
The Pennsylvania State University

The Graduate School

MANAGING SYBIL IDENTITIES IN DISTRIBUTED NETWORKS

A Dissertation in

Computer Science and Engineering

by

Athichart Tangpong

c
 2010 Athichart Tangpong

Submitted in Partial Ful�llment

of the Requirements

for the Degree of

Doctor of Philosophy

May 2010

The Dissertation of Athichart Tangpong was reviewed and approved� by the fol-

lowing:

George Kesidis
Professor of Computer Science and Engineering
Dissertation Advisor, Co-chair of Committee

Ali Hurson
Professor of Computer Science and Engineering
Co-chair of Committee

John Metzner
Professor of Computer Science and Engineering

David Miller
Professor of Electrical Engineering

Raj Acharya
Department Head

� Signatures are on �le in the Graduate School.

Abstract

This dissertation addresses Sybil identity obfuscation attacks in two environments,
namely Mobile Ad-hoc Network (MANET) and BitTorrent. We proposed a locat-
ion-based Sybil detection framework for MANET. In our framework, mobile nodes
voluntarily and cooperatively participate in Sybil attack detection by monitoring
their neighbors' network activities. For each packet observed, a tra�c observation
record is created or updated and periodically shared. Our secure observation ex-
change protocol guarantee the tamper-proof observation. Periodically, the peers
reconstruct the path that each peer has traversed. Peers with similar paths are
grouped together with a simple clustering algorithm. Peersin the same cluster are
considered Sybil identities owned by the same attacker. Ourframework yielded
above 80% accuracy (true positive rate) at about a 10% false positive rate.

We also proposed a sybilproof referral system for BitTorrent. We �rst introduce
a simple incentive framework, based on a stochastic game model, to encourage
peers to share their content. From experimental results, the incentives successfully
motivate the peers to better contribute in form of the clustering of the peers
according to their allocated upload rate. This incentive mechanism was a form of
direct reputation which was of rather limited use for a largesystem like BitTorrent.
A peer might not have adequate information to make a future judgment about
another. We then propose a simple form of reputation sharing, namely chokelist
dissemination, where the peers shared their lists of free-riders. The experimental
results showed that chokelist sharing helped accelerate the process of banning free-
riders. We also investigated the behavior of BitTorrent users in quasi steady state
with a deterministic game. This game revealed that proper selection of Internet
access fees could discourage free-riders.

Though more e�ective, reputation sharing (i.e. indirect reputation through
referrals such as chokelist dissemination) is vulnerable to Sybil attack. A group
of Sybil identities owned by the same attacker can collude tomanipulate their

iii

reputation scores, and signi�cantly a�ect other innocent peers, as well. To address
this problem, we propose a sybilproof referral system. In this system, the total
reputation score of a referral chain is the product of reputation scores of referrals
in the chain beginning with \direct" reputation based on transactional experience.
The Sybil attacker can only improve the direct reputation via benign contributions.
Our reputation system ensure that the direct reputation of each Sybil identity is
limited thus limiting the e�ect of false referrals by them.

iv

Table of Contents

List of Figures viii

List of Tables x

Acknowledgments xi

Chapter 1
Introduction 1

Chapter 2
Background 5
2.1 Identity Management . 5
2.2 Sybil Attack . 6
2.3 BitTorrent . 9
2.4 Sybilproof Reputation System . 11

Chapter 3
Robust Sybil Detection for Mobile Ad-hoc Network 13
3.1 Background . 15

3.1.1 Problem Setting . 15
3.1.2 Attack Model . 15

3.2 Design Framework . 16
3.2.1 Design Goals . 16
3.2.2 Overview . 17
3.2.3 Packet Format . 18
3.2.4 Proof of Tra�c Observation 19
3.2.5 Sybil Detection Algorithm 21
3.2.6 Discussion . 22

v

3.3 Performance Evaluation . 25
3.3.1 Experiment Setting . 25
3.3.2 Experimental Results . 27

3.4 Conclusions and Future works . 28

Chapter 4
Thwarting the Sybil Attack in BitTorrent 32
4.1 BitTorrent Incentive Based On A Stochastic Game Theoretic Model 33

4.1.1 Basic Model . 33
4.1.2 Rehabilitation . 36
4.1.3 Experimental Result . 38

4.1.3.1 Basic Simulation 39
4.1.3.2 Optimistically Unchoking 40
4.1.3.3 Rehabilitation . 41

4.2 BitTorrent Incentive Based On A Deterministic Game 44
4.2.1 Basic Model . 44
4.2.2 A single-class system . 47
4.2.3 A two-class system . 47
4.2.4 Experimental Results . 48

4.2.4.1 A single-class game 50
4.2.4.2 A two-class game 51

4.2.4.2.1 ~U2 � ~U1 > B : 52
4.2.4.2.2 B � "b � ~U2 � ~U1 � B : 52
4.2.4.2.3 ~U2 � ~U1 < B � "b: 53

4.2.5 Discussion . 53
4.3 Sybilproof Referral System . 56

4.3.1 Multiplicative reputation-based referrals 57
4.3.1.1 Direct reputations from Boolean transaction out-

comes . 57
4.3.1.2 One-step referrals 58
4.3.1.3 Multiple-step referrals 59

4.3.2 Sybil attackers . 60
4.3.2.1 Single sybil attacker (n + 1; S) 60
4.3.2.2 Example: Sybil-proof one-step referrals 60
4.3.2.3 Additive referrals 61
4.3.2.4 A numerical example 62

4.3.3 Discussion . 63
4.4 Conclusions and Future work . 64

vi

Chapter 5
Conclusions and Future Works 66

Appendix A
Source Code for Sybil Attack Detection in MANET 68
A.1 sybil agent.h . 68
A.2 sybil agent.cc . 77
A.3 sybil2.tcl . 111

Appendix B
Source Code for BitTorrent Simulators 116
B.1 torrent.cc . 116
B.2 game.cc . 130
B.3 det crv.cc . 149
B.4 Sybil.java . 159

Bibliography 162

vii

List of Figures

3.1 Packet Format . 18
3.2 Hop-by-Hop Packet Transmission 19
3.3 Packet Observation Table . 20
3.4 Packet Observation . 21
3.5 Path Similarity . 22
3.6 Detection Avoidance . 25
3.7 Detection e�ectiveness when number of nodes = 30 and threshold

= 40 . 29
3.8 Detection e�ectiveness when number of nodes = 30 and threshold

= 50 . 29
3.9 Detection e�ectiveness when number of nodes = 60 and threshold

= 40 . 30
3.10 Detection e�ectiveness when number of nodes = 60 and threshold

= 50 . 30
3.11 The e�ect of mobility on detection e�ectiveness 31

4.1 Average transaction success rates under no optimistically unchoking 40
4.2 Average transaction success rate under optimisticallyunchoking

and under no choking list dissemination 41
4.3 Average transaction success rate inters optimistically unchoking

and choke-list dissemination . 41
4.4 Experimental result under rehabilitation when peers behave simi-

larly and
 = 5; c = 0:01; U = 200; M = 1; C = 1 42
4.5 Experimental result under rehabilitation when peers behave simi-

larly and
 = 20; c = 0:01; U = 200; M = 1; C = 1 43
4.6 Experimental result under rehabilitation when peers behave simi-

larly and
 = 20; c = 0:01; U = 250; M = 1; C = 1 43
4.7 Experimental result under rehabilitation when peers behave simi-

larly and
 = 5; c = 0:1; U = 200; M = 1; C = 1 44
4.8 Experimental result under rehabilitation when peers behave simi-

larly and
 = 5; c = 0:1; U = 200; M = 1; C = 0:01 44

viii

4.9 Experimental result under rehabilitation when peers behave di�er-
ently and
 = 5; c = 0:1; U = 200; M = 30; C = 0:01 45

4.10 Cost function and its derivatives 49
4.11 � function and its derivatives . 50
4.12 Example of the single-class case 51
4.13 Example of the single-class case 52
4.14 Example of the two-class case . 53
4.15 Example of the two-class case . 54
4.16 Example of the two-class case . 55

ix

List of Tables

3.1 Simulation Parameter Summary . 27

x

Acknowledgments

For me, Ph.D. study has been a long and winding road. It is an indescribable
feeling to have an opportunity to write this acknowledgement page because it
only means that this journey �nally comes to an end. During this journey, there
have been many people to whom I feel so much obliged to. Some have helped
me directly in my study, and the others in how to live my life alone happily in a
foreign country. It would be impossible for me to thank all ofthem. However, I
would like to express my gratitude to some who I cannot leave unacknowledged.

First of all, I would like to express my deepest gratitude andappreciation to my
adviser, Dr. George Kesidis, without whom I would have quit my degree and this
dissertation would never have come to its completion. Dr. Kesidis has given me
tremendous valuable guides regarding both research and several other important
things in life. Even after the graduation, Dr. Kesidis also helped me signi�cantly
to �nd a job in such a tight job market.

In addition, I would like to thank all of my committee members, Dr. Ali Hurson,
Dr. John Metzner, and Dr. David Miller, for their supervision and valuable
feedback. Without them, this dissertation would never havebeen of this quality.

I also feel blessed to be given opportunities to work with andlearn from several
great people in the IT support team at the Department of Computer Science and
Engineering, especially Eric D. Prescott, Barbara Einfalt, and John Domico. In
addition to the �nancial support, they gave me numerous opportunities to meet and
overcome new challenges. These opportunities provide a solid technical foundation
for my career ahead.

This journey was anything but rosy to me and in the time of crisis, it was
these friends who helped me through, Mr. Kittikorn Khattirat, Mrs. Uthaiporn
Khattirat (Suriyaphapradilok), and Mr. Soranun Jiwasurat. They have played a
signi�cant role in my growing-up and thought me so many important things in life.

Moreover, I want to thank friends from various sources e.g. photography
friends, soccer friends, etc. They have enriched my life in several unimaginable
ways. My life in State College would have been much harder without them.

xi

It is almost impossible to conduct high-quality research without su�cient funds.
I would like to express my gratitude to the U.S. National Science Foundation (IIS-
0324835, CISE-0524202, CISE-0915928) and Cisco (URP gift)for their generous
�nancial support.

I also would like to thank my parents. I know it was not an easy decision for
them to send their only son away for many years. But they have prioritized my
need, my desire, and my future prospective before their own.In addition, they have
waited patiently and supported me in any possible ways throughout these years. I
would have never come this far without their support and, most importantly, love.
Last but not least, I would like to thank my beloved brother who always sacri�ced
his own desires in exchange of mine since I was a child. I wish he could share my
accomplishment with me.

xii

Dedication

To my parents who have escorted me through this long Ph.D. journey and to my
beloved brother who, unfortunately, cannot share my accomplishment. He was an
important guiding star to me.

xiii

Chapter 1
Introduction

As a rule of thumb, technological development usually comeswith opportunities

and challenges at the same time. The arrival of new generations of higher per-

formance processors have shifted the focus and architecture of computation from

client-server model to distributed peer-to-peer computing. A few decades ago when

high performance computers were far more expensive and lessaccessible, computer

users had to remote login from a thin client or a terminal to a server/mainframe.

The server did all the computation while the terminals simply displayed the result.

Back in those days, security was not much an issue as it is today. One of the major

reasons was that all security checks, like computation, were performed only on the

server in a centralized fashion. The server maintained all the required information

and control. The possibility of information leakage or theft was then much lower.

Nowadays, though client-server computing remains a viablecomputing paradi-

gm, our daily life has become increasingly involved in distributed computing. The

performance of high-end CPUs has signi�cantly increased over last few decades

while the cost has gone down. Therefore, in order to avoid thebottleneck at the

server, more tasks and responsibilities have been shifted to the client side.

With the emergence of peer-to-peer (P2P) computing, a single machine, also

called peer, becomes both client and server, simultaneously. The peer both re-

quests and provides services to its fellows. This model provides several bene�ts

over its client-server counterpart,e.g., lower cost, higher performance, higher scal-

ability at the expense of greater total overhead compared tocentralized systems.

As a result, many applications have migrated from the client-server model to the

2

P2P model e.g., distributed computing (SETI), �le-sharing (BitTorrent) , Mobile

Ad-hoc Network (MANET), event-noti�cation (Instant Messenger), even live tele-

vision broadcast over the Internet (Sopcast). Distributed�le sharing, especially

BitTorrent, is currently the most successful and popular P2P application.

P2P computing opens door to many new security threats, especially identity

management. Distributed identity authentication is much more profound and de-

manding than that performed by a centralized server. Here information is more

spatially distributed and ensuring its consistency is muchharder. In addition, the

possibility of unauthorized data leakage is higher. Most systems resort to a hybrid

alternative, e.g., Napster and Skype. User authentication is carried out through a

designated centralized server while normal service is performed in a P2P fashion.

However, the hybrid system may not be possible or favorable in certain environ-

ments, e.g., MANET and BitTorrent. In addition, identity authenticati on goals

often con
ict with privacy goals and trade-o� are usually warranted.

Identity assignment is also much more complicated in a P2P distributed system.

To the best of our knowledge, there is no distributed identity assignment that is as

secure as the centralized counterpart against, potentially the most serious identity-

related threat of Sybil attack.

The Sybil attack is the attack where a malicious attacker assumes multiple

identities while a normal participant has only one identity[1]. The attacker may

use these identities to mount a much more serious and harder-to-detect attack on

the P2P system. Identity assignment by a centralized serveris the only way that

can entirely prevent the Sybil attack. However, such a requirement is sometimes

impractical or even impossible.

Research Contributions

In this dissertation, we address the Sybil attack in two environments, namely

MANET and BitTorrent. Due to the di�erences in goals and architectures, tra-

ditional measures against a Sybil attack are often not applicable in a MANET.

Devices in MANETs are mobile and possibly limited in both computing power

and power sources. In addition, message passing in a MANET ismuch less reli-

able; too expensive and impractical to authenticate messaging and keep track of

3

devices with a centralized server. We proposed a framework where mobile nodes

voluntarily and cooperatively participate in Sybil attack detection in a distributed

fashion. The nodes monitor their neighbors' network activities, generate tra�c ob-

servation proofs, and periodically exchange them. Our framework guarantees the

integrity, privacy, and non-repudiation of the observation exchange. These proofs

are later used to construct the path on which each mobile nodehas traveled. Nodes

with highly similar paths are considered manipulated by thesame attacker. We

also proposed a simple clustering algorithm for grouping nodes with similar paths

together.

We also studied the Sybil attack in BitTorrent. BitTorrent i s vulnerable to the

Sybil attack because some kind of shared reputation is used to address free-riding.

One of the major issues that signi�cantly degrades the performance of BitTorrent

is free-riding. The performance of BitTorrent depends largely on number of peers

that upload content, called seeders. However, the majorityof peers are free-riders

who only download, but do not upload appreciably. To discourage free-riders, Bit-

Torrent is equipped with an intra-swarm tit-for-tat incentive, called optimistically

unchoking. To ameliorate the limited e�ectiveness of the build-in incentive, we

propose an incentive mechanism based on a stochastic game. In this game, a peer

assigns a reputation score to each of its transaction partners and this reputation

is applicable across di�erent swarms. A peer's request is then honored according

to his/her reputation score. We also studied the behavior ofBitTorrent users in

the quasi-steady state with a deterministic game to highlight the role played by

seeders.

In reality, BitTorrent is a global-scale system with a very large number of

users. As a result, direct reputation alone may be too sparseand insu�cient to

encourage content sharing. Shared reputation where a peer also use its fellow

peers' experience to make a judgment, is a promising alternative. However, it

is known that a shared reputation system is vulnerable to Sybil attack. A Sybil

attacker may be able to manipulate its own or other innocent peers' reputation

scores. We proposed a sybilproof referral system. Though wedo not prevent the

attacker from obtaining multiple identities, we guaranteethat, through a type

of chain referral, the reputation score of the Sybil identities cannot be increased

beyond the reputation score that the attacker accumulates from its transactional

4

contribution to the system (i.e., , its total \direct" reputation).

Chapter 2
Background

2.1 Identity Management

An entity, either in the real world or in the digital world, is represented by some

type of identity. Identity management involves three majoraspects: acquisition,

authentication, and authorization. Authentication is the process that veri�es the

association between an entity and its identity. Many authentication mechanisms,

ranging from simple to complicated, have been widely used,e.g., password, smart

card (pre-authorized hardware), challenge and response (like CAPTCHA human

interface veri�cation), and biometrics like �ngerprints. Authorization grants an

authenticated identity access to resources that it is eligible for. The most com-

mon authorization mechanism is an access control list (ACL). Unix-like operating

systems use a simpli�ed form of ACL, permission bits.

In the Internet age, on-line identity management has becomeincreasingly in-

volved in our daily lives. Many web sites,e.g., news, on-line stores, and social

media networks, aim to provide personalized content to their users. For exam-

ple, Amazon.com provides product recommendation based on its users' previous

transactions.

On-line identity management also plays an important part inon-line trust

management. Trust and reputation are a well-known mechanism to improve quality

of service in distributed systems. BitTorrent is equipped with a tit-for-tat incentive

mechanism [2, 3, 4], called optimistic unchoking, to motivate peers to share their

content. The centralized eBay allows participants to rate their experience in past

6

transactions in a simple form of feedback (positive, neutral, or negative) [5]. This

feedback provides a guidance for future purchase decision.On-line stores, e.g

Amazon.com and epinions.com, allow customers to review their past purchases.

In addition to mitigating traditional threats to identity s uch as impersonation

attack, man-in-the-middle attack, it is important that on- line identity manage-

ment systems also guarantee the integrity of such feedback and reviews of previous

transaction outcomes. Malicious attackers may try to tamper with this informa-

tion for �nancial gain. On-line stores generally have minimum, if any, registration

fee to attract customers. In other words, the cost of obtaining an identity to join

the system is cheap. This makes the system vulnerable to the whitewashing or

join-and-leave attack. As a result, an ill-intended customer may cheat and, if ar-

rested in an on-line sense, leave the system and re-enter with a di�erent identity,

as we have seen on eBay. Malicious sellers may also defame their competitors by

fabricating false negative-feedback. On the other hand, they may try to in
ate

their own reputation score to appear more trustworthy than they really are. Like-

wise, on eBay, some sellers may try to increase their auctionprices or ratings by

bidding on their own merchandises using di�erent identities, i.e., a type of Sybil

problem.

2.2 Sybil Attack

The Sybil attack is the attack where a malicious attacker assumes multiple iden-

tities while a normal participant is allowed only one identity [1]. This attack is

facilitated when obtaining a new identity is inexpensive asis often the case in a

Mobile Ad-hoc Network (MANET) and in a distributed �le shari ng systems like

BitTorrent. A malicious node may be able to create several virtual nodes by simply

assuming new identities. Thus, the cost of obtaining a new ID, if any, is often not

proportional to the damage the attack can cause. A Sybil attacker may damage

the P2P system in several ways [6]. The integrity of reputation systems can be

compromised by a join-and-leave and false referral activity. In a distributed system

where a user is given a reputation score, possibly negative,according to, his/her

past transactional activities, malicious users may abandon an identity with low

reputation score and obtain a fresh new one (whitewashing).Then they can con-

7

tinue to exploit the system with their misbehavior with the newly assumed identity.

Routing protocols can also be disrupted, both in on-line overlay and MANET con-

texts. In [1], an attack is described wherein a small number of malicious nodes can

take control of message forwarding and subvert a redundant system.

The literature has proposed proactive and reactive approaches to address Sybil

attacks. The proactive approaches typically rely on a secure ID assignment by a

centralized server [1], a pre-distribution of keying material [7, 8, 9] or an economic

incentive [6, 10]. One may be able to perfectly prevent the Sybil attack using

a centralized server to assign an ID or pre-distribute keying information to each

node. However, such servers are di�cult to implement for certain distributed

environments. It is known that other proactive approaches are not perfect [11].

The responsive approaches are typically more
exible and typically are based on

resource testing or location-based detection [12]. The approaches based on resource

testing, e.g., radio, computation, and storage, are often not reliable inpractice

[1]. The approaches based on radio device �ngerprinting [13, 14] are still in their

infantile stage. The reliability is still questionable in an environment that devices

from di�erent manufacturers are allowed.

Location-based Sybil attack detection is a promising classof Sybil detection

techniques for wireless networks,e.g., wireless sensor networks (WSNs) [15, 16, 17],

Vehicular Ad-hoc Networks (VANETs) [18, 19], and other kinds of Mobile Ad-

hoc Networks (MANETs) [12]. These techniques are based on the fact that IDs

owned by the same device share the same physical location. Techniques depending

on location veri�cation check the location claim of each identi�er by using, for

example, distance measurement and triangulation. A node caught lying about its

location is considered a potential Sybil attacker. In addition, these approaches are

accurate enough to localize an identity so that if a group of identities reside in the

same area, they are likely owned by the same Sybil attacker. It should be noted

that these techniques designed for WSNs or VANETs cannot apply to MANETs.

MANET devices are mobile and, more importantly, have no predictable tra�c

pattern. In addition, one can not assume the presence of a centralized server in

MANET. In general, Sybil defenses are often easier to mount in WSNs or VANETs

because of ease of centralized identity management and predictable mobility in a

sense that cars are restricted to roads. So, our focus is on the more challenging

8

MANET context.

SybilGuard and SybilLimit extend the idea that Sybil identities will have simi-

lar network \coordinates" in a non-mobile setting [64, 66].The goal of SybilGuard

is to limit the number of Sybil Identities that an honest in a social network will

have to perform transactions with. It assumes and leverages\human-established"

trust edges between peers. This leads to a fundamental assumption that such

edges between Sybil identities and legitimate peers, called attack edges, are rare.

So a single Sybil attacker's pool of identities will appear as a large subgraph with

very few edges connected to honest nodes. Once such an edge isremoved, a large

number of Sybil identities will be removed, as well. However, searching for such

edges is a NP-complete problem. Under SybilGuard's method,each node generates

\random" routes of a certain hop-length with special properties of convergence and

back-traceablity. By only \accepting" nodes with su�cient ly high random routes

intersection, SybilGuard can limit the number of Sybil transaction partners. Sybil-

Limit furthers the limit on the number of Sybil identities accepted under Sybil-

Guard and veri�es the fast-mixing assumption which speaks to overall performance

of their framework. This work is similar to our framework in asense that they

also exploited \common coorrdinates". However, they applied the technique in a

static social network environment where relationships arehuman-established.

