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Abstract

This thesis consists of three essays. In the first essay we study monopolistic

pricing, with a capacity constraint, of a good that loses its value T periods after it is put

on sale for the first time. Buyers only obtain utility just before the good loses its value.

Examples of such goods include airline tickets and hotel rooms. This essay presents a

three-period model with a single seller facing a capacity constraint, where the good being

sold loses its value after the third period. The seller offers a finite measure of units for

sale in a market, where in each period a continuum of buyers, each of whom might be

one of two types, enter. The seller chooses, without precommitment, price and measure

of units to offer in each period. Each of the buyers chooses either to make a purchase

as soon as they enter, or to wait for a lower price which might be made available in the

future. This allows us to capture some features of airline ticket pricing. The equilibrium

price path is obtained and found to be non-decreasing, U-shaped or horizontal for the

relevant range of parameter values. Any strategy involving ‘final sales’ is found to be

non-optimal.

In the second essay we examine the voluntary provision of a public project via

binary contributions when contributions may be made over multiple rounds. In many sit-

uations, early contributors are likely to pay a higher cost than those who wait. We show

that in such circumstances the provision of the project always involves delay. Since this

game involves coordination on complex, dynamic strategies in the face of asymmetries

in payoffs, we examine behavior in the laboratory.
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In the third essay, we empirically test the theoretical predictions of the first essay.

We collect airline price data from an online travel agent for 30 routes in the US, each with

a different proportion of business travellers. We find that while prices never fall before

departure, the price path is rising for routes with low, medium and high proportion of

business travellers and that the increase in prices is sharpest for routes with the highest

proportion of business travellers.
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Chapter 1

A Model of Airline Pricing:

Capacity Constraints and Deadlines

1.1 Introduction

It is a well-known fact that passengers on the same flight, traveling in the same

class, often end up paying different prices for their tickets. This is because the prices of

such tickets vary over time, often within the span of a few hours. While buyers have the

option of purchasing tickets months prior to the date of departure, casual observation

suggests that the prices offered by an airline are high if a purchase is attempted too early,

drop after a period of time and then prior to departure they rise again. An empirical

study by Stavins (2001) indicates that five weeks prior to departure, prices start rising.

Instead of monotonically reducing prices, selling every available seat and waiting for

takeoff, the airline instead, chooses to save a certain number of seats for future buyers,

who would be willing to pay a high price for the same seats.

This shows, that in order to solve for the optimal price path of such goods, we need

a model with a finite time horizon, where one or many sellers while facing a capacity

constraint, offer(s) a finite measure of units for sale. In each period, a continuum of

buyers, each of whom might be one of two types, enters the market. The seller chooses,

without precommitment, price and measure of units to offer in each period, while each
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of the buyers choose either to make a purchase as soon as they enter, or to wait for a

lower price which might be made available in the future.

The operations research literature identifies airline ticket pricing as dynamic pric-

ing (also known as yield management), where the product ceases to exist at a certain

point in time and capacity can only be added at a very high marginal cost. The product

being discussed here is non-durable, non-storable and cannot be resold. We consider an

airline ticket to be a futures contract on a service to be provided by the airline in the

future. As the airline attempts to sell tickets over time, it is in effect “signing” contracts

with different customers on different terms. As the seller is unable to precommit to the

terms of the contract in the future and is in effect competing against future versions of

himself (herself), he (she) faces the same intertemporal and time-consistency problems

as a durable-goods monopolist. Other examples of such products include hotel rooms,

generated electricity or other “sell before” goods where transactions occur through a fu-

tures contract (McAfee & Velde). Given the similarities in the problems facing an agent

signing multiple futures contracts (airline) and a durable goods monopolist, we can refer

to the vast literature on time-consistency issues in a durable-goods monopoly.

In this chapter, we use a model which extends that of a durable-goods monopoly

model by Conlisk, Gerstner and Sobel (CGS, 1984). In their infinite time horizon model,

a new cohort of consumers enters the market in each period, interested in buying the

product either immediately or after some time. The consumers in each group differ

amongst themselves in terms of the valuation for the good. Some of these buyers choose

to make a purchase in the same period, while others decide to wait for a lower price.

Their decisions are based on the price in that particular period and expected prices in
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the future. Usually the single seller, who does not face any capacity constraint, prefers

to sell the product at a price just low enough to sell immediately to consumers with a

high willingness to pay (as long as revenue earned from selling to “high” type buyers

exceeds revenue earned from selling to “low” type buyers). However, as sufficient number

of consumers with a lower willingness to pay accumulate in the market, the seller holds

a ‘sale’ by dropping the price low enough, so that buyers with lower willingness to pay

can buy the product. This leads to an equilibrium where periodic ‘sales’ are held and

the corresponding price path is cyclic. We extend this model, by introducing a capacity

constraint for the single seller and by solving for the equilibrium for a finite time horizon.

We solve for possible candidates for the subgame perfect outcome, and find that for the

relevant range of parameter values, the optimal price path obtained is non-decreasing,

U-shaped or horizontal. If we introduce a finite time horizon in the CGS model where

the single seller does not face a capacity constraint, we can check that it is possible

to derive the range of parameter values for which the optimal price path is U-shaped.

This range of parameter values however is different (larger) from the range of parameter

values for which we get a U-shaped price path with capacity constraint.

The intuition behind the U-shape could be as follows. Initially prices decrease in

a manner similar to a Dutch auction. Incumbent buyers could choose either to make a

purchase in the current period or to wait for a lower price in the future while running

the risk of not getting a ticket, since in the meantime, all the remaining seats might

be sold out. As the date of departure draws closer, prices are raised for tickets which

remain unsold, with the expectation that high valuation buyers who enter the market in
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the periods just before departure, will make a purchase. The intuition behind the other

possible shapes is discussed at the end of Section 4 of this chapter.

1.2 Review of Literature

As mentioned in the previous section, even though airline tickets are not durable,

the intertemporal problems facing a seller of airline tickets are identical to those facing

a durable goods monopolist. We thus begin the review of literature section by referring

to the literature on durable goods monopoly. The problem of intertemporal price dis-

crimination as faced by a durable-goods monopolist has been the focus of several papers

over the years. In his seminal paper, Coase (1972) conjectured that a durable-goods mo-

nopolist would be unable to exert any monopoly power. This is because rational buyers

would anticipate correctly that in the absence of precommitment to future prices, the

monopolist would reduce prices in an attempt to cater to residual demand and would

refuse to buy the product as long as prices remained above the competitive level. Papers

by Stokey (1981), Bulow (1982) and Kahn (1986) have formally modeled durable-goods

monopoly. Bulow constructs a two-period model and shows that inability on the part of

the monopolist to credibly commit to the fact that it won’t exploit residual demand in

period 2 places a constraint on the price received in period 2, and that a durable-goods

monopolist earns higher profits by renting the good instead of selling it. Stokey and
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Kahn show that under the assumption of constant marginal cost and that the monopo-

list is unable to precommit to any future behavior, the Coase conjecture is true in the

continuous-time limit with the discount factor approaching one.1

The Coase conjecture on the other hand has been shown to fail under a separate

set of assumptions. Using Stokey’s Rational Expectations Equilibrium (REE) concept,

Bond and Samuelson (1984) show that if the length of the trading period is non-zero and if

the good depreciates, the monopolist has to make replacement sales in order to maintain

a fixed stock of the good and that the non-depreciation result that prices fall to the

competitive level does not hold. Bagnoli, Salant and Swierzbinski (1989) show that none

of the three conclusions of the durable-goods literature, namely the Coase conjecture,

the result that the durable-goods monopolist can increase profits by pre-committing to

a time path of prices (Stokey 1979, Sobel and Takahashi 1983), and Bulow’s conclusion

that a monopolist renting the product earns higher profits compared to one selling it,

survive when the assumption of continuum of buyers is replaced by the assumption that

the set of buyers is finite, albeit possibly very large.

There are two assumptions, which are crucial to our model. The first is that the

seller faces a capacity constraint, while the second is the constant influx of new buyers.

It has been found that the conjecture fails to hold under these assumptions. McAfee and

1Stokey initially shows that the conjecture is true in the continuous-time framework. She
then proves that in the discrete-time model, as the length of the period approaches zero, the
equilibrium approaches the one in the continuous-time case. However, if the length of the period
does not converge to zero, the path of output chosen by the monopolist approaches the one
chosen by the monopolist renter.

Kahn establishes that while the conjecture is true for the continuous-time case with constant
marginal cost, the Coase intuition fails if the producer faces increasing marginal costs; even in
the absence of pre-commitment, the producer produces too little. Such rising marginal costs
could be attributed to the fact that the seller faces a capacity constraint.
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Wiseman (2003) show that capacity costs of arbitrarily small degree can eliminate the

zero profit conclusion. Capacity costs borne by the seller serve as a strong commitment

device, as the choice of capacity enables the seller to slow the sales, reduce the fall in

prices and thus permits the seller to set initial prices above marginal costs. They examine

a model in which there is a small cost for production capacity, and the seller can augment

capacity at the beginning of every period. As the time between sales periods and the

gap between the lowest valuation for the good and marginal cost shrink, they show that

the monopolist earns the same profit irrespective of whether he or she chose capacity

ex-ante or if capacity was augmented at the beginning of each period. Such profits were

found to be 29.8% of static monopoly profit.

Papers by Sobel (1984), Conlisk, Gerstner and Sobel (1984) show that the equi-

librium in a model with a continual influx of new buyers involves price cycles where each

seller produces a homogeneous good and sells it to consumers with different willingness

to pay entering the market in each period. In Sobel’s model (which has all the same

features as the CGS model but has more than one seller), sellers typically vary their

prices over time, charging a high price in most periods, allowing buyers with high will-

ingness to pay to purchase the product, but occasionally they reduce the price in order

to sell to the group of customers with a lower willingness to pay. In some equilibria,

all sellers lower their price simultaneously and to the same level. A cyclic price path is

also obtained in a paper by Narasimhan (1989), who uses a framework similar to that

of CGS but assumes that the entry of new consumers is governed by a diffusion process.

In his model, the number of buyers who enter the market in each period is a function of



7

cumulative sales and is thus time variant. Unlike Conlisk et al. the market size in his

model is fixed, such that after some time saturation effects set in.

Dana’s paper on advance-purchase discounts (1998) has a market with individual

and aggregate consumer demand uncertainty. Price-taking firms set prices before demand

is known and may offer advance-purchase discounts. In this case firms discriminate

between buyers who have low willingness to pay but have a better chance of buying the

product and buyers who have a higher willingness to pay but have a low probability of

making a purchase. Thus firms screen buyers by their demand uncertainty, offering lower

prices to consumers with certain demand in order to lower the costs of holding unutilized

capacity or excess inventory. This is specially true for the airline industry, with the only

difference being that airline companies cannot be assumed to be competitive price takers.

A number of papers attempt to solve for conditions under which the monopolist

seller will offer either ‘introductory offers’ or ‘final sales’. Denicolo and Garella (1999)

show in a two-period model similar to the one used by Bulow, that the single seller will

choose to offer higher prices in the second period, while rationing in the first. However,

the seller does not face any aggregate capacity constraint. They show rationing reduces

the incentive to lower future prices and may allow the monopolist to increase his or

her discounted profit. A similar result is obtained in a paper by Wilson (1988), where

he shows that a single seller can increase profits by charging two different prices for

the same good and rationing sales at the lower price. However, such a result cannot

be obtained without precommitment. Dudine, Hendel and Lizzeri (2005) show that if

consumers choose to purchase durables in advance (stockpile) instead of delaying such

purchases (as they are expected to do with the hope that lower prices are made available
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later on), then in the absence of commitment, the monopolist will charge higher prices

in all periods and that social welfare will be lower than in the case where the monopolist

can precommit. This is relevant in our model since some of the buyers who arrive early

might opt for such advance purchases.

An alternate outlook is presented in papers by Brumelle and McGill (1993) and

Wollmer (1992), who solve for an optimum airline seat booking policy, where lower fare

class customers book tickets before higher fare class passengers. In these papers, airlines

solve for a critical number of seats in each fare class, which are reserved for potential

future passengers who are willing to pay a higher price. Booking requests for a particular

fare class are accepted if and only if the number of empty seats is strictly greater than its

critical level and rejected otherwise. Wollmer shows that this critical value is a decreasing

function of the fare price and is equal to zero for the highest fare (class). However, these

papers lack the flavor of durable goods, as buyers do not have the option of staying in the

market to wait for a lower price, while sellers do not compete with future incarnations

of themselves.

An empirical paper that studies the issue of airline prices over time is a paper

by Stavins (2001). Stavins examines how price discrimination changes with market

concentration in the airline market. Price discrimination is found to increase as the

markets become more competitive. The data set included fares offered 35 days prior to

departure, followed by 21 days prior to departure, 14 days prior to departure and finally

2 days prior to departure. The data thus allowed for examination of how prices change as

the departure date drew closer. From the OLS regression it was discovered that cheaper

fares disappear, leaving only more expensive tickets for sale.
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The chapter proceeds as follows. In the following section a basic three-period

model is developed and strategies for both players outlined. Section 4 identifies possible

candidates for subgame perfect outcomes and describes conditions under which we get

the different subgame perfect outcomes. Section 5 discusses extensions and section 6

concludes.

1.3 Model

A finite horizon model, with a single seller selling a finitely durable good and facing

a capacity constraint is formulated with a continuum of buyers of two types entering the

market in each period. This helps us to analyze the possible shape(s) of the optimal

price path for the monopoly seller.

Setting. Time is discrete. We can consider a finite horizon model of T periods,

where T is a large finite number. The durable good made available by the lone seller has

a lifetime of T periods, after which it is assumed to be lost forever. In order to consider

a simple version, we assume that T = 3.

Supply side. There is a single seller of the product. The seller chooses price pi for

period i (with i = 1, 2, 3), nonstochastically so as to maximize sum of discounted profits

earned, calculated at discount factor ρ, with 0 < ρ < 1. We also assume that the monop-

olist faces constant marginal cost, assumed without loss of generality to be zero. With

the assumption of zero costs, the monopolist is assumed to maximize discounted stream

of revenues accruing over the three periods. The monopolist cannot rent the product; at

any given date, the monopolist cannot make binding commitments about future prices.

The total measure of units of the product (seats) available to the monopolist is 3. The
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seller chooses to offer a continuum of units of measure qi ∈ [0, 3] for i = 1, 2, 3 in period

i.

Demand side. A continuum of buyers of measure 2 enter the market in each

period, with each buyer having unit demand. Buyers in each cohort can be one of two

types. There is thus the minimum degree of consumer heterogeneity. We assume that

a continuum of buyers of measure 2α (with 0 < α < 1) enter the market in each period

and have valuation for the product given by V1, while a continuum of buyers of measure

2(1− α) enter the market in each period and value the good at V2, where V1 > V2 > 0.

Buyers with valuation V1 are said to be of ‘high’ type, while buyers with valuation at V2

are said to be of ‘low’ type. We assume that the majority of buyers entering the market

in each period are of low type and hence, α ∈ (0, 1/2).

Buyers are assumed to be rational. Each buyer on entering the market decides

either to purchase the product in the current period or to wait for a lower price, except for

buyers in the last period, who either decide to buy or not to buy the product in the last

period. In the event that the buyer is indifferent between buying in the current period

and waiting (or not to buy), the buyer is assumed to make the purchase immediately.

Buyers assume that their own decision as to when to buy the product has no bearing

on other buyer’s decision as to whether and when to buy the same product. This is a

consequence of the assumption that we have a continuum of buyers in the market. We

further assume that the probability that the buyer will get the product in period i is

given by Φi which is determined endogenously. Once a consumer buys the product, he or

she leaves the market forever. A consumer who has not bought the product stays in the

market till period 3, regardless of when he or she first entered the market. The probability
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with which buyers of both types get the product in period i + 1, Φi+1 implicitly acts as

the discount factor.

Finally, no resales are allowed. All consumers are price takers, and they have

no bargaining power. This, once again, is a consequence of the assumption that we

have a continuum of buyers in the market. This feature marks another departure from

the Conlisk, Gerstner and Sobel framework, where a discrete number of buyers were

assumed to enter the market in each period. Usually models with a continuum of agents

yield radically different equilibrium than those with a finite number of agents (example,

Coase conjecture gets violated in the Bagnoli, Salant and Swierzbinski model). Levine

and Pesendorfer (1995) resolve this paradox by considering a model where a discrete

number of players’ actions are observed with some noise and the aggregate level of noise

does not disappear too rapidly as the number of players decrease.

Timing of events. At the beginning of period 1, the seller announces the price for

the first period, p1 and the measure of units available for purchase, q1. A continuum of

buyers of measure 2 enter the market in the first period, of which buyers of measure 2α

are of ‘high’ type and buyers of measure 2(1− α) are of ‘low’ type. Each buyer decides

whether to buy the product in the first period, or to wait for a lower price which might

be made available in the future. If the buyer decides to purchase the good in the first

period, he or she exits from the market. Based on p1, the seller knows the measure of

units that were actually sold in the first period. At the beginning of the second period,

the seller announces price for period 2, p2 and the measure of units available for sale in

the second period, q2. A new cohort of buyers (of measure 2) enter the market in the

second period. These buyers along with the buyers who decided not to buy the product
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in period 1 and hence chose to remain in the market then constitute the total measure

of buyers in the market in the second period. Each of these buyers in turn decide either

to purchase the product at price p2 or to wait for a lower price in period 3. A similar

sequence of events follow in period 3, except for the fact that buyers of both types in

period 3, choose either to purchase or not to purchase the good in the last period. The

seller is unable to precommit to any sequence of prices and measure of units to be offered

for sale over the 3 periods.

We assume that the type of each buyer is publicly observable, such that we have

a complete information model. We further assume that, even though the seller knows

the type of each and every ‘active’ buyer in the market at any point of time, he or she

is unable to price discriminate and must charge (or announce) a single price in every

period.2 Since this is a model involving a finite horizon, we employ the method of

backwards induction to solve for the subgame perfect Nash equilibrium (SPNE) of the

game described above. Here, we should note that Gul, Sonnenschein and Wilson (1986)

also use the concept of subgame perfect Nash equilibrium in their widely cited paper.

Conversely, we could have assumed that the buyers’ types are not observable. In that

case, Perfect Bayesian equilibrium would have been the appropriate equilibrium concept,

where we would have to explicitly specify how agents form beliefs for information sets

off the equilibrium path. In our model, the seller chooses prices and measure of units to

release in each of the 3 periods, while each buyer decides whether to buy the product or

2By ‘active’ buyers we mean buyers who have chosen not to purchase the product in previous
periods and have instead chosen to remain in the market for lower prices. ‘Active’ buyers in a
particular period also include buyers who entered the market in the same period and are about
to decide either to purchase the product or to wait for a lower price in periods 1 and 2, and either
to purchase or not to purchase the product in period 3.
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to wait in periods 1 and 2 and whether to buy or not to buy the good in period 3. In

order to describe the strategies of both types of buyers and the single seller, we need to

introduce the following notation.

Notation. The following notation is introduced in order to describe the total

measure of ‘high’ and ‘low’ type buyers in the market at each point of time, as well as

the measure of units left with the seller at the beginning of each period.

bH
i

= Total measure of ‘high’ type buyers in the market including ones entering

the market in period i

bL
i

= Total measure of ‘low’ type buyers in the market including ones entering

the market in period i

si = Measure of units left with the seller at the beginning of period which is a

function of pi−1, qi−1, bH
i−1, bL

i−1 and si−1, where pi−1, qi−1 are control variables for

period i− 1 and bH
i−1, bL

i−1, si−1 are state variables for period i− 1.

1.3.1 Backwards Induction Argument

A strategy for the monopolist specifies for each period, price and measure of units

to be offered to the buyers as a function of the history of the game. A strategy for the

buyer of each type on the other hand, specifies at each time and after each history (in

which he or she has not previously purchased or in case he or she has just entered the

market) whether to accept or to reject the monopolist’s offered price.

Period 3. We begin by describing the strategies of the buyers of both types in

period 3. At any time all players have perfect recall. We define h3 as the set of all

possible histories available to each buyer in period 3, which provides all possible values
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for (p1, p2, p3, q1, q2, q3, bH1 , bL1 , s1, bH2 , bL2 , s2, bH3 , bL3 , s3). For buyers who choose not to

purchase the product in periods 1 and 2 and for those who entered the market in period

3, the following function specifies the action to be taken by each and every one of them:

f3 : h3 → {B,NB}

where B denotes the decision to buy and NB represents the decision not to buy the prod-

uct. Analogously, we define H3 as the set of all possible histories available to the seller at

the beginning of period 3 which consists of all possible values for (p1, p2, q1, q2, bH1 , bL1 , s1,

bH2 , bL2 , s2, bH3 , bL3 , s3). The seller announces p3 and q3 at the beginning of period 3. A

part of the strategy for the seller for the last period is described as follows:

F3 : H3 → <2
+

Period 2. In period 2, we define h2 as the set of all possible histories available to

the buyer of each type, which consists of all possible values for (p1, p2, q1, q2, bH1 , bL1 , s1,

bH2 , bL2 , s2). Buyers who chose not to purchase the product in period 1 and those who

entered the market in period 2 choose either to buy the product or to wait for a lower

price as specified by the following function:

f2 : h2 → {B,W}

where B once again denotes the decision by the buyer to buy the product and W

refers to the decision to wait for a lower price in period 3. At the beginning of period 2,
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the seller has to announce p2 and q2. H2 is now defined as the set of all possible histories

available to the seller at the beginning of period 2 and it provides all possible values for

(p1, q1, bH1 , bL1 , s1, bH2 , bL2 , s2). In period 2, the following function describes part of the

strategy for the seller:

F2 : H2 → <2
+

Period 1. Finally, for buyers of both types in period 1, the set of all possible

histories available to them is denoted by h1 which consists of all possible values for

(p1, q1, bH1 , bL1 , s1). Part of the strategy for each buyer specifies an action in period 1

described by

f1 : h1 → {B,W}

where B and W have the same interpretation as mentioned above. H1 is defined

as the set of all possible histories available to the seller at the beginning of period 1 and

consists of all possible values for (bH1 , bL1 , s1), where bH1 = 2α, bL1 = 2(1 − α), s1 = 3.

Part of a strategy for the seller in period 1, who announces p1 and q1 is described by

the following rule:

F1 : H1 → <2
+

The transition equations for the state variables are described as follows.

Define mi = min{qi, di} where di =


bH
i

if V2 < pi ≤ pH
i

bH
i

+ bL
i

if pi ≤ V2

Here, di denotes demand for the product in period i while mi denotes measure of

units actually sold in period i.
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Then, si+1 = si −mi

bH
i+1 =



2α + bH
i

if pi > pH
i

,∀qi

2α + (bH
i
−mi) if V2 < pi ≤ pH

i
, qi < bH

i
such that mi = qi

2α if V2 < pi ≤ pH
i

, qi ≥ bH
i

2α + bH
i

(1− qi

bH
i

+ bL
i

) if pi ≤ V2, qi < bH
i

+ bL
i

2α if pi ≤ V2, qi ≥ bH
i

+ bL
i

bL
i+1 =



2(1− α) if pi ≤ V2, qi ≥ bH
i

+ bL
i

2(1− α) + bL
i

(1− qi

bH
i

+ bL
i

) if pi ≤ V2, qi < bH
i

+ bL
i

2(1− α) + bL
i

if pi > V2,∀qi

where pH
i

is the price in period i which makes ‘high’ type buyers indifferent between

buying the product in period i and waiting for a lower price in period i + 1. Now that

we’ve described the strategies available to the seller and to each buyer in each of the 3

periods, we are ready to discuss the optimal decision rules for the seller and for buyers

for both types for each of the 3 periods.

The optimal decision rule for the seller and for the buyers in period 3 is described

as follows.

In period 3, buyers in the market of the two types, choose from the following

actions in period 3 {Buy in period 3, Not to buy in period 3}. The ‘high’ type buyer

chooses according as
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In period 3, chosen action =


Buy in period 3 if p3 ≤ V1

Not buy otherwise
(1.1)

The ‘low’ type buyer chooses according as,

In period 3, chosen action =


Buy in period 3 if p3 ≤ V2

Not buy otherwise
(1.2)

The seller chooses p3, q3 in order to

max
p3,q3

p3.min{q3, d3(p3)} subject to q3 ≤ s3 (1.3)

where d3 is defined as follows:

d3 =


bH3 if V2 < p3 ≤ V1

bH3 + bL3 if p3 ≤ V2

The optimal decision rule for the seller and for the buyers in period 2 is described

next.

