CHARACTERIZATION OF A NOVEL NEUROTRANSMITTER PHENOTYPIC PLASTICITY IN THE CENTRAL NERVOUS SYSTEM

A Thesis in

Biology

by

Sebnem Nur Tuncdemir

© 2008 Sebnem Nur Tuncdemir

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science

August 2008
The thesis of S. N. Tuncdemir was reviewed and approved* by the following:

Gong Chen
Associate Professor of Biology
Thesis Adviser

Bernhard Luscher
Professor of Biology, Biochemistry and Molecular Biology, and Psychiatry

Richard Ordway
Associate Professor of Biology

Douglas Cavener
Professor of Biology
Head of the Department of Biology

*Signatures are on file in the Graduate School
ABSTRACT

Neurotransmitter phenotype for a given neuron is determined not only by intrinsic but also extrinsic factors during development. While intrinsic factors might be responsible for the majority of neurotransmitter phenotype, the role of extrinsic factors has been explored but the underlying molecular mechanism remains largely unknown. Here, we report an inducible plasticity of inhibitory neurotransmitter phenotype after alteration of postsynaptic receptors together with cell adhesion molecules. In embryonic hypothalamic cultures, inhibitory neurotransmission is mediated by GABAergic neurons only. Although no glycinergetic currents can be detected in pure neuronal cultures, functional glycinergetic synapses are inducible in cocultured HEK 293T cells expressing glycine receptors (GlyRs) and a cell adhesion molecule neuroligin-2 (NL-2). In fact, mixed GABAergic and glycinergetic synapses are formed on HEK 293T cells that co-express NL-2, GlyRs and GABA_α-Rs. Importantly, hypothalamic neurons do express high level of GlyRs in addition to GABA_α-Rs. Ectopic expression of NL-2 or GlyRs alone in hypothalamic neurons cannot change the GABAergic transmitter phenotype. However, coexpression of NL-2 and GlyRs in hypothalamic neurons induces robust functional glycinergetic synapses in hypothalamic cultures. Moreover, both α-homomeric and αβ-heteromeric GlyRs can be clustered at the postsynaptic sites of induced synapses. Our data reveal that molecular manipulation of postsynaptic receptor organization, not receptor expression, is critical in altering the neurotransmission phenotype. Such inducible plasticity in central neurons also suggests that brain function is much flexible in adapting to extrinsic signals.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>v</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>vi</td>
</tr>
<tr>
<td>Chapter 1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2. EXPERIMENTAL METHODS</td>
<td>5</td>
</tr>
<tr>
<td>1. Cell Culture and Transfection</td>
<td>5</td>
</tr>
<tr>
<td>2. Plasmid Constructs</td>
<td>6</td>
</tr>
<tr>
<td>3. Electrophysiology</td>
<td>7</td>
</tr>
<tr>
<td>4. Drugs</td>
<td>7</td>
</tr>
<tr>
<td>Chapter 3. RESULTS</td>
<td>9</td>
</tr>
<tr>
<td>1. Cultured hypothalamic neurons do not contain glycinergic synapses but they express functional glycine receptors</td>
<td>9</td>
</tr>
<tr>
<td>2. Glycine receptor subunits and Neuroligin-2 induce glycinergic synapse formation on HEK cells when cocultured with hypothalamic neurons</td>
<td>11</td>
</tr>
<tr>
<td>3. Mixed synapses are formed onto HEK cells co-expressing GlyRα1 subunit and GABAα-R subunits together with NL-2</td>
<td>16</td>
</tr>
<tr>
<td>4. Overexpressing NL-2 with GlyRα1, but not NL-2 or GlyRα1 alone in hypothalamic neurons induce glycinergic synaptic currents</td>
<td>19</td>
</tr>
<tr>
<td>5. Postsynaptic characterization of newly formed glycinergic synapses</td>
<td>22</td>
</tr>
<tr>
<td>Chapter 4. DISCUSSION</td>
<td>26</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>33</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1. Cultured hypothalamic neurons do not contain glycinergic synapses but they express functional GlyR homomers and heteromers 10

Figure 2. Glycine receptor subunits and Neuroligin-2 induce glycinergic synapse formation on HEK cells when co-cultured with hypothalamic neurons 13

Figure 3. GABA is only a weak agonist for glycine receptors expressed on HEK 293T cells 15

Figure 4. Mixed synapses are formed onto HEK cells co-expressing GlyR subunit and GABA\textsubscript{A}R subunits together with NL-2 17

Figure 5. Overexpressing NL-2 with GlyR\textsubscript{A1}, but not NL-2 or GlyR\textsubscript{A1} alone in hypothalamic neurons induce glycinergic synaptic currents 20

Figure 6. Postsynaptic characterization of newly formed glycinergic synapses 24
ACKNOWLEDGEMENTS

I would like to extend my heart-felt thank you to my thesis supervisor Dr. Gong Chen, without whom this work would not be possible. His guidance and broad knowledge have been invaluable to the overall success of my research and my understanding of the research process. I would also like to thank to the Chen Lab family, Dr. Min Jiang, Xia Wu, Chicheng Sun and Joe Cichon, for great support and sharing their research experience with me. Thank you to Drs. Bernhard Luscher and Richard Ordway for editing and direction. Finally yet importantly, I would like to thank my family for always being there for me. With constant reminders of how much they cared, I was able to overcome obstacles and accomplish things I never knew possible.
INTRODUCTION

Inducible changes in the neurotransmission phenotype have been demonstrated during development, under pathological conditions and as a response to alterations in the activity (Spitzer et al., 2004; Trudeau and Gutierrez, 2007). Not only intrinsic, but also extrinsic factors have been implicated in the determination of the neurotransmitter phenotype. In developing neurons of *Xenopus laevis* spinal cord, excitatory and inhibitory neurotransmission phenotypes are homeostatically regulated by distinct patterns of spontaneous Ca$^{2+}$ spike activity. In this model, suppression of activity leads to an enhanced expression of excitatory neurotransmitter markers while reducing inhibitory markers, and the reverse occurs when activity is increased (Borodinsky et al., 2004). The inducible changes in the neurotransmitter phenotype is then followed by the expression of appropriate receptors on the apposing postsynaptic sites (Borodinsky and Spitzer, 2007). The glutamatergic granule cells of adult rat hippocampus also display neurotransmitter plasticity after epileptic activity (Gutierrez et al., 2003). GABAergic phenotype is shown to reappear, possibly to maintain the balance between excitatory and inhibitory neurotransmission (Gutierrez et al., 2003; Gomez-Lira et al., 2005). A developmental switch has been recently demonstrated in rat lateral superior olive neurons from predominantly GABAergic to predominantly glycineric phenotype over the first two postnatal weeks, in which presynaptic neurotransmitter content governs the postsynaptic receptor expression (Nabekura et al., 2004). While intrinsic factors might be largely responsible for the neurotransmitter phenotype,
the role of extrinsic factors has been investigated in recent studies, the underlying molecular mechanism is still poorly understood.

