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Abstract

I study the effects of lump-sum money creation against the background of the
random-matching model of Trejos-Wright (1995) and Shi (1995). That model is in-
teresting for the study of money creation because, alongside with the usual harmful
internal margin effects, money creation has beneficial external margin effects. Pos-
itive money creation shifts the distribution of money towards the average holdings,
thus increasing the frequency of trades in meetings. Molico (1997) demonstrates
numerically that beneficial effects are possible in that model. However, Molico
assumes a particular bargaining rule, take-it-or-leave-it offers by consumers. That
bargaining rule is known to cause too much production in some meetings. Because
lump-sum money creation tends to reduce production in meetings with binding
producer participation constraints, the beneficial effects he finds may come from
offsetting the effects of that bargaining rule. Instead of working with any particular
bargaining rule, I consider optima over all implementable outcomes.
In order to keep the optimization problem manageable while enlarging the set

of outcomes in that way, I have to make some other compromises. I assume that
money is indivisible and that there is a bound on individual holdings - sometimes
a low bound but one that always exceeds unity. However, I do permit random-
ization, which enlarges the set of trades and, thereby, the possible distribution
effects. Given randomization, there are two main ways to define the set of imple-
mentable outcomes: either ex ante (allowing people to commit to randomization)
or ex post (requiring that people go along with each element in the support of the
randomization scheme).
Essay 1.“Another Example in which Lump-SumMoney Creation is Beneficial.”

(Joint with Neil Wallace.) We assume a two-unit upper bound on money holdings
and adopt ex post individual rationality as the notion of implementability. The
policy is a probabilistic version of the standard helicopter drops followed by pro-
portional reduction in individual holdings. For all discount factors greater than a
critical value, we show analytically that the ex ante optimum involves creation of
money. This is done by finding the best outcome subject to no money creation
and by showing that some creation can improve that outcome. Our results for
a two-unit bound on holdings are indicative for what can happen with all higher
bounds.
Essay 2. “Optimal Money Creation in a Random-Matching Model with Ex post
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Individual Rationality.” Although Essay 1 accomplishes the goal of showing that
money creation can be helpful, it does not describe the optima. I study the same
model (while letting the bound on money holdings be arbitrary) where I do two
things. First, I show that, under a mild restriction on the set of implementable
outcomes, conditional on the amount of money transferred in a meeting there
is no randomization over output, a property I call degeneracy. This degeneracy
result facilitates the exploration of the trade-off between harmful and beneficial
effects of money creation by way of examples. I compute optimal allocations for
examples with a two-unit bound on holdings. These examples are consistent with
the conjecture that the optima do not have take-it-or-leave-it offers by consumers
in all meetings — the bargaining rule imposed by Molico.
Essay 3. “Money Creation and Optimal Pairwise Core Allocations in a Match-

ing Model.” Here I adopt the ex ante pairwise core notion of implementability.
In contrast to what happens using the ex post IR notion, now the optimum, even
with no money creation, involves binding participation constraints. Therefore, the
proof technique of Essay 1 is not applicable. Moreover, it is difficult to get any
analytical results. Therefore, I compute numerical examples. In no examples is
money creation optimal.
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Chapter 1

Another Example in which
Lump-Sum Money Creation is
Beneficial

(Joint with Neil Wallace.)

A standard exercise to perform on monetary models is to subject them to
money creation at a rate, where the creation is accomplished through lump-sum
transfers, transfers that do not depend on behavior. Representative-agent models
with money in utility or production functions or with cash-in-advance constraints
generally give results roughly in line with what has come to be called the Friedman
rule: the optimum involves not creation, but destruction financed by lump-sum
taxes. Models in which money is convincingly essential can give a different answer.
We know of two models in which money is convincingly essential and in which
lump-sum transfers of money are studied: one is Levine [11] and the generalization
of it studied by Kehoe, Levine and Woodford [10]; the other is Molico [15]. Both
produce examples in which expansionary policy is beneficial. Here we present
another example. We do that because the existing examples are special in ways
that may raise doubts about the robustness of the results on beneficial effects.
Levine [11] and Kehoe, Levine and Woodford [10] use a one-good-per-date,

pure-exchange model with preference shocks and divisible money. To get money
to be essential, they assume that people are anonymous so that only quid pro quo
spot trades are possible. There are two possible preference realizations at each date
and they analyze only equilibria in which at the end of each period all money is held
in equal amounts by those who last realized the low preference-for-consumption
realization. As the authors make clear, in a model with preference shocks and
no risk-sharing arrangements, such degenerate distributions are equilibria only for
parameters for which those with high preference-for-consumption realizations want
to carry zero wealth from one date to the next. Thus, their analysis leaves open
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whether beneficial effects of lump-sum money creation could also arise in the more
general situation in which precautionary motives for holding money give rise to
non-degenerate monetary distributions.
Molico [15] uses a randommatching model with divisible money and unbounded

individual holdings. As a consequence, he is able to analyze the model only numer-
ically for particular examples. More importantly, he uses a particular bargaining
rule: take-it-or-leave-it offers by potential consumers. From the viewpoint of his
ex ante welfare criterion, that rule may be a non-optimal way to divide the gains
from trade in some meetings. Therefore, part of the role of money creation in his
examples may be to counteract a sub-optimal way of dividing the gains from trade
in meetings.
We use the same background environment as Molico, but we assume indivisible

money and individual holdings bounded at 2 units. That allows us to proceed
analytically. Also, because we divide the gains from trade optimally, we are able
to isolate the beneficial role of lump-sum money creation. In other words, we can
be sure that we are not getting beneficial effects of money creation because we
have imposed a sub-optimal trading rule. There is, though, a small price to pay
for working with bounded and indivisible money; we must study a probabilistic
version of the standard lump-sum money creation policy. We study a model in
which holdings are at most 2 units because that is the smallest bound that permits
money creation to affect the distribution of holdings in a way that facilitates trade.
A plausible conjecture is that the same can happen for all higher bounds.

1.1 Environment

The background environment is a simple random matching model of money due
to Shi [16] and Trejos and Wright [17]. Time is discrete and the horizon is infinite.
There are N > 3 perishable consumption goods at each date and a [0, 1] contin-
uum of each of N types of agents. A type n person consumes only good n and
produces good n + 1 (modulo N). Each person maximizes expected discounted
utility with discount parameter β ∈ (0, 1). As regards utility in a period, an agent
who produces y ∈ R+ units of the agent’s production good at a date experiences
the utility −y, while an agent who consumes y units of the agent’s consumption
good at a date receives the utility u(y). We assume that the function u is strictly
concave and increasing, satisfies u(0) = 0 and u0(0) = ∞, and that there exists
ŷ > 0 such that u(ŷ) = ŷ. At each date, each agent meets one other person at
random.
There is only one asset in this economy which can be stored across periods: fiat

money. This money is indivisible and no individual can have more than 2 units
of money at a time. We assume that an agent’s specialization type and individual
money holdings are observable. We also assume that agents cannot commit to
future actions–that there is sequential individual rationality–and that the agent’s
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history, except as revealed by money holdings, is private.
The pairwise meetings, the inability to commit, the privacy of individual his-

tories, and the perishable nature of the goods imply that any production must be
accompanied by a transfer of money. Moreover, the random meetings imply that
with positive ex ante probability, there are single-coincidence meetings in which
the producer has experienced a long run of being a producer and the consumer has
experienced a long run of being a consumer. In such meetings, no matter whether
money is bounded or unbounded or indivisible or divisible, the potential consumer
will, in general, be unable to offer the producer enough money to induce much
production. That opens the way for a potentially beneficial role for redistribu-
tion produced through lump-sum creation of money. The redistribution tends to
compress the distribution of money holdings and, thereby, lowers the probability
of meetings in which producers have a great deal of money and consumers have
very little money. In our model with indivisible money and holdings bounded at
2 units, the role of the redistribution is to shift the distribution of money hold-
ings away from the end-points of the support. Of course, as explained below,
that potentially beneficial effect of lump-sum money creation may be offset by its
undesirable incentive effects.
When first formulated, the randomness of meetings in settings like that de-

scribed above was adopted because of its simplicity. Here, because the random-
ness of meetings plays an important role, it ought to be defended on other grounds.
The randomness amounts to assuming that people probabilistically encounter con-
sumption opportunities and earnings opportunities. This is a complete-economy
version of the kind of uncertainty regarding expenditures and receipts that has long
been part of well-known partial equilibrium models of money demand (see, for ex-
ample, Goldman [7] and Miller and Orr [14]). Moreover, money aside, some such
uncertainty has almost always been assumed in inventory theory and in models of
precautionary saving. Therefore, it should not be regarded as a strange ingredient
of a model of trade. Finally, our result depends on the presence of uncertainty
which produces distributions with unbounded support of runs of being a potential
consumer and runs of being a potential producer. In single-coincidence meetings
between people who have experienced long runs and in the absence of interven-
tion, the potential consumer will not have enough money to induce the potential
producer to produce much. While the existence of such runs is important, their
source does not seem important; it could be randommeetings or something else—for
example, preference shocks as in Kehoe, Levine and Woodford [10].

1.2 Policies

We adopt the following timing of events and specification of policies. First there are
meetings. After meetings, each person receives one unit of money with probability
α. (Those who are at the upper bound and receive a unit must discard it.) Then
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each unit of money disintegrates with probability δ. Then the next date begins and
the sequence is repeated.1

This kind of policy is a random version of the standard lump-sum money cre-
ation policy. In a model with divisible money, the standard policy is creation of
money at a rate with the injections of money handed out lump-sum to people.
As is well-known, that policy is equivalent to the following policy: the same in-
jections followed by a reduction in each person’s holdings that is proportional to
the person’s holdings. The proportional reduction is nothing but a normalization
(see, for example, Lucas and Woodford [13])2. Our policy resembles the second,
normalized, policy in two respects. First, the creation part of our policy, the α
part, is done on a per person basis, while the disintegration part, the δ part, is
proportional to holdings. Second, in a model with divisible money and a nonde-
generate distribution of money holdings, the standard policy has two effects: it
tends to redistribute real money holdings from those with high nominal holdings
to those with low nominal holdings and it has incentive effects by making money
less valuable to acquire. Our policy also has these two effects. In particular, as
regards incentives, the policy makes producers less willing to acquire money be-
cause (a) they may be given money without working for it (the lump-sum transfer
part of the policy) and (b) they may lose money for which they have worked (the
disintegration part). And, for the same reasons, consumers are more willing to
part with money.3

Given that the potential beneficial effects of our policy come from redistribu-
tion, why not study policies that redistribute directly? The answer is related to
the sequential individual rationality that we impose. We interpret that assump-
tion, which in this model is important for the essentiality of monetary exchange,
as precluding direct taxes. In particular, it is not feasible to simply take money
from people or to force producers to produce. For that reason, we study only
non-negative (α, δ) pairs and view any such pair as being accomplished as follows.
The creation part is not a problem because it involves giving people something; we
view it as accomplished by way of a randomized version of the proverbial helicopter
drops of money. The random proportional decline in holdings is accomplished by
society’s choice of the durability of the monetary object. In a model with divis-

1Policies much like ours have been studied, but only for the case in which the upper bound
on individual holdings is unity (see, in particular, Li [12]). As we will see, if the bound is unity
and if the gains from trade are split optimally, then the policy has no scope for beneficial effects.

2However, as Edward J. Green points out, the equivalence could fail in a model which posits
costs of changing prices.

3In some models, lump-sum transfers of money are equivalent to open-market operations.
They are not equivalent here. The equivalence requires Ricardian equivalence and, hence, perfect
credit markets. Essentiality of money requires imperfect knowledge of individual histories and,
hence, imperfect credit markets (see the discussion in Wallace [18]). Here, and in Levine [11],
Kehoe, Levine and Woodford [10], and Molico [15], credit markets are excluded completely by
way of the assumptions about privacy of individual histories.
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ible money, the proportional reduction could be achieved by using as money an
object which physically depreciates at the appropriate rate. Here, because of the
indivisibility, we assume that the physical depreciation occurs probabilistically (in
a “one-hoss-shay” fashion).4

1.3 Implementable allocations and the optimum
problem

Given our assumptions, we can restrict attention to what we call trade meetings.
A trade meeting is a single-coincidence meeting in which the producer does not
start with upper-bound money holdings and the consumer starts with positive
money holdings. An allocation describes what happens in all such meetings. We
restrict attention to allocations that are symmetric across specialization types and
are stationary in the following sense: what happens in a trade meeting depends
only on the money holdings of the producer and consumer and, in addition, it and
the policy, a pair (α, δ), are consistent with a constant and identical distribution of
money holdings for each specialization type–a steady state. In a sense to be made
precise, we say that such an allocation is implementable if it is also consistent with
ex post individual rationality. The optimum problem is to choose an implementable
allocation, a policy, and a consistent steady-state initial distribution of money that
maximizes ex ante expected utility, utility prior to initial assignments of money.
Given the symmetry and the ex ante nature of the criterion, the criterion is a
representative-agent criterion.5

Although we impose ex post individual rationality, we formulate allocations to
permit randomness–to permit different trades in the same kind of meeting. We
do this mainly because, with indivisible money, such randomness allows for a much
richer set of steady state distributions than would be the case if we required that
the same trade be made in all meetings of the same type. In a single-coincidence
meeting between a producer with i units of money and a consumer with j units,
the set of possible transfers of money is Kij = {0, 1, ...min(j, 2 − i)}. For trade
meetings in which the producer has i units of money and consumer has j units,
we let µij on R+ × Kij denote a measure with the interpretation that if (y, k)
is randomly drawn from R+ × Kij in accordance with measure µij, then (y, k) is
the suggested trade in that meeting in the sense that it is suggested that y be

4Some countries have conducted lotteries in which prizes are awarded to those with currency
with serial numbers that match some drawn at random. An alternative way to accomplish the
δ part of our policy is through the same kind of lottery except that currency with the matching
serial numbers is treated by everyone as being worthless.

