − λz






ψ(z)

φ(z)


 =



µp000(1 − 1

z
) + p001δ1

p001δ2




The generating functions ψ(z) and φ(z) are given by

ψ(z) =
p000(µB0(1 − 1/z) + λµ(1 − z)) + p001(δ1(B0 − λz) + δ2β)

(A0 − λz − µ

z
)(B0 − λz) − αβ

(4.4)

and

φ(z) =
p000µα(1 − 1/z) + p001(δ1α + δ2(A0 − λz − µ

z
))

(A0 − λz − µ

z
)(B0 − λz) − αβ

. (4.5)

These quantities obtained by solving Equation (4.1) with Equation (4.2). p000 is

yet be determined.

Remark 4.2.1. Obtaining boundary probabilities: Now ψ(z) = p000 +p100z+p200z
2.....

That gives ψ(0) = p000. But a standard technique such as this does not yield a solution

for p000. Any equations obtained from ψ(z) or φ(z) for finding p000 are redundant. So

p000 is not obtained directly. Let D(z) ≡ (A0 − λz − µ

z
)(B0 − λz)−αβ. For some z∗,

D(z∗) = 0 as it is a polynomial. To obtain the boundary probabilty p000, we try to

take advantage of the zeros z∗ and the following result due to [13]. For completeness,

we review this result from [13].

Lemma 4.2.2. Consider a series of real positive-valued numbers a0, a1, a2, etc. For

any function of the form φ(z) =

∞∑

i=0

aiz
i such that φ(z) can be written as a fraction

74

φ(z) = A(z)
B(z)

, where A(z) and B(z) are polynomials, if B(z∗) = 0 for any z∗ ∈ [0,∞)

then A(z∗) = 0.

Proof. By definition, φ(z) is a continuous, differentiable and increasing function over

z ∈ [0, ∞). For some z∗ ∈ [0, ∞), let B(z∗) = 0. If A(z∗) > 0, then φ(z∗−) = φ(z∗+)

and |φ(z∗−)| → ∞. This contradicts the fact that φ(z) is continuous, differentiable

and increasing function over z ∈ [0, ∞). Hence A(z∗) = 0. (Similarly, we can prove

for the case A(z∗) < 0.)

Theorem 4.2.3. The value of p000 is given by

p000 =
p001(δ1λz

∗ − (δ1B0 + δ2β))

(µB0(1 − 1/z∗) + λµ(1 − z∗))
(4.6)

where z∗ is the positive real root among

z1 =
A0 +B0

3λ
+ S + T

z2 =
A0 +B0

3λ
− S + T

2
+ i

√
3
S − T

2

z3 =
A0 +B0

3λ
− S + T

2
− i

√
3
S − T

2

and the intermediate values S, T , R and Q are given by

S =
3

√
R +

√
Q3 +R2 ,

T =
3

√
R−

√
Q3 +R2 ,

75

R =
µB0

2λ2
+

(A0 +B0)
3

27λ3
− (µλ− αβ + A0B0)(A0 +B0)

6λ3

and

Q =
3(µλ− αβ + A0B0) − (A0 +B0)

2

9λ2
.

Proof. Using the fact the root of the denominator of ψ(z) must also be the root of

the numerator from Lemma 4.2.2, we seek to find the root of A(z)B(z) − αβ = 0.

In other words, we seek to find the positive root of the cubic equation (A0z − λz2 −

µ)(B0 − λz) − αβz = 0. This equation is of the form a1z
3 − a2z + a3z − a4 = 0

where a1 = λ2, a2 = λ(A0 + B0), a3 = µλ − αβ + A0B0 and a4 = µB0. The roots

of this cubic polynomial can be written as above using Cardano’s formula [84]. The

polynomial will have at least one real root. This is the case when the discriminant

D = Q3 + R2 > 0. In other cases (i.e. when D ≤ 0), it will have more than one real

root. In all cases, we have to determine z∗ ∈ [0, ∞). Rearranging the numerator of

ψ(z), collecting the p000 terms and setting it equal to zero, we get the value of p000 as

above.

Corollary 4.2.4. If z∗ ∈ [0, 1), p000 > 0.

Proof. Substituting for B0 = γ + β + λ and rearranging Equation (4.6), we get

p000 =
p001z

∗(δ1λ(1 − z∗) + δ1(γ + β) + δ2β)

(1 − z∗)(µ(γ + δ) + λµ(1 − z∗))
,

from which it can be seen that p000 > 0 if z∗ ∈ [0, 1).

76

4.3 Measures of Effectiveness

As before, the performance measures considered are (1) the response time of the

customers that receive service (∆) and (2) the probability that a customer is lost

(Pl). In both cases, a lower value means better QoS.

Theorem 4.3.1. The average number of requests in the computing node is given by

L =
p001δ1(β +B0) + p000B0µ− 2λp001δ1 − λp000µ

A1

+ A2
p001δ1(β +B0) − λp001δ1

(A1)2
+

p001δ2(α + A0) − 2λp001δ2 − αp000µ

A1
+ A2

p001δ2(α+ A0) − p001δ2(λ+ µ)

(A1)2

where the A1 and A2 are given by A1 = A0B0 − λ(A0 + B0) + λ2 − µB0 + µλ − αβ

and A2 = A0B0 − 2λ(A0 +B0) + 3λ2 + µλ− αβ.

Proof. The number of requests in the system at steady state is given by

L = 0p000 + 0p001 + 0p010 + 1p100 + 1p010 + 2p200 + 2p020 +,

We can write L = ψ
′

(1) + φ
′

(1). Now we take the derivative of ψ(z) and φ(z) and

allow z = 1. This results in the following expressions.

ψ
′

(1) =
p001δ1(β +B0) + p000B0µ− 2λp001δ1 − λp000µ

A1

+ A2
p001δ1(β +B0) − λp001δ1

(A1)2

φ
′

(1) =
p001δ2(α + A0) − 2λp001δ2 − αp000µ

A1
+ A2

p001δ2(α + A0) − p001δ2(λ+ µ)

(A1)2

77

where A1 and A2 are as above.

Theorem 4.3.2. The QoS measures Pl and ∆, in terms of L are given by

Pl =
λp001(1 − p001) + γL

λ(1 − p001)

and

∆ =
L(1 − p001)

λ(1 − p001) − γL
.

Proof. The number of requests that were blocked per unit time, when the server was

unavailable is λp001. Furthermore, the fraction that was lost because of catastrophic

failure is γL

(1−p001)
(conditioning on the fact that the server was up when the catastrophe

occured). Adding thse quantities and dividing the actual arrival rate λ gives Pl as

above. The net departure rate from the system is

λnet = λ− λp001 −
γL

(1 − p001)

So, the response time for the served customers alone is given by

∆ =
L

λnet

according to Little’s law, which when simplified gives the quantity above.

Theorem 4.3.3. The probability of being in termporary breakdown is

pT =
δ1α+ δ2(γ + α)

(δ1 + δ2 + γ)(γ + α+ β)
.

78

Proof. The probability of being “down” due to temporary breakdown is

p010 + p110 + p210 + . . .

This is nothing but φ(1) where φ(z) is the generating function given in Equation

(4.5).Letting z = 1 in Equation (4.5) we get pT as above.

Theorem 4.3.4. The availability of the agent is

R =
δ1(γ + β) + δ2β

(δ1 + δ2 + γ)(γ + α + β)
.

Proof. The availability of the system i.e. the system is available for processing in-

coming tasks, is nothing but 1 − p001 − pT . It is also equal to ψ(1) where ψ(z) is

the generating function given in Equation (4.4). Allow z = 1 in φ(z) to get R as

above.

4.4 Numerical Examples and Validation

We now provide numerical examples for the queueing model in this chapter. In

parallel, we compare these examples with a simulation model and the model in [13].

In this section, we examine the variation of some performance measures with respect

to changes in β, the repair rate.

Example 4.4.1. The numerical example for the aforementioned model assumes val-

ues for {λ, µ, α, β, γ, δ} as {0.3, 0.4, 0.001, β, 0.001, 0.01}. β, the repair rate of

the agent, is varied in the range 0.03−0.20 keeing everything else fixed. It can be seen

from Figure 4.2 that an increase in β would drive down the steady state average queue

79

length and average waiting time. In Figure 4.3a, theol and theob refer to the loss and

blocking probabilities. theob is more-or-less flat because the number of tasks that are

blocked is going to depend only on p001 which is same when γ and δ (= δ1 + δ2) are

kept constant. However, theol depends on the number of tasks already in the queue

which itself changes with β. Therefore, there is a drop in theob as β in increased. The

sum of theob and theol is Pl - the total loss probability of the agent. The probability

that the system is in temporary breakdown (temp prob or pT) steadily drops with

increasing β as shown in Figure 4.3b. In both Figure 4.2 and Figure 4.3, the values

obtained from the Arena simulation is plotted side-by-side. In Table 4.1 we show

the numerical figures obtained from both the simulation and the theoretical model.

We also compare the theoretical model with the model in [13]. In this comparison,

we illustrate two cases. The first is when we ignore the temporary breakdown (by

setting α = 10−5). In this case, the two models are almost the same but for the small

probability with which temporary breakdown will occur in the model given in this

chapter. The second case is when both temporary and catastrophic breakdown are

ignored. This is done by setting γ = 10−5 and α = 10−5. In doing so, both models are

almost the same as the standard M/M/1 queueing model. In Figure 4.4, we examine

the variation of response time W by varing λ(and hence ρ) and β, and keeping all

else as stated above. As per expection, W is worst when β is minimum and ρ is

maximum.

80

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

L

β

theo
sim

(a)

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 15

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

W

β

theo
sim

(b)

Figure 4.2: L and W versus β - theoretical and simulation

81

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

pr
ob

β

theol
siml

theob
simb

(a)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

te
m

p
pr

ob

β

theo
sim

(b)

Figure 4.3: ploss, pblock, and ptemp versus β - theoretical and simulation

82

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.05

 0.1

 0.15

 0.2

 0.25

 0
 5

 10
 15
 20
 25
 30
 35
 40

W

λ

β

W

Figure 4.4: variation of response time (W) with λ and β

83

Table 4.1: Summary of results

84

Validation of single-class model with temporary and catas-

trophic breakdown

An Arena simulation was used to validate the theoretical model. The code for the

simulation model is available at this site.5 Each simulation was run for 5 ∗ 106 seconds

(1-2 million arrivals). Each simulation was replicated three times with different seeds.

For a few cases, the results of the simulation runs and their theoretical counterparts

are tabulated in Table 4.1. The average error between the compared models across

all the quantities reported is less than 5%.

4.5 Conclusions

In this chapter, we addressed a “micro-model” for the performance prediction of an

agent with different kinds of failure. We examined a class of queueing models with

catastrophic breakdown that has not received much attention in the literature. In

particular, we develop a methodology to analyze queues with two kinds of failure

- temporary and catastrophic breakdown. We consider a single-class of traffic and

obtain performance measures using generating functions. In this particular case, we

are able to obtain closed form results. In the next chapter, we consider a case with

two classes of traffic. Furthermore, we introduce priorities by making one class more

important than the other. These analytical models can be utilized to rapidly obtain

performance and availability estimates as is required in agent-based systems.

5 http://www2.ie.psu.edu/Kumara/Research/lisq/index_files/Algorithms.htm

85

Chapter 5

A Multi-Class Performance Model

for an Agent-Based System with

Breakdown

5.1 Introduction

In this chapter, we develop a performance model for a system that can handle two

types of traffic while healing from different types of breakdown. We will first describe

the scenario and elaborate on some application areas for this model. In specific,

we will describe the application of this performance model to multi-agent systems.

The basic purpose of modeling the system is to evalaute to what degree the perfor-

mance and availability will deteriorate when there are breakdowns. Since we are able

to obtain a closed-form solution for our performance model, it could be used in a

computationally efficient manner as an internal-model for system optimization. This

multi-class waiting-line model is applicable to several applications in manufacturing

86

and telecommunications where there are interruptions in service.

5.1.1 Overview of the modeled scenario: Agent-Based Sys-

tem

A software application such as a agent system can process different types of tasks.

The difference in the types is characterized by varing arrival rates in to the system

and the time required to process them. The application which is composed of various

components is susceptible to failure. The first type of failure considered causes a loss

of processing capability while the system state (number in system, the types of tasks

entering etc.) is maintained. The second type of failure is catastrophic in nature

and causes all state information and queued up tasks to be lost. The assumptions

made with respect to repair (and rehydration), multiple levels of tasks that can be

class-switched or inter-converted, and the types of failures make the model applicable

to a software system, in specific, an agent-based system.

The failure in the application is caused by environmental conditions that are in-

herently unstable, such as conditions in a battle-zone. When computing resources

and software are operating in such environments, it gives rise to severe loads that

adversely affect the software components. The model in this chapter pertains to a

single software component (henceforth called agent) that operates under aforemen-

tioned battlefield conditions. The software agent we consider generally processes two

types of tasks - update and planning tasks. Update tasks result due to the agent sam-

pling the environment for changes in physical attributes and sensor readings. Planning

tasks are more computation intensive and generally relate to utilizing sensed input

and stored operational tactics into a plan of action for a subsequent time duration.

87

In any case, we will concentrate of developing a micro-model (see Cohen [20]) for

analyzing the performance of an agent system operating in a stressful environment. In

the next few sections we will detail the modeling objectives and describe the system

from the perspective of queueing theory.

5.1.2 Modeling Objectives

The objective of this chapter is to develop a multi-class queueing model for each agent

of a system comprising of multitude of agents potentially under varying operating

conditions. Each agent accepts two types of tasks, namely low (class 1) and high

(class 2) priority tasks.1 Tasks wait in a single queue and are processed in a first-

come first-served basis within their types. If a temporary breakdown occurs, all

tasks already in the queue wait until the system is repaired. Once the agent heals

(i.e. repaired), the next task to be processed is picked as per its priority. Under

temporary breakdown, the system continues to accept new tasks i.e. arriving tasks

are not blocked. Whenever a catastrophic failure occurs, the queue is emptied. The

model has to account for two kinds of adaptive behaviors of the agent:

1. Drop tasks that require high processing beyond a particular threshold of n

packets; or

2. Convert tasks that require high processing to the other type which requires lesser

processing at a particular threshold of n tasks (referred to as class-switching).

1In agent-based systems such as Ultra-Log, the tasks are referred to as level-i where i indicates
the priority and/or procesing time requirement. The system therefore can handle tasks of different
levels. Furthermore, tasks can be converted to different levels. This is the motivation for considering
class-switching.

88

In this way, the agent can modulate its stress level and survive severe information

load. Accepting a limited number of tasks requiring high level of processing has

performance benefits. This is the motivation behind having a finite buffer space n for

class 2. In an agent-based system like Ultra*Log, class 2 tasks are treated are treated

with high priority to the maximum extent possible. However, if the demand for high

priority processing goes beyond n, they should be switched to the lower priority and be

processed at the corresponding QoS. Class-switching should automatically cease once

there are not more than n class 2 packets in the queue. We now describe the above

modeling requirments more formally. We also factor the environmental conditions

and healing capability of the agent (referred to as repair as in Chapter 4) into the

model.

5.1.2.1 Performance model with catastrophic and temporary breakdowns,

and multiple classes: Model parameters

In the simplest case, we model each agent as a queue that can process two classes of

traffic. However, several agents could exist on a computational resource. In that case,

we bunch all the similar agents residing on the computational resource and represent

it as a single queue. Agents located on a node (i.e. a computational resource) could

supply tasks that belong to two classes of traffic. This means that tasks could be

classified as those that involve light (class 1) or heavy (class 2) computation. The

service time requirements for the two kinds of tasks are exponentially distributed

with mean 1/µk, k = 1, 2. The arrival of tasks from agent i for each class of traffic

k is according to a Poisson process with parameter λk
i

(
PP (λk

i

)
. The total arrival

for class k can be calculated as λk =
∑N

i=1 λ
k
i , where N is the total number of agents

allocated to the node. We asume that there is infinite room for the tasks that require

89

light computation (class 1) to wait in the queue while only a maximum of n class 2

tasks can reside in the system.

The node on which agents are located may be experiencing information overload

(high λi) and/or other kinds of information attacks - causing either temporary or

permanent destruction to the processing at the node. These information attacks are

modeled as being separated by random amounts of time, or according to a PP (α)

process. Since the agents and nodes are self-healing2, they repair some damage and are

up again after time distrbuted exponentially with mean 1/β. Furthermore, we assume

that catastrophic attacks occur according to PP (γ) leading to loss of information.

In this situation, the replacement of agents is an option. In agent-based systems,

replacement of agents is synonymous to restarting them on other fully functional

computing entities. This process is referred to as re-hydration and occurs after a

switch-over time distributed exponentially with mean 1/δ.

5.1.2.2 Measures of effectiveness

The performance metrics we need to compute from the model are (1) the response

time of the customers that receive service (∆) for either class and (2) the probability

that a task is lost (Pl) for either class. In both cases, a lower value means better

quality of service (QoS). From a reliability standpoint, the availability (R) of an

agent is the probability that it is in the up state. A higher value of R indicates a

better QoS.

In the rest of this chapter, we develop the queueing model and a solution technique

to arrive at the aforementioned metrics.

2We are referring to software reconfiguration such as alternate algorithms, resolving deadlocks,
thread contentions and scheduling issues in the infrastrucuture’s operating system.