Glycine and γ-aminobutyric acid (GABA) are the main fast inhibitory neurotransmitters in the mammalian central nervous system (CNS). They activate two distinct types of ligand-gated chloride channels, glycine receptors (GlyRs) (Legendre, 2001), and GABA\textsubscript{A} receptors (GABA\textsubscript{A}Rs) (Luscher and Keller, 2004), respectively. Most, if not all, inhibitory synapses in the forebrain are thought to be GABAergic, while both GABA and glycine mediate the inhibitory neurotransmission in the spinal cord (Takahashi and Momiyama, 1991; Oleskevich et al., 1999; Gao et al., 2001), brain stem (Stevens et al., 1996; Muller et al., 2006), cerebellum (Dieudonne, 1995), and retina (Han et al., 1997; Protti et al., 1997). Some inhibitory interneurons in spinal cord, brain stem and cerebellum can even co-release GABA and glycine from a single presynaptic terminal resulting in mixed glycinergic / GABAergic synaptic events (Jonas et al., 1998; O'Brien and Berger, 1999; Nabekura et al., 2004; Dugue et al., 2005). Networks of interneurons that use GABA and/or glycine as their neurotransmitter have critical functions in regulating the sensory and motor signals that control movement, vision, and audition as well as inflammatory pain sensitization (Lynch, 2004; Betz and Laube, 2006). For efficient modification of excitation by inhibition, GABA\textsubscript{A}Rs and GlyRs act separately or together to allow rapid and synapse specific adaptation in the network.

The GlyRs are members of the pentameric superfamily of ligand-gated ion channels. To date, four ligand binding α subunits (α1-α4) and one structural β
subunit have been described (Lynch, 2004; Betz and Laube, 2006). The α_2 subunit has been identified as an embryonic form of GlyRs in the spinal cord and brain stem where it forms homopentamers that are mainly found extrasynaptically (Becker et al., 1992; Takahashi, 2005). Expression of GlyR α_2 subunit decreases during early postnatal maturation, whereas expression of α_1 and α_3 subunits increases (Sato et al., 1992; Takahashi et al., 1992). However, α_2 transcripts and functional GlyRs are also found in adult hippocampus, cerebral cortex and thalamus (Malosio et al., 1991; Flint et al., 1998; Ghavanini et al., 2005; Zhang et al., 2008). GlyRs in the adult brain are mainly composed of α_1 and β subunits that are localized at synaptic sites, and have a proposed stoichiometry of $2\alpha:3\beta$ (Meyer et al., 1995; Grudzinska et al., 2005). The GlyRα_1 mRNA is expressed in adult spinal cord, brain stem, and cerebellum but also in hypothalamus, thalamus, and the colliculi (Malosio et al., 1991). The β subunit is widely expressed both in adult and embryonic brain, although it cannot form functional receptors alone (Fujita et al., 1991; Malosio et al., 1991).

Although glycinergic synapses are thought to be excluded from the higher brain regions, accumulating evidence suggests that functional GlyRs, as well as glycine containing cell bodies and fibers are widely distributed in the CNS (Malosio et al., 1991; Rampon et al., 1996). Moreover, similar concentrations of GABA and glycine are found in the synaptosomes isolated from brain stem, cerebellum, cortex, and hippocampus (Engblom et al., 1996). Despite the presence of both pre- and postsynaptic machinery necessary for glycinergic inhibitory synaptic transmission in cortical and subcortical areas, application of
GABA\textsubscript{\textalpha}R antagonists completely blocks all fast synaptic inhibition (Randle et al., 1986; Wuarin and Dudek, 1993; Mody et al., 1994; Mori et al., 2002). It is suggested that the non-synaptic GlyRs are involved in cortical development (Flint et al., 1998), suppressing hyperexcitability in hippocampus (Chattipakorn and McMahon, 2003; Zhang et al., 2008), and osmoregulation in hypothalamus (Hussy et al., 2001). Although these studies provide important non-synaptic functions, the function of the glycinergic synapse components in forebrain inhibitory neurotransmission remains largely unknown.

Here, we provide evidence for a novel inducible plasticity in cultured hypothalamic neurons and demonstrate a phenotypic switch from purely GABAergic transmission to one mediated by both GABA and glycine. We show that co-expressing GlyR subunits with neuroligin-2 (NL-2), a postsynaptic cell adhesion molecule, induce glycinergic synapse formation in HEK 293T cells when cocultured with embryonic hypothalamic neurons. Moreover, mixed GABAergic and glycinergic synapses are formed on HEK cells that co-express NL-2, GlyRs and GABA\textsubscript{\textalpha}-Rs. In pure hypothalamic cultures, glycinergic synapses are induced upon co-expression of GlyRs and NL-2 but not GlyRs or NL-2 alone. Functional analysis of the glycinergic synapses indicates that both \textalpha-homomeric and \textalpha\textbeta-heteromeric GlyRs can be clustered at the postsynaptic sites. The data we present here suggests that the postsynaptic expression of functional receptors and cell adhesion molecules play a crucial role in determining neurotransmitter phenotype and provides a novel mechanism for manipulating synaptic activity.
EXPERIMENTAL METHODS

1. Cell Culture and transfection

Hypothalamic cultures were prepared from E18 Sprague – Dawley rat embryos as described previously (Protti et al., 1997). In short, the medial hypothalamus was dissected, cut into small cubes, and digested in 0.05% trypsin/EDTA solution (pH 7.2) and 25 U/ml DNAsel for 30 min at 37°C. After enzyme treatment, tissue blocks were triturated gently by using a fire-polished Pasteur pipette and the dissociated neurons were then plated on poly-D-lysine coated coverslips (0.1 mM, 4000-8000 cells/cm²) covered by a monolayer of astrocytes. The culture medium contained 500 ml of MEM (Invitrogen, Eugene, OR), 5% FBS (HyClone, Logan, UT), 10 ml of B-27 supplement (Invitrogen), 100 mg NaHCO₃, 20 mM D-glucose, 0.5 mM L-glutamine, and 25 U/ml penicillin/streptomycin.

Neurons were transfected with a modified Ca²⁺-phosphate transfection protocol developed in our lab (Jiang and Chen, 2006). DNA/Ca²⁺-phosphate precipitate was prepared by using the Clontech CalPhosTM Mammalian Transfection Kit (BD Bioscience, Palo Alto, CA). Cells were incubated in the presence of the precipitate for 30 min in 5% CO₂ culture incubator. After incubation, the precipitate was removed by washing coverslips with transfection medium pre-equilibrated in 10% CO₂. Neurons were utilized after 24-48 hrs of transfection.
Human Embryonic kidney (HEK) 293T cells were maintained in DMEM supplemented with 10% FBS, and 25 unit/ml penicillin/streptomycin. HEK 293T cells were transfected with the same method described above and cocultured with hypothalamic neurons as described previously (Dong et al., 2007). In general, 24 hours after transfection, cells were mechanically dissociated by fire-polished Pasteur pipette and plated on top of 5-7 DIV hypothalamic cultures. The cocultures were utilized in electrophysiological recordings after 2-3 days of coculture. Each experiment was repeated in at least two different batches of cultures.