5In principle, our policies could be analyzed taking as given an arbitrary initial distribution of
money holdings. However, then, we would have to study non-stationary policies and allocations
and would have no reason to use a representative-agent welfare criterion rather than the Pareto
criterion.
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produced in exchange for k units of money. We let µ be the collection of µij’s for
(i, j) ∈ {0, 1} × {1, 2}.
For each µij, it is convenient to define the collection of k-supports

6:

Ωkij = (R+ × {k}) ∩ suppµij, k ∈ Kij.
These represent ”k-sections” of the original support of µij. The k-supports are
disjoint and ∪k∈KijΩkij = suppµij. It is also convenient to let λkij ≡ µij(Ωkij), where
λkij is the probability that k units of money are transferred in a trade meeting in
which the producer starts with i units of money and the consumer with j units.
Then we can express the transition matrix for money holdings implied by trades,
denoted T, in terms of the λkij as T =

1
N
S, where

S =

 N − s12 − s13 p1λ
1
01 + p2λ

1
02 p2λ

2
02

p0λ
1
01 + p1λ

1
11 N − s21 − s23 p1λ

1
11 + p2λ

1
12

p0λ
2
02 p1λ

1
12 + p0λ

1
02 N − s31 − s32

 . (1.1)

Here pi denotes the fraction of each specialization type who start the date with
i units of money and the entry in the kth row and lth column, skl, is N times the
probability of a trade that results in transiting from having k − 1 units of money
to having l − 1 units of money.
According to our sequence of actions, trade is followed first by probabilistic

lump-sum creation and then by probabilistic proportional destruction. The tran-
sition matrix for the creation part is denoted A and that for the destruction part
is denoted D. They are given by

A =

 1− α α 0
0 1− α α
0 0 1

 and D =

 1 0 0
δ 1− δ 0
δ2 2δ(1− δ) (1− δ)2

 . (1.2)

Notice that an individual can be given at most one unit of money, but can lose
two units.
We can now express the requirement that (µ,α, δ) is consistent with a constant

distribution of money holdings. A symmetric distribution of money holdings p ≡
(p0, p1, p2) is called stationary with respect to (µ,α, δ) if it satisfies pTAD = p.
It is convenient to express the ex post individual rationality restrictions in terms

of discounted expected utilities. For (p,µ,α, δ) that is stationary, the discounted
expected utility of an agent who ends up with i units money after the destruction
stage, denoted vi, is constant. We let v ≡ (v0, v1, v2). Then v satisfies the following
3-equation system of Bellman equations:

v0 = β(q0 + TAD v0) (1.3)
6Recall that if µ is a probability measure, the support of µ, denoted suppµ, is the smallest

closed set A such that µ(A) = 1.
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where q, the vector of (expected) one period returns from trade, is given by

q0 =


−p1
N

R
Ω101
ydµ01 − p2

N
[
R
Ω102
ydµ02 +

R
Ω202
ydµ02]

p0
N

R
Ω101
u(y)dµ01 +

p1
N

R
Ω111
[u(y)− y]dµ11 − p2

N

R
Ω112
ydµ12

p0
N
[
R
Ω102
u(y)dµ02 +

R
Ω202
u(y)dµ02] +

p1
N

R
Ω112
u(y)dµ12

 (1.4)

Because T , A, and D are transition matrices and β ∈ (0, 1), the mapping
G(x) ≡ β(q0 + TADx0) is a contraction. Therefore, (1.3) has a unique solution
which can be expressed as

v0 =
µ
1

β
I − TAD

¶−1
q0, (1.5)

where I is the 3× 3 identity matrix.
We permit each individual to walk away from any realization of µ. In other

words, we assume that people in a meeting cannot commit to the outcome of
randomization. Therefore, our individual rationality constraints or participation
constraints take the following form. If (yij, k) is in the support of µij, then

(ei+k − ei)ADv0 − yij > 0 (1.6)

and
(ej−k − ej)ADv0 + u(yij) > 0, (1.7)

where el is the 3-component coordinate vector with indices running from 0 to 2.
The first inequality pertains to the producer and the second to the consumer. We
can now summarize the requirements for implementability.7

Definition 1.1 (p,µ,α, δ) is called implementable if (i) pTAD = p and (ii)
(1.6) and (1.7) hold for all (yij, k) in the support of µij.

Our optimum problem is to maximize ex ante utility. That is, the optimum
problem is to choose (p,µ,α, δ) from among those that are implementable to
maximize pv0 ≡W.8

7We are claiming that the conditions in Definition 1.1 are necessary and sufficient for weak
implementability. For sufficiency, given an allocation that satisfies Definition 1.1, we need to
provide a game which has that allocation as an outcome. The game can be a very simple
coordination game. The strategy set for each agent in a meeting is {yes, no}. If both say yes
to a realization from µ, then they carry it out. If either says no, then there is autarky in that
meeting. Obviously, if the participation constraints are satisfied, then saying yes is a subgame
perfect Nash equilibrium. Necessity, of course, can only hold in the class of stationary and
symmetric allocations we are considering. Then, given the privacy of individual histories and ex
post individual rationality, our participation constraints must hold.

8Because a maximum may not exist, we should really say that for any ε > 0 we seek an
implementable allocation that achieves at least supW − ε, where, of course, supW is defined
over the set of implementable allocations. Our arguments below do not depend on whether a
maximum exists.
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It is useful in what follows to express the objective W in terms of returns. If
we multiply (1.3) by p and use the fact that pTAD = p, then we have

W = pv0 =
β

1− β
pq0.

Then, by writing out the product pq0, we have

w ≡ (1− β)NW

β
= p0p1

Z
Ω101

z(y)dµ01 + p0p2

Z
Ω102

z(y)dµ02 + (1.8)

p0p2

Z
Ω202

z(y)dµ02 + p
2
1

Z
Ω111

z(y)dµ11 + p1p2

Z
Ω112

z(y)dµ12,

where z(y) ≡ u(y) − y. As one would expect, because there is a producer for
each consumer, from an ex ante view utility is a discounted expected value of the
function z.

1.4 The result

As noted above, expansionary policy gives rise to two effects. First, it tends to
tighten participation constraints for producers and to loosen those for consumers.
Second, expansionary policy can change the distribution of money holdings p to
increase the probability of trade meetings. We doubt that anything can be said
generally about which effect dominates. We show that the optimum has expan-
sionary policy provided the parameters are such that the participation constraints
are not binding at the optimum subject to α = δ = 0. Roughly speaking, we do
this in two steps. We describe the optimum for such parameters and for α = δ = 0.
Then we show that there are implementable (p,µ,α, δ) with α > 0 that do better.
That, of course, implies that for such parameters the optimum is not α = δ = 0.
We begin by describing an unconstrained optimum for α = δ = 0.

Lemma 1.1 If α = δ = 0, then the optimum subject only to condition (i)
in Definition 1.1 and condition (ii) for k = 0 is a degenerate µ, denoted µ∗,
with support (y∗, 1), where u0(y∗) = 1. Moreover, the associated optimal p is
p∗ = (1

3
, 1
3
, 1
3
).

The proof of Lemma 1.1 and the other proofs are in the appendix. Lemma
1.1 says that if we ignore participation constraints and impose α = δ = 0, then
the optimum is a trade of the first-best level of production, that which maximizes
z(y), for one unit of money in every trade meeting. Moreover, the best steady-state
distribution is uniform, which implies an amount of money per specialization type
equal to unity.
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The next lemma shows that there is a region of the parameter space, which
we describe in terms of the discount factor, for which (p,µ,α, δ) = (p∗,µ∗, 0, 0) is
implementable, and, therefore, by Lemma 1.1, is optimal subject to α = δ = 0.

Lemma 1.2 Let (p,µ,α, δ) = (p∗,µ∗, 0, 0). There exists a value of the discount
factor, β∗, given by

β∗ =
3Ny∗

3Ny∗ +
p
(3y∗)2 + 4z(y∗)y∗ − 3y∗ ,

such that if β > β∗, then (1.6) and (1.7) are slack. If β = β∗, then (1.6 ) and
(1.7) are slack except for (1.6) for i = 1 (when the producer has 1 unit of money)
which holds at equality.

Notice that z(y∗) > 0 implies that β∗ < 1. Also, β∗ is decreasing in z(y∗).
For β ≥ β∗, Lemmas 1.1 and 1.2 completely describe the best (p,µ) subject

to α = δ = 0. The final step is to show that for β ≥ β∗, there exist (p,µ,α, δ)
with α > 0 which are implementable and which imply a higher value of w than
the best that can be achieved with α = 0. This is done by showing that a relevant
derivative of w with respect to α is positive at (p,µ,α, δ) = (p∗,µ∗, 0, 0). For
β > β∗, we can compute this derivative while keeping µ constant at µ∗. Because
all the participation constraints are slack at β > β∗, implementability is maintained
at µ = µ∗ as we vary α, and, consequently, p. For β = β∗, in order to maintain
implementability as we vary α, we permit output when the producer starts with
one unit of money to adjust, but, as in µ∗, one unit of money is transferred in
every trade meeting.

Proposition 1.1 If β ≥ β∗, then the optimum is not α = δ = 0.

The proof shows that the distribution p can be varied from p∗ to one which
has more trade meetings, a distribution in which p1 > 1

3
. The measure of trade

meetings is increasing in p1 because people with one unit of money can be either
producers or consumers.
Although our discussion of the resemblance between our policy and the stan-

dard policy is meant to convince readers that a positive (α, δ) corresponds to an
inflationary policy, we can say a little more about this. A policy that resembles the
standard lump-sum creation policy ought to lower the benefits of acquiring money.
Those benefits are the differences, v1− v0 and v2− v1. It is easily shown that they
are decreasing in α at (p,µ,α, δ) = (p∗,µ∗, 0, 0). In this sense, our policy is lower-
ing those benefits. One may also wonder what is happening to real balances as we
increase α. If β > β∗, then, for sufficiently small α, the price level does not change
because in every meeting y∗ is exchanged for one unit of money. It turns out that
the nominal amount of money, p1+2p2, may either be increasing or decreasing; in
particular, d(p1+2p2)

dα
= 10−N

21
. Thus, real balances may be increasing or decreasing
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in α. When β = β∗, the price level is increasing in α because the producer with
one unit of money produces less as α increases.
Those, of course, are all local statements and do not describe an optimum

relative to the optimum constrained by α = δ = 0. It is obvious that for any
β ≥ β∗, the optimum is such that the participation constraint for producers with
one unit of money is binding. That does two things. It tends to make the price level
higher. In addition, binding constraints tend to make it better to have less money in
the system because less money tends to loosen producer participation constraints.
Thus, in the range β ≥ β∗, we strongly suspect that real balances at the optimum
are lower than real balances at the optimum constrained by α = δ = 0.

1.5 Concluding remarks

An obvious question is what happens if more general individual money holdings
are allowed. We have asserted that the main distinction occurs between an upper
bound of unity and anything higher. That money creation cannot help when the
bound is unity is, in effect, part of the proof of Lemma 1.1. With an upper bound
of unity, all possible distributions are implied by varying the constant amount
of money per type. With any higher bound, there is scope for affecting the dis-
tribution by a money creation scheme. We are confident that we could produce
a version of Proposition 1.1 for any finite bound on individual holdings, but we
are also confident that the region of the parameter space that is consistent with
production of the first-best level of output and trades of one unit of money in all
meetings shrinks as the bound gets large (see Camera and Corbae [3] for a closely
related result). That, of course, is not to say that the region of the parameter
space where expansionary policy helps shrinks as the bound gets large. It says
only that our proof technique becomes less applicable.
In this regard, our proof technique seems completely inapplicable if money

holdings are unbounded or if money is divisible with or without a bound, because,
in these cases, it would seem vacuous to assume that the optimumwith a fixed stock
of money has no binding constraints. Therefore, for all parameters, we would then
be in the general situation of trading offmore favorable money distributions against
the tightening of producer constraints for meetings with given money holdings.
That is, all situations would be like the two-unit bound case when β < β∗. That,
in turn, suggests that results for unbounded money holdings or divisible money will
be achieved only by way of numerical examples. And, because the optimization is
over large spaces in such cases, the numerical analysis will be demanding.
Those remarks are pertinent to a comparison between what we do and what

Molico [15] does. As noted above, he works with the same environment, but
with divisible and unbounded money holdings. However, rather than dividing the
gains from trade optimally in each kind of meeting, he gives all the gains to the
consumer so that the producer’s participation constraint is always binding. Almost
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certainly, that way of dividing the gains from trade is not optimal. Therefore, his
findings represent some unknown combination of beneficial effects coming from
redistribution and other effects which may be offsetting the inefficient division of
the gains from trade. Short of carrying out the optimization problem described
above, we do not see how to disentangle those effects.9

In addition to studying more general individual money holdings, there are vari-
ants of our model that could be studied. These include permitting people to hide
money, allowing people to commit in a meeting to the outcome of randomization,
and permitting cooperative defection by the pair in a meeting. Although the de-
tails will differ, we surmise that the possibility of beneficial money creation exists
in all these variants10.

9In the case of indivisible money and a unit upper bound, if the parameters are such that the
producer’s participation constraint is slack at the first-best level of production in the absence of
expansionary policy, then whether there exists a beneficial expansionary policy depends on the
bargaining rule. Under the bargaining rule used by Molico [15], there does exist an expansionary
policy which would reduce output to the first-best level and not affect the probability of trade.
10In fact, our results are unaffected by allowing people to hide money because the allocations

used in our arguments are such that the trades offered people with i units of money are at least
as good as those offered people with i− 1 units.
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Chapter 2

Optimal Money Creation in a
Random-Matching Model with Ex
Post Individual Rationality

I study money creation in versions of the Trejos-Wright [17] and Shi [16] mod-
els with indivisible money and bounded individual holdings. This is a random
matching model of money with perishable and divisible produced goods and, in
the versions I study, no double coincidences in pairwise meetings. The model is
interesting for the study of money creation because it gives rise to a potential
trade-off. On the one hand, money creation is harmful for the usual reason that
shows up in representative-agent models: money creation makes the acquisition of
money less desirable. On the other hand, money creation is beneficial because it
can redistribute money toward average holdings so that people on average in meet-
ings are more willing to trade. This accounts for the beneficial effects of money
creation demonstrated in Molico [15], and in Deviatov and Wallace [5].
In his Ph.D. dissertation Molico [15] studied money creation with, he claimed,

divisible money and unbounded individual holdings. Although that claim is not
literally true because he proceeds numerically, he does find examples in which
money creation is beneficial. However, he studies only allocations in which the
trades are the result of take-it-or-leave-it offers by consumers. Because such trades
are known to cause too much production in some meetings, some of the beneficial
effects that he finds may come from offsetting the sub-optimal way of dividing the
gains from trade.
In Deviatov and Wallace [5] we wanted to determine whether money creation

would have a role even if we allowed trades in meetings – the division of the
gains from trade in meetings – to be determined optimally from the point of
view of ex ante welfare. To do that, we imposed only one restriction – ex post
individual rationality in meetings. We allowed randomization and established the
following result analytically: for indivisible money and individual holdings limited
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to the set {0, 1, 2} and for all discount factors higher than a critical value, some
money creation raises ex ante welfare relative to the best allocation without money
creation.1 Our argument was local and we did not explore the trade-off described
above. Indeed, the critical value of the discount factor is such that locally there is
no harmful effect of money creation.
Here I do two things. First, I show that conditional on the amount of money

transferred in a meeting there is no randomization over output, a property I call
degeneracy. This result opens the way to exploration of the trade-off between
harmful and beneficial effects of money creation. Second, I undertake such explo-
ration by computing examples of optimal allocations. That is important because it
is evident that the optimum always has harmful effects – making it seem from the
point of view of someone who ignores distribution effects that there is too much
money creation.
One can obtain three different characterizations of the optima which are use-

ful in the computation of examples. First, because the meetings are pairwise, it
suffices to consider allocations which have two-point-support conditional measures
over output.2 If B is the bound on money holdings, this leads to a 4M + B + 2
dimensional optimization problem, where M ≡ 1

6
B(B+1)(2B+1). Alternatively,

if free disposal of goods in meetings is allowed, then it is easily shown that random-
ization over output is not needed. In that case the dimensionality of the problem
is 3M + B + 2. My degeneracy result reduces it further to 2M + B + 2 dimen-
sions. The reduction is proportional to the cube of the bound and is, therefore,
significant.
One conceivable approach to establishing degeneracy is to replace any non-

degenerate distribution over output by its mean. While this would increase the
objective, because it is concave, it is not evident how to show that such a non-
local alternative also satisfies ex post individual rationality. Therefore, I develop
a local argument. First, I devise a way to perturb distributions in terms of a few
parameters. The perturbation adjusts the endpoints of the support and creates an
atom or adjusts any that exist. Second, in order to carry out the perturbations and
to invoke the Kuhn-Tucker theorem’s necessary conditions, the allocations under
consideration have to be internal. This requirement forces me to consider a subset
of allocations, those I call connected. Because this is a proper subset of all ex post
individually rational allocations, I also have to argue that it is plausible that the
optimum over the larger set is in fact connected.
I use my degeneracy result to compute examples of optimal allocations for

the Deviatov-Wallace model. These examples are consistent with their result that

1The policy was a probabilistic version of the standard helicopter drops followed by propor-
tional reduction in individual holdings.

