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Abstract

The American Society of Civil Engineers’ 2005 Report Card for America’s In-
frastructure gave a D− grade to water/wastewater infrastructure . It has been
estimated that up to 40% of the United States’ underground infrastructure will
have failed or will be on the brink of failure within 20 years, unless efforts are initi-
ated to renew it. But system renewal requires adequate funding. According to an
April 2000 report by the Water Infrastructure Network (WIN) Agency, “America’s
water and wastewater systems face an estimated funding gap of $23 billion a year
between current investments in infrastructure and the investments that will be
needed annually over the next 20 years to replace aging and failing pipes and meet
mandates of the Clean Water Act and Safe Drinking Water Act”. This necessitates
the need to monitor, detect and prevent any unforeseen failures in the working of
underground pipelines that are complex in nature. A reliable pipeline assessment
system is necessary so that pipeline operators can develop cost-effective mainte-
nance, repair, and rehabilitation programs. This research proposes an automated
ultrasound-immersion-based inspection system that can add complementary pipe
information (depth perception) to existing surface image assessments done on con-
crete pipes commonly used as gravity stormwater and sewer pipes. Most municipal
pipeline systems in North America are inspected visually by mobile Closed Circuit
Television (CCTV) systems to access the in-situ condition of buried pipes. The
video images are examined visually and classified into grades according to extent of
damage against documented criteria by human operators prone to fatigue, subjec-
tivity and ambiguity. Additionally, current imaging systems like Sewer Scanning
& Evaluation Technology (SSET) and CCTV are able to provide information from
within the pipe regarding surface cracks in 2-D only and do not have the capability
to provide depth perception.

This thesis provides a proof-of-concept of an automated ultrasound-immersion-
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based inspection system to detect defects in buried concrete pipes. The inspection
system is proposed as a two step approach. The first step is called a reconnaissance
mission that uses the ultrasound transducer to scan a region of interest. A signal
interpretation and classification scheme coupled with a post processing algorithm
is proposed that classifies the region of interest into a clean or defect region. If the
scanned region of interest belongs to a defect, the second step characterizes the
region of interest with a C-scan imaging process that provides depth perception.
Results have shown that the feature extraction, classification and post processing
schemes proposed in this thesis provide a sound proof-of-concept for developing this
inspection system into a field applicable tool. Such a tool can aid asset managers
to quickly evaluate the status of their buried infrastructure, ultimately leading to
a sustainable asset management system.
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Chapter 1
Introduction

Beneath North America’s roads lie 1.6 million miles of pipelines that bring puri-

fied water to homes and carry away waste water (sewage and storm water). Aging

wastewater management systems discharge billions of gallons of untreated sewage

into U.S. surface waters each year. The Environmental Protection Agency (EPA)

estimates that the nation must invest $390 billion over the next 20 years to re-

place existing systems and build new ones to meet increasing demands. These

buried infrastructure systems have been functioning longer than their intended

design life with little or no repair. They are aging and in a progressive state of

deterioration. Maintenance and rehabilitation of pipeline systems pose a major

challenge for most municipalities in North America given their budgetary con-

straints, demand on providing quality service, and the need for preserving their

pipeline infrastructure. Neglecting regular maintenance and rehabilitation (M&R)

of these buried pipelines adds to life-cycle costs and liabilities, and in extreme cases

causes stoppage or reduction of vital services. Unsurprisingly, as shown in figure

1.1, the American Society of Civil Engineers’ 2005 Report Card for America’s In-

frastructure gave a D− grade to water/wastewater infrastructure . It has been

estimated that upwards to 40% of the United States’ underground infrastructure

will have failed or will be on the brink of failure within 20 years, unless efforts

are initiated to renew it (Technical Report (WIN), 2001, 2002). But system re-

newal requires adequate funding. According to an April 2000 report by the Water

Infrastructure Network (WIN) Agency, “America’s water and wastewater systems

face an estimated funding gap of $23 billion a year between current investments in
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infrastructure and the investments that will be needed annually over the next 20

years to replace aging and failing pipes and meet mandates of the Clean Water Act

and Safe Drinking Water Act” (Technical Report (WIN), 2001). This necessitates

the need to monitor, detect and prevent any unforeseen failures in underground

pipelines.

Accurate pipeline condition assessment is vital to developing a cost effective and

efficient pipeline M&R program. At present, the assessed condition of buried pipes

is based on the subjective visual inspection of closed circuit television (CCTV) sur-

veys (Gokhale et al., 1997). CCTV surveys are conducted using remotely controlled

vehicle carrying a television camera through a buried pipe. The data acquired from

this process consist of videotape, photographs of specific defects, and a record pro-

duced by the technician. Typical scanned image of CCTV surveys is shown in

figure 1.2. It is a well known fact that the diagnosis of defects depends on expe-

rience, capability and concentration of the operator thus making the detection of

defects error prone.

Large number of new technologies such as Sewer Scanner and Evaluation Tech-

nology (SSET), laser based scanning systems, etc. have made it possible to obtain

high quality images of buried pipes. SSET is an innovative technology for obtaining

unfolded images of the interior of buried pipes (Iseley, 1999). This is achieved by

utilizing scanner and gyroscope technology. Typical scanned images of SSET sur-

veys are shown in figure 1.3. Inspite of buried imaging technologies making giant

strides in recent years, the basic means of analysis remain unchanged: a qualified

technician is still required to identify defects on a television monitor. One of the

objectives of this thesis will be to address the above limitation.

Additionally, a defect that appears on the surface to be insignificant (less than

5 mm mouth opening) might actually exist throughout the thickness of the pipe.

An operator would usually classify such a defect as a ‘minor defect’ and shift

attention to those that may appear critical on the surface but do not extend into

the depth of the pipe. This may prove to be catastrophic because of the defect

being classified as ‘minor’ due to lack of enough information. It may well be the

case that the so called ‘minor’ defect will lead to a pipe collapse much earlier

than the other cracks that were classified to be critical based on surface analysis

only. Hence, any crack (or defect) classification system that primarily depends on
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surface characteristics is incomplete and needs to be complemented with additional

depth perception to provide for a reliable, accurate and effective buried pipeline

asset management system. Therefore the development of an automated buried

pipeline condition assessment system that can provide additional depth perception

of defects is the main objective of this research study. Main efforts are placed

on investigating the use of ultrasound acoustics to acquire depth perception and

complement 2-D crack features available from the SSET camera. Additionally,

improving the interpretation of surface scanned images and ultrasound signals

by implementing new algorithms and techniques from image processing, feature

extraction and pattern classification are also within the scope of this study.

As mentioned before, the main focus of this thesis is on developing proof-of-

concept of an intelligent automated ultrasound inspection system that can inspect

concrete pipes and provide depth perception. In particular, this thesis explores the

use of various signal and image processing concepts, nonlinear filtering, ultrasound

acoustics, feature extraction and pattern classification techniques that are com-

bined to provide a two step inspection system. The proposed inspection system

can lead to overcoming many limitations of the current manual inspection practice

and can provide a more accurate assessment of buried pipe conditions.

The next sections outline motivation for this research, followed by contributions

and a description of the organization of this thesis.

1.1 Motivations

Visual inspection based on closed circuit television surveys is widely used in North

America to assess the condition of buried pipes (Wirahadikusumah et al., 2001).

The human eye is extremely effective at recognition and classification, but it is not

suitable for assessing pipe defects in thousand of mile of pipeline due to fatigue,

subjectivity and cost. This drawback of the present method of visual inspection

is one of the main motivations behind this research study in developing a sophis-

ticated condition assessment system.

The present state of technology only affords a 2-D view of pipe surface charac-

teristics using the SSET scanning method and there are justifiable reasons to know

the depth (3rd dimension) information of defects (e.g., cracks). Hence, acquiring
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depth perception of defects that are presently visible only at the surface (in 2-D)

through the current inspection technology, is of considerable interest to the buried

asset management community. This additional data source has the potential to

solve problems of fatigue, subjectivity, and ambiguity by the very fact that defects

can now be interpreted based on their depth in pipe thickness.

Most of the literature concerning the detection/classification of defects based on

imaging in civil structures deals with the analysis of pavements and concrete/steel

distresses(Cheng, 1996, Cheng and Miyogim, 1998, Haas and Hendrickson, 1990,

Walker and Harris, 1991). In the past few years, research on assessing the condi-

tion of buried pipes has gained recognition in the buried infrastructure asset man-

agement community through the efforts of Isley et al (1997), Isley (1999), Wira-

hadikusumah et al (1998), and Feiguth and Sinha (1999). In analyzing scanned

buried pipe images, one needs to consider complications due to the inherent noise

in the scanning process, irregularly shaped cracks, as well as the wide range of pipe

background patterns. One of the major problems is detecting defects (especially

cracks) that are camouflaged in the background of corroded areas, debris, patches

of repair work, and areas of poorly illuminated conditions. But, most of the avail-

able methods of detection and classification are strictly based on 2-D information

provided by the SSET scanned images. Approaches that can provide a complete

description of the defects based on 3-D features do not exist and hence provide for

an interesting research problem.

In light of the above discussion, there is sufficient motivation for the devel-

opment of computationally viable, efficient and robust methods for image pre-

processing, segmentation, and detection of surface defects from SSET images.

However, the main focus is on acquiring depth perception through ultrasound

acoustics based methods. Many researchers have been working on characterizing

concrete using ultrasound acoustics. Concrete has always been a difficult material

to deal with from an ultrasonic point of view owing to its heterogeneity and high

attenuating properties (Malhotra and Carino, 2004). These aspects also motivated

the development of an ultrasound-based inspection system that is capable of de-

tecting defects and then characterizing them with respect to depth perception in
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representative concrete pipe specimens.

1.2 Objective & Scope

The primary objective of this research is to develop an automated buried concrete

pipe inspection system based on scanned images obtained from SSET camera and

signal/image data from the ultrasound sensor. Specifically, the scope of this thesis

begins with researching new techniques to improve the detection of cracks un-

der varying background, pipe color and complicated defect patterns from surface

scanned images. This step provides accurate two dimensional data about vari-

ous kinds of cracks on the internal surface of the concrete pipe. The second and

most important objective of this study is to propose an ultrasound acoustics-based

methodology to acquire depth perception about surface cracks outlined in the

previous step. The scope of this study concludes with the implementation of an

ultrasound inspection system consisting of a two step approach. At the point in

time when this thesis research had commenced, the following work had been ac-

complished (Sinha, 2000, Fieguth and Sinha, 1999, Sinha et al., 1999, Sinha and

Fieguth, 2001):

• Automatic segmentation of buried pipe images

• Detection of cracks in segmented pipe images

• Feature extraction of image features for defect classification

The contributions of this thesis that builds upon the above accomplishment are

listed below.

1.3 Contributions

CCTV Image Processing & Segmentation
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Contrast enhancement is a pre processing step before segmentation. Contrast en-

hancement can be defined as a radiometric enhancement technique used to improve

the visual contrast of an image. In the analysis of the objects in images, it is es-

sential to distinguish between the objects of interest and “the rest.” This latter

group is also referred to as the “background.” The techniques that are used to find

the objects of interest are usually referred to as segmentation techniques and the

process is known as segmentation - segmenting the foreground from background.

In this thesis, two approaches for enchancing the contrast of CCTV images for

better interpretation have been developed. The first approach uses a modified

version of unsharp masking through non-linear quadratic filtering to enhance the

crack features and suppress the background characteristics in an image. This is

accomplished in the first proposed method using non-linear quadratic filtering.

The second approach increases the contrast of the dark pixels from the estimated

“background” image by comparing the intensity of each pixel in the original color

image with that of the background image. If the difference in intensities is higher

than a given threshold, it darkens the dark pixels and lightens the background

pixels thus enhancing the contrast between crack and background.

To determine the efficiency of both the proposed methods, a simple, robust and

efficient algorithm for detecting crack patterns in pipeline images is developed. The

algorithm consists of three steps, contrast enhancement, morphological treatment

and curvature evaluation in the cross direction, and finally the alternating filters

that produce the final segmented binary crack map. The proposed approach can

be completely automated and experimental results demonstrate that algorithm is

effective for segmenting CCTV images with varying background, color, and crack

patterns.

Development of Ultrasound-based Inspection System

In this thesis, various ultrasound-based inspection techniques that may be em-

ployed to acquire depth perception data for defects in buried concrete pipes are

evaluated. Two methods, guided wave and impact echo, are experimentally exam-

ined for suitability with concrete inspection. Both these techniques have their own

limitations in terms of their suitability for concrete pipe inspection. The guided
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wave technique is successful with a transducer configuration that cannot be imple-

mented in a buried pipe inspection scenario. The frequency range of operation in

concrete pipe with 60 mm thickness proves to be fairly high for typical impact-echo

applications.

A significant contribution of this thesis is the development of an ultrasound

immersion based technique that uses water couplant as a suitable approach for

inspecting concrete pipes. Experimental results, in an amplitude time series signal

(A-scan) and image format (C-scan), of several concrete samples with defects of

interest to the water/wastewater pipe community show that it is possible to make

interpretations about the presence of defect and provide depth perception by this

method. The results prove that this methodology is successful in providing addi-

tional insight into the condition of concrete samples under investigation.

Development of Feature Extraction & Classification Schemes

In buried concrete pipe defect analysis, the main objective is to identify and classify

regions of the pipe as “clean” or “defective”. Further classification of defects into

various sub-classes like hole, fracture, crack and hairline crack is possible based on

data provided by the proposed ultrasonic inspection system.

Classification is a statistical procedure in which individual items are placed into

groups based on quantitative information on one or more characteristics inherent

in the items (referred to as traits, variables, characters, etc) and based on a train-

ing set of previously labeled items.In this thesis, a multi-layer perceptron (MLP)

neural network classifier that uses discriminatory features from the ultrasonic sig-

nal is developed. The proposed approach uses wavelet analysis to decompose the

signal into its useful information components and then employs an unsupervised

clustering scheme to extract feature vectors that represent the class of the signal.

Wavelet analysis refers to the representation of a signal in terms of a finite length or

fast decaying oscillating waveform (known as the mother wavelet). This waveform

is scaled and translated to match the input signal. The MLP classifier classifies

the signal into its appropriate class based on extracted features of interest from

the wavelet filtered signal.
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Development of Inspection Approach

An overall contribution of this thesis is in developing a framework for the inspection

system. It is proposed that the inspection system be envisioned as a two step

approach consisting of the reconnaissance mode and characterization mode. In the

reconnaissance mode, the ultrasound transducer is used to scan a region of interest

(ROI) and acquire A-scan signals. The ROI A-scan signals are passed through the

classifier and identified as belonging to defect or clean class. If the scanned ROI

belongs to a defect of interest, the second step of the approach is to characterize the

ROI with a C-scan imaging process for depth perception. A relevant contribution of

this thesis is in developing a post processing scheme that provides a high confidence

that C-scan imaging will only be ‘triggered ’ when a defect of interest is detected.

The feature extraction, classification and post processing schemes proposed in this

thesis provide a sound proof-of-concept for developing this inspection system into

a field applicable tool.

1.4 Thesis Organization

Chapter 2 presents the background relevant for understanding the automated

buried pipe inspection system. It begins with a broad overview of various pipeline

assessment techniques in general. It then briefly introduces the methodology for

automated image-based inspection. The next two sections discuss image segmen-

tation and feature extraction methods. Next, we review ultrasound nondestructive

testing and discuss various approaches applicable to concrete. Finally, a brief re-

view of pattern recognitions tasks is provided at the end of this chapter.

Chapter 3 presents two approaches for enchancing the contrast of CCTV im-

ages for better interpretation. A modified version of unsharp masking which com-

putes the enhancement map for thresholding ,so that crack features are enhanced

and background is suppressed, is discussed. The chapter also discussed the second

approach which increases the contrast of the dark pixels from the estimated “back-

ground” image by comparing the intensity of each pixel in the original color image
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with that of the background image. Next, the chapter discusses the efficiency of

both these methods by developing a crack detection filter and applying an adaptive

algorithm to contrast enhanced images.

In Chapter 4, a simple algorithm for detecting crack patterns in pipeline im-

ages is adapted and implemented. This chapter begins by presenting mathematical

foundations of the morphological operations used in the proposed algorithm. Next,

it discusses the implementation strategy, followed by performance evaluation of the

proposed method with other conventional detection techniques.

Chapter 5 describes the ultrasound-based inspection techniques that may be

employed to acquire depth perception data for defects in buried concrete pipes.

First, it presents the challenges in developing an inspection methodology for buried

concrete pipes. Next, several techniques like guided wave and impact echo are ex-

amined for suitability with concrete inspection. The chapter proposes ultrasound

immersion technique as a suitable approach for inspecting concrete pipes. This

chapter also presents experimental results of several concrete samples with defects

of interest to the water/waster water pipe community. A-scan signal and C-scan

image representations from a region of interest (ROI) are presented to make inter-

pretations about the presence of defect and provide depth perception.

Chapter 6 describes the feature extraction methods and pattern recognition

strategies for the classification of ultrasound inspection data. A formulation of

the multilayer perceptron neural network with input and output parameters is

presented in this chapter. This chapter also discusses a feature extraction scheme

based on discrete wavelet transform and unsupervised clustering to extract sig-

nal features for classification. A post processing scheme to interpret the classifier

outputs and finally classify the signals into an appropriate class taking into consid-

eration some apriori knowledge of the problem is discussed towards the end of this

chapter. Chapter 6 also provides a framework for the inspection system consisting

of two steps, a reconnaissance mode and a characterization mode.

Chapter 7 briefly presents the concept, implementation, and results from a wa-
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ter bubbler system that emulates the immersion environment discussed in chapters

5 and 6 in a real-world scenario on an actual concrete pipe specimen with defect.

Chapter 8 summarizes the outcome of this thesis, lists major contributions of

this work, details future directions for research, and provides concluding remarks.
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Figure 1.1. ASCE’s 2005 report card on America’s infrastructure. Image courtesy
www.asce.org/reportcard/2005.

(a) (b)

Figure 1.2. (a) and (b) forward vision (FV) image from CCTV camera
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(a) (b)

(c) (d)

Figure 1.3. Typical images of buried pipe scanned by Sewer Scanner and Evaluation
Technology (SSET) camera



Chapter 2
Background

2.1 Introduction

The main objective of this chapter is to introduce the background knowledge re-

quired for developing a sophisticated buried pipeline inspection system that can

provide additional information about the pipe condition through depth perception.

Section 2.2 presents an overview of buried pipeline inspection techniques while

Section 2.3 discusses the methodology for the development of an automatic image-

based inspection system. Section 2.4 introduces the concept of image processing

and segmentation. An introduction to ultrasound acoustics and work related to its

applications in the present context finds mention in section 2.5. Sections 2.6 and

2.7 briefly mention the feature extraction and analysis techniques available for use

in this research.

2.2 Overview of Pipeline Assessment Techniques

Pipelines are now an integral part of the worlds’ economic structure and literally

billions of dollars worth of products are now moved annually in pipelines (Stewart,

1993). Both economic and environmental factors are influential in pipeline oper-

ation, and therefore integrity monitoring is vitally important in the control and

operation of complex systems. Pipeline defect detection systems range from sim-

ple visual to complex inspection systems. No one method is universally applicable
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and operating requirements dictate which method is the most cost effective. The

aim of this section is to review the basic techniques of defect detection that are

currently in use. The advantages and disadvantages of each method are discussed

and some indications of applicability are outlined.

2.2.1 Destructive Testing Methods for Defect Assessment

Destructive testing methods consist of testing a product beyond its design load

until a brittle failure develops. Often these tests are specified at the construction

stage to ensure that the pipe material meets or exceeds design specifications. Com-

mon destructive test methods are discussed below.

Tension. Tension testing consists of placing coupons of pipe material in a testing

apparatus and pulling the coupon apart until failure occurs (American National

Standards Institute, 1995a). During a test, the coupon load and deflection are mea-

sured. This test ensures that the pipe material meets or exceeds tensile strength

design requirements and is useful for determining the load bearing capabilities of

the material and its ductility under load.

Hardness. Hardness is usually defined as resistance to penetration. Other tests

are also used, such as amount of rebound of a weight and scratch tests. Hardness

tests include Rockwell, Scleroscope, Brinell and Vickers (Davis et al., 1982). Good

correlation exists between hardness and strength. Thus, the hardness test can give

a quick estimate of the pipe strength and/or wear resistance.

Impact. The pendulum impact test, also known as the Charpy test, gives an

indication of the amount of energy that can be absorbed by the material (American

National Standards Institute, 1995b). The test procedure consists of cutting a

notch in a sample and then hitting the sample with a drop hammer. The difference

in energy that the hammer has after striking the material is the material impact

strength.

Flexural. The three-edge-bearing flexural test is a severe pipe loading condition.

This test allows for no lateral pipe support (unconfined) and applies forces that
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are point loads (Davis et al., 1982).

The Parallel Plate. The parallel plate test is an accepted method for measuring

pipe stiffness. This test consists of placing the pipe between two parallel plates

located at the top p and bottom of the pipe. The pipe stiffness is determined from

the load required to displace the top plate to a specified deflection.

2.2.2 Non-Destructive Testing Methods for Defect Assess-

ment

Non-destructive testing (NDT) is the branch of engineering concerned with all

methods of detecting and evaluating defects in materials without causing physical

damage to the material or active intervention (Davies and Mamlouk, 1985). Defects

can affect the serviceability of the material or structure, so NDT is important in

guaranteeing safe operation as well as in quality control and assessing pipe life.

The defect may be cracks or inclusions in welds and castings, or variations in

structural properties that can lead to loss of strength or failure in service. Non-

destructive testing is used for in-service inspection and for condition monitoring

(Van Cauwelaert et al., 1989). It is also used for measurement of components

and for the measurement of physical properties such as hardness and internal

stress. The essential feature of NDT is that the test process itself produces no

deleterious effects on the material or structure under test. The subject of NDT

has no clearly defined boundaries as it ranges from simple techniques such as

visual examination of surfaces, through well established methods of radiography,

ultrasonic testing, magnetic particle crack detection, to new an very specialized

methods. NDT methods can be adapted to automate production processes as

well as to the inspection of localized problem areas. All NDT techniques have

the ability to measure only specific types of defects, material properties, and/or

material response. Therefore, the best choice of an NDT method in a specific

pipeline application will depend on the pipeline physical properties and defects.

Thus, before the selection of an appropriate NDT method, a thorough knowledge

of each NDT method, its application, and limitations is required along with a good

understanding of the buried pipeline infrastructure.
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2.2.2.1 Non-Visual NDT Methods

Ultrasonic Inspection (Sonar). Ultrasonic inspection is performed using a

beam of very high frequency coherent sound energy wherein the frequency in mag-

nitude is much higher than what a human being can hear (Birks and Green, 1991).

The high frequency sound wave travels into the object being inspected and reflects

whenever there is change in the density of the material, with some of the energy in

the wave returning to the surface and some passing on through the new material

at interface. Ultrasonic beams can be used to image the human body, inspect air-

craft, or examine oil pipelines. The technique is capable of detecting puts, voids,

and cracks, although certain crack orientations are much more difficult to detect

than others. The ultrasonic wave reflects most easily when it crosses an interface

between two materials that are perpendicular to the wave. As an example, cracks

that lie perpendicular to the wave are easily detected, but cracks that lie parallel

to the beam are usually not identified by an ultrasonic examination. Evaluation

is often difficult.

Eddy current testing. Eddy current testing is an electromagnetic technique

that can detect surface and subsurface discontinuities in tube walls up to about

3/8” (10mm) thick on conductive materials (Joynson et al., 1986). Applications

range from crack detection to rapid sorting of small components for defects, size

variations, or material variation. When an energized coil is brought near to the

surface of a metal component, eddy currents are induced into the specimen. These

currents set-up a magnetic field that tends to oppose the original magnetic field.

The impedance of coil in close proximity to the specimen is influenced by the

presence of the induced eddy currents in the specimen. When the eddy currents

in the specimen are distorted by the presence of a defect or a material variation,

the impedance in the coil is altered. This change is measured and displayed in a

manner that indicates the type of defect or material condition. This method is

commonly performed on heat exchanger tubing by inserting a probe down the full

length of each tube to be inspected as shown in Figure 2.1. The probe contains

a coil arrangement, energized by alternating currents operating at one or more

frequencies. The electrical impedance of the test coil arrangement is modified by

the proximity of the tube, tube dimensions, electrical conductivity, magnetic per-
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meability of the tube material, and metallurgical and mechanical discontinuities.

Wear on the tube surface under a support is also detectable. The electromagnetic

response caused by passing these variables produces electrical signals, which are

processed electronically to produce a visual response characteristic of change en-

countered. Visual responses, often called ”Signatures” are displayed on the test

instrument monitor for evaluation by the field technician.

Acoustic emission monitoring. This method involves listening to the sounds

(which are usually inaudible to the human ear) emitted by a material, structure or

machine in use or under load (Bassim and Houssny-Emam, 1983). The technique

involves attaching one or more ultrasonic microphones to the object and analyz-

ing the sounds using computer-based instruments. Acoustic emission inspection

methodology is shown in Figure 2.2. The noises may arise from friction (including

bearing wear), crack growth, turbulence (including leakage) and material changes

such as corrosion. Applications include testing pipelines and storage tanks (above

and below ground), fiberglass structures, rotating machinery, weld monitoring,

biological and chemical changes in environment.

2.2.2.2 Visual NDT Methods

Visual inspection is a NDT method used extensively to evaluate the condition or

the quality of a component (Krstulovic et al., 1996). It is easy to perform, inex-

pensive and usually does not require special equipments. It is most effective for

the inspection of welds where quick detection and thee correction of defects or

process-related problems can result in significant cost savings. It is the primary

evaluation method of many quality control programs. The method requires good

vision, good lighting and operator knowledge. Most municipal pipeline systems are

inspected visually by mobile Closed Circuit Television ( CCTV) systems or human

inspectors (Gokhale et al., 1997). CCTV examination using a mobile camera sys-

tem is the typical approach to this type of examination. However, there are several

CCTV variants that may reduce the cost of the inspection or provide improved

results. There are also alternative techniques that will work where CCTV will not

or that will give direct measurements of pipe condition as opposed to the estimates

produced by CCTV inspection. Each inspection technique is discussed below.
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CCTV Inspection. There are two basic types of the CCTV system. Each uses

a television camera in conjunction with a video monitor, videocassette recorders,

and possibly other recording devices. In one of the type, inspection is performed

using a stationary zoom camera mounted at a manhole so that it looks into the

pipe, whereas in the other type, a mobile, robotic system is placed within the pipe

itself. The camera provides images to an operator who is trained to detect, clas-

sify and rate the severity of defects against documented criteria (Wirahadikusumah

et al., 2001). The typical CCTV camera and scanning process of buried pipes are

shown in Figure 2.3. Either form of CCTV inspection may miss certain types of

defects, especially those that are hidden from the camera by obstructions as it

looks down the pipe. This method is also vulnerable to lapses in operator concen-

tration, inexperience, and the inability of the image to reveal important defects.

Thus, the results are widely agreed to lack reliability and consistency in tracking

deterioration so that preventive maintenance can be undertaken with confidence.

Nonetheless, it provides useful information on gross defects.

Sewer Scanner and Evaluation Technology. Sewer Scanner and Evaluation

Technology (SSET) is an innovative technology for obtaining images of the interior

of pipe (Iseley, 1999). SSET is developed by TOA Grout, CORE Corp., California,

and the Tokyo Metropolitan Government’s Services (TGS) Company. SSET is a

system that offers a new inspection method minimizing some of the shortcomings

of the traditional inspection equipments that relies on a CCTV inspection. This

is accomplished by utilizing scanning and gyroscopic technology. The mechanics

of inspecting the pipes by SSET camera are similar to the CCTV inspection. The

SSET is designed to operate from a tractor platform to propel the tool through

the pipe. Since the SSET utilizes state-of-the-art scanner technology, it can travel

through the pipe at a uniform speed. The SSET camera and digitized images of

buried pipe with various defects are shown in Figure 2.4. The major benefit of

the SSET system over the current CCTV technology is that the engineer will have

higher quality image data to make critical rehabilitation decisions.

Laser-Based Scanning Systems. In addition to the simple light line system
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described above, lasers have been used in the past to evaluate both, the shape of

pipelines and the type of defects they contain (Hibino et al., 1994). These systems

are restricted to the part of the pipe above the waterline, but they can, in theory,

provide extremely accurate inspections of pipe condition. An additional advantage

to this approach is that the information from the laser scans is readily recorded

and analyzed by a computer thus substantially reducing operator errors. Although

the initial equipment may be more expensive than a CCTV system, the reduced

operator time necessary to use the technique may also mean that its operation will

be more economical. The technology is still in the development stage.

