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Abstract

Multivariate Gaussian mixtures are widely used in science and engineering for density estimation,
model-based data clustering, and statistical classification. A difficult problem, of special interest
for clustering, is estimating the model order, i.e. the number of mixture components. Use of full
covariance matrices, with number of parameters quadratic in the feature dimension, entails high
model complexity, and thus may underestimate order, while naive Bayes mixtures may introduce
model bias and lead to order overestimates. We develop a parsimonious modeling and model
order selection method for multivariate Gaussian mixtures which allows for and optimizes over
parameter tying configurations across mixture components applied to each individual parame-
ter, including the covariates. We derive a generalized Expectation-Maximization algorithm for
(BIC-based) penalized likelihood minimization. This algorithm, coupled with sequential model
order reduction, forms our joint learning and model selection method. Our method searches over
a rich space of models with different (data representation, model complexity) tradeoffs and, con-
sistent with minimizing BIC, achieves fine-grained matching of model complexity to the amount
of available data. We have found our method to be effective and largely robust in learning ac-
curate model orders and parameter-tying structures for simulated ground-truth mixtures. We

also compared against naive Bayes and standard full-covariance Gaussian mixtures for several
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different criteria: i) accuracy in estimating the number of (ground-truth) components; ii) test set
log-likelihood; iii) unsupervised (and semisupervised) classification accuracy; and iv) accuracy
when class-conditional mixtures are used in a plug-in Bayes classifier. The results bear out that
our parsimonious mixtures and coupled learning give improved accuracy with respect to each of

these performance measures.

iv



Table of Contents

List of Figures vii

List of Tables viii
Chapter 1

Introduction 1
Chapter 2

Penalized Likelihood Minimization for Learning and Model Order Selection 9

2.1 Parsimonious Multivariate Gaussian Mixtures . . . . . . . . . .. ... ... ... 9

2.2 Bayesian Information Criterion for Learning and Model Selection . . . . . . . .. 10

2.3 Learning the Model . . . . . . . . . .. . Lo 13

2.3.1 E-Step . . . . . 14

2.4 Generalized M-Step . . . . . . .. 15

2.4.1 Component-specific Mass Updates . . . . . ... ... ... ... ..... 15

2.4.2 Component-specific Mean Updates . . . . . ... ... ... ... ..... 16

2.4.3 Component-specific Variance Updates . . . . . . . ... ... ... .... 17

2.4.4 Component-specific Covariates . . . . . . . . ... ... ... ... .. .. 18

2.4.5 Shared Mean Updates . . . . . . . . .. ... ... ... ... 18

2.4.6 Shared Covariate Updates . . . . . . . . .. ... ... .. ... .. 19

2.4.7 Optimizing the switch parameters . . . . . ... ... ... ... ..... 19

2.4.8 Unused Shared Parameter Updates . . . . . . ... ... ... ....... 21

2.5 Model Order Reduction . . . . . . . . ... .. ... 21

2.6 Implementation Details . . . . . . .. ... ... o o 22

2.6.1 Computational Complexity . . . . ... .. ... ... ... ... 23

2.6.2 Avoiding singular components . . . . . .. ... 23
Chapter 3

Experimental Results 25

3.1 Experimental Setup . . . . . ... 25

3.2 Synthetic Data . . . . . . .. L 26

3.3 Real Data . . . . . . . . . e 29



Chapter 4
Conclusion

Appendix A
GEM update for component-specific variances

Appendix B
Efficient Matrix Inversion

vi

32

34

37



List of Figures

1.1 Bivariate Gaussian data overlayed with contours at component density value equal
to 0.002 for learned Naive Bayes and Full Covariance Gaussian models. Squares
indicate labeled examples. Naive Bayes components 2, 4, 7, and 8 contain no
labeled examples when points are assigned to components based on a maximum
likelihood decision . . . . . . . . . . .. e

vii



List of Tables

3.1

3.2

3.3

Selected model order, test set accuracy and log-likelihood comparisons for syn-
thetic data of 3000 data points generated by 3 ground truth classes with feature
dimension of 7 . . . . . .. e
Selected model order, test set accuracy and log-likelihood comparisons for 6 UCI
Machine Learning Repository data sets. N represents the number of total data
points, d the feature space dimensionality, and ¢ the number of labeled classes in
thedata. . . . . . . . L
Test set classification accuracy for 6 UCI Machine Learning Repository data sets
when used to create a Plug-in Bayes classifier. N represents the number of total
data points, d the feature space dimensionality, and ¢ the number of labeled classes
inthedata. . . . . . .. .

viii



Chapter

Introduction

In a multivariate Gaussian mixture model (GMM) for a random vector X = (X1, Xo,..., Xq),

the density function takes the form

M
px(z[O(M)) = onpx(z/0k), (1.1)
k=1
M
where {a} are the mixing proportions (ay, > 0 and - o = 1), 6 = (g, , %) is the (mean
k=1 o

vector, covariance matrix) specifying the k-th component, ©(M) = {0, ax, k =1,..., M}, and
p(+) denotes a density function. GMMs have diverse applications, including density estimation
and associated outlier detection e.g. [1], supervised statistical classification [2], as well as most
prominent application to unsupervised (also semisupervised [3],[4]) clustering [5],[2]. For super-
vised classifier design, a mixture model is used to fit a (class-conditional) density function to
data measurements that putatively have been stochastically generated based on an (unknown)
multimodal density function. The resulting class-conditional models are then used in a plug-in
Bayes classification rule [2]. For this application, model order selection (estimating the number

of mixture components) and model structure selection (determining e.g. whether components



use diagonal covariance matrices, full matrices, or covariance structures of intermediate complex-
ity [5]) may be helpful for maximizing classification accuracy. They are also useful for limiting
computation and/or memory storage associated with classifying or evaluating the data likelihood
for new (test) samples. Toward this end, one seeks the minimum number of components (or
parameters) needed to accurately fit training (or validation) data.

While limiting computation/memory is of practical import, model order and structure selec-
tion are most compelling, and in fact at the heart of the problem, when mixtures are used as a
model-based approach [5] to unsupervised clustering. Here, one is concerned with identifying the
(a priori unknown) underlying groups or classes comprising a given data set: i) the number of
groups; ii) a model for each; and iii) the hard/soft membership of each data sample in each group.
In this context, mixture model order selection estimates the number of clusters in the data set
and structure selection estimates a cluster’s shape (and e.g. whether features are statistically
independent, given the cluster of origin).

Model order and model structure selection are intimately intertwined, as illustrated in Figure
1.1. Here, the data were generated based on three bivariate Gaussians. When naive Bayes GMMs
(i.e., with diagonal covariances) are learned, application of the widely used Bayesian Information
Criterion (BIC) [6] leads to gross overestimation of the true order (11 components are estimated).
In a semisupervised learning context [3],[4], the undesireable consequence (also depicted in Fig.
1.1) may be that some mixture components will not “own” any labeled samples, which may make
it difficult to classify samples belonging to these components. By contrast, when GMMs with full
(unconstrained) covariances are learned, BIC selects the true model order, three.