2The proof is constructive. One simply shows that every implementable allocation can be
replaced with another allocation which is implementable, yields the same welfare and uses only
two-point-support conditional measures.
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money creation is beneficial if agents are patient enough. In addition, the beneficial
effects of money creation persist for a while when patience drops below the critical
value found in Deviatov and Wallace [5]. Only when agents are impatient enough
do the benefits of money creation disappear. Another conclusion is that in the
region where money creation is beneficial, the optima do not imply take-it-or-
leave-it offers by consumers – the bargaining rule imposed by Molico.
The rest of this chapter is organized as follows: the environment is set out in

the next section; the optimum problem is defined in section 2.2; the degeneracy
result is contained in section 2.3; examples of the optima are discussed in section
2.4; section 2.5 concludes.

2.1 Environments

Time is discrete and the horizon is infinite. There are N ≥ 3 perishable consump-
tion goods at each date and a [0, 1] continuum of each of N types of agents. A type
n person consumes only good n and produces good n+1 (modulo N). Each person
maximizes expected discounted utility with discount parameter β ∈ (0, 1). Utility
in a period is given by u(y) − c(x), where y denotes consumption and x denotes
production of an individual (x, y ∈ R+). The function u is strictly concave, strictly
increasing and satisfies u(0) = 0, while the function c is convex with c(0) = 0 and
is strictly increasing. Also, there exists ŷ > 0 such that u(ŷ) = c(ŷ). In addition,
u and c are twice continuously differentiable. At each date, each agent meets one
other person at random.
There is only one asset in this economy which can be stored across periods:

fiat money. This money is indivisible and no individual can have more than B
units of money at any given time, where 2 ≤ B < ∞. Agents cannot commit
to future actions, including commitment to outcomes of randomized trades in
meetings. Finally, each agent’s specialization type and individual money holdings
are observable within each meeting, but the agent’s history, except as revealed by
money holdings, is private.

2.2 Implementable allocations and the optimum
problem

The pairwise meetings, the inability to commit, the privacy of individual histories,
and the perishable nature of the goods imply that any production must be accom-
panied by a transfer of money. In every meeting of a potential producer with i
units of money and a potential consumer with j units, there is a set, denoted Kij,
of feasible money transfers from the consumer to the producer, transfers which
are consistent with each person’s money holdings being in the set {0, 1, ..., B}:
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Kij = {0, 1, ...min(j, B − i)}. A trade meeting is one where Kij is at least as
rich as {0, 1} set. For each trade meeting between a producer with i and a con-
sumer with j units of money, trade is represented by a probability measure µij on
R+ × Kij with the interpretation that if (y, k) is randomly drawn in accordance
with µij, then (y, k) is the suggested trade in that meeting.
For any measure µij it is convenient to consider the collection of conditional

measures µkij(A) = µij(A | k), k ∈ Kij, and their supports Ωkij.3 Then µij can
be expressed as µij(A) =

P
k∈Kij

λkijµ
k
ij(A), where λkij ≡ µij(Ωkij), is the probability

that k units of money are offered in a meeting. Finally, let pi be the fraction of
agents in each specialization type who start a date with i units of money and let
p = (p0, ..., pB). Then, in terms of pi and λkij, an arbitrary off-diagonal element of
the transition matrix T for p is given by:

πmn =


1
N

B−m+nP
i=0

piλ
m−n
im if m > n

1
N

BP
j=n−m

pjλ
n−m
mj if m < n

(2.1)

where πmn is the probability of a trade that results in transition from having m
units of money to having n units. Note that since T is a transition matrix, its
diagonal elements are given by πmm = 1−

P
s6=m

πms.

In addition to trades I introduce lump-sum money creation. I use the same
kind of policy that was studied by Deviatov and Wallace [5]. The policy is a
probabilistic version of the proverbial helicopter drops of money. The timing of
events in a period is the following. First there are meetings. After meetings, each
person receives one unit of money with probability α. (Those who are at the upper
bound and receive a unit must discard it.) Then each unit of money disintegrates
with probability δ.
This policy has a close resemblance with the standard policy (expansion at a

rate). This is shown in Deviatov and Wallace [5], who describe the relationship
between the (α, δ)-policy above and the standard policy as follows:

”In a model with divisible money, the standard policy is creation
of money at a rate with the injections of money handed out lump-sum
to people. As is well-known, that policy is equivalent to the following
policy: the same injections followed by a reduction in each person’s
holdings that is proportional to the person’s holdings. The proportional
reduction is nothing but a normalization (see, for example, Lucas and
Woodford [13]). Our policy resembles the second, normalized, policy

3Recall that if µ is a probability measure, the support of µ, denoted suppµ, is the smallest
closed set A such that µ(A) = 1.
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in two respects. First, the creation part of the policy, the α part, is
done on a per person basis, while the disintegration part, the δ part, is
proportional to holdings. Second, in a model with divisible money and
a nondegenerate distribution of money holdings, the standard policy
has two effects: it tends to redistribute real money holdings from those
with high nominal holdings to those with low nominal holdings and it
has incentive effects by making money less valuable to acquire. Our
policy also has these two effects. In particular, as regards incentives,
the policy makes producers less willing to acquire money because (a)
they may be given money without working for it (the lump-sum transfer
part of the policy) and (b) they may lose money for which they have
worked (the disintegration part). And, for the same reasons, consumers
are more willing to part with money.”

Similar to trades, creation and destruction parts of the policy yield a pair of
transition matrices for money holdings, denoted A and D respectively. According
to my description of the policy, A is a two-diagonal matrix where the probability
of getting a unit of money, α, is next to and above the main diagonal, and the
probability of getting no transfer, 1 − α, is on the main diagonal. Matrix D is
lower-triangular where the first i entries in the i-th line comprise the binomial
distribution of order i. Thus, the elements of A and D are:

aij =

 1− α, if j = i
α, if j = i+ 1
0, otherwise

dij =


¡
i
j

¢
δi−j(1− δ)j, if j ≤ i

0, otherwise

The stationarity requirement is pTAD = p.
It is convenient to express individual rationality constraints in terms of dis-

counted expected utilities. For an allocation (p,µ,α, δ), where µ is a stationary
collection of measures µij, (i, j) ∈ {0, ..., B − 1} × {1, ..., B}, discounted expected
utility of an agent who ends up with i units of money by the end of the period,
denoted vi, is constant. Then vector v ≡ (v0, ..., vB) satisfies the following B + 1-
equation system of Bellman equations:

v0 = β(q0 + TAD v0), (2.2)

where q, the vector of (expected) one period returns from trade, is given by:

ql =
B−1X
i=0

pi
N

X
k∈Kil

λkil

Z
Ωkil

u(y)dµkil −
BX
j=1

pj
N

X
k∈Klj

λklj

Z
Ωklj

c(y)dµklj (2.3)

and where l ∈ {0, ..., B}. Note that an individual with no money can only expect
to be a producer, an agent with B units can only be a consumer, and anyone else
can be either a consumer or a producer.
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Because T , A and D are transition matrices and β ∈ (0, 1), the mapping
G(x) ≡ β(q0 + TAD x0) is a contraction. Therefore, (2.2) has a unique solution
which can be expressed as

v0 =
µ
1

β
I − TAD

¶−1
q0 (2.4)

where I is the (B + 1)× (B + 1) identity matrix.
The ex post notion of individual rationality gives rise to the following definition:

Definition 2.1An allocation (p,µ,α, δ) is called implementable if (i) pTAD =
p, (ii) v (given by 2.4) is non-decreasing, and (iii) pipj > 0 and (y, k) ∈ suppµij
imply:

(ei+k − ei)ADv0 − c(y) > 0 and (ej−k − ej)ADv0 + u(y) > 0. (2.5)

Here el is the B+1-component coordinate vector with indices running from 0 to B.
Definition 2.1 says that an allocation is implementable if it is stationary, satisfies
free disposal of money and if the ex post gains from trade implied by the allocation
are nonnegative.
Finally, our optimum problem is to maximize ex ante utility. That is, the

optimum problem, denoted P , is to choose (p,µ,α, δ) from among those that are
implementable to maximize pv0 ≡W.
It is useful to express the objective W in terms of returns. If I multiply (2.2)

by p and use the fact that pTAD = p, then I obtain:

W = pv0 =
β

1− β
pq0

Then, by writing out the product pq0, I get:

W =
β

1− β

1

N

B−1X
i=0

BX
j=1

X
k∈Kij

pipjλ
k
ij

Z
Ωkij

z(y)dµkij (2.6)

where z(y) ≡ u(y)− c(y). As one would expect, because for every consumer there
is a producer, welfare is equal to the net expected discounted utility in all trade
meetings.

2.3 Degeneracy of the optima

The objective of this chapter is twofold. First, I want to show that degeneracy
of measures µkij holds for solutions to problem P . Second, I want to compute ex-
amples of the optima. However, when it comes to degeneracy I cannot work with
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problem P directly. As I said, I use an argument which is based on perturbations
of candidates for the optima. To apply that method, I need the candidates to be
internal because otherwise they can not be perturbed and remain implementable.
To assure satisfaction of this condition, I consider a subset of implementable allo-
cations – those that satisfy a property I call connectedness. With this additional
restriction on the set of allocations, degeneracy holds for all feasible policies. How-
ever, to simplify the notation, I proceed with zero money creation in this section.
The policy reappears in section 2.4, where I discuss numerical examples.
The formal definition of connectedness is somewhat lengthy and may be diffi-

cult to follow at first. Roughly speaking, it requires that an allocation implies a
value function consistent with a willingness to trade one unit of money in a suf-
ficient number of meetings. Here willingness does not require that actual trades
involve transfers of one unit of money, but only that trades of one unit satisfy
the participation constraints implied by the allocation. A sufficient number of
meetings means that these meetings can be linked into a chain that covers the
entire set of money holdings. Here, by describing simple sufficient conditions for
connectedness, I suggest that adding the connectedness requirement is likely to be
innocuous for problem P .
Given the form of the objective (see (2.6)), one would expect that any solutions

to problem P would have trade in many meetings. But, requiring trade in all trade
meetings is too restrictive; it may be hard to get trades between poor consumers
and rich producers. Fortunately, that is not necessary for connectedness. Instead,
the following is sufficient: (i) (p,µ) implies a concave value function v and p has
full support; and (ii) trade occurs in all meetings where the consumer is at least
as rich as the producer.4 It is plausible that solutions to problem P satisfy (i) and
(ii) and, hence, are connected.5

I now turn to the formal definition of connectedness. Let (p,µ) be an arbitrary
allocation. Let G(p,µ) be the set of all pairs (i, j), i being the producer’s holdings
and j the consumer’s holdings, such that agents are willing to trade one unit of
money. That is:

G(p,µ) = {(i, j) : ∃ y ∈ R+ such that vi+1 − vi ≥ c(y) and u(y) ≥ vj − vj−1}
(2.7)

Next, I use G(p,µ) to define a correspondence Ξ(p,µ) on the set of money holdings
of producers, I ≡ {0, ..., B − 1}, which gives the post-trade holdings of consumers

4The proof that these conditions are sufficient for connectedness is given in lemma B1 in the
Appendix.

5Another way to get reassurance about the connectedness restriction is by way of a description
of the set of allocations that are implementable, but not connected. They tend to be allocations
which do not make full use of the set of possible money holdings. For example, for B = 2, any
non-connected allocation can be achieved with B = 1 and two distinct monies (see Aiyagari,
Wallace and Wright [1] for examples of such allocations).
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implied by G(p,µ). That is:

Ξ(p,µ)(i) =
©
j − 1 : (i, j) ∈ G(p,µ)

ª
Next, let a subset Il of I be called a block if the restriction of Ξ(p,µ) to Il × Il,
denoted Ξl(p,µ),

6 admits a selection, denoted σl(p,µ), which is a permutation with a
unique orbit.7 Finally, block Iln is said to be reachable from Ilm if it is possible to
find a sequence of blocks {Ils}m−1s=n such that Ils ∩ Ils+1 6= ∅ for all s = n, ...,m− 1.
I can now give the following definition:

Definition 2.2 An allocation (p,µ) is said to be connected if there exists a
collection {Ils}ms=1 of blocks such that every block in this collection is reachable
from any other and

m∪
s=1
Ils = I.

Now I would like to introduce some additional notation which is used later.
If (p,µ) is implementable and connected, then there are participation constraints
implied by both actual trades in meetings and by willingness to trade one unit of
money. In particular, implementability implies that if the probability of a transfer
of k units of money in a meeting of a producer with i and a consumer with j units,
pipjλ

k
ij, is positive, then the participation constraints (2.5) have to hold for every

y in the support of conditional measure µkij. Connectedness implies that another
group of participation constraints holds for some y in every meeting where agents
are willing to trade one unit of money. Therefore, it is convenient to define the
following objects:

Definition 2.3 Given an arbitrary implementable and connected allocation
(p,µ), define

Z1(p,µ) ≡ {(i, j, 1) : (i, j) ∈ G(p,µ)}, Z2(p,µ) ≡ {(i, j, k) : pipjλkij > 0},
and Z(p,µ) ≡ Z1(p,µ) ∪ Z2(p,µ).

