The Pennsylvania State University

The Graduate School
Department of Computer Science and Engineering

Multimethod Solvers: Algorithms, Applications And
Software

A Thesis in

Computer Science and Engineering
by
Sanjukta Bhowmick
(© 2004 Sanjukta Bhowmick

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

December 2004

The thesis of Sanjukta Bhowmick was reviewed and approved® by the following:

Padma Raghavan

Associate Professor of Computer Science and Engineering
Thesis Adviser

Chair of Committee

Mahmut Kandemir
Associate Professor of Computer Science and Engineering

Lyle Long
Professor of Aerospace Engineering

Lois Curfman McInnes

Software Engineer

MCS Division, Argonne National Laboratory
Special Member

Paul Plassmann
Associate Professor of Computer Science and Engineering

Raj Acharya
Professor of Computer Science and Engineering
Head of the Department of Computer Science and Engineering

*Signatures are on file in the Graduate School.

iii

Abstract

The solution of large sparse linear systems is a fundamental problem in scientific
computing. A variety of solution schemes are available reflecting a wide range of perfor-
mance and quality trade-offs. The “best” solution method can vary across application
domains and often even across different phases in a single application. As noted by Ern
et al. “The impossibility of uniformly ranking linear system solvers in any order of effec-
tiveness....is widely appreciated.” In this thesis, we attempt to deliver the benefits of the
variety of sparse linear solution techniques to the application community, by developing
multimethod solvers, i.e. solvers that use more than one basic sparse solution scheme.

More specifically, the thesis concerns the development of two types of multimethod
sparse linear solvers, namely, composite and adaptive solvers. We develop a composite
solver to provide highly reliable solution with low memory requirements by applying
a sequence of limited memory iterative solution schemes to the same linear system.
We develop an adaptive solver to dynamically select a linear solution scheme to match
changing linear system attributes and thus reduce the time required for linear system

solution.

Our main contributions are the development and analysis of algorithms to con-
struct composite and adaptive multimethod solvers, and the design and implementation
of software for their automatic instantiation. A central result includes the development
of an optimal composite solver with increased reliability, low memory requirements, and
minimal worst case time, using a combinatorial framework. Another contribution is the
formulation of heuristics to enable dynamic linear solution method selection. Finally, we
design a software architecture for providing multimethod solver service to the application
community. We implement and test our new schemes on two applications; our results
demonstrate that our multimethod schemes can significantly improve the reliability of

linear system solution while reducing total application time.

iv

Table of Contents

List of Tables o L e vi
List of Figures e vii
Acknowledgments ix
Chapter 1. Introduction L e 1
Chapter 2. Background 4
2.1 The Numerical Solution of Partial Differential Equations 4
2.1.1 The Solution of Nonlinear Systems 4
2.2 Software for Scientific Computing 5
2.3 Sparse Linear Systems and their Solution 8
2.3.1 Direct Methods for Sparse Linear Systems 9
2.3.2 Iterative Methods for Sparse Linear Systems 9
2.3.2.1 Fixed Point Methods 10
2.3.2.2 Krylov Subspace Methods 10
2.3.3 Multigrid Methods 11
2.3.4 Domain Decomposition Methods 12
2.4 Preconditioning o 12
2.5 Towards Using Multiple Linear Solution Schemes 13
2.5.1 Algorithmic Bombardment for the Iterative Solution of Linear
Systems: A Polylterative Approach [8] 13
2.5.2 Towards Polyalgorithmic Linear System Solvers for Nonlinear
Elliptic Problems [25] 14
2.5.3 The Linear System Analyzer [16] 15
2.5.4 Self-Adapting Numerical Software [23] 16
Chapter 3. Composite Solvers e 17
3.1 A Mathematical Representation 18
3.2 Analytical Results o oL 19
3.2.1 Constructing an Optimal Composite with Mutually Indepen-
dent Failure Rates 19

3.2.1.1 Composites From Smaller Subset of All Base Methods 23

3.3
3.4

3.5

Chapter 4.
4.1
4.2

4.3

4.4

Chapter 5.
5.1

5.2
5.3
5.4

5.5
Chapter 6.

References

3.2.2 Composites when Failure Rates of Methods are Corelated . .
The Design and Implementation of Composite Solvers
Empirical Results oo oo

3.4.1 Multiprocessor Environment

3.4.2 Performance Across Systems from Several Applications

3.4.3 Composites for Driven Cavity Flow
3.4.3.1 Application Description
3.4.3.2 Implementation and Validation
3.4.3.3 Resultsfora96 x96 Mesh

3.44 Resultsfora 128 x 128 Mesh
3.4.4.1 Parallel Performance on a 128 X 128 mesh

SUmMmary oo e e e e e e

Adaptive Solverso
A Mathematical Model for Adaptive Method Selection
Adaptive Solvers L
4.2.1 Adaptive Method 1 (Based on Convergence Rates)
4.2.2 Adaptive Method 2 (Based on Execution Time)
4.2.3 Adaptive Method 3 (Based on Polynomial Interpolation) . . .
Empirical Resultso o oo
4.3.1 FUN3D Code for Euler Equations on Unstructured Grids . .
4.3.2 Experiments on PETSc-FUN3D
4.3.3 Experiments on Driven Cavity Flow

SUmMmaryo e e e e e

Toward Multimethod Solver Components
Design Requirements Lo oL

Software Architecture for Multimethod Solvers
An TImplementation Using PETSc

An Implementation Using Component Software Framework
5.4.1 Creating Components within CCA Framework

5.4.2 Towards an Automated Interface

Summary e e e

Conclusions and Future Research

24
28
29
29
30
33
33
33
34
39
44
47

48
50
50
ol
52
52
93
53
53
55
o6

59
59

60
64

64
65

67
71

72

74

3.1

3.2
3.3

3.4

3.5

3.6

3.7

4.1

4.2

List of Tables

An example of three methods with conditional failure rates

Results for the becsstk test suite. oo
Results for the test suite with matrices from five applications.

The cumulative performance of four base methods for three driven cavity
flow simulations with a 96 x 96 mesh, a lid velocity of 20, and Grashof
numbers 820, 840, and 1000.o Lo,
Summary of performance measures for 9 simulations of driven cavity flow
on a 96 by 96 mesh. The column labeled (B1-B4) gives the cumulative
and mean values across four base solution schemes. The optimal com-
posite CU is 12% faster than the average execution time of the base

methods. L e e

Summary of performance measures for 24 simulations of driven cavity
flow on a 128 by 128 mesh. The column labeled (B1-B4) gives the cumu-
lative and mean values across four base solution schemes. The optimal
composite is 49% faster than the average execution time of the base

methods. e
Summary of performance measures for 24 simulations of driven cavity

flow on a 128 by 128 mesh on 8 processors. The column labeled (B1-B4)
gives the cumulative and mean values across four base solution schemes.
The optimal composite is 36% faster than the average execution time of

the base methods. Speedup and efficiency values are based on execution

times for one processor implementation with the best base method (B3).

Summary of performance measures of adaptive solvers for 1Grid. The col-
umn labeled mean gives the average performance over four base methods.
The third adaptive method (A3) performs 13% better than the average

execution time of the base methods.
Summary of performance measures of adaptive solvers for 128 by 128

driven cavity flow application. The column labeled (B1-B4) gives the

cumulative and mean values across four base solution schemes. The
adaptive solvers are 39% to 32% faster than the average execution time
of the base methods.

vi

25

31
32

36

37

42

46

55

o7

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

4.1

List of Figures

A schematic diagram of the calling sequence of a PETSc Nonlinear Solver
(Source: PETSc 2.1.3 tutorial).
CORBA Architecture (Source: Corba 3: Fundamentals and Programming).

Composites of two methods My,t; = 2.0,7; = .02 and Mg,19 = 3.0,y =
.80; both composites have reliability .984 but the composite MyM7 has

lower execution time. oL o oo
Segment of the graph used in the proof of Theorem 2.

The number of failures and the mean reliability of the linear solver using
base linear solution methods B1, B2, B3, and B4 and composites CU,
CT,and CR. et e
Iteration counts for linear and nonlinear solution using base methods B1,
B2, B3, and B4 and composites CU, CT,and CR.
Average time per iteration for linear and nonlinear solution using base
methods B1, B2, B3, and B4 and composites CU, CT, and CR.
Total time for linear and nonlinear solution using base methods B1, B2,
B3, and B4, and composites CU, CT,and CR.
Observed performance and the computed utility ratios of the four base
linear solution methods at the sample simulation.
The number of failures and the mean reliability of the linear solver for
each problem instance in a driven cavity problem with mesh size 128 by
128,
Time per iteration (in seconds) for linear and nonlinear solution for each
problem instance in a driven cavity problem with mesh size 128 by 128 ;
the plot shows the mean time per iteration over all simulations.
Iteration counts for linear and nonlinear solution; the plots highlight
cumulative values after simulations for each Grashof number.
Total time for linear and nonlinear solution (in seconds); the plots high-
light cumulative values after simulations for each Grashof number.

Parallel performance of the driven cavity application on 2 — 16 processors.

Left-hand graph plots growth of pseudo time step size and convergence of
residual norm for the pseudo-transient continuation version of the driven
cavity flow. Right-hand graph plots time spent in solving linear systems
during each nonlinear iteration; this illustrates that different amounts of
work are needed throughout the simulation to solve the linear systems. .

vii

7

18
23

37

38

38

40

41

42

43

43

45

4.2

4.3

4.4

4.5

5.1
5.2

5.3
5.4

Convergence of residual norm for 1Grid. Left-hand graph plots the curve
for the base solvers. Right hand graph plots the curve for the adaptive

SOIVErS. e e e e e e e e

Time spent in solving linear systems during each nonlinear iteration.
Left-hand graph plots the curve for the base solvers. Right hand graph
plots the curve for the adaptive solvers.
Left-hand graph plots convergence of residual norm for the pseudo-transient
continuation version of the driven cavity flow(600:20). Right-hand graph
plots of time spent in solving linear systems at each nonlinear iteration.
Cumulative time required by simulations on 30 problem instances on

driven cavity application Lo oL

Multimethod Software Architechture.
The main steps in processing a request to create a specific multimethod

solver Instance. L . e e e e e e e

Component creation with Babel.

Automated component creation with the extended interface to Babel.

viii

54

55

o7

o8

62

63
66

69

ix

Acknowledgments

First of all, I would like to thank my adviser Dr. Padma Raghavan for introducing
me to my thesis problems and for her invaluable guidance throughout my graduate
studies. She not only advised me on relevant scientific disciplines but also trained me
in other important aspects for a future academic career such as technical writing and
interaction with colleagues. She encouraged me to participate in many conferences and
introduced me to many other researchers associated with the field.

I would also like to thank Dr. Lois Curfman McInnes and Dr. Boyana Norris who
were our collaborators in many of our papers and my advisers during my internship at
Argonne National Laboratory. Their advice and guidance has helped me to better under-
stand concepts in scientific computing and develop my programming skills in scientific
computing software.

I like to thank Dr. David Keyes and Dr. Dinesh Kaushik for their helpful insight
to CFD applications. I used their simulation codes for my experiments. They also helped
me with references to better understand and validate my experiments with previously
existing results.

I would like to thank Dr. Paul Plassmann, Dr. Mahmut Kandemir and Dr. Lyle
Long for being on my thesis committee and for their suggestions towards improving my

thesis.
I would like to thank my colleague and friend Keita Teranishi for introducing me

to Padma (who I think is the best adviser one could have). In my early days when I
was a novice in scientific computing, Keita helped me understand many of the concepts.
I also thank my other friends Ivana Veljkovich, Amitayu Das and Indrani Halder, who
were a great help to me in the ”postprocessing” stage when I commuted between New
York and State College to finish my thesis.

Finally, I would like to thank my family for their constant support. When things
looked really bad they always said that everything is going to be alright and thanks to

my extensive circle of friends, family and well wishers it has!

Dedication

To Babaiya

Chapter 1

Introduction

Scientific computing concerns algorithms, analysis and software to enable the
modeling and simulation of physical phenomena from many disciplines, such as heat
flow, chemical combustion, atmospheric turbulence, etc. Such modeling and simulation
applications require the solution of many core scientific computing problems, such as
linear system solution, nonlinear system solution and eigenvalue computations. It is
important to note that such core problems typically have several competing alternative
solution schemes and the choice of a scheme can affect the performance of the overall
application. Furthermore, for a given problem, it is often neither practical nor possible
to determine a priori a single “best” solution scheme across applications. Applications
from different domains may have vastly different requirements and problem characteris-
tics. Even a single application may produce core problems with different attributes at
different phases. We therefore conjecture that application performance could potentially
be improved by using more than one solution scheme.

This thesis concerns method selection and composition techniques to improve the
performance of large-scale modeling applications. We focus on developing “multimethod
solvers” i.e., enhanced solvers that combine (or select from) more than one basic method
for sparse linear system solution. Although our algorithms can be applied to different
problems we chose to focus on sparse linear system solution because it forms a core
computational problem in many modeling applications. In a large class of modeling
applications such sparse linear solution can be the dominant cost. Consequently, by im-
proving the performance of the sparse linear system solution component we also improve
the performance of the overall simulation.

Consider, for example, modeling applications where nonlinear partial differen-
tial equations (PDEs) are solved using implicit or semi-implicit schemes with Newton’s
method [18, 32, 39]. The application time can be dominated by the time to solve sparse
linear systems generated at each Newton (nonlinear) iteration. There are a large number
of sparse linear solution methods from broad classes such as direct, iterative, multilevel-
multigrid and domain decomposition [24, 29, 32, 43, 46, 47, 48]. Furthermore, variants

of methods from all these classes can be combined through preconditioning to accelerate

2

the convergence of iterative methods [7]. Each class of methods has different character-
istics with respect to robustness, memory requirements, parallel scaling, speedup, etc.
Additionally, the numerical properties of the linear systems may change as the nonlinear
iterations progress. Thus a solver that reflected a good balance of accuracy and compu-
tational costs at a certain stage may fail to be suitable at a later stage. We therefore
seek to develop multimethod schemes that can effectively leverage the strengths of the
large number of available solution schemes to improve application performance.

This thesis concerns the development of multimethod solvers by composing and
selecting sparse linear solvers with attributes that best match problem characteristics
and application requirements. We focus on non-symmetric large-scale sparse linear sys-
tems arising from the solution of PDE-based applications. Our goal is to improve the
performance of such applications by improving the performance of the dominant step,
that of solving sparse linear systems.

We develop, implement and test (i) composite solvers to improve reliability with
scalable memory and (ii) adaptive solvers to reduce execution time by dynamic method
selection. Our schemes to construct both types of multimethod solvers are based on
metrics such as computation costs, execution time, failure rates and convergence rates,
i.e., metrics that can be obtained analytically or through experiments.

We define a composite solver [12, 13, 14, 15] as an ordered sequence of a set of
basic solution schemes. The failure of one method in the sequence results in the invoca-
tion of the next method until either the system is solved successfully or all methods have
been attempted without success. On practical problems, we expect that the reliability of
the composite will be much higher than the reliability of any of its constituent methods.
We thus aim to provide a highly robust solution with very limited memory overheads
beyond those required for the coefficient matrix. Our contributions include: (i) devel-
oping composite solvers that provide highly robust linear system solution with scalable
memory, (ii) constructing the optimal composite with minimum worst case running time
by using combinatorial frameworks, and (iii) experimental evaluation of the performance
of composite solvers in computational fluid dynamics (CFD) applications.

We also develop an adaptive solver [13, 37] to dynamically select the most ap-
propriate linear solver that matches the properties of linear systems generated in the
course of nonlinear iterations. In contrast to composite solvers, only one base solver is
used per linear system. Our goal is to adapt linear solvers to better fit the changing
linear system attributes to improve the execution time. Our contributions include: (i)

developing of “sequence based” heuristics for dynamic method selection using metrics

3

such as the convergence rates of the linear and nonlinear systems or the execution time
of the linear solution scheme, (ii) developing of “non-sequence based” heuristics to be
used when the change in the linear system characteristics is more complex, and (iii)
experimental evaluation of the performance of adaptive solvers in computational fluid
dynamics (CFD) applications.

Instantiating a multimethod solver is a complicated task and this thesis would
not be complete without addressing this issue. Instantiation of multimethod solver re-
quires the reuse of a variety of sparse solver implementations in different languages. An
additional requirement is that the interface to the multimethod solver service should be
easy to use for the application developer. The interface should not reveal lower level
implementation details such as integration of the linear solvers into applications or how
the solvers are invoked. We propose the design of a multimethod software architecture
which can use sparse linear solvers from a large number of linear solver packages and
provide an easy to use interface to application developers. We present two different
implementations of this software architecture, a simpler model using PETSc (Portable
Extensible Toolkit for Scientific Computing) [5, 6] and a more complex component-based
model conforming to the currently emerging CCA (Common Component Architecture
Forum) [4, 11] standards.

The remainder of the thesis is organized as follows. In Chapter 2, we provide
background material on the solution of partial differential equations, Newton’s method
for nonlinear system solution, sparse linear solvers, and recent related research on the use
of multiple linear solution methods. Chapters 3, 4, and 5 contain our main contributions.
Chapter 3 concerns the development and analysis of composite solvers and includes an
empirical evaluation of their performance in CFD applications on sequential and parallel
architectures. Chapter 4 concerns the development of adaptive solver heuristics and an
empirical study of their performance. Chapter 5 concerns the design of our multimethod
solver and its implementation in software component framework. Chapter 6 contains

concluding remarks and potential directions for future research.

Chapter 2

Background

In this chapter, we present a brief review of the background material. We begin
by discussing partial differential equations and their numerical solution. We focus in
particular on Newton’s method for nonlinear system solution. We then present the
software infrastructure for implementing these techniques. We then provide an overview
of sparse linear solvers along broad categories such as direct, iterative, multilevel and
domain decomposition solvers. In the final section of this chapter, we present a review of

related research that use more than one linear solution method to solve linear systems.

2.1 The Numerical Solution of Partial Differential Equations

Most physical phenomena evolve continuously in time and space and their mathe-
matical models can often be described by partial differential equations (PDEs) involving
the partial derivatives of several independent variables [32, 43]. Of particular interest
are second order PDEs because the mathematical models of many applications fall in
this category.

Some partial differential equations can be solved analytically by obtaining the
series or integral representation for the continuous function. However, such analytical
solutions, while providing valuable insight, are typically feasible only for simpler models.
Consequently most applications with PDE based models are solved numerically by dis-
cretizing the equations to generate an approximate solution. The standard techniques
for discretizing PDEs are (i) finite difference, (ii) finite elements and (iii) finite volume
[10, 18, 26, 32, 42, 43]. The discretization of partial differential equations from such
schemes gives rise to systems of linear or nonlinear equations which are then numerically

solved.