2.3 Automatic Image-based Inspection

Industry is increasingly using machine vision systems to aid in the manufactur-

ing and quality-control processes (Newman and Jain, 1995). The goal of ma-

chine vision is to create a model of the real world from images (Chin and Harlow,

1982). A machine vision system recovers useful information about a scene from

its two-dimensional projections. Since images are two-dimensional projections of

the three-dimensional world, the information is not directly available and must be

recovered. To recover the information, knowledge about the objects in the scene

is required. The emphasis in machine vision systems is on maximizing automatic

operation at each stage and these systems should use knowledge to accomplish its

objectives. Machine vision emulates human vision in that it attempts to inter-

pret images. Human vision deals with the global information available in a scene,

resolves ambiguities due to perspective, lighting, and attribute, and can perform

navigation through unfamiliar territories. Inspite of all this, human vision has

been shown to be incapable of performing reliable inspection (Agin, 1980). The

human vision process is prone to subjective considerations, fatigue, and boredom,

which interfere with consistent evaluations. Also, the human vision is limited

to the visible spectrum while machine vision system exploit a much larger range

of the electromagnetic spectrum, including infrared radiation, X-rays, and ultra-

sound, thereby making it suitable for a wide range of nondestructive testing and

inspection process related tasks (Ballard and Brown, 1982).

An automated image-based inspection means to extract information from an
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image on the conditions of objects represented on the image. Usually it is impossi-

ble to extract this information concerning the dimensions of objects or their defect

properties directly from the image. For this purpose, all machine vision systems

involve image acquisition, image pre-processing, segmentation and extracting rel-

evant features for classification of the type, severity and extent of defects present

in the pipe image scanned.

2.4 Image Processing And Segmentation

Vision allows humans to perceive and understand the world surrounding them.

Computer vision aims to duplicate the effect of human vision by electronically

perceiving and understanding an image. Giving computers the ability to see is

not an easy task - we live in a three-dimensional (3D) world, and when computers

try to analyze objects in 3D space, the visual sensors available (e.g. TV cameras)

usually give two-dimensional (2D) images, and this projection to a lesser dimension

incurs an enormous loss of information.

The term digital image processing generally refers to processing of a two-

dimensional picture by a digital computer. In a broader context, it implies digital

processing of any 2D data. The first step in the process is image acquisition - that

is, to acquire a digital image. After a digital image has been obtained, the next step

is to process that image. This sequence of operations-image capture, processing,

region segmentation, extraction, high-level identification, qualitative/quantitative

conclusion-is characteristic of image understanding and computer vision problems.

Most computer vision techniques use the results and methods of mathematics, pat-

tern recognition, artificial intelligence, psychophysiology, computer science, elec-

tronics and other scientific disciplines (Besl et al., 1985). In order to simplify the

task of computer vision understanding, two levels are usually distinguished: low-

level image processing and high-level image understanding (Haralick and Shapiro,

2000). Low-level methods usually use very little knowledge about the content of

images. In the case of the computer-knowing image content, it is usually provided

by high-level algorithms or directly by a human who knows the problem domain.

Low-level methods often include image pre-processing methods for noise filtering,

contrast enhancement, and edge extraction.
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Image pre-processing and segmentation is the initial stage for any recognition

process, whereby the acquired image is ’broken up’ into meaningful regions or

segments. The segmentation process is not primarily concerned with what the

regions represent, but only with the process of partitioning the image. In the

simplest case (binary images) there are only two regions: a foreground (object)

and a background region. In gray level images, there may be many types of region

or classes within the image; for example, in a natural scene to be segmented, there

may be regions of sky, clouds, ground, building and trees. Broadly speaking, there

are two approaches to image segmentation, namely thresholding and region or

edge-based methods (Pratt, 1978).

2.4.1 Image Pre-processing

The principle objective of enhancement techniques is to process an image so that

the result is more suitable than the original image for specific applications. The

word “specific” is important, because it establishes at the outset that the tech-

niques discussed in this section are very much problem-oriented. Thus, for exam-

ple, a method that is quite useful for enhancing x-ray images may not necessarily

be the best approach for enhancing images of buried pipes.

2.4.1.1 Gray Scale Transformation

Gray scale transformations do not depend on the position of the pixel in the image.

A transformation of the original brightness p from scale [po,pk] into brightness q

from a new scale [qo,qk] is given by

p = λq (2.1)

po, pk and qo,qk are the minimum and maximum brightness values on a scales ‘p’

and ‘q’. The most common gray scale transformations are shown in Figure 2.5; the

straight line ‘a’ denotes the negative transformation; the piecewise linear function

‘b’ enhances the image contrast between brightness values p1 and p2. The function

‘c’ is called brightness thresholding and results in a black-and-white image. A

gray scale transformation for contrast enhancement is usually found automatically

using the histogram equalization technique (Rosenfeld and Kak, 1982). The aim
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is to create an image with equally distributed brightness levels over the whole

brightness values as shown in Figure 2.6. Histogram equalization enhances contrast

for brightness values close to histogram maxima, and decreases contrast near the

minima.

2.4.1.2 Image Smoothing

Image smoothing is the set of local pre-processing methods whose predominant use

is the suppression of image noise. Calculation of new value is based on the aver-

aging of brightness values in some neighborhood. Smoothing poses the problem of

blurring sharp edges in the image, and so those methods which are edge preserving

is of interest to this study. They are based on the general idea that the average

is computed only from those points in the neighborhood that have similar prop-

erties in comparison to the point being processed. Assume that the noise value v

(measured in decibels) at each pixel is an independent random variable with zero

mean and standard deviation σ. We can obtain such an image by capturing the

same static scene several times. The result of smoothing (Is) is an average of the

same n points in these images i1,...in with noise values v1...vn:

Is =
i1 + ... + in

n
+

v1 + ... + vn

n
(2.2)

Median filtering is a non-linear smoothing method that reduces the blurring of

edges (McDonnell, 1981). In this method, the current pixel in the image being

processed is replaced by the median of the brightness values in its neighborhood.

The median of the brightness in the neighborhood is not affected by individual noise

spikes and so median smoothing eliminates impulse noise quite well. Moreover, as

median filtering does not blur edges significantly, it can be applied iteratively for

desired results.

2.4.1.3 Color Image Processing

The use of color in image processing is motivated by two principal factors. First, in

automated image analysis, color is a powerful descriptor that often simplifies object

identification and extraction from a scene. Secondly, in image analysis performed

by human beings, the motivation for color is that the human eye can discern thou-
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sands of color shades and intensities, compared to about only two-dozen shades

of gray (Smith, 1997). Color is connected with the ability of objects to reflect

electromagnetic waves of different wavelengths; the chromatic spectrum spans the

electromagnetic spectrum from approximately 400nm to 700nm. Humans detect

color as combination of primary colors red, green and blue, which for the purpose

of standardization have been defined having a wavelength of 700nm, 546.1nm and

435.8nm respectively (Smith, 1997). This standardization does not imply that all

colors can be synthesized as combinations of these three. The purpose of a color

model is to facilitate the specification of colors is some standard, generally accepted

way. In essence, a color model is a specification of a 3-D coordinate system and

a subspace within that system where each color is represented by a single point.

The color models most often used are the RGB, the YIQ and the HIS models.

RGB Color Model. The RGB (Red, Green, Blue) specie is used most frequently

in computer graphics and image processing applications (Pratt, 1978, Smith, 1997).

A color in this space is represented by a triplet of values typically between 0 and

255. Each color can be broken down into its relative intensity in the three pri-

maries corresponding to the spectral response of one of the three types of cones

present in the human eye: red, green and blue. The space is easily represented as

a three dimensional cube where each axis represents the strength of the color in

one of the three primaries as shown in Figure 2.7.

YIQ Color Model. The YIQ model is useful in color TV broadcasting, and is a

simple linear transform of an RGB representation:




Y

I

Q


 =




0.299 0.587 0.144

0.596 −0.275 −0.321

0.212 −0.523 0.311







R

G

B


 (2.3)

This model is useful since the Y component provides all that is necessary for a

monochrome display; further, it exploits advantage of properties of the human

visual system, in particular our sensitivity to luminance, the perceived energy of

a light source. Details of this model and its use may be found in relevant texts

(Pratt, 1978, Smith, 1997).



24

HSI Color Model. The HIS (Hue, Saturation, and Intensity) model can be said

to follow more closely the human perception of color qualities. Hue (H) is the

color described by wavelength - for example, the distinction between red and blue.

Hue represents the fundamental or dominant color. Saturation (S) represents the

amount of color present, where pastel shades (e.g. pink) have low saturation values

while pure spectral colors ( e.g. red) are completely saturated. The intensity (I)

represents the overall brightness or the amount of light. It is independent of color

and is a linear value. It is measured as an angle on a color circle with the three

primary colors spaced 120◦ apart. The first two values specify the chromaticity of a

color point. Figure 2.8 shows the relationship between HIS and RGB color spaces.

It is noted that the HSI color space is one of several spaces that can be derived

from the General Hue, Luminance and Saturation (GHLS) space (Pratt, 1978).

There are other slightly different interpretations of hue, luminance and saturation.

By setting certain parameters in this transformation, one can specify any of the

transformations from the RGB space to an HSI, HLS or HSV ( Hue, Saturation

and Value) representation.

cos θ =
1
2
(R−G) + (R−B)

[(R−G)2 + (R−B)(G−B)]1/2

H = {θ IfB < G, 2π − θ otherwise} (2.4)

S = 1− 3∗min(R,G, B)

R + G + B

I =
1

3
(R + G + B)

Ohta (I, I2, I3) Color Model. The linear transformations of principle compo-

nents (R,G,B) can be achieved through simple conversions to other sets of compo-

nents by a simple relationship of linear coefficients. Some common representations

are (X,Y,Z), (U,V,W), (Y,I,Q) and (I,I1,I2) (Sanchez et al., 1994). The image in

Figure 2.9(e) is the (I,I1,I2) Ohta transformed color model image with the transfer
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matrix equivalent to:




I

I1

I2


 =




0.33 0.33 0.33

1.00 0.00 −1.00

0.50 −1.00 0.50







R

G

B


 (2.5)

A chromaticity information separation is achieved by the Ohta color space using

a statistical study of the uncorrelated color components on a large population of

typical images (Gevers and Smeulders, 1996). The transform is given by equation

(2). In spite of the separation of the chromatic (color) and achromatic (luminance)

information, the representations mentioned above are still based on triples and any

dimensionality reduction can be achieved only by completely neglecting one of the

components.

Fisher’s Linear Discriminant Model. It is known that morphology based

segmentation is the next step involved in image understanding and analysis. A

grey-scale image, in which each pixel xg is a scalar xg = wT xc, where ‘w’ is some

linear projection, is required to apply morphological operators. In the event that

discrimination has to be made between pipe background and cracks, Fisher’s Linear

Discriminant can be used to determine the axis, ‘w’, onto which vector color data

can be projected that preserves as much of the discriminating capability of the color

information as possible (Duda et al., 2000). The transformations resulting ’Fisher

Linear Discriminant’ maximizes the separability of the two classes. A compelling

aspect of this approach is that the discriminating power of the color data can be

exploited, while still providing a degree of invariance to changes in illumination.

Further, since the learning of the Fisher discriminant is done off-line, there is

minimal additional computational load incurred and scalar feature detectors can

be used on the resultant Fisher projection. Pipe images like the one shown in Figure

2.9(a) representative of those likely to be encountered during object recognition and

classification phase can be used to learn the Fisher discriminant axis (Sinha, 2000).

Figure 2.9(b) shows a gray-scale image obtained by taking the straightforward

average of three primary color bands (red (R), green (G) and blue (B)) and 2.9(f)

shows image after projection onto a Fisher axis. Although the gray-scale image

shows high contrast, the crack boundary is blurred and the image is noisy. The



26

Fisher discriminant on the other hand, results in an image with good contrast,

good visualization of the crack boundary and the image is less noisy.

2.4.2 Image Segmentation

Image segmentation is one of the most important steps leading to the analysis

of processed image data and its main goal is to divide an image into parts that

have a strong correlation with objects or areas of the real world contained in the

image. Image data ambiguity is one of the main segmentation problems, often

accompanied by information noise. Segmentation methods can be divided into

three groups according to the dominant features they employ. First among them

is global knowledge about an image or its part; the knowledge is usually represented

by a histogram of image features. Edge-based segmentation form the second group,

and region based segmentations the third in which many different characteristics

may be used in edge detection or region growing, for example, brightness, texture,

velocity field, etc. Because of the different natures of the various edge and region-

based algorithms, they may be expected to give somewhat different results and

consequently different information.

2.4.2.1 Threshold-based Segmentation

Gray level thresholding is the simplest segmentation process. Many objects or

image regions are characterized by constant reflectivity or light absorption sur-

faces; a brightness constant or threshold can be determined to segment objects

and background. Thresholding is computationally inexpensive and fast. It is also

the oldest segmentation method and is still widely used in simple applications.

Mathematically, a complete segmentation of an image R is a finite set of regions

R1...Rs,

R =
S⋃

i=1

Ri Ri

⋂
Rj = φ, i 6= j (2.6)

Complete segmentation can result from thresholding in simple scenes. Threshold-

ing is the transformation of an input image ‘f’ to an output(segmented) binary
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image ‘g’ as follows:

g(i, j) = 1 forf(i, j) ≥ T ; 0 forf(i, j) ≤ T (2.7)

where ‘T’ is the threshold, g(i,j)=1 for image elements of objects, and g(i,j)=0

for image elements of the background ( or vice versa). If objects do not touch

each other, and if their gray levels are clearly distinct from background gray levels,

thresholding is a suitable segmentation method. It is very important to select a

correct threshold for successful threshold segmentation. This selection can be de-

termined interactively or it can be the result of some threshold detection method.

Only under very unusual circumstances can thresholding be successful using a sin-

gle threshold for the whole image (global thresholding) since even in very simple

images, there are likely to be gray level variations in objects and background; this

variation may be due to non-uniform lighting, non-uniform input device param-

eters or a number of other factors. Segmentation using variable thresholds (also

called adaptive thresholding), in which the threshold value varies over the image

as a function of local image characteristics, can produce solutions in such cases

(Weszka and Rosenfeld, 1979). Methods based on approximation of the histogram

of an image using a weighted sum of two or more probability densities with normal

distribution represent a different approach called optimal thresholding (Chow and

Kaneko, 1972). The threshold is set as the closest gray level corresponding to the

minimum probability between the maxima of two or more normal distributions,

which results in minimum error segmentation (Rosenfeld and Kak, 1982). The dif-

ficulty with these methods is in estimating normal distribution parameters together

with the uncertainty that the distribution may be considered normal. These diffi-

culties may be overcome if an optimal threshold is sought that maximizes the gray

level variance between objects and background (Kittler and Illingworth, 1985).

2.4.2.2 Edge-based Segmentation

Edge-based segmentation represents a large group of methods based on information

about edges in the image; it is one of the easiest segmentation approaches and still

remains very important. Edge-based segmentations rely on edges found in an image

by edge detecting operators-these edges mark image location of discontinuities in
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gray level, color, texture, etc. The image resulting from edge detection cannot

be used as a segmentation result; supplementary processing steps must follow to

combine edges into edge chains that correspond better with borders in the image.

The most common problems of edge-based segmentation, caused by image noise or

unsuitable information in an image are: an edge present in locations where there

is no border and no edge present where a real border exists. Clearly both these

cases have a negative influence on segmentation results.

Edge detectors are a collection of very important local image segmentation

methods used to locate changes in the intensity function; edges are pixels where this

function (brightness) changes abruptly. Calculus describes changes of continuous

functions using derivatives; an image function depends on two variable-coordinates

in the image plane and so operators describing edges are expressed using partial

derivatives. A change of the image function can be described by a gradient that

points in the direction of the largest growth of the image function. An edge is a

property attached to an individual pixel and is calculated from the image function

behavior in a neighborhood of that pixel. It is a vector variable with two com-

ponents, magnitude and direction. The edge magnitude is the magnitude of the

gradient, and the edge direction φ is rotated with respect to the gradient direction

Ψ by −90◦. The gradient direction gives the direction of maximum growth of the

function, e.g., from black [f(i,j)=0] to white [f(i,j)=255].

Edge detection represents an extremely important step facilitating higher-level

image analysis and therefore remains an area of active research, with new ap-

proaches continually being developed. Recent examples include edge detectors

using fuzzy logic, neural networks, or wavelets (Chow and Kaneko, 1972, Aydin

et al., 1996, Law et al., 1996, Vrabel, 1996). It may be difficult to select the most

appropriate edge detection strategy; a comparison of edge detection approaches

and an assessment of their performance nay be found in (Ramesh and Haralick,

1994, Demigny et al., 1995).

2.4.2.3 Region-based Segmentation

The aim of segmentation methods described in the previous section was to find

borders between regions; the methods discussed in this section construct regions

directly. It is easy to construct regions from their borders, and it is easy to detect
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borders of existing regions. However, segmentations resulting from edge-based

methods and region-growing methods are not usually exactly the same, and a

combination of results may often be a good idea. Region growing techniques are

generally better in noisy images, where borders are extremely difficult to detect.

Homogeneity is an important property of regions and is used as the main seg-

mentation criterion in region growing, whose basic idea is to divide an image into

zones of maximum homogeneity. The criteria for homogeneity can be based on gray

level, color, texture, shape, model (using semantic information), etc. (Haralick and

Shapiro, 2000, Chang and Li, 1995, Grimson and Lozano-Perez, 1987, Pal and Pal,

1987). Properties chosen to describe regions influence the form, complexity, and

amount of prior information in the specific region-growing segmentation method.

Methods that specifically address region-growing segmentation of color images are

reported in (Gauch and Hsia, 1992, Priese and Rehrmann, 1993, Schettini, 1993).

2.4.3 Mathematical Morphology

A powerful set of image processing operations developed from a set-theoretical ap-

proach comes under the classification of mathematical morphology (Serra, 1982).

Although the basic operations are simple; morphological operations along with

other variants can be concatenated to produce much more complex effects. The

basic morphological operations are erosion and dilation. While commonly used on

binary images, this approach can be extended to gray-scale images as well (Giar-

dina and Dougherty, 1988). Dilation, in general, causes objects to dilate or grow

in size; erosion causes objects to shrink. The amount and the way that they grow

or shrink depend upon the choice of the structuring element. The opening oper-

ation is somewhat like erosion in that it tends to remove some of the foreground

(bright) pixels from the edges of regions of foreground pixels. However it is less

destructive than erosion in general. As with other morphological operators, the

exact operation is determined by a structuring element. In the general case, mor-

phological image processing operates by passing a structuring element over the

image in an activity similar to convolution (Maragos and Schafer, 1990). As in

the case of a convoluting kernel, the structuring element can be of any size, and

it can contain any complement of 1’s and 0’s. At each pixel position, a specified
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logical operation is performed between the structuring element and the underlying

binary image. The binary result of that logical operation is stored in the output

image at that pixel position. The effect created depends upon the size and content

of the structuring element and upon the nature of the logical operation.The effect

of this operator is to preserve foreground regions that have a similar shape to the

structuring element, or that can completely contain the structuring element, while

eliminating all other regions of foreground pixels.

However, Closing is similar in some ways to dilation in that it tends to enlarge

the boundaries of foreground (bright) regions in an image (and shrink background

color holes in such regions), but it is less destructive of the original boundary

shape. The effect of this operator is to preserve background regions that have a

similar shape to this structuring element, or that can completely contain the struc-

turing element, while eliminating all other regions of background pixels. Figure

2.10 shows an example of gray-scale opening and closing operation using a circular

structuring element ‘g(x)’ on a representative signal ‘f(x)’. As seen, when the cir-

cular structuring element traces out on top of function ‘f’, the regions that cannot

fit the element are ‘closed’ (Fig. 2.10c). Similarly, when the circular element traces

under function ‘f’, the regions cannot fit in the element are ‘opened’.

Mathematical morphology is very often used in applications where shapes of

objects are main consideration for example, analysis of microscopic images (in bi-

ology, material science, geology, and criminology), industrial inspection, optical

character recognition and document analysis. In this thesis, mathematical mor-

phology has been used to segment crack features from CCTV images of buried

pipes.

2.5 Ultrasonic NDT

Nondestructive evaluation(NDE) has played critical role in processing, testing and

structural evaluation of composite materials. Many conventional and emerging

NDE tools are used for NDE of composites. Ultrasonic methods have been demon-

strated as an effective tool in characterization of anisotropic composite materials
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and structures. Most of the ultrasonic testing is performed on finished prod-

ucts and most of the conventional test device and ultrasonic transducers cannot

be directly used for in-process applications. Figure 2.11 illustrates the range of

ultrasonic sensors that have been adapted in the field of composite inspection.

The need for robust, sensitive, and inexpensive ultrasonic inspection measurement

methods is common to many NDE needs. Ultrasonic testing configurations can

utilize many wave types. Types of ultrasonic stress-waves that can be present in

pipe material of thickness ‘t ’ are shown in Figure 2.12. Generally, ultrasonic NDE

is performed with ultrasonic wavelengths much smaller than ‘t ’ using transducer

configurations generating longitudinal or shear waves. Structural and materials

testing is possible using Lamb or Rayleigh (surface) waves. However, conventional

contact and immersion transducers are not readily adaptable for surface or Lamb

wave applications. Non-contact ultrasonic NDE sensor technologies using alternate

wave types, namely laser ultrasonic and air-coupled ultrasonic have been demon-

strated in the laboratory and now appear to be on the threshold of broad ranged

applications. The development of non-contact sensor technologies is of special

importance to process control and for defect detection in fiber placed composite

structures (Djordjevic and Green, 1994, Boltz et al., 1995, Djordjevic et al., 1998).

It is widely believed that atmospheric absorption is the major obstacle to the

use of air-coupled ultrasonic inspection systems which is not the fact in totality

(Grandia and Fortunko, 1995). It can be readily shown that, in the frequency

region of interest (around 250 KHz for buried concrete pipe inspection), the lim-

itations are due to the very large specific acoustic impedance differences between

typical solids and gases. In a system that uses air-coupled transducers for both

generation and detection, the received signal amplitude is principally determined

by the transmission losses at the four air/solid interfaces, as shown in Figure 2.13.

Additional but significantly smaller losses can also be expected due to diffrac-

tion, loss of phase-front coherence and finite amplitude saturation effects which

are sometimes experienced at very high drive levels.

Guided waves are those waves that require a boundary for propagation. Typical

examples include wave propagation along a surface or in a rod, plate, tube, or

multi-layer structure. Guided waves are really made up of a superposition of

bulk longitudinal and shear waves, but, because of boundary conditions, wave
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interference patterns are developed so that nicely formed guided wave packets can

propagate in the structure. Bulk longitudinal and shear waves are those considered

to propagate in either a half space or infinite space with no boundary disturbances

whatsoever. Recent developments in guided wave generation, reception, and mode

control show that increased penetration power and sensitivity are possible (Rose,

2000). A tone burst function generator and appropriate signal processing are

generally used. Variable angle beam and comb-type transducers are key to this

type of evaluation. Problems in tubing, metal piping, hidden corrosion detection in

aging aircraft, adhesive and diffusion bonding, and ice detection have been tackled

using the guided wave ultrasonic method (Rose, 1999).

2.5.1 Basic Types of Ultrasound Waves

Waves are generated due to induced particle vibration in the material. If the par-

ticle motion in a wave is along the line of the direction of travel of the wave, the

resulting wave is called a longitudinal wave or a compressional wave. Such waves

can be propagated in solids, liquids and gases. When the particle movement (or vi-

bration) is at right angles to the direction of travel of the wave, a shear wave is said

to have been generated (see Fig. 2.14). The shear wave velocity is approximately

half of that of the longitudinal wave (Halmshaw, 1991). In air, sound travels by

compression and rarefaction of air molecules in the direction of travel. However,

in solids, molecules can support vibrations in other directions, hence, a number of

different types (modes) of sound waves are possible. Longitudinal and shear waves

are most often used in ultrasonic inspection. However, at surfaces and interfaces,

various types of elliptical or complex vibrations of the particles make other waves

possible. Some of these wave modes such as Rayleigh and Lamb waves are also

useful for ultrasonic inspection. Surface or Rayleigh waves travel the surface of a

relative thick solid material penetrating to a depth of one wavelength. Rayleigh

waves are useful because they are very sensitive to surface defects and since they

will follow the surface around curves, they are often used to inspect areas that

other wave types might have difficulty reaching.

Lamb wave or guided wave is another type of ultrasonic wave propagation in

which the wave is guided between two parallel surfaces of the test object (Rose,
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1999). For an object sufficiently thin to allow penetration to the opposite surface,

e.g. a plate having thickness of the order of a wavelength or so, Rayleigh waves

degenerate to Lamb waves, which can propagate in a number of modes, either

symmetrical or antisymmetrical (see figure 2.13) (Rose, 2000, Hayashi and Rose,

2003, Redwood, 1960). The velocity is dependent on the product of frequency and

material thickness.

2.5.2 Contact And Non-contact Ultrasound Transduction

Ultrasound inspection can be carried out primarily in two ways, contact with the

test material and through non-contact. Testing carried out in which the transducer

face makes direct contact with the test object through a thin film of couplant is

called contact ultrasound testing. Non- contact ultrasonic testing is one in which

the waves are generated and transmitted into the material to be tested without

direct contact with the generating source. Static capacitance, electro-magnetic

acoustic transmission (EMAT) and magneto-resistive transducers are examples

of non-contact ultrasonic transduction. When sound passes across an interface

between two materials only a proportion of the sound is transmitted, the rest of

the sound is reflected. The proportion of the sound that is transmitted depends on

how close the acoustic impedance of the two materials matches. Water is a fairly

good match for most commonly used materials - for example typically around

half the sound energy is transmitted at the interface between water and a carbon

laminate. After four solid- liquid interfaces (from the probe, to the couplant, to

the test piece, and then back again) there is still a few percent of the original

energy left so accurate measurement is possible. Conversely if the sound has to

move between the test piece and air (which has very low acoustic impedance) only

around 1% of the sound energy is transmitted. Thus, it has been a long standing

challenge in the ultrasonic testing area to be able to produce high resolution data

using air-coupled ultrasound.

2.5.3 Ultrasonic NDT of Concrete

In spite of the development of test techniques and equipment, the use of NDT for

inspecting concrete poses many difficulties. Compared to metal and metal-based
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materials, NDT of concrete is a relatively immature discipline. The heterogenous

nature of concrete and unspecified code or standard of concrete NDT are two main

areas where concrete inspection technology lags behind. Concrete is a multi-phase

material consisting of a coarse aggregate comprising particles of more than 5 mm

in diameter, a fine aggregate, sand, cement and admixtures. The coarse granular

structure, such as the relative concentration of the constituent particles, degree

of compaction, moisture content, and the nature of defects present gives rise to a

high degree of acoustic scattering leading to attenuation. For this reason, testing

in concrete is usually limited to the kilohertz frequency range.

Ultrasonic techniques that detect defects, measure the mechanical properties,

or monitor the state of deterioration in concrete structures has been a topic of

considerable interest to the civil infrastructure community (Malhotra and Carino,

2004, Bungey and Millard, 1996). The ultrasonic pulse velocity method uses com-

pression waves to evaluate the conditions of materials like concrete (Olsen, 1993).

The ultrasonic pulse velocity is by far the most widely accepted method for assess-

ing the quality of concrete in structures (Popovics and Popovics, 1992). Structural

changes taking place in concrete during loading has also been monitored with the

ultrasonic pulse velocity method. The use of ultrasonic velocity measurements

for nondestructive evaluation of Portland cement concrete was proposed in the

late 1940’s (Jones, 1949). Although Jones (1949) studied the behavior of concrete

during loading, his work focused on the development of relationships between ul-

timate compressive strength and pulse velocity. Later researchers found that in

addition to the time domain analysis used in earlier studies, the frequency domain

can provide significant information (Wei-Du, 1992, Popovics and Popovics, 1992).

Na et al. (2002) investigated the feasibility of detecting and quantifying delamina-

tion at the interface between steel bar and concrete using ultrasonic guided waves.