Next, observe that if some triplet (i, j, 1) is in Z1(p,µ) but not in Z2(p,µ), then
pipjλ

1
ij = 0 and the associated conditional measure, µ1ij, is empty. It is conve-

nient to replace this empty measure by one with a support whose lower endpoint
is positive. Moreover, this replacement is innocuous because pipjλ

1
ij = 0 which

6Note that Ξl(p,µ) is

Ξl(p,µ) =

½
Ξ(p,µ)(i) ∩ Il if i ∈ Il
∅ otherwise

7Let σ : A→ A be a permutation and let R be an equivalence relation on A such that anRam
if and only if there exists an integer l such that am = σl(an). Then an orbit of σ is an equivalence
class of relation R. Note that an arbitrary permutation can have more than one orbit. However,
if a permutation has a unique orbit, this orbit necessarily coincides with the set A.
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implies that the fictitious support does not affect v or W . Accordingly, for every
(i, j, 1) ∈ Z1(p,µ)\Z2(p,µ), let µ1ij be a Dirac measure with support y, where y is any
suitable output in the definition of G(p,µ).
Now, let yk

ij
and ykij denote the endpoints of the support of measure µ

k
ij with

the above replacement of empty measures in Z1(p,µ)\Z2(p,µ). Then, we have the
following. If (p,µ) is implementable and connected, then

c(ykij)− (vi+k − vi) ≤ 0 and (vj − vj−k)− u(ykij) ≤ 0 (2.8)

hold for all (i, j, k) ∈ Z(p,µ).
I now concentrate on the optimum problem P0, which is to maximize welfare

W subject to (p,µ) being implementable and connected. Most proofs are in the
appendix.
First I use connectedness to show that P0 has solutions. This is done by en-

dowing the space of measures µkij with the weak* topology and by showing that the
set of implementable and connected allocations is compact and that the objective
W is continuous.

Proposition 2.1 The optimum problem P0 has solutions.

Then, I define two classes of perturbations of non-autarkic probability measures
in µ, one class for nondegenerate measures and another for degenerate ones. A
measure µkij is called autarkic if it has zero support (i.e. suppµ

k
ij = {0}). (An

allocation is autarkic if all the nonempty measures µkij are autarkic.) Note that
autarky is defined as no production rather than no trade. The perturbations adjust
measure µkij, but do not affect λ

k
ij and, hence, the distribution p. Note that the

perturbations do not affect policy parameters α and δ (which I set equal to zero
in this section) as well. This is important because it accounts for why degeneracy
holds for all feasible policies.
Let µ be a nondegenerate probability measure on R+ with a bounded support

and let y and y be the endpoints of that support. Let us take six nonnegative

numbers: a, b, c, d, x and ε such that b ≥ a + y−y
2
, d ≥ c + y−y

2
, min(a, c) ≤ x ≤

max(b, d) and 0 ≤ ε ≤ 1. Also, let us observe that µ can be tautologically written
as µ = µ1+µ2, where µ1 = µ2 =

1
2
µ. Then the perturbation does two things. First,

it moves the endpoints y and y of µ1 and µ2 independently to the new positions, a
and b for µ1 and c and d for µ2, so that the ”shapes” of µ1 and µ2 (which are those
of µ) are preserved. Second, the perturbation creates a mass point x with mass ε
within the union of the perturbed supports. That is, the perturbed measure eµ is
obtained from µ via the formula:

eµ(A) = εδx (A) +
1

2
(1− ε)

£
µ
¡
t−11 (A)

¢
+ µ

¡
t−12 (A)

¢¤
(2.9)

where δx is a Dirac measure with support x, and t1 and t2 are two linear mappings
on the real line defined by my requirement that t1 maps y and y into a and b and
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that t2 maps y and y into c and d.8 Note that because I set b > a and d > c, the
mappings t1 and t2 are invertible.
For a measure µ which is degenerate, the perturbation splits its single-point

support into two points which, however, are allowed to be the same. Each of
these points gets one-half of the mass of measure µ. That is, let g and h be two
nonnegative numbers. Then the perturbed measure eµ is given by

eµ(A) = 1

2
δg (A) +

1

2
δh (A) . (2.10)

Now, given an arbitrary implementable and connected allocation (p,µ), I define
a finite-dimensional optimization problem, denoted eP(p,µ), which is to maximize
W by the choice of the parameters (akij, b

k
ij, c

k
ij, d

k
ij, x

k
ij, ε

k
ij, g

k
ij, h

k
ij), one eight-tuple

for each nonempty non-autarkic measure µkij in µ, subject to (p, eµ) being im-
plementable and connected. If (p,µ) solves P0, then the null perturbation must
solve eP(p,µ). This is the basis for the proof by contradiction showing that every
nonempty non-autarkic measure µkij in µ must be degenerate.
Because this optimization problem is finite-dimensional, it can be analyzed

by means of the Kuhn-Tucker theorem. The central hypothesis of that theorem
is the constraint qualification: the rank of the Jacobian matrix should be equal
to the number of active constraints. The constraint qualification is sufficient to
ensure the existence of an open region U adjacent to the solution point in which
all the constraints are relaxed. Existence of such a region allows one to claim that
the solution point satisfies the first-order necessary conditions of the Kuhn-Tucker
theorem. My approach is to establish existence of U directly, without appeal to
the full rank requirement on the Jacobian matrix.

Lemma 2.1 Let (p,µ) be a non-autarkic solution to problem P0. Let eP ∗(p,µ)
be the associated perturbation problem eP(p,µ) with the additional restriction that
εkij ≡ 0. Let E be the set of all active constraints of problem eP ∗(p,µ) at (p,µ)
and assume that E is nonempty. Then there exists a nonempty subset E0 of E
and multipliers ξs ≥ 0, one for each constraint in E0, such that the gradient of
the objective W can be written as a linear combination of the gradients of the
constraints in E0.

The proof of the lemma has two major parts. First, connectedness is used to
show that any implementable and connected allocation is either autarky or satisfies
yk
ij
> 0 for all (i, j, k) ∈ Z(p,µ). Because I consider non-autarkic solutions to P0,
8That is,

t1(y; a, b) =
ay − by
y − y +

b− a
y − y y

and analogously for t2.
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the latter implies that all the constraints in problem eP ∗(p,µ) pertaining to non-
negativity of endpoints are slack. Second, the participation constraints implied by
implementability and connectedness are used to show existence of a fixed vector
n in the space of perturbations such that the angle between this vector and the
gradient of any of the participation constraints is less than π

2
. These two facts

are sufficient to guarantee existence of U . That, in turn, implies that the gradient
of W is in the convex hull of the gradients of the active constraints whose edges
define E0.
The multipliers ξs of Lemma 2.1 can be used to prove the main proposition.

Proposition 2.2 If (p,µ) solves problem P0 and the support of µkij is non-
empty, then µkij is degenerate.

Proof. Suppose that (p,µ) is a solution to the optimum problem P0 and that it
has at least one nondegenerate measure µkij. Consider the associated perturbation
problem eP(p,µ) and let E be the set of active participation constraints of that
problem. Let us first assume that E is nonempty.
By Lemma 2.1, (p,µ) satisfies necessary first order conditions for the Kuhn-

Tucker theorem for that problem. The constraints are the participation constraints
in E0 and εkij ∈ [0, 1] and xkij ∈ [akij, bkij]. At εkij = 0, the multipliers associated
with xkij are equal to zero. Therefore, the multiplier associated with the binding
constraint, εkij = 0, can be expressed as

σ =
∂W

∂εkij
−
X
E0

"
ξs1

∂
¡
vj − vj−k − u(akij)

¢
∂εkij

− ξs2
∂
¡
vi+k − vi − c(bkij)

¢
∂εkij

#
where ξs1 and ξs2 are the multipliers from Lemma 2.1.

Note that optimality of εkij = 0 requires that σ ≥ 0 for all xkij ∈
h
yk
ij
, ykij

i
,

which, because µkij is nondegenerate, is an interval. It follows from (2.9) that:

σ = Φ(xkij)−
ykijZ
yk
ij

Φ(y) dµkij,

where

Φ(y) = z(y) +
λkij
N
[ξs2(ei+k − ei)− ξs1(ej − ej−k)]H

¡
pi u(y) e

0
j − pj c(y) e0i

¢
and where ei denotes i-th coordinate vector and H =

³
1
β
I − T

´−1
. Because the

multipliers ξs1 and ξs2 are well-defined, Φ(y) is a continuous function. Moreover,
Φ(y) is non-constant because u(y) and c(y) are linearly independent and because
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ξs1 and ξs2 can, without loss of generality, be independently scaled. Then, because
µkij is a nondegenerate probability measure, straightforward application of the first

mean value theorem for the Lebesgue integral yields existence of some x ∈
h
yk
ij
, ykij

i
such that Φ(x) <

ykijR
yk
ij

Φ(y) dµkij. This implies that σ ≥ 0 does not hold for all choices

of xkij from
h
yk
ij
, ykij

i
.

If E is empty, then all the participation constraints are slack which implies that
the multipliers associated with these constraints are zeros. Then Φ(y) = z(y) and
the above argument applies. ¥

Note that the proof of Proposition 2.2 applies to any non-autarkic solution to
problem P0. Recall that autarky is an allocation where all nonempty measures
µkij have zero supports and, thus, is degenerate. This means that Proposition 2.2
holds for all possible solutions to problem P0. However, if Proposition 2.2 is to
be of interest, it better be that there is a wide class of environments where these
solutions are non-autarkic. It is easy to provide conditions for existence of non-
autarkic implementable allocations. These exist if c0(0) < 1

( 1β−1)N+1
u0(0).9 Then

if, as was argued above, connectedness is an innocuous restriction for problem
P , then this condition is also sufficient for existence of non-autarkic solutions to
problem P0.

2.4 Examples

In this section I compute optima for examples with a two-unit bound on individual
money holdings. Even for this small bound on holdings, closed-form solutions for
the optima are not feasible. I report examples for the case where the utility function
is the square root, the cost function is linear, and the number of specialization types
is three; that is, u(x) =

√
x, c(x) = x, and N = 3. The optima are parameterized

by the degree of patience of individuals, r, where r = 1
β
− 1. I compute examples

for all r from 0.01 through 0.2 in increments of 0.01 and also for r ∈ {0.25, 0.3,
0.4, 0.5, 1, 2}.
The algorithm is a version of the standard genetic algorithm,10 which I modified

in two ways. First, I made the standard algorithm capable of handling arbitrary
inequality and equality constraints. Second, I made the search more efficient by
directing mutation into a small region (cone) around the projection of the gradient

9This condition is sufficient for existence of non-autarkic implementable allocations in which
the support of p is {0, B}, trades are limited to transfers of B units of money in meetings of
producers with zero and consumers with B units, and in which consumers make take-it-or-leave-it
offers to producers.
10See Dawid [4] and Houck, Joines and Kay [8] for details.
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of the objective onto the subspace orthogonal to the one spanned by the gradients
of the active constraints. The algorithm was terminated when the length of that
projection became less than the tolerance value. This termination criterion ensures
that the first order necessary conditions for the Kuhn-Tucker theorem are (with
reasonable precision) satisfied at every terminal point. Because the probability of
selection of individuals in the population was set to be an increasing function of
the objective, this is sufficient to guarantee that every terminal point is a (local)
maximum.
The results for the different r’s are consistent with existence of four distinct

regions. I define (besides r∗ found in Deviatov and Wallace [5]) two other “critical”
values for the discount rate (denoted r† and r‡; with my choice of parameters
r∗ =

√
13−3
9
≈ 0.067, r† ≈ 0.133, and r‡ ≈ 0.161) which separate them. The

region r ∈ (0, r∗] is the region where Deviatov and Wallace showed that money
creation is beneficial. If r ∈ (r∗, r†), money creation is still beneficial, yet the
constrained optimum has binding producer constraints, and the proof technique
of Deviatov and Wallace is not applicable. If r ∈ (r†, r‡), money creation is not
helpful, however, the optima do not have take-it-or-leave-it offers in all meetings.
Finally, for all r ≥ r‡ money creation is not helpful and the optima have take-
it-or-leave-it offers by consumers in all meetings. Note that I find no examples
where money creation is beneficial and the optimum has take-it-or-leave-it offers
by consumers in all meetings – the bargaining rule imposed by Molico [15]. In
examples where money creation is beneficial, the binding participation constraints
are those of producers who have one unit of money and of producers who have no
money but trade one unit with consumers who have two units of money.
There are two things that are common to every example. First, one unit of

money is transferred with probability 1 in all trade meetings. Second, there are no
binding consumer participation constraints. I take advantage of these features to
simplify the presentation of examples (see Table 2.111). I omit the probabilities of
transfer of money in meetings (the lamdas), suppress superscripts in the notation
for outputs, and attach stars (∗) to outputs which are part of binding producer
constraints. For each value of r in the first row of Table 2.1 I report two optima
(I only show the optima for those r where money creation is beneficial). The first
column shows the optimum subject to α = δ = 0; the second column shows the
unconstrained optimum. Rows 2-3 in Table 2.1 show the optimal policies; rows
4-6 show the distributions of money holdings; rows 7-10 give the outputs; and
row 11 gives the welfare gain from adoption of the optimal policies relative to the
constrained optima.
In addition, numerical examples suggest the following about optimal alloca-

tions. First, in every optimum where money creation is beneficial, the proportion
of individuals who hold one unit of money is larger than in the optimum subject

11The best quantity of output, the unconstrained maximizer of z(y), is 0.25.
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r 0.03 0.06 0.07 0.10 0.13
α - .0787 - .0555 - .0480 - .0258 - .0045

δ - .0523 - .0374 - .0325 - .0177 - .0031

p0 1/3 .3342 1/3 .3377 .3337 .3389 .3373 .3426 .3448 .3465

p1 1/3 .3572 1/3 .3506 .3333 .3484 .3333 .3416 .3332 .3346

p2 1/3 .3086 1/3 .3117 .3330 .3127 .3294 .3158 .3220 .3189

y01 .25 .2573 .25 .2576 .2497 .2577 .2458 .2580 .2541 .2583

y12 .25 .1945∗ .25 .1930∗ .2477∗ .1924∗ .2243∗ .1902∗ .1946∗ .1875∗

y11 .25 .1945∗ .25 .1930∗ .2477∗ .1924∗ .2243∗ .1902∗ .1946∗ .1875∗

y02 .25 .3009∗ .25 .2963∗ .2530 .2949∗ .2833 .2907∗ .2894∗ .2866∗
∆W
W

2.62% 1.62% 1.27% 0.49% 0.04%

Table 2.1: Optima

to α = δ = 0. That is, the optimal (α, δ)-policy shifts the distribution towards the
mean.
Second, the (α, δ)-policy has incentive effects similar to those of the standard

lump-sum policy. The policy tightens producer participation constraints which
explains why production is less than the best quantity in meetings where producers
have one unit of money. Outputs in meetings where producers have nothing are
larger than the best quantity12 because that helps to relax participation constraints
in meetings where producers have one unit. In particular, high y02 tends to increase
v2, which, in turn, helps to relax these constraints. The incentive effects of the
policy explain why in all examples the set of binding participation constraints is
(weakly) larger than the set of binding constraints in examples with α = δ =
0. Note that the policy decreases the total production (GNP). This, however, is
welfare improving.
Third, the optimal inflation rate, α, and the welfare gain from adoption of the

optimal policy are increasing functions of patience. More patient individuals can
tolerate higher inflation without serious incentive effects. This gives rise to distri-
butions which are more concentrated around the mean. These, in turn, increase
the number of trades and, hence, welfare. When patience drops below r†, the
harmful intensive margin effects outweigh the beneficial extensive margin effects
of the policy and no money creation is optimal.
Finally, as I already said, all optima have transfers of one unit of money with

probability one in all trade meetings. This is consistent (see Definition 2.2) with
my conjecture that all optima are connected. I should make it clear that the
transfers of one unit are optimal here because of the two-unit bound on holdings.
In environments with larger bounds one should not expect that the optima will
12This refers to outputs shown in Table 2.1. If r is big enough, production in all meetings is

less than the best quantity.