90

0 , 2 , 2 1 , 2 , 2 2 , 2 , 21 , 1 , 1 2 , 1 , 10 , 0 1 , 0 , 1 2 , 0 , 10 , 2 1 , 2 2 , 20 , 1 1 , 1 1 , 20 , 0 , T 1 , 0 0 , 2p D
αλ 1¢ 1δ ¤¤

β0 , 1 , 2 1 , 1 , 2 2 , 1 , 21 , 2 , 1 2 , 1 , 1λ 1
λ 1λ 1λ 2 λ 2

λ 2 λ 2λ 2

λ 2λ 2 ¢ 2 ¢ 2 ¢ 2 ¢ 2¢ 2
λ 1T

U λ 2 ¢ 2

Figure 5.1: Rate diagram of an agent with temporary and catastrophic breakdown,
and two classes of traffic on a computing resource

5.2 Queueing Model

5.2.1 Two-Class Model

The aforementioned scenario is described by a stochastic process {P (t), K(t), Q(t), R(t)}

where P (t) denotes the number of tasks in both classes as (p1(t), p2(t)). K(t) de-

notes the class in service in the priority queue. Q(t) and R(t) denote temporary and

catastrophic breakdown respectively. We can analyze this stochastic process as a con-

tinuous time Markov chain. Let Z(t) = {P (t), K(t), Q(t), R(t)} = ((p1, p2), k, q, r)

(for p1 = 0, 1, 2, ..., p2 = 0, 1, 2, ..., k ∈ {0, 1, 2} where k = 0 is the don’t care con-

dition w.r.t. which class is in service, q ∈ {0, 1}, r ∈ {0, 1}). Clearly, {Z(t), t ≥ 0}

is a CTMC with rate diagram shown in Figure 5.1. The CTMC is ergodic. However,

this CTMC is two-dimensional, which makes it hard to obtain the solution of system

of differential-difference equations corresponding the CTMC in closed-form .

91

5.2.1.1 Modeling considerations

In order to obtain performance measures and to accommodate the adaptive behavior

of the agent, we make the assumption of finite buffer space for class 2. Thereby, we

are looking at a 1 − dimensional Markov chain unlike a 2 − dimensional Markov

chain which would have resulted by assuming infinite waiting room for class 2. From

a functional perspective, this assumption can be viewed as the agent degrading the

performance of one of the classes as per a threshold policy - a threshold that the agent

can change. Alternately, we can consider dropping packets after the threshold point of

n is reached for the class 2 packets. This is similar to Erlang loss models with finite

buffer spaces. Neither of these assumptions affects the analysis methodology. We

solve both the cases making the aforementioned assumption regarding the threshold

and obtain measures of effectiveness in each case, namely the switch and no-switch

cases.

5.2.1.2 Analysis

We now utilize the generating function methodology to sum our probabilities. We

first introduce some notation which are also tabulated in Table 5.1.

Let

pp1p2kqr = lim
t→∞

P{Z(t) = ((p1, p2), k, q, r)}

which are the steady state probabilities we will be solving for. Let

ψ1
j (z) =

∑

i

pij100z
i, j ∈ {0, 1, . . . , n} , (5.1)

92

Table 5.1: Notation
Symbol Description

i Index for class 1
j Index for class 2

((p1, p2), k, q, r) number of class 1 tasks, number of class 2
tasks, type of task in service, if temporary
breakdown has occured (1) or not (0), if
catastrophic breakdown has occured (1)

or not (0)
n buffer capacity for class 2

ψ1
j (z) generating function for the jth phase on

the top plane, class 1 is in service

ψ̂2
j (z) generating function for the jth phase on

the top plane, class 2 is in service

ψ̂j(z) generating function for the jth phase on
the bottom plane where q = 1, k = 0

denotes do not care which class was in
service

Z(t) queue state at time t
pp1p2kqr(t) P{Z(t) = ((p1, p2), k, q, r)}

93

ψ2
j (z) =

∑

i

pij200z
i, j ∈ [0, 1, . . . , n] (5.2)

and

ψ̂j(z) =
∑

i

pij010z
i, j ∈ [0, 1, . . . , n]. (5.3)

By level i we mean the set of states {(i, j, k , l, m) : j = 0, 1, 2, . . . , n; k =

1 or 2; l = 0 or 1; m = 0}. By phase j we mean the set of states {(i, j, k , l, m) :

i = 0, 1, 2, . . . ; k = 1 or 2; l = 0 or 1; m = 0}. By top plane we refer to those

states that have l = 0 and by bottom plane we refer to those states that have l = 1.

Equation (5.2) represents the generating function for the jth phase in the top plane

of Figure ??. Equation (5.3) represents the generating function for the jth phase in

the bottom plane of Figure ??. We first perform the analysis for the no-switch case.

This is easily extended to the case where there is class-switching. We drop the z in

all ψ(z)s with the understanding that they are all functions of z.

Upon summing up the balance equations using the generating functions, we get

the following.

[a− µ1

z
− λ1z]ψ

1
0 = µ1p00000(1 − 1

z
) + µ2ψ

2
1 + βψ̂0 + p00001δ1 (5.4)

[c− λ1z]ψ̂0 = αψ1
0 (5.5)

[a− λ1z]ψ
1
1 = λ2ψ

1
0 − λ2p00000 (5.6)

[b− λ1z]ψ
2
1 =

µ1

z
ψ1

1 + λ2p00000 + µ2ψ
2
2 + βψ̂1 (5.7)

[c− λ1z]ψ̂1 = α(ψ1
1 + ψ2

1) + λ2ψ̂0 (5.8)

...
...

...

94

...
...

...

[a
′ − λ1z]ψ

1
n = λ2ψ

1
n−1 (5.9)

[b
′ − λ1z]ψ

2
n =

µ1

z
ψ1

n + λ2ψ
2
n−1 + βψ̂n (5.10)

[c
′ − λ1z]ψ̂n = α(ψ1

n + ψ2
n) + λ2ψ̂n−1 (5.11)

The constants a ≡ γ+λ1+λ2+µ1+α, b ≡ γ+λ1+λ2+µ2+α and c ≡ γ+λ1+λ2+β.

The other constants a
′ ≡ a − λ2, b

′ ≡ b − λ2 and c
′ ≡ c − λ2. If the buffer capacity

for class 2 tasks is n, there will we 3n+ 2 rows. Furthermore,

p00001δ = (1 − p00001)γ.

This gives p00001 (also called pD, the down state) as γ/(γ + δ). Multiplying the

equations (??)-(5.11) by z, we can write them in matrix form A(z)ψ(z) = B(z) as

follows(for a buffer-capacity of n for class 2 packets):

A(z) ≡




F 0 F 0
r 0 0 0 0 0 0

M1
1 M1 M1

r 0 0 0 0 0

0 M2
l M2 M2

r 0 0 0 0

0 0
. . .

. . .
. . . 0 0 0

0 0 0
. . .

. . .
. . . 0 0

0 0 0 0
. . .

. . .
. . . 0

0 0 0 0 0 Mn−1
l Mn−1 Mn−1

r

0 0 0 0 0 0 Mn
l Ln




where the sub-matrices are defined as

95

F j ≡



az − µ1 − λ1z

2 −βz

−αz cz − λ1z
2


, F j

r ≡




0 −µ2z 0

0 0 0


,

M j
1 ≡




−λ2z 0

0 0

0 −λ2z




, M j ≡




az − λ1z
2 0 0

−µ1 bz − λ1z
2 −βz

−αz −αz cz − λ1z
2




,

M j
r ≡




0 0 0

0 −µ2z 0

0 0 0




,

M j
l ≡




−λ2z 0 0

0 −λ2z 0

0 0 −λ2z




, Lj ≡




a
′

z − λ1z
2 0 0

−µ1 b
′

z − λ1z
2 −βz

−αz −αz c
′

z − λ1z
2




and j denotes the phase.

B ≡




B0

B1

B2

...

...

Bn−1

Bn




96

where B0 = [{µ1p00000(z − 1) + p00001δ1z} 0]T , B1 = [−λ2p00000 λ2p00000 0]T and

Bj = [0 0 0]T for j ≥ 2.

ψ(z) ≡




ψ0

ψ1

ψ2

...

...

ψn−1

ψn




where ψ0 ≡ [ψ1
0 ψ̂0]

T and ψj ≡ [ψ1
j ψ

2
j ψ̂j]

T for j ≥ 1.

5.2.2 Finding the boundary probabilities

It is straightforward to obtain

ψk
j (z) =

Ck
j (z)

D(z)

and

ψj(z) =
ˆCj(z)

D(z)

. The ψk
j and ψj represents the generating function for the jth phase on the top and

bottom layers as shown in Figure 5.1 in terms of the known input parameters (λ1, µ1

etc.) as well as p00000 which we must compute. Note that p00001 is already known to

be γ/(γ + δ). The denominator

D(z) = det(A).

97

D(z) in our model usually a large degree polynomial in z.For example, for n = 2, it

would be of the order 8. We are interested in the zeros of D(z) to obtain the boundary

probability p00000. In this particular case, 2-class priority queueing model, we have

only one unknown. The zeros of D(z) are evaluated numerically and denoted z∗. We

are interested only in z∗ < 1.

Next we find Ck
j (z∗) and/or Cj(z

∗). These quantities are equated to zero to solve

for the boundary probabilities. This procedure is pretty general and can be used to

obtain the boundary probabilites for other types of similar models such as preemtive

priority multi-class case or those with multiple levels of temporary breakdown. The

commonality between these models is that they all have multiple phases with a gen-

erating function ψj representing phase j. In those cases, the different zeros z∗(≤ 1)

are utilized to obtain several equations which are solved simultaneously to obtain the

boundary probabilities.

5.2.3 Class-switching case

The class-switching case is almost the same as above. The only difference is with the

matrix A where the constants have to be redefined slightly. In order to obtain A for

this case, first define a
′ ≡ a, b

′ ≡ b and c
′ ≡ c. Subsequently, replace λ1 by (λ1 + λ2)

when j = n (i.e. the last three rows).

5.2.4 Case where n=2

We illustrate the above steps for n = 2 for the class-switching case. This means that

when n = 2, the net arrival rate of class 1 packets into the system will be λ1 +λ2 and

that of class 2 will be zero. The matrices are

98

A(z) =




az − µ1 − λ1z
2 −βz 0 −µ2z 0 0 0 0

−αz cz − λ1z
2 0 0 0 0 0 0

−λ2z 0 az − λ1z
2 0 0 0 0 0

0 0 −µ1 bz − λ1z
2 −βz 0 −µ2z 0

0 −λ2z −αz −αz cz − λ1z
2 0 0 0

0 0 −λ2z 0 0 az − (λ1 + λ2)z
2 0 0

0 0 0 −λ2z 0 −µ1 bz − (λ1 + λ2)z −βz
0 0 0 0 −λ2z −αz −αz cz − (λ1 + λ2)z

2




,

B =




µ1p00000(z − 1) + p0001δ1z
0

−λ2p00000

λ2p00000

0
0
0
0




,

and ψ(z) = [ψ1

0
ψ̂0 ψ

1

1
ψ2

1
ψ̂1 ψ

1

2
ψ2

2
ψ̂2]

T .

99

We will use this matrix to illustrate our theoretical procedure.

At this point, we know the generating functions and the boundary probabilites. These

are used to derive performance measures.

5.3 Measures of Effectiveness

We are interested in Lk, ∆k , P k
l and R for k = 1, 2 which are the steady state number

in system, response time, loss probability and system availability respectively where

k denotes the class of traffic. We will derive the the two cases (1) when the buffer

capacity for class 2 is n, and (2) when class 2 tasks are switched to class 1 when the

buffer-capacity of class 2 tasks reaches n.

Theorem 5.3.1. The average number of tasks of class k in steady state

L1 =
d

dz

n∑

j=0

(
2∑

l=1

ψl
j(z) + ψ̂j(z))|z=1,

L2 =

n∑

j=1

j(

2∑

l=1

ψl
j(1) + ψ̂j(1)).

Proof. Follows directly from definition.

Case 1: Class 2 tasks are dropped at threshold n

This case is akin to having a finite buffer space for class 2, i.e. when there n packets

of class 2, any additional packets are dropped. This case is represented in Figure 5.2

100

u p / d o w n L 1
L 2

λ 1λ 2
λ 1 p D

λ 2 p D
λ 2 (1 µ p D)λ 1 (1 µ p D)

λ 2 (1 µ p D) (p c o n)

γ L 1

γ L 2
Figure 5.2: Drop class 2 packets at threshold n

where pcon is the probability of getting dropped. .

Theorem 5.3.2. The average waiting times are

∆1 =
L1(1 − pD)

λ1(1 − pD)2 − γL1

and

∆2 =
L2(1 − pD)

λ2(1 − pD − pdrop)(1 − pD) − γL2

where pdrop =
∑2

l=1 ψ
l
n(1) + ψ̂n(1).

Proof. Of the λ1 class 1 tasks that arrive, a portion λ1pD are blocked because the

system was down due to catastrophic failure. L1 is the long run average of the number

of class 1 tasks in the system. In addition, γL1 tasks that are already in the queue are

lost due to catastrophic failure. Conditioning on the fact the the system was up when

101

catastrophic failure occured, a portion γL1

(1−pD)
is lost. The expected rate of departing

customers (those that completed service) would therefore be

λnet
1 = λ1 − λ1pD − γL1

(1 − pD)

. Since the average time a class 1 customer spends in the system is related to L1 by

Little’s Law, the response time for those tasks that finish processing can be computed

as

∆1 =
L1

λnet
1

which is stated above. For the class 2 tasks, an additional stream of loss is λ2pdrop.

Since tasks for type class 2 are dropped as soon as the buffer space reaches n, the

probabaility of dropping tasks is the probabaility of being in the states pink00 where

i = 0, 1, 2, . . . and k = {1, 2}.This is easily obtained from the generating functions

ψk
n(z) and ψn(z) by putting z = 1. This sum is defined as pdrop and written as above.

Following similar steps,

λnet
2 = λ2 − λ2pD − λ2pdrop −

γL2

(1 − pD)
.

Applying Little’s Law using the net departure rate λnet
2 , we obtain ∆2 as stated

above.

Theorem 5.3.3. Let P k
l be the loss probability for class k.

P 1
l =

λ1pD(1 − pD) + γL1

λ1(1 − pD)
,

102

P 2
l =

λ2(pD + pdrop)(1 − pD) + γL2

λ2(1 − pD)
,

Proof. The total rate at which class 1 tasks are lost is

λ1pD + γL1

(1−pD)
.

Dividing it by incoming arrival rate λ1 gives the loss probability as experienced by

the class 1 traffic. Class 2 traffic experiences additional losses due to finite buffer

space. So the total rate of losses are

λ2pD + γL2

(1−pD)
+ λ2pdrop

which when divided by incoming arrival rate λ2 gives P 2
l as stated above.

Case 2: Class switching at threshold n

This case is akin to a single-class queue after threshold n. The value of n can be

adjusted by the agent as a function of desired performance. Lk, k = 1, 2 are the

same in this case as well. This case is represented in Figure 5.2 where where pcon is

probability of switching.

Theorem 5.3.4. The average waiting times are

∆1 =
L1(1 − pD)

(λ1(1 − pD) + λ2pswitch)(1 − pD) − γL1

103

u p / d o w n L 1
L 2

λ 1λ 2
λ 1 p D

λ 2 p D
λ 2 (1 Æ p D)λ 1 (1 Æ p D) λ 2 (1 Æ p D) (p c o n)

γ L 1

γ L 2
Figure 5.3: Switch class 2 to class 1 at threshold n

and

∆2 =
L2(1 − pD)

λ2(1 − pD − pswitch)(1 − pD) − γL2

where pswitch =
∑2

l=1 ψ
l
n(1) + ψ̂n(1).

Proof. Because of class switching, the effective arrival rates of both classes of traffic

are affected. The net arrival rate of class 1 packets is

λnet
1 = λ1 + λ2P{X2 = n} − λ1pD − γL1

(1 − pD)

where X2 is the random variable indicating the number of class 2 packets in the

system and P{X2 = n} is the probability that there are exactly n class 2 tasks in

the system. Since type 2 tasks switch class at the threshold n, the probability of

switching pswitch = P{X2 = n} which is stated in terms of generating functions as

104

above (this probability is same as the drop probability of case 1). The effective arrival

rate of class 2 tasks is

λnet
2 = λ2 − λ2P{X2 = n} − λ2pD − γL2

(1 − pD)
.

Now

∆k =
Lk

λnet
k

by Little’s Law which gives the expressions above.

Theorem 5.3.5. The loss probabilities for the two classes of traffic are

P 1
l =

λ1pD(1 − pD) + γL1

λ1(1 − pD)
,

and

P =
λ2(pD + pswitch)(1 − pD) + γL2

λ2(1 − pD)

where pswitch =
∑2

l=1 ψ
l
n(1) + ψ̂n(1).

Proof. Similar to case 1.

Theorem 5.3.6. The steady state availability R of the 2 class queue

R =

n∑

j=0

2∑

l=1

ψl
j(1).

105

Proof. The availability of the system is the steady state probability the system is

available for processing tasks. In the 2 class queue, the system is not serving any

customer when the system is in temporary or catastrophic breakdown. The sum of

steady state probabilities of the remaining states i.e. the total probability that the

system is in the states pijk00 where i = {0, 1, 2, . . . }, j = {0, 1, 2 , . . . , n} and

k = {1, 2}. Alternately, this result can be stated in terms of a Markov Reward

Model (MRM) [83]. Let the random variable

Z
′

(t) = rZ(t)

refer to the instantaneous reward rate of the MRM corresponding to Z(t). The

instantaneous availability is

R(t) = E[Z
′

(t)]

=
∑

i, j, k

(rUpijk00(t) + rTpijk10(t)) + rDpD(t)

where rU , rT and rD are the reward rates assigned to the “up” states, temporary

breakdown states and catastrophic breakdown state respectively. By assigning a

reward rate of zero to states where Q(t) = 1 or R(t) = 1, and a reward of one to

states where Q(t) = 0 and R(t) = 0 the steady state availability is computed [83].