In period 2, buyers in the market of the two types, choose from the following

actions in period 2 {Buy in period 2, Wait}. The ‘high’ type buyer chooses according as

In period 2, chosen action =


Buy in period 2 if p2 ≤ pH

2

Wait otherwise
(1.4)
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The ‘low’ type buyer chooses according as,

In period 2, chosen action =


Buy in period 2 if p2 ≤ V2

Wait otherwise
(1.5)

where pH
2 is defined by the following equation

(V1 − pH
2 ) = Φ3[V1 − p∗3] with Φ3 =


q∗3
bH3

if V2 < p∗3 ≤ V1

q∗3
bH3 + bL3

if p∗3 ≤ V2

(1.6)

Here, we use a fixed-point argument. In period 2, the ‘high’ type buyers know

bH2 , bL2 . For the time being they fix the pH
2 of all other ‘high’ type buyers and calculate

the corresponding bH3 and bL3 . Given bH3 , bL3 these buyers can calculate the price and

measure of units the seller will offer in period 3, p∗3 and q∗3. Finally, using p∗3, q∗3 and

equation (1.6) these buyers should be able to recover a pH
2 which should be equal to the

one originally assumed. pH
2 is thus the price the seller can charge in order to make the

‘high’ type buyers indifferent between buying in period 2 and waiting for a lower price in

period 3. We assume that in case the buyer is indifferent between buying and waiting,

the buyer decides to purchase the product in the current period.

At the beginning of period 2, the seller announces p2 and q2 in order to

max
p2,q2

p2.min{q2, d2(p2)}+ ρW (bH3 , bL3 , s3) subject to q2 ≤ s2 (1.7)
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where W is the continuation payoff earned by the seller in period 3 and d2 is defined as

d2 =


bH2 if V2 < p2 ≤ pH

2

bH2 + bL2 if p2 ≤ V2

Finally, we describe the optimal decision rule for the seller and the buyers for

period 1.

In period 1, buyers in the market of the two types, choose from the following

actions in period 1 {Buy in period 1, Wait}. The ‘high’ type buyer chooses according as

In period 1, chosen action =


Buy in period 1 if p1 ≤ pH

1

Wait otherwise
(1.8)

The ‘low’ type buyer chooses according as,

In period 1, chosen action =


Buy in period 1 if p1 ≤ V2

Wait otherwise
(1.9)

where pH
1 is defined by the following equation

(V1 − pH
1 ) = Φ2(V1 − p∗2) with Φ2 =


q∗2
bH2

if V2 < p∗2 ≤ pH∗
2

q∗2
bH2 + bL2

if p∗2 ≤ V2

(1.10)

Here, the ‘high’ type buyers use a fixed point argument similar to the one discussed

above to solve for the cutoff price, pH
1 . pH

1 is thus the price the seller can charge in order



20

to make the ‘high’ type buyers indifferent between buying in period 1 and waiting for a

lower price in period 2.

At the beginning of period 1, the seller announces p1 and q1 in order to

max
p1,q1

p1.min{q1, d1(p1)}+ ρW (bH2 , bL2 , s2) subject to q1 ≤ 3 (1.11)

where W is the continuation payoff earned by the seller in period 2 and d1 is defined as

d1 =


bH1 if V2 < p1 ≤ pH

1

bH1 + bL1 if p1 ≤ V2

A subgame perfect Nash equilibrium of this game will thus consist of a strategy

profile, σ = (S, B) where S specifies a strategy on the part of the seller which satisfies

equations (1.3), (1.7) and (1.11) while B specifies strategies on the part of each buyer

who decides either to buy or to wait for a lower price in periods 1 and 2, and either

to buy or not to buy in period 3, which satisfies equations (1.1), (1.4), (1.8) for ‘high’

type buyers and equations (1.2), (1.5) and (1.9) for ‘low’ type buyers. The equilibrium

is a symmetric equilibrium in the sense that in equilibrium all buyers of the same type,

choose the same action in each period. In an equilibrium it must be the case that the

strategy of each player is optimal given the history of the game. This in turn ensures that

the strategies are credible. In order to check for subgame perfection, we consider only

unilateral deviations by the agents. With non-atomic buyers, unilateral deviations made

by them affect neither the actions of other buyers or those of the monopolist. Thus,

only unilateral deviations by the seller needs to be considered. If the seller deviates,
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the players keep following the optimal rules described above from that point of time

onwards. This means if a player discovers a history of the game at any stage, which is

not consistent with the one expected in equilibrium, the player continues to follow his

or her optimal decision rule from that time onwards.

Existence of equilibrium. In order to ensure the existence of an equilibrium for

the game described above, we consider the problems faced by the agents. The seller’s

problem involves maximization of revenue given the history of the game, subject to a

linear constraint, qi ≤ si. We should note here that prices chosen by the seller belongs to

the compact set [V2, V1] (p3 ∈ {V1, V2}) while the measure of units offered by the seller

in each period belongs to another compact set [0, si]. Since the objective function is

continuous in pi and qi and the strategy space is compact ([V2, V1]× [0, si] is compact),

we can apply the Weierstrass Theorem to show that a solution for the optimization

problem facing the seller in each period, exists. Each buyer on the other hand chooses

an action in each period which fetches the highest payoff. The payoffs available to each

buyer in any period are determined by the seller’s choice of price and measure of units

to offer for sale in the same period, and on the buyers’ own expectations of prices and

measure of units to be made available in the future. Since both the problems of the seller

and each buyer can be solved, this ensures the existence of an equilibrium for this game.

By using the backwards induction argument its possible to derive 8 possible price

paths, where in each period, the seller decides either to sell only to ‘high’ type buyers or

to sell to both ‘high’ and ‘low’ types. As the seller announces pi and qi at the beginning of

each period i, we define a pricing policy (p1, p2, p3, q1, q2, q3) which describes the prices

charged and the units offered for sale in each period.
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1.4 Candidates for Subgame Perfect Outcome

In this section, we examine the different possible pricing policies and the associ-

ated price paths from which the seller might choose, under different combinations of the

parameters V1, V2, α and ρ. Since we’re interested in decisions made by a patient seller,

we further assume that ρ → 1.

1.4.1 No ‘sale’ in any period

The first pricing policy we consider is one where the seller chooses to sell only

to ‘high’ type buyers in every period. The price charged in each period is V1, while

the measure of units offered for sale in each period is 2α. The pricing policy is thus

(V1, V1, V1, 2α, 2α, 2α) while the associated revenue earned is given by

R1 = 2V1α(1 + ρ + ρ2) (1.12)

For (V1, V1, V1, 2α, 2α, 2α) to be a subgame perfect outcome, we first need to

establish whether it is credible on the part of the seller to set pi = V1 and qi = 2α

for i = 1, 2, 3. Since the seller chooses without commitment pi and qi at the beginning

of each period, we need to check if the seller could choose to deviate profitably at the

beginning of each period for the relevant range of parameter values. For example, the

seller could choose to deviate in period 3 by announcing p3 = V2 and q3 = 3− 4α. The

required condition which ensures that no profitable deviation exists for the seller at the

beginning of period 3 is 2V1α ≥ (3− 4α)V2 ⇒ α ≥ 3V2
2(V1 + 2V2)
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1.4.2 ‘Sale’ in every period

The second pricing policy (V2, V2, V2, 2, 1, 0) yields a horizontal price path as in

case (1), but this time, the seller chooses to sell to both ‘high’ and ‘low’ type buyers in

every period. Discounted sum of revenue from this pricing policy is

R2 = 2V2 + ρV2 (1.13)

1.4.3 ‘Sale’ in the first period only

The seller could choose to hold a ‘sale’ in the first period only, where he or she

offers to charge p1 = V2 and p2 = p3 = V1. Given the price path and the measure of

units offered in the first period, q1, the measure of units to be offered in periods 2 and

3 should be q2 = bH2 and q3 = s3 (if s3 < bH3 ) or bH3 (if bH3 < s3).

Lemma 1.1. With p1 = V2 and p2 = p3 = V1 if α ∈ [
1
4
,
V2
V1

], then with ρ → 1 the seller

offers q1 =
3− 6α

1− α
, q2 = bH2 =

α + 2α2

1− α
and q3 = s3 = bH3 = 2α and if α <

1
4
≤ V2

V1
,

then he or she offers q1 = 2, q2 = q3 = 2α. If α >
V2
V1

, then with ρ → 1 the seller offers

q1 = 0, q2 = bH2 = 4α and q3 = s3 = 2α.

Proof. See Appendix 1.

From the above lemma we find that with α ≤ V2
V1

, the seller chooses to offer

measure q1 units in the first period in a way which ensures that s3 = bH3 , such that the

seller will have no incentive to hold a ‘sale’ in the last period. Discounted sum of revenue

earned is thus
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R3 =


3− 6α

1− α
V2 + ρ

α + 2α2

1− α
V1 + 2ρ2V1α with

1
4
≤ α ≤ V2

V1

2V2 + 2ρV1α(1 + ρ) if α <
1
4
≤ V2

V1

(1.14)

If α >
V2
V1

, the sum of discounted revenue earned is given by

R1
3 = 4ρV1α + 2ρ2V1α (1.15)

Thus with α high enough, the seller chooses to offer zero measure of units for

‘sale’ in the first period.

1.4.4 ‘Sale’ in the first two periods

Another strategy for the seller could be to offer a measure of units at price V2 in

the first two periods, and to sell to ‘high’ valuation buyers in the last period. Given the

price path and the measure of units offered in the first and second periods (q1 and q2

respectively), the seller should offer q3 = s3 (if s3 < bH3 ) or bH3 (if bH3 < s3).

Lemma 1.2. With p1 = p2 = V2 and p3 = V1 if α ∈ [
1
4
,
V2
V1

], then with ρ → 1 the seller

offers q1 =
3− 6α

1− α
, q2 = 0 and q3 = s3 = bH3 =

3α

1− α
and if α <

1
4
≤ V2

V1
then he

or she offers q1 = 2, q2 =
1− 4α

1− α
and q3 = s3 = bH3 =

3α

1− α
. On the other hand, if

α >
V2
V1

, then with ρ → 1 the seller offers q1 = 0, q2 = 0 and q3 = 6α.

Proof. See Appendix 1.

Once again from the above lemma we find that with α ≤ V2
V1

, the seller chooses

to offer measure q1 and q2 units in the first two periods respectively in a way which
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ensures that s3 = bH3 , such that the seller will have no incentive to hold a ‘sale’ in the

last period. Discounted sum of revenue earned is thus

R4 =


3− 6α

1− α
V2 + ρ2 3α

1− α
V1 if

1
4
≤ α ≤ V2

V1

2V2 + ρ
1− 4α

1− α
V2 + ρ2 3α

1− α
V1 if α <

1
4
≤ V2

V1

(1.16)

If
V2
V1

< α <
1
2
, revenue earned is given by R1

4 = 6ρ2V1α.

Once again if α is large enough, the seller chooses to offer measure zero units for

‘sale’ in the first two periods.

Proposition 1. If α <
1
4
≤ V2

V1
, ρ → 1 then (V2, V1, V1, 2, 2α, 2α) cannot be a subgame

perfect outcome.

Proof. See Appendix 2.

Proposition 2. If α ∈ [
1
4
,
V2
V1

], ρ → 1 then (V2, V2, V1,
3− 6α

1− α
, 0,

3α

1− α
) cannot be a

subgame perfect outcome.

Proof. See Appendix 2.

Proposition 3. If α ≤ V2
V1

, ρ → 1 then (V2, V2, V2, 2, 1, 0) cannot be subgame perfect.

Proof. See Appendix 2.

1.4.5 ‘Sale’ in the first and last period

In case the seller chooses to hold a ‘sale’ in the first and last period, the cor-

responding price path is inverted U-shaped. The seller charges p1 = p3 = V2 and
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p2 = pH
2 > V2 in order to make the ‘high’ type buyers indifferent between buying the

good in period 2 and waiting for the lower price of V2 in the next period. Given the price

path and the measure of units offered for sale in period 1, q1, the seller offers q2 = bH2

and q3 = s3.

Lemma 1.3. With ρ → 1, p1 = p3 = V2 and p2 = pH
2 the seller offers q1 = 0, q2 =

bH2 = 4α and q3 = s3 = 3− 4α ∀ V1 > V2.

Proof. See Appendix 1.

Sum of discounted revenue earned by holding a ‘sale’ in the first and last period

is thus given by the following equation

R5 = 4ρα

[
V1

(
1− 3− 4α

6− 4α

)
+

3− 4α

6− 4α
V2

]
+ ρ2(3− 4α)V2 (1.17)

In order to rule out profitable deviations in period 3, the seller must have no

incentive to charge p3 = V1. The required condition to ensure this is (3 − 4α)V2 >

2V1α ⇒ α <
3V2

2(V1 + 2V2)
. Similarly, we also have to rule out profitable deviations in

period 2, given the history of the game p1 = V2 and q1 = 0.

Proposition 4. With ρ → 1
(

V2, V1

(
1− 3− 4α

6− 4α

)
+

3− 4α

6− 4α
V2, V2, 0, 4α, 3− 4α

)
is

never subgame perfect.

Proof. See Appendix 2.

1.4.6 ‘Sale’ in the second period only

For the strategy involving a ‘sale’ in the second period only, the price path which

is generated is U-shaped. Since the seller holds a sale in the second period only, he or she
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charges p1 = pH
1 (to make ‘high’ type buyers indifferent between waiting and purchasing

in period 1), p2 = V2 and p3 = V1. Given the price path and the measure of units offered

in periods 1 and 2 as q1 and q2 respectively, the seller offers q3 = s3 (if s3 < bH3 ) or bH3

(if bH3 < s3).

Lemma 1.4. With p1 = pH
1 , p2 = V2 and p3 = V1 if α ≤ 2V2

V1 + V2
, then with ρ → 1 the

seller offers q1 = 2α, q2 =
6α2 − 15α + 6

2(1− α)
and q3 = s3 = bH3 =

5α− 2α2

2(1− α)
. On the other

hand, if α >
2V2

V1 + V2
, then with ρ → 1 the seller offers q1 = 2α, q2 = 0 and q3 = 4α.

Proof. See Appendix 1.

As was the case with strategies involving ‘sales’ in the first period only or the

first two periods, the seller offers measure q1 and q2 units in the first and second period

in a way which ensures that if α ≤ 2V2
V1 + V2

and ρ → 1, s3 = bH3 such that there is no

incentive for the seller to hold a ‘sale’ in the last period. With α >
2V2

V1 + V2
the seller

chooses to offer measure zero units for ‘sale’ in the second period.

If α ≤ 2V2
V1 + V2

, then with ρ → 1 sum of discounted revenue earned is

R6 =

[
V1(1− 6α2 − 15α + 6

2(1− α)(4− 2α)
) +

6α2 − 15α + 6
2(1− α)(4− 2α)

V2

]
2α + ρ

6α2 − 15α + 6
2(1− α)

V2

+ ρ2 5α− 2α2

2(1− α)
V1 (1.18)

If α >
2V2

V1 + V2
, sum of discounted revenue earned is R1

6 = 2V1α + ρ24V1α.



28

Proposition 5. If α ∈
[
1
4
,
V2
V1

]
, then with ρ → 1

[
V1(1− 6α2 − 15α + 6

2(1− α)(4− 2α)
) +

6α2 − 15α + 6
2(1− α)(4− 2α)

V2, V2, V1, 2α,
6α2 − 15α + 6

2(1− α)
,
5α− 2α2

2(1− α)

]

cannot be subgame perfect.

Proof. See Appendix 2.

1.4.7 ‘Sale’ in the last two periods

For strategies involving ‘sales’ in the last two periods, the seller charges p1 =

pH
1 , p2 = p3 = V2 and offers q1 = 2α, q2 = 3− 2α, q3 = 0. These are the only qis which

are time consistent. At the beginning of period 2, given the history of the game p1 = pH
1

and q1 = 2α and that p2 = p3 = V2, the seller will choose to offer q2 = s2 = 3−2α since

ρ < 1. Sum of discounted revenue earned is thus

R7 =
[
V1(1− 3− 2α

4− 2α
) +

3− 2α

4− 2α
V2

]
2α + ρ(3− 2α)V2 (1.19)

Proposition 6. If α ≤ V2
V1

<
2V2

V1 + V2
, ρ → 1 then the pricing policy involving ‘sale’ in

the last two periods cannot be subgame perfect.

Proof. See Appendix 2.

1.4.8 ‘Sale’ in the last period only

For ‘sale’ in the last period only, the seller sets p1 = pH
1 , p2 = pH

2 to ensure that

‘high’ type buyers are indifferent between buying the good and waiting for the price V2
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in the last period. The seller offers q1 = q2 = 2α and q3 = s3 = 3 − 4α. In this case,

these are the only qis which are time consistent. Given that p1 = pH
1 , p2 = pH

2 and that

q1 = q2 = 2α, the seller will choose to offer q3 = s3. Sum of discounted revenue is thus

R8 =
[
V1(1− 3− 4α

6− 4α
) +

3− 4α

6− 4α
V2

]
2α+ρ2α

[
V1(1− 3− 4α

6− 4α
) +

3− 4α

6− 4α
V2

]
+ρ2(3−4α)V2

(1.20)

Proposition 7. If α ≤ V2
V1

, ρ → 1 then
[
V1(1− 3− 4α

6− 4α
) +

3− 4α

6− 4α
V2, V1(1− 3− 4α

6− 4α
) +

3− 4α

6− 4α
V2, V2, 2α, 2α, 3− 4α

]
cannot be subgame perfect.

Proof. See Appendix 2.

Proposition 8. If α ≤ V2
V1

, ρ → 1 then (V1, V1, V1, 2α, 2α, 2α) cannot be subgame per-

fect.

Proof. See Appendix 2.

So far, for a particular range of parameter values (α ≤ V2
V1

, ρ → 1) we have shown

which pricing policies cannot be subgame perfect. Now we turn our attention to policies

which are subgame perfect for the same range of parameter values.

Proposition 9. If α ∈
[
1
4
,
V2
V1

]
, ρ → 1 then (V2, V1, V1,

3− 6α

1− α
,
α + 2α2

1− α
, 2α) is sub-

game perfect.

Proof. See Appendix 3.
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Proposition 10. If α <
1
4
(for V1 ≤ 4V2) and α ≤ V2

V1
(for V1 > 4V2) and

6α2 − 7α + 4
α(4α + 2)

<

V1
V2

(with ρ → 1) then the pricing policy involving a ‘sale’ in the second period only is

subgame perfect.

Proof. See Appendix 3.

Given the set of conditions in proposition 10 under which its possible to show that

the pricing policy involving a ‘sale’ in the second period only is subgame perfect, we can

derive the range of parameter values in which the U-shaped price path is obtainable. To

do so, we should first note that the term
6α2 − 7α + 4

α(4α + 2)
is monotonically decreasing in α

and that if α̂ is defined as the value of α which makes
6α2 − 7α + 4

α(4α + 2)
=

V1
V2

, then ∀α > α̂

6α2 − 7α + 4
α(4α + 2)

<
V1
V2

. Thus the above proposition can be re-stated as follows:

Given that V1 ≤ 4V2, if α̂ < α <
1
4

(where α̂ is defined as above), then the

pricing policy involving a ‘sale’ in the second period only is subgame perfect. Similarly

given V1 > 4V2, if α̂ < α ≤ V2
V1

then the policy generating a U-shaped price path is

subgame perfect.

Since
6α2 − 7α + 4

α(4α + 2)
> 3.5 for α <

1
4
, the lowest value of V1 which can support a

U is greater than 3.5V2. Again since
6α2 − 7α + 4

α(4α + 2)
<

V1
V2

and α ≤ V2
V1

(i.e. V1 ≤
1
α

V2), we

require that
6α2 − 7α + 4

4α + 2
< 1 ⇒ α > 0.205. Thus the range of values of α in which the

U-shaped price path might be found is 0.205 < α < 0.25. Since
6α2 − 7α + 4

α(4α + 2)
< 4.87 for

α > 0.205 the corresponding range of values of V1 which can support a U-shaped price

path is 3.5V2 < V1 < 4.87V2. If the values of these parameters are outside these intervals,
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the pricing policy involving a ‘sale’ in the second period only will not be subgame perfect.

This brings us to our next proposition.

Proposition 11. If α <
1
4

(for V1 ≤ 4V2) and α ≤ V2
V1

(for V1 > 4V2) and
6α2 − 7α + 4

α(4α + 2)
>

V1
V2

(with ρ → 1) then (V2, V2, V1, 2,
1− 4α

1− α
,

3α

1− α
) is subgame perfect.

Proof. See Appendix 3.

If α >
V2
V1

, ρ → 1 we can show that the seller offers q1 = 0 for the policy involving

‘sale’ in the first period only and q1 = q2 = 0 for the pricing policy involving ‘sales’ in the

first two periods (from lemmas 1 and 2 respectively). Thus the seller chooses to offer zero

measure of units in periods where he or she chooses to hold a ‘sale’. From proposition 4,

we already know that the strategy involving a ‘sale’ in the first and last period cannot be

subgame perfect for the same range of parameter values. If α ∈
(

V2
V1

,
2V2

V1 + V2

]
, ρ → 1

following the proofs of propositions 6 and 7 we can also show, that strategies involving

‘sale’ in the last period and last two periods can never be subgame perfect. Finally

following the proof of proposition 3, we can show that the strategy involving a ‘sale’ in

every period cannot be subgame perfect for the relevant range of parameter values.

For the region with α >
V2
V1

we first show that if α ∈
(

V2
V1

,
2V2

V1 + V2

]
, ρ → 1

strategies involving a ‘sale’ in the first period only and a ‘sale’ in the second period only

can be subgame perfect. Next, we show that if α >
2V2

V1 + V2
, ρ → 1 the only strategy

which is subgame perfect is the one involving no ‘sale’ in any period. We can further

check that if the seller could precommit and if α >
V2
V1

, ρ → 1 then he or she would

choose the pricing policy (V1, V1, V1, 2α, 2α, 2α). Since the seller cannot precommit, he
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or she is unable to do his or her best and is thus restricted to choosing from policies

which involve a ‘sale’ in the first period only or a ‘sale’ in the second period only.

Proposition 12. If α ∈
(

V2
V1

,
2V2

V1 + V2

]
, ρ → 1 and α ≥ 3V2

2(V1 + 2V2)
, then (V2, V1, V1,

0, 4α, 2α) is subgame perfect.

Proof. See Appendix 3.

Since the seller offers q1 = 0, any price in period 1 can be supported as a Subgame

Perfect outcome. Thus, if α ∈
(

V2
V1

,
2V2

V1 + V2

]
, ρ → 1 and α ≥ 3V2

2(V1 + 2V2)
, then

(p1, V1, V1, 0, 4α, 2α) is subgame perfect.

Proposition 13. If α ∈
(

V2
V1

,
2V2

V1 + V2

]
, ρ → 1 and α <

3V2
2(V1 + 2V2)

, then (V1(1 −

6α2 − 15α + 6
2(1− α)(4− 2α)

)+
6α2 − 15α + 6

2(1− α)(4− 2α)
V2, V2, V1, 2α,

6α2 − 15α + 6
2(1− α)

,
5α− 2α2

2(1− α)
) is subgame

perfect.

Proof. See Appendix 3.

Proposition 14. If α >
2V2

V1 + V2
, ρ → 1 then (V1, V1, V1, 2α, 2α, 2α) will be subgame

perfect.

Proof. See Appendix 3.

In this case, if α >
2V2

V1 + V2
the seller chooses not to hold a ‘sale’ in any period.

Figure 3.1 shows the pricing policies which are subgame perfect for the different com-

binations of parameter values. For higher values of V1 combined with high values for

α, the seller chooses not to hold a ‘sale’ in any period, such that only ‘high’ valuation

buyers get to purchase the good. For α ∈
(

3V2
2(V1 + 2V2)

,
2V2

V1 + V2

]
the seller chooses
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to offer q1 = 0, q2 = 4α, q3 = 2α and to charge any price p1, p2 = p3 = V1 which is

equivalent to not offering to hold a ‘sale’ in any period. For the same range of parame-

ter values, the seller cannot choose the pricing policy (V1, V1, V1, 2α, 2α, 2α) since there

exists a profitable deviation for the seller by holding a ‘sale’ in the second period and

to sell to ‘high’ valuation buyers in the last period. Had the seller been able to credibly

precommit, he or she would have chosen the pricing policy (V1, V1, V1, 2α, 2α, 2α). For

lower values of α, the seller chooses to hold a ‘sale’ in at least one period, and being

patient, chooses to hold a ‘sale’ in the second period. Finally, for the lowest values of V1

and α, the seller chooses to have a ‘sale’ in two periods and thus charges price V2 for the

first two periods. Had we considered cases where ρ is much smaller than 1, we would

have found combinations of V1 and α which make (V2, V2, V2, 2, 1, 0) subgame perfect.