A cooperative Sybil attack defense framework for a MANET based on the de-

tection of the physical location of each node were proposed in [12]. Again, this

technique is based on the observation that all identities created by the same phys-

ical participant share the same physical location with their creator. Because of

the broadcast nature of packet delivery in MANET, each node can overhear net-

work tra�c transferred within its transmission range. If a node observes frequent

co-occurrence of network activities from the same set of nodes, it considers the

potential of a Sybil attack. To increase the detection e�ectiveness, each monitor

takes into consideration the network activities overheardby others. This approach

does not necessarily require support from GPS hardware to determine the exact

location of a mobile node. However, a number of known, trusted monitors among

which there exists secure communication are required. These nodes traverse or

cover the area of interest, observe tra�c activities, and periodically broadcast ob-

served tra�c information.

9

In chapter 3, we propose a location-based Sybil detection framework without

the requirement of trusted nodes, which is nevertheless robust to falsi�ed tra�c

observations.

2.3 BitTorrent

File sharing systems such as BitTorrent are producing enormous tra�c volume on

the Internet [20] and motivating network management controversies such as neu-

trality. As a result, changes to how broadband public accessto the Internet is man-

aged [21, 22]) and potentially signi�cant architectural changes (tiered/di�erentiat-

ed services) may result.

To share �les via BitTorrent, the initial �le distributor cr eates a .torrent �le

which speci�es the tracker and describes how the �le is partitioned into small pieces,

called blocks. A block is a unit of data exchange in BitTorrent. The tracker is

an on-line server that keeps track of peers uploading (seeders) and downloading

(leechers) the �le. The initial distributor has to post the .torrent �le on a �le

server accessible to peers that are interested in the �le,e.g., , on a web server. The

tracker and the web server are not necessarily at the same site.

To download a �le via the BitTorrent protocol, a peer begins with downloading

the .torrent �le associated to the �le of interest. From the tracker list available in

the .torrent �le, the peer contacts the trackers to retrievethe list of peers (peer set)

that actually shares the data blocks of the �le. In certain so-called \trackerless"

versions of BitTorrent, there is no designated tracker; however, each participating

peer acts as a tracker and shares information via distributed hash table (DHT) [23].

Clients that implement this functionality are, for example, utorrent [24], ktorrent

[25], BitComet [26].

A peer may select a block to download by using the rarest-�rstalgorithm [2].

It maintains a list of number of copies of each block in its peer set. Assume that

m is the number of copies of the rarest block. All blocks withm copies form a

rarest block set. The peer randomly selects a block to download from the rarest

block set.

A major problem in distributed �le-sharing system is free-riders who only down-

load �les of interest without any upload. In BitTorrent, tit -for-tat \choking" rules

10

are used to penalize peers that transmit their chunks at rates substantially lower

than their partner peers in swap transactions [3, 4]. That is, peers essentially

rank one another as a result of these transaction outcomes. Aresult of choking

is that peers are eventuallyclustered into groups with similar allocated uplinks

[27]. Such clustering e�ects can be explicitly modeled [28]or can also be seen to

be the results of simple shared reputation systems [29, 30, 31, 32, 33, 34, 35] or

di�erent tit-for-tat rule-based systems [2, 3, 4]. That is,cumulative reputation sys-

tems can be made more accurate through sharing among trust groups (e.g., [35])

where, as a special case, a \global" reputation is akin to an e-currency [4] (though

transactions involving very small \micro" payments [36, 37] may not require as

rigorous authentication). Sharing does, however, open thedoor to abuse through

misrepresentation (arti�cially increasing or decreasingreputations prior to adver-

tising them); so peers need tolearn not to trust someone who lies. Also note that,

generally, reputation sharing may raise privacy concerns (as location discovery in

a wireless context).

To turn such systems intoincentivesfor cooperative behavior, peers with unac-

ceptably (to them) poor transaction performance can be given the opportunity to

rehabilitate their reputation by increasing the uplink bandwidth they allocate for

�le sharing; this is called \optimistic unchoking" in BitTo rrent. Such behavior is

modeled by a net utility function which captures how a user balances the bene�t

they derive from �le sharing (download throughput) againstthe cost (allocated

uplink), e.g., [38, 39, 40]. Generally, game theoretic models are important to as-

sess the e�ectiveness of rehabilitation methods for free riders, which are known to

cause signi�cant performance degradation [41, 42, 43, 44].

New peers to the swarm may be given a limited number of \free" downloads

(i.e., a client-server transactions) so that they can begin swapping. This initial

bene�t of the doubt can be abused through the use of multiple peer identities,

i.e., a sybil exploitation of such an initialization mechanism.To deter Sybils one

can,e.g., create a identity registration mechanism that incurs somecost, clients can

monitor secondary information such as IP addresses (notwithstanding peers behind

NATs), or the number of peers with which one is actively exchanging data can be

simply restricted to a small number (typically 4 in the case of BitTorrent). Sharing

of \positive" reputation information (rather than choke li sts) may deter sybils

11

because multiple active identities would simply dilute thee�ect of cooperative

behavior on the reputation of any given identity.

There is a signi�cant literature on models of �le-swapping systems, including

swarm formation models based on branching processes [43, 44, 45] and strati�ed

epidemic (coupon collector) models [46, 47, 48], the latterexplicitly modeling peer

churn though not uplink bandwidths1. A macroscopic model is given in [28] where

formation of individual (transient) swarms and game-theoretic dynamics are not

modeled in detail. Rather than explicitly modeling transient swarms, a generic

sequence of queries for a �xed set of persistent swarms or community-of-interest

agglomerations is sometimes assumed. For example, recall the well-known result

that the stationary mean number of peers (in a �xed population) participating

in, or caching information about, a particular swarm is proportional to the square

root of the querying intensity of that swarm, assuming independent exponentially

distributed lifetime (aging) of cache entries [50].

We study BitTorrent-like tit-for-tat incentives in chapte r 4. We model incen-

tives with a stochastic game where peers rank one another by their past trans-

actional behavior. A peer's requests are honored accordingto its reputation. In

e�ect, misbehaving peers with bad reputation are punished by denial of service.

Nevertheless, they are given opportunities to rehabilitate. We also studied a sim-

ple form of shared reputation, namely chokelist dissemination. Finally, we studied

BitTorrent incentive using a deterministic game model to focus on the role played

by seeders.

2.4 Sybilproof Reputation System

Reputation is a popular approach to improve quality of service in distributed sys-

tem. A peer evaluates its experience interacting with others and responds to their

subsequent service requests accordingly. However, in a large distributed system,

direct experience, including our incentive mechanism discussed in Section 2.3,

is generally not su�ciently informative to make helpful future judgment. Peers

1We demonstrated that similar epidemic models, with bandwidth constraints, accurately re-

ected the spread of the Slammer worm [49] - the susceptible SQL servers could be viewed as a
kind of social network spreading the single-packet contagion among each other.

12

then should exploit their neighbors' experience, in other words indirect reputation

through referrals, as well. Though more e�ective in determining the reputation

of a stranger, indirect reputation opens doors to the Sybil attack. Attackers may

hype the reputation scores of their Sybil identities through self-recommendation

or defame innocent users with similar tactics.

It is known that symmetric reputation systems are non-sybilproof [51]. For

this kind of reputation system, the relationship among peers can be represented

by a graph where all the reputation information is embedded in the edges (edge

weights) of the graph. One can rename the vertices without changing the structure

of the graph. An asymmetric reputation system where some peers are trusted,

i.e., superpeers, can be sybilproof. In chapter 4, we propose a simple sybilproof

referral system. The reputation score of a referral chain inthis system is a product

form of each referral in the chain. If there are multiple referral chains between two

parties, the total reputation score is the summation of the reputation score of each

chain.

Unlike SybilGuard and SybilLimit [64, 66], we do not assume human-establish-

ed relationships and focus on limiting the impact of Sybil attackers in the context

of accumulated reputation based on transaction outcomes, i.e., how the \human-

established" trust might be securely formed on-line in the �rst place and how that,

in turn, the referral system based on it can be protected. We do not approach it

from a \common coordinates" point of view.

Chapter 3
Robust Sybil Detection for Mobile

Ad-hoc Network

Mobile Ad-hoc Network (MANET) has gained tremendous popularity over recent

years. Signi�cant e�ort has been dedicated to improve both the performance and

the security of MANET. One of the biggest security issues forMANET is Sybil at-

tack because of its decentralized characteristic. A Sybil attacker can easily subvert

the entire network, e.g., by tampering with packet forwarding.

In this chapter, we propose a distributed technique for Sybil attack detection for

MANET. Our technique requires no designated monitors. However, each mobile

node in the network observes and exchanges tra�c observations in order to analyze

the potential existence of a Sybil attack. Recall that the Sybil attack is the attack

where a normal user is supposed to have only one identity, butthe attacker takes

control of multiply identities. Instead of assuming the potential of a Sybil attack

merely from the frequent co-occurrence of identities as [12], our technique attempts

to capture how all the identities owned by the same attackingdevice have to travel

together when the device moves. The dynamic nature of a MANETprecludes use

of a centralized server to keep track of each mobile node. However, mobile nodes

keep track of one another in a distributed and cooperative fashion with the help of

tra�c observation proofs. The sender associates its location with its packets. The

location can be obtained from the multilateration of distributed beacons [52] or

a GPS-like device. The next-hop forwarder or the end-point receiver store packet

signatures as the proof of tra�c observations. The observations are periodically

14

exchanged. Our detection algorithm then constructs the path each node traveled

based on these tra�c observations.

In order to prevent a malicious node from fabricating or tampering with an

observation, our approach requires a robust proof of tra�c observation. This is

achieved by using a hop-by-hop authentication protocol. Each packet may be

signed with the sender's private key so that, in a public-private key (PKI) setting,

the receiver can authenticate the sender with its public key. However, this may

cause signi�cant computation overhead which may render ourframework imprac-

tical for devices of MANET class. Therefore, we opt to sign only the hash of each

packet, instead of the packet itself. The computation cost of public key encryption

basically depends on the size of the data to be encrypted. As aresult, this reduces

the computation overhead signi�cantly.

Like [12], our framework alone cannot distinguish the situation when honest

nodes are static or travel together on the same path as a Sybilattacker does.

Complementary approaches such as collision detection are needed [7]. For example,

in the case that each node is equipped with only one antenna, our approach can

be complemented by such a technique like radio resource testing [7], where a node

may concurrently challenge a group of suspicious identities. With the limitation

of single antenna, only one identity can honor the challenge.

In this research, we employ the following techniques:

� We propose to use a hop-by-hop packet signature as the proof of tra�c obser-

vation. The packet receiver or forwarder can provide a proofthat the sender

transmitted the packet at the claimed location and time. Consequently, no

malicious node can fabricate or modify an observation to launch other at-

tacks, e.g., a defaming attack.

� We employ secure tra�c observation for cooperative and distributed location

tracking for MANET.

� We propose a novel location-based Sybil attack detection technique for MA-

NETs based on path similarity. Essentially, identities traversing similar paths

are considered Sybils. Again, this technique does not require designated, dis-

tributed and trustworthy monitors. However, each mobile node in the net-

work voluntarily cooperates to detect identities belonging to the same Sybil

15

attacker.

3.1 Background

3.1.1 Problem Setting

We propose a location-based Sybil attack detection framework for a MANET in

which mobile nodes move with slow or moderate speed for example mobile devices

used by soldiers walking in a battle�eld. This kind of mobility allows time for

adequate data collection to make highly accurate judgment.Each mobile node is

assumed equipped with a directional antenna. Despite theircurrent limited usage,

directional antennas have a promising future. They providesome bene�ts over

their omni-directional counterparts, e.g., improved spatial reuse, longer coverage

range, more network capacity [53]. Upon receiving a packet,a node knows the

sector, in other words the direction, in which the packet came. Each mobile node

is also capable of self-positioning. In an in-door environment with periodically

broadcast beacons, a node can obtain its position via multilateration. In an out-

door environment, it can use the same technique or a GPS-likedevice. Each mobile

node possesses at least one self-generated certi�ed ID in a
at address space [54].

Each peer generates a pair of public key and private key. The self-generated

certi�ed ID is a hash of its public key. Then only the holder ofthe corresponding

private key can prove the ownership of the ID. The self-certi�ed ID also helps us

preserve the privacy of the node. No mobile node knows the true identity of the

device. For simplicity, we assume the same maximum transmission range for all

mobile devices.

3.1.2 Attack Model

We consider a simultaneous Sybil attack [7] in which the attackers concurrently

use all their identities to launch other continuoushigh bit-rate applications, e.g., ,

when an attacker tries to gain more than their fair share of access to a wireless

channel to transfer a large amount of data.

We do not consider a join-and-leave attack in which attackers frequently discard

and assume new IDs. These assumptions are justi�ed under theexistence of some

16

time-sensitive incentive mechanisms,e.g., , an economic incentive or a reputation

system. Speci�cally, each peer maintains the reputations of their transaction part-

ners and the quality of service which a peer receives dependson its reputation.

If idle, the accumulated reputation associated with a node ID gradually decreases

over time. Therefore, the peer is encouraged to use its identity regularly to accumu-

late reputation; otherwise, its reputation from the point of view of its transaction

partners declines, resulting in poor service. Even if the attacker assumes a large

number of identities, each identity has to be used frequently to gain enough repu-

tation to receive good service. This will make it easier to detect. The imposing of

a small cost for ID assignment may also discourage the attacker from obtaining a

large number of identities.

In addition, we do not address device compromise and assume no collusion

among multiple attacking devices. To launch the collusion attack successfully, at

least two separate physical devices need to travel togetherwhich makes the attack

much more di�cult to mount.

3.2 Design Framework

3.2.1 Design Goals

Our Sybil detection framework is designed with the following goals:

� Security: Even though our technique is based on the voluntary cooperation

of mobile nodes among which malicious attackers may reside,no malicious

node should be able to defame innocent nodes.

� Non-repudiation: No node should be able to repudiate its generated tra�c.

We use, e.g., , asymmetric keys for hop-by-hop authentication,i.e., , the

signature of a packet is the proof of its observation and onlythe owner of

the private key can generate this signature. In addition, a Sybil attacker

should not be able to confuse the detection algorithm by fabricating false

tra�c observations.

� Privacy preservation: we aim to protect the true identity of a device by

representing it with a self-generated certi�ed ID [54].

17

� Scalability: We aim to make our technique scalable with the increasing num-

bers of mobile devices,e.g., , instead of always tracking the position of each

device in a real-time fashion, each device is tracked only when it is active.

� Flexibility: Our framework should be adaptable to various environments,

e.g., self-positions by multilateration of beacons in an in-door environment

and by a GPS in an out-door environment.

� No security-routing interdependency: For secure routing in a MANET, pack-

ets are generally assumed to be routed correctly and in order. Our protocol

is hop-by-hop and all identities are self-generated so thatit does not su�er

from the security-routing interdependency.

3.2.2 Overview

As in the cooperative model proposed in [12], each mobile node in our framework

overhears all in-range packet transmissions, generates and periodically exchanges

tra�c observations. Only direct observations are exchanged. In other words,

an observation can be shared only by its observers and cannotbe re-distributed.

From these observations, the presence of the Sybil attack isdetermined. However,

in contrast to [12], we do not assume that only a relatively small group of trusted

nodes acts as monitors. As a result, malicious nodes can fabricate or modify

observation in an attempt to defame innocent nodes. We overcome this problem

by employing an unforgeable proof of tra�c observation. Namely, we propose a

hop-by-hop protocol layer between the link layer and the network layer where the

digest of each packet is signed by the sender, and the receiver or the next-hop

forwarder uses the signature as the proof that it has received this packet.

To detect a Sybil attacker, we try to identify node identities that have traveled

on the same path. We assume that each device can determine itslocation. In

other words, we cluster nodes that follow the same path and the cluster that

contains more than one nodes is the Sybil attacker. We also assume that each

device has a directional antenna that can determine the direction of an incoming

packet. Each packet includesthe location claim of the senderand the direction

of the receiver. The packet digest is signed using a private key of the sender.

Because of the ostensible secrecy of the private key, the sender cannot repudiate

18

the packet. Upon receiving a packet, a node veri�es the signature and the location

of the sender. If the veri�cation fails, it drops the packet. Otherwise, it either

forwards or consumes the packet. In addition, it caches the signature of the packet

and corresponding �elds as the proof of tra�c observation. Periodically, nodes

exchange these observations from which the path that each node has traveled can

be created. Each node then runsa detection algorithmto determine the possible

Sybil attackers. Again, nodes that travel on the same path are suspected.

3.2.3 Packet Format

The format of a packet is shown in Figure 3.1 whereSND and REC are the

self-certi�ed IDs of the sender and the next hop receiver, respectively, TS the

timestamp, SEQ the sequence number,P K snd the public key of the sender,Locrec
snd

the locations of the sender relative to the receiver.Locrec
snd = (PSND ; Slicerec;TS

snd)

where PSND is the sender's position andSlicerec;TS
snd is the slice of the sender's

coverage area where the receiver resides at the timeTS. The sender can obtain

Slicerec;TS
snd by the help of the underlying protocol layer,e.g., IEEE 802.11 and its

directional antenna [53].

PKsnd Locsnd
recTsSND REC SEQ Content SIG

Figure 3.1: Packet Format

Figure 3.2 demonstrates how the senderA learns about the area in which the

receiver is located when it wants to transmit a packet to B. According to the IEEE

802.11 standard, before the transmission, the senderA sends out aRequest-to-

Send (RTS) message and waits for aClear-to-Send (CLS)from receiverB. Upon

receiving CLS, senderA learns the sector where receiverB resides and can start

to transmit the packet. For a broadcast packet, theREC is the broadcast address

and Slicerec;TS
snd is a circle of which the radius equals the maximum transmission

range. For non-repudiation purposes, each packet is signedby the sender's secret

key. Speci�cally, SIG is (Hash(SND; REC; TS; SEQ; P K snd; Locrec
snd ; Hash(Con�

tent))) SK src . Because of the ostensible secrecy of the private key, no other node

19

is expected to be able to generate this signature (unless thenode is compromised

which is an issue beyond the scope of this research). This signature serves as

the proof of the observation that the senderSND, claiming its location PSND ,

transmitted a packet to the receiverREC at the time TS. Though signature

generation based on public key is considered too costly for devices of MANET

class, the cost indeed depends on the data size. Here, we signonly the hash or

digest of the packet which is much smaller than the packet itself. As a result, the

signing cost is signi�cantly reduced.

C

R1 R2

A

B

Figure 3.2: Hop-by-Hop Packet Transmission

3.2.4 Proof of Tra�c Observation

Upon receiving a packet, the receiver authenticates and veri�es the location of the

sender. Speci�cally, the receiver veri�es the two following conditions:

CID snd = Hash(P K snd) (3.1)

(SIG)P K snd = Hash(SND j REC j TS j SEQ j

20

P K snd j Locrec
snd j Hash(Content)) (3.2)

These two conditions prevent an impersonation attack and preserve the in-

tegrity of the packet. In addition to these conditions, the receiver veri�es the

packet timestamp and the sender's location claim. We assumeloose time synchro-

nization among nodes where each node may receive time information from beacons.

The sender's location claimPsnd has to reside in the correct sector of the receiver

and the distance between two nodes has to be less than the distance bound,R1,

which is obtained from the distance bounding protocol [55].The receiver forwards

only authenticated packets with valid timestamp and location claim; otherwise, it

drops the packet.

1

2

x

O1 O2 O3

O1 O2

O1 O2 O3 O4

....

List of observations sorted by timestamp

Node ID

Figure 3.3: Packet Observation Table

After a packet is forwarded or received, the forwarder or receiver stores a cor-

responding packet observation in its observation table, asshown in Fig 3.3. Each

entry in the table maintains a list of observations, sorted by timestamp, for the

corresponding sender. As an observation represents the sender's possible locations,

each list then represents the path that the sender has traveled. To decrease the

space requirement for the observation table, a new observation that overlaps with

previously-stored one is discarded.

Figure 3.4 demonstrates the format of the packet observation which is signed

by the receiver's private key (SIG r). Header, content, SIG represent the header,

21

the content and the signature of the corresponding packet, respectively. The sig-

nature of the observation serves two purposes. Firstly, it guards against illegal

modi�cation. Secondly, it is used to facilitate non-repudiation. Periodically, nodes

exchange their observations.

PKrec
snd, TsLocrec Hash(Content)Header SIG SIGr

Figure 3.4: Packet Observation

Currently, each node naively broadcasts the whole observation table. In the

future, we plan to study a more e�cient way to store and share the observation

proofs,e.g., to further remove redundancies and age-out old observations.

3.2.5 Sybil Detection Algorithm

To detect a Sybil attacker, we employ one-level, bottom-up clustering, shown in

Algorithm 1, to group related identities together based on their path similarity.

Firstly, the path for each peer is constructed from the observation table. Then

each path is compared against existing clusters and is addedto the most similar

cluster (Line 5). If no similar cluster exists, a new clusteris created for it. The

similarity between a path and a cluster is the similarity between the path and the

longest path in that cluster.

Algorithm 1 Sybil Detection Algorithm
1: Cluster set C = �
2: P = f p j p is a path in the observation tableg
3: C.add(P.removefront())
4: while P.size() != 0 do
5: C.compare(P.removefront())
6: end while

The similarity between two paths (or a path and a cluster in Line 5) depends

on the percentage of their overlapping components, as shownin Figure 3.5. That

22

is, the similarity betweenL1 and L2 is de�ned by:

Sim(L1; L2) =

 P k
i =1 Tcmn i

max(Tobs1 ; Tobs2)

!

�

kY

i =1

Tovl i

Tcmn i

!

whereTobs is a period that each node is observed,Tcmn a period in which there are

observations of both nodes in the observation table (commonly observed),Tovl a

period that both nodes are commonly observed and co-occurred in the same region,

and k the number of times in which they are commonly observed. The �rst part

of the metric tries to capture how long both nodes are observed together. Though

being observed together, they may not be on the same path. Twonodes are

considered being on the same path if their observation regions, Locsnd;Ts
rec , overlap.