2. Plasmid Constructs

The glycine receptor subunits mycα1 and mycα2 plasmids were gifts of Dr. A. Triller (Laboratoire de Biologie Cellulaire de la Synapse, France) (Meier et al., 2000). The rat α1 and α2 subunits were modified by insertion of the myc epitope by site-directed mutagenesis. Myc epitope-tagged forms of the α1 and α2 were cloned into pEGFP-N1 eukaryotic expression vector with a CMV promoter. The Glycine β subunit was kindly provided by Dr. X. Zhang (Institute of Neurosciences, Chinese Academy of Sciences, China) (Zhang et al., 2008). The human β subunit was cloned into pBK-CMV vector at EcoRI site. The GABA_A receptor subunits α2, β3, myc-γ2 were gifts from Dr. B. Luscher (Pennsylvania State University) (Alldred et al., 2005). The rat α2 and β3 subunit cDNAs were cloned in pBCBam backbone. The mouse myc 9E10 epitope-tagged γ2 cDNA was cloned in pEGFP-N, substituting the mycγ2 cDNA from EGFP. The myc epitope was inserted between amino acids
four and five of the mature γ2 polypeptide. The murine HA-tagged NL-2A expression vectors (pNiceNLG-2) were obtained from Dr. P. Scheiffele (Columbia University) (Chih et al., 2005).

3. Electrophysiology

Whole-cell recordings were performed in voltage clamp mode by using Multiclamp 700A amplifier (Molecular Devices) (Deng and Chen, 2003). Patch pipettes were pulled from borosilicate glass and fire polished to resistance of 3-7 MΩ. The recording chamber was continuously perfused with a bath solution containing 128 mM NaCl, 30 mM Glucose, 25 mM HEPES, 5 mM KCl, 2 mM CaCl2, and 1 mM MgCl2 (pH 7.3, adjusted with NaOH, ~320 Osm). The pipette solution contained 135 mM KCl, 10 mM HEPES, 2 mM EGTA, 10 mM Tris-phosphocreatine, 4 mM MgATP, 0.5 mM Na2GTP (pH 7.3, adjusted with KOH, ~300 Osm). Data were acquired by using the pCLAMP 9 software (Molecular Devices), sampled at 2-10 kHz and filtered at 1-2 kHz, and analyzed with Clampfit 9.0 (Axon Instruments). Pressure application of agonists was made by utilizing Picospritzer III (Parker Instruments). Miniature and spontaneous events were analyzed by MiniAnalysis software (Syaptosoft). Only single spontaneous events were counted into analysis. Analyzed data were expressed as mean value ± standard error of the mean, and the student’s t test was used for statistical analysis. N represents number of the cells recorded.

4. Drugs

GABA, glycine, strychnine hydrochloride (STR), tetrodotoxin (TTX), picrotoxin (PTX) and flunitrazepam were purchased from Sigma (St. Louis, MO). Bicuculline
(BIC) and 6-cyano-7-nitroquinoxaline-2,3 (1H,4H)-dione (CNQX) were obtained from Tocris (Ellisville, MO). CNQX, PTX, and flunitrazepam were initially dissolved as concentrated stock solutions in dimethyl sulfoxide (DMSO) and diluted to appropriate concentrations in the bath solution. The final DMSO concentration was lower than 0.1%. Other drugs were first dissolved in ion-free water and freshly diluted to the final concentrations in bath solution before experiments.
RESULTS

1. Cultured hypothalamic neurons do not contain glycinergic synapses but they express functional glycine receptors.

To characterize the inhibitory synaptic transmission in cultured hypothalamic neurons, whole cell path-clamp recordings were performed in the presence of glutamate receptor antagonist CNQX (10 µM). Spontaneous inhibitory postsynaptic currents (sIPSCs) occurred at a rate of 2.01 ± 0.12 Hz, and the average amplitude was 51.4 ± 7.0 pA (n = 13). Consistent with the previous reports (Dong et al., 2007), inhibitory synaptic currents were completely abolished by GABA A receptor antagonist bicuculline (BIC, 20 µM) in all 13 neurons recorded (Fig. 1A), suggesting that there are no glycinergic synapses in cultured hypothalamic neurons. However, bath application of glycine (100 µM) induced a significant whole cell current, and the current density (55.2 ± 4.2 pA/pF, n=15) was similar to that induced by GABA (100 µM) (64.4 ± 3.7 pA/pF, n=15; p>0.1), indicating that similar amounts of functional GlyRs and GABA A-Rs are expressed on the neuronal membrane (Figs. 1B and C). Additionally, glycine-evoked whole-cell currents were blocked by strychnine (STR, 1 µM), a specific glycine receptor antagonist, suggesting that these currents are indeed mediated by glycine receptors. To examine the subunit composition of the GlyRs in the cultured neurons, we utilized the pharmacological advantage conferred by picrotoxin, which blocks α subunit-containing homomeric GlyRs more effectively than heteromeric αβ receptors (Pribilla et al., 1992; Yoon et al., 1993).
Figure 1. Cultured hypothalamic neurons do not contain glycinergic synapses but they express functional GlyR homomers and heteromers. (A) A typical recording trace showing sIPSCs in the presence of glutamate receptor antagonist CNQX (10 µM) that were completely abolished by bath application of BIC (20 µM) and CNQX (n=13). Traces recorded at -70 mV holding potential. (B) Sample traces showing currents induced by application of GABA (100 µM, left trace), and glycine (100 µM, middle trace). The glycine current was blocked by STR (1 mM), the glycine receptor antagonist (right trace). (C) The GABA-induced whole-cell current density in cultured hypothalamic neurons was comparable to glycine-induced whole-cell current density (n=15; p>0.1, Student’s t test). (D) Traces recorded from a cell showing currents induced by glycine (100 µM), in the absence (left trace) or presence (right trace) of PTX (100 µM). (E) Bar graph showing the percentage of PTX inhibition in 15 of the neurons recorded. Red bars show the percentage of the current inhibited by PTX, representing the proportion of GlyRα homomers. The blue bars represent the percentage of currents that escaped inhibition, indicating the proportion of GlyRαβ heteromers.
Bath application of glycine (100 µM) together with 100 µM picrotoxin (PTX), a concentration commonly used to identify glycine receptor subunit composition (Mori et al., 2002; Zhang et al., 2008), incompletely blocked the glycine-induced currents in 15 neurons tested (Fig. 1D). Furthermore, PTX inhibition varied among neurons from as small as 6.3% inhibition of the glycine-induced current (neuron 1 in Fig. 1E) to 81.7% inhibition (neuron 15 in Fig. 1E). This data indicates differential expression levels of both homomeric α subunit-containing receptors and heteromeric αβ containing glycine receptors in cultured hypothalamic neurons.

2. Glycine receptor subunits and Neuroligin-2 induce glycinergic synapse formation on HEK cells when co-cultured with hypothalamic neurons.