Setting set rU = 1 and rT = rD = 0 and allowing t→ ∞

R = lim
t→∞

R(t)

=
∑

i, j, k

pijk00

106

which is the quantity given above.

5.4 Numerical Examples and Validation

We now provide numerical examples using the analytical model explained above. In

particular, we examine the variation of some performance measures with respect to

changes in β, the repair rate. By S and NS we refer to switch and no-switch cases

which we described above. IC denotes the “ignore catastrophic breakdown” case. IT

denotes the “ignore temporary breakdown” case.

Example 5.4.1. ”Single-class” case: In this example, we have deliberately chosen

λ1 = λ2 and µ1 = µ2. By doing so, this case can be compared to the model in

Chapter 4 for performance measures such as L in the class-switch case. We have both

temporary and catastrophic breakdown in this example, although we will ignore one

of them at a time to illustrate the effect the breakdowns have on the measures of

effectiveness. The values of the parameters {λ1, µ1, λ2, µ2, α, β, γ, δ } are given

by {.15, .4, .15, .4, .001, β, 0.001, 0.01}. β is varied in the range 0.01 − 0.2. The

value of n considered is 2 i.e. the maximum buffer space for class 2 packets is 2.

Figure 5.4 shows the variation of L1 and L2 with varying β. Although arrival and

service rates were chosen identically, the queue-lengths are different because of (a)

priority (class 2>class 1) and (b) class 2 has a finite buffer space. As expected, we

have lesser queue-lengths in the NS cases because of the higher loss as compared to

the corresponding S case. IC cases retain more number of tasks in the system. When

β is small, the IC-S case causes a really large queue-length and for this reason they

are not included in Figure 5.4. Whenever the temporary failure is ignored (i.e. IT

cases), β has no impact on the corresponding measure of effectiveness as expected.

107

The discussion for the various cases involving Wi is exactly similar to the above (see

Figure 5.5). pT is independent of whether or not catastrophic failure occurs or not

and hence it consistently falls with increasing β for the pairs of cases (S,IC-S) and

(NS, IC-NS) (Figure 5.6a). Likewise, the availability R of the agent consistently

increases with increasing β (Figure 5.6b). By varying the repair rate, the number

of packets switching to class 1 or those that get dropped is affected as can seen in

Figure 5.7. In Figure 5.8 and Figure 5.9, we show the break-up of the total loss

experienced by the system. When there is no-switching, class 1 will have constant

blocking probability (because class 2 will not affect it in the NS case) whether or not

there is temporary failure. Hence the NS and theIT-NS cases are identical in Figure

5.8a. Because of priority, there are very few class 2 packets remaining in the queue.

So when a catastrophe strikes, very few class 2 packets are lost. This difference in

loss probabilities in apparant for the two classes in Figure 5.9.

Example 5.4.2. Two-class case: For this example, the values chosen for the param-

eters {λ1, µ1, λ2, µ2, α, β, γ, δ } are {.15, .4, .1, .2, .001, β, 0.001, 0.01}. β is

varied in the range 0.01 − 0.2. The value of n considered is 2. In Figure 5.10-Figure

5.15, we show the trends for the variation of Li, Wi, R and the various loss proba-

bilities as β is increased. The discussion is not repeated in the two-class case as the

results are similar to Example 5.4.1.

108

 0

 5

 10

 15

 20

 25

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

L 1

β

S
NS

IC-NS
IT-S

IT-NS

(a)

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

L 2

β

S
NS

IC-NS
IT-S

IT-NS

(b)

Figure 5.4: Li versus β

109

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

W
1

β

S
NS

IC-NS
IT-S

IT-NS

(a)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

W
2

β

S
NS

IC-NS
IT-S

IT-NS

(b)

Figure 5.5: Wi versus β

110

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

p T

β

S
NS

IC-S
IC-NS

IT-S
IT-NS

(a)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

R

β

S
NS

IC-S
IC-NS

IT-S
IT-NS

(b)

Figure 5.6: Li, Wi, pT and R versus β

111

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

sw
itc

h/
dr

op
 p

ro
b

β

S
NS

IC-S
IC-NS

IT-S
IT-NS

Figure 5.7: switching probabilities versus β

5.4.1 Validation of two-class model with temporary and catas-

trophic breakdown

The theoretical model was validated against an Arena discrete-event simulation. The

simulation files are available at the site.3 We considered two particular cases from

Example 5.4.1 and Example 5.4.2 i.e. when β = 0.2. Each simulation was run for

5 ∗ 106 seconds (1-2 million arrivals). Each simulation was replicated three times.

The results for the simulation runs and their theoretical counterparts are tabulated

for a specific case as shown in Table 5.2 and Table 5.3. In Table 5.2, we make λ1 = λ2

and µ1 = µ2and run the two-class model as a single-class model. In both Table 5.2

and Table 5.3, the values predicted by the analytical model are listed alongside those

obtained from the simulation model. The simulation model does not provide L1and

3 http://www2.ie.psu.edu/Kumara/Research/lisq/index_files/Algorithms.htm

112

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

bl
oc

k
pr

ob
 1

β

S
NS

IC-S
IC-NS

IT-S
IT-NS

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

bl
oc

k
pr

ob
 2

β

S
NS

IC-S
IC-NS

IT-S
IT-NS

(b)

Figure 5.8: blocking probabilities versus β

113

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

lo
ss

 p
ro

b
1

β

S
NS

IC-S
IC-NS

IT-S
IT-NS

(a)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

lo
ss

 p
ro

b
2

β

S
NS

IC-S
IC-NS

IT-S
IT-NS

(b)

Figure 5.9: loss probabilities versus β

114

 0

 5

 10

 15

 20

 25

 30

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

L 1

β

S
NS

IC-NS
IT-S

IT-NS

(a)

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

L 2

β

S
NS

IC-NS
IT-S

IT-NS

(b)

Figure 5.10: Li versus β

115

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

W
1

β

S
NS

IC-NS
IT-S

IT-NS

(a)

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

W
2

β

S
NS

IC-NS
IT-S

IT-NS

Figure 5.11: Wi versus β

116

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

p T

β

S
NS

IC-S
IC-NS

IT-S
IT-NS

(a)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

R

β

S
NS

IC-S
IC-NS

IT-S
IT-NS

(b)

Figure 5.12: pT and R versus β

117

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

sw
itc

h/
dr

op
 p

ro
b

β

S
NS

IC-S
IC-NS

IT-S
IT-NS

Figure 5.13: switching probabilities versus β

L2 directly. The values reported in Table 5.2 are computed using the corresponding

queue-lengths and the trafffic intensity. Across all the quantities reported, the average

error is less than 5%.

5.5 Conclusions and Future Work

In this chapter, an agent is modeled as a 2-class non-preemptive priority queue with

two kinds of failure - namely temporary and catastrophic breakdown. Within this

model, we derive results for 2 cases (a) no class-switch and (b) with class-switching.

Using the properties of generating functions, we obtain closed-form results for the

case in which class 2 packets have a finite buffer capacity of n. By considering a

finite buffer capacity for class 2, we reduce the dimensionality of the state space from

118

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

bl
oc

k
pr

ob
 1

β

S
NS

IC-S
IC-NS

IT-S
IT-NS

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

bl
oc

k
pr

ob
 2

β

S
NS

IC-S
IC-NS

IT-S
IT-NS

(b)

Figure 5.14: blocking probabilities versus β

119

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

lo
ss

 p
ro

b
1

β

S
NS

IC-S
IC-NS

IT-S
IT-NS

(a)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

lo
ss

 p
ro

b
2

β

S
NS

IC-S
IC-NS

IT-S
IT-NS

Figure 5.15: loss probabilities versus β

120

Table 5.2: Single class case

121

Table 5.3: Two class case

122

two to one. The methodology we introduce in pretty generic in nature and can be

used for other cases that involve priority and preemption. The key problem that will

be encountered in this class of problems (i.e. queues with multiple failure types) is

the determination of boundary probabilities. Using the matrix-based representation

of the generating functions, we can make the approach proposed in this chapter

generic to a class of problems - preemptive and non-preemtive queues with a vector

of failures. By this generalization, it is possible to observe some structure in the

stochastic process (see A(z)ψ(z) = B(z)) following which the properties generating

functions can be suitably applied. Agents can use this analytical model efficiently to

predict various measures of effectiveness (MOE). Subsequently, the computed MOEs

can be used for decision-making, as is illustrated in Chapter 6 in the context of an

multi-agent allocation problem.

123

Chapter 6

Model-Based Allocation and

Pricing for a Multi-Agent Network

6.1 Introduction

In this chapter, we propose two distributed algorithms for allocating a multi-agent

system using auctions and negotiation. Fundamentally, the problem that is to be

solved is that of allocation - assigning n software agents to m computing entities. The

Generalized Assignment Problem (GAP) as it is referred to in literature is well studied

(see Chapter 2, Section 3). In fact, even finding whether the GAP is feasible is known

to be NP-hard [80]. In this chapter, we will study one type of assignment problem

(interchangeably called allocation problem) and the issues related with it, especially

as it applies to multi-agent systems. Agents resemble software components or objects

but, as pointed out in Chapter 2, they also have properties such as situatedness

and autonomy. In practice, these properties translate into the capability to bid for

goods and make local decisions. Furthermore, in UltraLog [3] and a COUGAAR

124

based multi-agent system called CPE [78, 85] we build agents that have technical

specifications (or TechSpecs) that detail the agents’ inputs, outputs, strategies and

playbooks, and resource requirements. These properties and the ability to operate

as a community make the agent-based system behave as a distributed application -

objects trading messages and traffic back and forth to achieve a goal.

In this context, the design of efficient allocation mechanisms is important, espe-

cially if they are sensitive to local conditions and global system survivability require-

ments (i.e. meeting performance constraints). Most of our work is motivated by the

UltraLog scenario described in Chapter 3. From our perspective, the following aspects

of the MAS allocation problem make it an interesting research topic. Firstly, the MAS

being an interconnected application with end-to-end QoS requirements makes it ap-

pealing - i.e. the application is the network (of agents). So we are dealing not just with

individual agent behavior but also collective application characteristics. Secondly, if

the MAS can influence the allocation such that its QoS requirements (and that of the

service provider) are met every time, it can be thought of as striving to be survivable1.

So in its repertoire of strategies to adapt to its environment, the MAS has atleast

one that affects allocation. Thirdly, there is a business interaction between the MAS

and the computing entities. While the MAS needs the service provider, over-usage

leads to congestion. So, the allocation mechanism will have to ascertain if the QoS

requested can be paid for. Fourth, the environment is harsh causing failure to both

the agents and the computing infrastructure. The key question, therefore, is what is

QoS and how is it quantified in the presence of failures. Fifth, who does what? In a

situation where there are interactions between agents, agents and the infrastructure,

1Survivability is the ability of a system to fulfill its mission while meeting its QoS requirements
in a failure-prone environment.

125

and the nodes that form the infrastructure, what is private and public information,

and what are the roles and responsibilities of each party? These questions motivate

our problem and make our scenario rich.

6.1.1 Scope

We now briefly describe how the questions posed above will be answered in this chap-

ter. We also define what aspects from above are within the the scope of our solution

methodology. Here onwards, we will utilize terminology defined in Chapter 3 and

primarily deal with the scenario through mathematical abstractions (refer Chapter 3

for background on UltraLog and MAS).

• Firstly, we model various end-to-end requirements and characteristics of the

application. We allow for the MAS to reveal its desired QoS which will be

accounted through constraints. For example, flow constraints specify bounds

on acceptable QoS for interconnected agents. Grouping constraints, on the

other hand, define which agents should not be co-located. Characteristics such

as fairness of an allocation are also defined for the application as a whole.

• Secondly, the MAS will influence the allocation by bidding on QoS that it deems

crucial to its survival. Paying more will result in better QoS. QoS is actually

a vector of various components and agents may bid differently for components

of the QoS bundle as per their individual need (and environmental conditions).

An agent’s bid is its own private information. There may be several strategies

for survivability, we only focus on allocation.

• The bids are used by the service provider to compute a fee for the QoS delivered.

This gives birth to a pricing problem in the MAS allocation context. This fee

126

will prevent congestion if the endowments of the agents are assumed to be

limited.

• Fourth, in a harsh environment (such as a battle-field) catastrophes are com-

mon. We analytically model two types of breakdown and assess their impact

on performance and reliability of each node. This work is described in Chapter

4 and Chapter 5.

• Fifth, the problem of determining the ground-rules of operation and the roles

and responsibilities of each participating entity in the allocation problem is that

of mechanism design. We formally define this problem in the next section.

6.1.2 Chapter Organization

The chapter is organized as follows. We first revist the allocation problem and how

it is related in the MAS context in the next section. We embark on the task of

identifying an optimal allocation from the service provider’s context (Section 3.1).

We identify several QoS components as applicable to the distributed MAS (Section

3.2). We utilize the analytical models that capture numerous interactions (explained

in Chapter 3) and to predict the impact of potential allocations on the MAS. The

allocation mechanism in Section 3 (mechanism A) codifies how the information is

utilized and computes the price that must be paid to the infrastructure. In order to

mitigate the complexity of identifying the optimal allocation, we also identify efficient

heuristics and propose decentralization strategies. In doing so, we get Mechanism B

described in Section 4. This is followed by numerical examples in Section 5. In

Section 6, we bridge concepts from the current and previous chapters and elucidate

their overall usefulness.

127

6.2 Model-based allocation

Since we are dealing with a version of the Generalized Assignment Problem (GAP)

[80] - allocating n agents to m nodes, we will first introduce the GAP. Subsequently

we will contrast the GAP with the MAS allocation problem.

We start by recapitulating the GAP that can be described using terminology

from the familiar Knapsack Problem. The 0-1 Multiple Knapsack Problem arises

when n items have to assigned to m containers, each of given given capacity cj j =

{1, 2, . . . , m}. Let xij be the binary decision variable that is 1 when agent i is

assigned to node j , 0 otherwise. It is formulated as the knapsack problem in Problem

1 where pi and wi are the profit and weight associated with item i. If the profit and

maximize

m∑

j=1

n∑

i=1

pixij

subject to
n∑

i=1

wixij ≤ cj ∀ j ∈ {1, ... , m}

m∑

j=1

xij ≤ 1 ∀ i ∈ {1, ... , n}

xij = 0 or 1 ∀ i ∈ {1, ... , n}, ∀ j ∈ {1, ... , m}

Problem 1

weight associated with item i depends on the container j, the GAP arises, which

is formulated similarly as Problem 2 where pij, wij and cj are normally known in

advance.

128

maximize

m∑

j=1

n∑

i=1

pijxij

subject to
n∑

i=1

wijxij ≤ cj ∀ j ∈ {1, ... , m}

m∑

j=1

xij ≤ 1 ∀ i ∈ {1, ... , n}

xij = 0 or 1 ∀ i ∈ {1, ... , n}, ∀ j ∈ {1, ... , m}.

Problem 2

6.2.1 MAS Allocation Problem

If pij and wij are not known in advance and can vary depending on the allocation x,

we are dealing with our MAS allocation problem. This can happen because the profit

of agent i depends not only on agent i but also on the other agents’ bids or requests. If

wij is a QoS measure, it can depend on the allocation of other agents. Therefore the

above problem can be viewed as Problem 3 where x is an n−vector (x1, x2, . . . , xn),

F (x) =arg max
x∈X

n∑

i=1

pi(x)xij(x)

subject to
n∑

i=1

wij(x)xij(x) ≤ cj ∀ j ∈ {1, ... , m}

m∑

j=1

xij(x) ≤ 1 ∀ i ∈ {1, ... , n}

xij(x) = 0 or 1 ∀ i ∈ {1, ... , n}, ∀ j ∈ {1, ... , m}

Problem 3

an allocation, in the space of allocations X with each xj ∈ (1, 2, . . . , m), and pij and

129

wij are dependent on x, denoted as pij(x) and wij(x) respectively. Because of this

dependence, we allocate as a group and not as individual xijs. For a given allocation

x, xij(x) = 1 only when j = xi for j = (1, 2, . . . , m), 0 otherwise. In picking the

decision variable x, we select a number of js as a group and the corresponding xijs

are equal to one (rest are zero). φj represents the node-specific conditions (including

stress). In the rest of the chapter we drop the notation for the dependence on x for

convenience.

With the MAS allocation problem, it can be easily seen that pij and wij are

dependent on x, because agents bring in different bids and parameters, causing the

profit to be dependent on the overall demands of the group. Sometimes, the capacity

cj may depend on the allocation x. By capacity one could mean the number of agents

in a node. To see this point, we must understand that as soon as the n agents are

allocated (i.e. x is determined) they demand a QoS through a parameter called repair

rate or β. Because of varying stresses and QoS requests, it is not possible to ascertain

the number of agents that can be accommodated in a node. Moreover, the m nodes

are only obligated to fulfill the (respective) maximum possible QoS for the demanded

QoS (i.e. they honor the QoS request only if the profit from the bids accommodate

the maximum QoS). These factors cause cj to be dependent on x.