The second part of the metric tries to quantify this. Paths with similarity above

a threshold are put in the same cluster and corresponding identities are assumed

owned by the same physical device. This threshold is a parameter of our algorithm.

Tobs1

Tobs2
time

L 1

L 2

T T

T

ovl

cmn

1

Tcmn

ovl k

k

...

1

Figure 3.5: Path Similarity

3.2.6 Discussion

In this section, we discuss the robustness of our framework against di�erent types

of attacks to the detection system itself. Recall that our framework addresses the

Sybil attack that the attacker simultaneously uses all their identities to mount

a high bit rate attack. Though we assume no colluding attack,we discuss some

attacks possibly mounted by it in Situation 3 below. We assume that nodeA sends

a packet to a destination via nodeB. Under no-collusion assumption, eitherA or

B can be malicious at any one time, but not jointly.

23

Situation 1 SenderA is one of the identities owned by the attacker and the

next-hop neighborB of A is honest. Being aware of the existence of the detection

system,A may be tempted to lie about its timestamp or location in orderto avoid

being detected. IfA makes a false timestamp or a false location claim, it will be

noticeable to the next-hop honest neighborB which will drop the packet.

Situation 2: SenderA is honest and the next-hop neighborB is malicious, in

which case there are several attacks that the malicious next-hop neighbor can

mount against the system.

� Packet dropping: B may want to drop rather than relay packets to deny

information to the Sybil detection system. Since passive acknowledgments

are used in MANET, senderA can notice packets being dropped by its next-

hop neighborB. Consequently, it re-starts the route discovery procedureto

circumvent B.

� Impersonation attack: B may be tempted to impersonate and send pack-

ets on behalf of an honest node. In our framework, each packetis signed

by the sender. Due to the secrecy of the sender's private key,our system

is invulnerable to this attack unless the sender is compromised (again, that

particular issue is beyond the scope of this research).

� Defaming attack: An attacker may try to deceive the detection system that

a set of honest identities belongs to a Sybil attacker. The defaming attacker

has to be able to transmit packets with those identities. This is possible only

when it compromise and obtain the secret keys of those identities.

� Replay attack: B may collect packets generated by honest nodes, modify

their header, and re-transmit them,e.g., , in order to launch the defaming

attack or disrupt the detection system. However, each packet is guarded by

its signature, hence this attack is prevented.

� False location claim in the observation: B as an observer may be

tempted to deceive the detection algorithm by lying about its own loca-

tion in the packet observation. However, this attack is fruitless. After the

observation has been exchanged, honest nodes can discern the inconsistency

24

between the senders location claim andB 's location claim. Though unable

to determine the culprit, they can tell the inconsistency and therefore drop

the observation. Recall that we do not address the collusionattack.

� Detection Avoidance: A Sybil attacker may try to confuse the detection

algorithm. The attacker designates some of its Sybils as observers to generate

observations for others in which the location claim is falsi�ed.

Figure 3.6 demonstrates this kind of attack. A Sybil attacker traverses the

path P. At times T1, T2, T3, T4, T5, and T6, it uses the identitiesS1 and S2

to mount a high bit rate attack. The corresponding packets are observed,

likely, by an honest nodeA. Consequently, the tra�c observations OA;T 1
1 ,

OA;T 1
2 , ..., OA;T 6

1 and OA;T 6
2 are captured whereOA;T 1

1 is an observation of

identity 1's tra�c activity generated by identity A at time T1. From these

observations, the detection algorithm can regenerate the path of each identity

and determine the presence of the Sybil attacker. To deceivethe detection

system, using SybilsS3 and S4, the attacker tries to create an impression that

two di�erent mobile devices,S1 and S2, traverse two di�erent paths, P1 and

P2 respectively. Therefore, the attacker fabricates observations containing

false location claims between those observations; namely,OS3 ;T1:5
1 , OS3 ;T2:5

1 ,

OS3 ;T3:5
1 , OS3 ;T4:5

1 , and OS3 ;T5:5
1 for S1 and OS4 ;T1:5

2 , OS4 ;T2:5
2 , OS4 ;T3:5

2 , OS4 ;T4:5
2 ,

and OS4;T5:5
2 for S2.

Recall that our framework addresses a Sybil attack in which the attacker

sends packets at high bit rate. Therefore, observations arefrequently gener-

ated. Each path is represented by a series of observations where each obser-

vation represents the resident area of the sender at the observed time. Each

path is, then, represented by a area. Our detection algorithm evaluates sim-

ilarity between two paths by determining the overlap of their corresponding

areas. We note the possibility of false positive detection of Sybil attackers.

Our current framework considers only a continuous Sybil attack. An inter-

mittent attack for future work is an issue beyond the scope ofthis work. In

the intermittent Sybil attack, the attacker may fabricate these observations

during a period with no connectivity or even intentionally pause the packet

transmission to do so. The attacker can then distribute these observations

25

later on in order to deceive or confuse the detection system.

P1

A, TO1 4

O
A,T
2

4O
A,T
2

2

A, TO1 2

S1

,T2.5S
O1

33S ,T1.5O1
,T3.53O1

S ,T4.5S3O1
,T5.5S3O1

P2

,T2.5S4O2
,T5.5S4O2

,T3.5S4O2
,T4.5S4O2

O
A,T
2

5

A, TO1 5

O
A,T
2

6

A, TO1 6

S4 ,T1.5O2

T5.54.5T

A, TO1 3

O
A,T
2

3

3.5T2.5T

O
A,T
2

1

A, TO1 1

S2

1.5T1T T2 T3 T4 T5 T6

Path of S2

Path of S1

An observation Area

P

Figure 3.6: Detection Avoidance

Situation 3 Both senderA and the next-hop neighborB are malicious (a col-

lusion attack). Two Sybil attackers can collude to fabricate observations in which

the location claim or timestamp are tampered in order to deceive the detection

system. However, they have to physically travel together all the time. This attack

is beyond the scope of this research.

3.3 Performance Evaluation

3.3.1 Experiment Setting

Although our framework and that in [12] are related, they aredi�erent in a few

aspects. First and foremost, [12] focuses on e�ective Sybilattack detection by

exploiting the co-occurrences of node IDs while our framework aims at providing

a protocol for secure observation exchange. In doing so, [12] assumes a number

of known trusted mobile devices traversing the area of interest, observing network

activities and periodically broadcasting their observations. They also assume the

connectivity among all trusted monitors at all times. From these observations,

any normal node can determine the presence of a Sybil attacker. We believe this

26

assumption may be unrealistic for an open MANET. In addition, if an attacker

compromises a trusted node, it can mislead the entire detection system. Our

framework attempts to achieve a cooperative, distributed Sybil attack detection

system with no requirement of known, trusted mobile nodes. Any mobile node

can participate in the network. Malicious nodes that try to subvert the detection

system by fabricating false observations will be detected and rendered ine�ective.

Secondly, from the experimental result shown in [12], the detection e�ectiveness

depends on the number of installed, trusted monitors and their coverage of the

area. To increase the e�ectiveness, more monitors are needed; hence, implying

higher operational cost. In our framework, any node can contribute to detection

while malicious nodes can do only limited harm. As a result, our framework can

achieve higher e�ectiveness at lower cost, though we believe that both frameworks

should yield the same e�ectiveness if the same number of uncompromised monitors

are used. Moreover, our framework provides a certain degreeof robustness to node

compromise. Namely, even if a compromised node, acting as a Sybil attack, may

be able to elude the detection mechanism, it cannot subvert the whole detection

system. Note that preventing node compromise is beyond the scope of this research.

We evaluated the e�ectiveness of our framework by using the network simulator

ns2. We assumed that the area of interest was covered by a set of beacons by

which a participating node could determine its location. Each node abode by the

random way point mobility model. We assumed the presence of aSybil attacker

which possesses 5 identities. Each Sybil opened a randomly-chosen number of

connections to random targets, with the average of 2 connections per Sybil. We

varied the number of honest nodes between 30 and 60, about half of which opened

a constant bit rate connection at 20Kbps to a random target. Each honest node

observed AODV route requests and the constant bit rate tra�c. Observations

were exchanged every 60 seconds. We ignored an AODV Hello packet because

some routing protocols do not use them to maintain routing table freshness. We

also ignored the observation exchange packets because an attacker is unlikely to

transmit them or transmit them in a managed way. Otherwise, this may confuse

our detection framework. The topography size was varied from 1500 to 4000 square

meters. The simulation time for each experiment was 6000 seconds. We ran 10

trials of each experiment. In the following, we present experimental results with

27

Simulation Parameter Value

ns parameter: channel Wireless Channel
ns parameter: prop TwoRayGround
ns parameter: netif Phy/WirelessPhy
ns parameter: mac Mac/802 11
ns parameter: ifq DropTail/PriQueue
ns parameter: ll LL
ns parameter: ant OmniAntenna
ns parameter: rp AODV
ns parameter: ifqlen 50
ns parameter: max speed 5
ns parameter: pause time 10
ns parameter: pkt size 512
ns parameter: pkt interval 0.2
No. of honest nodes 30, 60
No. of attackers 1
No. of Sybils per attacker 5
Topography size (m) 1500, 2000, 2500, 3000, 3500, 4000
Obs exchange period (sec) 60
Simulation time (sec) 6000

Table 3.1: Simulation Parameter Summary

error bars representing 95% con�dence. Here we assumed thateach mobile device

has su�cient storage for observations. Storage overhead isa subject of our future

work. Additional simulation parameters are shown in Table 2.

3.3.2 Experimental Results

To evaluate the performance of our framework, we measured the percentage of

honest nodes that correctly determined an identity belonging to the attacker (Ac-

curacy) and that falsely accused an innocent node (False). Note that, for the sake

of simplicity, our accuracy measures also included nodes that had never encoun-

tered with the attacker. In fact, nodes that had never met theattacker could be

omitted from the consideration, thus resulting in higher accuracy. Figure 3.7, 3.9,

3.8,and 3.10 show the e�ectiveness of our framework at di�erent settings.

As we increased the similarity threshold from 40% to 50%, we suppressed false

28

positive at the expense of marginally lower accuracy. Compared with that of [12],

our framework yielded considerably better accuracy, especially for larger coverage

areas. In addition, larger number of cooperative nodes provided lower false pos-

itive. For a larger area, there was a higher chance that an observer noticed two

honest nodes traveling together for a short time and mistakenly concluded that

they belonged to the same Sybil attacker. Because of the sparseness of the cover-

age area, it was unlikely that these two nodes might be seen together again and the

judgment remained unchanged. For the case of a smaller region, more information

about these two nodes might be available with passing time and false judgments

were corrected. Again, we believe that [12] may yield similar performance if a

high number of trusted monitors are installed, however, that would come with

additional cost in their framework.

The number of sectors in an antenna also had e�ects in our framework. For the

sake of simplicity, we assumed that all nodes were equipped with identical antenna.

Across all setting, a four-sectored antenna yielded higheraccuracy than its eight-

sectored and, in turn, sixteen-sectored counterparts. This was because it covered a

bigger area than the other two, hence observing more activities. However, for the

same reason, the less number of sectors an antenna had, the worse false positive

the system provided. At the threshold of 50%, an eight-sectored antenna was the

best compromise. It delivered above 80% accuracy, while it kept false positive in

the range of 10%.

Our framework is designed for the scenario in which nodes move with slow

mobility. As shown in Figure 3.11, our framework achieved above 80% accuracy

at slow speed,e.g., 5 mps which is the speed at which a human walks in average. As

expected, the accuracy dropped when nodes moved faster because Sybil identities

were observed together less frequently.

3.4 Conclusions and Future works

In this chapter, we proposed a distributed, cooperative location-based Sybil de-

tection framework for a MANET. Our framework requires no trusted, dedicated

monitors. Mobile nodes themselves serve as a network monitor observing the net-

work activities passing through it. They periodically exchange evidence of tra�c

29

 0

 20

 40

 60

 80

 100

 1500 2000 2500 3000 3500 4000

P
er

ce
nt

ag
e

of
 d

et
ec

tin
g

no
de

s

Square root of topography size (m)

4 sectors, accuracy
8 sectors, Accuracy

16 sectors, Accuracy
4 sectors, False

8 sectors, False,
16 sectors, False

Figure 3.7: Detection e�ectiveness when number of nodes = 30and threshold =
40

 0

 20

 40

 60

 80

 100

 1500 2000 2500 3000 3500 4000

P
er

ce
nt

ag
e

of
 d

et
ec

tin
g

no
de

s

Square root of topography size (m)

4 sectors, accuracy
8 sectors, accuracy

16 sectors, accuracy
4 sectors, False
8 sectors, False

16 sectors, False

Figure 3.8: Detection e�ectiveness when number of nodes = 30and threshold =
50

30

 0

 20

 40

 60

 80

 100

 1500 2000 2500 3000 3500 4000

P
er

ce
nt

ag
e

of
 d

et
ec

tin
g

no
de

s

Square root of topography size (m)

4 sectors, accuracy
8 sectors, Accuracy

16 sectors, Accuracy
4 sectors, False
8 sectors, False

16 sectors, False

Figure 3.9: Detection e�ectiveness when number of nodes = 60and threshold =
40

 0

 20

 40

 60

 80

 100

 1500 2000 2500 3000 3500 4000

P
er

ce
nt

ag
e

of
 d

et
ec

tin
g

no
de

s

Square root of topography size (m)

4 sectors, accuracy
8 sectors, accuracy

16 sectors, accuracy
4 sectors, False
8 sectors, False

16 sectors, False

Figure 3.10: Detection e�ectiveness when number of nodes = 60 and threshold =
50

31

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

P
er

ce
nt

ag
e

of
 d

et
ec

tin
g

no
de

s

Speed (meters per second)

The Effect of Mobility on Detection Effectiveness

Accurate (n=30)
Accurate (n=60)

False (n=30)
False (n=60)

Figure 3.11: The e�ect of mobility on detection e�ectiveness

activities in order to determine the presence of a Sybil attacker. The likelihood

that identities belong to the same Sybil attacker is determined by whether they

share the same path. From our experimental results with a high detection thresh-

old, a high number of nodes, above 80%, can correctly detect the attacker and a

low percentage, around 10%, falsely accuse innocent nodes.

In the future, we plan to improve our Sybil detection framework for MANETs

by loosing some constraints and make it more suitable for practical uses. In ad-

dition, we plan to reduce the storage overhead of our framework by intelligently

suppressing redundant observations. We also want to improve the accuracy when

nodes move at higher speed. Moreover, we plan to study how theperformance

measures, e.g. accuracy, false positive, change with time.Furthermore, we plan to

address the situation that multiple devices collude to evade the detection system.

Chapter 4
Thwarting the Sybil Attack in

BitTorrent

In this chapter, we address the Sybil attack in BitTorrent. BitTorrent is currently

the most popular �le-sharing system whose tra�c dominates Internet bandwidth

usage [56]. Two classes of players in BitTorrent are seeder (predominate �le up-

loader) and leecher (predominate �le downloader). It is known that the perfor-

mance of BitTorrent signi�cantly depends on the number of generous seeders who

are persistently on-line and share their �les. Unfortunately, the majority of Bit-

Torrent users are sel�sh leechers, also known as free-riders, who only download

and upload nothing in return. This leads to performance deterioration.

To promote good �le sharing etiquette, BitTorrent has a built-in incentive,

called optimistic unchoking. Each peer evaluates the upload rate of other peers

and those with signi�cantly lower upload rate will be denied(choked) subsequent

download requests. Choked peers are given opportunities torehabilitate, e.g., to

increase their allocated upload rate for �le sharing. Though optimistic unchoking

is fairly e�ective, it is limited to a single swarm.1

We �rst study incentive mechanisms for distributed peer-to-peer �le-sharing

via BitTorrent. Our incentives span across multiple swarms. We �rst consider a

stochastic game model where peers rate and respond to their transaction partners

based on transaction outcomes. Then they adjust their subsequent behavior ac-

1A swarm is a stream of data block exchanged among BitTorrent clients that is associated by
the same .torrent �le.

33

cording to the quality of service received. Misbehaving or non-cooperative peers

will su�er from poor quality of service and may have to increase their upload rate

to gain better reputation, and consequently better service. To leverage the inter-

swarm incentive mechanism, we incorporated a simple form ofreputation sharing,

namely chokelist dissemination. In addition, we study suchBitTorrent incentives

with a deterministic game in order to analyze the need for seeders. It is known

that, though more e�ective, reputation sharing is vulnerable to the Sybil attack.

Therefore, we also propose a novel reputation system that isSybilproof.

In the following, we assume that peers do not distribute bogus �les (or �le

chunks) [57, 58]. Peers may also need to learn not to trust those that spread phony

chunks or chunks containing dangerous trojans or viruses [57, 58]. Here, we also

do not model swarm formation in detail and assume a �xed peer population. That

said, the model we develop does not employ swarm-speci�c information and no

\aging" rules to deal with stale information as would be important in the presence

of peer (or swarm) churn.

4.1 BitTorrent Incentive Based On A Stochastic

Game Theoretic Model

4.1.1 Basic Model

Suppose that there areN peers. Here assume peers are divided into groups accord-

ing to their maximum aggregate upload bandwidth. Speci�cally, assume four cat-

egories of peers,N � 4, so that each peerj has an uplink rateuj 2 f 0; U;2U;3Ug

where U is the minimum upload rate and 0 corresponds to free-riders.We focus

on just swap transactions and consider a sequence of swaps that can correspond

to activities generated by di�erent swarms.

Rij is the reputation of peeri from the point-of-view of peerj spanning multiple

swarms. Reputations are cached only for contacted peers. Among previously

contacted peersCj by peer j , the reputations are normalized,

X

i 2 Cj

Rij = 1;

34

whereRij � 0 8j; i . If i and j agree to swap for the �rst time, j and i respectively

assign the initial reputations,

Rij = " = Rj i

for some small positive" < 1.

Initially Cj = ; . For a given transaction, a pair of peersi; j is chosen at random,

i.e., , a particular i; j is chosen with probability

�
N
2

� � 1

=
2

N (N � 1)

Once the peers are chosen, ifi and j meet for the �rst time then the transaction

is attempted by them with probability

m � r (Rij) � r (Rj i);

otherwise, with probability

m � r
�

RijP
k2 Ci

Rkj

�
� r

Rj iP

k2 Cj
Rki

!

where the parameterm > 0 weighs the transaction probability,r is a non-decreas-

ing function on [0; 1] such that r (0) = 0 and r (1) = 1, and, say, r (") =
p

1=3. The

last condition assures that two peers that have not before interacted will likely have

opportunities to do so (i.e., will do so with probability 1/3). Note the probability

that a transaction is undertaken is determined by independent decisions by the

two peers.

If the transaction betweeni; j is attempted, then at peerj , the following steps

are performed:

� Cj Cj [i ,

� If ui = 0, set Rij = 0 (i is choked byj) and X j X j [i ,

� else (ui > 0), Rij Rij + c � � (ui � uj) (each peer estimated the uplink of

the other so that j observedui), where 0< c < 1 is the reputation reward

35

factor and 0� � (�) � 1 is a non-decreasing, non-negative function.

� With some probability p, optimistically unchoke(OUC) one peerk selected at

random fromX j whereX j is the choke list of peerj , i.e., Rkj = 0 ! Rkj = ".

� If
P

k2 Cj
Rkj > 1 then Rij Rij =

P
k2 Cj

Rkj (renormalize reputations atj).

And similarly for the reputations at i . Note the parameterc represents the amount

of \reward" given a successful transaction. Optimistically unchoking is intended

to provide peers an opportunity to modify their uplink. For example, a sel�sh peer

may want to rehabilitate after su�ering download bandwidth throttling.

To deal with free-riders (including sybils), peers with high reputations can

disseminate their (current) \choke lists", i.e., , for peer j ,

X i � f k 2 Ci j uk = 0g:

At the receiving end, peerj will accept i 's choke list if, e.g.,

Rij > �

or if Rij is in the � th percentile among the reputations maintained atj 2. Upon

acceptance ofX i , j modi�es its choke list and contact list accordingly: X j

X i [X j , Cj Cj [X j , and the corresponding reputations are set to zero; presuming

i and j agree on the leechers. Note that reputations are not symmetrical, so that

one peer may disseminate its choked set while the other may not in the same

swap transaction. Here, we assume that there is no con
ict injudging leechers

among peers. The con
ict may come from the Sybil attack. The Sybil attack in

BitTorrent will be addressed in Section 4.3.

The successful transaction rate of a peer is the fraction of successful transactions

as a fraction of the fraction of transactions in which the peer is chosen, denoted

below. This quantity changes over time as does themeanreputation of each peer

2There are many alternative frameworks,e.g., where a choke-list's information is weighted by
the reputation of the peer that provides it.

36

i ,

X

j : i 2 Cj

Rij =
X

j : i 2 Cj

1:

Note that we are not modeling individual swarms and the sequence of transac-

tions in the model could span multiple swarms, even in the presence of swarm (or

peer) churn. Neither are we modeling client-server transactions to, e.g., , \initial-

ize" a peer newly arrived to a swarm (the process that can be speci�cally targeted

by sybils). Recall that we defer the issue of the Sybil attackto Section 4.3.

4.1.2 Rehabilitation

We divide time into a sequence of periods each of durationT > 1 transactions.

For peer i during the nth period, now let ui (n) be its dynamic upload rate, and

u(n) be the vector of uplink rates ofall peers during periodn. Also, for the i th

peer, let si (u(n)) be the success rate (note how it depends on the uplinks of all

other users),Vi (s) be the utility it gains from the success rates, and vi be the net

utility:

vi (u(n)) = Vi (si (u(n))) � Cui (n):

In the following, we will take

Vi (s) � V max
i (2=�) arctan(�s);

where the maximum utility parameterV max
i = Vi (1) captures thei th user'srelative

valuation of utility and the uplink bandwidth, C is the cost factor.

In the following, we assume that peers presume no direct knowledge of the

uplink rates of others when deciding how to modify their own uplink rates. Though

it can be expected that thei th peer will seek to selectui to maximize vi , but vi

also depends onu� i (the other peers' uplink rates). So, the user needs to estimate

the current sensitivity of si to ui ,

@si
@ui

(u) �
si (u) � si (u0)

ui � u0
i

37

when uj � u0
j for all j 6= i . Thus, if vi is unimodal (see stepn:3 below), we can

formulate the following strategy employed by a generic user(suppress subscript

ì ') to modify their uplink rate at the start of a period (simpli fying u(n) with n in

places).

