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ABSTRACT 

 In many statistical process control (SPC) applications, the quality of a process or a 

product can be characterized by a single variable. A vast body of research in SPC charts, 

such as Shewhart, EWMA, Cusum, and Cuscore control charts, has been developed in 

order to control univariate quality characteristics. However, rapid developments in 

modern technologies such as high-speed computing, Internet, sensors, and 

nanotechnology, etc., have provided many industries with data-rich environments in 

which observations of multiple quality characteristics are simultaneously available for 

analysis. In response, traditional SPC charts have been extended to the multivariate 

environment in the forms of Hotelling T
2
, multivariate EWMA, multivariate Cusum 

control charts, and the like, and now play an important role in controlling the quality of 

processes and products. Furthermore, in many practical situations, it is assumed that the 

quality characteristics of processes or products can be better represented and summarized 

by a large collection of data points or variables, which can in turn be represented by a 

relationship or a function between a response variable and a number of explanatory 

variables. After each sampling stage, profile data is observed which is subsequently fitted 

to either a linear or a nonlinear regression model. 

Traditional control charts assume that the sample data are sequentially 

independent over time and follow normal or multi-normal distribution. As a direct result, 

high false alarm rates will occur if these traditional charts are applied to monitor 

processes with high autocorrelation, as experience has shown in some industrial 

processes. One of the approaches in contending with the difficulties presented by 
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autocorrelation is to use so-called engineering process control (EPC) techniques to 

remove process autocorrelation, and then implement SPC control charts to monitor the 

adjusted processes. Indeed, this approach is frequently justified, as the integration of SPC 

and EPC has often proved effective for monitoring and controlling some autocorrelated 

processes. 

In this research, the goal is to develop statistical monitoring methods to address 

both univariate and multivariate autocorrelated processes, and processes whose quality 

can be characterized or represented by profile data, which can be represented by a 

function or a linear/nonlinear regression model with response and independent variables. 

In pursuing such goals, three major objectives are achieved: 

1. To develop the likelihood-based Cuscore control approach to monitor the mean 

shift of a univariate autocorrelated process adjusted by a generalized feedback 

control scheme. The methodology is applied to monitor an industrial valve system  

for leakage. 

2. To extend the Cuscore control chart to monitor the mean shift of an autocorrelated 

multivariate process and to compare its performance to those of multivariate 

Cusum control charts. The methodology is applied to monitor a simulated reactive 

ion etching (RIE) process in semiconductor manufacturing. 

3. To develop the high-dimensional control chart to monitor a process when its 

quality characteristics can be represented by a profile. The Fourier transform and 

adaptive Neyman test are used in this approach for detecting a change in the mean 

function of profiles. The impact of stationary noise on the performance of the 
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control chart is analyzed and the methodology is shown to be able to monitor both 

linear and nonlinear profiles with good performance. The approach is applied to a 

simulated woodboard manufacturing process. 
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Chapter 1 

 

Introduction 

Originating with the Shewhart Chart in 1930s, statistical process control (SPC) 

charts have played a significant role in process quality control and improvement in 

business and manufacturing. With rapid developments in technology and business, 

modern processes have exhibited important characteristics requiring advanced SPC 

methodologies. Some of these characteristics and the resulting tasks for SPC in the 

development of modern processes will be introduced in this chapter, and the research 

objectives of this thesis will be briefly summarized. 

1.1 Characteristics of Modern Processes 

A process is a series of continuous actions or operations leading to an end result. 

In a manufacturing process, the series of actions or operations lead to a product with 

certain quality characteristics, such as performance, reliability, durability, etc.; in a 

service process, a series of actions is taken to perform or maintain some functions or 

services in order to meet customers’ satisfaction. 

 The revolutionary development of modern technology, such as high computing, 

Internet, sensors and nanotechnology, etc., has been revolutionizing modern industries in 

large-size data collection and high data analysis capacity, and related aspects. In both 

manufacturing and nonmanufacturing applications, some processes characteristics 
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emerge as particularly significant and beckon for effective SPC approaches. Two 

important process characteristics are summarized below: 

• High autocorrelation.  Physically, all manufacturing processes are driven by 

inertial elements, and when the interval between samples is small, the 

observations on the process can be autocorrelated over larger intervals of time. 

Naturally, the shorter the interval, the higher the autocorrelation. For instance, 

with the use of advanced sensors and sampling techniques, intervals between 

neighboring observations can be in the centi-second range for vibration signals 

from the gear system test (Suh et al., 1999, Kamarthi et al., 2000). In such cases, 

the sequential observation data over time are highly correlated. 

• High dimensionality.  The quality of most practical processes or products cannot 

be adequately characterized by a single variable. In many such cases, 

observations from more than one variable are collected simultaneously and the 

cross-correlation among variables must be considered. Furthermore, for some 

processes or products, a large number of variables are needed in order to 

adequately characterize their quality. For instance, 313 measurements were 

collected to characterize a woodboard density profile (Walker and Wright, 2002) 

and 24 such profile data are plotted in Figure 1.1. For such profile data, changes 

in either all or some of variables or measurements are likely to cause it to go out 

of control. 
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Figure 1.1:  Twenty-four vertical density profiles of woodboards. 

1.2 Tasks for Statistical Process Control in Autocorrelated Processes 

Fundamentally, any process or nonquantum-mechanical system is physically 

governed by the second law of thermodynamics, which implies that if left to itself, the 

entropy or disorganization of any system not governed by quantum mechanics can never 

decrease and will eventually increase. Therefore, efforts of process control are needed in 

order to cancel the effect of the law and maintain the process quality characteristics 

within acceptable ranges.  

The control chart is one of the major techniques for statistical process control 

(SPC) which is used to detect, actuate, and compensate for abnormal or fault signals that 

represent unacceptable disturbances within the process. Traditional control charts, such 

as Shewhart charts, EWMA charts and Cusum charts are based on the assumption that 

the samples are sequentially independent. However, high false alarm rates usually occur 

when they are used for monitoring autocorrelated processes. Therefore, advanced 

approaches are necessary to deal with process autocorrelation. 
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Process autocorrelation enables the prediction of future observations based on 

historical observations as long as the autocorrelation structure can be properly identified. 

If so, corresponding adjustments can be applied to compensate for the disturbance and 

control the process. Techniques of combining process monitoring and adjustment are 

more effective than either of the two approaches used separately. A likelihood-based 

cumulative score (Cuscore) control chart has proven to be an effective complementary 

approach in monitoring univariate autocorrelated process, and its integration with 

feedback-adjusted techniques is under investigation.  

Multivariate process control has long been a challenging and rewarding research 

topic. However, much of the previous research in this topic ignores process 

autocorrelation and cross-correlation and is, consequently, unrealistic and unreliable for 

most practical applications. Based on the success of the Cuscore control chart for 

monitoring univariate autocorrelated processes, it seems both logical and promising to 

extend the Cuscore chart to monitor multivariate autocorrelated processes. 

1.3 Tasks for Statistical Process Control in High-Dimensional Processes 

The quality characteristics of some processes or products can be represented by a 

function or a linear/nonlinear regression model with response and independent variables. 

This type of data is called profile data, a branch of functional data. The technique for 

monitoring the profile data is known as profile monitoring. Figure 1.2 illustrates the 

representation of profile data in matrix form, where the number of measurements, n, is 

called profile dimensionality, which is usually larger than the number of profile samples, 

N. 
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Figure 1.2:  Representation of profile samples in matrix form. 

  

Equation (1.1) gives the model form for the jth profile with the independent 

variable X and the response variable Y 

 ( , )jk k j jkY m X ε= +β ,  j = 1,2,…, N and k = 1,2,…, n,  (1.1) 

 

where ( , )k jm X β   is the mean function which indicates the signal component of the jth 

profile, jβ  is the parameter vector, and jkε  is the noise component of the jth profile. 

An application example of profiles is illustrated in Figure 1.1, in which 24 

woodboard vertical density profiles are plotted. Each profile consists of 313 paired 

measurements of the depth and the density. The relationship between these two variables 

is essential for characterizing the quality of the woodboard products. 

Using the control chart approach for profile monitoring is viewed as “the most 

promising area of research in statistical process control” by Woodall et al. (2004). Unlike 

most applications of univariate or multivariate SPC charts, in which the quality 

characteristics can be adequately represented by a single random variable or by a vector 

of multivariate distributed variables, the control chart for profiles is designed for 

monitoring more complex objects, such as curves and images, which normally consist of 

a relatively large number of observations or measurements. Techniques based on 
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dimensionality reduction and feature extraction play pivotal roles in all high-dimensional 

mathematical problems, and have many significant applications in biology, health 

studies, financial engineering and risk management, and machine learning and data 

mining (Fan and Li, 2006). The development of high-dimensional control charts for 

profile monitoring represents a challenging endeavor for statistical process monitoring 

and control. 

1.4 Research Significance and Objectives 

The goal of this thesis is to develop effective statistical monitoring methods for 

detecting the mean shift of an autocorrelated process whose quality may be characterized 

by a single variable, several jointly distributed variables or even a large number of 

variables. This work mainly focuses on the Phase II analysis, and is dependent on the 

assumption that the process has been properly characterized and modeled in Phase I. The 

research significance and objectives focus on three aspects: 

1. To develop the likelihood-based Cuscore control chart to monitor the mean shift 

of a univariate autocorrelated process adjusted by a generalized feedback control 

scheme. The methodology is applied to a valve leakage detection process and its 

effectiveness is illustrated. 

2. To extend the Cuscore control chart to monitor the mean shift of an 

autocorrelated multivariate process and to compare its performance to that of 

multivariate Cusum control charts. The approach is applied to monitor a 

simulated autocorrelated reactive ion etching (RIE) process in semiconductor 

manufacturing. 
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3. To develop the high-dimensional control chart to monitor a process whose quality 

characteristics can be represented by a profile, which generally consists of a 

signal component and a noise component. The approach is illustrated by 

monitoring two simulated woodboard density profiles data sets. 

 The major body of the investigator’s Ph.D. research consists of work to meet 

these three objectives. 

1.5 Thesis Organization 

This thesis is organized as follows. Chapter 2 reviews the previous research on 

the topics covered in this thesis. Chapter 3 develops an approach for the integration of 

statistical process control (SPC) and engineering process control (EPC) for univariate 

autocorrelated process, with focus on cumulative score (Cuscore) chart and generalized 

minimum variance (GMV) control scheme. Chapter 4 extends the univariate Cuscore 

control chart to the multivariate environment and applies it to monitor the shift signal of 

process mean. Chapter 5 introduces the high-dimensional control chart for monitoring the 

mean function of profiles. Chapter 6 concludes the thesis and proposes some topics of 

future research. Appendices after Chapters 3 and 4 provide the derivations of some 

formulae and the source codes for the simulation programs in each chapter. 
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Chapter 2 

 

Literature Review 

The review of the literature begins with univariate SPC charts and its integration 

with EPC. It then moves to multivariate control charts, and finally to the SPC approaches 

for profile data. 

2.1 SPC Approaches for Univariate Autocorrelated Processes 

A univariate process is a process whose quality can be characterized by single 

variable. Autocorrelation among observations exists in most practical processes, as 

explained by Montgomery (2005): 

“All manufacturing processes are driven by inertial elements, 

and when the interval between samples becomes small relative to these 

forces, the observations on the process will be correlated over time.”  

However, traditional SPC control charts, such as Shewhart, Cusum, and 

exponentially weighted moving-average (EWMA) charts, assume that the process 

observations are independent and identically distributed (i.i.d.). Therefore, high false 

alarm rates often occur when the traditional SPC control charts are used to monitor 

highly autocorrelated processes (Alwan and Roberts, 1988; Harris and Ross, 1991).  

Some SPC approaches have been proposed for monitoring and controlling 

autocorrelated processes. Four major approaches will be reviewed in the following 

subsections. Montgomery (2005) put them into two categories: model-based approaches 
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and model-free approaches which differ in the need of an explicit time-series model. For 

the four approaches summarized below, the first two are model-based and the last two are 

model-free.  

2.1.1 Time-Series Models 

Time-series models are commonly used for modeling an autocorrelated process. 

Equation (2.1) gives an expression of the ARMA time-series model: 

 ( ) ( )t tB X B εΦ = Θ , (2.1) 

where ( )BΦ  and ( )BΘ  are the ARMA polynomials in the backshift operator with roots 

outside the unit circle (e.g., for an ARMA(1,1) model, ( ) 1B BφΦ = −  and 

( ) 1B BθΘ = − ), tε  represents white noise with mean 0 and standard deviation aσ . 

Ideally, if a proper time-series model is available for an autocorrelated process, 

the residuals can be approximately uncorrelated and monitored by traditional SPC 

methods (Harris and Ross, 1991; Loredo et al. 2002). However, when a signal occurs in 

the form of process mean shift as represented in Equation (2.2), 

 
( )

( )
( )

t t

B
X f t

B
ε γ

Θ
= +

Φ
, (2.2) 

where γ  is the size of a signal, and ( )f t  is the function that indicates the nature of the 

signal, then the residual is no longer white noise and change patterns of mean shift 

signals need to be considered. Hu and Roan (1996) illustrated the change patterns of a 

process mean shift signal in the residual. 
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The drawback of this approach are that a time-series model may not be readily 

available or that the model identified in Phase I does not adequately describe the process. 

Therefore the process cannot be effectively decorrelated and false alarm rate is still 

higher than expected. 

2.1.2 Integration of SPC and EPC 

In some dynamic processes, controllers or adjustment variables are available for 

the application of a time-series-based engineering process control (EPC) scheme. When 

this is the case, the traditional SPC approaches can be applied to effectively monitor the 

quality characteristics of the outputs (Montgomery et al. 1994; Del Castillo, 2002; Box et 

al., 1994; Nembhard and Valverde-Ventura, 2003, 2006).  

The most commonly used EPC strategy is minimum mean square error (MMSE) 

feedback control, which seeks to minimize the variability of the output error in a manner 

that is cost-insensitive to controllable factors in the input. In Chapter 3 it will be shown 

that the MMSE controller performs like an inverse ARMA filter on both the noise and 

the signal and removes the process autocorrelation completely. 

The approach of integrating SPC and EPC is more effective in detecting mean 

shift signals in an autocorrelated process than traditional SPC methods. However, as is 

the case with to the time-series model approach, its performance relies heavily on the 

fitted time-series model. 

Moreover, in some practical cases, an MMSE control strategy may not be 

economical if frequent, large, and/or costly adjustments are needed. In these cases, 

suboptimal control strategies, such as constrained MMSE (CMMSE) and generalized 
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minimum variance (GMV) control (Clarke and Gawthrop, 1975), are more suitable for 

transferring some variability from the controllable input variables to the output quality 

characteristic. Our review of the literature suggests that effective integration of SPC 

methods with suboptimal EPC schemes has not been reported. 

2.1.3 EWMA and Moving Center-line EWMA (MCEWMA) Control Charts 

Some researchers credit the EWMA and MEWMA approaches with overcoming 

the influence of an improperly identified time-series model on the performance of SPC 

charts. Montgomery (2005) categorized these model-based approaches. In order to avoid 

unnecessary complexity, we prefer to classify these approaches as model-free because no 

explicit time-series model is needed. 

Montgomery and Mastrangelo (1991) and Mastrangelo and Montgomery (1995) 

proposed a moving center-line EWMA (MCEWMA) approach to fit EWMA statistics to 

the observation values in order to minimize the one-step ahead prediction error, and thus 

combined the information of statistical control and process dynamics on a single control 

chart. They estimated the standard deviation of the one-step-ahead errors or model 

residuals by the mean absolute deviation (MAD). The MCEWMA approach is ideal for 

decorrelating IMA stochastic processes. 

Lu and Reynolds (1999a, b) used EWMA control charts to monitor the mean 

and/or variance of autocorrelated process. They discussed extensively their study of both 

the EWMA applied directly to the data and the EWMA of the residuals. They also 

compared the performance of several types of control charts, such as EWMA and 
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Shewhart charts, and combinations of control charts in monitoring autocorrelated 

processes. 

2.1.4 Batch-Means Control Charts  

Runger and Willemain (1995) proposed batch-means control charts to decorrelate 

the data by averaging the observation values in nonoverlapping windows. The window 

size is selected such that the means in each window are approximately uncorrelated. 

Thus, higher correlation will require a longer window size. Significant limitations to this 

approach are that it cannot detect a shift in a shorter period than the window length, and 

the window size may have to be determined empirically. 

2.1.5 Multiscale SPC (MSSPC) Control Charts 

Conceptually, traditional control charts are all single scale monitoring approaches 

which are suited to detect specific types of process disturbances, e.g., a Shewhart chart is 

suited for detecting large shifts at small scales, whereas EWMA and CUSUM charts are 

more suited for small shifts at large scales. Traditional single scale monitoring 

approaches have limitation when being used for monitoring autocorrelated processes 

(Ganesan et al., 2004). 

Based upon favorable properties of wavelets, an autocorrelated process can be 

decomposed into uncorrelated wavelet coefficients (Vidakovic, 1999). Bakshi (1998) 

proposed a multiscale SPC (MSSPC) approach that transforms a process into multi-scales 

using wavelets, and then monitors the wavelet coefficients at each scale with a Shewhart 
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chart. Using this method for univariate processes, Aradhye et al. (2003) examined the 

performance of MSSPC in comparison to the methods of weighted batch means, 

MCEWMA, and the time-series model for a stationary autocorrelated process. This study 

was repeated for a nonstationary process using MCEWMA. The multiscale performance 

has been shown to be in between the weighted batch means and the residuals in the 

stationary case, and better than MCEWMA at large shifts for the nonstationary scenario. 

2.1.6 Wavelet Scalogram 

The wavelet scalogram provides measures of signal energy at various frequency 

bands. Theoretically, when a large transient mean shift fault signal occurs, energy will 

leak from higher levels of wavelet coefficients to lower levels. This phenomenon can be 

calculated in terms of energy and represented using wavelet scalogram (Vidakovic, 

1999). Combining this property with the decorrelation capacity of wavelets for 

autocorrelated processes, a wavelet scalogram can be applied for detecting large transient 

shifts in autocorrelated or cyclic processes which is illustrated in Kamarthi et al. (2000) 

for detecting broken teeth of a gearbox. 

Jeong (2004) and Jeong et al. (2003, 2006) extended the scalogram’s capacity in 

handling noisy and possibly massive data based on fast wavelet transformation. The 

authors investigated the asymptotic properties of thresholded scalograms and derived 

point-wise confidence intervals of thresholded scalograms to construct control limits for 

fault detection and classification. However, some unsolved problems, such as the 

determination of the maximum depth of wavelet decomposition and the width of the 

testing window, limit the effectiveness of this approach. 
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2.2 SPC Approaches for Multivariate Autocorrelated Processes 

Traditional univariate SPC control charts have been extended to fit multivariate 

scenarios because of the high demand for monitoring and controlling multivariate 

processes. Dealing with process autocorrelation in multivariate processes is much more 

complicated than in univariate processes. 

2.2.1 Traditional Multivariate Control Charts for Monitoring Process Mean Shifts 

A review of multivariate time series models and some major traditional 

multivariate control procedures for monitoring the process mean shift is summarized in 

this section. Their details will be presented in Chapter 4. 

As the extension of univariate framework, the multivariate time series modeling 

techniques can be used to remove the autocorrelation structure in observations collected 

from a multivariate process. Montgomery et al. (1990) and Hamilton (1994) introduced 

the multivariate time series model in vector ARMA (VARMA) form and related it to the 

state-space model. Noorossana and Vaghefi (2005) illustrated the use of the first-order 

vector AR(1) time-series model to decorrelate the multivariate process and the 

application of  multivariate control chart to monitor the residuals. 

Hotelling’s T
2
 control chart is one of the earliest techniques in multivariate 

process control (Hotelling, 1947). It gives a general metric for turning measurement 

vectors into scalars that retain the essential information about whether the mean vector is 

indeed in control or not. A useful extension of this basic approach is discussed in 

Hawkins and Olwell (1998). 
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Healy (1987) derived a multivariate Cusum (MCusum) procedure based on the 

sequential likelihood ratio test of multivariate variables on the scale of Hotelling’s T
2
 

statistic. Crosier (1988) proposed a MCusum procedure that accumulates on the scale of 

the observations X , instead of 2X or 2T . Noorossana and Vaghefi (2005) applied the 

MCusum control chart to monitor the  residuals from a vector AR(1) time series model. 

Lowry et al. (1992) presented a multivariate EWMA (MEWMA) control chart 

procedure as a logical extension of the univariate EWMA. Kramer and Schmid (1997) 

applied the MEWMA to the residuals from a vector AR(1) time series model. 

Mastrangelo and Forrest (2002) developed an adaptive approach to monitor 

autocorrelated processes using a MEWMA residual. 

2.2.2 Multiscale SPC Control Chart 

As the number of process variables increases, traditional SPC approaches are not 

practical and they lack multivariate extensions. Principal component analysis (PCA) is an 

important technique for reducing the dimension of multivariate processes. Based on the 

wavelet transform and PCA, Bakshi (1998) proposed a multiscale SPC (MSSPC) 

approach for monitoring multivariate processes at multi-scales. He illustrated that a 

MSSPC can deal with autocorrelated observations and multivariate problems. 
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2.3 Control Chart Approaches for Profile Monitoring 

Profile monitoring is a new and rapidly developing area in statistical process 

control, and little research has been developed in using SPC charts to monitor profile 

data. Woodall et al. (2004) gave a thorough review of this topic. In this section, the focus 

is on using multivariate control charts and nonparametric approaches for profile 

monitoring. 

2.3.1 Multivariate Control Charts for Profile Monitoring 

In many applications, the structure of the profile model is determined based on 

scientific research or engineering knowledge. Therefore, traditional multivariate control 

charts can be applied to monitor the regression parameters for the fitted profile model. 

Linear profile monitoring has attracted the most research attention in recent years. 

Kang and Albin (2000) proposed using two approaches for monitoring linear profiles. 

The first is to apply a bivariate 2T  chart to monitor the slope and the intercept; the 

second is to use a EWMA chart to monitor the residual averages and an R chart to 

monitor the variance of the residuals along with the regression line. The approaches were 

recommended for both Phase I and Phase II monitoring. 

Kim et al. (2003) proposed a method for monitoring the linear profile data in 

Phase II. They transformed the estimators of intercept and slope to the coded independent 

variables and used three Shewhart control charts to monitor the intercept, the slope, and 

the variance of the deviations about the regression line respectively in Phase II. They 
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showed that their method had better performance than that of Kang and Albin (2000) in 

terms of average run length (ARL). 

With the idea of comparing k regression lines collected in Phase I, Mahmoud and 

Woodall (2004) introduced k-1 indicator variables and constructed a multiple regression 

model to test whether the kth regression line is statistically significant based on F-test. 

They also recommended two Shewhart charts to monitor the coded intercept and slope 

variables by Kim et al. (2003) for fault diagnose purposes. They showed their approach 

had better performance by comparing it with three other approaches by using simulation, 

and illustrated its use with the real data from a calibration process. 

The multivariate control chart can be applied to monitor the fitted regression 

parameters of nonlinear profiles if the structure of the parametric model is known. For 

example, the “bathtub” function was suggested to model the mean function of the 

profiles in Figure 1.1 by William et al. (2003): 

 
1
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≤− + +
β   (2.3) 

where a1 and a2 are the width parameter of the “bathtub”, b1 and b2 are the flatness 

parameters, c is the bottom and d is the center of the “bathtub”. William et al. (2003, 

2004) gave a thorough discussion on monitoring such nonlinear profiles using 

Hotelling’s T
2
 statistics of the regression parameters with the comparison of three 

estimators of the covariance matrix. 
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2.3.2 Profile Monitoring Using Nonparametric Regression 

In monitoring complicated profiles that are not smooth and have an unknown 

mean profile function ( , )km X β  as in Equation (1.1), nonparametric regression methods, 

such as Fourier transforms, wavelets, splines and local polynomial regression, are 

valuable in smoothing the profiles for comparison. 

Walker and Wright (2002) used an additive model to fit the profile data for 

assessing the source of variation in the vertical density profile data. The additive model 

contains a B-spline component for smoothing each profile data and a parametric portion 

for incorporating other sources of variation. However, such methods cannot explicitly be 

used for setting up control charts for process monitoring. 

Jin and Shi (1999, 2001) proposed using wavelet modeling to fit complicated 

profiles that have sharp corners containing the most useful information. They relied on 

engineering knowledge as a prior or “oracle” to determine the local segment for fault 

diagnosis purposes. Fan (1996) introduced two hypothesis testing techniques for high-

dimensional data, wavelet thresholding and adaptive Neyman’s (AN) truncation of 

Fourier coefficients. These two approaches provide the statistical basis for setting up SPC 

charts for monitoring high-dimensional data. Jeong et al. (2004) applied wavelet 

thresholding techniques to monitor complicated profiles by automatically selecting the 

significant variables for tests. His research was based on one of the approaches to test 

significance proposed by Fan (1996). Further, Fan and Lin (1998) illustrated how the two 

procedures can be applied to test the differences between two sets of curves with i.i.d. 

noise or even stationary noise fitted by an ARMA model by capitalizing on the fact that 

the impact of the stationary errors on the null distribution is asymptotically negligible. 
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Spitzner and Woodall (2003) compared classical multivariate testing approaches with the 

AN test of Fan and Lin (1998). They applied the AN method to the Fourier coefficients 

of the vertical density profile data and thickness profile data for silicone nitride film in 

Gardner et al. (1997). 

Many profile monitoring approaches are based on the techniques for checking the 

distribution of a dataset or comparing two datasets in terms of their distribution model. 

The research by Fan (1996) is in this category. Wang and Tsung (2004) proposed a 

profile monitoring technique by comparing the slope and intercept of the Q–Q plot to 

monitor the distributions of the residuals from different profiles.  

 



 

 20 

 

Chapter 3 

 

Cuscore Control Charts for Generalized Feedback Control Systems 

 By its design, the cumulative score (Cuscore) statistic is able to “resonate” with 

deviations in signals of an expected type. When a process signal subject to feedback 

control occurs, it results in a fault signature in the output error. In this chapter, Cuscore 

statistics are designed to monitor process parameters and characteristics measured by a 

generalized minimum variance (GMV) feedback control system sensitive to the fault 

signature of a spike, step, and bump signal.  