To further complicate matters in the allocation problem, wij could be non-linearly

dependent on x. This could be true for pi as well. To see that such a case arises,

just consider that wij is the QoS and pi is the profit from agent i. QoS such as

response time at a node is non-linearly dependent on the input parameters (this is

easily observed from the queueing models in Chapter 4 and Chapter 5). Similarly, pi

could be dependent the bids of all the agents causing it to be non-linear.

The main question that arises in our problem is - how does one solve for x when

130

parameters such as wij are not known? We answer this question in the next paragraph.

Figure 6.1: Model-Based Allocation

6.2.2 Model-Based Allocation

The answer to the allocation problem lies in a model (in our case, a queueing model

such as the one in Chapter 4 or Chapter 5) that will assist in the computation of

all these parameters (such as wij) for a given allocation x so that the optimization

problem can be solved. In this section, we presented a simplified version of the GAP

as it applied to the MAS allocation. The actual problem which we will consider in

the following sections considers additional interactions such as environmental factors

(i.e stresses or failure). A model that is chosen to assist in MAS allocation has to

be able to deal with the aforementioned problem characteristics as well as capture

environmental interactions. Since we integrate the model in the allocation process

(i.e. model is used for probing the state space), we refer to this procedure as Model-

Based Allocation (Figure 6.1). Hence this procedure is similar to model-predictive

control [72].

131

6.3 Design of Mechanism A

In this section, we present the first distributed algorithm for allocating the agents on

the computing infrastructure. The algorithm is an auction-based mechanism which

simultaneously allocates the agents and charges them for the QoS requested. Figure

6.2 represents the mechanism we describe in this section.

The software agents are the consumers, i.e. each of them demand a bundle of

an information good consisting of a performance and a reliability component. The

infrastructure nodes supply the requested information goods to the agents by adjust-

ing parameters within their control. There are n agents and m infrastructure nodes.

However, the m nodes of the infrastructure are owned by the same Principal. The

proportion in which the bundle is sold gives rise to a range of QoS values.

Agents bid on how much they are willing to pay for the bundle. In return, the

Principal allocates the agents on one of its m nodes, announces the price for the QoS

provided and satisfies any constraints that the agents may reveal to the provider.

Constraints, for example, may refer to special conditions with respect to the QoS

received by one agent and that received by other agents. Some examples of constraints

on the part of the agents is provided in Section 6.3.1. Agents are aware of the

differentiated service but they disclose their value of the service only to the provider.

Agents do not share their individual valuations with other peers.

Upon receiving bids from all agents, the service provider decides what QoS each of

them is entitled to. The first step in this decision process to calculate the QoS bundles

that can be delivered depending on the environmental conditions. These conditions

are possibly different at each of the m nodes. The second step is to utilize the sorted

bids to partition the agents into the different QoS levels. The third step is to allocate

132

Figure 6.2: Schematic of Model-Based Allocation Mechanism

them to one of the infrastructure nodes after satisfying the agents’ constraints.

Every agent is admitted at one of the QoS levels. Agents generally pay more in

order to receive better QoS. The price is computed using a variant of the Vickery-

Clarke-Groves (VCG) mechanism [7]. The fee charged is dependent on the usage

rather than a flat service fee. Through the bidding process, the agents easily partition

themselves into QoS levels they will ultimately receive.

6.3.1 Formal definitions

A mechanism is a game with players, outcomes, players’ strategies, outcome function

and players’ payoff functions. We now define the aforementioned aspects and rules

concerning our mechanism.

1. Players: Although there are m infrastructural nodes, these belong to the same

Principal. So along with the Principal and n agents we have n + 1 players in

the game. The agents are denoted as player i = 1, ..., n and the Principal as

133

player i = 0.

2. Profile of values: A profile is a collection of values for a given variable (say α)

with one value for each player. Now α = (α1, ..., αn). Borrowing from game the-

ory, if for i ∈ [1, n], αi corresponds to the value for the ith player, α−i is the col-

lection of values for all players except i, i.e. α−I = (α1, ..., αi−1, αi+1, ..., αn).

3. Service and QoS: The Principal computes the service levels that can be provided

by adjusting some internal parameters. In this case, the Principal has a model

Mj(βj, φj) using which it will estimate the QoS that can be provided (at node

j, βj is the parameter that can be controlled while φj constitutes the set of

parameters that are fixed and/or not controllable). By adjusting βj for j ∈

(1, . . . , m), the Principal controls the number of levels of service (L) that are

provided. A maximum of m levels of service are possible because there are m

nodes forming the infrastructure, i.e. L ≤ m. The QoS bundle at node j is

denoted by dj and let D = (d1, d2, ..., dL). Each dj consists of performance and

reliability components. Both L and D are not known ahead of time, they are

computed during allocation as something that would optimize the Principal’s

objective.

4. Agents’ Actions: The Principal expects each agent to individually disclose its

desired βa
i . Let βa = (βa

1 , ..., β
a
i , ... , β

a
n). Based on their estimates βa,

the agents announce their individual values for the service (which consists of

several components) to be provided. Depending on how all the agents value

the service, the Principal prices the QoS. Let these bids by the agents be b =

(b1, ..., bi, ... , bn) where bi is the bid for agent i. The true values or types are

denoted by θ = (θ1, ... , θi, ... , θn). Let Bi denote the space of allowable

134

bids and Θi denote the space of agent type for agent i, i ∈ {1, ..., n}. Let

b = b(1), b(2), ... , b(n) denote the order statistics corresponding to b1, b2, ... , bn.

The agents pay the Principal a usage fee upon receiving the service. Agents

collectively express their constraints to the Principal which they expect the

Principal to honor. These constraints may be regarded as general characteristics

of the agents (i.e. the MAS as a whole) that remain relatively constant unlike

parameters such as b or β . A few constraints are listed below.

(a) A flow constraint could set bounds on the worst-case total mean delay of a

set of agents (wij denotes delay at agent i if it has been allocated to node

j), i.e.

m∑

j=1

∑

i∈{Fz}

wijAij ≤∆Fz
∀ Fz ∈ F

where Fz is a flow {f1, ..., fi, ... , ft} such that each fi ∈ {1, ..., n}

and ∆Fz
is the maximum tolerable worst-case delay for flow Fz. Let F =

{F1, ..., FNf } denote the set of all flows where Nf is the total number of

flows that the MAS needs.

(b) A grouping constraint forbids certain agents from residing on the same

node j i.e.

∑

i∈Gz

Aij = 1 ∀ j ∈ {1, ..., m}, Gz ∈ G

where Gz is a group {g1, ..., gi, ... , gy} such that each gi ∈ {1, ..., n}

and gd 6= ge for ∀ gd, ge ∈ Gz. Let G = {G1, ..., GNg} denote the set of

all groups where Ng is the maximum number of (non-permissible) groups

135

the in the MAS. In order for the Principal to take these constraints into

account, the agents collectively reveal G, F and ∆ = {∆1, . . . ,∆Nf
}.

(c) Agents may have a fairness constraint which states that

bi ≥ bi+1 =⇒ xi ≥ xi+1 ∀ i ∈ (1, . . . , n− 1). (6.1)

This constraint can also be expressed as

(x(i) − x(i+1))(b(i) − b(i+1)) ≥ 0 ∀ i ∈ (1, . . . , n− 1).

Since b(i)are order statistics, (b(i) − b(i+1)) ≥ 0 for adjacent agents. Let x(i)

denote the QoS received by the ith highest bidder. The above constraint is

satisfied only if the higher bidding agent among any two adjacent agents

(as per order statistics) receives greater or equal service relative to its

counterpart.

(d) Let βa = (βa
1 , . . . , β

a
i , . . . , β

a
n) indicate the repair rates requested by the n

agents. Not all agents may get the βa
i they request. Some of them may get

less than their desired rate and others more, but they are all guaranteed

something from βa if the allocation is successful. Letβa
max = max(βa).

5. Principal’s Action: The Principal must allocate the agents, decide the QoS to

be provided and subsequently price the QoS based on the bids b. The Principal

computes the level of QoS each agent should be served at. In other words, it

should compute x = (x1, ..., xi, ... , xn) where xi is the QoS bundle that agent

i buys. Since D is not known in advance, the Principal implements an algorithm

that determines D while trying to find the optimal allocation â∗. As part of

136

the algorithm, a set of repair rates βp has to found in response to the requested

repair rates βa. Let βp = (βp
1 , . . . , β

p
j , . . . , β

p
m), where each βp

j could be one

among the set of requested repair rates for node j - the set for node j being

βp
set−j = {βa

i | Aij = 1}. Let B be the space of all possible repair rates chosen

at the m nodes. For this algorithm, the Principal uses the model Mj and hence

we refer to this procedure as model-based allocation. To contrast, first assume

all the QoS levels (i.e. the set D) are known in advance. Then Principal tries

to find the solution

x∗(b, βa) =arg max
[xi, x̂i]∈D

n∑

i=1

(bixi − p̂ix̂i)

where [xi, x̂i] is the QoS delivered to the agent i, p̂i is the penalty suffered

per agent i, and bi is the bid of agent i. For now, we can think of p̂ix̂i as

the cost incurred by the infrastructure to provide the service to agent i. Later

on, we will see that this cost can be used to prevent the infrastructure from

overcharging the agents. Since D is known, the above is an admission control

problem for the Principal where the first highest bidders are admitted into level

m at QoS xi ≥ dm, the second highest bidders are admitted into level m − 1

at QoS dm−1 ≤ xi ≤ dm and so on until all agents are admitted. But the MAS

allocation problem is different. The number of levels of QoS L or the delivery

rates D are not known until allocation is completed. This is because dk at

node k depends on the agents allocated to node k and interactions thereof. The

solution to this problem is presented in Section 6.3.3. The Principal has a few

constraints of its own.

137

(a) Each agent i is served at only one node at QoS level xi, i.e.

m∑

j=1

Aij =1 ∀ i ∈ {1, ... , n}.

(b) The universal service coverage constraint (every agent is admitted) has to

be satisfied also, i.e.
∑m

j=1

∑n

i=1Aij ≥ n.

(c) From a stability standpoint, each node j must satisfy the condition
λj

µj
< 1

(traffic intensify constraint), where λj is the total arrival rate of tasks at

node j and µj is the processing speed of node j.

6. Sorting Bids for Bundles: Since each bundle consists of more than one QoS

component, the agents can announce their bids with a certain amount appor-

tioned for each QoS component. For example, if an information good consists of

two QoS components i.e. x = [xP , xR], a bid b may be of the form b = [bP , bR]

where P and R denote different types of QoS. One way to sort the bids is to

just sort it by total bid value by summing the individual portions. This causes

a problem if the sum of the bids are too close to each other or are tied. To

avoid such problems, the Principal could discern what bid b means by taking

the ratio χ = bP/bR. If χ > 1, then xp is valued more than xR and vice versa.

Extending this argument to the general case, the Principal can determine which

component of QoS comes first in the QOS lexicon so that the bids can be lexi-

cographically sorted. This is useful if the agents prefer different QoS quantities

at different periods as determined by the operational tempo.

7. Usage Price: Based on the agents’ bids and the allocation, the Principal com-

putes the usage price for each level of QoS i.e. for each bundle. Let p =

138

(p1, p2,, pm) denote the prices for the m levels. If penalty p̂i = 0 (∀ i), the

price for level 1 traffic (the lowest level) is set at a constant zero,

p1(b) ≡0

and the price for level k is

pk(b) =pk−1(b) + (dk − dk−1)b(n−
Pn

i=1

Pm
j=k Aij)

where b(n−
Pn

i=1

Pm
j=k Aij) is the highest bid of all agents that were rejected at level

k or higher. It is to be noted that level 1 QoS does not necessarily indicate the

QoS offered on node 1. If p̂ 6= 0, then p1(b) ≡ p̂1x̂1/x1 where x1 and x̂1 are the

QoS at the lowest level and p̂1 is the penalty at the lowest level.

8. Agents’ Utility: The agents have their private utility functions

ui(b, θi) = θixi −
m∑

j=1

pjAij ∀ i ∈ {1, ..., n} (6.2)

where
∑m

j=1 pjAij is payment of agent i.

From the above definitions, summarizes the aspects controlled by agents and the

Table 6.1: Parameters controlled by the Application and the Infrastructure for Mech-
anism A

Controlling Entity Controlled Quantities
Application / MAS {b, βa} i.e. the bids and the associated

repair rates
Infrastructure { p, βp, â} i.e. the infrastructure controls

the prices, the assigned repair rates and
the allocation

139

Principal for Mechanism A.

6.3.2 Queueing Model

In order to assist in the allocation, an analytical model Mj(βj , φj) will be utilized

by the Principal to evaluate the effect of allocating an agent to a node j on various

QoS components. We will now describe the QoS components and how these can be

obtained from the model.

First, the analytical modelMj comprises of six parameters, φj = (λj, µj , αj, γj, δj)

and βj . We divide the parameters into those that are controllable (βj) and those that

are inherent to the node or environment dependent (φj). βj is controlled by the Prin-

cipal and is used to vary the QoS provided. Some parameters in φj are measured while

others could be inherent to the node or operating environment (more interpretation

in Table 6.2, formal definitions of the parameters are in Chapter 4).

Second, the information good (or QoS) xi received by agent i is a bundle of a

performance and a reliability component. As xi depends on the allocation, the goal

is to compute it utilizing Mj(βj , φj). Mj will capture several interactions from a

performance and reliability standpoint, such as those between the agents in node j,

the agents and the harsh environment, and the agents and the node.

6.3.2.1 QoS Components

For agents operating in harsh environments, one component of QoS may be valued

more than the other depending on the environmental operating conditions (also called

optempo). The performance component relates the mean service time requirement

1/µij, where µij is the service rate of agent i on node j. Considering a single model,

140

Table 6.2: Description of Model Parameters as Applicable to Military Logistics
Parameters
(exponentially distributed)

Description

repair rate βj controlled by node (for example, by mak-
ing soft changes - deadlock resolution
mechanism, resolving thread contentions,
killing processes, changing algorithm or
scheduling policy)

arrival rate λj total arrival rate at node j depends on the
number of agents allocated to node j. mea-
surements from history

processing speed µj inherent/fixed at every node j
stress rate αj environmental factor, measured by node j

by monitoring operating environment
attrition rate γj relates to the health factor of a node j,

inherent to a node and the effect the envi-
ronment has on the node

re-hydration rate δj inherent to infrastructure, indicates how
fast an agent can be re-spawned

the subscript i can be dropped (all agents on node j will experience the same service

rate). 1/µj is the performance component of the QoS bundle for agents on node j.

It is assumed that agents are willing to pay more for a better 1/µj. The reliability

component of QoS considered is availability. Let Rj denote the availability or the

fraction of time the infrastructure node is available for service. Recalling results from

Chapter 4 for the single class model and setting δ2 = 0 and δ1 = δ,

Rj =ψ(z) |z=1 .

141

In order to satisfy the constraints of the flows, the Principal needs to compute the

waiting time

Wj =
L

λj(1 − pD)2

where λj =
∑

i λijAij ,

pD =
γ

δ + γ
. (6.3)

and

L =
pDδ(β +B0) + p000B0µ− 2λpDδ − (λ+ α)p000µ

A1

+ A2
pDδ(β +B0) − λpDδ

(A1)2
.

Here A1 ≡ AB0 − λ(A0 + B0) + λ2 − µB0 + µλ − αβ, A2 ≡ A0B0 − 2λ(A0 + B0) +

3λ2 + µλ− αβ, A0 ≡ (γ + α + λ+ µ) and B0 ≡ (γ + β + λ). Also,

p000 =
p001δ(λz

∗ − B0)

(µB0(1 − 1/z∗) + λµ(1 − z∗))

where z∗ ∈ [0, 1) and (A0z
∗ − λ(z∗)2 − µ)(B0 − λz∗) − αβz∗ = 0. (The detailed

derivations for this model are in Chapter 4).

6.3.2.2 Normalization

Let P = (p1, . . . , pi, . . . , pn) denote the performance component of all agents such

that pi = µj if Aij = 1. Let R = (r1, . . . , ri, . . . , rn) denote the reliability component

of all agents where ri = ψj(1) if Aij = 1. Similarly, the absolute waiting times of

the agents are defined as W = (w1, . . . , wi, . . . , wn). In order to obtain relative

142

measures of performance, we normalize the QoS components. We list a few examples

(i and j are the indices for the agent and node respectively):

1. Relative Performance:

prel
i ≡ µj

µmax

if Aij = 1 (6.4)

where prel
i denotes the relative processing speed and µmax = max(µ1, . . . , µi, . . . , µm).

2. Relative Waiting Time:

wrel
i ≡ wj

(
∑m

j=1wj)/m
if Aij = 1 (6.5)

where wrel
i denotes the relative waiting time of agent i.

3. Relative Repair Rate:

βrel
i ≡

βp
j

βmax

if Aij = 1 (6.6)

where βmax is the maximum repair rate that the Principal can provide.

4. Availability: By definition, availability (Rj) is a probability, directly giving a

relative QoS measure. Note that ψj(1) ∈ [0, 1]. Ri ≡ Rj if Aij = 1.

All relative QoS components are unit-less physical quantities in the range [0, 1]. This

ensures that quantities in the bundle can be compared easily. µmax and βmax are

assumed to be known to the Principal. The model not required in Equation (6.6) and

Equation (6.4). It is required in Equation (6.5) and for computing availability Ri.

143

6.3.3 Solution to the Principal’s problem

Let â = (a1, a2, . . . , an) denote one possible allocation of the n agents to the m

nodes. From â, we know that the decision variable corresponding to agent i, Aiai
= 1.