Consistent with the previous studies, cultured hypothalamic neurons in our cultures contain significant amounts of glycine receptors, but they do not form or maintain glycinergic synapses. We therefore sought to determine the molecules involved in glycinergic synapse formation. One candidate molecule is neuroligin-2 (NL-2) because it is so far the only synaptic cell adhesion molecule that specifically localizes to inhibitory synapses (Graf et al., 2004; Chih et al., 2005; Varoqueaux et al., 2006), while the other members of the neuroligin family, NL-1 and NL3 are mostly found at excitatory synapses (Varoqueaux et al., 2006). Particularly, trans-synaptic interactions between postsynaptic NL-2 and presynaptic β-neurexin have been suggested to promote the recruitment of pre- and postsynaptic molecules to form functional GABAergic synapses (Graf et al.,
In a recent study, our lab have demonstrated that functional GABAergic synapses can be reconstituted by co-expression of NL-2 with GABAA-R in HEK 293T cells that are cocultured with neurons (Dong et al., 2007). We utilized a similar in vitro heterococulture assay to explore glycinergic synapse formation. We co-transfected HEK 293T cells with NL-2 and GlyR subunits α1, α2 or α1β, all of which are shown to form functional receptors that concentrate at glycinergic synapses (Bechade et al., 1996; Handford et al., 1996), and then cocultured these cells with hypothalamic neurons. To ensure the formation of αβ heteromers instead of α1 homomers, α1 and β subunits were transfected at a ratio of 1:4 (Pribilla et al., 1992; Zhang et al., 2008). GFP was also co-transfected to identify the transfected cells. After 2–3 days of coculture, synaptic responses were monitored by whole-cell patch-clamp recordings on HEK 293T cells. Surprisingly, co-expressing NL-2 with glycine receptor subunits induced robust spontaneous synaptic-like currents in transfected HEK 293T cells (Figs. 2A-C). These spontaneous events were completely blocked by GlyR antagonist STR (0.5 μM), but were less sensitive or completely insensitive to GABAA-R antagonist BIC (20 μM), indicating that they are glycinergic inhibitory postsynaptic currents (IPSCGly). All cells co-expressing NL-2 with either GlyRα1 alone (n=15) or together with GlyRα1β (n=10) displayed sIPSCGly, whereas 7 out of 15 cells expressing GlyRα2 exhibited sIPSCGly. Peak-scaled IPSCs shows that the synaptic currents
Figure 2. Glycine receptor subunits and Neuroligin-2 induce glycinergic synapse formation on HEK cells when co-cultured with hypothalamic neurons. Representative traces showing sIPSCs detected in HEK 293T cells co-transfected with NL-2 and (A) GlyRα1, (B) GlyRα1 and GlyRβ, and (C) GlyRα2. All cells co-expressing NL2 with GlyRα1 (n = 15), or GlyRα1 and GlyRβ (n = 10) showed synaptic currents, while 7 in 15 cells co-expressing GlyRα2 with NL-2 showed spontaneous synaptic currents. sIPSCs were completely blocked by STR (0.5 µM, middle traces), but not abolished by BIC (20 µM, bottom traces). Scale bar applies to A, B, and C. (D) Three types of averaged sIPSCs were scaled to the same amplitude and superimposed (α1-IPSC\textsubscript{Gly}, black, n = 54; α1β-IPSC\textsubscript{Gly}, blue, n = 68; α2-IPSC\textsubscript{Gly}, red, n = 35). (E) Comparison of mean half width (ms), rise (ms), frequency (Hz), and amplitude (pA) of the three types of IPSC\textsubscript{Gly} (mean ± s.e.m, n\textsubscript{GlyRα1} = 15, n\textsubscript{GlyRα1β} = 10, n\textsubscript{GlyRα2} = 7). Note that all four paradigms for α2-IPSC\textsubscript{Gly} were significantly different than those for α1-IPSC\textsubscript{Gly}, and α1β-IPSC\textsubscript{Gly}.
mediated by α_1 homomers and $\alpha_1\beta$ heteromers displayed faster decay and rising phases than that by α_2 homomers (Fig. 2D). This was consistent with the previously reported receptor kinetics of glycine receptors in neurons (Takahashi et al., 1992; Singer et al., 1998; Singer and Berger, 1999; Legendre, 2001). In our preparations, the majority of the glycinergic events displayed monoexponential decay kinetics, but a subpopulation decayed with a bi-exponential phase. We therefore utilized the half width (ms) for kinetic characterization of the receptors expressed at the synapses. Specifically, α_1-IPSC$_{\text{Gly}}$ decayed with a mean half width of 12.9 ± 1.2 ms ($n=15$) and $\alpha_1\beta$-IPSC$_{\text{Gly}}$ decayed with a half width of 10.2 ± 0.9 ms ($n=10$), whereas the mean half width of α_2-IPSC$_{\text{Gly}}$ was 59.9 ± 7.0 ms ($n=7$) (Fig. 2E). The half width of the α_1-IPSC$_{\text{Gly}}$ was not significantly different from that of $\alpha_1\beta$-IPSC$_{\text{Gly}}$ ($p>0.4$; Student’s t test), however the half width of α_2-IPSC$_{\text{Gly}}$ was significantly slower than both the α_1-IPSC$_{\text{Gly}}$ and $\alpha_1\beta$-IPSC$_{\text{Gly}}$ ($p<0.001$). The mean rise time (10-90%) of α_1-IPSC$_{\text{Gly}}$ (2.09 ± 0.15 ms, $n=15$) was similar to the rise time of $\alpha_1\beta$-IPSC$_{\text{Gly}}$ (2.15 ± 0.17 ms, $n=10$; $p>0.7$), but the α_2-IPSC$_{\text{Gly}}$ (6.80 ± 0.63 ms, $n=7$) rose significantly slower than both the α_1-IPSC$_{\text{Gly}}$ and $\alpha_1\beta$-IPSC$_{\text{Gly}}$ ($p<0.001$). GlyRα_1 mediated events occurred at a rate of 1.47 ± 0.2 Hz and the mean current amplitude was 90 ± 6 pA, which was similar to the frequency and amplitude of sIPSCs in HEK 293T cells coexpressing GlyR $\alpha_1\beta$ and NL-2 (2.08 ± 0.44 Hz and 87 ± 7 pA respectively; $p>0.5$). However, the mean frequency and amplitude of α_2-IPSC$_{\text{Gly}}$ (0.55 ± 0.2 Hz and 47 ± 18 pA) were significantly smaller than those of α_1-IPSC$_{\text{Gly}}$ and $\alpha_1\beta$-IPSC$_{\text{Gly}}$ ($p<0.02$) (Fig. 2E), which might suggest that NL-2 is more potent in clustering GlyR α_1 homomers
and α1β heteromers in postsynaptic terminals than GlyRα2 homomers. Moreover, short pulses (5 ms) of glycine (50 µM) were pressure-ejected to the cells in the presence of BIC (40 µM), generating large currents in all five of the HEK 293 T cells co-transfected with GlyRα1 and NL-2 (2256 ± 731 pA) (Fig 3.A, C). However, 5 ms pressure application of GABA (1 mM), in the presence of BIC (40 µM) induced no current in all 4 cells tested and when the local GABA application was prolonged to 100 ms, only one cell displayed a whole cell current of 98.8 pA (Fig 3.B). This indicates that functional glycine receptors are expressed on the surface of the HEK cell membranes, and are specifically activated by glycine rather than GABA released from presynaptic nerve terminals.