 The GMV control system considered in this investigation is a first-order dynamic 

system with auto-regressive moving average (ARMA) noise. It is shown theoretically 

that the performance of Cuscore charts is independent of the amount of variability 

transferred from the output quality characteristic to the adjustment actions in the GMV 

control system. Simulation is used to test the performance of using the Cuscore charts.   

 Generally, the Cuscore can detect signals over a broad range of system parameter 

values. However, areas of low detection capability occur for certain fault signatures. In 

these cases, a tracking signal test is combined with the Cuscore statistics to improve 

detection performance. This investigation provides several illustrations of the underlying 

behavior and shows how the methodology developed can be easily applied in practice. 
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3.1 Introduction 

The aim of conventional statistical process control (SPC) is to monitor a process 

to detect aberrant behavior. Deming (1986) called such aberrant behavior special causes 

that are suggested by data patterns that indicate the existence of systematic signals. The 

timing, nature, size, and other information about these signals can help identify and 

potentially eliminate signaling factor(s) by interfacing with an out-of-control action plan. 

Conventional Shewhart charts provide this capability in cases where the detected signal 

is an unexpected spike in white noise. By contrast, in many situations certain process 

signals are anticipated because they are characteristic of a system or operation. In these 

cases the Cuscore chart is the appropriate approach; it can be devised to be especially 

sensitive to deviations or signals of an expected type.  

In general, after working with a particular process, engineers and operators have 

often experienced how a process will falter. Despite repeated experience, however, the 

problem seldom announces its time and location in advance. Consider, for example, a 

process where a valve is used to maintain pressure in a pipeline. Because the valve will 

experience wear over time, it must be periodically replaced. However, in addition to the 

usual wear, engineers are concerned that the valve may fatigue or fail more rapidly than 

normal. The Cuscore can be used to incorporate this working knowledge (failure mode 

analysis) and experience into the statistical monitoring function. This concept often has a 

lot of intuitive appeal for industry practitioners. 

 To improve quality engineering, many researchers have studied integrating SPC 

to monitor a process with engineering process control (EPC) to make process 
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adjustments. For example, Box and Luceño (1997) suggested that “process monitoring 

and process adjustment are two complementary strategies in the maintenance and 

improvement of quality and productivity and the integration of SPC and EPC can result 

in major improvements in industrial efficiency.” Traditionally, a key assumption for 

using SPC is that the successive values of the quality characteristics are independent and 

identically distributed (i.i.d.). Therefore if SPC charts are misapplied to a highly 

autocorrelated process, their successful performance on detection rates and false alarm 

rates is likely to decrease. On the other hand, process adjustment using EPC actually 

relies on autocorrelated process noise in order to minimize output variability by adjusting 

compensatory processing variables.  

 The EPC strategy of minimum mean square error (MMSE) feedback control is to 

minimize the variability of the output error in a manner that is cost-insensitive to 

controllable factors in the input. It is shown that the MMSE controller performs like an 

inverse ARMA filter on both the noise and the signal and removes the process 

autocorrelation completely citation. The drawback of MMSE control is that excessive 

manipulation of the input control actions often occurs in order to achieve the minimized 

output errors. To avoid this problem, constrained MMSE (CMMSE) control was 

proposed (see, Box et al., 1994). In this approach, the mean square error (MSE) of the 

output is minimized subject to a constraint on the variance of the controllable input 

factor. Some variability can thus be transferred from the output quality characteristic to 

the controllable input factor by the operation. Clarke and Gawthrop (1975) proposed a 

simpler approach to constrain the variability in the controllable factor, called generalized 

minimum variance (GMV) control. 
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 When a MMSE controller or GMV controller is used to minimize the 

autocorrelation in the noise component of a disturbance given by an ARMA time-series 

model, the signal component of the disturbance exhibits a pattern in the residual which is 

serially correlated and temporally variable. This change pattern is referred to as the fault 

signature (Apley and Shi, 1999). Hu and Roan (1996) studied the fault signatures for two 

types of signals, the spike and the step, by using the inversed AR(1), ARMA(1,1) and 

ARMA(2,1) filters which are equivalent to MMSE controllers. Other authors, including 

Tsung and Tsui (2003), Apley and Shi (1999) and Luceño (2004), have also considered 

the fault signatures for step or spike signals in the output processes adjusted by MMSE 

controllers.  

 In a first-order dynamic system with autocorrelated noise, minimum mean square 

error (MMSE) feedback control can filter the noise so that the adjusted output errors 

become independent and identically distributed (i.i.d.) white noise series. However, in a 

generalized minimum variance (GMV) control system, the adjusted output error includes 

white noise plus some of variability in the output quality characteristic transferred to the 

controllable input factor. A review of the literature showed that the fault signatures for 

signals in the GMV-controlled system were not addressed. 

 In integrating SPC and EPC, traditional residual-based control charts, such as the 

Shewhart, Cusum, and EWMA charts, are unable to benefit from the dynamic properties 

of the fault signature. However, it is possible to achieve higher detection capabilities by 

incorporating the property information of the noise and the signals using time series-

based control charts or methods such as Cuscore charts (Capilla et al., 1999; Luceño, 

1999, 2004; Nembhard and Valverde-Ventura, 2003, 2006; Tsung and Tsui, 2003 and 
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Nembhard and Changpetch, 2005) and generalized likelihood ratio tests (GLRTs) (Apley 

and Shi, 1999 and Runger and Testik, 2003). 

 Motivated by the Cuscore control chart’s ease of use and sensitivity to the 

appearance of transient disturbances in an industrial process, Shao (1998) examined the 

feasibility of using the Cuscore control chart as an interface for integrating EPC and SPC 

techniques. He demonstrated the effective incorporation of Cuscore and EPC techniques 

and used simulation to confirm the superiority of integrated SPC and EPC schemes over 

control schemes employing EPC alone. He also suggested the superiority of the 

Cuscore/EPC scheme to other SPC/EPC integration approaches in certain circumstances. 

However, he only explored the case of MMSE-controlled non-stationary IMA(1,1) noise 

with ramp and step signals in a steady state system. 

 In this chapter, the Cuscore chart is integrated with GMV feedback control in 

order to develop a more general model for SPC/EPC for systems with anticipated signals. 

This investigation specifically considers spike, step, and bump signals in a ARMA(1,1) 

noise model and analyzes the fault signatures for the signals in differently weighted 

GMV control processes. It was determined that Cuscore charts performed independently 

of the amount of variability transferred from the output quality characteristic to the 

adjustment actions in the GMV control system. However, for some patterns of noise, the 

Cuscore chart has a low detection capability which suggests the addition of forecasting 

methods. 

 In Section 3.2, the background on monitoring and control is briefly reviewed with 

a focus on the GMV controller and Cuscore chart. In Section 3.3, the approach for 

integrating these two concepts is presented. In Section 3.4, simulation is used to analyze 
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performance of the integrated Cuscore monitoring/GMV control for the spike, step, and 

bump signals. Section 3.5 illustrates how to use the methodology to detect leakage in a 

valve pipeline system. Concluding remarks are in Section 3.6. 

3.2 Background on Monitoring and Control  

 Figure 3.1 provides a diagram of integrating SPC/EPC where the control chart is 

applied to the quality characteristic. This working model shows a dynamic system that 

has controllable input Xt and quality characteristic output yt. In a dynamic system, there 

will be a time delay between when X is changed and when that change is realized in the 

output y. (By contrast, in a responsive (or steady-state, zero-ordered) system, a change in 

X is realized immediately in y.) In addition, this working model shows that both a 

controller, represented by the control equation, and a monitor, represented by the Cuscore 

monitoring chart, use the information available at the output to test and adjust the input.  

 More specifically, the transfer function that relates the change in Xt to the 

response in yt is 

 1

1

( )
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k

t t

B B B
y X

A B
=  (3.1) 
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Figure 3.1:  A block diagram showing the input, output, and disturbance components and 

the relationship between feedback control and Cuscore monitoring of an anticipated 

signal. 
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where B is the backshift operator, A1 and B1 are polynomials in B with roots outside the 

unit circle to assure stability and invertibility of the process, and k is an integer indicating 

the delay of a change in X to induce a change in y (in a responsive system, k = 0; in a 

dynamic system, k ≥ 1) (Box, Jenkins, and Reinsel, 1994). Independently of this, a 

disturbance is given by the noise described by a time-series model plus an anticipated 

signal that could appear at some time, namely 

  

( )
( ),

( )
t t

B
z a f t

B

θ
γ

φ
= +  (3.2) 

where ( )Bφ  and ( )Bθ  are the ARMA polynomials in the backshift operator with roots 

outside the unit circle (e.g., for an ARMA(1,1) model, ( ) 1B Bφ φ= −  and ( ) 1B Bθ θ= − ), 

ta  represents white noise with standard deviation aσ , γ  is the size of a signal, and ( )f t  

is the function that indicates the nature of the signal. Together, ( )f tγ corresponds to an 

assignable cause of a specific type that could occur in the system at any time. The 

combination of the process dynamics and the disturbance gives the output error:  
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 The output error is then used in two ways: (1) to control the input by specifying 

the next level of Xt ; and (2) to construct the Cuscore chart to monitor the process output. 

A discussion of each of these concepts follows. 
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3.2.1 Feedback Control and Fault Signatures 

 The MMSE feedback control scheme has considerable theoretical appeal because 

it is an optimization procedure to minimize variability. However, it is often impractical 

since it is cost-insensitive (Del Castillo, 2002). Consider a feedback control system with a 

nonstationary IMA(1,1) disturbance. The adjusted process tends to diverge as the system 

runs for a long time. In practice, suboptimal schemes, such as CMMSE control, can be 

used so that fewer compensatory adjustments are required at the expense of a small 

increase in MSE. The CMMSE control schemes can be obtained by minimizing  

 1 0( ) ( ),
t t

J MSE MSE Xε λ= +  (3.4) 

where 0λ can be regarded as an undetermined multiplier that allocates the relative 

quadratic costs of variations of  output error 
t

ε and input adjustments Xt (see Box et al., 

1994). To minimize the objective J1 in a simpler way while keeping the same constraint 

effect, Clarke and Gawthrop (1975) proposed to minimize  

 2 2

2 | 0
ˆ ,t k t tJ Xε λ+= +  (3.5) 

where |t̂ k tε +  is the estimated output error at time t+k given that the errors are known 

before time t  (see Del Castillo, 2002 and Capilla et al., 1999). For applying the control 

law, Equation (3.3) (apart from the signal) can be expressed as 

1 1 1( ) ( ) ( ) ( ) ( ) ( )t t k tA B B B B B X B A B aφ ε φ θ−= + , 

which can be reduced to the ARMA exogenous variable (ARMAX) form: 
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 ( ) ( ) ( ) ,t t k tA B B B X C B aε −= +  (3.6) 

where A(B), B(B) and C(B) are the new time series model polynomials (Del Castillo, 

2002). The GMV controller for the model in Equation (3.6) is 
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t t

G B
X
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ε

λ
= −

+
, (3.7) 

where 
0λ  is a weight that measures the variability transferred to the adjustment actions 

from the quality characteristic (and so it is referred as the “variance transfer parameter”), 

b0 is the first coefficient in the B(B) polynomial, and F(B) and G(B) are polynomials from 

forecasting (see Del Castillo, 2002, for details). When 
0λ  is 0, the GMV control scheme 

reduces to MMSE control.  

 Hu and Roan (1996) discussed the change patterns fault signatures for a spike and 

a step signal after being filtered using AR(1), ARMA(1,1) and ARMA(2,1) models. They 

illustrated that out-of-control process data can be decomposed into two parts: a stationary 

time-series process and a change function. When the process is filtered using a time 

series model, the result is a sum of the response due to the stationary time series, which is 

white noise (for a properly fit ARMA model), and the response due to the change 

function, which is the fault signature. Similarly, the output of a feedback controlled 

process is this same type of summation. However, in a first-order dynamic system, the 

response due to the time series is white noise only in the special case of MMSE control. 

The response due to the time series in the case of GMV feedback control may be called 

“colored noise”. 
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3.2.2 Process Monitoring 

 A proven approach in monitoring autocorrelated data is to create the correlative 

structure with an appropriate time series model, then use that model to remove the 

autocorrelation, and finally apply SPC techniques to the residuals (see e.g., Alwan and 

Roberts, 1988). These residuals may be viewed as MMSE-adjusted output error values 

composed of two parts: a white noise and a fault signature that can be monitored with 

residual-based SPC charts, such as the Shewhart, EWMA, or CUSUM chart. However, 

such SPC charts neglect the dynamic properties in the fault signature when the noise 

parameters can be obtained or estimated before making feedback adjustment. 

 Box and Ramírez (1992) proposed a Cuscore chart based on the likelihood ratio 

test to identify suspected deviations known to be characteristic of (or peculiar to) a 

monitored system. They suggested that if a model can be expressed in the form 

  
  
ai = ai ( yi , X i ,γ )    i = 1,2,..., t ,       (3.8) 

where the 
 
yi  are observations (on the quality characteristic), the  X i  are known 

(controllable input) quantities, ���γ is some unknown parameter (of the signal), the ai ’s are 

independent normal random variables with mean 0 and variance   σ a
2  (i.e., white noise). If 

 σ a is known and does not depend onγ , then the logarithmic likelihood is given by 

 ,
2

1

1

2

2
cal

t

i

i +−= ∑
=σ

 (3.9) 

where c is a constant that does not depend on γ . 
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 Following Fisher (1925), the efficient score statistic is obtained from Equation 

(3.9) by differentiating with respect to γ  at
  
γ = γ 0 . Thus 

 ,  with 
1

00 1

02
γγγγ γσγ ===

−==
∂

∂
∑ i

i

t

i

i

a
rra

l
 (3.10) 

where the null values,   ai0 , are obtained by setting 
  
γ = γ 0 in Equation (3.10), and the 

series of ri’s is referred to as the detector. Thus  

 ∑
=

=
t

i

i raQ
1

0  (3.11) 

is the Cuscore associated with the parameter value
  
γ = γ 0 . 

 In some cases, two-sided Cuscore statistics are preferred to monitor the bias of 

signals in a process. Let the superscript + and – denote positive and negative biases 

respectively. The formula can be written as 

 
1 0

1 0

0 0

max(0, ),

min(0, ),

0.

t t t t

t t t t

Q Q a r

Q Q a r

Q Q

+ +
−

− −
−

+ −

= +

= +

= =

 (3.12) 

 As shown in Box and Luceño (1997) and Nembhard (2005), the Cuscore chart 

designed for detecting a spike signal in white noise is equivalent to a traditional Shewhart 

chart; the Cuscore chart designed for designed for detecting a step signal in white noise is 

equivalent to a CUSUM chart; and the Cuscore chart designed for detecting a bump 

signal in white noise is equivalent to an arithmetic moving average (AMA) chart. 



 

 32 

3.3 Cuscore Statistics for GMV Feedback Controlled Processes  

 As stated in the chapter introduction, the approach used here is to integrate the 

Cuscore chart with a GMV control to develop a more general model for SPC/EPC for 

systems with anticipated signals. Specifically, the objective is to monitor the output 

characteristic from a GMV feedback control system when known signals appear. To do 

this we consider a noise disturbance described by the ARMA(1,1) model with a signal in 

a first-order dynamic process as described in Equation (3.3) and controlled by a GMV 

control scheme as described in Equation (3.7). The output is composed of two parts, the 

control action filtered by the first-order dynamic transfer function, and the noise and 

signal: 

 1

1
( )

1 1
t t t

g B
X a f t

B B

θ
ε γ

δ φ
−

−
= + +

− −
, (3.13) 

where γ  is the steady-state system gain. The GMV controller for this system is 

 
0

( )(1 )
.

(1 ) (1 )(1 )
t t

B
X

g B B B
g

θ φ δ
ε

λ
φ θ δ

− −
=

− + − −

 (3.14) 

 Applying the GMV controller to the system by substituting Equation (3.14) into 

Equation (3.13), then rearranging gives 

 
2

0

2

0

(1 ) (1 )(1 ) 1
( )

(1 ) (1 )(1 ) 1
t t

g B B B B
a f t

g B B B B

φ λ θ δ φ
ε γ

φ λ φ δ θ

− + − − − 
= + 

− + − − − 
. (3.15) 
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 We note that for MMSE control, which is equivalent to GMV control with 0λ  = 

0, Equation (3.15) reduces to 

   

1
( ) ( )

1
t t t

B
a f t a f t

B

φ
ε γ γ

θ

−
= + = +

−
% , (3.16) 

where )(
~

 tfγ  is the fault signature for the signal ( )f tγ . Equation (3.16) shows that the 

fault signature is dependent on the ARMA parameters φ  and θ  but independent of the 

system dynamics parameter δ  for an MMSE feedback control scheme. The expectation 

of Equation (3.16) is 

 ).(
~

)](
~

[)](
~

[][)](
~

[][ tftfEtfEaEtfaEE ttt γγγγε ==+=+=  (3.17) 

 Equation (3.17) shows that the expected output from a MMSE feedback control 

system is the fault signature of fault f(t) which is equivalent to the change patterns of a 

signal filtered by an ARMA(1,1) model as discussed in Hu and Roan (1996) with 

examples of spike and step signals. However, in the GMV control scheme, the fault 

signature is different due to the  λ0  parameter. Expanding Equation (3.17) shows that the 

output error is composed of two parts: the inflated noise and the fault signature 

2 2
0 0

2 2
0 0

(1 ) (1 )(1 ) (1 ) (1 )(1 )
( )

(1 ) (1 )(1 ) (1 ) (1 )(1 )
t t

g B B B g B B B
a f t

g B B B g B B B

φ λ φ δ φ λ φ δ
ε γ

φ λ θ δ φ λ θ δ

- + - - - + - -
= +

- + - - - + - -
% . (3.18) 

 In order to align with common system disruptions, it seems most useful to 

consider monitoring and control for the cases for a spike, step, and bump signal. For each 

of these three signals, we show the form of the Cuscore in terms of the parameters of the 
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control model and in terms of the fault signature (the derivations are in the Appendices 

3A - 3C). 

Spike signal: 

 Form in terms of the parameters of the control model: 

  
tttt

A

tt
BBBg

BBBg
araraQ ε

δθλφ

δφλφ

)1)(1()1(

)1)(1()1(

0

2

0

2

0000
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====∑  (3.19) 

Form in terms of the fault signature: 

 
1

( )
1

t t

B
Q a f t

B

φ
γ

θ

-
= +

-
 (3.20) 

Step signal: 

 Form in terms of the parameters of the control model: 
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 Form in terms of the fault signature: 
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Bump signal (duration = 3 periods): 

 Form in terms of the parameters of the control model: 

 0 0 0

2
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1 1 2 2
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where  
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 Form in terms of the fault signature: 
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 (3.24)  

 Equations (3.20), (3.22), and (3.24) show that the Cuscore statistics used in 

monitoring the three signals in the GMV feedback control system are composed of two 

parts: the white noise and the fault signature of the signals. The latter is independent of 

the GMV parameter  λ0  and the system dynamic parameterδ .  

 One can build an understanding of the behavior of the control and monitoring 

approach by first considering the fault signature of the signals when subject only to 

MMSE control, then considering the fault signature of the signals when subject only to 

GMV control, and finally by considering a side-by-side comparison of the fault 

signatures and Cuscore statistics for a process adjusted by a GMV controller.   

 Figures 3.2, 3.3, and 3.4 show the fault signatures of a spike, a step, and a bump 

that occur at time t = 10. (To facilitate comparison among the different scales, the figures 

show ±3 unit upper/lower lines; they are not defined as formal control limits.) It can be 

observed that in Figure 3.2 and Figure 3.4 the size of the first observation after the 

change time is constantly equal to the spike size. The fault signatures then gradually 
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converge to zero in 5 to 20 time intervals. In Figure 3.3, the first observation after the 

change time is also constantly equal to the step size. Then, after a few intervals, some 

fault signatures remain constant (cases (a), (c), (d), and (e)), some converge or get very 

close to zero (cases (f), (g), and (h)), while one diverges (case (b)). 

 Figures 3.5, 3.6, and 3.7 illustrate the fault signatures for spike, step, and bump 

signals in a GMV controlled process. It can be observed that the more  λ0  increases, the 

faster the fault signatures converge. 

 Figures 3.8, 3.9, and 3.10 show the Cuscore statistics and output errors for a 

spike, a step, and a bump signal in a process adjusted by a GMV controller. It can be seen 

that for each type of signal, the output errors are different for different  λ0  values, but the 

Cuscore statistics remain same.  

 

 

 

  

Figure 3.2:  Fault signature of a spike signal in a MMSE controlled process (spike size = 

3, 0.5δ = ). 

(e) φ = -0.7, θ = -0.2 

(a) φ = -0.8, θ = 0.3 

(f) φ = -0.2, θ = -0.6 

(b) φ = -0.5, θ = 0.9 (c) φ = 0.2, θ = 0.6 (d) φ = 0.7, θ = 0.2 

(h) φ = 0.8, θ = -0.3 

(g) φ = 0.5, θ = -0.9 



 

 37 

 

 

    

    

 

Figure 3.3:  Fault signature of a step signal in a MMSE controlled process (step size = 

1, 0.5δ = ). 

 

 

 

Figure 3.4:  Fault signature of a three-period bump signal in a MMSE controlled process 

(bump size = 3, 0.5δ = ). 

 

 

 

(a) φ = -0.8, θ = 0.3 

(e) φ = -0.7, θ = -0.2 (f) φ = -0.2, θ = -0.6 

(b) φ = -0.5, θ = 0.9 

(d) φ = 0.7, θ = 0.2 (c) φ = 0.2, θ = 0.6 

(g) φ = 0.5, θ = -0.9 (h) φ = 0.8, θ = -0.3 

(a) φ = -0.8, θ = 0.3 

(b) φ = -0.5, θ = 0.9 (c) φ = 0.2, θ = 0.6 

(d) φ = 0.7, θ = 0.2 

(e) φ = -0.7, θ = -0.2 
(f) φ = -0.2, θ = -0.6 

(h) φ = 0.8, θ = -0.3 

(g) φ = 0.5, θ = -0.9 
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 (a)  λ0  = 0   (b)  λ0  = 1  (c)  λ0  = 2   (d)  λ0  = 4 

Figure 3.5:  Fault signature of a spike signal in a GMV controlled process (spike size = 3, 

start at t = 10, 0.5φ = , 0.9θ = − , 0.5δ = , g = 1). 
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 (a)  λ0  = 0   (b)  λ0  = 1  (c)  λ0  = 2   (d)  λ0  = 4 

Figure 3.6:  Fault signature of a step signal in a GMV controlled process (step size = 3, 

start at t = 10, 0.5φ = , 0.9θ = − , 0.5δ = , g = 1). 
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 (a)  λ0  = 0   (b)  λ0  = 1  (c)  λ0  = 2   (d)  λ0  = 4 

Figure 3.7:  Fault signature of a bump signal for three time periods in a GMV controlled 

process (bump size = 3, start at t = 10, 0.5φ = , 0.9θ = − , 0.5δ = , g = 1). 
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  (a)  λ0  = 0  (b)  λ0  = 1 
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 (c)  λ0  = 2  (d)  λ0  = 4 

Figure 3.8:  The fault signatures (in column 1) and Cuscore statistics (in column 2) for a 

spike signal adjusted by a GMV feedback controller in a first order dynamic process 

(spike size = 3, 0.5φ = , 0.9θ = − , 0.5δ = , g = 1). 
 

 

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25 30 

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20 25 30

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25 30 

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20 25 30

 

 (a)  λ0  = 0 (b)  λ0  = 1 

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25 30 

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20 25 30

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25 30 

-4

-3

-2

-1

0

1

2

3

4

5

0 5 10 15 20 25 30

 

 (c)  λ0  = 2  (d)  λ0  = 4 

Figure 3.9:   The fault signatures (in column 1) and Cuscore statistics (in column 2) for a 

step signal adjusted by a GMV feedback controller in a first order dynamic process (step 

size = 3, 0.5φ = , 0.9θ = − , 0.5δ = , g = 1). 
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 (c)  λ0  = 2 (d)  λ0  = 4 

Figure 3.10:  The fault signatures (in column 1) and Cuscore statistics (in column 2) for a 

step signal adjusted by a GMV feedback controller in a first order dynamic process (step 

size = 3, 0.5φ = , 0.9θ = − , 0.5δ = , g = 1). 

3.4 Performance Results   

 In this section, we use Monte-Carlo simulation to investigate the performance of 

the integrated Cuscore/GMV control approach developed in Section 3.3. The focus will 

be on the spike, step, and bump signals, with an intention to establish the performance of 

the Cuscore to detect these signals in a GMV controlled process. The advantage of the 

Cuscore chart over traditional charts is its adaptability of detecting the fault signature of 

these of signals from the output error in a GMV feedback control system. 

3.4.1 Performance for Detecting a Spike 

 The objective of this investigation is to detect the spike signal from output errors 

using the Cuscore chart with plus and minus three sigma control limits. In order to do 



 

 41 

this, we consider a system of a first-order dynamic process with   δ = 0.5  where the noise 

disturbance is modeled by an ARMA(1,1) process over a range of values for the of θ  �and 

φ  parameters. A spike signal of size 3 units occurs in the noise at time 5t =  and the 

process is adjusted by using GMV control with varying  λ0  values.  

 A MATLAB program simulated 10,000 runs with 20 observations for each run 

and computed the detection rates of the Cuscore chart for this controlled system. The 

results provided in the first row of Table 3.1 show detection rates that vary over a wide 

range depending upon the ARMA parameters. For the values of θ and φ in cases (c), (d), 

(e) and (f), the detection rates are about 0.5; in approximately half of the runs, the signal 

was not detected. For cases (b) and (g), the rate is 1; the signal never went undetected. 

For cases (a) and (h), the rate is over 0.8, a fair performance. The results also show that 

the GMV control parameter  λ0  has no significant effect on the detection rate which is 

consistent with the theoretical result in Equation (3.20).  