This technique could predict and quantify the degree of separation or delamination

but was unable to localize the exact location of the separation between the trans-

ducer and receiver. Na et al. (2003) also conducted another study to compare the

delamination between steel/cocnrete and glass fiber reinforced polymer/concrete

interfaces using guided waves.
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Research in detecting defects in concrete has mainly been focussed on single

surface breaking cracks (Song et al., 2003). Most efforts made use of time-of-flight

(TOF) methods to determine the depth of simulated cracks (notches with well

defined tips) in concrete where the velocity of wave propagation in concrete is

known and a characteristic wave pulse-crack interaction is realized (Lin and Su,

1996, Sansalone et al., 1998, Wu et al., 1995). However, the TOF method is not

effective when realistic concrete cracks are tested. Song et al. (2003) proposed a

self-compensating surface wave transmission coefficient measurement technique to

measure surface-breaking cracks and notches in concrete. But, the transmission

coefficient is sensitive to changing crack depth and is reliable only in a certain

range. Ramamoorthy et al. (2004) studied the determination of depth of surface-

breaking cracks in concrete specimens using an ultrasound diffusion technique.

Their method demonstrated feasibility for notch defects for which the two surfaces

were not in contact. Results for realistic cracks with surfaces in contact were not

discussed. Jung et al. (2000) investigated the feasibility of detecting defects in

concrete beams using lamb waves. Artificial internal defects were simulated in a

concrete beam and V(f) curves were plotted for various frequencies of operation.

To apply pulse-echo testing to concrete inspection, it was necessary to develop

low-frequency transducers with sufficiently short impulse responses. With the in-

troduction of such transducers and instruments in the beginning of the 1990’s,

recording of single (A-scan) and multiple (B/C-scan) measurements was made

possible (Hillger and Neisecke, 1993). Imaging methods such as SAFT (Synthetic

Aperture Focusing Technique) reconstruction have been shown to enable thickness

measurement, detection of tendon ducts, and flaws, and can expose the inner struc-

ture of concrete elements (Schickert et al., 2003, Schickert, 2005). But, to adopt

them in the field, additional research is required concerning the efficiency of these

techniques. A large number of single measurements are necessary to limit the effect

of structural noise and enhance image quality (Schickert et al., 2006). Moreover,

parts of the measurement process, especially the tedious transducer coupling to

concrete, still pose problems. Conventional coupling agents are difficult to apply

or remove, and therefore do not seem to be adequate. On the other hand, alter-

native methods such as water or dry coupling are under investigation (Schickert,
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2005).

It may be noted that most of the research in concrete imaging has been con-

ducted on thick walled concrete ( few hundred centimeters) wherein signal echoes

are well separated in time. In this thesis, wastewater concrete pipes that are 60

mm in thickness are considered. Issues such as penetration depth versus time-

of-flight resolution are key factors that need to be considered while dealing with

such low thicknesses. There are various factors that govern the selection of an

appropriate inspection method while dealing with concrete pipes like geometry,

ease of access, etc. To put this research work in context to the current state of

ultrasound NDT of concrete, this thesis explores various ultrasound-based inspec-

tion techniques and proposes an inspection system that is suitable for concrete

pipes. This research builds upon previous work done individually in ultrasound

immersion testing and ultrasonic imaging and develops a system that can not only

detect defects in thin-walled concrete, but also characterize them through C-scan

imaging to gain depth perception.

2.6 Feature Extraction

Recognition of object (ultrasonic signal, in this study) features is an important

step on the way to understanding signal/image data, and requires an exact de-

scription in a form suitable for a classifier. This discussion will help understand

the importance of feature generation for pattern recognition tasks.

In order to build a pattern recognition system, it is important to decide which

characteristics of the objects should be measured so that descriptive parameters

can be produced. These characteristics are termed as features and the resulting

parameter values as feature vectors. Proper selection of the features is important

as only these will be used to perform pattern recognition tasks. Feature ordering

techniques compute the relative power of various features (Duda et al., 2000). In

general, good features have the following four characteristics (Guyon et al., 2004):

• Discrimination: Features should take on significantly different values for ob-
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jects belonging to different classes.

• Reliability: They should have similar values for all objects belonging to the

same class.

• Independence: They should be uncorrelated with each other.

• Few in number: The complexity of a pattern recognition system increases

rapidly with the dimensionality of the system. The number of training data

required to train the classifier and to measure performance increases expo-

nentially with the number of features (Duda and Hart, 1973). Moreover,

adding more features that are either noisy or highly correlated with existing

features can actually degrade the performance of the classifier (Kanal and

Chandrasekaran, 1971).

Over the last past few decades, extensive research has taken place in the devel-

opment of efficient and reliable methods for the selection of features (Mukherjee

and Pal, 2005). As mentioned above, the quality of performance of the classifier

depends upon the relevance, discriminatory information and ease of computation

of various features. Many features can be used to describe an object. The most ba-

sic of all signal features is the signal amplitude in terms of its spectral component.

Signal transforms provide the frequency domain information in the data. Trans-

form coefficient based feature extractions have proved to be practical in several

applications in which transform domain features are used as inputs to a pattern

recognition and classification system (Polikar et al., 1998, Pittner and Kamarthi,

1999, Simone et al., 2002).

2.7 Classification

Predictive modeling is at the heart of a scientific discipline called machine learning.

It refers to a branch of computer science interested in reproducing human “learn-

ing” capabilities with computer programs. Machine learning research has mostly

focused on finding relationships in data and analyzing the processes for extracting

such relations, rather than building truly intelligent systems (Guyon et al., 2004).

Machine learning problems occur when a task is defined by a series of cases or
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examples rather than by predefined rules. Such problems are found in a wide vari-

ety of application domains, ranging from engineering applications in robotics and

pattern recognition (speech, handwriting, face, anomaly recognition), to Internet

applications (text categorization) and medical applications (diagnosis, prognosis,

drug discovery). Given a number of “training” examples (also called data points,

samples, patterns or observations) associated with desired outcomes, the machine

learning process consists of finding the relationship between the patterns and the

outcomes using solely the training examples (Jain et al., 2000). Thus, a machine

learning system “learns” the relationship between the input (training data points)

and the pattern (or class) to which it belongs. It is then called upon to predict the

pattern of a “new” input (test data) based on its learning of the problem inference

rules. The theory of machine learning is very involved and thoroughly discussed

in several references (Duda et al., 2000, Mitchell, 1997, Langley, 1995). Machine

learning systems perform two main functions, feature extraction and classification.

As the former has been covered in the previous section, a brief description of clas-

sification methods follows.

2.7.1 Statistical Classification

Classification has two distinct meanings. Given a set of observations, the aim

may be to establish the existence of classes or clusters in the data. Or it may

be known for certain that there are so many classes, and the aim is to establish

a rule whereby an observation can be classified into one of the existing classes.

The former type is known as Unsupervised Learning (or Clustering), the latter as

Supervised Learning. In the statistical literature, Supervised Learning is usually

referred to as discrimination, by which is meant the establishing of the classifica-

tion rule from given correctly classified data.

There are three essential components to a classification problem:

• The relative frequency with which the classes occur in the population of

interest, expressed formally as the prior probability distribution.

• An implicit or explicit criterion for separating the classes: such as an un-
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derlying input/output relation that uses observed attributes to distinguish a

random individual from each class.

• The cost associated with making a wrong classification.

Most techniques implicitly confound components and produce a classification rule

that is derived conditional on a particular prior distribution and cannot easily

be adapted to a change in class frequency. However, in theory each of these

components may be individually studied and then the results formally combined

into a classification rule (Michie et al., 1994). They are briefly mentioned below.

2.7.1.1 Prior probabilities and the Default rule

Let the classes be denoted by Ci, i = 1, ..., q, and let the prior probability πi for

the class Ci be:

πi = p (Ci) (2.8)

It is always possible to use the no-data rule: classify any new observation as class

Ck, irrespective of the attributes of the example. This no-data or default rule may

even be adopted in practice if the cost of gathering the data is too high. The

default rule relies only on knowledge of the prior probabilities, and clearly the

decision rule that has the greatest chance of success is to allocate every new obser-

vation to the most frequent class. However, if some classification errors are more

serious than others, the minimum risk (least expected cost) rule is adopted, and

the class k is that with the least expected cost.

2.7.1.2 Separating Classes

Suppose, it is possible to observe data x on an individual, and that the probability

distribution of x within each class Ci is known to be P (x|Ci). Then for any

two classes Ci, Cj the likelihood ratio P (x|Ci)/P (x|Cj) provides the theoretical

optimal form for discriminating the classes on the basis of data x. The majority of

techniques in statistical classification can be thought of as implicitly or explicitly

deriving an approximate form for this likelihood ratio.
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2.7.1.3 Misclassification Costs

Let the cost of misclassifying a class Ci object as class Cj be c(i,j). Decisions

should be based on the principle that the total cost of misclassifications should

be minimized: for a new observation this means minimizing the expected cost of

misclassification. Consider the expected cost of applying the default decision rule

as: allocate all new observations to the class Cd, using suffix d as label for the

decision class. When decision Cd is made for all new examples, a cost of c(i,d) is

incurred for class Ci examples and these occur with probability πi. So the expected

cost Costd of making decision Cd is:

Costd =
∑

i

πic(i, d) (2.9)

The Bayes minimum cost rule chooses the class that has the lowest expected

cost. To see the relation between the minimum error and minimum cost rules,

suppose the cost of misclassifications to be the same for all errors and zero when

a class is correctly identified, i.e. suppose that c(i,j) = c for i 6= j and c(i,j) = 0

for i = j. Then the expected cost is:

Costd =
∑

i

πic(i, d) =
∑

i6=d

πic = c
∑

i6=d

πi = c(1− πd) (2.10)

and the minimum cost rule is to allocate the class with greatest prior probability.

Misclassification costs are very difficult to obtain in practice. Even in situations

where it is very clear that there are very great inequalities in the sizes of the possible

penalties or rewards for making the wrong or right decision, it is often very difficult

to quantify them.

2.7.2 Artificial Neural Networks (ANN)

There is no precise agreed definition among researchers for a neural network, but

most agree that it involves a network of simple processing elements (neurons) which

can exhibit complex global behaviour, determined by the connections between the

processing elements and element parameters. The original inspiration for the tech-
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nique was from examination of the central nervous system and the neurons (and

their axons, dendrites and synapses) which constitute one of its most significant

information processing elements (Haykin, 1994). In a neural network model, sim-

ple nodes (called “neurons”, “neurodes”, “processing elements”, or “units”) are

connected together to form a network of nodes hence the term “neural network.”

While a neural network does not have to be adaptive, its practical use comes

with algorithms designed to alter the strength (weights) of the connections in the

network to produce a desired signal flow. These networks are also similar to the

biological neural networks in the sense that functions are performed collectively

and in parallel by the units, rather than there being a clear delineation of subtasks

to which various units are assigned. Currently, the term ANN tends to refer mostly

to neural network models employed in statistics and artificial intelligence. Neural

network models designed with emulation of the central nervous system (CNS) in

mind are a subject of theoretical neuroscience (Hagan et al., 1996).

In modern software implementations of artificial neural networks, the approach

inspired by biology has more or less been abandoned for a more practical ap-

proach based on statistics and signal processing. In some of these systems, neural

networks, or parts of neural networks (such as artificial neurons) are used as com-

ponents in larger systems that combine both adaptive and non-adaptive elements.

While the more general approach of such adaptive systems is more suitable for

real-world problem solving, it has far less to do with the traditional artificial in-

telligence connectionist models. However, the commonality between them is the

principle of non-linear, distributed, parallel and local processing and adaptation.

2.7.2.1 Learning

Learning is accomplished in general by developing algorithms that allow the sys-

tem to learn for itself from a set of input/output training data combinations. One

major goal of learning algorithms is to combine the main features of a computing

machine with those of human expertise to infer as many correct decisions as pos-

sible. An increasing number of systems are being designed today to have the very

distinctive feature of learning. This is done by adjusting their parameters in re-
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sponse to unpredictable changes in their dynamics or their operating environment

without the need for an explicit knowledge of a system model or rule that guides

behavior.

The aspect that has attracted the most interest in neural networks is the pos-

sibility of learning, which in practice means the following:

Given a specific task to solve, and a class of functions F, learning means using

a set of observations, in order to find f ∗ ∈ F which solves the task in an optimal

sense. This entails defining a cost function C : F → R such that, for the optimal

solution f ∗ , C(f ∗) ≤ C(f)∀f ∈ F (no solution has a cost less than the cost of

the optimal solution). The cost function C is an important concept in learning,

as it is a measure of some distance from an optimal solution to the problem that

is to be solved. Learning algorithms search through the solution space in order

to find a function that has the smallest possible cost. For applications where the

solution is dependent on some data, the cost must necessarily be a function of the

observations. It is frequently defined as a statistic to which only approximations

can be made. As a simple example consider the problem of finding the model f

which minimizes

C = E
[|f(x)− y|2] , (2.11)

for data pairs (x,y) drawn from some distribution D. In practical situations, there

are N samples from D and thus, for the above example, the goal would be to

minimize

Ĉ =
1

N

N∑
i=1

|f(xi)− yi|2. (2.12)

Thus, the cost is minimized over a sample of the data rather than the true data

distribution.

When N → ∞, some form of online learning must be used, where the cost is

partially minimized as each new example is seen. While online learning is often

used when D is fixed, it is most useful in the case where the distribution changes

slowly over time. In neural network methods, some form of online learning is
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frequently also used for finite datasets.

2.7.2.2 Learning Paradigms

There are three major learning paradigms, each corresponding to a particular ab-

stract learning task. These are supervised learning, unsupervised learning and

reinforcement learning. Usually any given type of network architecture can be

employed in any of those tasks.

Supervised Learning

In supervised learning, given a set of example pairs (x, y), x ∈ X, y ∈ Y, the aim

is to find a function f in the allowed class of functions that matches the exam-

ples. A commonly used cost is the mean-squared error which tries to minimize the

average error between the network’s output, f(x), and the target value y over all

the example pairs. When one tries to minimize this cost using gradient descent

for the class of neural networks called Multi-Layer Perceptrons, one obtains the

well-known backpropagation algorithm for training neural networks. Tasks that

fall within the paradigm of supervised learning are pattern recognition (also known

as classification) and regression (also known as function approximation). The su-

pervised learning paradigm is also applicable to sequential data (e.g., for speech

and gesture recognition).

Unsupervised Learning

In unsupervised learning, given some data x, the cost function to be minimized

can be any function of the data x and the network’s output, f. The cost function

is dependent on the task (being modeled) and apriori assumptions (the implicit

properties of the model, its parameters and the observed variables). For example,

consider the model f(x) = a, where a is a constant and the cost C = (E[x]−f(x))2.

Minimizing this cost will give a value of a that is equal to the mean of the data. The

cost function can be much more complicated. Its form depends on the application:

For example in compression, it could be related to the mutual information between

x and y. In statistical modeling, it could be related to the posterior probability
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of the model, given the data. Tasks that fall within the paradigm of unsupervised

learning are in general estimation problems; the applications include clustering,

the estimation of statistical distributions, compression and filtering.

Reinforcement Learning

In reinforcement learning, data x is usually not given, but generated by an agent’s

interactions with the environment. At each point in time t, the agent performs an

action yt and the environment generates an observation xt and an instantaneous

cost ct, according to some (usually unknown) dynamics. The aim is to discover a

policy for selecting actions that minimizes some measure of a long-term cost, i.e.

the expected cumulative cost. The environment’s dynamics and the long-term cost

for each policy are usually unknown, but can be estimated.

More formally, the environment is modeled as a Markov decision process (MDP)

with states s1, ..., sn ∈ S and actions a1, ..., an ∈ A with the following probability

distributions: the instantaneous cost distribution P (ct|st), the observation distri-

bution P (xt|st) and the transition P (st+1|st, at). A policy is defined as conditional

distribution over actions given the observations. Taken together, the two define a

Markov chain (MC). The aim is to discover the policy that minimizes the cost, i.e.

the MC for which the cost is minimal. Artificial Neural Networks (ANNs) are fre-

quently used in reinforcement learning as part of the overall algorithm. Tasks that

fall within the paradigm of reinforcement learning are control problems, games and

other sequential decision making tasks.

2.7.2.3 Features of ANNs

As mentioned previously, an ANN is typically composed of a set of parallel and dis-

tributed processing units, called nodes or neurons. These are usually ordered into

layers, appropriately interconnected by means of unidirectional (or bi-directional)

weighted signal channels, called connections or synaptic weights. The internal

architecture of ANN provides powerful computational capabilities, allowing for si-

multaneous exploration of different competing hypotheses. Neural networks gather

their knowledge through detection of patterns and relationships found in the data
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provided to them. There are three features that characterize an ANN: the network

architecture, transfer function (or activation function), and the learning algorithm.

Neural Network Architectures

The neural network architecture refers to the ordering and organizing of the nodes

from the input layer to the output layer of the network. The manner in which

nodes and the interconnections are arranged within a layer and between layers of

a given ANN determines the architecture. The nature of problem at hand defines

the use of a particular architecture. The most common ANN architectures are

feedforward and recurrent architectures (Haykin, 1994).

The feedforward architecture was the first and arguably simplest type of arti-

ficial neural networks devised. In this network, the information moves in only one

direction, forward, from the input nodes, through the hidden nodes (if any) and

to the output nodes. There are no cycles or loops in the network. The feedfor-

ward architecture is very popular due to its association with a quite powerful and

relatively robust learning algorithm called backpropagation. The multilayer per-

ceptron network and the radial basis function network are among the well-known

networks using the feedforward architecture.

Contrary to feedforward networks, recurrent neural networks (RNs) are models

with bi-directional data flow. While a feedforward network propagates data lin-

early from input to output, RNs also propagate data from later processing stages

to earlier stages. While feedforward networks map input into output and ar static

in the sense that the output of a given pattern of inputs is independent of the pre-

vious state of the network, recurrent networks map states into states and as such

are very useful for modeling and identification of dynamic systems. Some of the

well known neural networks designed on this architecture are Kohonen network,

the Hopfield network and competitive networks.

Neural Network Activation Functions
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The basic elements of the computational part of a neural network are the neurons,

which take the weighted sum of their inputs from other nodes and apply to them

a mapping, called the activation function, before delivering the output to the next

neuron. An activation function is simply a function that is used to introduce

nonlinearity to the network. The output Om of a neuron (m)having (n) inputs is

given by:

Om = f

(∑
n

wimxi + φm

)
(2.13)

where f is the node’s activation function, x1, x2, ..., xm are the node’s inputs,

w1m, w2m, ..., wnm are the connection weights, and φm is the node’s threshold. The

processing activity within a given layer is done simultaneously hence providing

the neural network with the powerful capability of parallel computing. Depend-

ing upon the problem at hand, the activation functions can take different forms:

linear, sigmoid, exponential, and hyperbolic tangent. All these functions are differ-

entiable because the backpropagation algorithm requires that activation functions

have to be differentiable. A linear activation function is equivalent to having no

activation function at all (i.e., the sum of the “signals” is the result sent to a node’s

children). A sigmoid function (also called the logistic) is an S-shaped curve that

maps all input to [0,1]. It has a limit of 0 as x approaches negative infinity, and

1 as x approaches infinity. A hyperbolic tangent function is similar to a sigmoid,

but it maps all of its input to [-1,1]. It has a limit of -1 as x approaches negative

infinity, and 1 as x approaches infinity. An exponential function is the exponential

function ex.

Neural Network Learning Algorithms

Learning algorithms are used to update the weighting parameters at the intercon-

nection level of the neurons during the training process of the network. Often for

robustness and efficiency reasons, a combination of back propagation and conju-

gate gradient algorithms are used. The prediction accuracy of an ANN is measured

by the mean squared difference between the actual and predicted output values.

For a preselected ANN model and corresponding data set, this mean squared er-

ror depends only on the values of the connection weights. During learning, the
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ANN processes training patterns consisting of input-output patterns through the

network, systematically adjusting the connection weights, so that the measure of

the overall goodness of the ANN model defined as the root mean squared error

(RMSE) between the ANN-estimated output values and the actual values, is min-

imized. The minimization learning algorithm is always iterative, and each step is

considered “learning”.

2.8 Summary

This chapter presented the background relevant for understanding the automated

buried pipe inspection system. A broad overview of various pipeline assessment

techniques in general are reviewed. A methodology for automated image-based

inspection is presented . The next two sections discussed image segmentation and

feature extraction methods. Next, ultrasound nondestructive testing is reviewed

and various approaches applicable to concrete inspection are discussed. Finally, a

brief review of pattern recognitions tasks is provided at the end of this chapter.
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Figure 2.1. Eddy current inspection of pipes

Figure 2.2. Acoustic emission based inspection of pipes
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(a) (b)

Figure 2.3. (a) CCTV Camera and (b) buried inspection process

(a) (b)

Figure 2.4. (a) Digitized image of pipeline and (b) SSET inspection probe
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Figure 2.5. Some gray-scale transformations
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Figure 2.6. Histogram equalization
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Figure 2.7. The RGB color space

Figure 2.8. HSI Color Space
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9. (a) Original scan image, (b) Gray-scale image, (c) HSI Color model image,
(d) YIQ Color model image, (e) (I, I1, I2) Ohta Color model image and (f) Fisher
Discriminant image
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Figure 2.10. Illustration of gray-scale Opening and Closing operation. (a) A gray-scale
scan line ‘f(x)’; (b) circular structuring element ‘g(x)’; (c) result of closing showing vari-
ous locations of structuring element during operation and (d) result of opening showing
various locations of structuring element during operation.
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Figure 2.11. Ultrasonic sensors suitable for scanning composites

Figure 2.12. Ultrasonic stress wave types present in the plate thickness ‘t’
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Figure 2.13. Air to solid interfaces 1,2,3,4
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Figure 2.14. Basic types of ultrasound waves



Chapter 3
CCTV Pipeline Image

Pre-processing

3.1 Introduction

The use of digital image data for a spatial database requires several preprocessing

procedures. These procedures include, but are not limited to: geometric correction,

image enhancement, and feature selection. The goal of digital image preprocessing

is to increase both the accuracy and the interpretability of the digital data during

the image processing phase. Geometric correction involves the reorientation of the

image data to selected parameters. This will allow for accurate spatial assessments

and measurements of crack features from the SSET or CCTV imagery. The aim

of pre-processing in underground pipeline images is an improvement of the image

data that suppresses unwanted distortions in background or enhances some image

features (like cracks) important for further processing. Image pre-processing meth-

ods use the considerable redundancy in images. Neighboring pixels corresponding

to one object in real images have essentially the same or similar brightness value.

Thus, distorted pixel can often be restored as an average value of neighboring

pixels. Four categories of image pre-processing methods according to the size of

the pixel neighborhood that is used for the calculation of new pixel brightness

are: pixel brightness transformations, geometric transformations, pre-processing

methods that use a local neighborhood of the processed pixel, and image restora-
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tion that requires knowledge about the entire image. Gray scale transformation

and image smoothing which are image pre-processing methods belonging to the

pixel brightness transformation and local pre-processing categories respectively

were briefly discussed in the previous chapter. There are several color coordinate

systems, each having its particular merits that are being used in color image pro-

cessing. For examples, HIS, YIQ, CIELAB, and CIELUV coordinate systems are

the most popular. Quantization error may exist during coordinate transformations

in any one of the above systems. The effect of quantization error on color image

processing is analyzed in order to minimize the artifacts created by the error in

the resultant image. The chapter on background carries sufficient information on

the above color image processing techniques and their relevance to the ‘specific’

problem that this research study intends to address.

A data set consisting of hundreds of images of underground pipes from major

cities in North America has been acquired. This data set was used to explore basic

characteristics of underground pipe images. Analysis of images have shown that

there are two important characteristics that complicate the segmentation of pipe

images, viz., the presence of a complicated background pattern due to earlier runoff,

patches of repair work, corroded areas, debris, non-uniformities in illumination,

and flaws in the image acquisition process; and secondly because the three main

objects of interest - cracks, joints, and laterals - are all dark features that cannot

be distinguished by intensity criteria alone. Although the goal of this research

is to develop an automated method that detects cracks from a given pipe image,

the image segmentation problem is difficult to automate because the differences

between classes such as joints and cracks, although obvious to a human, can be

very difficult to encode mathematically at the pixel level. This task becomes

even more complex given the quality of the images and conditions under which

they are obtained by PSET imagery. Thus, this necessitates an urgent need to

enhance the raw digital color image in a pre-processing phase before subjecting it

to segmentation operations. It is of great interest to us that the contrast between

the background and crack features is enhanced to facilitate efficient segmentation

and classification. Two techniques are proposed in this chapter to achieve better

contrast than the originally acquired color image from the imaging sensors thus

reducing the probability of loss of data in the conversion process to a simpler
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format like the gray-scale image.

3.2 Method I: Non-Linear Quadratic Filtering

Method

Image enhancement seeks to improve the visual quality of images. However, an

inherent difficulty is to define a mathematical criterion for visual quality. As a

result, many algorithms remain to a large extent empirical and a final assessment

can only be performed by the human observer. In this section, image contrast

enhancement based on the unsharp masking method is considered (Gonzalez and

Woods, 2002). The common techniques of contrast enhancement generally fall into

one of two categories (Jain, 1989). Techniques belonging to the first category, such

as histogram equalization, modify the brightness of each pixel from the statisti-

cal information of an image. The techniques in the other category enhance the

contrast of images by first separating the high and/or low frequency components

of images, manipulating them separately and then recombining them together.

The unsharp masking or high-frequency emphasis method belongs to this second

category. Unsharp masking for edge enhancement, commonly used in the printing

industry, is equivalent to adding back the scaled gradient magnitude to the original

signal. Mathematically, unsharp masking can be formulated as

xe[m,n] = x[m,n] + γ∇x[m,n] (3.1)

where xe[.] denotes the enhanced image; x[.] represents the original input image

(‘m’ and ‘n’ denote pixel location on a 2-D grid); ∇x[.] refers to the gradient of x[.]

and γ the enhancement factor. A discreet laplacian operator is commonly used as

a gradient function (Gonzalez and Woods, 2002, Jain, 1989). Mitra and Strobel

proposed a modification that is based on replacing the gradient operator x[.] in

Eq. (3.1) by an enhancement fraction ∆x[m,n] (Mitra and Strobel, 1995). This

fraction is derived from quadratic filters where

∆x[m,n] = f(
y[m,n]

max(|y[m,n]|))× x[m,n] (3.2)
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with y[m,n] denoting the output of the quadratic filter. An example of the quadratic

filter is the type 1B quadratic filter defined by Mitra and Yu (1991) as

y[m,n] = 2x2[m,n]−x[m−1, n+1]x[m+1, n−1]−x[m−1, n−1]x[m+1, n+1] (3.3)

As the filter response y[m,n] in Eqs. (3.2) and (3.3) can take both positive and

negative values, the function max(‖y[m,n]‖) selects the maximum absolute value.

The (normalized) quotient y[m,n]/max(‖y[m,n]‖) is referred to as the enhancement

map, and the overall product results in an enhancement fraction whose magnitude

is bounded by the maximum intensity level of the display device. A new modified

algorithm proposed by Mitra and Strobel has been applied here which can be

summarized in a block diagram as shown in Figure 3.1.

In the present study, a quadratic filter derived by Thurnhofer (1994) was con-

sidered in the modified algorithm and implemented as shown in Figure 3.1:

y[m,n] = 3x2[m,n]− 0.5× (x[m + 1, n + 1]x[m− 1, n− 1])

−0.5× (x[m + 1, n− 1]x[m− 1, n + 1]) (3.4)

−x[m + 1, n]x[m− 1, n]− x[m,n + 1]x[m,n− 1])

This algorithm was applied in a local window within the image for more prominent

results. Three size of windows used were 3 x 3, 5 x 5 and 7 x 7. The enhancement

factor γ was also varied from 0.25 to 1.5 for each window size. A huge database

of images with all the parametric combinations yielded 180 images by applying

the algorithm on five sample images exhibiting a variety of crack features and

patterns and five sample images with different background characteristics. Figure

3.2 shows one representative original crack color image and the contrast enhanced

images using the proposed method. The enhanced images shown are obtained by

running a 3 x 3, 5 x 5 and 7 x 7 window and an enhancement factor γ of 0.5.

Observations have shown that a 5 x 5 filter size with an enhancement factor γ of

0.5 gave the best result. Further validation will be possible only when the crack

segmentation and detection algorithm is developed to process this enhanced image.

A high percent of cracks detected from images that are enhanced using this method
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will serve as a proof for accepting it to improve image pre-processing. The next

phase being undertaken is of developing a crack detection algorithm as a sequential

step in this research study. Figure 3.3 shows background specific color image and

its enhanced images using the same filter size and enhancement factor γ as in the

crack feature case in Figure 3.3.