Figure 3. GABA is only a weak agonist for glycine receptors expressed on HEK 293T cells. (A) A typical trace showing the current activated when short pulses (5 ms) of glycine (50 µM) and BIC (40 µM) were pressure-applied to the cells in the presence of BIC (40 µM). HEK 293 T cells were co-transfected with GlyRα1 and NL-2. (B) In only one out of four cells pressure application of GABA (1 mM) and BIC (40 µM) activated a current. (C) Comparison of the mean currents activated by glycine (n= 5, mean ± s.e.m) and GABA (n = 4) in the presence of BIC (40 µM).
These results indicate that NL-2 can organize glycinergic postsynaptic apparatus in non-neuronal cells. More interestingly, given that pure hypothalamic neurons do not contain glycinergic synapses, our hetero-coculture results suggest a phenotypic change in neurotransmission, from GABAergic to glycinergic, when postsynaptic target is altered.

3. Mixed synapses are formed onto HEK cells co-expressing GlyRα1 subunit and GABAₐ-R subunits together with NL-2

Previous studies have shown that GABAₐ-R and GlyR are expressed at the same synapse, which results in a mixed GABAergic/glycinergic neurotransmission (Jonas et al., 1998; O'Brien and Berger, 1999, 2001). Since NL-2 and GABAₐ-R receptors can also reconstitute functional GABAergic postsynaptic machinery in HEK 293T cells cocultured with hypothalamic neurons, we decided to test whether mixed synapses are formed onto HEK 293T cells expressing NL-2 with GlyRα1 and GABAₐ-R. Spontaneous synaptic currents recorded from transfected HEK 293T cells in normal bath solution displayed two populations of sIPSCs (Fig. 4.A). Pharmacological isolation further revealed the presence of both GABAergic and glycinergic synaptic currents (Fig. 4.B). Addition of the glycine receptor antagonist STR (0.5 µM) blocked fast decaying events (n = 6) (Fig. 4.B). The remaining sIPSCs were eliminated by the application of BIC (20 µM, data not shown). After washout of STR, application of BIC (20 µM) to the same cell selectively eliminated the slower decaying spontaneous currents and the residual glycinergic
Figure 4. Mixed synapses are formed onto HEK cells co-expressing GlyR subunit and GABA$_{A}$R subunits together with NL-2. (A) A typical example showing sIPSCs recorded from a HEK 293 T cell co-transfected with NL-2, GlyR$\alpha1$, and GABA$_{A}$R, and cocultured with hypothalamic neurons for 2-3 days. Recordings were performed at -70 mV. (B) Pharmacological isolation of sIPSCs in the presence of flunitrazepam (2 μM). On the same cell, addition of STR (0.5 μM) blocked faster decaying glycinergic sIPSCs; while addition of BIC (20 μM) blocked slower decaying GABAergic sIPSCs (n = 6). (C) Scaled overlay of averaged sIPSCs recorded in the presence of BIC (20 μM, sIPSC$_{Gly}$, black, n = 52) and in the presence of STR (0.5 μM, sIPSC$_{GABA}$, green, n = 38). (D) Distribution of the decay kinetics of glycinergic (black bars, BIC, n = 211) and GABAergic (green bars, STR, n = 183) sIPSCs yields two separate populations of synaptic currents. Recordings were pooled from two transfected HEK 293T cells. Bin size, 1 ms.
sIPSC were completely blocked by STR. To enhance the difference in decay kinetics between the two components, we included the benzodiazepine flunitrazepam (Jonas et al., 1998). Flunitrazepam (2 µM), selectively prolonged the decay time of GABA_AR mediated sIPSCs (on average 1.85 ± 0.27 fold increase, n = 8), but did not significantly altered the kinetics of GlyR mediated sIPSCs (on average, by a factor of 1.07 ± 0.18 change, n = 6). In the presence of flunitrazepam and either STR or BIC, the GABAergic sIPSCs decayed with an average half width of 46.6 ± 3.8 (n = 8), while the glycinergic sIPSCs had a half width of 12.3 ± 1.45 ms (n = 6, mean ± s.e.m.). Scaled overlay of the averaged sIPSCs demonstrate that GABAergic IPSCs display longer decay time than that of glycinergic IPSCs (Fig. 4.C), which is consistent with the previously reported studies (Jonas et al., 1998; O'Brien and Berger, 1999; Nabekura et al., 2004; Dugue et al., 2005). The mean rise time (10%-90%) of the IPSC_{GABA} was 5.07 ± 0.43 ms, while rise time of sIPSC_{Gly} was 2.78 ± 0.33 ms. The distributions of decay times (peak to 34%) for glycinergic and GABAergic sIPSCs, recorded in the presence of flunitrazepam also show that the GABA_AR and GlyR mediated events constitute significantly different populations of events on the same HEK 293T cell (Fig. 4.D). To investigate the possibility of GABA and glycine co-release from the same vesicle, we have also performed recordings in the presence of TTX, which blocks action potential dependent synaptic activity. We observed single quantal glycinergic and GABAergic events on the same HEK cell both in the presence or absence of BIC or STR, including some events that displayed bi-exponential decay kinetics. However, the synaptic responses were significantly reduced after application of TTX (0.5 µM), suggesting that spontaneous
events detected in the artificial synapses depend upon the neuronal activity of the network formed in the culture. Therefore, our results are not yet clear to conclude whether GABA and glycine are co-released from a single vesicle in the synapses formed between HEK 293T cells and neurons. Nonetheless, these results strongly suggest that NL-2 can cluster both GABA_\text{A} and glycine receptors on the postsynaptic sites, reconstituting mixed synapses on HEK 293T cells that display distinct properties.