1.5 Extensions

The basic three-period model described above needs to be extended to a richer

version in several steps, with the purpose of analyzing possible optimal price paths which

might be generated in each case.

One possible extension could be to assume that the parameter α, which describes

the measure of ‘high’ type buyers entering the market in each period, increases over time,

instead of remaining constant (as it does in this model). With a larger measure of higher

valuation customers entering the market in each period, the focus of the exercise will be

the new range of parameter values for which pricing policies generating U-shaped price

paths are subgame perfect.
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The model should be extended to T (T > 3) periods, where a single seller offers a

finite measure of units to a continuum of buyers, each of two possible types. Once again,

the range of parameter values (if any) for which the optimal price path is U-shaped will

be of particular interest. Here it should be noted that we already know the shape of the

optimal price path for a similar model in a paper by Conlisk, Gerstner and Sobel (CGS,

1984). In their model, a single seller sells a durable good (without a capacity constraint)

in a market over an infinite horizon where a cohort of N buyers enters the market in each

period, with α fraction with a high valuation and 1−α fraction with a low valuation for

the product. The equilibrium described involves periodic ‘sales’ by the seller who once in

a while reduces the price to enable buyers with a low valuation to buy the product, but

otherwise sets the price low enough so that only buyers with a high valuation can make

a purchase. The optimal price path is hence cyclic. McAfee and Wiseman (2003) while

concluding their paper, make the prediction that the presence of capacity constraint in

the CGS model will enhance the seller’s ability to dynamically price discriminate and

lengthen the price cycle.

The U.S. airline market is far from being a monopoly (except on certain routes

where only a single carrier offers flights). A model with multiple sellers thus needs to

be introduced. Sobel’s extension (1984) of the Conlisk, Gerstner and Sobel paper serves

as a useful reference. In this paper he shows that the motivation to hold ‘sales’ remains

in a model with n sellers selling a homogeneous product to a market in which in each

period a new group of N buyers enters the market, α fraction being of high valuation

and 1− α fraction of low valuation.
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The basic model in the case where each seller faces a capacity constraint and offers

units of a durable good for sale over a finite time horizon should involve a three-period

model, with 2 sellers offering units of finite measure to a continuum of buyers, each of

whom might be one of two possible types.3 In this case, the price offered by the rival

seller in each period should be the outside option available to each buyer. However, we

also require that the price offered by the rival seller to be strictly lower than the price

offered by the reference seller for each buyer in the market to have an outside option in

each period (in the case with more than 2 sellers, we need the lowest price offered by any

of the other sellers to be strictly lower than price offered by the reference seller in each

period). In a three-period model, if we have 2 sellers with identical costs, there seems

to be no reason for the 2 sellers to charge different prices in period 1. But this in turn

means that buyers will not have an outside option in period 1. In period 2, however,

prices will vary between the 2 sellers depending on the measure of units each sold in

period 1.

In a separate chapter, which is an empirical extension of this one, we collect data

on airline ticket prices for 30 routes from an online travel agent. Since our theoretical

model has a single seller, we consider only those routes where a single airline offers non-

stop flights. This however does not preclude the selected routes from having multiple

carriers which offer one-stop or two-stop flights. Routes where a single airline offered

non-stop flights which departed frequently on any given day were avoided to obviate the

effects of competition between flights. We collect prices for such routes twice a day for

3An alternate specification involving an extension of a paper by Kreps and Scheinkman (1983)
could be a three-period game, where sellers choose capacities in period 1, and select prices
simultaneously in periods 2, 3 and 4.
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approximately 15 weeks, check whether the proportion of ‘high’ valuation buyers has

any effect on the slope of the price path and empirically test the theoretical predictions

of this chapter.

1.6 Conclusion

We construct a three-period model in which a single seller facing a capacity con-

straint offers a finite measure of units of a non-durable good to a continuum of buyers

(each of whom might be one of two possible types). The seller chooses (without pre-

commitment) prices and measure of units to offer for sale over the 3 periods in order to

maximize discounted sum of revenue earned. We then try to determine possible shapes

of the corresponding optimal price path for different values of the parameters. We find

that for certain combinations of the parameters in some specific range, the optimal price

path is U-shaped. For other combinations, we find that the optimal price path is either

non-decreasing (which is consistent with a result in a paper by Stavins) or horizontal. It

has some obvious shortcomings in the sense that it does not consider optimal price paths

of models with more than three periods and more than one seller. Further extensions

will be attempted in these directions.
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Appendix 1

Proof of lemma 1.

Given that p1 = V2, p2 = p3 = V1 and given the measure of units offered in

period 1 q1 ∈ [0, 2], the seller should offer q2 = bH2 and q3 = s3 (if s3 < bH3 ) or bH3

(if bH3 < s3). Given the price path and that the seller offers measure q1 in period 1,

q1 = m1 such that bH2 = 2α+2α(1− q1
2

) = α(4− q1) < s2 = 3− q1 ∀α, since q1 ∈ [0, 2].

Since all ‘high’ type buyers active in the market in period 2 purchase the good in period

2, m2 = bH2 such that bH3 = 2α while s3 = 3 − q1 − α(4 − q1). With s3 < bH3 , revenue

earned is given by

R = q1V2 + ρα(4− q1)V1 + ρ2[3− q1 − α(4− q1)]V1

Differentiating partially with respect to q1,

∂R

∂q1
= V2 − ραV1 − ρ2(1− α)V1

Since ρ → 1, we take ρ = 1 and appeal to continuity to get
∂R

∂q1
= V2 − V1 < 0.

With bH3 < s3, revenue earned is given by

R = q1V2 + ρα(4− q1)V1 + 2ρ2V1α

Differentiating partially with respect to q1,
∂R

∂q1
= V2 − ραV1
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Since ρ → 1, we take ρ = 1 and appeal to continuity to get

∂R

∂q1
= V2 − αV1 > 0 if α <

V2
V1

With α =
V2
V1

,
∂R

∂q1
= V2(1 − ρ) > 0. Further, we can check that s3 < bH3 iff

q1 >
3− 6α

1− α
= θ (suppose).

Thus with q1 = θ + ε, for any ε > 0, s3 < bH3 ⇒ ∂R

∂q1
< 0. Again with q1 = θ − ε,

for any ε > 0, bH3 < s3 � with α ≤ V2
V1

,
∂R

∂q1
> 0. Thus if α ≤ V2

V1
, the seller should offer

q1 = θ =
3− 6α

1− α
, where θ ∈ (0, 3) for all α ∈ (0, 2).

Now, θ =
3− 6α

1− α
> 2 for all α <

1
4
. This in turn implies that q1 < θ � bH3 < s3;

if α ≤ V2
V1

,
∂R

∂q1
> 0 ⇒ q1 = 2. Hence with α <

1
4
≤ V2

V1
, q1 = 2, q2 = 2α and q3 =

bH3 = 2α < 1− 2α = s3. On the other hand, if α ∈
[
1
4
,
V2
V1

]
, then q1 = θ =

3− 6α

1− α
≤ 2,

q2 = bH2 = α(4− q1) =
α + 2α2

1− α
and q3 = s3 = bH3 = 2α.

Finally, with α >
V2
V1

, if bH3 < s3 ⇒
∂R

∂q1
= V2 − αV1 < 0. In that case,

∂R

∂q1
< 0

with s3 ≷ bH3 , such that q1 = 0, q2 = bH2 = 4α and q3 = bH3 = 2α < 3− 4α = s3. Thus

if α >
V2
V1

, q1 = 0, q2 = bH2 = 4α and q3 = s3 = 2α.

Proof of lemma 2. Part (1) In part 1 of this proof, we consider the case with α ≤ V2
V1

.

Given that p1 = p2 = V2, p3 = V1 and given the measure of units offered in

period 1, q1 ∈ [0, 2], and the measure of units offered in period 2, 0 ≤ q2 ≤ s2 = 3− q1,

the seller should offer q3 = s3 (if s3 < bH3 ) or bH3 (if bH3 < s3). Given the price path

and that the seller offers measure q1 in period 1, bH2 = α(4 − q1), bL2 = (1 − α)(4 − q1)
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� bH2 + bL2 = 4 − q1. Given that measure of units offered in period 2 is q2(= m2),

bH3 = 2α + bH2

(
1− q2

bH2 + bL2

)
= 2α + α(4 − q1 − q2) while s3 = 3 − q1 − q2. First,

we find the optimal q2, which is chosen at the beginning of period 2. With s3 < bH3 ,

revenue earned from period 2 onwards is given by

R = q2V2 + ρ(3− q1 − q2)V1

Differentiating partially with respect to q2,
∂R

∂q2
= V2 − ρV1

Since ρ → 1, we take ρ = 1 and appeal to continuity to get
∂R

∂q2
= V2 − V1 < 0. With

bH3 < s3, revenue earned from period 2 onwards is given by

R = q2V2 + ρ[2α + α(4− q1 − q2)]V1

Differentiating partially with respect to q2,
∂R

∂q2
= V2 − ραV1

Since ρ → 1, we take ρ = 1 and appeal to continuity to get

∂R

∂q2
= V2 − αV1 > 0 if α <

V2
V1

With α =
V2
V1

,
∂R

∂q2
= ρV2(1 − ρ) > 0. Further, we can check that s3 < bH3 iff q2 >

3− 6α− q1(1− α)
1− α

= θ (suppose).

Thus with q2 = θ + ε, where ε > 0, s3 < bH3 ⇒ ∂R

∂q2
< 0. Again with q2 = θ − ε,

where ε > 0, bH3 < s3 � with α ≤ V2
V1

,
∂R

∂q2
> 0. Thus if α ≤ V2

V1
, the seller should offer

q2 = θ =
3− 6α− q1(1− α)

1− α
=

3− 6α

1− α
− q1 ⇒ q1 + q2 =

3− 6α

1− α
= γ (suppose).
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This implies that given q1, the seller will always choose a q2 � q1 + q2 =
3− 6α

1− α
.

With α ∈ [
1
4
,
V2
V1

], we find that γ =
3− 6α

1− α
≤ 2 � with ρ < 1, the seller chooses

q1 =
3− 6α

1− α
, q2 = 0 and q3 = s3 = bH3 =

3α

1− α
. If α <

1
4
≤ V2

V1
, γ =

3− 6α

1− α
> 2 � with

ρ < 1 the seller chooses q1 = 2, q2 =
3− 6α

1− α
− 2 =

1− 4α

1− α
and q3 = s3 = bH3 =

3α

1− α
.

Part (2) In the second part, we consider the case with α >
V2
V1

.

With α >
V2
V1

, if bH3 < s3 ⇒
∂R

∂q2
= V2 − αV1 < 0. In that case,

∂R

∂q2
< 0 with

s3 ≷ bH3 , such that q2 = 0. Given that q2 = 0 and s3 < bH3 revenue earned over the 3

periods is given by

R = q1V2 + ρ2(3− q1)V1

Differentiating partially with respect to q1,
∂R

∂q1
= V2−ρ2V1. Since ρ → 1, we take ρ = 1

and appeal to continuity to get
∂R

∂q1
= V2 − V1 < 0. With q2 = 0 and bH3 < s3, revenue

earned is given by

R = q1V2 + ρ2[2α + α(4− q1)]V1

Differentiating partially with respect to q1,
∂R

∂q1
= V2 − ρ2αV1. With ρ → 1, we take

ρ = 1 and appeal to continuity to get

∂R

∂q1
= V2 − αV1 < 0 with α >

V2
V1

This implies that
∂R

∂q1
< 0 with s3 ≷ bH3 � q1 = 0. Thus if α >

V2
V1

, then with ρ → 1 we

get q1 = 0, q2 = 0, q3 = bH3 = 6α.
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Proof of lemma 3.

Since the seller offers measure q1 units in period 1 at price V2, bH2 = α(4 − q1).

Since q2 = bH2 and p2 = pH
2 , bH3 = 2α while bL3 = 2(1−α)(1− q1

2
)+4(1−α) = 6(1−α)−

q1(1−α). Thus bH3 +bL3 = 6−4α−q1(1−α) and s3 = 3−q1−α(4−q1) = 3−4α−q1(1−α).

With s3 ≤ bH3 the seller will always choose not to hold a ‘sale’ in the last period, such

that to rule out profitable deviations for the seller in the last period, we require that

q3 = s3 > bH3 and that s3V2 > bH3 V1. Thus with q3 = s3, sum of discounted revenue

earned is

R = q1V2 +ρα(4−q1)
[
V1

(
1− 3− 4α− q1(1− α)

6− 4α− q1(1− α)

)
+

3− 4α− q1(1− α)
6− 4α− q1(1− α)

V2

]
+

ρ2[3− 4α− q1(1− α)]V2

= q1V2 + ρα(4− q1)[V1 − (V1 − V2)y] + ρ2[3− 4α− q1(1− α)]V2

where y =
3− 4α− q1(1− α)
6− 4α− q1(1− α)

.

Differentiating partially with respect to q1,

∂R

∂q1
= V2 − ραV1 + ρα(V1 − V2)y − ρα(4− q1)(V1 − V2)

∂y

∂q1
− ρ2(1− α)V2

where
∂y

∂q1
=

3(α− 1)
[6− 4α− q1(1− α)]2

< 0

Since ρ → 1, we take ρ = 1 and appeal to continuity to get

∂R

∂q1
= −α(V1 − V2) + α(V1 − V2)y − α(4− q1)(V1 − V2)

∂y

∂q1

Substituting q1 = 0,

∂R

∂q1
= (V1 − V2)

[
−α + α

3− 4α

6− 4α
− 4α

3(α− 1)
(6− 4α)2

]
< 0 since

[
−α + α

3− 4α

6− 4α

−4α
3(α− 1)
(6− 4α)2

]
< 0 ∀ α ∈ (0, 1/2).

Differentiating partially again with respect to q1,
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∂2R

∂q2
1

= 2α(V1 − V2)
∂y

∂q1
− α(4− q1)(V1 − V2)

∂2y

∂q2
1

= (V1 − V2)[A−B]

where, A = 2α

[
−3(1− α)

{6− 4α− q1(1− α)}2

]
< 0

and B = α(4− q1)

[
6(1− α){6− 4α− q1(1− α)}(−(1− α))

{6− 4α− q1(1− α)}4

]
< 0.

Assume that |A| < |B| �

2α
3(1− α)

{6− 4α− q1(1− α)}2
< α(4− q1)

6(1− α){6− 4α− q1(1− α)}(1− α)
{6− 4α− q1(1− α)}4

⇒ 12 < 8 which is a contradiction. Thus |A| > |B| such that

∂2R

∂q2
1

= (V1 − V2)[A−B] < 0 ∀q1

We thus find that the first partial derivative is negative at q1 = 0 and that the

second partial derivative is negative everywhere. This implies that the optimal q1 = 0.

With ρ → 1, the seller should thus offer q1 = 0, q2 = bH2 = 4α and q3 = s3 = 3− 4α.

Proof of lemma 4.

Part (1). If α ≤ 2V2
V1 + V2

Given that the seller charges V2 in the second period only, and that he or she

offers measure q1, q2 in periods 1 and 2 respectively and q3 = s3 (if s3 < bH3 ) or bH3 (if

bH3 < s3), the seller should charge p1 = pH
1 = V1(1− q2

4− q1
) +

q2
4− q1

V2.

bH2 = 4α − q1, bL2 = 4(1 − α) while bH3 = 2α + (4α − q1)
(

1− q2
4− q1

)
and

s3 = 3− q1 − q2.
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First, we solve for the optimal q2 as a function of q1, where q2 is chosen at the

beginning of period 2. With s3 < bH3 , sum of discounted revenue earned from period 2

onwards is

R = q2V2 + ρ(3− q1 − q2)V1

Differentiating partially with respect to q2,
∂R

∂q2
= V2 − ρV1

Taking ρ = 1 and appealing to continuity provides
∂R

∂q2
= V2 − V1 < 0

With bH3 < s3,

R = q2V2 + ρ

[
2α + (4α− q1)

(
1− q2

4− q1

)]
V1

Differentiating partially with respect to q2,
∂R

∂q2
= V2 − ρ

4α− q1
4− q1

V1

Taking ρ = 1 and appealing to continuity provides

∂R

∂q2
= (4− q1)V2 − (4α− q1)V1 > 0 if α ≤ (4− q1)V2 + q1V1

4V1
.

Further s3 < bH3 if q2 >
12− 24α + 6αq1 − 3q1

4(1− α)
= θ (suppose). If q2 = θ + ε, for any

ε > 0, s3 < bH3 �
∂R

∂q2
< 0 while if q2 = θ − ε, for any ε > 0, bH3 < s3 ⇒

∂R

∂q2
> 0. Thus

if α ≤ V2
V1

, the seller chooses q2 =
12− 24α + 6αq1 − 3q1

4(1− α)
(with

∂q2
∂q1

=
6α− 3

4(1− α)
< 0).

Substituting the value of q2 into the revenue function, with s3 < bH3

R = [V1 − (V1 − V2)y]q1 + ρq2V2 + ρ2(3− q1 − q2)V1

where y =
q2

4− q1
such that

∂y

∂q1
=

(4− q1)
∂q2
∂q1

+ q2

(4− q1)2
= 0.
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Differentiating partially with respect to q1 yields

∂R

∂q1
= V1 − (V1 − V2)q1

∂y

∂q1
− (V1 − V2)y + ρ

∂q2
∂q1

V2 − ρ2V1 − ρ2∂q2
∂q1

V1

Taking ρ = 1, we find that
∂R

∂q1
= 0 ∀q1.

Since
∂

∂ρ
(
∂R

∂q1
) =

∂q2
∂q1

V2 − 2ρV1 − 2ρ
∂q2
∂q1

V1 < 0 for ρ = 1 and ∀α, it implies that

with ρ → 1,
∂R

∂q1
> 0 ∀q1 � q1 = 2α.

Substituting value of q2 into the revenue function with bH3 < s3 sum of discounted

revenue earned is

R = [V1 − (V1 − V2)y]q1 + ρq2V2 + ρ2
[
2α + (4α− q1)

(
1− q2

4− q1

)]
V1

where y =
q2

4− q1
such that

∂y

∂q1
=

(4− q1)
∂q2
∂q1

+ q2

(4− q1)2
= 0.

Differentiating partially with respect to q1 yields

∂R

∂q1
=V1 − (V1 − V2)q1

∂y

∂q1
− (V1 − V2)y + ρ

∂q2
∂q1

V2 − ρ2
(

4− q1 − q2
4− q1

)
V1

+ ρ2(4α− q1)

(4− q1)(−1− ∂q2
∂q1

) + 4− q1 − q2

(4− q1)2

V1

Taking ρ = 1, we find that
∂R

∂q1
= 0 ∀q1.

Since
∂

∂ρ
(
∂R

∂q1
) =

∂q2
∂q1

V2− 2ρ(1− y)V1 < 0 for ρ = 1 and ∀α, it implies that with

ρ → 1,
∂R

∂q1
> 0 ∀q1 � q1 = 2α.

Substituting q1 = 2α into q2 =
12− 24α + 6αq1 − 3q1

4(1− α)
provides q2 =

6α2 − 15α + 6
2(1− α)

,
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q3 = s3 = bH3 =
5α− 2α2

2(1− α)
.

Thus the required condition for q1 = 2α, q2 =
6α2 − 15α + 6

2(1− α)
, q3 =

5α− 2α2

2(1− α)
is: α ≤

(4− q1)V2 + q1V1
4V1

, ρ → 1 ⇒ α ≤ 2V2
V1 + V2

, ρ → 1

Part (2). If α >
2V2

V1 + V2

From part (1) we find that if α >
(4− q1)V2 + q1V1

4V1
, ρ → 1 the seller offers q2 = 0.

Substituting the value of q2 into the revenue function for s3 < bH3

R = q1V1 + ρ2(3− q1)V1

Differentiating partially with respect to q1,
∂R

∂q1
= V1(1− ρ2) > 0 � q1 = 2α

Substituting the value of q2 into the revenue function for bH3 < s3

R = q1V1 + ρ2(6α− q1)V1

Differentiating partially with respect to q1,
∂R

∂q1
= V1(1− ρ2) > 0 � q1 = 2α.

Substituting the value of q1 into the required condition α >
(4− q1)V2 + q1V1

4V1
, ρ →

1 ⇒ α >
2V2

V1 + V2
, ρ → 1 such that the seller offers q1 = 2α, q2 = 0 and q3 = 4α if

α >
2V2

V1 + V2
, ρ → 1.
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Appendix 2

Proof of proposition 1.

For (V2, V1, V1, 2, 2α, 2α) to be subgame perfect for α <
1
4
≤ V2

V1
, there should not

exist any profitable deviation for the seller in any period. This implies that the sum of

discounted revenue earned from (V2, V1, V1, 2, 2α, 2α) should be greater than that earned

from (V2, V1, V1, 2,
1− 4α

1− α
,

3α

1− α
). The required condition is thus

2V2 + 2ρV1α(1 + ρ) > 2V2 + ρ
1− 4α

1− α
V2 + ρ2 3α

1− α
V1

Since ρ → 1, we take ρ = 1 and appeal to continuity to get

4V1α >
1− 4α

1− α
V2 +

3α

1− α
V1 ⇒ α >

V2
V1

which is a contradiction to α ≤ V2
V1

. Thus if α <
1
4
≤ V2

V1
and ρ → 1, (V2, V1, V1, 2, 2α, 2α)

cannot be a subgame perfect outcome.

Proof of proposition 2.

For
(

V2, V2, V1,
3− 6α

1− α
, 0,

3α

1− α

)
to be subgame perfect for α ∈

[
1
4
,
V2
V1

]
, there

should not exist any profitable deviation for the seller in any period. This implies that the

sum of discounted revenue earned from
(

V2, V2, V1,
3− 6α

1− α
, 0,

3α

1− α

)
should be greater

than that earned from

(
V2, V1, V1,

3− 6α

1− α
,
α + 2α2

1− α
, 2α

)
. The required condition is

3− 6α

1− α
V2 + ρ2 3α

1− α
V1 >

3− 6α

1− α
V2 + ρ

α + 2α2

1− α
V1 + ρ22V1α ⇒ ρ > 1
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which is a contradiction. Thus if α ∈
[
1
4
,
V2
V1

]
and ρ → 1,

(
V2, V2, V1,

3− 6α

1− α
, 0,

3α

1− α

)
cannot be subgame perfect outcome.

Proof for proposition 3.

For (V2, V2, V2, 2, 1, 0) to be subgame perfect for α ≤ V2
V1

, it must be the case

that there does not exist any profitable deviation for the seller in any period, given the

history of the game. We begin by assuming that α <
1
4
.Given that p1 = V2, q1 = 2

the seller could choose to deviate in period 2 and charge p2 = V2, p3 = V1 and to

offer measure q2, q3 = s3(if s3 < bH3 ) or bH3 (if bH3 < s3) in periods 2 and 3. Then

bH3 = α(4− q2), s3 = 1− q2. With s3 < bH3 , R = q2V2 + ρ(1− q2)V1

Differentiating partially with respect to q2,
∂R

∂q2
= V2 − ρV1 < 0. With bH3 <

s3, R = q2V2 + ρα(4 − q2)V1 ⇒ ∂R

∂q2
= V2 − ραV1 > 0 if α ≤ V2

V1
. We can check

that bH3 < s3 iff q2 <
1− 4α

1− α
= θ (suppose). Thus with q2 = θ + ε, where ε > 0,

s3 < bH3 ⇒ ∂R

∂q2
< 0. Again with q2 = θ − ε, where ε > 0, bH3 < s3 � with α ≤ V2

V1
,

∂R

∂q2
> 0.Thus, the seller offers q2 = θ =

1− 4α

1− α
, q3 = s3 = bH3 =

3α

1− α
(with α >

V2
V1

,

the seller would offer q2 = 0, q3 = 4α).

For (V2, V2, V2, 2, 1, 0) to be subgame perfect, to rule out this deviation in period

2 the required condition is

V2 >
1− 4α

1− α
V2 + ρ

3α

1− α
V1

Taking ρ = 1 and appealing to continuity, we get V2 > V1 which is a contradiction.