3.3 Method II: Magnification Of Dark Image Fea-

tures

Crack features are deeper than the pipe surface. This causes the deep regions to

produce color pixels with lower intensity value compared to the rest of the image. A

new approach to enhancement is proposed in this section by increasing the contrast

of the dark pixels from the estimated ”background” image. The output is a gray

scale enhanced image. The background image is the image of the pipe without any

small features (e.g. cracks). Given the input color image, a median filter is applied

to each of the R, G, and B component images. The window size for the median

filter is 15 x 15. This was determined based on the width of the crack lines. The

window size experimentally selected is large enough to erode the small features

and at the same time small enough to be computationally fast. This method picks

the dark pixels by comparing the intensity of each pixel in the original color image

with that of the background image. The algorithm can be summarized below:

Let M be the original color image of the pipe and let ’BackG’ be the estimated

background image, computed as:

BackG = MedianFilterRGB(M) (3.5)

where MedianFilterRGB(M) is a median filter applied to each of the R, G, and

B bands of the color image ‘M’. Let GrayM[m,n] be the gray scale value of

the color pixel M[m,n] and GrayBackG[m,n] the gray scale value of color pixel

BackG[m,n].The ’enhancement’ is described by the following decision function:

if (GrayM[m,n] < GrayBackG[m,n])

Enhanced[m,n] = GrayM[m.n] - diff-factor * ‖M[m,n]-BackG[m.n]‖
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else Enhanced[m,n] = GrayM[m,n]

where, Enhanced[m,n] is the gray scale value of the enhanced pixel,

diff-factor is the parameter controlling the degree of contrast,

and the operator ‖.‖ is the Euclidean norm.

The term ‖M[m,n] - BackG[m.n]‖ is the equivalent to the Euclidean distance be-

tween the two RGB color vectors M[m,n] and BackG[m,n]. The parameter diff-

factor controls the contrast of the dark pixels from the background. Its value

should be set large enough to provide sufficient contrast but not too large so as

to darken the other gray regions. Figures 3.4 and 3.5 show a typical crack and

background image enhanced using this method. It must be noted that these are

representative images from the database generated by running this algorithm on

10 different images similar to the quadratic filter method.

3.4 Summary

A modified version of unsharp masking was implemented that is flexible enough

to accommodate different quadratic filter types in the feed-forward loop of the

algorithm presented in Figure 3.1. By computing the enhancement map and final

thresholding, the crack features are enhanced and background is suppressed ac-

cording to their original characteristics. This is accomplished in the first proposed

method using non-linear quadratic filtering. The second method which is based

on magnifying the dark components of the image which are generally cracks in

pipeline images also provides encouraging results in this preliminary evaluation

phase. The validity and flexibility of both the techniques will be tested only in

the second phase when a segmentation or crack detection algorithm is developed

and applied to these enhanced images. Finally, the images after being enhanced

by the two proposed schemes are ready to be segmented and classified for which

the active contour algorithm called SNAKES was considered but abandoned as it

did not provide promising results. Another approach based on mathematical mor-

phology and curvature evaluation was implemented on pipeline images enhanced

by the above two methods resulting in a phenomenal improvement in the ability to

detect cracks under varying conditions. In order to validate the efficiency of both
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the proposed contrast enhancement methods, it is necessary to develop a crack

detection filter and apply an adaptive algorithm to enhanced images. The crack

map that will be generated by the crack filter will be compared against the origi-

nal image and the percentage of cracks detected without loss of information from

images filtered using the methods above will establish the standards for adoption

of either technique in further study. The next chapter on segmentation deals with

crack map generation algorithms and crack filters that need to be developed to

cater to the characteristic images pertaining to underground pipelines.
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Figure 3.1. Block diagram of algorithm showing Mitra and Strobel’s modified technique
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(a) (b)

(c) (d)

Figure 3.2. Non-linear quadratic filtering method (a) Original crack image, (b) 3 x 3
window, (c) 5 x 5 window and (d) 7 x 7 window enhanced image
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(a) (b)

(c) (d)

Figure 3.3. Non-linear quadratic filtering method (a) Original background image, (b)
3 x 3 window, (c) 5 x 5 window and (d) 7 x 7 window enhanced image
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(a) (b)

(c) (d)

Figure 3.4. Magnification of Dark Features Method (a) Grayscale crack image, (b)
diff-factor = 2, (c) diff-factor = 3 and (d) diff-factor = 4
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(a) (b)

(c) (d)

Figure 3.5. Magnification of Dark Features Method (a) Grayscale background image,
(b) diff-factor = 2, (c) diff-factor = 3 and (d) diff-factor = 4



Chapter 4
CCTV Pipe Crack Segmentation

4.1 Introduction

Analysis of images has shown that there are two important characteristics that

complicate the segmentation of pipe images: firstly, the presence of a complicated

background pattern due to earlier runoff, patches of repair work, corroded areas,

debris, non-uniformities in illumination, and flaws in the image acquisition process;

secondly because the the main objects of interest - cracks,patches,etc. are all dark

features that cannot be easily distinguished by implementing the intensity criteria

alone. This chapter will put forth the basic idea about a simple, robust and efficient

image segmentation algorithm for the automated analysis of scanned underground

pipe images. As mentioned in the previous chapter, the famous SNAKE algorithm

introduced in a seminal paper by Kass et al. (1987) based on active contour

models did not provide promising results and was marred with modeling problems

(Kass et al., 1988). The present study considered the implementation of active

contour models by taking advantage of their slithering action. Unfortunately,

the contour nodes failed to converge on the crack feature and alienate it from

the rest of the image. Thus a new approach based on mathematical morphology

and curvature evaluation was investigated and found to be successful in detecting

crack-like structures in complicated pipe images. This chapter presents the theory,

modeling and implementation of this new methodology in detail.
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4.2 Edge Detection

Edge detection is a problem of fundamental importance in image analysis and com-

puter vision. An edge is a jump in intensity values in the image domain. In typical

images, edges characterize object boundaries and are therefore useful for segmen-

tation, registration, and identification of objects in a scene (Heath et al., 1997).

Edge detection algorithms reduce the complexity of the image allowing for more

expensive (computationally) algorithms like object recognition (Liu and Srinath,

1990) object matching (Ratha et al., 1996), object registration (Brown, 1992), and

surface construction from stereo images (Hoff and Ahuja, 1989, Lengagne et al.,

1996) to run faster and be used more efficiently.

Crack-like patterns in underground pipeline images obtained from a Sewer

Scanner Evaluation Technology (SSET) sensor seem to have a specific Gaussian

profile. Detection of cracks in these images is of huge importance to the munic-

ipal authorities from several standpoints. They can help in determining residual

structural strength left in the pipe based on structural analysis taking into account

prevailing loading conditions. Crack information can be used to select the appro-

priate rehabilitation method to fix the cracked pipe and prevent any catastrophic

failure. Segmented crack features can also be used as a first step before registering

successive images from various depths in the thickness of pipe for the same region

(Brown, 1992, Canny, 1986). Usual edge detectors and thresholding techniques

based on the difference between pixel values are inefficient when applied to the

underground pipe images (Sinha, 2000).

In analyzing buried pipe scanned image, it is essential to consider complications

due to inherent noise in the scanning process, varied crack directions and a wide

range of pipe background patterns. It is known that cracks with bright features

(darkest in the image) and a tree-like geometry are very common to every pipe im-

age that arrives as input to this stage of crack detection and classification. Hence,

it is necessary to have a robust algorithm suitable for detection of cracks from

images of different types that can provide reliable information useful to register

images from the same region of pipe.

In this chapter, a three step method to identify and extract crack-like structure

from pipe images is presented. This method combines morphological filters and
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cross-curvature evaluation to segment cracks from images that have been acquired

in a noisy environment. The above combination was studied and presented by Zana

and Klein (2001) and modified by Fang et al. (2003) with respect to detection

and reconstruction of blood vessels in retinal fundus images (Zana and Klein,

2001). The principles of these two approaches have been studied and implemented

in an algorithm that can detect cracks over a wide variety of pipe images, thus

extending the applicability of this combination to a unique application in the buried

infrastructure industry.

Crack-like patterns are bright features defined by morphological properties:

linearity, connectivity, width and by a specific Gaussian-like profile whose curvature

varies smoothly along the crest line. This study employs mathematical morphology

to highlight cracks and then uses cross-curvature evaluation to determine features

whose curvature is linearly coherent. The proposed algorithm has been tested on

images with varying background colors, changing crack patterns and background

noise in order to measure its robustness and accuracy. It was found that the

algorithm was sensitive to contrast in the image.

As mentioned in the previous chapter, the selection of one of the contrast en-

hancement approaches will depend upon the consistency and efficiency with which

this crack detection algorithm detects cracks from enhanced images. Preliminary

evaluation revealed that the crack detection algorithm worked very well on images

that were contrast enhanced by the Magnification of Dark Features method. Hence

this method was finally chosen over the Non-Linear Quadratic Filtering method

as a pre-preprocessing step before the application of a crack detection filter.

4.3 Mathematical Morphology Based Operators

The techniques of mathematical morphology are based on set-theoretic concepts,

on nonlinear superposition of signal, and on a class of nonlinear systems that are

called morphological systems. This section is a brief review of fundamental defini-

tions of morphological operators considered in this study. Advanced information

on mathematical morphology can be found in Serra (1982) and Maragos (1990)

(Serra, 1982, Maragos and Schafer, 1990).

For reference, a two-dimensional (2-D) grayscale image will be defined as having
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a range of [Imin, Imax] as a functional F : R2 → [Imin, Imax], and a 2-D structural

element as a functional B : R2 → B where B is the set of the neighborhoods of

the origin. Structuring elements invariant by translation are considered that are

identified with a subset of R2 and will be referred to as linear structuring element

when this subset is a line segment. Basic morphological operators with respect to

the structuring element B, a scaling factor e, image F and a processing point P0

∈ R2 can be defined as:

erosion : εe
B(F)(P0) = MINP∈P0+e·B(P0)(F(P)); (4.1)

dilation : δe
B(F)(P0) = MAXP∈P0+e·B(P0)(F(P)); (4.2)

opening : γe
B(F) = δe

B(εe
B(F)); (4.3)

closing : φe
B(F) = εe

B(δe
B(F)); (4.4)

top− hat : THe
B(F) = F − γe

B(F). (4.5)

Morphological reconstruction is most of the time presented using the notion of

geodesic distance and hence the term, geodesic operators (Vincent, 1987). They

are usually defined with reference to a geodesic distance and type of connectivity.

In other words, they depend on a ’marker’ image Fm (connectivity map) and a

geodesic distance d.

The geodesic reconstruction (or opening) is defined by

γrec
Fm

(F) = sup(4d
Fm

(F)), d ∈ I (4.6)

where (.) is the geodesic dilation. The geodesic closing is defined by

φrec
Fm

(F) = Imax − γrec
(Imax−Fm)(Imax − F). (4.7)
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4.4 Analysis of Crack-Like Pattern

4.4.1 Crack Detection Approaches and Previous work

Most of the literature concerning the detection of defects (like cracks) in civil struc-

tures deals with the analysis of pavement and concrete/steel distress that are not

directly applicable to buried pipe inspection (Cheng and Miyogim, 1998). In ana-

lyzing buried pipe scanned image data, it is imperative to consider complications

due to inherent noise in the scanning process, irregularly shaped cracks, as well

as the wide range of pipe background patterns. In the past two decades, many

approaches have been developed to deal with the detection of linear features on

retinal, satellite and most recently, buried pipe images (Merlet and Zerubia, 1996,

Hellwich et al., 1992, Fieguth and Sinha, 1999). Most of them combine a local cri-

terion evaluating the radiometry on some small neighborhood surrounding a target

pixel to discriminate lines from background and a global criterion introducing some

large scale a priori knowledge about the structures to be detected.

The techniques used for pavement distress detection in scanned images are

based on conventional edge or line detectors with respect to local criterion (Mo-

hajeri and Manning, 1991, Cheng and Miyogim, 1998). These methods evaluate

differences of averages, thus indicating noisy results and inconsistent false-alarm

rates. This necessitates the introduction of global constraints owing to insuffi-

ciency of local criterion in line and edge detection. As cracks in buried scanned

pipe images resemble undulating curves with a generally constant width, Hough

transform based approaches have also been tested for the detection of parametric

curves, such as straight lines or circles (Skingley and Rye, 1987). Tracking methods

and energy minimization methods, such as snakes, have been used to track roads

in satellite images and heart walls in live feeds from medical ultrasound angiogra-

phies (Geman and Jedynak, 1996, Kass et al., 1988). These tracking methods find

a minimum cost path in a graph by using some heuristics like an entropy criterion.

Statistical methods such as those that employ Bayesian framework complemented

by cross-correlation detectors have been used by Feiguth and Sinha (1999) to de-

tect cracks to a reasonable accuracy level (Fieguth and Sinha, 1999). However,

their results were noisy with high false-alarm rates when the image had dark back-

ground with multiple cracks in a tree-like geometry. Morphology based filtering
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coupled with cross-curvature evaluation has not been used to detect cracks and

remains an unexplored frontier till date. It will be shown that the application

of some carefully selected morphological filters leads to a simplified image whose

cross-curvature evaluation is easy.

4.4.2 Modeling Crack Like Pattern

The appearance of cracks in digital imagery depends on the spatial sensitivity as

well as resolution of the sensor, which is the Sewer Scanner Evaluation Technol-

ogy (SSET) camera in case of buried pipelines (Wirahadikusumah et al., 2001).

In images acquired from the SSET camera, image pre-processing is necessary to

improve understanding of the characteristics of sewer pipe. The presence of var-

ious features in an acquired image (see Fig. 4.1) poses considerable challenge in

detecting the desired structural failure patterns such as cracks, fissures, etc. As

seen in Figure 4.1, various features exist that make it complex for a recognition

system to classify the desired patterns. Hence, this necessitates the application of

low-level methods of image pre-processing to contrast enhance the acquired image

for specific application.

“Specific” in this research applies to enhancing contrast between the back-

ground of pipe and desired crack features. It is assumed that cracks have the

darkest (brightest) feature in the image and enhance the contrast of the dark pix-

els from the “background” image. The background image is the image of the

pipe without any small features (e.g. cracks). As mentioned earlier, the litera-

ture concerning crack segmentation in the pavements and most recently the buried

pipeline area does not model cracks from an image modeling perspective (Kout-

sopoulos et al., 1993). This study takes advantage of Zana and Klein’s (2001)

modeling approach and restricts the scope to contrast-enhanced grey-scale images

only (Zana and Klein, 2001). It is assumed that the tree-like geometry of cracks

is the only element of the buried pipe scanned image that is locally uniform and

can be described by the following properties:

• intensity distribution of a cross-section looks like a specific gaussian curve

(see Fig. 4.2);

• they branch like a tree;
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• more or less have a constant width.

The above listed properties can be further classified into those related to mor-

phological descriptions and those related to the calculation of curvature parameters

based on linearity, connectivity, crack width, and gaussian profile.

4.5 Detection of Crack Features

4.5.1 Spectrum of SSET imagery

The SSET technology uses a high-resolution digital optical scanner to obtain a

continuous, directionally-oriented, 360-degree scanned visual image so that the

interior surface of the pipe is recorded.The second-generation probe also uses a

CCD (Charged Coupled Device) to integrate the forward view in data capture. A

fish-eye lens is used to capture the hemispherical, 360-degree side scan view. An

annular segment of the image that crosses the preset scanning region is sequen-

tially scanned in, digitally cut, flattened and concatenated to provide the unfolded

picture of the entire length of a pipe. As any other image acquisition system, the

SSET is prone to background noise and poor illumination during scanning. All

these factors contribute to noise in pipe images.The presence of debris, vegetation

and other foreign material on the surface of the pipe further complicates the de-

tection of defects on the pipe surface from images. Figure 4.3 shows representative

images from the database of unfolded images with features of interest (cracks) in

presence of complicated features (background, color,vegetation, etc).

4.5.2 Geometry based recognition of crack features

In this section, the application of morphology based filters with linear structuring

elements that take advantage of the linear property of crack features will be dis-

cussed. A morphological opening with a linear structuring element will remove a

crack or part of it when the element cannot be included in the geometry of the

crack. This is true when the structuring element is orthogonally oriented with

respect to the crack and is hence longer than the crack width. However, the crack

will not be affected when the structural element and the crack have parallel di-
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rections. A sum of top-hats along possible directions will highlight the cracks

irrespective of their inclination in the image if openings along a class of linear

structuring elements is performed. But this sum of top-hats will recover a lot of

noise because the openings require that the structural elements be large enough to

remove unwanted features in the image that do not fall in the category of cracks.

Hence, reconstruction operations are carried out using the connectivity property

of the cracks before taking the sum of top-hats (Fig 4.4).

A geodesic reconstruction of the opened images into the original image F0 will

remove noise while preserving most of the cracks. Mathematically this operation

can be represented as:

Fop = γrec
F0

(Maxi=1···18{γLi
(F0)}). (4.8)

Each of the 18 linear (width = 1 pixel) structuring elements Li is 12 pixel wide

and is oriented at every 10◦ from 0 to 180. The element size is based upon the

range of crack widths that are of interest to the pipeline community. A more

detailed discussion on this will follow in Section 4.7.3. The resulting reconstructed

image Fop will not have any isolated round or bright zone whose diameter is less

than the size of structuring element (12 pixels). This step called linear opening

by reconstruction of size 12 removes white noise and other features that do not fit

into the geometric definition of cracks. The sum of tophats on the filtered image

Fop will enhance all cracks irrespective of their orientations including minor cracks

in a low contrast image. However, the Fop image contains a lot of details like 1)

background linear features that can be confused with cracks but do not meet all

the requirements and 2) non-linear patterns like bright or dark thin irregular zones

that are enhanced by the tophats operation.

4.5.3 Final segmentation based on curvature characteris-

tics

At this stage, it is assumed that any nonzero point in the image has a potential

dominant direction thus qualifying as part of some crack pattern in terms of its

geometry. It is worthwhile to introduce the term curvature at this point as the

curvature in the cross direction which is defined for every pixel under the above
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assumption. Its evaluation using the Laplacian has been analytically discussed and

presented in (Zana and Klein, 2001). Non-linearly correlated patterns have signals

that appear as thin and irregular bright elements indicating that the curvature gets

positive values on a width smaller than in the case of the cracks (see Fig. 4.5).

In the case of details like 1)(Section 4.5.2), the curvature will have alternating

positive and negative values in various directions owing to a low and disorganized

signal. This can sometimes lead to represent a curvature trend that fits the crack

description. This study does not attempt to address the above issue leading to

false detection in few cases which are rare and have little bearing on the overall

performance.

It has been proven that the sign of Laplacian applied to the result image of top-

hats can be used as a good approximation of the sign of curvature (Zana and Klein,

2001). Further, the Laplacian of Fop is computed to obtain a good estimation of

the curvature (see Fig. 4.5(a)). The final step in the detection process is the ap-

plication of alternating filters that remove enhanced noise patterns corresponding

to 1) and 2) as discussed in Section 4.5.2 thereby producing the final binary crack

map. The alternating filtering operation consists of performing a linear opening by

reconstruction of size 12, followed by a linear closing by reconstruction of size 12,

and finally a linear opening of size 24. These sizes were chosen based on statistics

generated on a database of around 225 pipe images in the database acquired from

various cities in North America (rationale behind the selection of these values is

discussed in section 4.7.3).

4.6 Flow Chart of The Proposed Algorithm

Pipe crack segmentation is a multi-stage and involved process as evident from the

flowchart in Figure 4.6. There are various levels of segmentation that can be per-

formed on an SSET image to detect joints, laterals, voids and other features of

interest. However, this study only concerns those aspects of the detection process

that deal with segmenting cracks from complicated background features and in-

cludes contrast enhancement for improved detection probabilities. The algorithm

is summarized as follows:
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Step I: Improve the contrast of RGB pipe image by enhancing the dark or bright

pixels from the “background” image.

Step II: Perform crack enhancement described by the following equations in math-

ematical morphology terms:

Fop := γrec
F0

(Maxi=1···18{γLi
(F0)})

Fsum−th :=
∑18

i=0 (Fop − γLi
(F0)).

The sum of top hats reduces small bright noise and improves the contrast of all

linear regions in the image. At this stage, a manual threshold on Fsum−th could

result in cracks being segmented out from the image, but in most cases the image

would be noisy thus requiring further treatment through curvature computation

Flap := Laplacian ( Gaussianwidth=12px
σ=2 (Fsum−th) ).

Step III: The third step in the detection process consists of applying a set of filters

with linear structuring elements to remove the enhanced noise patterns. The set

of alternating filters can be described by

F1 := γrec
Flap

(Maxi=1···18{γLi
(Flap)})

F2 := φrec
F1

(Mini=1···18{φLi
(F1)})

Ffinal := (Maxi=1···18{γ2
Li

(F2)} ≥ 1).

The final opening by a larger structuring element (scaling factor of 2) removes

smaller and tortuous segments of cracks that are shorter than the structure ele-

ment. Cracks are readily identified as pixels whose values are larger than a small

positive value such as 1.

4.7 Generalization to Pipe Images

The algorithm has been adapted to other types of pipe images: background vari-

ation and color variation based upon the geographical location and condition of

pipe.
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4.7.1 Background and Color Variation Images

Background variations are a result of changing illumination and maintenance con-

ditions for a given pipeline whereas color variations depend upon the material used

for the pipeline, viz., clay or concrete. Development of vegetation or algae can also

add to the background color patterns (see Fig 4.3(d)). In such images, cracks are

less contrasted than in images where the background is generally linear. Careful

observation reveals that the crack patterns in pipe scan images show a certain

extent of damage in that section of pipe. Usually, the probability that there is no

crack in a section of pipe is very high as compared to the presence of crack and so

an effective detection methodology must be able to filter out the images with no

features of interest. Thus, crack recognition and segmentation is of utmost inter-

est from an image registration point of view for future applications in 3-D crack

visualization and feature selection for accurate pipe condition assessment.

4.7.2 Performance Evaluation

It is necessary to evaluate the performance of the proposed algorithm on images

with varying crack pattern, color and background as the case may be in the field.

The evaluation is carried out by comparing automatically detected cracks with

manually plotted cracks (ground truth). A set of connected pixels belonging to

the cracks is manually extracted using an in-house GUI interface to replicate the

process carried out by a pipe inspector in the field. The “buffer-method” for

performance evaluation by matching the automatically extracted crack pixels to the

reference map or ground truth image has been employed in this study (Wiedemann,

1987). This method is a simple matching procedure in which a buffer of constant

predefined width is constructed around the crack data in two steps. In the first

step, a buffer of constant width is constructed around the reference crack data by

using a morphological dilation operation of size 5x5 (see Fig 4.7). The parts of

the extracted data within the buffer are considered as matched and is denoted as

true positive whereas the unmatched extracted data is denoted as false positive. In

the second step, the matching is performed the other way round by constructing

a buffer of the same size around the extracted crack data (see Fig 4.7) and the

part of reference data lying in the buffer is considered as matched. The unmatched
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reference data is denoted as false negative. Probability of detection is defined as

the ratio of detected crack pixels to true crack pixels and probability of false-

alarm is the ratio of false-alarm pixels to non-crack pixels in the image. Figure 4.7

illustrates the matching procedure to quantitatively determine the probability of

detection Pd and probability of false-alarm Pfa (false +ve and -ve).

4.7.3 Parameter Selection

The size of structuring element and degree of rotation are two prime parameters

that govern the performance of this algorithm. It is imperative to discuss the detec-

tion probabilities as a function of these two parameters. Generalization to images

of all types can only be effected if the algorithm can perform very well under vary-

ing image conditions as discussed in Section 4.1. Hence, an optimum parameter

combination is required that can consistently provide high detection probabilities

under all conditions based on a set criteria for Pd and Pfa as suggested by the

concerned authorities. In order to quantitatively assess the effect of structuring el-

ement size and degree of rotation on the detection rate, the probability of detection

(Pd) and the probability of false-alarm (Pfa) for different structuring element sizes

and degree of rotations are plotted. Experiments are conducted on three different

classes of pipe images (crack patterns, background and color) by varying the size

of structuring element (S=10, 12 and 15 pixels) and degree of rotations (D = every

5◦, 10◦ and 15◦) to determine an optimum combination of these two parameters.

Given a low false +ve (7%) and false -ve (2%), the corresponding size of structural

element and degree of rotation that gives the maximum Pd is selected. This is

repeated for all the three classes of image and the candidate combination that sat-

isfies the cut-off criteria throughout is finally selected as the generalized optimum

parameter combination. Figure 4.8 shows the probabilities plotted against vari-

ous parameter combinations for images with varying crack patterns, background

and color. S12-D10 (structuring element of size 12 pixels rotated at every 10◦)

clearly satisfies the cut-off criteria and is selected as the optimum combination

that consistently provides good detection in all types of pipe images.
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4.8 Results

This algorithm has been tested on a database of around 225 images of all types

taken from various cities like Los Angeles, Albuquerque, Toronto and St. Louis-

Missouri in North America. All the images were acquired and unwrapped using

the Sewer Scanning and Evaluation Technology (SSET) camera and its propriety

software available with the system. Robustness was evaluated on noisy images with

respect to changing crack patterns (Fig. 4.9), background features (Fig. 4.10) and

color (Fig 4.11). Images that did not have any cracks present produced a perfect

image without any detected cracks every single time the algorithm ran with the

generalized optimal parameter combination.

There has been false detection in the following cases:

• extension of crack into a small rounded zone (patch) maintaining the same

direction and geometry (see Fig 4.9);

• cracks are too close to each other

• bright (or dark) linear structures mistaken for cracks that appear as isolated

objects in the image.

• uniform noise that would modify the connectivity of crack structure thereby

disturbing the reconstruction filter and misleading curvature evaluation.

Parts of the crack were not detected mostly in very low contrast (Fig. 4.11)

and sometimes in images that had shadow due to illumination issues in the pipe.

However, the detection in every case was in accordance with the discussion given

in Section 4.5. This algorithm works on detecting patterns with Gaussian profile

bounded at the inflection point. The gaussian filter applied before the computation

of the Laplacian modifies the surrounding texture leading to a shift in location of

the inflection point. As a consequence, experiments show that small cracks appear

wider than their real size (see Fig. 4.9). However, this is not a matter of major

concern as detection is based on matching the extraction with respect to a buffer

width as discussed in Section 4.7.2.
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4.9 Comparison with Conventional Methods: A

Qualitative and Quantitative Discussion

In order to study the performance of the proposed algorithmwith respect to other

conventional filters used in the buried pipeline infrastructure industry, several de-

tection filters are applied to an original image including the proposed algorithm.

Canny’s edge detector and Otsu’s thresholding technique have been used to extract

crack features (Canny, 1986, Otsu, 1979). Quality measures for crack extraction

are discussed with the intention of comparing results from different crack detection

techniques in addition to an absolute evaluation of extraction and matching results

as discussed in Section 4.7.2. Quality measures are defined as follows:

• completeness = length of matched reference
length of reference

≈ number of matched crack pixels of reference
length of crack pixels of reference

completeness is the percentage of reference data which is explained by the

extracted data, i.e., the percentage of true cracks that could be extracted by

the filters. completeness ∈ [0;1] and its optimum value is 1.

• correctness = length of matched extraction
length of extraction

≈ no. of matched crack pixels of extraction
length of crack pixels of extraction

correctness represents the percentage of correctly extracted crack data, i.e.,

the percentage of extraction that matches the reference crack. correctness ∈
[0;1] and its optimum value is 1.

• redundancy = length of matched extr. − length of matched ref.
length of matched extraction
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≈ # matched pixels of extr. − #matched pixels of ref.
no. of pixels of extraction

The redundancy represents the percentage to which the correct (matched)

extraction is redundant, i.e. it overlaps itself; redundancy ∈ ]-∞;1] and its

optimum value is 0.

• quality = length of matched extraction
length of extraction + length of unmatched ref.

≈ compl·corr
compl−compl·corr+corr

The quality is a more general measure of the final result combining complete-

ness and correctness into a single measure. The optimum value is 1.

The proposed approach, Canny’s edge detection method, and Otsu’s thresholding

technique have been applied to a sample image from all three classes as shown in

Figures 4.12, 4.13 and 4.14. The results of quality measures are summarized in

Tables I, II and III.

The Canny edge detector produces parallel edges [Fig. 4.12, 4.13 and 4.14(c)]

suggesting that the largest cracks are easily picked up by the detector at the cost

of smaller cracks that appear less contrasted. Otsu’s thresholding technique selects

a threshold based on integration (a global property) of the gray-level histogram.