4. Overexpressing NL-2 with GlyR_{\alpha 1}, but not NL-2 or GlyR_{\alpha 1} alone in hypothalamic neurons induce glycinergic synaptic currents

The experiments so far implicate an inducible switch in the neurotransmitter phenotype in artificial synapses formed between hypothalamic neurons and non-neuronal HEK 293T cells. To determine whether a similar phenotypic change can also occur in inter-neuronal synapses, we explored the effects of GlyRs and NL-2 on glycinergic synapse formation in cultured hypothalamic neurons. We transfected neurons with GlyR_{\alpha 1}, NL-2, or GlyR_{\alpha 1} together with NL-2 at 5-7 DIV and recorded sIPSCs at 8-12 DIV. Glutamate receptor antagonist CNQX (20 \text{ \mu M}) was always present in the solutions. Addition of BIC (40 \text{ \mu M}) eliminated all the sIPSCs in neurons expressing GlyR_{\alpha 1} alone (n = 8) or NL-2 alone (n = 10) (Fig. 5.A, B, upper traces). Application of STR (0.5 \text{ \mu M}) did not affect the amplitude or frequency of GABAergic events in these neurons (lower traces); however, an increase in the frequency of sIPSCs in NL-2 transfected neurons was observed (data not shown). Because the hypothalamic neurons already express high amounts of functional
Figure 5. Overexpressing NL-2 with GlyRα1, but not NL-2 or GlyRα1 alone in hypothalamic neurons induce glycinergic synaptic currents. Typical traces of sIPSCs from cultured hypothalamic neurons transfected with (A) GlyRα1, (B) NL-2, and (C) GlyRα1 together with NL-2. CNQX (20 µM) was present in all solutions. Application of BIC (40 µM) completely abolished sIPSC in all of the neurons expressing GlyRα1 (n = 8) and NL-2 (n = 10) (A, B, upper traces), bottom traces show GABAergic sIPSCs in the presence of STR (0.5 µM, in conjunction with CNQX). BIC did not abolish sIPSCs in all 11 of the neurons expressing NL-2 together with GlyRα1 (C, upper). These events were completely blocked by STR (middle). Bottom trace shows the GABAergic sIPSCs from the same cell. (D) Pharmacological isolation of mIPSCs from neurons co-expressing NL-2, GlyRα1 and GlyRβ. Flunitrazepam (2 µM) was present in all solutions. On the same cell, addition of BIC (40 µM) blocked slower decaying GABAergic mIPSCs, upper trace; while, addition of STR (0.5 µM) blocked faster decaying glycinergic mIPSCs, middle trace (n = 6). When STR and BIC were excluded, neurons displayed a third type of event with both fast and slow decaying phases (bottom trace, dual component event is shown with an arrow). (E) Distribution of the decay kinetics of glycinergic (blue bars, BIC, 40 µM, n = 180) and GABAergic (black bars, STR, 0.5 µM, n = 210) mIPSCs. Recordings were pooled from 2 transfected neurons. Bin size, 1 ms.
glycine receptors on the neuronal membranes (Fig. 1.C), which are suggested to localize at non-synaptic regions (Hussy et al., 2001), it was expected that increasing the expression of GlyR did not induce formation of glycinergic synapses. Moreover, although NL-2 overexpression increased the frequency of spontaneous events, possibly by generating new synapses (Chih et al., 2005), these newly formed synapses did not induce glycinergic presynaptic terminals. However, in neurons overexpressing GlyR α1 and NL-2, application of BIC (40 µM) did not eliminate fast decaying responses that were completely blocked by STR (0.5 µM), showing that these responses were glycinergic (Fig. 5.C). The spontaneous glycinergic events occurred at a frequency of 0.51 ± 0.07 Hz and the amplitude was 47.8 ± 5.5 pA, while the GABAergic sIPSC frequency and amplitude recorded from the same cell was 1.71 ± 0.31 Hz and 48.3 ± 4.8 pA, respectively (n = 11).

We then analyzed the nature of miniature IPSCs in the presence of TTX (0.5 µM) and CNQX (20 µM) in neurons overexpressing NL-2 together with GlyR α1 and β subunits. Flunitrazepam (2 µM) was also included to enhance the decay kinetics between GABAergic and glycinergic responses. In the presence of BIC (40 µM), glycinergic mIPSCs were detected with a fast decaying kinetics (mean half width 9.78 ± 1.22 ms, rise time 2.18 ± 0.17 ms, n = 6) (Fig. 5.D, upper). The events occurred at a rate of 0.31 ± 0.04 Hz and the current amplitude was 18.9 ± 0.79 pA (mean ± s.e.m). On the same cell, GABAergic mIPSCs were observed by application of STR (0.5 µM), which had a slower decay kinetics (mean half width 51.9 ± 3.4 ms, rise time 3.06 ± 0.2 ms) (Fig. 5.D, middle). Neither GABAergic mIPSC frequency nor mean current amplitude was significantly different from that of
glycine mIPSCs (frequency 0.79 ± 0.17 Hz, amplitude 26.35 ± 2.4 pA, p > 0.01, n = 6). In the absence of both STR and BIC, we observed events with three types of decay kinetics: fast decaying glycinergic events, slow decaying GABAergic events, and dual component events that have both fast decaying component and slow decaying component (Fig. 5.D, bottom, a dual component event is indicated with an arrow). Events that exhibit two components have been suggested to indicate the corelease of GABA and glycine from the same presynaptic vesicle (Jonas et al., 1998; O’Brien and Berger, 1999; Nabekura et al., 2004). The distribution of 34% to decay times in the presence of STR (0.5 µM, mIPSC\textsubscript{GABA}, black, n = 210), or BIC (40 µM, mIPSC\textsubscript{Glycine}, blue, n = 180) indicate two separate populations of events (Fig. 5.D). Our observations show that increasing the expression of NL-2 and GlyR, but not NL-2 or GlyR expression alone, can induce glycinergic synapses in hypothalamic neurons, similar to the glycinergic synapses formed between HEK 293T cells and neurons. This indicates that NL-2 might function as a central organizer in clustering glycine receptors at the postsynaptic sites opposing to presynaptic terminals.