0:0 Setn = 0 and initialize u(0) � 0.

0:1:1 Based on the nextT transactions (period), computes(0) and then v(0).

0:1:2 Set n = 1 and u(1) = u(0) +
 or u(1) = u(0) �
 , for some small positive

rate increment
 .

n:1 Computes(n); v(n) over the next period.

n:2 ComputeDs(n) = (s(n) � s(n � 1))=
 and Dv(n) = V 0(s(n))Ds(n) � 1.

n:3 If Dv(n) > " > 0 and u(n) +
 < U max then set u(n + 1) = u(n) +
 ; else if

Dv(n) < � " and u(n) �
 > 0 then setu(n + 1) = u(n) �
 ; elsestop .

n:4 n++ and go to stepn:1

Note that though vi may be a unimodal function insi , it is not necessarily

so in ui [59]. In the event that multiple Nash equilibria exist (as in, e.g., , [60]),

to avoid being trapped in a non-Pareto equilibrium (corresponding to, say, only

a local minimum of overall network success-rate/utilization), we could attempt to

use a simple annealing method [61]. Again, for a generic peer:

0:1 Setn = 0 and initialize u(0) � 0.

0:2 Based on the nextT transactions (period), calculates(0) and then v(0).

n:1 If 1 +
 � u(n � 1) � Umax �
 (otherwise only some of the following moves

are possible), then

u0(n) :=

8
>><

>>:

u(n � 1) with probability 1 =3

u(n � 1) +
 with probability 1 =3

u(n � 1) �
 with probability 1 =3

38

n:2 Computes(n); v(n) over the next period and then

� (n) = v(n) � v(n � 1):

n:3 If � (n) � 0, acceptu0(n), i.e., set u(n) = u0(n); otherwise, acceptu0
i (n) with

probability e� (n)=T , whereT > 0 is the \temperature" of annealing search.

n:4 n++ and go to the stepn:1.

In a static network, one could try to slowly \cool" the annealing process with

T(n) = T(0)=log2(n + 2) and su�ciently large T(0) [61]. Note that, generally, the

e�ect of a change in the uplink u needs to be assessed and that even if there is

no change inu, the network itself could change so that� is substantially di�erent

from zero.

4.1.3 Experimental Result

We consider a simpli�ed model for p2p-based content exchange systems by �le-

chunk swapping. When a transaction takes place, both participants mutually

exchange content at their upload rates. In this work, we do not consider query

processing overhead. The pseudocode of the simulation is shown in Algorithm 2

and the code itself is given in Appendix B.

Algorithm 2 Simulation Model
while true do

Choose a transacting peers (i; j)
if i and j have never met beforethen

Rij = Rj i = "
Perform the transaction with probability r (Rij) � r (Rj i)

else
Perform the transaction with probability
r (Rj i =

P
k2 Cj

Rjk) � r (Rj i =
P

k2 Ci
Rik)

end if
Periodically unchoke nodes fromCi and Cj

Normalize the reputations ofi and j
Periodically disseminate choke lists
Periodically rehabilitate each leecher with probability�

end while

39

To evaluate the proposed model, we implemented a simulationusing C++ and

the GNU Scienti�c Library (GSL) for random number generation. We assumed

that transactions occur sequentially amongN =100 peers in the system. The

model with parallel transactions will be our future work. The simulation param-

eters we used wereU =250 kbps, " =0.005, r (") =
p

1=3, c =0.01, p =0.25, and

� =0.001. Because the di�erence between peers' upload bandwidths is discrete,

we can specify the reputation reward function according to the change in success

rate, � , as: � (� U) = 0 :005; � (0) = 0 :075; � (U) = 0 :1; � (2U) = 0 :4; � (3U) = 1.

We performed each experiment 10 times and subsequently present the results with

95% con�dence bars.

4.1.3.1 Basic Simulation

In the �rst simulation setting, we compared the system performance when the

choke-list dissemination was and was not employed. Under choke-list dissemina-

tion, peers periodically exchanged choke lists only with non-free-rider peers in their

contact lists C. Again, a received choke list would be accepted only if the reputa-

tion of the sender from the point of view of the receiver was greater than a threshold

� . Here, optimistic unchoking was not employed. The simulation concluded when

all free-riders were identi�ed and choked by all non-free-riders (i.e., Rj i = 0 8j such

that ui = 0). We chose� = 0:001, small enough to ensure that choke lists would

be frequently accepted. Note that the� may, in practice, need to be informed by

the size of the contact list,e.g., an \above average" normalized reputation is one

greater than 1=jCj.

From the experimental results, all free-riders were identi�ed and choked much

faster under choke-list dissemination (after 1020 transactions) than under no choke-

list dissemination (after 123,574 transactions). As a result, the average transaction

success rate under no choke-list dissemination was higher than that under choke-

list dissemination, as shown in �gure 4.1a and 4.1, because the simulation lasted

longer and peers had more time to build up their reputations.In addition, peers

were clustered according to their upload bandwidth, similar to the results shown

in [27].

40

 0

 0.005

 0.01

 0.015

 0.02

 0 10 20 30 40 50 60 70 80 90 100

S
uc

ce
ss

 r
at

e

Peer index

(a) Under no choke-list dissemination

 0

 0.005

 0.01

 0.015

 0.02

 0 10 20 30 40 50 60 70 80 90 100

S
uc

ce
ss

 r
at

e

Peer index

(b) Under choke-list dissemination

Figure 4.1: Average transaction success rates under no optimistically unchoking

4.1.3.2 Optimistically Unchoking

To explore the e�ect of the optimistic unchoking mechanism (OUC) which allows

misbehaving peers to rehabilitate and rejoin the system, again we evaluated the

average transaction success rate. To observe the e�ect of OUC alone, rehabilitation

was not assumed in the following experiment,c.f., next section.

Figures 4.2a and 4.2b show the success rate when choked peerswere pe-

riodically unchoked with probability p = 0.05 and 0.25, respectively, after 106

transactions. The OUC probability had signi�cant e�ect on the average success

rate of free-riders, but had only marginal e�ect on that of well-behaving peers

(i.e., non-leecher peers that actually upload content). This is because OUC un-

choked mostly free-riders and gave them opportunities to build up their success

rate. The higher the OUC probability, the greater the opportunities the free-riders

had to rehabilitate. However, excessively larger OUC probability may negatively

impact the system as a whole because sel�sh peers may obtain as good service as

well-behaving peers, as shown in Figure 4.2b.

In addition, we studied the synergy between the choke-list dissemination and

OUC. Figures 4.3a and 4.3b indicate the average success ratewhen choke lists were

disseminated, as described above, every 100 and 10,000 transactions, respectively.

Similar to the previous results, the choke-list dissemination had signi�cant e�ect

on the average success rate of the free-riders and marginal e�ect on that of the

well-behaving peers for the same reason. All free-riders were identi�ed and their

success rates became zero. The longer choke-list exchange period generally yielded

41

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 10 20 30 40 50 60 70 80 90 100

S
uc

ce
ss

 r
at

e

Peer index

(a) p = 0 :05

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 10 20 30 40 50 60 70 80 90 100

S
uc

ce
ss

 r
at

e

Peer index

(b) p = 0 :25

Figure 4.2: Average transaction success rate under optimistically unchoking and
under no choking list dissemination

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 10 20 30 40 50 60 70 80 90 100

S
uc

ce
ss

 r
at

e

Peer index

Transaction Success Rate

(a) p = 0 :05 and choke-list exchange period
of 100 transactions

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 10 20 30 40 50 60 70 80 90 100

S
uc

ce
ss

 r
at

e

Peer index

Transaction Success Rate

(b) p = 0 :05 and choke-list exchange period
of 10000 transactions

Figure 4.3: Average transaction success rate inters optimistically unchoking and
choke-list dissemination

higher success rate simply because it took longer to identify the free-riders. During

this time, the free-riders could participate in transactions, hence helping build-up

the reputation of their transaction partners.

4.1.3.3 Rehabilitation

To evaluate this model, we ran our simulations with 20 peers which are divided

into four classes according to theirinitial upload rates, namelyf 0; U;2U;3Ug.

Note the initial group of free-riders. Every 10,000 transactions the peers evaluated

their success rates and adjusted their behaviors accordingly. Here, no choke-list

42

 0

 0.05

 0.1

 0.15

 0.2

 0 2e+06 4e+06 6e+06 8e+06 1e+07

S
uc

ce
ss

 r
at

e

Number of transactions

0 Kbps
200 Kbps
400 Kbps
600 Kbps

(a) Success rate

 0

 100

 200

 300

 400

 500

 600

 700

 0 2e+06 4e+06 6e+06 8e+06 1e+07

U
pl

oa
d

ra
te

 (
kb

ps
)

Number of transactions

0 Kbps
200 Kbps
400 Kbps
600 Kbps

(b) Upload rate

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 0 2e+06 4e+06 6e+06 8e+06 1e+07

N
et

 u
til

ity

Number of transactions

0 Kbps
200 Kbps
400 Kbps
600 Kbps

(c) Net Utility

Figure 4.4: Experimental result under rehabilitation whenpeers behave similarly
and
 = 5; c = 0:01; U = 200; M = 1; C = 1

dissemination was employed. We performed each simulation 10 times and present

the averages without error bar for clarity. Each simulationran for 1,0000,000

transactions.

In the �rst set of experiments, we investigated the situation where all peers

were the same except their start-up upload rate. In other words, they employed

the same utility function. We used the following parameters: " = 0:005; � =

0:001; c = 0:01; p = 0:05; C = 1; M = 1. Figures 4.4 and 4.5 show the results when

U is 200 KBps and
 are 5 and 20 KBps, respectively. In steady state, all peers

converged to the same equilibrium simply because all peers acted alike. However,

when the step size was larger, that is 20 KBps, convergence was more abrupt.

However, some conditions,e.g., when U = 250 and
 = 20, might cause a

bifurcation. That is, peers converged to di�erent equilibria, as shown in Figure

4.6, because these two set of peers could not converge to the same bandwidth given

their initial uplink bandwidths and the step sizes. Also note that the success rates

shown in our experiments were low, less than 10%, because thesuccess rate in our

de�nition is essentially the average of the normalized reputation.

Figure 4.7 shows the e�ect of the reputation reward parameter, c. For a higher

reward level, namelyc = 0:1, utility functions were larger but convergence was

faster compared with Figure 4.4, as expected. The sharp convergence of the upload

rates resulted in the swift convergence of the success rates.

Figure 4.8 shows that when the cost factor is low, hereC = 0:01, peers were

more motivated to cooperate. Free-riders increased their upload rates from those

shown in Figure 4.4 whenC = 1. However, though slowly, the peers still converged

43

 0

 0.05

 0.1

 0.15

 0.2

 0 2e+06 4e+06 6e+06 8e+06 1e+07

S
uc

ce
ss

 r
at

e

Number of transactions

0 Kbps
200 Kbps
400 Kbps
600 Kbps

(a) Success rate

 0

 100

 200

 300

 400

 500

 600

 0 2e+06 4e+06 6e+06 8e+06 1e+07

U
pl

oa
d

ra
te

 (
kb

ps
)

Number of transactions

0 Kbps
200 Kbps
400 Kbps
600 Kbps

(b) Upload rate

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 0 2e+06 4e+06 6e+06 8e+06 1e+07

N
et

 u
til

ity

Number of transactions

0 Kbps
200 Kbps
400 Kbps
600 Kbps

(c) Net Utility

Figure 4.5: Experimental result under rehabilitation whenpeers behave similarly
and
 = 20; c = 0:01; U = 200; M = 1; C = 1

 0

 0.05

 0.1

 0.15

 0.2

 0 2e+06 4e+06 6e+06 8e+06 1e+07

S
uc

ce
ss

 r
at

e

Number of transactions

0 Kbps
250 Kbps
500 Kbps
750 Kbps

(a) Success rate

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2e+06 4e+06 6e+06 8e+06 1e+07

U
pl

oa
d

ra
te

 (
kb

ps
)

Number of transactions

0 Kbps
250 Kbps
500 Kbps
750 Kbps

(b) Upload rate

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2e+06 4e+06 6e+06 8e+06 1e+07

N
et

 u
til

ity

Number of transactions

0 Kbps
250 Kbps
500 Kbps
750 Kbps

(c) Net Utility

Figure 4.6: Experimental result under rehabilitation whenpeers behave similarly
and
 = 20; c = 0:01; U = 250; M = 1; C = 1

to the same equilibrium. Note that the simulation time was increased to 10,000,000

to ensure that the simulation reached the steady state.

Finally, we explored the situation where each group of peersbehaved di�er-

ently, i.e., each group used di�erent utility functions. Speci�cally, the peer groups

f 0; U;2U;3Ug respectively hadVmax = f 1000; 2000; 3000; 4000g. We set the pa-

rameters " = 0:005; � = 0:001; c = 0:01; p = 0:05; C = 0:01; M = 30. From the

experimental results shown in Figure 4.9, di�erent groups of peers converged to

di�erent equilibria as expected. As such, the reputation model is incentive com-

patible in the manner of more complex, realistic BitTorrentsystems.

44

 0

 0.05

 0.1

 0.15

 0.2

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

S
uc

ce
ss

 r
at

e

Number of transactions

0 Kbps
200 Kbps
400 Kbps
600 Kbps

(a) Success rate

 0

 100

 200

 300

 400

 500

 600

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

U
pl

oa
d

ra
te

 (
kb

ps
)

Number of transactions

0 Kbps
200 Kbps
400 Kbps
600 Kbps

(b) Upload rate

 1200

 1250

 1300

 1350

 1400

 1450

 1500

 1550

 1600

 1650

 1700

 1750

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

N
et

 u
til

ity

Number of transactions

0 Kbps
200 Kbps
400 Kbps
600 Kbps

(c) Net Utility

Figure 4.7: Experimental result under rehabilitation whenpeers behave similarly
and
 = 5; c = 0:1; U = 200; M = 1; C = 1

 0

 0.05

 0.1

 0.15

 0.2

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 1e+08

S
uc

ce
ss

 r
at

e

Number of transactions

0 Kbps
200 Kbps
400 Kbps
600 Kbps

(a) Success rate

 0

 100

 200

 300

 400

 500

 600

 700

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 1e+08

U
pl

oa
d

ra
te

 (
kb

ps
)

Number of transactions

0 Kbps
200 Kbps
400 Kbps
600 Kbps

(b) Upload rate

 1300

 1350

 1400

 1450

 1500

 1550

 1600

 1650

 1700

 1750

 1800

 1850

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 1e+08

N
et

 u
til

ity

Number of transactions

0 Kbps
200 Kbps
400 Kbps
600 Kbps

(c) Net Utility

Figure 4.8: Experimental result under rehabilitation whenpeers behave similarly
and
 = 5; c = 0:1; U = 200; M = 1; C = 0:01

4.2 BitTorrent Incentive Based On A Determin-

istic Game

4.2.1 Basic Model

In this section, we study an incentive for �le-sharing in BitTorrent with a deter-

ministic game model. We assume allN peers have assessed other peers' uplinks

and use the same function� to determine the bene�t they have derived from the

other peers. To study the steady state behavior of each BitTorrent client, we con-

sider a synchronous, deterministic game where in thekth step, each playerj acts

to compute in the kth step, each playerj acts to compute

u[k]
j = arg max

u
f j (u; u[k� 1]

� j) (4.1)

45

 0

 0.05

 0.1

 0.15

 0.2

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 1e+08

S
uc

ce
ss

 r
at

e

Number of transactions

0 Kbps
200 Kbps
400 Kbps
600 Kbps

(a) Success rate

 0

 100

 200

 300

 400

 500

 600

 700

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 1e+08

U
pl

oa
d

ra
te

 (
kb

ps
)

Number of transactions

0 Kbps
200 Kbps
400 Kbps
600 Kbps

(b) Upload rate

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 1e+08

N
et

 u
til

ity

Number of transactions

0 Kbps
200 Kbps
400 Kbps
600 Kbps

(c) Net Utility

Figure 4.9: Experimental result under rehabilitation whenpeers behave di�erently
and
 = 5; c = 0:1; U = 200; M = 30; C = 0:01

where thenet utility (i.e., utility minus cost) is

f j (u; u[k� 1]
� j) = Wj (u; u[k� 1]

� j) � Cj (u)

and the presumedcommonutility function 3

Wj (u) := V(� j (u))

depends on the (successful) download rates

� j (u) :=
X

i 6= j

ui � (uj � ui):

The ui terms in the summand corresponds to updating reputations with the re-

ceived rate ui . Note that � j de�ned above increases with increasing numbers

of peers i in the same uplink class asj as determined by � (uj � ui). Also

note that we could consider a more complex model with �j above divided by
P

i 6= j � (uj � ui) (and 0
0 := 0) to get an averagetransaction outcomes among un-

choked (� (uj � ui) > 0) trading partners i . Bounded, positive examples ofV

include V(x) = V max tanh(�x) or V(x) = V max 2
� arctan(�x), and unbounded ex-

amples includeV(x) = V 0(0) 1
� log(1 + �x), all for constant � > 0. This game is

similar to those of [59] in that the utilities W = V � � are non-concavein u.

3If we assumed di�erent utility functions of the form Vj (�) = V max
j V (�) for common concave

V � 0, then the V max
j terms could simply be factored into the costCj terms when optimizing

net utilities.

46

Here peers are now di�erentiated by their costfunctions Cj . For the optimiza-

tion step, the �rst order optimality conditions are clearly

V 0(� j (u))
@� j

@uj
(u) � C0

j (uj) = 0 for 1 � j � N: (4.2)

Suppose that uplinksu 2
Q N

j =1 [0; Umax
j] with positive Umax

j < 1 8 j , so that

a �xed point u� of (4.2) (a Nash equilibrium point for (4.1)) exists by assumed

continuity of the functions in play and Brouwer's theorem [62].

In the following, we will consider ramp cost functionsCj (uj) which are, for

some ~Uj � 0,

� concave and positive for~Uj < u j < 1 including the linear case, and

� zero for 0� uj � ~Uj .

The cost may or may not be a bounded function of the allocated uplink bandwidth

for �le-sharing, uj . For the case where~Uj > 0, the interval [0; ~Uj) of zero cost is

intended to model the situation where the peer is paying a
atrate for commod-

ity Internet access which s/he may be actively using for a variety of applications

including �le-sharing. Signi�cant allocated uplink for background �le-sharing ac-

tivity may contribute to excessive access delay for other activity by the same

subscriber.

So, in our model, the �le-sharing costs only begin to be perceived when the

peer's uplink allocated for �le-sharing exceeds a certain threshold, ~U, at which

point the �le-sharing activity may begin to impact the quality of service experi-

enced by his other applications or may contribute to networkcongestion in the

access4. Obviously, a ramp model for cost could also be justi�ed by explicit usage-

based charges beyond a threshold (quota),i.e., overages. Peers less inclined to

cooperate in �le sharing (i.e., allocating lower uplinks) are modeled by a lower

threshold for the onset of usage-based cost,~U.

In the next two sections, we give simple analysis of the convergence to Nash

equilibria assumingall users begin with a common uplink and operate synchronous-
4As mentioned previously, one proposed application-neutral (protocol agnostic) approach to

congestion control employed by a broadband CMTS provider involves throttling heavy-hitter
(including �le-sharing) peers during periods of access network congestion [56]. In this paper, we
do not model network congestion dynamics.

47

ly. There are two scenarios that will subsequently be considered. One is a single-

class scenario (experimental results in the next section given for two di�erent

(identical) players), and the other is a two-class scenariowhere the players are

coupled (same initial uplinks) in each class. In subsequentexperimental results,

we consider the case where only same-class peers have commoninitial uplinks.

4.2.2 A single-class system

In this section, we analyze a game where all players behave inthe same way. In

other words, we assumeCj � C and Umax
j = Umax > 0 8j . Our objective here is

to develop conditions under whichu� 1 is a �xed Nash equilibrium point (NEP) for

0 � u� � Umax , i.e., a \symmetric" (diagonal) NEP. Consider iterations beginning

from one such symmetric point,u[0] = u[0]1 for a scalar u[0]. In this case, for

all peersj : � j (u; u[0]1� j) = (N � 1)u[0]� (u � u[0]) and the �rst order optimality

conditions are

V 0(� j (uj ; u[0]1� j))(N � 1)u[0]� 0(uj � u[0]) � C0(uj) = 0 : (4.3)

Note that � 0(0) = 0 and C0(u) = 0 8u 2 [0; ~U). So, in particular, if u[0]
j = ~U� 8 j

(i.e., just less than ~U), then (4.3) is met at u[0] = (~U�)1, a NEP.

In particular, note that the zero uplink strategy 0, corresponding to peers

opting out of the game, is a NEP for all~U � 0 since @fj
@uj

(0) = � C0(0) � 0.

4.2.3 A two-class system

Now suppose there are two types of cost functions in the system, C(1) and C(2) . Let

Nk be the number of peersj such that Cj = C(k) for k = 1; 2, i.e., N = N1 + N2.

Also suppose

~U1 < ~U2;

whereC(k)(u) is de�ned for u 2 [0; Umax
(k)].

Claim 1. For the two-class system with common initial uplink for all peers in the

48

same class, if

� 0(j u2 � u1 j) = 0 ; (4.4)

and C0(u1) = 0 = C0(u2) then (u1; u2) is a NEP.

Proof. Based on symmetry, we couple the updates of peers of the same class thus

e�ectively creating a two-player game whereu = [u(1) ; u(2)]: for k = 1; 2,

� (k)(u)

= (Nk � 1)u(k) � (0) + N3� ku(k� 3)� (u(k) � u(3� k)):

First order optimality conditions are now, for k = 1; 2,

V 0(� (k)(u))N3� ku(3� k) � 0(u(k) � u(3� k))

� C0
(k)(u(k)) = 0 : (4.5)

Finally, (4.5) holds by hypothesis atu� .