Hence, in areas where the cracks and background path run into each other or

low contrast dark images, false detection is inevitable as seen in figures 4.12, and

4.14(b). The proposed method produces a binary image that achieves a very small

proportion of false detection. It generally produces linear structures that are clean

but not always connected to each other as would be required in a complicated crack

geometry. One of the limitations of this morphology based approach is that it is

unable to effectively highlight bifurcation and intersection points in regions where

the crack geometry is larger than the structuring element (see the two arrows in

Fig. 4.12). In order to ensure the complete detection of cracks along with its

bifurcations, if any, another morphological reconstruction process can be carried

out based on local dynamic region growing tailored towards pipe images. This is

an interesting research problem in itself and can be studied in the future.
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4.10 Summary

In this chapter, an efficient algorithm for detecting crack patterns in pipeline im-

ages was adapted and implemented . The proposed method can be divided into

three steps, viz., contrast enhancement, morphological treatment and curvature

evaluation in the cross direction and finally the alternating filters that produce

the final segmented binary crack map. The shape properties, connectivity and

curvature were effectively used to select cracks in an image consisting of com-

plex background and color features. The proposed evaluation scheme adequately

estimates the performance of the algorithm in an absolute way and relative to con-

ventional detection techniques. The robustness and weaknesses of the algorithm

have been discussed in order to facilitate its use in a larger scheme for condition

assessment of buried pipelines. Based upon the application and urgency, some of

the quality measures such as completeness may outweigh others, for e.g. in an

automated setup. The scope of this part of the research study was focused on im-

proving the segmentation methodology in pipeline images. Further development

of this algorithm in terms of recovering the crack structure with bifurcations in

complex situations needs to be actively pursued in preparation towards an auto-

mated condition assessment tool, although, this clearly is not within the scope of

this study.
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Table 4.1. Quality measures for different classes of images using proposed approach

Class Cracks Background Color

Completeness 0.95 0.88 0.90

Correctness 0.98 0.94 0.91

Quality 0.93 0.83 0.83

Redundancy 0.00 -0.91 0.00

Table 4.2. Quality measures for different classes of images using Otsu’s thresholding
technique

Class Cracks Background Color

Completeness 0.98 0.61 0.62

Correctness 0.37 0.45 0.08

Quality 0.37 0.35 0.08

Redundancy 0.22 0.23 0.24
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Table 4.3. Quality measures for different classes of images using Canny’s edge detector

Class Cracks Background Color

Completeness 0.92 0.61 0.62

Correctness 0.20 0.44 0.07

Quality 0.20 0.34 0.07

Redundancy 0.15 0.17 0.14
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(a) (b) (c)

Figure 4.1. Varying background textures. (a) Image with granular background and
shadow. (b) Patchy background with different colors. (c) Cracks with other linear
features in the background.

Figure 4.2. Gaussian profile based crack model.



88

(a) (b)

(c) (d)

Figure 4.3. SSET Imagery. (a) and (b) different crack patterns with patchy back-
ground, (c) clay pipe with dark color background, and (d) green colored debris and
vegetation in the background.



89

(a) (b)

(c) (d)

Figure 4.4. Steps in the morphology based recognition process: (a) original (contrast-
enchanced) image, (b) supremum of opening, (c) geodesic reconstruction, and (d) sum
of top-hats.

(a) (b)

Figure 4.5. Laplacian images highlighted around zero: (a) before and (b) after alter-
nating filter.
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Image with holes/joints 

Color Image from SSET 

Grayscale Transformation of 

Contrast Enhanced Image 

Segmentation of primary 

features of interest in the pipe 

image 

Image with cracks and varying 

backgrounds including patches  

Mathematical Morphology & Cross-Curvature based 

Segmentation of cracks - Binary Crack Map 

Verify Binary Crack Map with 

Truth Image 

Probability of 

Detection Pd 

Probability of False 

Detection Pfa 

False +ve 

P+ 

False -ve 

P- 

Contrast Enhancement 

Algorithm (pre-processing) 

Image with pipe laterals  

Figure 4.6. Framework for Detection of Pipe Defects. This study deals with aspects of
the detection process shown in colored boxes on the flowchart.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.7. Matching procedure for detection of true and false pixels. (a) original image,
(b) detected cracks, (c) ground truth, (d) and (e) detected and true cracks dilated by a
5x5 structuring element, (f) good points of the filter, (g) false +ve, (h) truly detected
cracks and (i) missed cracks (false -ve).
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Figure 4.8. Bar chart of probabilities for different parameter combination. S12-D10
consistently meets criteria in all the three classes.
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Figure 4.9. Image with different crack patterns.
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Figure 4.10. Image with different background patterns.
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Figure 4.11. Image with different background colors.
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(a) (b)

(c) (d)

Figure 4.12. Edge detection algorithms on crack pattern image:(a) original image, (b)
Otsu’s thresholding (c) Canny’s edge detector, and (d) proposed approach.
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(a) (b)

(c) (d)

Figure 4.13. Edge detection algorithms on background pattern image:(a) original im-
age, (b) Otsu’s thresholding (c) Canny’s edge detector, and (d) proposed approach.
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(a) (b)

(c) (d)

Figure 4.14. Edge detection algorithms on color variation image:(a) original image, (b)
Otsu’s thresholding (c) Canny’s edge detector, and (d) proposed approach.



Chapter 5
Ultrasonic Inspection Of Wastewater

Concrete Pipe

5.1 Introduction

Ultrasonics is the name given to the study and application of ultrasound, which is

sound of a pitch too high to be detected by the human ear, i.e. of frequencies greater

than about 18 kHz. Ultrasonic waves have a wide variety of applications over an

extended range of intensity, including cutting, cleaning and destruction of tissue

at the upper extremity and non-destructive testing (NDT) at the lower end (Blitz

and Simpson, 1996). A non-destructive test is one in which there is no impairment

of the properties and performance in future use of the object under examination.

With ultrasonic non-destructive testing, which is effectively a mechanical method,

periodic mechanical stresses are applied to the object. It is essential that there

have been no changes in dimensions and structure of the object when the test is

completed. This can only be achieved when the maximum applied stresses do not

exceed the elastic limit so that the resultant strain is proportional to the applied

stress. Hence it is necessary that the ultrasonic intensity is sufficiently low for

the elastic limit not to be exceeded. Ultrasonic testing consists effectively of the

propagation of low amplitude waves through a material to measure the time of

travel and change in intensity for a given distance.

A significant part of this chapter will discuss the available approaches for de-
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termining whether ultrasound can be used to inspect buried concrete pipe. The

goal of this research is to develop a test method that can add complementary pipe

information to existing surface image assessments. Superposing an ultrasonic im-

age or signal (from a region with surface defects) on the optical image information

in the pipe creates a visual context in three dimensions in which interpretation

and analysis about the extent of defect propagation is easily achieved.

5.2 Suitable Approaches For Concrete Pipe In-

spection

Although ultrasonic non-destructive evaluation has been carried out on Portland

cement concrete since the 1940’s, majority of the efforts have been directed to-

wards velocity measurement and its correlation to ultimate compressive strength,

modulus of rigidity, and other material properties (Jones, 1949). Recently, Song

et al. (2003) have proposed a self compensating method to determine the depth

of surface breaking cracks in concrete using surface wave transmission measure-

ment (Song et al., 2003). Their study excludes cracks that might not break the

surface or originate from the external (outer) surface. Therefore, approaches that

can detect the depth of all types of defects in buried concrete pipes are needed.

Most buried pipelines in place (especially sewer/stormwater) are made of precast

concrete (PCCP) that has high impedance and large attenuation due to its hetero-

geneous nature. Hence, getting the energy transmission to be effective enough to

reflect and come back is a challenge in air-coupled ultrasonic testing on concrete

pipes. It is therefore apparent that minimization of loss at every stage is key to

achieving an acceptable signal to noise ratio for the inspection if air-coupled ul-

trasound is the chosen method of inspection. There are a number of approaches,

each of which has its own advantages and in some cases disadvantages. In some

applications a particular approach may not be acceptable, or a disadvantage may

not be relevant. The following section enlists issues that govern the selection of a

particular ultrasonic inspection method from a practical application standpoint.
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5.2.1 Practical Issues Governing Selection of Inspection

Method

The issues governing the selection of an inspection method for buried utility pipes

are:

• Access to pipe is difficult owing to the layer of soil above the pipe periphery.

• As the objective is to study the surface flaws from I.D. (internal diameter)

and the extent of flaw in the thickness of the pipe, ideally a transmitting (T)

and receiving (R) transducer in pitch-catch mode would suffice. However, it

may be beneficial to detect flaws originating from the O.D. (outer diameter)

towards the I.D. As the access to the outer periphery of a buried pipe is

usually not possible, the T and R units need to be on the inside of pipe.

• Inspection is carried out on a mobile vehicle that moves from one manhole

to another in the case of buried pipes. Hence, longer the axis points for the

transducers, the more cable is required to collect data and that may prove

cumbersome.

• Wrapping of transducers is not possible for external periphery scanning es-

pecially in the case of deep buried pipes owing to the porous soil medium

surrounding it. Hence, ultrasonic waves that have large penetration depth

and can travel to the outer diameter surface will be needed to detect anoma-

lies originating from the outside surface inwards. In case of shallow pipes,

it may be possible to generate low intensity waves to penetrate the outer

periphery of the pipe from ground level but quality of data may be question-

able.

All these and more factors will decide the method of ultrasonic transduction

adopted to completely characterize the condition of buried public utility pipelines.

In view of the above discussion, this chapter presents feasibility studies of three

approaches for inspection of buried concrete pipes and finally selects one approach

for detailed experimentation.
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5.2.2 Ultrasonic Guided Wave Inspection

The use of ultrasonic guided waves in a pipe is beneficial due to its ability to scan

large sections from a single sensor location (Cawley et al., 2002). Particular modes

can be excited that will propagate with low attenuation even under water loaded

conditions both on the interior and exterior of the pipe (Hayashi and Rose, 2003).

The feasibility studies conducted in this study consisted mostly of concrete sam-

ples having plate-type geometry. Therefore, the discussion of guided waves in this

section is limited to the plate case.

Guided waves in plates can be described by the numerical solutions of the

Rayleigh-Lamb frequency equations (Rose, 1999):

tan(qh)

q
= −4k2p tan(ph)

(q2 − k2)2
; (5.1)

and

q tan(qh) = −(q2 − k2)2 tan(ph)

4k2p
(5.2)

where h is the plate thickness and k is the wavenumber described in terms of the

angular frequency, ω, and the phase velocity, cp as:

k =
ω

cp

; (5.3)

The functions p and q from equations 5.1 and 5.2 are:

p2 = (
ω

cL

)2 − k2; (5.4)

and

q2 = (
ω

cT

)2 − k2 (5.5)

where cL and cT represent longitudinal and shear wave velocities, respectively.

Equation 5.1 represents solutions for symmetric modes, which are those whose



103

in-plane displacements are symmetric about the center of the plate. The antisym-

metric modes, represented by equation 5.2, have out-of-plane displacements that

are symmetric about the center of the plate. The solution to equations 5.1 and

5.2 provide phase velocities, typically discussed as a function of the product of

frequency and thickness (fd). Group velocities can then be calculated from phase

velocities via the following relation (Rose, 1999):

cg = c2
p

[
cp − (fd)

dcp

d(fd)

]−1

(5.6)

Figures 5.1 and 5.2 show phase and group velocity dispersion curves for concrete

(cL = 3750 m/s and cT = 2400 m/s), respectively. All values used for dispersion

curves were derived from material property data obtained from the manufacturer

of the test specimens used for this study.

At 60mm in wall thickness, the samples tested in this study require relatively

low frequencies for operation at feasible portions of the dispersion curve. Tests

were conducted with air-coupled transducers in the two configurations shown in

figure 5.3. Although successful generation of guided waves was achieved with

a 50 kHz transducer, the feasibility of the technique in practical applications is

questionable. Better results were achieved in the configuration shown in figure

5.3b. Given that only one-sided access from the internal pipe wall is feasible,

this configuration is not applicable. With a 60mm wall thickness and a 50 kHz

transducer, the fd product is 3. From figure 5.2, it can be seen that this represents

a portion where mode isolation is difficult. Hence, this technique was not utilized

for further investigations.

5.2.3 Impact Echo

The impact-echo method is a technique for flaw detection in concrete. It is based

on monitoring the surface motion resulting from a short-duration mechanical im-

pact (Malhotra and Carino, 2004). The first successful applications of impact

methods occurred in geotechnical engineering to evaluate the integrity of concrete

piles and caissons (Steinbach and Vey, 1975). The long length of these foundation

structures allowed sufficient time separation between the generation of the impact
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and the echo arrival, and determination of round-trip travel times was relatively

simple. The impact response of thin concrete members, such as slabs and walls,

is more complicated than that of long slender members (Sansalone and Carino,

1986, Carino, 1984, Carino et al., 1986). The easiest type of flaw to detect is a

planar concrete-air interface that is parallel to the test surface, such as delami-

nations and voids. As the depth of a flaw increases, the smallest size that can

be detected also increases. Based on analytical and laboratory studies, Sansalone

and Streett (1997) suggest that if the lateral dimensions of a planar crack or void

exceed 1/3 of its depth, the flaw depth can be measured (Sansalone and Streett,

1997). If the lateral dimensions exceed 1.5 times the depth, the flaw behaves as

an infinite boundary and the response is that of a plate with thickness equal to

the flaw depth. As with most methods for flaw detection in concrete, experience is

required to interpret impact-echo test results. While the use of frequency analysis

has aided in interpreting test results, experience is needed in setting up optimal

testing parameters, recognizing valid recorded waveforms, and analyzing test re-

sults. Because of the varied situations that may be encountered in field-testing,

a standard test method for flaw detection has yet to be developed (Malhotra and

Carino, 2004).

Given concrete with 60 mm thickness, the expected through thickness reso-

nance for a longitudinal wave is 31.25 kHz. This frequency is fairly high for typical

impact-echo applications. Thus an impact source was needed to insure that fre-

quencies in this range could be generated. This can be achieved by reducing both

the impact time and the surface area of impact. For laboratory tests, impacts from

a pellet gun were used as they produced sufficient frequency content. The time

trace of this impact source is shown in figure 5.4. Figure 5.5 shows the general

schematic used for impact-echo testing and actual setup for laboratory testing.

Figure 5.6 shows the time traces for signals with and without a lateral crack be-

tween the impact source and the receiver. The effect of the defect on the signal

is clear. A reduction of amplitude is seen as some of the generated stress waves

are reflected from the defect decreasing amplitude of the received signal compared

to the case where no defect is present. With the addition of a higher frequency

impact source, this technique can be effective for defect identification in concrete
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pipe applications. However, the major limitation of this technique is its inability

to locate the source of the defect.

5.2.4 Ultrasound Immersion Inspection

When an ultrasound wave is directed into a sample, either the reflected or through-

transmitted wave is recorded. Figure 5.7 shows a schematic flowchart of possible

modes for operation of ultrasound inspection techniques. The collected data can

be displayed in several ways depending on the nature of information desired about

the sample. In ultrasound inspection, a couplant is needed to transfer the acoustic

energy between the transducer and the sample. A convenient way of maintaining

transducer coupling to the specimen surface is by using water as the couplant

(Cartz, 1995). Immersion inspection is a general and useful procedure that offers

the advantages of:

• Uniform sensitivity from uniform coupling

• Suitable for automated scanning

• Focusing of immersion transducers increases sensitivity to small reflecting

surfaces. This improves the detectability of mis-oriented defects.

Immersion inspection is widely used in the industry. Water is the most com-

mon liquid for inspection in this technique. it is inexpensive, available almost

everywhere, and is not toxic. The reflection technique in pulse-echo mode is the

most commonly used method in for ultrasound immersion inspection. A single

ultrasound transducer transmits and receives signals so that only single-sided ac-

cess is needed. This makes it highly adaptable to buried utility pipeline inspection

applications wherein access to only internal surface is possible. A pulse generator

provides signal to the transmitter which generates an acoustic wave. The wave

propagates from the transducer face into the sample and back using water as an

impedance transition medium. During its round trip travel, the wave crosses sev-

eral boundaries with different acoustic impedances that reflect the wave. The wave

is first reflected at the front surface of the sample (front-wall echo). It is once again

reflected when it interacts with internal surfaces of inclusions within the sample

(defect echo). The last reflection takes place at the boundary of the test object and
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surrounding medium (water in this case). A schematic representation is shown in

Figure 5.8. For defect detection and characterization, the reflected wave (or signal)

can be represented in several ways, namely, A-scan, B-scan and C-scan. A brief

introduction to each of these representations follows.

5.2.5 A, B and C-scan Representations

The A-scan representation displays a time series signal showing the variations in

amplitude of the ultrasound signal as it traverses a path from the transducer face to

the sample back wall and back. In other words, A-scan signals capture information

about the material thickness at a single point (x0,y0) at time t. A typical A-scan

signal representation as shown in figure 5.8 is very easy to acquire and is the most

commonly used one in ultrasound testing. However, it is difficult to interpret an

isolated A-scan signal without a reference signal recorded from a known defect-free

area. For larger samples, numerous single point A-scans would have to be collected

to sufficiently inspect the area of interest. In such cases, it is beneficial to obtain

a two-dimensional representation through a B-scan.

A B-scan representation is obtained by scanning across the sample and mapping

several A-scans along one coordinate axis while the other is fixed. On a typical

B-scan ‘image’, the abscissa represents position along scanning direction and the

values of time of flight or distance are shown on the ordinate axis. The signal

amplitude can be mapped to a colormap scheme to represent changes in amplitude

owing to defects in a visual context. Figure 5.9 shows a B-scan image obtained by

mapping the amplitude of reflected signal taken along a scan line in the x direc-

tion while fixing its position in the y direction. The front wall and back wall echo

will usually have a higher signal amplitude than the defect echo. This is visually

represented by different colors mapped to the highest signal amplitude. Due to

the presence of a defect in the path of the ultrasound wave, the back-wall echo

amplitude at the x-position of the potential defect is weaker and is represented by

a distinct color. Thus, the B-scan image displays the length in x-direction, and

the depth of a potential defect as seen in figure 5.9.
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Another method of representation that is gaining popularity in material char-

acterization is the C-scan representation. The C-scan image shows a view of the

sample as seen from above and therefore shows a cross section of the sample and

defect parallel to the scanning surface. The C-scan method involves a series of

parallel A-scans, which are carried out over a surface, and the pulse echoes are

restricted to those returning during a fixed time interval. The signal reflected from

the back surface of the examined specimen is ‘gated’, and its peak value provides

data for the C-scan image of the specimen at a given depth. To achieve such a

representation, the sample is scanned in a raster pattern and the transmitted wave

amplitudes within a certain time range are gated. The gated amplitude along with

its x and y coordinates are mapped. A C-scan image is rendered by integrating

amplitudes within the time range over the x - y plane. This type of representation

provides the ability to track a defect through the thickness of the sample due to

changes in amplitude. A schematic of C-scan representation is shown in figure 5.10

5.3 Experimental Program

Ultrasonic assessment techniques for concrete can be developed and implemented

only if the interaction between ultrasonic waves and the material through which

it propagates is well understood. Concrete is a heterogenous material made up

of a weighted combination of aggregates, water, cement and admixtures. Many

different concrete mix designs can be prepared with lightweight aggregates, sev-

eral types of sand and gravel, different water to cement ratios, and admixtures.

Concrete pipes are usually formed using zero-slump concrete or concrete with a

very low water to cement ratio. It is known that the strength of wave energy (or

power) propagating in concrete is influenced by several intrinsic material factors

such as size of aggregate, degree of compaction, admixtures, porosity of concrete

mix, etc. The experimental program discussed in the following section will outline

experiments conducted on a representative concrete pipe material block using the

ultrasound immersion inspection method discussed in Section 5.2.4
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5.3.1 Objectives

It is evident from the discussion in the previous section (Section 5.2) that ultrasonic

testing of concrete pipes for determination of defects is a complex research problem

with several challenges. Hence, this research study will deal with advancing the

understanding of how ultrasonic methods can be used in the determination of

defects in concrete pipe material by addressing some of the issues through specific

objectives mentioned below:

• To provide proof-of-concept for inspecting concrete pipes, by conducting lab-

oratory experiments on a representative block made from the same concrete

mix used to form pipes, using the ultrasound immersion technique. The aim

of this step is to evaluate the technique, determine an optimum frequency

range, angle sensitivity, and liftoff.

• Perform preliminary evaluation through A-scan signal processing on the sam-

ple to determine the presence of defects and

• Further characterize the defects with C-scan imaging.

It must be noted that various issues such as instrumentation and methodology

for delivering, receiving and processing ultrasonic signals for actual application in

buried pipe inspection is out of the scope of this research study. The technology and

expertise for adopting an ultrasound-based inspection methodology into a field-

application device falls in the domain of robotics and instrumentation research.

Clearly, this is not the focus of the present study. Thus, this research study

intends to determine in principle the methodology to localize and characterize

defect information using ultrasound transduction from laboratory experiments on

representative concrete pipe material samples only.

5.3.2 Specimen Description

The concrete slabs were provided by the Pennsylvania Concrete Pipe Association

(PCPA) based on guidelines defined by the American Concrete Pipe Association

(ACPA) for concrete mixes used in the manufacture of reinforced concrete culverts,

storm drain and sewer pipes, tongue and groove joints and O-Rings (American Na-

tional Standards Institute, 2002). Concrete pipes for use in buried infrastructures
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like storm water and sewer pipes are available in dimensions ranging from 12 -

144 inches internal diameter (ID) with a wall thickness of 21/4 inch as per ASTM

C 76-02 (American National Standards Institute, 2002, Association, Association).

Table 5.1 lists specific properties of concrete specimens used for this research. The

aggregates used for the concrete specimens conform to ASTM C 33 specification

with an exception that the requirement for gradation shall not be applied. The

aggregates used in the zero slump concrete consisted of uniformly graded granite,

basalt, limestone, and quartzite.

Several specimens were prepared exhibiting characteristic defects found in con-

crete sewers. Cracks of several mouth openings were generated in sample concrete

slabs via three-point bending with a stress concentrating notch. Samples were also

prepared with notches and boreholes to provide a more comprehensive analysis.

Figure 5.11 shows photographs of the samples used for testing. Three different

mouth opening were generated corresponding to levels of concern in the buried

concrete pipe industry. The first mouth opening is between 0.25 and 0.5 mm

constituting a hairline crack (HC). These cracks are not particularly critical to

the operation of most systems and can even be found upon installation. Mouth

openings between 0.5 and 1.5 mm constitute cracks (CR). The identification of a

crack does not lead to replacement of the pipe section but will be monitored as it

may soon lead to fracture (FR), typically on the order of 5 to 10 mm and are often

completely through-wall. The borehole (H) and notch (N) defects are not typically

found in water/wastewater pipe networks but may arise from inadvertent digging

strikes or some types of corrosion.

5.3.3 Experimental Setup and Data Collection

An Ultran NDC 7000 system setup was used in conjunction with a plane wave

Panametrics transducer having a center frequency of approximately 250 kHz. A

block diagram of the set-up is shown in figure 5.12. The concrete slabs were

submerged in a water tank. The Panametrics transducer, made of PZT (Lead-

Zirconium-Titanate), was attached to an automated computer-controlled x-y-z

stage and was excited by a Panametrics Pulser-Receiver to generate ultrasonic

waves. The transducer consisting of transmitter and receiver was housed in the
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same assembly thus resembling a single unit transmitter-cum-receiver in pulse-

echo mode. The ultrasonic wave was reflected by the specimen and returned to

the transducer, which also acted as a receiver.

The data collection scheme is shown in figure 5.13. Several concrete slabs with

four classes of defects, namely, hairline crack (HC), crack (CR), fracture (FR),

and hole (H) were prepared. A 50 mm x 50 mm region of interest (ROI) around

the defect was identified on each sample for data collection and interpretation (see

figure 5.13). The transducer was initially positioned on the bottom left corner of

the region of interest for all samples. A-scan signals were collected at each prede-

fined point in the ROI. As seen from figure 5.13, the scanning direction is x axis

whereas the step direction is y axis. The data collection was automated so that

the transducer collected data in the scanning direction (x axis) at points physically

spaced 5 mm apart. Thus, each run in the scanning direction would produce 10

A-scan signals. The transducer would then move 5 mm in the step direction (y

axis) and collect data in the scanning direction. In this manner, the entire ROI

will be scanned in a raster pattern generating 100 A-scan signals.

This process is repeated for all samples keeping other parameters like scan axis

and step axis increment (5 mm), liftoff distance (length of water path between the

transducer face and sample surface), angle of transducer with the sample surface,

and frequency constant. Two identical data sets each containing 2100 and 700

A-scan signals respectively were collected on different days to ensure reliability

and consistency in the data. Set A data consisted of A-scan signals from five

concrete slabs (1 clean + 4 defects) oriented at 0, 45, and 90 degrees. In real

world applications, defects could be oriented in any direction in the pipe geometry.

Hence, it was intended to capture this aspect in the data collection by orienting

the slabs at three representative orientations. A-scan signatures were also collected

from all defects in order to build an automatic signal classification system. More

detailed discussions on signal processing and classification of A-scan signals are

reserved for chapter 6. After the A-scan data collection was completed, all samples

were subjected to C-scan imaging of the ROI as explained in section 5.2.5.
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5.4 Results

Figure 5.14 shows a close up view of the ROI for each sample. A-scan signatures

were collected from all defects and the clean sample in the ROI to determine if

this methodology was capable of generating unique representations for each defect

class. In other words, the signal characteristics would aid in building an intelligent

interpretation system wherein signals that originated from a defect region would

be accurately identified and classified accordingly. For any signal interpretation

system to work well, the raw ultrasonic signal data from various classes has to

be reliable and must possess some discriminating characteristics. Figures 5.15-18

show comparison of A-scan signatures from four defect classes with the clean class

signature. It is evident by comparison that each defect class has a unique pattern

in terms of back-wall echo amplitude and signal content in between the front-wall

and back-wall echoes. The front-wall and back-wall echoes are 33 µ-secs apart.

This is in confirmation with a simple calculation that yields the time required

for ultrasound wave to travel from front surface to the back-wall, given that the

thickness of slab and ultrasonic pulse velocity through concrete is known. At a

longitudinal wave speed cL of 3750 m/s and 60 mm thick concrete slab, the ultra-

sound wave should theoretically take 32 µ-secs for a round trip (see figures 5.15-18).

This is true for the clean class but not necessarily true for other defect classes. As

explained earlier, when the wave sees a defect, there are multiple reflections at

the interface between the defect and its surrounding environment due to different

acoustic impedances. This results in the reduction of ultrasound energy that can

propagate through the defect and reach the back-wall. As a result, three effects

can be observed in the A-scan signal. First, drop in back-wall signal amplitude in

certain defect cases like hairline crack (see figure 5.15). Second, complete loss of

back wall amplitude in defects like crack and fracture (see figures 5.15-16). Finally,

the back wall echo shifts towards the front-wall echo as seen in the hole defect case

(see figure 5.18).

As concrete is a highly attenuating material, there is inherent signal energy

loss that also needs to be factored in while interpreting these A-scan signals. Re-

searchers typically cite 250 kHz as the maximum operable frequency before attenu-
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ation becomes too great and it is impossible to resolve the signals in terms of their

front-wall and back-wall echoes. Also, it was important to determine the optimum

liftoff distance and inclination angle of the transducer with respect to specimen

for reliability. Data was collected on the clean sample at various inclinations and

liftoff distances. The backwall signal amplitude was measured for each combina-

tion of liftoff distance-angle setting. The back-wall signal amplitude was plotted

as a function of liftoff distance and angle as shown in Figure 5.19. It is clear that

the back-wall signal amplitude is strong when the transducer face is oriented 4

degrees from normal incidence on either side and the liftoff distance is between 20

and 80 mm. As the liftoff distance and transducer inclination are increased beyond

this range, a significant drop in back-wall amplitude is observed. This indicates

that the ultrasound energy is being dissipated and does not penetrate the concrete

sufficiently to reach the back surface. Hence, the optimum range of parameters

for this methodology is that the frequency be around 250 kHz, liftoff be between

20-80 mm and angle of transducer be between -4 to 4 degree from normal incidence.