GMDMs with full covariances offer the most flexible data representation. However, they also
require estimation of d(d — 1)/2 free parameters per component. When the data sample X =
{zq,...,2zy} is small relative to d, there may be insufficient samples to accurately estimate all

these parameters. There is also potential for estimating singular covariance matrices [7], especially
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Figure 1.1. Bivariate Gaussian data overlayed with contours at component density value equal to 0.002
for learned Naive Bayes and Full Covariance Gaussian models. Squares indicate labeled examples. Naive
Bayes components 2, 4, 7, and 8 contain no labeled examples when points are assigned to components
based on a maximum likelihood decision

for small N. Finally, consider model order selection criteria such as BIC:

N
log N —log [ [ px (z:|0(M)), (1.2)

i=1

[O(M)]

where |O(M)| is the number of free parameters in an M-component model. If N is small, the like-
lihood benefit (second term) associated with a full-covariance model may be greatly outweighed
by the model complexity (first term) required to achieve it. In this case, BIC minimization, as
well as other penalty function based model selection methods, e.g. [8],[9], may grossly under-
estimate model order, as was previously demonstrated in [10] for modeling text documents. A
variety of strategies have been taken to address model order and structure selection for GMMs
and for mixtures in general, as we next review.

Since the number of model parameters typically grows superlinearly with feature dimension,
one strategy for reducing model complexity is to apply dimensionality reduction prior to cluster-

ing. Feature transformations such as PCA/SVD are often applied for dimensionality reduction,
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e.g. [11], but may lose interpretability with respect to the original set of features. Alternatively,
unsupervised feature selection methods have been explored in recent years [12],[13],[15],[10]. This
problem is inherently formidable. Even supervised feature selection is challenging [14], mainly
due to the vast set of candidate feature subsets, exponential in d, which precludes exhaustive
search. However, in the supervised case one at least has knowledge of the number of classes
present, and with labeled examples of each. One can thus readily apply supervised class discrim-
inability measures (error rate, class entropy, mutual information, signal-to-noise ratio, and other
criteria [14]) to evaluate candidate feature subsets. By contrast, in the unsupervised case, there
is a more insidious “chicken and egg” problem. “Good features” are cluster(class)-dependent,
but “good clusters” are also feature-dependent — without feature reduction that is successful in
removing many irrelevant /noisy features, clustering methods are likely to find poor solutions that
do not partition the data set into compact, well-separated clusters and that fail to capture the
ground-truth cluster structure. This is particularly true when the data is high-dimensional [10].

Unsupervised feature selection methods can be categorized into those performing explicit
feature selection and those performing implicit selection. [12] wrapped explicit feature selection
(forward feature growing or backward feature elimination [2]) around maximum likelihood-based
learning of Gaussian mixture models. The authors recognized that standard criteria for evaluating
candidate clustering solutions are biased with respect to the number of features — data likelihood
tends to decrease with d, while cluster separability measures based on within and between-
cluster scatter matrices tend to increase with d. A “cross-projection normalization” criterion was
thus proposed to mitigate this bias and allow “fair” comparison of solutions with both different
numbers of features and clusters.

One heuristic aspect of [12] is the use of different learning objectives for the clustering and
feature selection steps. Implicit feature selection methods [15],[10], by contrast, perform mixture
modeling on the full feature space to optimize a single objective function. Although these methods

explicitly model all features, they achieve effective feature selection by optimizing over the choice



of whether a feature is modeled by a cluster-specific distribution or by a “background” distribution
that is commonly accessible by all the mixture components. Background modeling is also used
in [13]. A feature that is modeled using the background mechanism by all clusters does not
significantly contribute to cluster determination and has been, in effect, removed. The use of
background models is a special type of parameter sharing which can greatly reduce the number
of free model parameters and thus help to mitigate the problem of model order underestimation
[10]. [13] applied a wrapper-based method similar to [12] for document clustering, selecting both
which features (words) are cluster-specific and selecting the clustering solution so as to maximize
the Bayesian integrated likelihood. Instead of making hard decisions on whether features use a
component-specific or background representation, [15] introduced soft feature “saliency” weights
€ [0,1] and used an alternative structure and order selection criterion. While [12], [13], and
[15] all tied the (explicit or implicit) feature space across all mixture components, [10] allowed
a more flexible representation, with each cluster freely choosing its own feature subset to be
modeled in a component-specific fashion (with the complement feature subset modeled using
background distributions). Thus, each cluster/component will in general have its own distinct
feature space. [10] developed a learning framework achieving joint minimization of the BIC
criterion with respect to all model parameters — the number of components, each component’s
feature space, and all component parameters. This method was demonstrated in [10] to achieve
better modeling accuracy than [15] and was also shown to give promising model order selection
results for high dimensions (documents, with d as large as 20,000).

However, a significant limitation of [10],[13], and [15] (but not of [12]) is that these methods
were only developed for naive Bayes mixtures, i.e. those for which the joint density function,
conditioned on the mixture component, factors as a product over individual feature densities —
in the Gaussian case, these methods restrict covariance matrices to be diagonal. Model order
and structure selection for GMMs with more flexible covariance structures has been considered

in several past works. [5] wrote the covariance matrix in the form X = )\kaAkD,z, with A\, a



scalar volume parameter, Ag a diagonal matrix with entries proportional to the eigenvalues of ¥y,
and with matrix Dy determining the principal component directions. The authors applied BIC
for model selection and evaluated a small set of special case covariance structures, for varying
M: i) ¥p = Ml (spherical, volume unconstrained); ii) Xx = ¥ = ADADT (tied across all
components); iii) Xy = A\gDpArD] (unconstrained for each component); iv) ¥ = ADyADY
(orientation unconstrained); v) X = A DpADy (orientation and volume unconstrained). An
alternative, latent variable model that gives more flexible covariance parameterizations is the
mizture of factors analyzers (MFA) [16]. MFA assumes the following stochastic data generation
under mixture component k: X = Ky + AxZ + N, where N is multivariate Gaussian with
covariance matrix ¥, Z, the factor vector, is [-dimensional (I < d) multivariate Gaussian with
zero-mean and identity covariance matrix, and with Ay the “factor loading matrix”. X is thus
multivariate Gaussian under component k£ with mean p; and covariance matrix X = AkA{ + .
If U is a scaled identity matrix, this model is equivalent to mixture of principal component
analyzers (MPCA) [17]. MFA (and MPCA) allow varying the effective dimensionality of each
mixture component and, thus, the number of free parameters specifying covariance matrices, by
varying the factor dimension [. The matrix Ay is d x [, and when [ is varied up from zero, the
matrix ¥y achieves full degrees of freedom once ! exceeds (d + 1)/2. Thus, degrees of freedom in
Yk are varied in steps of size d (with each added or deleted column of Ay) in the MFA model.
Another parameterized GMM approach is the extended maximum likelihood linear transformation
(EMLLT) [18], proposed for speech recognition, which expresses the inverse covariance (precision)
matrix as a linear combination of outer products. In principle, this model allows finest-grain
variation of the number of free covariance parameters, i.e. variation from d up to d(d + 1)/2
parameters in steps of size one. However, [18] assumed this parameterized covariance structure
is tied across all mixture components. Moreover, there was no principled model order selection
in [18] (reasonable in a speech recognition context, where the number of components may be

heuristically chosen).



Bayesian approaches have recently been widely applied for both learning and model order
and structure selection in mixtures, e.g. [21],[19],[20],[16]. A Bayesian framework is the proper
approach for incorporating actual prior knowledge on distributions of parameter values. Even
when such knowledge is unavailable, Bayesian learning can help to avoid singular regions of
parameter space and can compensate for an inadequate training sample [21], achieving parameter
smoothing and penalizing “outlier” parameter estimates. A Markov chain Monte Carlo (MCMC)
learning approach that allows estimation of the number of components in GMMs is developed in
[20]. However, this method assumes diagonal covariances. Alternatively, [16] derived a variational
lower bound to the Bayesian evidence and maximized this lower bound in estimating MFA models.
Their approach estimates both the number of components and the number of factors (and hence
the covariance structure) used by each component.