2.1.1 The Solution of Nonlinear Systems

A nonlinear system of m equations with n unknowns has the form f(z) = 0,
where f : R" — R™. The root of the system of nonlinear equations is the vector z for
which all component functions of f are zero simultaneously [32]. Systems of nonlinear

equations are often solved using the Newton’s method [18, 32, 43] and its variations.

5

We first consider Newton’s method applied to solve f(x) = 0, where z is scalar
and f is a scalar function. Newton’s method starts with an initial guess, z(and at each
iteration k finds the approximate value of the function at zp. The value of f(z;) and
its derivative is used to calculate the new estimate of z, i.e., the value of zp 1.

The value of zj 1 is calculated as follows. The truncated Taylor series expansion

gives, f(zp +h) = f(z1) + f (x)h, where zpy1 = o +h. If 23,1 was the root of

the nonlinear equation, then f(zj +h) =0 and h = — J{,((Z)), assuming f(z) # 0. This

value of h is used to calculate the next approximation of z. This can be expressed as the

iteration, zy 1 + zp — f(zg)/ f/(wk). The iterations are continued until a sufficiently
good approximation is obtained (as determined by a tolerance specified by the user)
[18, 32, 43]. Geometrically Newton’s method is equivalent to drawing a tangent through
the point (zp, f(z)). The intersection of the tangent with the x-axis gives the new

estimate.
Newton’s method can be generalized to cases where z is a vector and f is a vector

function. Now, f(z) represents a system of equations and the corresponding Taylor’s
expansion is f(z+h) = f(z)+ J(x)h, where J(:I:)ij = ﬁfi(a:)/&cj is the Jacobian matrix
of f. At each iteration the linear system of equations given by J(z)h = — f(z}) is solved
to obtain h which is then used to update = as z3 41 < 7 +h [18, 32, 39, 43].
Newton’s method shows quadratic convergence for a simple root but it might
not converge if the initial guess is far away from the solution [32]. This method is also
expensive because it involves recalculating the Jacobian matrix and solving the associated
linear system at each iteration. The calculation costs can be mitigated by using variations
of the basic algorithm. Inexact Newton methods [30, 39] solve the system nonlinear
equations f(r) = 0, by finding an approximate solution to J(z;)h = —f(z}), such
that f(zg) + J(zp)h < mprg with (0 < 7 < 1 for all k). The Jacobian can also

be approximated by premultiplying the linear system with a matrix B, where B!
approximates the action of the Jacobian, at a smaller cost. The value of the next iterate

is then obtained as follows, zj 1 = o + ah; 0 < a < 1.

2.2 Software for Scientific Computing

In this section we will discuss some of the advanced software systems that are used

to implement scientific computing applications. We will discuss PETSc [5, 6], a problem

6

solving environment for scientific computing and the Common Component Architecture
[4, 11], the emerging standard for scientific computing components.

PETSc: A Portable Extensible Toolkit for Scientific Computing The
Portable Extensible Toolkit for Scientific Computing (PETSc) [5, 6], developed at the
Argonne National Laboratory, consists of a suite of data structures and functions for the
scalable solution of scientific applications. PETSc is composed of hierarchical libraries.
These include low-level data structures for representing objects such as mesh, matrix,
vector, and these data structures are subsequently integrated to form higher level libraries
for implementing linear and nonlinear solvers. The higher level abstractions facilitate
better understanding and reuse of individual code segments. The design of PETSc also
introduces architecturally important features such as re-organizing code for strong cache
locality and preallocation of memory. PETSc also includes functions and data structures
to gather a limited set of performance data without significant runtime overheads.

Figure 2.1 shows the calling sequence of a typical PETSc nonlinear solver. The
application driver performs I/O for initialization, restart and post processing. The ap-
plication driver also calls routines to create data structures for matrices and vectors

and also initiates the nonlinear solver. The nonlinear solver routine invokes the linear
solver which is then executed. An iterative solver routine would further call the specified

Krylov subspace solver and preconditioner.

Component-Based Software Architectures Current application codes are
no longer relying on a single software package. Use of a single package generally leads
to a monolithic code which gets unwieldy with each new addition. There is often no
efficient mechanism for auxiliary functions such as collection and storage of performance
data. Scientific computing codes therefore are veering towards a modular structure where
different numerical or database related software are integrated into a single application.
The software codes can potentially differ in the language they are implemented, their
supporting architecture, etc. The challenge lies in effectively integrating the codes by
bridging these differences.

Component based software design tries to overcome the problems occurring from
variations of languages, libraries and architectures, by incorporating features such as
object-oriented code, language interoperability and the ability for dynamic composi-
tion [4, 11, 40]. When codes are written in different languages, combining them to
form an integrated application software poses a serious challenge. A software component
architecture defines a set of application-level software components, their structural rela-

tionships, and their behavioral dependencies. Component based architectures may thus

{ Application Driver }
Nonlinear Solvers (SNES) |
‘ Solve
[Linear Solvers (SLES) J
PETSc
v v A 2 A

Application Function Jacobian Post
Initialization Evaluation Evaluation Processing

Fig. 2.1. A schematic diagram of the calling sequence of a PETSc Nonlinear Solver
(Source: PETSc 2.1.3 tutorial).

REPOSITORY

IDL COMPILER
CLIENT SERVER

IDL / IDL
STUBS SKELS

‘ ORB INTERFACE

Fig. 2.2. CORBA Architecture (Source: Corba 3: Fundamentals and Programming).

8

allow the user to “plug-and-play” with different components when creating a complex
software. A well known example is the Common Object Request Broker Architecture
(CORBA) [45]. In this model, the users (called clients) request services from servers
through an interface specified by an IDL (Interface Definition Language). A client can
access an object by issuing a request. The central component of CORBA is the Object
Request Broker (ORB). It encompasses all of the communication infrastructure necessary
to identify and locate objects, handle connection management and deliver data [45].

Scientific computing however, deals generally with large-scale applications and
it is a common practice to use parallel algorithms. Parallelization involving large scale
computations in an heterogeneous multiprocessor environment lead to complex problems,
such as effective partitioning of data, communication between processors, etc., which are
not encountered in sequential codes. The Common Component Architecture Forum
(CCA) [4, 11], specifically aims to develop a scientific component model while remaining
compatible with other component architectures.

The Common Component Architecture (CCA), an extension of component-based
models like CORBA, is designed to support large-scale high-performance software on par-
allel, distributed, and hybrid frameworks [4, 11]. The components are defined through
the Scientific Interface Definition Language (SIDL). The SIDL files are processed by
Babel [19], a SIDL based language interoperability tool, to generate components for the
specified software library in the specified language. Components form the basic units of
CCA and are integrated into the larger applications. The application views each com-
ponent as a black-box and interacts with components via abstract interfaces called ports
in a special runtime system. The uses ports specifies a functionality required by the
component and the provides ports specifies a functionality implemented by the compo-
nents and to be used through the ports of other components. Components are connected
through a framework, such as CCAFFEINE. The framework connects matching uses and
provides ports, without going into the implementation details of either component. The
framework also provides a standard set of services available to all components. These
services are cast as ports for uniformity.

2.3 Sparse Linear Systems and their Solution

Linear systems are of the form Az = b, where A is a m X n coefficient matrix, b
is a known vector of length m and z is an unknown vector of length n. We limit our
discussions to linear systems associated with square n X n coefficient matrices with full
rank having a unique solution. Linear systems are sparse when A has very few nonzeros
cn, where ¢ is a small constant. Most sparse matrices generated from discretization of
PDEs on a spatial domain are structured, that is they exhibit a pattern of the non-zero
elements.

2.3.1 Direct Methods for Sparse Linear Systems

Direct methods [24] involve factoring the coefficient matrix A into an upper trian-
gular matrix (U) and lower triangular matrix (L), such that A = LU. Now, the system
of linear equations can then be solved by solving the following two triangular systems
in order, Ly = b (by forward substitution)and Uz = y (by backward substitution).

If A is symmetric positive definite (SPD) then a symmetric format of LU factoriza-

tion exists such that U = LT and A = LT L. This is known as Cholesky factorization
[29, 32, 43, 47, 48].
Sparse linear factorization is associated with an intrinsic problem of fill-in. A fill-

in occurs when a zero element in the coefficient matrix is transformed into non-zero as
a result of factorization. Fill-in depends on the structure of the matrix rather than the

values. It has been proved that the minimization of fill-in is an NP-complete problem [49].
However, fill-in can be reduced by reordering the rows and columns of the matrices. The
minimum degree heuristic [22], a greedy strategy for minimizing fill-in, starts with the
column that will potentially incur the least fill in. Divide and conquer strategies include
nested dissection, class of ordering schemes based on vertex separators. This is one of

the most successful ordering heuristics. Factoring matrix represented by a planar graph

with n nodes requires O(n3/ 2) time and O(nlogn) memory [36].

Direct methods can compute the solution in a finite number of steps and guarantee
a solution if one exists. However, this reliability comes at the cost of extra memory due to
fill-in. Direct methods are also difficult to parallelize as factorization involves extensive

communication between the columns in the matrix.

2.3.2 TIterative Methods for Sparse Linear Systems

Iterative methods start with an initial estimate of the solution x(and refine it at
each iteration. In practice the iterations are continued till a given criterion is achieved;
for example limits may be placed on the number of iterations, or when the error is
sufficiently low as given by the norm of the residual b — Az. Iterative methods retain the
sparsity structure and require very little extra memory in addition to that needed by the
coefficient matrix. However, for certain problem instances, the convergence might be slow
or the method might not converge at all. It is common practice to use preconditioners
to change the numerical characteristics of the linear system to be solved and thereby
improve the reliability of the method. In this section, we will concentrate on two classes
of iterative methods, based on (i) Fixed Point iterations and (ii) projections on to Krylov
subspaces [29, 32, 43, 48].

10

2.3.2.1 Fixed Point Methods
Fixed point iteration schemes transform the linear equation Az = b into the form

Tyl = M_lNack + M~ 'b, where A = M — N. Some fixed point iterative schemes
include,

M = D;N = —(L+U) (Jacobi)

M = (D + L); N = —U (Gauss-Seidel (GS))

M= %D +L;N = (% —1)D — U (Successive Over Relaxation (SOR))
L, U and D are respectively the lower triangular, upper triangular and diagonal parts
of A and w ranges from 0 to 2. The convergence of fixed point methods depend on
the spectral properties of the matrix GG; the method converges if the spectral radius of
G, p(G), is less than one. The convergence of SOR depends on the value of w and its
convergence for an optimal w is an order of magnitude higher than Gauss-Seidel and
Jacobi [32].

Block relazation schemes are a generalized form of fixed-point iterative solvers.

They involve updating components of the vectors instead of each single entity. The ma-

trix A is divided into blocks and the corresponding vectors are updated accordingly [43].

2.3.2.2 Krylov Subspace Methods

Krylov subspace methods are based on projections onto Krylov subspaces. A
Krylov subspace of dimension m for a matrix A, and an associated vector b is defined
by K,,(A,b) = span{b, Ab, A%, ..., A™ 1p}.

A set of orthogonal vectors {q1, 9, ..q,,} that span the same space as K,,,(4,b)
can be built using the Arnoldi Method [29, 43, 47, 48]. This method is based on

reducing the matrix A to a Hessenberg matrix H, such that A = QH QT, where
Q ={q1,99,--- g} is an unitary matrix; AQ = QH. The Lanczos method [29, 43, 47, 48]
is the symmetric equivalent of the Arnoldi method that reduces a symmetric matrix A to
a tridiagonal matrix T, such that AQ = QT. Lanczos Biorthogonalization, a modifica-
tion of the Lanczos algorithm, reduces a non-symmetric matrix to a tridiagonal matrix.
Lanczos biorthogonalization [29, 43] builds Krylov spaces, K;(A,vy) and Ki(AT,wl).
The corresponding vector sets are V; = {vy,v9,...,v;} and W; = {wy,ws, ..., w;}. The
matrices V; and W; are not unitary, but the columns of V; are orthogonal to those of
W;.

The Generalized Minimal Residuals(GMRES) [29, 43, 47, 48] linear solution tech-

nique is based on projection of vector b onto the Krylov space K;(A,b) and orthogonal

11

to AK;(A,b). The approximate solution z; is the vector that minimizes the residual
r; = b— Az;. Expressing z; = zg + ();y, the corresponding least squares problem is,
b — Az;ll9 = ||Be; — H;yllp, where 8 = ||rgll9, AQ; = Q;H;, and the columns of Q;
span the same subspace as K;(A4,b). The GMRES algorithm computes y that minimizes
the corresponding least square expression and then calculates z; from the obtained y.
The approximate solution is improved for higher values of i, i.e. for a larger set of
orthogonal vectors. For matrices of high ranks, the expenses of storing the entire sub-
space is prohibitive. This limitation is overcome by restarted GMRES or GMRES(k)
where Arnoldi iterations for creating the Krylov subspace are restarted after k iterations,
setting =g = z}, [43].

The Conjugate Gradient(CG) method [29, 43, 47, 48] is essentially a Lanczos
scheme to reduce SPD matrices into a tridiagonal form. Since the reduced matrix is
tridiagonal, the values of only three consecutive orthogonal vectors need to be saved and
no restart value is required. Mathematically this linear solution algorithm is similar to
GMRES, solving a least square problem and is the method of choice for solving linear
systems when a is SPD. The approximate value of z at the ith iteration is obtained by
zT; = T;_1+o;_1p;_1, where o;_1 is a scalar and p; _{ represents a new search direction.

The Biconjugate Gradients(BiCG) method [29, 43, 47, 48] uses biorthogonaliza-

tion to reduce the co-efficient matrix. This method is also based on finding the least

square solution. The vector b is projected onto K;(A,v1) and orthogonal to KZ-(AT, wy).
The approximate value of x; can be calculated from the previous value z;_1 in a process
similar to CG by specifying a new search direction p; ;. Since two sets of mutually
orthogonal vectors V and W are used, BiCG can simultaneously solve the dual problem

AT 7% = p* [43]. The transpose free variant of this algorithm is BICGSTAB which avoids

the calculations with AL .
The Quasi-Minimal Residual (QMR) method [29, 43, 47, 48] for solving linear

systems is based on reduction by biorthogonalization. In the i-th reduction step AV; =
V;11T;, where T; = (T;, 51-4_16;) and §; = T'(i,i — 1). The residual norm is of the form,
|b — Azllg = [|V;11(Bel — Tyy)|l9, where 8 = ||rglla- In a procedure similar to GMRES

the value of y that minimizes the equation above is calculated to obtain the value of z;.
The transpose free variant of QMR is TFQMR [28].

2.3.3 Multigrid Methods

The residual, r = Az —b, can be considered to be composed of high-frequency (os-

cillatory) and low-frequency(smooth) components. Fixed point iterative methods reduce

12

the high frequency error rapidly, but are slow to reduce the low frequency components.
It has been observed that a low frequency component becomes one with a high frequency
in a coarser grid. This is the motivating principle for multigrid methods [32, 43].

The basic steps of a multigrid method are as follows. On the original mesh, the
system Az = b is approximately solved for a few iterations. This operation is known
as smoothing and different iterative methods can be used as smoothers. The residual
r is computed and restricted to a coarser grid. The equation Ae = r is solved on the
coarser grid to get an approximation of the error, e. This value is then interpolated
back to the finer mesh to obtain an improved approximation of xz. The number of
levels of coarsening varies according to the application requirements or user specified
parameters. The transition from finer to coarse grids and back to finer grids is known
as a cycle. Different cycling strategies such as V-cycle, W-cycle, Full multigrid, can be
used [29, 32, 43].

2.3.4 Domain Decomposition Methods

Domain decomposition methods are often used for solving large-scale PDE-based
models on two and three dimensional domains. These methods employ a divide and
conquer strategy [43, 46]. The basic principle of domain decomposition is to divide the
solution space {2 into s sub-domains €2;, such that 2 = Ule (2; and solve the problem on
the entire domain by utilizing solutions from the sub-domains. There are many variations
of domain decomposition based on the type of partitioning, amount of overlap, accuracy
of the sub-domain solutions, etc. Domain decomposition methods can be classified into
direct (using the Schur Complement) and iterative (Schwarz alternating procedures)
methods. Schwarz methods are used for solving systems with overlapping sub-domains.
The values at the boundary points of each domain are updated based on their solution
in the neighboring domains. The updates can be done after an entire iteration cycle
through all domains is completed (Additive Schwarz Procedure). This is analogous to
the block Jacobi iteration. Another choice is to perform the updates after solving the
system in each domain (Multiplicative Schwarz Procedure). This is analogous to block

Gauss-Seidel iteration.

2.4 Preconditioning

Preconditioning [7, 29, 32, 43, 47, 48] is used to modify the matrix A so that

the numerical characteristics of the new matrix will lead to faster convergence when

13

a KSP iterative method is applied. The linear system to be solved is transformed to

M YAz = M _1b, where M1 is the mapping representing the preconditioner. Use
of preconditioners entail additional computation costs and thus there exists a trade-off
between cost of using the preconditioner and the increase in convergence rate.

Some of the simpler preconditioners are based on fixed-point iterative methods,
like the Jacobi preconditioner and the Symmetric Successive Over Relaxation (SSOR) [7,
29, 32, 43, 47]. Block Jacobi [43] preconditioning is a generalization of the Jacobi pre-
conditioner and uses block diagonal elements.

Preconditioners can also be obtained from the incomplete factorization of the

coefficient matrix. Incomplete LU (ILU) [7, 29, 43] factorization generates the triangular

matrices L and U, where some of the new nonzero values are ignored according to a given
criteria [43]. ILU factorization with threshold ILUT(7) [7, 29, 43], is a method where

elements whose values are less than the threshold 7 are eliminated from the factors L
and U.
Preconditioners built from incomplete factorizations are difficult to parallelize.

Sparse Approximate Inverse is a more scalable form of generating preconditioners. This

class of preconditioners are based on calculating M, M is approximately equal to A_l,
by minimizing the Frobenius norm of I — AM [7, 29, 43].

2.5 Towards Using Multiple Linear Solution Schemes

As observed in the last two sections, there exist several competing methods for
solving sparse linear systems representing improvements in the execution time, the mem-
ory required, the robustness of the solver, etc. For linear systems arising in the course
of solving a modeling application, it is often difficult to predict the single best linear
solver to be used. This has motivated us and other research groups to design algorithms
that use more than one linear solver to solve a given problem. However, until now, the
research in this area relied on the user to experimentally combine solvers from a predeter-
mined set. Our approach differs significantly in formulating algorithms to automatically

construct multimethod solvers. The rest of the section describes related research that
advocate or use multiple linear solvers.

2.5.1 Algorithmic Bombardment for the Iterative Solution of Linear Sys-
tems: A PolylIterative Approach [8]

In this paper Barrett et al. define and implement a “polyiterative” linear solver.