 Obviously the detection performance for cases (c), (d), (e) and (f) are inadequate 

since the signal was undetected in nearly half of the runs. Following Montgomery and 

Mastrangelo (1991) and Mastrangelo and Montgomery (1995), who used the 

supplementary tracking signal test to enhance the detection performance of control charts, 

tracking signals were applied to the Cuscore chart. Tracking signals use forecast errors to 

monitor and control a forecasting process (Montgomery et al., 1990). This present 

investigation used the smoothed error tracking signal (SETS) 

 
( )

( )
ˆ ( )

s

Q t
T t

t∆
=  (3.25) 
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where 
   
Q(t) = αet + (1- α )Q(t - 1)  and ˆ ( ) ( ) (1 ) ( 1);tt e t tα α∆ ∆= + - -

)
α is a smoothing 

constant, typically selected between 0.05 and 0.15; and et is the forecast error at time t. 

The value of the tracking signal statistic is compared to a constant K (Montgomery et al., 

1990) suggest a value between 0.2 and 0.5) in order to test the hypothesis that the 

expected forecast error is zero.  

 A second set of simulation runs used a tracking signal with α  = 0.1 and K = 0.5 

to monitor the Cuscore statistics in combination with the Cuscore charts. These results 

are shown in the second rows of Table 3.1. This combination method ideally improves 

the detection rate for cases (c), (d), (e) and (f) to 1. However, as with any test of 

hypothesis procedure, one should be cautious in using the tracking signal in practice 

because there will be higher false alarm rate as the trade-off for enhanced detection 

performance. 
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Table 3.1:  Detection Rates for the Cuscore Charts and Combined Tracking Signal 

Methods on the Output Error by a GMV Controller 

 
(a) (b) (c) (d) (e) (f) (g) (h) 

φ = −0.8 φ = −0.5 φ = 0.2 φ = 0.7 φ = −0.7 φ = −0.2 φ = 0.5 φ = 0.8 

λ0 θ = 0.3 θ = 0.9 θ = 0.6 θ = 0.2 θ = −0.2 θ = −0.6 θ = −0.9 θ = 0.3 

0.0 0.818 1.000 0.547 0.551 0.559 0.542 1.000 0.826 

 (0.999) (1.000) (0.987) (0.956) (0.980) (0.951) (0.999) (0.977) 

0.2 0.825 1.000 0.546 0.549 0.552 0.537 1.000 0.824 

 (0.998) (1.000) (0.990) (0.956) (0.980) (0.948) (1.000) (0.977) 

0.5 0.821 1.000 0.541 0.547 0.545 0.538 1.000 0.820 

 (0.999) (1.000) (0.987) (0.953) (0.980) (0.950) (1.000) (0.975) 

0.8 0.816 1.000 0.550 0.554 0.560 0.546 1.000 0.821 

 (0.998) (1.000) (0.989) (0.957) (0.982) (0.952) (1.000) (0.979) 

1.0 0.825 1.000 0.542 0.556 0.552 0.550 1.000 0.818 

 (0.999) (1.000) (0.989) (0.953) (0.978) (0.951) (1.000) (0.978) 

1.5 0.823 1.000 0.540 0.564 0.549 0.546 1.000 0.821 

 (0.999) (1.000) (0.984) (0.960) (0.981) (0.951) (1.000) (0.977) 

2.0 0.813 1.000 0.544 0.555 0.560 0.544 1.000 0.834 

 (0.998) (1.000) (0.987) (0.949) (0.981) (0.953) (1.000) (0.979) 
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3.4.2 Performance for Detecting a Step Shift 

 Again consider a system of a first-order dynamic process with   δ = 0.5  where the 

noise disturbance is modeled by an ARMA(1,1) process with a range of parameters for 

θ �and φ . Here, a step signal of size 2 occurs in the noise at t = 0. The process is adjusted 

by using a GMV control scheme with varying  λ0  values. The system gain is 1. The 

control limits are chosen at ± 4 aσ . 

 A MATLAB program simulated 10,000 runs with 100 observations for each run 

and computed the detection rates of the Cuscore chart for this controlled system. The 

simulation results listed in Table 3.2 show that the out-of-control ARL values vary over a 

wide range depending upon the ARMA parameters. For the values of φ  and θ  in cases 

(a), (b), (c), (e), and (f), the ARL is short which indicates the Cuscore chart has good 

detection capacity. For cases (d) and (g), the ARL is fair. For case (h), the ARL is large, 

failing to detect the step signal until 77 time periods on average. The results also show 

that the out-of-control ARLs are independent of the GMV control parameter  λ0 , 

consistent with the theoretical results in Equation (3.22).  
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Table 3.2:  Out-of-Control ARL for the Cuscore Chart on the Output Error from a 

GMV Controller  
(a) (b) (c) (d) (e) (f) (g) (h) 

φ = −0.8 φ = −0.5 φ = 0.2 φ = 0.7 φ = −0.7 φ = −0.2 φ = 0.5 φ = 0.8 

λ0 θ = 0.3 θ = 0.9 θ = 0.6 θ = 0.2 θ = −0.2 θ = −0.6 θ = −0.9 θ = 0.3 

0 1.328 1.044 1.525 13.279 1.852 4.041 14.497 76.611 

0.2 1.329 1.042 1.524 13.216 1.864 4.033 18.147 76.797 

0.5 1.325 1.045 1.519 13.156 1.856 4.039 21.078 76.402 

0.8 1.335 1.043 1.529 13.19 1.865 4.035 22.217 76.852 

1 1.326 1.042 1.524 13.223 1.859 4.043 22.91 76.833 

1.5 1.334 1.043 1.527 13.17 1.861 4.04 23.049 76.241 

2 1.331 1.04 1.515 13.215 1.858 4.06 22.359 76.556 

 

Table 3.3:  Detection Rates for the Cuscore Chart on the Output Error from a GMV 

Controller (with Control Limits of the Cuscore Charts Given for Each Case)  
(a) (b) (c) (d) (e) (f) (g) (h) 

φ = −0.8 φ = −0.5 φ = 0.2 φ = 0.7 φ = −0.7 φ = −0.2 φ = 0.5 φ = 0.8 

 θ = 0.3 θ = 0.9 θ = 0.6 θ = 0.2 θ = −0.2 θ = −0.6 θ = −0.9 θ = 0.3 

CL 

λ0 

9.97 13.35 7.02 3.54 6.70 4.27 4.11 3.10 

0 1.000 1.000 1.000 0.765 1.000 0.924 1.000 0.729 

0.2 1.000 1.000 1.000 0.770 1.000 0.916 1.000 0.739 

0.5 1.000 1.000 1.000 0.769 1.000 0.922 1.000 0.735 

0.8 1.000 1.000 1.000 0.764 1.000 0.921 1.000 0.726 

1 1.000 1.000 1.000 0.763 1.000 0.917 1.000 0.730 

1.5 1.000 1.000 1.000 0.769 1.000 0.919 1.000 0.728 

2 1.000 1.000 1.000 0.769 1.000 0.928 1.000 0.727 
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3.4.3 Performance for Detecting a Bump 

 Again consider a system of a first-order dynamic process with 0.5δ =  where the 

noise disturbance is modeled by an ARMA(1,1) process with a range of parameters for θ  

and φ . Here, a three-time-period bump signal of size 3 units occurs in the noise at t = 5, 6 

and 7. The process is adjusted by using a GMV control scheme with 0λ  varying from 0 to 

2. The system gain is again 1.  

 We first simulated 2,000 runs with 2,000 observations for each run without 

signals to find a the control limits which give an in-control ARL0 = 370 for each Cuscore 

chart designed for each ARMA(1,1) model. The control limits are listed in the CL row of 

Table 3.3. 

 A MATLAB Program simulated 10,000 runs with 30 observations for each run 

and computed the detection rates of the Cuscore chart for this controlled system. The 

simulation results are listed in Table 3.3. The results show that the detection rates are 

high for all cases except case (d) and (h). The results also illustrate that the detection rates 

are independent of the GMV control parameter λ0 , which is consistent with the theoretical 

results in Equation (3.24). For example, in Table 3.3, when θ = 0.3 and φ = -0.8, the 

standard deviation of the ARLs corresponding to the varying λ0 values is 0.004, which 

can be neglected in comparison with the mean of the ARLs 1.33. 
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3.5 Leakage Detection across a Valve 

 Consider a feedback control process applied to a fluid pipeline system in which 

the interest is in detecting the flow leakage across a check valve as illustrated in Figure 

3.11. The quality characteristic in this system is the flow pressure which is adjusted by 

controlling the gap of the valve. It can be assumed that the sequential differentiated 

pressure fluctuates around a non-zero mean and follows Gaussian distribution due to a 

variety of factors, such as the inherent variance of sensors and fluid compressibility (Tu 

et al., 2003). The pressure across the valve is periodically measured by two sensors or 

meters at each side of the valve. In practice, correlation usually exists between two 

successive pressure measurements at small sampling intervals (Wang et al., 1993). 

Therefore, we applied a first-order autoregressive (AR) model to the pipeline pressure 

data series.  

 Furthermore, we assume that the effect of the valve adjustment action on the flow 

pressure can be modeled by a first-order dynamic process with a delay of one time period 

between the control actions and the output pressure. In order to achieve a small variance 

on the outlet pressure while keeping the variance of the valve control actions low as well, 

the GMV feedback controller is applied to the pipeline system. Suppose at time t, a 

leakage occurs in the gate valve and exists until it has been fixed. Therefore, a steady 

pressure drop signal is assumed to affect the inlet pressures series and it is important to 

detect the signal in a small run length by monitoring the controlled outlet pressure series. 
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Figure 3.11:  Schematic of valve flow and leakage. 
 

 In this example, the pressure set point T = 100 psi. P0, t and P1, t denote the inlet 

and outlet pressure deviations from the set point at time t respectively. We simulate an 

AR(1) model for the inlet pressure series: 

P0, t = 0.7 P0, t−1 + at 

where the initial pressure deviation P0, 0 = 0 psi, {at}t ≥ 0 is a white noise sequence, N(0 

psi, 1 psi
2
),  and the first-lag correlation coefficient is φ = 0.7. Suppose a leakage causes a 

1% pressure drop occurs at the 50
th 

observation in the inlet pressure and lasts for a 

sufficiently long period to enable detection. This downward step shift is modeled as 

0 psi       at t 50    

1      at t 50   
tp

psi

<
= 

− ≥
. 

 We assume a first-order dynamic process for the inlet and the adjusted outlet 

pressure deviations, and a dynamic parameter δ = 0.3 and a system gain g = 0.95: 

P1, t = 0.3 P1, t−1 + 0.95 Xt−1 
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where Xt is the control action at time t. Thus the adjusted outlet pressure deviation at time 

t can be written as 

tttt pa
B

X
B

P +
−

+
−

= −
7.01

1

3.01

95.0
1,1 . 

 Using a variance transfer parameter λ0 = 1.5, the GMV controller at time t, Xt, can 

be obtained using Equation (3.14): 

ttt P
B

B
P

BB

B
X ,1,1

14.153.2

21.07.0

)3.01(
95.0

5.1
)7.01(95.0

)3.01(7.0

−

+−
=

−+−

−−
= . 

 Rearranging terms gives 

Xt = 0.45Xt-1 – 0.28 P1, t + 0.083 P1, t-1. 

 Suppose that pressure measurements taken by the sensors at both sides of the 

valve start at t0 = 0 and observations are taken every 5 minutes. The interest of this 

research is to consider the actual pressure values which combine the deviations with the 

set point. Figure 3.12(a) shows the plot of the AR(1) inlet pressure series plus pressure 

drop signal. Figure 3.12(b) illustrates the outlet controlled pressure series and Figure 

3.12(c) shows the control actions series. Shewhart control charts with ±3σ control limits 

are applied to the time series in Figure 3.12(a-c) and no signal is fired in the three charts. 

 Alternatively, we can use the two-sided Cuscore control chart to monitor the 

outlet pressure deviations. The null model for the Cuscore statistics can be obtained by 

using Equation (3B.4) with an initial value of a0, 0 = 0: 
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2

,0 1,2

2

1,

1, 1, 1 1, 2 1,0

0.95 (1 0.7 ) 1.5(1 0.7 )(1 0.3 )

0.95 (1 0.7 ) 1.5(1 0.3 )

2.40 2.13 0.315

2.40 1.08

0.89 0.13 0.45 .

t t

t

t t t t

B B B
a P

B B

B B
P

B

P P P a− − −

− + − −
=

− + −

− +
=

−

= − + +

 

 The detector can be obtained by using Equation (3B.5):  

 3.0)7.0(1 =−+=tr .  

 According to Equation (3.12), the two-sided Cuscore control chart is: 

1 1, 1, 1 1, 2 1,0

1 1, 1, 1 1, 2 1,0

0 0

max(0, 0.3( 0.89 0.13 0.45 )),

min(0, 0.3( 0.89 0.13 0.45 )),

0.

t t t t t t

t t t t t t

Q Q P P P a

Q Q P P P a

Q Q

+ +
− − − −

− −
− − − −

+ −

= + − + +

= + − + +

= =

 

 Simulation is used to find the appropriate control limits for the Cuscore charts on 

the actual pressure values (10,000 runs and 1,000 observations for each run) and also find 

that an UCL of 108.0 psi and LCL of 92.0 psi gives an in-control ARL0 of 370. Using 

these control limits, we apply the two-sided Cuscore chart to the outlet pressure series to 

detect the step signal caused by the leakage. It can be seen in Figure 3.12(d) that the 

leakage signal is detected in about 23 observations, at time t = 73. 
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Figure 3.12:  (a) AR(1) inlet pressure series; (b) Outlet pressure series; (c) Control action 

series; (d) Cuscore chart of the outlet pressure time series. 

3.6 Conclusions 

 Cuscore charts can be used effectively to monitor the output of a GMV feedback 

control system for the presence of a signal. The approach developed in this investigation 

uses the fault signatures of the signal to derive appropriate statistics for their detection in 

an ARMA noise process. We show theoretically that the performance of Cuscore charts is 

independent of the amount of variability transferred from the output quality characteristic 

to the adjustment actions in the GMV control system. This property is potentially very 

useful when detecting signals in a GMV system with high variability transfer parameter 

values. 
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 Simulation was used to explore the performance of using the Cuscore charts to 

monitor a ARMA(1,1) noise in detecting the spike, the step and the bump signal in a 

GMV control system. In general, the Cuscore has the ability to detect signals over a 

broad range of system parameter values. However, this investigation did identify some 

areas of low detection capability for certain fault signatures. In these cases, a tracking 

signal test is used in combination with the Cuscore statistics to give a better detection 

performance.  

 We believe that this approach has considerable theoretical and practical appeal. 

We provided several illustrations of the underlying behavior and showed how the 

methodology developed in this chapter is easily applied in a practical case of valve 

leakage detection.  

Appendix 3A: Derivation of the Cuscore Statistics for a First-Order Dynamic 

Process and ARMA(1,1) Disturbance without Delay in GMV Control System and a 

Spike Signal 

 The transfer function model is given by  

 
   
Yt =

g

1- δ B
X t- 1 . (3A.1) 

The time series model for the disturbance is given by 

 

   

zt =
1- θB

1- φB
at .                           (3A.2) 

The spike signal is given by 

 
  
st = γ f (t) .                              (3A.3) 

where γ  is the size of the signal and f(t) indicates the nature of the signal 
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0

0
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( )    
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f t

t t

=
= 

≠
.                       (3A.4) 

The output error at time t can be written as 

 1

1
( )

1 1
t t t

g B
X a f t

B B

θ
ε γ

δ φ
-

-
= + +

- -
. (3A.5) 

The GMV controller is given by 
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(1 ) (1 )(1 )
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g B B B
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θ φ δ
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Substituting Equation (3A.6) into Equation (3A.5) and writing  ε t  in terms of at gives 
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Rearranging items in Equation (3A.7) gives the discrepancy model 

  
2

0

2
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(1 ) (1 )(1 ) 1
( )

(1 ) (1 )(1 ) 1
t t

g B B B B
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. (3A.8) 

Obtaining the null model by letting 
  
γ = γ 0 = 0   in Equation (3A.8) gives 

  
2

0
0

2
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(1 ) (1 )(1 )

(1 ) (1 )(1 )
t t

g B B B
a

g B B B
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 From Equation (3A.8) we obtain the detector for a spike signal 
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 (3A.10) 

For t ≠ t0, rt = 0. Finally, we have the Cuscore statistics 
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Substituting Equation (3A.7) into Equation (3A.11) gives 
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1

( )
1

t t

B
Q a f t

B

φ
γ

θ

-
= +

-
. (3A.12) 

 Equation (3A.12) shows that the Cuscore is equivalent to the Shewhart for in 

monitoring white noise when there is no spike signal. However the Cuscore statistics 

have an extra term produced by the filtered signal through an inversed ARMA(1,1) filter 

when the discrepancy model is valid. Note that the GMV control parameter  λ0  is not 

included in the Cuscore statistics. 

 The Cuscore statistics in Equation (3A.12) can also be used for the responsive 

system and/or IMA(1,1) noise model simply by letting the parameter   δ = 0  and/or
  
φ = 1 . 

Appendix 3B: Derivation of the Cuscore Statistics for a First-order Process and 

ARMA(1, 1) Disturbance without Delay in GMV Control System and a Step Signal 

 For this process, the output error at time t can be written as 

  1

1
( )

1 1
t t t

g B
X a f t

B B

θ
ε γ

δ φ
-

-
= + +

- -
, (3B.1) 

where γ  is the size of the step signal and f(t) indicates the nature of the signal, which for 

a step is: 

  
0

0

1
( )    

0

t t
f t

t t

<
= 

≥
.   (3B.2) 

The discrepancy model and null model are the same as those for the spike signal case 
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and 
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 The detector can be obtained from Equation (3B.3) by giving the step signal from 

time t = t0 
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 We have the Cuscore statistics 
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Substituting  ε t in Equation (A7) into Equation (3B.6) gives 
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 Equation (3B.7) shows that the Cuscore statistic is affected by the ARMA(1,1) 

parameters φ  and θ and the step size γ . Note that the GMV control parameter  λ0  is not a 

part of the Cuscore statistic. 
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Appendix 3C: Derivation of the Cuscore Statistics for a First-order process and 

ARMA(1, 1) Disturbance without Delay in GMV Control System and a Three-

Period Bump Signal 

 For this process, the output error at time t can be written as 

  1

1
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1 1
t t t

g B
X a f t

B B

θ
ε γ

δ φ
-

-
= + +

- -
,                   (3C.1) 

where γ  is the size of the bump signal and f(t) indicates the nature of the signal, which 

for a three-period bump signal is 

  .
                 otherwise    0

2 and 1     1
)(

00



 −−=

=
t,ttt

tf   (3C.2) 

The discrepancy model and null model are the same as those for the spike signal case 
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The discrepancy model and null model are the same as those for the spike signal case 
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 The detector can be obtained from Equation (3C.3) by giving the bump signal 

from time t = 1, 
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and rt = 0 for all other time t. We have the Cuscore statistics 
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 Expressing t, t-1 and t-2 respectively using Equation (3A.7) and substituting them 

into Equation (3C.6) gives 
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 Equation (3C.7) shows that the Cuscore statistics are affected by the ARMA(1,1) 

parameters φ  and θ  and the signal size γ , but independent of GMV control parameter 

 λ0  and dynamic system parameter δ . 

Appendix 3D: The MATLAB Codes for Simulating the Detection Rates of the 

Cuscore Chart in Detecting a Spike Signal in the GMV Controller 

function cuscore_gmvc_spike_rate 
  
n = 20; 
y = zeros(1, n); z = zeros(1, n); a = zeros(1, n); e = zeros(1, n); x = zeros(1, n); 
  
g = 1;  % the system gain 
r = 10000;  h = 3; 
theta = 0.3; %[0.3 0.9 0.6 0.2 -0.2 -0.6 -0.9 0.3]; 
phi = -0.8; %[-0.8 -0.5 0.2 0.7 -0.7 -0.2 0.5 0.8]; 
delta = 0.5; spike_size = 3; spike_here = 5; 
  
lambda = [0 0.2 0.5 0.8 1.0 1.5 2]; 
m = length(lambda); 
  
for i = 1:1:m 
    lambda0 = lambda(i); 
    count = 0; 
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    % calculate the Cuscore coefficients 
    ec0 = g^2 + lambda0; 
    ec1 = -g^2 * phi - lambda0 * phi - lambda0 * delta; 
    ec2 = lambda0 * phi * delta; 
    qc0 = ec0; 
    qc1 = -g^2 * phi - lambda0 * theta - lambda0 * delta; 
    qc2 = lambda0 * theta * delta; 
  
    for rep = 1:1:r 
  
        % generate ARMA(1,1) noise 
        a = randn(1, n); 
        z(1) = a(1); 
        for t = 2:1:n 
            z(t) = phi * z(t-1) + a(t) - theta * a(t-1); 
        end 
  
        z(spike_here) = z(spike_here) + spike_size; 
  
        % put the noise+signal over the first-order dynamic process 
        y(1) = 0; 
        e(1) = 0; 
        x(1) = -(g * phi - g * theta) * e(1) / (g^2 + lambda0); 
        y(2) = delta * y(1) + g * x(1); 
        e(2) = z(1) + y(2); 
        x(2) = (-g * (phi - theta) * e(2) + g * (phi - theta) * delta * e(1) + (-qc1) * x(1)) /  
          (qc0); 
  
        for t = 3:1:n 
            y(t) = delta * y(t-1) + g * x(t-1); 
            e(t) = y(t) + z(t-1); 
            x(t) = (-g * (phi - theta) * e(t) + g * (phi - theta) * delta * e(t-1) + (-qc1) * x(t-1) +  
              (-qc2) * x(t-2)) / (qc0); 
        end 
  
        % calculate Cuscore statistic 
        CS(1) = e(1); 
        CS(2) = ((ec0 * e(2) + ec1 * e(1)) - qc1 * CS(1)) / qc0; 
        for t = 3:1:n 
            CS(t) = ((ec0 * e(t) + ec1 * e(t-1) + ec2 * e(t-2)) - (qc1 * CS(t-1) + qc2 *  
         CS(t-2))) / qc0; 
  
            if abs(CS(t)) > h 
                count = count + 1; 
                break; 
            end 
        end 
    end 
    rate(i) = double(count/r);  % detection rate 
end 
  
% write the simulation results to a data file 
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fid = fopen('dataout1.txt','w'); 
fprintf(fid, 'GMVC_lambda\trate\n'); 
for i = 1:1:m 
    fprintf(fid,'%f\t%f\n',lambda(i), rate(i)); 
end 
fclose(fid); 
 

Appendix 3E: The MATLAB Codes for Simulating the ARL of the Cuscore Chart 

in Detecting a Mean Shift Signal in the GMV Controller 

function cuscore_gmvc_step_arl 
  
n = 100; r = 10000; 
y = zeros(1, n); z = zeros(1, n); a = zeros(1, n); e = zeros(1, n); x = zeros(1, n); 
  
h = 4; 
theta = 0.3; %[0.3 0.9 0.6 0.2 -0.2 -0.6 -0.9 0.3]; 
phi = -0.8; %[-0.8 -0.5 0.2 0.7 -0.7 -0.2 0.5 0.8]; 
g = 1; delta = 0.5; 
step_size = 2; step_start = 1; 
  
lambda = [0 0.2 0.5 0.8 1.0 1.5 2 3]; 
m = length(lambda); 
  
%ve = zeros(1,m); 
arl = zeros(1,m); 
  
% give values to M 
for t = 1:1:n 
    M(t) = 1 + (theta - phi) / (1 - theta); 
end 
  
% do iteration to compute arl 
for i = 1:1:m 
    lambda0 = lambda(i); 
    count = 0; 
    for rep = 1:1:r 
  
        % generate ARMA(1,1) noise + signal 
        a = randn(1, n); 
        z(1) = a(1); 
        for t = 2:1:n 
            z(t) = phi * z(t-1) + a(t) - theta * a(t-1); 
        end           
  
        for j = step_start:1:n 
            z(j) = z(j) + step_size; 
        end 



 

 60 

  
        % put the noise+signal over the first-order dynamic process 
        y(1) = 0; 
        e(1) = 0; 
        x(1) = -(g * phi - g * theta) * e(1) / (g^2 + lambda0); 
        y(2) = delta * y(1) + g * x(1); 
        e(2) = z(1) + y(2); 
        x(2) = (-g * (phi - theta) * e(2) + g * (phi - theta) * delta * e(1) + (g^2 * phi +  
           lambda0 * theta + lambda0 * delta) * x(1)) / (g^2 + lambda0); 
  
        for t = 3:1:n 
            y(t) = delta * y(t-1) + g * x(t-1); 
            e(t) = y(t) + z(t-1); 
            x(t) = (-g * (phi - theta) * e(t) + g * (phi - theta) * delta * e(t-1) + (g^2 * phi +  
        lambda0 * theta + lambda0 * delta) * x(t-1) + (-lambda0 * theta * delta) *  
        x(t-2)) / (g^2 + lambda0); 
        end 
  
        % calculate Cuscore statistic 
        ec0 = g^2 + lambda0; 
        ec1 = -g^2 * (phi + theta) - lambda0 * (phi + theta + delta); 
        ec2 = lambda0 * (phi * theta + phi * delta + theta * delta) + g^2 * phi * theta; 
        ec3 = -lambda0 * phi * theta * delta; 
        qc0 = ec0; 
        qc1 = -g^2 * (theta + phi) - lambda0 * (delta + 2 * theta); 
        qc2 = g^2 * theta * phi + lambda0 * (2 * theta * delta + theta^2); 
        qc3 = -delta * theta^2 * lambda0; 
  
        CS(1) = e(1) * M(1); 
        CS(2) = ((ec0 * e(2) * M(2) + ec1 * e(1) * M(1)) - (qc1 - qc0) * CS(1)) / qc0; 
        CS(3) = ((ec0 * e(3) * M(3) + ec1 * e(2) * M(2) + ec2 * e(1) * M(1)) - ((qc1 - qc0)  
        * CS(2) + (qc2 - qc1) * CS(1))) / qc0; 
        CS(4) = ((ec0*e(4)*M(4) + ec1*e(3)*M(3) + ec2*e(2)*M(2) + ec3*e(1)*M(1)) -  
((qc1 - qc0) * CS(3) + (qc2 - qc1) * CS(2) + (qc3 - qc2) * CS(1))) / qc0; 
  
        for t = 1:1:n 
            if t > 4 
                M(t) = 1 + (theta - phi) * (1 - theta^(t-1)) / (1 - theta); 
                CS(t) = ((ec0 * e(t) * M(t) + ec1 * e(t-1) * M(t-1) + ec2 * e(t-2) * M(t-2) +  
      ec3 * e(t-3) * M(t-3)) - ((qc1 - qc0) * CS(t-1) + (qc2 - qc1) * CS(t-2) +  
      (qc3 - qc2) * CS(t-3) - qc3 * CS(t-4))) / qc0; 
            end 
  
            % calculate ARL 
            if CS(t) > h | t >= n 
                arl(i) = arl(i) + (t - step_start); 
                break; 
            end 
        end 
    end 
  
    arl(i) = double(arl(i)/r);  % ARL         
end 
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% write the simulation results to a data file 
fid = fopen('dataout.txt','w'); 
for i = 1:1:m 
    fprintf(fid,'%f\n',arl(i)); 
end 
fclose(fid); 
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Chapter 4 

 

Multivariate Cuscore Control Charts for Monitoring the Mean Vector in 

Autocorrelated Processes 

Many modern industries operate in a data-rich environment where observations of 

more than one process variable can be collected simultaneously and used to characterize 

the process for quality control purposes. Additionally, the effect of sequential 

autocorrelation on process monitoring and control is increasingly important as the 

intervals between neighboring observations become shorter. Consequently, such 

sequential autocorrelation often leads to a high false alarm rate for traditional multivariate 

control charts, such as the multivariate cumulative sum (MCusum) chart or the 

multivariate exponentially weighted moving average (MEWMA) chart. In this chapter, a 

multivariate Cuscore (MCuscore) procedure based on the likelihood ratio test and fault 

signature analysis is proposed for monitoring the mean vector of an autocorrelated 

multivariate process. Simulation is performed to illustrate that the MCuscore chart 

outperforms the traditional residual-based MCusum control chart for detecting a mean 

vector shift in an autocorrelated multivariate process. An example of monitoring two 

autocorrelated process variables of a reactive ion etching (RIE) process used in 

semiconductor manufacturing demonstrates the application of the MCuscore chart. 
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4.1 Introduction 

With the rapid development of modern technology and increasing complexity in 

modern industry, many manufacturing and business processes are more adequately 

represented by more than one quality variable. In many cases, historical data can be 

easily collected on several variables simultaneously but the data are often characterized 

by large size, high correlation, missing measurements, and low content of information 

due to low signal-to-noise ratios (Kourti, 2002). Meanwhile, there may also be a level of 

working knowledge or understanding about the inherent nature of processes that have 

been in operation over time. 