4.2.4 Experimental Results

To simplify matters in our preliminary numerical experiments, we tookN1 = N2 =

1 (i.e., two peers) and assumed a common utility function

V(�) =
2V max

�
arctan (
 �) :

In addition, we assumed the same cost function and the same� function. More

speci�cally, let � a(x) = (2 =a) exp(� ajxj) for a > 0. De�ne "a as a small positive

number such that � a(x) � 0 for jxj > " a. For c > 0, de�ne the second derivative

of our cost function to be of the form,

C00(u) = Cmax � c(u � ~U � " c):

Note that C00(u) � 0 for all u < ~U and u > ~U + 2" c. Figure 4.10 shows an example

cost function and its derivatives whenCmax = 100; c = 10; ~U = 10; " c = 0. Recall

that this ramp cost function represents the situation wherea user is charged a

49

at-rate fee for network access but either perceives congestion (a cost) when the

allocated uplink bandwidth exceeds a threshold~U, or is explicitly charged usage-

based overages, where the onset of usage-based cost~U is lower for leechers than

seeders.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30

V
al

ue

Upload rate

cost
cost'
cost"

Figure 4.10: Cost function and its derivatives

Now for each peerj , take

� 0(x) = bo[� b(x + B � "b) � � b(x � B + "b)];

for bo > 0, x = uj � ui and 2"b < B . So, � (0) � bo and � 0(x) � 0 for jxj > B

or jxj < B � 2"b. Figure 4.11 shows the� function and its derivatives when

B = 200; b= 1; "b = 20; b0 = 0:5. With this � function, the principal contributors

to the transaction success rate �j (u) will be those uplinksui � uj (more precisely,

jui � uj j � B � 2"b), otherwise peerj will either choke peeri (ui < u j � B) or be

choked by peeri (ui > u j + B).

Given a initial upload u, our simulation iteratively optimized the net utility of

participating peers, i.e., (4.1), until a steady state was reached. Each peer itera-

tively adjusted its upload rate toward a local maximum usingNewton's method,

u[k+1]
j = u[k] �

f 0(u[k]; u[n]
� j)

f 00(u[k]; u[n]
� j)

; n; k � 0; 1 � j � N;

where these iterations ended whenju[n+1]
j � u[n]

j j � 0:001 8j . However, when

50

 0

 0.2

 0.4

 0.6

 0.8

 1

-200 -100 0 100 200

V
al

ue

Difference in upload rate

beta
beta'
beta"

Figure 4.11: � function and its derivatives

f 00(u[k]; u[n]
� j) � 0, the peer switched to a gradient descent method:

u[k+1]
j = u[k] � � � f 0(u[k]; u[n]

� j); n; k � 0; 1 � j � N;

with �xed scaling parameter � = 0:1.

4.2.4.1 A single-class game

In this experimental setting, we studied the situation thatthe peers were identical

and subject to the same costs, though they possibly started with di�erent initial

uplinks. That is, they shared the same set of parameters, namely: ~U = 1100; � =

1; B = 400; Cmax = 100; c = b = 1; "b = 20; " c = 0. The simulation continued until

a stationary point (NEP) was reached.

Figure 4.12 shows the vector �eld results of the single-class case. For the sake

of clarity, we also shows its colored version in Figure 4.13.The three distinct

blank regions in the square [0; ~U]2 (yellow regions), separated by the two strips

B � "b � j u2 � u1j � B (green regions), are the stationary points where (4.3)

holds (blank region in the vector �eld). In these regions, for example on peer 2,

� 0(u2 � u1) = 0 becausej u2 � u1 j< B � "b or j u2 � u1 j> B and C0
2(u2) = 0

becauseu2 < ~U2. Starting with initial uplink vectors outside the three stationary

regions, the peers modi�ed their uplinks toward the boundary of the stationary

regions as the vector �eld arrows indicate (in the strips previously mentioned, the

arrows point to the nearest stationary region).

51

Notice two unstable NEPs near (1000,1500) and (1500,1000) indicated as yellow

dots. (4.3) also holds here because� 0(u2 � u1) 6= 0, C0
2(u2) 6= 0, and these two

terms cancel each other.

Figure 4.12 also demonstrates the possibility of free-riding, i.e., the triangle

stationary regionu2 < ~U2 and u2 � u1 > B (respectively,u1 < ~U1 and u1 � u2 > B)

where peer 1 (respectively, peer 2) is a free-rider. These two stationary areas will

obviously shrink as ~U # B.

0

500

1000

1500

2000

0 500 1000 1500 2000

P
ee

r
2'

s
up

lo
ad

 r
at

e

Peer 1's upload rate

Figure 4.12: Example of the single-class case

4.2.4.2 A two-class game

We also simulated the case of di�erent cost functions,i.e., B � ~U1 < ~U2 < U max
1 =

Umax
2 with bo and Cmax the same for both classes, so that peer 1 was a leecher

and peer 2 a seeder. Their utility functions were as before. We considered three

cases of~U2 � ~U1 and borrowed the remaining parameters from the single-class game

previously described.

52

Figure 4.13: Example of the single-class case

4.2.4.2.1 ~U2 � ~U1 > B : We took ~U1 = 300 and ~U2 = 1100. The numerical

result, shown in Figure 4.14, is similar to that of the single-class game but with

asymmetrical stationary region. Again,u1 < ~U1 and u2 < ~U2, except B � "b �

u2 � u1 � B , are stationary regions, and non-stationary initial uplink vectors

eventually converged to the boundary of the stationary region following of the

vector �eld. In this region, (4.5) clearly holds on both of the leecher and the

seeder because� 0(u(k) � u(3� k)) = 0 and C0
(k)(u(k)) = 0 for k = 1; 2.

Similar to the single-class game, the regionsu2 < ~U2 and u2 � u1 > B represent

the situation where the seeder 2 generously allows the leecher 1 to download from

it.

4.2.4.2.2 B � "b � ~U2 � ~U1 � B : Here we set ~U1 = 700 and ~U2 = 1100.

Figure 4.15 shows the experimental result which is similar to case1), however the

stationary region is wider because~U1 is larger.

53

0

500

1000

1500

2000

0 500 1000 1500 2000

P
ee

r
2'

s
up

lo
ad

 r
at

e

Peer 1's upload rate

Figure 4.14: Example of the two-class case

4.2.4.2.3 ~U2 � ~U1 < B � "b: We increased~U1 to 900 and maintained~U2 at 1100.

As shown in Figure 4.16, the result is similar to previous twocases. However, the

region u1 < ~U1 and u1 � u2 < B � "b is also stationary because (4.5) also holds

here.

Note that, for all three cases, there is a small saddle regionabout (1500,1000)

where: u1 > ~U1, u2 < ~U2, and u1 � u2 > B , and (4.5) holds for the seeder, but

not for the leecher. For the seeder 2,� 0(u2 � u1) = 0 and c0
2(u2) = 0 because

u2 � u1 > B and u2 < ~U2, respectively. For the leecher 1,� 0(u1 � u2) = 0, but

c0
1(u1) 6= 0 becauseu1 > ~U1. Therefore, the leecher here will be motivated to pay

to download while the seeder pays nothing.

4.2.5 Discussion

We studied a simple, deterministic sequential transactiongame modeling a Bit-

Torrent-like tit-for-tat incentives for �le sharing, with out consideration of indi-

54

0

500

1000

1500

2000

0 500 1000 1500 2000

P
ee

r
2'

s
up

lo
ad

 r
at

e

Peer 1's upload rate

Figure 4.15: Example of the two-class case

vidual swarm dynamics. The tit-for-tat incentives were studied under a
at-rate

pricing model of an uplink cost function in the form of a ramp (strictly positive,

i.e., usage-based, costs result in all peers opting out of the game with zero uplink).

Seeder peers were primarily modeled by a larger interval of zero cost. We consid-

ered the cases of two identical peers (or synchronized peer groups of the same size)

and two di�erent peers. Under certain conditions on the costand utility param-

eters, the plotted vector �elds clearly indicated signi�cant regions of not-opt-out

(positive uplink) Nash equilibria, i.e., the stationary regions in the vector �eld

were signi�cantly larger than just the 0 point, and demonstrated how, starting

from non-stationary initial uplinks, the game converged toa boundary stationary

uplink.

We hypothesize that, despite BitTorrent's rule-based (downloading the rarest

block �rst) and tit-for-tat (choking based on relative uplink and optimistic un-

choking) incentives framework for cooperative behavior and rehabilitation, good

55

0

500

1000

1500

2000

0 500 1000 1500 2000

P
ee

r
2'

s
up

lo
ad

 r
at

e

Peer 1's upload rate

Figure 4.16: Example of the two-class case

BitTorrent performance signi�cantly depends on the persistent presence of seeders.

Seeders largely engage in client-server transactions and their presence is encour-

aged by
at-rate pricing. In our model, peers were simply less cooperative when

the perceived onset of usage-based costs for �le-sharing,~U, was reduced (i.e., the

usage-based costs themselves increased), and completely opt out of the game as
~U ! 0.

Simply adding bandwidth at the access to deal with the congestion caused by

aggressive �le-sharing is not economical for the ISPs. Also, typical subscribers may

not wish to pay additional monthly fees for higher grade access (more bandwidth

particularly on the uplink) simply to improve their �le-sha ring experience (a point

here is to get the content for free). For congestion control in access networks,

rather than implementing explicit usage-based overages (above a quota) or the dy-

namic priority system of [56], ISPs could deploy astatic system of priority access

(di�erentiated services) where peers/subscribers would pay additionally to access

56

premium service classes basis and ISPs would need to dynamically authenticate

approval of the corresponding usage-based costs, both on a session-by-session basis.

The mechanisms for such systems have already been standardized and developed.

If such a di�erentiated services framework is extended intothe core, security ben-

e�ts may result. For example, denial-of-service
oods are likely not to traverse

the network over thus authenticated premium services, and so one can e�ectively

respond to them by blocking all non-premium (not authenticated) tra�c at core

routers upstream from the targeted victim of the
ood, thus preserving service for

priority tra�c.

4.3 Sybilproof Referral System

In this section, we leverage a reputation system that accounts for transaction

outcomes between the directly participating parties. The graph induced by such

a system, in which links are weighted by \direct" reputations, is related to the

framework of [51]. In the following, to infer additional information about peers

with whom no direct transactions have previously occurred,asymmetric direct rep-

utations will then be leveraged by a chain-referral system.We will not leverage

any given trusted (super)peer [51, 63], except when discussing distributed imple-

mentation issues. Moreover, we multiply instead of add5 referrals in a chain/path,

and the results of di�erent paths are added not maximized (asin a (max; +)

framework). That is, the system considered here will be speci�ed by matrix mul-

tiplication, similar to that of [63] which, according to [51], is not \sybil-proof".

Obviously, these di�erent systems have the same general property that referral

values are non-decreasing in component \direct" reputation values of the peers in

the chain. Finally, we do not consider \fast-mixing"6issues of the social network as

in [64, 65, 66]. Note that, in our system, a sybil attacker mayengage in legitimate

transactions and accrue reputation rewards as a result. This said, these rewards

may naturally be distributed, and hence diluted, among the sybil identities.

5Or simply use the direct reputation of the penultimate peer in the chain, as may be the case
for privacy-preserving referrals.

6The social network is assumed to be fast mixing, meaning thata random walk in the honest
part of the network quickly approaches the uniform distribution [65]. With a social network of
n honest nodes andm honest edges, the SybilLimit system [66] can tolerate up toO(n= logn)

57

We make some basic assumptions of the referral/reputation system: peer iden-

tity authentication (which itself does not preclude sybil identities) and secure refer-

ral communications over the Internet underlay [64, 67]. Forsimplicity of analysis

in this note, we also assume synchronous information exchange. Finally, when we

consider particular types of transactions, we assume that they are unilateral with

Boolean-valued outcomes.

4.3.1 Multiplicative reputation-based referrals

In this section, assumen + 1 interacting peers all of whom can directly transact

with each other over the Internet and that all peers operate honestly and fault-free.

4.3.1.1 Direct reputations from Boolean transaction outco mes

In the following, a transaction directly involves a pair of peers. Prior to its \direct"

phase, a transaction may involve other peers in a preliminary \referring" phase.

Let R(d)
ki be the reputation of peerk from the point-of-view of peeri directly due

to the outcomes of their transactions. If a Boolean unilateral transaction outcome

from k was good fromi 's point of view, then we could update direct reputations

according to

R(d)
ki !

(
(R(d)

ji + C)=(
P

l R(d)
li + C) if k = j

R(d)
ki =(

P
l R(d)

li + C) else
(4.6)

for a �xed reward parameter C > 0. Note that the reputations are assumed

normalized, i.e.,
P

k6= i R(d)
ki = 1 for all peers i , and how bad outcomes need not

be penalized as normalization will naturally \age-out" data. In variations, one

could also normalize by the estimate of the currenttransaction rate � ki , i.e., r (d)
ki :=

R(d)
ki =� ki , or one could also explicitly penalize bad transaction outcomes,i.e., R(d) �

C.

Assume a peerj 's transaction response does not depend on the requesting peer

i ; thus, we denote with a single subscript" j as peerj 's propensity to cooperate in

attack edges (social links from honest nodes to compromisednodes). The routing tables contain
O(

p
m logm) entries per node and are constructed e�ciently by a distrib uted protocol.

58

transactions with Boolean outcomes7. Essentially by the law of large numbers for

the rate-normalized direct reputations (4.6), the direct reputations satisfy:

R(d)
ki =R(d)

ji ! " k="j 8k; j; i: (4.7)

4.3.1.2 One-step referrals

Now consider a referral mechanism so that peeri can assess the reputation of

j even though i and j have had no or insu�cient prior direct contact or direct

contact occurred in the distant past and has been forgotten.We herein assume

indirect reputations of the multiplicative form:

J (1)
ji =

X

k6= j;i

R(d)
jk R(d)

ki ; (4.8)

where a \correct" (honest and not faulty) peer k will refer j using their own

direct reputation values. So, the referred reputations areweightedby the direct

reputations R(d)
ki of the referring peersk and self referralsare excluded,i.e., k 6= j .

Now assume that indirect (referred) reputations are used toaugment direct

reputation values. For example, this can be done additively:

R(1)
ji = aJ (1)

ji + (1 � a)R(d)
ji (4.9)

for some non-negative constanta < 1, where here the lack of direct reputation

information is coded zero [68]. This is similar to the approach of [63] to secure

the system from false referrals except they employ referrals about j from highly

reputed peers (fromi 's point-of view) instead of the second term'sR(d)
ji component.

This said, in the framework of (4.9), such super-peers will have an implicit, and

possibly highly dominant, e�ect on theJ (1) component of the �rst term.

Alternatively, referrals can be used only if no direct priorcontact (which can be

separately communicated/
agged so as not to con
ate with zero direct reputation):

R(1)
ji =

(
R(d)

ji if prior direct contact

J (1)
ji else

(4.10)

7On the other hand, in bilateral BitTorrent i; j transactions, the quality of a peerj 's response,
(i.e., j 's uplink) from the other peer i 's point-of-view depends oni 's uplink.

59

The reputations R(1) may be normalized by each peer asR(d) to give R̂(1)
ji :=

R(1)
ji =

P
k6= i R(1)

ki , where the sum is only over directly informed referrals for (4.10).

4.3.1.3 Multiple-step referrals

The system (4.10) may continue to exchange indirect reputation referrals until

direct reputation information informs all pairs of peers. Consider an arbitrary

peer, n + 1, selected for subsequent notational convenience. LetR(d)
n+1 be the row

n-vector with entries R(d)
(n+1) i and let R (d) be the n � n zero-diagonal matrix with

(k; i) entries R(d)
ki for k; i � n. For m > 0, de�ne the m-step referrals

J (m+1)
n+1 = R(d)

n+1 (R (d))m : (4.11)

We can leverage these referrals to generalize (4.10) toR(m)
ji = J (m)

ji only if J (q)
ji is

not \directly informed" by referrals of length q < m, i.e., take q as the least integer

such that (R (d))q
ji 6= 0.

For the additive system (4.9), we can compose

R(m)
ji =

mX

l=0

� (m)
l J (l)

ji 8i 6= j; (4.12)

where J (0) := R(d) . If � (m) 2 � m+1 , the (m + 1)-dimensional simplex, is of the

form � (m)
l = al =Am where 0< a < 1 and Am =

P m
l=0 al , then R(m) of (4.12) will

converge asm ! 1 : for the case of the peer (n + 1)'s reputations in (4.11), to

(1 � a)R(d)
n+1 (I � aR (d))� 1:

To see why, note thatAm ! (1 � a)� 1, R (d) is column sub-stochastic8 and the

J (m) ! 0 [69]. Alternatively, if the referrals are simply added together, i.e., � (m)
l =

1 8l; m, then R(m) ! R(d)
n+1 (I � R (d))� 1. Similar convergence results follow when

reputations R(m) are iteratively normalized.

8That is, 0 �
P

k � n R(d)
ki = 1 � R(d)

(n +1) i � 1.

60

4.3.2 Sybil attackers

4.3.2.1 Single sybil attacker (n + 1; S)

Consider two scenarios. The �rst is that of the previous section where indirect

reputations are computed when no sybils are present and all peers are correct,

i.e., no attack. The sybil attack scenario is the same as the �rst except that

the (n + 1) st peer is assumed to be a peer identity that is part of a sybil group

S. Thus, there aren + jSj di�erent peer identities in the system, though only

n + 1 < n + jSj distinct peers. We assume that the sybil identities refer toeach

other with maximum reputation Rmax . In the following, we use tilde �̀ ' to indicate

reputations in the presence of sybil attack.

As mentioned earlier and as assumed in [51],direct reputation values are divided

among sybil identities. Thus,

R(d)
(n+1) i =

X

k2 S

~R(d)
ki =: ~R(d)

Si 8i 62S: (4.13)

Extensions of the following to multiple independent or colluding sybil attackers

is straight-forward.

4.3.2.2 Example: Sybil-proof one-step referrals

In this subsection, we consider the e�ects of sybils on one-step referralsJ (1) . Again,

for notational convenience taken + 1 2 S as a typical sybil identity in the attack

scenario, whose reputation from the point of view ofi 62S is

~J (1)
(n+1) i :=

X

k62S[f i g

R(d)
(n+1) kR(d)

ki +
X

k2 Snf n+1 g

Rmax ~R(d)
ki :

By (4.13),

~J (1)
(n+1) i = J (1)

(n+1) i + Rmax(~R(d)
Si � ~R(d)

(n+1) i)

� J (1)
(n+1) i + RmaxR(d)

(n+1) i ; (4.14)

thus limiting the sybil's self-referral.

Furthermore, for two di�erent peers j; i 62S, assume the sybil attacker wants to

61

refer j to i using ~RjS to unfairly hype (~RjS = Rmax) or defame (~RjS = Rmin � 0)

j , i.e., it may be the case that ~RjS 6= R(d)
j (n+1) . So, by (4.13), we see

~J (1)
ji :=

X

k62S[f i;j g

R(d)
jk R(d)

ki +
X

k2 S

~RjS
~R(d)

ki

=
X

k62S[f i;j g

R(d)
jk R(d)

ki + ~RjS R(d)
(n+1) i : (4.15)

Thus, there is no motive for a peer to adopt sybil identities to a�ect the one-

step referrals of another peer. Note that this does not mean that there is no

a�ect by simple false referral on the reputation ofj 62S, i.e., ~J (1)
ji 6= J (1)

ji if
~RjS 6= R(d)

j (n+1) = R(d)
jS , c.f., Section 4.3.3. So, the extent to which (4.10) is sybil-

proof [51] (and, inductively, for higher-order referrals)is given by (4.13), (4.14)

and (4.15).

4.3.2.3 Additive referrals

Claim 2. The additive one-step reputation system (4.9) is sybil-proof if

a �
1

Rmax + 1
: (4.16)

Proof. For the sybil attack scenario,

~R(1)
(n+1) i = aJ (1)

(n+1) i + aRmax (~R(d)
Si � ~R(d)

(n+1) i)

+ (1 � a) ~R(d)
(n+1) i

subject to (4.13). So, sinceR(d)
(n+1) i � ~R(d)

Si > ~R(d)
ki 8k 2 S during the sybil attack,

aRmax � 1 � a (by hypothesis), and (4.14):

~R(1)
(n+1) i � R(1)

(n+1) i :

62

As in the previous subsection for two di�erentj; i 6= n + 1,

~R(1)
ji := a

X

k62S[f i;j g

R(d)
jk R(d)

ki + a
X

k2 S

~RjS
~R(d)

ki + (1 � a)R(d)
ji

= a
X

k62S[f i;j g

R(d)
jk R(d)

ki + a ~RjS R(d)
(n+1) i + (1 � a)R(d)

ji :

where, again,~RjS 2 [Rmin ; Rmax] is the putative reputation of j from the point of

view of each sybil identity k 2 S.

Recall ~RjS = 0 if the Sybils want to defamej .

4.3.2.4 A numerical example

In this section, we demonstrated the e�ectiveness of our sybilproof reputation

system by using a numerical example. For the sake of simplicity, we show only

one-step referral. Multiple-step referral is very similar. Firstly, we selected a

(n + 1) � (n + 1) matrix as the direct reputation matrix, R(d) , wheren = 3. Here

we assumed no Sybil attack:

R(d) =

0

B
B
B
B
@

0:000 0:500 0:400 0:200

0:300 0:000 0:500 0:800

0:400 0:500 0:000 0.000

0.300 0.000 0.100 0.000

1

C
C
C
C
A

Given Rmax = 1 and a = 0:4, assume the following joint reputation matrix,

R(1) , was calculated from (4.9).

R(1) =

0

B
B
B
B
@

0:000 0:380 0:348 0:280

0:356 0:000 0:380 0:504

0.300 0.380 0:000 0:192

0.196 0.080 0.108 0.000

1

C
C
C
C
A

Note that
P n

j =0 R(1)
ji = 1. However

P n
i =0 R(1)

ji is not neccessarily 1. Now we

assumed that node 4 turned into a Sybil attacker with two Sybil identities, namely

nodes 4 and 5.