A polyiterative linear solver consists of a set of iterative linear solvers that are applied

14

simultaneously to the same system. The authors describe a parallel implementation of
the polyiterative approach as follows.

The linear system is distributed among the nodes of the multiprocessor system.
The following variants of the conjugate gradient method; BiICGSTAB, QMR and CGS
are used. The operations required by these iterative methods are of two classes; (i) those
that do not need any global communication and (ii) those requiring a communication
stage. Operations, such as vector updates, that do not require any communication are
performed in each processor on its local data. These operations differ according to the
method used and are performed in sequence for each method in each processor. The
communications across processors is however not done sequentially for each method.
Global communication is optimized by aligning the linear solution methods at the com-
munication stages and packing all the data required by the different methods in a single
buffer. Though the data for all methods is sent together, the methods do not share data
amongst themselves as this can adversely affect the Krylov subspace built for each of the
methods [8]. In course of these computations if a solver fails to converge, it is removed
from the set. The poly-iterative process is terminated when convergence is achieved by
any one method.

The paper reports the solution of a 2D-Poisson’s equation using the following
variants of the conjugate gradient method; BiCGSTAB, QMR and CGS. The authors
solve the problem on different grid sizes to demonstrate that the most effective solver
(one which gives the most accurate solution in the least time) varies as the grid sizes
are modified. The suite of experiments in [8] is an example that motivates the use
of multiple algorithms in solving variants of the same problem. The main advantage
of the polyiterative approach is that all likely linear solvers can be tried at the same
time. However, the execution time is increased since the methods are aligned for each
communication. This results in the execution time of an iteration being at least as much

as that of the slowest solver.

2.5.2 Towards Polyalgorithmic Linear System Solvers for Nonlinear Elliptic
Problems [25]

In this paper, the authors Ern et al. investigate the performance of linear solvers
while solving a nonlinear elliptic problem representing flame sheet simulation. The sim-
ulation is divided into three phases; the initial, medium transient phases and the final
steady phase. The linear solution methods used in the experiments were SOR with
w = .85, BICGSTAB and GMRES(20). The last two methods were preconditioned

15

using block line Gauss Seidel(GS), symmetric block-line Gauss Seidel(SGS) and block
incomplete LU decomposition(ILU).

Experiments on a 41 x 41 grid showed that BICGSTAB and GMRES each with GS
preconditioner required the least execution time and BiCGSTAB required less memory
than GMRES. At the initial transition stages the performance of SOR was comparable
to the Krylov methods and the method required less memory, but at the steady state
the relaxation factor had to be switched to 0.3 to achieve convergence.

Experiments on a 81 x 81 grid, showed that once again the best methods were
Krylov solvers with GS preconditioner. The memory requirement of GMRES depends
on the restart value. A smaller restart value can ameliorate storage problems, but this
might lead to stagnation. The relaxation method SOR performed favorably in the the
initial transition phases, but was not competitive in the steady phase.

These results illustrate the factors that should be considered while choosing a
solver. Time is of course a primary issue, but as seen in the case of Krylov methods
storage space is also an important concern. These experiments also demonstrate that
the performance of the solvers vary at different stages of the simulation.

2.5.3 The Linear System Analyzer [16]

The Linear System Analyzer (LSA) developed by Bramley et al. is a component-
based problem-solving environment where the user can simply use a specific combination
of preconditioner and linear solver without being required to know the details of the
implementation.

From the user’s perspective, the linear system analyzer is viewed as a GUI which
shows a list of machines and components available on them. The user can choose solvers
or other components on a specific machine by clicking a button and selecting a machine.
Then the LSA starts the execution of the component on the machine specified.

The main server of the Linear System Analyzer comprises, (i) the User Control, a
GUI interface to the end user, (ii) the LSA Manager which deals with resource manage-
ment and the construction of a component network, (iii) the Communication Subsystem
which supports communication between processors during parallel applications, and (iv)
the Information Subsystem which provides information about the solution process and
returns a summary of results and the performance metrics.

Details on the implementation and behavior of LSA can be found in [16]. The
software advocates the use of components, an implementation strategy that is gaining
prominence in recent scientific computing applications. LSA also provides the facility for
simultaneously experimenting with multiple linear solvers by running them on multiple
machines. However, LSA requires the user to specify the linear solvers needed and does

not have a mechanism to automatically select or combine linear solution methods.

16
2.5.4 Self-Adapting Numerical Software [23]

Self-Adapting Numerical Software (SANS) by Dongarra et al. aims for “successful
management of the complex grid environment while delivering the full power of avail-
able algorithmic alternatives” [23]. The software is composed of the SANS agent for
automating algorithm selection and management of computational resources. A meta-
data vocabulary implemented in XML, is used to store information on different data and
algorithms in an associated database. SANS components also include a runtime adap-
tive scheduler and prototype libraries to optimize performance on different architectures.
The implementation of SANS encapsulates several interesting problems such as, selection
of the most appropriate method for the problem, efficient storage and retrieval of data,
effective scheduling policies, heuristics for compromising between trade-offs, etc. The
design of SANS has been proposed and its development is still in its early stages. The
current work includes designing a database to collect performance metrics of a variety of
linear solvers and use of statistical and data-mining techniques to select the appropriate

solver as required.

17

Chapter 3

Composite Solvers

In this chapter, we will define and develop a class of multimethod solvers that we
call “Composite Solvers.” We develop a combinatorial scheme for constructing composite
solvers and report on their performance in CFD applications. Some of these results were
reported earlier in a journal article and conference proceedings [12, 13, 14, 15].

A composite solver is designed to provide a highly reliable sparse linear system
solution scheme with limited memory requirements. A composite comprises a set of
basic preconditioned iterative sparse linear solution methods that we henceforth call
“base methods”. A composite solver is defined by a predetermined sequence of these
base methods. Initially, the first method in the sequence is used to solve the given linear
system. If convergence is not achieved then the next method in the sequence is used.
This process is continued until the solution is obtained or all methods in the sequence
are exhausted. We thus attempt to produce composite solvers that are highly robust
while using significantly less memory than a sparse direct solver.

Each base method is associated with a performance metric, generally taken to be
the execution time, and a reliability /failure metric. The failure rate of a base method
is the probability that the method would not converge. We define the reliability as 1-
failure rate. The cumulative failure rate of the composite is calculated as the product of
individual failure rates and the cumulative reliability is 1-cumulative failure rate. This
value of the composite is independent of the ordering of the methods in the sequence.
The cumulative execution time of the composite, however, does depend on the ordering.
This is because in a composite solver a method is applied only if the preceding methods

have failed. Therefore the cumulative execution time is calculated as the sum of the
execution time of the individual methods weighted by the cumulative failure rates of the

methods preceding it in the sequence.

Consider an example with two base methods M7 and M5 as shown in Figure 3.1.
Methods M and My are associated with execution times ¢; = 2 and {9 = 3 and reliabil-
ities r{ = .02 and r9 = .80 respectively. Two different composites My; My and Moy; My
can be obtained. The execution time of the composite represented by the first sequence
is thus 4.94, whereas that of the second composite is 3.04. The reliabilities of both the
composites are same, .984, which is much higher than the reliabilities of the individual
methods. Our goal is to construct an optimal composite with minimal execution time
while retaining the properties of high reliability and low memory requirements.

18

S=Qeeess F=Falle

Fig. 3.1. Composites of two methods M7,t; = 2.0,7; = .02 and Ms,19 = 3.0,79 = .80;
both composites have reliability .984 but the composite Mo M7 has lower execution time.

3.1 A Mathematical Representation

Consider a working set of n distinct methods M7, Mo, ..., M,,. Each method M;,
is associated with its normalized execution time #; (performance metric) and failure rate
is f;; and its reliability is given by r; = 1— f;. Let P represent the set of all permutations
(of length n) of {1,2,...,n}. For a specific P € P, the associated composite is denoted
by C’, that is the permutation P defines the sequence of the methods My, Ms,..., M,
in the composite C. If Pk denotes the kth element of]5, the composite C consists of

methods M P M P , M P For a set of methods whose failure rates, and conse-
1 2

n
quently reliabilities, are mutually independent, the total reliability of any composite C

is1— sz’f(f;)- This value is independent of the ordering and has a higher value than

the reliability of any single base solver. The worst case execution time, 7', of C' occurs

when all the methods of the sequence have to be considered. The value of T is:

T=ts +fpts +ot+fsfs - fo ts-
Py fPl Py fPlfpz an—l Py,
We define the optimal composite to be the composite with minimal worst-case execution

time.

A subsequence of the form Pk,]f’k_H, --- ,f’l (]5 € P) is denoted by P(k:l) and
can be associated with a composite comprising I — k + 1 methods using the notation
O(k:1)- The total reliability of C(yy is Ry = 1- [1:=% £ and the cumulative failure

-)

is F(k:l) = H;’:Z f P As observed previously, both these quantities depend only on
K3

19

the underlying set of methods specified by Pk, Pk +10 ,151 and are invariant under all

permutations of these methods. The worst case time of é(k:l) is defined as T(k:l) =
ZZ k[t Hin = A Ly, P]- A final term we introduce is the utility ratio which is the ratio
of the execution time to the reliability. For a method M; the utility ratio u; = t;/r;. By
generalizing, we define the total utility ratio of O(k:l) as U(k:l) = T(k:l)/R(k:l)'
Henceforth we will not explicitly reference 13 in expressions for R ﬁ’ T and U
for a specific C and P. Thus the expression for T(k 1) simplifies to Z’ =l AL Hin = & fm]
Additionally, in an attempt to make the notation consistent, we will treat C(k:k) specified

by P(k: k) as a (trivial) composite of one method and use related expressions such as

Te:k)s Biosky> L) Uhary (Where 8y = Tippyry = Bgegys o = Fgag), and uy =

Ulk:k))-

3.2 Analytical Results

At first glance, it might seem that the optimal composite can be obtained by
arranging the methods either in increasing order of time, or in decreasing order of relia-
bility. However our analysis shows that neither of these strategies produce the optimal
composite. We will proceed to show that a composite is optimal if and only if its under-

lying methods are in increasing order of the utility ratio.

3.2.1 Constructing an Optimal Composite with Mutually Independent Fail-

ure Rates

We will first consider composites formed from a set of methods with mutually
independent failure rates, i.e., the failure of one method does not depend on the failure
of another. We begin by observing that for any P € P the execution of the composite

C’, can be mimicked by subsequent execution of two composites, é(l:r) and C’(T +1n)-

Consequently T(l:n) = T(l:r) + F(l:r)T(r+1:n)'

20

— ~

LeEmMA 3.1. For any Pe P, the utility ratio of the composite C satisfies U< maxz ?

Proof: It is easy to see that the statement is true for the base case consisting
two methods (n = 2). As the inductive hypothesis, we assume that the statement is

ln].U

true for any composite of n — 1 methods, that is, U(l n—1) < max (i:0)- Consider

~

C, a composite of n methods associated with the permutation P, as a composite of two

methods with execution times T(l:n—l) and Cf’(n:n), reliabilities R(l:n—l) and R(n:n), and
utility ratios U(l:n—l) and U(nn)

If U(l:n—l) is less than 0(nm), then by the base case, 0(1:71) is less than f](n:n).

~

We also have U'(

nin) < maxz 711 (i) By transitivity we can conclude that, ﬁ(l:n) <

~

(i:2)
and by the base case Uyq.,\ is less than U;y.. _1y. Therefore by transitivity Uy, y <
(1:n) (I:n—1) (1:n)

On the other hand if U(n:n) is less than U(l:n—l)’ then U(l:n—l) <m Z ?

1=N 75
max, —; U(i:i) O.

THEOREM 3.1. Let C be the composite given by the sequence P € P. If [7(1:1) < U(2:2)

IN

< U(n:n)’ then C is the optimal composite, i.e., T = min{T :Pe P}.

Proof: The base case would consist of a composite of two methods, and we can easily

see that in this case the statement is indeed true.
We next assume that the statement is true for composites of n — 1 methods. The

optimal composite of n — 1 methods is now extended to include the last method; and
let this be represented by the sequence P and the composite by C. For the sake of
contradiction, let there be a permutation Pe P, such that T < T and the utility ratios

{U(i:i) : 1 <14 < n} are not in increasing order of magnitude.

Let the k-th method in C be the n-th method in C. Therefore T{j.5) = T(p) and
F(kik) = F(n:n)' Using the earlier observations:
T =Tauy + Fam)Te+1m-1) T F1:k) Flh+1:0-1)T(nem) (3.1)

T = T(l:k—l) +F (1:I<:—1)T(k:k) +F (1:k—1)F(k:k)T(k+1:n)

= Tak-1) + Fab-1)Tmm) + Fab—1)Fnin) Lk+1:m) (32)

(i:

i)

21

According to the inductive hypothesis we can claim that T(l:n—l) is the optimal

time over all composites of n — 1 methods. This composite is thus lower than or equal
to the time for the composite obtained by excluding the n-th method in C, which is the
same as the k-th method in C. Mathematically this can be expressed as, T(l:k—l) +

Faak—1)T(1im) 2 Ty + F k) Tk 41:m—1)s to yield,
Tak-1) + Fae—1) L1y — Tew) = Faamy Tpa1m—1) > 0 (3.3)
According to our assumption T < T; we expand this relation,
Tak-1) + Fab—1)Tinm) + F1:e=1) 1 = Bnan)) Lgor1m) <

Tk + Famy Trr1m—1) + Fam) P+ 1:m—1) L nom) -
We can then rearrange the terms on either side to show that the left-hand side of Equation

3.3 is less than or equal to

FryFer1n—1)Tnn) — Fak-1)Tnm) T F1:6-1)Bonn) Tk+1:n)- Thus,
0 < F1yFler1:n—1)Tnim) = Fasb—1)Tinim) + F(1:6-1)Bnn) Lo+ 1:m)-
By rearranging terms and using the equation F(l:k)ﬁ(lﬁ—l:n—l) = F(l:k—l)F(k+1:n)

to simplify, we obtain,

mz

F(l:k—l)T(n:n) - F(l:k)p(k+1:n—1)i1(n:n) < F(l k—1)"Y(n:)T(k+1:n)'

:Uz

implies, F(1.5_1)T(n:n) = Fab=1)F ot 1) Tinm) < Fn=1)Bn) Lr1m)-
Canceling the common terms on either side yields,
T(n:n)(l - F(k'+1:n)) < R(n) (k+1 n) which is equivalent to U(n m) < U(k+1 m)- By

the definition of C, (7(is the largest utility ratio among all the n methods. But if

nmn)
ﬁ(n:n) < U(k+1:n): there is a composite whose overall utility is higher than the maximum
utility ratio of its component methods, thus contradicting Lemma 1. This contradiction

occurred because our assumption that T < T is not true; hence the proof. O

THEOREM 3.2. If C is the optimal composite then the utility ratios are arranged in

increasing order, i.e., ﬁ(l:l) < 0(2:2) <...< U(n—l:n—l

) < Ulnin)-
Proof: The proof is based on finding the shortest path in a directed weighted graph.
We construct the graph with unit vertex weights and positive edge weights as follows.

The vertices are arranged in levels with edges connecting vertices from one level to the

22

next. There are n + 1 levels numbered 0 through n. Each vertex at level [(0 <1 < n)
represents a subset of [methods out of n methods. Vertices are labeled by the sets they
represent. Directed edges connect a vertex Vg at level [to a vertex Vg only if IS\S| =1
and SNS =5, ie., the set S has exactly one more element than S. Let Fg denote the
total failure rate over all methods in the set S. If S\ S = {i}, the edge Vg — Vg is
weighted by FST(i:i)a the time to execute method ¢ after failing at all previous methods.

This construction enforces the property that any path from V{; (representing the empty
set) to V{l 2,-n} represents a particular composite, one in which methods are selected
in the order in which they were added to sets at subsequent levels. It is easy to verify

that the shortest path represents the optimal composite. Consider a fragment of the

graph, as shown in Figure 3.2. We assume that Vg is a node on the shortest path, and
VS‘ is also a node on the shortest path, such that § — S = {i,7}. There will be only 2
paths from Vg to Vg, one including the node Vg (S — S = {i}) and the other including

the node Vg+ (S* — S = {j}). Without loss of generality, assume Vg« is the node on

the shortest path; thus method j was selected before method ¢ in the sequence. Let the
time from V) to Vg be denoted by Tg and the failure rate by Fig. Using the optimality
property of the shortest path:

Tg + FgT(j.j) + FsF(j:)T(i) < Ts + FsT(iy + FsF i) T(j:5)-
After Canceling common terms we get T(]J) + F(J])T(Z’L) S T(Z’L) + F(ZZ)T(J]) ThiS
can be simplified further using the relation F(j:j) =1- R(j:j) to yield: R(j:j)T(i:i) >

R(i:i)T(j:j) and thus U(]-: 7) < U(z':z')' This relationship between utility ratios holds for
any two consecutive vertices on the shortest path. Hence, the optimal composite given
by the shortest path is one in which methods are selected in increasing order of the utility

ratio. O
The two theorems provide us with two different algorithms for constructing the

optimal composite. Theorem 3.2 is easier to derive, but Theorem 3.1 is cheaper to im-
plement. The algorithm given by Theorem 3.2 concerns construction of a permutation
graph and then finding the shortest path. The execution time of the algorithm is pro-
portional to the number of vertices in the graph, of the order of O(2"). In contrast,
Theorem 3.1 involves simply sorting the individual utility ratios and takes only time
O(nlogn) which is polynomial to the number of methods, n. We will be using the algo-

rithm of Theorem 3.1 (sorting by utility ratios) for constructing composite solvers.

23

Fig. 3.2. Segment of the graph used in the proof of Theorem 2.

3.2.1.1 Composites From Smaller Subset of All Base Methods

An interesting variant to the problem of constructing optimal composites concerns
building an optimal composite using k£ methods from a total collection of n methods;
k < m. Observe that now there exist two classes of such k-method subset composites:
(i) subset composite with the highest reliability of any composite with k& methods and
(ii) subset composite with the minimal worst case execution time of any composite with

k methods.
A composite with the highest reliability is equivalent to the one with the lowest

failure rate. We sort the base methods in the increasing order of their failure rates and
select the first k& methods from the list. It is easy to see that the optimal composite
composed of these methods will have the lowest cumulative failure and thus the highest
reliability.

Building a subset composite with minimal worst case time requires a more complex
algorithm because it is not possible to select the required k& methods by simply arranging
the base methods in order of execution time, reliability or utility ratios. However, once
the base methods of the subset are determined, the optimal composite can be obtained

by arranging them in the increasing order of their utility ratios. That is, if methods
My, My, ..., M}, form the subset, and P is the optimal permutation, then Ul51 < Ul52 <

..U, . Therefore if a method can be placed in the rth

Br position of a subset sequence,

24

then its utility ratio is less than that of at least £ — r methods and greater than that of
at most 7 — 1 methods. Consequently, for each position r our choice is limited only to
n — k + 1 methods. We define this candidate set of methods for each position as levels.
There will be k levels corresponding to each position in the sequence, each containing
n — k + 1 methods.