5. Postsynaptic characterization of newly formed glycinergic synapses

Formation of postsynaptic machinery for glycinergic inhibitory neurotransmission is thought to require gephyrin accumulation at postsynaptic sites, which directly interacts with the GlyR β subunit (Kirsch et al., 1993; Kirsch et al., 1995; Meyer et al., 1995; Feng et al., 1998). Thus, hetero-oligomeric α/β GlyRs are thought to be the dominant form of synaptic receptors. However, in spinal cord neurons GlyR α1
and α2 subunit mRNAs are found in postsynaptic specializations of dendrites, whereas GlyRβ and gephyrin mRNAs are mostly localized in the soma (Racca et al., 1997). Additionally, homo-oligomeric α1 GlyRs are functionally identified in the synapses of zebrafish Mauthner cell (Legendre, 1997). To determine the molecular mechanisms underlying the novel phenotypic switch in cultured neurons, we investigated the postsynaptic composition of newly formed synapses by analyzing the effects of picrotoxin on GlyR mediated synaptic currents in transfected HEK 293T cells and neurons. Picrotoxin (PTX, 100 µM) blocked the majority of the synaptic events recorded from HEK 293T cells co-transfected with GlyRα1 and NL-2, and cocultured with hypothalamic neurons (on average 94 ± 3% inhibition, n = 6) (Fig. 6.A left). As expected, PTX inhibition was significantly smaller in HEK 293T cells expressing NL-2 together with GlyRα1 and β (15.5 ± 3.7 % inhibition, n = 8) (Fig. 6.A, right) compared to α1-IPSC_{Gly} (p < 0.001) (Fig. 6.B). This indicates that in HEK 293T cells, both GlyRα1 homomers and GlyRα1β heteromers are effectively clustered at postsynaptic sites of the hemi-synapses. Application of PTX in conjunction with BIC (40 µM) and CNQX (20 µM) in neurons co-expressing NL-2 with GlyRα1 blocked 83.9 ± 9 % of glycinergetic IPSCs (n = 11) (Fig. 6.C, left). This suggests that the majority of the synaptic currents are mediated by exogenous α1 homomers, however, a subpopulation of the synaptic GlyRs also contain α1β heterooligomers. A likely explanation is that the endogenous GlyRβ subunit has been incorporated with the GlyRα1 subunit.
Figure 6. Postsynaptic characterization of newly formed glycinergic synapses. (A) Glycinergic sIPSCs recorded from HEK 293T cells expressing NL-2 with GlyRα1 (left) or GlyRα1 and GlyRβ (right). Transfected HEK cells were cocultured with 5-7 DIV hypothalamic neurons for 2-3 days. Typical traces recorded before (upper) and during (bottom) 100 µM picrotoxin (PTX) application. (B) PTX blocked 94 ± 3% of α1-IPSC_{Gly} (n = 6), and 15.5 ± 3.7 % of α1β-IPSC_{Gly} (n = 8). (C) Representative traces of hypothalamic neurons coexpressing NL-2 with GlyRα1 (upper left) or GlyRα1 and GlyRβ (upper right) in the presence of BIC (40 µM) and CNQX (20 µM). Bottom traces show recordings in the presence PTX (100 µM, in conjunction with BIC and CNQX. (D) PTX blocked 83.9 ± 9 of α1-sIPSC_{Gly} (n = 11), and 43 ± 10 % of α1β-sIPSC_{Gly} (n = 12).
In neurons expressing NL-2 and GlyRα1β, PTX application in the presence of BIC and CNQX blocked 43 ± 10 % of the events (n = 12) (Fig. 6.C, right), indicating that exogenous GlyRα1 and β subunits formed GlyR heteromers at the synaptic sites, which are resistant to PTX inhibition.

To ensure that the exogenous receptors were expressed at the cell membranes, we also tested the effect of PTX on whole-cell current amplitudes in transfected neurons. In agreement with the data from synaptic currents, PTX blocked a significantly larger portion of the current amplitude in neurons transfected with GlyRα1 and NL2 (58.6 ± 5.7 %, n = 11), comparing to the neurons expressing GlyRα1β and NL2 (13.1 ± 2.7 %, n = 13, p < 0.001). Together, our results suggest that the postsynaptic organization of receptors is crucial in remodeling the presynaptic composition of neurons, which in turn will help to determine the neurotransmission phenotype.
DISCUSSION

In the present work, we have identified a novel inducible plasticity in cultured hypothalamic neurons. We demonstrate a phenotypic switch from purely GABAergic transmission to one mediated by both GABA and glycine. Previous studies have demonstrated high levels of GlyR expression in forebrain regions such as hypothalamus, hippocampus and neocortex, by using electrophysiological and immunohistochemical methods. Here, we have also shown that in cultured hypothalamic neurons the functional GlyRs are expressed at high levels similar to that of GABA\(\alpha\)-Rs. In agreement with the previous in situ hybridization and RT-PCR analyses (Fujita et al., 1991; Malosio et al., 1991), the presence of both GlyR \(\alpha\)-homomers and \(\alpha\beta\)-heteromers is demonstrated in our experiments (Figure 1). However, high levels of GlyRs do not appear to contribute to the inhibitory neurotransmission in cultured hypothalamic neurons, since the sIPSCs are completely blocked by the selective GABA\(\alpha\)-R antagonist BIC. The lack of glycinergetic synaptic currents might be attributed to the non-synaptic localization of glycine receptors, as shown by previous immunohistochemical and electron microscopic studies in the hippocampus and hypothalamus (Brackmann et al., 2004; Danglot et al., 2004; Deleuze et al., 2005). Non-synaptic localization of GlyRs might be a common phenomenon in the forebrain regions where high levels of receptor expression are not coupled to a function in neurotransmission. Instead, the non-synaptic GlyRs are involved in cortical development (Flint et al., 1998), suppressing hyperexcitability in hippocampus (Chattipakorn and McMahon, 2003; Zhang et al., 2008), and
osmoregulation in hypothalamus (Hussy et al., 2001). Taurine, released by neurons in cortex (Flint et al., 1998) and glial cells in hypothalamus (Hussy et al., 1997) and hippocampus (Mori et al., 2002) is a proposed endogenous ligand for the extrasynaptic GlyRs. Taurine activation of GlyRs occurs via mechanisms that are distinct from conventional action potential and calcium dependent modes of neurotransmission. Nonetheless, given that a substantial number of glycine IR afferents have been demonstrated in these regions (Rampon et al., 1996), one should not rule out an \textit{in vivo} activation of glycineric synaptic currents.

Our results suggest that the inducible changes in the neurotransmission phenotype depend upon NL-2 along with the receptor expression on the postsynaptic membranes. Previous studies have shown that NL-2 can selectively induce formation and/or stabilization of GABAergic synapses (Chih et al., 2005; Varoqueaux et al., 2006; Chubykin et al., 2007; Huang and Scheiffele, 2008). NL-2 exerts its synaptogenic effects by stabilizing both the postsynaptic machinery and inhibitory presynaptic innervation through trans-synaptic interactions with neurexins. Our recent study has also shown that NL-2 can co-aggregate with GABA\(_\alpha\)R \(\gamma2\) subunit on HEK 293T cells and induce strong presynaptic GABAergic innervation from cocultured neurons onto HEK cells (Dong et al., 2007).

Here, we show that NL-2 can also induce formation of glycineric synapses between neurons and HEK 293T cells (Figure 2). All of the three subtypes of GlyRs, \(\alpha1\), and \(\alpha2\) homomeric GlyRs and \(\alpha1\beta\) heteromeric
GlyRs, are capable of forming functional functional apparatus together with NL-2. The recombinant receptors assembled at the artificial synapses resemble the endogenous receptors located at the glycinergic synapses in spinal cord and brain stem (Takahashi et al., 1992; Singer et al., 1998; Singer and Berger, 1999; Legendre, 2001), represented by the kinetic characterization of the synaptic currents mediated by individual GlyR subtypes (Figure 2). Previous studies have suggested that the synaptic receptors in mature neurons are predominantly $\alpha_1\beta$ heterooligomeric, whereas the neonatal forms of synaptic GlyRs are mostly the α_2 homooligomeric subtype. We have observed that α_2 homomeric GlyRs are formed less effectively than the α_1 homomeric or $\alpha_1\beta$ heteromeric receptors, as judged by the significant reduction in both the amplitude and the frequency of the synaptic events mediated by the α_2 GlyRs. It has been previously shown that GlyR α subunits can form functional chloride channels when expressed in HEK 293T cells (Kirsch and Betz, 1995); however, surface labeling reveals a diffuse expression in the plasma membrane (Meier et al., 2000). It is therefore of interest to determine whether GlyR α homomers are clustered on the HEK 293T cells when specifically co-expressed with NL-2.