In this paper, alternatively, model order selection in GMMs is performed consistent with min-
imization of BIC. On the one hand, BIC is based on the Laplace approximation to Bayesian
integration [22], which is cruder than the variational approximation to Bayesian evidence consid-
ered in [16]. On the other hand, [16] optimized over MFA models, which only allow variation in
covariance degrees of freedom in steps of size d, whereas our method allows finest-grain variation
in complexity of the covariance structure for every component, from zero degrees of freedom up
to d((d + 1)/2 in steps of size one. Moreover, in [16], the prior distribution over the mixture
model parameters factors as a product over each component, i.e., there is an implicit assumption
that the model parameters for different components are independently generated. In this work,
parameters are not assumed to be independently generated. In fact, statistical dependencies
across components are exploited in order to achieve efficient description (coding) of parameter
tying structures across components. This efficient parameter coding allows more mixture com-
ponents to be included in the model for small sample sizes, which helps avert the problem of
model order underestimation — our approach achieves more accurate model order selection than

standard methods for small sample sizes. Our work represents a significant extension of the parsi-



monious modeling framework from [10], which was restricted to mixture models with naive Bayes
structure. Here we develop a parsimonious modeling and model order and structure selection
method for multivariate Gaussian mixtures which allows for and optimizes over parameter tying
configurations across mixture components applied to every individual parameter, including all co-
variates. We derive a generalized Expectation-Maximization algorithm for (BIC-based) penalized
likelihood minimization. This algorithm, coupled with sequential model order reduction, forms
our joint learning and model selection. Our method searches over a rich space of models with dif-
ferent (data representation, complexity) tradeoffs and, consistent with minimizing BIC, achieves
fine-grained matching of model complexity to the amount of available data. In Chapter 2 our
method is developed. Chapter 3 presents experimental results. The paper is then summarized in

Chapter 4.



Chapter

Penalized Likelihood Minimization for Learning and

Model Order Selection

2.1 Parsimonious Multivariate Gaussian Mixtures

Consider the mixture density function in (1.1). Each component density is assumed to be multi-

variate Gaussian, i.e.
. 1 1 et
plalf) = gz exp 5@ —p) B - Ay (2.1)

where Ej and ij represent the mean vector and covariance matrix for component j '. In a
standard multivariate Gaussian mixture, each component uses a freely chosen value for every
mean and covariance parameter. Thus, |§(M)| = (d(d +1)/2+d)M + M — 1, with d(d + 1)/2
covariate free parameters per component?. However, as discussed in chapter 1, in order to allow
a rich set of data representation/model complexity tradeoffs, we consider structured Gaussian
mixtures that allow a particular form of parameter tying wherein, for each component, for every

scalar (mean and covariance) parameter, there is the choice of using either a component-specific

1The tilde notation is used to reflect possible parameter tying, as will be explicated shortly.
2There are M — 1 component mass free parameters.
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parameter value or an alternative value shared for possible use by every component. To represent
whether component j uses a specific or the shared value for the mean of scalar feature Xy, the
binary parameter u,; € {0, 1} is introduced, with u,; = 1 if a component-specific value is used and
ujr = 0 otherwise. Similarly, binary parameters {v;z} on variances and {w;x;} on off-diagonal
covariates are introduced. The full set of parameters usable by component j in our model is
thus: 0; = {{ny}, {05} {ogmads {mands {02} {owm}s {wind, {ojn}, {wjn}}, with the first three
subsets the component-specific means, variances, and covariates, and the next three subsets the
shared means, variances, and covariates, respectively. The total parameter set at order M is
0(M) = {{0,},{a;}}. Based on the binary switch values, the mean vector Bj and covariance

matrix 3, used in (2.1) are given by:

fje = s pjr + (1 — ujn) psk
532‘k = Vjk ng‘k + (1 =) 02 (2.2)

Gkt = Wikl Ojkl + (1 — Wjk1) Oski-

In the sequel, 7% will refer to terms of the inverse covariance matrix ;1.
’ j

2.2 Bayesian Information Criterion for Learning and Model Selection

This paper extends previous work [10], where a method for learning mixture models with naive
Bayes form was developed. As in [10], we propose to learn models and select the best model
order (number of components) consistent with minimization of the Bayesian Information Cri-
terion/ Minimum Description Length (BIC/MDL). BIC is a theoretically grounded estimator [6]
that is widely used for mixture modeling [5],[7]. In [10], it was shown for naive Bayes mixtures
that, so long as the mixture model affords a wide range of model parsimony/data fitting tradeoffs
(achieved by allowing flexible degrees of parameter sharing), BIC minimization yields reasonable

model order estimates even for very high feature dimensions and small sample sizes (as seen,
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e.g. for clustering text document databases). By contrast, model order selection applied to stan-
dard mixtures, which can only vary complexity by changing the number of components, grossly
underestimates the true order in high dimensions [10].

The BIC/MDL cost (1.2) can be rewritten generically in the form:

N M B
BIC(O(M), X) = CO(M,O(M)) 3 log (Z ajp[mej]), (2.3)
i=1 =1

with CC(+) the number of bits describing the model. In [10], a simple yet efficient coding scheme
for ©(M) was devised, with associated model codelength CC(-). Here, this scheme is extended
to address the multivariate Gaussian case. In [10], feature distribution sharing was employed
— for each component, there was one binary parameter associated with each feature, indicating
that all parameters specifying the feature’s distribution (e.g., the mean and variance) either use
i) component-specific values or ii) shared values, available to all the mixture components. Here,
instead, we invoke parameter sharing, with a distinct binary parameter (switch) associated with
every variable: means, variances, and covariates, as indicated in (2.2). The overall model com-
plexity can thus be additively decomposed into four terms, the first to specify the M component
masses®, with the other three corresponding to each variable type (mean, variance, covariance):

M-1
2

CC(M,0(M)) = log N + CCu({uj}, {ije}) + CCu({vjn},{57:}) + CCuw({wsar}, {Gjm}). (2.4)

To specify the terms in (2.4) we must add up the description lengths for every real-valued
scalar parameter, and for all binary switch variables. We focus on efficient coding of these latter
variables. A naive choice would be to estimate the codelength for all the switch variables as
M(d(d — 1)/2 + 2d) bits, i.e. assuming all configurations of switch variables are equally likely.
However, such a coding scheme is inefficient if many parameters are either purely component-

specific, or purely shared, across all components. We would expect the latter to apply for small

3There are only M — 1 free parameters since the masses must sum to one, with a % log(N) description length
for each scalar, real-valued parameter in the BIC framework.
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sample sizes. Thus, we devise a coding scheme that separately considers, for each parameter, the
cases where i) all components use a shared value; ii) all components use a component-specific
value; iii) some components use the shared value and some use component-specific values [10],
with high codelength efficiency achieved in cases i) and ii). Since the same coding scheme is
applied for the means, variances, and covariates, the cost terms CCy(), CC,(), and CCy,() have
identical forms; thus, to specify the complete model complexity CC(M,O(M)) we need only
explicitly discuss coding of the means, with this development also specifying the form of CC,()
and CCy ().