The algorithm to construct the optimal composite is as follows. For each method

M Ji in level 7, we construct an optimal composite of £ —i+1 methods with M j as the first
method. There might be more than one sequence of methods that start with M i and

are in the increasing order of the utility ratio. We select the sequence with the minimum
worst case execution time. Since there are n — k + 1 methods at each level, we obtain
n — k + 1 composites. Each of these composites can be combined with a method from
level p; p < 7. We continue to build such subset composites until level 1 is reached. We
select the sequence with minimum execution time from the n — k + 1 sequences built in

this level.
We will now prove that this algorithm indeed yields the optimal subset composite.

Let us suppose that the permutation obtained by the above procedure is), and there
exists another composite associated with the permutation P, whose execution time is
less than the obtained composite. This can occur only if a sub-sequence associated with
permutation P was discarded while constructing the composite, which means that at the
corresponding level the sequence associated with () had lower execution time. Thus, our

assumption that the execution time of P is lower, is false.

3.2.2 Composites when Failure Rates of Methods are Corelated

In the previous section we discussed the construction of optimal composites for
base methods with mutually independent failure rates. We will now consider a more

generalized scenario of base methods whose failure rates are not mutually independent.
We now define the cumulative failure of a composite C’(k1) 38 the conditional failure of

method M}, to Mj, given that methods M to M}._{ have been executed. By Bayes’ law

-
~ ﬂz'zl f p.
the cumulative failure can be expressed as F(i.j11.._1) = ._17_13’. The cumulative
(k:l|1:k—1) =T
= P;

reliability is R(k:l|1:k—1) =1- ﬁ(k:l|1:k—1)' Let the cumulative time be defined as

T Then the cumulative utility ratio is U = M

We now obtain a generalized version of Theorem 3.2 which gives the condition to

be satisfied by an optimal composite. The theorem is as follows,

25

THEOREM 3.3. If C is the optimal composite then each pair of consecutive methods are

arranged in the increasing order of their utility ratios, i.e., 0(1:1) < [7(2:2); 0(2:2|1) <

U(3:3|1); e U(k:k|1:k—1) < U(k+1:k+1|1:k—1); e U(n—l:n—1|1:n—2) < (n:n|1:n—2)-

The proof can be constructed using arguments similar to those in Theorem 3.2.
Theorem 3.3 provides a necessary, but not sufficient condition. Table 3.1 gives
an example of three methods with corelated failure rates. It can be seen from the values
of the utility ratios two composites (1,2,3 and 2,3,1) can be formed that satisfy the
condition in Theorem 3.3. The execution time of composite 1,2,3 is 1.52, this is less than

the execution time(1.6) of the second composite 2,3,1.

Methods | Time | Individual | Individual | Conditional | Conditional
Failures Utilities Failures Utilities

MI 1.0 4 1.67 F(2)=3 | U(1[2)=14

M2 1.0 5 2 F(2]1)=3 | U(2]1)=14

M3 1.0 .6 2.5 F(3|1)=.6; | U(3|1)=2.5;

F(3|12)=.2 | U(3]2)=1.25

Table 3.1. An example of three methods with conditional failure rates

However in practice, methods whose failure rates are dependent generally belong
to the same class of solvers. With this assumption, we classify the set of methods into

groups according to the following conditions.
e Failure rates of methods in the same group are non-independent.

e Failure rates depend only on the number of methods previously executed from

that group, i.e., the failure rate after execution of any ¢ methods in group Gj is
il =1-4]

e Reliability in any group Gj increases with the number of methods executed; 7‘6 <

r{<...<rj.
n

26
e Failure rates of methods across groups are mutually independent.

For methods in the same group, the necessary condition in Theorem 3.3 can now be

expressed as follows,

T:1y/(1 = fo) £ T(a.:9)/ (1 = fo);
Ti2:2)/ (1 = f1) < T(3.3)/(1 = f1);

Tkg1:k41)/ (L= Fr—1)

IA

(k+1:k+1)/ (1 = fr—1);

T(nn)/(l = fn—2) < T(nn)/(l — fn—2)-
The above relation is equivalent to, T(l:l) < T(Q:Q) <... < T(n:n)’ i.e. arranging the

methods in increasing order of time. Therefore, in a same group, the optimal composite
is obtained by arranging the methods in increasing order of time. Observe that the
utility ratio of methods change according to their position in the sequence. The utility
ratio of method M; at position j is defined as u{ =t;/(1 _fj—l) = ti/rj_l; 1<4,5<n.

We will now build the composite across groups G, Go, . .., G. Within each group
the optimal composite is obtained by arranging the methods in increasing order of time
as shown above. Our goal is to create an integrated optimal composite by merging the
optimal sequences of each group. We will prove that if the utility ratios of the methods
are sufficiently low then merging produces an unique optimal composite.

Consider a group Gj with p elements; let method M; be in group Gj. The
az(j)

utility ratio of M;, u;n , 18 maximized when it is the first method in the sequence

comprising only of methods in that group. Therefore uzmax(J) — t; /r‘(y] We define
At = min{t, —tp : VM, My} as the minimum difference between the execution times of

any two methods. For a particular group Gj, this value is At) = min{t, —tp : M, My €

G j}' Within a group G j the highest reliability is given by r{;b and the minimum by 1"6.

Since the failure rates of methods across groups are mutually independent, therefore the
. e . i=k i

maximum reliability across all groups G1,G9, ... G, willbe 7, ... =1 — ngl fTZL The

minimum reliability will be 1,5, = 1 —max=F fi_ We define Ar = r,, ;. — 7, as the

27
maximum difference between cumulative reliabilities across groups. For group G j the

corresponding value is Ard = rill — 7"(7). We state that method M; satisfies Property X if

maxr
u.

; < At/Ar. Observe that Property X is invariant over subsets of groups. That is if

a method M; satisfies Property X and is a method in Gg, where Gg is any subset of the

groups G1,Go,...,G}, then u;-naw(g) < At9/Ar9.

THEOREM 3.4. If all methods My, Ms,...M,,, satisfy Property X then, (i) the optimal
sequence over all methods across all groups is obtained by arranging methods in the
increasing order of their utility ratios and (ii) there is a unique ordering specifying the

optimal composite.

Proof. We first prove that methods in the same group are arranged in the
increasing order of their utility ratios. Consider two methods M, and M} from the
same group G j at positions z and = + 4, and t, < ?;. From the optimality condition in
Theorem 3.3, we know that M, is placed earlier in the sequence than Mj. If M, satisfies
Property X then,

A
umasti) o A
Ar)
. .ty At
implies, — < —
’)"0 A'r]
t t, —t
implies, b e

as T < T,
T, Tn —T0

implies, t,/rg < tp/r),

t t
implies, —%— < b
Tg—1 Tz+i-1

implies, u:g < ul‘fﬂ

This ordering is true for methods in the same group. Because the failure rates
of methods across groups are mutually independent, therefore this relative ordering is
maintained during merging.

We now prove that there exists a unique ordering. It is easy to see from Theorem
3.3 that the ordering is unique within a group. Let us consider inserting a method M,
with execution time ¢, and failure rate f,, from group G into the optimal sequence

of group Go. Let the method be inserted between M; and M;, which are methods of

28

group (9, arranged in the optimal sequence. According to Theorem 3.3, the following

Condition should be Satisﬁed, U(/L/Ll].l—l) S U(GZCL|1I”L'—].) and U(aa|lz) S U('t+1/t+1|17/)

This is simplified to, T(m-) /- fi_1) < T(m) /1~ f,) < T(i +1:i+1)/ (1 = f;) which is
the increasing order of the utility ratio of the methods.

Let us suppose that there exists another position between methods M fi and M j+1
in the optimal sequence of group G9, where method M, can be inserted while satisfying
the same conditions. Therefore, ’f(j:j)/(l —fj-1) < T(a:a)/(l — fa) < T(j+1:j+1)/(1 —
f]-). Since M, can be inserted between M; and M;, ; as well as between Mj and

Mj 11, the following condition is satisfied, T(j:j)/(l —fj—1) £ T(i+1:z'+1)/(1 — f;). This

e . At? max(2) . . .
condition is equivalent to A2 <upqo This contradicts our assumption that method
r

M; 1 in group Gy satisfies Property X. Therefore M, can be inserted only in a unique
position.

Observe that after merging, the methods still satisfy Property X. Therefore for
max(14+2) _ A¢(1+2)
; <=2,
1+1 Ar(1+2)
that of merging two groups we can show that multiple groups can be merged in a unique
sequence. O

any method M; in the merged sequence u Using a proof similar to

3.3 The Design and Implementation of Composite Solvers

The implementation of composite solvers raises some issues which were not evident
in the preceding analysis. For example, consider a situation when a base method fails
to converge for a certain problem instance. According to the definition of a composite
solver, the next method in the sequence is invoked. At this stage, the original linear
system has been partially solved by the first method. The new method can be applied
to the partially solved linear system or it could start afresh by solving the original linear
system. The second method has the advantage that its execution time can be accurately
determined through the preceding analytical results. However the first method is likely
to have lower execution time. Most of our experiments have used the first approach.

Another issue is the implementation of parallel composite solvers. The efficient
parallelization of the composite depends on whether the individual base methods can
be parallelized. To construct a parallel composite solver for solving a linear system of
the form Az = b, we assume that the base methods are fully parallel. We also assume
that all of these methods use the same data distribution across P processes for A, x,
and b. Under this assumption, upon failure of a base method, the next method in the
sequence can be easily invoked on the same system without any extra data redistribution.
The remaining construction details are similar to that in the sequential case, the data
structures used by the previous method are released and those for the next method in
the sequence are constructed, etc. We use this approach because it allows a scalable
implementation with the coefficient matrix distributed across processors.

29
3.4 Empirical Results

In this section, we report on our experiments for evaluating composites in sequen-
tial (uniprocessor) and parallel (multiprocessor) executions. We obtained the values of
the utility ratios by sampling relevant performance data such as reliability and execu-
tion time. A method was considered to fail if it did not converge within a fixed number
of iterations. The execution time was measured either as the overall time required for
the linear solution or as the time per iteration of the linear solver. For sampling we
took a representative subset of problem instances and calculated the values for each base
method. The mean values over the instances in the sample set were taken to be the met-
rics associated with the methods. The composites were then constructed by arranging
the methods in the increasing order of their utility ratios.

We will first give a brief description of the Chiba and Jazz multiprocessor clusters
on which most of our experiments were performed. We will then present our initial
experimental results based on solving linear systems arising from different applications.
The rest of our experiments were based on simulation of the driven cavity flow, which
is a model CFD application. We will the briefly review this model problem. Then we
will present sequential results on a 96 by 96 mesh and a 128 by 128 mesh. In the final
subsection, we will report on the parallel implementation of composite solvers.

3.4.1 Multiprocessor Environment

Chiba City Cluster [1] at the Argonne National Laboratory is built to support
research on scalable library development, scientific visualization, distributed computing,
systems software and cluster management, etc. The cluster consists of 256 computing
nodes with 500 MHz dual-cpu Pentium IIT running Red Hat Linux operating system.
Each computing node is 512 MB RAM and 9G local disk storage. In addition to the
computing nodes, the cluster has 4 login nodes with the same specifications. The cluster
also contains 32 visualization nodes with G400 graphics cards and 8 storage nodes with
500MHz Xeon processors with 512 RAM and 200GB disk storage. There are two network
systems in the cluster, the high performance network through a 64-bit Myrinet and the
management network based on a fast Ethernet.

Jazz Cluster is a part of the Laboratory Computing Resource Center(LCRC)
at the Argonne National Lab. LCRC is built to “promote the widespread use of high-
performance computing technologies across the laboratory in support of scientific re-
search” [2]. The Jazz LCRC cluster consists of 350 computing nodes with 2.4 GHz
Pentium Xeon running Red Hat Linux operating system. Half of the computing nodes
(175) have 2GB RAM and the rest have 1GB RAM. The storage infrastructure consists
of a 20TB cluster wide disk. The network is supported by a Myrinet2000 interconnect.
According to the top 500 supercomputers list in June2004 [33], the Jazz cluster was
ranked 235.

30

3.4.2 Performance Across Systems from Several Applications

In this set of experiments, we used a collection of linear systems arising from dif-
ferent applications. We used a suite of nine preconditioned Conjugate Gradient methods
labeled My, ..., Mg. M represents Conjugate Gradient method without any precondi-
tioner. My and Mg use Jacobi and SOR preconditioning schemes respectively. Methods
My through M7 use incomplete Cholesky preconditioners with 0, 1, 2 and 3 levels of
fill. Methods Mg and Mg use incomplete Cholesky preconditioners with numerical drop
threshold factors of .0001 and .01. The experiments were performed on a SUN Ultra
workstation with a 296MHz UltraSPARC-II processor and 384 MB of RAM. We ob-

tained the linear solvers from PETSc.
Our first set of experiments were aimed to demonstrate that the composite where

methods are arranged in the increasing order of the utility ratios takes the least execution
time. We executed each method over all the problems in the sample set. We then
normalized the execution time of each method by dividing it by the time required for a
sparse direct solver. The geometric mean of the normalized running time was used as
our estimate of ¢; for each M;. We assumed that the method was unsuccessful if it failed
to converge in 200 iterations. We used the success rate as the reliability metric r; for
method M. These two measures were used to compute the utility ratio u; = ¢;/r; for
each method M;.

For our first experiments we used a set of six bcsstk sparse matrices from fi-
nite element methods in structural mechanics [15]. The values of the metrics of the
eight base methods were obtained as described above. Four different composite solvers
Cr,CR,Cx,Cp were created representing orderings in increasing order of normalized
execution time, in decreasing order of reliability, a random ordering and in increasing
order of the utility ratio respectively. The overall reliability of each composite was an-
alytically computed to be 1. If the method with highest reliability Mg is excluded, the
composite reliability is .99, a value significantly higher than the reliability of the remain-
ing underlying methods. We applied these four composite solvers to the complete set
of matrices and calculated the total time for each composite over all the test problems.
The results are shown in Table 3.2; our optimal composite C) has the least total time.

In our second set of experiments, we considered a larger suite of test problems
consisting of matrices from five different applications [15]. We obtained the performance
metrics using a sample set of 10 matrices consisting of two matrices from each application
type. We constructed four composites solvers C,Cg,Cy,Cp as previously defined,
with the same reliability. Results in Table 3.3 indicate that our composite solver still
has the least total execution time over all problems in the test suite. As in the previous
problem instance, the reliability of all composites (after Mg is excluded) is .99. The
total execution time of C() is less than half the execution time for C'p, the composite

obtained by selecting underlying methods in increasing order of time.

Methods and metrics

My | My | Mg | My | My | Mg | My | Mg | My
Time 1.01] .74 | 94 | .16 | 1.47 | 2.15] 3.59 | 5.11 | 2.14
Reliability | .25 | .50 | .75 | .25 | .50 | .50 | .75 | 1.00 | .25
Ratio 4.04 | 1.48 | 1.25 | .63 | 2.94 | 4.30 | 4.79 | 5.11 | 8.56
Composite solver sequences
Cr My | My | Mg | My | M5 | Mg | Mg | My | Mg
Cgr Mg | Mg | My | My | Ms | Mg | My | My | Mg
Cx Mg | Mg | My | My | Mg | My | My | Mg | My
Co My | Mg | My | M5 | My | Mg | My | Mg | Mg
Execution time (in seconds)
Problem | Rank | Non-zeroes | Crp Cr Cx Co
3
(10%)
bcesstk14 | 1,806 63.4 .25 .98 1.19 27
besstkls | 3,908 117.8 1.88 5.38 9.45 | 1.22
bcesstk16 | 4,884 290.3 1.05 6.60 2.09 .98
besstkl7 | 10,974 428.6 57.40 | 12.84 | 16.66 | 37.40
bcesstk18 | 11,948 149.1 4.81 5.70 | 12.40 | 2.80
bcesstk25 | 15,439 252.2 1.60 | 21.93 | 36.85 | 1.59
Total execution time 66.99 | 53.43 | 78.64 | 44.26

Table 3.2.

Results for the becsstk test suite.

31

Methods and metrics

My | My | My | My | Ms | Mg | My | Mg | Mg
Time Joro) 73) .81 1 .20 | 1.07 | 1.48 | 2.10 | .98 .76
Reliability | .50 | .60 | .90 | .50 | . 70 | .60 | .60 | 1.00 | .40
Ratio 1.54 | 1.23 | .90 | .40 | 1.53 | 247 | 3.50 | .98 | 1.91
Composite solver sequences

Cr My | My | Mg | My | My | Mg | My | Mg | My
Cr Mg | Mg | My | My | Mg | My | My | My | My
Cx Mg | Mg | M7 | Mg | M5 | M3 | My | My | My
Co My | My | Mg [My | My | My | Mg | Mg | My

Execution time (in seconds)

Problem | Rank | Non-zeroes Cr Cr Cx Co
3
(10%)
besstk14 | 1,806 63.4 31 1.06 1.18 37
bcesstk16 | 4,884 290.3 97 6.35 2.07 .99
besstkl7 | 10,974 428.6 35.7 13.3 16.3 23.4
besstk25 | 15,439 252.2 1.61 22.8 36.8 | 1.60
besstk38 8032 355.5 35.8 33.5 51.5 | 2.39
crystk01 4875 315.9 .44 4.03 .84 A7
crystk03 | 246,96 1751.1 2.55 35.8 5.45 2.56
crystm02 | 139,65 322.90 .32 .40 5.38 .32
crystm03 | 246,96 583.77 .60 .72 .73 .60
msc00726 726 34.52 .13 1.39 .23 .13
msc01050 | 1050 29.15 .80 .10 .23 27
msc01440 | 1440 46.27 2.91 .79 2.39 .5
msc04515 | 4515 97.70 10.5 1.95 6.10 4.45
mscl10848 | 10848 1229.77 75.6 101 163 26.3
nasal824 | 1824 39.21 2.46 1.15 1.3 1.80
nasa2146 | 2146 72.25 .09 .64 2.29 .09
nasa2910 | 2910 174.29 10.9 2.34 | 6.69 2.80
nasa4704 4704 104.756 13.4 13.4 13.40 | 4.61
xerox2cl 6000 148.05 27 1.92 .23 18.1
xerox2c¢2 6000 148.30 .24 41 48 .25
xerox2c3 6000 147.98 27 41 .21 .24
xerox2c4 6000 148.10 .23 .40 .22 .23
xerox2ch 6000 148.62 .25 42 .24 .23
xerox2c6 6000 148.75 .29 .62 .90 .23
Total execution time 196.64 | 244.9 | 318.16 | 90.6

Table 3.3. Results for the test suite with matrices from five applications.