Let A denote the space of all allocations â. Also, during the allocation a βp has to

be found in response to the requested repair rates βa. Both â and βp will affect the

QoS at each node. Once â and βp are chosen, the resulting QoS dj on node j can

be computed using model Mj . If Aij = 1, dj = [xi, x̂i] where xi and x̂i are the

QoS components received by agent i. Collecting all the pieces of the problem, the

complete optimization problem faced by the Principal is

â∗(b, βa) =arg max
â∈A, βp∈B

n∑

i=1

(bixi − p̂ix̂i) (6.7)

subject to

m∑

j=1

Aij = 1 ∀ i ∈ {1, ... , n} (6.8)

m∑

j=1

∑

i∈{Fz}

wijAij ≤ ∆Fz
∀ Fz ∈ F (6.9)

∑

i∈Gz

Aij = 1 ∀ j ∈ {1, ..., m}, Gz ∈ G (6.10)

(x(i) − x(i+1))(b(i) − b(i+1)) ≥ 0 ∀ i ∈ (1, . . . , n− 1) (6.11)

m∑

j=1

n∑

i=1

Aij ≥ n (6.12)

1

µj

n∑

i=1

λiAij < 1 ∀ j ∈ {1, ..., m} (6.13)

As defined earlier, Equation (6.9), Equation (6.10) and Equation (6.11) are the

agents’ constraints. The rest of the constraints belong to the Principal. Generally,

144

xi, x̂i and wij are non-linearly dependent on the allocation â and the repair rate

βp. For convenience, we do not show this dependence in the formulation. xi and x̂i

are relative QoS measures. wij (and correspondingly ∆Fz) are absolute QoS values

computed from the model or known to the application from the TechSpecs. â∗ is the

allocation (â, βp) that optimizes the objective function.

6.3.3.1 Exhaustive search

The optimization problem described above is non-linear and discrete in the objective

function and constraints. Therefore, exhaustive enumeration is a possibility. But as

the problem size increases, the search quickly becomes intractable. Within exhaustive

search, we need to specify how the aforementioned queueing model is used to compute

the QoS x. This along with inputs, outputs, and roles of the parties involved is

provided in Algorithm 1.

6.3.3.2 Greedy allocation heuristic

The following greedy algorithm is used to allocate the agents to the infrastructure

nodes. As mentioned earlier, if the QoS levels are known prior to beginning the

allocation, the Principal would have to admit a certain number of agents at every

level subject to the capacity constraints at that level. Here we get to know of the

QoS levels as we allocate. For the allocation process we utilize an analytical model

Mj(βj, φj) primarily to sort the available machines by attainable QoS. upgrade(A) :

called if the forward pass completes without being able to allocate all the agents.

6.3.3.3 Algorithm Complexity

Exhaustive search

145

The exhaustive search for â∗ is an exponential complexity algorithm. Generating

all possibilities for â alone has mn total iterations. Furthermore, βp has to be chosen

also. Assuming each agent i requests a unique βa
i , a total of m values have to be

chosen out of the n-valued tuple βa. The number of combinations for βp is governed

by the allocation â. If there are n1agents in node 1, n2agents in node 2 and so on,

the total number of combinations for βp would be Πm
j=1, nj 6=0nj (discounting nodes

with no agents). In terms of â, nj =
∑n

i=1Aij. Therefore, the overall complexity is

O(mn ∗ Πm
j=1, nj 6=0nj).

Heuristic

Sorting the bids can be accomplished in O(n log n) time complexity. We now

evaluate the cost of allocating one agent.

• Model costs: When each agent i is to be allocated, the model Mj is called

m times to evaluate the best node for the agent to be allocated. Assume a

constant cost C per call to the analytical model. Since there are nj agents in

node j already, a total of (nj + 1) calls to the model are made - one call per

value of repair rate of agents in j. For all the m nodes, the total cost for calling

the model is Πm
j=1(nj + 1) ∗ C or C

′

O(nm).

• Cost from evaluating constraints: The cost of evaluating all the flow constraints

in Equation (6.9) is NfO(n2). The cost of evaluating the fairness constraint

(Equation (6.11)) is O(n2). Other constraints are of lesser or equal time com-

plexity.

Since the algorithm is an iterative procedure, the model and constraint evaluating

costs are incurred per agent. Therefore the total cost of allocating the agents (given

the bids are sorted) is O(n∗(Nfn2+n2+C
′

nm)). Including the sorting costs, we have

146

a time complexity of O(n log n + c1n
3 + c2n

m+1) where c1 and c2 are new constants

that replace (Nf + 1)and C
′

. If n >> m, the nm+1 term will dominate making the

total complexity O(nm).

Now, consider the costs due to the upgrade routine. If a single upgrade has to

be carried out from node j to node j − 1, then (nj − 1)(nj−1 + 1) new repair rates

have to be checked using the model. That makes it O(n2) time complexity for the

model evaluation. Adding the constraints, would still keep the complexity O(n2). If

only one upgrade is permitted per pair of nodes to accommodate one agent, then a

maximum m− 1 upgrades will occur per agent. That makes it O(n2m). Adding the

costs for all agents that require upgrades, the overall upgrade cost rises up to O(n3m)

complexity.

Choice of algorithms

In light of the fact that usually m << n, decisions can be made about which algorithm

to employ. The exhaustive search is very costly. If n = 20 and m = 3, this algorithm

can take in excess of 109 iterations. The greedy heuristic is slightly better. For this

example, it will take of the order of 8000 iterations to arrive at a good solution. If

need be, the quality of the solution can be made better using the upgrade routine.

This will add another 2400 iterations, taking the total to around 104 iterations.

6.4 Design of Mechanism B

The motivation for a designing an alternate mechanism stems from the very high time

complexity of Mechanism A (in particular the allocation problem within mechanism

A). Once the bids are received, the Principal is responsible for finding the optimal

147

allocation (Algorithm 1) or a good solution (Algorithm 2). The second motivation is

a matter of trust - why should the MAS trust the infrastructure with all of its details

and constraints? Mechanism B treats more of the agents’ information as private

and uses the Principal for the purpose of pricing. Allocation is carried out through

a decentralized negotiation mechanism amongst neighbors and peers - this is the

main focus of this section. Thirdly, we quantify the parameters that are negotiated

and formalize the roles of the negotiating parties, primarily as applied to the MAS

allocation problem. Figure 6.3 represents the mechanism we describe in this section.

In Figure 6.3, there are two allocations shown in the agent layer. The one on top is

the initial allocation. After several rounds of negotiation, this allocation morphs into

what is labeled the final allocation. These initial rounds are called the T1 negotiation

phase. The next negotiation phase is called the T2 negotiation. This occurs between

the two layers marked agent layer and the Principal. The purpose is to decide favor-

able repair rates for the MAS. Bids are submitted by the agents at each node. Repair

rates are negotiated between each node and the agents that reside on that node. The

stars denote varying stress levels experienced by the nodes. At the conclusion of

several iterations of T1 and T2, the agents experience service at the contracted levels.

6.4.1 Negotiation Mechanism Formalisms

We now define the players, outcomes, players’ strategies, outcome function and play-

ers’ payoff functions as applicable to the negotiation mechanism (aspects that are

identical to Mechanism A in Section 6.3.1 will be omitted).

1. Players: Negotiation occurs between pairs of players. In other words, we con-

sider only bilateral negotiation. The first type of negotiation, denoted T1, is

148

Figure 6.3: Schematic of Model-Based Negotiation Mechanism

between two groups of agents. The groups are identified with the indices r and

s, i.e. the agents that are currently located on node r of the infrastructure and

those on s. The set of agents on the two nodes are denoted Ar and As, and

| Aj |≡ nj for j = r, s. Likewise, let βa
r and βa

s denote the set of requested re-

pair rates at the nodes. Although there are two groups, only two representative

agents, ās and ār communicate with each other in the T1 phase. The second

type of negotiation, denoted T2, is one that occurs between a set of agents on

a node j and the node itself. Agents on node j are once again represented and

this arbitrarily elected agent is denoted āj . The players in the T2 negotiation

are āj and node j.

2. Service and QoS: The Principal and the agent are both responsible for collecting

the information relating to model parameters (i.e. φj for every node j). The

model Mj is assumed to be located at a neutral third party. Both agents and

149

the Principal can avail of the model by making a system call. This arrangement

increases the confidence in the output of the model as it avoids the conflicts of

interest. Each node individually selects its repair rate , denoted βp
j , from among

the requests of agents residing on node j (as opposed to the Principal choosing

the globally optimal value).

3. Agents Actions: The mechanism starts with a random allocation of all the

agents to the nodes. This allocation is denoted âinit. For âinit, some of the

constraints (6.9)-(6.13) may not be satisfied. Let the set of agents assigned to

node j be denoted by Aj . Each agent in Aj announces its bid individually to

the node j. The agents in set Aj share their repair requests with each other2.

The representative agent āj maintains a sorted list L (in increasing order) of

repair rates requested on node j. On the one hand, ās and ār may negotiate

to potentially change the assignment of agents to nodes. This is the goal of

the T1 negotiation. On the other hand, the goal of the T2 negotiation is to

cause a potential change in repair rate. In both negotiations, agents will make

a call the model Mj (the queueing model for node j). Agents on the same node

are referred to as peers while others on nodes reachable in one hop are called

neighbors. Agents do have the same constraints as in Mechanism A as the

application characteristics have not changed. But agents do not express their

constraints to the Principal. Whenever the agents engage in T1, they check the

constraints on a bilateral basis. In the T1 negotiation phase, agents solve the

2The data in TechSpecs can be composed to get the desired repair rates of the agents.

150

problem

â∗(âinit) =arg max
â∈A

n∑

i=1

xi (6.14)

subject to

∑

j∈{r, s}

Aij = 1 ∀ i ∈ {1, ... , n} (6.15)

∑

j∈{r, s}

∑

i∈{F̄z}

wijAij ≤ ∆F̄z
∀ F̄z ∈ F (6.16)

∑

i∈Ḡz

Aij = 1 ∀ j ∈ {r, s}, Ḡz ∈ G (6.17)

∑

j∈{r, s}

n∑

i=1

Aij ≥ n̄ (6.18)

1

µj

n∑

i=1

λiAij < 1 ∀ j ∈ {r, s} (6.19)

where Ā is the set of all allocations of the agents in j ∈ {r, s} and â∗ is the

optimal allocation (no βp here unlike Mechanism A). The fairness constraint

cannot be checked for two reasons (a) the agents have no knowledge of each

other’s bids; (b) even if they do, it is hard to ensure global fairness (Equation

(6.1)) through bilateral negotiation.3 n̄ is the total number of agents in nodes s

and r (n̄ = ns + nr). F̄z and Ḡz are respectively the flow and group constraints

for the bilateral case. For the T2 negotiation, the only job of the agents (in

particular ās and ār) is to check if the constraints (6.16)-(6.19) are satisfied.

If any constraint fails, the agents may migrate to another node in the next T1

iteration. In Algorithm 4 and Algorithm 5 details of the sequence of actions in

3By relaxing the fairness constraint, it seems as though we are degrading the quality of the
allocation. But in reality, we must not forget that agents know about each other from TechSpecs as
well as belong to the same application. Hence, in reality they might be fair to each other after all.

151

T1 and T2 are given.

4. Principal’s Action: The role of the Principal is limited to an “accept/reject”

answer based on certain conditions. During T1, the Principal does not take any

action.4 Let Bj denote the set of bids of agents belonging to node j (bi s.t.

Aij = 1). During T2, each node j belonging to the Principal will individually

check the following condition on its revenue revj

{revj(â) =
n∑

i=1

(bixi − p̂ix̂i)Aij} ≥0. (6.20)

This is the condition that each node will at least break-even in the fully de-

centralized case, i.e. when the infrastructure’s nodes do not communicate. Al-

ternatively, to model a Principal whose nodes actually communicate (eg. data

centers and grids), this condition in (6.20) is modified to
∑

j revj ≥ Ω where

Ω is the absolute profit (note that this equation can equivalently be stated in

terms of acceptable profit margin in %). If (6.20) is not satisfied, the node will

reject the requested repair rate. in that case the negotiation proceeds to the

next round. In some cases, the Principal may impose a limit on the total num-

ber of rounds possible which is denoted ζ . The sequence of actions in phases T1

and T2 is listed in Algorithm 4 and Algorithm 5.

5. Usage price: The price is computed in much the same way as Mechanism A.

The difference is that the Principal does not know all the bids. Therefore, upon

completion of the T2 negotiation algorithm, it requests the nodes to reveal

the highest bid in each node. We denote these high bids as (b̄1, b̄2, . . . , b̄m).

4In reality, the Principal has to facilitate the migration of the mobile agents that we consider in
our COUGAAR/UltraLog scenario. We neglect the cost and burden due to the migration of these
light-weight (low memory footprint) COUGAAR agents.

152

Likewise, the QoS delivery rate dk, computed by each node by invoking the

model Mk, is also centrally compiled.56 Let p = (p1, p2,, pm) denote the

prices for the m levels. If penalties p̂ are zero, the price for level 1 traffic (the

lowest level) is set at a constant zero,

p1(b) ≡0

and the price for level k is

pk(b) =pk−1(b) + (dk − dk−1)b̄k−1.

If p̂ > 0, the p1(b) is defined as the break-even price of the lowest QoS level (see

Section 6.3.1).

From the above definitions, we summarize the aspects controlled by the agents and

the Principal in Table 6.3. .

Table 6.3: Parameters controlled by the Application and the Infrastructure for Mech-
anism B

Controlling Entity Controlled Quantities
Application / MAS {b, βa, â} i.e. the bids and the associated

repair rates individually at the nodes.
Infrastructure { p, βp} i.e. the infrastructure controls

the prices, the assigned repair rates and
the allocation

5Since dk is only known at this stage, compiled list D of delivery rates may not necessarily be in
increasing order. Without loss of generality, we assume the dk is ordered. Notice that the bids b̄j
may be reordered and renamed to reflect the order in D.

6The only central computation is the price because it is relative. The goal of decentralization i.e.
the reduction of computational burden from the allocation problem, has already been achieved.

153

6.4.2 Queueing Model

For the sake of comparison, the queueing model used is same one used in Mechanism

A. The only thing to add to here is that the models are used primarily by the agents

during both the negotiation phases. The nodes (and hence the Principal) use the

model sparingly in the T2 phase. Since agents base their decisions on the output from

the queueing model, it is required that the estimates be trustworthy. The Principal

uses the model for revenue computation and once again cannot trust the agents to

provide the estimates even if the agents the models built-in. In this situation, a few

alternatives are present:

1. The Principal and the agents use their own models. This is a viable alternative

because it does not create dependencies.

2. The Principal and the agents can use a trusted third party (similar to certifi-

cation authorities on IP networks) for generating the QoS estimates. Both the

parties can utilize their own data and measurements in conjunction with the

third party.

6.4.3 Solution to the Principal’s and the Agents’ problems

We have two negotiation phases T1 and T2 which are used together to negotiate

QoS contracts. The solution to the Principal’s and the agents’ problems is found by

making alternating the calls to the T1 and T2 stages of negotiation until the parameters

converge. Once the parameters converge, the agents make payments periodically

(e.g. at the end of the operational period; every t seconds etc.). It is possible that

the parameters do not converge, perhaps due to the initial allocation. Under such

154

circumstances, the agents can either change their bids or restart with a different

configuration.

6.4.4 Algorithm Complexity

Since the agents participate in the allocation we compute the complexity as seen by

each participant.

T1 Phase: For each pair of agents, the pair combinations of allocations are 2ns+nr .

Computing wij utilizing the model is O(1) for each node - both nodes participate in

this evaluation. Evaluation of the constraints is O((ns+nr)
2). So, if the total number

of agents is ñ ≡ n+ nr, then the complexity of the T1 phase is O(2ñ ∗ ñ2).

T2 Phase: Since this phase just involves running through the list of βs at every

node j, this will be completed in O(nj) time at every node. At every stage in the

T2 phase, the Principal has to compute the value V - this is done in O(n) time.

Combining these two steps the complexity of this step is O(n2) (because the maximum

value of nj is n).

6.5 Numerical Examples

In this section we provide a few numerical examples for the three aforementioned

algorithms (alg 1, alg 2 and alg 3). We considered a problem with n = 7 agents and

m = 3 nodes. The bids by the agents (in sorted-order) were

b =





1.00 0.5 0.25 0.125 0.06 0.05 0.03

1.75 1.0 0.75 0.500 0.40 0.25 0.15




.

155

The arrival rates λi for i = (1 , 2 , . . . , 7) were λ = {0.1, 0.15, 0.11, 0.12, 0.05, 0.14, 0.013}

and these were assumed to be computed by the Principal from the previous period.

The requested repair rates βa = {0.1, 0.2, 0.15, 0.05, 0.12, 0.07, 0.09}. The con-

straints 6.8-6.13 are to be respected by algorithms alg 1 and alg 2. Recall that for

these algorithms the Principal is responsible for computing the allocation, after the

agents announce their bids. For alg 3, the agents negotiate bilaterally as described

above and are responsible for checking the constraints 6.15-6.19 in a distributed fash-

ion. Two flow constraints F1 = {1, 2} and F2 = {1, 0} are considered with the

respective ∆ = {48, 60} seconds. The nodes are under three different stress condi-

tions (optempo): low, medium and high. These conditions are described in Table 6.4.

The nodes could handle tasks at the rate of 0.4, 0.3 and 0.2 task/second respectively.