25



have transfers of one unit, but, as was argued above, it is plausible that they will
be connected.

2.5 Concluding remarks

This chapter extends the work of Deviatov and Wallace [5] in two ways. First, I
show that the optimum chosen from among allocations which are implementable
and connected does not involve randomization over output conditional on the trans-
fer of money in a meeting. Because my proof technique is compatible with the
money creation scheme studied in [5], the result can be used to study optimal
money creation. Second, I compute numerical examples which provide additional
information about the optima. These examples are consistent with what was con-
jectured in [5]. An important finding is that all optima in examples are connected
(in fact, they satisfy sufficient conditions for connectedness in section 2.3). This
supports my conjecture that connectedness is an innocuous restriction and that
the optima chosen from among implementable allocations satisfy degeneracy.
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Chapter 3

Money Creation and Optimal
Pairwise Core Allocations in a
Matching Model

A minimum test for the usefulness of a monetary model seems to be its ability to
study lump-sum money creation. Among such models there seems to be a sharp
contrast in results depending on whether there is heterogeneity in asset holdings.
Representative agent models tend to yield results which are in line with what
has become known as the Friedman rule: the optimal monetary policy is not cre-
ation, but destruction financed by lump-sum taxes. Models which make use of
heterogeneity do not give a general answer: in some of these models the optimal
monetary policy is contractionary, in some other models it is expansionary. Exam-
ples of models where it is expansionary include Levine [11] and its generalization
by Kehoe, Levine and Woodford [10], Molico [15] and Deviatov and Wallace [5].
Levine [11] and Kehoe, Levine and Woodford [10] use a preference shock model

with two realizations for the shock. In that model they produce examples where
money creation is beneficial. However, they restrict attention to distributions
of money holdings whose supports consist of just two points. To sustain these
distributions in equilibrium they make quite special assumptions about parameters.
Deviatov and Wallace [5] and Molico [15] work with the random matching

model of Trejos-Wright [17] and Shi [16]. Molico [15] uses a version with divisible
money and unbounded holdings. However, he restricts himself to a particular
bargaining rule – take-it-or-leave-it offers by consumers. As is well known, this
rule can cause too much production in some meetings. Because the policy tightens
producer participation constraints, the beneficial effect that he finds may result
from offsetting the inefficient division of the gains from trade.
To address that concern, Deviatov and Wallace [5] do not adopt any particu-

lar bargaining rule. Instead they work with optima over the entire set of imple-
mentable allocations. They define implementable allocations as ones that satisfy
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ex post individual rationality in meetings. In a model with indivisible money and a
two-unit bound on holdings, Deviatov and Wallace [5] show that if individuals are
patient enough, then some money creation is better than no money creation. The
role of money creation is to shift the distribution of money towards the average
holdings to permit more trade to occur. Although Deviatov and Wallace [5] do
not give a detailed description of the optima, that is sufficient to demonstrate that
the optima have money creation.

Here I study the same environment as in Deviatov and Wallace [5], but I work
with a different notion of implementability – the ex ante pairwise core. Because
closed-form solutions for the optima cannot be obtained, I proceed numerically.
My main finding is that in all examples there are no benefits of money creation.
This is in sharp contrast with what is shown in Deviatov and Wallace [5].

The rest of the chapter is organized as follows. In the next section I describe
the environment; in section 3.2 I define implementable allocations; in section 3.3
I discuss some general properties of implementable allocations; in section 3.4 I
describe the algorithm; in section 3.5 I discuss examples; section 3.6 concludes.

3.1 Environments

The background environment is a simple random matching model of money due
to Shi [16] and Trejos and Wright [17]. Time is discrete and the horizon is infinite.
There are N ≥ 3 perishable consumption goods at each date and a [0, 1] continuum
of each of N types of agents. A type n person consumes only good n and produces
good n+ 1 (modulo N). Each person maximizes expected discounted utility with
discount parameter β ∈ (0, 1). Utility in a period is given by u(y)− c(x), where y
denotes consumption and x denotes production of an individual (x, y ∈ R+). The
function u is strictly concave, strictly increasing and satisfies u(0) = 0, while the
function c is convex with c(0) = 0 and is strictly increasing. Also, there exists ŷ > 0
such that u(ŷ) = c(ŷ). In addition, u and c are twice continuously differentiable.
At each date, each agent meets one other person at random.

There is only one asset in this economy which can be stored across periods:
fiat money. This money is indivisible and no individual can have more than B
units of money at any given time, where 2 ≤ B < ∞. Agents cannot commit to
future actions except commitment to outcomes of randomized trades in meetings.
Finally, each agent’s specialization type and individual money holdings are ob-
servable within each meeting, but the agent’s history, except as revealed by money
holdings, is private.
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3.2 Implementable allocations and the optimum
problem

The pairwise meetings, the inability to commit, the privacy of individual histo-
ries, and the perishable nature of the goods imply that any production must be
accompanied by a positive probability of receiving money. In every meeting of a
potential producer with i units of money and a potential consumer with j units,
there is a set, denoted Kij, of feasible money transfers from the consumer to the
producer, transfers which are consistent with each person’s money holdings being
in the set {0, 1, ..., B}: Kij = {0, 1, ...min(j,B− i)}. A trade meeting is one where
K+ij ≡ Kij\{0} is nonempty. For each trade meeting between a producer with i
and a consumer with j units of money, trade is represented by a probability mea-
sure µij on R+ × Kij with the interpretation that if (y, k) is randomly drawn in
accordance with µij, then (y, k) is the suggested trade in that meeting. Let µ be
the collection of measures µij corresponding to trade meetings.
For any measure µij it is convenient to consider the collection of conditional

measures µkij(A) = µij(A | k), k ∈ Kij, and their supports Ωkij.1 Then µij can
be expressed as µij(A) =

P
k∈Kij

λkijµ
k
ij(A), where λkij ≡ µij(Ωkij), is the probability

that k units of money are offered in a meeting. Finally, let pi be the fraction of
agents in each specialization type who start a date with i units of money and let
p = (p0, ..., pB). Then, in terms of pi and λkij, an arbitrary off-diagonal element of
the transition matrix T for p is given by:

πmn =


1
N

B−m+nP
i=0

piλ
m−n
im if m > n

1
N

BP
j=n−m

pjλ
n−m
mj if m < n

(3.1)

where πmn is the probability of a trade that results in transition from having m
units of money to having n units. Note that since T is a transition matrix, its
diagonal elements are given by πmm = 1−

P
s6=m

πms.

In addition to trades there is lump-sum money creation. I use the same kind of
policy that was studied by Deviatov and Wallace [5]. The policy is a probabilistic
version of the proverbial helicopter drops of money. The timing of events in a
period is the following. First there are meetings and trades. Next, each person
receives one unit of money with probability α. (Those who are at the upper bound
and receive a unit must discard it.) Then each unit of money disintegrates with
probability δ.

1Recall that if µ is a probability measure, the support of µ, denoted suppµ, is the smallest
closed set A such that µ(A) = 1.
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This policy has a close resemblance with the standard policy (expansion at a
rate) which is followed by proportional reduction (normalization, see e.g. Lucas and
Woodford [13]) in individual holdings. The standard policy shifts the distribution
of money holdings towards the mean and makes money less desirable to acquire
because poor producers are less willing to produce for money (because they get
a transfer without production) and rich consumers are more willing to part with
money (because they lose some of its value). The (α, δ)-policy of Deviatov and
Wallace [5] has these effects as well.
Similar to trades, creation and destruction parts of the policy yield a pair of

transition matrices for money holdings, denoted A and D respectively. According
to my description of the policy, A is a two-diagonal matrix where the probability
of getting a unit of money, α, is next to and above the main diagonal, and the
probability of getting no transfer, 1 − α, is on the main diagonal. Matrix D is
lower-triangular where the first i entries in the i-th line comprise the binomial
distribution of order i. Thus, the elements of A and D are:

aij =

 1− α, if j = i
α, if j = i+ 1
0, otherwise

dij =


¡
i
j

¢
δi−j(1− δ)j, if j ≤ i

0, otherwise

The stationarity requirement is pTAD = p.
It is convenient to express individual rationality constraints in terms of dis-

counted expected utilities. For an allocation (p,µ,α, δ), that is stationary, dis-
counted expected utility of an agent who ends up with i units of money at the end
of the period, denoted vi, is constant. Then vector v ≡ (v0, ..., vB) satisfies the
following B + 1-equation system of Bellman equations:

v0 = β(q0 + TAD v0), (3.2)

where q, the vector of (expected) one period returns from trade, is given by:

ql =
B−1X
i=0

pi
N

X
k∈Kil

λkil

Z
Ωkil

u(y)dµkil −
BX
j=1

pj
N

X
k∈Klj

λklj

Z
Ωklj

c(y)dµklj (3.3)

and where l ∈ {0, ..., B}. Note that an individual with no money can only expect
to be a producer, an agent with B units can only be a consumer, and anyone else
can be either a consumer or a producer.
Because T , A, and D are transition matrices and β ∈ (0, 1), the mapping

G(x) ≡ β(q0 + TAD x0) is a contraction. Therefore, (3.2) has a unique solution
which can be expressed as

v0 =
µ
1

β
I − TAD

¶−1
q0 (3.4)
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where I is the (B + 1)× (B + 1) identity matrix.
Let

Πpij ≡
X
k∈Kij

λkij

(ei+k − ei)ADv0 − Z
Ωkij

c(y)dµkij

 (3.5)

be the expected gain from trade for the producer with i units of money in a meeting
with a consumer with j units and let

Πcij ≡
X
k∈Kij

λkij

(ej−k − ej)ADv0 + Z
Ωkij

u(y)dµkij

 (3.6)

be the expected gain from trade for the consumer in that meeting (where el is the
B + 1-component coordinate vector with indices running from 0 to B).
The ex ante pairwise core notion of implementability gives rise to the following

definition:

Definition 3.1An allocation (p,µ,α, δ) is called implementable if (i) pTAD =
p, (ii) v (given by 3.4) is non-decreasing, (iii) the participation constraints

Πpij ≥ 0 and Πcij ≥ 0 (3.7)

hold, and (iv) there exists a vector θ ∈ [0, 1]B2 such that for all pairs (i, j) corre-
sponding to trade meetings, measure µij solves

max
µij

¡
Πpij
¢1−θij ¡Πcij¢θij . (3.8)

where the value function, v, is taken as given.

Definition 3.1 says that an allocation is implementable if (i) it is stationary, (ii)
satisfies free disposal of money, (iii) the ex ante gains from trade implied by the
allocation are nonnegative, and (iv) there is no incentive for defections by pairs in
meetings.
Finally, our optimum problem is to maximize ex ante utility. That is, the

optimum problem, denoted P , is to choose (p,µ,α, δ) from among those that are
implementable to maximize pv0 ≡W.
It is useful to express the objective W in terms of returns. If I multiply (3.2)

by p and use the fact that pTAD = p, then I obtain:

W = pv0 =
β

1− β
pq0
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Then, by writing out the product pq0, I get:

W =
β

1− β

1

N

B−1X
i=0

BX
j=1

X
k∈Kij

pipjλ
k
ij

Z
Ωkij

z(y)dµkij (3.9)

where z(y) ≡ u(y)− c(y). As one would expect, because for every consumer there
is a producer, welfare is equal to the net expected discounted utility in all trade
meetings.

3.3 General results

In their paper on lotteries, Berentsen, Molico and Wright [2] give a complete char-
acterization of the ex ante pairwise core for the case of one-unit bound on holdings.
Here I use their results to show that every implementable allocation has no ran-
domization over output; each conditional measure µkij is degenerate and does not
depend on k. The proof is the same as that of Proposition 3 in Berentsen, Molico
and Wright [2], so I do not reproduce it here. Degeneracy follows immediately
from concavity of u(x) and −c(x). Independence on k follows from concavity of
the Nash product (3.8) in Definition 3.1.
These results imply that the expressions for the gains from trade (3.5) and (3.6)

and for welfare (3.9) can be simplified. Welfare is

W =
β

1− β

1

N

B−1X
i=0

BX
j=1

pipjz(yij) (3.10)

where yij denotes output in a meeting of producer with i and consumer with j
units of money.
Degeneracy of conditional measures implies that the optimum problem P is

finite dimensional. This allows me to characterize the pairwise core in terms of the
necessary first order conditions for maximization of the Nash product. Because of
concavity of the latter these necessary conditions are also sufficient. If an allocation
(p,µ,α, δ) has yij > 0 in all trade meetings,2 then the first order conditions can
be conveniently written as

·
(ej−k − ej) + u

0(yij)
c0(yij)

(ei+k − ei)
¸
ADv0

≥ 0 if λkij = λ
k

ij

= 0 if 0 < λkij < λ
k

ij

≤ 0 if λkij = 0
(3.11)

2A sufficient condition for this is that ADv0, where v is the value function implied by an
implementable allocation (p,µ,α, δ), is strictly increasing and that u0(0) =∞ and c0(0) = 0.
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for all pairs (i, j) corresponding to trade meetings and transfers of positive amounts
of money k, where λ

k

ij ≡ 1−
P

s∈K+ij\{k}
λsij.