Thus a profitable deviation exists for the seller in period 2, such that if α ≤ V2
V1

, ρ → 1

(V2, V2, V2, 2, 1, 0) cannot be subgame perfect.
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The above proof works for α <
1
4
. For α ∈

[
1
4
,
V2
V1

]
, we show that there exists a

profitable deviation in period 1. Here, the seller can offer p1 = V2, p2 = p3 = V1 and

q1 =
3− 6α

1− α
, q2 =

α + 2α2

1− α
, q3 = 2α. We assume to the contrary that there does not

exist a profitable deviation such that

2V2 + ρV2 >
3− 6α

1− α
V2 + ρ

α + 2α2

1− α
V1 + ρ22V1α

Since ρ → 1, taking ρ = 1 and appealing to continuity yields V2 > V1 which is a

contradiction. Thus for α ∈
[
1
4
,
V2
V1

]
, ρ → 1 a profitable deviation exists in period 1 for

(V2, V2, V2, 2, 1, 0), such that it is not subgame perfect.

Proof of proposition 4.

In order to prove that with ρ → 1 a strategy involving a ‘sale’ in the first and last

period can never be subgame perfect, we’ll show that there exists a profitable deviation

for the seller in period 2, given the history of the game p1 = V2 and q1 = 0.

Part (1). If α ≤ V2
V1

Given that p1 = V2 and q1 = 0, we get bH2 = 4α and bL2 = 4(1 − α). If the

seller deviates and chooses to charge p2 = V2, p3 = V1 and to offer measure q2 and q3 in

periods 2 and 3, bH3 = 6α−αq2 and s3 = 3− q2. With s3 < bH3 revenue earned from the

second period onwards is R = q2V2 + ρ(3 − q2)V1, such that on partial differentiation

with respect to q2 we get
∂R

∂q2
= V2−ρV1 < 0. With bH3 < s3, R = q2V2 +ρ(6α−αq2)V1

�
∂R

∂q2
= V2 − ραV1 > 0 if α ≤ V2

V1
and ρ → 1. Further we can check that s3 < bH3 iff

q2 >
3− 6α

1− α
= θ (suppose). With q2 = θ + ε, for any ε > 0, s3 < bH3 ⇒ ∂R

∂q2
< 0 and
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with q2 = θ − ε, for any ε > 0, bH3 < s3 �
∂R

∂q2
> 0. Thus with α ≤ V2

V1
, ρ → 1 if the

seller chooses to charge p2 = V2 and p3 = V1, the seller should offer q2 = θ =
3− 6α

1− α

and q3 = s3 = bH3 =
3α

1− α
. Also with α >

V2
V1

, ρ → 1 we can check that if the seller

proposes to charge p2 = V2 and p3 = V1, the seller should offer q2 = 0 and q3 = 6α.

For
(

V2, V1

(
1− 3− 4α

6− 4α

)
+

3− 4α

6− 4α
V2, V2, 0, 4α, 3− 4α

)
to be subgame perfect,

there should not exist any profitable deviation for the seller in any period. This implies

that

4α

[
V1

(
1− 3− 4α

6− 4α

)
+

3− 4α

6− 4α
V2

]
+ ρ(3− 4α)V2 >

3− 6α

1− α
V2 + ρ

3α

1− α
V1

Since ρ → 1, we take ρ = 1 and appeal to continuity to get V2 > V1 which is a

contradiction. Thus, with α ≤ V2
V1

, ρ → 1 a profitable deviation exists for the seller in

period 2, whereby he or she charges p2 = V2, p3 = V1 and offers q2 =
3− 6α

1− α
, q3 =

3α

1− α
.

Part (2). If α >
V2
V1

.

As was shown in part (1) above, in case the seller chooses to deviate in the second

period and charge p2 = V2 and p3 = V1 and if α >
V2
V1

, then the seller should offer

q2 = 0 and q3 = 6α. For
(

V2, V1

(
1− 3− 4α

6− 4α

)
+

3− 4α

6− 4α
V2, V2, 0, 4α, 3− 4α

)
to be

subgame perfect, there should not exist any profitable deviation for the seller in any

period. This implies

4α

[
V1(1− 3− 4α

6− 4α
) +

3− 4α

6− 4α
V2

]
+ ρ(3− 4α)V2 > ρ6V1α

Taking ρ = 1 and appealing to continuity, we get α <

(
18− 24α

24− 24α

)
V2
V1

<
V2
V1

which is
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a contradiction to α >
V2
V1

. Thus with α >
V2
V1

, ρ → 1 a profitable deviation exists for

the seller in period 2, whereby he or she charges p2 = V2, p3 = V1 and offers measure

q2 = 0, q3 = 6α.

Proof of proposition 5.

In order to show that with α ∈
[
1
4
,
V2
V1

]
and ρ → 1,

(
V1(1− 6α2 − 15α + 6

2(1− α)(4− 2α)
)+

6α2 − 15α + 6
2(1− α)(4− 2α)

V2, V2, V1, 2α,
6α2 − 15α + 6

2(1− α)
,
5α− 2α2

2(1− α)

)
cannot be subgame perfect,

we’ll show the seller can deviate profitably in period 1 by charging p1 = V2, p2 = p3 = V1

and by offering q1 =
3− 6α

1− α
, q2 =

α + 2α2

1− α
and q3 = 2α.

We define A =

[
V1(1− 6α2 − 15α + 6

2(1− α)(4− 2α)
) +

6α2 − 15α + 6
2(1− α)(4− 2α)

V2

]
2α+ρ

6α2 − 15α + 6
2(1− α)

V2+

ρ2 5α− 2α2

2(1− α)
V1 − (

3− 6α

1− α
V2 + ρ

α + 2α2

1− α
V1 + 2ρ2V1α)

For the given pricing policy to be subgame perfect for α ∈
[
1
4
,
V2
V1

]
, ρ → 1 it must

be the case that A > 0.

With ρ = 1, we can check to see that A = 0.

Partially differentiating both sides of the above equation with respect to ρ,

∂A

∂ρ
=

6α2 − 15α + 6
2(1− α)

V2 − (
α + 2α2

1− α
)V1 + 2ρ(

α + 2α2

2(1− α)
)V1

∂A

∂ρ

∣∣∣∣
ρ=1

=
6α2 − 15α + 6

2(1− α)
> 0 ∀α such that with ρ → 1, A < 0

Thus there exists a profitable deviation in period 1 for the seller, which implies

that if α ∈
[
1
4
,
V2
V1

]
, ρ → 1 then

(
V1(1− 6α2 − 15α + 6

2(1− α)(4− 2α)
) +

6α2 − 15α + 6
2(1− α)(4− 2α)

V2, V2, V1,

2α,
6α2 − 15α + 6

2(1− α)
,
5α− 2α2

2(1− α)

)
cannot be subgame perfect.
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Proof of proposition 6.

To prove that
[
V1

(
1− 3− 2α

4− 2α

)
+

3− 2α

4− 2α
V2, V2, V2, 2α, 3− 2α, 0

]
cannot be sub-

game perfect if α ≤ V2
V1

, we will show that there exists a profitable deviation for the seller

in period 2.

Given the history of the game at the beginning of period 2 with p1 = pH
1 , q1 =

2α the seller could choose to deviate and charge p2 = V2 and p3 = V1 and to offer

measure q2 and q3 in periods 2 and 3 respectively. Then bH3 = 2α

(
8− 4α− q2

4− 2α

)
and

s3 = 3− 2α− q2.

With s3 < bH3 , revenue earned is R = q2V2 + ρ[3− 2α− q2]V1

Differentiating partially with respect to q2,
∂R

∂q2
= V2 − ρV1 < 0 with ρ → 1.

With bH3 < s3, R = q2V2 + ρ2α(
8− 4α− q2

4− 2α
)V1

Differentiating partially with respect to q2,
∂R

∂q2
= V2 − ρ

2αV1
4− 2α

.

Taking ρ = 1 and appealing to continuity yields
∂R

∂q2
= V2−

2αV1
4− 2α

> 0 if α ≤ 2V2
V1 + V2

.

Since α ≤ V2
V1

<
2V2

V1 + V2
,
∂R

∂q2
> 0. Further s3 < bH3 if q2 >

6α2 − 15α + 6
2(1− α)

= θ

(suppose). Thus if q2 = θ + ε, ε > 0, s3 < bH3 ⇒ ∂R

∂q2
< 0 while if q2 = θ− ε, ε > 0, bH3 <

s2 ⇒
∂R

∂q2
> 0

Thus if α ≤ V2
V1

and the seller chooses to deviate in period 2 and to charge

p2 = V2, p3 = V1 he or she should offer q2 = θ =
6α2 − 15α + 6

2(1− α)
and q3 = s3 = bH3 =

5α− 2α2

2(1− α)
. If
[
V1

(
1− 3− 2α

4− 2α

)
+

3− 2α

4− 2α
V2, V2, V2, 2α, 3− 2α, 0

]
is subgame perfect, it

must be the case that there does not exist any profitable deviation in period 2. Thus,

we require that (3− 2α)V2 >
6α2 − 15α + 6

2(1− α)
V2 + ρ

5α− 2α2

2(1− α)
V1
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Since ρ → 1, we take ρ = 1 and appeal to continuity to get V2 > V1 which is

a contradiction. Thus a profitable deviation exists for the seller in period 2, such that[
V1

(
1− 3− 2α

4− 2α

)
+

3− 2α

4− 2α
V2, V2, V2, 2α, 3− 2α, 0

]
cannot be subgame perfect.

Proof of proposition 7.

The proof is similar to the one for proposition 6. To show that
[
V1

(
1− 3− 4α

6− 4α

)
+

3− 4α

6− 4α
V2, V1

(
1− 3− 4α

6− 4α

)
+

3− 4α

6− 4α
V2, V2, 2α, 2α, 3− 4α

]
cannot be subgame perfect

we show that there exists a profitable deviation in period 2. Given the history of the

game at the beginning of period 2 with p1 = pH
1 , q1 = 2α the seller could choose to

deviate and charge p2 = V2 and p3 = V1 and to offer measure q2 and q3 in periods 2

and 3 respectively.

As was shown in the proof for proposition 6, if α ≤ V2
V1

, ρ → 1 the seller offers

q2 =
6α2 − 15α + 6

2(1− α)
and q3 = s3 = bH3 =

5α− 2α2

2(1− α)
.

If
[
V1

(
1− 3− 4α

6− 4α

)
+

3− 4α

6− 4α
V2, V1

(
1− 3− 4α

6− 4α

)
+

3− 4α

6− 4α
V2, V2, 2α, 2α, 3− 4α

]
is sub-

game perfect, it must be the case that

2α

[
V1

(
1− 3− 4α

6− 4α

)
+

3− 4α

6− 4α
V2

]
+ρ(3−4α)V2 >

6α2 − 15α + 6
2(1− α)

V2+ρ
5α− 2α2

2(1− α)
V1

Since ρ → 1, we take ρ = 1 and appeal to continuity to get (20α2 − 8α3 − 18α)V1 >

(20α2 − 8α3 − 18α)V2 ⇒ V2 > V1 (since (20α2 − 8α3 − 18α) < 0 ∀α) which is a

contradiction.
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Thus a profitable deviation exists for the seller in period 2, such that [V1(1−

3− 4α

6− 4α

)
+

3− 4α

6− 4α
V2, V1

(
1− 3− 4α

6− 4α

)
+

3− 4α

6− 4α
V2, V2, 2α, 2α, 3− 4α

]
cannot be sub-

game perfect.

Proof of proposition 8.

Once again the proof is similar to the one for proposition 6. To prove that if α ≤

V2
V1

, (V1, V1, V1, 2α, 2α, 2α) cannot be subgame perfect we show that the seller can deviate

profitably in period 2 by setting p2 = V2, p3 = V1 and by offering q2 =
6α2 − 15α + 6

2(1− α)

and q3 = s3 = bH3 =
5α− 2α2

2(1− α)
.

If (V1, V1, V1, 2α, 2α, 2α) is subgame perfect, the following condition must hold

2V1α(1 + ρ) >
6α2 − 15α + 6

2(1− α)
V2 + ρ

5α− 2α2

2(1− α)
V1

Since ρ → 1, we take ρ = 1 and appeal to continuity to get α >
2V2

V1 + V2
>

V2
V1

which is

a contradiction to α ≤ V2
V1

. Thus a profitable deviation exists for the seller in period 2,

such that (V1, V1, V1, 2α, 2α, 2α) cannot be subgame perfect.



54

Appendix 3

Proof of proposition 9.

In order to prove that (V2, V1, V1,
3− 6α

1− α
,
α + 2α2

1− α
, 2α) is subgame perfect if α ∈[

1
4
,
V2
V1

]
, ρ → 1 we show that there does not exist any profitable deviation for the seller

in any period i, where i = 1, 2, 3.

Period 3. As was shown in the proof for lemma 1, the seller chooses q1 in a way

which ensures that s3 = bH3 = 2α. Given that s3 = bH3 the seller has no incentive to

deviate and announce p3 = V2 such that there exists no profitable deviation for the seller

in period 3 when he or she announces p3 = V1 and q3 = 2α.

Period 2. In period 2, the seller can deviate in a number of ways. Given that α ∈[
1
4
,
V2
V1

]
and that the seller wants to deviate and charge p2 = V2, p3 = V1 we can check

that given the history of the game ( p1 = V2, q1 =
3− 6α

1− α
) bH2 = α

(
1 + 2α

1− α

)
, bL2 =

1+2α � bH2 +bL2 =
1 + 2α

1− α
. Thus bH3 = 2α+bH2

(
1− q2

bH2 + bL2

)
= 2α+α

(
1 + 2α

1− α

)
−q2α

while s3 =
3α

1− α
− q2.

With s3 < bH3 , R = q2V2 + ρ

(
3α

1− α
− q2

)
V1

Differentiating partially with respect to q2,
∂R

∂q2
= V2 − ρV1 < 0

With bH3 < s3, R = q2V2 + ρ

[
2α + α

(
1 + 2α

1− α

)
− q2α

]
V1

Differentiating partially with respect to q2,
∂R

∂q2
= V2 − ραV1 > 0 if α ≤ V2

V1
, ρ → 1.

Further we can check that s3 > bH3 if q2α > q2 which is a contradiction, such that

s3 < bH3 ⇒ ∂R

∂q2
< 0 ⇒ q2 = 0 and q3 = s3 =

3α

1− α
.



55

Thus in order to prove that there does not exist any profitable deviation, we

assume to the contrary and show that there’s a contradiction.

Required condition: ρ
3α

1− α
V1 >

α + 2α2

1− α
V1 + 2ρV1α

Since ρ → 1, taking ρ = 1 and appealing to continuity we get V1 > V1 which is a

contradiction.

Similarly we can show that the seller cannot gain by deviating and choosing

p2 = p3 = V2 and q2 =
3α

1− α
, q3 = 0. Assuming to the contrary, required condition is:

3α

1− α
V2 >

α + 2α2

1− α
V1 + 2ρV1α. Since ρ → 1, taking ρ = 1 and appealing to continuity

we get V2 > V1 which is a contradiction.

Further we can check that if the seller chooses to deviate by charging p2 =

pH
2 , p3 = V2 he or she has to offer q2 = bH2 =

α + 2α2

1− α
⇒ s3 = bH3 which ensures

that such a deviation is not credible. Setting pH
2 < p2 ≤ V1, p3 = V2 also does not

prove to be credible since none of the high type buyers buy in period 2 and in that case

bH3 = s3 such that price in period 3 should always be V1. Again p2 < pH
2 , p3 = V2

also cannot be a credible deviation, since even though higher valuation buyers buy the

product in period 2, the seller does not do as well as he or she could by charging pH
2 .

Period 1. We have already shown that for the relevant range of parameter values,

none of the other pricing strategies can be subgame perfect. Thus, the seller has no

profitable deviation in period 1.

Since there exists no profitable deviation in periods 1,2 or 3, the pricing strategy

is

(
V2, V1, V1,

3− 6α

1− α
,
α + 2α2

1− α
, 2α

)
is subgame perfect if α ∈

[
1
4
,
V2
V1

]
, ρ → 1.
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Proof of proposition 10.

In order to show that

[
V1

(
1− 6α2 − 15α + 6

2(1− α)(4− 2α)

)
+

6α2 − 15α + 6
2(1− α)(4− 2α)

V2, V2, V1,

2α,
6α2 − 15α + 6

2(1− α)
,
5α− 2α2

2(1− α)

]
is subgame perfect for the relevant range of parameter

values, we show that there does not exist any profitable deviation in any period i, where

i = 1, 2, 3.

Period 3. As shown in lemma 4, the seller offers q1 = 2α, q2 =
6α2 − 15α + 6

2(1− α)

such that q3 = s3 = bH3 =
5α− 2α2

2(1− α)
which ensures that the seller does not deviate in

period 3 by charging p3 = V2.

Period 2. The seller could deviate in a number of ways in period 2. If the seller

chooses to deviate by charging p2 = p3 = V2 he or she should offer q2 = 3− 2α, q3 = 0.

Assuming to the contrary,

(3 − 2α)V2 >
6α2 − 15α + 6

2(1− α)
V2 + ρ

5α− 2α2

2(1− α)
V1 and taking ρ = 1 and appealing

to continuity yields V2 > V1 which is a contradiction.

If the seller announces p2 = pH
2 , p3 = V2 and offers q2 = 2α, q3 = s3 = 3−4α we assume

this is a profitable deviation and show there’s a contradiction. Thus,

[
V1

(
1− 3− 4α

6− 4α

)
+

3− 4α

6− 4α
V2

]
2α + ρ(3− 4α)V2 >

6α2 − 15α + 6
2(1− α)

V2 + ρ
5α− 2α2

2(1− α)
V1

Once again taking ρ = 1 and appealing to continuity, we get V2 > V1 which is a contra-

diction.

The seller could also deviate by announcing p2 = p3 = V1 and offer q2 = q3 = 2α.

Assuming to the contrary
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2V1α(1 + ρ) >
6α2 − 15α + 6

2(1− α)
V2 + ρ

5α− 2α2

2(1− α)
V1 ⇒ α >

2V2
V1 + V2

>
V2
V1

which is

a contradiction.

For deviations where the seller charges pH
2 < p2 ≤ V1, p3 = V2 we can show there

exists no profitable deviations for the seller and the proof is similar to the one which

ruled out deviations like p2 = p3 = V2 and q2 = 3− 2α, q3 = 0.

Period 1. We have shown that

[
V1

(
1− 6α2 − 15α + 6

2(1− α)(4− 2α)

)
+

6α2 − 15α + 6
2(1− α)(4− 2α)

V2,

V2, V1, 2α,
6α2 − 15α + 6

2(1− α)
,
5α− 2α2

2(1− α)

]
cannot be subgame perfect for α ≥ 1

4
. Further we

require that α ≤ 2V2
V1 + V2

for the seller to offer q2 =
6α2 − 15α + 6

2(1− α)
, q3 =

5α− 2α2

2(1− α)
when

he or she wants to hold a ‘sale’ in the second period only. Thus for this pricing policy

to be subgame perfect, we require that α <
1
4

(if
1
4
≤ V2

V1
) and α ≤ V2

V1
(if

V2
V1

<
1
4
).

We have already shown that all policies except
(

V2, V2, V1, 2,
1− 4α

1− α
,

3α

1− α

)
can-

not be subgame perfect for the relevant range of parameter values. To show that the

policy involving a ‘sale’ in the second period only is subgame perfect, we show that the

seller cannot gain by deviating to this alternate policy in the first period.

Define B =

[
V1

(
1− 6α2 − 15α + 6

2(1− α)(4− 2α)

)
+

6α2 − 15α + 6
2(1− α)(4− 2α)

V2

]
2α+ρ

6α2 − 15α + 6
2(1− α)

V2

+ρ2 5α− 2α2

2(1− α)
V1 −

(
2V2 + ρ

1− 4α

1− α
V2 + ρ2 3α

1− α
V1

)
Taking ρ = 1 we find that B = 0.

Partially differentiating B with respect to ρ, and taking ρ = 1

∂B

∂ρ

∣∣∣∣
ρ=1

=
6α2 − 7α + 4

2(1− α)
V2 − 2V1

2α2 + α

2(1− α)
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If
V1
V2

>
6α2 − 7α + 4

α(4α + 2)
,

∂B

∂ρ
|ρ=1 < 0 ⇒ with ρ → 1, B > 0. Thus there exists no

profitable deviation for the seller in period 1.

Thus if α <
1
4

(for V1 ≤ 4V2) and α ≤ V2
V1

(for V1 > 4V2) and
6α2 − 7α + 4

α(4α + 2)
<

V1
V2

(ρ →

1),

[
V1

(
1− 6α2 − 15α + 6

2(1− α)(4− 2α)

)
+

6α2 − 15α + 6
2(1− α)(4− 2α)

V2, V2, V1, 2α,
6α2 − 15α + 6

2(1− α)
,

5α− 2α2

2(1− α)

]
is subgame perfect.

Proof of proposition 11.

In order to show that
(

V2, V2, V1, 2,
1− 4α

1− α
,

3α

1− α

)
is subgame perfect for the

relevant range of parameter values, we show that there does not exist any profitable

deviation in any period i, where i = 1, 2, 3 for the same range of parameter values.

Period 3. As shown in lemma 2, the seller offers q1 = 2, q2 =
1− 4α

1− α
such that

q3 = s3 = bH3 which rules out profitable deviation for the seller by charging p3 = V2.

Period 2. In period 2, the seller could deviate and announce p2 = p3 = V1 and

offer q2 = q3 = 2α.

Assuming 2V1α(1 + ρ) >
1− 4α

1− α
V2 + ρ

3α

1− α
V1 and taking ρ = 1 and appealing

to continuity, we get α >
V2
V1

which is a contradiction.

If the seller wants to deviate and charge p2 = p3 = V2 and offer measure q2 = 1, q3 = 0

we can once again rule out such deviations using a proof by contradiction.

Assuming to the contrary, V2 >
1− 4α

1− α
V2 + ρ

3α

1− α
V1 and taking ρ = 1 and

appealing to continuity we get V2 > V1 which is a contradiction.

If the seller charges p2 = pH
2 , p3 = V2 and offers q2 = 2α, q3 = s3 = 1 − 2α we can
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attempt a similar proof by contradiction.

Assuming to the contrary

[
V1(1− 1− 2α

4− 2α
) +

1− 2α

4− 2α
V2

]
2α + ρ(1− 2α)V2 >

1− 4α

1− α
V2 + ρ

3α

1− α
V1

Taking ρ = 1 and appealing to continuity we get V2 > V1 which is a contradiction.

Similarly, for pH
2 < p2 ≤ V1, p3 = V2 and q2 = 2α, q3 = s3 = 1 the deviation is

not profitable, and the proof is similar to the one which ruled out p2 = p3 = V2 and

q2 = 1, q3 = 0.

Period 1. We have already shown that
(

V2, V2, V1, 2,
1− 4α

1− α
,

3α

1− α

)
cannot be

subgame perfect for α ≥ 1
4
. Further we require that with α <

1
4
≤ V2

V1
the seller has to

offer q1 = 2, q2 =
1− 4α

1− α
when he or she wants to hold a ‘sale’ in the first and second

period. Thus for this pricing policy to be subgame perfect, we require that α <
1
4

(if

1
4
≤ V2

V1
) and α ≤ V2

V1
(if

V2
V1

<
1
4
).

Since with
6α2 − 7α + 4

α(4α + 2)
>

V1
V2

the conditions of proposition 10 are no longer

satisfied, such that the pricing policy involving a ‘sale’ in the second period only cannot

be subgame perfect. All other pricing policies have already been shown not to be subgame

perfect for the relevant range of parameter values. Thus if α <
1
4

(if
1
4
≤ V2

V1
) and α ≤ V2

V1

(if
V2
V1

<
1
4
) and

6α2 − 7α + 4
α(4α + 2)

>
V1
V2

( with ρ → 1), then
(

V2, V2, V1, 2,
1− 4α

1− α
,

3α

1− α

)
is subgame perfect.
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Proof of proposition 12.

In order to show that (V2, V1, V1, 0, 4α, 2α) is subgame perfect for the relevant

range of parameter values, we show that there does not exist any profitable deviation at

any period i, i = 1, 2, 3 given the history of the game. We start with the last period.

Period 3. In order to ensure that there does exist any profitable deviation by the

seller by charging price V2 in period 3, we assume to the contrary and show that this

leads to a contradiction.

Assume that (3− 4α)V2 > 2V1α ⇒ α <
3V2

2(V1 + 2V2)
which is a contradiction to

α ≥ 3V2
2(V1 + 2V2)

Period 2. Given the history of the game p1 = V2, q1 = 0 we need to show that

there does not exist any profitable deviation for the seller in period 2. From the proof

of proposition 4, we have already seen that given the same history, if the seller wants

to deviate and offer p2 = V2 and p3 = V1 he or she must offer q2 = 0, q3 = 6α for

the relevant range of parameter values. Thus for p2 = V2, p3 = V1 to be a profitable

deviation, it must be the case that ρ26V1α > ρ4V1α + ρ22V1α ⇒ ρ > 1 which is a

contradiction.