33
3.4.3 Composites for Driven Cavity Flow
3.4.3.1 Application Description

The driven cavity flow model [35] is an example of incompressible flow result-
ing due to the combined effects of lid-driven flow and buoyancy-driven flow in a two-
dimensional rectangular cavity. The lid velocity is steady and spatially uniform and
generates a principal vortex and subsidiary corner vortices. The principal vortex is op-
posed by the buoyancy vortex, which is induced by the differentially heated lateral cavity

walls.
The governing differential equations are obtained by using the Navier-Stokes and

energy equations. The equations are given in terms of u, v, which are the velocities in
the (z,y) directions respectively. The vorticity w on a domain Q is defined as w(z,y) =

—(g—z + % The following elliptical PDEs are generated:

Ow
Ay — = =9
u oy ,
Ow
—Av+ —=0
v ox ’
0 0 oT
—Awt s 02— G- =0,
i dy oz
oT or
—AT + Pr(u— —) =
+ r(uax +vay) 0,
where T'(z,y) is the temperature, Pr is the Prandtl number, and Gr is the Grashof
number. The boundary conditions are w(z,y) = —% + g%. The continuous domain

is then discretized using a finite difference scheme with a five-point stencil for each

component on a uniform Cartesian coordinate system.

3.4.3.2 Implementation and Validation

We test the role of composites in a driven cavity flow application. We performed
the sequential experiments on a workstation with a dual-CPU 500 MHz Pentium III
with 512 MB of RAM. We employed a cluster with a Myrinet 2000 network and 2.4 GHz
Pentium Xeon processors with 1-2 GB of RAM for our parallel experiments.

We used the driven cavity implementation by Keyes et al. which is an example
in the PETSc tutorial [5]. In this code, the governing nonlinear equations of the driven
cavity flow is solved using an inexact Newton method [30, 39]. The linearized Newton

system is approximately solved by an iterative Krylov solver. For a fixed grid size, the

34

nonlinearity of the system is determined by the values of the Grashof number and the
lid velocity. It has been observed that Newton’s method often struggles at higher values
of these parameters. This problem can be overcome by using a globalization technique
known as pseudo-transient continuation. The application employs several iterations of an
inexact Newton method, where each nonlinear iteration requires a linear system solution.
The linear solver can use one of several underlying base preconditioned Krylov methods
or their composites.

In the driven cavity flow application with a fixed mesh (and linear system size), the
convergence of the nonlinear solver is affected mainly by two parameters that determine
the degree of nonlinearity of the system: the Grashof number and the lid velocity. At
higher values of either or both parameters, the application typically produces linear
systems that are more difficult to solve using Krylov methods with mild to medium
degrees of preconditioning. Consequently, most underlying linear solvers have high failure
rates. At significantly lower values of the two parameters, both linear and nonlinear
iterations converge readily, and linear solver failures seem to have a negligible effect on
the convergence of the nonlinear solver. Thus these low and high parameter values define
the range of values that are relevant for our experiments; our experiments were limited
to those values where the nonlinear solver converged while incurring failures for several
linear system solution instances. In the following section we will present the performance
data obtained by applying composites on driven cavity application with varying mesh

sizes.

Driven cavity flow is a well known model problem in CFD and has been widely
used as “a suitable vehicle for testing and validating computer codes” [20]. Vahl Davis et
al. compared 37 different numerical solutions from 30 different contributors for solving
a particular instance of this problem [21]. It was observed that despite the differences
in implementation the numerical results were “substantially in agreement with each
other” [21]. However the execution time of the implementations varied considerably. By
using composite solvers we were able to provide highly robust linear solutions, which in
turn lowered the nonlinear solution time. We used the driven cavity implementation in
PETsc, which is in agreement with the implementation by Bennet et al. [9] which in turn

has been validated with the results in [21].

3.4.3.3 Results for a 96 x 96 Mesh

Our first set of experiments [14] used a 96 x 96 mesh with Grashof numbers in the

range [500, 1000] and lid velocities in the range [10, 20]. We detected convergence of

35

Newton’s method when ||f(u)|| < e||f(u0)||, where € = 1.e ™. To obtain initial sample
observations, we fixed the lid velocity at 20 for Grashof numbers 820, 840, and 1000.
Table 3.4 summarizes performance measures for the four base linear solvers B1, B2, B3,
and B4; all methods use GMRES with different values of the restart parameter and
preconditioners with level of fill ILU and an RCM ordering or drop-threshold ILU and a
QMD ordering. The optimal composite, CU, comprises base methods B3, B1, B4, and
B2, arranged in increasing order of the utility ratio. The second composite, labeled CT,
comprises methods B1, B3, B4, and B2, in increasing order of time. The third composite,
CR, has methods in a random order B3, B4, B1, and B2. The solution from a failed
base method becomes the initial guess for a subsequent method, thus naturally allowing
reuse. We detected convergence of each linear solve (whether composite or not) when

the relative reduction in residual norm fell below 1.6_5.

We report on the performance of the four base methods and three composites
for nine simulations. Table 3.5 summarizes the empirical data related to this set of
experiments. The cumulative failure rate here and in other experiments is calculated as
the product of the failure rates of the base methods. We introduce the term simulation
point to designate each set of nonlinearity parameters. We use a series of figures with
a stacked bar for each method; the height of a bar indicates the cumulative value over
all simulation points, while a single segment corresponds to the value observed at a
simulation point. In our figures, we indicate the parameters for each simulation point
(and thus a segment of stacked bar) in the form i:j, where i denotes the Grashof number
and j denotes the lid velocity.

Figure 3.3 shows the total number of failures and the reliability for base methods
B1, B2, B3, and B4 and composites CU, CT, and CR. Based on our model, all composites
should have a worst-case failure rate of .19, a value significantly lower than that of a base
method. Likewise, the reliability of a composite is .81 and thus higher than that of a
base method (see Table 3.5). The observed values of composite reliability were ideal and
better than the predicted values. All composites successfully solve all linear systems, and
no failures were observed (although composites typically use more than one underlying
method).

Figures 3.4 and 3.5 show the total number of linear and nonlinear iterations
and the time per iteration for each method. The product of these two measures is
approximately equal to the total time for linear (or nonlinear) solution. These results
show the benefits of taking into account both failure rates and execution times to develop

composites. The time per linear iteration is the lowest for the composite CT, which is

Base Methods B1 B2 B3 B4
GMRES Restart 30 60 45 30
Preconditioner ILU ILUT ILUT ILUT
ILU: Incomplete LU with 1 level of fill and an RCM ordering.
ILUT: Incomplete LU with drop threshold .01 and a QMD ordering.
Linear Solver

Iteration count 2114 2135 2191 2188
Time for all iterations (sec) 1001 1512 1252 1400
Mean time per iteration (sec) | 1.42 2.12 1.71 1.92
Failure rate 0.75 0.75 0.50 0.67
Reliability 0.25 0.25 0.50 0.33
Utility ratio 4004 6049 2503 4664
Failure rate of a composite is .19 (.75 x .75 x .50 x .67).
Reliability of a composite is .81 (1.00 — failure rate).

Nonlinear Solver
Iteration count 12 12 12 12
Time for all iterations (sec) 1049 1562 1300 1448
Mean time per iteration (sec) | 262 390 325 362
Failure rate 0 0 0 0
Reliability 1 1 1 1

36

Table 3.4. The cumulative performance of four base methods for three driven cavity
flow simulations with a 96 x 96 mesh, a lid velocity of 20, and Grashof numbers 820, 840,
and 1000.

37

Metric Base Methods B1-B4 Composites

Bl | B2 | B3 | B4 Total | CU | CT | CR

Cumulative Performance Data over 9 simulations
Time(Linear) (secs) 3371 | 3916 | 3258 | 3640 | 14185 | 3105 | 4668 | 3299
Time(Nonlinear) (secs) 3563 | 4044 | 3387 | 3769 | 14763 | 3224 | 4795 | 3417
Iterations(Linear) 7160 | 5571 | 5698 | 5696 | 24125 | 4966 | 8332 | 5157
Iterations(Nonlinear) 40 32 32 32 136 27 29 27
Failures 31 23 18 22 94 0 0 0
Failure Rate(%) 775 | 71.9 | 56.2 | 67.7 21.2 0 0 0
Average Performance Data over 9 simulations

Bl B2 B3 B4 | Mean | CU CT CR
Time (Linear) (secs) 374.5 | 435.1 | 362 | 404.4 | 394.02 | 345 | 518.6 | 366.5
Time (Nonlinear) (secs) | 395.8 | 449.3 | 376.3 | 418.7 | 410.08 | 358.2 | 532.7 | 379.6
Iterations (Linear) 795.5 | 619 | 633.1 | 632.8 | 670.13 | 551.7 | 925.7 | 573
Iterations (Nonlinear) 4.4 3.5 3.5 3.5 3.7 3 3.2 3
Failures 3.4 2.5 2 2.4 2.6 0 0 0

Table 3.5. Summary of performance measures for 9 simulations of driven cavity flow
on a 96 by 96 mesh. The column labeled (B1-B4) gives the cumulative and mean values
across four base solution schemes. The optimal composite CU is 12% faster than the
average execution time of the base methods.

35

Linear Systems: Number of Failures

Linear Systems: Mean Reliability

| .
251
il . .

151

101

I 1000:20 | |

09

081

0.7
0.6

05

Il 1000:20

B1 B2 B3 B4

L L
cu cT

L
CR

Fig. 3.3. The number of failures and the mean reliability of the linear solver using base
linear solution methods B1, B2, B3, and B4 and composites CU, CT, and CR.

9000

Linear Systems: Iteration Count

8000

7000

6000

5000

59710

4000

3000

2000

1000

Fig. 3.4.

40

35r

30-

201

15

10

B3, and B4 and composites CU, CT, and CR.

Linear Systems: Time per Iteration

Nonlinear Systems: Iteration Count

1 597:10
I 598:10
[599:10
[601:10
182020
] 840:20
[930:20
I 94020

Tteration counts for linear and nonlinear solution using base methods

Nonlinear Systems: Time per Iteration

Il 1000:20

38

7 | | ! 1500
1 597:10
I 598:10 I 597:10
I 599:10 I 598:10
6| [601:10 [599:10
[820:20 [601:10
] 840:20 1 820:20
I 930:20] 840:20
5| I 940:20 [930:20
I 1000:20 I 94020
1000 1000:20
500

Fig. 3.5. Average time per iteration for linear and nonlinear solution using base methods

B1, B2, B3, and B4 and composites CU, CT, and CR.

39

based on least time. Since the initial methods in the composite often fail, however,
the overall number of linear solver iterations for CT correspondingly increases, as does
the time per nonlinear iteration. On the other hand, for the utility ratio composite
CU, although the time per linear iteration is higher than for CT, the number of linear
iterations and hence the time per nonlinear iteration are significantly smaller. Observe,
too, that the total number of nonlinear iterations is lower for all composites than for the
base methods. We conjecture that this is a consequence of the improved reliability of the
composite linear solvers. We expect this effect to be more pronounced in applications
where the convergence of the nonlinear solver depends more critically on accurate linear
system solution. This relationship is somewhat weak for our application for the selected
range of parameters.

Figure 3.6 shows the total linear and nonlinear solution time over all nine simu-
lations, and Table 3.5 summarizes the results shown in detail in Figures 3.3 through 3.6.
The execution time is the least for composite CU, in which the underlying methods are
in increasing order of the utility ratio. However, these execution times are not vastly
different from those for the base method B1, even though the number of linear solver
iterations for CU is significantly lower (see Figure 3.4). This situation occurs partly
because the decrease in nonlinear iterations from accurate linear system solution using
CU is offset by the lower time per linear iteration of base method B1. Another reason is
that although base method B1 fails the most number of times (least reliable), the failures
do not translate into a proportional increase in the nonlinear iterations. We conjecture
that the potential benefits of robust linear solution through composites would be even
more dramatic for applications in which the linear solver failures lead to significantly
slower convergence (or failure) of the nonlinear solver. We expect this situation to be
especially relevant in the latter iterations of Newton’s method, when relatively accurate

linear solves are often needed to achieve quadratic convergence.

3.4.4 Results for a 128 x 128 Mesh

In our second set of experiments [13] we solved a larger sparse linear system of rank
260, 100 (with approximately 5.2 million non zeroes), resulting from a 128 x 128 mesh.
The base solution methods used were (B1) GMRES(30) and an ILU preconditioner with
fill level 1 with a quotient minimum degree (qmd) ordering, (B2) TFQMR with an ILU

preconditioner with drop threshold 1072 and a reverse Cuthill Mckee (rcm) ordering,
(B3) GMRES(30) and an ILU preconditioner with fill level 0 and an rcm ordering, and
(B4) TFQMR with an ILU preconditioner with fill level 0 and an rcm ordering [24, 27, 41].

40

Linear Systems: Execution Time

5000 T [l sora |] 0 R EZ
B 59810 B 59810
| B 599:10 | B 599:10
4500 D eorto |] 40 1 601:10
7 82020 1 82020
7 840:20 T 84020
4000 [93020 4000 I 93020
B 94020 B 94020
100020 100020
3500 = 4 3s00F = —
3000 3000F
2500 25001
2000 2000F —

1500

1000

500

Fig. 3.6.

and B4, and composites CU, CT, and CR.

Total time for linear and nonlinear

Nonlinear Systems: Execution Time

solution using base methods B1, B2, B3,

41

As our sample set, we used a Grashof number of 660 with a lid velocity of 10 and a
Grashof number of 620 with lid velocities 13, 16, and 20. We observed the failure rates
(f;) and the mean time per iteration (¢;) of the linear solver and used these metrics to
compute the utility ratio of each method; these metrics are shown in Figure 3.7. The
optimal composite is denoted as CU and correspond to base methods in the sequence:
2,3, 1, 4. We also formed three other composites using arbitrarily selected sequences:
Cl:3,1,2,4; C2: 4,3,2,1; and C3: 2, 1, 3, 4.

We ran a total of 24 simulations with six Grashof numbers (580, 620, 660, 700,
740, and 780) and four lid velocities (10, 13, 16, and 20). We report on the performance
of the four base and four composite methods using several stacked bar graphs. Each
stacked bar in Figures 3.8 through 3.11 corresponds to one of the eight methods, and
each segment of the stack represents a simulation point corresponding to a Grashof:lid
velocity pair; the segments are arranged in increasing order of Grashof number and lid
velocities (per Grashof number) with the bottom representing 580:10 and the top 780:20.
Thus, starting at the top or bottom, each patch of four contiguous segments represents

results for a specific Grashof value. The results are summarized in Table 3.6.

Number of Failures Reliability Iterations

20 6000

s000
is
aocoo
10 3000
2000

1000

Bl B2 B3 B4 Bl B2 B2 B4 Bl B2 B3 B4

Total Time Time per iteration Utility Ratios

6000 25

5000 >0

aooo
is
3000
10
2000

1000

OFr NBAMGOON

o
Bl1 B2 B3 B4 Bl B2 B3 B4 Bl B2 B3 B4

Fig. 3.7. Observed performance and the computed utility ratios of the four base linear
solution methods at the sample simulation.

42

Metric Base Methods | B1-B4 Composites

Bl | B2 | B3 | B4 | Total Cl | C2 C3 | CU

Cumulative Performance Data over 24 simulations
Time in 10% secs; Linear Iterations(Its) of the order 10%
Time(Linear) 2.6 24 2.5 3.1 10.6 2.8 3.5 1.4 1.3
Time(Nonlinear) | 2.7 2.5 2.6 3.2 11 2.9 3.6 1.5 1.45
Its(Linear) 2.7 1.5 3.4 2.8 10.4 3.0 3.1 94 94
Its(Nonlinear) 125 75 140 120 460 76 76 65 56
Failures 98 10 120 100 328 0 0 0 0
Failure Rate(%) 78 13.3 | 85.7 | 83.3 7.4 0 0 0 0
Average Performance Data over 24 simulations: Time given in seconds

B1 B2 B3 B4 | Mean | CI1 C2 C3 CU
Time(Linear) 1,083 | ,1000 | 1,041 | 1,201 | 1,104 | 1,166 | 1,458 | 583.3 | 541.6
Time(Nonlinear) | 1,125 | 1,041 | 1,083 | 1,333 | 1,145 | 1,208 | 1,500 | 625 604
Its(Linear) 1,125 | 625 | 1,416 | 1,166 | 1,083 | 1,250 | 1,291 | 391.6 | 391.6
Its(Nonlinear) 5.2 3.1 5.8 5 4.7 3.1 3.1 2.7 2.3
Failures 4.0 A41 5 4.1 3.41 0 0 0 0

Table 3.6. Summary of performance measures for 24 simulations of driven cavity flow
on a 128 by 128 mesh. The column labeled (B1-B4) gives the cumulative and mean
values across four base solution schemes. The optimal composite is 49% faster than the
average execution time of the base methods.

Linear Solver: Failures

120
100
=er I
60
4ao

20 |-

Bl B2 B3 B4 Ci1 Cc2 C3 CU

o.o

o.8

o.7

o.e

o.5

o.a

Linear Solver: Mean Reliability

Fig. 3.8. The number of failures and the mean reliability of the linear solver for each
problem instance in a driven cavity problem with mesh size 128 by 128.

43

Linear Solver: Time per iteration Nonlinear Solver: Time per iteration
ao 1z000

a5 - —
ooooo = —

=0 —
sooo - —

2s

ol . l . l | coool l . -
el || | L
oo]

10

zooo0o [—

21 Bz B3 Ba Cci1 cz o3 CcU 21 Bz B3 Ba C1 CczZ Cc3 CU

Fig. 3.9. Time per iteration (in seconds) for linear and nonlinear solution for each
problem instance in a driven cavity problem with mesh size 128 by 128 ; the plot shows
the mean time per iteration over all simulations.

Figure 3.8 shows the number of failures and the reliability of the linear solver; each
base methods suffers some failures, while all composites are robust. Figure 3.9 shows the
time per iteration, which is nearly invariant across simulation points for a given method.
As expected, the composites typically require greater time per iteration than the least
expensive base method, B3. Figures 3.10 and 3.11 show the total iteration counts and
time for linear and nonlinear solution; the latter is the the total application time. In
these figures, the plots that interlace the stacked bars show cumulative values at the
completion of simulations corresponding to each Grashof number. All composites show
a reduction in total nonlinear iterations as a consequence of improved linear solution;
CU requires only 75% (63%) of the nonlinear (linear) iterations required by the fastest
base method, B2. The composite based on the utility ratio, CU, incurs the least total
linear solution time, which is approximately 56% of the time required by the best base
method B2. The linear solution time comprises on average 96% of the nonlinear solution
time (total simulation time) and consequently, CU requires approximately 58% of the

total simulation time of the best base method B2.