In our scheme, we first use dlog,(3) bits to specify, for all d mean parameters, which case
applies ( 1), ii), or iii) ). Then, for each scalar mean, based on the relevant case, more information
is needed to specify the parameter values across components. Consider the means {fijx,j =
1,..., M} associated with feature k. Under case i) (Z ujr = 0), only the shared parameter value
needs to be described, at cost 1 log(NN) bits. Under jcase ii) (3_wjr = M), we must describe all
M values, at cost % log(N). For case iii), M bits specify the szitch value for each component,
%( gl:l u;jr)log(N) bits describe the component-specific means, and %log(N) bits specify the shared

j:
mean. The overall code length for the means is thus:

d
- 1 M
CCu({use}, {ijn}) =dlog3+ > Fi(ux) 5 log N + Fa(ux) - log N+

k=1
1 Mo
Fg(uk)(QlogN—l—jz:luijlogN+Mlog2)], (2.5)
where we have applied the set definition ux = {u;x,j =1,..., M}, and where

M
1 if Z Uik = 0
j=1

F1 (uk) = (2.6)
0 otherwise
M
1 if Z Ujk = M
Fz(uk) = J=1 (27)

0 otherwise
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M
1 if0< Z Uje < M
F3(uk) = Jj=1

0 otherwise

The dlog(3) term does not depend on M or any of the switch variables and can be removed.

The complexity cost for the variances CC,(-) has an identical form. The complexity cost of the

covariate parameters also has the same form, except with dd-1) parameters of this type, rather

than d. Ignoring terms independent of M and the switch variables, the overall model complexity

is thus the sum (2.4), based on CC, (M, {u;}) with the dlog(3) term removed,

1 M
CCy(M,{vjr}) Z (F1(vi +F3(vk))§logN+Fz(vk)glogNJr

k=1

M
1
Fs3(vk) Z (vjk§ log N) + F3(vik)Mlog2|,

j=1

and (2.8)

CCw(M {wjm}) =) >
k=11=kt1

1 M
(F1 (Wk1) + F3(Wk1)) 5 logN +4 FQ(W}(])7 log N+

F3(Wk1) E (wm IOg N) + F3(Wk1)M10g 2:| . (29)

2.3 Learning the Model

For an M-component mixture, there are 2M(d(d=1)/24+2d) o]oha] shared-parameter configurations,
representing a large set of model complexity/data fitting tradeoffs. In this section, we develop a
generalized Expectation-Maximization (GEM) algorithm [23] to locally minimize BIC over these
configurations and over all other parameters in ©(M), given fixed M. This minimization at fixed
M is coupled (in Section 2.5) with model order reduction to jointly optimize over both model
orders and the parameters at a given order. The reader interested in learning the basic theory
behind Expectation Maximization algorithms is referred to [26] and [27].

In the M-step of the EM algorithm, one chooses all parameter values to globally minimize the
expected penalized log-likelihood [24]. For some models (as is the case here), it is intractable to

achieve this joint optimization over the full parameter set. However, it may still be possible to
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break the parameter set into subsets such that, keeping all other parameters fixed, one can either
globally minimize with respect to a given subset or, at least, produce parameter updates for this
subset with guaranteed monotonic descent in the expected penalized log-likelihood. One can
then define cyclical minimization over the subsets, revisiting each parameter subset in turn given
values for all other subsets held fixed. Algorithms based on these parameter subset optimizations
are called generalized EM algorithms [23],[25]. The GEM approach is required for optimizing over
our parameter set, ©(M), due in particular to nonlinear dependencies involving the covariate and
switch parameters. For our GEM algorithm, we partition ©(M) into parameter subsets of each
type and apply a suitable optimization method for each subset. Specifically, for each iteration of

our GEM algorithm, we perform the following:

1. a standard E-step, given all parameter values fixed;

2. a generalized M-step which sequentially optimizes over each variable type given parameters

of other types fixed:

(a) a closed form M-step for updating {«;} given the E-step result;
(b) generalized M-step updates for the component-specific means, then the component-
specific variances, followed by gradient descent for component-specific covariates;

(¢) generalized M-step for shared means and gradient descent for shared variances and

covariates;

(d) generalized M-step updates, in turn, for the switch variable subsets {w; },{vjx },{w;xi }-

Each parameter update within our GEM iteration is a descent step in BIC (2.3) [24]. The overall

algorithm thus descends in BIC at fixed order, M. We next specify each GEM iteration step.

2.3.1 E-Step

We treat as hidden data within EM [24] the (exclusive) component of origin for each data point,

Z;; € {0,1}, where Z,;; = 1 if x; was generated by component j. Then, based on the current
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parameters, we compute the expected hidden data values via Bayes rule:

P(Z;; = 1]plzi| Zi; = 1;0,] a;pla;|f;]
E[Zig| X5 0] = PIZ; = 1o (M) = —=2— "8 = == —
i .
o Z—l U p2i|0rm]
(2.10)
Given these probabilities, the expected complete (penalized) log likelihood is:
N M }
E[BIC.(6(M); X)) = CC(M,0(M)) = > 3 [p[zij = 1|z - (1og a; +1ogp@|ej])} . (2.11)

-

i=1 j=

We next develop generalized M-step updates for ©(M) which are strictly nonincreasing in (2.11).
The theory behind the EM algorithm [24] ensures that these updates (and, moreover, alternating
E-steps and generalized M-step updates, comprising iterations) are also nonincreasing in (1.2),

the BIC cost which is our true objective function.

2.4 Generalized M-Step

In the sequel, in defining our GEM steps, updated parameters will be denoted using either a sub-

script or superscript ‘new’, with the notation for current (fized) parameter values left unmodified.

2.4.1 Component-specific Mass Updates

Setting partial derivatives of (2.11) with respect to the {a;} equal to zero, and constraining the
sum of the masses to equal one, we arrive at (standard) closed form M-step updates for the

comp onent masses:

N
alv = Z Zij =1z V) (2.12)
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2.4.2 Component-specific Mean Updates

After inserting (2.1) into (2.11), if we likewise take partial derivatives with respect to {1} and

set to zero, we find the necessary optimality conditions given below:

N . d .
> P[Ziy = ai] [ 675 @i — 30 67 (2 — i)
=1 =1
1%k )
ik = Vi, k. (2.13)
PZ; = 1]zi] 67

o8

©
Il
=

Since these conditions do not decouple the pjx variables? (with dependence also on the in-
verse covariates), we further partition the mean variables into subsets across components, i.e.
Hujr,j=1,...,M},k=1,...,d}, with sequential (global) optimization performed in turn over
each mean parameter subset, for increasing k, i.e. the updates:

ﬁij[Zij = 1ai) |67 wir — 3 67 (wa —wupt™ — (L= wj)pst) — 32 67 (wa — fijn)

new <k 1>k .
Hik = V3, k.

P[Zij = 1|z] 674

o

<
Il
-

(2.14)

Note that for computing pii", we are using all newly updated (component-specific) means Wi

I < k. Note further that, as indicated in (2.14), we apply updates to all component-specific
parameters during every GM-step even though some may not be in use due to the state of the
switches, e.g. if ujr = 0, then fi;i, and therefore (2.11), has no dependence on k. It is not
immediately necessary to update this parameter. However, subsequently, we will optimize the
{u;r} switches given all other parameters fixed. In this step, the updated component-specific
parameter, given by (2.14), will be needed in order to best evaluate the optimal binary state
of uj,. Thus, even if uj;, = 0 currently, we still update p;;, to anticipate possible switching to

Uik = 1.