Similarly, if the seller wants to deviate and offer p2 = p3 = V2 he or she should

offer q2 = 3, q2 = 0. For this to be a profitable deviation, we require that 3V2 > ρ4V1α+

ρ22V1α. Since ρ → 1, taking ρ = 1 and appealing to continuity yields α <
V2
2V1

<
V2
V1

which is a contradiction. A similar proof rules out deviations like pH
2 < p2 = V1, p3 = V2.
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Another possible deviation for the seller in period 2 is p2 = pH
2 , p3 = V2 and

q2 = 4α, q3 = 3 − 4α. To rule out such deviations, we assume to the contrary that

4α

[
V1

(
1− 3− 4α

6− 4α

)
+

3− 4α

6− 4α
V2

]
+ ρ(3− 4α)V2 > ρ4V1α + ρ22V1α

Taking ρ = 1 and appealing to continuity, we get α <

(
18− 24α

24− 24α

)
V2
V1

<
V2
V1

which is a contradiction. It is easy to see that deviations like p2 < pH
2 , p3 = V2 will also

not be profitable.

Period 1. The other strategies which have still not been ruled out are strategies

which do not involve any ‘sale’ in any period, involve ‘sale’ in the first two periods and

‘sale’ in the second period only. Following the proof in proposition 10, we can rule out

(V1, V1, V1, 2α, 2α, 2α) to be subgame perfect since there exists a profitable deviation in

period 2 for the relevant range of parameter values.

For the strategy involving ‘sale’ in the first two periods, we can show that it

cannot be subgame perfect since there exists a profitable deviation in period 2. Given

the history of the game p1 = V2, q1 = 0, instead of charging p2 = V2, p3 = V1 and

q2 = 0, q3 = 6α it is easy to see that the seller can do better with p2 = p3 = V1 and

q2 = 4α, q3 = 2α.

Thus the only strategy left is the one involving a ‘sale’ in the second period only.

Assuming that the seller can do better with such a strategy, we have

[
V1

(
1− 6α2 − 15α + 6

2(1− α)(4− 2α)

)
+

6α2 − 15α + 6
2(1− α)(4− 2α)

V2

]
2α + ρ

6α2 − 15α + 6
2(1− α)

V2+

ρ2 5α− 2α2

2(1− α)
V1 > ρ4V1α + ρ22V1α ⇒ α <

V2
V1

which is a contradiction.
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Thus if α ∈
(

V2
V1

,
2V2

V1 + V2

]
, ρ → 1 and α ≥ 3V2

2(V1 + 2V2)
, then (V2, V1, V1, 0, 4α, 2α)

is subgame perfect.

Proof of proposition 13.

In order to show that

[
V1

(
1− 6α2 − 15α + 6

2(1− α)(4− 2α)

)
+

6α2 − 15α + 6
2(1− α)(4− 2α)

V2, V2, V1, 2α,

6α2 − 15α + 6
2(1− α)

,
5α− 2α2

2(1− α)

]
is subgame perfect, we show that there does not exist any

profitable deviation at any period i, i = 1, 2, 3 given the history of the game. We start

with the last period.

Period 3. Proof similar to that of proposition 10.

Period 2. Proof similar to that of proposition 10.

Period 1. Since α <
3V2

2(V1 + 2V2)
, the conditions of proposition 12 are not sat-

isfied, such that (V2, V1, V1, 0, 4α, 2α) is no longer subgame perfect. Thus, none of the

other strategies can provide credible deviations in period 1.

Thus if α ∈
(

V2
V1

,
2V2

V1 + V2

]
, ρ → 1 and α <

3V2
2(V1 + 2V2)

, then

[
V1

(
1− 6α2 − 15α + 6

2(1− α)(4− 2α)

)
+

6α2 − 15α + 6
2(1− α)(4− 2α)

V2, V2, V1, 2α,
6α2 − 15α + 6

2(1− α)
,
5α− 2α2

2(1− α)

]
is subgame perfect.

Proof of proposition 14.

To prove that (V1, V1, V1, 2α, 2α, 2α) is subgame perfect for α >
2V2

V1 + V2
, ρ → 1

we will show that there does not exist any profitable deviation for the seller in any period.

Period 3. In the last period, the seller could choose to deviate by offering q3 =

s3 = 3 − 4α and price p3 = V2. Assuming that this is a profitable deviation, required

condition is (3− 4α)V2 > 2V1α ⇒ α <
3V2

2(V1 + 2V2)
<

2V2
V1 + V2

which is a contradiction.

Thus there is no profitable deviation for the seller in period 3.
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Period 2. The seller could choose to deviate and offer p2 = V2, p3 = V1. From the

proof of proposition 6, we know that if α >
2V2

V1 + V2
, the seller will offer q2 = 0, q3 = 4α

for the proposed deviation. Assuming that this is a profitable deviation, the required

condition is ρ4αV1 > 2V1α(1 + ρ) which is a contradiction for ρ < 1.

Similarly we can show that the seller cannot gain by deviating by choosing p2 =

p3 = V2 and q2 = 3 − 2α, q3 = 0 as well as by announcing pH
2 < p2 ≤ V1, p3 = V2 and

q2 = 2α, q3 = s3 = 3− 2α. Assuming to the contrary, (3− 2α)V2 > 2V1α(1 + ρ).

Taking ρ = 1 and appealing to continuity gives us α <
3V2

2(2V1 + V2)
<

2V2
V1 + V2

which is a contradiction.

For p2 = pH
2 , p3 = V2 and q2 = 2α, q3 = 3 − 4α the required condition which

ensures profitable deviation is as follows[
V1

(
1− 3− 4α

6− 4α

)
+

3− 4α

6− 4α
V2

]
2α + ρ(3− 4α)V2 > 2V1α(1 + ρ)

Taking ρ = 1 and appealing to continuity yields α >
7
4

which is a contradiction. Thus

the seller cannot gain by deviating in such a manner. If the seller charges V2 < p2 <

pH
2 , p3 = V2 high type buyers choose to purchase the product in period 2. However, the

seller earns lower revenue than with p2 = pH
2 , p3 = V2.

Period 1. From previous lemmas we find that if α >
2V2

V1 + V2
>

V2
V1

, the seller

offers q1 = q2 = 0, q3 = 6α for the pricing policy with ‘sale’ in the first two periods,

while for the strategy involving ‘sale’ in the first period only he or she offers q1 =

0, q2 = 4α, q3 = 2α and finally for ‘sale’ in the second period only, the seller offers

q2 = 0, q3 = 4α.

Since 2V1α(1 + ρ + ρ2) > ρ26V1α, 2V1α(1 + ρ + ρ2) > ρ4V1α + ρ22V1α and

2V1α(1 + ρ + ρ2) > 2V1α + ρ24V1α for ρ < 1, none of the pricing policies mentioned
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above can be subgame perfect for α >
2V2

V1 + V2
.

To rule out ‘sale’ in the first and last period, we assume that such a deviation is profitable

and show that there exists a contradiction. The required condition is[
V1

(
1− 3− 4α

6− 4α

)
+

3− 4α

6− 4α
V2

]
4ρα + ρ2(3− 4α)V2 > 2V1α(1 + ρ + ρ2)

Taking ρ = 1 and appealing to continuity yields α <

(
18− 24α

24− 24α

)
V2
V1

<
V2
V1

<
2V2

V1 + V2

which is a contradiction.

A similar proof rules out ‘sale’ in the last period only. If the seller chooses to

deviate and hold a ‘sale’ in the last two periods, we can show that such a deviation is

not credible.

Assuming to the contrary, (3 − 2α)V2 > 2V1α(1 + ρ) and taking ρ = 1 and

appealing to continuity provides α <
3V2

2(V1 + 2V2)
<

2V2
V1 + V2

which is a contradiction.

Thus there exists no profitable deviation in period 1.

Hence, if α >
2V2

V1 + V2
, ρ → 1 (V1, V1, V1, 2α, 2α, 2α) is subgame perfect.
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Chapter 2

On Delays in Project Completion With Cost Reduction:

An Experiment

2.1 Introduction

The focus of this chapter is on the effects of externalities on delays in completion

of a public project. It is often the case that the individual cost of contribution for a public

good decreases as the number of contributions already made increases. Allegations of

corruption against public officials can be viewed as a public project with these features.

If the corrupt official can be identified and removed, everyone receives some benefit, but

this can only happen if a sufficient number of individuals are willing to implicate the

official. The person bringing the first allegation not only faces the social stigma that such

allegations could bring, but potentially, could also have to deal with retaliation from the

person or parties against whom such allegations have been made. As more allegations

are brought forward, the private cost of bringing similar allegations is reduced since these

allegations become more credible. Thus, individuals have an incentive to free ride on

the contributions made by others. Individuals with access to information that might

bring the official to justice face a dilemma: they could contribute now with the hope

that the official is brought to justice sooner rather than later, or they could choose to

wait, hoping others contribute first. This process of whistleblowing is only one example
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of a public project with cost reduction; other examples include early adoption of a new

technology standard and allegations of sexual harassment.

We construct a multi-period voluntary contributions public project model de-

signed to capture the vital features of the problem described above. Agents can choose

to make an irrevocable, binary contribution at any point of time before a contribution

deadline. The cost of contribution decreases as the number of prior contributors in-

creases. If a sufficient number of contributions are received, the project is completed

and all agents get a benefit. The benefit of the project decreases over time. If the

project is not completed before the contribution deadline, none of the agents receive any

benefit, but agents who chose to contribute still incur their cost of contribution.

When there is no cost reduction, there is a Pareto-dominant, subgame perfect

equilibrium where the project is completed without delay. We show that as long as cost

reduction is sufficiently large, there is no pure-strategy subgame perfect equilibrium that

does not involve delay. While all equilibria must result in completion of the project,

the effect of cost reduction is to lead to excessive delay in project provision and, since

benefits decline over time, inefficient outcomes. Both with and without cost reduction,

there exists multiple pure-strategy subgame perfect Nash equilibria. We design an ex-

periment based on the same theoretical framework, where we consider two treatments,

one with and one without cost reduction. The objective of the experiment was to deter-

mine whether the actions of real, human participants are consistent with the theoretical

predictions of the model. And, since their are many possible equilibria, the experiment

might provide insights into which outcomes are more likely. Specifically, we designed the

experiment in the hope of answering the following questions:
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1. Does cost reduction result in significantly more delay?

2. Is the project completed?

3. In both treatments, do the players manage to coordinate on Pareto superior equi-

libria?

We find that the project is completed in the treatment with cost reduction with

more delay than it is in the treatment without cost reduction. We also find that the

Pareto-dominant subgame perfect outcome is played frequently in both treatments. How-

ever, the players do not appear to completely overcome the significant coordination prob-

lems prevalent in this situation. For example, the actual project completion rates are

significantly below what might be expected. We hypothesize that coordination problems

are exacerbated in this model due to the highly asymmetric payoffs in equilibrium.

The rest of the chapter is organized as follows. In section 2 we discuss some

related literature. In section 3 we present the model and our theoretical results. The

design of the experiment is described in section 4. We present the experiment results in

section 5. We conclude in section 6.

2.2 Related Literature

There is a substantial theoretical and experimental literature on public projects

with binary contributions. A review of the extensive experimental literature on public

goods provision is provided in Kagel and Roth (1995) (chapter 2).

A series of papers by Palfrey and Rosenthal (1984, 1988, 1991, 1994) examine a

model of public project completion with binary contributions. They examine the model
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under complete and incomplete information and examine human participants behavior in

the laboratory under a number of treatments. Their models differ from ours in several key

aspects. First, contributions are made simultaneously so dynamics are not considered,

and, second, in most cases, each agent’s cost of contribution is private information.

Seminal works by Schelling (1978) and Olson (1982) recognized that dynamics

may play a vital role in problems of collective action. Bliss and Nalebuff (1984) develop

a model where the public good is provided if one individual makes a contribution. With

a finite population, equilibrium involves inefficient waiting, but as the population size

approaches infinity, the inefficiency vanishes in the sense that the public good is provided

almost immediately and by the lowest cost contributor. Our model differs from Bliss and

Nalebuff in that multiple contributions may be required for completion allowing for cost

reduction. We also examine the situation under the assumption of complete information.

With complete information, the Bliss and Nalebuff model is a special case of our model

without cost reduction, and we show that there exists an equilibrium without delay.

Gradstein (1992) examines a binary contribution model where the public benefit

is strictly increasing in the number of contributions. Gradstein finds that, when two

contribution periods are allowed, inefficiency in the form of delay and underprovision

may persist even for infinite populations. Marx and Matthews (2000) on the other

hand show that in an environment where players can make multiple contributions before

a contribution horizon is reached but have incomplete information about the actions

of the other players, perfect Bayesian equilibria exist which essentially complete the

project. They do this by constructing an equilibria involving punishment strategies

where future contributions depend upon the observed level of previous contributions.
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Duffy et al. (2004) experimetally examine the Marx and Matthews model, and find

that sequential play not only increases average contributions, but also increases the

probability that groups reach the threshold level of the public good. While Duffy et

al. focus on the potential benefits of sequential giving, our experiment highlights the

potential coordination pitfalls that sequential contributions might create.

Our approach differs most substantially from the literature mentioned above on

two key dimensions: First, our model has the twin features of cost reduction as other

players make contributions and benefit reduction as players fail to complete the project

sooner rather than later. These features are both likely to be prevalent in many pub-

lic project settings and can make the efficiency issues of public project provision more

salient. Second, while almost all of these models utilize an incomplete information set-

ting, we assume complete information. Under these other models, cost differences are

determined exogenously by nature. While this has the advantage of allowing one to

identify a single, unique equilibrium, they potentially abstract from important coordi-

nation issues. In our model with complete information, the actual costs of each player

is determined endogenously by the order of contribution. Therefore, this creates a com-

plex coordination problem that must be solved in order for the project to be completed.

This is a coordination problem that we feel is likely to be prevalent in many real-world

public project applications and, since it involves potential coordination between different

equilibria, is ideally suited to experimental examination.



70

2.3 The Model

We begin the theoretical analysis by describing a generalized version of the discrete

time, finite horizon model with n players. We assume that each player i ∈ {1, ..., n}, must

choose whether and when to contribute for a public goods project during a contribution

horizon lasting T periods. In each period t, player i must make an irreversible decision to

either contribute (C) or not to contribute (NC). Player i’s action in period t, is denoted

by gi(t) ∈ {C,NC} provided gi(τ) = NC ∀τ = 1, .., t − 1 and gi(τ) = NC for all

τ = t + 1, . . . , T if gi(t) = C. Let G(t) be the number of players who chose to contribute

up to period t. The project is completed in period t if G(t) ≥ G, where it is assumed

that G < n.

The common, public benefit from the completion of the project depends on the

period in which the project is completed. Each player receives the benefit b(r) where

r is the first period where the project is completed, or G(r) ≥ G. Formally, let r =

min
{{

1 ≤ t ≤ T : G(t) ≥ G
}

, T + 1
}

where r = T +1 indicates that the project was not

completed. The benefit from project completion decreases over time, or b(t) < b(t− 1).

If sufficient contributions are not made before the contribution deadline, the project

remains incomplete and none of the agents receive any benefit, or b(T + 1) = 0.

The cost of contribution for player i ci(m) depends only on the number of players

who have already chosen to contribute denoted by m where m = G(t − 1) in period t.

The agent incurs the cost of contribution, even if the project remains incomplete at the

end of T periods. We assume that either ci(m) = ci(m
′) for all possible m and we call

this the no cost reduction case, or ci(m) < ci(m
′) for all m > m′ and we call this the cost
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reduction case. Notice that while cost incurred by a player by making a contribution in

period t depends on when the player makes the contribution (and the number of prior

contributions), benefit derived from project completion depends on when the project

is completed and thus cannot be directly controlled by an individual player. Payoff to

player i, ui is then a function of both player i’s contribution decisions (gi) and the total

contributions made (G):

ui(gi, G) =


b(r)− ci(G(t− 1)) if gi(t) = C

b(r) otherwise.
(2.1)

Benefits and costs are assumed to vary in such a way to ensure that it is socially optimal

for the project to be completed in period t = 1.

We assume that this is a game of complete information; each player knows her

own cost and the cost of contribution of the others at each and every subgame. Play-

ers are only informed of the total number of contributions from the previous periods.

Player i’s personal history at the start of period t is ht − 1
i

= (gi(τ), G(τ))t − 1
τ = 1, and a

player’s strategy si : ht−1
i

−→ gi (t) . A pure-strategy subgame perfect Nash Equilibrium

(SPNE) of this game consists of a strategy profile, s = (s1, ..., sn) which induces a Nash

equilibrium in every subgame.

For the case without cost reduction, b(1) > b(2) is a sufficient and necessary

condition for the existence of a SPNE outcome where G of n players contribute in period

1 and the project is completed without delay. On the other hand, for the case with cost
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reduction, if there exists at least n− (G− 1) players such that

b(1)− b(2)
ci(0)− ci(G− 1)

< 1 (2.2)

then there does not exist a SPNE outcome in which the project is completed in the first

period. Given that G− 1 players contribute in period 1, condition (2.2) ensures that for

all other players they would rather delay completion of the project than pay the high

initial contribution costs. Therefore, in equilibrium, the project is completed with delay.

Consider the following the following example that matches cost reduction envi-

ronment from the experiments. Let n = 5 and T = 3 and G = 3. The project completion

benefit is given by b(r) = 1000 − (r − 1)200 for r ≤ 3 and b(r) = 0 for r > 3 and the

common contribution costs are given by c(0) = 400 and c(m) = 400/(2m) for m = 1, 2.

The Pareto-dominant SPNE outcome of the game with cost reduction involves one

player contributing in period 1, two of the remaining four players contribute in period

2 and the final two players not contributing. To see why project completion in the first

period is not subgame perfect for this example, consider the following feasible strategy

profile that does not involves delay: players 1, 2 and 3 contribute in period 1 and players

4 and 5 choose not to contribute. The payoff for players 1, 2 and 3 is 600, and the

payoff for players 4 and 5 is 1000. However, players 1, 2, and 3 all find it profitable to

unilaterally deviate by contributing in period 2 rather than period 1. The payoff from

such a deviation is 700, which is better than the payoff under the outcome without delay.

Thus project completion in period 1 for the game with cost reduction is not subgame

perfect. The total surplus generated by the SPNE outcome is 3,200 in this example,
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whereas the efficient allocation would prescribe contribution by exactly three players in

period 1 for a surplus of 3,800.

In order to compare the effects of cost reduction on delays in project completion,

we modify the previous example by making cost of contribution constant. Let ci(m) =

400 for all m. Thus cost incurred by a player i in period t is independent of the number

of prior contributions made. The Pareto-dominant SPNE outcomes of the game without

cost reduction involves three of five players contributing in period 1 and the remaining

two players not contributing. Thus, the project is completed without delay and the

efficient surplus is obtained.

In both cases, there are multiple SPNE.1 The contribution patterns that are con-

sistent with a SPNE under both cost reduction (WCR) and no cost reduction (WOCR)

are listed in Table 2.1. The total surplus of the SPNE outcomes varies considerably.

Each contribution pattern is actually consistent with multiple SPNE outcomes where

the identity of the contributing players varies amongst the five players. In addition to

coordinating on a contribution pattern, players must coordinate on who is going to con-

tribute and when they do so. The strategy of all players not contributing in any of

the three periods is a Nash equilibrium for both cases, but it is not subgame perfect.

Once any player chooses to contribute in period 1, it is a best response for two of the

remaining four players to contribute over the remaining two periods and complete the

project. Thus, any player should be willing to deviate from the no completion strategy.

While all players face (ex ante) symmetric costs of contributions, in equilibrium,

the payoffs are asymmetric. This asymmetry takes two forms. First, in both the with and

1There are also likely to be mixed-strategy subgame perfect Nash equilibria.
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Contributions in Total
Pd1\Pd2\Pd3 Surplus

3\0\0 3,800
WOCR 1\2\0 3,200

0\3\0 2,800
0\0\3 1,800
1\2\0 3,200

WCR 0\1\2 2,200
1\0\2 2,200

Table 2.1. Contribution patterns and surplus for all SPNE outcomes of the example
game with and without cost reduction.

without cost reduction cases, there are differential payoffs due to the lack of contribution

by some players. In only the cost reduction case, differential payoffs are also generated by

the timing decisions of those who decide to contribute. Both these asymmetries suggest

that this situation will result in substantial coordination difficulties. Even if the player’s

recognize the various SPNE of the game, they must find a way to arrive at a particular

selection from the set. However, obvious equity issues are likely to complicate this choice.

In the extreme case, players can guarantee an equitable payoff by refusing to contribute.

As mentioned earlier, while this no provision outcome is a Nash equilibrium, it is not

subgame perfect and is highly inefficient. As in all games of coordination with Pareto-

ranked equilibria, coordination failure might be of two possible types (i) none of the

equilibria might be achieved and (ii) players while successful in coordinating on some

equilibrium, do not coordinate on the Pareto-optimal equilibrium. Further, in games

with multiple equilibria, it is difficult to predict which of these is more likely to occur.

This is an empirical question that we address by examining behavior in the laboratory.
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2.4 Experimental Design

For the experiment, we use the same parameterized game as in the example

described above, with five players and three periods. The experiment consisted of two

treatments, one with cost reduction (WCR) and one without cost reduction (WOCR),

each repeated for a fixed number of rounds. In all there were three sessions. In session 1,

the WOCR treatment was conducted first for 25 rounds and followed by the WCR

for 25 rounds.2 In session 2, the order of treatments was reversed. In session 3, the

treatment WOCR preceded the treatment WCR, but this time the treatments involved

35 repetitions. This was done to check if increasing the number of times the game is

played had any effect on the outcomes of each treatment in the last five rounds.

Each session involved 15 inexperienced subjects divided into three groups of five.

Data from each five-player group for each treatment is treated as one, independent

observation. Thus, we have three observations for each treatment from each session, or a

total of nine observations for each treatment. Each subject was matched with the same

four subjects for the entire session. We did this to enable learning over the rounds, since

we were interested in studying coordination.3

At the conclusion of the second treatment, earnings from the both treatments

plus a $5 show-up payment were paid to each subject in cash. Participants could earn

2Data from the last round in the WOCR treatment of the session 1 was lost. As a result, the
reported results are based on 24 rounds.

3It was impractical to have groups of five subjects, where each and every subject met each of
the other four subjects for the first time in every round. Subjects were only informed of the total
number of contributions made in the previous periods and not of the identity of the contributors.
Given this, it is unlikely that subjects could use the repeated nature of their interaction to
support alternative outcomes.
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a maximum of $10 in each treatment. Participants’ earnings averaged $3.95 (standard

deviation of $1.98, maximum of $8.88 and minimum of $1.15) for WOCR and $4.14

(standard deviation of $0.83, maximum of $5.96 and minimum of $2.68) for WCR.

All sessions of the experiment were computerized and were conducted in the

Laboratory for Economic Management and Auctions (LEMA) at Pennsylvania State

University. Participants were recruited from the student population of Pennsylvania

State University. The experiment was programmed and conducted with the z-Tree soft-

ware (Fischbacher 1999). Instructions from the WCR treatment are contained in the

appendix.

2.5 Results

First, we present our primary results considering all the rounds for the two treat-

ments. Then, we examine the effect of learning and experience by considering the first

and last five rounds of each treatment. Finally, we analyze individual behavior and

its effect on coordination and discuss extensions. Unless otherwise noted, all statistical

tests utilize a Wilcoxon signed ranks test, which is a powerful non-parametric test that

compares the change in an observed variable for the same group under the two treat-

ment conditions (Siegel and Castellan 1988). The results of the tests are summarized in

Table 2.2. Also, since the order of treatments was varied over the experimental sessions,

one might consider potential treatment order effects. In general, these effects were found

to be minimal so discussion of order is limited for the sake of brevity; discussion of order

effects when potentially relevant is provided after each conclusion.
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Test Result
(HA) p-value

1 Completion Rate T+ = 31
WCR 6= WOCR p = 0.3594

2 Contributions Per Round T+ = 23
WCR 6= WOCR p = 1.0000

3 Average Completion Period T+ = 44
WCR > WOCR p = 0.0078

4 Contribution Per Round (WOCR) T+ = 24.5
First5 6= Last5 p = 0.461

5 Contribution Per Round (WCR) T+ = 29.5
First5 6= Last5 p = 0.1484

Table 2.2. Wilcoxon signed rank test results. The left-hand column represents the
measured variable and the alternative hypothesis of the statistical test. The T+ is the
test statistic and p is the p-value. In all cases, N = 9.