The control chart is one of the primary techniques of statistical process control 

(SPC). Depending on the number of variables that it is designed to monitor, a control 

chart can be categorized as a univariate control chart or multivariate control chart. In 

general, most well-designed control charts consist of two phases. In Phase I, historical 

data are used to analyze the properties of the process, estimate the relevant parameters of 

process models, and construct the control limits or criteria of the control charts. In Phase 

II, control charts are applied to monitor the process and perform the tasks of fault 

detection and fault diagnosis.  

Traditional univariate statistical process analysis characteristically ignores the 

correlation among the process variables and constructs a separate chart for each of them. 

This approach often leads to inaccurate control limits and poor detection performance in 

monitoring mean shift signals for correlated variables. By assuming an independent and 

identically distributed (i.i.d.) multivariate Gaussian process with constant covariance 
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matrix among sequential observations, Shewhart, Cusum, and EWMA charts can be 

extended to the multivariate environment to monitor the process mean (e.g., Jackson, 

1985; Healy, 1987; Lowry et al., 1992). However, the false alarm rates are usually high 

when the multivariate processes are actually sequentially autocorrelated. 

To remedy this problem, some multivariate SPC approaches have been proposed 

for monitoring the mean vector of the autocorrelated multivariate process, such as 

Mastrangelo and Forrest (2002), Noorossana and Vaghefi (2005), and Bakski (1998). 

However, some important issues, such as the analysis of fault signature, the change 

pattern of the fault signal imposed on the output residual in removing the process 

autocorrelation by filtering, and its combination with time series model identification, 

have not been fully addressed. 

The univariate Cuscore statistic has been used in control charts to monitor for 

anticipated process signals (Box and Ramirez, 1992; Box and Luceño, 1997; Nembhard 

and Changpetch, 2006; Nembhard, 2006; Nembhard and Chen, 2006; and Nembhard and 

Valverde-Ventura, 2003, 2006, Shu et al., 2002). This research extends the univariate 

Cuscore statistic to the multivariate environment and provides the theoretical derivation 

of bivariate Cuscore statistics. The multivariate Cuscore (MCuscore) control chart is 

applied to monitor the mean shift in two simulated autocorrelated process variables in a 

reactive ion etching (RIE) process in semiconductor manufacturing. For 

comprehensiveness, some background is provided on the multivariate fault signature 

before developing the MCuscore procedure. 

In Section 4.2, a brief literature review of multivariate control charts is provided, 

along with an introduction to the multivariate time series model, in the form of a vector 
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auto-regressive and moving average (VARMA) process. In Section 4.3, the VARMA is 

used as a basis for discussing the fault signature of a mean shift signal in the output of the 

inverse VARMA filter, especially for the vector autoregressive (VAR) process. In 

Section 4.4, the MCuscore statistic is derived with the aid of fault signatures in a 

VARMA model. In Section 4.5, the performance of the MCuscore chart is investigated 

and compared with the residual-based MCusum control chart, and the robustness of the 

control chart is briefly discussed. In Section 4.6, the MCuscore chart approach is applied 

to a simulated application example for monitoring the mean shift of two autocorrelated 

RIE process variables. We present a discussion on the diagnosis of out-of-control signals 

for the MCuscore chart in Section 4.7 and conclude the chapter in Section 4.8.  

4.2 A Brief Review of Multivariate Control Charts 

 In this section, the multivariate time series model is introduced as an important 

tool to characterize autocorrelated multivariate processes. Then three major types of 

multivariate control charts to monitor the process mean vector shift – Hotelling's T
2
 

control chart, multivariate Cusum (MCusum) control chart and multivariate EWMA 

(MEWMA) control chart – are briefly reviewed. 

4.2.1 Multivariate Time Series Model 

Time series modeling techniques are commonly used in univariate processes to 

remove any autocorrelation structure in the observations. In almost all cases it is assumed 
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that the Box-Jenkins model can be used to describe the behavior of observations. To 

extend the univariate framework of time series modeling to multivariate observations, 

suppose 1tx , 2tx , …, ntx  are an output series of a stable process. Following Montgomery 

et al. (1990) and Hamilton (1994), a multivariate time series model can be written in the 

VARMA form: 

where 1 2( , ,..., )t t t ntx x x ′=X  represents the vector of the time series of interest, tε  is a 

sequence of independent multivariate normal random vectors with mean zero and 

variance-covariance matrix Σ , ( )p BΦ and ( )q BΘ  are polynomials in B with 

( )p BΦ = ( )q BΘ = I , ∇ is the difference operator, and d indicates the required 

differencing to make the time series stationary. 

Note that VARMA(1,1) model is reduced to an i.i.d. multivariate Gaussian model 

if the Φ  matrix is reduced to a diagonal matrix and the Θ  matrix is a zero matrix. 

Practically, it is much more difficult to fit a proper VARMA model than an 

ARMA model because actual multivariate processes are often very complicated and 

highly correlated. Tools such as SAS Proc Statespace can be used to perform the 

multivariate time series model identification. Theoretical particulars of such model 

identification are discussed in Box et al. (1994) and Del Castillo (2002). 

( ) ( )d

p t q tB B∇ =Φ X Θ ε , (4.1)
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4.2.2 Hotelling’s T2 Control Chart 

One of the earliest approaches to multivariate process control was Hotelling’s T
2
 

statistics (Hotelling, 1947; Johnson and Wichern, 2002). Consider a sequence of 

multivariate observations represented by ,  1,2, ,t t n=X K , where each observation tX  is 

a p × 1 random vector whose jth element represents the jth quality characteristic of the 

process. Assume ,  1,2, ,t t n=X K  follows a multivariate normal distribution with mean 

µ  and covariance matrix Σ .... Suppose the objective is to test whether ,  1,2, ,t t n=X K  

come from a multivariate normal distribution with a “good” mean 0µ  or a “bad” mean 

1 0= +µ µ δ . The covariance matrix Σ  is assumed constant for both cases. Of clear 

relevance is a test of the null hypothesis 0 0:H =µ µ  against the alternative 

hypothesis 0:aH ≠µ µ . Multivariate analysis shows that the most powerful test statistic 

for H0 against Ha rejects the null hypothesis if the value of 2

0 0( ) ' ( )t t tT = − −X µ Σ X µ  is 

sufficiently large. In distribution theory, 2

tT  follows a 2

pχ  distribution with p degrees of 

freedom, 22 ~ ptT χ . Thus, given a Type-I error α for the null hypothesis test, a  2T  

control chart with the control limit of 2 ( )pχ α  can be established. 

Hawkins and Olwell (1998) discussed an extension of this basic result. Instead of 

studying a single observation vector tX , they considered a rational group of size m and 

computed the sample mean vector mX , so that 






 Σ

m
MVNm ,~ µX , , , , and the optimal test 
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statistic becomes 2 2

0 0( ) ' ( ) ~t t t pT m χ= − −X µ Σ X µ . In this form, the 2T control chart can 

be constructed. 

4.2.3 Multivariate Cusum Control Chart 

Healy (1987) derived a multivariate Cusum (MCusum) procedure based on the 

sequential likelihood ratio test of multivariate variables. The MCusum statistic for 

detecting a specific shift in the process mean vector 1 0−µ µ  is 

where 0S = 0, nX  is the sample mean vector at time n, H is a fixed threshold, a  is an m × 

1 vector of constants defined as 

and 

Specifically, n
′a X  has a univariate normal distribution with variance 1 and mean 

0
′a µ  when the process operates in the good state and mean 1

′a µ  when the process has 

shifted to the bad state. By defining the non-centrality parameter 

1= max( ,0)n n nS S K H−
′+ − >a X  (4.2) 

1

1 0

1

1 0 1 0

( )

( ) ( )

−

−

′−
′ =

′− −

µ µ Σ
a

µ µ Σ µ µ
  (4.3) 

1

1 0 1 0

1

1 0 1 0

( ) ( )

2 ( ) ( )
K

−

−

′+ −
=

′− −

µ µ Σ µ µ

µ µ Σ µ µ
 (4.4) 

, 

. 

, 
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1

1 0 1 0( ) ( )D
−′= − −µ µ Σ µ µ , the MCusum statistics can be written in the form of 

Equation (4.2) using K = D/2. 

Noorossana and Vaghefi (2005) applied the MCusum control chart to monitor the 

residuals from a vector AR(1) time series model for a mean vector shift by assuming that 

the parameters of the model were estimated accurately by using the historical data. They 

showed by simulation that the average run length (ARL) properties of MCusum control 

charts can be improved considerably if the residuals from a time series model were used 

instead of the original data. 

Crosier (1988) proposed a MCusum procedure that accumulates on the scale of 

nX , instead of nX  or 2T . The MCusum vector nS  is initialized to a zero vector, and then 

recursively updated 

where 1

1 0 1 0( ) ( )n n n n nC
−

− −
′= + − + −S X µ Σ S X µ . The MCusum control chart will signal if 

1

n n H
−′ Σ >S S , where H is the control threshold. Hawkins and Olwell (1998) stated that 

this MCusum is intuitively attractive because it accumulates on the X  scale rather than a 

quadratic scale. It has the same property as the scalar Cusum of resetting to zero when 

there seems little evidence that the process is off target, and its final decision uses the 2T  

metric. 

n

1 0 n

0 for 
  

( ) /(1 / ) for 
n

n n n

C k

k C C k−

≤
= 

+ − − ≥
S

S X µ
  (4.5) , 
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4.2.4 Multivariate EWMA Control Chart 

Lowry et al. (1992) presented a multivariate EWMA procedure: 

where tX  is a vector of the process variables at time t, R  is a diagonal matrix, I  is the 

identity matrix. This procedure signals a shift when 2 1

iZ i Z iT H
−′= >Z Σ Z , where ZΣ  is the 

exact covariance of tZ . Kramer and Schmid (1997) applied the MEWMA to the 

residuals from a vector AR(1) time series model. Mastrangelo and Forrest (2002) 

developed an adaptive approach to monitor autocorrelated processes using a MEWMA 

residual. 

4.3 Fault Signatures of Mean Vector Shifts 

 For a univariate autocorrelated process, Hu and Roan (1996) showed that 

removing the autocorrelation using a time series model is equivalent to inverse filtering 

the data using the time series model. In the case of a mean shift signal in the original 

autocorrelated data series, the residual from the inverse filter is composed of two parts, a 

white noise series and a change pattern of the mean shift that often behaves as a transient 

response. The magnitude and the pattern of signal in the residual depend on the structure 

of the ARMA model and the model parameters. In some process control literature, the 

change pattern of a fault signal is called fault signature because the controller or filter 

1( )t t t−= + −Z RX I R X
,
 (4.6) 
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gives a signature of the fault signal to the output series (e.g., Apley and Shi, 1999; Yoon 

and MacGregor, 2001; Nembhard and Changpetch, 2006). 

Equivalently, for a multivariate correlated process, a properly fitted multivariate 

time series model can serve as an inverse filter to remove the autocorrelation in the data. 

The fault signal of a mean vector shift in the original data takes the form of a transient 

response and is imposed on the multivariate white noise residuals. For example of a first-

order vector auto-regressive and moving average (VARMA(1,1)) process, the model can 

be written as 

where εεεεt follows a multinormal distribution, ( )Σµ,~ MVNmε . 

As is the case for univariate time series analysis, stationarity and invertibility are 

two important properties for a VARMA time series model. Stationarity requires that 

neither the process mean vector nor the covariance matrix depends on time t, and 

invertibility requires that a VMA(1) model can be inverted to a VAR(∞) model. 

Statistically, for an VARMA(1,1) model such as Equation (4.7), stationarity requires that 

all elements iλ  of the root vector λ  for 

 

are inside the unit circle, or 1iλ < , and invertibility requires all roots 1iλ <  for 

 

1 1t t t t− −= + −X ΦX ε Θε , or t t

B

B

−
=

−

I Θ
X ε

I Φ
, (4.7) 

det( ) 0− =I λΦ  (4.8) 
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are also inside the unit circle. Refer to Hamilton (1994) and Brockwell and Davis (1991) 

for a detailed discussion on stationarity and invertibility of vector time series models. 

The VARMA(1,1) model with a mean shift can be represented by 

 

where tΓ γ  is the mean shift signal, γ  indicates the vector of the shift size, and tΓ  is the 

diagonal pattern matrix indicating the type of mean shift signals, such as steady shifts, 

ramp shifts, and so on as follows 

 

 

Applying an inverse VARMA filter (VARMA
-1

) to Equation (4.10) gives 

 

det( ) 0− =I λΘ  (4.9) 

*

t t t

B

B

−
= +

−

I Θ
X ε γΓ

I Φ
, (4.10) 
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It can be seen in Equation (4.12) that the filtered data consists of the white noise 

tε  and the fault signature  

Figure 4.1 graphically illustrates the composition of the mean shift signal and the 

vector time series, and the filtering of an inverse VARMA model. 

As in the univariate process analysis, the structure of the VARMA model and its 

parameters can affect the magnitude and the pattern of the fault signature. We use a 

bivariate VAR(1) model to illustrate the impact of the ΦΦΦΦ matrix on the fault signatures. In 

the simulation, we assume the white noise term εεεεt in the VAR(1) model has a multivariate 

normal distribution with 
0

0

 
=  
 

µ  and 
1 0.5

0.5 1

 
=  
 

Σ . The length of process is 20 and 

the mean shift vector 
1

1

 
=  
 

Γ  starts at the 10
th

 observation. 

We first study the effect of 1φ  on the fault signature by decreasing the value of 1φ  

from 0.7 to -0.7 while keeping the other three parameters fixed (Table 4.1) and 

Figure 4.2). Then we study the effect of 12φ  on the fault signature by increasing 12φ  from 

-1.2 to 1.6 while keeping others fixed (Table 4.2 and Figure 4.3). The values are selected 

to meet the stationarity condition of a VAR(1) model (Equation (4.8)). 

*( ) ( )

( ) ( )
t t t

B B

B B

− −
= +

− −

I Φ I Φ
X ε γΓ

I Θ I Θ
. (4.12) 

( )

( )
t

B

B

−
=

−

I Φ
δ γΓ

I Θ
. (4.13) 
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Note that the size and pattern of the fault signature can be affected by many 

factors, such as the dimension of the process, the size and pattern of the mean shift signal, 

the structure of VARMA model, the parameter matrixes of Σ , Φ  and Θ , thus are very 

complicated. An extensive study on the pattern of the fault signatures for multivariate 

time series models is beyond the scope of this chapter. In the next few steps, we will limit 

our discussion to the effects of the Φ and Θ  matrixes on fault signatures of the mean 

 

 
 

Figure 4.1:  Composition and filtering using the VARMA(1,1) process. 

 

time time 



 

 75 

shift vector with unit elements in a bivariate process with fixed covariance matrix Σ  for 

the multivariate normal distribution of the white noise.  

 

 

 

Table 4.1:  Selection of Φ Φ Φ Φ Matrix to Vary φ1 

   1φ  12φ  21φ  2φ  

a 0.7 0.1 0.2 0.5 

b 0.4 0.1 0.2 0.5 

c 0.1 0.1 0.2 0.5 

d -0.1 0.1 0.2 0.5 

e -0.4 0.1 0.2 0.5 

f -0.7 0.1 0.2 0.5 
 

 

 

Figure 4.2:   Fault signatures corresponding to the respective values in Table 4.1. 
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Table 4.2:  Selection of Φ Φ Φ Φ Matrix to Vary φ12 

 
1φ  12φ  21φ  2φ  

a -0.7 -1.2 0.2 0.5 

b -0.7 -0.8 0.2 0.5 

c -0.7 -0.4 0.2 0.5 

d -0.7 0.0 0.2 0.5 

e -0.7 0.4 0.2 0.5 

f -0.7 0.6 0.2 0.5 

g -0.7 0.8 0.2 0.5 

h -0.7 1.2 0.2 0.5 

i -0.7 1.6 0.2 0.5 
 

 

  

 

 

Figure 4.3:  Fault signatures corresponding to the respective values in Table 4.2. 
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To further study the impact of the parameters of the VARMA model on the fault 

signature of the mean shift vector (1,  1)′ , we illustrate the fault signatures using three 

Φ Φ Φ Φ matrixes by varying only the φ1 value, and each Φ Φ Φ Φ matrix corresponds to six 

Θ Θ Θ Θ matrixes (see Table 4.3). The Φ Φ Φ Φ and Θ Θ Θ Θ  matrixes are selected to meet the stationarity 

and invertibility condition of the VARMA(1,1) model (Equations (4.8) and (4.9)). 

For comparison, we first plot the fault signatures of the mean shift vector (1,  1)′  

for a VMA(1)
-1

 filter in Figure 4.4. Each panel corresponds to the respective value in 

Table 4.3 with ΘΘΘΘ matrix from row 1-6 respectively. It can be seen that the first three fault 

signatures steadily increase to a constant level higher than the original level (1,  1)′  by 

different amounts, and the last three have some upside-down patterns around their final 

constant levels. Figures 4.5-4.7 illustrate the fault signature of mean shift vector (1, 1)′ in 

different VARMA(1,1)
-1

 filters. It is common that the first set of values of the fault 

signatures for both variables remain the same as the original mean and then the rest of the 

fault signatures display different shift patterns.  

 

Table 4.3:  Selection of Φ Φ Φ Φ Matrix to Vary φ1, and Θ Θ Θ Θ Matrix to Vary θ12 

  
1φ  12φ  21φ  2φ   

1θ  12θ  21θ  2θ  

a 0.7 0.1 0.2 0.5 1 0.3 0.4 0.6 0.3 

b -0.7 0.1 0.2 0.5 2 0.3 0.2 0.6 0.3 

c -0.7 0.6 0.2 0.5 3 0.3 0.0 0.6 0.3 

     4 0.3 -0.2 0.6 0.3 

     5 0.3 -0.4 0.6 0.3 

     6 0.3 -0.6 0.6 0.3 
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Figure 4.4:  Fault signatures corresponding to the respective values in Table 4.3 with 

ΦΦΦΦ matrix from 1-6 respectively. 

 

 

 

 
 

Figure 4.5:  Fault signatures corresponding to the respective values in Table 4.3 with 

ΦΦΦΦ matrix from a and ΘΘΘΘ matrix from 1-6 respectively. 
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Figure 4.6:  Fault signatures corresponding to the respective values in Table 4.3 with 

ΦΦΦΦ matrix from b and ΘΘΘΘ matrix from 1-6 respectively. 

 
 

Figure 4.7:  Fault signatures corresponding to the respective values in Table 4.3 with 

ΦΦΦΦ matrix from c and ΘΘΘΘ matrix from 1-6 respectively. 
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4.4 The Multivariate Cuscore Procedure 

 Box and Ramírez (1992) proposed a Cuscore chart based on the likelihood ratio 

test to identify suspected deviations known to be characteristic of (or peculiar to) a 

monitored system. They assumed that a model can be expressed in the form 

where the iy  are observations (on the quality characteristic), the  X i  are known 

(controllable input) quantities, ���γ is the size of the mean shift signal, either transient or 

steady, the  ai ’s are independent normal random variables with mean 0 and variance 2σ  

(i.e., white noise). Further, they assumed σ  is known and does not depend on γ , and the 

size and starting time of the signal are known. Then the log-likelihood function is 

where c is a constant independent of γ . 

Following Fisher (1925), the efficient score statistic is obtained from Equation 

(4.15) by differentiation with respect to γ  at 
  
γ = γ 0 . Thus 

is the Cuscore associated with the parameter value
  
γ = γ 0 . 

( , , )i i ia a y X γ= ,    i = 1,2,..., t , (4.14) 

,
2

1

1

2

2
cal

t

i

i +−= ∑
=σ

 (4.15) 

∑
=

=
t

i

i raQ
1

0  (4.16) 



 

 81 

Two-sided Cuscore statistics are easily constructed. Let the superscripts + and – 

denote positive and negative biases respectively. The formulae can be written as 

 

As shown in Box and Luceño (1997) and in Nembhard (2006), the Cuscore chart 

designed for detecting a spike signal in white noise is equivalent to a traditional Shewhart 

chart; the Cuscore chart designed for designed for detecting a step signal in white noise is 

equivalent to a CUSUM chart; and the Cuscore chart designed for detecting a bump 

signal in white noise is equivalent to an arithmetic moving average (AMA) chart. 

The Cuscore chart can be used to monitor mean shift signals, either steady or 

transient, in an autocorrelated process by transforming the detector according to the 

autocorrelation structures (Box and Luceño, 1997; Nembhard, 2006; Nembhard and 

Chen, 2006; Nembhard and Valverde-Ventura, 2006). 

In a manner similar to the derivation process for the univariate Cuscore statistics, 

we derive the MCuscore statistics with a specific bivariate VAR(1) as follows. Consider a 

bivariate VAR(1) model  

which can be rewritten as a null model 

1 0

1 0

0 0

max(0, ),

min(0, ),

0.

t t t t

t t t t

Q Q a r

Q Q a r

Q Q

+ +
−

− −
−

+ −

= +

= +

= =

 (4.17) 

1t t t−= +X ΦX a , (4.18) 
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Assume ta  follows a bivariate normal distribution with 
1

2

µ

µ

 
=  
 

µ  and constant 

2

1 12

2

21 1

σ σ

σ σ

 
=  
 
 

Σ . Further, assume the mean shift size 
1

2

γ

γ

 
=  
 

γ and pattern matrix 

0

1

0

2

0 0
        < 

0 0

0
  

0

t

t

t

t t

f
t t

f

 
 
 

= 
  ≥ 
 

Γ  of the shift signal tΓ γ  are known. Thus the discrepancy model 

of the MCuscore statistic is 

In the derivation of the MCuscore statistics, we expand Equation (4.20) into the 

scalar form and take derivatives with respect to 1γ  and 2γ . After rearranging the terms 

into vector and matrix forms and using the expression of the fault signature 

( )t tB= −δ I Φ Γ γ , we can obtain the two-sided MCuscore statistics 

The derivation of Equation (4.21) is based on the sequential probability ratio test 

(SPRT) and is given in Appendix 4A. 

( )t tB= −a I Φ X . (4.19) 

( ) ( )t t tB B= − − −a I Φ X I Φ Γ γ . (4.20) 

1 -1

1

1 1

1

1
max( ,  0)

2

1
min( ,  0)

2

t t t t t

t

t t t t t

S H

S

S H

−
−

− −
−


′ ′+ − >

= 
 ′ ′+ − < −


δ Σ x δ Σ δ

δ Σ x δ Σ δ

. (4.21) 



 

 83 

It can be seen that the form of Equation (4.21) is similar to that of the MCusum 

statistic in Equation (4.2), except that the mean shift term is the fault signature δδδδ in 

Equation (4.21) instead of the constant mean shift vector in Equation (4.2). However, for 

an i.i.d. bivariate Gaussian process which is equivalent to a VAR(1) process with 

0 0

0 0

 
=  
 

Φ , the fault signature has no difference from the constant mean shift, and thus 

the MCuscore statistic is actually the MCusum statistic.  

We note that in the residual-based MCusum procedure proposed by Noorossana 

and Vaghefi (2005), the VARMA filter and MCusum control chart are performed 

separately. The proposed MCuscore procedure is actually equivalent to the procedure of 

combining the inverse VARMA filter with residual-based MCusum charts.  

The MCuscore statistics for detecting a mean shift signal in a VARMA(1,1) noise 

are similar to those in Equation (4.21). The difference, however, is that the fault signature 

term is no longer ( )t tB= −δ I Φ Γ γ ; it takes a more complicated form. For example, for 

the VARMA(1,1) model, 
( )

( )
t

B

B

−
=

−

I Φ
δ Γ γ

I Θ
. Furthermore, the derived MCuscore 

procedure is not confined to bivariate process. It can be used for monitoring processes 

with p > 2 variables, and correspondingly, the vectors tx , tµ , γ  and matrixes tΓ , Φ , Θ  

are all p dimension. 
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4.5 Performance Evaluation and Robustness Analysis 

 In this section, we use Monte Carlo simulation to evaluate the performance of the 

MCuscore chart in detecting the mean shift vector in the VAR(1) and the VARMA(1,1) 

processes. By varying some of the elements in the ΦΦΦΦ and ΘΘΘΘ matrixes, we also analyze the 

robustness of the MCuscore control chart. 