4Note in particular that fjr = uj pgr + (1 —wjp) ps-
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2.4.3 Component-specific Variance Updates

The component-specific variance GEM step closely resembles the mean step above, with the same
parameter subset partitioning across components, with the effect of updates for one parameter
subset “propagated” to the next visited subset, and with updates of all variance parameters,
irrespective of the values of the switch variables, in order to “anticipate” subsequent optimization

of switches on the variance variables. The variance updates, given below, are derived in Appendix

A:
> PlZ.. = ) SR ) rnew . mnew\ = jkp =jkq 5ikk S 5Ikp =
[ ij = 1|M Z Z (-sz — Mjp )(Izq — Mjq )O'newgnew — Ohnew Z OhewOjkp
=1 p=1qg=1 p=1
2 p#k .
Ujknew = V‘], k.

(52)" % PLzs = 1la

(2.15)

Some clarification of (2.15) is required. First, in the above equation, if a mean parameter is

new new

currently component-specific, we are defining ji};™ = p7;", whereas if the parameter is currently

snew

shared, we are defining 7" = pgp. Second, we must clarify what is meant by Gika in (2.15).
Consider the update of a variance parameter subset, {O’?k, j=1,...,M}. For every component j
with v, = 1, this parameter subset update effects a change to the component’s covariance matrix
f)j, and thus to the inverse covariance matrix 2;1 To reflect this, we must recompute the inverse
covariance matrix for every affected component, in-between variance subset optimizations, in
order to use the proper inverse covariate values (as indicated by the “new” subscript) for updating
the next parameter subset (k+1). Since each variance update makes a rank-one modification to a
covariance matrix, efficient (O(d?), rather than O(d?)) covariance matrix inversion can be done,
based on the well-known Sherman-Morrison-Woodbury identity (See Appendix B for details).

Note also that for the first subset (k = 1), the “new” inverse covariate values are just the current

values.
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2.4.4 Component-specific Covariates

Unfortunately, no closed form update exists for component-specific covariance parameters, even
considering parameter subsets of size one. Thus, as a GM step for these parameters, we perform

gradient descent, based on the partial derivative form given below:

0
E|BIC.(6(M), =
5 PLBICO0M). )]
N . 1 d d 4 . ‘ 4
Z P[Zij = 1|&} /M — 92 Z Z(mip - ﬂjp)(xiq - ﬁjq)(5jpk&]ql + 5Jpl5]qk) .
=1 p:l q:l

The covariate parameters are partitioned into d(d — 1)/2 subsets of size M, each containing a
single covariate taken across all components. Gradient descent is performed sequentially over
these parameter subsets, with covariance matrix inversions needed both between parameter sub-
set optimizations and within parameter subset optimizations, after each gradient step. Again,
efficient (O(d?)) matrix inversion can be performed after each covariate update, using a simple

algorithm described in Appendix B.

2.4.5 Shared Mean Updates

The shared mean parameters can also be updated in closed form, sequentially, as given below:

N ~jkl sikl -
3 3 (1= wn) Pl = e o~ 5 Sk (o = wisg (1= w)ul?®) = £ e (o~ )|
>

1<k
N M
_Zl _Zl(l — k) P[Zij = 1|z4]
i=1j=

Vk s.t. Zvjk < M.

J

(2.16)

Again, the updated shared mean p7¢" is used in computing pl7* for [ > k. Note also that if

M
>~ ujp = M, there is no dependence in (2.11) on ;. However, unlike the case of a component-

j=1
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specific parameter, it is not straightforward to choose ug; to optimally anticipate possible switch-
ing within uy — the number of such switch configurations that use the shared value is 2™ —1, each
with its own optimal ug value. It clearly becomes impractical to evaluate all these anticipatory

shared values as M increases. We suggest a practical alternative to this in Section 2.4.8.

2.4.6 Shared Covariate Updates

Unfortunately, there is no closed form update for shared variance and shared covariance param-
eters. Thus, we again invoke gradient descent to update these parameters, based on the partial

derivatives given below:

0
A2 EBIC.O(M), X)) =
sk
N M O'Jkk 1 d d . .
ZZ(l — k) P[Zij = 1|zi] QZZ Tip — fijp)(Tig — fljq) (0 kg )
i=1 j=1 p=1q=1
O piBIc.(o(),x)] =
00 sk ¢ =

N M d d
- 1
E § (L = wjkt) P[Zi; = 1|z |: o D) E:Z Tip — fjp)(Tig — fijq)(G P 4 57 G ]qk):| .

i=1 j=1 p=1g=1

(2.17)

Consistent with our above discussion on shared means, we only perform gradient descent on o2,
if > v < M and on o4 if Y wjr < M. For the cases where shared variances or covariates are
J J

not currently being used, our practically viable approach to updating these shared parameters is

described in Section 2.4.8.

2.4.7 Optimizing the switch parameters

Now, fixing the component-specific and shared parameters, we would like to determine the switch
configuration which minimizes (2.11). Unfortunately, with 23 M(3d+d?) possible configurations, it
is infeasible to exhaustively search for the globally optimal solution. However, following [10], we

are able to apply GEM updates for these parameters, ensuring monotonic descent in BIC, in



20

an efficient manner by in turn optimizing over the parameter subsets: ux,k =1,...,d, vk, k =
1,...,d, and wy, Vk, [, while holding all other parameters in ©(M) fixed.

To optimize a particular parameter subset, we calculate the expected complete data BIC cost
of the best configuration for each of the three cases ( i) all switches on; ii) all switches off; iii)
some switches on and some off) and choose the one with least cost. In this way we achieve global
minimization over all possible configurations for this parameter subset (given all other parameters
fixed). For both cases i) and ii) there is only one switch configuration to evaluate. For case iii),

there are 2M

— 2 possible switch configurations. To find the optimal switch settings for case iii),
we note that (2.11) can be additively decomposed over terms which each depend on only one

member of the switch subset. For example, given F3(uyx) = 1 (signifying case iii)), we can write:

E[BIC.(6(M),X] =Co+ Y

(ujk; log N) = (Plzi; = 1]z -1ogp[xi|éj])] o (218)

i=1

where Cj is a term that has no dependence on variables from uy, and where we note that each
term inside the sum over j has dependence on uy only through the single switch u;;. Thus, the

optimal switch configuration for case iii) is found by individually choosing w;; = u7, Vi, where:

vt (Glogn) - S (Pl = el toxpladdl)| < 3 (PLz = 1l lowri)

i=1

ujk = u;=0

0 otherwise
(2.19)

Then, calculating the expected BIC cost for case iii) by plugging our optimal switch values above
into (2.11), and comparing this value with the costs from cases i) and ii), we choose the subset
configuration which minimizes (2.11). That is, the optimal switch configuration must now be
either w;, = 1Vj, uj, = 0Vj, or w;, = uj,Vj. Whichever one provides the least BIC cost is chosen.
This process is sequentially performed, in turn, on every subset ux, k=1,...,d, vii, k =1,...,d,
and wyVk, [ applying the same discrete optimization strategy. The EM framework is pivotal to

this switching optimization method — the expected complete data BIC cost is additive over terms
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that have dependence on only a single switch within any switch variable subset (e.g., uy) that we
jointly optimize. By contrast, the BIC cost itself has complex dependence on all variables within

a given switch variable subset.