63

~R(d) =

0

B
B
B
B
B
B
B
@

0:000 0:500 0:400 0:000 0:000

0:300 0:000 0:500 0:000 0:000

0:400 0:500 0:000 0.000 0.000

0.200 0.000 0.050 0.000 1.000

0.100 0.000 0.050 1.000 0.000

1

C
C
C
C
C
C
C
A

Note that R(d)
4i = ~R(d)

4i + ~R(d)
5i , recall (4.13). Suppose the goal of the attacker

is to in
ate its reputation by using self-referral among itsSybil identities. Again,

from (4.9), we can obtain ~R(1) .

~R(1) =

0

B
B
B
B
B
B
B
@

0:000 0:380 0:340 0:000 0:000

0:260 0:000 0:348 0:000 0:000

0.300 0.380 0:000 0:000 0:000

0.168 0.050 0.082 0.000 0.600

0.148 0.030 0.066 0.600 0.000

1

C
C
C
C
C
C
C
A

From the result, we can notice that none of the Sybil identities could increase

its reputation beyond that of node 4 when there is no Sybil attack. In other words,
~R(1)

4i � R(1)
4i and ~R(1)

5i � R(1)
4i 8i . Therefore, our reputation system is Sybilproof.

Also note that we do not guarantee that~R(1)
4i + ~R(1)

5i � R(1)
4i 8i .

Now consider the scenario that the attacker intends to defame an innocent peer

3, i.e., R(d)
34 = 0. Note that ~R(1)

31 = R(1)
31 and ~R(1)

32 = R(1)
32 , consistent with (4.15).

Therefore, there is no incentive to mount an Sybil attack here.

Also, recall that our reputation framework does not addressfalse referral (ly-

ing). Here the attacker lies about, for example,~R(d)
24 < R (d)

24 . As a result, ~R(1)
21 <

R(1)
21 .

4.3.3 Discussion

In a
at, distributed peer-to-peer implementation, each referral iteration obviously

requires a total of O(n2) message-passing overhead (through a kind of masked mul-

ticast to prevent peers from receiving direct feedback about their own reputations).

Alternatively, current direct reputation data could be batched and periodically sent

to a single trusted super-peer (reputation-referral indexserver) which could calcu-

64

late referrals on behalf of the peer community and disseminate them periodically

or on-demand. A distributed and scalably hierarchical super-peer (or managed

server-based) framework would be based on \local" peer groupings, Inter-group

reputation queries could be handled by the super-peers (or referral servers). Also,

the identities of particularly high or low reputed peers could be more broadly dis-

seminated in the hierarchy in an automatic way. Generally toreduce the required

communication, computation and memory, potential sparseness and/or quantiza-

tion of the inter-group direct reputations R(d) could be leveraged. Distributed

referral frameworks which address sybil attackers include[63, 70, 65, 66].

Reputation frameworks are not immune to non-sybil false referrals (i.e., those

not subject to (4.13)), though this problem can be limited byfeedbackof transaction

outcomes to impact the \direct" reputations of associatedreferring peers used to

weight referrals. Higher-order indirect referrals may simply exacerbate the problem

of non-sybil false referrals, thus motivating only single-step referralsR(1) even

though this might not yield enough reputation information for all pairs of peers

considering a transaction. Note that such aggregated referrals are alsonot used for

the single important\Byzantine" decision task, typically involving equally weighted

referrals (the lieutenants) and a single \direct" reputation source (the general)

[71, 68].

4.4 Conclusions and Future work

We addressed Sybil attacks in peer-to-peer �le-sharing based on the BitTorrent

protocol. The e�ectiveness of the built-in BitTorrent incentive called optimisti-

cally unchoking is practically limited because it is applied within a single swarm.

Incentives based on peer reputation is applicable across swarms. However, in such

a sparsely connected environment as BitTorrent, direct experience may be inade-

quate to make a useful judgment of other peers. Therefore, wemay have to resort

to reputation sharing. But again, it is known that reputation sharing is vulnerable

to the Sybil attack.

We �rst proposed a simple stochastic game model where each peer adjusts

its behavior according to the quality of service it has received. Like [27], the

experimental results show the clustering of peers according to their upload rate. We

65

also studied a simple form of reputation sharing, namely chokelist dissemination.

The chokelist dissemination helps the peers to identify free-riders faster.

In addition, we analyzed the reliance on seeder peers using asimple determinis-

tic game. This game modeled the real world situation in whichusers are charged a

at rate Internet access fee. However, additional cost is required for premium ser-

vice. We modeled the cost with a ramp function modeling the onset of usage-based

prices, and showed how free-riders can be controlled.

Then we proposed a Sybilproof referral system. Our referralsystem can be

used to leverage BitTorrent incentives without being vulnerable to an attempt to

manipulate reputation scores by Sybil identities.

Chapter 5
Conclusions and Future Works

This dissertation addressed aspects of one of the major problems related to identity

management in distributed environment, namely Sybil attacks. We addressed the

Sybil attack in two environments: Mobile Ad-hoc Network (MANET) and on-line

peer-to-peer �le-sharing systems using a BitTorrent-likeprotocol.

We proposed a Sybil detection framework for a MANET. In our framework,

mobile nodes voluntarily and cooperatively participate inthe Sybil attack detection

in a distributed fashion. The nodes monitor their neighbors' network activities and

generate tra�c observation proofs. Then, they periodically exchange the tra�c

observation proofs with their neighbors while they are moving. Our framework

guarantees the integrity, privacy, and non-repudiation ofthe observation exchange

without the requirement of dedicated, trusted monitors. These proofs are used to

construct the path on which each mobile node has traveled. Wealso propose a

simple clustering algorithm that arranges nodes with similar path into the same

cluster. The nodes in the same cluster are assumed manipulated by the same

attacker. The experimental results showed that our framework achieves precision

over 80% (true positives) at about a 10% false positive rate.

We also investigated the e�ect of incentive mechanisms for on-line distributed

�le-sharing via the BitTorrent protocol. We proposed a gamemodel for BitTorrent-

like tit-for-tat incentives. In the game, each peer evaluates the quality of service it

has received and adjusts its behavior to gain maximum utility. The experimental

results showed that the incentives can motivate the peer to become more coopera-

tive. In addition, we see the clustering of peers according to their upload rates. We

67

then analyzed the BitTorrent users' behavior in steady state with a deterministic

game. This game models real-world Internet usage where the fee for basic access

is
at and that for premium service is an overage. We discovered that free-riders

can be discouraged by imposing an appropriate overage fee. We also found that a

simple form of shared reputation, chokelist dissemination, is e�ective in identifying

and discouraging free-riders.

However, reputation sharing is vulnerable to the Sybil attack. Therefore, we

introduced a shared reputation system which is sybilproof.A Sybil attacker can

still obtain multiple identities, but it cannot gain any bene�t by doing so.

In the future, we plan to improve our Sybil detection framework for MANETs

by loosing some constraints and make it more suitable for practical uses. In ad-

dition, we plan to reduce the storage overhead of our framework by intelligently

suppressing redundant observations. We also want to improve the accuracy when

nodes move at higher speed. Furthermore, we plan to address the situation that

multiple devices collude to evade the detection system.

As for the BitTorrent incentives, we want to model the systemmore realistically.

For example, we want to model the e�ect of swarm churn and swarm formation.

We would also plan to extend our model to be able to handle multiple swarms,

that is, peers concurrently join multiple swarms. Then we want to explore scalable

implementation issues for inter-swarm referrals in BitTorrent.

Appendix A
Source Code for Sybil Attack

Detection in MANET

A.1 sybil agent.h

This is the simulator for Chapter 3.

/*

* $Author: tangpong $

* $Date: 2008/03/13 19:51:20 $

* $Id: sybil_agent.h,v 1.1.1.1 2008/03/13 19:51:20 tangpo ng Exp $

* $Revision: 1.1.1.1 $

*

* sybil_agent.h

*/

#include <deque>

#ifndef __sybil_h__

#define __sybil_h__

//#define __DEBUG__

//#define __DEBUG1__

//#define __DEBUG4__

//#define __DEBUG5__

//#define __DEBUG6__

// For the sake of simplicity, I define the maximum number

// of mobile nodes, including all Sybil identities, allowed

// observation table.

#define MAX_ID 1024

#define MAX_SLICE 12

69

// To find the similarity between two section entry,

// there are two options when the common time is 0.

// SIM_TYPE_STRONG yields the similarity of

// zero. SIM_TYPE_WEAK just ignores it.

#define SIM_TYPE_STRONG 0

#define SIM_TYPE_WEAK 1

/********************** Simulation Parameters ******** *****/

// The distance tolerance factor - if two nodes are

// with in this distance,

// they are considered in the same region.

#define DISTANCE_TOLERANCE 1

// If two observations are PERIOD_TOLERANCE away from each other,

// they are unrelated.

// S = 2*Transmission_range = 500 = Vmax * Tmin = 20 * Tmin

// Then, Tmin = 25

// PERION_TOLERANCE must be greater than 25.

// This is not clear yet!

#define PERIOD_TOLERANCE 30

// Path similarity threshold

#define THRESHOLD 60.0

// Confidence which is the minimum time between two paths

#define CONFIDENCE 20

// This is the minimum time between two observation.

#define MIN_OBSERVED_TIME 5

/** *****/

int sim_type = SIM_TYPE_STRONG;

//int sim_type = SIM_TYPE_WEAK;

// Buffer size for an observation (56 bytes)

int BUFFER_SIZE = sizeof(int) // observation number

+ sizeof(int) // sender

+ sizeof(int) // receiver

+ sizeof(double) // timestamp

+ 3*sizeof(float) // position

+ 4*sizeof(float) // vector

+ sizeof(int) // slice_no

+ sizeof(float); // radius

int ONO_OFFSET = 0;

int SND_OFFSET = ONO_OFFSET + sizeof(int);

int RCV_OFFSET = SND_OFFSET + sizeof(int);

int TMP_OFFSET = RCV_OFFSET + sizeof(int);

int POS_OFFSET_X = TMP_OFFSET + sizeof(double);

int POS_OFFSET_Y = POS_OFFSET_X + sizeof(float);

int POS_OFFSET_Z = POS_OFFSET_Y + sizeof(float);

int VEC_OFFSET_X = POS_OFFSET_Z + sizeof(float);

int VEC_OFFSET_Y = VEC_OFFSET_X + sizeof(float);

int VEC_OFFSET_Z = VEC_OFFSET_Y + sizeof(float);

int VEC_OFFSET_D = VEC_OFFSET_Z + sizeof(float);

70

int SLC_OFFSET = VEC_OFFSET_D + sizeof(float);

int RAD_OFFSET = SLC_OFFSET + sizeof(int);

// Packet Header

struct hdr_sybil {

// Required

static int offset_; // required by PacketHeaderManager

inline static int& offset() { return offset_; }

inline static hdr_sybil* access(const Packet* p) {

return (hdr_sybil*) p->access(offset_);

}

// Packet fields

int id_;

int seq;

// Header access method

int& id() { return id_; }

};

class Point;

class Triangle;

class Rectangle;

class Vector;

class Region;

class Observation;

class Observation_Table;

class Buffer;

class Path;

class Cluster_Entry;

class Cluster;

class Section_Entry;

class Section;

class Sim_Entry;

class Similarity;

// Agent Class

class Sybil_Agent: public Tap, public Agent {

public:

Sybil_Agent();

int seq;

virtual int command(int argc, const char* const* argv);

virtual void recv(Packet*, Handler*);

void tap(const Packet *p);

void exchange_all();

void detect();

void move();

protected:

Observation_Table* obs_table; // Observation table

Observation_Table* imp_table; // Import observations

71

Mac *mac_;

float px, py, pz;

int activate_;

double threshold, confidence;

};

class Point {

float x, y, z;

public:

Point(float x_, float y_, float z_) : x(x_), y(y_), z(z_) {}

Point(Point *p) { x = p->x; y = p->y; z = p->z; }

int equal(Point *p) {

if((x == p->x) && (y == p->y) && (z == p->z)) return 1;

else return 0;

}

float distance(Point *p) {

return sqrt(powf(p->x - x, 2) +

powf(p->y - y, 2) + powf(p->z - z, 2));

}

friend class Line;

friend class Triangle;

friend class Vector;

friend class Region;

friend class Observation;

friend ostream& operator<< (ostream&, Point&);

};

class Line {

Point *start, *end;

int type_; // 0 for Y = mX + a and 1 for X = c

float m, // slope

a, // constant in Y = mX + a

c; // constant in X = c

public:

Line(Point *s, Point *e);

int type() { return type_; }

float get_x(float y) { return (y - c)/m; }

float get_y(float x) { return m*x + c; }

float get_m() { return m; }

int is_left(Point *p);

int is_above(Point *p);

int is_on_line(Point *p);

int intersect(Line *l, float &x, float &y);

friend class Rectangle;

friend class Observation;

};

class Triangle {

72

Point *point[3];

float min_x, max_x, min_y, max_y;

public:

Triangle(Point *p0, Point *p1, Point *p2);

int is_inside(Point *p);

};

class Rectangle {

Line *l1, *l2;

Triangle *t1, *t2;

public:

Rectangle(Line *l, Line *r) : l1(l), l2(r) {

Line* l3 = new Line(l1->start, l2->start);

Line* l4 = new Line(l1->end, l2->end);

float x, y;

if(l3->intersect(l4, x, y)) {

t1 = new Triangle(l1->start, l1->end, l2->start);

t2 = new Triangle(l1->start, l2->end, l2->start);

} else {

t1 = new Triangle(l1->start, l1->end, l2->end);

t2 = new Triangle(l1->start, l2->start, l2->end);

}

delete l3;

delete l4;

}

~Rectangle() { delete t1; delete t2; }

int is_inside(Point *p) {

if(t1->is_inside(p) || t2->is_inside(p))

return 1;

else

return 0;

}

};

// Unit vector

class Vector {

float x, y, z;

float degree_;

public:

Vector(float x_, float y_, float z_);

Vector(Point* src, Point* dst);

float degree() { return degree_; }

friend class Region;

friend class Observation;

friend ostream& operator<< (ostream&, Vector&);

};

73

class Region {

Point* center;

Vector* rec2dst;

int slice_no;

float radius;

public:

Region(Point* c, Vector* v, int slc, float rad) :

center(c), rec2dst(v), slice_no(slc), radius(rad) {}

~Region() { delete center; delete rec2dst; }

int is_inside(Point* p);

friend class Observation;

friend ostream& operator<< (ostream&, Region&);

};

class Observation {

int obs_no_;

int sender_; // ll sender

int receiver_; // ll receiver

double timestamp_;

Region* region_;

public:

static int obs_counter;

Observation(int s, int r, double t, Region* reg) :

sender_(s), receiver_(r), timestamp_(t), region_(reg) {

obs_no_ = obs_counter++;

}

Observation(char *);

~Observation() { delete region_; }

Region* region() { return region_; }

double timestamp() { return timestamp_; }

int is_in_region(Observation *begin, Observation *end);

// Convert the observation to a buffer and

// make it ready for transfer

char* export_buffer(char *);

void print_buffer(char *);

bool operator== (const Observation &other) const {

return obs_no_ == other.obs_no_;

}

bool operator> (const Observation &other) const {

return timestamp_ > other.timestamp_;

}

friend class Observation_Table;

friend class Section_Entry;

friend ostream& operator<< (ostream&, Observation&);

};

class Buffer {

74

public:

int size_;

char* buffer_;

Buffer(int s, char* b) : size_(s), buffer_(b) {}

~Buffer() { if(buffer_ != NULL) delete buffer_; }

};

class Path {

int id_;

double len_;

public:

Path(int id, double len) : id_(id), len_(len) {}

int id() { return id_; }

double len() { return len_; }

bool operator> (const Path &other) const {

return len_ > other.len_;

}

};

class Observation_Table {

deque<Observation*> table_[MAX_ID];

public:

void push_back(int id, Observation *o) {

table_[id].push_back(o);

}

void add_observation(int id, Observation *o);

int check_observation(int id, Observation *o);

Observation* last(int id);

Buffer* export_table();

void import_table(Buffer*);

void merge(Observation_Table* t);

void similarity(Cluster_Entry *c, Path *p,

double &sim_score, double &confidence);

Path* convert2path(int id);

void generate_cluster(int nid, double threshold,

double confidence);

Section* split_path(int id);

int size();

friend ostream& operator<< (ostream&, Observation_Table &);

};

class Cluster_Entry {

deque<Path*> element_;

public:

Cluster_Entry(Path *p) { add_path(p); }

~Cluster_Entry() {

while(element_.size()) {

deque<Path*>::iterator itr = element_.begin();

Path *p = *itr;

75

delete p;

element_.pop_front();

}

}

void add_path(Path *p) { element_.push_back(p); }

int cluster_head_id() {

if(element_.size() == 0) {

return -1;

} else {

deque<Path*>::iterator itr = element_.begin();

Path* p = *itr;

return p->id();

}

}

int size() { return element_.size(); }

friend ostream& operator<< (ostream& os, Cluster_Entry& c e);

};

class Cluster {

deque<Cluster_Entry*> cluster_;

Observation_Table* ot_;

double threshold;

double confidence;

public:

Cluster(Observation_Table *ot, double thr, double conf) :

ot_(ot), threshold(thr), confidence(conf) {}

~Cluster();

void add_cluster(Cluster_Entry* c) { cluster_.push_back (c); }

void compare_cluster(Path *p);

friend ostream& operator<< (ostream& os, Cluster& c);

};

class Section_Entry {

deque<Observation*> element_;

double start, stop;

public:

Section_Entry(Observation *o) {

start = stop = o->timestamp_;

}

void add_observation(Observation *o) {

element_.push_back(o);

stop = o->timestamp_;

}

int size() { return element_.size(); }

double length() { return stop - start; }

int sim_section(Section_Entry *s, double &overlap_time,

double &obs_common_time);

int is_in_region(Observation *o);

76

friend ostream& operator<< (ostream& os, Section_Entry& s e);

};

class Section {

deque<Section_Entry*> selement_;

public:

~Section();

double length();

int size() { return selement_.size(); }

void similarity(Section *s, double &sim_score,

double &confidence);

void add_section(Section_Entry *se) {

selement_.push_back(se);

}

};

class Sim_Entry {

Cluster_Entry *ce_;

double sim_;

public:

Sim_Entry (Cluster_Entry *ce, double sim) : ce_(ce),

sim_(sim) {}

void add_path(Path *p) { ce_->add_path(p); }

bool operator> (const Sim_Entry &other) const {

return sim_ > other.sim_;

}

};

class Similarity {

deque<Sim_Entry*> element_;

public:

void add(Sim_Entry *se) { element_.push_back(se); }

int size() { return element_.size(); }

void sort_queue();

void add_top_entry(Path *p);

~Similarity();

};

ostream& operator<< (ostream&, Point&);

ostream& operator<< (ostream&, Vector&);

ostream& operator<< (ostream&, Region&);

ostream& operator<< (ostream&, Observation&);

ostream& operator<< (ostream&, Observation_Table&);

ostream& operator<< (ostream& os, Cluster_Entry&);

ostream& operator<< (ostream& os, Cluster&);

ostream& operator<< (ostream& os, Path&);

#endif

77

A.2 sybil agent.cc
/*

* $Author: tangpong $

* $Date: 2008/03/13 19:50:53 $

* $Id: sybil_agent.cc,v 1.1.1.1 2008/03/13 19:50:53 tangp ong Exp $

* $Revision: 1.1.1.1 $

*

* sybil_agent.cc

*

* To Do

*

* To work

* 1. Detection work

* 2. Location verification to prevent collusion

*/

#include <functional>

#include <iostream>

#include <math.h>

#include <stdlib.h>

#include "address.h"

#include "agent.h"

#include "aodv/aodv.h"

#include "aodv/aodv_packet.h"

#include "ip.h"

#include "mac.h"

#include "mobilenode.h"

#include "packet.h"

#include "tclcl.h"

#include "sybil_agent.h"

int hdr_sybil::offset_;

int Observation::obs_counter = 0;

/************************** Static Classes ********/

static class SybilHeaderClass: public PacketHeaderClass {

public:

SybilHeaderClass() : PacketHeaderClass("PacketHeader/ Sybil",

sizeof(hdr_sybil)) {

bind_offset(&hdr_sybil::offset_);

}

} class_sybilhdr;

static class SybilClass: public TclClass {

public:

SybilClass() : TclClass("Agent/Sybil") {}

TclObject* create(int, const char* const*) {

return (new Sybil_Agent());

}

78

} class_sybil;

/************************** helper function *******/

bool obs_compare(Observation *x, Observation *y) {

return !(*x > *y);

}

template <class T>

struct ptr_equal_to : public binary_function<T, T, bool> {

bool operator()(const T &x, const T &y) const {

return *x == *y;

}

};

bool path_compare(Path *x, Path *y) {

return (*x > *y);

}

bool se_compare(Sim_Entry *x, Sim_Entry *y) {

return (*x > *y);

}

/***/

/*

* Extend2Agent constructor

*/

Sybil_Agent::Sybil_Agent() : Agent(PT_EXTEND2), seq(0) ,

px(0), py(0), pz(0), activate_(0) {

bind("threshold", &threshold);

bind("confidence", &confidence);

obs_table = new Observation_Table();

imp_table = new Observation_Table();

}

/*

* command - process TCL commands

*/

int Sybil_Agent::command(int argc, const char* const* arg v) {

if(argc == 2) {

if(strcmp(argv[1], "send") == 0) {

// Create a new packet

Packet* pkt = allocpkt();

// Access the Extend2 header fo the new packet

hdr_sybil* hdr = hdr_sybil::access(pkt);

hdr->seq = seq++;

// Send the packet

send(pkt, 0);

79

return (TCL_OK);

} else if(strcmp(argv[1], "show_table") == 0) {

cout << *obs_table << endl;

return (TCL_OK);

} else if(strcmp(argv[1], "exchange_all") == 0) {

exchange_all();

return (TCL_OK);

} else if(strcmp(argv[1], "detect") == 0) {

detect();

return (TCL_OK);

} else if(strcmp(argv[1], "move") == 0) {

move();

return (TCL_OK);

} else if(strcmp(argv[1], "activate") == 0) {

activate_ = 1;

// cout << "Sybil " << addr() << " is active" << endl;

return(TCL_OK);

} else if(strcmp(argv[1], "mem_size") == 0) {

int mem = obs_table->size() + imp_table->size();

cout << addr() << " " << (int) mem/1024 << endl;

return(TCL_OK);

}

} else if(argc == 3) {

if(strcmp(argv[1], "install-tap") == 0) {

mac_ = (Mac *)TclObject::lookup(argv[2]);

if(mac_ == 0) return TCL_ERROR;

mac_->installTap(this);

return TCL_OK;

}

}

return (Agent::command(argc, argv));

}

void Sybil_Agent::move() {

// Update my px, py, pz (previous direction)

MobileNode* me =

(MobileNode *)Node::get_node_by_address(addr());

if(me == NULL) {

cerr << "Sybil_Agent::move - can not locate a mobile node "

<< addr() << endl;

exit(-1);

}

float len = sqrt(me->dX()*me->dX() +

me->dY()*me->dY() + me->dZ()*me->dZ());

if(len != 0) {

px = me->dX();

py = me->dY();

80

pz = me->dZ();

} else {

cerr << "Sybil_Agent::move error" << endl;

exit(-1);

}

}

/*

* ONLY designated receiver do this

*/

void Sybil_Agent::tap(const Packet *p) {

hdr_cmn* hdr = hdr_cmn::access(p);

hdr_ip* iph = hdr_ip::access(p);

int sender_id;

// Only activated Sybil_Agent runs this. We disable the

// Sybil_Agent on Sybil nodes.

if(!activate_) { return; }

// Observe only messages destined to me,

// IP broadcast address, or LL

// broadcast address

// AODV_RREP is sent to next_hop_

if((hdr->next_hop_ != addr()) &&

// Broadcast address for AODV RREQ

(hdr->next_hop_ != -2) &&

(iph->daddr() != addr()) &&

// Broadcast IP address

(iph->daddr() != (nsaddr_t)IP_BROADCAST))

return;

/*

* Determine the packet sender

* 1. AODV REQ - Sender's IP in hdr_ip

* 2. AODV RREP - Reply Source IP (rp_src in hdr_adov_reply)

* 3. CBR - prev_hop_ in hdr_cmn (forwarder)

*

* Note: currently, we don't care about AODV RREP because

* we focus

* only on AODV_REQ & CBR packets. We are not considering the

* situation that attackers send AODV_RREP. In addition, it

* obviously will not report route error. We focus only on

* layers

* above our protocol and ignore packets from all layers below

* it. This is the old code snippet.