First, we investigate the out-of-control ARL of the MCuscore chart in monitoring 

the bivariate VAR(1) models. The white noise term in each inverse VAR(1) filter is 

assumed to follow a bivariate normal distribution with constant 
0

0

 
=  
 

µ  and 

1 0.5

0.5 1

 
=  
 

Σ . We compare the performance of the MCuscore and the residual-based 

MCusum control chart in monitoring the mean shift faults. The ΦΦΦΦ matrixes are chosen 

from Table 4.1 and Table 4.2 and satisfy the stationary condition of a VAR(1) time 

series.  

We first simulate 5,000 runs with 1,000 observations in each run to determine the 

control limits of the MCuscore chart and residual-based MCusum chart based on ARL0 = 

200, see Table 4.4. Note that, the control limits are constant for each residual-based 

MCusum chart at equal ARL0 because the mean shift vector in calculating the sequential 

MCusum statistics is constant; however, for the MCuscore chart, the control limit varies 

for different ΦΦΦΦ matrixes because the mean vectors and the reference values in the 

sequential MCuscore statistics are not constant. Therefore, we must re-identify the 

control limits for MCuscore when the ΦΦΦΦ matrix has been changed.  
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Two mean shift vectors (1.0, 1.0)′ and (1.0, 0.5)′ are examined for each VAR(1) 

model respectively. It can be seen in Table 4.4 that the MCuscore chart outperforms the 

residual-based MCusum chart in terms of the out-of-control ARLs. The same conclusion 

can also be drawn from the simulation results in Table 4.5 which compares the two 

control charts in detecting the mean shift vector (1.0, 1.0)′ in an VARMA(1,1) process 

whose parameters are from Table 4.3. 

For model-based control charts like the residual-based MCusum and MCuscore 

charts, the accuracy of the estimated parameters has an effect on performance. Table 4.4 

and Table 4.5 briefly illustrate how different model parameters affect the performance of 

the control charts. 

It can be observed that in both Table 4.4 and Table 4.5 the perturbation in the 

parameter of the Φ Φ Φ Φ or ΘΘΘΘ matrix can usually cause either a smaller out-of-control ARL at 

the cost of a higher false alarm rate, or a larger out-of-control ARL with the benefit of a 

smaller false alarm rate. For an example of MCuscore chart with the ΦΦΦΦ matrix in Table 

4.4, if the φ1 value perturbs from -0.1 to 0.1 with the other three φ’s values fixed, we can 

obtain an out-of-control ARL of 9.18 with the control limit 4.17. This ARL is higher than 

the expected value of 8.44, but has a smaller false alarm rate than 1/200 because the 

actual control limit is smaller than the simulated limit of 5.01.  

From the perspective of economical design of control charts, such as Duncan 

(1956) and Woodall (1986), the costs of false alarms and finding an assignable cause are 

among the major components of the cost model. Such cost model can still be used for the 

design of new control charts, such as the Cuscore chart, because the purpose of the 

control chart remains essentially unchanged since it is originally proposed. In practice, 
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different weights can be chosen accordingly to balance the cost components of the ARL 

and the false alarms rate in order to minimize the total cost for a controlled process. 

Therefore, two approaches can be adopted in determining the control limits for designing 

a Cuscore control chart for monitoring practical processes. If the cost of false alarms is 

relatively high and enough prior knowledge of the process can be obtained, the control 

limits of the Cuscore control chart can be designed to generate a large ARL values or a 

small false alarm rate. If the cost of the false alarm is relatively low, a set of constant and 

relatively tight control limits can be used which may give an economically robust control 

chart at the costs of high false alarm rates. 
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Table 4.4:  ARL Properties of the MCuscore and the Residual-based MCusum Chart for 

VAR(1) Models with Mean Shift γγγγ 

γγγγ = (1.0, 1.0)′ γγγγ = (1.0, 0.5)′ 

1 12

21 2

φ φ

φ φ

 
=  
 

Φ  
MCuscore  

Res-

MCusum 

(H = 3.70) 

MCuscore  

Res-

MCusum 

(H = 4.17) 

 φ1 φ12 φ21 φ2 H ARL1 ARL1 H ARL1 ARL1 

0.7 0.1 0.2 0.5 9.25 46.31 67.94 9.92 55.25 75.12 

0.4 0.1 0.2 0.5 6.96 23.95 34.56 6.20 18.57 23.28 

0.1 0.1 0.2 0.5 5.01 12.16 18.73 4.45 9.44 11.11 

-0.1 0.1 0.2 0.5 4.17 8.44 14.06 3.71 6.97 8.09 

-0.4 0.1 0.2 0.5 3.3 5.53 9.81 2.94 4.81 5.93 

(a) 

-0.7 0.1 0.2 0.5 2.65 4.10 7.46 2.43 3.66 4.80 

-0.7 -1.2 0.2 0.5 1.30 2.03 4.05 1.69 2.47 3.57 

-0.7 -0.8 0.2 0.5 1.59 2.36 4.67 1.90 2.77 3.83 

-0.7 -0.4 0.2 0.5 1.95 2.82 5.49 2.09 3.07 4.19 

-0.7 0 0.2 0.5 2.43 3.70 7.06 2.36 3.52 4.67 

-0.7 0.4 0.2 0.5 3.22 5.61 9.89 2.64 4.15 5.25 

-0.7 0.8 0.2 0.5 2.62 4.04 15.88 3.43 6.06 6.25 

-0.7 1.2 0.2 0.5 6.82 23.52 33.67 3.57 6.46 7.58 

(b) 

-0.7 1.6 0.2 0.5 9.13 45.24 82.20 4.25 8.84 10.26 
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4.6 Application Example 

 To illustrate the MCuscore control chart procedure, we apply it to monitor an RIE 

process in the semiconductor manufacturing industry. Figure 4.8 illustrates a diagram of a 

typical RIE setup. An RIE consists of two electrodes that create an electric field in 

accelerating ions toward the surface of the samples. The plasma contains both positively 

and negatively charged ions in equal quantities. These ions are generated from the gas 

pumped into the chamber. In this example, we suppose that O2 and CF4 gasses are used 

for etches. When CF4 has been pumped into the chamber, a plasma is made with fluorine 

 

Table 4.5: ARL Properties of the MCuscore and the Residual-based MCusum Chart for 

Detecting Mean Shift (1, 1)′ in VARMA(1,1) Models 

0.7 0.1

0.2 0.5

 
=  
 

Φ  
0.4 0.1

0.2 0.5

− 
=  
 

Φ  
0.7 1.6

0.2 0.5

− 
=  
 

Φ  

1 12

21 2

θ θ

θ θ

 
=  
 

Θ  

MCuscore 

Res-

MCusum 

(H = 3.7) 

MCuscore 

Res- 

MCusum 

(H = 3.7) 

MCuscore 

Res- 

MCusum 

(H = 3.7) 

θ1 θ12 θ21 θ2 H ARL1 ARL1 H ARL1 ARL1 H ARL1 ARL1 

0.3 0.4 0.6 0.3 3.22 5.68 6.05 0.44 1.55 5.08 1.25 2.33 3.84 

0.3 0.2 0.6 0.3 4.65 9.78 10.21 1.11 2.06 5.16 2.03 3.34 4.23 

0.3 0.0 0.6 0.3 5.74 14.85 21.71 1.67 2.70 5.18 2.74 4.44 4.94 

0.3 -0.2 0.6 0.3 6.49 19.38 42.81 2.14 3.26 5.16 3.46 6.03 6.27 

0.3 -0.4 0.6 0.3 6.98 22.55 70.24 2.62 4.06 5.10 4.12 8.05 8.42 

0.3 -0.6 0.6 0.3 7.24 23.93 92.39 3.07 5.02 5.11 4.64 10.13 11.96 
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(F
-
) ions. Then, the fluorine ions are accelerated in the electric field and collide into the 

surface of the sample to cause the etching. 

 

Figure 4.8:  Diagram of a typical RIE setup. 
 

The RIE process is complicated because many variables, such as the generator 

power, chamber pressure, chamber temperature, and so on, are involved in the process 

and may be correlated, Furthermore shifts in certain variables may cause the process to 

go out of control in certain runs. For the sake of illustration, assume that in a process 

setup, the generator power (PG) and the fluorine line intensity (IF) are identified as two 

most significant process variables that affect the process quality, and they follow a 

bivariate normal distribution with mean vector and variance-covariance matrix 

850

703.7

PG

IF

W

nm

µ

µ

   
= =   

  
µ  and 

2

1 12

2

21 1

σ σ

σ σ

 
=  
 
 

Σ  
2

2

25 40

40 100

W W nm

W nm nm

 
=  
 

g

g
. Due to the inertia 

in the two variables, the collected samples are sequentially correlated and cross-

chamber 

electrodes 

electrodes 

samples 

electric field 

plasma 
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correlated with correlation coefficient matrix 
1 12

21 2

0.4 0.1

0.2 0.5

φ φ

φ φ

−   
= =   

  
Φ . Therefore, a 

VAR(1) model can be used to describe the process. 

Assume at time t0 = 10, a long-term steady mean shift signal with size 

2.5

5.0

PG

IF

W

nm

γ

γ

   
= =   

  
γ  is introduced in the process, and 30 observations are collected 

(Figure 4.9(a)). Therefore, the pattern matrix is 

0 0
  10

0 0

1 0
  10

0 1

t

t

t

 
< 

 
= 

  ≥  

Γ  and the shift signal 

tΓ γ =
2.5

5.0

W

nm

 
 
 

 for t ≥ 10. Assume the ΣΣΣΣ matrix is constant during the process, and to 

facilitate analysis, the means of the two variables are transformed to zeros while keeping 

the ΣΣΣΣ matrix unchanged. We apply the MCuscore control chart to monitor the process. To 

determine the control limit of the MCuscore chart, we simulated 5000 runs of VAR(1) 

processes and each has 1000 observations, and found the control limits ±5.16 give an in-

control ARL 200. Using these control limits in the MCuscore chart, the mean shift signal 

is detected in 6 observations (Figure 4.9(c)).  

In comparison, we also apply the residual-based MCusum control chart to monitor 

the process. The control limits of ±3.35 are determined by simulation to give an in-

control ARL 200 in the MCusum chart. The mean shift signal is detected in 15 

observations (Figure 4.9(d)). 
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4.7 Diagnosis of Out-of-Control Signals 

 For multivariate process control, the diagnosis of out-of-control signals is crucial 

because continuously maintaining the multivariate process at its optimal condition relies 

on the early and accurate isolation of the fault variables. There has been much previous 

discussion in the literature on this issue with regard to traditional multivariate control 

 
 (a) (b) 

  

 (c) (d) 

Figure 4.9:  (a) Time series plot of process variables PG and IF; (b) Fault signature of PG

and IF; (c) The MCuscore chart for PG and IF; (c) The residual-based MCusum chart for

PG and IF. 

UCL = 5.16 

UCL = -5.16 

UCL = -3.35 

UCL = 3.35 
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charts, such as the T
2
 chart, MEWMA chart, and MCusum chart (see Montgomery, 2005; 

Yoon and MacGregor, 2001; Mason et al., 1997; Sullivan and Woodall, 1996; and 

Venkatasubramanian et al., 2003). For the T
2
-based multivariate control charts, including 

the MCuscore chart, fault diagnosis is essentially the problem of decomposing the T
2
 

statistics into components and evaluating their individual contributions.  

Theoretically, the diagnosis step is not necessary when using the MCusocre chart 

to detect mean shift signals because one of the fundamental assumptions for the 

MCuscore chart is that the size of the mean shift vector is known or has been estimated 

based on the historical data. However, for some multivariate processes with a relatively 

high false alarm rate, the alarms should be evaluated to determine whether or not it is due 

to a real signal in practice. In this case, the MCuscore chart can serve to check the fired 

alarms by using the detected signal as prior knowledge and comparing the new detection 

results with the previously detected ones, or simply comparing the detection results with 

the earliest system knowledge. As such, fault diagnosis may be useful for verifying the 

specific responsible variables that cause the signals. 

For a sequentially independent process monitored by the MCuscore chart, the 

approach suggested by Runger, Alt, and Montgomery (1996) can be used for fault 

diagnosis. This approach is to decompose the T
2
 statistics by using an indicator to denote 

the relative contribution of the ith variable to the overall statistic, and to use 2

,1αχ  as the 

approximate control limit with α the significance level. For example, 2

,1 6.63αχ =  for α = 

0.01. For the MCuscore chart, the indicator can be expressed as 
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where ∆S is the current score of the MCuscore statistic, and ( )iS∆  is the score for all 

process variables except the ith one. Therefore, the ith variable whose id  value is out-of-

control limit is suspected to be the fault variable. However, this approach is not 

recommended for autocorrelated processes in that the covariance matrix may shift 

significantly due to process autocorrelation, and thus cannot be explained accurately by 

the id  statistic for individual samples. 

4.8 Conclusions 

 The Cuscore control chart is a powerful statistical process monitoring tool when 

there is prior knowledge about a process shift. It is also effective for monitoring 

autocorrelated processes when the process autocorrelation has been estimated from 

historical data. In this chapter, the multivariate Cuscore approach based on the likelihood 

ratio test and fault signature analysis is introduced for monitoring the mean vector shift in 

an autocorrelated multivariable process. A bivariate time series model is used to establish 

the theory and application of the MCuscore chart which can also be used to monitor 

processes with higher dimensions. Simulation is used to show that the MCuscore chart 

outperforms the traditional residual-based MCusum control chart in detecting a mean 

vector shift signal. An example of monitoring the mean shift of two process variables of 

an RIE process illustrates the use of the MCuscore chart and demonstrates that the 

MCuscore chart has better performance than the residual-based MCusum chart in monitor 

( )i id S S= ∆ − ∆ , (4.23) 
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autocorrelated multivariate process when certain information on the process and the 

signal is known a priori. 

Appendix 4A: Derivation of the Multivariate Cuscore Statistics 

Consider the bivariate VAR(1) time series model with the fault signature of mean 

vector shift signal:  

1( )t t tB
−= − +X I Φ ε Γ γ , 

or, 

where  γ  = the size of mean vector shift, 
1

2

γ

γ

 
 
 

, 
1 12

21 2

1 0

0 1

t t

t

t t

f f

f f

   
= =   

  
Γ , 

1 12

21 2

φ φ

φ φ

 
=  
 

Φ , and 
1 0

0 1

 
=  
 

I . 

The fault signature of mean vector shift signal can be written in the following 

scalar form 

( ) ( )t t tB B− = + −I Φ X ε I Φ Γ γ , (4A.1) 

0

1

0

2

1 1 2 12

0

2 2 1 21

0
    

0

( )     

(1 )
    

(1 )

t

t t

B t t

t t

γ

γ

γ φ γ φ

γ φ γ φ

  
<  

 
  

− = =  
 

 − − 
 > 

− − 

I Φ Γ γ . (4A.2) 
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The probability density function (PDF) of a multivariate normal distribution is 

where 
1

2

µ

µ

 
=  
 

µ  and 

2

1 12

2

21 1

σ σ

σ σ

 
=  
 
 

Σ  for bivariate normal distribution. 

To derive the bivariate Cuscore statistic, we start with the sequential probability 

ratio test (SPRT) for H0: 0t =µ 0  against H1: 1 ( )t tB= −µ I Φ Γ γ   

Because the term 1

1 1( ) ( )t t t t

−′− −x µ Σ x µ  is a function of tΓ γ , we rewrite the above 

equation as 

[ ]
1

1 1

0 0

1

1
( ) ( )

2

1
( ( ) ) ( ( ) ) ( ) ( ) .

2

k

k t

t

k

t t t t t t t t

t

LR f f

B B

=

− −

=

= − −

′ ′ = − − − − − − − − 

∑

∑

Γ γ 0

x I Φ Γ γ Σ x I Φ Γ γ x µ Σ x µ

 (4A.5) 

For the bivariate case, rewriting ( )tf Γ γ  as a scalar expression with two variables 

1γ  and 
2γ , and implementing a Taylor expansion of ( )tf Γ γ  with respect to  =γ 0  gives 

1

/ 2 1/ 2

1 1
( ) exp ( ) ( )

(2 ) | | 2
n

f
π

− 
′= − − −  

x x x µ Σ x µ
Σ

, (4A.3) 

1

1 2

1 1

1 1 0 0

1
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( )

1
( ) ( ) ( ) ( )  .
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k
t

k

t t

k

t t t t t t t t

t

f
LR

f=

− −

=

=

′ ′ = − − − − − − 

∏

∑

x

x

x µ Σ x µ x µ Σ x µ

 (4A.4) 
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1 2 1 2 1 2

1

1 2

2 2 2
2 2

1 0 2 0 1 0 2 0 1 2 0, 02 2

1 2 1 21 2

( ) ( ( ) ) ( ( ) )

( , )

1 1
( ) .

2 2

t t t t tf B B

f

f f f f f
f γ γ γ γ γ γ

γ γ

γ γ γ γ γ γ
γ γ γ γγ γ

−

= = = = = =

′= − − − −

=

∂ ∂ ∂ ∂ ∂
= + + + + + +

∂ ∂ ∂ ∂∂ ∂

Γ γ x I Φ Γ γ Σ x I Φ Γ γ

0 L

 

(4A.6) 

For an i.i.d. multivariate Gaussian process, 
0 0

0 0

 
=  
 

Φ , thus  
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∂
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1 2

2
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2
f

γ γ σ
γ γ

= =

∂
= −

∂ ∂
. 

Substituting the above equations into Equation (4A.6) and rearranging terms gives 

Equation (4A.7) can be rewritten in the MCuscore form: 

which can be rewritten in MCusum form (Healy, 1987) 

1 1

1

1

2

k

k n

n

LR x
− −

=

 
′ ′= −  

∑ γ Σ γ Σ γ . (4A.7) 
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where 1
D

−′= γ Σ γ  . 

For an autocorrelated bivariate process fitted by a VAR(1) model, 

1 12

21 2

φ φ

φ φ

 
=  
 

Φ , a procedure similar to deriving the MCuscore statistics for i.i.d. 

processes can be used to obtain the transformed log likelihood ratio statistics in the form 

It can still be represented in the generic form of MCusum statistics as 

or the form in Equation (4A.9). 
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Appendix 4B: SAS Simulation Code for Determining the ARL0 for the RIE 

Application Example 

proc iml; 

/* Using simulation to find the arl0 for the MCuscore chart.*/ 

 

theta = {0 0,0 0}; 

phi = {-0.4 0.1, 0.2 0.5}; 

mu0 = {0, 0}; 

mud = {2.5, 5}; 

sig = {25 40, 40 100}; 

siginv = inv(sig); 

  

N = 1000; 

r = 5000; 

mu = j(2,N,0); 

yt = j(2,N,0); 

S1 = j(N,1,0); 

S2 = j(N,1,0); 

flag = 0; 

arl0 = 0; 

fault = j(2,N,0); 

D = j(N,1,0); 

 

h = {5.1 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19}; 

len = 10; 

arl0 = j(len,1,0); 

 

do i = 2 to N; 

 mu[,i] = mud; 

end; 

 

do k = 1 to len; 

 do i = 2 to N; 

  fault[,i] = mu[,i] - phi*mu[,i-1]+ theta*fault[,i-1]; 

 end; 

 

 do j = 1 to r; 

  call vnormal(xt, mu0, sig, N); 

  yt = xt`; 

  do i = 2 to N; 

   D[i] = sqrt(fault[,i]`*siginv*fault[,i]); 

   tmp = fault[,i]`*siginv*yt[,i]/D[i]; 

 

   if flag = 0 then do; 

    S1[i] = max(S1[i-1]+tmp-D[i]/2, 0); 

    S2[i] = min(S2[i-1]+tmp+D[i]/2, 0); 

 

    if S1[i] > h[k] | S2[i] < -h[k] then do; 

     arl0[k] = arl0[k] + i; 

     flag = 1; 

    end; 

    if i = N then arl0[k] = arl0[k] + N; 
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   end; 

       

  end; 

  flag = 0; 

 end; 

end; 

 

arl0 = arl0/r-1; 

print arl0; 

quit; 

Appendix 4C: SAS Simulation Code for Determining the ARL1 for the RIE 

Application Example 

proc iml; 

/* Using simulation to find the arl1 for the residual-based MCusum 

chart and MCuscore chart. */ 

 

theta = {0 0,0 0}; 

phi = {-0.4 0.1, 0.2 0.5}; 

mu0 = {0, 0}; 

mud = {2.5, 5}; 

sig = {25 40, 40 100}; 

siginv = inv(sig); 

 

N = 30; 

r = 1; 

mu = j(2,N,0); 

yt = j(2,N,0); 

S1 = j(N,1,0); 

S2 = j(N,1,0); 

MS1 = j(N,1,0); 

MS2 = j(N,1,0); 

D= j(N,1,0); 

 

arl0 = 0; 

fault = j(2,N,0); 

 

hcusum = 3.35; 

hcuscore = 5.16; 

 

do i = 11 to N; 

 mu[,i] = mud; 

end; 

 

do i = 2 to N; 

 fault[,i] = mu[,i] - phi*mu[,i-1]+ theta*fault[,i-1]; 

end; 
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ff = fault`; 

print ff; 

 

do j = 1 to r; 

 call vnormal(xt, mu0, sig, N); 

 yt = xt`+fault; 

 

/*MCusum*/ 

 DD = sqrt(mud`*siginv*mud); 

 do i = 2 to N; 

  tmp = mud`*siginv*yt[,i]/DD; 

 

  MS1[i] = max(MS1[i-1]+tmp-DD/2, 0); 

  MS2[i] = min(MS2[i-1]+tmp+DD/2, 0); 

 

  if MS1[i] > hcusum | MS2[i] < -hcusum then do; 

   arl0_cusum = i-20;  

  end; 

 end; 

      

/*MCuscore*/ 

 do i = 2 to N; 

  D[i] = sqrt(fault[,i]`*siginv*fault[,i]); 

  tmp = fault[,i]`*siginv*yt[,i]/D[i]; 

 

   S1[i] = max(S1[i-1]+tmp-D[i]/2, 0); 

   S2[i] = min(S2[i-1]+tmp+D[i]/2, 0); 

 

   if S1[i] > hcuscore | S2[i] < -hcuscore then do; 

    arl0_cuscore =  i-20; 

   end; 

 end; 

end; 

arl0 = arl0/r-1; 

 

t = 1:N; 

t = t`; 

yt1 = yt[1,]`; 

yt2 = yt[2,]`; 

mat = yt1||yt2||S1||S2||MS1||MS2||t; 

create newset1 var{yt1,yt2,S1,S2,MS1,MS2,t}; 

append from mat; 

close newset1; 

 

print DD; 

print mat; 

quit; 

 

proc gplot data=newset1; 

 symbol1 width=1 i=join height=1; 

 plot yt1*t = 1 yt2*t =2 / overlay; 

 plot S1*t = 3 S2*t = 4 / overlay vref=5.16 vref=-5.16 vref=0; 

 plot MS1*t = 3 MS2*t = 4 / overlay vref=3.35 vref=-3.35 vref=0; 

run;  
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Chapter 5 

 

A High-Dimensional Control Chart for Profile Monitoring 

 

 

Profile monitoring is an important and rapidly emerging area of statistical process 

control (SPC). In many industries, the quality of processes or products can be 

characterized by a profile that describes a relationship or a function between a response 

variable and one or more independent variables, and each profile may consist of a large 

number of paired observations of such response and independent variables. A change in 

the profile relationship can indicate a change in the quality characteristic of the process or 

product and, therefore, needs to be monitored for control purposes. The techniques used 

in monitoring such quality characteristics are categorized as profile monitoring. We 

propose a high-dimensional (HD) control chart approach for profile monitoring that is 

based on the adaptive Neyman test statistic for the coefficients of discrete Fourier 

transform of profiles. We investigate both linear and nonlinear profiles, and we study the 

robustness of the HD control chart for monitoring profiles associated with stationary 

noise. The application of the control chart is illustrated on two simulated woodboard 

vertical density profile data sets. 

5.1 Introduction 

One of the major objectives of statistical process control (SPC) charts is to 

monitor the quality characteristics of a process over time or space in order to detect out-
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of-control signals. For some processes, a single variable, with its value in the form of 

scalar, is used to represent the quality characteristics of a process. For some others, 

multiple variables are used to adequately characterize the quality of a process, where each 

data sample is represented in the form of the vector, and the process variance is 

represented by the covariance matrix. Consequently, departures from the in-control 

values for any element or element group in the sample vector and the sample covariance 

matrix suggest the presence of signals. However, due to the rapid development of 

advanced data acquisition techniques in some systems or processes, samples can be 

collected in the forms of profiles or curves over time or space and therefore, the quality 

characteristics consist of observations or measurements taken from the same order of 

locations or time points for each sample.  

We assume that each profile has the same number of the observations/design 

points and they are equally distributed on the interval of a profile. We further assume N 

random samples are collected in a historical data set and there are n observations in each 

sample. We refer to n as the dimensionality of a profile. For the j
th 

sample collected over 

time or space, there are a sequence of paired observations (x1, yjk), j = 1,2,…, N and k = 

1,2,…, n. Suppose a model can be found to relate the independent variable x to the 

response variable y for each sample, and it is represented by 

where ( , )k jm X β  is a mean function, or the signal component of a profile, jβ  is the 

parameter vector, and jkε  is the noise component.  

( , )jk k j jkY m X ε= +β ,  j = 1,2,…, N and k = 1,2,…, n, (5.1)
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Most of the published research on profile monitoring stemmed from the study of 

linear profiles associated with white noise component; see Kang and Albin (2000), Kim 

et al. (2003), and Mahmoud and Woodall (2004). A linear profile can be modeled by 

Some profiles can take complicated structure, such as the linear regression model 

where Yj is a n by 1 vector of responses for the j
th 

profile, Xj is a n by p matrix of the 

independent or regressor variables, jβ  is the p by 1 parameter vector, and 

~ ( , )j MVNε 0 I  is the n by 1 vector of errors or noises where I is the identity matrix. 