2.4.8 Unused Shared Parameter Updates

As discussed earlier, updates for shared parameters, e.g. shared means, are well-defined so long as
Z ujp < M. If Z ujr = M, unlike the case of unused component-specific parameters, there does
J J

not exist a simple, single shared parameter update which can optimally predict future switching.
Instead, we follow the heuristic method of [10] to search for an improved shared parameter
and switch configuration. For each shared parameter p € {usk, 0%, 05} and its corresponding
switch subset s = uy,vk, or wy for which Zsj = M, we perform the following steps for each

j
jed{l,....,.M}:

1. Trial-set p to its corresponding component specific parameter, fi;, sz-k, or 0.

2. Determine the optimal s configuration (see Section 2.4.7) given these trial-updated param-

eters.

3. If Y"s; < M, update p via its GEM update rule described earlier, evaluate the new cost
J

(2.11), and record this trial’s BIC cost and parameter value p.

After trial-setting the shared parameter based on each single component-specific parameter as

described above, we choose from the (< M) candidate settings the one that yields the lowest

BIC cost. If none of the trial-settings gives a configuration with > s; < M, we simply keep our
J

current parameter value p.

2.5 Model Order Reduction

The previous subsections described how we minimize BIC for a given model order M. To also

optimize over M, we first set the model order to M = M4, (chosen to overestimate the number
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of components). The GEM algorithm is then run to minimize BIC at this maximum order.
Next, we remove one component and relearn the model at the reduced order. This procedure is
repeated, reducing the model all the way down to a single component while recording the BIC
cost at each order. The final selected model (and associated order) is the one with smallest BIC
cost.

Various methods exist for choosing which component to delete during the model order reduc-
tion step. In [28], the authors trial-delete each component, relearn M candidate reduced-order
models, and retain the reduced model with least cost. However, since our learning is compu-
tationally complex, trial-deletions are a time-consuming luxury. Instead, we follow [9] and [10],

simply deleting the component with least mass.

2.6 Implementation Details

We preprocess the data by normalizing to zero mean and unit variance. Starting estimates for the
{a;} and {p;1} parameters are then initialized using the K-means algorithm with K = M, 4, ini-
tial centers randomly chosen from the data points. Component-specific variances and covariances
are initialized as the maximum likelihood estimates based on the clusters resulting from K-means.
Initial shared means are set to zero and shared variances are set to 1 (the maximum likelihood
values for the entire normalized data set). At all times during the optimization, variances are
constrained to be at least 0.1 to avoid singularities.

For the gradient descent minimizations, a momentum term was added, with coefficient 0.75
(weighting the previous parameter update). Due to much larger gradient magnitudes for shared
covariates, different learning rates were chosen for the component-specific and shared covariate
(and variance) gradient rules and used on all tested data sets — 1073 for component-specific
parameters and 3 x 107> for shared parameters. For each (trial) gradient step taken, positive
definiteness of the relevant covariance matrices is checked. If a matrix is no longer positive

definite, the step length is halved and another trial gradient step is taken. Gradient steps are also
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only retained if they lead to decreases in the BIC cost. Gradient descent for a given parameter is
terminated if the change in parameter value from one step to the next falls below 10~7. Finally,
updates for unused shared parameters are performed quite infrequently — roughly three times,
spaced out during optimization at a given model order, M. The overall algorithm was deemed
converged at a given order when the change in BIC cost from one iteration to the next was

negligible.

2.6.1 Computational Complexity

The greatest computation is required for updating covariances, with the associated matrix inver-
sions. The complexity for updating all covariate parameters for all components is bounded by
O(Md* + M Nd?), with the first term associated with O(Md?) matrix inversions and the second

term due to gradient descent updates.

2.6.2 Avoiding singular components

Several heuristics were also introduced to avoid the well-known problem of producing singular
covariance matrix estimates [7]. First, at each order M, the model is initially forced to use a
shared representation for all covariate parameters by fixing wjr = 0 V5, k,l. This ensures that
good shared covariate models are available at the outset at each model order. Second, we only
allow a component-specific covariate to switch on (w;, = 1) if the component has “sufficient”
mass, considering the sample size relative to the feature dimensionality, i.e. only if o;- N > K xd,
with K a chosen threshold. In addition, the shared parameter, oz is only updated as part of the
GM step if % (1 —wjrr)a; - N > K = d. In all our tests, the threshold value K = 2.25 was used
j=1

as this was found to avoid singularities and provide less variance in the learned models without
compromising our method for relatively large datasets (for which singular covariances are less

of an issue). The complexity cost term which describes covariances must also be accordingly

modified when these heuristic rules are active. In particular, assuming a coding scheme where
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component masses are transmitted to the decoder first, the decoder can infer whether or not
covariate switching is allowed for a given component j, based on the component’s mass. If it is
not allowed, there is no need to describe the parameters {w;x;Vk,}. However, updated shared
covariate parameters o4 Vk, [ must be specified to the decoder in this case since component j (if

not other components) will necessarily use shared representations for all covariates.
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Experimental Results

Experimental results comparing our method to two others are presented. The first is a method
which uses switching structure and learning steps identical to our proposed method for means
and variances, but while assuming diagonal covariances (all covariates zero), i.e. the naive Bayes
assumption. This is essentially the Gaussian version of [10], except that separate switches are
used on mean and variance parameters, instead of a single switch controlling both. Our method
is also compared to standard multivariate Gaussian models learned via EM, with model order

selection minimizing BIC.

3.1 Experimental Setup

Our models are learned in a completely unsupervised manner, i.e. without labeled examples, and
without knowledge of the number of ground truth classes. However, if available, this information
is used when evaluating the performance of the learned model. The unsupervised learning models

are evaluated using three performance criteria:
1) accuracy in estimating the number of components
2) test set log-likelihood

3) test set classification accuracy
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After model learning, test set classification accuracy is calculated by the following steps:
Step 1) assign each point of the test set to a component based on a maximum likelihood decision.

Step 2) hard-associate each component to the ground truth class from which the component owns

the most data.
Step 3) measure the fraction of the data points assigned to components with the correct class label.

In addition to unsupervised learning, we also applied our method to create plug-in Bayes
classifiers. Here, the labels of the training data are used to split the data into separate subsets,
one per class, with a class-conditional GMM then learned for each class and used in a plug-in

Bayes classification rule. The classifiers are evaluated for test set classification accuracy.

3.2 Synthetic Data

Syntheic Data sets of N = 3000 points were generated, each with d = 7, based on a 3-component

GMM with equal component masses and with other parameters specified as:

_0_ _4100000-
0 1210 0 0 0
0 0110 0 0 0
m= o Yi=l0 001 0 0 0 (3.1)
0 ooo0o0 1 -3 -4
0 oo0oo0o0 -2 1 3
0] 0000 -3 F 1
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Note that features 4,5,6, and 7 are uninformative (all parameters for these features common
across components). Components 2 and 3 share a mean for feature 1 and all variance and
covariance parameters. Component 1 shares a mean for feature 3 with component 2, and has
unique values for the variances of features 1 and 2, and for the covariates between features 1
and 2 and between features 2 and 3. All other parameters of the ground-truth components are
shared.

Twenty different realizations of the above data were created, and for each realization our model
was run for twenty different random initializations, using all the training data with M,,., = 20.
For each of the 400 runs, the ground-truth order of 3 was chosen. Ounly 6 of the 400 runs (1.5%)
were able to capture the exact sharing structure, with all 105 switches matching the ground-truth

sharing structure. However, only small deviations in switch structure were found on the other
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runs. In total, evaluating all 105 switches for each of the 400 runs, 96.08% of the switches matched
the ground-truth sharing structure.