As mentioned in section 5.3.3, two sets of A-scan signal data were collected

over a few days to compare the consistency of signal characteristics. Figures 5.20-

24 shows Set A and Set B data for all classes collected at 0 degree orientation of

defects. It must be noted that it is virtually impossible to replicate perfect signal

characteristics over time while inspecting concrete due to the inherent variation

in material, methodology and operator characteristics. However, a good system

usually will be able to provide similar trends in data collected on similar samples

over time. Figures 5.20-24 reinforce this point by showing that the A-scan signal

characteristics are generally consistent within the same defect class between data

sets A and B. Some inherent variation in scan area or digital triggering issues will

cause changes such as shifting of the signal. Overall, it can be concluded that data

collected using this methodology is generally consistent.

It was important to verify the signal acoustically and so the first step in C-scan

imaging was to generate an A-scan in the ‘clean’ section of the sample to identify

front-wall and back-wall echoes. This would aid in deciding gate (time window)

locations along the signal trace representing various zones through the thickness
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of the specimen. As this had already been done in the A-scan data acquisition

phase, it was easy to generate the signals again for imaging. The A-scan trace was

‘gated’ from the front-wall to back-wall using four time windows based on available

resolution on the time scale. Thus each gate approximately covered a thickness

of 15 mm within the concrete sample. Figure 5.25 shows a time trace that was

gated for image reconstruction. Once the gate positions had been fixed, the scan

size and step size were defined for all samples and C-scan images were generated.

It must be noted that the samples were scanned while keeping the defect face at

the back-wall. Thus, if a defect were to be present and not running completely

through the thickness of the sample , it would show up in the image slice gated

nearer to the back wall (gate 4). This was done to justify worst case scenario,

where the defect is not visible to the CCTV camera from within the pipe if it

originates from the outside surface. It was expected that the defects would show

up in the fourth or third gate in the samples used for this study, . Figures 5.26-30

show C-scan images from hole, hairline crack, crack, fracture and clean concrete

samples respectively. The hole has a diameter of approximately 25 mm and is 30

mm deep at an angle of 10◦. As seen from C-scan images of gate 3 and 4, the hole

is tracked in both slices but is not exactly at the same location (see figure 5.26).

This is explained by the fact that the hole in concrete slab is not vertical but is

at an inclination as mentioned above. Images from gate 1 and 2 show internal

structure of the concrete slab. As the defect does not extend beyond 30 mm in

depth, the hole is not tracked in gates 1 and 2. Figure 5.27 shows C-scan images

from the hairline crack defect sample. The hairline crack is 0.25 0.5 mm wide and

is less then 10 mm in depth. Gate 4 shows the hairline crack as well as the presence

of another anomaly besides it. The left most anomaly in the gate 4 C-scan image is

explained by a notch created by the supplier of these samples (see scanned region

of interest image in Figure 5.27). As the crack does not extend beyond 10 mm,

it is does not show up in gates 1, 2 and 3. Hence it can be concluded that the

hairline crack originates at the farther end of the sample and is not more than

15 mm deep. Similar observations can be made for the crack (figure 5.28) and

fracture (figure 5.29) samples. Although the fracture defect extends into the third

gate (>15 mm deep), it is not picked up because of inherent reflections from the

aggregate-cement paste interface. The ultrasonic beam is wide enough to pick
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up surrounding reflections and thus the change in amplitude is not an accurate

representation of the internal state of the slab at that particular location.

5.5 Saturation Issues

It is a well known fact that quite a few properties of a hardened concrete are

influenced by its moisture content (Popovics, 2005). They include:

• the compressive strength of a concrete is higher if the specimen is dry when

tested than the strength of the same specimen when tested in a saturated

condition, and

• the ultrasonic pulse velocity which, however, is higher in the concrete when

it is wet than when it is drier.

It is expected that the pulse velocity in wet hardened concrete sewer pipes

buried several feet under the ground is greater. Initial trials with the dry concrete

slabs in the laboratory were unsuccessful in generating acceptable signals that

could be used for investigation. It was found that once the samples were saturated

for around 24 hrs, the concrete would gain sufficient moisture content to facilitate

the propagation of ultrasonic energy that produced strong backwall echoes. Hence,

a laboratory experiment was designed to check if partial saturation of the concrete

slab would raise the moisture content of the slab sufficiently so as to produce

acceptable ultrasonic signals. As shown in figure 5.31, a concrete slab was partially

submerged in an immersion tank with the water level at half the thickness of the

slab. After 24 hrs of saturation, the slab was tested using a 250 kHz panametrics

transducer in pulse echo mode. Two signals, one from the clean portion, and the

other from crack region were acquired for comparison (see figure 5.32). Clearly,

the back wall echo amplitude drops down when the transducer is on the crack

which is supported by the increase in echo amplitude between the front and back

wall echoes. Thus, it can be concluded from this short experiment that partial

saturation of the hardened concrete pipe material raises the moisture content to

a sufficient level wherein ultrasonic inspection is possible. It must be noted that

the proposed technique has been validated on specimens that had a high moisture

content. It is anticipated that this technique will be applicable in scenarios wherein
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concrete sewer pipes will have been buried deep in the ground for longer periods

of time. In other words, it will have been sufficiently saturated from the flowing

sewer inside it and moisture ingress from the surrounding soil over several years

thus maintaining a conducive moisture content level in the concrete pipes.

5.6 Summary

Various ultrasound-based inspection techniques that may be employed to acquire

depth perception data for defects in buried concrete pipes were explored. In the

guided wave technique, tests were conducted with air-coupled transducers in two

configurations, through transmission with transducer on same side and transducer

on opposite sides. Although successful generation of guided waves was achieved

with transducers on opposite sides, the feasibility of the technique in practical ap-

plications is questionable because only one-sided access from the internal pipe wall

is available. The expected through thickness resonance for a longitudinal wave

through 60 mm concrete is 31.25 kHz. This frequency is fairly high for typical

impact-echo applications. With the addition of a higher frequency impact source,

this technique can be effective for defect identification in buried concrete pipes.

However, the major limitation of this technique is its inability to locate the source

of the defect. Moreover, because of the varied situations that may be encountered

in field-testing, a standard test method for flaw detection has yet to be developed.

Ultrasound immersion inspection that uses water as a couplant is widely used

in the industry owing to its adaptability to automation. A single ultrasound trans-

ducer transmits and receives signals so that only single-sided access is needed. This

makes it highly adaptable to buried utility pipeline inspection applications wherein

access to only internal surface is possible. For defect detection and characteriza-

tion, the reflected wave (or signal) can be represented in several ways, namely,

A-scan, B-scan and C-scan. This chapter presented experiments that were con-

ducted on several concrete samples with defects of interest to the water/waster

water pipe community. The experimental setup consisted of a Panametrics plane

wave transducer with a central frequency of 250 kHz, Panametrics pulser-receiver,

Labview automation software, three axis stage for scanning, a liftoff distance be-
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tween 20 80 mm and zero degree inclination of the transducer with the vertical.

Samples were scanned in a 50 mm x 50 mm region of interest and A-scan and

C-scan representations were generated to make interpretations about the presence

of defect and track them through the slab thickness. The experiments conducted

on representative concrete pipe material specimens will only bring out the under-

standing of ultrasound transduction methodologies based on laboratory experi-

ments. Although several issues related to its direct application in the field need

to be resolved, it will not be addressed by this study as it is beyond the defined

scope.
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Table 5.1. Properties of zero slump concrete used for pipe specimens

Material Parameters Value

Poisson’s Ratio 0.25

Density 149.9 pcf

Compressive strength 4000 psi

Concrete Mix Specifications:
Cement 432 lbs
Flyash 48 lbs
Sand 252 lbs
Stone 530 lbs

Figure 5.1. Phase velocity dispersion curves for a concrete plate (cL = 3750 m/s, cT

= 2400 m/s
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Figure 5.2. Group velocity dispersion curves for the concrete plate described in figure
5.1
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(a)

(b)

Transmitter Receiver

Transmitter 

Receiver

60 mm 

150
m

m

460 mm 

Concrete Slab 

Concrete Slab 

Defect

Figure 5.3. Schematic of through transmission setup for transmitting and receiving
guided waves in an air-coupled system for (a) same sided transmission/reception and (b)
opposite sided transmission/reception
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Figure 5.4. Time trace of the impact echo source signal used for generating higher
frequency resonances
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FFTTime domain

Curved pipe specimen

Impact source

AE transducer

24 kHz

(a)

(b)

Figure 5.5. Impact Echo schematic (a) Basic principle (Image Courtesy www.nist.gov),
(b) Laboratory setup with time trace
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Figure 5.6. Time traces from a clean sample and defect sample of concrete



123

R
ef

le
ct

io
n

T
h

ro
u

g
h

 T
ra

n
sm

is
si

o
n

E
m

is
si

o
n

T
 +

 R
T

 +
 R

TT RR

RR

C
o

n
ti

n
u

o
u

s
 

C
o

n
ti

n
u

o
u

s
 

w
a
v
e
s
 

w
a
v
e
s
 

P
u

ls
e
s
 

P
u

ls
e
s
 

C
o

n
ti

n
u

o
u

s
 

C
o

n
ti

n
u

o
u

s
 

w
a
v
e
s
 

w
a
v
e
s
 

P
u

ls
e
s
 

P
u

ls
e
s
 

A
p

p
li

e
d

A
p

p
li

e
d

L
o

a
d

in
g

 
L

o
a
d

in
g

 

U
lt

ra
so

u
n

d
 I

n
sp

ec
ti

o
n

 T
ec

h
n

iq
u

es

F
ig

u
re

5.
7.

U
lt

ra
so

un
d

in
sp

ec
ti

on
te

ch
ni

qu
es

an
d

m
od

es
of

op
er

at
io

n



124

FE + BEFE + BE FE + DE + BEFE + DE + BE

Concrete SlabConcrete Slab

TransducerTransducer

(Pulse(Pulse--Echo Mode)Echo Mode)

Reflected WaveReflected Wave

AmplitudeAmplitude

TimeTime

FE = Front wall echoFE = Front wall echo

DE = Defect echoDE = Defect echo

BE = Back wall echoBE = Back wall echo

Figure 5.8. Schematic of reflection technique in pulse-echo mode
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Figure 5.9. B-scan representation.



126

XX--directiondirection

YY--directiondirection YY11

YY22

YY33

BB--scan imagesscan images

XX--directiondirection

TimeTime tt

t

XX--directiondirection

TimeTime tt

YY11 and Yand Y33

t

YY22

CC--scan imagescan image

XX--directiondirection
tt

YY11

YY22

YY33

YY--directiondirection

Figure 5.10. Process of generating a C-scan image. The region of interest is scanned
and either a B-scan (right)or A-scans are mapped by gating a particular time range. The
change in amplitude with a time range ∆t is displayed in a C-scan image for all points
scanned in the x-y plane.
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Hairline crackHairline crack

((0.25~0.5mm)0.25~0.5mm)

FractureFracture

((1.5~5mm)1.5~5mm) ‘‘CleanClean’’

Crack (Crack (0.5~1.5mm)0.5~1.5mm)

HoleHole

(20(20~25mm ~25mm ))

HoleHole

(close(close--upup))

Figure 5.11. Concrete slabs with defects used for experimental data collection. All
concrete slabs are 460 mm x 150 mm x 60 mm.
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Digitizing Digitizing 

OscilloscopeOscilloscope

Gated Peak DetectorGated Peak Detector

CC--scan imagescan image

AA--scan signalscan signal33--axis Motoraxis Motor

ControllerController

Ch 1 Ch 2Concrete SlabConcrete Slab

XX--YY--Z StageZ Stage

TransducerTransducer

WaterWater

Figure 5.12. Block diagram of experimental setup
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Figure 5.13. Experimental data collection scheme
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Concrete Slabs (450 mm x 150 mm x 60 mm)Concrete Slabs (450 mm x 150 mm x 60 mm)

Region of Interest (50 mm x 50 mm)Region of Interest (50 mm x 50 mm)

CleanClean

HairlineHairline

CrackCrack

FractureFracture

HoleHole

Figure 5.14. Close up view of Region of Interest (ROI) for all concrete samples
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FrontFront--wall echowall echo

BackBack--wall echowall echo

~ 33 ~ 33 --secssecs

Figure 5.15. Comparison of A-scan signatures - Clean vs Hairline
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FrontFront--wall echowall echo

BackBack--wall echowall echo

~ 33 ~ 33 --secssecs

Figure 5.16. Comparison of A-scan signatures - Clean vs Crack
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FrontFront--wall echowall echo

BackBack--wall echowall echo

~ 33 ~ 33 --secssecs

Figure 5.17. Comparison of A-scan signatures - Clean vs Fracture
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FrontFront--wall echowall echo

BackBack--wall echowall echo

~ 33 ~ 33 --secssecs

Figure 5.18. Comparison of A-scan signatures - Clean vs Hole
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Figure 5.19. Plot of back-wall signal amplitude as a function of angle sensitivity and
liftoff distance
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Figure 5.20. Comparison of Set A and Set B A-scans for Clean sample
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Figure 5.21. Comparison of Set A and Set B A-scans for Hairline Crack sample
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Figure 5.22. Comparison of Set A and Set B A-scans for Crack sample
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Figure 5.23. Comparison of Set A and Set B A-scans for Fracture sample
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Figure 5.24. Comparison of Set A and Set B A-scans for Hole sample
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Figure 5.25. A-scan time trace with time window (gate) locations for C-scan imaging
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Figure 5.26. C-scan image slices - Hole defect
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Figure 5.27. C-scan image slices - Hairline defect
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Figure 5.28. C-scan image slices - Crack defect
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Figure 5.29. C-scan image slices - Fracture defect
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Figure 5.30. C-scan image slices - Clean sample
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Figure 5.31. Pipe saturation experiments
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Chapter 6
Feature Extraction And

Classification of Ultrasonic Signals

6.1 Introduction

Predictive modeling is at the heart of supervised machine learning. It refers to a

branch of computer science interested in reproducing human “learning” capabilities

with computer programs. Machine learning research has mostly focused on find-

ing relationships in data and analyzing the processes for extracting such relations,

rather than building truly intelligent systems (Guyon et al., 2004). Machine learn-

ing problems occur when a task is defined by a series of cases or examples rather

than by predefined rules. Such problems are found in a wide variety of application

domains, ranging from engineering applications in robotics and pattern recogni-

tion (speech, handwriting, face, anomaly recognition), to Internet applications

(text categorization) and medical applications (diagnosis, prognosis, drug discov-

ery). Given a number of “training” examples (also called data points, samples,

patterns or observations) associated with desired outcomes, the machine learning

process consists of finding the relationship between the patterns and the outcomes

using solely the training examples (Jain et al., 2000). This shares a lot with human

learning where humans are given examples of what is correct and what is not and

have to infer which rule underlies the decision. Thus, a machine learning system

“learns” the relationship between the input (training data points) and the pattern
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(or class) to which it belongs. It is then called upon to predict the pattern of a

“new” input (test data) based on its learning of the problem inference rules. The

performance on test data is called “generalization”. To perform this task, one must

build a predictive model or predictor, which is typically a function with adjustable

parameters called a “learning machine”. The training examples are used to select

an optimum set of parameters. The higher the generalization of the predictive

model, the better its performance. Thus, selection of features of the input data

used for prediction plays a key role in machine learning generalization (Duda et al.,

2000).

Machine learning systems perform two main functions, feature extraction and

classification. Over the last past few decades, extensive research has taken place

in the development of efficient and reliable methods for the selection of features

in the design of machine learning systems, where features constitute inputs to the

classifiers (Mukherjee and Pal, 2005). The quality of performance of this design

depends upon the relevance, discriminatory information and ease of computation

of various features. Another important issue in classification is the choice of an

appropriate classifier. Some classical classifiers are Fisher’s linear discriminant and

K-Nearest Neighbors (K-NN). Recently, state-of-the-art classifiers like neural net-

works, neuro-fuzzy classifiers, tree classifiers and Support Vector Machines (SVM)

are finding widespread applications. Many researchers in the civil infrastructure

area have paid a great deal of attention to automated pavement cracking classifica-

tion (Cheng and Miyogim, 1998, Cheng et al., 1999). Chou et al (1995) employed

a fuzzy filtering image enhancement and fuzzy thresholding approach based on the

maximum fuzzy entropies to generate features that were used to train a neural net-

work (Chou et al., 1995). Automated real-time pavement distress detection using

fuzzy logic and neural networks was studied using fuzzy homogeneity for image

enhancement and feature extraction (Cheng, 1996). This methodology demon-

strated the potential of using neural networks for classification and quantification

of cracking on pavement although it requires further improvement of the image

segmentation process for this particular application. However, in practice, most of

the above approaches have been only partially successful and have been shown to

produce high false-alarm rates, probably because of an inadequate image feature
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segmentation approach. Shin and Kil (1997) used a combination of statistical clas-

sifiers and expert systems to develop an automated road-distress identification and

classification system based on subimage and object processing. They used a com-

bination of the multivariate Gaussian and probabilistic neural network classifiers,

depending on the actual class-conditional feature distribution of the subimage pix-

els (Kil and Shin, 1997).Again, they had a high false alarm rate of 79%.

In buried concrete pipe defect analysis, the main objective is to identify and

classify regions of the pipe as “clean” or “defective”. Further classification of de-

fects into various sub-classes like hole, fracture, crack and hairline crack is possible

based on the type of information available. Sinha (2000) has shown that defects

in buried pipe can be accurately classified into cracks, holes, laterals, joints and

pipe collapse by type, severity and extent of distress based on CCTV inspection

images of the internal surface of the pipe (Sinha, 2000). In this study, time series

signals from the region of interest are considered instead of 2-D images for defect

detection and classification. Thus, a multi-layer perceptron (MLP) neural network

classifier that uses discriminatory features computed by clustering the discrete

wavelet transform (DWT) coefficients of the input time series signal is proposed.

The proposed approach uses wavelet analysis to decompose the signal into its use-

ful information components and then employs an unsupervised clustering scheme

to extract feature vectors that represent the class of the signal. The MLP classifier

classifies the signal into its appropriate class based on extracted features of inter-

est. The overall scheme is shown in figure 6.1. Final classification of the region of

interest is done by fusing the classifier response and apriori knowledge about the

problem characteristics through a post processing step. This step is necessary as

the inspection system is envisioned as a two step approach.

6.2 Feature Extraction

Feature extraction is an important stage for any pattern recognition task especially

for concrete pipe defect classification, since defects in concrete are highly variable

and it is difficult to find reliable and robust features in the signal domain. Ultra-

sound signals contain reflections from discontinuities which manifest in the A-scans
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as abrupt time localized changes resulting in time varying spectral characteristics.

The Fourier transform (FT), which converts time series signals into the frequency

domain, has been commonly applied to the signal processing of ultrasound signals

for various problems (Smith, 1997). However, the time axis information in signals is

lost by the FT. Consequently, the conventional Fourier decomposition technique is

not an appropriate tool for analyzing these signals. The discrete wavelet transform

is a multiresolution analysis technique used to obtain the time-frequency represen-

tation of a signal. These representations are used to analyze time localized signals

with time-varying spectra, where conventional Fourier transform analysis methods

prove to be inadequate. These limitations led to the development of wavelet anal-

ysis by Mallat (1989), Daubechies (1992), Chui (1992), and Meyer (1993) (Mallat,

1989, Daubechies, 1992, Chui, 1992, Meyer, 1993). Subsequently, it was applied to

solve problems in signal processing for nondestructive testing and medical imag-

ing (Lefebvre and Lasaygues, 1994, Abbate et al., 1997, Unser et al., 2005). The

following sections briefly introduce wavelet transforms and the proposed clustered

discrete wavelet transform (DWT) based feature extraction technique. Further-

more, two other DWT based feature extraction techniques are also discussed for

comparison purposes.

6.2.1 Clustered Discrete Wavelet Transform Based Feature

Extraction

In this section, the theoretical basis for wavelet analysis and the clustering ap-

proach is briefly discussed. Then, the proposed approach combining both, to ex-

tract features from a set or representative A-scan signals for defect classification is

presented.

6.2.1.1 Discrete Wavelet Transform

The wavelet transform is like a filter that extracts frequency components from the

signal without losing time axis information. The continuous wavelet transform is

defined as:

Wψ
x (τ, s) =

1√
|s|

∫
x(t)ψ∗

(
t− τ

s

)
dt (6.1)
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where the transformed signal Wψ
x (τ, s) is a function of two variables, translation

τ , and scale s. ψ(t) is a transformation function called the mother wavelet and

ψ∗(.) is the complex conjugate of ψ(t). By scaling and translating the mother

wavelet, components similar to that of the mother wavelet at a particular scale

and time can be obtained from the signal. Thus, the wavelet transform represents

the correlation between the signal x(t) and the scaled versions of a prototype func-

tion, i.e. the mother wavelet function. The scaling of the mother wavelet involves

contraction and dilation of the signal and translation involves shifting the wavelet

function along the time axis. One of the properties of this transform is that it

is covariant under dilations. In other words, variations in the time domain of a

signal are appropriately represented in the wavelet transform domain. This prop-

erty of the transform makes it a very valuable tool for analysis of non-stationary

signals (like ultrasound acoustic A-scan signals) because it is capable of analyzing

hierarchical structures. It is like a mathematical microscope with properties that

are independent of magnification. Calculating wavelet coefficients at every possible

scale generates a lot of data. It turns out, that if scales and translations are chosen

based on powers of two – so-called dyadic scales and translations, the analysis is

much more efficient and just as accurate with fewer computation time and data

generation. Such an analysis is possible through the discrete wavelet transform

(DWT).

The discrete wavelet transform (DWT) is a fast algorithm that is used to obtain

the wavelet transform of a discrete time signal. For a discrete time signal repre-

sented by 2n samples, the DWT may be considered to simply pair up input values,

storing the difference and passing the sum. This process is repeated recursively,

pairing up the sums to provide the next scale: finally resulting in 2n - 1 differences

and one final sum. The discrete transform can be performed in O(n) operations.

Moreover, the transform captures not only some notion of the frequency content of

the input, by examining it at different scales, but also captures temporal content,

i.e. the times at which these frequencies occur. These two properties make the

discrete wavelet transform (DWT), an alternative to the conventional fast fourier

transform (FFT). An efficient way to implement this scheme using filters was devel-

oped in 1988 by Mallat. The Mallat algorithm is in fact a classical scheme known
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in the signal processing community as a two-channel subband coder (Strang and

Nyugen, 1996). An extensive discussion on discrete wavelet transform and the

theory of multiresolution analysis is presented in Strang and Nguyen (1996), Chui

(1992), Mallat (1989), and Daubechies (1992) (Strang and Nyugen, 1996, Chui,

1992, Mallat, 1989, Daubechies, 1992). In this study, the DWT implementation is

done using the subband coding technique and hence will be described in greater

detail.

The DWT of a signal ‘x [n]’ is calculated by passing it through a series of filters.

First the samples are passed through a low pass filter with impulse response ‘g [n]’

resulting in a convolution of the two:

y[n] = (x ∗ g)[n] =
∞∑

k=−∞
x[k] · g[n− k] (6.2)

The signal is also decomposed simultaneously using a high-pass filter ‘h[n]’. The

outputs giving the detail coefficients (from the high-pass filter) and approximation

coefficients (from the low-pass). It is important that the two filters be related to

each other and so they are known as a quadrature mirror filter. However, since

half the frequencies of the signal have now been removed, half the samples can be

discarded according to Nyquist’s rule (Smith, 1997). The filter outputs are then

downsampled by 2:

ylow[n] =
∞∑

k=−∞
x[k] · h[2 · n− k] (6.3)

yhigh[n] =
∞∑

k=−∞
x[k] · g[2 · n− k] (6.4)

where ylow[n] and yhigh[n] are the outputs of the highpass and lowpass filters. This

decomposition in effect halves the time resolution and doubles the frequency resolu-

tion as the frequency band of the signal now spans only half the previous frequency

band. The above procedure is repeated for subsequent decompositions of the low-

pass filtered signals. The highpass filtered signals constitute the DWT coefficients

also known as “detail” coefficients (cD1, cD2,.....cDM). Similarly, at every level,

the filtering and downsampling results in half the number of samples spanning half
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the frequency band leading to reduced time and improved frequency resolutions.

The subband coding scheme for computation of DWT coefficients is illustrated

in figure 6.2. ‘x [n]’ is the original A-scan signal to be decomposed, and ‘h[n]’

and ‘g [n]’ represent discrete wavelet lowpass and highpass filters respectively. The

bandwidth of the resulting signal at every level is indicated by f as shown in figure

6.2. This procedure in effect provides better time resolution at higher frequencies

and better frequency resolution at lower frequencies. Ultrasonic signals are nonsta-

tionary in nature and hence, subband coding provides an effective way of obtaining

time-frequency representation that is not possible in fourier transforms.The DWT

coefficients at different levels are concatenated starting with the coarsest coeffi-

cients (last level). As for example, a time series signal with 256 sample points

will have 128 samples (or detail coefficients) at the first level (highest resolution),

64 samples at the second level, 32 at the third level, and so on. This algorithm

requires that the signal be sampled such that the discrete samples are multiples of

a power of two.

6.2.1.2 Clustering Procedure

Recursive application of equations 6.3 and 6.4 lead to a decomposition of signal

x [n] into a matrix of sequences cD1, cD2,.....cDM , cAM as shown in figure 6.3. The

index ‘m’ of a sequence cAm or cDm is the scale (or level of decomposition) and

the coefficients cAmn and cDmn are called approximation and detail coefficients

respectively. They contain the same amount of information as x [n] and have the

property:

‖x[n]‖2 = ‖cAM‖2 +
M∑

m=1

‖dm‖2 (6.5)

The computed coefficients in these sequences form the wavelet decomposition of

the measured signal x [n]. As a preparation step to feature extraction from this

discrete wavelet coefficient matrix, the coefficients are grouped into clusters in an

unsupervised mode. These clusters are formed by using a set of representative sig-

nals (for e.g., A-scan signatures from all defect samples) also known as ‘training’

data set used to train the classifier. This clustering procedure divides the discrete

wavelet coefficient matrix shown in figure 6.3 into disjoint clusters C1, C2, ..., Cc

for each of which a single robust feature Fi (i = 1,2, ..., c) can be computed. The
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feature vector so obtained serves as an input pattern to the multi-layer perceptron

(MLP) neural network classifier.

The clustering method uses a set of ‘S’ training data signals that represent

the entire spectrum of possible defect classes to determine the boundaries of the

clusters in an unsupervised mode (Pittner and Kamarthi, 1999). First, the dis-

crete wavelet transform is computed for all ‘S’ training data signals. The wavelet

coefficients contained in the sequences cD1, cD2,.....cDM , cAM are arranged into

a matrix for each individual signal in the training data set as shown in figure 6.3.

Each discrete wavelet coefficient matrix is denoted by A = [aij], i = 1, 2, ..., M +

1; j = 1, 2, ..., (n + N - 1)/2 for even ‘n’; and j = 1, 2, ..., (n + N)/2 for odd ‘n’.

N is some odd natural number. The shaded portion of A is filled with zero-valued

elements. The formation of clusters from wavelet coefficients is guided by the im-

plicit assumption that the regions of A containing large-size wavelet coefficients

allow better discriminability of the original signals than other regions of B. More

details on the mathematical basis of this clustering scheme can be found in Pittner

and Kamarthi (1999).

Let the matrix Ã := (‖aij‖), constructed from the wavelet coefficients of the

Sth training data signal, be indexed by Ãs where s = 1, 2, ..., S. For any defined

matrix P, its sample mean and standard deviation can be denoted by µ(P ) and

σ(P ) respectively. Let I be an identity matrix of the same size as Ã. Let V be an

operator that reduces the matrix P by its last row. Then, it so happens that the

elements of a new matrix:

B = (bij) :=
1

σ

(
V

(
S∑

s=1

Ãs

))
(

S∑
s=1

Ãs − µ

(
V

(
S∑

s=1

Ãs

))
· I

)
(6.6)

reflects the size of the absolute values of a “typical wavelet decomposition” of the

S selected signals that are treated as training data signals for all defect classes. In

other words, the size of the matrix B equals the size of each matrix Ãs.
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The elements at the same position in different matrices Ãs can be considered as

samples from independent random variables (Pittner and Kamarthi, 1999). This

follows from the fact that these wavelet coefficients were computed for A-scan

signals measured at different time instances while scanning the ROI. If γ ≥ e2 (e is

the Euler number) be a constant and L be the number of computed wavelet detail

coefficients, a threshold of the form Th :=
√

2(ln L− ln γ) can be applied to the

elements of matrix B so that it yields a binary matrix

B2 := (Θ (bij − Th)) (6.7)

where Θ(x) = 1 for x≥0 and Θ(x) = 0 for x<0, is a Heavyside function. The 1s

in the matrix B2 occur at the same positions where the largest wavelet coefficients

occur in the matrices As.