The first order conditions (3.11) yield a set of constraints which an imple-
mentable allocation must satisfy in addition to the participation constraints in
Definition 3.1. If the value function ADv0 implied by an implementable allocation
(p,µ,α, δ) is strictly concave, then (3.11) has implications for the level of output
in some meetings. In particular, if λkij > 0 and k ≥ j − i for some k ∈ K+ij, then
yij ≤ y∗, the unconstrained maximizer of z(y). (Notice that if j ≥ i− 1, that is if
the producer’s holdings are one unit less than the consumer’s or larger, then trade
implies λkij > 0 for some k ≥ j − i.) In the examples below, B = 2, so the only
meetings in which output can exceed y∗ are those between a producer with zero
and a consumer with two units of money.

3.4 The algorithm

With the ex ante pairwise core notion of implementability the optima always have
some binding participation constraints. If individuals are patient enough, the
optima also have randomization over how much money is transferred in meetings.
This implies that some of the constraints in (3.11) are also binding. Because these
constraints are complicated functions of an allocation, closed-form solutions for the
optima are out of reach even for the case of a two-unit bound on holdings. That
is why I compute a set of examples.
The optimization problem P falls within the class of problems generally re-

ferred to as “nonlinear programming problems”, for which many standard routines
are available. However, as one can see, the constraints in (3.11) are discontinu-
ous.3 Another difficulty is that the mapping F (p) ≡ pTAD − p is ill-behaved at
α = δ = 0.4 This precludes application of routines which require continuous differ-
entiability of objective and constraints, such as sequential quadratic programming.
I overcome this difficulty by designing a hybrid algorithm which combines genetic
and conventional smooth optimization techniques.
There are three main steps in this algorithm.

• Step 1. Create an initial population of allocations.
3Each constraint in (3.11) is equivalent to·

(ej−k − ej) + u
0(yij)
c0(yij)

(ei+k − ei)
¸
ADv0 + (sign(λkij)− sign(λ

k

ij − λkij))ϑ
k
ij = 0

and ϑkij ≤ 0, where sign(x) is the sign function, and ϑkij is a slack variable.
4See Deviatov and Wallace [5], who study the properties of that mapping for B = 2.
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• Step 2. Amend the population by replacing the worst allocations by better
ones.

• Step 3. Check if the termination criterion is satisfied for the best allocation
in the population. If yes, terminate. If no, return to step 2.

In step 1 I create a matrix where each row is an allocation. Allocations in the
initial population are picked randomly among those which satisfy ex ante individual
rationality. The size of the population is a parameter of the algorithm.
To amend the population in step 2 I use several genetic operators. These

operators are called selection, crossover and mutation. I use standard selection
and crossover operators, a subset of those described in Houck, Joines and Kay [8].
However, I modify the standard mutation operator. The standard operator alters
a single allocation (called “the parent”) to produce another allocation (called “the
child”). The operator I use is a composition of two independent operators.
The first one is applied only if the parent has at least one of the transfer

probabilities λkij at its upper or lower bound or if it has α = δ = 0. The operator
pushes a random subset of these variables into the interior. If a better allocation
is produced, it replaces the parent in the population. This simple mutation deals
with discontinuity of the constraints in (3.11) and with ill behavior of the mapping
F (p) at zero.
The second operator alters only those of the transfer probabilities and policy

pairs which are already in the interior. There, because all constraints are twice
continuously differentiable, application of smooth methods is possible. This leaves
a range of possibilities for what this second operator can be. In particular, one can
run a few iterations of a sequential quadratic routine or of the BFGS algorithm5

(as long as these iterations remain in the interior). The operator I adopt makes
use of the gradients in the following way.
First, I compute (reduced) gradients of the objective and of all active con-

straints. Then I compute an orthogonal projection of the gradient of the objective
onto the subspace orthogonal to the one spanned by the gradients of the active
constraints. After that I randomly pick a search direction in the neighborhood
(small cone) of that projection. Going in that search direction is likely to improve
the objective and does not violate (at least by much) the active constraints. The
child is obtained from the parent by moving along the search direction. However,
this procedure often leads to violation of some constraints even if the parent sat-
isfies all the constraints. In this case the objective implied by the child is reduced
by some value which is proportional to the amount by which the constraints are
violated. If the penalty parameter is large, even a small violation is costly, and
the child dies out of the population quickly. If the parent itself violates constraints

5See Judd [9] for further details.
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by large amounts, then the search direction is chosen to move the child closer to
the feasible region regardless of what happens to the objective. Because the initial
population is chosen randomly, this is important in the beginning of search. In
other words, the second operator first pushes allocations towards satisfaction of
the pairwise core conditions; then it drives the population to the optimum.
The termination criterion in step 3 is based on the first order conditions for

the Kuhn-Tucker theorem. If the length of the projection of the gradient of the
objective onto the subspace orthogonal to that spanned by the gradients of the
active constraints is less than the tolerance value, the necessary conditions for
the theorem are (approximately) satisfied. Because the probability of selection of
parents in the population is an increasing function of the objective, this is sufficient
to guarantee that every terminal point is a (local) maximum.

3.5 Examples

I use the above algorithm to compute optima for examples with a two-unit bound
on individual money holdings. I compute two sets of examples. In all the examples,
the utility function, u(x), is xκ; the cost function, c(x), is x; and the number of
specialization types, N , is 3. The examples are computed for various κ and various
degrees of patience, r, where r = 1

β
− 1.

Several things are common to every example. First, there are no binding con-
sumer participation constraints and there are no examples where money creation
is beneficial. The latter may not be merely coincidental.
Consider an implementable allocation (p,µ,α, δ) ≡ x with (α, δ) > 0. Next,

consider another allocation (p0,µ0,α0, δ0) ≡ x0 with the same outputs and with
α0 < α and δ0 < δ such that TAD and hence p are unchanged. (One can show
that it is sufficient to adjust λ111 alone and that there exists a unique direction in the
(α, δ) plane such that x0 remains in the core.) By (3.10) it follows that x and x0 yield
the same welfare. In addition, the replacement of x by x0 tends to relax producer
participation constraints and to tighten consumer participation constraints. But
since the optima tend not to have binding consumer participation constraints, the
replacement tends to slacken the relevant constraints. Then, if the replacement
makes all of the producer participation constraints be slack, continuity implies
that it is possible to find an implementable allocation which is better than x. A
formal argument along these lines is difficult because it is difficult to show that the
optima do not have binding consumer participation constraints. (This, however,
is not surprising because, as demonstrated in Berentsen, Molico and Wright [2],
money has no value if the gain from trade for consumers is zero.)
The second thing common to all the examples is that in a meeting of a pro-

ducer with no money and a consumer with two units, one unit of money changes
hands with probability one. I take advantage of these common features to simplify
presentation of examples in the tables below. I omit the policy variables α and
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r 0.01 0.07 0.11 0.12 0.15 0.19 0.20 0.30 0.40 0.50
p0 .2181 .2704 .2938 .3023 .3286 .3570 .3645 .4242 .4635 .4830

p1 .5884 .4974 .4566 .4466 .4226 .3998 .3951 .3573 .3303 .3135

p2 .1935 .2322 .2496 .2511 .2488 .2432 .2404 .2185 .2062 .2035

λ01 .2023† .4143† .5774† .6291† .7820† .9884† 1 1 1 1

λ12 .3357† .6763† .9478† 1 1 1 1 1 1 1

λ11 .1218† .2537† .3516† .3804† .4577† .5432† .5613† .7259† .8761† 1

y01 .25∗ .25∗ .25∗ .25∗ .25∗ .25∗ .2408∗ .1585∗ .1136∗ .0844∗

y12 .25∗ .25∗ .25∗ .2401∗ .1870∗ .1390∗ .1301∗ .0730∗ .0452∗ .0293∗

y11 .0908∗ .0938∗ .0927∗ .0913∗ .0855∗ .0755∗ .0730∗ .0529∗ .0395∗ .0293∗

y02 .6876 .5306 .4331∗ .3974∗ .3196∗ .2529∗ .2408∗ .1585∗ .1136∗ .0844∗

Table 3.1: Optima with u(x) =
√
x

δ and the probabilities of transfer of money in meetings of producers with noth-
ing and consumers with two units (λ102 and λ202). I also suppress superscripts in
the notation for the other transfer probabilities (λ101, λ

1
12 and λ111). I attach stars

(∗) to outputs which correspond to binding producer participation constraints and
daggers (†) to the transfer probabilities which correspond to binding first order
constraints in (3.11).
The first set of examples shows how optima change with patience. Here I fix

κ = 1
2
and vary r. This choice implies that the best quantity of output, y∗, is 0.25.

I compute examples for all r from 0.01 through 0.25 in increments of 0.01 and for
r ∈ {0.3, 0.35, 0.4, 0.5}. I report a subset of these examples in Table 3.1. The
examples are consistent with the existence of four different regions with respect to
the degree of patience r. If r is low enough, then the optima have randomization
over the transfers of money in all three trade meetings where transfers of only one
unit are feasible. If r belongs to the second region, the optima have randomization
over the transfers of money only in meetings where the consumers have one unit.
In meetings of producers with one and consumers with two units, money changes
hands with probability one. In the next region the optima have randomization
over the transfers of money in meetings where both producers and consumers
have one unit. Finally, if r is big enough, one unit of money changes hands with
probability one in all trade meetings. The examples are consistent with the transfer
probabilities λ12, λ01, and λ11 being decreasing functions of patience.

In addition, the examples are consistent with the optima having at most one
nonbinding producer participation constraint, the one in meetings of producers
with nothing and consumers with two units of money. In a meeting of a producer
with one unit and a consumer with two, lowering the probability of handing over
money raises v2. That is helpful because it loosens producer constraint in (i, j) =
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κ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p0 .1357 .1845 .2148 .2357 .2510 .2623 .2727 .3243 .4796

p1 .7593 .6703 .6114 .5682 .5343 .5067 .4812 .4268 .3572

p2 .1050 .1452 .1738 .1961 .2147 .2310 .2461 .2489 .1632

λ01 .0300† .0803† .1457† .2232† .3108† .4058† .5180† .8995† 1

λ12 .1622† .2618† .3514† .4331† .5103† .5821† .6640† 1 1

λ11 .0247† .0596† .0998† .1432† .1888† .2359† .2898† .4430† .6134†

y01 .0744∗ .1337∗ .1791∗ .2172∗ .2500∗ .2789∗ .3046∗ .3277∗ .1624∗

y12 .0744∗ .1337∗ .1791∗ .2172∗ .2500∗ .2789∗ .3046∗ .3051∗ .1411∗

y11 .0118∗ .0305∗ .0509∗ .0717∗ .0925∗ .1130∗ .1330∗ .1352∗ .0866∗

y02 .4792 .5326 .5549 .5726 .5859 .5969 .5881∗ .3645∗ .1624∗

Table 3.2: Optima with u(x) = xκ

(1, 1) meeting, which, in turn, allows a decrease in λ11 and, thus, an increase in
p1 (and, thereby, in the frequency of trade). Because λ11 is low, the participation
constraint in (i, j) = (1, 1) meeting is binding and the output is low.
A smaller probability of giving up money in (i, j) = (0, 1) meeting lowers v0

which helps to relax the producer constraint in (i, j) = (0, 2) meeting. This allows
a higher y02 which, again, pushes up v2. This accounts for why y02 is so high. The
same kind of effect on v2 could be achieved with a positive λ002, but that would
reduce λ102 and, hence, the inflow into p1.
The second set of examples shows how optima change with risk aversion. Here

I fix r = 0.04 and vary κ. I compute examples for all κ from 0.1 through 0.9
in the increments of 0.1. These examples are reported in Table 3.2.6 A general
finding here is that the optima change with κ in a similar way as they change with
patience. In particular, the transfer probabilities λ12, λ01, and λ11 are decreasing
functions of risk aversion.

In Table 3.37 I present some comparison of the two notions of implementability:
the ex ante pairwise core and ex post IR notions. Note that, even though every
allocation which satisfies ex post IR satisfies ex ante IR, there is no subset result
for the allocations with these two notions of implementability.8 Nevertheless, the
ex ante notion is in some sense weaker because it allows for randomization over the

6The best quantity of output varies with κ. In the Table 3.2 the best quantity is equal to y01
for all κ except κ = 0.9 for which this quantity equals 0.3487.

7For each value of r the first column shows the optimum with ex post IR and the second
column shows the optimum with ex ante pairwise core notions of implementability. The last row
shows welfare improvement relative to optima with ex post IR notion of implementability.

8Examples of ex post individually rational allocations which fail to satisfy the first order
conditions for ex ante pairwise core include the best allocations under no policy described in
Deviatov and Wallace [5] for r ≤ r∗.
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r 0.02 0.06 0.10 0.15 0.25
α .0866 0 .0555 0 .0258 0 0 0 0 0

δ .0573 0 .0374 0 .0177 0 0 0 0 0

p0 .3330 .2310 .3377 .2649 .3424 .2857 .3525 .3286 .4094 .3979

p1 .3595 .5678 .3506 .5084 .3416 .4680 .3330 .4226 .3279 .3744

p2 .3075 .2012 .3117 .2267 .3158 .2463 .3145 .2488 .2627 .2277

λ01 1 .2385† 1 .3802† 1 .5244† 1 .7820† 1 1

λ12 1 .3948† 1 .6217† 1 .8572† 1 1 1 1

λ11 1 .1441† 1 .2323† 1 .3211† 1 .4577† 1 .6262†

y01 .2572 .25∗ .2576 .25∗ .2580 .25∗ .2667 .25∗ .1853∗ .1927∗

y12 .1950∗ .25∗ .1930∗ .25∗ .1902∗ .25∗ .1715∗ .1870∗ .0919∗ .0959∗

y11 .1950∗ .0913∗ .1930∗ .0934∗ .1902∗ .0937∗ .1715∗ .0855∗ .0919∗ .0619∗

y02 .3025∗ .6473 .2963∗ .5459 .2907∗ .4763∗ .2783∗ .3196∗ .1853∗ .1927∗
∆W
W

19.5% 14.2% 11.2% 7.62% 3.22%

Table 3.3: Optima with ex ante pairwise core versus optima with ex post IR notions
of implementability

amount of money transferred in meetings. This, to some extent, mimics divisibility
of money. With the ex post IR notion individuals agree to every realization in the
support of randomized trades which makes randomization costly. Deviatov [6],
who computes examples of optima with the ex post IR notion, finds that in all
the examples one unit of money changes hands with probability one in all trade
meetings.
Given that pattern of trade, the only way to enlarge the set of feasible distrib-

utions is by means of the policy which accounts for the beneficial effects found in
Deviatov and Wallace [5]. However, money creation never allows to achieve distri-
butions which are concentrated around the average holdings to such an extent as
those that are feasible with the ex ante pairwise core notion. That is why optima
with ex ante pairwise core notion yield a considerably higher welfare (the difference
is shown in the last row of Table 3.3).