Next, our method was compared to the naive Bayes and standard multivariate Gaussian
methods. Each (of the 20) realizations of the synthetic data was split into training and test sets.
For each of the three methods, for each data realization, models were learned starting from each
of the 20 initializations, using 5%, 10%, and 50% of the data as a training set. Test set accuracy
in classifying samples to ground-truth components and test set log-likelihood were calculated
using the remaining portion of the data set, with the results averaged over all 400 (realization,

initialization) trials. The results are summarized in Table 3.1.

Table 3.1. Selected model order, test set accuracy and log-likelihood comparisons for synthetic data of
3000 data points generated by 3 ground truth classes with feature dimension of 7

Data Set Method M~ % test set acc. test set log-likelihood
mean  (std dev) | mean (std dev) mean (std dev)
50% train proposed method 3.00 0.00 97.10 0.33 -10292.2 31.6)
NB with sharing 15.5 2.58 93.39 1.03 -11033.6 75.7)
std. Mult. Gaussian | 3.00 | (0.00) | 96.82 | (0.25) | -10360.7 | (73.9)
10% train proposed method 3.10 0.31 96.16 6 37 -18873.7 (110.9)
NB with sharing 6.80 0.75 86.89 3.35 -20738.6 252.4
std. Mult. Gaussian | 2.30 0.45 75.08 (13.71) -19448.6 E242.1§
5% train proposed method 3.05 0.22 95.34 1 11 -20469.1 (154.9)
NB with sharing 3.80 0.87 71.02 9.77 -22828.8 (342.2)
std. Mult. Gaussian | 1.60 (0.49) 52.96 | (15.91) | -21657.1 (376.3)

Our method found the ground truth model order of 3 on nearly all runs, for all training sizes
tested. The standard multivariate Gaussian method achieves similar results when the number
of training points is large (50 % case), but regularly underestimates the order as the number
of training points is lowered. As a result, test set accuracy and log-likelihood suffer severely at
10% and 5% training. Meanwhile, the naive Bayes model always performed significantly worse,
attempting to model data which (ground-truth) includes large nonzero covariances. When the
training data is large, the naive Bayes method chooses much higher orders in an attempt to
well-fit the data (similar to Figure 1). Even at these high orders, test accuracy and log-likelihood

are not comparable to performance of the other two multivariate models.
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3.3 Real Data

We measured performance of our method and the two comparison methods on 6 real-world
datasets from the UCI machine learning repository. For each dataset, the data was randomly
split 10 times into training and test sets. Training sets were created from 50% of the overall data
points, except on magic, where only 2.5% of the 19020 points are used for training. Performance
was evaluated using our three criteria, and means and standard deviations are reported for all
results. The datasets, in the order shown in Table 3.2, are: Wine, Statlog (Image Segmentation),
Breast Cancer Wisconsin (Diagnostic), MAGIC Gamma Telescope, Statlog (Landsat Satellite)

training set, and Connectionist Bench (Sonar, Mines vs. Rocks).

Table 3.2. Selected model order, test set accuracy and log-likelihood comparisons for 6 UCI Machine
Learning Repository data sets. N represents the number of total data points, d the feature space dimen-
sionality, and ¢ the number of labeled classes in the data.

Data Set Method MF % test set acc. test set log-likelihood
mean  (std dev) | mean (std dev) mean (std dev)
wine proposed method 3.60 (1.20) 93.15 (6.14) -1372.1 (89.5)
N=178 NB with sharing 3.50 0.59 92.5 3.11 -1396.5 (51.2)
d=13, c=3 | std. Mult. Gaussian | 2.00 0.00 61.12 8.68 -1551.1 (100.3
image proposed method 24.40 2.62 82.60 1.49 4074.6 716.7
N=2320 NB with sharing 25.80 2.57 81.97 2.11 -2471.4 427.5
d=18, ¢=7 | std. Mult. Gaussian | 8.00 (1.83) 64.52 (3.54) 3487.0 (786.6
wdbc proposed method | 5.20 | (0.95) | 92.24 | (2.94) | -3008.4 | (244.4)
N=569 NB with sharing 10.20 1.43 91.44 (1.78) -7193.6 327.3
d=30, c=2 | std. Mult. Gaussian | 2.00 0.00 86.18 | (11.14) -3936.6 442.5
magic proposed method 6.20 20.75; 76.00 21.09; -131267.3 22054.4g
N=19020 NB with sharing 8.58 0.82 75.10 1.21 -151911.8 1763.9
d=10, c=2 | std. Mult. Gaussian | 3.90 (0.70) 75.94 (1.10) -138643.9 | (2574.1)
landsat proposed method 12.10 (1.22) 65.15 (5.06) 8971.8 (663.4)
N=6435 NB with sharing 47.90 1.42 65.22 2.24 -26416.7 672.5
d=36, c=6 | std. Mult. Gaussian | 3.70 0.46 51.39 7.06 8312.8 793.9
sonar proposed method 5.80 21.73; 66.20 27.42; -8169.2 §334.1§
N=208 NB with sharing 5.50 1.37 64.51 4.45 -8107.8 280.4
d=60, c=2 | std. Mult. Gaussian | 1.00 (0.00) 53.37 (3.08) -10474.3 | (1276.9)

Several trends are apparent. First, as one would expect, our method tends to produce order
estimates which are higher than the standard multivariate Gaussian models, and lower than the
naive Bayes models. As was witnessed for the synthetic data sets, BIC based order selection
breaks down for the standard multivariate Gaussian method when not enough data is available

to overcome the large complexity cost associated with using many components. The other two
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methods use parameter sharing in order to provide needed flexibility when data is scarce relative
to the dimensionality of the data. In many cases, the naive Bayes method chooses an order much
higher than our method, which may be required for a naive Bayes Gaussian model to accurately
describe data with significant covariance structure.

When evaluating trends in test set accuracy, we first must consider the effects of the models’
much different order selection choices. First, it is no surprise that the accuracy and likelihood
of the standard multivariate Gaussian model are considerably lower when an order is chosen
below the number of classes in the data set. Even if the order is comparable to the number of
classes, a class may require several components to achieve accurate class-conditional modeling.
In table 3.2, there are clear cases where low model order selection leads to poor accuracy for
the standard multivariate Gaussian model. Second, we must recognize that a naive Bayes model
with many more components may in some cases be an equally strong classifier even for data with
highly correlated features. However, a slight improvement in test set classification accuracy for
our method over naive Bayes is an observed trend on these real world datasets. Our method
also exhibits significantly higher test set log-likelihood than the naive Bayes models. As with
our other performance criteria, the standard multivariate Gaussian method found lower test set
log-likelihoods than our method, much lower for small data sets (sonar, wine).

The same datasets were also used to create plug-in Bayes classifiers as described in Section
3.1. Results are summarized in table 3.3. Again, we found the naive Bayes method to provide
only slightly worse classification than our proposed method. The standard multivariate Gaussian

also exhibited good performance on most data sets, except sonar.
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Table 3.3. Test set classification accuracy for 6 UCI Machine Learning Repository data sets when used
to create a Plug-in Bayes classifier. N represents the number of total data points, d the feature space
dimensionality, and ¢ the number of labeled classes in the data.