The clusters C1, C2, ..., Cc are determined as rowvectors in B2 such that each

cluster contains a 1 situated near the midpoint of the cluster. Clusters do not over-

lap across subsequent scales. If an entire row of the matrix B2 does not contain

any 1s, it is treated as a cluster by itself. Upon completion of the division of matrix

B2 into disjoint clusters, the entire pattern is used as a mask and superimposed on

matrix A. By using this cluster pattern mask, regions of A containing important

signal information that are characterized by larger wavelet coefficients, are further

decomposed into a larger number of clusters than the regions of A containing less

relevant information.

For this study, a discrete wavelet transform with 5 level decomposition is ap-

plied to the Sth training signal xs[n] with 256 samples. The mother wavelet function

used was ‘symlet’ with eight vanishing moments (sym8) (Daubechies, 1992). This

yields As with 5 rows of detailed coefficients and one row of approximation coeffi-

cients corresponding to the fifth level output of the lowpass filter. As mentioned

above, the first row corresponding to level one decomposition has 128 coefficients

spanning half the frequency band of the sampled signal. Similarly the second,

third, fourth and fifth row will have 64, 32, 16, and 8 detail coefficients respec-

tively. The last row has 8 approximation coefficients. However, the rest of the
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elements in matrix As are filled with zeros so that the dimension of As is main-

tained at 6 x 128. Table 6.1 shows a sample wavelet coefficient matrix after the

clustering operation. In this table, scale 4 contains four clusters, while scale 3

contains two clusters. This means that signal frequencies corresponding to scale

4 carry more useful information than frequencies corresponding to scale 3. There

are fourteen clusters C1, C2, ..., C14 in matrix A corresponding to 5 levels of dis-

crete wavelet decomposition of the original A-scan signal, that will constitute the

parameters for this feature extraction method.

The feature extraction method is summarized as follows. From the procedure

described above, clusters C1, C2, ..., Cc are determined from a set of training

data signals. The input feature vectors to a defect classification system can be

computed from test data signals through a two step procedure. In the first step,

the discrete wavelet transform with 5 level decomposition is applied to an A-scan

signal to obtain the matrix A of wavelet coefficients. This matrix is then divided

into clusters C1, C2, ..., C14 according to the process described before. Every

rowvector that is formed by the elements of a particular cluster Ci in the matrix A

is denoted by ri for i = 1, 2, ..., c. The second step consists of simply determining

every component Fi of the feature vector (F1, F2, ..., Fc) by computing the energy

of each cluster

Fi := ‖ri‖2 =

√∑
w∈Ci

w2 (6.8)

through its corresponding vector ri. In other words, each feature Fi is determined

as the square root of the energy of the wavelet coefficients in the corresponding

cluster Ci. The number of features ‘c’ in the feature vector extracted for a test

signal ‘s ’ is equal to the number of clusters determined by the procedure above.

The proposed feature extraction technique is demonstrated on a test set of 2100

A-scan signals belonging to 4 main and 2 subclasses of defects. This method is

then compared with two other feature extraction procedures based on the discrete

wavelet transforms described in the following sections.
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6.2.2 Subset and Compressed Discrete Wavelet Transform

Based Feature Extraction

In the subset feature extraction technique, a small subset of discrete wavelet coef-

ficients computed by decomposing the signal x [n] into its approximate and detail

coefficients at five levels, is chosen to serve as feature vectors. The choice of the

subset is made based on apriori knowledge about the central frequency of inter-

est for the problem at hand (Hatanaka et al., 2005). The decomposition scheme

and corresponding frequency ranges are shown in figure 6.4. Figure 6.5 shows a

sample defect A-scan and its subsequent decomposed signals with corresponding

frequency ranges. The signal at the top of the figure is the pre-processed A-scan

signal S(t). S is decomposed at 5 levels using the discrete wavelet transform to

yield detail signals d1–d5 and approximation signal a5. From previous discussions,

it is known that coefficients of signal d1 belong to the highest frequency component

of the signal and d2 coefficients are half the frequency component of d1. In discrete

terms, the 5 level decomposition of the signal S(t)can be written as:

S(t) = a5(t) +
5∑

n=1

dn(t) (6.9)

If the sampling frequency of the data is fs, dn has the frequency components be-

tween fs/2n+1 and fs/2n. All data collection was done by a panametrics transducer

with a central frequency of 250 kHz. The time series A-scan signals were sampled

at 5 MHz. Hence, d1, d2, and d3 have frequency components of 1.25 2.5 MHz,

0.625 1.25 MHz, and 312 625 kHz respectively. The frequency of interest for this

problem, , 250 kHz, lies in decomposition level d4 as seen from figure 6.5. There

are some frequency components at the farther end of level 5, d5, that may help

locate the flaw echo characteristics in this particular application. The choice of

these two levels is made based on the reasoning that most of the signal energy

will be present in these frequency bands whereas other levels will mainly consist of

noise. Thus, a subset of detail coefficients from decomposition levels 4 and 5 are

chosen as feature vectors to serve as inputs to the classifier.

The DWT also provides very effective signal compression and data reduction
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scheme (Polikar et al., 1998). From apriori information about the central fre-

quency of the generated ultrasound signal, it can be known that the energies of

signals will be concentrated in a certain frequency band. All other frequencies are

represented by very low amplitudes in the wavelet transform domain and hence

can be discarded without loss of information. Figure 6.6(a) and (b) show a typical

250 kHz ultrasonic crack signal sampled at 5 MHz and its DWT respectively. The

last 128 samples constituting level 1 detail coefficients (samples 129 through 256)

characterize the signal in the π/2–π frequency band corresponding to frequency

range of 1.25 to 2.5 MHz (see figure 6.4). These samples do not carry much infor-

mation, because the signal does not have any spectral components in this frequency

range. Level 2 detail coefficients (samples 65 through 128) characterize the signal

in the π/4–π/2 frequency band corresponding to frequencies 0.625 to 1.25 MHz.

The main energy of the signal appears in the level 4 detail coefficients (samples 17

to 32), which characterize the signal in the π/16–π/8 range, corresponding to fre-

quency range of 156 kHz to 312 kHz. It is almost evident that the 256 sample long

signal can be represented by the first 128 coefficients of the discrete wavelet trans-

form with little loss of information as contribution from the last 128 coefficients is

negligible. From the discussion above, it can be inferred that DWT provides signif-

icant data reduction or compression, thereby reducing the computational burden.

Therefore level 1 detail coefficients are discarded without any loss of information.

The signal information is thus compressed and remaining 128 coefficients are then

built into a feature vector for input to a classifier.

6.3 Classification

Pattern recognition (PR) can be generally defined as the allocation of objects to

classes so that individual objects in one class are as similar as possible to each

other and as different as possible from objects in the other classes. Considered as

a pattern recognition problem, there have been numerous techniques investigated

for classification. Clearly, the more a priori information that is known about the

problem domain, the more the classification algorithm can be made to reflect the

actual situation. For example, if the a priori probabilities and the state conditional

densities of all classes are known, then Bayes decision theory produces optimal re-
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sults in the sense that it minimizes the expected misclassification rate. However,

in many PR problems, the classification of an input pattern is based on data where

the respective sample sizes of each class are small and possibly not representative

of the actual probability distributions, even if they are known.

A number of supervised and unsupervised pattern recognition algorithms have

been employed for the classification of multidimensional signals. The K-means

clustering algorithm is one of the most widely used techniques for partitioning the

feature space. More recently, neural networks have proved to be very effective

in signal classification, due to their ability to generate arbitrarily complex deci-

sion boundaries. Neural network models have an advantage over the statistical

methods that they are distributed free and no prior knowledge about the statisti-

cal distributions of classes in the data is needed in order to apply these methods

for classification. On the other hand, neural network models can be very com-

plex computationally and need many training samples to be applied successfully,

and their iterative training procedures usually are slow to converge. Additionally,

neural network models have more difficulty than statistical methods in classifying

patterns that are not identical to one or more of the training patterns. The perfor-

mance of neural network models in classification is therefore more dependent on

having representative training samples, whereas the statistical approaches need to

have an appropriate model of each class. A variety of neural network architectures

and learning algorithms have been developed over the years, including the hopfield,

multilayer perceptron (MLP), radial basis functions, Kohonen, and adaptive reso-

nance networks (Haykin, 1994). For classification of signals that are separated by

complex decision boundaries in the feature space, the MLP networks have gained

widespread acceptance and have become the network of choice due to their simple

yet powerful learning algorithm (Bishop, 1995, Polikar et al., 1998).

The scope of this research is to implement a simple neural network classifier to

classify A-scan signals acquired from the concrete sample ROI into several defect

classes. A MLP neural network is chosen for this particular application owing to

its proven ability in signal classification problems. In this study, the performance

of the MLP classifier is also empirically compared with a simple linear statistical
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classifier such as the Linear Discriminant Analysis (LDA). Set A data was used for

the evaluation of both classifiers. The objective of both classifiers was to classify

A-scan signals as belonging to one of the seven classes, namely,

1. Clean (CP)

2. Hairline Crack originating from outer diameter (HCOD)

3. Hairline Crack originating from inner diameter (HCID)

4. Crack originating from outer diameter (CROD)

5. Crack originating from inner diameter (CRID)

6. Fracture (FR)

7. Hole

Two data sets were generated, one to train and the other to test the classi-

fiers. The performance of each classifier is quantified in terms of the accuracy of

classification.

6.3.1 Proposed Multilayer Perceptron (MLP) Neural Net-

work Classifier

Multilayer perceptrons (MLPs) are feedforward neural networks trained with the

standard backpropagation algorithm (Haykin, 1994). They are supervised net-

works, so they require a desired response to be trained. They learn to transform

input data into a desired response and thus are widely used for pattern classifica-

tion. They have been shown to approximate the performance of optimal statistical

classifiers in difficult problems. MLP networks are general-purpose, flexible, non-

linear models consisting of a number of units organized into multiple layers. The

complexity of the MLP network can be changed by varying the number of layers

and the number of units in each layer. Given enough hidden units and enough

data, it has been shown that MLPs can approximate virtually any function to any

desired accuracy. In other words, MLPs are universal approximators. MLPs are

valuable tools in problems when one has little or no knowledge about the form of
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the relationship between input feature vectors and their corresponding outputs.

The multi-layer perceptron neural network model consists of a network of pro-

cessing elements or nodes arranged in layers. Typically it requires three or more

layers of processing nodes: an input layer which accepts the input feature vectors

used in the classification procedure, one or more hidden layers, and an output layer

with one node per class (see figure 6.7). The principle of the network is that when

data from an input pattern is presented at the input layer, the network nodes per-

form calculations in the successive layers until an output value is computed at each

of the output nodes. This output signal should indicate which is the appropriate

class for the input data, i.e. it should have a high output value on the correct class

node and a low output value on all the rest.

Every processing node in one particular layer is usually connected to every node

in the layer above and below. The connections carry weights which encapsulate

the behaviour of the network and are adjusted during training. The operation of

the network consists of two stages. The “forward pass” and the “backward pass”

or “back-propagation”. In the “forward pass” an input feature vector is presented

to the network and the output of the input layer nodes is precisely the components

of the input pattern. For successive layers the input to each node is then the sum

of the scalar products of the incoming vector components with their respective

weights. Mathematically, the input to a node j is given by

inputj =
∑

i

wjiouti (6.10)

where wji is the weight connecting node i to node j and outi is the output from

node i. The output of a node j is

outj = f(inputj) (6.11)

which is then sent to all nodes in the following layer. This continues through

all the layers of the network until the output layer is reached and the output vector

is computed. The input layer nodes do not perform any of the above calculations.
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They simply take the corresponding value from the input pattern vector. The

function f denotes the activation function of each node. A sigmoid activation

function is frequently used

f(x) =
1

1 + e−x
(6.12)

The multi-layer feed-forward neural network is trained by supervised learning

using the iterative back-propagation algorithm. The back-propagation algorithm

is a gradient descent optimization procedure that minimizes the mean square error

between the network’s output and the desired output for all input patterns. In the

learning phase a set of input patterns, called the training set, are presented at the

input layer as feature vectors, together with their corresponding desired output

pattern which usually represents the classification for the input pattern. Begin-

ning with small random weights, for each input pattern the network is required

to adjust the weights attached to the connections so that the difference between

the network’s output and the desired output for that input pattern is decreased.

Based on this difference the error terms or δ terms for each node in the output

layer are computed. The weights between the output layer and the layer above

(hidden layer) are then adjusted by the generalized delta rule (Rumelhart et al.,

1988). The training set is presented iteratively to the network until a stable set

of weights is achieved and the error function is reduced to an acceptable level. To

measure the generalization ability of the multi-layer feed-forward neural network

it is common to have a set of data to train the network and a separate set to assess

the performance of the network during or after the training is complete. Once the

neural network has been trained, the weights are saved to be used in the classifi-

cation phase.

The architecture of the MLP used in this study is similar to the one shown in

figure 6.7. Fi is the input feature vector, where i = 1, 2, ..., n; HID1j, j = 1,

2, ..., n1 are output values of the first hidden layer nodes, HID2k, k = 1, 2, ...,

n12 are output values of the second hidden layer nodes, and OUTl, l = 1, 2, ...,

n3 are the values at the output nodes. The input feature vector F = F1, F2, ...,

Fn is fed to the input layer of the network that simply passes on the values to the

first hidden layer. The values of the hidden layer nodes and the output nodes are
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computed as follows:

HID1j = f

(
u0j +

n∑
i=1

uij · Fi

)
j = 1, 2, .., n1 (6.13)

HID2k = f

(
v0k +

n1∑
j=1

vjk ·H1j

)
k = 1, 2, .., n2 (6.14)

OUTl = f

(
w0l +

n2∑

k=1

wkl ·H2k

)
l = 1, 2, .., n3 (6.15)

The activation function f in above equations is the sigmoid function of equation

6.12. The index ‘0’ used in equations (13), (14) and (15) indicate the extra bias

node with a constant value of 1 introduced to serve as a threshold level. The

convergence or training time of the network can be reduced significantly by choos-

ing an appropriate learning rate, η which controls the rate at which the weights

are adjusted in the gradient descent algorithm. As there is no set criteria for the

selection of learning rate, it can also be chosen adaptively. The learning rate is

constantly changed according to the change in the error from one iteration to an-

other. If the new error is greater than a predefined ratio α (1.04 in this case) times

the previous error, the new weights, output values, and errors are discarded, and

the learning rate is decreased by a predefined factor β (typically 0.7). The learning

then continues with the previous weights, error values, and node values. If the new

error is less than the predefined ratio times the previous error, the learning rate is

increased by a predefined factor ξ (typically 1.05) (Hagan et al., 1996).

The MLP described above is used to classify A-scan signals into seven classes,

namely, clean, hairline crack from outer diameter, hairline crack from inner diam-

eter, crack from outer diameter, crack from inner diameter, fracture and hole. The

training database consisted of 555 A-scan signals from all seven classes. All A-scan

signals were mapped to the feature domain using the proposed feature extraction

method and two other methods thus generating three different training databases.

Three different MLP networks were designed and trained using these training data.

The classifier was then tested with a test data set of approximately 820 A-scan

signals. The MLP parameters used for all the three networks are summarized in
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Table 6.2.

6.3.2 Statistical Classifier for Performance Comparison

Statistical classification is a statistical procedure in which individual items are

placed into groups based on quantitative information on one or more character-

istics inherent in the items (referred to as traits, variables, characters, etc) and

based on a training set of previously labeled items. Formally, the problem can be

stated as follows: given training data {(x1, y1), . . . , (xn, yn)} produce a classifier

h : X → Y which maps an object x ∈ X to its classification label y ∈ Y .

Linear Discriminant Analysis (LDA) is a statistical classification technique used

for classifying a set of observations into predefined classes. The purpose is to

determine the class of an observation based on a set of variables known as predictors

or input variables. The model is built based on a set of observations for which the

classes are known. This set of observations is sometimes referred to as the training

set. Based on the training set , this statistical technique constructs a set of linear

functions of the predictors, known as discriminant functions, such that

f = a1x1 + a2x2 + · · ·+ anxn + c; (6.16)

where the a’s are discriminant coefficients, the x ’s are the input variables or predic-

tors and c is a constant. These discriminant functions are used to predict the class

of a new observation with unknown class. For a k -class problem k discriminant

functions are constructed. Given a new observation, all the k discriminant func-

tions are evaluated and the observation is assigned to class i if the ith discriminant

function has the highest value. The total error of classification (TEC) is used as a

performance evaluation rule on a random sample of training data. The objective in

designing a classifier is to ensure that the proportion of misclassifications are kept

to the minimum. This is done by minimizing the TEC. Thus, TEC can be stated

as the probability that the classification rule under consideration will misclassify

an object. The classification rule is to assign an observation to a class with highest

conditional probability . This is called Bayes Rule which also minimizes the TEC.
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If there are g classes, the Bayes’ rule is to assign the observation to group i where

P (i|x) > P (j|x),∀j 6= i (6.17)

Given a set of observations x, the objective is to know the probability P (i|x)

that an observation belongs to class i. In practice, the probability P (i|x) is difficult

to obtain but the quantity P (x|i), the probability of getting a particular set of

observations x given that the observations belong to class i, is relatively easier

to compute. Fortunately, there is a relationship between these two conditional

probabilities known as the Bayes Theorem which states that:

P (i|x) =
P (x|i) · P (i)∑

∀j
P (x|j) · P (j)

(6.18)

Prior probability P(i) is the probability of class i without making any obser-

vations. It is either assumed that the prior probability is equal for all classes or

based on the number of observations in each class. However, it is impractical to

use the Bayes rule directly because of the fact that a lot of data is needed to get

the relative frequencies of each classes for each observation. An alternative is to

assume the distribution and compute the probability theoretically. If it is assumed

that each class has multivariate normal distribution and all classes have the same

covariance matrix, the result is the Linear Discriminant Analysis equation

fi = µiC
−1xT

k −
1

2
µiC

−1µT
i + ln(Pi) (6.19)

where fi is the discriminant function for class i, µi is mean of features in class i,

C is the global covariance matrix, xk is the input feature vector for a particular

observation k, and P(i) is prior probability of class i. The classification rule is to

assign observation k to class i that has maximum fi. Note that equation 6.19 is a

more specific form of the general equation in 6.16. Detailed theoretical derivation

of equation 6.19 can be found in Duda et al (2000) (Duda et al., 2000).

To evaluate the performance of the proposed MLP neural network classifier,

the LDA statistical classifier described above is used to classify A-scan signals into

seven classes, namely, clean, hairline crack from outer diameter, hairline crack from
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inner diameter, crack from outer diameter, crack from inner diameter, fracture and

hole. The same training database consisting of 555 A-scan signals from all seven

classes were mapped to the feature domain using the proposed feature extraction

method. The classifier was then tested with the same test data set used for the

MLP classifier to facilitate performance comparison.

6.4 Experimental Results and Discussion

The performance of the proposed A-scan signal feature extraction and classifica-

tion scheme was tested on a test data set consisting of A-scan signals collected

from concrete samples on a 50 mm x 50 mm ROI. The test data set consisted of

A-scan signals from five concrete slabs (1 clean + 4 defects) oriented at 0, 45, and

90 degrees. In real world applications, defects could be oriented in any direction

in the pipe geometry. As the overall classification accuracy should be independent

of the orientation, it was intended to train and test the classifier at these three

representative orientations. Various tests were performed to evaluate the overall

approach in general, and the choice of feature extraction techniques and classifiers

in particular.

Three feature extraction methods have been implemented to generate feature

vectors from raw A-scan signals for classifying the ROI. To allow for compari-

son between the three methods, results are presented to show the difference in

the magnitude of classification accuracy with respect to expert classification. The

confusion matrix is way of comparing the output of a classifier against an expert

classification. Table 6.3 shows classification results for the proposed multilayer

perceptron (MLP) neural network classifier using the proposed clustered DWT

feature extraction method. These results are for 0 degree orientation of defects.

Results for 45 and 90 degree orientation are included in tables 6.4 and 6.5. Table

6.6 shows the overall classification results for the proposed classifier with different

feature extraction methods. The classification accuracy from each feature extrac-

tion method and class is calculated in terms of the confusion matrix as shown in

table 6.3. It can be observed that the proposed clustered DWT feature extraction

technique provides consistent classification results. Classification percentages for
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all classes are consistently above 80% except for the Fracture class. The other

two methods perform very well in certain classes but show poor performance in

some classes. The subset DWT method is generally better than the compressed

DWT method in terms of consistency. The compressed DWT method performs

very poorly in obvious classes like Hole and Crack. Overall, the clustered DWT

method provides a better classification rate across classes although its performance

in the fracture class has scope for improvement. This feature extraction method

has been selected as the best performing scheme to generate input feature vectors

for classification. Next, results of the proposed multilayer perceptron classifier are

compared with the output from a statistical classifier.

Table 6.7 shows a comparison of classification accuracies of the MLP and LDA

classifiers. Clearly, the LDA classifier is unable to identify signals belonging to

hairline, crack and fracture classes. The MLP classifier performs much better than

the statistical LDA classifier owing to its ability to learn from data. One of the

inherent limitations of the LDA classifier is its inability to handle singularity in the

feature vectors. Also, it implicitly assumes a multivariate gaussian distribution of

the input data and uses class mean ‘µ’ as a discriminating factor. A-scan signals

from defects like crack and hairline crack can have subtle variances in their echo

amplitude that can be used to discriminate between the two classes. However, this

is not possible using the LDA. Also, there is no mechanism to re-distribute the

error from training data so that ‘learning’ occurs. Therefore, the MLP classifier is

recognized as an ideal tool for this application as it has the ability to repetitively

learn from an increasing database of varied patterns.

6.5 Post Processing for Depth Perception

The scope of this research study is to propose a methodology to inspect buried

concrete pipes. The inspection system is envisioned as a two step approach. In the

first step, which is called the reconnaissance mode, the ultrasound transducer is

used to scan a ROI and acquire A-scan data. The ROI A-scan signals are passed

through the classifier and identified as belonging to defect or clean class. If the

scanned ROI belongs to a defect of interest, the second step of the approach is
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to characterize the ROI with a C-scan imaging process for depth perception as

described in Chapter 5. In other words, the second step involving C-scan imaging

will only be ‘triggered ’ when a defect of interest is detected. From a field appli-

cation perspective, a reliable decision as to whether the reconnaissance mode of

operation has detected the presence of a defect in the ROI needs to be taken to

trigger the characterization mode which is costly and time consuming. Frequent

false alarms will render the system invaluable to the user community.

In context of the above requirement, it must be noted that output from the

proposed MLP classifier cannot be entirely interpreted in isolation from the visual

context of the problem. Consider an actual ROI from the concrete sample with a

fracture defect as shown in Figure 6.8. A grid is superimposed on the ROI image

to show the points at which A-scan signals were collected. The red dots on the grid

belong to those signals that were classified as belonging to fracture class. Maroon

and green colored dots are signals that were classified as hairline crack originating

from inner diameter and crack originating from outer diameter. All other signals

in the ROI were classified as belonging to the clean class. By relying solely on

the confusion matrix results, it may lead one to believe that the MLP classifier

is not performing well in case of fracture class signals (see table 6.3). But, when

interpreted in terms of the visual context as shown in figure 6.8, it is evident that

those signals that were either exactly on the defect or nearer to it were mostly

classified as fracture signals whereas those at the fringes of the defect were either

classified as hairline or crack. This result can be explained from the point of view

of ultrasound acoustics. As mentioned in Chapter 5, a plane wave ultrasonic trans-

ducer with a central frequency of 250 kHz was used for data collection on the ROI.

The transducer generates pulses of ultrasonic wave that leave its face and change

in shape with time as it travels through the medium. The beam shape varies with

direction depending on the relative size of the transducer to wavelength of ultra-

sound in the medium. With a simple calculation, it is found that the width of

the beam as it reaches the front surface of the sample at the near field is 22 mm.

Thus, although it seems as if the A-scan signal is an accurate representation of the

wave that leaves the center of the transducer and hits the sample at a particular

spot on the sample, it is not the case. The A-scan signal amplitudes are influenced
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by the spread of the ultrasound beam over an area rather than a spot. This means

that the ultrasound signal amplitude is effected by a defect from far distances due

to its spread and will reflect the information as a change in amplitude and echo

characteristic that may be classified as a less or more severe defect. Hence, the

signal at grid point number 32, 33, 46 and 47 are classified as non-fracture defect

(see figure 6.8) although they are very near to the actual defect. Figure 6.9 shows

the raw A-scan signal from all these locations and the preprocessed signal used for

feature extraction. It can be seen that the A-scans have different amplitude and

echo characteristics although they come from the same vicinity. The feature ex-

traction algorithm picks up these differences in amplitude and echo characteristics

and the classification algorithm tries to match it with known defect signatures.

Thus, an intelligent post processing step that brings in apriori knowledge about

the geometry of defects is required before deciding the final class of the ROI. This

will ensure better reliability of the proposed system due to reduced false calls for

C-scanning operation. The assumptions, arguments in support of assumptions,

and proposed post processing algorithm are presented in the following sections.

6.5.1 Assumptions

Based on apriori knowledge, it is known that larger defects have a higher proba-

bility of being detected. The hierarchy of defects considered as per their severity

is:

1. Hole

2. Fracture

3. Crack

4. Hairline

Experiments on the proposed classifier have shown that its performance in detect-

ing larger defects is good. From a defect geometry perspective, if a defect is present

in the ROI, signal points classified as defects will follow a geometric (shape) trend
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that can be represented by a second order polynomial. Finally, triggering to C-

scan image acquisition mode will only occur when there is a hole, fracture or crack

defect. It will not trigger for clean and hairline crack cases.

6.5.2 Proposed Post Processing Algorithm

It can be inferred based on the type of transducers used in the inspection process

and the relative dimension of defect that the ability of the ultrasound wave to

see larger defects is better than smaller ones. Hence, while scanning a ROI where

fracture or hole defect is present, there is a very high probability that it will detect

a considerable number of signals as belonging to that class. If a defect is present,

for a given point classified as defect, neighboring points will be classified as either

belonging to one defect class or the other. A neighborhood search will either re-

tain a defect point or eliminate it as noise. The remaining signal points can then

be ‘analyzed’ for geometric trends based on known defect characteristics. From

a large number of experiments conducted on the proposed classifier, it is clear

that if a fracture is present, it will classify greater than 10% of the ROI signals

as fracture. This is a significant apriori knowledge that can be used to assign the

final class of an ROI scan in the case of a conflict. The approach can easily be

summarized in a decision tree that will assign the ROI to a final class based on

which C-scan imaging can be triggered. Figures 6.10 and 6.11 show the decision

tree and associated pseudo code for each node of the decision tree.

As majority of the scanned pipe will belong to clean class, it is very critical

to decide if a given ROI is clean or a defect. The classifier performance statistics

and a geometry-based evaluation approach are combined to classify the ROI at the

top of the decision tree. The classifier performs very well when the ROI is clean.

However, in reality, there may be scattered noise in the ROI that may be picked

up as defect class signals and exceed the threshold of 95% set for classifying it as

a clean ROI. In such situations, a two step procedure is used to determine if the

signals classified as defect actually indicate the presence of a defect against random

noise. As shown in the pseudo code in figure 6.11, a k -nearest neighbor(NN) search

is performed for signals in each defect class and those points that have neighbors



173

belonging to the same class are retained, whereas others are eliminated from the

defect signal pool as noise. This is repeated for all defect classes and the total

remaining signals are computed to find out if the 95% clean class threshold has

been met. If the criteria is met, the ROI is classified as belonging to the clean

class. If the percentage of defect signals is still below the upper bound threshold,

a second order polynomial is fit to the remaining defect signal points on the grid

and its goodness of fit (R2) is calculated. If the signals classified as defect on the

grid belong to a defect, they will be grouped such that they describe the shape of

the defect. In such situations, a non-linear regression analysis of the data can yield

insights into the ‘trends’ in signals points. If the (R2) value is high enough (good

fit), it indicates that the probability of remaining defect points being random noise

is low and hence the ROI must be classified as defect ROI. The threshold value for

(R2) is decided based on 25,000 simulations done on combinations of defect sig-

nals within the ROI that are randomly generated as scattered noise versus known

patterns of defect signals from truth data.