*

* if(strcmp(packet_info.name(hdr->ptype_),"ARP") == 0) return;

*/

if(hdr->ptype() == PT_AODV) {

81

hdr_aodv *ah = hdr_aodv::access(p);

if(ah->ah_type == AODVTYPE_RREQ) {

sender_id = iph->saddr();

} else if(ah->ah_type == AODVTYPE_RREP) {

hdr_aodv_reply *rp = HDR_AODV_REPLY(p);

sender_id = rp->rp_src;

return; // Ignore AODV_RREP

} else if(ah->ah_type == AODVTYPE_RERR) {

return; // Ignore AODV_RERR

} else if(ah->ah_type == AODVTYPE_HELLO) {

return; // Ignore AODV_HELLO

}

} else if(hdr->ptype() == PT_CBR) {

// I hacked the AODV code to make this possible.

sender_id = hdr->prev_hop_;

} else if(hdr->ptype() == PT_SYBIL) {

// As of now, we ignore PT_SYBIL packets because

// we assume that

// no Sybil nodes will exchange their observation

// table if they

// do it at all. If they do it, they expose themselves.

sender_id = iph->saddr();

return; // Ignore PT_SYBIL packages

} else {

return;

}

#ifdef __DEBUG__

char txt[20] = "";

if(hdr->ptype() == PT_AODV) {

hdr_aodv *ah = hdr_aodv::access(p);

if(ah->ah_type == AODVTYPE_RREQ) {

hdr_aodv_request *rq = HDR_AODV_REQUEST(p);

sprintf(txt, "RREQ %d %d", rq->rq_src, rq->rq_dst);

} else if(ah->ah_type == AODVTYPE_RREP) {

hdr_aodv_reply *rp = HDR_AODV_REPLY(p);

sprintf(txt, "RREP %d %d", rp->rp_src, rp->rp_dst);

} else if(ah->ah_type == AODVTYPE_RERR) {

sprintf(txt, "RERR");

} else if(ah->ah_type == AODVTYPE_HELLO) {

sprintf(txt, "HELLO");

}

}

cout << "Me = " << addr() << ", "

<< "Snd = " << sender_id << ", "

<< "Fwd = " << hdr->prev_hop_ << ", "

<< "Next = " << hdr->next_hop_ << ", "

82

<< "SndIP = " << iph->saddr() << ", "

<< "DstIP = " << iph->daddr() << ", "

<< "Now = " << Scheduler::instance().clock() << " "

<< packet_info.name(hdr->ptype_) << " "

<< txt

<< endl;

#endif

MobileNode* snd =

(MobileNode *)Node::get_node_by_address(sender_id);

MobileNode* rec =

(MobileNode *)Node::get_node_by_address(addr());

if(snd == NULL) {

cerr << "Sybil_Agent::tap - can not locate a mobile node "

<< sender_id << endl;

exit(-1);

} else if(rec == NULL) {

cerr << "Sybil_Agent::tap - can not locate a mobile node "

<< addr() << endl;

exit(-1);

}

/*

* Generate a region that the receiver observes the sender.

*

* snd2rec = the unit vector from sender to receiver.

* rec2dst = the unit vector representing

* the receiver's orientation

*

* Note: if the sender(snd_loc) and the receiver(rec_loc) me et,

* the unit vector snd2rec is of length zero. Use the unit

* vector of sender as snd2rec.

*/

Point* snd_loc = new Point(snd->X(), snd->Y(), snd->Z());

Point* rec_loc = new Point(rec->X(), rec->Y(), rec->Z());

float distance = rec->distance(snd);

Vector* rec2dst;

Vector* rec2snd; // Unit vector from the sender to the receiv er

float l = sqrt(rec->dX()*rec->dX() + rec->dY()*rec->dY() +

rec->dZ()*rec->dZ());

if(l != 0.0) {

rec2dst = new Vector(rec->dX(), rec->dY(), rec->dZ());

} else {

rec2dst = new Vector(px, py, pz);

}

if(snd_loc->equal(rec_loc) == 1) {

// For now, when snd_loc and rec_loc coincide, we simply

// assume that that the direction of the sender is the same

// as the direction of the transmission.

83

float t = sqrt(snd->dX()*snd->dX() + snd->dY()*snd->dY() +

snd->dZ()*snd->dZ());

if(t != 0.0) {

rec2snd = new Vector(snd->dX(), snd->dY(), snd->dZ());

} else {

rec2snd = new Vector(rec->dX(), rec->dY(), rec->dZ());

}

} else {

rec2snd = new Vector(rec_loc, snd_loc);

}

// Find the slice of the receiver that the sender resides.

float angle_per_slice = (float) 360/MAX_SLICE;

float angle = rec2snd->degree() - rec2dst->degree();

int slice_no;

if(angle == 0)

slice_no = 0;

else if(angle > 0)

slice_no = (int) ceil(angle/angle_per_slice) - 1;

else

slice_no = MAX_SLICE - (int) ceil(-1*angle/angle_per_sli ce);

if((slice_no < 0) || (slice_no > (MAX_SLICE-1))) {

cout << "Error in computing slice_no "

<< "angle = " << angle

<< "angle_per_slice = " << angle_per_slice

<< "slice_no = " << slice_no << endl;

exit(-1);

}

/*

cout << "vector rec2dst angel = " << rec2dst->degree() << end l;

cout << "vector snd2rec angle = " << rec2snd->degree() << end l;

cout << "angle = " << angle << endl;

cout << "slice = " << slice_no << endl;

*/

/*

* Check whether the sender is in the old region or not.

* If yes, do

* nothing. I don't know if this a good idea or not.

* Maybe we should

* drop some observation, not all like this.

*/

// Let check the region compression later

Observation* last_obs = obs_table->last(sender_id);

if(last_obs != NULL) {

Region* last_region = last_obs->region();

double local_time = Scheduler::instance().clock();

if(last_region != NULL) {

84

// Time difference is less than 1 second.

if(fabsl(local_time - last_obs->timestamp()) <=

MIN_OBSERVED_TIME) return;

// Still in the same region

if(last_region->is_inside(snd_loc) == 1) return;

}

}

Region* reg = new Region(rec_loc, rec2dst, slice_no, dista nce);

// The uniqueness of an observation is not important

// at all because

// we combine regions anyway. Then we don't need the

// sequence number

//

// 03/13/08 Update: now it is important because when we excha nge

// observation around, we don't want duplicated observatio ns on

// the same node. We handle this by using a static variable

// inside the observation class.

Observation* o =

new Observation(sender_id, addr(), p->time_, reg);

obs_table->push_back(sender_id, o);

#ifdef __DEBUG__

cout << *snd_loc << " - " << *o << endl;

cout << "Node " << addr() << " Observation Table" << endl;

cout << *obs_table << endl;

#endif

delete snd_loc;

delete rec2snd;

/*

// Pass the control to the TCL level.

char out[100];

sprintf(out, "%s printme %s", name(), "baa");

Tcl& tcl = Tcl::instance();

tcl.eval(out);

*/

}

/*

* exchange_all : a node exports its entire observation

* table into a

* buffer and then broadcast to its neighbors.t*/

void Sybil_Agent::exchange_all() {

Buffer* obs_table_buffer = obs_table->export_table();

#ifdef __DEBUG__

cout << "Node " << addr() << " Observation Table" << endl;

cout << *obs_table;

85

#endif

// The obs_table is empty.

if(obs_table_buffer == NULL) return;

Packet* pkt = allocpkt();

PacketData* pData = new PacketData(obs_table_buffer->si ze_);

pkt->setdata(pData);

memcpy((void*) pData->data(), (void*) obs_table_buffer ->buffer_,

obs_table_buffer->size_);

delete obs_table_buffer;

// Common header

hdr_cmn* cmn = hdr_cmn::access(pkt);

double local_time = Scheduler::instance().clock();

cmn->timestamp() = local_time;

cmn->ptype() = PT_SYBIL;

// Sybil header

hdr_sybil* sh = hdr_sybil::access(pkt);

sh->id() = addr();

hdr_ip* iph = hdr_ip::access(pkt);

iph->daddr() = IP_BROADCAST;

iph->dport() = here_.port_;

send(pkt, 0);

}

/*

* delect - detect the Sybil attack

*/

void Sybil_Agent::detect() {

obs_table->merge(imp_table);

obs_table->generate_cluster(addr(), threshold, confid ence);

#ifdef __DEBUG6__

int size = obs_table->size();

cout << "# OBS = " << size <<

" Mem = " << BUFFER_SIZE*size << endl;

cout << *obs_table << endl;

#endif

}

/*

* recv - recv in the C++ level

*/

void Sybil_Agent::recv(Packet* pkt, Handler*) {

hdr_cmn* cmn = hdr_cmn::access(pkt);

86

// recv in the C++ level

if(cmn->ptype() == PT_SYBIL) {

char* buffer = new char[pkt->datalen()];

PacketData* data = (PacketData*)pkt->userdata();

memcpy(buffer, data->data(), data->size());

Buffer* ref_buff = new Buffer(data->size(), buffer);

#ifdef __DEBUG2__

hdr_ip* ip = hdr_ip::access(pkt);

//if(addr() == 0)

cout << addr() << " got from " << ip->saddr() << " "

<< pkt->datalen()

<< endl;

#endif

imp_table->import_table(ref_buff);

delete ref_buff;

}

// recv in the TCL level

/*

char out[100];

sprintf(out, "%s recv %d", name(),

hdrip->src_.addr_ >> Address::instance().NodeShift_[1]);

Tcl& tcl = Tcl::instance();

tcl.eval(out);

*/

// Discard the packet

Packet::free(pkt);

}

/******************************* Line *************** *********/

Line::Line(Point *s, Point *e) : start(s), end(e) {

if(s->x == e->x) {

type_ = 1;

c = s->x;

} else {

type_ = 0;

m = (s->y - e->y)/(s->x - e->x);

a = s->y - m*s->x;

}

}

int Line::is_left(Point *p) {

if(type_) {

if(p->x <= c) return 1;

else return 0;

87

} else if(m == 0) {

return -1;

} else {

float x = (p->y - a)/m;

if(p->x <= x) return 1;

else return 0;

}

}

int Line::is_above(Point *p) {

if(type_) {

return -1;

} else if(m == 0) {

if(p->x >= a) return 1;

else return 0;

} else {

float y = m*p->x + a;

if(p->y >= y) return 1;

else return 0;

}

}

int Line::is_on_line(Point *p) {

if(type_) {

if(p->x == c) return 1;

else return 0;

} else if(m == 0) {

if(p->y == a) return 1;

else return 0;

} else {

float x = (p->y - a)/m;

if(x == p->x) return 1;

else return 0;

}

}

int Line::intersect(Line *l, float &x, float &y) {

if(type_ && l->type()) { // Parallel lines

return 0;

} if(m == l->m) { // Parallel lines

return 0;

} else if(type_) {

x = c;

y = l->m*x + l->a;

return 1;

} else if(l->type()) {

x = l->c;

88

y = m*x + a;

return 1;

} else {

x = (a - l->a)/(l->m - m);

y = m*x + a;

return 1;

}

}

/**************************** Triangle ************** *******/

Triangle::Triangle(Point *p0, Point *p1, Point *p2) {

point[0] = p0; point[1] = p1; point[2] = p2;

min_x = min_y = 10e6;

max_x = max_y = -10e6;

for(int i=0; i<3; i++) {

if(min_x > point[i]->x) min_x = point[i]->x;

if(min_y > point[i]->y) min_y = point[i]->y;

if(max_x < point[i]->x) max_x = point[i]->x;

if(max_y < point[i]->y) max_y = point[i]->y;

}

}

int Triangle::is_inside(Point *p) {

if(!((p->x >= min_x) && (p->x <= max_x) && (p->y >= min_y) &&

(p->y <= max_y)))

return 0;

for(int i=0; i<3; i++) {

Line* l = new Line(point[i], point[(i+1)%3]);

if(l->is_on_line(p)) {

delete l;

return 1;

}

if(l->get_m() != 0) {

if(l->is_left(point[(i+2)%3])) {

if(!l->is_left(p)) return 0;

} else {

if(l->is_left(p)) return 0;

}

} else {

if(l->is_above(point[(i+2)%3])) {

if(!l->is_above(p)) return 0;

} else {

if(l->is_above(p)) return 0;

}

}

89

delete l;

}

return 1;

}

/****************************** Vector ************** ********/

/*

* Vector Constructor

*/

Vector::Vector(float x_, float y_, float z_) :

x(x_), y(y_), z(z_) {

// Check the length of the vector.

float len = sqrt(x*x + y*y + z*z);

if((len <= 0) || (len > 1)) {

cerr << "Error : the size of the unit vector is not 1"

<< endl;

cerr << "(" << x_ << "," << y_ << "," << z_ << ")" << endl;

double local_time = Scheduler::instance().clock();

cerr << "Time = " << local_time << endl;

exit(-1);

}

// Find the angle between the vector and the X axis.

// radian = acos([x,y].[1,0]) = acos(x*1 + y*0)

degree_ = acos(x)*180/M_PI;

if(y < 0) degree_ = 360-degree_;

}

/*

* Vector Constructor

*/

Vector::Vector(Point* src, Point* dst) {

if(src->equal(dst)) {

cerr << "Error: unit vector of size zero" << endl;

exit(-1);

}

x = dst->x - src->x;

y = dst->y - src->y;

z = dst->z - src->z;

float length = sqrt(x*x + y*y + z*z);

if(length == 0) {

cerr << "Error: unit vector of size zero" << endl;

exit(-1);

}

x /= length;

y /= length;

z /= length;

90

degree_ = acos(x)*180/M_PI;

if(y < 0) degree_ = 360-degree_;

}

/***************************** Region *************** ********/

/*

* is_inside : check if the point "p" is inside the region or not .

*/

int Region::is_inside(Point* p) {

// The locations of sender and receiver coincide.

if(center->equal(p)) {

#ifdef __DEBUG__

cout << "## Observation compressed - positions coincide. ## "

<< endl;

#endif

return 1;

}

// Sender and receiver have moved away from each other.

// To reduce the number of observation, if the node is less tha n

// DISTANCE_TOLERANCE far away, we consider that they are st ill

// in the same region.

if(fabs(center->distance(p) - radius) > DISTANCE_TOLERA NCE)

return 0;

// Check whether the sender is s/till in the same slice.

int each_slice = (int) 360/MAX_SLICE;

float zeta = rec2dst->degree();

float zeta1 = zeta + slice_no*each_slice;

float zeta2 = zeta + (slice_no + 1)*each_slice;

Vector* ctr2snd = new Vector(center, p);

float beta = ctr2snd->degree();

zeta1 -= ((int)zeta1/360)*360;

zeta2 -= ((int)zeta2/360)*360;

beta -= ((int)beta/360)*360;

int result = 0;

if(zeta2 < zeta1) {

if((beta >= zeta1) && (beta < 360)) {

#ifdef __DEBUG__

cout << "### Observation compressed - same sector . ###"

<< endl;

#endif

result = 1;

} else if((beta >= 0) && (beta <= zeta2)) {

#ifdef __DEBUG__

cout << "### Observation compressed - same sector . ###"

<< endl;

#endif

91

result = 1;

} else {

result = 0;

}

} else {

if((beta >= zeta1) && (beta <= zeta2)) {

#ifdef __DEBUG__

cout << "### Observation compressed - same sector . ###"

<< endl;

#endif

result = 1;

} else {

result = 0;

}

} // else

delete ctr2snd;

return result;

}

/**************************** Observation *********** *********/

/*

* Constructor : create an observation from a pointer of char

*/

Observation::Observation(char *ptr) {

if(ptr == NULL) return;

int ono = *((int *)(ptr + ONO_OFFSET));

int snd = *((int *)(ptr + SND_OFFSET));

int rec = *((int *)(ptr + RCV_OFFSET));

double tmp = *((double *)(ptr + TMP_OFFSET));

float p_x = *((float*)(ptr + POS_OFFSET_X));

float p_y = *((float*)(ptr + POS_OFFSET_Y));

float p_z = *((float*)(ptr + POS_OFFSET_Z));

float v_x = *((float*)(ptr + VEC_OFFSET_X));

float v_y = *((float*)(ptr + VEC_OFFSET_Y));

float v_z = *((float*)(ptr + VEC_OFFSET_Z));

int slc = *((int *)(ptr + SLC_OFFSET));

float rad = *((float*)(ptr + RAD_OFFSET));

Point* p = new Point(p_x, p_y, p_z);

Vector* v = new Vector(v_x, v_y, v_z);

this->obs_no_ = ono;

this->sender_ = snd;

this->receiver_ = rec;

this->timestamp_ = tmp;

this->region_ = new Region(p, v, slc, rad);

}

/*

92

* export_buffer : convert an observation into a pointer of ch ar

*

* Note : the pointer must be allocated and provided.

*/

char* Observation::export_buffer(char *ptr) {

if(ptr == NULL) return NULL;

// obs_number_

memcpy(ptr + ONO_OFFSET, &obs_no_, sizeof(int));

// sender_

memcpy(ptr + SND_OFFSET, &sender_, sizeof(int));

// receiver_

memcpy(ptr + RCV_OFFSET, &receiver_, sizeof(int));

// timestamp_

memcpy(ptr + TMP_OFFSET, ×tamp_, sizeof(double));

// region_->center

memcpy(ptr + POS_OFFSET_X, ®ion_->center->x, sizeof(float));

memcpy(ptr + POS_OFFSET_Y, ®ion_->center->y, sizeof(float));

memcpy(ptr + POS_OFFSET_Z, ®ion_->center->z, sizeof(float));

// region_->rec2dst

memcpy(ptr + VEC_OFFSET_X, ®ion_->rec2dst->x, sizeof (float));

memcpy(ptr + VEC_OFFSET_Y, ®ion_->rec2dst->y, sizeof (float));

memcpy(ptr + VEC_OFFSET_Z, ®ion_->rec2dst->z, sizeof (float));

memcpy(ptr + VEC_OFFSET_D,

®ion_->rec2dst->degree_, sizeof(float));

// region_->slice_no

memcpy(ptr + SLC_OFFSET, ®ion_->slice_no, sizeof(int));

// region_->radius

memcpy(ptr + RAD_OFFSET, ®ion_->radius, sizeof(float));

#ifdef __DEBUG__

print_buffer(ptr);

#endif

return ptr;

}

/*

* print_buffer : assuming that the pointer is derived from an

* observation, this function show the original observation .

*/

void Observation::print_buffer(char *ptr) {

if(ptr == NULL) return;

int ono = *((int *)(ptr + ONO_OFFSET));

int snd = *((int *)(ptr + SND_OFFSET));

int rec = *((int *)(ptr + RCV_OFFSET));

double tmp = *((double *)(ptr + TMP_OFFSET));

float p_x = *((float*)(ptr + POS_OFFSET_X));

float p_y = *((float*)(ptr + POS_OFFSET_Y));

93

float p_z = *((float*)(ptr + POS_OFFSET_Z));

float v_x = *((float*)(ptr + VEC_OFFSET_X));

float v_y = *((float*)(ptr + VEC_OFFSET_Y));

float v_z = *((float*)(ptr + VEC_OFFSET_Z));

int slc = *((int *)(ptr + SLC_OFFSET));

float rad = *((float*)(ptr + RAD_OFFSET));

cout << ono << " " << snd << " " << rec << " " << tmp

<< " [(" << p_x << "," << p_y << "," << p_z << ")"

<< " (" << v_x << "," << v_y << "," << v_z << ") "

<< slc << " " << rad << endl;

}

/*

* is_in_region - check whether or not this observation is in

* the same region defined by two observations, begin and end.

*/

int Observation::is_in_region(Observation *begin,

Observation *end) {

// First determin the 3 points that define each regions.