All SPNE under both treatments result in project completion and exactly three

contributions. Therefore, we expect the project to be completed irrespective of the treat-

ment and for the number of contributions to approach a degenerate distribution at three.

We do not expect the numbers to be any different across the two treatments. If there are

differences, we would infer that the added complexity and timing considerations of the

WCR treatment resulted in greater coordination difficulties that manifest themselves

with lack of project completion. At this level, there appears to be little discernible

difference between the treatments.

Conclusion 1. Cost reduction does not effect the rate of project completion or the num-

ber of contributions.
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Fig. 2.1. Distribution of contributions by treatment.

Support: The average project completion rates for the treatments WOCR and

WCR were 75% and 78% respectively. Under any reasonable level of significance, one

cannot reject the null hypothesis that these completion rates are the same (Table 2.2).

In both treatments, three of five players chose to contribute most frequently. In Fig-

ure 2.1 the distribution of contribution totals for the two treatments is displayed. For

each treatment we expect a degenerate distribution at three contributions; three of five

contributions is the modal choice in the data. The average number of contributions

is 2.77 and 2.87 for the treatments WOCR and WCR respectively. The difference in

contribution levels between the two treatments is not statistically significant (Table 2.2).

It is possible that the order in which the treatments were played might have had

some effect on project completion rates; as the session progresses, participants learn
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that it is better to complete the project than to leave it incomplete. The strategy of no

contribution by all players is not a subgame perfect equilibrium. To check whether such

order effects are significant, we reversed the order of treatments in the second session and

found that project completion rates were nearly identical across the two treatments (81%

(WCR) versus 84% (WOCR)). There is thus little evidence of order effects on project

completion rates. Increasing the number of rounds also has little effect on completion

rates (74% (WCR) versus 80% (WOCR)).

The previous result indicates that, as expected, there is little difference between

the two treatments in terms of coordination on project completion. However, we expect

there to be substantial difference in the dynamics of project completion under the two

treatments.

Conclusion 2. Cost reduction results in more delay in project completion.

Support: The project was completed in period 1 only 4% of the time on average

under WCR, but completed in period 1 46% on average under WOCR. On the other

hand, the project is completed in period 2 50% and 34% of the time under WCR and

WOCR respectively. This results in an average project completion period under WOCR

of 1.74 versus 2.41 for WCR. As reported in Table 2.2, this difference in completion time

is significant. The effect of cost reduction on project completion becomes even more

apparent in the final five rounds of each treatment; the project is never completed in

period 1 in any session for the treatment WCR.

While this result tells us that coordination with respect to timing is largely consis-

tent with theory, there was still a substantial amount of unexpected delay under WOCR.
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There are a number of factors that might have caused such delay. First, may be coor-

dination failure amongst players. Second, players may be playing a mixed strategy. Its

possible that there are mixed strategy equilibria where given the history, players assign

positive probabilities to contributing in any of the remaining periods which leave them

indifferent. Finally, the order of treatments in each session suggests that experience may

be determining the frequency of delays in WOCR. The project is completed more often

without delay in the three groups (session 2) where WOCR was played last.

The previous two results indicate that behavior under the two treatments is at

least qualitatively similar to the behavior predicted by the theory. However, project

completion and delay can also be consistent with non-equilibrium play. Therefore, we

examine whether play was regularly consistent with SPNE, and, if so, which SPNE

outcome was most common.

Conclusion 3. The outcome of the game is frequently consistent with SPNE. The most

frequent SPNE outcome is the Pareto-dominant outcome.

Support: Contribution choices were consistent with a SPNE 30% of the time under

WOCR and 24% of the time under WCR. Further, players chose strategies consistent

with the Pareto-dominant SPNE outcome 26% and 17% of the time for WOCR and

WCR respectively.

Theoretically, we expect no differences in the frequencies with which players

choose to play subgame perfect outcomes or the Pareto-dominant subgame perfect out-

come across the two treatments. Given the complex coordination problems the players

face, these numbers could be considered as fairly large. However, players are not always
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successful in playing the subgame perfect outcome. But there is evidence that players

learn to play the Pareto-dominant subgame perfect outcome more frequently over the

duration of a session, in the sense that the Pareto-dominant subgame perfect outcome

for the respective treatments were played more often in sessions where they were played

second. For example, given that three contributions were made, the Pareto-dominant

subgame perfect outcome for the treatment WOCR was played 35% of the time when

the treatment was played first as opposed to 69% when is was played second. Similarly,

for the treatment WCR, the Pareto-dominant subgame perfect outcome was played 29%

of the time when the treatment was played first compared to 37% of the time when the

treatment was played second. The outcomes which involve exactly three contributions

over the three periods under the treatment WOCR are shown in figure 2.2a. The out-

comes with an asterisk correspond to outcomes consistent with SPNE, of which the one

where three of the five players contribute in period 1 Pareto-dominates the others. The

Pareto-dominant SPNE outcome is played most often.

Figure 2.2b reports the same information for the WCR treatment. Once again,

the Pareto-dominant SPNE outcome is played most often. This implies that the subjects

were able to coordinate amongst themselves at both levels (i.e., playing an outcome where

three of the five participants chose to contribute and selecting the Pareto-dominant

subgame perfect outcome). The outcome which was played the most frequently after

the Pareto-dominant one involved two players contributing in period 1 and one of the

remaining three players chose to contribute in period 2. While this outcome does not

exist on the equilibrium path for any SPNE, it is sequentially rational; if players ever

arrived at a subgame where two players have already contributed, it would be a Nash
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Fig. 2.2. Contribution patterns when the project was completed.
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equilibrium of this subgame for one more player to contribute immediately. So, while

this play may look inconsistent with equilibrium play, it suggests that some players may

be playing in a rational manner.

While the theoretical model predicted a degenerate distribution at three for the

number of players who should contribute in any equilibrium, it failed to predict which of

the multiple subgame perfect outcomes would be played more often. Since the Pareto-

dominant subgame perfect outcome is played most often in both the treatments, players

were able to coordinate amongst themselves at both levels: (1) Three players chose to

contribute most often and (2) they played the Pareto-dominant subgame perfect outcome

most frequently.

2.5.1 Learning

Participants in each group were matched with the same four participants for the

entire duration of each treatment. This was done to facilitate learning over the different

rounds of the treatment. If there was learning, we would expect results from the last

five rounds to be closer to the theoretical predictions than the first five rounds.

The project completion rates were found to decrease in the last five rounds as

compared to the first five rounds. For WOCR, the project completion rate in the first

five rounds was 84% and 73% in the last five rounds. For WCR, the corresponding

numbers were 82% and 71% respectively. This result is similar to prior, well-known

experimental findings that showed that participants in voluntary contribution games

contribute less frequently over time. Such a decrease in contribution rates is supposed to

be more pronounced in cases where participants are matched with the same partners for
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all the repetitions (Andreoni, 1988), as is true in our case. However, project completion

rates went up in the second treatment for all the sessions in the last five rounds when

compared to the first treatment.

The average number of contributions made in the first five rounds was 2.9 (3.1)

under WOCR (WCR) and for the last five rounds the average was 2.6 (2.7) under WOCR

(WCR). While the number of contributions dropped in the last five rounds under both

treatments, the differences are not significant (Table 2.2). Most of the time three contri-

butions were made in both the treatments in the first and last five rounds. There does

not appear to be much evidence of learning.

The average number of contributions made across the three groups and over the

three sessions in the first five rounds were found not to be significantly different from the

ones made in the last five rounds for both the treatments (Wilcoxon Signed Rank Test

gave values of T+ = 12 and 11 with α = 0.05, N = 6 for treatments WOCR and WCR

respectively). Most of the time three contributions were made in both the treatments in

the first and last five rounds, such that there is not much evidence of learning.

With regard to project completion delay, the results are mixed. Figure 2.3 shows

the average number of times the project was completed in the different periods in the first

and last five rounds for the two treatments. Though the project is completed without

delay for the treatment WOCR for the first five rounds, it is completed more frequently

with delay in the last five rounds, which is contrary to our theoretical predictions.4 On

the other hand, the project is completed with delay for the treatment WCR both for the

4If we look at the same numbers for individual sessions we find that the project is completed
with delay in the treatment without cost reduction in the last five rounds only in sessions 1 and
3, where it was conducted first.
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first and last five rounds. More importantly, it is never completed in the first period in

any of the last five rounds in any of the sessions. There is also little evidence in favor of

the players learning to play either the subgame perfect outcomes or the Pareto-dominant

subgame perfect outcome in either treatment.

2.5.2 Analyzing Coordination Failures

While players were successful in coordinating on the timing of their contributions

to the extent that most of the time three of the five players chose to the contribute for

the public project and that given three contributions were made, the Pareto-dominant

outcome was played most often in both the treatments, there were coordination fail-

ures. These failures were manifested in several ways. First, the project was not always

completed in either treatment. Second, the project was completed with delay in some
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sessions under WOCR. Finally, non-equilibrium outcomes were played more often than

equilibrium outcomes.

To analyze such coordination failures, we look at individual behavior of the players

at two levels: (1) the percentage of times each player chose to contribute and (2) the

percentage of times each player chose to contribute in period 1. Three of the five players

in a group need to contribute for the project to be completed in both the treatments, but

there are many ways such a contribution pattern could be realized. In one extreme, the

same subset of players could volunteer to make contributions all the time while the others

‘free-ride’. While this is easy to implement it would lead to highly asymmetric payoffs.

In the other extreme, players could choose a strategy of rotation, according to which each

player chooses to contribute only 60% of the time and free-rides on the contributions of

others for the remaining rounds. While this outcome is equitable, it is hard to envision

how the players, given the lack of direct communication, could coordination on this

rotation scheme.

For the treatment WCR, choosing to contribute however, is not enough. Deciding

when to contribute has important consequences. This is because the first person to

contribute does not enjoy the benefits of cost reduction. By choosing to contribute first,

a participant provides an incentive for the others to contribute, by reducing their costs.

The Pareto-dominant outcome requires only one person needs to contribute in period

1. Once again we could either have the same player contributing in period 1 in all the

rounds (the inequitable outcome) or each player contributing in period 1 only 20% of the

time (the equitable outcome). A player who chooses to contribute almost all the time

and frequently always chooses to contribute in the first period for the treatment with
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Fig. 2.4. Distribution of subject contribution frequencies.

cost reduction could be thought of as an altruistic leader ; he sacrifices some personal

earnings in the interest of completion of the project. On the other hand, a participant

who chooses never to contribute in period 1 could be labeled as selfish followers; she is

unwilling to accept a greater burden of the public project.

As is evident in Figure 2.4, most of the participants chose to contribute between

51-70% and 71-90% of the time for both the treatments. This would be consistent

with individuals choosing to be neither altruists nor free-riders but instead choosing the

strategy of rotation. Many subjects chose contribution rates very close to the equitable

option; the number of participants who chose to contribute between 55-65% of the time

for the treatments WOCR and WCR were 8 (out of 45) and 10 (out of 45) respectively.

Only one participant chose never to contribute in any of the rounds under WCR. The

average frequency of contributions was found to be 55 and 58 for the treatments WOCR
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Fig. 2.5. Distribution of subject contribution frequencies in period 1.

and WCR respectively (t-statistic values were -1.3 and -0.4 for n = 45, df = 44, not

significant). However, looking at only the average percentage of contributions could be

misleading since a distribution where 60% of the participants contribute all the time and

40% free ride (non-rotation) would also lead to an average percentage of contribution of

60%. The variance of contribution rates provides insights into the equatability of the

coordination. Under the symmetric, equitable rotation scheme, the variance of would

be zero, but under the most asymmetric, inequitable scheme the variance would be 24.

In the experiment, the observed variance of percentage contributions are 6.4 (WOCR)

and 5 (WCR). This suggests that player strategies are more consistent with an equitable

rotation scheme, but this coordination is clearly not perfect.

That most participants again chose the strategy of rotation for the role of leader

is apparent from figure 2.5. Most of the subjects contributed in period 1 11 to 30% of
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the time for the treatment with cost reduction. However, a significant fraction chose to

contribute only 0-10% of the time, preferring to “wait and watch”, letting someone else

to make a contribution in period 1 thereby enabling themselves to enjoy a lower cost. In

WCR, 10 participants (out of 45) chose never to contribute in period 1 versus 4 (out of 45)

under WOCR. For the treatment WOCR, most participants chose to contribute between

51-70% of the time in period 1 as is required for efficient completion of the project and

play consistent with the Pareto-dominant SPNE. The average percentage of contributions

in period 1 was found to be 40 and 18 for the treatments WOCR and WCR respectively

(t-statistic for the latter with n = 45, df = 44 was -0.8, not significant. Corresponding

variances were 6.5 and 2.4 respectively). We also calculated the correlation coefficient

between the percentage of times players chose to contribute and percentage of times

contributions were made by the same players in period 1 for the two treatments and

found them to be 0.896 (WOCR) and 0.417 (WCR). This suggests that participants who

chose to contribute for the treatment WOCR also chose to contribute early while this

was not true for WCR.

A number of extensions may provide insights into behavior. First, we could

allow nonbinding pre-play communication between the players and check what kind of

outcomes are played more frequently. Second, we could increase the number of players

in a group in the public good project model described above and check how changing

the number of players affects the outcome(s) from the corresponding models. We would

expect that allowing pre-play communication would obviate coordination failures while

increasing the number of players would make coordination more difficult.
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2.6 Conclusions

Given the asymmetric nature of the payoffs derived from project completion and

the complicated nature of the game, it is remarkable that most of the time participants

successfully coordinated amongst themselves at all levels to ensure that the project was

completed. Given that the project was completed, the Pareto-dominant outcome was

played most often. These results gain added significance in retrospect to the experimen-

tal literature that exists on coordination failures in games which involve Pareto-ranked

equilibria. Most games on coordination failure refer to a “reversible safe action” and an

“irreversible risky action”. The intuition offered for such coordination failures is that the

action which leads to the Pareto-dominant equilibrium outcome is deemed “too risky” by

the players, as a result of which inefficient outcomes get played more often (Van Huyck

et al. 1990, VBB).

While attempting to explain how players succeeded in coordinating their actions in

this framework, as mentioned earlier, given the number of contributions made was three,

while the Pareto-dominant subgame perfect outcome was played most often in both

treatments, non-equilibrium outcomes together were played more often than equilibrium

outcomes over all rounds in most cases. Besides, unlike the VBB model, our setup does

not involve a one-shot simultaneous game. Instead, players get to choose simultaneously

whether or not to contribute in each period provided they have not chosen to contribute

already. This seems to suggest, that the players in a group first chose to coordinate

amongst themselves in a way to ensure that exactly three of them contribute for the

project in each round. This is also borne out by the fact that the fraction of times the
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number of contributions made was either one or five was quite low in both treatments (see

figures 1 and 2). Even in the treatment WOCR, where the Pareto-dominant subgame

perfect outcome required three players to contribute in period 1, players often chose to

“wait and watch”, letting others contribute first, even though there was no apparent

benefit from waiting. This could be due to the dual effects of the “incentive to free ride”

and the “incentive to coordinate to ensure exactly three contributions were made”.

After comparing the results from the first five and last five rounds for each treat-

ment across the different groups, we find that there was learning in at least some dimen-

sions. For example, the project was never completed in period 1 in the last five rounds in

any of the sessions for the treatment WCR. Participants thus realized over repeated play

that completion of the project in period 1 though efficient, did not necessarily maximize

individual payoffs. In fact the last round in which the project was completed in period 1

was round 15. Also, it was never the case that three of the five players in a group chose

to contribute in period 1 for the treatment WCR in the last five rounds (though we had

some instances where this happened in the first five rounds). However, average project

completion rates and average number of contributions made actually declined from the

first five to the last five rounds, while the project was completed with more delay in both

treatments in the last five rounds as compared to the first five rounds.

Our main goal in this chapter was to address the following question: does a cost

reduction feature induce more delay in completion of a public good project than one with-

out it? We attempted to answer this question in the framework of coordination games

with Pareto-ranked multiple equilibria, where we predicted that the Pareto-dominant

subgame perfect outcome would be played most frequently, such that, the project would
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be completed without delay in the case where there is no cost reduction and would be

completed with delay in the model with cost reduction. Experimental evidence collected

supports our hypothesis that cost reduction induces more delay and that the Pareto-

dominant subgame perfect outcome is played most often in both cases. While analyzing

the results which back the supposition that a coordination failure was averted, we sug-

gest that the nature of the game where a sequence of simultaneous games are played

(as opposed to one shot nature as seen in VBB) could have helped players to coordinate

their actions.
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Appendix 1.

Instructions Used in the Experiment

The instructions used for the treatment with cost reduction are reprinted below.

WELCOME

You are about to participate in an experiment in individual and group decision

making in which you will earn money based on decisions made by you and others.

Your earnings are yours to keep and will be paid to you in cash at the end of the

experiment. During the experiment all units of account will be in experimental dollars.

Upon conclusion of the experiment, all experimental dollars will be converted into U.S.

dollars at the conversion rate of 2500 experimental dollars per U.S. dollar. Your earnings,

plus a lump sum amount of $5 will be paid to you in private. Please do not talk with

one another for the duration of the experiment.

In this experiment you will participate in 25 periods. For the entire experiment

you’ll be matched with 4 other participants. The decisions you make will remain anony-

mous.

Earnings

In each period, consisting of three stages, you and each of the other four partic-

ipants in your group will have to decide whether and when to contribute for a project.

Earnings earned from the experiment will be the sum of earnings from each period, where

Earnings from each period = Benefit from same period – Actual Cost
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Benefits accrue to each and every member of the group if the project is completed

in three stages or less. The project is said to be completed if and only if three or more in

a group of five participants choose to contribute. If the project remains incomplete, no

benefits are obtained. The benefits derived from the completion of the project depend

on the stage in which it is completed as follows

Benefits from Project Completion

in Stage 1 in Stage 2 in Stage 3

1000 800 600

Individuals who choose to contribute have to bear a cost of contribution. Costs

of contribution (C) for each of the five participants will initially be 400. You can choose

to contribute only once in any one of the three stages. Your actual cost of contribution,

however, depends on the number of participants who choose to contribute before you.

Your cost of contribution remains unchanged if you’re the first to contribute, gets divided

by two if one participant decides to contribute before you and gets divided by four if two

participants choose to contribute before you. For example, the actual cost of contribution

for the participant with cost (C) = 400 will be determined as follows

Actual Cost of Contribution

Number of participants who chose 0 1 2

to contribute before you

Actual cost of contribution 400 (=C) 200 (= C/2) 100 (=C/4)
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Contributions made are irreversible in the sense that even if the project is not

completed and you chose to contribute, you have to incur the cost of contribution (actual)

and get a negative earning (earning = 0 – cost). On the other hand, if you chose not

to contribute and the project is completed in one of the three stages, you earn the

corresponding benefit without incurring any costs.

Decision Stages in each Period

Stage 1: Each of the 5 participants chooses either to contribute or not to con-

tribute in stage 1. If 3 or more than 3 individuals choose to contribute, the project

is completed in stage 1 and everyone gets a benefit of 1000. Individuals who chose to

contribute incur the cost of contribution, 400, while those who chose not to contribute

will earn the benefit without incurring any costs. If the project remains incomplete at

the end of stage 1, none of the participants get the benefit of 1000 and in that case you

will move on to stage 2.

Stage 2: At the beginning of stage 2 the total number of contributions made at the

end of stage 1 will be shown on your computer screen. It will however not show you who

made the contribution(s). The screen will also show you your new cost of contribution

in case you chose not to contribute in stage 1. If one participant chose to contribute in

stage 1, your new cost of contribution will be your initial cost divided by two (C/2) and

in case two participants chose to contribute your new cost will be your initial cost divided

by four (C/4). If no one contributes in stage 1, your cost of contribution will remain

unchanged. Once again, you should choose either to contribute or not to contribute.

The project will be completed if the total number of contributions made over

stages 1 and 2 is three or more. If the project is completed in stage 2, everyone gets a
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benefit of 800. This means participants who chose to contribute in stage 1 (if there were

any) will get a benefit of 800 only when the project is completed at the end of stage 2.

If the project remains incomplete at the end of stage 2, none of the participants receive

any benefit and you will move on to stage 3.

Stage 3: At the beginning of the third and last stage, you will be informed of the

total number of contributions made in stages 1, 2 and your new cost of contribution in

case you chose not to contribute in stages 1 and 2. If the total number of contributions

made is 1, your cost of contribution will be C/2 and if the sum of contributions is 2,

your cost will be C/4. If no one contributes in stages 1 and 2 your cost will remain

unchanged. For the last time, you should choose whether or not to contribute.

The project is completed in stage 3 if the total number of contributions made

over the 3 stages is three or more. In that case everyone gets a benefit of 600. Once

again participants who chose to contribute in stages 1 or 2 will get the benefit of 600

only when the project is completed in stage 3. If the project remains incomplete, none

of the participants will receive any benefit.

Computer Interface

All the information you need to participate in the experiment will be provided by

the computer system. The computer automatically completes all necessary calculations

according to the rules described above and displays the relevant information on your

screen. However, it is important that you understand the process involved since it helps

you determine how to earn money.

At the beginning of stages 2 & 3 the computer will provide you with the number

of contributions which have already been made, your actual cost of contribution, your
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earnings in experimental dollars if you choose to contribute and the project is completed

in that same stage, your earnings in experimental dollars if you choose not to contribute

and the project is completed in that same stage and the time left for you to decide

whether or not to contribute. If you choose to contribute, click “contribute” and if

you choose not to contribute, please click “not contribute”. The computer will also

display your earnings at the end of each period and your total earnings at the end of the

treatment (25 periods).

Negative earnings

Notice that negative earnings are possible in a given period (exercise 4 below).

In that case, the earnings will be subtracted from your sum of earnings from the other

periods. In the unlikely event that your total earnings from the experiment (including the

$7 initial payment) fall to zero, you will not be allowed to continue with the experiment.

Exercises

To make sure you understand the instructions, please read the following exercises

all of which assume that your initial cost of contribution (C) is 400.

(1) Suppose in stage 1, three other members of your group of 5 contribute. What

would be your earnings?

Answer: Your earnings will be 1000 – 0 = 1000.

(2) Suppose one member contributes in stage 1, while you contribute alone in

stage 2. Finally in the third stage one of the remaining three members contribute. What

would be your earnings?

Answer: Your earnings would be 600 – (C/2) = 600 – 200 = 400.
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(3) Suppose two other members of your group contributes in stage 1, while no one

contributes in stage 2. Finally, in stage 3 you and one other member contribute. What

would be your earnings?

Answer: Your earnings would be 600 – (C/4) = 600 – 100 = 500.

(4) Suppose one member contributes in stage 1, you contribute in stage 2 but no

one else contributes in stages 2 or 3. What would be your earnings?

Answer: Your earnings would be 0 – (C/2) = – 200

(5) Suppose you contribute in stage 1, while two of the remaining 4 members

contribute in stage 3. What would be your earnings?

Answer: Your earnings would be 600 – C = 600 – 400 = 200.

(6) Suppose you contribute in stage 1, while two of the remaining 4 members

contribute in stage 2. What would be your earnings?

Answer: Your earnings would be 800 – C = 800 – 400 = 400.

If you have any questions, please raise your hand and I will come by to answer

them.
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Chapter 3

An Empirical Study of The Price Path of Airline Tickets

3.1 Introduction

In an earlier chapter, in order to study the behavior of prices of goods like airline

tickets over time, we set up a theoretical model with the following features. A single seller

facing a capacity constraint offered a finite measure of units for sale over three periods,

after which the good lost its value. The seller announced without precommitment,

price and measure of units for sale in each period. At the same time, a continuum of

buyers entered the market in each period, each of whom was one of two types, high

and low. High type buyers had a higher willingness to pay for the good than low

type buyers. Both types were strategic in the sense that they could choose either to

purchase the good immediately, or to wait, in case a cheaper price is made available

in the future. We solved for the subgame perfect Nash outcomes of this game using

backwards induction for various range of parameter values and found the price path

to be non-decreasing, u-shaped or horizontal. In this chapter, we empirically test the

predictions of the theoretical model and specifically verify the predicted relationship

between the proportion of business travellers on a given route and the shape of the

corresponding price path.