Some profiles have more complicated nonlinear structures, in which some sophisticated 

parametric models, such as the dose-response model in William et al. (2004), William et 

al. (2006) and Jensen and Birch (2006), or nonparametric regression model, such as 

wavelet analysis and additive models, see Jin and Shi (2001), Jeong et al. (2004) and 

Walker and Wright (2003), are used to represent the profile characteristics.  

In the profile models expressed by Equations (5.1-5.3), the noise component 

{ }1 2, ,...,j j jnε ε ε  for profile j is not i.i.d. and white noise, but a stationary noise modeled 

by a autoregressive (AR) time series, which can be equivalently stated as an infinite order 

moving-average (MA(∞)) time series model (Del Castillo, 2002). For the k
th 

observation 

in the j
th 

profile, the noise component can be represented by a MA(k-1) model 

0 1jk j j k jkY Xβ β ε= + + ,  j = 1,2,…, N and k = 1,2,…, n, (5.2) 

j j j= +Y Xβ ε ,  j = 1,2,…, N and k = 1,2,…, n, (5.3) 
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where { ka , k = 1, 2, …, n} is i.i.d. with distribution N(0,1).  

In general, the techniques used in statistically monitoring the process or product 

profiles are known as profile monitoring (Woodall et al., 2004). Effective SPC 

approaches for profile monitoring have many significant and practical uses in 

manufacturing. Changes in profile structure introduced by either local or global abnormal 

observations may suggest an out-of-control or significant profile. Figure 5.1 illustrates 

two practical examples of profiles. Figure 5.1(a) shows 10 dose-response curves or 

profiles from a pharmaceutical drug discovery process (William et al., 2004), and Figure 

5.1(b) illustrates 24 vertical density profiles of particle boards manufactured in the forest 

products industry (Walker and Wright, 2002). Profile monitoring provides a useful and 

convenient approach to solve the important practical problem of statistically identifying 

the significant profile(s) from each group. 

   

Figure 5.1:  (a) 10 dose-response profiles of a drug; (b) 24 vertical density profiles of 

particle boards. 
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Traditional Hotelling’s T
2
-based multivariate SPC charts, such as the multivariate 

Cusum (MCusum) chart or the multivariate EWMA (MEWMA) chart, put equal weight 

on each observation and treat the profile as a long measurement vector (the number of 

observations in a profile can vary from five to hundreds). This approach often cannot 

effectively detect significantly different profile samples caused by a structure change or a 

relatively small portion of observation changes (Fan and Lin, 1998). 

In this chapter, we propose a profile monitoring approach that is based on the 

high-dimensional hypothesis testing problem. The adaptive Neyman (AN) test for 

coefficients and the discrete Fourier transform (DFT) of the profiles are used to develop 

the model. Our approach can be used to monitor a broad category of profiles, either linear 

or nonlinear, by using the historical in-control profiles to estimate the profile mean 

function and variance function in Phase I for monitoring the profiles in Phase II. For 

some complicated profiles whose model structures are not known, our approach provides 

a convenient means to detect significantly different profile samples. We also investigate 

the effect of a stationary noise component on the performance of our profile monitoring 

approach. Because the dimensionality of the profiles investigated in this research is 

generally high, from five to hundreds, we refer to our control chart approach for profile 

monitoring as the high-dimensional (HD) control chart. 

The remainder of this chapter is organized as follows. We review the background 

of profile monitoring in Section 5.2. In Section 5.3 we introduce the adaptive Neyman 

hypothesis test and its relationship to the high-dimensional control chart. The discrete 

Fourier transform and its effect on signal compression and decorrelation are illustrated in 

Section 5.4. We illustrate the HD control chart procedure for profile monitoring in 
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Section 5.5. The performance evaluation results of the HD control chart are presented in 

Section 5.6 by simulation, and its application is illustrated using simulated woodboard 

vertical density profiles. In Section 5.7, we conclude the chapter. 

5.2 Background on Profile Monitoring 

From an SPC viewpoint, there are three key papers on profile monitoring. Kang 

and Albin (2000) used two approaches for monitoring linear profiles. The first was to 

apply a bivariate 2T  chart to monitor jointly distributed slope and intercept variables, and 

the second was to use a EWMA chart to monitor the residual averages and an R chart to 

monitor the variance of the residuals along with the regression line. Kang and Albin 

(2000) recommended using their approaches to monitor both Phase I and Phase II 

profiles. 

Kim et al. (2003) proposed a method for monitoring a linear profile in Phase II. 

They transformed the estimators of the intercept and the slope variables to be 

independent by using coded variables, and then recommended the use of three Shewhart 

control charts in Phase II respectively to monitor the intercept, the slope and the variance 

of the deviations about the regression line. They showed that their method had better 

performance than the Kang and Albin (2000) approach in terms of the average run length 

(ARL). 

With the idea of comparing k regression lines collected in Phase I, Mahmoud and 

Woodall (2004) introduced k-1 indicator variables and constructed a multiple regression 

model to test whether the k
th 

regression line is statistically significant based on the F-test. 



 

 107 

They also proposed the use of two Shewhart charts to monitor the coded intercept and 

slope variables by Kim et al. (2003) for diagnosing the fault variables in a profile. They 

illustrated their approach by using real data from a calibration process. 

One of the key issues with the high-dimensional data monitoring is dimension 

reduction or feature extraction. Principal component analysis (PCA) (Jackson, 1991) and 

independent component analysis (ICA) (Hyvarinen et al. 2001) are two popular 

approaches for dimension reduction. A recent paper by Ding et al. (2006) presented a 

strategy by using ICA for data-reduction and data-separation in detecting single and 

multiple shifts in nonlinear profiles. They focused on Phase I analysis. However,  

applying their method to highly nonlinear profiles, such as those with high frequencies 

and sharp corners, has not  been investigated. 

In terms of a statistical organization, profile monitoring is in the scope of 

functional data analysis (Ramsay and Silverman, 2005; Li and Chow, 2005). It is from 

this standpoint that many researchers have relied on nonparametric regression or data-

driven techniques, such as wavelet thresholding, spline, and local polynomial, etc. for 

monitoring nonlinear or complicated profiles. Walker and Wright (2002) used an additive 

model to assess the sources of variation active on vertical density profile data. Their 

models contained a B-spline to smooth the profile data, and a parametric portion to 

incorporate other sources of variation. 

Jin and Shi (1999, 2001) proposed using wavelet modeling to fit complicated 

profiles that have sharp corners that contain the most useful information. They relied on 

engineering knowledge as a prior or “oracle” to determine the local segment for fault 

diagnosis purposes. Fan (1996) introduced two hypothesis testing techniques for high-
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dimensional data, wavelet thresholding and adaptive Neyman’s (AN) truncation of 

Fourier coefficients. These two approaches provide the statistical basis for setting up SPC 

charts for monitoring high-dimensional data. Jeong et al. (2004) applied wavelet 

thresholding techniques to monitor complicated profiles by automatically selecting the 

significant variables for tests. His research was based on one of the approaches to test for 

significance proposed by Fan (1996). Further, Fan and Lin (1998) illustrated how the two 

procedures can be applied to test the differences between two sets of curves with i.i.d. 

noise or even stationary noise fitted by an ARMA model by capitalizing on the fact that 

the impact of the stationary errors on the null distribution is asymptotically negligible. 

Spitzner and Woodall (2003) compared classical multivariate testing approaches 

with the AN test of Fan and Lin (1998). They noted that high-dimensional profile 

monitoring departs from classical multivariate testing problem in at least two ways. First, 

the dimensionality of digitized functional measurements is completely determined by the 

resolution of the measurement instruments; therefore, the dimensionality of the data can 

be larger than the available number of observations, which is a violation of the 

assumption of traditional multivariate testing. Secondly, different weights are given to 

different dimensions in order to achieve high statistical power, which is different from 

multivariate testing where equal consideration is placed on every dimension. They 

applied the AN method to the Fourier coefficients of the vertical density profile dataset 

and the thickness profile data for silicone nitride film in Gardner et al. (1997).  

Woodall et al. (2004) gave a comprehensive review of using control chart to 

monitor process and product quality profiles. Many research issues on profile monitoring 

were summarized and new research topics were recommended. 
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5.3 The Adaptive Neyman Test for Control Charts 

Profile monitoring follows the basic approach of functional data analysis that the 

collection of observed data for all the process variables are treated as a single profile 

sample, rather than as merely a sequence of individual observations (Ramsay and 

Silverman, 2005). For example, in the j
th 

dose-response sample in Figure 5.1(a), the 

sequential values of doses are taken as process variables Xk, k = 1,2,…, n, and the 

response values corresponding to each dose are the dependent variables Yjk. The relation 

function between Xk and Yjk is referred to as the profile. In this section, our purpose is to 

connect the high-dimensional hypothesis testing problem to profile monitoring and 

combine it with the AN test. 

5.3.1 Hypothesis Test and SPC Chart for Profile Monitoring 

Similar to the univariate and multivariate SPC chart, the SPC chart for profile 

monitoring can be viewed as a sequence of tests of hypothesis on the mean and/or 

variance where the goal is to reject the profile sample which is significantly different 

from the in-control or historical profiles. 

We assume that the process profiles are sequentially independent. Let fj(X) be the 

regression function for the j
th 

profile and ˆ ( )m X  be the estimated mean profile for 

population mean profile m(X) in Equation (5.1). To test whether the profile fitted by fj(X) 

is statistically different from the estimated mean profile, we set up the null and alternative 

hypotheses:  
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Note that we do not confine the forms or structures of the functions ˆ ( )m X  

and ( )jf X . Actually, they can take the form of both linear and nonlinear models, such as 

0 1( )f X Xβ β= +  and ( )( )0 1 2( ) / 1 expf X Xβ β β= +  for β0, β1 and β2. Although it is 

beyond the scope of this chapter, many parametric or nonparametric regression methods 

can be applied to fit the profiles (see Fan and Gijbels, 1996 and Ruppert, 2002). 

Let { }1 2
ˆˆ , ,..., nε ε ε=ε

) )
 be the resulting residual vector with the k

th 

element [ ]ˆ ˆ( ) ( ) ( )k k k k k kY m X f X m Xε ε= − = − +
)

. Therefore, if the null hypothesis is not 

rejected for the model in Equation (5.5), ˆ
kε  is nearly i.i.d. distributed and the residual 

vector ( )Idε ,~ˆ MVN , where 1 2( , , , ) 'nd d d=d K  is the mean vector with 

ˆ( ) ( )k k kd f X m X= −  (Fan and Huang, 2001). Consequently, the hypothesis test in 

Equation (5.5) becomes 

Therefore, the hypothesis test for the difference of two profiles is transformed to a 

problem of testing the difference between a mean vector and the zero vector. Our goal is 

to find a proper distribution model for d and establish the control limit for the SPC chart 

on profile monitoring, given the significance level or the probability of type I error, α. 

0

1

ˆ: ( ) ( )  

ˆ: ( ) ( )

j

j

H m X f X

H m X f X

=

≠
 (5.5) 

0

1

:   

:  .

H

H

=

≠

d 0

d 0
 (5.6) 
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5.3.2 The Adaptive Neyman Test and Control Limits 

Distribution-based approaches such as the Kolmogorov-Smirnov test (KS test) 

and Cramer-Von Mises test (CVM test) are traditionally used for the hypothesis test in 

Equation (5.6). However, they suffer low power in detecting densities containing high-

frequency components in high-dimensional space (Fan, 1996). To address this issue, Fan 

(1996) developed an approach to adaptively monitor the high-dimensional process based 

on the Neyman test (Neyman, 1937; Hart, 1997). 

The Neyman test focuses on only the first m-dimensional sub-problem if there is 

prior knowledge that most of nonzero elements lie on the first m dimensions. In such 

cases, the test has a 2χ  distribution with m degrees of freedom. As a significant 

extension of Neyman’s earlier work, Fan (1996) proposed the adaptive Neyman test 

statistic  

where ( )nMVN IZ ,0~  is an n-dimensional normal random vector.  The approach works 

by adaptively selecting the first p coefficients for testing the hypothesis. Fan et al. (2001) 

proved that the statistic is equivalent to rejecting 0H  when 

*2log log {2log log 0.5log log log 0.5log(4 )}AN ANT nT n n π= − + −  

is significantly large.  

We assume the observed profile data in Phase I and II are random samples from 

two models respectively given by 

( )* 2

1
1

1
max 1

2

p

AN k
p n

k

T Z
p≤ ≤

=

= −∑  (5.7) 
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and 

where Yijk indicates the k
th

 observation value in the j
th

 profile of Phase i (i = 1 and 2), 

fij(Xk) indicates the k
th

 fitted value in the j
th

 estimated profile of Phase i, the random 

variables ( )2

11 ,0~ kjk N ⋅σε  and ( )2

22 ,0~ kjk N ⋅σε  are assumed to be independent 

heteroscedastic errors for all j, N1 is the number of profile data in Phase I, and N2 is the 

number of profiles data considered in a particular subgroup in Phase II.  

Fan and Lin (1998) recommended standardizing profile differences by 

where  

and   

for i = 1 and 2. When N1 and N2 are reasonably large, the vector Z = (Z1,…, Zn)′ 

converges to a multivariate normal distribution    MVN (d,I)  under the null hypothesis in 

Equation (5.6). Therefore, the adaptive Neyman test statistic in Equation (5.7) can be 

1 1 1 1( ) ,   1, 2, , ,   1,2, , ,jk j k jkY f X k n j Nε= + = =K K  (5.8) 

2 2 2 2( ) ,   1,2, , ,   1, 2, , ,jk j k jkY f X k n j Nε= + = =K K  (5.9) 

2

2
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⋅⋅
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=
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( )∑
=

⋅
−

⋅ −−=
iN

j

kiijkiki YYN
1

12 )1(σ̂  (5.12) 

, 



 

 113 

applied to Z. The resulting values of TAN are used as the statistic on the high-dimensional 

control chart. 

To construct the control limits, we use the asymptotic distribution of ANT  under 

0H  illustrated by Fan and Lin (1998) 

The CDF and PDF of the distribution of ANT  are plotted in Figure 5.2.  

 

Figure 5.2:  CDF and PDF of the distribution of TAN. 

 

Table 5.1:  α = 0.005 Upper Quartile of the Distribution ANT  (Fan and Lin, 1998). 

n 5 10 20 30 40 50 60 70 80 90 100 120 140 160 180 200 ∞ 

CL 5.97 6.77 7.16 7.29 7.41 7.43 7.51 7.55 7.57 7.65 7.65 7.65 7.66 7.69 7.77 7.72 5.30 

 

Table 5.1 gives the finite sample distribution of ANT  for significance 

level α = 0.005 upper quartile provided by Fan and Lin (1998), which can be used as the 

control limits of the SPC chart for profile monitoring at certain dimensionality, or the 

number of observations in the profile. For example, if the dimensionality n = 100 and the 

{ } exp{ exp( )}ANP T x x≤ → − −
.
 (5.13) 
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in-control average run length (ARL) is 200 (which is equivalent to a significant level α = 

0.005) then the control limit is CL = 7.65. 

5.4 Discrete Fourier Transform for the Adaptive Neyman Test 

We have discussed that the adaptive Neyman test statistics are maximized by 

automatically selecting the residuals of the first m variables. Therefore, the order of the 

residuals is important for the adaptive Neyman test statistics. To order the residuals, we 

were motivated to use a Fourier transform. We found that it also transformed stationary 

autocorrelated noise (if any) in the residuals to approximately independent noise. 

5.4.1 Discrete Fourier Transform 

Fourier analysis provides an approach to transform a continuous function from 

time domain to its counterpart in the frequency domain for analysis. Since real processes 

are discrete given sufficiently small sampling intervals, the discrete Fourier transform 

(DFT) is more useful in analyzing practical processes. The DFT is a projection method 

that is used to analyze the frequencies contained in a vector of a discrete data set 

( )1 2, , , 'nY Y Y=Y K  by projecting it to the Fourier basis 

( )2 ( 1)
( ) , , , ,t t ti i i n

t e e e
ω ω ωω −=Ψ 1 K , 1, 2, ,t n= K , 



 

 115 

where 1i = −  is the imaginary unit, 2 ( 1) /t t nω π= −  are Fourier frequencies on the 

interval [0, 2 )π . 

The Fourier basis can be written in the design matrix form 

 

Then the DFT of Y , denoted by a vector of complex number *Y , can be written as 

 

where ( )tωΨ  is the complex conjugate of the Fourier basis ( )tωΨ . 

The Fourier basis functions can also be rewritten in a matrix of triangle functions 

by representing the basis tik
e

ω
 in the polar form, cos( ) sin( )ti

t te k i k
ω ω ω= + . Then, the 

Fourier basis functions in Equation (5.15) can be written in the triangle function basis. 

When n is even, 
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and when n is odd, 

Theoretically, the time series Yk, k = 1, 2, …, n, can be expressed as a sum of 

weighted Fourier basis in the frequency domain, e.g., if n is odd, it can be expressed by 

where the At’s and Bt’s are Fourier coefficients. See Brockwell and Davis (1991), Del 

Castillo (2002), and Boggess and Narcowich (2002) for more details on the use of DFT in 

time series analysis. 
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5.4.2 Using the Fourier Transform for Data Ordering Prior to the Application of 

the Adaptive Neyman Test 

The Fourier transform provides an effective approach for compressing useful 

signals into low frequencies. In general, when smoothing a data set by a function f(X), the 

smoother the function f(X) is, the more significant are the Fourier coefficients at low 

frequencies. Therefore, the adaptive Neyman test is more powerful on a discrete data set 

that is preprocessed by the Fourier transform because the transform yields a smoother 

function f(X) that has more significant coefficients at low frequencies. 

For example, the j
th 

profile consists of a discrete paired signal data set (X1, Y1), 

(X2, Y2), …, (X100, Y100) with Xk equally distributed on the interval [1, 100], and the data 

are smoothed by a log function 

where β0 and β1 represent the function parameters. Without loss of generality, we let β0 = 

1 and β1 = 1 to illustrate the Fourier transform. The Fourier coefficients can be obtained 

by projecting the discrete data set { }, 1, 2, ,kY k n= K  onto the basis function in Equation 

(5.14). A plot of the function and its DFT coefficients over { }, 1, 2, ,kY k n= K  are shown 

in Figure 5.3. It can be observed in Figure 5.3(b) that most of the Fourier coefficients 

decrease exponentially along with the increase of the frequency levels. In particular, the 

constant parameter a affects only the first Fourier coefficient, which is the summation of 

Yk. For the rest of the Fourier coefficients, β0 has no effect. This property will be used to 

monitor a constant mean shift among profiles in the later part of this chapter. 

0 1 log( ),jk kY Xβ β= +  for j = 1,2,…, N, and k = 1,2,…, n, (5.19) 
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 (a) (b) 

Figure 5.3:  (a) Plot of function y = 1+log(x);  (b) Plot of the DFT of function y = 

1+log(x). 

5.4.3 Using the Fourier Transform to Decorrelate Stationary Noise Prior to the 

Application of the Adaptive Neyman Test 

In some cases, the profile data may contain stationary noise or error, εt. We will 

illustrate in this section that the adaptive Neyman test is still applicable by preprocessing 

the profile data via the Fourier transform. The Fourier transform can be used to convert 

stationary errors into approximately independent Gaussian errors (Brockwell and Davis, 

1991 and Fan and Lin, 1998). 

For example, suppose the noise { }, 1, 2, ,k k nε = K  follows an AR(1) model with 

parameter φ, and it can be transformed into an MA(k-1) model represented in Equation 

(5.4). The DFT of the stationary noise vector ( )1 2, , , 'nε ε ε=ε K  on the Fourier basis 

(Equation (5.14)) can be represented in the vector form 
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where ( )tωΨ  is the complex conjugate of the Fourier basis ( )tωΨ , and 

{ 2 ( 1) /t t nω π= − , t = 1,2,…, n} are Fourier frequencies on the interval [0, 2 )π . 

Brockwell and Davis (1991) proved that the DFT of stationary noise ( )kxε  is 

approximately an uncorrelated sequence when n is relatively large 

where *( )ta ω  is the DFT of white noise ( )ka x  and it is still a white noise with mean zero 

and variance scaled by K, N(0, K) (Fan, 1996). Note that the 
( 1)( 1)

1

t

n
i kk

k

e
ωφ − −−

=

 
 
 
∑  term is 

equivalent to the power spectrum of the stationary noise. The power spectrum shows how 

the total variance of a stochastic process is distributed across all possible frequencies. It 

can be used to explain theoretically the pattern of Fourier coefficients for the stationary 

noise, see Brockwell and Davis (1991) and Del Castillo (2002). 

The DFT coefficient sequence of an AR(1) time series with φ = 0.5 and length 

200 is plotted in Figure 5.4. Figure 5.4(a) illustrates that larger DFT coefficients tend to 

distribute to lower frequencies. In addition, Figure 5.4(b) illustrates that the DFT 

coefficients are approximately normally distributed, and Figure 5.4(c) and (d) illustrate 

that the autocorrelation among the DFT coefficients is negligible. 

1 ( 1)( 1)*
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n n
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∑ ∑ε Ψ ε K  , 1, 2, ,t n= K . 

(5.20) 

( 1)* ( 1) *

1

( ) ( )t

n
i kk

t t

k

e a
ωε ω φ ω− −−

=

 
=  
 
∑ , t = 1,2,…, n, (5.21) 
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A more interesting observation can be made from the DFT coefficients of a 

negative uncorrelated AR(1) time series. For example, Figure 5.5 illustrates the DFT 

coefficients of a AR(1) time series with φ = -0.5 and length 200. It can be observed that 

larger coefficients tend to distribute to lower frequencies, although the autocorrelation in 

the observations of a profile is removed in the DFT coefficients which approximately 

follow a normal distribution. 

Depending on the amount of autocorrelation in a stationary process, the 

distribution of their DFT coefficients varies significantly. Figure 5.6 compares the plots 

of DFT for AR(1) models with different φ values. It can be observed that the distribution 

of large DFT coefficients moves from high frequencies to low ones as φ changes from 

large negative value to large positive value within the range of [-1, 1] in order for the 

time series to be stationary. 
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Figure 5.4:  (a) The DFT of AR(1) time series with φ = 0.5. (b) The normality plot of the 

DFT. (c) The autocorrelation function of the DFT. (d) The partial autocorrelation 

function of the DFT. 
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Figure 5.5:  (a) The DFT of AR(1) time series with φ = -0.5. (b) The normality plot of the 

DFT. (c) The autocorrelation function of the DFT. (d) The partial autocorrelation 

function of the DFT. 
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Figure 5.6:  The DFT of AR(1) time series with φ = -0.8, -0.5, -0.2, 0.2, 0.5 and 0.8. 

5.5 The HD Control Chart Procedure for Monitoring Profiles with Stationary 

Noise 

In this section, we present the control chart procedure for monitoring profiles 

based on the AN test and the discrete Fourier transform. This control chart approach can 

be used to monitor profiles with its signal component represented by either a linear or 

nonlinear function, and its noise component represented by either white noise or 
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stationary AR(1) noise. Ideally, the nonlinear function is fairly smooth so that its Fourier 

coefficients are more likely to be concentrated on the low frequency levels. 

5.5.1 The HD Control Chart Procedure Based on the DFT and AN Test for 

Monitoring Profiles with Stationary Noise 

We assume that a sufficiently large number of independent profiles can be 

collected in Phase I, where the process variance can be assumed to be only due to the 

common causes by the noise components of profiles.  

Applying the DFT to the noise component of each profile using Equation (5.16) 

or (5.17), we then estimate the mean and variance of the t
th

 DFT coefficients of profiles 

by 

and 

where *

jtε  is the t
th

 DFT coefficient of the residuals from j
th

 profile, t = 1,2,…, n, and j = 

1,2,…, N, and N is the number of profiles in Phase I. 

As is discussed in the previous section, when { }1 2, ,...,j j jnε ε ε  is a stationary noise 

series, its DFT coefficients are skewed to either low or high frequency levels depending 

( )* *

1

1/
N

t jt

j

Nε ε
=

= ∑g , (5.22)

( ) ( )*

212 * *

1

ˆ 1
t

N

jt t

j

N
ε

σ ε ε
−

=

= − −∑
g

g , (5.23) 
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on the autoregressive coefficients φ. Intuitively, the variance function of the DFT 

coefficients of profile noise is also skewed in the same direction. 

We summarize the control chart procedure based on the AN test and discrete 

Fourier transform (DFT) for profile monitoring in both Phase I and II.  

For a Phase I process: 

1. Take the average of the profile samples and obtain the estimated point-wise 

mean profile function{ }ˆ ( ),   1,2, ,km X k n= K . 

2. Obtain the residuals for each profile sample by subtracting ˆ ( )km X . 

3. Apply the DFT to the residuals of each profile sample. 

4. Obtain the standardized DFT coefficients of each profile residuals by using  

where *

tεg  and *

2ˆ
tε

σ
g

 are from Equation (5.22) and Equation (5.23) respectively. 

5. Obtain the AN statistics for the standardized DFT coefficients for each profile 

and plot them sequentially on the control chart. 

6. Based on the dimensionality n, or the number of observations in each profile, 

select proper control limit for the control chart from Table 5.1. Use 

interpolation to find the corresponding control limit for any n that does not 

appear in the table. For n larger than 200, use a control limit of 5.3. 

* *

*

2*ˆ /

jt t

jt

t

Z

Nε

ε ε

σ

−
=

g

g

, (5.24) 
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7. If any out-of-control AN statistics are detected, remove the corresponding 

profile samples from the Phase I data set, and apply steps 2-5 iteratively to the 

rest Phase I profiles  until no out-of-control profile samples are detected. 

8. Obtain the final point-wise estimated mean profile by taking average of the 

remaining Phase I profile samples. 

For Phase II process: 

1. Standardize the Phase II profile samples by using Equation (5.22-5.24), where 

the point-wise mean profile is estimated from Phase I. 

2. Obtain the AN test statistics for the standardized DFT coefficients for each 

profile and plot them on the control chart sequentially. 