For the conditions described, it can be seen for some residual load (say λ = 0.001)

that the power of the nodes is node0 > node1 > node2. For other conditions (such

as randomly varying γ, δ, λ, βa) the queueing model can dynamically determine the

most powerful node and hence the order. We also assume that the maximum repair

rate βmax = 0.25 and the penalty charge p̂ is 0.1 dollars/unit of QoS uniformly across

all agents i.e p̂ = p̂i ∀i = (1, 2, . . . , n). First, we describe the results from alg 1,

which being the solution from the enumerative algorithm will be used as the baseline.

We then describe results from alg 2 which is an iterative heuristic. Lastly, we describe

results from alg 3 which is the negotiation algorithm.

Table 6.4: Optempo experienced by the nodes
Node
(optempo)

Environmental Parameters (φj)
j = {0, 1, 2}

Node 0 (low) {α = 0.001, γ = 0.001, δ = 0.01}
Node 1 (medium - 5×) {α = 0.005, γ = 0.001, δ = 0.01}
Node 2 (high - 10×) {α = 0.010, γ = 0.001, δ = 0.01}

156

The QoS components considered for this example are xi = (prel
i , Ri) and x̂i =

(wrel
i , βrel

i) for i = (1, 2, . . . , n). These quantities have been defined in Section

6.3.2.2. The objective function F (x) the Principal seeks to maximize (for alg 1 and

alg 2) is therefore

F (x) = max
â∈A, βp∈B

n∑

i=1

(bixi − p̂x̂i).

where x(â, βp) is {(x1, x̂1), (x2, x̂2), . . . , (xn, x̂n)}. We do not repeat the constraints

here for brevity. The QoS delivery rate is d = (d1, d2, . . . , dm) can be obtained from

x∗(â, βp) by observation. The space of allocations A, has 2187 combinations (37).

The space of repair rates B will be 343 (73) if there are no restrictions on how β on

a node is picked.7

Algorithm 1 (alg 1) Results

The total dollar value potentially earned by the Principal for different allocations is

shown in Figure 6.4. This is the sum of the values at the individual nodes as shown in

Figure 6.5. Since the problem is actually discrete, the raw QoS for different allocations

(locations of the agents and Principal-assigned repair rates) is shown in Figure 6.4b.

The smoothed graphs allow for better comparison and are hence used to present

alg 1 results. Also, these graphs allow for identifying regions of operation, where

for example, the revenue may be high. In Figure 6.4b, we can see the regions where

the Principal will earn lowest revenue (purple) for the bid profile b at a particular

time instant when the all the other parameters (such as φj) are known and are held

7The repair rate at a node is usually picked from among requests in that node (instead of all
requests from the agents). If there are no agents on node it is set to a default value.

157

constant. The x axis (AllocID) shows the order of the best allocation to worst

allocation of agents from left to right. The right most allocation is the worst because

puts all the agents on node 2 which is under highest stress and has relatively low

processing power. Going from low to high βp (y axis) causes the assigned repair rates

to worsen. Since the Principal experiences a penalty for providing really high repair

rates, it tries to supply a comfortable β - one that maximizes its objective function

(i.e. Equation (6.7) or the z axis) while satisfying constraints. In the purple region

(high AllocID, low βp), the Principal pays high penalty to supplying top β while

allowing the agents to physically locate in a high optempo area. Here the other QoS

(such as availability) is also low bringing in lower value to the Principal. Therefore,

the revenue is lower (inspite of high βp in this region). A reverse argument is made for

the diametrically opposite region. The Principal makes the decision of which AllocID

and βp to provide according to the combination that maximizes the total value as well

as one that satisfies the constraints.

The differentiation in terms of the QoS provided to the agents is shown in Figure

6.6 and Figure 6.7. In this case, the Principal can identify 3 levels of QoS possible and

the impact the environment has on the allocation at the different nodes (as illustrated

by the regions). In other cases, the Principal could potentially provide lesser number

of QoS levels, if the differentiation in value allowed for by environmental conditions

is too close to consider different.

For given stress conditions, Figure 6.8 shows how requests by agents are satisfied

by the Principal on an average (across the nodes). In a way, this is a measure of how

close the Principal is able to get to requested repair rates. Since the Principal selects

from a set of discrete β values requested by the agents on respective node, it can

seldom satisfy all the agents on a node in terms of β. Note that this does not mean it

158

cannot satisfy, for example, the flow (or the waiting time) constraints. When agents

are not given their requested β values repeatedly they may over time have reason to

migrate (a desired condition in alg 3 where agents move around in search of better

β). We do not explicitly model the rules that govern migration or how agents update

the requisition strategies.

For the example provided above, the optimal allocation

â∗ = {(0, 0, 0, 1, 1, 2, 2), (0.20, 0.05, 0.07)}

which provided the following QoS levels d = (d0, d1, d2) as d0 = (1, 0.9046, 0.8259, 0.80),

d1 = (0.75, 0.8279, 0.5264, 0.20) and d2 = (0.5, 0.7969, 1.6477, 0.28). These QoS

levels were not known prior to allocation, rather computed during allocation using

the queueing model. All constraints, including fairness and flow constraints are sat-

isfied for this allocation. The penalties p̂ are assumed to be exogenously obtained

(e.g. market research, random sampling / probing). If p̂ is zero or nearly zero, the

price that is computed for the optimal allocation using the mechanism is given in

Table 6.5. d0 is the lowest level of QoS (given that node 2 has the lowest availability

(high stresses) and processing power). If p̂ = 0, the price for d0 is zero. d1 and

d2 are respectively the middle and high QoS tiers (provided on node 1 and node 0

respectively). . Since p̂ 6= 0, we compute p0 or the price for the lowest QoS level as

Table 6.5: Prices for optimal QoS
QoS level dj

QoS of (+prel,+R) over dj−1

Usage Prices pj per unit of QoS
per second j = (0, 1, 2) [pp

j , p
R
j]

Level d0 (base) 0
Level d1 (+0.25, +0.03) 0.02 [0.0125, 0.0078]
Level d2 (+0.25, +0.08) 0.09 [0.0438, 0.0461]

159

p0 =
p̂2 x̂2

x2

because we have to break-even at the base QoS which is provided on node 2 (x2 and

x̂2 being the QoS on node 2, p̂2 being the penalty at node 2). After computing p0 and

taking the prices for the individual components as the ratio of the QoS (since x2 is a

QoS matrix which is normalized), the prices that are obtained is tabulated in Table

6.6.

Table 6.6: Prices for optimal QoS
QoS level dj

QoS of (+prel,+R) over dj−1

Usage Prices pj per unit of QoS
per second j = (0, 1, 2) [pp

j , p
R
j]

Level d0 (base) 0.2972 [0.1146, 0.1827]
Level d1 (+0.25, +0.03) 0.3176 [0.1271, 0.1905]
Level d2 (+0.25, +0.08) 0.3872 [0.1584, 0.2288]

This price means that the period that the allocation remains as above, the agents

would pay at the rate of 30, 32 and 39 cents/task at QoS levels d0, d1 and d2 respec-

tively. Therefore, at the given λ, that would translate into an expenditure rate of 23

cents/second for the entire MAS. The Principal pockets about 12 cents/second after

penalties are adjusted for.

Algorithm 2 (alg 2) Results

This algorithm is an iterative algorithm which again is controlled by the Principal

completely after bids are obtained. As mentioned earlier, alg 2 is somewhat of a

greedy algorithm. At every stage it tries to allocate the current agent best available

node subject to constraints. If at some stage, it cannot fill all the agents into the

nodes, it upgrades previously allocated nodes to higher QoS before allocating the cur-

rent agent. In this case the total value obtained by the Principal rapidly approaches

160

the optimal value attainable for the given stress conditions and bids.

Figure 6.10 shows the QoS attained at every iteration of alg 2. The QoS ap-

proaches the optimal value in 6 iterations. Running time is drastically reduced in

this case.These show the quality of the allocation and the number of satisfied beta.

Since we reach the optimal allocation, the price computation is exactly as shown

above. But since we are not guaranteed to reach this solution, the price may be

different than the optimal value shown for alg 1.

Algorithm 3 (alg 3) Results

alg 3 attempts to solve an optimization problem that is not identical to the one

considered by alg 1 and alg 2. This is because it does not consider the fairness

constraint - it actually cannot being a distributed algorithm. So in general, the

solution may be inferior to the ones provided above in a strict mathematical sense.

But alg 3 is computationally less intensive and truly distributed. It is a negotiation

based solution and does not require the MAS to reveal a lot of information (e.g.

several constraints).8 In this case, we see that the solution approaches (almost) the

optimal value as can be seen in Figure 6.12 albeit with a few oscillations.

The QoS at the nodes generally does not exactly reach the optimal point in this

example (see Figure 6.13). This is because in the absence of a central authority, each

node makes decisions for itself - i.e. attempts to obtain an non-negative value for

itself. For the same reason, the agents are better satisfied with the QoS provided

8It can be observed that alg− 3 allows the MAS to have better qualitative properties such as (a)
preserving privacy in the sense that it reveals lesser information; (b) more autonomy in the sense
that the MAS decides when to migrate (the autonomic computing literature would refer to this as
a self-configuring application); (c) at any point in time, there is an interim solution (an anytime
allocation); and (d) the MAS can be charged a set-up fee for computing the allocation by the
Principal (i.e. decreased computational burden and a potential revenue stream for the Principal).
In our modeling, we do not get into these aspects in greater detail.

161

(and after a point stop migrating) but from a global sense the solution is sub-optimal

(although to a very small degree). Prior to concluding the negotiation, the repair

rates at the individual nodes have to be rounded down to the closest requested β

at that given node if the current rate is not from among the requested rates. When

the value curves stabilize, the parties decide to conclude the negotiation. The final

allocation âneg = {(0, 0, 0, 1, 1, 2, 2), (0.20, 0.05, 0.09)}. The prices can be similarly

computed (see Table 6.7). From the Principal’s perspective, the allocation is not

optimal (although pretty close). The revenue from the packets was slightly lesser

because the differentiation in QoS between levels d0 and d1 was not sufficient. With

penalties being almost unchanged from alg 1, the Principal pockets a lesser amount

(although the difference in the Principal’s profits between the two cases is very small

in absolute value and is under 14% on a relative basis). This is apparently good for

the agent because it pays less for better QoS in this case. It must also be noted that

for this example the fairness constraint is met.

Table 6.7: Prices for negotiation algorithm (alg − 3)
QoS level dj

QoS of (+prel,+R) over dj−1

Usage Prices pj per unit of QoS
per second j = (0, 1, 2) [pp

j , p
R
j]

Level d0 (base) 0.2821 [0.1048, 0.1733]
Level d1 (+0.25, +0.01) 0.2967 [0.1212, 0.1755]
Level d2 (+0.25, +0.07) 0.3663 [0.1525, 0.2138]

6.6 Conclusions

In this chapter, we provide two mechanisms for devising service level agreements

between multi-agent systems and the computing infrastructure. Both mechanisms are

distributed, but vary in the degree of distribution. In Mechanism A, once the bids are

162

obtained the Principal compute the complete allocation. Mechanism B enables the

agents to truly exercise their autonomy by allowing to bilaterally negotiate. In return

it reaps the benefit of lesser computational burden as far as collocation is concerned.

We conclude by first pointing out a subtle difference in the way an SLA can be

represented. Subsequently,we highlight the salient aspects of using the mechanisms

in the context of an application - a MAS for military logistics. In this way, we

recapitulate how the pieces, namely the allocation problem, quality of service (for

software agents) and pricing, fit together.

6.6.1 Service Contract

The service level agreement SLA, between the agents and the infrastructure for the

operational period (which is the time between two successive negotiations) can be

written as a tuple {AP, IP} whereAP stands for the agents’ parameters and IP

for the infrastructure’s parameters. For example, we write the SLA we obtain for

mechanism A and B as follows:

SLAB = {(â), (βp, p)} (6.21)

and

SLAA = {(Φ), (â, βp, p)}. (6.22)

The notations are essentially saying the same thing: given all the inputs, the agents

and the nodes are agreeing to the agent assignments â, the repair rates βp and the

163

prices p. Every other parameter or condition is just used within the mechanism to

compute the SLA. However, there is a slight difference in notation for SLAA and

SLAB. This is because of the mechanism used. For SLAB, the agents compute â

and the Principal computes βp and p. In the case of the SLAA, the Principal decides

all the parameters.

6.6.2 An Application: Automatic deployment and configu-

ration for software agents

The aforementioned mechanisms can be utilized to perform automatic (agent-based)

application deployment and (re)configuration as per the QoS requirements of the ser-

vice consumer. Since manually deploying and tuning large-scale distributed software

applications is cumbersome, we can use intelligent software agents (as the applica-

tion) to reduce the management burden. The idea is to embed information about

utilities, QoS models, inputs and outputs (which we called TechSpecs) and suitable

mechanisms to make the agents smart. Then the agents and the infrastructure can

engage in a dialog that can tune the settings and/or requests of the participating

entities to ultimately match each others’ needs.

Figure 6.15 depicts the complete picture of using the predictive models and the

mechanism together so that applications can be deployed and allocated with very

little human intervention, if anything at all. The application we will mostly dwell

upon is agent-based logistics and emphasize the benefits that this method offers.

Many points in this section are a reiteration of some motivating ideas which we used

for this chapter as well as Chapter 4 and Chapter 5.

164

6.6.2.1 The need for a model

When the infrastructure does not know how the agents’ demands and constraints

are going to order the physical resources at its disposal, especially in the presence

of interactions with the environment (namely various breakdowns), a suitable model

may be useful. In particular, we find queueing models useful because they give insights

about performance and reliability and, under some conditions, provide fast analytical

QoS estimation tools. When considering military logistics, the physical resources

are computers in the battle-field. Interactions exist between catastrophic failures

and performance of a distributed agent-based application. Reliability suffers when

repairs (in software or hardware) cannot be made in time. Moreover, as pointed out

in Section 6.2, the variables in the agents’ (and Principal’s) optimization problems

are all interdependent - making a micro-model very valuable for allocating the MAS.

While sensors provide up-to-date information, agents utilize micro-models to measure

the impact of failures on their QoS.

6.6.2.2 The need for a distributed mechanism

Although auction based mechanisms (such as Mechanism A) provide incentives to

agents to reveal the the true value of the goods (information goods or QoS in our case),

ultimately, the Principal faces the burden of a huge computation. The need for truly

distributed solutions is further amplified when there are thousands of agents because

the optimal allocations cannot be computed fast enough in that case. Moreover,

distributed mechanisms must also have interim solutions, if there is a sudden need

to stop the allocation in favor of more pressing battle-field tasks. In this chapter, we

propose one such mechanism (Mechanism B).

165

6.6.2.3 Self-Management

In the literature, agents and autonomy are usually inseparable. That means that

agents should be capable of governing aspects relating to their functionality on their

own. In this chapter, we relate the allocation problem to this aspect of agents capable

of deploying (choosing â) and configuring (choosing β) themselves. In point of fact,

when we consider a sizable problem with several interactions, mechanisms, protocols

and fast internal micro-models may be a viable alternative.

6.6.2.4 The need for prices

In mission critical conditions, especially when there distributed self-interested agents

(even if they are just software agents) involved the danger of the free-rider problem

and resource starvation is imminent. Even software agents have gradations in capa-

bility and endowments, enabling the most powerful agents to spend more for better

service in times of need. This means that a Battalion or a Brigade agent can pay

more and expect better QoS for completing a task. Simultaneously, limited endow-

ments ensure that this power is not abused by any single agent. Even if pricing is

just a mechanism for controlling congestion as is envisioned for military logistics, the

idea is suitable for the commercial realm as well. Hence in this chapter, we tie the

revenue maximization problem of the Principal with market-controlled usage prices

that agents pay for experiencing QoS.

6.6.3 Using the mechanisms

An application consisting of agents arrives at the periphery of the infrastructure, at

once, requesting service. In reality, being software, an operating system call may just

166

invoke the MAS. The agents have many characteristics as explained before, all of

which we call TechSpecs. These agents want the best service that their money can

buy. The infrastructure’s nodes may incidentally be experiencing varying stresses at

different points within its boundary.

Since there are dependencies (for example, giving one agent resources affects other

agent), models are invoked to quantify the impact of potential allocations and system

configurations on QoS. In fact, at that point it will be known whether or not a

configuration is feasible. Whatever mechanism is followed, the agents must recognize

the rules and play the game to finally experience the QoS they desire. Given the bids

of other agents and available resources, the agents are allocated.

Once the agents are allocated, the agree to pay a usage price. That means that for

every packet that experiences the contracted QoS a micro-payment must be made. To

make things convenient, the Principal may device billing periods and collect payments

from agents at the end of the period. The agents experience the service until the next

disruption or contract violation. Disruptions may come in the form of catastrophic

failure. On the other hand, contract violations may stem from agents sending, on an

average, more tasks than the prior time-period. Usually under such circumstances,

the allocation (and reconfiguration) may be re-triggered by either party - the agent

or the infrastructure. In some situations, these disruptions may be tolerable upto

a point. Node may actually have room to accommodate a few more tasks. The

Principal will be capable of providing service until all required constraints (such as

traffic intensity) are met. The overloading is still mitigated by the fact that there are

usage prices in place to ultimately curb the agents’ desire to compute and reverse the

trend.