3.6 Concluding remarks

The results in this chapter stand in sharp contrast to these in Deviatov andWallace
[5] and in Deviatov [6]. There money creation can be beneficial, whereas here there
are no examples where money creation is optimal. The disparity is due entirely
to the distinction between committing or not committing to randomization. (The
imposition of ex post pairwise core restrictions which allow for the trading pair
to defect to any deterministic trade does not change the results in [5] and [6].)
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This disparity is interesting because as the bound on individual money holdings
gets large, randomization plays a smaller and smaller role and, in the limit, no
role. Then, the two notions of implementability coincide. The uniformity of the
numerical finding of no beneficial money creation using the ex ante notion leads
me to surmise that it is the general result that will survive in the limit. Of course,
surmising such a result and proving it are very different.

39



Bibliography

[1] Aiyagari R., Wallace N., Wright R. “Coexistence of Money and Interest-
Bearing Securities.” Journal of Monetary Economics, 37 (1996), 397-420.

[2] Berentsen A., Molico M., Wright R. “Indivisibilities, lotteries and monetary
exchange.” Working paper, University of Pennsylvania, 2000.

[3] Camera G, Corbae D. “Money and price dispersion.” International Economic
Review, 40 (1999), 985—1008.

[4] Dawid H. Adaptive learning by genetic algorithms. 2nd edition. Springer Ver-
lag, Berlin, 1999.

[5] Deviatov A., Wallace N. “Another example in which lump-summoney creation
is beneficial.” Advances in Macroeconomics, 1 (2001), Article 1.

[6] Deviatov A. “Optimal Money Creation in a Random-Matching Model with Ex
Post Individual Rationality.” Working paper, Pennsylvania State University,
2002.

[7] Goldman S. “Flexibility and the demand for money.” Journal of Economic
Theory, 9 (1974), 203-222.

[8] Houck C., Joines J., Kay M. “A genetic algorithm for function optimization: a
MATLAB implementation.” Working paper, North Carolina State University,
1996.

[9] Judd K. Numerical methods in Economics. MIT Press. Cambridge and Lon-
don, 1998.

[10] Kehoe T., Levine D., Woodford M. “The optimum quantity of money re-
visited.” In Economic Analysis of Markets and Games: Essays in Honor of
Frank Hahn. Dasgupta P. et al -eds. MIT Press. Cambridge and London, 1992,
501-526.

[11] Levine D. “Asset trading mechanisms and expansionary policy.” Journal of
Economic Theory, 54 (1991), 148-164.

40



[12] Li V. “The optimal taxation of fiat money in search equilibrium.” Interna-
tional Economic Review, 36 (1995), 927-942.

[13] Lucas R E Jr., Woodford M. “Real effects of monetary shocks in an economy
with sequential purchases.” University of Chicago Working Paper, 1994.

[14] Miller M, Orr D. “A model of the demand for money for money by firms.”
Quarterly Journal of Economics, 80 (1966), 413-35.

[15] Molico M. “The distribution of money and prices in search equilibrium.”
Working paper, University of Pennsylvania, 1997.

[16] Shi S. “Money and prices: a model of search and bargaining.” Journal of
Economic Theory, 67 (1995), 467-496.

[17] Trejos A., Wright R. “Search, bargaining, money and prices.” Journal of Po-
litical Economy, 103 (1995), 118-141.

[18] Wallace, N. “Introduction to modeling money and studying monetary policy.”
Journal of Economic Theory, 81 (1998), 223-231.

41



Appendix A

Appendix to Chapter 1

Lemma 1.1 If α = δ = 0, then the optimum subject only to condition (i) in
Definition 1.1 and condition (ii) for k = 0 is a degenerate µ, denoted µ∗, with
support (y∗, 1), where u0(y∗) = 1. Moreover, the associated optimal p is p∗ =
(1
3
, 1
3
, 1
3
).

Proof.
The steady-state condition, which becomes pT = p under α = δ = 0, does not

involve the outputs. Therefore, for given λkij, a necessary condition for maximizing
W is y = y∗ for all y in the support of µ. Then W which satisfies that necessary
condition can be written as

w = z(y∗)[p0p1λ101 + p0p2
¡
λ102 + λ202

¢
+ p21λ

1
11 + p1p2λ

1
12]. (A.1)

Whenever k = j − i, the constraint pT = p does not depend on λkij because
money holdings are being exchanged. And since the λj−iij appear in (A.1) with
non-negative coefficients, we set them at their maxima; namely, λ101 = λ112 = 1 and
λ202 = 1−λ102. It follows that w which satisfies necessary conditions for a maximum
can be written

w = z(y∗)[p0p1 + p0p2 + p21λ
1
11 + p1p2].

Thus, the problem is to maximize F (p,λ111,λ
1
02) = p0p1+p0p2+p

2
1λ
1
11+p1p2 subject

to pT = p.
Now p either has full support or not. If not, then either p1 = 0 or λ

1
11 = 0. (If

p1 > 0 and λ111 > 0, then p has full support because there is an inflow into holdings
of both 0 and 2 as a result of trade between producers and consumers with one
unit.) If p1 = 0 or λ

1
11 = 0 and p does not have full support, then the objective F

has the form pipj for i 6= j, the maximum of which is 1
4
.

We now find the maximum over full support p’s. Consider the Lagrangian

L = p0p1 + p0p2 + p
2
1λ
1
11 + p1p2 − ψ(λ111p

2
1 − λ102p0p2)− ν

³X
pi − 1

´
, (A.2)
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where ψ and ν are non-negative multipliers and where we have inserted the explicit
form of the constraint, pT = p. This constraint reduces to the single equation,
λ111p

2
1 = λ102p0p2, which says that the outflow from holdings of 1 unit is equal to

inflow. Because p has full support, the first order conditions with respect to the
pi hold at equality. They are

p0 : p1 + p2 + λ102ψp2 − ν = 0, (A.3)

p1 : p0 + p2 + 2λ
1
11(1− ψ)p1 − ν = 0, (A.4)

p2 : p0 + p1 + λ102ψp0 − ν = 0. (A.5)

Again because p has full support, either λ111 = λ102 = 0 or λ
1
11 > 0 and λ102 > 0.

In the first case, it follows from (A.3)-(A.5) that the maximum of F (p,λ111,λ
1
02) is

attained at p∗ =
¡
1
3
, 1
3
, 1
3

¢
. Inserting this and λ111 = 0 into F implies that the value

of F is 1
3
.

For the second case (λ111 > 0 and λ102 > 0), we substitute from λ111p
2
1 = λ102p0p2

directly into the objective. Then, because the remaining constraint does not involve
λ102 and because the resulting objective is increasing in λ102, we conclude that the
optimum in this case has λ102 = 1. Then the sum of (A.3) and (A.5) minus twice
(A.4) gives

2p1 − (p0 + p2 + 4λ111p1) + ψ(p0 + p2 + 4λ
1
11p1) = 0,

which can be written as

1− ψ =
2p1

p0 + p2 + 4λ
1
11p1

> 0. (A.6)

From (A.2), we have
∂L

∂λ111
= p21(1− ψ) > 0.

where the inequality follows from (A.6). Therefore, λ111 = 1. Also, if we subtract
(A.3) from (A.5), we get p2 = p0. This and p21 = p2p0, the explicit form of pT = p
with λ111 = λ102 = 1, imply p =

¡
1
3
, 1
3
, 1
3

¢
. Therefore, the maximum of F in this case

is attained at p∗ and is equal to 4
9
.

Direct comparison of the three values of maximized objective completes the
proof. ¥

Lemma 1.2 Let (p,µ,α, δ) = (p∗,µ∗, 0, 0). There exists a value of the discount
factor, β∗, given by

β∗ =
3Ny∗

3Ny∗ +
p
(3y∗)2 + 4z(y∗)y∗ − 3y∗ ,
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such that if β > β∗, then (1.6) and (1.7) are slack. If β = β∗, then (1.6 ) and
(1.7) are slack except for (1.6) for i = 1 (when the producer has 1 unit of money)
which holds at equality.

Proof.
The proof proceeds by explicit computation of the vi at (p,µ,α, δ) = (p∗, µ∗, 0, 0).

In particular, we have

v1 − v0 = 2β[3N(1− β)u(y∗) + 4βu(y∗) + 2βy∗]
3[N(1− β) + 2β][3N(1− β) + 2β]

≡ h1(β)

and

v2 − v1 = 2β[3N(1− β)y∗ + 4βy∗ + 2βu(y∗)]
3[N(1− β) + 2β][3N(1− β) + 2β]

≡ h2(β).

It follows that h1(β) and h2(β) are defined and continuous on [0, 1], are strictly
increasing, satisfy h1(β) > h2(β), h1(0) = h2(0) = 0,

h1(1) =
2u(y∗) + y∗

3
∈ (y∗, u(y∗))

and

h2(1) =
2y∗ + u(y∗)

3
∈ (y∗, u(y∗)),

where all the inequalities follow from y∗ < u(y∗). It follows that consumer par-
ticipation constraints are slack at all β ∈ (0, 1). It also follows that there exists
a unique β ∈ (0, 1) such that h2(β) = y∗. Denote this β∗. Then, aside from the
explicit claim about the expression for β∗, all the remaining claims follow from the
assertions about h1(β) and h2(β). The explicit expression for β

∗ is obtained by
solving the equation, h2(β

∗) = y∗.¥

Proposition 1.1 If β ≥ β∗, then the optimum is not α = δ = 0.

Proof.
We compute a derivative ofW with respect to α and evaluate it at (p,µ,α, δ) =

(p∗,µ∗, 0, 0). The only requirement is that implementability is maintained as we
vary α. In computing the derivative, we keep all money transfers in meetings as
they are under µ∗. That is, one unit of money is transferred in every trade meeting
in. It follows that the trade matrix T has the form

T ∗ =

 1− p1+p2
N

p1+p2
N

0
p0+p1
N

1− p0+2p1+p2
N

p1+p2
N

0 p0+p1
N

1− p0+p1
N

 .
The mapping from (α, δ) to p that satisfies pT ∗AD = p is not well-behaved at

α = δ = 0. At α = δ = 0, there is a one dimensional set of p’s that are distributions
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and that satisfy pT ∗AD = p. They can be thought as being generated by the set
of alternative amounts of money per type, the interval [0, 2]. For (α, δ) > 0 and
in a neighborhood of α = δ = 0, we can show that there is a unique p that
satisfies pT ∗AD = p so that the mapping from (α, δ) to p is a function in that
neighborhood, and, moreover, is a differentiable function. After doing that, we
will find the unique direction in the (α, δ) plane along which that unique solution
approaches p∗ as (α, δ)→ 0. Finally, we will compute the derivative of p along that
direction and evaluate it at p∗. That, in turn, will allow us to show that welfare is
increasing along that direction.
The conditions

P
pi = 1 and pT ∗AD = p can be written as the following

system of three equations in three unknowns:

p1 + p2 + p0 = 1, (A.7)

−ξ1p1 + ξ2p2 − ξ3p0 = 0, (A.8)
1

N
(1− 2α)(1− δ)2[p21 − p0p2] + α(1− δ)2p1 − δ(2− δ)p2 = 0, (A.9)

where

ξ1 ≡ (1− δ)[(α− δ)(1− α)− α2δ] = α− δ + o(α, δ)

ξ2 ≡ δ[αδ + 2(1− α)(1− δ)] = 2δ + o(α, δ)

ξ3 ≡ α(1− 2α)(1− δ)2 = α+ o(α, δ)

and where o(α, δ) denotes terms of order higher than (α, δ).
Because (A.7) and (A.8) are linear, they can be solved uniquely for p1 and p2

(in terms of p0) if

det

µ
1 1
−ξ1 ξ2

¶
= ξ2 + ξ1 6= 0.

From the expressions for the ξi, it follows that ξ2 + ξ1 = δ + α + o(α, δ) > 0.
Therefore, we have,

p1 =
ξ2 − (ξ3 + ξ2)p0

ξ2 + ξ1
and p2 =

ξ1 + (ξ3 − ξ1)p0
ξ2 + ξ1

.

If we substitute these into (A.9), the result is a quadratic equation in p0 or, more
simply, x, which we write as f(x) = ax2 + bx+ c = 0, where

a = − 1
N
(1− 2α)(1− δ)2[(ξ1 + ξ2)(ξ3 − ξ1)− (ξ2 + ξ3)

2]

b = − 1
N
(1− 2α)(1− δ)2[ξ1(ξ1 + ξ2) + 2ξ2(ξ2 + ξ3)]−

α(1− δ)2(ξ1 + ξ2)(ξ2 + ξ3)− δ(2− δ)(ξ1 + ξ2)(ξ3 − ξ1)
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c =
1

N
(1− 2α)(1− δ)2 (ξ2)

2 + α(1− δ)2ξ2(ξ1 + ξ2)−
δ(2− δ)ξ1(ξ1 + ξ2)

We can rewrite these coefficients as:

a =
1

N
(α2 + 3αδ + 3δ2) + o(α2,αδ, δ2)

b = − 1
N
(α2 + 4αδ + 7δ2) + o(α2,αδ, δ2)

c =
1

N
4δ2 + o(α2,αδ, δ2)

Then f(0) = 1
N
4δ2+o(α2,αδ, δ2) > 0 and f(1) = − 1

N
αδ+o(α2,αδ, δ2) < 0. There-

fore, there exists a unique solution for p0 consistent with p being a distribution.
That is, for (α, δ) > 0 and in a neighborhood of 0, there exists a unique solution
for p. Moreover that solution is differentiable because the coefficients of f are
differentiable functions of the parameters.
Now that we have established properties of the mapping from (α, δ) to p in the

neighborhood of (α, δ) = 0, we can proceed by differentiating pT ∗AD = p and
evaluating the result at α = δ = 0 and p∗ =

¡
1
3
, 1
3
, 1
3

¢
. This gives the following

system of equations:

1

N

 −1 2 −1
2 −4 2
−1 2 −1

 dp0
dp1
dp2

 =

 1 −1
0 −1
−1 2

µ dα
dδ

¶
(A.10)

Because the first and third components of the left-hand side vector are identical,
this system has solutions if and only if dδ = 2

3
dα. In other words, the direction

δ = 2
3
α is the unique direction such that p → p∗ when (α, δ) → 0. (Existence of

this path can be confirmed from the quadratic equation f(x) = 0. In particular, if
we set δ = 2

3
α and let α → 0, then f(x)→ 39x2 − 61x + 16 = 0, whose roots are

16
13
and 1

3
.) Using

P
dpi = 0, it follows from (A.10) that

dp1 =
N

9
dα (A.11)

along the direction δ = 2
3
α. As we now show, this is enough to conclude that it is

possible to raise welfare with some (α, δ) > 0. The argument is slightly different
for β > β∗ and β = β∗.