= 107 Linear Solver: Iterations Nonlinear Solver: Iterations
3.5 150

3

100

s0

o]

Fig. 3.10. Tteration counts for linear and nonlinear solution; the plots highlight cumu-
lative values after simulations for each Grashof number.

44

= 10% Linear Solver: Total Time =< 10% Nonlinear Solver: Total Time

Fig. 3.11. Total time for linear and nonlinear solution (in seconds); the plots highlight
cumulative values after simulations for each Grashof number.

3.4.4.1 Parallel Performance on a 128 x 128 mesh

We now consider results of experiments using our parallel composite solvers. We
used a 128 x 128 mesh for discretizing the driven cavity low model with pseudo-transient
continuation. At each nonlinear iteration, the discretized sparse linear system had rank
65,536 with approximately 1,302,528 nonzeros. We set the maximum number of linear
iterations to 200.

As the preconditioner we used the restricted additive Schwarz method (RASM) [17]
with varying subdomain solvers and varying degrees of overlap (e.g., overlap of 1 is de-
noted by RASM(1)). We combined various Krylov methods [27, 41], subdomain solvers,
and degrees of overlap to get the following set of base solution methods: (B1) GM-
RES(30), RASM(1), Jacobi subdomain solver; (B2) GMRES(30), RASM(1), SOR subdo-
main solver; (B3) TFQMR, RASM(3), no-fill ILU subdomain solver; and (B4) TFQMR,
RASM(4), no-fill ILU subdomain solver. We composed a sample set of the following
problem instances of Grashof numbers and lid velocities: (700:85), (800:83), (900:80),
(950:73). We distributed the matrix across multiple processors and used each of the four
base methods to solve the sparse linear systems that were generated by these problem
instances. We obtained the resulting utility ratios by computing the ratio of the linear
time per iteration to the reliability of each method and then taking the average over
the four problems in the sample set. Based on metrics obtained from the sample set,
we formed the optimal composite, CU, which contained the following sequence of base
methods: 3,4,2,1. We also created 3 arbitrary composites using random sequences, de-
noted by C1 (3,2,4,1), C2 (2,1,4,3) and C3 (4,1,2,3). We performed these experiments
on a fixed size problem while varying the number of processors from 2, 4, 8 to 16. We
ran 24 simulations, using six different Grashof numbers, [700, 750, 800, 850, 900, 950],
and four lid velocities, [73, 80, 83, 85].

45

Our results show that the composites achieve improved reliability and good par-
allel performance. Method B1 never converges, while other base methods have varying
degrees of failure. The composites show near ideal reliability. Furthermore, the simula-
tion time with the optimal composite, CU, is approximately 40% — 48% of the worst base
method. We also consider the speedup and efficiency of the solvers on different proces-
sors. We use 77 as the best estimate of the time for the full simulation on one processor
using the fastest base method. Thus, we set T to two times the time for method B3

on two processors (it is not meaningful to use the additive Schwarz method for a single

processor with a single subdomain). We calculate the speedup S = %, where Ty is the
p

observed time on p processors; the corresponding efficiency is calculated as F = % The

results shown in Figure 3.12 indicate that the speedups of the composites CU, C1, and
C3 are almost as good as that of the best base method, with near ideal efficiencies. Table

3.7 gives the data for other parameters such as running time, number of failures, etc.

Speedup
20 I T T
B 2 procs
=3 4 procs
15138 éarocs i
mm 16 procs
10 .
5 - -

B1 B2 B3 B4 CuU C1 C2 C3
Efficiency
14 I
B Z Procs | |
1.2{{ @ 4 procs .
8 6procs - _

11 mm 16 procs _ - _ .
0.8 1
0.6 1
041 B
0.2 1

O Ll | - Ll | Ll |

B1 B2 B3 B4 CuU C1 Cc2

Fig. 3.12. Parallel performance of the driven cavity application on 2 — 16 processors.

46

Metric Base Methods B1-B4 | Composites
Bl | B2 | B3 | B4 Total Cu
Cumulative Performance Data over 24 simulations; Time in seconds
Time (Linear) 470.17 | 434.78 | 243.58 | 262.05 | 1410.58 224.90
Time (Nonlinear) 521.43 | 472.79 | 259.41 | 278.31 | 15631.94 240.71
Linear Tterations 113,600 | 80,719 | 20,813 | 21,441 | 236,572 19,367
Nonlinear Tterations 568 422 140 141 1271 123
Number of Failures 568 398 36 34 1036 0
Failure Rate(%) 100 94.3 25.7 24.1 5.8 0
Efficiency A7 .52 .95 .88 1.02
Speed Up 3.11 4.16 7.59 7.07 8.18
Average Performance Data over 24 simulations; Time in seconds

| Bl | B2 | B3 | B4 | Mean | CU
Time (Linear) 19.59 18.11 10.14 10.9 14.6 9.3
Time (Nonlinear) 21.72 19.7 10.8 11.59 15.9 10.02
Linear Iterations 4733.3 | 3363.3 | 867.2 | 893.4 | 2464.3 807
Nonlinear ITterations | 23.66 17.5 5.83 5.87 13.23 5.1
Number of Failures 23.6 16.58 1.5 1.41 10.8 0

Table 3.7. Summary of performance measures for 24 simulations of driven cavity flow
on a 128 by 128 mesh on 8 processors. The column labeled (B1-B4) gives the cumulative
and mean values across four base solution schemes. The optimal composite is 36% faster
than the average execution time of the base methods. Speedup and efficiency values are

based on execution times for one processor implementation with the best base method
(B3).

47

3.5 Summary

We have developed a combinatorial model for analyzing and developing composite
solvers. We have developed algorithms for constructing optimal composites when the
failure rates of base methods are mutually independent and we extended them to apply
to more general situations when the failure rates of methods are corelated. We have
implemented and tested our composites using a test-suite of linear systems spanning
several applications, and on sequential and parallel implementation in a model CFD code
for driven cavity flow. Owur results on uniprocessors and multiprocessors demonstrate
that composites achieve near ideal reliability. Furthermore, the improved reliability
can reduce the execution time for an application by reducing the number of nonlinear
iterations. More specifically, for our largest driven cavity flow experiment on a 128 x 128
grid (summarized in Table 3.6) our optimal composite requires only 56% (42%)of the
execution time of best(worst) base method. Our optimal composite requires 49% of the
average execution time across the base methods (column “B1-B4” in Table 3.6). Our
parallel composite solvers also exhibit near ideal speedups and efficiencies because they
successfully retain the scalability of the base methods while improving the reliability
(see Table 4.1). It is interesting to observe that composite solvers showed improved
performance even when the convergence of the nonlinear solution was not greatly affected
by the linear system solution. We conjecture that the benefits would increase when the

nonlinear convergence is more dependent on the linear solution.

48

Chapter 4

Adaptive Solvers

In this chapter, we introduce our second type of multimethod solvers, namely
adaptive solvers. Adaptive solvers are useful in simulations which require the solution
of a series of linear systems with changing numerical properties. The goal of adaptive
solvers is to reduce the execution time of the simulation by dynamically selecting the most
appropriate base method to match the characteristics of the current linear system. In
contrast to composite solvers, adaptive solvers use one base method per linear system. In
this chapter, we present our adaptive heuristics [13, 37] for selecting appropriate solvers
and report on their performance in CFD applications.

As we have observed in the previous chapter, the execution times for applications
based on nonlinear PDE-based equations is dominated by the time for solving linear
systems generated at each nonlinear iteration. The numerical characteristics of the
linear systems may change in course of the simulation. For example, the use of pseudo-
transient continuation generates linear systems that get progressively difficult to solve.
In simulations involving spatial or temporal discontinuities, such as the occurrence of
shock waves, the changes in the linear systems might reflect the changing nature of the
application. In these cases where the linear systems characteristics are not constant,
changing the linear solver can potentially improve the performance.

An example of changing linear systems is demonstrated in Figure 4.1. The
graphs plot the performance data from the simulation of a driven cavity flow application.
The left-hand graph in Figure 4.1 plots the growth of the pseudo time step and the
convergence of the nonlinear residual norm. The right-hand graph depicts the time
spent in solving linear systems during each time step, using a fixed linear solver. As
the pseudo-time step increases, the corresponding linear system becomes more difficult
to solve. This is reflected by the increase in the linear solution time. Our goal in
building adaptive solvers is to restrict or lower the growth in the linear solution time,
by dynamically switching linear solvers and thereby reducing the time required for the

total simulation.
An efficient adaptive solver must be able to accurately determine when to change

linear solvers. Our adaptive heuristics monitor “indicators” to detect the switching
point. Some common examples of indicators are increase in linear (nonlinear) solution
time, rate of change of linear iterations, convergence rate, etc. It has been observed
that designating a single parameter as the indicator is not a good strategy. A judicious
combination of several indicators generally leads to better results.

49

T - T T T T 35
— Pseudo Time Step T
- - Nonlinear Residual Norm
301 1
1
@ 251 q
4 [)
£
F 20¢ 1
c
18
\ S
\ S 151 4
10 b \ B
\\ g
-6 \ £ 10r 4
10 " \ q]
\
\
10° + \ 51 i
10_10 L L L L L O L L L L L
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time Step Time Step

Fig. 4.1. Left-hand graph plots growth of pseudo time step size and convergence of
residual norm for the pseudo-transient continuation version of the driven cavity flow.
Right-hand graph plots time spent in solving linear systems during each nonlinear itera-

tion; this illustrates that different amounts of work are needed throughout the simulation
to solve the linear systems.

50

4.1 A Mathematical Model for Adaptive Method Selection

In this section, we will demonstrate how adaptively selecting linear solvers can
reduce the execution time. Let there be a set of £ distinct linear solvers represented by

My, My, ..., M, where t; is the time per iteration for M;. At each nonlinear iteration j,

the number of linear iterations executed by M; is given by I; If M; was the only linear

solver used, the total linear solution time would be T}; = t; E;zq I; We now define the

following terms which are relevant for developing our selection procedure.

e Minimum Method For each non-linear iteration j, the minimum method, M TJn ,

. m =N 1
is such that tij = min,_, {tz-Ij}.

e Crossover If the minimum method of a non-linear iteration j is different from the

minimum method of the non-linear iteration j — 1, then j is a crossover. That is

M TJn —1 # M r]n . For ease of calculation, we define iterations 0 and n as crossovers.

e Phase A phase is the range of non-linear iterations between two crossovers. A

phase, P(a,b) means that:
M1 £ M@ and
m m

M%:Mﬁl;agmgb, and

m m
Consider a simulation with crossovers at iterations, 0, c{, cg, ...c;_1,n, corresponding to

phases P(0,cq), P(c1,¢39),...,P(cj_1,n). We prove that selecting the minimum method

at each phase gives an optimal selection strategy. Let the total linear solution time
be T = t, Z;zrll If, where z can be any method in the set My ... M}. Since T is
a summation of positive quantities, therefore T' can be minimized by minimizing each

th;’". This is equivalent to selecting th;? = minzi?{tﬂ;}, for each non-linear iteration

j, i.e. the definition of minimum method. By definition, the minimum method remains

constant within a phase, and the result follows.

4.2 Adaptive Solvers

Adaptive solvers are defined by the heuristic employed for method selection. Ide-

ally, the selection heuristic should be applied at each nonlinear iteration. However this

51

could be potentially expensive due to the added overheads of method selection. The
switching costs can be amortized by observing parameters over a fixed number of non-
linear iterations, defined as a “window”. The heuristic is invoked at the end of each

window.
Adaptive heuristics can be sequence-based, that is, rely on a predetermined se-

quence of linear solvers. The linear solvers are arranged in increasing order of “strength”
as defined by the time taken per iteration. We assume that a solver which requires more
time per iteration is stronger, i.e., more likely to achieve convergence. The adaptive
solver could potentially “switch up” to a more powerful linear solver or “switch down”
to a less powerful one in course of the simulation. Only three methods are compared in
this class of heuristics; the current method and the methods preceding and succeeding
it in the sequence.

Adaptive heuristics can also be nonsequence-based where all the methods in the
set are compared. This class of adaptive methods requires more time for selection, but
they have greater flexibility. Sequence-based methods are used in simulations where
linear systems get progressively difficult or easier and nonsequence-based strategies are
used in applications where such monotonic pattern is missing and can be used to manage
highly irregular behavior. We have developed the following adaptive heuristics.

4.2.1 Adaptive Method 1 (Based on Convergence Rates)

This heuristic is based on the following three indicators measured over a window
w of nonlinear iterations:
e The convergence rate Ry, of previous linear solutions defined as,

1 Tin; 78,0 . . . o
Ry = 4 2 b—we<ic=k —h; where k is the current nonlinear iteration; T j

is the relative residual of the linear system solution at the i-th time step and j-th
linear iteration; and n; is the total number of linear iterations performed at the
i-th time step.

, where

kaH—kaTuM

e The convergence rate Ry of the nonlinear solution, Ry = A
—w

| f&|| is the function norm at the k-th time step.

e The rate of increase in the number of iterations for linear system solutions, Ry =
Ng—Mg—1
Ng—1
step.

, where n; is the number of linear iterations performed at the i-th time

These indicators are evaluated at each window and the actual switching is based
on user specified parameters A\, w, 8 as follows,

o If |Ry; + Ry | < A, use the same solver in the next time step.
o If Ryy + Ry, > A, select a less powerful solution method (switch down).

o If Ry + Ry, < —X or Ry > f3, select a more powerful solution method (switch up).

52

4.2.2 Adaptive Method 2 (Based on Execution Time)

The goal of adaptive solvers is to reduce the execution time, therefore, linear
solution time is a natural choice for an indicator. Let method M; be used to solve linear
systems in window i. The corresponding number of linear iterations be I(i,5) and the
time per iteration be t)- Now the time taken to solve the linear systems generated in
window ¢ is T'(i,j) = I(i,j)t;. It is intuitive that the adaptive solver will switch up
when T'(i,7) > T(i,7 + 1) or switch down when T'(,j) > T'(i,5 — 1). We approximate
the number of linear iterations that would have been by required method Mj 1 to solve
the same linear system as al(s,j) and by method M;_1 as BI(z,).

Let T'(i—1,7) and T'(i, j) be the observed times for all the linear system solutions
in windows ¢ — 1 and 4. If each nonlinear iteration generates a progressively difficult
linear system, then T'(i,7 +1) > T(: — 1,57 + 1). The switching heuristic can now be
expressed as follows,

Method j + 1 is selected for window ¢ + 1 if T'(4,7) > T'(i,5 + 1).

T(,7) >T@6,j+1)>T@E—-1,7+1)
implies, I(i,j)tj > al(i — 1,j)tj+1
I(i,7) ZES!
I(i—1,75) > ¢
Method j — 1 is selected for window ¢ + 1 if T'(4,7) > T(i,5 — 1).
T(,7) >T@G,j—1)>T@E—-1,7—-1)
implies, I(z',j)tj > BI(i — 1,j)tj_1

implies,

I(Zaj) > tj_lﬁ

Ta-15) 7

implies

4.2.3 Adaptive Method 3 (Based on Polynomial Interpolation)

Adaptive heuristics are based on accurate prediction of future performance data.
The trend of the indicators can be estimated by fitting a function to the known data
points. This is the motivation for designing adaptive heuristics based on polynomial
interpolation. The value of the indicator associated with method M j at nonlinear iter-

ation ¢ can be calculated using an n degree polynomial as follows, Pﬂ; (t) = 2226‘ ag ti;

J
?
to the nature of the problem. In our experiments, the indicator was taken to be the

where a7 are coefficients of the polynomial. The choice of indicators may vary according

time required to complete the simulation. We first estimate the number of nonlinear
iterations n required to achieve convergence, and then calculate the total time required
to solve linear systems that will be generated from the current nonlinear iteration to
nonlinear iteration n. We select the method requiring the least solution time.

53

4.3 Empirical Results

We evaluated the performance of the three adaptive heuristics on the following
CFD applications—the compressible Euler equation for airflow on a ONERA M6 wing
on the PETSc-FUN3D implementation and the driven cavity flow. We performed the
experiments on the Jazz cluster at the Argonne National Laboratory, which has a Myrinet

2000 network and 2.4 GHz Pentium Xeon processors with 1-2 GB of RAM (detailed

description in Chapter 3). We report our observations and results in this section.

4.3.1 FUN3D Code for Euler Equations on Unstructured Grids

FUNS3D is a simulation code for compressible and incompressible Euler equations
originally developed by W. K. Anderson of the NASA Langley Research Center [3]. This
code uses a finite volume discretization with a variable order Roe scheme on a tetrahedral,
vertex-centered unstructured mesh [3].

Gropp et al. have incorporated PETSc functionality into the FUN3D code [31].
The parallel PETSc-FUN3D code has been used to solve above application of subsonic
flow for an ONERA M6 wing and the results show improvement in scalability and the
performance. The unstructured mesh was partitioned using MeTiS [34] and the set of
nonlinear equations were solved using the /N K S [35] family of implicit solution schemes.
N K S uses inexact Newton’s method to solve the nonlinear equations. The linear sys-
tems generated at each iterative step are solved by combining a Schwarz preconditioner
with a Krylov iterative method. Pseudo-transient continuation is employed for ensuring
robustness in problems involving shocks or turbulence.

We have used examples from PETSc-FUN3D as test applications for our multi-
method adaptive solvers. We used Newton’s method for solving the nonlinear systems
and our linear solvers were variations of Krylov methods. Neilsen et al. [38] have demon-
strated that use of Newton-Krylov methods within the FUN3d code maintains the accu-
racy of the results while lowering the execution time. In addition, we also validated the
results of the relevant physical quantities, such as pressure along the wing span, with

the authors of the PETSc-FUN3D code (through personal communication).

4.3.2 Experiments on PETSc-FUN3D

The PETSc-FUN3D code is used to implement a compressible flow for an ON-
ERA M6 wing. The application is associated with a shock discontinuity. Initially the

PDEs are discretized using first-order discretization, but once the shock position has

54

settled down second order discretization is applied. This change in discretization affects
the nature of the linear system. Our experiments were limited to the available three

dimensional problem instance designated as 1Grid. This represented a matrix of rank

approximately 1.8 x 10% with 1 x 10° nonzeros. The simulations were done using 4
processors. We used Block Jacobi preconditioner and varied the Krylov solvers and the
subdomain preconditioners. The base methods used were (B1) GMRES with SOR, (B2)
TFQMR with ILU(0), (B3) BiCG with ILU(0)and (B4) FGMRES with ILU(1). The
adaptive methods were based on the heuristics discussed earlier. In addition we also
evaluated the performance of an optimal adaptive solver by forcing the solver to adapt
at each phase, as per the mathematical formulation. It is generally not possible to au-
tomate such an optimal adaptive, but the results give an estimate of extent of potential

improvement. Figure 4.2 shows the convergence rates of the base and adaptive solvers.