167

Algorithm 1 Model-Driven Exhaustive Search By Principal

Input
agents - n, b, βa; nodes - m, φj ; shared information - ∆, F , G, p̂i

Output
A∗

ij , D
∗ ∀ i, j

Notation
i: agent index, j: node index

1. Let the tuple A = {A1, . . . , Ak, . . . , An} denote a single allocation of the n
agents where Ak ∈ {1, . . . , m}. A defines one set of non-zero Aijs. Compute
all mn possibilities for A and add them to the set of possibilities set S.

2. Let t = (t1, . . . , tj, . . . , tm). Initialize t = 1.

3. Pick an allocation A ∈ S, compute the QoS for each of the j nodes - compute
xj and x̂j using Mj(βj , φj). Using φj and the current allocation A, compute
λj =

∑
i λiAij. βp

j = mintj (subsetj(β
a)) for every j ∈ {1, . . . , m}, where

subsetj() picks all βa
i s from βa if Aij = 1 and mintt() picks the tth minimum

from a set of βa
i s.

4. Evaluate all the constraints, now that xj , x̂j , Aij are known ∀ i, j.

5. If all the constraints are satisfied, evaluate the objective function and store the
value.

6. In t, set one tj = tj + 1 i.e. change tj in one node at a time until all possible
combinations of requested βa

i s are exhausted. When one tj is changed, recom-
pute xj and x̂j for every node j using the updated βp

j . Check the constraints.
If they satisfied, compute and store the objective function.

7. Now, pick the next allocation from S. Reset t = 1. Repeat steps 3-6 until all
allocations in S are exhausted.

8. Pick the optimal allocation a∗ and t∗ = (t1, . . . , tm) (i.e. the one that offers the
maximum value to the Principal) and output Aij and D. If the value to the
Principal is negative, return Φ.

168

Algorithm 2 Model-Based Greedy Allocation Heuristic Implemented By Principal

Input
agents - n, b, βa; nodes - m, φj ; shared information - ∆, F , G, p̂i

Output
Aij , D (possibly A∗

ij , D
∗) ∀ i, j

Notation
i: agent index, j: node index

1. Initialize the agent allocation A = {−1, . . . , −1, . . . , −1}.

2. Using the order statistics for the bids b of the agents, pick the highest bidder,
say agent i. Now λi and βa

i are known.

3. Use the model Mj for every node j to compute the QoS x =
(x1, . . . , xj , . . . , xm) if agent i is allocated to node j.

4. Allocate the agent i to node j, if node j offers the highest non-negative value to
Principal. Check constraints. If satisfied, update λj = λi and βp

j = βa
i . Update

A.

5. Pick the next highest bidder. Reset i as current agent. Use Mj to recompute
the QoS x. While computing the effect of allocating the current agent to a
non-empty node, the new λj = λj + λi and the new βp

j = min(βp
j , β

a
i). Check

constraints. For candidate allocations that satisfy the constraints, compute the
objective function and store it.

6. If there are multiple values for βa
i , generate all possible combinations forβp at

the various nodes. Compute constraints. For candidate allocations that satisfy
the constraints, compute the objective function and store it.

7. From all the stored candidate allocations, pick the one that maximizes the value
to the Principal. Allocate the agent and update A. Update βj and λj for every
node j. If the list of stored candidate allocations is empty (constraints must
have been violated in steps 5 and/or 6), goto step 9.

8. If there are more agents to be allocated, goto step 5.

9. Call the routine upgrade(A). The routine returns a modified allocation A
′

if it
can upgrade some agents by executing a backwards pass, or else it returns A.
If result is A

′

, the heuristic outputs A
′

else it outputs Φ.

169

Algorithm 3 upgrade(A) routine

Input
agents - n, b, βa; nodes - m, φj ; shared information - ∆, F , G, p̂i; current allocation
A
Output
Aij , D (possibly A∗

ij , D
∗) ∀ i, j

Notation
i: agent index, j: node index

1. Pick the candidate node where the unallocated agent i can be inserted without
violating, in particular, the fairness constraint. From this node, one or more
agents are to be upgraded to a higher QoS node to create space for the new
one.

2. Pick the highest bidder from the candidate node. And upgrade it another node
j such that it does not violate any constraints.

3. If there are multiple nodes that can accommodate the ’upgraded’ agent, then
the best upgrade should be picked amongst the different choices using the model
to compute the new QoS upon upgrade. The value to Principal is computed
and stored, if constraints are not violated.

4. If there are multiple combinations of βp feasible, they must be checked and the
objective function must be computed and stored.

5. Pick the allocation that provides maximum value to Principal. Update A. If
there are more agents to be allocated goto step 1, else return A. If the set of
candidate upgrade-new allocation pairs is empty, return φ.

170

Algorithm 4 T1 Negotiation Phase (between agents ās and ār)

Input
agents - βa

s , βa
r ∆F̄z

, F̄z, Ḡz, ns, nr shared information - φr and φs

Output
â∗rs or {Φ}
Initial Conditions
current allocation âcurr (Acurr

ij defined accordingly)
Notation
i: agent index, j: node index

(a) Generate the set of possible allocations among the sets of agents represented by
ās and ār.

(b) For each set, pick the highest possible value of β from among the requested
values of β for that node. Call them βs and βr.

(c) Compute QoS using Ms and Mr (and φs and φr). Find the highest value of
the objective function given in Equation (6.14) that obeys the constraints by
iteratively carrying out steps 2-3.

(d) Make the agent transfers, if the optimization problem results in a solution. If
the optimization problem is infeasible, no transfer occurs. Return {Φ}.

171

Algorithm 5 T2 Negotiation Phase (between āj and node j)

Input
agents - Bj , β

a
j , ∆F̄z

, F̄z, Ḡz, nj ; nodes - p̂i, ; shared information - φj

Output
βneg or Φ
Initial Conditions
Some random allocation or the result from T1 negotiation - called âinit (Ainit

ij defined
accordingly)
Notation
i: agent index, j: node index

(a) Agents on node j announce their bids bi to the node (for ∀i s.t. Aij = 1). The
agents elect a representative āj (arbitrary choice) and disclose the set βa

j to the
āj.

(b) āj orders the set βa
j increasing order (cheapest to costliest β), denotes it by L.

āj picks the first submitted value from L and presents it to the Principal.

(c) The node computes the value V =
∑

i(bixi − p̂ix̂i)Aij . If V > 0, node j accepts,
goto step 5. Else, it rejects. Goto step 4.

(d) The agent picks the next unsubmitted bid from L and presents it to the node.
Goto step 3. If there are no-more values in L, return false.

(e) If the agent’s constraints 6.15-6.19 are satisfied, agents also accept. Return
current β as βneg. If constraints are not satisfied, return Φ.

172

 4.2

 4.25

 4.3

 4.35

 4.4

 4.45

 4.5

 0
 500

 1000
 1500

 2000 0
 50

 100
 150

 200
 250

 300
 350

 4.2

 4.25

 4.3

 4.35

 4.4

 4.45

 4.5

total value

AllocID

βp

total value

(a) smoothed

 0
 500

 1000
 1500

 2000 0
 50

 100
 150

 200
 250

 300
 350

 2.8
 3

 3.2
 3.4
 3.6
 3.8

 4
 4.2
 4.4
 4.6
 4.8

 5

total value

"qos_Vtot_0"
 4.5
 4
 3.5
 3

AllocID

βp

total value

(b) raw data

Figure 6.4: Total Value to Principal

173

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 0
 500

 1000
 1500

 2000 0
 50

 100
 150

 200
 250

 300
 350

 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2
 2.3
 2.4

value0

AllocID

βp

value0

(a) node 0

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 0
 500

 1000
 1500

 2000 0
 50

 100
 150

 200
 250

 300
 350

 1.25
 1.3

 1.35
 1.4

 1.45
 1.5

 1.55
 1.6

 1.65

value1

AllocID

βp

value1

(b) node 1

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0
 500

 1000
 1500

 2000 0
 50

 100
 150

 200
 250

 300
 350

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 1.15

value2

AllocID

βp

value2

(c) node 2

Figure 6.5: Value to Principal (broken down by nodes)

174

 0.897
 0.8975
 0.898
 0.8985
 0.899
 0.8995
 0.9
 0.9005
 0.901
 0.9015

 0
 500

 1000
 1500

 2000 0
 50

 100
 150

 200
 250

 300
 350

 0.897
 0.8975
 0.898

 0.8985
 0.899

 0.8995
 0.9

 0.9005
 0.901

 0.9015

R0

AllocID

βp

R0

(a) node 0

 0.858
 0.859
 0.86
 0.861
 0.862
 0.863
 0.864
 0.865
 0.866
 0.867
 0.868

 0
 500

 1000
 1500

 2000 0
 50

 100
 150

 200
 250

 300
 350

 0.858
 0.859
 0.86

 0.861
 0.862
 0.863
 0.864
 0.865
 0.866
 0.867
 0.868

R1

AllocID

βp

R1

(b) node 1

 0.795

 0.8

 0.805

 0.81

 0.815

 0.82

 0.825

 0.83

 0
 500

 1000
 1500

 2000 0
 50

 100
 150

 200
 250

 300
 350

 0.795

 0.8

 0.805

 0.81

 0.815

 0.82

 0.825

 0.83

R2

AllocID

βp

R2

(c) node 2

Figure 6.6: Availability at nodes

175

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0
 500

 1000
 1500

 2000 0
 50

 100
 150

 200
 250

 300
 350

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

rel w0

AllocID

βp

rel w0

(a) node 0

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0
 500

 1000
 1500

 2000 0
 50

 100
 150

 200
 250

 300
 350

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

rel w1

AllocID

βp

rel w1

(b) node 1

 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9
 2
 2.1

 0
 500

 1000
 1500

 2000 0
 50

 100
 150

 200
 250

 300
 350

 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1

rel w2

AllocID

βp

rel w2

(c) node 2

Figure 6.7: Relative waiting time at nodes

176

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 0
 500

 1000
 1500

 2000 0
 50

 100
 150

 200
 250

 300
 350

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

avg Symbol ba

avgBA

AllocID

βp

avg Symbol ba

(a) agents

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 0.125

 0
 500

 1000
 1500

 2000 0
 50

 100
 150

 200
 250

 300
 350

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 0.125

avg Symbol ba

avgBP

AllocID

βp

avg Symbol ba

(b) principal

Figure 6.8: Average β experienced by the agents and provided by the Principal

177

-1

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7

V
al

ue

Iteration#

optimal

V0
V1
V2

Vtotal

Figure 6.9: Value to Principal (alg 2)

178

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0 1 2 3 4 5 6 7

A
va

ila
bi

lit
y

Iteration#

R0
R1
R2

(a) availability

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7

R
el

at
iv

e
w

ai
tin

g
tim

e

Iteration#

optimal

rw0
rw1
rw2

(b) relative waiting time

Figure 6.10: QoS at the nodes (alg 2)

179

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 1 2 3 4 5 6 7

av
g

be
ta

Iteration#

betap
betaa

(a) average repair rate

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7

sa
tis

fie
d

Iteration#

optimal

optimal 0

optimal 1,2

sat0
sat1
sat2

(b) number of agents satisfied with repair rate

Figure 6.11: Quality of Allocation at the nodes (alg 2)

180

-1

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16 18

V
al

ue

Iteration#

optimal

V0
V1
V2

Vtotal

Figure 6.12: Value to Principal (alg 3)

181

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0 2 4 6 8 10 12 14 16 18

A
va

ila
bi

lit
y

Iteration#

optimal R0

optimal R1

optimal R2

R0
R1
R2

(a) availability

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12 14 16 18

R
el

at
iv

e
w

ai
tin

g
tim

e

Iteration#

optimal rw0

optimal rw1

optimal rw2

rw0
rw1
rw2

(b) relative waiting time

Figure 6.13: QoS at the nodes (alg 3)

182

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0 2 4 6 8 10 12 14 16 18

av
g

be
ta

Iteration#

optimal βp

optimal βa

βp
βa

(a) average repair rate

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12 14 16 18

sa
tis

fie
d

Iteration#

optimal 0

optimal 1,2

sat0
sat1
sat2

(b) number of agents satisfied with repair rate

Figure 6.14: Quality of Allocation at the nodes (alg 3)

183

Figure 6.15: Mechanism-driven application deployment and pricing

184

Chapter 7

Conclusions and Future Research

The models and mechanisms proposed in this research enable a MAS to function ef-

fectively in stressful environmental conditions. In this thesis, we mainly studied two

problems. In the first problem, we developed micro-models for performance of agent

systems with different kinds of failure. This involved analyzing a class of queueing

models with catastrophic and temporary breakdowns that has not received much at-

tention in the literature. We consider both single- and multi-class queueing models

and derive performance and reliability measures analytically. This work is discussed in

Chapter 4 and Chapter 5. In the second problem, we developed two allocation mech-

anisms for a multi-agent application to configure itself on a distributed computing

infrastructure. By self-selecting an optimal structure and configuration parameters,

agents can maximize their expected steady state QoS while the infrastructure can

ascertain an efficient allocation. By computing and charging usage prices using the

agents’ bids, the infrastructure controls congestion and provides good QoS.

185

7.1 Contributions

7.1.1 Summary

To the best of our knowledge, the use of quantitative performance and reliability

models in multi-agent systems is novel to this work. In particular, the paradigm of

class-switching within the two-class queueing model effectively captures the oppor-

tunistic level-switching observed in the UltraLog scenario. Additionally, the queueing

models can be utilized to gain insights about the minimum number of agents and

infrastructural nodes that may be required for the MAS to function within the re-

quired QoS limits for a given stress profile. Secondly, we provide two decentralized

model-based allocation mechanisms that enable the MAS to autonomously provision

the available resources. We believe that model-based resource allocation and the as-

signment of roles using a designed mechanism is not well-studied in the context of

multi-agent negotiation.

7.1.2 Description of major contributions

Some of the major contributions of this research are listed below:

1. We develop a methodology to analyze queues with two kinds of failure and mul-

tiple classes. We consider both single- and two-class models and analytically

obtain performance measures using generating functions. In the single-class

scenario, closed-form results have been obtained. In the two-class case, we first

reduce the dimensionality of the state space from two to one. In that process,

we develop a class-conversion model for graceful and controllable performance

degradation. We derived analytical results for performance and availability met-

186

rics that are applicable to a class of queues with breakdown. The methodology

we introduce in pretty generic in nature and takes advantage of the properties

of generating functions. We classify the problems and show that these classes of

problems z∗, the root that solves the denominator of the generating functions

lies in (0, 1). This result helps in uniquely identifying the boundary probabili-

ties.

2. We introduce the concept of model-based allocation when the parameters of

the generalized assignment problem (wij and pij) are not independent. The

micro-models developed are utilized in model-based allocation because they

offer fast analytical solutions with which candidate allocations can be tested

for feasibility. Using this concept we develop three distributed algorithms for

allocation - alg − 1, alg − 2 and alg − 3. In alg − 1, the bids are obtained in

a decentralized fashion (using mechanism A) and the principal computes the

efficient allocation. In alg− 2, the principal iteratively allocates the agents in a

greedy fashion and subsequently improves the solution. In alg − 3, the agents

allocate themselves and negotiate with the principal for other parameters. The

three proposed algorithms consider different degrees of privacy requirements on

the part of the MAS.

3. Finally, we design two (auction-based) mechanisms - mechanism A and mecha-

nism B which are essentially games in which the agents’ can participate to reveal

their preferences and self-select the desired QoS. Mechanism A is a variant of

the Vickory-Clarke-Groves mechanism [7]. Mechanism B trades off optimality

for total decentralization (hence agents’ autonomy) and more privacy. In fact,

it utilized a negotiation scheme for (re)configuration is an anytime algorithm -

187

which helps mitigate the set-up time. In the end, we compute usage prices for

the agents.

Through these contributions, we formalized and automated the process of negotiat-

ing quantitative QoS contracts for MASs. While negotiation protocols, strategies and

argumentation methods are widely studied in the MAS domain, autonomous negotia-

tion of quantitative QoS contracts using internal models is novel to this work. While

game theory traditionally looks at strategies and queueing theory at performance

models, we have attempted to bridge the two.

7.2 Future Work

The following research aspects may be natural extensions of this work.

1. The performance modeling work for the multi-class model can be extended by

choosing different assumptions while reducing the dimensionality of the state-

space. The use of phase-type distributions enables the estimation of the state

space beyond a particular value of n2. This assumption will increase the ac-

curacy of the solution provided in cases where the traffic intensity (ρ) is very

high.

2. Both the single and multi-class performance models can be extended to a case

where we have more than the two types of failures we considered. In other

words, instead of one type of temporary failure, one could potentially have k

levels with different levels of processing capability. This assumption will provide

much more resolution on the QoS of systems with multiple levels of failure.

Perhaps, it can be used to model multi-levels of survivability of systems.

188

3. The two-class queueing problem with class-switching can be extended to a case

where there are three or more classes. This extention would attempt to gen-

eralize the performance and reliability models for a multi-class setting. This

is interesting because the associated Markov chain becomes multi-dimensional.

Hence the main problem that one would attempt is that of dimensionality re-

duction to obtain analytical solutions.

4. In the MAS allocation problem, an extended theoretical treatment is possible.

By adjusting a few assumptions, one can try to establish theoretical proofs

relating to the strategy-proofness of the mechanisms proposed. One important

strategy in this context is how much the agents should bid, for example, when

they have quasi-linear utility functions. Subsequently, one can examine other

relevant types of utility functions. Another theoretical aspect worth pursuing is

to model the negotiation schemes. As the first step, one can establish theoretical

models for bilateral negotiation and follow it up with multi-lateral (for example,

3-way) negotiation.