Data Set Method Plug-in Bayes test % acc.
mean (std dev)

wine proposed method 96.20 (1.14)
N=178 NB with sharing 96.18 (0. 72
d=13, c=3 | std. Mult. Gaussian | 94.83 (3 64
image proposed method 93.31 1.11
N=2320 NB with sharing 93.16 1.15
d=18, ¢c=7 | std. Mult. Gaussian | 91.08 (1.60
wdbc proposed method 94.70 (0.90)
N=569 NB with sharing 94.60 (0.78
d=30, c=2 | std. Mult. Gaussian | 94.39 (0.81
magic proposed method 82.49 1.66
N=19020 NB with sharing 80.64 1.51
d=10, c=2 | std. Mult. Gaussian | 83.35 (1.23
landsat proposed method 87.17 (0.46)
N=6435 NB with sharing 88.03 (0.54
d=36, c=6 | std. Mult. Gaussian | 87.52 (0.41
sonar proposed method 78.46 §3 21
N=208 NB with sharing 77.98 2.86
d=60, c=2 | std. Mult. Gaussian | 64.23 (3.73
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Conclusion

We have developed a parsimonious modeling and model order and structure selection method for
multivariate Gaussian mixtures which allows for and optimizes over a rich set of tradeoffs between
data representation and model complexity. Our objective was to learn the most accurate models
(including accurate model order estimation) in the face of limited available data samples. This
paper significantly extends [10], which was only suitable for parsimonious modeling of naive
Bayes Gaussian (and non-Gaussian) mixtures. We have demonstrated that our GEM algorithm
for (BIC-based) penalized likelihood minimization is effective and largely robust in learning model
parameters and choosing the correct model order and model structure (tied versus component-
specific parameters) for simulated data sets generated based on specified ground-truth mixtures.
We also compared against parsimonious modeling of naive Bayes Gaussian mixtures [10] and
against standard multivariate Gaussian mixtures (full covariances), for several evaluation criteria:
i) estimating the number of components (when the ground-truth mixture is known), an important
measure for data clustering; ii) test set log-likelihood, a suitable measure when the goal is density
estimation; iii) unsupervised classification accuracy (on data sets where class labels are known
but are only used post-learning for performance evaluation); iv) accuracy when class-conditional
mixtures are learned and used in a plug-in Bayes classifier. Our parsimonious mixtures gave

improved accuracy with respect to each of these performance measures, compared with naive
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Bayes and full covariance Gaussian mixtures. We also demonstrated that our method can preserve

crucial, class-discriminating covariance structure when the sample size is very low.



Appendix

GEM update for component-specific variances

Here, we derive equation (2.15), which updates afk to minimize the expected BIC cost (2.11)
while holding all other parameters fixed. Expanding the relevant terms of the expected BIC cost

n (2.11), we begin by writing the following equation.

E[BIC.(0(M); X] =CC(M,©(M))—

co(
i f { Zij =1zl (log aj — %log {(271)‘1] _

=1 j=1

d d
1
_§§ § (Tip — fijp) (Tig — fijq)0 Jpq>:|- (A1)
p=1q=1

Next, we seek to minimize the above by taking the partial derivative with respect to szk and

setting equal to zero, yielding:

N Fikk

d d
1 B R
2 Pz = e | =5 =50 D (wip — i) xzq—w(oﬂp’“omk)} =0. (A2

i=1 p=1qg=1

Now, to complete our derivation, we must solve for ajzk. Note that G7P% and 679% have dependence
on ajz-k when p # k and ¢ # k respectively. In order to separate a?k from the other terms, we

use cofactor expansion of the inverse covariance matrix terms. We define Cj, as the cofactor of
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term Gjpr of the covariance matrix and make use of the following two properties of cofactors:

Cipk

5Pk = = (A.3)
J

155 =) Citpo?™ + Cirucy (A.4)
=1
P2k

Replacing all inverse covariance terms in (A.2) with the cofactor representation in (A.3) and

multiplying both sides by , we arrive at:

N d d
> PlZi =tz | CoalZ5) - Z (@ip — fijp)(Tig — fijg) (CiprCigr) | =0 (A.5)
1

i=1 p=1q—

We then solve for |X~3j\, since all other terms do not depend on ‘7]2%-

M=

d
i P(Zij = Uil 23 3 (wip — fjp) (wig = jq) (CiprCiar)
1%, = R (A.6)
PlZ;ij = 1|zi]Ckk

M=

I
-
-

M=z

1

.
Il

Now, we use (A.4) to expand |2;| so that we may solve for 0%, After some simplification we

find:
N d d } 3
_le[Zij = 1|z;] Zl Zl(xip — Bjp)(Tig — fijq)(CiprCligr) — Z Cjkpcﬂckaj P
i= p=1q=
JJQk = p;ék ) (A'7)

s

P(Z;; = 1]zi|C7 jkk

=1

2

M

5l

which may be put in a more useful form by multiplying by B

and making use of (A.3) to

Eu

J

change the cofactor terms into their respective inverse terms, which are more readily available
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for calculations. The final result:

N d d . . ) d . .
P(Zij =1|a] | 35 3 (wip — fijp) (wig — fijq) (67"PG77) — GIME 57 gIkegike
i=1 T | p=1g¢=1 p;}c
U?k = N L 9 (A'g)
(Gjkk)? > PlZij = 1|z]
=1

leads directly to (2.15) after adding a subscript or superscript ‘new’ to the mean and inverse
covariance matrix terms, signifying that we are using the most recent updates of these parameters

in the GM-step for cr?-k.



Appendix
Efficient Matrix Inversion

Efficient covariance matrix inversion following the modification of a variance term (or any other
rank-one update) is a well known application of the Sherman-Morrison-Woodbury identity. The

new matrix inverse and determinant may be calculated with the following formulae:

new

1
Yol = (4 Acle e T) =21~ 2—1e,€(p + ety ey ) le, TRt (B.1)
Ck €k el pg? Tk €k) €k

det(Zpew) = det(E + Aoier e ) = (1 + Aoter,” S ey) det(X) (B.2)

where ¥ is the old covariance matrix, Y,,.., is the updated covariance matrix where the k-th term
on the diagonal has been modified by adding Acf, and e, is a column vector which is all zeros
except for a 1 in the k-th entry. Using these equations, calculation of the determinant and inverse
of ¥,ew is an O(d?) operation when the determinant and inverse of ¥ are known.

We present a similar, also O(d?), matrix inversion following the modification of a covariate
term. Here, changing both terms in the symmetric matrix is a rank-two modification to the
matrix. A simple, but not necessarily most efficient, approach involves two rank-one updates.

We first calculate an intermediate inverse and determinant,

1
5= (2 58%pqpq epg’ ) =571 = B ep( +epg O epg) Tepg B (B.3)

Aopg
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1 1
det(X1) = det(Z + iAapqeﬂ eﬂT) =1+ iAqueLqTE_leﬂ) det(X) (B.4)

where e, is a column vector which is all zeros except for a 1 in both the p-th and g-th entries.
Then, the inverse and determinant for the final updated matrix, ¥, are calculated by another

rank-one update to this intermediate matrix.

_ 1 _ _ _ -2 _ _ _
Enelw = (2 - *Aapqvﬂ @T) L= 2 - 2 1”&( JF@TXH 1@) 1@TE1 ' (B.5)
2 Aoy
_ 1 T 4 L T—1
det(Zew) = det (3 QAqu@ Vpg ) = (1 2A0pqvﬂ X1 Upg) det(21) (B.6)

where vy, is a column vector which is all zeros except for a 1 in the p-th entry and a -1 in the

g-th entry (or vice-versa).
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