3. If any out-of-control AN statistic is detected, report a profile outlier. 

This control chart procedure for profile monitoring in both Phase I and II is 

illustrated by the diagram in Figure 5.7. Its performance will be evaluated using 

simulation in Section 5.6. 
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Take the average of the profiles to 

estimate the point-wise mean profile 

function { }ˆ ( ),   1,2, ,km X k n= K  

Apply the DFT to the residuals of each 

profile and standardize the DFT 

coefficients. 

Obtain the AN statistic for the residuals 

of each profile and plot them on the 

control chart sequentially 

Choose the control limit for the control 

chart from Table 5.1 according to the 

number of observations. 

Are there any out-

of-control profiles? 

Remove the 

out-of-control 

profiles 
Calculate the 

statistics of Aj0/n for 

j = 1, 2,…, N. 

Plot Aj0/n on a 

control chart with 

±3 control limit 

Apply the DFT to the residuals of each 

profile and standardize the DFT 

coefficients. 

Report the out-of-control profiles in the 

charts 

Take the average of the in-control 

profiles to estimate the point-wise mean 

profile function { }ˆ ( ),   1,2, ,km X k n= K  

 

P
h

ase I 
 

P
h
ase II 

Figure 5.8:  The diagram of the high-dimensional control chart approach 

 

Plot the standardized DFT coefficients 

on the high-dimensional control chart 

and supplementary chart 
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5.5.2 Using a Supplementary Chart to Monitor Profiles with Constant Global 

Mean Shifts 

Theoretically, the DFT coefficients of a series of constant values are zeros except 

the first coefficient A0 in Equation (5.15) and (5.18). Therefore, the parameter β0 in the 

profile modeled by Equation (5.19) has no effect on DFT coefficients except A0. 

Therefore, the HD control chart is expected to perform poorly in monitoring profiles with 

constant global mean shifts and requires a supplementary chart for this purpose.  

We propose to setup a control chart for the first DFT coefficient A0 alone in order 

to monitor the β0 shift in the diagram of Figure 5.7. As is shown in Equation (5.15), Aj0 

for the j
th

 profile residuals is the summation of the values of the j
th

 profile residuals. 

Dividing Aj0 by the number of observations, n, gives the mean of the j
th

 profile residuals. 

Then take standardization of the statistics by dividing them by the standard deviation of 

Aj0, j = 1, 2, …, n, and plot them on the control chart sequentially. Actually, the control 

chart for monitoring such standardized statistics with ±3σ control limits is actually a x  

chart for the residuals of the j
th 

profile. We note that an alternate approach is to monitor 

the average of the residuals for linear profile samples by using a EWMA chart as in Kang 

and Albin (2000). 
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5.6 Performance Evaluation of the HD Control Chart 

In this section, we use simulation to study the performance of the HD control 

chart approach in monitoring both linear and nonlinear profiles with either white noise or 

stationary noise. The performance is evaluated by using both the average run length 

(ARL) and the 25
th

, 50
th

, and 75
th

 percentile run lengths. We also use simulated 

woodboard vertical density profiles to illustrate the application of the HD control chart 

and assess its ability to detect an outlier. 

5.6.1 The Run Length Distribution for HD Control Charts 

The run length of a control chart is a discrete random variable that is defined as 

the number of plotted statistics before an out-of-control point is observed on the chart. 

The ARL is the expected value of this random variable and it is the most popular criteria 

for evaluating the performance of control charts in Phase II monitoring. 

Theoretically, the run length follows a geometric distribution for Shewhart charts 

that assumes a known process mean and variance. However, for non-Shewhart control 

charts or charts in which the process parameters are unknown and require estimation, the 

run lengths are no longer geometrically distributed and take a complicated form (Del 

Castillo, 2002; Jones et al., 2001, 2004; and Shu et al., 2004). 

For the HD control chart approach, it basically follows a Shewhart chart model 

since the profile samples are assumed to be independent and the plotted AN statistics are 

not cumulatively considered. We use Equations (5.22) and (5.23) to estimate the sample 
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point-wise mean function and squared standard deviation function based on the in-control 

profiles. For the HD control chart, the mean profile function and variance function are 

unknown and estimated from historical profile samples. Therefore, its run length does not 

follow a geometric distribution.  

In this section, we obtain the run length distribution of the HD control charts by 

using simulation, and present it in ARLs, 25
th

, 50
th

 and 75
th

 percentiles of the distribution. 

We assume there are shifts of parameters ββββ in three different underlying profile models, 

one nonlinear and two linear.  

  

Example 1. Nonlinear profile with stationary AR(1) noise 

Consider the profile whose signal component is modeled by Equation (5.19) 

repeated here for convenience 

and whose noise component ε is modeled by an AR(1) time series with autoregressive 

coefficient φ. Without loss of generality, we let β0 = 0 and study the impact of shifts with 

the parameter β1, ∆β1, from 0 to 0.1, on the run lengths of the control chart. Meanwhile, 

the autoregressive coefficient φ varies from -0.8 to 0.8 with step size 0.3. We also study 

impact of the profile dimensionality n on the run lengths by varying it from 5 to 50. 

Upper control limits are chosen from Table 5.1 for significance level α = 0.005, or in-

control ARL = 200. Two thousand runs with 1000 profiles in each run are simulated. 

0 1 log( ),jk kY Xβ β= +  for j = 1,2,…, N, and k = 1,2,…, n, (5.25) 
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The simulation results of ARLs and quartiles of run lengths are summarized in 

Table 5.2. For ∆β1 = 0 and φ on the interval [-0.5, 0.5], the ARLs are close to the in-

control ARL value of 200 which suggests that the control chart is robust for Phase I 

monitoring when no shifted signal is presented. For Phase II monitoring with ∆β1 > 0, the 

robustness to noise autocorrelation of the control chart is not ideal even for a very small φ 

interval [-0.3, 0.3]. In addition, for ∆β1 > 0, the ARLs decrease but at higher rates for 

large dimensionality n and small φ; and at smaller rates for the opposite values of n and φ. 

The dimensionality n has a significant impact on the run lengths because the increase 

with n (when n > 5) causes the decrease of run length. The run lengths are not affected 

obviously by small dimensionality n = 5. 

It can also be noted that larger φ’s correlate with higher run lengths. The 

explanation is that small standardized statistics are more likely to concentrate at the low 

frequency levels. A more fundamental reason can be traced to the skewed distribution 

towards the low frequency levels for the variance of DFT coefficients of a profile with 

positive autocorrelation, see Figure 5.6. Therefore, by the standardization in Equation 

(5.24), the statistics at low frequency levels are likely to be smaller than those at high 

frequency levels, and are unfavorable for profile comparison by using the AN test. 

Likewise, the skewed distribution towards the high frequency levels for the DFT 

coefficients of negative autocorrelated noise leads to small run lengths on the control 

charts. Therefore, we recommend cautious use of the HD control chart for monitoring 

profiles with highly autocorrelated noise. 
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Table 5.2:  (a).  Run Lengths of the HD Control Chart for the Nonlinear Profile Equation (5.19) 

with Both ∆β1 (0 and 0.025) and φ Shifts 

∆β1   0.000     0.025   

n\∆φ -0.8 -0.5 -0.3 0 0.3 0.5 0.8 -0.8 -0.5 -0.3 0 0.3 0.5 0.8 

5 ARL 122.4 169.1 181.5 201.6 197.0 177.1 119.5 119.8 168.0 178.6 209.2 197.1 177.4 116.3 

 25th 39.0 51.5 57.0 58.0 54.0 45.5 37.0 34.0 57.0 60.0 61.0 57.0 50.0 35.0 

 50th 91.0 123.0 137.0 145.0 128.5 116.0 83.0 83.0 125.0 136.0 147.0 135.0 117.0 79.0 

 75th 171.0 253.0 271.0 280.0 261.0 237.5 160.5 174.0 246.5 259.0 278.0 262.0 236.0 157.5 

10 ARL 138.6 206.9 215.2 201.7 195.0 179.6 115.0 127.8 178.3 190.7 187.9 196.4 182.3 112.9 

 25th 42.0 61.0 58.0 55.0 62.0 55.0 35.0 35.0 52.0 54.0 64.0 65.0 58.0 33.0 

 50th 98.0 143.0 140.0 134.0 139.0 128.0 81.0 86.0 120.5 132.0 137.0 146.0 132.0 78.0 

 75th 188.0 269.5 276.5 281.0 277.0 259.0 161.0 172.0 243.0 255.0 260.0 272.0 257.0 155.0 

20 ARL 158.0 192.2 186.5 198.6 183.6 179.6 139.1 111.5 135.0 145.9 160.6 167.8 171.1 136.3 

 25th 48.0 53.0 60.0 59.0 58.0 56.0 43.0 34.0 41.0 46.0 49.0 52.0 51.0 41.0 

 50th 113.0 139.0 140.0 138.0 133.0 136.5 102.0 80.0 100.0 107.0 113.0 122.5 128.0 98.0 

 75th 221.0 275.0 261.5 278.0 264.5 258.0 199.5 155.0 187.0 201.0 231.0 237.5 255.0 197.0 

30 ARL 164.1 182.8 181.7 196.7 191.6 192.5 146.2 77.7 100.2 114.8 135.8 156.9 174.6 152.1 

 25th 49.0 61.0 57.0 59.0 59.5 61.0 44.0 24.0 30.0 34.0 42.0 46.0 53.0 47.0 

 50th 121.5 137.0 134.0 140.0 138.0 141.0 104.0 55.0 71.0 81.0 99.0 112.0 128.0 107.0 

 75th 234.0 265.0 267.0 275.0 264.5 271.0 203.0 108.0 140.0 163.0 190.0 214.0 244.0 214.0 

40 ARL 182.8 195.3 188.9 209.7 189.5 190.3 159.3 56.3 71.9 87.0 115.6 144.7 160.4 159.6 

 25th 56.0 61.0 58.0 61.0 60.0 64.0 52.5 16.0 22.0 27.0 35.0 41.0 51.0 50.0 

 50th 132.0 143.0 135.0 160.5 143.0 150.0 122.0 40.0 51.0 62.0 84.0 108.0 120.0 118.0 

 75th 258.0 278.0 265.0 300.0 291.0 279.0 225.0 80.0 99.0 124.5 162.0 213.0 229.5 231.0 

50 ARL 180.0 175.5 177.8 193.0 197.5 191.3 176.7 38.6 53.6 68.8 94.0 134.0 159.8 171.9 

 25th 59.0 58.0 54.5 57.0 63.0 55.0 52.0 11.0 16.0 22.0 29.0 41.0 53.5 50.0 

 50th 135.0 132.0 132.5 133.0 141.0 141.0 122.5 26.5 38.0 50.0 69.0 97.0 112.0 120.0 

 75th 264.0 257.0 265.0 264.5 273.0 272.0 255.0 55.0 75.5 99.0 131.0 187.0 226.0 245.0 
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Table 5.2: (b).  Run Lengths of the HD Control Chart for the Nonlinear Profile Equation (5.19) 

with Both ∆β1 (0.05 and 0.10) and φ Shifts 

∆β1   0.050     0.100   

n\ ∆φ -0.8 -0.5 -0.3 0 0.3 0.5 0.8 -0.8 -0.5 -0.3 0 0.3 0.5 0.8 

5 ARL 114.8 163.1 174.6 202.4 194.2 174.2 114.4 96.8 138.6 147.4 180.2 174.5 164.4 112.4 

 25th 35.0 52.5 57.0 61.0 59.0 51.0 33.0 29.0 41.0 46.5 54.0 51.0 48.0 33.0 

 50th 82.0 122.0 134.0 136.0 133.0 116.0 81.5 68.0 99.5 108.0 128.0 117.0 114.0 78.0 

 75th 162.0 238.5 258.0 264.0 263.0 230.0 157.5 134.5 196.0 209.0 241.5 232.0 225.0 152.0 

10 ARL 102.8 140.2 154.4 168.2 174.7 161.3 111.7 51.5 65.8 80.4 107.2 135.9 148.9 107.3 

 25th 30.0 39.0 45.0 49.0 54.0 46.0 35.0 17.0 21.0 24.0 33.0 44.0 46.0 33.0 

 50th 70.5 96.5 107.0 120.0 126.0 112.5 79.0 36.0 45.0 58.0 78.0 98.0 109.0 75.0 

 75th 144.0 195.0 209.0 241.0 246.0 227.5 150.0 72.5 94.0 113.5 151.0 187.5 211.0 151.0 

20 ARL 49.7 66.3 82.6 104.3 135.9 150.0 135.2 10.2 15.8 21.7 37.5 69.3 100.8 120.5 

 25th 15.0 20.0 26.0 31.0 39.0 47.0 41.0 3.0 5.0 6.0 12.0 21.0 32.0 37.0 

 50th 35.0 46.0 60.5 75.0 97.0 109.5 100.0 7.0 12.0 15.0 26.0 50.5 71.0 88.0 

 75th 71.0 93.0 117.0 143.0 189.0 209.0 190.0 14.0 21.5 31.0 53.0 96.0 139.0 171.0 

30 ARL 23.1 34.3 44.5 70.0 103.0 132.4 141.7 3.6 5.6 8.4 16.1 36.1 64.3 117.2 

 25th 7.0 10.0 13.0 22.0 30.0 39.0 43.0 1.0 2.0 3.0 5.0 10.5 19.0 36.0 

 50th 17.0 23.0 31.0 50.0 73.0 95.0 100.5 3.0 4.0 6.0 11.0 25.0 47.0 85.0 

 75th 32.0 47.0 62.0 97.0 142.0 190.0 199.0 5.0 7.0 11.5 22.0 52.0 90.0 163.0 

40 ARL 12.3 18.5 25.9 44.2 80.6 114.5 147.2 1.8 2.8 4.0 8.5 20.6 42.7 107.9 

 25th 4.0 6.0 8.0 14.0 23.0 33.0 45.0 1.0 1.0 1.0 3.0 7.0 12.0 33.0 

 50th 9.0 13.0 18.0 32.0 56.0 84.0 108.0 1.0 2.0 3.0 6.0 15.0 29.0 76.0 

 75th 17.0 25.0 36.0 61.0 113.0 164.0 214.0 2.0 4.0 5.0 11.0 28.0 60.0 152.0 

50 ARL 6.9 11.2 15.9 30.8 58.5 93.9 149.6 1.3 1.7 2.4 4.9 13.0 29.6 103.0 

 25th 2.0 4.0 5.0 9.0 17.0 28.0 46.0 1.0 1.0 1.0 2.0 4.0 9.0 29.0 

 50th 5.0 8.0 11.0 22.0 42.0 67.0 105.0 1.0 1.0 2.0 3.0 9.0 21.0 71.0 

 75th 10.0 15.0 22.0 44.0 83.0 132.0 205.0 1.0 2.0 3.0 7.0 18.0 40.0 146.0 
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Example 2.  Linear profile with stationary AR(1) noise and slope shift 

In this example, the HD control chart is applied to monitor linear profiles modeled 

by  

where 0β  and 1β  are intercept and slope respectively, and the random variables jkε  are 

stationary and represented by a AR(1) model with autoregressive coefficient φ for each j. 

We use this example to investigate the robustness of the HD control chart in monitoring 

the shift in 1β  with stationary noise on the linear profile. The profile dimensionality n 

varies from 5 to 30 (most of the run lengths are very close to 1 for monitoring our-of-

control profiles with higher dimensionalities), φ shifts from -0.8 to 0.8 with step size 0.3, 

and 0β  is fixed at 0. Two thousand runs with 1000 profiles each are simulated for each 

combination of n and ∆β1. The control limits are chosen from Table 5.1 for significance 

level α = 0.005, or in-control ARL = 200. 

The simulation results of ARLs and quartiles of run lengths are summarized in 

Table 5.3. Similar findings can be obtained from the table except that the shift ∆β1 has a 

much larger impact on the ARLs than that of the nonlinear profile monitoring in previous 

example, and the impact of n is larger too. 

As a comparison, we list in the first row of Table 5.4 the simulation results by 

Kang and Albin (2000) in monitoring the slope shift of a linear profile with white noise. 

The dimensionality of the profiles considered in Kang and Albin (2000) is unclear. It can 

be seen that the ARLs of Kang and Albin (2000) are overall smaller than those of the HD 

0 1jk jk jky xβ β ε= + + , for j = 1,2,…, N, and k = 1,2,…, n, (5.26) 
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control chart for dimensionality n = 5, and overall larger than those of the HD control 

chart for n = 10 or more. We note that the approach by Kang and Albin (2000) relies on 

prior knowledge of the structure of the linear profiles or high-order polynomial profiles. 

Therefore, it cannot be applied to applications where such prior knowledge is 

unavailable. In comparison, the HD control chart approach can be still be used to monitor 

the profiles directly without such prior knowledge and still gives fairly good 

performance, especially for the linear profiles with high dimensions, n ≥ 10. 
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Table 5.3:  (a) Run Lengths of the HD Control Chart for Monitoring Linear Profile with Both 

∆β1 (= 0 and 0.025) and φ Shifts 

 

∆β1   0.000     0.025   

n\ ∆φ -0.8 -0.5 -0.3 0 0.3 0.5 0.8 -0.8 -0.5 -0.3 0 0.3 0.5 0.8 

5 ARL 123.0 164.4 181.8 188.7 177.5 162.1 113.9 104.2 145.5 162.9 173.5 175.9 156.3 111.6 

 25th 39.0 53.0 61.5 62.5 53.0 50.0 36.0 33.0 46.0 54.0 56.5 57.0 48.0 33.0 

 50th 88.0 123.0 138.5 151.5 132.0 123.0 81.0 76.0 107.0 122.0 133.0 135.0 119.0 80.0 

 75th 171.5 243.0 277.0 287.5 267.0 240.0 160.5 146.5 204.0 239.0 261.5 257.5 225.0 157.0 

10 ARL 134.2 174.8 185.8 184.7 183.5 173.1 115.4 57.8 79.1 89.8 118.7 145.3 144.1 109.7 

 25th 38.5 57.0 59.0 63.0 58.0 55.0 35.0 17.5 24.0 28.0 36.0 46.0 44.0 33.5 

 50th 96.0 134.0 148.0 143.0 136.0 133.0 83.0 40.0 57.0 62.0 82.0 109.0 106.0 77.0 

 75th 197.0 254.0 281.0 269.5 275.5 253.5 161.0 82.0 110.0 125.5 164.5 212.0 213.0 154.0 

20 ARL 148.7 183.9 184.9 181.9 186.8 187.3 132.5 5.5 8.3 12.2 23.1 45.5 78.1 105.2 

 25th 47.0 59.0 60.0 59.0 59.0 63.0 41.0 2.0 3.0 4.0 7.0 13.0 23.0 32.5 

 50th 113.0 144.0 146.0 141.0 148.0 143.0 97.0 4.0 6.0 9.0 16.0 33.0 56.0 72.0 

 75th 216.0 278.0 279.0 271.0 278.0 284.5 190.0 7.0 12.0 17.0 32.0 63.0 110.0 151.5 

30 ARL 165.7 190.5 183.3 181.6 178.1 178.7 156.5 1.3 1.7 2.3 4.5 12.5 27.2 86.1 

 25th 51.0 67.0 57.0 58.0 60.0 60.0 48.0 1.0 1.0 1.0 2.0 4.0 8.0 27.0 

 50th 125.0 148.0 141.0 141.0 138.0 140.0 116.0 1.0 1.0 2.0 3.0 9.0 19.0 62.0 

 75th 236.0 291.5 276.0 273.0 264.0 266.0 236.0 1.0 2.0 3.0 6.0 17.0 37.0 121.0 
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Table 5.3:  (b) Run Lengths of the HD Control Chart for Monitoring Linear Profile with Both 

∆β1 (= 0.05 and 0.10) and φ Shifts 

 

∆β1   0.050     0.100   

n\ ∆φ -0.8 -0.5 -0.3 0 0.3 0.5 0.8 -0.8 -0.5 -0.3 0 0.3 0.5 0.8 

5 ARL 78.1 102.4 122.8 138.2 150.6 144.4 109.9 33.1 37.0 47.5 68.9 92.3 98.1 89.6 

 25th 22.0 32.0 40.0 43.0 45.0 44.0 34.0 10.0 11.0 14.0 20.0 29.0 31.0 29.0 

 50th 55.0 75.0 87.0 104.0 111.0 105.0 79.0 24.0 26.0 34.0 50.0 67.0 68.0 64.0 

 75th 108.0 142.0 174.0 195.5 215.5 208.5 154.0 46.0 53.0 65.0 94.5 130.5 136.5 126.0 

10 ARL 14.3 19.9 25.9 43.9 72.0 92.0 93.5 2.2 2.9 4.1 8.0 18.4 34.2 56.5 

 25th 4.0 6.0 8.0 13.0 23.0 27.0 30.0 1.0 1.0 2.0 3.0 6.0 11.0 17.0 

 50th 10.0 14.0 18.0 32.0 51.0 66.0 68.0 2.0 2.0 3.0 6.0 13.0 25.0 39.0 

 75th 20.0 28.0 37.0 62.0 101.0 126.0 130.0 3.0 4.0 5.0 11.0 25.0 49.0 77.5 

20 ARL 1.2 1.4 1.8 3.4 8.7 20.7 65.2 1.0 1.0 1.0 1.0 1.5 2.9 18.5 

 25th 1.0 1.0 1.0 1.0 3.0 7.0 20.0 1.0 1.0 1.0 1.0 1.0 1.0 6.0 

 50th 1.0 1.0 1.0 2.0 6.0 15.0 48.0 1.0 1.0 1.0 1.0 1.0 2.0 13.0 

 75th 1.0 2.0 2.0 4.0 12.0 28.0 91.0 1.0 1.0 1.0 1.0 2.0 4.0 25.0 

30 ARL 1.0 1.0 1.0 1.1 1.8 4.2 31.2 1.0 1.0 1.0 1.0 1.0 1.1 5.3 

 25th 1.0 1.0 1.0 1.0 1.0 2.0 9.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 

 50th 1.0 1.0 1.0 1.0 1.0 3.0 22.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 

 75th 1.0 1.0 1.0 1.0 2.0 6.0 43.0 1.0 1.0 1.0 1.0 1.0 1.0 7.0 
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Table 5.4:   Comparison of ARLs for Control Charts for Linear Profiles with the Slope 

Shift ∆β1 and White Noise 

 

      ∆β1     

Chart 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 

EWMA/R 119 43.9 19.8 11.3 7.7 5.8 4.7 3.9 3.4 3 

T
2
 168 106.5 60.7 34.5 19.9 12.3 7.8 5.2 3.7 2.7 

HD, n = 5 178.9 147.1 98.6 72.5 48.1 32.4 22.6 16.2 11.7 8.9 

HD, n = 10 116.4 45.5 18.0 8.1 4.3 2.6 1.8 1.4 1.2 1.1 

 

 

Example 3. Linear profile with shifts in the standard deviation of the noise 

To study the impact of variance shift on the HD control chart performance, we 

consider the linear profile model in Equation (5.26) with white noise jkε  i.i.d. and 

~ (0,1)jk Nε . The profile dimensionality n varies from 5 to 100 and the standard 

deviation of the noise σ varies from 1.2 to 3 while the values of 0β  and 1β  are fixed. 

Two thousand runs with 500 profiles in each run are simulated. Τhe control limits are 

chosen from Table 5.1 for significance level α = 0.005, or in-control ARL = 200. 

The run lengths of the HD control chart are listed in Table 5.5. It can be observed 

that the ARLs decrease sharply as either σ  or n increases. Until a certain level, for 

example, σ  = 2.4 and n = 60, the ARL is close to 1 which indicates an immediate 

detection once σ  shift occurs.  

To aide comparison, we put the corresponding results from Kang and Albin 

(2000) in the 2
nd

 and 3
rd

 rows of Table 5.5. Although the profile dimensionality they 
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discussed is unclear, it can be seen that the ARLs of our control chart are smaller for any 

listed dimensionality. In Figure 5.8, the ARLs vs. dimensionality n are plotted for 

comparison. It visually illustrates that the HD control chart approaches have overall 

smaller ARLs. 
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Table 5.5:   Run Lengths of the HD Control Chart for Linear Profiles with Variance Shifts 

γσ of the White Noise 

n\γ 1.0 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 

EWMA/R - 34.3 12 6.1 3.9 2.9 2.3 1.9 1.7 1.5 1.4 

T
2
 - 39.2 14.9 7.9 5.1 3.8 3 2.5 2.2 2 1.8 

5 ARL 178.6 33.9 11.1 5.0 3.2 2.2 1.8 1.5 1.4 1.3 1.2 

 25th 64 10 4 2 1 1 1 1 1 1 1 

 50th 133.5 24 8 4 2 2 1 1 1 1 1 

 75th 262 45 15 7 4 3 2 2 2 2 2 

10 ARL 189.6 28.1 8.0 3.3 2.0 1.6 1.3 1.2 1.1 1.1 1.0 

 25th 59 8 3 1 1 1 1 1 1 1 1 

 50th 147.5 19 6 2 1 1 1 1 1 1 1 

 75th 288.5 40 11 4 3 2 1 1 1 1 1 

20 ARL 181.5 22.6 4.7 2.0 1.4 1.1 1.0 1.0 1.0 1.0 1.0 

 25th 55 7 2 1 1 1 1 1 1 1 1 

 50th 140 17 3 1 1 1 1 1 1 1 1 

 75th 279 31 6 2 2 1 1 1 1 1 1 

30 ARL 192.0 17.8 3.6 1.5 1.1 1.0 1.0 1.0 1.0 1.0 1.0 

 25th 58.5 6 1 1 1 1 1 1 1 1 1 

 50th 145.5 13 3 1 1 1 1 1 1 1 1 

 75th 301.5 25 5 2 1 1 1 1 1 1 1 

40 ARL 186.1 17.4 2.7 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 25th 58.5 5 1 1 1 1 1 1 1 1 1 

 50th 142 12 2 1 1 1 1 1 1 1 1 

 75th 281.5 24 3 1 1 1 1 1 1 1 1 

50 ARL 183.5 14.7 2.2 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 25th 58 5 1 1 1 1 1 1 1 1 1 

 50th 145 10 2 1 1 1 1 1 1 1 1 

 75th 274.5 21 3 1 1 1 1 1 1 1 1 
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Figure 5.8:  Comparisons of ARLs for control charts with standard deviation shifts. 