β > β∗.Here, the participation constraints are slack at (p,µ,α, δ) = (p∗,µ∗, 0, 0)
(see Lemma 1.2). Therefore, we can vary (α, δ) from 0 with δ = 2

3
α while fixing

µ = µ∗ without violating those constraints. It follows that the derivative of w
with µ = µ∗along the δ = 2

3
α path and evaluated at (p,µ,α, δ) = (p∗,µ∗, 0, 0), is
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given by

dw

dα
= z(y∗)

·
dp0
dα
(p1 + p2) + p0(

dp1
dα

+
dp2
dα
)+

dp1
dα
(p1 + p2) + p1(

dp1
dα

+
dp2
dα
)

¸
At p = p∗, this becomes

dw

dα
=

z(y∗)
3

·
2
dp0
dα

+
dp1
dα

+
dp2
dα

+ 2
dp1
dα

+
dp1
dα

+
dp2
dα

¸
=

2z(y∗)
3

dp1
dα

where the last equality uses
P dpi

dα
= 0. This and (A.11) give the result.

β = β∗. Here to maintain implementability as we vary (α, δ), we adjust the
supports of the µ11 and µ12 components of µ, while keeping all other components
at their µ∗ values. We let the support of µ11 and µ12 be degenerate at (y1, 1),
where y1 is determined by the binding producer participation constraint

(e2 − e1)AD
µ
1

β∗
I − T ∗AD

¶−1
q0 − y1 = 0 (A.12)

with

q0 =
1

N

 − (p1 + p2) y∗
p0u(y

∗) + p1 [u(y1)− y1]− p2y1
p0u(y

∗) + p1u(y1)

 .
With (p0, p1, p2) = p(α, 23α) given by the unique differentiable solution established
above, we can write (A.12) as g(α, y1) = 0, where g(0, y∗) = 0 and where

∂g(0, y∗)/∂y1 =
2β∗ [β∗ + (1− β∗)N ]

4β∗ [β∗ + 2(1− β∗)N ] + 3(1− β∗)2N2
− 1 ∈ (−1,−1

2
).

It follows from the implicit function theorem that for α in a neighborhood of 0,
the y1 that satisfies (A.12) is a differentiable function of α.
Since the µ we are now using continues to have degenerate supports, the ob-

jective function (1.8) can be written as:

w = p0(p1 + p2)z(y
∗) + p1(p1 + p2)z(y1)

Then the derivative of welfare with respect to α evaluated at α = δ = 0 and
p = p∗ is

dw

dα
=
2z(y∗)
3

dp1
dα

+
4

9
z0(y∗)

dy1
dα
.

This differs from the corresponding expression for β > β∗ by the presence of an
additional term. However, because the derivative dy1

dα
exists and because z0(y∗) = 0,

this additional term is zero. Therefore, the result again follows from (A.11 ).¥

47



Appendix B

Appendix to Chapter 2

Lemma B1. If (p,µ) is implementable and is such that (i) p has full support
and the associated value function v is concave and (ii) λkij > 0 for some k ≥ 1
in all meetings in which j ≥ i, where j is money holdings of the consumer and i
those of the producer, then (p,µ) is connected.

Proof. First, I show that concavity of the value function implies that trade in
a meeting implies willingness to trade one unit in that meeting. Because (p,µ) is
implementable and p has full support, λkij > 0 implies that there exists y ≥ 0 such
that

kc
³y
k

´
≤ c(y) ≤ vi+k − vi ≤ k(vi+1 − vi)

and
ku
³y
k

´
≥ u(y) ≥ vj − vj−k ≥ k(vj − vj−1)

where in each display the second inequality follows from implementability. The
outer inequalities imply willingness to trade y

k
for one unit of money.

Therefore, by hypothesis (ii) of the lemma, G(p,µ) contains all pairs of money
holdings (i, j) with j ≥ i. Now for each i ∈ {1, ..., B − 1} consider the set Ii ≡
{i−1, i}. This is a block because j = i+1 and j = i satisfy j ≥ i and because the
associated permutation, σi(p,µ) =

µ
i− 1 i
i i− 1

¶
, has a unique orbit. Finally,

these blocks are mutually reachable and jointly cover the set {0, ..., B−1} of money
holdings of producers. ¥

Proposition 2.1 The optimum problem P0 has solutions.

Proof. I need to show that the set of implementable and connected allocations,
Γ, is nonempty and compact and that the objective W is continuous.
To see that Γ is nonempty, observe that autarky is always in Γ. The fact that

suppµkij = {0} for all nonempty measures µkij in µ implies that the associated
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value function, v, is zero and money has no value. Then, because y = 0 satisfies
participation constraints for all i, j, k, autarky is implementable and connected.
To demonstrate compact valuedness of Γ, it suffices to show that Γ is closed

valued and that all of the supports of measures µkij are bounded
1. Consider a

converging net of implementable and connected allocations, (p,µ)r, and let (p,µ)
be its limit. The choice of the topology implies that pr → p and

¡
λkij
¢
r
→ λkij

for all i, j, k. This and continuity of the function g(p,λ) ≡ pT − p imply that
pT = p and the limiting distribution p is stationary.
To show that the limit (p,µ) is implementable and connected, let us first

consider all converging nets (p,µ)r such that starting from some r, Z(p,µ)r is a
constant set, denoted Z. Then, because suppµkij ⊆ lim

r

³
supp

¡
µkij
¢
r

´
and because

vr → v, all participation constraints in (2.8) hold in the limit, and (p,µ) is
implementable and connected. To see that the constancy of Z(p,µ)r is without loss
of generality, consider an arbitrary converging net (p,µ)r. Because for every r,
Z(p,µ)r is a subset of {0, ..., B − 1} × {1, ..., B}2, which is finite, there exists some
set Z and a subnet (p,µ)rs with the property that Z(p,µ)rs = Z. Then, because a
net converges if and only if every subnet converges to the same limit, (p,µ), the
constancy of Z(p,µ)r is without loss of generality.
To demonstrate boundedness of supports, let us consider an arbitrary block Il

and write down incentive compatibility constraints (2.8), which pertain to selection
σl(p,µ) from Ξ(p,µ):

c(y1ij) ≤ vi+1 − vi, and vj − vj−1 ≤ u(y1ij)

all i ∈ Il. Because σl(p,µ) is a permutation and selection from Ξ(p,µ), for each j,
which shows up in the above collection of the participation constraints, it is possible
to find a unique i such that j − 1 = σl(p,µ)(i). Adding up separately producer and
consumer constraints and taking the latter into account, one obtains:P

i∈Il
c(y1i(σl(i)+1)) ≤

P
im∈Il

(vi+1 − vi)P
i∈Il

¡
vσl(i)+1 − vσl(i)

¢ ≤ P
i∈Il
u(y1

i(σl(i)+1)
).

(B.1)

Because σl(p,µ) is a permutation, the two sums of gains from trades in (B.1) are
equal, which yields: X

i∈Il

h
u
³
y1
i(σl(i)+1)

´
− c

³
y1i(σl(i)+1)

´i
≥ 0.

1Recall that if topology on the space of probability measures P(X) is the weak* topology,
then P(X) is compact if and only if X is compact.
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Note that by definition, yk
ij
≤ ykij, which, together with the properties of utility

and cost functions, yields:

c
¡
y1ij
¢− u³y1

ij

´
≤ (|Il|− 1) [u(y∗)− c(y∗)] ,

all i ∈ Il, where y∗ is a unique solution to u0(y) = c0(y) and |Il|, |Il| ≤ B, is the size
of block Il. Then properties of u(y) and c(y) guarantee that y1ij is finite for all i ∈ Il
and, because Il is arbitrary, all supports that correspond to transfer of one unit and
are a part of some σl(p,µ) are bounded. Boundedness of all other supports follows

immediately from consumer constraints in (2.8), from vn−vm =
n−mP
l=1

(vn−l+1−vn−l)
and ∪

l
Il = I, and from free disposal of money.

Finally, recall that u(y) and c(y) are continuous. Because the supports, Ωkij, are
bounded and because each of the spaces of probability measures µij on R+ ×Kij
is endowed with the weak* topology, continuity of the objective W is immediate.
¥

Lemma 2.1 Let (p,µ) be a non-autarkic solution to problem P0. Let eP ∗(p,µ)
be the associated perturbation problem eP(p,µ) with the additional restriction that
εkij ≡ 0. Let E be the set of all active constraints of problem eP ∗(p,µ) at (p,µ)
and assume that E is nonempty. Then there exists a nonempty subset E0 of E
and multipliers ξs ≥ 0, one for each constraint in E0, such that the gradient of
the objective W can be written as a linear combination of the gradients of the
constraints in E0.

Proof. By assumption, (p,µ) is non-autarkic, implementable and connected.
I first show that yk

ij
> 0 for all (i, j, k) ∈ Z(p,µ). Suppose to the contrary, that there

exists a triplet (i, j, k) ∈ Z(p,µ) such that ykij = 0. By (2.8), it follows that in this
case vj − vj−k = 0, which implies that vj − vj−1 = 0. Because (p,µ) is connected,
there exists a block, Il, such that j − 1 ∈ Il. Then vj − vj−1 = 0 implies that
y1i1j1 = 0, where i1 = j − 1 and j1 = σl(p,µ)(i1) + 1. From y1i1j1 = 0 it follows that
y1
i1j1

= 0, which implies that vj1 − vj1−1 = 0. Continuing this process recursively,
one obtains

v(σl)
m
(j−1)+1 − v(σl)m(j−1) = 0

for m = 1, 2, .... Because σl(p,µ) has a unique orbit, which spans the block Il, the
process will cycle at m = |Il| ≤ B, and then vi+1 − vi = 0 for all i ∈ Il. Note
that this implies that no production takes place in return for one unit of money in
meetings which pertain to permutation σl(p,µ).
If two blocks Il1 and Il2 overlap and one of the two has ykij = 0, then vi+1−vi = 0

for all i ∈ Il1 ∪ Il2. Finally, because connectedness requires that every block
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is reachable from any other and because these blocks jointly cover I, the value
function v is zero. That, in turn, implies that (p,µ) is autarkic, a contradiction.
I now construct a vector n whose inner product with the gradients of the

constraints in problem eP ∗(p,µ) is positive. The vector n is obtained by stacking
vectors lkij, one for each (i, j, k) ∈ Z(p,µ). The construction of lkij differs depending
on whether µkij is or is not degenerate.
Let us first consider a nondegenerate measure µkij. Without loss of generality, I

can assume that akij ≤ ckij ≤ bkij ≤ dkij. Then the 4× 2 block of the Jacobian matrix
which corresponds to the perturbation of µkij can be written as

J =



− (ei+k − ei)H ∂q0
∂akij
, (ej − ej−k)H ∂q0

∂akij
− u0(akij)

− (ei+k − ei)H ∂q0
∂bkij
, (ej − ej−k)H ∂q0

∂bkij

− (ei+k − ei)H ∂q0
∂ckij
, (ej − ej−k)H ∂q0

∂ckij

c0(dkij)− (ei+k − ei)H ∂q0
∂dkij
, (ej − ej−k)H ∂q0

∂dkij


. (B.2)

Now let us take some vector l ≡ (−la, lb, lc, ld) ∈ R4. The scalar products of l
and the columns of J are given by

ldc
0(dkij) + (ei+k − ei)H

Ã
la
∂q0

∂akij
− lb ∂q

0

∂bkij
− lc ∂q

0

∂ckij
− ld ∂q

0

∂dkij

!

and

lau
0(akij)− (ej − ej−k)H

Ã
la
∂q0

∂akij
− lb ∂q

0

∂bkij
− lc ∂q

0

∂ckij
− ld ∂q

0

∂dkij

!
.

Note that these products are positive if I can find la > 0 and ld > 0 such that

la
∂q0

∂akij
− lb ∂q

0

∂bkij
− lc ∂q

0

∂ckij
− ld ∂q

0

∂dkij
= 0. (B.3)

To show that such a choice of l is possible, let us first write out the derivatives
of the vector q (evaluated at akij = c

k
ij = y

k
ij
and bkij = d

k
ij = y

k
ij). These are

∂q0
∂akij

= ∂q0
∂ckij

=
λkij
2N

h
pjη

k
ij
e0i − piγkije0j

i
,

∂q0
∂bkij

= ∂q0
∂dkij

=
λkij
2N

£
pjη

k
ije

0
i − piγkije0j

¤ (B.4)
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where

γk
ij
=

ykijR
yk
ij

u0(y)
ykij−y
ykij−ykij

dµkij, ηk
ij
=

ykijR
yk
ij

c0(y)
ykij−y
ykij−ykij

dµkij

γkij =
ykijR
yk
ij

u0(y)
y−yk

ij

ykij−ykij
dµkij, ηkij =

ykijR
yk
ij

c0(y)
y−yk

ij

ykij−ykij
dµkij.

(B.5)

Observe that because µkij is nondegenerate, all four integrals in (B.5) are strictly
positive. Then, because the expected cost of production for producer and the
expected utility of consumption for consumer show up only in the i-th and j-th
entries of q, (B.3) gives rise to the following linear 2-equation system:

λkij

"
pjη

k
ij
pjη

k
ij

piγ
k
ij
piγ

k
ij

#·
lc
lb

¸
= λkij

"
pjη

k
ij
−pjηkij

piγ
k
ij
−piγkij

#·
la
ld

¸
Notice that lc = la and lb = −ld is a solution, which implies that la > 0 and ld > 0
is possible.
If measure µkij is degenerate, then the analogue of (B.3) is

lg
∂q0

∂gkij
− lh ∂q

0

∂hkij
= 0 (B.7)

where the derivatives of q are

∂q0

∂gkij
=

λkij
2N

h
pjη

k

ij
e0i − piγkije0j

i
and

∂q0

∂hkij
=

λkij
2N

£
pjη

k
ije

0
i − piγkije0j

¤
with γk

ij
= γkij = u

0(ykij) and ηk
ij
= ηkij = c

0(ykij). Therefore, (B.7) reduces to

λkijpjγ
k
ij(lg − lh) = 0

λkijpiη
k
ij(lg − lh) = 0

.

Obviously, lg = lh = 1 satisfies this equation.
Thus, we have the vector n whose inner product with the gradients of the

constraints in problem eP ∗(p,µ) is positive. Because the objective and constraints
are continuously differentiable, existence of n is equivalent to existence of an open
region U in the space of perturbations where all the constraints in (2.8) are relaxed.
Because (p,µ) solves P0, it follows that the gradient of the objective is in the
convex hull of the gradients of the active constraints. Finally, because the number
of constraints in (2.8) does not exceed the number of degrees of freedom provided
by perturbations, the edges of that convex hull are linearly independent. ¥
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