The two step procedure can be understood by means of an example situation as

shown in figure 6.12. Figure 6.12a is the output of the classifier when a ROI scan

data was provided as input. There are 30 defect signals in the ROI indicating that

the post processing algorithm will have to perform the two step procedure described

above. In figure 6.12b, a 16-nearest neighborhood window centered around every

signal looks for signal points similar to its class. If none are found, the signal point

on which the window is centered is treated as noise and eliminated from the defect

signal pool. So, two signal points belonging to the crack class are eliminated by

this rule. In figures 6.12c-d, the same procedure is repeated for hairline crack and

crack class signals. As all the signals lie within the defined neighborhood, none of

them are eliminated. At the end of this first step, there are 28 defect signal points

left and the threshold value of 95% clean signals is not met (see figure 6.12e).

Hence, a second step involving fitting a second degree polynomial to the remaining

defect signal points is carried out yielding an (R2) value of 0.571 as shown in figure

6.12f. It must be noted that the probability of getting an (R2) value of 0.571

with 28 defect signals randomly scattered in the ROI is very low. An experiment

was conducted to prove this hypothesis. Twenty five thousand combinations of 28
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signal points were randomly generated and fitted with a second order polynomial.

A histogram of their (R2) values is shown in figure 6.13. It was found that 90% of

the 25,000 random combinations of 28 signals had a (R2) value of less than 0.173.

This means that, a value of 0.571 (from the fracture ROI example) has a very

high probability of resulting from a good fit of the signal points having a definite

geometric pattern. Thus, this two step procedure has the ability to finally take a

decision whether the ROI under question must be classified as clean (no C-scan

triggering) or defect(further steps before C-scan triggering). As mentioned above,

majority of the inspected pipe section will belong to clean class that requires no

C-scan imaging. This post processing step ensures with a high confidence level

that the C-scan will not be triggered frequently thus minimizing false alarms that

could prove costly.

6.6 Summary

In this chapter, a multilayer perceptron neural network classifier for classification of

A-scan signals from a region of interest into clean and defect classes was proposed.

A feature extraction scheme based on discrete wavelet transform and unsupervised

clustering to extract signal features for classification by the MLP classifier was also

proposed and evaluated. ‘S’ representative A-scan signals from all classes are de-

composed into their discrete wavelet coefficients using the famous subband coding

approach and then clusters of coefficients are formed by the unsupervised clus-

tering approach. These clusters are then converted into feature vectors by taking

the energy of each cluster as a single feature. This feature vectors then serves as

input to the multilayer perceptron classifier which is trained on a training data

set consisting of 555 A-scan signals and tested on various region of interest A-scan

signals. Two other feature extraction schemes were evaluated against the pro-

posed clustered DWT feature extraction method. The proposed method provided

features that could discriminate the defect classes consistently in comparison to

subset DWT and compressed DWT methods. The MLP classifier was compared

to a statistical classifier, Linear Discriminant Analysis (LDA), to show that the

MLP classifier is superior in its ability to ‘learn’ from training patterns.
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A post processing scheme to interpret the classifier outputs and finally classify

the ROI into an appropriate class taking into consideration some apriori knowledge

of the problem was developed. The proposed post processing scheme is composed

of several steps that combines the statistics from the classification matrix as well

as a two step procedure based on k -nearest neighbor and non-linear regression.

Finally, the inspection system is proposed as a two step approach consisting of the

reconnaissance mode and characterization mode. In the reconnaissance mode, the

ultrasound transducer is used to scan a ROI and acquire A-scan data. The ROI A-

scan signals are passed through the classifier and identified as belonging to defect

or clean class. If the scanned ROI belongs to a defect of interest, the second step

of the approach is to characterize the ROI with a C-scan imaging process for depth

perception. The proposed post processing scheme provides a high confidence that

C-scan imaging will only be ‘triggered ’ when a defect of interest is detected. From

a field application perspective, a reliable decision as to whether the reconnaissance

mode of operation has detected the presence of a defect in the ROI needs to be

taken to trigger the characterization mode which is costly and time consuming.

The feature extraction, classification and post processing schemes proposed in this

chapter provide a sound proof-of-concept for developing this inspection system into

a field applicable tool.
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Table 6.1. An Example of the Clustering Scheme of Coefficients Computed with the
Discrete Wavelet Transform

Scale m Wavelet Coefficients of Sth signal No. of Clusters

1 {cD1(1), cD1(2), ..., cD1(128)} 1

2 {cD2(1), cD2(2), ..., cD2(128)} 1

3 {cD3(1), cD3(2), ..., cD3(13)}{cD3(14), cD3(15), ..., cD3(128)} 2

4 {cD4(1), cD4(2), ..., cD4(5)}{cD4(6), cD4(7), ..., cD4(14)} 4
{cD4(15), cD4(16), cD4(17)}{cD4(18), cD4(19), ..., cD4(128)}

5 {cD5(1), cD5(2), cD5(3)}{cD5(4), cD5(5), ..., cD5(8)} 3
{cD5(9), cD5(10), ..., cD5(128)}

5 {cA5(1), cA5(2), cA5(3)}{cA5(4), cA5(5), cA5(6)} 3
{cA5(7), cA5(8), ..., cA5(128)}

Table 6.2. MLP parameters for three feature extraction schemes.

Parameters MLP I MLP II MLP III
No. of Feature Vectors 14 24 128

Error goal 0.001 0.001 0.001
Initial learning rate 0.05 0.05 0.05

α 1.04 1.04 1.04
β 0.7 0.7 0.7
ξ 1.05 1.05 1.05

Momentum term 0.95 0.95 0.95
Number of input nodes 14 24 128
Number of hidden layers 2 2 2

Number of first hidden layer nodes 32 34 34
Number of second hidden layer nodes 15 14 14

Number of output nodes 7 7 7
Activation function sigmoid sigmoid sigmoid
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Table 6.3. Confusion matrix for the proposed multilayer perceptron (MLP) classifier
using the proposed clustered DWT feature extraction method

Clean Hairline Hairline Crack Crack Fracture Hole Total Signals
(I.D.) (O.D.) (I.D.) (O.D.) ROI

Clean 99 0 1 0 0 0 0 100
Hairline-I.D. 19 9 0 1 1 0 0 30
Hairline-O.D. 18 6 0 3 3 0 0 30

Crack-I.D. 0 0 0 27 3 0 0 30
Crack-O.D. 0 0 0 1 29 0 0 30
Fracture 1 11 0 0 7 11 0 30

Hole 5 0 0 0 0 0 20 25

Total 275

Table 6.4. Confusion matrix for the proposed multilayer perceptron (MLP) classifier
using the proposed clustered DWT feature extraction method when defects are oriented
at 45◦

Clean Hairline Hairline Crack Crack Fracture Hole Total Signals
(I.D.) (O.D.) (I.D.) (O.D.) ROI

Clean 99 0 1 0 0 0 0 100
Hairline-I.D. 20 6 0 0 3 1 0 30
Hairline-O.D. 25 5 0 0 0 0 0 30

Crack-I.D. 0 0 1 21 4 0 1 27
Crack-O.D. 0 0 0 11 16 0 0 27
Fracture 3 8 0 1 10 8 0 30

Hole 5 0 0 0 0 0 20 25

Total 269
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Table 6.5. Confusion matrix for the proposed multilayer perceptron (MLP) classifier
using the proposed clustered DWT feature extraction method when defects are oriented
at 90◦

Clean Hairline Hairline Crack Crack Fracture Hole Total Signals
(I.D.) (O.D.) (I.D.) (O.D.) ROI

Clean 99 1 0 0 0 0 0 100
Hairline-I.D. 19 6 0 4 0 0 1 30
Hairline-O.D. 10 17 0 1 2 0 0 30

Crack-I.D. 0 0 0 29 1 0 0 30
Crack-O.D. 0 0 0 3 27 0 0 30
Fracture 5 10 0 2 1 12 0 30

Hole 5 0 0 0 0 0 20 25

Total 275

Table 6.6. Classification accuracy comparison of proposed MLP classifier with different
feature extraction methods

Classification Accuracy (%)
Clean Hairline Hairline Crack Crack Fracture Hole

(I.D.) (O.D.) (I.D.) (O.D.)

Clustered DWT 99 81.8 0 90 96.7 40 100

Subset DWT 99 0 0 100 11.1 77.8 94.4

Compressed DWT 100 69 3.5 100 7 58.6 51.7

Table 6.7. Classification accuracies of proposed MLP classifier and LDA

Classification Accuracy (%)
Clean Hairline Hairline Crack Crack Fracture Hole

(I.D.) (O.D.) (I.D.) (O.D.)

MLP 99 81.8 0 90 96.7 40 100

LDA 96 0 0 0 0 0 100
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Figure 6.1. Overall approach for ultrasonic signal processing and classification
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Figure 6.10. Decision tree for post processing of classification results.



189

If Clean_Class_Signals >= 95 % of ROI signals

then Class = Clean;

else If Clean_Class_Signals < 70 % of ROI signals

then Class = Defect;

GO TO STEP B;

else

1. Do a Nearest Neighborhood search for similar defect pixels for each 

class individually and eliminate noise.

2. Re-compute the % of Clean_Class_Signals and check if it exceed the 

threshold (95%). If ‘YES’, classify as Clean ROI.

3. If ‘NO’, fit a second order polynomial to determine if the remaining
defect signal points form a defect trend. If goodness of fit is above a set 

threshold value, GO TO STEP B, otherwise consider it as scattered 
noise and classify as CLEAN.

Class = Defect;

If Hole_Class_Signals > 95 % of All_ Defect_Class_signals

then Class = Hole;

else If Fracture_Class_Signals > 25 % of  Defect signals

then Class = Fracture;

else If Crack_Class_Signals > 75 % of  All_Defect_Class_ signals

then Class = Crack;

If CrackID_Class_Signals > 75 % of Crack_Class_signals

then Class = CrackID;

else

then Class = CrackOD;

Yes No

NoYes

CC--scan Triggerscan TriggerPseudo CodePseudo Code

BB

AA

CC

DD

EE

FF

GG

StepsSteps

else

then Class = Hairline;

If HairlineID_Class_Signals > 75 % of Hairline_Class_signals

then Class = HairlineID;

else

then Class = HairlineOD;

HH

II

JJ

Yes No

Yes No

Yes No

NoYes

NoYes

Figure 6.11. Pseudo code for post processing algorithm.
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Chapter 7
Prototype Development

7.1 Introduction

Various ultrasound-based inspection techniques that may be employed to acquire

depth perception data for defects in buried concrete pipes were explored. Ultra-

sound immersion inspection that uses water as a couplant is widely used in the

industry owing to its adaptability to automation and hence chosen for this research.

Experiments were conducted on several concrete samples with defects of interest

to the water/waster water pipe community. A-scan and C-scan data representa-

tions were generated to make interpretations about the presence of defects and

track them through the slab thickness. Signal processing algorithms were designed

and implemented to process the A-scan data and determine the need for further

characterization by means of high resolution C-scan. All these accomplishments

were in the domain of providing a proof-of-concept for developing a comprehen-

sive pipe inspection tool. However, a natural progression of this research is in

demonstrating that this technique can be implemented in the field with further

research and development in robotic technology and delivery mechanisms. This

chapter briefly presents the concept, implementation, and results from a water

bubbler system that emulates the immersion environment in real-world scenario

on an actual concrete pipe specimen with a defect.
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7.2 Prototype Inspection Design

The most common ultrasonic scanning systems involve the use of an immersion

tank as shown in previous chapters. The ultrasonic transducer and the specimen

are immersed under water so that consistent coupling is maintained by the water

path as the transducer or specimen is moved within the tank by means of a con-

troller . In the case of inspecting a sewer pipe buried in the ground, it is impractical

to remove the pipe section and bring it to the laboratory for immersion inspection.

A system where inspection can be done from within the pipe by a pipe robot is

required. For this to happen, the immersion environment must be emulated within

the pipe. This is possible by means of a water bubbler system. In this system,

the ultrasound travels through a column of forced water which is scanned about

the surface with a robotic system. The water column is made possible by a closed

chamber that is attached to the transducer with water inlets. Water is pumped

into the chamber at a constant rate so that a fixed water column is made available

for the ultrasound energy to travel from the transducer face to the surface under

test.

A typical design of a water bubbler system is as shown in figure 7.1. The focused

transducer beam is enclosed in a chamber filled with water forming a column and

constant contact with the test material. The ultrasonic beam travels through

water couplant in pulse echo mode and is received by the same unit. As water

escapes from a thin opening (1∼2mm), it creates a film over which the sliding shoe

attached to the bubbler enables the unit to move in the horizontal plane rendering

a raster scan pattern. Water collection systems are also commercially available to

create closed loop continuous operation of the bubbler.

7.3 Experimental Setup & Data Collection

An Ultran Laboratories system setup was used in conjunction with a focused Ul-

tran transducer having a center frequency of approximately 350 kHz . A block

diagram of the set-up is shown in figure 7.2. In this phase, a concrete pipe quad-

rant (instead of a slab) was saturated for 24 hrs before being placed on a pedestal.

The Ultran transducer with the bubbler assembly was attached to an automated
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computer-controlled x-y-z stage and was excited by a Panametrics Pulser-Receiver

to generate ultrasonic waves. The bubbler assembly had an inlet for pumping

water into the chamber to maintain a constant water column for contact between

the transducers face and pipe surface. In order to maintain a closed loop system,

the entire setup was placed in an immersion tank filled with water to an extent

such that it did not submerge the pipe specimen. The water in the tank was

pumped into the bubbler chamber using a general purpose garden pump with a

capacity of 25 gallons/min. To maintain a constant water column while scanning

the pipe, a soft styrofoam was used as a sliding shoe. The advantage of using a

soft styrofoam is that it has the ability to take shape of the pipe curvature while

scanning thus preventing the water to rapidly escape from the bubbler chamber.

Moreover, the styrofoam allows the bubbler assembly to slide over the thin film

of water on a rather rough surface of concrete pipe. The transducer consisting of

transmitter and receiver was housed in the same assembly resembling a single unit

transmitter-cum-receiver in pulse-echo mode. The ultrasonic wave was reflected

by the specimen and returned to the transducer, which also acted as a receiver.

Figure 7.3 shows an actual setup for the water bubbler system discussed above.

7.4 Results

The main aim in this phase is to demonstrate that the ultrasound inspection

technique developed in Chapter 5 is feasible from a practical standpoint. The

A-scan and C-scan data that were collected in the ideal laboratory condition need

to be reproduced using the prototype water bubbler system as shown in figure

7.3. Moreover, the sample under investigation here is a pipe quadrant instead of a

representative concrete slab. Hence, the data collected in this phase consists of a

series of A-scans collected in a region of interest (ROI) on the curved surface of a

pipe specimen. The same ROI was later automatically scanned in a raster pattern

to generate a C-scan image.

Figure 7.4 shows two representative A-scans taken from the clean portion and

defect portion of the concrete pipe quadrant while it is being scanned by the water

bubbler system. In figure 7.4a, a strong front-wall and back-wall echo separated
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∼33µs apart indicates the following: 1) The water bubbler system is successfully

able to maintain a water column that allows for coupling of the ultrasonic energy

from the transducer to the concrete surface without the need to submerge it, and

2) the coupling is good enough to allow sufficient energy to penetrate 60mm thick

concrete and return back to the transducer. However, when the transducer is

positioned on the defect, a significant loss in back-wall amplitude and gain in

echo activity in between the front-wall and back-wall is observed as expected (see

figure 7.4b). It was observed that the A-scan signal trace consistently followed

the same behavior as the bubbler system was scanned across a ROI on the pipe

quadrant. Figure 7.5 shows C-scan images of a 10mm x 200mm ROI on the pipe

quadrant. The C-scan images were generated by monitoring the back-wall echo

only using a single gate. Two images at different resolutions (1mm-figure 7.5b, and

0.5mm-figure 7.5c) were generated to determine if it was possible to gain additional

insight at a higher resolution. Obviously, the time taken to generate a C-scan at

0.5mm resolution is much higher as compared to 1mm resolution. However, it

can be seen from figures 7.5b-c that no additional information is available at a

considerably higher time cost. Figure 7.5b demonstrates the ability of the bubbler

technique to not only acquire C-scan data but also detect the presence of rebars

in the concrete pipe material. This is an added advantage when considering that

large diameter pipes are heavily reinforced. Moreover, with further research, a

relationship between the degree of corrosion in reinforcements to the strength of

signals reflected from the concrete-rebar interface can be established based on C-

scan image modeling. The signal processing algorithm developed in this research

study was applied to 2000 A-scan signals generated by using the water bubbler

system in the ROI. As expected, because of the characteristics of signal being

similar to the ones generated by the laboratory setup, it was able to detect the

presence of defect with a reasonable accuracy.

7.5 Field Implementation

A water bubbler system that emulates the ultrasound immersion technique in a

real-world scenario has been demonstrated. A-scan and C-scan data were suc-

cessfully acquired using an automated scanning setup on an actual concrete pipe
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quadrant to illustrate the practical applicability of this technique. At this junc-

ture, it is important to consider issues related to its adoption in the field.

This technique can be adopted in the field by developing an ultrasonic inspec-

tion attachment that can be incorporated onto a sewer robot. The attachment

head will have the ability to radially extend out from the robot so that it can

transmit and receive signals in close proximity to the test area in question. It will

also have a position sensor coupled to it so that proper alignment with test surface

is always ensured. The field inspection tool may include the following items:

• A self-propelled (wheeled or tracked) digital robotic assembly with CCTV

capability,

• An ultrasonic inspection attachment to detect anomalies on the pipe surface,

• On-board pulser-receiver,

• A custom housing for the transducer and the bubbler attachment,

• An umbilical chord carrying water to the bubbler at a constant flow-rate,

• Control architecture to correctly position the attachment within the pipe and

scan, and

• All necessary software to read the signal from the attachment and download

required information to the laptop.

A mockup of the proposed solution is shown in Figure 7.6. It must be noted

that various issues such as instrumentation and methodology for delivering, receiv-

ing and processing ultrasonic signals while in the field is out of the scope of this

research study. The technology and expertise for adopting an ultrasound-based in-

spection methodology into a field-application device falls in the domain of robotics

and instrumentation research. Clearly, this is not the focus of the present study.

However, work presented in this chapter intends to serve as a buffer for transi-

tion of the inspection technique from bench top to actual field implementation

with continued research and development from the inspection industry. Current

inspection systems use optical cameras that are clearly limited in that they cannot
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interrogate below the surface through the pipe wall all the way to the back wall.

This limitation does not exist for ultrasonic waves. Moreover, ultrasonic waves

have the potential to interrogate surrounding soil condition enveloping the buried

pipe.

The ultrasonic inspection technique developed in this research has been tested

on a bench-top on various concrete slabs. These studies led to the design of a

prototype water bubbler system that was tested on an actual concrete pipe quad-

rant. The next step in the development process would be to design the attachment

described above and test it on a commercial sewer robot in the field.
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Figure 7.1. Schematic diagram of a bubbler system.
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Figure 7.2. Schematic diagram of experimental setup for a water bubbler system.
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Figure 7.3. Experimental setup of an actual water bubbler system.
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Figure 7.4. A-scan signals from (a) clean portion and (b) crack portion of the pipe
quadrant.
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Figure 7.5. C-scan images. (a) schematic of pipe specimen and ROI (b) 1mm resolution
C-scan, and (c) 0.5mm resolution C-scan.
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Figure 7.6. Proposed system for automated inspection of buried concrete pipe.
Sketchup courtesy of RedZone Robotics.



Chapter 8
Conclusions

This chapter reviews the contribution of this thesis, lists directions for future re-

search and provides concluding remarks.

8.1 Contributions

The main objective of this thesis was to develop an automated buried concrete

pipe inspection system based on scanned images obtained from SSET camera and

signal/image data from an ultrasound transducer. The focus of this thesis has been

on developing proof-of-concept of an intelligent automated ultrasound inspection

system that can inspect concrete pipes and provide depth perception. Novel appli-

cations of image processing and segmentation techniques to improve detection of

cracks under varying background, pipe color and complicated defect patterns from

CCTV images were developed. However, the main concentration of this thesis has

been in developing an ultrasound acoustics-based methodology to first determine

the presence of defect and then acquire depth information about the defect for

characterization purposes. The contributions of this thesis can be summarized un-

der four main topics as follows:

1. CCTV Image Processing & Segmentation

• Proposed two contrast enhancement schemes
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• A simple, robust and efficient crack detection algorithm was developed

and evaluated

• Approach can be fully automated and results show that the algorithm

is effective for segmenting CCTV images

2. Development of Ultrasound-based Inspection System

• Various ultrasound-based inspection techniques were evaluated for suit-

ability with concrete pipe inspection

• Guided wave and impact echo were experimentally examined and dis-

carded due to their limitations

• Proposed an ultrasound-immersion based inspection method that needs

only one-sided access and can be fully automated

• Experimental results, in A-scan signal and C-scan image format prove

the suitability of this technique for depth perception

3. Development of Feature Extraction & Classification Schemes

• Three feature extraction schemes were proposed and evaluated against

classifier response for selection

• The proposed clustered discrete wavelet transform feature extraction

method was developed and implemented on A-scan signals

• A multilayer perceptron neural network classifier that uses features from

the above method is developed

• A statistical classifier, LDA, is implemented to compare performance

with proposed MLP classifier

4. Development of Inspection Approach

• Overall contribution is in developing a framework for the inspection

system

• The system is proposed as a two step approach consisting of reconnais-

sance and characterization mode
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• Each of the steps in the inspection approach is studied in detail and

developed keeping practical applicability in mind

• A prototype water bubbler system is designed and implemented to

demonstrate practical applicability of the technique

8.2 Future Directions

This research aimed at providing a proof-of-concept of an automated ultrasound-

based inspection system for buried concrete pipes. This study has been successful

in showing that the proposed methodology can detect defects in representative

concrete pipe specimens. However, there are many interesting directions for con-

tinued research and testing to take the proof-of-concept presented in this study to

the field where its application will significantly impact the buried asset manage-

ment community. A few areas that need to be investigated based on the results of

this study are outlined and discussed for future research:

• Image Processing: In this study, a CCTV image preprocessing and seg-

mentation algorithm was presented for detecting cracks in color images with

varying crack, background and color patterns. For complex situations, fur-

ther development of this algorithm in terms of recovering the crack structure

with bifurcations is required. Moreover, all CCTV images were transformed

into the grayscale domain before performing any processing to reduce the

computational time. Processing in the color image domain can provide sig-

nificant improvement in crack detection owing to the fact that color is a

powerful descriptor as it can augment object identification and classification

approaches. Research in segmenting color images for crack detection will

definitely help in building a reliable image based defect detection system.

• Ultrasound Inspection: The ultrasound inspection methodology presented

in Chapter 5 was based on laboratory tests on representative concrete sam-

ples and aimed at providing a proof-of-concept. The defects generated in

the laboratory tests are not sufficient to entirely capture the field scenario.

Extensive testing of the methodology on different samples with a variety of

defect patterns is needed. Also, the transducer used in this study was a plane
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wave transducer. As mentioned in Chapter 6, although it appears as if the

A-scan signal is an accurate representation of the wave that leaves the center

of the transducer and hits the sample at a particular spot, it is not the case.

The A-scan signal amplitudes are influenced by the spread of the ultrasound

beam over an area rather than a spot. This means that the ultrasound signal

amplitude is effected by a defect from far distances due to its spread and will

reflect the information as a change in amplitude and echo characteristic that

may be classified as a less or more severe defect. Using a focussed trans-

ducer with a narrow beam spot can avoid this overlap and is a promising

avenue for future research and improvement of the proposed methodology.

Also, C-scan image resolution can be increased with a focussed transducer

in pulse-echo mode. Moreover, several other possibilities for pipe inspection

that were out of the scope of this research exist. 1) Pressurized Air Bag

Ultrasound Transducer : The acoustic impedance of a media is known to be

equivalent to the product of density and sound velocity within the media. It

follows that an increase in pressure causes a significant increase in the gas

(air) density. The density change in the gaseous media increases its acoustic

impedance. With increase in the acoustic impedance of air, the mismatch of

impedances between interfaces becomes less in magnitude. This translates

into improved ultrasonic energy transmission from the transducer to the test

material via the gaseous media. By increasing the pressure, theoretically,

the possibility of recording and distinguishing and signal is higher (Halter,

2001). Hence, an inspection technique consisting of a pressured air bag that

can transmit ultrasound energy from the transducer to the pipe surface can

be explored. 2) Water Wheel Transducer : A device that couples ultrasonic

energy to a test object through the rolling contact area of a wheel (flexible

tire) containing a liquid (oil/water) and one or more transducers is called a

wheel transducer. The transducer is attached to the axle of the wheel. They

are applied in pulse echo and through transmission technique. Since the tire

material shows high attenuation they are mostly used in low frequency appli-

cations. The main driving advantage of this contact wheel transducer is that

it works to overcome problems with couplant contamination as well as elim-

inating the practicality of immersion systems. The ”tyre” or delay material
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is constructed of hydrophilic polymers which have acoustic properties that

lend themselves ideally to the implementation of ultrasonics. Applications in-

clude thickness measurement, composite inspection, delamination detection

and general flaw detection. The only disadvantage of this approach is that

the achievable signal to noise ratio is worse than that of regular transducers

due to its construction which can not prevent some spurious echoes.

• Feature Extraction & Classification: Feature extraction is an impor-

tant stage for any pattern recognition task especially for concrete pipe defect

classification, since defects in concrete are highly variable and it is difficult

to find reliable and robust features in the signal domain. Extensive research

on the development of efficient and reliable methods for the selection and

extraction of features for pattern classification problems is ongoing. In this

thesis, the defect features from A-scan signals have been selected based on

the the energy of their discrete wavelet transform coefficients. One useful

extension of this thesis would be to perform a thorough feature evaluation

and extraction optimization in order to provide an optimal set of features for

classification. A simple multilayer perceptron (MLP) neural network clas-

sifier was proposed for classifying A-scan signals into several defect classes.

The aim of this study was to provide a framework for feature extraction

and classification. There exists enough scope for improving the design of the

MLP classifier in terms of the optimum number of hidden layers, neurons

per hidden layer and activation function. The MLP neural network seemed

to perform very well in cases where the signal patterns were distinct but

lowered its performance when the signal patterns were fuzzy. Introducing

the concept of fuzzy logic and combining it with the power of neural net-

work computation can enhance the performance of the classifier. The term

“Neuro-fuzzy” refers to hybrids of artificial neural networks and fuzzy logic.

Neuro-fuzzy hybridization results in a hybrid intelligent system that syner-

gizes these two techniques by combining the human-like reasoning style of

fuzzy systems with the learning and connectionist structure of neural net-

works. Hence designing a neuro-fuzzy classifier will be a good extension of

the present work. The C-scan images have been used primarily to acquire

depth perception and further characterization of the defect if triggered by the
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post processing algorithm. Developing a C-scan image based classification

system would also constitute a useful extension of this work.

• Prototype Development: The techniques for assessing buried concrete

pipe that were developed in this research, both hardware and software need

to be forged together into a prototype package that will then be evaluated in

the field. The prototype development will require further refinement of the

ultrasound transducer and allied hardware from a practical delivery point

of view. Presently, a robotic vehicle on crawlers is used to carry optical

and/or laser sensors on board for inspection in the field. An attachment that

can carry the proposed ultrasound transducer needs to be designed so that

extensive field evaluations can be performed to validate the proof-of-concept

provided in this study.

8.3 Concluding Remarks

The motivation for this thesis lay in the daunting task faced by municipal asset

managers in knowing the present condition of their assets. Most municipal systems

in North America are inspected visually and defect classification is done manually

by an operator. Although the human eye is extremely effective at defect detection

and classification, it is unreasonable to achieve high efficiency in assessing pipe

defects in thousand of miles of pipeline due to fatigue and subjectivity. Thus,

simply trying to assess the condition of a buried sewer pipeline when it runs in

thousands of miles is a daunting task. The aim of this thesis was to propose an

automated pipeline inspection system that could not only provide better defect

detection from CCTV images, but also provide depth perception of defects beyond

the surface level. In continuation of this objective, an automated ultrasound-based

inspection system was proposed to detect defects in buried concrete pipes. The

inspection system was proposed as a two step approach. The first step is used

as a reconnaissance mode in which the ultrasound transducer is used to scan a

region of interest. A signal interpretation and classification scheme coupled with

a post processing algorithm classifies the region of interest into a clean or defect

region. If the scanned region of interest belongs to a defect, the second step of the
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approach is to characterize the region of interest with a C-scan imaging process

for depth perception. The feature extraction, classification and post processing

schemes proposed in this thesis provide a sound proof-of-concept for developing this

inspection system into a field applicable tool. Such a tool can aid asset managers

to quickly evaluate the status of their buried infrastructure, ultimately leading to

a sustainable asset management system.
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