5. Resource allocation for the MAS can be formulated as a multi-criteria opti-

mization problem. The QoS xi of agent i as seen in Chapter 6 can be a vector

of QoS metrics with various weights associated with it. In other words, if

xi = {xi1, xi2, . . . , xip} for p QoS components then the objective function is

formulated as

max
x∈A

n∑

i=1

p∑

j=1

bijxij(x)

where bij is the bid of the ith agent for the pth component. Since x is from

189

the space of QoS allocations A for all agents i.e. i ∈ {1, . . . , N}the objective

function is non-linear. Moreover, since the QoS components xij can be con-

flicting (say response time and loss probability), the bids bij have to be chosen

appropriately. From the perspective of the agent, this is an multi-criteria op-

timization problem. From a practical MAS standpoint, the operational tempo

will be pivotal is deciding the weights (or the agents’ bids) associated with

the QoS components. Within military logistics, the performance component

of QoS may weighted significantly more than availability at a higher optempo,

and vice-versa. Hence the trade-off between performance and reliability could

become be the focus of a multi-objective optimization problem while factoring

the distributed nature of the agents.

7.3 Practical Significances

It is envisioned that work will have the following practical significances: (1) Since

it not possible to manually set-up one global (often inefficient) contract in agent-

based computing environments ridden with complexity stemming from their num-

bers, mutual interactions and unpredictability, an automated procedure is necessary.

The autonomously negotiated SLAs that this thesis proposes will form the micro-

contracts at the lower levels or components of a bigger system whose benefits could

accrue throughout the system. (2) The usage prices that are used may help control

the congestion of the MAS and prevents resource starvation of other mission-critical

software components in the network. (3) One aspect of the negotiation is the allo-

cation of agents (or applications) to the computing infrastructure - a task presently

achieved mostly by manual or semi-automated partitioning of infrastructure resources

190

into clusters. By using the proposed technique, partitioning is not required.

191

Bibliography

[1] K. P. Sycara, “Multi-agent systems,” AAAI Artificial Intelligence Magazine,

1998.

[2] N. R. Jennings and M. Wooldridge, Handbook of Agent Technology, ch. Agent-

Oriented Software Engineering. AAAI/MIT Press, 2000.

[3] “Ultralog program site,” http://dtsn.darpa.mil/ixo/. DARPA.

[4] T. Y. Choi, K. J. Dooley, and M. Rungtusanatham, “Supply networks and com-

plex adaptive systems: control versus emergence,” Journal of Operations Man-

agement, vol. 19, pp. 351–366, 2001.

[5] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, I. Whalley, J. O. Kephart,

and S. R. White, “A multi-agent systems approach to autonomic computing,”

Autonomous Agents and Multi-Agent Systems, pp. 464–471, 2004.

[6] V. Lesser, C. Oritz, and M. Tambe, eds., Distributed Sensor Networks: A Mul-

tiagent Perspective, vol. 9. Kluwer Academic Publishers, Boston, May 2003.

[7] D. Fudenberg and J. Tirole, Game Theory. The MIT Press, Cambridge Mas-

sachusetts, 1991.

192

[8] E. Rasmusen, Games and Information. Blackwell Publishing, 2004.

[9] J. B. Rawlings, “Tutorial overview of model predictive control,” IEEE Control

Systems, vol. 20, no. 3, pp. 38–52, 2000.

[10] M. Morari and J. H. Lee, “Model predictive control: past, present and future,”

Computers and Chemical Engineering, vol. 23, no. 4, pp. 667–682, 1999.

[11] W. Li, D. Shi, and X. Chao, “Reliabilty analysis of m/g/1 queueing systems

with server breakdowns and vacations,” Journal of Applied Probability, vol. 34,

pp. 546–555, 1997.

[12] X. Chao, “A queueing network model with catastrophies and product form so-

lutions,” Operations Research Letters, vol. 18, pp. 75–79, 1995.

[13] N. Gautam, “Pricing issues in web hosting services,” Journal of Revenue and

Pricing Management, vol. 4, no. 1, pp. 7–23, 2004.

[14] B. Kumar and D. Arivudainambi, “Transient solution of an m/m/1 queue

with catastrophes,” Computers and MAthematics with Applications, vol. 40,

no. 12331240, 2000.

[15] X. Chao and Y. Zheng, “Transient analysis of immigration birth-death processes

with total catastrophes,” Probability in the Engineering and Informational Sci-

ences, vol. 17, pp. 83–106, 2003.

[16] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic

Approach. The Johns Hopkins University Press, 1981.

[17] L. Green, “A queueing system with general-use and limited-use servers,” Oper-

ations Research, vol. 33, no. 1, pp. 168–182, 1985.

193

[18] D. A. Stanford and W. K. Grassmann, Ananlysis of Communication Networks:

Call Centres, Traffic and Performance, ch. Bilingual Server Call Centres, pp. 31–

47. Fields Institute Communications, 2000.

[19] T. Osogami, Analysis of multi-server systems via dimensionality reduction of

Markov chains. PhD thesis, Carnegie Mellon University, 2005.

[20] J. W. Cohen, Quantitative Methods in Parallel Systems, ch. Two-dimensional

nearest-neighbor queueing models, a review and an example, pp. 141–152.

Springer-Verlag, 1995.

[21] J. W. Cohen and O. J. Boxma, Boundary Value Problems in Queueing System

Analysis. North-Holland Publ. Cy., 1983.

[22] S. K. Lando, Lectures on Generating Functions, vol. 23. American Mathematical

Society, 2003.

[23] I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Jon Wiley &

Sons, Inc., New York, 1983.

[24] V. Ramaswami, “Algorithmic analysis of stochastic models: The changing face

of mathematics,” Ramanujam Endowmnet Lecture at Anna university, Chennai,

India, 2000.

[25] A. Riska and E. Smirni, “Mamsolver: A matric analytical method tool,” Inter-

national Conference on Modeling Techniques and Tools for COmputer Commu-

nication Systems and their Applications, vol. 2324, pp. 205–211, 2002.

[26] “Future combat systems (brigade combat team),” http://www.army.mil/fcs/.

194

[27] A. W. Services, “Amazon elastic compute cloud (amazon ec2) - limited beta,”

2007.

[28] K. W. Ross and D. H. K. Tsang, “The stochatic knapsack problem,” IEEE

Transactions on Communications, vol. 37, pp. 740–747, 1989.

[29] D. P. Morton and R. K. Wood, Advances in Computational and Stochatic Opti-

mization, Logic Programming and Heuristic Search, ch. On stochastic knapsack

problems and generalizations. 1998.

[30] J. D. Papastavrou, S. Rajagopalan, and A. J. Kleywegt, “The dynamic and

stochatic knapsack problem with deadlines,” Management Science, 1996.

[31] M. Sniedovich, “Preference order stochastic knapsack problems; methodological

issues,” The Journal of the Operations Research Society, vol. 31, pp. 1025–1032,

1980.

[32] L. L. Lu, S. Y. Chiu, and L. A. C. Jr, “Optimal project selection: Stochatic knap-

sack with finite time horizon,” The Journal of the Operations Research Society,

vol. 50, pp. 645–650, 1999.

[33] C. J. Parris, S. Keshav, and D. Ferrari, “A framework for the study of pricing

in integrated networks,” no. TR-92-016, 1992.

[34] R. Cocchi, S. Shenker, D. Estrin, and L. Zhang, “Pricing in computer networks:

motivation, formulation, and example,” IEEE/ACM Transactions on Network-

ing, vol. 1, no. 6, pp. 614–627, 1993.

[35] J. K. Mackie-Mason and H. R. Varian, Pricing the Internet. MIT Press, 1995.

195

[36] S. Shenker, D. Clark, D. Estrin, and S. Herzog, “Pricing in computer net-

works: Reshaping the research agenda,” ACM Computer Communication Re-

view, vol. 26, pp. 19–43, April 1996.

[37] B. Tuffin, “Charging the internet without bandwidth reservation: An overview

and bibliography of mathematical approches,” Journal of Information Science

and Engineering, vol. 19, pp. 765–786, 2003.

[38] C. Courcoubetis and R. Weber, Pricing Communication Networks: Economics,

Technology and Modelling. Wiley, 2003.

[39] G. Davies, M. Hardt, and F. Kelly, “Come the recolution - network dimensioning,

service costing and pricing in a packet switched environment,” Telecommunica-

tions Policy, vol. 28, pp. 391–412, 2004.

[40] M. C. Caesar, S. Balaraman, and D. Ghosal, “A comparative study of pricing

strategies for ip telepony,” IEEE GLOBECOMM, pp. 344–349, 2000.

[41] M. Yacoubi, M. Emelianenko, and N. Gautam, “Pricing in next generation net-

works: a queueing model to guarantee qos,” Performance Evaluation, 2002.

[42] Y. Chen, A. Das, N. Gautam, Q. Wang, and A. Sivasubramaniam, “Pricing-

based strategies for autonomic control of web servers for time-varying request

arrivals,” Journal of Engineering Application of Artificial Intelligence, vol. 17,

no. 7, pp. 841–854, 2004.

[43] T. Henderson, J. Crowcroft, and S. Bhatti, “Congestion pricing: Paying the way

in communication networks,” IEEE Internet Computing, vol. 5, no. 5, pp. 85–89,

2001.

196

[44] I. C. Paschalidis and J. N. Sitsiklis, “Congestion dependent pricing of network

services,” IEEE/ACM Transactions on Networking, pp. 171–184, 2000.

[45] X. Lin and N. B. Shroff, “Pricng based control of large networks,” LCNS,

no. 2170, pp. 212–231, 2001.

[46] T. W. Malone, R. Fikes, K.R.Grant, and M.T.Howard, Enterprise: A Market-

like Task Scheduler for Distributed Computing Environments. Holland: Elsevier,

1988.

[47] A. Chavaz, A. Moukas, and P. Maes, “Challenger: A multi-agent systems for

distributed resource allocation,” Agents, 1997.

[48] D. Ferguson, Y. Yemini, and C. Nikolaou, “Microeconomic algorithms for load

balancing in distributed computer systems,” Proceedings of the International

Conference on Distributed Systems, 1988.

[49] J. Bredin, D. Kotz, and D. Rus, “Market-based resource control for mobile

agents,” Autonomous Agents, 1998.

[50] M. P. Wellman, “A computational market model for distributed configuration

design,” AI EDAM, 1995.

[51] M. P. Wellman, Market Based Control - A Paradigm for Distributed Resource

Allocation, ch. Market Oriented Programming: Some Early Lessons. World Sci-

entific, 1996.

[52] H. R. Varian, Microeconomic Analysis. W W Norton and Company, 1992.

197

[53] S. Lee, S. Kumara, and N. Gautam, “Efficient scheduling algorithm for

component-based networks,” Future Generation Computer Systems, vol. 23,

pp. 558–568, 2007.

[54] G. Zlotkin and J. S. Rosenschein, “Negotiation fn task sharing among au-

tonomous agents in cooperative domains,” ĲCAI, pp. 912–917, 1989.

[55] S. Kraus, K. Sycara, and A. Evenchik, “Reaching agreements through argu-

mentation: a logical model and implementation,” Artificial Intelligence Journal,

vol. 104, no. 1-2, pp. 1–69, 1998.

[56] L.-K. Soh and C. Tsatsoulis, “A real-time negotiation model and a multi-agent

sensor network implementation,” Autonomous Agents and Multi-Agent Systems,

2005.

[57] A. Rao and M. Georgeff, “Decision procedures fro bdi logics,” Journal of Logic

and Computation, vol. 8, no. 3, pp. 293–342, 1998.

[58] A. Rao and M. Georgeff, “Bdi agents: from theory to practice,” ICMAS, pp. 312–

319, 1995.

[59] P. Stone and M. Veloso, “Using decision tree confidence factors for multi-agent

control,” Autonomous Agents, 1998.

[60] L. Chen, K. Bechkoum, and G. Clapworthy, “A logical approach to high-level

agent control,” Agents, 2001.

[61] T. Chao, F. Shan, and S. X. Yang, “Modeling and design monitor using layered

control architecture,” Autonomous Agents and Multi-Agent Systems, 2002.

198

[62] T. Vu, J. Go, G. Kaminka, M. Velosa, and B. Browning, “Monad: A flexible

architecture for multi-agent control,” Autonomous Agents and Multi-Agent Sys-

tems, 2003.

[63] M. M. Kokar, K. Baclawski, and Y. A. Eracar, “Control theory-based foundations

of self-controlling software,” IEEE Intelligent Systems, pp. 37–45, May/June

1999.

[64] R. Sanz and K.-E. Arzen, “Trends in software and control,” IEEE Control Sys-

tems Magazine, June 2003.

[65] K. Kleinmann, R. Lazarus, and R. Tomlinson, “An infrastructure for adaptive

control of multi-agent systems,” IEEE Conference on Knowledge-Intensive Multi-

Agent Systems, 2003.

[66] M. N. Bennani and D. A. Menasce, “Assessing the robustness of self-managing

computer systems under highly variable workloads,” International Conference

on Autonomic Computing, 2004.

[67] A. E. Fallah-Seghrouchni, I. Degirmenciyan-Cartault, and F. Marc, “Modelling,

control and validation of multi-agent plans in dynamic context,” Autonomous

Agents and Multi-Agent Systems, 2004.

[68] K. C. Lee, W. H. Mansfield, and A. P. Sheth, “A framework for controlling

cooperative agents,” IEEE Computer, 1993.

[69] R. Vincent, B. Horling, V. Lesser, and T. Wagner, “Implementing soft real-time

agent control,” Agents, 2001.

199

[70] A. Raja, V. Lesser, and T. Wagner, “Toward robust agent control in open envi-

ronments,” Agents, 2000.

[71] I. Soto, M. Garĳo, C. A. Iglesias, and M. Ramos, “An agent architecture to fulfill

real-time requirement,” Agents, 2000.

[72] A. G. Barto, S. J. Bradtke, and S. Singh, “Learning to act using real-time dy-

namic programming,” Artificial Intelligence, vol. 72, pp. 81–138, 1995.

[73] R. S. Sutton, A. G. Barto, and R. J. Williams, “Reinforcement learning is direct

adaptive optimal control,” IEEE Control Systems, vol. 12, no. 2, pp. 19–22, 1992.

[74] L. P. Kaelbling, M. L. Littman, and A. Moore, “Reinforcement learning: A

survey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237–285, 1996.

[75] A. Helsinger, R. Lazarus, W. Wright, and J. Zinky, “Tools and techniques for per-

formance measurement of large distributed multi-agent systems,” Autonomous

Agents and Multi-Agent Systems, 2003.

[76] “Cougaar open source site,” http://www.cougaar.org. DARPA.

[77] A. Helsinger, K. Kleinmann, and M. Brinn, “A framework to control emergent

survivability of multi agent systems,” Autonomous Agents and Multi-Agent Sys-

tems, 2004.

[78] N. Gnanasambandam, S. Lee, N. Gautam, S. R. T. Kumara, W. Peng,

V. Manikonda, M. Brinn, and M. Greaves, “Reliable mas performance prediction

using queueing models,” IEEE Multi-agent Security and Survivabilty Symposium,

2004.

200

[79] F. Sheikh, J. Rolia, P. Garg, S. Frolund, and A. Shepard, “Performance evalua-

tion of a large scale distributed application design,” World Congress on Systems

Simulation, 1997.

[80] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Imple-

mentations. Wiley, 1990.

[81] M. Brinn and M. Greaves, “Leveraging agent properties to assure survivability

of distributed multi-agent systems,” Proceedings of the Second Joint Conference

on Autonomous Agents and Multi-Agent Systems, 2003.

[82] A. Cassandra, D. Wells, M. Nodine, and P. Pazandak, “Techspecs: Content,

issues and nomenclature,” Technical Report, Telcordia Inc. and OBJS Inc., 2003.

[83] G. Bolch, S. Greiner, H. de Meer, and K. S.Trivedi, Queueing Networks and

Markov Chains: Modeling and Performance Evaluation with Computer Science

Applications. John Wiley and Sons, Inc., 1998.

[84] E. W. Weisstein, “Cubic formula,” Mathworld – A Wolfram Web Resource.

[85] N. Gnanasambandam, S. Lee, and S. R. T. Kumara, “An autonomous perfor-

mance control framework for distributed multi-agent systems: A queueing the-

ory based approach,” Autonomous Agents and Multi-Agent Systems Conference,

2005.

201

Vita

Shanmuga-Nathan Gnanasambandam

Nathan Gnanasambandam holds a Bachlor of Engineering in Electronics and In-

strumentation Engineering from the Birla Institute of Technology and Science (BITS)

in Pilani, India. He also concurrently pursued a Master of Science degree in Physics

from the same university. Upon completion of his undergraduate degree and Mas-

ter’s, he pursued a Master’s degree in Industrial Engineering and Master’s degree in

Computer Science both at the State University of New York at Binghamton. He was

involved in research consortium headed by Universal Instruments Corporation while

he was working on his Master’s degree. He then was a coop at IBM, Endicott for

a year and 4 months. Nathan came to Penn State to pursue a Ph.D. in Industrial

Engineering. While being a graduate student at Penn State, Nathan worked on the

DARPA-UltraLog project, a research project that was awarded to his advisor. He

subsequently interned at Xerox Research at Webster, NY during a summer. Nathan

worked with his advisor and Xerox Research to co-organize a tutorial at a inter-

national IEEE conference. Upon completion of his Ph.D., Nathan will join Xerox

Research at Webster, NY. He will be involved in performance analysis and algorithm

design for large-scale software systems.