As discussed in the earlier chapter, the good being sold is non-durable, non-

storable and cannot be resold. Goods like airline tickets could be considered similar to a
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futures contract on a service, where the airline writes contracts with different customers

on different terms at different points in time. This implies that the airline faces a problem

similar to the intertemporal pricing problem facing a durable goods monopolist. Our

initial conjecture was that the shape of the price path of such goods would be u-shaped.

This is because the seller is aware that buyers with a higher willingness to pay enter

the market at all times. We hypothesized that the seller would initially set high prices

and reduce prices gradually as in a Dutch auction. The seller would do this hoping that

the buyers with a higher willingness to pay would purchase the good immediately, since

they would be unwilling to wait for lower prices. This could be due to the fact that even

though high type buyers correctly predict that prices will drop after some time they are

also aware of the capacity constraint the seller faces and that while waiting for lower

prices they run the risk of not getting to buy the good. Once prices drop, lower valuation

buyers scramble to buy the good since they too correctly predict that prices will rise in

the last period before the good will cease to have any value. Finally, in the last period,

the seller increases the price again, since high valuation buyers entering the market in

the last period would be willing to pay these high prices in order to purchase the good.

For example, price data collected for the AirTran Airways flight 927 flying from Akron

to Tampa on June 7, 2005, suggests that the price path was u-shaped. Our primary

motivation in the first chapter was to construct a theoretical model which could explain

such a u-shape.

The main predictions of the theoretical model were as follows. First, a sufficiently

patient seller never offers any sale in the last period. This is because the seller chooses

to reserve some units for sale in the last period and offer them at high prices to high
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valuation buyers who enter the market in that period. Second, the measure of units

offered for sale in any period where the seller chose to offer the good to both types of

buyers was found to be a decreasing function of the proportion of high type buyers in

the market. Third, the shape of the price path was found to be horizontal, u-shaped

or non-decreasing for various ranges of parameter values. For example, for routes with

the highest proportion of high type buyers, sellers had no incentive to offer a sale. The

price path was then found to be horizontal. Routes with lower proportions of high type

buyers had price paths which were non-decreasing or u-shaped.

We collect data on prices over 15 weeks for 30 one-way, non-stop flights in the

US. While the first prediction was found to be empirically valid, we found little evidence

to support the hypothesis that the price path should be horizontal for routes with the

highest proportion of buyers with a higher willingness to pay. We classified the routes

into low, medium and high proportion of high type buyers and found that prices increased

as the date of departure grew closer for all three types of routes. The rate of increase

was found to be highest for routes with the highest fraction of high type buyers. We did

find some evidence for a u-shaped price path for routes with low proportion of high type

buyers.

3.2 Review of Literature

A number of empirical papers deal with price dispersion and discrimination in the

airline market. Probably, the most cited amongst them is Borenstein and Rose (1994),

who show that dispersion increases on routes with more competition. However, since

the primary focus of this chapter is on the relationship between the proportion of buyers
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with a high willingness to pay on a particular route and the corresponding shape of the

price path of airline tickets, we will refer only to those empirical papers which discuss

the slope of price path of airline tickets.

Stavins (2001) addresses the issue of how airline prices move over time in a paper

in which she examines how price discrimination changes with market concentration in

the airline market. Price discrimination is found to increase as the markets become more

competitive. The data set included fares offered 35 days prior to departure, followed by 21

days prior to departure, 14 days prior to departure and finally 2 days prior to departure.

The data thus allowed for examination of how prices change as the departure date drew

closer. From the OLS regression it was discovered that cheaper fares disappear, leaving

only more expensive tickets for sale.

McAfee and Velde (2004) provide an extensive survey of yield management re-

search (also called dynamic pricing, where goods are non-durable and capacity is fixed)

in operations research journals and then tests the predictions of these models with air-

line pricing data collected from 1,260 flights. The five major propositions they test are

as follows. First, prices fall as the date of departure approaches. Second, prices rise

initially. Third, competition reduces the variance in prices. Fourth, prices change as the

number of empty seats remaining change and finally fifth, prices of flights leaving from

substitute airports or departing at substitute times are correlated.

The first proposition is a robust prediction of theories which assume that identical

customer types arrive in the market over different points in time. The second prediction

follows from the fact that the cost of failing to acquire a seat is negligible compared to the

gains from delay when prices are expected to fall, when the time horizon is sufficiently
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long. McAfee and Velde found that prices increased $50 in the week before takeoff on top

of a rise of $28.20 the previous week. This meant that the first proposition was empirically

false and theories which assume that customers arriving in the market at different points

in time are identical are invalid. Overall, there was scant empirical evidence in favor of

the major theoretical predictions of these papers. However, McAfee and Velde do not

specify as to whether the second proposition was found to be empirically valid. Also,

the routes considered by them had multiple airlines serving them, such that their results

are inapplicable for models with a single seller.

Etzioni et al (2003) devise an algorithm called Hamlet, which when trained on

a data set comprising of over 12,000 observations over a 41 day period, was able to

generate a predictive model which enabled 607 simulated passengers an average savings

of 27%. They collected data for non-stop flights on two routes, Los Angeles to Boston

and Seattle to Washington, DC, with departure dates spanning January, 2003. For

each departure date they collected data 21 days in advance, 8 times a day. The data

revealed that prices changed as often as seven times in a single day and that 63% of all

such changes could be classified as dependant changes. Such price changes occur when

ticket prices for flights from the same airline and having the same origin and destination

changes. They classify the remaining changes to be independent, when prices change due

to changes in seat availability on that particular flight. The flights were found to have

discernible price tiers and the number of such tiers varied from two to four, depending on

the airline and the particular flight. They classify airlines into two categories, the first

one containing big players like American and United and the second containing smaller

players like Air Trans and Southwest. They find that pricing policies tend to be similar
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for airlines belonging to the same category and that the prices fluctuate more and are

more expensive for airlines in the first category. Finally, they observe that prices increase

two weeks prior to departure which corroborates the empirical finding of Stavins.

The main contribution of this chapter is to provide insights into the relationship

between the proportion of buyers with a higher willingness to pay and the corresponding

shape of the price path. The routes we chose were hand selected to ensure that they not

only had a single airline flying on them but also had a maximum of two flights operating

on any given day. This ensured that there was little or no competition for each flight on

each route.

The remainder of the chapter proceeds as follows. In section 3, we provide a

brief overview of the predictions of our theoretical model. Section 4 describes the data,

section 5 the empirical model while section 6 presents the results. Section 7 contains the

summary and conclusions.

3.3 Theoretical Predictions

As mentioned earlier, the product being sold is not durable. Neither is it storable

nor can it be resold. However, since the seller faces the same intertemporal and time-

consistency problems as a durable goods monopolist, we followed a model constructed

by Conlisk, Gerstner and Sobel (1984), where a single seller sells a durable good over an

infinite time horizon in a discrete time setup. A discrete number of buyers entered the

market in each period, some of whom had a higher willingness to pay for the product

than the others. Buyers could choose either to purchase the product immediately or to

wait. The single seller, who did not face any capacity constraint, usually sold the good
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to the buyers with a higher willingness to pay. Once sufficient number of buyers with a

lower willingness to pay accumulated in the market, the seller chose to hold a ‘sale’ such

that the price path generated was a cyclic one. We extended this model by considering

a finite time horizon and by imposing a capacity constraint on the monopoly seller.

Model. We considered a three period model with a single seller who chose price

pi and measure of units to offer for sale qi, i = 1, 2, 3 in each period. We assumed

that the seller has a continuum of units of measure 3 to offer for sale in each period,

such that qi ∈ [0, 3] and
∑

qi ≤ 3. We assumed that the seller has a discount factor

of ρ, with 0 < ρ < 1. Marginal costs were assumed to be zero. On the demand side,

a continuum of buyers of measure 2 entered the market in each period. We assumed

minimum consumer heterogeneity such that buyers were one of two types. Measure 2α

buyers had valuation for the good denoted by V1 while measure 2(1 − α) buyers had

valuation V2, with V1 > V2 > 0. Buyers with valuation V1 were said to be of high

type while buyers with valuation V2 were said to be of low type. We also assumed that

α ∈ (0, 1/2). The probability of getting to purchase the product, which was endogenously

determined, acted as the discount factor for each buyer.

Timing of events. At the beginning of each period, the seller announced the price

pi and the measure of units qi that he (she) would offer for sale in that period. Buyers of

both types enter the market and based on the announced and expected future prices and

units for sale chose either to purchase immediately or to wait for a lower price. These

expectations turned out to be correct in equilibrium. Buyers who chose to purchase left

the market immediately. Those who chose to wait, remained in the market until they

chose to purchase or till the last period was reached. Based on the prices and the measure
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of units offered for sale in each period, the seller could deduce the measure of ‘active’

buyers who remain in the market.1 The seller was assumed to be unable to precommit

to any sequence of prices and measure of units that were to be offered for sale over the

three periods.

We assumed that the seller knows the types of each buyer but is unable to dis-

criminate and thus announced a single price in each period. We also assumed that the

seller was patient (ρ → 1) and solved for the subgame perfect Nash outcomes for various

ranges of parameter values.

The main results of the theoretical model were as follows:

(1) Any strategy involving a ‘sale’ in the last period was found not to be subgame

perfect. In case the seller chose to offer a ‘sale’ in one or both of the first two periods, the

measure of units offered for ‘sale’ was chosen in way to ensure that the measure of units

remaining with the seller at the beginning of the third period was equal to the measure of

high type buyers who remained ‘active’ in the last period. Since p3 ∈ {V1, V2}, revenue

maximization in the last period required the seller to cater only to high valuation buyers.

(2) The total measure of units offered in any period(s) in which a ‘sale’ was (were)

announced was a decreasing function of α. This meant that as the proportion of high

valuation buyers increased, the seller chose to offer a smaller measure of units at price

V2. For example, in case the seller wanted to offer p1 = p2 = V2 and p3 = V1, then with

α ∈
[
1
4
,
V2
V1

]
and ρ → 1, the seller offered q1 =

3− 6α

1− α
, q2 = 0 and with α <

1
4
≤ V2

V1

then he (she) offered q1 = 2 and q3 =
1− 4α

1− α
, such that (q1 + q2) was a decreasing

1‘Active’ buyers in any period, are those who entered the market in that same period as well as
those who chose not to purchase the good in the previous period(s) and remained in the market.
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function of α.Similarly, for the case where the seller chose to offer a ‘sale’ in the second

period only, then with α ≤ 2V2
V1 + V2

and ρ → 1, the seller offered q2 =
6α2 − 15α + 6

2(1− α)

which was also decreasing in α.

(3) The price path was found to be horizontal, u-shaped or non-decreasing for

various ranges of parameter values (see figure 3.1). For example, with large values for

V1and α the seller had no incentive to offer a ‘sale’ in any period and announced pi = V1

and qi = 2α for i = 1, 2, 3. For lower values of V1 or α, the seller chose to offer a ‘sale’ in

one period, which was either the second or the first period. Finally, for smallest values

of V1 and α, the seller offered a ‘sale’ in the first two periods.

The theoretical model thus made clear-cut predictions about the shape of the

price path for different parameter values. The data collected allowed us to test these

predictions empirically. In the event the empirical results failed to match the theoretical

predictions, we attempt to provide an intuitive explanation behind such a failure(s).

3.4 Data

While the theoretical model was highly stylized in the sense that it allowed us to

capture certain features of the airline ticket pricing, it diverged from the airline ticket

market in the following ways. First, we often observe last minute deals being offered

by some airlines on online travel sites like Priceline. Buyers can quote their own price

which might be accepted by an airline flying on that route. Entering flexible dates

increases the chances of finding such an airline. Such discounts are never made available

directly from the airlines themselves. In this case, airlines wait till the last few days

before the flight departs and offers these seats at a discount through some online travel
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agents, since selling them at a lower price is preferred to flying with empty seats. Our

theoretical model did not allow for such strategies. Second, airline tickets usually come

with various sorts of restrictions. Travel restrictions are placed on certain tickets being

offered at cheaper rates to make them unattractive to price inelastic buyers (for example,

Saturday-night stay-over). Consumers thus end up self selecting the type of ticket and

its price which they find most attractive. However, the theoretical model constructed,

did not allow for such purchase restrictions and thus had no quality differentiation for

the product being sold.

In this empirical extension, we collect price data for economy class tickets for

one-way, non-stop flights in the US. We thus consider tickets with the least number

of restrictions. Further, these routes were hand-selected such that only a single carrier

offered services on each of them. This was done to ensure that the airline was a monopoly

on that particular route, since the theoretical predictions are valid only for a single seller

framework and we were unsure of how the predictions would change for a multiple seller

setup. Even though the theoretical model made predictions about the shape of the price

path and the measure of units made available for sale in each period for different range

of parameter values, we could only empirically test the predictions about the shape of

the price path since the number of seats made available for sale by an airline over any

period of time were not observable.

The data set consists of two main components. The first component contains

airline pricing data on selected routes while the second describes the proportion of “high”

type buyers on each of these routes.
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3.4.1 Airline Price Data

We collected pricing data for 28 one-way, non-stop flights and for 2 two-way non-

stop flights from Expedia and Orbitz. The data was collected twice a day, at 8AM and

8PM, for 14-15 weeks (except for one flight for which we have 11 weeks of observations),

which led to a total of 6136 observations. A total of 14 airlines operated on these routes

which consisted of 44 distinct cities, of which some were major players like American

and Delta, while others were smaller carriers like Midwest Airlines and Frontier Airlines.

American Airlines had the maximum number of flights (four), followed by Northwest,

Delta, Air Trans and Alaska which had three each. America West, United, Midwest, US

Airways and Continental had two each while ATA, Aloha, Spirit and Frontier each had

one.

The routes and flights selected had the following features: (1) Each route had a

single airline operating on it. (2) Routes with a single airline but with more than two

flights operating on a single day were excluded. Routes which had two flights which

departed within a few hours of each other were also omitted. Thus, the selected routes

had a maximum of two flights operating on them on any given day and in the event

there was more than one flight, the flights departed at least 3 hours apart.2 Thus, the

selected flights had little or no competition.

While we managed to address the issue of competition between flights by choosing

flights operating on routes which had the features described above, we were unsure of

how to deal with competition between online travel agents, if any. At certain points in

2Of the 30 routes, only 5 had two flights operating on them on any given day.
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time, we collected prices for the same flights from both Expedia and Orbitz and found

that most of the time there was a fare differential of $2. Different online travel sites have

been known to offer different prices for the same flights. Its unclear as to who sets the

prices for such tickets sold through such online travel agents: are such prices set by the

airlines themselves or is it the case that the airlines offer certain blocks of seats for sale

through such online travel agents who in turn set their own prices?

The selected routes, the carriers serving them and the dates of departure, are

listed in table 3.11. All flights departed in early June, 2005. The flights to Kahului and

Honolulu were two-way, both having return dates on June 17, 2005. We purposely chose

these dates following an observation by Etzioni at al, that prices bounce around more

for flights leaving around holidays. Since there is ample evidence in favor of passengers

paying higher fares at hubs, initially, we sought to avoid airports which serve as hubs

for these airlines. However, we soon realized that it would be impossible to select routes

connecting pairs of cities, neither of which were a hub for the airline operating on that

route. This is because of the hub-and-spoke network system, whereby all airlines while

traveling from one non-hub airport to another, first flies passengers from the city of origin

to the nearest hub and then from that hub to the destination city. Thus, for each route,

either the city of origin or the destination city serves as a hub for the airline operating

on that route.
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3.4.2 Data on Proportion of “High” Type Buyers

To get estimates of the proportion of “high” type buyers (α) on the different

routes selected, we could have used the method used by Borenstein and Rose (1994),

who first defined a tourism index for each metropolitan area (MA) as follows.

Tourism Index =
P x HR

PI

where P = Proportion of hotel revenues from group/tourist customers, HR = Hotel

revenues from that same MA and PI = Total personal income for the same MA. They

then take the weighted average of the tourism indices of the two endpoints of a particular

route to get a new variable, TOURIST, which they then used in identifying high-tourism

markets. However, the sources for such data proved to be quite old and unreliable for

the present context.

Instead, we chose the American Travel Survey (ATS, 1995) as the source for data

on the proportion of buyers with a higher willingness to pay for the airline tickets. The

ATS was developed and conducted by the Bureau of Transportation Statistics (BTS)

in order to obtain information about long-distance travel characteristics of individuals

living in the US. The survey contains data at the state and metropolitan area levels and

describes trip characteristics for both households and individuals. Given a metropolitan

area, trip characteristics for an individual person are arranged in the following sequence.

First, the survey reports “person trip characteristics” given the metropolitan area as

destination and the different census divisions as origin. Second, it displays the same

characteristics for the same metropolitan area as origin and the various census divisions
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as destination. Next, taking the MA as destination, the survey presents trip character-

istics for the most frequent state origins. These states are the ones with the 10 largest

volumes of travel to that particular MA as origin. Fourth, taking the MA as origin,

the corresponding numbers are listed for the states which are the top 10 destinations.

Finally, the same order is followed for the cities which are the most frequent origins and

destinations for travel to and from that particular MA.

Trip characteristics amongst others included numbers (in thousands) and percent-

ages of individuals having certain principal means of transportation, round-trip distance,

main purpose of trip and type of lodging at destination. The characteristic which was

of particular interest to us was “main purpose of trip”, which was further categorized

into business, pleasure and others. Ideally, we would want the percentage of travellers

who traveled by plane for business purposes from one MA to another. However, these

numbers are not available. Instead, we use the proportions of travellers who traveled for

business purposes (includes all forms of transportation) from or to the particular MA,

with the census division or state or city as origin or destination.

The survey did not have data for all the MAs which were included as endpoints in

our set of routes. For example, lets consider the American Airlines flight traveling from

New Orleans to Boston. While the survey reports trip characteristics for individuals

traveling to and from Boston, it does not do the same for New Orleans. In fact, we failed

to find data for any of the routes on which both endpoints were represented as origin

and destination. Thus, while we had data for both San Francisco and Kansas City MAs

individually, the proportion of business travellers traveling from San Francisco to Kansas

City were unavailable. This is because on one hand San Francisco was not amongst the
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top 10 cities having the most travel volume going to Kansas City and on the other,

Kansas City was not amongst the top 10 cities having the most travel volume coming

from San Francisco.

While we could have avoided this problem by looking at routes like New York-

Boston and San Francisco-Phoenix for which we would have the corresponding percent-

ages of travellers traveling for business purposes, these routes had a number of airline

carriers flying on them, which made these markets oligopolies instead of monopolies, and

unsuitable for consideration. Thus we had to look at other means for calculating the

proportion of business travellers traveling on the different routes. To do this, we chose

to fix the destination city and looked at the proportion of business travellers traveling

from the census division (CD) to which the city of origin belonged. For the flight from

New Orleans to Boston, we chose to fix the destination city (Boston) and looked at the

proportion of business travellers traveling from the West South Central census division

to which Louisiana belongs. This meant that we could use only 19 of the original 30

routes selected for data collection. The proportions of “business” travellers traveling on

the different routes are reported in table 3.12.

3.5 Empirical Model

Since the main purpose of this chapter is to test the theoretical predictions out-

lined in section 3, we set up a number of empirical models which when estimated, de-

lineates the relationship between the proportion of “high” type buyers on a route and

the slope of the corresponding price path. In order to check whether the proportion of

“high” type buyers on a route has any effect on the slope of the price path, we begin by
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estimating a model which assumes that the prices on any route depend on the number of

observations left for departure and the proportion of “high” type buyers on that route.

We will refer to this as model 1.

Pmt = δm + β1(αmDmt) + γ1Dmt + εmt (1)

where Pmt is the price for route m at time t, δm is a route specific intercept term (dummy)

which remains constant over time, αm denotes the proportion of business travellers on

route m and Dmt is the number of observations left for departure on route m at time t. If

a route has 15 weeks of observations collected twice a day, the variable Dmt takes values

from 210 to 1. Thus, as Dmt decreases, we move closer to departure. From equation (1)

we get,

∂Pmt
∂Dmt

= β1αm + γ1 (2)

which implies that if the coefficient β1 is not significant, αm has no effect on the slope

of the price path.

Next, we construct a model where we categorize the routes into ones with ‘high’,

‘medium’ and ‘low’ proportion of business travellers and assign dummies to them as

follows. Assuming that αm represents the the proportion of business travellers on route

m, we define for that route αm = αH = 1 if αm > 0.45 and 0 otherwise, αm = αM = 1

if 0.25 ≤ αm ≤ 0.45 and 0 otherwise and finally αm = αL = 1 if αm < 0.25 and

0 otherwise. Thus, in addition to the route specific dummy variables, we construct a

model with dummies which equal 1 or 0 depending on whether the route contains ‘high’,
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‘medium’ or ‘low’ proportion of business travellers. We will refer to this as model 2.

Pmt = δm + β1(αHDmt) + β2(αMDmt) + γ1Dmt + εmt (3)

The estimates from this model will give us some idea about the slope of the price

path. However, in order to get the shape of the price path we need to check how prices

change over time. In the next step, we construct another model where we introduce

dummies for number of weeks before departure. While the theoretical model had three

periods, it is not apparent how we should define periods in the empirical counterpart. The

theoretical model assumes that the measure of “high” type buyers entering the market in

each period remains the same over the three periods. Typically, travellers with a higher

willingness to pay for tickets enter the market in larger numbers in the weeks just prior

to departure than earlier on. Thus, we introduce the dummies for number of weeks prior

to departure as follows: D1 = 1 for one week before departure, 0 otherwise, D2 = 1 for

1 to 3 weeks before departure and 0 otherwise and D3 = 1 for rest and 0 otherwise. The

corresponding model (model 3) assumes the following form.

Pmt = δm + β1(αLD1) + β2(αLD2) + β3(αLD3) + γ1(αMD1)+

γ2(αMD2) + γ3(αMD3) + θ1(αHD1) + θ2(αHD2) + θ3(αHD3) + εmt

(4)

Finally, we perform a Chow Breakpoint test to confirm whether there were struc-

tural changes in the price path before and after pre-determined cutoff points. To do this,

we proceed using the following steps.



116

Step (1) We split the data set into two parts, such that with Dmt ≤ c (c being

the pre-determined break point), the data is said to belong to group 1 and with Dmt > c

data is said to belong to group 2.

Step (2) We take c = 105. We then create a dummy variable which takes value

1 for Dmt ≥ 105 and 0 otherwise and create another dummy variable (time dummy2)

which takes value 1 for Dmt < 105 and 0 otherwise.

Step (3) Get estimates for the coefficients of the following model.

Pmt = K + δm + β1(αmDmt) + γ1(Dmt) + β2(αmDmt × time dummy2)

+γ2(Dmt × time dummy2) + θ2time dummy2 + εmt

(5)

Since theory predicts a horizontal price path for routes with the highest α, we

run the above regression only for those routes with αH = 1 and test for β2 = 0, γ2 = 0

and θ2 = 0. If the null hypothesis cannot be rejected, then there is no structural change

in the model before and after the breakpoint.

3.6 Results

Table 3.1 reports the descriptive statistics for the data sets for the following two

cases. (1) Includes all 30 routes for which different criteria are used for the proportion

of business travellers on the different routes. For example, for the Austin-Washington

DC route, we used the proportion of business travellers who traveled from Texas (state

as origin) to DC and for the Seattle-Tucson route, we used the proportion of business

travellers who flew from Austin. (2) Considers only 19 of the 30 routes, for which we fix
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the destination city and use the proportion of travellers traveling for business purposes

from the census division to which to city of origin belongs, to the destination city.

No. of Obs Mean St. Devn Min Max
All 30 Routes

Price 6136 331.98 225.63 86 2441
Proportion of Business 0.336 0.173 0.03 0.74

Travellers
19 Routes

Price 3842 308.18 172.14 86 816
Proportion of Business 0.375 0.187 0.03 0.74

Travellers

Table 3.1. Descriptive Statistics

All the equations were estimated using OLS. Route dummies were used to take

into account route-specific characteristics, which remain unchanged over time. Since the

use of miscellaneous criteria for the proportion of business travellers is unintuitive, we

ran all the regressions for the 19 routes using the criteria as described in the second case

above. Table 3.2 contains the estimates of the coefficients for equation (1).

Coef. St. Error t− stat p− V alue
αm ×Dmt -0.323 0.089 -3.63 0.000

Dmt -0.197 0.026 -7.63 0.000

Table 3.2. Regression Results for Model 1 for 19 Routes
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Since both the coefficients are negative and significant, we can conclude from

equation (2) that the slope of the price path is negative. However, since an increase in

Dmt signifies movement away from departure, the negative slope obtained implies that

prices increase as we move closer to departure. This result corroborates earlier findings

of Stavins (2001), McAfee and Velde (2004) and Etzioni et al (2003).