5.6.2 HD Control Chart and Supplemental Chart Application  

In this section, we apply our HD control chart to monitor the process of simulated 

nonlinear woodboard vertical density profiles (VDP). The measurements of VDP are 

normally collected from a particleboard manufacturing operation. The density is an 

important quality characteristic for manufacturing the engineered woodboard because it 

determines its machinability. The density is measured by using a profilometer, which is a 

laboratory measuring instrument that measures a feature’s length or depth, usually in the 

micrometer or nanometer level. In this example, it works by taking measurements at 

fixed depth across the thickness of the board. The VDP of the board is therefore formed 

by the measurements on a sample (usually a 2 × 2 inch piece). Each VDP consists of 

314 measurements taken 0.002 inches apart.  

Williams et al. (2003) fitted the following nonlinear “bathtub” function for a 

typical woodboard profile 
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where xi is the i
th

 regressor variable value, and parameters a1 and a2 determine the width 

of the “bathtub”, b1 and b2 determine the flatness, c and d determine the bottom and the 

center respectively. The values of the parameters for one representative in-control profile 

function are listed in Table 5.6. 

 

Table 5.6:   Parameters of Estimated Nonlinear Profile of One Representative Profile 

a1 5708 a2 3921 

b1 5.14 b2 4.87 

c 46.0 d 0.313 

 

In this example, two profile data sets are simulated by using the parameter values 

in Table 5.6. There are 100 in-control and 50 out-of-control profiles in each dataset. For 

the first data set, we assume c has a normal distribution of N(46.0, 0.05• 46 ) and other 

parameters have constant values as in Table 5.6. Three standard deviation shifts are 

introduced to the mean of parameter c in Phase II. For the second, we assume parameters 

b1 and b2 have normal distributions of N(5.14, 0.05• 5 ) and N(4.87, 0.05• 5 ) and keep 

other parameters’ values constant at in Table 5.6. Again, three standard deviation shifts 

are introduced to the mean of parameters b1 and b2 in Phase II. In addition, a AR(1) 

stationary noise with φ = 0.8 is added to each simulated profile for both Phase I and II, 

which is in line with the stationary noise of the practical woodboard profile data. 
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For illustration, five simulated profiles are plotted in Figure 5.9. The two profiles 

in red are outliers with mean shifts on the parameters b and c respectively. 

Using the procedure illustrated in Figure 5.7, two high-dimensional control charts 

are constructed in Figure 5.10(a) and (c) for the two simulated data sets. The control 

limits for both charts are 7.72 which approximates that for the dimensionality n = 200 in 

Table 5.1. For both cases, no out-of-control profile is detected and removed in Phase I, 

and the out-of-control profiles are detected in 11 observations for the first dataset and in 3 

observations for the second dataset. The supplementary control charts are applied to each 

of the simulated datasets in Figure 5.10(b) and (c) and no outlier is found in the two 

charts. 

 

 

  

Figure 5.9:  Five simulated vertical density profiles (the two profiles in red are outliers) 
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 (a) (b) 

   

 (c) (d) 

Figure 5.10:  (a, b) The HD control chart and the supplementary x  chart for the first 

simulated profile dataset; (c, d) The HD control chart and the supplementary x  chart for 

the second simulated profile dataset. 

5.7 Conclusions 

In this chapter, a high-dimensional (HD) control chart approach is proposed to 

monitor processes or products whose quality can be characterized by profiles or functions 

between a response variable and one or more independent variables. The profile 

dimensionality, or the number of paired values for the response variable and the 
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independent variables, is normally large which makes it impractical to apply a traditional 

Hotelling’s T
2
 control chart. This HD control chart approach relies on the discrete Fourier 

transform (DFT) to decorrelate the profile noise, either stationary or i.i.d., and to 

compress the profile signal to low frequency levels. The adaptive Neyman (AN) test is 

then used to automatically select the number of coefficients at low frequencies to 

maximize the AN statistics.  

A construction procedure for the HD control chart based on the combination of 

DFT and AN test is presented, and its performance in monitoring both linear and 

nonlinear profiles with either i.i.d. or autocorrelated stationary noise is evaluated by 

simulation. A comparison with other approaches in monitoring linear profiles is provided, 

and the advantages of the HD chart approach are summarized as follows:  

First, it can be directly used to monitor profiles without prior knowledge of their 

structures when enough historical profile data can be obtained to estimate the profile 

mean and variance function. Based on the data-driven techniques of the AN test, the HD 

chart approach can effectively test whether a profile is significantly different from the 

estimated process mean profile or not, and it has good adaptability in monitoring either 

linear or nonlinear profiles. 

Second, it can be used to monitoring profiles with a stationary noise component. 

Our results showed that the impact of the noise autocorrelation can be neglected in this 

approach if the autoregressive coefficient φ is in the range of [-0.5, 0.5] for both linear 

and nonlinear profiles. 

Graphical control charts for the HD approach were used to monitor simulated 

vertical density profiles in a woodboard manufacturing process. 
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Appendix 5A: Matlab Simulation Code for the HD Control Chart for Monitoring 

Nonlinear Profiles 

% Out-of-control ARL of the high-dimensional control chart for monitoring  

% nonlinear profiles, yt = b0 + b1*log(xt) + et, where et = phi*e_t-1 + at, 

% by varying values of phi and b1. 

% 

clear; 

 

start = clock; 

 

dim = [5 10:10:50];    % dimensionality 

Jn = [5.97 6.7700 7.1600 7.2900 7.4100 7.4300]; 

dphi = [-0.8 -0.5 -0.3 0 0.3 0.5 0.8]; % size of mean shift 

dslope = [0 0.025 0.05 0.1];    % size of mean shift 

 

run = 2000; 

n = 1000; 

 

for j = 1:1:length(dim) 

    for jj = 1:1:length(dphi) 

        for k = 1:1:length(dslope) 

            if k == 1 &jj==4 

                n = 2000; 

            else 

                n = 500; 

            end 

            for r = 1:1:run 

                X0 = randn(dim(j),n); 

                e = ARMA11(dim(j),n,dphi(jj),0); 

                x = 1:1:dim(j); 

                X = dslope(k)*log(x'); X = repmat(X,1,n); 

                X = X + e; 

 

                mdim = dim(j); 

 

                % F-transform and standardization 

                X = fft_coeff(X); 

                X0 = fft_coeff(X0); 

                Xavg = mean(X0')'; 

                Xvar = var(X0')'; 

 

                for i = 1:1:n 

                    X(:,i) = (X(:,i)-Xavg)./sqrt(Xvar); 

                end 

                %***********************************% 

 

                for i = 1:1:n 

                    for m = 1:1:mdim 

                        T1(m,i) = sum(X(1:m,i).^2-1)/sqrt(2*m); 

                    end; 

                end; 
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                ANA1 = max(T1); 

                TAN1 = sqrt(2*log(log(mdim)))*ANA1-(2*log(log(mdim)) + 0.5*log(log(log(mdim))) - 

0.5*log(4*pi)); 

 

                % Evaluate Test Results 

                rls = find(TAN1>Jn(j)); 

                if (length(rls) == 0) 

                    rl(r,j,jj,k) = n; 

                else 

                    rl(r,j,jj,k) = rls(1); 

                end 

                %************************% 

            end             

        end 

    end 

end 

 

% generate the table of the results 

 

% get the quartile of the run length 

arl = mean(rl);  % arl is in the first row 

p = 100*(0.25:0.25:0.75)'; % three quartiles 

qrl = [arl;prctile(rl,p)]  % 25,50,75 percentile in the next rows             

 

qrltable = zeros(4*length(dim),length(dphi),length(dslope)); 

for k = 1:1:length(dslope) 

    for j = 1:1:length(dphi) 

        for i = 1:1:length(dim) 

            srow = (i-1)*4+1; 

            qrltable(srow:srow+3,j,k)=qrl(:,i,j,k); 

        end 

    end 

end 

 

qrltable 

 

endt = clock; 

elapsetime = etime(endt,start) 

 

save simu_nonlinear.mat qrl qrltable elapsetime; 

 

 

function X = fft_coeff(ox) 

% Generate the coefficients for fast Fourier transform used in Appendix 5A 

% ox - a dimm-by-n matrix 

% Row number is the order of dimensionality! 

% 

X = ox; 

[m,n] = size(X); 

dim = m; 

xr = real(fft(X)); xi = imag(fft(X)); 

 

if (mod(dim,2) == 0)  % even 

    X(1,:) = xr(1,:); 
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    for i = 2:1:dim/2 

        X(i*2-2,:) = xr(i,:); 

        X(i*2-1,:) = xi(i,:); 

    end 

    X(dim,:) = xr(dim/2+1,:); 

else %odd 

    X(1,:) = xr(1,:); 

    for i = 2:1:(dim+1)/2 

        X(i*2-2,:) = xr(i,:); 

        X(i*2-1,:) = xi(i,:); 

    end 

end  

 

 

function z = ARMA11(dim,n,phi,theta) 

%% simulate n sets of ARMA(1,1) time series with length dim for each set, 

%% used in Appendix 5A & 5B 

% 

z = zeros(dim,n); 

for i = 1:1:n 

    a = randn(dim,1); 

    z(1,i) = a(1); 

    for t = 2:1:dim 

        z(t,i) = phi * z(t-1,i) + a(t) - theta * a(t-1); 

    end 

end  

Appendix 5B: Matlab Simulation Code for the HD Control Chart for Monitoring 

Linear Profiles with Slope and Autoregressive Coefficient Changes 

% Out-of-control ARL of the high-dimensional control chart for monitoring  

% linear profiles, yt = b0 + b1*x_t + e_t, where e_t = phi*e_(t-1) + a_t, 

% by varying values of phi and b1. 

 

clear; 

 

start = clock; 

 

dim = 10:10:100;    % dimensionality 

Jn = [6.7700 7.1600 7.2900 7.4100 7.4300 7.5100 7.5500 7.5700 7.6500 7.6500]; 

dphi = [-0.6 -0.3 0 0.3 0.6]; % size of mean shift 

dslope = [0.02 0.04 0.08 0.1 0.2]; % size of mean shift 

 

n = 100000; 

 

for j = 1:1:length(dim) 

    for jj = 1:1:length(dphi) 

        for k = 1:1:length(dslope) 

            X0 = randn(dim(j),n); 

            e = ARMA11(dim(j),n,dphi(jj),0); 
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            X = dslope(k)*(1:1:dim(j))'; X = repmat(X,1,n);  % profile signals 

            X = X + e; 

             

            mdim = dim(j); 

             

            %*****************  F-transform and standardization  ******************% 

            X = real(fft(X)); 

            X0 = real(fft(X0)); 

            Xavg = mean(X0')'; 

            Xvar = var(X0')'; 

 

            for i = 1:1:n 

                X(:,i) = (X(:,i)-Xavg)./sqrt(Xvar); 

            end 

            %***********************************% 

             

            for i = 1:1:n 

                for m = 1:1:mdim 

                    T1(m,i) = sum(X(1:m,i).^2-1)/sqrt(2*m); 

                end; 

            end; 

            ANA1 = max(T1); 

            TAN1 = sqrt(2*log(log(mdim)))*ANA1-(2*log(log(mdim)) + 0.5*log(log(log(mdim))) - 

0.5*log(4*pi)); 

 

            %*****************  Evaluate Test Results  ******************% 

            count = 0; 

            for i = 1:1:length(TAN1) 

                if (TAN1(i) > Jn(j)) 

                    count = count + 1; 

                end 

            end 

            rl(j,jj,k) = count/n; 

        end 

    end 

    clock 

end 

rl 

 

endt = clock; 

elapsetime = etime(endt,start)  

Appendix 5C: Matlab Simulation Code for the HD Control Chart for Monitoring 

Linear Profiles with Variance Change 

% Out-of-control ARL of the high-dimensional control chart for monitoring  

% linear profiles, yt = b0 + b1*x_t + e_t, where e_t = phi*e_(t-1) + a_t, 

% by varying the variance of the errors 

clear; 

 



 

 150 

start = clock; 

 

dim = 10:10:100;    % dimensionality 

Jn = [6.7700 7.1600 7.2900 7.4100 7.4300 7.5100 7.5500 7.5700 7.6500 7.6500]; 

dvar = 1:0.2:3; % multiple of var shift 

n = 100000; 

 

for j = 1:1:length(dim) 

    for k = 1:1:length(dvar) 

        e = randn(dim(j),n); 

        X = sqrt(dvar(k))*e; 

        mdim = dim(j); 

         

        %*****************  F-transform and standardization  ******************% 

        X = fft_coeff(X); 

        e = fft_coeff(e); 

        Xavg = mean(e')'; 

        Xvar = var(e')'; 

        for i = 1:1:n 

            X(:,i) = (X(:,i)-Xavg)./sqrt(Xvar); 

        end         

        %***************** 

         

        for i = 1:1:n 

            for m = 1:1:mdim 

                T1(m,i) = sum(X(1:m,i).^2-1)/sqrt(2*m); 

            end; 

        end; 

        ANA1 = max(T1); 

        TAN1 = sqrt(2*log(log(mdim)))*ANA1-(2*log(log(mdim)) + 0.5*log(log(log(mdim))) - 

0.5*log(4*pi)); 

 

        %*****************  Evaluate Test Results  ******************% 

        count = 0; 

        for i = 1:1:length(TAN1) 

            if (TAN1(i) > Jn(j)) 

                count = count + 1; 

            end 

        end 

        rl(j,k) = count/n; 

    end 

    clock 

end 

rl = [dvar; rl]; 

rl 

 

endt = clock; 

duration = etime(endt,start)  
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Appendix 5D: Matlab Simulation Code for Monitoring the Woodboard Density 

Profiles 

clear;  

 

scale = 0.0025; 

x1 = (1:1:156)'; x2 = (157:1:313)'; x = [x1; x2]'; 

x1 = x1*0.002; x2 = x2*0.002; x = x*0.002; 

ma1 = 3921; mb1 = 4.87; mc1 = 46; ma2 = 5708; mb2 = 5.14; mc2 = 46; 

va = 5000*0; vb = 5*scale; vc = 46*scale; 

phi = 0.8; 

 

%********** Phase I ***********% 

r = 100; 

y = zeros(313,r); 

for i = 1:1:r 

    e = randn(313,1); 

    e = arma11(313,1,phi,0); 

     

    a1 = randn(1)*sqrt(va)+ma1; a2 = randn(1)*sqrt(va)+ma2; 

    b1 = randn(1)*sqrt(vb)+mb1; b2 = randn(1)*sqrt(vb)+mb2; 

    c1 = randn(1)*sqrt(vc)+mc1; c2 = c1; 

 

    y1 = a1*(-x1+0.313).^b1+c1; 

    y2 = a2*(x2-0.313).^b2+c2; 

     

    y(:,i) = [y1; y2]+e; 

end 

X = y(:,1:r); 

 

%***** case I ***** 

% Phase II 

r = 50; 

y = zeros(313,1,r); 

for i = 1:1:r 

    e = randn(313,1); 

    e = arma11(313,1,phi,0); 

     

    a1 = randn(1)*sqrt(va)+ma1; a2 = randn(1)*sqrt(va)+ma2; 

    b1 = randn(1)*sqrt(vb)+mb1; b2 = randn(1)*sqrt(vb)+mb2; 

    c1 = randn(1)*sqrt(vc)+mc1+3*sqrt(vc); c2 = c1; 

 

    y1 = a1*(-x1+0.313).^b1+c1; 

    y2 = a2*(x2-0.313).^b2+c2; 

     

    y(:,1,i) = [y1; y2]+e; 

end 

 

fft_ratio = 1; 

mdim_ratio = 1; 

aneyman_complex(X,y,fft_ratio,mdim_ratio); 
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%***** case II ***** 

% Phase II 

r = 50; 

y = zeros(313,1,r); 

for i = 1:1:r 

    e = randn(313,1); 

    e = arma11(313,1,phi,0); 

     

    a1 = randn(1)*sqrt(va)+ma1; a2 = randn(1)*sqrt(va)+ma2; 

    b1 = randn(1)*sqrt(vb)+mb1+3*sqrt(vb); b2 = randn(1)*sqrt(vb)+mb2+3*sqrt(vb); 

    c1 = randn(1)*sqrt(vc)+mc1; c2 = c1; 

 

    y1 = a1*(-x1+0.313).^b1+c1; 

    y2 = a2*(x2-0.313).^b2+c2; 

     

    y(:,1,i) = [y1; y2]+e; 

end 

 

fft_ratio = 1; 

mdim_ratio = 1; 

aneyman_complex(X,y,fft_ratio,mdim_ratio);  

 

function aneyman_complex(X,Y,fft_ratio,mdim_ratio) 

% Adaptive neyman test for vectors X and Y, used in Appendix 5B 

% 

% X is the input matrix for the first group:  T x n_1 

% Y is the input matrix for the secod group:  T x n_2 x K 

 

M = []; MM = [];  

[mx nx] = size(X); 

[my ny ky] = size(Y); 

fftn = floor(fft_ratio*mx); mdim = floor(mdim_ratio*mx); n = mdim; 

if (mx > my | mx < my) 

    error('The dimension of X and Y should be equal!'); 

end; 

 

% use both the real and imaginary parts for the fft 

dim = mx; 

X = fft_coeff(X); 

Xavg = mean(X')'; Xvar = var(X')'; 

for i = 1:1:ky 

    YY = Y(:,:,i); 

    if (ny > 1) 

        Yavg(:,i) = mean(fft_coeff(YY)')'; 

        Yvar(:,i) = var(fft_coeff(YY)')'; 

    else 

        Yavg(:,i) = fft_coeff(YY); 

    end 

end 

 

%% for constant estimator of variance 

varx = mean(Xvar); 
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%*****************  Phase I  ******************% 

pos = zeros(nx,1); 

for i = 1:1:nx 

    Z(:,i) = (Xavg - X(:,i))./sqrt(Xvar/nx+Xvar); 

    for m = 1:1:mdim 

        T1(m,i) = sum(Z(1:m,i).^2-1)/sqrt(2*m); 

    end; 

    a = T1(:,i); 

    pos(i) = find(a == max(a)); 

end; 

ANA1 = max(T1); 

TAN1 = sqrt(2*log(log(n)))*ANA1-(2*log(log(n)) + 0.5*log(log(log(n))) - 0.5*log(4*pi)); 

 

%*****************  Phase II  ******************% 

for i = 1:1:ky 

    Z(:,i) = (Xavg - Yavg(:,i))./sqrt(Xvar/nx+Xvar/ny); 

    for m = 1:1:mdim 

        TT1(m,i) = sum(Z(1:m,i).^2-1)/sqrt(2*m); 

    end; 

    a = TT1(:,i); 

    pos(i) = find(a == max(a)); 

end; 

ANAA1 = max(TT1); 

TANN1 = sqrt(2*log(log(n)))*ANAA1-(2*log(log(n)) + 0.5*log(log(log(n))) - 0.5*log(4*pi)); 

 

%***************** Combine Phase I and II in one chart *****************% 

alpha = 0.005;  

dim = 10:10:100;    % dimensionality 

Jn = [6.7700 7.1600 7.2900 7.4100 7.4300 7.5100 7.5500 7.5700 7.6500 7.6500]; 

if mx <=100 

    UL = Jn(find(dim==mx)); 

else 

    UL = 7.65; 

end 

 

NN = length(TAN1)+length(TANN1); 

t = 1:1:NN; 

TAN = [TAN1, TANN1]; 

Tp = ones(1,NN)*UL; 

T2 = ones(1,NN)*chi2inv(1-alpha,mx); 

figure; plot(t,TAN,':.', t,Tp,'-r'); 

title('Control Chart of T_A_N for Phase I&II'); xlabel('Obv'); ylabel('T_A_N');  
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Chapter 6 

 

Summary and Future Research 

 This thesis addresses the development of a unified Cuscore control chart to 

monitor the mean shift in univariate or multivariate autocorrelated process, and a high-

dimensional control chart for monitoring the mean function of processes that can be 

represented by profile data. The work was broadly motivated by the need to gain better 

control over manufacturing processes. The contributions of this research are presented in 

the next section. Directions for the advancement of this research are presented in the 

subsequent section. 

6.1 Research Contributions 

6.1.1 Cuscore Control Charts for Generalized Feedback Control Systems 

The first part of this research centered around monitoring a feedback controlled 

process. In Chapter 3, the Cuscore control chart was used to monitor the output of a 

GMV feedback control system for the presence of a signal. Appropriate statistics based 

on the fault signatures of the signal were derived for the detection of signals in an ARMA 

noise process. We showed theoretically that the performance of Cuscore charts is 

independent of the amount of variability transferred from the output quality characteristic 

to the adjustment actions in the GMV control system. Simulation was used to explore the 

performance of the Cuscore charts for monitoring an ARMA(1,1) noise in detecting a 
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spike, step and bump signal in a GMV control system. In general, the Cuscore chart has 

the ability to detect signals over a broad range of system parameter values. For certain 

ranges of system parameters where the Cuscore chart displays low detection capability 

for the fault signatures, a tracking signal test was used in combination with the Cuscore 

statistics to achieve satisfactory detection performance.  

6.1.2 Multivariate Cuscore Control Charts for Monitoring Autocorrelated 

Processes 

The Cuscore control chart is a powerful statistical process monitoring tool when 

there is prior knowledge about the process shift. In Chapters 3 and 4 it was also 

illustrated to be effective for monitoring an autocorrelated process when the process 

autocorrelation has been estimated in Phase I. In Chapter 4, the multivariate Cuscore 

approach based on the likelihood ratio test and fault signature analysis was introduced for 

monitoring the mean vector shift in an autocorrelated multivariable process. A bivariate 

time series model was used to illustrate the theory and application of the MCuscore chart. 

Simulation was used to show that the MCuscore chart outperforms the traditional 

residual-based MCusum control chart in detecting a mean vector shift signal in 

autocorrelated bivariate processes. An example of monitoring the mean shift of two 

process variables in an RIE process illustrated the use of the MCuscore chart and showed 

it to perform better than the MCusum chart in monitoring and autocorrelated multivariate 

process when a priori information on the process and the signal is available. In addition, 

the integration of fault diagnosis with MCuscore control chart was briefly discussed. 
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6.1.3 A High-Dimensional Control Chart for Profile Monitoring 

In Chapter 5, a high-dimensional control chart approach was presented to monitor 

the process or product whose quality can be characterized by profiles. The dimensionality 

of the investigated profiles, or the number of paired values for the response variable and 

the independent variables, is normally large. This high-dimensional control chart 

approach relies on the discrete Fourier transform to decorrelate the profile noise and to 

compress the profile signal into low frequency levels. The adaptive Neyman test is then 

used to automatically select the number of large coefficients at the low frequency levels 

by maximizing the AN statistics. A construction procedure for the high-dimensional 

control chart based on the combination of DFT and AN test was presented, and its 

performance was evaluated by simulation for monitoring both linear and nonlinear 

profiles with either i.i.d. or autocorrelated stationary noise.  

Simulation was also used to compare the HD control chart with other approaches 

in monitoring profile data. It showed that the high-dimensional chart has two main 

advantages. First, it can be directly used to monitor profiles without prior knowledge of 

their structures when enough historical profile data can be obtained to estimate the profile 

mean and variance function. Second, it can be used to monitor profiles with a stationary 

noise component. Our results showed that the impact of the noise autocorrelation can be 

neglected in this approach if the autoregressive coefficient φ is in the range of [-0.5, 0.5] 

for both the linear and nonlinear profiles. 

Graphical control charts for the HD approach were used to monitor data profiles 

that were representative of an actual woodboard manufacturing process. 
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6.2 Future Work 

We conclude with a brief discussion of some potential future research related to 

the Cuscore chart and profile monitoring approaches investigated in this thesis. 

• Robustness of the Cuscore chart for unknown signal information 

Although the Cuscore control chart has been illustrated to outperform many 

traditional control charts and it is often used as a powerful supplementary tool for 

detecting specific signals, some practical issues hinder the extensive use of Cuscore 

charts. One of them is lack of ready-to-use software for integrating the Cuscore chart 

with other traditional charts, and the other, which is more crucial, is the constraint of the 

fundamental assumption of the Cuscore statistics, which requires prior knowledge of the 

starting time and shift size of the signals being monitored.  

To address the second issue, Nembhard and Changpetch (2006) investigated the 

robustness of the Cuscore chart for mismatched signals and applied the idea of fixed-

sized moving-window or adaptive-sized detection window to the Cuscore chart. Their 

research can be extended to multivariate Cuscore chart. In addition, some other 

researchers have taken the approach of designing a “trigger” for the Cuscore chart so that 

it can react to the expected signal automatically, such as the Cusum-trigger Cuscore chart 

by Shu et al. (2002). The idea of using the change-point model (Hawkins et al., 2003; 

Hawkins and Zamba, 2005a, b) to trigger Cuscore is potentially a promising direction. It 

is expected that more research will be conducted with the aim of relaxating some of the 

assumptions of Cuscore statistics. 
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• Estimation of the covariance matrix 

Estimation of covariance matrix and monitoring its change is an important issue 

for multivariate process control. The assumption of a fixed covariance matrix, as is used 

in the research of Chapter 4, may easily lead to a higher false alarm rate in the control 

chart when a relatively large mean shift signal occurs and causes a change in the 

covariance matrix. Many researchers have investigated this issue, such as Sullivan and 

Woodall (1996) and William et al. (2006), and it may be possible to extend the 

multivariate Cuscore chart to monitoring the changes in the covariance matrix, or to find 

a good estimate of the process covariance matrix using the multivariate Cuscore chart to 

monitor the process mean vector. 

• Multivariate control charts for profile monitoring 

Currently most of research on profile monitoring relies on fitting a parametric 

regression model, either linear or nonlinear, to the profile data, and then monitoring the 

parameter vector using multivariate process control approaches; see Kang and Albin 

(2000), Kim et al. (2003), Mahmoud and Woodall (2004) and William et al. (2006). 

Theoretically, if prior knowledge has been acquired about the size and time of a shift in 

the parameter vector from the historical data, a MCuscore chart can be designed for 

efficient profile monitoring by focusing on the multivariate time series of the parameters. 

Profile monitoring is a rich research area and many other developed or on-going 

research topics can be related to it, such as the change-point approach, the non-parametric 

regression for curve fitting, and the monitoring of autocorrelated process whose quality 

characteristics are profiles. An advanced integration of the MCuscore chart with 

monitoring autocorrelated profiles may be a promising research direction. 
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