107 T T T T T T T T 107

10 |

— Adaptive 1
Adaptive 2
Adaptive 3

—— optimal

H
S,

— gmres—sor
tigmr—io
begs-10

—— fgmres-i1

Nonlinear Residual Norm
N
S

Nonlinear Residual Norm
N
S

=
S
=
S

4 L L L L L L L L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Nonlinear Iterations Nonlinear Iterations

Fig. 4.2. Convergence of residual norm for 1Grid. Left-hand graph plots the curve for
the base solvers. Right hand graph plots the curve for the adaptive solvers.

Observe that the convergence rate of adaptive heuristic with polynomial interpo-
lation is similar to that of the optimal adaptive solver. Adaptive method 3 converges
faster than the other two adaptive methods. This is because the polynomial interpolation
strategy has the flexibility of selecting from any base method rather than being confined
to its immediate neighbors in the sequence. The superiority of adaptive method 3 is
also evident in Figure 4.3 which shows the time taken to solve linear systems. Adaptive
solvers 1 and 2 take significantly more time, while the plot for adaptive 3 is close to the
optimal adaptive solver. Table 4.1 compares the performance of the base and adaptive
methods. The execution time of the adaptive method based on polynomial interpolation
is within one percent of the execution time of the best base method B4 and 32% better

than that of the worst one B2. The execution time of the optimal adaptive is 7% better

95

than that of the best base method and 42% better than execution time of the worst one.
Execution time taken by any adaptive solver is lower than or equal to the average time

taken by the base methods as shown in Table 4.1.

80 T T T T T T T T 60

— gmres-—sor
tiqmr-10
begs-10

—— fgmres-I1

701

@
3
T

@
S
T

— Adaptive 1
Adaptive 2
Adaptive 3

—— Optimal

Time per Nonlinear Iteration
@ IS
g 8
T

N
S
T

.
1)

o
o

L L L L L L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Nonlinear Iterations Nonlinear Iterations

Fig. 4.3. Time spent in solving linear systems during each nonlinear iteration. Left-
hand graph plots the curve for the base solvers. Right hand graph plots the curve for
the adaptive solvers.

Metric Base Methods B1-B4 Adaptives
Bl | B2 | B3 | B4 | Mean | A1 | A2 | A3 | AO

Cumulative Performance Data

Time in seconds; Linear Iterations of order 10°

Solution Time 2268 | 2790 | 25635 | 2123 | 2420 | 2461 | 2708 | 2103 | 1961
Linear Iterations 2.56 | 1.45 | 1.16 | 1.25 1.6 1.25 | 1.35 | 1.24 | 1.04
Nonlinear Iterations | 89 89 85 78 85.2 82 87 78 77

Table 4.1. Summary of performance measures of adaptive solvers for 1Grid. The column
labeled mean gives the average performance over four base methods. The third adaptive
method (A3) performs 13% better than the average execution time of the base methods.

4.3.3 Experiments on Driven Cavity Flow

The PETSc implementation of the model Driven Cavity flow (described in Chap-

ter 3) is solved using pseudo transient continuation. This is an example of a simulation

o6

where as a result of using a globalization technique, the linear systems become more
difficult to solve at later nonlinear iterations. Therefore adaptive solvers based on incre-
mentally switching up perform well in such simulations.

We experimented on a suite of 30 problem instances on a 128 x 128 mesh with
Grashof numbers [400, 450, 550, 580, 600, 650] and lid velocities [10, 13, 15, 20, 25]. The
base methods were (B1) BiCG with ILU(0), (B2) GMRES with ILU(0), (B3) TFQMR

with ILU(0), and (B4) BiCG with ILU and drop threshold 1074

Figure 4.4 depicts the simulation with Grashof 600 and lid velocity 20. The
convergence rates of all the base methods and adaptive solvers are equivalent. However,
the adaptive solvers are successful in maintaining a lower value of time per linear solver
as shown in the right hand graph. Figure 4.5 gives the cumulative time over 30 problem
instances. Fach colored patch represents a simulation instance specified by a Grashof
number and lid velocity. The segments are arranged in increasing order of Grashof
number and lid velocities (per Grashof number) with the bottom representing 400:10
and the top 650:25. Thus, starting at the top or bottom, each patch of five contiguous
segments represents results for a specific Grashof value. The execution time of sequence-
based adaptive solvers which depend on the convergence rate or linear solution time
are 17% better the best base method BiCG with drop threshold and 50% better than
the worst method GMRES with ILU(0). The nonsequence-based approach based on
polynomial interpolation fares less well compared to the other adaptive solvers. Tt is 6%

better than the best base method and 44% better than the worst one.

4.4 Summary

We have developed adaptive strategies that can dynamically select the best suited
linear solver for a given linear system. Our experiments demonstrate that use of adaptive
solvers can significantly reduce the execution time for large-scale modeling applications.
Our adaptive solvers can reduce the application time to be 39% better than the average
performance of four base solvers (see Table 4.2) and by 50% of the worst method. These
results are indeed promising; however it is important to note significant differences in the
performance of our three adaptive strategies. For example, simpler strategies based on
linear and nonlinear convergence rates or execution time have lower associated overheads
and are successful in adapting to applications requiring solvers of gradually increasing
(or decreasing) strength. Our adaptive solver based on polynomial-interpolation incurs
higher overheads but is more successful in adapting to applications where the variations

in the numerical properties of linear systems are more complex.

Nonlinear Residual Norm

T
— begs-12

Time per Nonlinear Iteration

o7

T
— begsl2
gmres|
16} tiqmri2
—— bgst4
O adaptl
14l O adapt2
* adapt3

12

L
12 14

Fig. 4.4. Left-hand graph plots convergence of residual norm for the pseudo-transient
continuation version of the driven cavity flow(600:20). Right-hand graph plots of time
spent in solving linear systems at each nonlinear iteration.

Metric Base Methods B1-B4 Adaptives
Bl B2 | B3 | B4 | Total | Al | A2 | A3
Cumulative Performance Data over 30 simulations
Solution Time (seconds) | 1824.5 | 2372.7 | 2130.6 | 1409.7 | 7737.5 | 1195.6 | 1189.4 | 1311.5
Linear Iterations 2987 7109 3438 1122 14656 1116 1116 1487
Nonlinear Iterations 450 450 450 450 1800 450 450 450
Average Performance Data over 30 simulations
| Bl | B2 | B3 | B4 [Mean | A1 | A2 | A3
Solution Time (seconds) | 60.81 | 79.09 | 71.02 | 46.99 | 64.45 | 39.85 | 39.6 43.7
Linear Iterations 99.56 | 236.96 | 114.6 374 | 122.13 | 37. 2 37. 2 | 49.56
Nonlinear Iterations 15 15 15 15 15 15 15 15

Table 4.2. Summary of performance measures of adaptive solvers for 128 by 128 driven
cavity flow application. The column labeled (B1-B4) gives the cumulative and mean
values across four base solution schemes. The adaptive solvers are 39% to 32% faster
than the average execution time of the base methods.

2500

2000

1824.5

1500

1000

Cumulative Time for 30 simulations

500

B1

T
2372.7

B2

o8

Fig. 4.5. Cumulative time required by simulations on 30 problem instances on driven

cavity application

99

Chapter 5

Toward Multimethod Solver Components

In this chapter, we consider the development of a software system that can auto-
matically instantiate a composite or adaptive solver in response to a specific user request.
We start with an overview of the system requirements and the design issues involved in
creating such software. We then present a high-level description of our multimethod
software architecture, followed by descriptions of two alternate implementations. We

end with remarks on our contributions and plans for further development.

5.1 Design Requirements

Our multimethod software system should be capable of serving the needs of both
the application community as users of multimethod solvers and the scientific computing
community as developers of new techniques for multimethod solver creation. In this
section, we summarize the key features of a multimethod software architecture which

would meet the needs of both communities.
We expect the user community to consist of scientists and engineers who wish to

solve large-scale modeling applications. From their perspective, ease of use is a primary
issue. Ideally, our multimethod software system should be no harder to use than the
standard linear solver packages. Additionally, the software should also allow the user to
specify details that could influence the instantiation of multimethod schemes and their
performance in specific applications. For example, the user might need to specify the
desired level of reliability of a composite or wish to add new solvers (not defined in
the underlying linear solver packages) and use it towards building adaptive or composite
solvers for his application. The multimethod software system should be able to efficiently
accommodate such user-specific requests.

We expect the scientific computing community to be concerned primarily with
the efficient implementation of multimethod solvers. Multimethod solvers are composed
of several individual base solvers which can differ in the language they are implemented,
the design of their data structures, etc. Our multimethod software system should be
capable of effectively bridging the difference in the various implementations to provide

access to the majority of available packages that implement the base methods. Another

60

issue is that of the reuse of base solvers. The same linear solver can be used in different
multimethod solver instances. Providing a uniform abstract interface to base method im-

plementation (for example, through extra interface wrappers) will ensure easy generation
of multimethod instances and promote reusability and portability.

Building an ideal multimethod software system also involves implementing data
collection, storage and retrieval techniques. The multimethod software system should
be equipped with functionalities for efficiently monitoring the performance of the solvers
it provides to the users. The system should be associated with a database that would
store information regarding individual base methods such as their intrinsic computational
costs or observable metrics such as failure rates, convergence, etc. after each execution.
Such data will be useful in determining the arrangement of the base methods in com-
posite or adaptive solvers. The database could also be used to store specific instances
of multimethod solvers. Future instances of the same application could potentially uti-
lize existing multimethod solvers thus saving the time for constructing new adaptive or
composite solvers.

The study of multimethod solvers is a relatively new area and researchers from
the scientific computing community would be interested in exploring further extensions
to this project. The multimethod software system should be extensible and allow the
user to experiment by specifying different combinations of base solvers or by including
new multimethod algorithms. Such functionality in conjunction with those for perfor-
mance data collection will facilitate further developments in the use and construction of

multimethod schemes.

5.2 Software Architecture for Multimethod Solvers

In this section, we propose a software architecture for a multimethod solver system
that addresses the design requirements discussed above. The software architecture pro-
vides a platform-independent, object-oriented characterization that can be used to hide
lower level implementation details and used towards providing specific implementations

of multimethod solver instances.
Consider a multiprocessor system consisting of computing nodes each comprising

a set of high performance CPUs and communicating through fast interconnects such as
Myrinet. Assume that several software services are available on this system and the user
can access them through interaction with a suitable runtime environment. Our software
architecture is designed to provide a multimethod solver service in such a system. This
service would be registered through the runtime system and accessed by the user through

interaction with the runtime system.

61

Our design is based on a client-server model where the application (client) can
request a specific multimethod solver (service) from the runtime system. This request is
then transmitted to our multimethod software (server) which then provides the service.
Figure 5.1 depicts the conceptual structure of our multimethod software and its function
in relation to the other computational entities in the system. In general terms, the main

computational entities involved include the following.

e A central runtime system through which applications can request and receive ap-

[4

propriate multimethod solvers. The runtime system also provides “yellow pages”,

i.e., directory services that can be used to identify base linear solver packages.
e Applications that request multimethod solvers from the software system.

e Linear solver packages that provide solvers that can be used to construct composite

or adaptive multimethod solvers.

e The multimethod software system, composed of implementations for multimethod
algorithms, functions for performance monitoring and a database that stores in-
formation about the performance of linear solvers in different applications. The
multimethod software system creates multimethod instances to be used by the
requesting application and optionally evaluates the performance of multimethod

solvers in the application.

Consider an application requiring a linear solver for obtaining the solution of a
sparse linear system. The application would send a request to the runtime system along
with information regarding the type of solver needed, for example a composite, and other
user data, such as the structure of the matrix, desired reliability, etc. This request and
information is transmitted to the multimethod software. The multimethod algorithms in
the software use this information and look up the database to determine the appropriate
set of linear solution methods to be used. A request is then sent from the multimethod
software system to the runtime system to locate and use these solvers. The linear solvers
are arranged in the increasing order of their utility ratios, as obtained from the database,
to form a composite solver instance tailor-made for the requesting application. This ends
the “creation service”. Next the application accesses the multimethod solver through a
“user request” via the runtime system. Figure 5.2 shows the main steps of the process.
After the linear system is solved, relevant performance data is collected in the multi-

method software database. The database can also store the multimethod solver instance
which can be reused for solving similar linear systems.

62

PETS: TRILLINOS HYPRE LINEAR SOLVER PACKAGES

DATABASE

MULTIMETHOD

CENTRAL RUNTIME SERVER SERVER

NN MultiMethod | MultiMethod : MultiMethod)
\ NN overt | Sver2 o Solverd

Multimethod Solver Instances

APPLICATIONS

(CLIENTS) APPLICATION 1 APPLICATION3
APPLICATION 2

Fig. 5.1. Multimethod Software Architechture.

APPLICATION

1. Request for solver
instantiation

r

8. Returns handleto
-

solver instance

RUNTIME SYSTEM

2. Transmit the request
>

4. Request to locate solvers
-

5. Informahop on_ o
solver location

-

MULTIMETHOD SERVER

3.Determinerequired
linear solvers

6. Creation of
Multimethod Solver

7. Requested solver instance

63

Fig. 5.2. The main steps in processing a request to create a specific multimethod solver

instance.

64

5.3 An Implementation Using PETSc

A simple way to implement the architecture defined above is through extension
to PETSc, the Portable Extensible Toolkit for Scientific Computing(PETSc) [5, 6]. We
incorporated extensions to provide multimethod solver services as follows. The base
methods were implemented using PETSc functions for linear solvers. The multimethod
composite or adaptive solvers were represented by suitable algorithms to invoke the base
methods. Then, the section defining the linear solver in the original application was
replaced by a call to functions implementing multimethod solvers.

This implementation is a very simple and static representation of the multimethod
software architecture described earlier. Even in this simple model many design issues
were addressed. We were able to include multimethod solvers into the application code
without any significant modification. The use of abstract interfaces in PETSc provide
uniform access to a variety of base methods. This promoted flexibility of algorithm

selection and also allowed the reuse of base methods in different multimethod solvers in-
stances. The performance data was collected with in-built PETSc monitoring functions.

However, this simple implementation entailed several limitations. The set of
solvers was limited to only those included in PETSc. In the absence of a runtime server,
each multimethod solver instance had to be statically built for each application and were
coded as separate functions in the application. This resulted in a monolithic code which
tended to get unwieldy with the addition of every new multimethod solver instance. The
performance metrics of base methods had to be individually acquired and processed and
there was no efficient mechanism for storing past results, especially across applications.

Our goal is to build a multimethod solver with a much wider scope that extends
beyond these limitations. Our initial implementation has provided us with the valuable
understanding of several issues concerning multimethod solvers. We utilize this expe-
rience to address and overcome these problems when constructing a component-based

multimethod software.

5.4 An Implementation Using Component Software Framework

In our second implementation of multimethod solvers, we employed a “component-
based approach” as described in Chapter 2. In a component-based model, each compo-
nent is independent of the larger application and is viewed as a black-box by the rest
of the code. Components provide the ability to plug-and-play thus allowing the user

to experiment with different code segments. In recognition of these advantages many

65

scientific computing projects, such as climate modeling, are using component-based soft-
ware. In particular, the Common Component Architecture Forum(CCA) [4, 11, 40]
focuses on developing a scientific computing component model specification. Our design
of multimethod software conforms to the CCA standards.

We used SIDL (Scientific Interface Definition Language), an IDL built with em-
phasis on scientific computing and Babel, a language interoperability tool, to create
components for the multimethod software. The linear solvers from different packages are
encapsulated into components. This enables solvers of different implementations to have
compatible abstract interfaces and they can be easily combined to form multimethod
solver instances. There exists a well-defined central server in this model which processes
requests and services as described earlier. Functionalities for collecting performance data
can be obtained from performance monitoring packages like TAU [44]. These functions
are also implemented as components, are independent of the applications or linear solver
packages used.

Our work on multimethod solvers contributes to the current research in developing
efficient component-based high-performance software. In the next subsection we will

describe how components can be created and integrated in a generalized application.

5.4.1 Creating Components within CCA Framework

A specification in SIDL is used to create CCA components. The functionalities of
each component are specified in an associated SIDL file. The SIDL files have an object-
oriented structure. The highest level is a package. Fach package is formed of interfaces
and classes, which in turn contain variables and methods. The interface and classes may
depend on other interfaces from the same or different packages thus creating a complex
dependency structure.

Next, a given SIDL file, is transformed into a component encoded in an user-
specified language, through Babel, a SIDL based language interoperability tool [19].
Babel reads the interface and class specifications in the SIDL file to generate an inter-
mediate XML representation. The code generator then reads the XML descriptions and
automatically generates code for the specified software library. Finally, the application
developer integrates the components generated by Babel into the main application.

Figure 5.3 shows the steps for generating component-based code using Babel. The
user defines one or more SIDL files. The SIDL files are then parsed into associated XML
representations by invoking specific Babel command options. After generating the XML

files, the user can create server and client files using Babel commands. The server and

Create Sever Files

AR R

! Vo Vo
IStubs ' TIOR ! I ggsg
! L !

Y
\ '"’ -

I Qimpls|
! 1
1

Write
SIDL files

Create XML Representation

\ e

Makefile

Compile Executables

T \
I Library :
! Files i
~ 7

Fig. 5.3. Component creation with Babel.

66

67

client files generated are stubs, skeletons (Skel) and Babel internal representation (IOR)
files. In the case of the server, implementation prototype (Impl) files are also created.
The implementation files contain prototypes for the methods that are filled in by the
application developers. Once the implementation details have been filled in, the user
compiles the server codes to generate library files. The user can now write a client code

which uses the methods described in the server. The client code and the client stubs are
linked with the library files generated from the server code and compiled to obtain the

executable.
The process of generating server and client codes from the SIDL definition requires

active user participation. In Figure 5.3, the ovals represent the files containing user
defined information. The dotted boxes represent scripts to be written by the user to
generate the intermediate Babel files (each such operation has an associated makefile)
and the dashed boxes represent intermediate files that have been generated by Babel
commands. In order to proceed from one step to another, the user has to be aware of
what files were generated, their location, their mutual dependency patterns and how to
effectively link them. The makefile scripts have to be changed each time a new SIDL
file is incorporated or a new client code is written. Writing the makefiles and changing
them for each new addition in the project is, if not difficult, at the very least time
consuming. In an ideal situation the user should only have to know what is pertinent to
the project, the client codes, the packages used in writing them, the SIDL files needed
and implementation details of the methods i.e. the parts denoted by the ovals in the
diagram. The user should be able to add, modify or delete components by filling in only
the relevant details and the rest of the operations (within the dotted box) should be
taken care of automatically. Our goal is to construct an interface over Babel functions
that allows the users to access the benefits of language interoperability without getting

involved into the intricacies of writing complicated makefiles.