While the results from table 3.2 clearly show that cheaper prices disappear as the

departure date comes closer, it fails to show how quickly prices increase as the proportion

of “high” type buyers on a route changes. The model represented by equation (3) was

constructed for this purpose. The coefficients for this model could be interpreted as

follows. Each route can only have either high, medium or low proportion of travellers

with a high valuation. The coefficient for Dmt represents the base case and denotes the

slope of the price path for routes which have αm = αL (second and third terms drop

out). The sum of the coefficients of αM ×Dmt and Dmt refers to the slope of the price

path for routes with αm = αM , while the sum of the coefficients of αH ×Dmt and Dmt

represents the slope of the price path for routes with αm = αH .

Coef. St. Error t− stat p− V alue

αH ×Dmt -.215 .056 -3.85 0.000

αM ×Dmt .060 .033 1.81 0.071

Dmt -.277 .021 -13.30 0.000

Table 3.3. Regression Results for Model 2 for 19 Routes



119

Thus, the slopes of the price path for routes with low, medium and high proportion

of travellers with a high valuation are −0.277,−0.217 and −0.492 respectively. Prices

were thus found to increase most quickly in routes with the highest proportion of business

travellers. While this provides some evidence as to the relationship between the slope of

the price path and αm, it does not describe the relationship between the shape of the

price path and the corresponding αm. To do this, we put the routes into their respective

categories depending on the values of their αm and used equation (4).

Since it is unlikely that the proportion of business travellers entering the market

remains constant over time we introduced dummies for weeks before departure as de-

scribed in the previous section. The estimates of the coefficients from equation (4) are

reported in the following table and the corresponding plot displayed in figure 2.

Coef. St. Error t− stat p− V alue

αL ×D1 163.56 4.613 35.46 0.000
αL ×D2 118.733 1.702 69.75 0.000
αL ×D3 108.909 1.154 94.39 0.000
αM ×D1 200.877 8.482 23.68 0.000
αM ×D2 145.935 2.944 49.58 0.000
αM ×D3 132.333 1.908 69.35 0.000
αH ×D1 267.456 16.272 16.44 0.000
αH ×D2 156.654 5.159 30.36 0.000
αH ×D3 128.0702 2.319 55.22 0.000

Table 3.4. Regression Results for Model 3 for 19 Routes

The price path is found to be rising for all three categories of routes. Routes with

αm = αH showed the sharpest increase in prices. Thus, the theoretical prediction that
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the price path for routes with high α is horizontal is found to be empirically invalid.

Finally, we report the results for the Chow Breakpoint test. For routes with α = αH ,

theory predicts that there will be no change in the slope or the intercept before and

after the break point. This implies that all three coefficients β2, γ2 and θ2 need to

be not significant for equation 5. However, testing for this is not the same as testing

whether slope of the price path remains constant at zero. The following table reports the

coefficients for the Chow Breakpoint test for different pre-determined cutoff values (c).

For example, with c = 105, we split the data set for each route into two sets, one having

number of observations left for departure larger than 105 and the other less than 105.

The F-statistic is based on the null hypothesis involving the following three restrictions,

β2 = 0, γ2 = 0 and θ2 = 0. The low p-values led us to conclude that the null hypothesis

can be rejected for all three pre-determined cutoff points and that there is structural

change in the model before and after these cutoff points.

c β1 γ1 β2 γ2 θ2 F stat p value

105 0.413 −0.549 0.167 −1.043 55.908 33.99 0.000

70 0.562 −0.544 0.882 −2.774 105.632 35.66 0.000

42 0.109 −0.219 −3.148 −2.547 152.719 31.77 0.000

Table 3.5. Coefficients for Chow Breakpoint Test for Routes with α = αH

Finally, for routes with αm = αL we try to collect empirical evidence which

establishes that the shape of the price path for such routes is u-shaped if we truncate the



121

data set in the following manner. First, we discard the oldest 6 weeks of observations.

The variable Dmt could thus take a maximum value of 126. Second, we split the price

data into 2 groups, with one group containing the most recent observations with Dmt <

63 and the other group containing the rest, with Dmt ≥ 63. Third, we estimate for each

group the same equation as equation (1).

Pmt = δm + β1(αmDmt) + γ1Dmt + εmt

such that the corresponding slope is

∂Pmt
∂Dmt

= β1αm + γ1

The estimates of the coefficients of this model for the two groups are reported in

tables 3.6 and 3.7.

Coef. St. Error t− stat p− V alue
αm ×Dmt 10.081 1.951 5.17 0.000

Dmt -0.876 0.168 -5.21 0.000

Table 3.6. Regression Results for Group 1

With the average α for routes with low proportion of business travellers, αL =

0.11,
∂Pmt
∂Dmt

> 0 for group 1, while for group 2,
∂Pmt
∂Dmt

< 0 ∀α. Thus, the slope of the
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Coef. St. Error t− stat p− V alue
αm ×Dmt -5.276 0.834 -6.32 0.000

Dmt -0.635 0.114 -5.55 0.000

Table 3.7. Regression Results for Group 2

price path changes from one group to another, indicating evidence of a u-shaped path.

Similar evidence for a u-shaped path for routes with αm = αL was also found when we

considered the most recent 8 weeks and 6 weeks of observations.

In order to verify these results, we ran the following regression, where we intro-

duced route-specific dummies and dummies for weeks as follows.

Pmt = δm + β1D1 + β2D2 + .. + β7D7 + εmt (6)

where, D1 = dummy for the last two weeks before departure, D2 = dummy for

3 to 4 weeks before departure, D3 = dummy for 5 to 6 weeks before departure and so

on. Results for this regression equation are displayed in table 3.8.

The coefficients for dummies D1 to D5 shows that prices fall and then rise as

the date of departure draws closer. Thus, a u-shaped pattern re-emerges once we choose

to concentrate only on the last 10 weeks before take-off. We ran similar regressions for

routes with medium and high proportion of business travellers. Results are reported in

tables 3.9 and 3.10.
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Coeff. St.Error t− stat p− V alue

D1 65.679 6.352 10.34 0.000
D2 29.089 5.810 5.01 0.000
D3 28.918 6.344 4.56 0.000
D4 42.968 6.718 6.40 0.000
D5 45.904 6.522 7.04 0.000
D6 19.993 6.765 2.96 0.003
D7 −6.134 6.670 −0.92 0.358

Table 3.8. Regression Results for Equation 6 for Routes with α = αL

Coeff. St.Error t− stat p− V alue

D1 49.928 5.909 8.45 0.000
D2 14.954 4.089 3.66 0.000
D3 6.097 2.877 2.12 0.034
D4 4.892 3.056 1.60 0.110
D5 10.494 2.960 3.55 0.000
D6 3.084 3.097 1.00 0.319

Table 3.9. Regression Results for Equation 6 for Routes with α = αM

While these regressions allowed us to trace the price path over time for routes with

low, medium and high proportion of business travellers, we must clarify that α remained

constant over time for the different categories of routes. While we found evidence of

a u-shape for routes with low and medium proportion of business travellers when we
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Coeff. St.Error t− stat p− V alue

D1 156.131 16.401 9.52 0.000
D2 53.894 6.536 8.25 0.000
D3 55.281 6.494 8.51 0.000
D4 53.109 6.731 7.89 0.000
D5 52.097 6.541 7.97 0.000
D6 46.364 6.674 6.95 0.000
D7 38.068 6.766 5.63 0.000

Table 3.10. Regression Results for Equation 6 for Routes with α = αH

looked at the last 10 weeks before departure, no such pattern emerged for routes with

high α, where the price path was found to be rising.

3.7 Conclusions

In order to empirically test the theoretical predictions of an earlier chapter, we

collected pricing data for several one-way non-stop flights in the US and simultaneously

gathered data for the proportion of travellers traveling for business purposes on these

routes. While the theoretical prediction that prices never fall before departure was

corroborated, the prediction that the price path for routes with the highest proportion

of “high” type buyers is horizontal was found to be empirically invalid. Instead, routes

with high proportions of business travellers witnessed the steepest increase in prices.

The price path for the routes with low and medium proportions of business travellers

was also found to be increasing.
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In our theoretical model we assumed that the proportion of buyers with a higher

valuation for the good, who enters the market in each period, remains constant over the

three periods. In reality, this is clearly not the case. It is our conjecture that a theoretical

model which allows for variation in the proportion of high valuation buyers over the three

periods, where the proportion increases from the first to the third period, will perform

better in terms of providing an explanation for the empirical results. However, even if

we do solve for the price paths for various parameter values for such a model, it will

be difficult to access data which describe how the proportion of travellers traveling for

business purposes on different routes change as the date of departure draws closer.

The theoretical model also predicted a small range of parameter values for which

the price path would be u-shaped. While we did find some empirical evidence for a

u-shaped price path for routes with a low proportion of high valuation buyers, we did so

only after truncating the data and considering only the last 10 weeks of observations.
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Figures and Tables

Fig. 3.1. Subgame Perfect Outcomes for different values of V1 and α (V2 = 1).

(1) V1 =
2− α

α

(2) V1 =
1
α

(3) V1 =
3− 4α

2α

(4) V1 =
6α2 − 7α + 4

α(4α + 2)
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Fig. 3.2. Coefficients for Model 3

(1) D1 = 1 week before departure

(2) D2 = 1 to 3 weeks before departure

(3) D3 = Rest
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City of Origin Destination City Airline Carrier Date of Departure

Detroit,MI Orange County, CA Northwest June 6

Spokane, WA Las Vegas, NV America West June 6
Austin, TX Washington DC (IAD)a United June 6
Orlando, FL Rochester, NY Air Trans June 6
Burbank, CA Atlanta, GA Delta June 6
Detroit, MI San Diego, CA Northwest June 6

Portland, OR Santa Barbara, CA Alaska June 7
Wrangell, AK Petersburg, AK Alaska June 7

Reno, NV Orange County, CA Aloha June 7
Kansas City, MO San Antonio, TX Midwest June 7

Akron, OH Tampa, FL Air Trans June 7
Providence, RI Fort Myers, FL Spirit June 7
Denver, CO Little Rock, AK Frontier June 8

San Francisco, CA Austin, TX United June 8
Santa Barbara, CA Dallas, TX American June 8

Akron, OH Orlando, FL Air Trans June 8
Cincinnati, OH Orange County, CA Delta June 8

Birmingham, AL Washington DC (DCA) b Delta June 8
Indianapolis, IN Miami, FL American June 2
New Orleans, LA Boston, MA American June 2
Pittsburgh, PA Los Angeles, CA US Airways June 2
Cleveland, OH San Antonio, TX Continental June 2
Seattle, WA Tucson, AZ Alaska June 2
Miami, FL Phoenix, AZ America West June 10

Memphis, TN Las Vegas, NV Northwest June 10
San Francisco, CA Kansas City, MO Midwest June 10
Dallas/Fort Worth Providence, RI American June 10

Portland, ME Charlotte, NC US Airways June 10
Phoenix, AZ * Kahului, HI ATA June 10/17
Newark, NJ * Honolulu, HI Continental June 10/17

aThere were no direct flights to Ronald Reagan Washington National Airport (DCA) from
Austin.

bThere were no direct flights to Dulles International Airport (IAD) from Birmingham.

Table 3.11. Routes, Carriers and Dates of Departure

* Two-way flights, with June 17, 2005 as return date.
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Criteria
City of Origin Destination City (Misc.) (Origin/Destn: CD/City)

Detroit,MI Orange County, CA 0.46 0.46
Spokane, WA Las Vegas, NV 0.17
Austin, TX Washington DC (DCA) 0.7 0.62
Orlando, FL Rochester, NY 0.03 0.03
Burbank, CA Atlanta, GA 0.74 0.74
Detroit, MI San Diego,CA 0.40 0.40

Portland, OR Santa Barbara, CA 0.43
Wrangell, AK Petersburg, AK 0.29

Reno, NV Orange County, CA 0.15 0.11
Kansas City, MO San Antonio, TX 0.52 0.41

Akron, OH Tampa, FL 0.15 0.15
Providence, RI Fort Myers, FL 0.17
Denver, CO Little Rock, AK 0.33

San Francisco, CA Austin, TX 0.41
Santa Barbara, CA Dallas, TX 0.55 0.52

Akron, OH Orlando, FL 0.23 0.23
Cincinnati, OH Orange County, CA 0.42 0.46

Birmingham, AL Washington DC (DCA) 0.43 0.43
Indianapolis, IN Miami, FL 0.06 0.45
New Orleans, LA Boston, MA 0.55 0.55
Pittsburgh, PA Los Angeles, CA 0.27 0.37
Cleveland, OH San Antonio, TX 0.48 0.38
Seattle, WA Tucson, AZ 0.25
Miami, FL Phoenix, AZ 0.10 0.35

Memphis, TN Las Vegas, NV 0.15
San Francisco, CA Kansas City, MO 0.49 0.41
Dallas/Fort Worth Providence, RI 0.29

Portland, ME Charlotte, NC 0.35 0.07
Phoenix, AZ Kahului, HI 0.17
Newark, NJ Honolulu, HI 0.24

Table 3.12. Proportion of “High” Type Buyers On Different Routes



130

References

[1] Bagnoli, M., Salant, Stephen W. and Swierzbinski, Joseph E. “Durable-Goods

Monopoly with Discrete Demand”, Journal of Political Economy, Vol. 97, Issue 6

(December 1989), 1459-1478.

[2] Bond, Eric W. and Samuelson, L. “Durable Good Monopolies with Rational Ex-

pectations and Replacement Sales”, RAND Journal of Economics, Vol. 15, Issue 3

(Autumn 1984), 336-345.

[3] Bulow, Jeremy I. “Durable-Goods Monopolists”, Journal of Political Economy, Vol.

90, Issue 2 (April 1982), 314-332.

[4] Coase, Ronald H. “Durability and Monopoly”, Journal of Law and Economics, Vol.

15, (April 1972), 143-149.

[5] Sobel, Joel, Gerstner, Eitan and Conlisk, John “Cyclic Pricing by a Durable Goods

Monopolist”, Quarterly Journal of Economics, Vol. 99, Issue 3 (August 1984), 489-

505.

[6] Dana, James D. Jr. “Advance-Purchase Discounts and Price Discrimination in Com-

petitive Markets”, Journal of Political Economy, Vol. 106, 1998, 345-421.

[7] Dudine, Paolo, Hendel, Igal and Lizzeri, Alessandro “Storable Good Monopoly: the

Role of Commitment”, mimeo.



131

[8] Denicolo, Vincenzo and Garella, Paolo G. “Rationing In A Durable Goods

Monopoly”, Rand Journal of Economics, Vol. 30, No. 1 (Spring 1999), 44-55.

[9] Gul, Faruk, Sonnenschein, Hugo and Wilson, Robert “Foundations of Dynamic

Monopoly and the Coase Conjecture”, Journal of Economic Theory, Vol 39 (1986),

155-190.

[10] Kahn, C. “The Durable-Goods Monopolist and Consistency with Increasing Costs”,

Econometrica, Vol. 54, Issue 2 (March 1986), 275-294.

[11] Bulow, Jeremy and Klemperer, Paul “Rational Frenzies and Crashes”, Journal of

Political Economy, Vol. 102, Issue 1(Feb 1994), 1-23.

[12] Kreps, David M. and Scheinkman, Jose A. “Quantity Precommitment and Bertrand

Competition Yield Cournot Outcomes”, Bell Journal of Economics, Vol. 14, No. 2

(Autumn 1983), 326-337.

[13] Levine, David K. and Pesendorfer, Wolfgang “When are agents negligible?” The

American Economic Review, Vol. 85, No. 5 (December, 1995) 1160-1170.

[14] McAfee, Preston R. and Velde, te Vera “Dynamic Pricing in the Airline Industry”,

California Institute of Technology, mimeo.

[15] Brumelle, S.L. and McGill, J.I. “Airline Seat Allocation with Multiple Nested Fare

Classes”, Operations Research, Vol. 41, No. 1, Special Issue on Stochastic and Dy-

namic Models in Transportation (Jan - Feb, 1993), 127-137.

[16] Narasimhan, Chakravarthi “Incorporating Consumer Price Expectations in Diffu-

sion Models”, Marketing Science, Vol. 8, No. 4 (Autumn 1989), 343-357.



132

[17] Sobel, Joel “The Timing of Sales”, Review of Economic Studies, Vol. 51, Issue 3

(July 1984), 353-368.

[18] Sobel, Joel “Durable Goods Monopoly with Entry of New Consumers”, Economet-

rica, Vol. 59, Issue 5 (Sept 1991), 1455-1485.

[19] Stavins, Joanna “Price Discrimination in the Airline Market: The Effect of Market

Concentration”, Review of Economics and Statistics, Vol. 83, No. 1 (February 2001).

[20] Stokey, Nancy L. “Rational Expectations and Durable Goods Pricing”, Bell Journal

of Economics, Vol. 12, Issue 1 (Spring 1981), 112-128.

[21] Stokey, Nancy L. “Intertemporal Price Discrimination”, Quarterly Journal of Eco-

nomics, Vol. 93, Issue 3 (August 1979), 355-371.

[22] Sobel, Joel and Takahashi, Ichiro “A Multistage Model of Bargaining”, Review of

Economic Studies, Vol. 50 (July 1983), 411-426.

[23] Tirole, J. The Theory of Industrial Organization.

[24] Wilson, Charles “On The Optimal Pricing Policy Of A Monopolist”, Journal of

Political Economy, Vol. 96, No. 1 (Feb, 1988), 164-176.

[25] McAfee, Preston R. and Wiseman, Thomas “Capacity Choice Counters the Coase

Conjecture”, July 25, 2003.

[26] Wollmer, Richard D. “An Airline Seat Management Model for a Single Leg Route

When Lower Fare Classes Book First”, Operations Research, Vol. 40, No. 1, (Jan -

Feb, 1992), 26-37.



133

[27] Andreoni, James. “Why Free Ride?: Strategies and Learning in Public Goods Ex-

periments”, Journal of Public Economics, Vol. 37, Issue 3 (Dec 1988), 291-304.

[28] Bliss, Christopher and Nalebuff, Barry. “Dragon-Slaying and Ballroom Dancing:

The Private Supply of a Public Good”, Journal of Public Economics, Vol. 25 (No-

vember 1984), 1-12.

[29] Chaudhuri, Ananish, Schotter, A. and Sopher, Barry.“Talking Ourselves to Effi-

ciency: Coordination in Inter-Generational Minimum Games with Private, Almost

Common and Common Knowledge of Advice”, mimeo.

[30] Cooper, Russell W., Dejong, Douglas V., Forsythe, Robert and Ross, Thomas W.

“Selection Criteria in Coordination Games: Some Experimental Results”, The Amer-

ican Economic Review, Vol. 80, No. 1 (March 1990), 218-233.

[31] Duffy, John, Ochs, Jack and Vesterlund, Lise. “Giving Little by Little: Dynamic

Voluntary Contribution Games”, mimeo.

[32] Fischbacher, Urs. “z-Tree: Zurich Toolbox for Readymade Economic Experiments

- Experimenter’s Manual”, Working Paper No. 21, Institute for Empirical Research

in Economics, University of Zurich, (1999).

[33] Gale, Douglas. “Dynamic Coordination Games”, Economic Theory, Vol 5, 1995,

1-18.

[34] Gradstein, Mark. “Time Dynamics and Incomplete Information in the Private Pro-

vision of Public Goods”, Journal of Political Economy, Vol. 100, No. 3 (June 1992),

581-597.



134

[35] Kagel, John H. and Roth, Alvin E. The Handbook of Experimental Economics.

Princeton, NJ. Princeton University Press. 1995.

[36] Marx, Leslie M. and Matthews, Steven A. “Dynamic Voluntary Contribution to a

Public Good Project”, Review of Economic Studies, 2000, 327-358.

[37] Olson, Mancur The Rise and Decline of Nations: Economic Growth, Stagflation

and Social Rigidities. New Haven, Conn. Yale University Press. 1982.

[38] Palfrey, Thomas R. and Rosenthal, Howard. “Participation and the Provision of

Discrete Public Goods: A Strategic Analysis”, Journal of Public Economics, Vol. 24

(July 1984), 171-193.

[39] Palfrey, Thomas R. and Rosenthal, Howard. “Private Incentives in Social Dilemmas:

The Effects of Incomplete Information and Altruism”, Journal of Public Economics,

Vol. 35 (April 1988), 309-332.

[40] Palfrey, Thomas R. and Rosenthal, Howard. “Testing for Effects of Cheap Talk in

a Public Goods Game with Private Information”, Games and Economic Behavior,

Vol. 3 (1991), 183-220.

[41] Palfrey, Thomas R. and Rosenthal, Howard. “Repeated Play, Cooperation and Co-

ordination: An Experimental Study”, Review of Economic Studies, Vol. 61, No. 3

(July 1994), 545-565.

[42] Schelling, Thomas C. Micromotives and Macrobehavior. New York. Norton, 1978.

[43] Siegel, Sydney and Castellan, John N. Nonparametric Statistics for the Behavioral

Sciences. New York, NY. McGraw-Hill, Inc. 1988.



135

[44] Van Huyck, John B., Battalio, Raymond C. and Beil, Richard O. “Tacit Coor-

dination Games, Strategic Uncertainty and Coordination Failure”, The American

Economic Review, Vol. 80, No. 1 (March 1990), 234-248.

[45] Borenstein, Severin and Rose, Nancy L. “Competition and Price Dispersion in the

U.S. Airline Industry”, The Journal of Political Economy, Volume 102, Issue 4 (Au-

gust 1994), 653-683.

[46] Sobel, Joel, Gerstner, Eitan and Conlisk, John “Cyclic Pricing by a Durable Goods

Monopolist”, Quarterly Journal of Economics, Vol. 99, Issue 3 (August 1984), 489-

505.

[47] Etzioni, Oren, Knoblock, Craig, Tuchinda, Rattapoom and Yates, Alexander “To

Buy or Not to Buy: Mining Airline Fare Data to Minimize Ticket Purchase Price”,

Proceeding of the 9th ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, Washington DC.

[48] McAfee, Preston R. and Velde, Vera te “Dynamic Pricing in the Airline Industry”,

mimeo.

[49] Stavins, Joanna “Price Discrimination in the Airline Market: The Effect of Market

Concentration”, Review of Economics and Statistics, Vol. 83, No. 1 (February 2001).



Shubhro Sarkar 
 
Address: Department of Economics              Telephone:  Office: (814) 865-5453 
               608 Kern Graduate Building                      Home: (814) 867-0564 
   The Pennsylvania State University                                 Cell:    (814) 360-5251 
   University Park, PA 16802               E-mail: shubhro@psu.edu 
                                                               Website: http://grizzly.la.psu.edu/~sqs103 
Curriculum Vitae 
 
CITIZENSHIP: 
 

• India (F-1) 

EDUCATION: 
 

• Ph.D., Economics, Pennsylvania State University, expected June 
2006 

• M.A., Economics, Jawaharlal Nehru University, New Delhi, 
1999 

• B.Sc., Economics, Calcutta University, 1997 
 

Ph.D. THESIS: 
 

• “Essays in Applied Microeconomics” 
Thesis Advisor:  Prof. Kalyan Chatterjee 

 
FIELDS: 
 

• Primary: Industrial Organization, Experimental Economics 
• Secondary: Game Theory, International Trade 

 
PAPERS: 
 

• A Model of Airline Pricing: Capacity Constraints and Deadlines 
• Delays in Project Completion with Cost Reduction: An 

Experiment (with Anthony Kwasnica) 
• An Empirical Study of the Price Path of Airline Tickets  

  
GRANTS & 
FELLOWSHIPS: 
 

• Graduate Fellowship with Tuition Scholarship, Pennsylvania 
State University, 2000-01 

• National Scholarship, Government of India, 1992-94 
• B.Sc. Merit Scholarship, University of Calcutta, 1997 

 
TEACHING 
EXPERIENCE: 
 

• Instructor: Intermediate Microeconomics (10 semesters) 
• Instructor: Principles of Microeconomics (1 semester) 

 
RESEARCH 
EXPERIENCE: 
 

• Research Assistant for Dr. Anthony Kwasnica, Smeal College of 
Business, Pennsylvania State University, Fall 2005 

 
AWARDS: 
 

• Outstanding Undergraduate Instructor Award, Fall 2004 
 

REFERENCES: 
 

• Prof. Kalyan Chatterjee 
• Prof. Mark J. Roberts 
• Prof. Susanna Esteban 
• Prof. Anthony Kwasnica 