Data presented here also shows that both GABA$_\alpha$-R and GlyRs can cluster at the synaptic sites to form ‘mixed’ synapses, with distinct kinetics (Figure 4). Therefore, it is tempting to propose that NL-2 might function as a postsynaptic organizing molecule to recruit inhibitory postsynaptic receptors opposing to the presynaptic terminals. Our study implies that NL-2 is
associated with GlyR α subunits; however, biochemical assays are required to address whether NL-2 directly interacts with GlyRs. Other interesting questions include whether NL-2 discriminates between GlyRs and GABA_ARs or if there is a competitive mechanism between the two receptors for association with NL-2.

The effect of picrotoxin applications on transfected HEK 293T cells clearly shows that not only α1 homomeric but also α1β heteromeric GlyRs are formed at the induced glycinergetic synapses (Figure 6). Given that HEK 293T cell expression system is a less complex model when compared to neurons, i.e. devoid of extensively regulated intracellular trafficking mechanisms (Luscher and Keller, 2004), it is expected that both receptor subtypes are assembled at the synapses. Previous reports have suggested the presence of α1 homomers in functional glycinergetic synapses (Legendre, 1997; Racca et al., 1997). Accordingly, we also demonstrate that functional GlyR α1 homomers can accumulate at the induced synapses formed on neurons. However, GlyR β subunit is thought to be crucial in clustering and stabilization of GlyRs at synaptic sites, which directly interacts with the scaffolding protein gephyrin (Kirsch et al., 1993; Kirsch et al., 1995; Meyer et al., 1995; Feng et al., 1998). Therefore, endogenous gephyrin’s interaction with the exogenous GlyR β subunit might account for the postsynaptic localization of the heteromeric GlyRs. In contrast, our results support a clustering mechanism for GlyR α1 homomers independent of the anchoring function of gephyrin. This finding does not contradict with previous reports (Meier et al., 2000). Although our functional data
do not discriminate between two different clustering mechanisms for homomeric or heteromeric GlyRs, NL-2 appears a likely mediator for clustering both GlyR subtypes at postsynaptic sites.

GABA and glycine corelease is considered as a common phenomenon of the inhibitory neurotransmission rather than an exception. Evidence in support of this view includes the widespread colocalization of the synthetic enzyme for GABA, glutamic acid carboxylase (GAD), with neuronal transmembrane glycine transporter, GlyT2 in midbrain, cerebellum and brain stem (Tanaka and Ezure, 2004). Additionally, a common vesicular transporter, VIAAT, mediates loading and release of both GABA and glycine from the same synaptic vesicles (Wojcik et al., 2006). Moreover, functional corelease of GABA and glycine from the same presynaptic vesicle has been demonstrated in the spinal cord (Jonas et al., 1998) and brain stem (O'Brien and Berger, 1999; Nabekura et al., 2004; Awatramani et al., 2005), resulting in co-activation of GABA_\text{A} and glycine receptors on the postsynaptic sites. Here we also demonstrate that the mIPSCs recorded from neurons co-expressing glycine and GABA_\text{A} receptors together with NL-2 display dual-component events comprising GABA_\text{A}-R and GlyR mediated components (Figure 5). Our results implicate that in phenotypically altered hypothalamic neurons, GABA and glycine can be released from a single presynaptic vesicle and co-activate the corresponding receptors at the same postsynaptic density. GABA and glycine cotransmission have crucial implications in timing and strength of neuronal inhibition to regulate excitation. For instance in spinal cord, it is suggested that fast glycineric components effectively
hyperpolarize the cell, whereas the slower GABAergic components control
shunting and time course of inhibition. Differential modulation of GABA
and glycine receptors may also allow rapid and precise adaptation of inhibition in the
neuronal network (Dugue et al., 2005).

Our experiments so far did not reveal the origin of the phenotypic switch. However, the neurotransmitter plasticity induced by glycine receptor and NL-2
overexpression could be explained by at least two different hypotheses. First,
the cultured hypothalamic neurons may release both GABA and glycine
continuously. However, glycinergic synaptic currents are not detected in cultured
neurons because GlyRs are not localized at synapses. Upon coexpression of
NL-2 and GlyR subunits, NL-2 can cluster functional receptors at synaptic
terminals, which allows detection of STR-sensitive glycinergic events. This
explanation does not contradict with previous studies, which have demonstrated
the presence of glycine IR terminals (Rampon et al., 1996) and non-synaptic
localization of GlyRs in hypothalamus (Deleuze et al., 2005).

Alternatively, the ability of the postsynaptic neuron to influence the
properties of presynaptic terminal may result in the inducible plasticity of
neurotransmitter phenotype. Postsynaptic expression of functional receptors and
cell adhesion molecules could modify the inhibitory presynaptic organization,
which results in (co)packaging of glycine into synaptic vesicles. Previous studies
have provided evidence in support of this explanation. For instance, postsynaptic
overexpression of active calmodulin dependent protein kinase II (CaMKII) is
shown to induce the remodeling of presynaptic inputs with an increase in both
quantal amplitude and synaptic contacts (Pratt et al., 2003). Furthermore, postsynaptic PSD-65 and NL-1 complex can also modify the presynaptic release in a retrograde way (Futai et al., 2007). Transsynaptic interactions between NL-1 and presynaptic β-neurexin have been suggested as a mediator for the retrograde modulation, by functionally connecting the presynaptic release machinery to postsynaptic sites. It should be noted that a target dependent plasticity in the neurotransmission phenotype is not compatible with previously described forms of phenotypic switch, where presynaptic neurotransmitter content governs the postsynaptic receptor selection (Nabekura et al., 2004; Borodinsky and Spitzer, 2007). Additional tests are required to distinguish between these two hypotheses.

In conclusion, our results suggest an inducible plasticity of the neurotransmission phenotype upon postsynaptic expression of a synaptic cell adhesion molecule NL-2 and postsynaptic receptors (glycine receptors). Furthermore, we propose that the switch in the inhibitory synaptic phenotype identified in our study is not restricted to hypothalamic neurons, but rather a general mechanism of plasticity in the CNS. This mechanism would be extremely important in the regulation of excitation and synaptic transmission by temporal precision in networks that are involved in a wide range of complex behaviors.
REFERENCES

Dong N, Qi J, Chen G (2007) Molecular reconstitution of functional GABAergic
synapses with expression of neuroligin-2 and GABAA receptors. Mol Cell
Neurosci 35:14-23.

Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of
coreleased inhibitory transmitters at central synapses. J Neurosci
25:6490-6498.

Engblom AC, Eriksson KS, Akerman KE (1996) Glycine and GABAA receptor-
mediated chloride fluxes in synaptoneurosomes from different parts of the

requirement for gephyrin in glycine receptor clustering and

distribution of the cells expressing glycine receptor beta subunit mRNA in

Retrograde modulation of presynaptic release probability through signaling

Gao BX, Stricker C, Ziskind-Conhaim L (2001) Transition from GABAergic to
glycinergic synaptic transmission in newly formed spinal networks. J