5.4.2 Towards an Automated Interface

In the course of our implementation, we discovered that with a few modifications
to Babel, user effort in creating the components can be significantly reduced. This mo-
tivated us to extend Babel and develop an automated interface for creating components.
The interface has the ability to support and track dependencies across components and
requires only minimum information regarding the component from the application de-
veloper. The interface is compatible with the CCA-based framework and retains all the

associated advantages.

68

The two main operations in constructing the automated interface were : (i) build-
ing templates of makefiles, and (ii) generating data dependency trees. We observe that
the makefiles generally follow a “linear” approach; there are rarely any branching com-
mands. The user has to specify the relevant libraries, the source files, the commands
for creation of the object files and their subsequent linking and compilation to form the
executables. There is not much variance in this pattern and we can substitute indi-
vidual makefiles for templates. The appropriate template can be chosen according to
the application need or user specifications. An important requirement for creating such
templates is that the locations of the files should be known. Qur interface solves this
problem by fixing the locations of all intermediate files. To ensure fixed locations, we
restrict the user interaction with Babel. The user can access the Babel commands only
via the interface. This restriction does not entail any loss of functionality, and if needed

the user can move files across directories.
The complex dependency structure between packages requires maintaining a de-

pendency tree. Inputs to some Babel commands require the user to arrange the SIDL
files in the order of their dependencies. Thus the user has to know the dependency
patterns of all the SIDL files he is using and this might be difficult, especially in a col-
laborative project. In addition the effects of modifications in one package would cascade
down to its children. In absence of a dependency tree this might create many unforeseen
and complicated problems in the code. We maintain two sets of dependency trees in the
form of databases, one based on packages and the second based on SIDL files. This is
because parts of the same package may be defined across different SIDL files. Users can
view the dependency structure if they wish, but the databases function transparent to
the user. The dependency structure generates an ordered list of SIDL files when needed
and also makes necessary modifications to relevant packages when the parent package is

modified.
Figure 5.4 demonstrates our design for this automated system. Notice that each

combination of a dotted and solid box in Figure 5.3 (which represented makefile scripts
to be written by the user) has a corresponding solid box in Figure 5.4 that does exactly
the same thing with only a single command. The only inputs required from the user
are the names of the SIDL files, the packages used and the language for generating
servers and clients. For users who would like to use finer level options, this system
provides the flexibility of selecting the choice of compilers(at configure), type of libraries
(static/dynamic), and also allows the user to change the makefiles if they wish to do so.

The basic installation steps sets the appropriate libraries, packages and compilers
best suited to the architecture in the directory HOME, next, the user can add new SIDL

files or modify existing ones using the following command options.

Write
SIDL

Files

INSTALLATION
configure
art_up

[T

/

add_sidl (list of sidl files)

make xml (xyz.sidl)

make_stubs (file/package name,language, wverl

Fill in details of
Implementation

make _libs (file/package name,language)

Fig. 5.4. Automated component creation with the extended interface to Babel.

I

| make_stubs (file/package name,language, client)

MAKEFILE

Users
Code

69

70

e add-sidl: This command allows the user to specify the SIDL file to be added. The
original file can be at any location, but after execution of add-sid1l the file is copied
to HOME/SIDL and this copy is accessed for all subsequent calls. This operation
involves parsing the SIDL file to construct databases representing dependency trees.
The databases provide a list of packages defined in the file, their constituent classes,
and external packages required by classes within the parsed packages. The user
can obtain the information in the database either by referencing the name of the
SIDL file or just by the package name.

e make-xml: This command forms an interface to the Babel function for creating

XML representations of the SIDL files. The XML version is stored in HOME/SIDL/xm1.
Using the Babel command directly might generate error messages if the class being
parsed either (i) depends on an external package that does not yet have an XML
representation or (ii) already has an XML representation.
The script make-xml eliminates these situations by creating a dependency tree for
each SIDL file. Each SIDL file is now associated with a list of parent files that
contain packages required by the classes in this SIDL file and children files that
require the packages defined in this SIDL file. The XML files are generated in
order of dependency from the topmost parent file (one which does not have any
dependency) to the SIDL file given in input argument. If the XML version of any
file in this sequence exists, then that file is skipped and we move on to the next
one in the list.

e make-stubs: This script creates server/client files for the packages. The user can
specify any particular package or a SIDL file (in which case files for all the packages
would be generated). The user specifies the language and the type (client or server)
of the files. Once the files are generated the user accesses the prototypes in the
Impl files (generated only for servers) to fill in the implementation details.

e make-libs: This script is used for generating libraries from the server/client files.
By default a shared library is created, though the user can build a static library
by adding the library type argument. The package itself might depend on several
external packages that should be included in the makefile. The script reads through
the database to create a list of the parent packages. The libraries after being
generated are stored in HOME/1ib.

e rewrite-sidl:The function of this script is almost the same as that of add-sidl,
except as the name suggests this function is used for “rewriting” SIDL files that
have already been added. To rewrite, the function first eliminates the given SIDL
file and all its associated files, i.e. XML representations, database entries, client
and server codes as well as SIDL files that are dependent on it. Then the file is
added again (as by using add-sidl).

71

5.5 Summary

In this chapter, we discussed the primary requirements to be satisfied by a mul-
timethod software system. We then presented a software architecture design that would
address these issues. We have implemented limited versions of the architecture in two
forms. The first implementation, using PETSc, while providing the basic requirements,
suffers many limitations. We overcome some of these limitations in our second imple-
mentation using a component-based approach which conforms to the CCA standards.
The main advantage of CCA is the use of object-oriented components that allow easy in-
tegration of different software packages. However, building these components is as yet a
non-trivial task and we have developed an interface to Babel which facilitates component
creation. We continue to implement our component-based multimethod solver system.
In the near future we plan to develop and add performance monitoring components and

databases for efficient storage, retrieval and use of the performance metrics.

72

Chapter 6

Conclusions and Future Research

This thesis concerns the development, design and implementation of multimethod
solvers to enable robust, limited memory and efficient solution of sparse linear systems.
We have developed two classes of multimethod solvers (i) composite solvers that au-
tomatically compose a sequence of sparse linear solution schemes to be applied to the
same system to provide highly reliable scalable solution and (ii) adaptive solvers which
dynamically select the linear solver that best matches linear system characteristics to re-
duce solution time. We have implemented our schemes and evaluated their performance
in solving linear systems generated by computational fluid dynamics applications. Addi-
tionally, we have designed a client-server multimethod software architecture that enables
easy creation and use of our solvers in high-performance scientific computing applica-

tions.
We developed multimethod composite solvers that can solve linear systems with

high reliability and have low memory requirements. We provided analytical results, based
on a combinatorial framework, for instantiating an optimal composite. We demonstrated
that the use of composite solvers can significantly increase the reliability of linear system
solution schemes and thereby improve the execution time of applications. For exam-
ple, on the driven cavity flow application, our optimal composite solver is 50% better

on average compared to the base methods, using 1 processor, and 30% better using 8
processors.

We developed heuristics for adaptive selection of linear solution schemes using
polynomial interpolation and based on metrics such as linear and nonlinear convergence
rates, execution times, etc. Our emphasis is on reducing the execution time of the
application by dynamically solver properties to the system attributes. Adaptive solvers
have shown 39% improvement in execution time (average) when applied to the driven
cavity flow application.

We designed a component-based client-server architecture for multimethod solver
software system that can automatically instantiate multimethod solvers on request from
the user. The software system also aims to provide application developers with an easy

to use interface to multimethod solvers. We have implemented the major features of our

73

architechture as CCA-compliant software, thus contributing to the on-going community
efforts in creating component based applications. As part of this effort, we have also
developed an interface to Babel (a language interoperability tool) that simplifies com-
ponent creation. This interface is not specific to multimethod solvers and can be used
to aid the development of other component-based software.

In the near future, we plan to investigate further extensions to adaptive and com-
posite solvers. An important research problem is to understand and formulate a mathe-
matical relation between the application type and the corresponding adaptive heuristic.
Composite solvers are in a sense less problem dependent. However, the dependence of
the failure rates among different methods lead to interesting combinatorial problems
which can potentially lead to improved composite solvers. We also plan to expand our
application domain and experiment with larger practical problems. We conjecture that
the improvements observed in the our initial experiments would be magnified for larger
applications.

Finally, we note that the multimethod algorithms need not be confined to sparse
iterative linear solvers. Other problems, with a set of competitive solution methods and
no obvious “best method” have the potential to benefit from our techniques. For example,
multimethod algorithms can be applied to reduce fill-in for sparse matrix factorization
by utilizing multiple methods for ordering [22, 36]. Other examples include, eigenvalue
computations, mesh generation and optimization algorithms. Multimethod algorithms
can also be potentially applied to other areas beyond scientific computing, for example,

in scheduling or resource allocation.

[1]
2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

74

References

The Chiba City Project, URL: http://www.mcs.anl.gov/chiba.

LCRC Argonne National Laboratory Computing Project,
URL:http://www.lcrc.anl.gov /jazz/index.php.

W.K. Anderson and D. Bonhaus. An implicit upwind algorithm for computing
turbulent flows on unstructured grids. Computers and Fluids, 23(1):1-21, 1994.

R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L..C. McInnes, S. Parker,
and B. Smolingki. Toward a common component architecture for high-performance

scientific computing. Proceedings of High Performance Distributed Computing,
pages 115-124, 1999.

S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley, L.C. Mclnnes,
B. Smith, and H. Zhang. The PETSc users manual. Technical Report ANL-95/11,
Argonne National Laboratories, Argonne, IL, 2002.

S. Balay, W. Gropp, L.C. Mclnnes, and B. Smith. Efficient management of paral-
lelism in object oriented numerical software libraries. In E.Arge, A.M. Bruaset, and
H.P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages
163-202. Birkhauser Press, 1997.

R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V.Eijkhout,
R. Pozo, C. Romine, and H. van der Vorst. Templates for the solution of Linear
Systems: Building Blocks for Iterative Methods. Siam, 1994.

R. Barrett, M. Berry, J. Dongarra, V. Eijkhout, and C. Romine. Algorithmic bom-
bardment for the iterative solution of linear systems: A polyiterative approach.
Journal of Computational and applied Mathematics, 74:91-110, 1996.

B. A. V. Bennet and M. D. Smooke. Local rectangular refinement with application

to nonreacting and reacting fluid flow problems. Journal of Computational Physics,
151:648-727, 1999.

[10]

[11]

[12]

[13]

[14]

[17]

[18]

75

Marshall W. Bern and Paul E. Plassmann. Mesh generation. In Jorg Sack and Jorge
Urrutia, editors, Handbook of Computational Geometry, pages 291-332. Elsevier
Scientific, 2000.

D. Bernholdt, B. A. Allen, R. Armstrong, F. Bertrand, K. Chiu, T. L. Dahlgren,
K. Damevski, W. R. Elwasif, T. G. W. Epperly, M. Govindaraju, D. S. Katz, J. A.
Kohl, M. Krisman, G. Kumfert, J W. Larson, S. Lefantzi, M. J. Lewis, A. D. Malony,
L. C. McInnes, J. Nieplocha, B. Norris, S. G. Parker, J. Ray, S. Shende, T. L.
Windus, and S. Zhou. A component architecture for high-performance scientific
computing. International Journal of High Performance Computing Applications,
ACTS Collection Special Issue, submitted, 2004.

S. Bhowmick, L. McInnes, B. Norris, and P.Raghavan. Robust algorithms and soft-
ware for parallel PDE-based simulations. Proceedings of HPC 2004, The Twelfth
Special Symposium on High Performance Computing at the 2004 Advanced Sim-
ulation Technologies Conference, Arlington, VA, April 18-22, 2004, pages 37-42,
2004.

S. Bhowmick, L. C. Mclnnes, B. Norris, and P. Raghavan. The role of multi-
method linear solvers in pde-based simulations. Lecture Notes in Computer Science,

Computational Science and its Applications-ICCSA 2003, 2667:828-839, 2003.

S. Bhowmick, P. Raghavan, L. McInnes, and B. Norris. Faster PDE-based simula-

tions using robust composite linear solvers. Future Generation Computer Systems,
20:373-386, 2004.

S. Bhowmick, P. Raghavan, and K. Teranishi. A combinatorial scheme for develop-

ing efficient composite solvers. Lecture Notes in Computer Science, Computational

Science- ICCS 2002, 2330:325-334, 2002.

R. Bramley, D. Gannon, T. Stuckey, J. Balasubramanian J. Villacis, E. Akman,
F. Berg, S. Diwan, and M. Govindaraju. The linear system analyzer. In Enabling

Technologies for Computational Science. Kulwer, 2000.

X. C. Cai and M. Sarkis. A restricted additive schwarz preconditioner for general

sparse linear systems. SIAM Journal of Scientific Computing, pages 792-797, 1999.

T.J. Chung. Computational fluid dynamics. Cambridge University Press, 2002.

[19]

[20]

[21]

[27]

[28]

76

T. Dahlgren, T.Epperly, and G.Kumfert. Babel Users’ Guide, Lawrence Livermore
National Laboratory. URL: http://www.llnl.gov/CASC/components/babel.html.

G. De Vahl Davis. Natural convection of air in a square cavity: A bench mark

numerical solution. International Journal for Numerical Methods in Fluids, 3:249—
264, 1983.

G. De Vahl Davis and I. P. Jones. Natural convection of air in a square cavity: a

comparison exercise. International Journal for Numerical Methods in Fluids, 3:227-
248, 1983.

D.J.Rose, R.E.Tarjan, and G.S. Lueker. Algorithmic aspects of vertex elimination
on graphs. STAM J. Comput, 5:266-283, 1976.

J. Dongarra and V. Eijkhout. Self adapting numerical algorithm for next generation
applications. International Journal of High Performance Computing Applications,
17(2):125-132, 2003.

I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices. Claren-
don Press, Oxford, 1986.

A. Ern, V. Giovangigli, D. E. Keyes, and M. D. Smooke. Towards polyalgorithmic

linear system solvers for nonlinear elliptic problems. SIAM J. Sci. Comput., 15, No
3:681-703, 1994.

Joel. H. Ferziger and Miloran Peric. Computational Methods for Fluid Dynamics.
Springer-Verlag, 1983.

R. Freund, G. H. Golub, and N. Nachtigal. Iterative solution of linear systems. Acta
Numerica, 1992.

Roland W. Freund. A transpose-free quasi-minimal residual algorithm for non-
hermetian linear systems. SIAM J. Sci. Stat. Comp, 14:470-481, 1993.

G.H. Golub and C.F. Van Loan. Matriz Computations. The Johns Hopkins Uni-
versity Press, 1989.

W.D. Gropp, D.E. Keyes, L.C. Mclnnes, and M.D. Tidriri. Globalized newton-
krylov-schwarz algorithms and software for parallel implicit cfd. Int. J. High Per-
form. Comput. Appl, 14:102-136, 2000.

[31]

[41]

[42]

[43]

7

Wiiliam D. Gropp, Dinesh K. Kaushik, David E. Keyes, and Barry F. Smith. High
performance parallel implicit cfd. Parallel Computing, 2000.

Michael T. Heath. Scientific Computing:An Introductory Survey, Second Edition.
McGraw Hill, 2002.

H.Meuer, E.Strohmaier, J. Dongarra, and H.D.Simon. Top 500 supercomputer sites.
URL: http://www.top500.org.

G. Karypis and V. Kumar. A fast and high quality scheme for partitioning irregular
graphs. SIAM Journal of Scientific Computing, 20:359-392, 1999.

C. T. Kelley and D. E. Keyes. Convergence analysis of pseudo-transient continua-
tion. SIAM Journal on Numerical Analysis, 35:508-523, 1998.

R. J. Lipton, D. J. Rose, and E. Tarjan R. Generalized nested dissection. Siam
Journal of Numerical Analysis, 16(2):346-358, 1979.

L. McInnes, B. Norris, S. Bhowmick, and P. Raghavan. Adaptive sparse linear
solvers for implicit cfd using newton-krylov algorithms. Proceedings of the Second
MIT Conference on Computational Fluid and Solid Mechanics, June 17-20,2003.

Eric J. Nielsen, W. Kyle Anderson, Robert W. Walters, and David E. Keyes. Ap-
plication of newton-krylov methodology to a three-dimensional unstructured euler
code. Technical Report ATAA-95-1733, 1995.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New York,
1999.

B. Norris, S. Balay, S. Benson, P. Hovland L. Freitag, L. McInnes, and B. F. Smith.
Parallel components for pdes and optimization: Some issues and experiences. Par-
allel Computing, 28(12):1811-1831, 2002.

O.Axelsson. A survey of preconditioned iterative methods for linear systems of
equations. BIT, 1987.

Roger Peyret and Thomas D. Taylor. Computational Methods for Fluid Flow.
Springer-Verlag, 1983.

Yousef Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Com-
pany,, 1995.

[44]

[45]

[46]

[47]

[48]

[49]

78

S. Shende, A.D. Malony, J. Cuny, K.Lindlan, P. Beckman, and S. Karmesin.
Portable profiling and tracing for parallel scientific applications using c++4-. Proceed-
ings of the SIGMETRICS Symposium on Parallel and DIstributed Tools (SPDT’98),
pages 134-145, 1998.

Jon Siegel. Corba 3: Fundamentals and Programming. John Wiley and Sons, 2000.

Barry Smith, Peter Bjgrstad, and William Gropp. Domian Decomposition. Cam-
bridge University press, 1996.

G. W. Stewart. Introduction to Matriz Computations. Academic Press, New York,
1973.

Llyod. N. Trefethen and David Bau ITI. Numerical Linear Algebra. STAM, 1997.

Mihalis Yannakakis. Computing the minimum fill-in is np-complete. SIAM J. Alg.
Disc. Meth, 2:77-79, 1981.

Vita

Sanjukta Bhowmick was born in Pilani, Rajasthan, India on February 20, 1978.
She went to high school in Kolkata, India. She received the National Scholarship for
achievement in the Higher Secondary Examination from the West Bengal Higher Sec-
ondary Education Board. Sanjukta did her undergraduate studies in the Haldia Institute
of Technology, Haldia, India. She received her B.Tech (Honours) degree in Computer
Science and Engineering in 2000 along with a medal for securing the highest grades from
the Vidyasagar University. In the same year she enrolled in the Ph.D. program in the
department of Computer Science and Engineering in the Pennsylvania State University.
She received the Wallace Givens Research Associate Fellowship to work as an intern
at the MCS division of the Argonne National Laboratory. She received the CSE Best
Research Assistant Award from the Department of Computer Science and Engineering,
the Pennsylvania State University in 2004. Sanjukta’s thesis concerns the development
of multimethod solvers for fast and reliable solution of large scale sparse linear systems
and their application in scientific and engineering problems. She is also interested in the
design and implementation of component software. Her research includes scalable paral-
lel algorithms, numerical methods, particularly iterative solvers and also non-numerical

topics like combinatorics and graph theory.