Point *a[3], *b[3], *my_point[3];

float slice = (int) 360/MAX_SLICE;

// The observation begin

float angle_a1 = begin->region_->slice_no*slice +

begin->region_->rec2dst->degree();

float angle_a2 = (begin->region_->slice_no+1)*slice +

begin->region_->rec2dst->degree();

a[0] = new Point(begin->region_->center);

a[1] = new Point(begin->region_->radius*cos(angle_a1*M _PI/180) +

begin->region_->center->x,

begin->region_->radius*sin(angle_a1*M_PI/180) +

begin->region_->center->y, 0);

a[2] = new Point(begin->region_->radius*cos(angle_a2*M _PI/180) +

begin->region_->center->x,

begin->region_->radius*sin(angle_a2*M_PI/180) +

begin->region_->center->y, 0);

// The observation end

float angle_b1 = end->region_->slice_no*30 +

end->region_->rec2dst->degree();

float angle_b2 = (end->region_->slice_no+1)*30 +

end->region_->rec2dst->degree();

b[0] = new Point(end->region_->center);

b[1] = new Point(end->region_->radius*cos(angle_b1*M_P I/180) +

end->region_->center->x,

end->region_->radius*sin(angle_b1*M_PI/180) +

end->region_->center->y, 0);

b[2] = new Point(end->region_->radius*cos(angle_b2*M_P I/180) +

end->region_->center->x,

end->region_->radius*sin(angle_b2*M_PI/180) +

94

end->region_->center->y, 0);

// Create 3 points from this observation

float angle_m1 = region_->slice_no*slice +

region_->rec2dst->degree();

float angle_m2 = (region_->slice_no + 1)*slice +

region_->rec2dst->degree();

my_point[0] = new Point(region_->center);

my_point[1] = new Point(region_->radius*cos(angle_m1*M _PI/180) +

region_->center->x, region_->radius*sin(angle_m1*M_P I/180)

+ region_->center->y, 0);

my_point[2] = new Point(region_->radius*cos(angle_m2*M _PI/180) +

region_->center->x, region_->radius*sin(angle_m2*M_P I/180)

+ region_->center->y, 0);

Line* l_a[3], *l_b[3];

l_a[0] = new Line(a[0], a[1]);

l_a[1] = new Line(a[0], a[2]);

l_a[2] = new Line(a[1], a[2]);

l_b[0] = new Line(b[0], b[1]);

l_b[1] = new Line(b[0], b[2]);

l_b[2] = new Line(b[1], b[2]);

// Check if any of these three points are in any triangles.

// If yes, return true. Otherwise, do the next step.

Triangle tri_begin(a[0], a[1], a[2]);

Triangle tri_end(b[0], b[1], b[2]);

for(int z=0; z<3; z++) {

if(tri_begin.is_inside(my_point[z]) ||

tri_end.is_inside(my_point[z])) {

delete a[z];

delete b[z];

delete my_point[z];

return 1;

}

}

int result = 0;

for(int i=0; i<3; i++) { // lines from obs start (l_a)

for(int j=0; j<3; j++) { // lines from obs end (l_b)

for(int k=0; k<3; k++) { // my_point

Rectangle* rec = new Rectangle(l_a[i], l_b[j]);

if(rec->is_inside(my_point[k])) {

result = 1;

delete rec;

goto found;

}

95

delete rec;

} // for(int k..

} // for(int j..

} // for(int i..

found:

for(int z=0; z<3; z++) {

delete l_a[z];

delete l_b[z];

delete a[z];

delete b[z];

delete my_point[z];

}

return result;

}

/*********************** Observation_Table ********** *****/

/*

* last : access the last-seen observation of this node id

*/

Observation* Observation_Table::last(int id) {

deque<Observation*>::iterator itr = table_[id].end();

if(itr == table_[id].begin()) // An empty queue

return NULL;

else

return *(--itr);

}

/*

* export_table : convert the whole observation table

* into a pointer

* return

* - NULL if the table is empty

* - Otherwise, pointer to the buffer structure

*/

Buffer* Observation_Table::export_table() {

// Determine the buffer size

// The 1st int is the number of obs nodes.

int buf_size = sizeof(int);

// Number of observed nodes

int count = 0;

for(int i=0; i<MAX_ID; i++) {

int s = table_[i].size();

if(s != 0) {

/*

* The 1st int = ID of the observed node

* The 2nd int = NO. of obs

96

* Then the list of obs

*/

buf_size += 2*sizeof(int) + BUFFER_SIZE*s;

count++;

}

}

if(count == 0) return NULL;

char *buffer = new char[buf_size];

if(buffer == NULL) {

cerr << "export_table : memory allocation error." << endl;

exit(-1);

}

Buffer* ret_buff = new Buffer(buf_size, buffer);

char *ptr = buffer;

// Copy the number of non-empty entries into the first elemen t

// of the buffer.

memcpy(ptr , &count, sizeof(int));

ptr = (char *)(buffer + sizeof(int));

for(int i=0; i<MAX_ID; i++) {

int s = table_[i].size();

if(s != 0) {

// Node ID

memcpy(ptr, &i, sizeof(int));

ptr = (char *)(ptr + sizeof(int));

// Number of observations

memcpy(ptr, &s, sizeof(int));

ptr = (char *)(ptr + sizeof(int));

// Copy each observation

deque<Observation*>::iterator itr;

for(itr = table_[i].begin(); itr != table_[i].end();

itr++) {

Observation *o = *itr;

o->export_buffer(ptr);

ptr = (char *)(ptr + BUFFER_SIZE);

}

}

}

return ret_buff;

}

/*

* Observation_Table::import_table - given a buffer stored

* observations

97

* transfered from another node, this function imports these

* observations and stores in this observation table.

*/

void Observation_Table::import_table(Buffer *buf) {

if(buf == NULL) {

cout << "test - Null pointer" << endl;

return;

}

char* ptr = buf->buffer_;

int node_no = *((int *)ptr); // No. of the observed

ptr = (char *)(ptr + sizeof(int));

#ifdef __DEBUG2__

cout << "No. of nodes in the received observation table "

<< node_no << endl;

#endif

for(int i=0; i<node_no; i++) {

int id = *((int *)ptr); // Sender (the observed)

ptr = (char *)(ptr + sizeof(int));

int size = *((int *)ptr); // No. of observations

ptr = (char *)(ptr + sizeof(int));

#ifdef __DEBUG2__

cout << "ID = " << id << " Size = " << size << endl;

#endif

for(int j=0; j<size; j++) {

Observation* obs = new Observation(ptr);

#ifdef __DEBUG2__

cout << *obs << endl;

#endif

if(check_observation(id, obs)) {

add_observation(id, obs);

} else {

delete obs;

}

ptr = (char *)(ptr + BUFFER_SIZE);

}

}

#ifdef __DEBUG2__

cout << *this;

#endif

}

/*

* Observation_Table::add_observation - add an observatio n in the

* respective table and sort it according to the timestamp

98

*/

void Observation_Table::add_observation(int id, Observ ation *o) {

deque<Observation*>::iterator itr;

// Check if this node is in the table or not. If yes, check the

// duplication of the observation. Otherwise, just add the

// observation to the table.

if(table_[id].size() != 0) {

itr = find_if(table_[id].begin(), table_[id].end(),

bind2nd(ptr_equal_to<Observation*>(), o));

if(itr == table_[id].end()) {

// This observation is not duplicated. So record it.

table_[id].push_back(o);

// For the sake of simplicity, we use sort for now.

// We can change to insert later if necessary.

sort(table_[id].begin(), table_[id].end(), obs_compar e);

}

} else {

table_[id].push_back(o);

}

}

/*

* check whether there is an observation in the table that is

* more than 1 second apart from this observation or not.

*/

int Observation_Table::check_observation(int id, Obser vation *o) {

if(table_[id].size() == 0) {

return 1;

} else if(table_[id].size() == 1) {

deque<Observation*>::iterator itr = table_[id].begin() ;

Observation *obs = *itr;

double otime = o->timestamp();

if(fabsl(otime - obs->timestamp()) >= MIN_OBSERVED_TIME)

return 1;

else

return 0;

} else {

deque<Observation*>::iterator itr;

Observation *prev, *curr;

double otime = o->timestamp();

itr = table_[id].begin();

prev = *itr;

itr++;

while(itr != table_[id].end()) {

curr = *itr;

99

if((otime >= prev->timestamp()) &&

(otime < curr->timestamp())) {

if((fabsl(otime - prev->timestamp())

>= MIN_OBSERVED_TIME) &&

(fabsl(otime - curr->timestamp())

>= MIN_OBSERVED_TIME))

return 1;

else

return 0;

}

prev = curr;

itr++;

}

if((fabsl(otime - prev->timestamp()) >= MIN_OBSERVED_TI ME) &&

(fabsl(otime - curr->timestamp()) >=

MIN_OBSERVED_TIME))

return 1;

else

return 0;

}

}

/*

* Observation_Table::merge - merge two observation tables together

*/

void Observation_Table::merge(Observation_Table* t) {

for(int i=0; i<MAX_ID; i++) {

while(t->table_[i].size() != 0) {

deque<Observation*>::iterator itr = t->table_[i].begin ();

Observation* o = *itr;

if(check_observation(i, o)) {

add_observation(i, o);

} else {

delete o;

}

t->table_[i].pop_front();

}

}

#ifdef __DEBUG3__

print_table();

#endif

}

/*

* Observation_Table::convert2path - convert an entry in

100

* the observation

* table associated with id into a path.

*/

Path* Observation_Table::convert2path(int id) {

deque<Observation*>::iterator itr;

int no_obs = table_[id].size();

int cnt = 0;

double len = 0;

#ifdef __DEBUG4__

double s = 100000, e = -100000;

#endif

itr = table_[id].begin();

while(cnt < no_obs -1) {

Observation *cur, *next;

double start, end;

cur = *itr;

next = *(itr+1);

start = cur->timestamp_;

end = next->timestamp_;

// If two observations are more far apart than

// PERIOD_TOLERANCE

// in the time domain, they are unrelated.

if(end-start <= PERIOD_TOLERANCE) len += (end-start);

#ifdef __DEBUG4__

if(s>start) s = start;

if(e<end) e = end;

#endif

itr++;

cnt++;

}

#ifdef __DEBUG4__

cout << "ID: " << id

<< " Count: " << cnt

<< " Length: " << len

<< " (" << s << "," << e << ")" << endl;

#endif

return new Path(id, len);

}

/*

* Observation_Table::generate_cluster - generate cluste rs

*/

void Observation_Table::generate_cluster(int nid,

101

double threshold, double confidence) {

deque<Path*> path_queue;

deque<Path*>::iterator itr;

Path* p;

Cluster cluster(this, threshold, confidence);

// 1. Push all paths into the path queue. We don't

// care about paths

// that have only one point.

for(int i=0; i<MAX_ID; i++)

if(table_[i].size() >1)

path_queue.push_back(convert2path(i));

// 2. Sort the path queue by the length of the paths.

sort(path_queue.begin(), path_queue.end(), path_compa re);

#ifdef __DEBUG4__

deque<Path*>::iterator i;

for(i = path_queue.begin(); i != path_queue.end(); i++) {

Path *t = *i;

cout << "Path: " << *t << endl;

}

#endif

if(path_queue.size() == 0) return;

// 3. Create a cluster for the first path in the path queue

itr = path_queue.begin();

p = *itr;

path_queue.pop_front();

Cluster_Entry* ce = new Cluster_Entry(p);

cluster.add_cluster(ce);

#ifdef __DEBUG4__

cout << endl << "Processing " << *p << endl;

#endif

// 4. Iteratively compare a path with existing clusters.

while(path_queue.size() != 0) {

itr = path_queue.begin();

p = *itr;

path_queue.pop_front();

#ifdef __DEBUG4__

cout << endl << "Processing " << *p << endl;

#endif

cluster.compare_cluster(p);

}

cout << "#n:" << nid << endl;

102

cout << cluster;

}

/*

* Observation_Table::similarity - determine the similari ty b/w

* a cluster and a path

*/

void Observation_Table::similarity(Cluster_Entry *c, P ath *p,

double &sim_score, double &confidence) {

Section *s1, *s2;

int a = c->cluster_head_id();

int b = p->id();

if((table_[a].size() <= 1) || (table_[b].size() <= 1)) {

sim_score = confidence = -1;

return;

}

s1 = split_path(a);

s2 = split_path(b);

if((s1 == NULL) || (s2 == NULL) || s1->size() == 0 ||

s2->size() == 0) {

} else {

/*

cout << "%% " << a << " size = " << s1->size() << " "

<< " length = " << s1->length() << endl;

cout << "%% " << b << " size = " << s2->size() << " "

<< " length = " << s2->length() << endl;

*/

// cout << "Before" << endl;

s1->similarity(s2, sim_score, confidence);

#ifdef __DEBUG4__

if(sim_score > 50.0)

cout << "(Similairy, Confidence) between ("

<< a << ", " << b << ") = ("

<< sim_score << ", " << confidence << ")"

<< endl;

#endif

delete s1;

delete s2;

}

}

/*

* Observation_Table::split_path - split a path into sectio ns.

*/

103

Section* Observation_Table::split_path(int id) {

// Unlikely to happen because we call this function only

// when we pick an observation. Therefore, it is not possible

// that the corresponding table entry is of zero size.

if(table_[id].size() <= 1) return NULL;

deque<Observation*>::iterator itr;

Observation *prev, *cur;

itr = table_[id].begin();

prev = *itr;

itr++;

Section_Entry *se = new Section_Entry(prev);

Section *section = new Section();

while(itr != table_[id].end()) {

cur = *itr;

if((cur->timestamp_ - prev->timestamp_) <=

PERIOD_TOLERANCE) {

se->add_observation(cur);

} else {

if(se->size() > 1) section->add_section(se);

else delete se;

se = new Section_Entry(cur);

}

prev = cur;

itr++;

}

// Each valid sub_section has to have at least 2 observations .

// ALERT! - will observation compression effect this?

if(se->size() > 1) {

section->add_section(se);

return section;

} else {

delete se;

if(section->size() > 0) {

return section;

} else {

delete section;

return NULL;

}

} // if(se...

}

/*

104

* Observation_Table::size - return the total number of obse rvation

* stored in the table

*/

int Observation_Table::size() {

int num_obs = 0;

for(int i=0; i< MAX_ID; i++) {

num_obs += table_[i].size();

}

return num_obs;

}

/************************** Similarity *************/

void Similarity::sort_queue() {

sort(element_.begin(), element_.end(), se_compare);

}

void Similarity::add_top_entry(Path *p) {

deque<Sim_Entry*>::iterator sitr = element_.begin();

Sim_Entry *s = *sitr;

s->add_path(p);

}

Similarity::~Similarity() {

while(element_.size()) {

deque<Sim_Entry*>::iterator sitr = element_.begin();

Sim_Entry *s = *sitr;

delete s;

element_.pop_front();

}

}

/**************************** Cluster *************** *****/

/*

* Destructor

*/

Cluster::~Cluster() {

while(cluster_.size()) {

deque<Cluster_Entry*>::iterator itr = cluster_.begin() ;

Cluster_Entry* c = *itr;

delete c;

cluster_.pop_front();

}

}

/*

* Cluster::compare_cluster - compare the path p to each

* Cluster_Entry.

* A Cluster_Entry is a collection of similar paths.

105

* If there is no

* Cluster_Entry similar to the path p, add a new

* Cluster_Entry for

* this path into the cluster. Otherwise, add the path p

* to the most

* similar Cluster_Entry.

*/

void Cluster::compare_cluster(Path *p) {

deque<Cluster_Entry*>::iterator itr;

Cluster_Entry *ce;

Similarity similarity;

for(itr = cluster_.begin(); itr != cluster_.end(); itr++) {

ce = *itr;

double sim_score, conf;

ot_->similarity(ce, p, sim_score, conf);

if(sim_score >= threshold && conf >= confidence) {

Sim_Entry *s = new Sim_Entry(ce, sim_score);

similarity.add(s);

}

}

if(similarity.size() != 0) {

similarity.sort_queue();

similarity.add_top_entry(p);

} else {

// Create a new cluster for the path

Cluster_Entry *new_entry = new Cluster_Entry(p);

add_cluster(new_entry);

}

}

/****************************** Section ************* *********/

/*

* Section::~Section - Destructor

*/

Section::~Section() {

while(selement_.size()) {

deque<Section_Entry*>::iterator itr = selement_.begin();

Section_Entry *se = *itr;

delete se;

selement_.pop_front();

}

}

/*

* Section::length - find the length of a Section in the

* time domain.

106

*/

double Section::length() {

deque<Section_Entry*>::iterator itr;

Section_Entry *se;

double len = 0.0;

for(itr = selement_.begin(); itr != selement_.end(); itr+ +) {

se = *itr;

len += se->length();

}

return len;

}

/*

* Section::similarity - find similarity b/w 2 section group s

*/

void Section::similarity(Section *s, double &sim_score,

double &confidence) {

deque<Section_Entry*>::iterator sitr, pitr;

Section_Entry *sec1, *sec2;

double overlap_time, common_time;

double mul = 1.0;

double len = 0.0;

double total_len = max(length(), s->length());

int flag = 0;

// total_len should not be 0 because both Sections are not

// NULL and not of size 0.

if(total_len == 0) {

cerr << "Section::similarity - total_len = 0" << endl;

exit(-1);

}

for(sitr = selement_.begin(); sitr != selement_.end(); si tr++) {

sec1 = *sitr;

for(pitr = s->selement_.begin();

pitr != s->selement_.end(); pitr++) {

sec2 = *pitr;

if(sec1->sim_section(sec2, overlap_time,

common_time) > 0) {

flag = 1;

/*

* common_time = period that both sections have

* observations

* overlap_time = period that both nodes were

* observed together. In general, overlap_time <=

107

* common_time.

*/

if(common_time != 0) {

mul *= overlap_time/common_time;

len += overlap_time;

} else {

if(sim_type == SIM_TYPE_STRONG) {

mul = len = 0;

}

}

#ifdef __DEBUG5__

cout << "ot or len = " << overlap_time

<< " ct = " << common_time

<< " mul = " << mul

<< endl;

#endif

} // if(sec1...

} // for(pitr...

} // for(sitr...

sim_score = flag*mul*len*100/total_len;

confidence = len;

}

/*********************** Section_Entry ************** ******/

/*

* Section_Entry::sim_section - find the similarity betwee n two

* Section_Entry. This function returns overlap_time and

* obs_common_time by using pass-by-reference. Then the sim ilarity

* between the two is overlap_time/obs_common_time.

*

* O-O-O-O-O-O

* s-S-S-S-S-S-S

* |--- cmn -----|

*

* cmn = obs_common_time

* overlap_time = time that o and s are in the same region.

*/

int Section_Entry::sim_section(Section_Entry *s,

double &overlap_time, double &obs_common_time) {

Section_Entry *denominator, *nominator;

deque<Observation*>::iterator itr;

Observation *prev, *curr;

double cmn_time = 0, ovl_time = 0;

int state;

// find command time in here too

if((start > s->stop) || (stop < s->start)) {

// Two section do not overlap.

108

return -1;

} else if((start <= s->start) && (stop <= s->stop)) {

// Two sections overlap.

denominator = this;

nominator = s;

} else if((start >= s->start) && (stop >= s->stop)) {

// Two sections overlap.

denominator = s;

nominator = this;

} else if((start <= s->start) && (stop >= s->stop)) {

// One section is a subset of the other. (OK)

denominator = this;

nominator = s;

} else if((start >= s->start) && (stop <= s->stop)) {

// One section is a subset of the other. (OK)

denominator = s;

nominator = this;

}

itr = nominator->element_.begin();

rev = *itr; // obs should not be NULL.

if(denominator->is_in_region(prev)) state = 1;

else state = 0;

itr++;

while(itr != nominator->element_.end()) {

curr = *itr;

if((curr->timestamp_ > denominator->start) &&

(curr->timestamp_ < denominator->stop)) {

cmn_time += curr->timestamp_ - prev->timestamp_;

if(denominator->is_in_region(curr))

if(state == 1)

ovl_time += curr->timestamp_ - prev->timestamp_;

else

state = 1;

prev = curr;

itr++;

} else {

break;

}

}

obs_common_time = cmn_time;

overlap_time = ovl_time;

return 1;

}

109

/*

* Section_Entry::is_in_region - check if the observation o is in

* this sub_section or not.

*/

int Section_Entry::is_in_region(Observation *o) {

deque<Observation*>::iterator itr;

if((o->timestamp_ < start) || (o->timestamp_ > stop)) retu rn 0;

Observation *curr, *next;

for(itr = element_.begin(); itr != element_.end(); itr++) {

if((itr+1) != element_.end()) {

curr = *itr;

next = *(itr+1);

if((o->timestamp_ >= curr->timestamp_) &&

(o->timestamp_ <= next->timestamp_)) {

if(o->is_in_region(curr, next)) return 1;

else return 0;

}

} // if

} // for

return 0;

}

/********************** Overloading the operator<< **** *********/

ostream& operator<< (ostream& os, Point& p) {

os << "(" << p.x << "," << p.y << "," << p.z << ")";

return os;

}

ostream& operator<< (ostream& os, Vector& v) {

os << "(" << v.x << "," << v.y << "," << v.z << ")";

return os;

}

ostream& operator<< (ostream& os, Region& r) {

os << *r.center << " "

<< *r.rec2dst << " "

<< r.slice_no << " "

<< r.radius;

return os;

}

ostream& operator<< (ostream& os, Observation& o) {

110

os << "(" << o.obs_no_ << ") "

<< o.sender_ << " "

<< o.receiver_ << " "

<< o.timestamp_ << " "

<< "[" << *(o.region_) << "]";

return os;

}

ostream& operator<< (ostream& os, Observation_Table& o) {

for(int i=0; i<MAX_ID; i++) {

if(o.table_[i].size() != 0) {

os << "ID = " << i << " Size = "

<< o.table_[i].size()

<< endl;

deque<Observation*>::iterator itr;

for(itr = o.table_[i].begin();itr != o.table_[i].end();

itr++) {

Observation *obs = *itr;

os << *obs << endl;

}

}

}

return os;

}

ostream& operator<< (ostream& os, Cluster_Entry& ce) {

deque<Path*>::iterator itr;

Path *p;

for(itr = ce.element_.begin(); itr != ce.element_.end();

itr++) {

p = *itr;

os << p->id() << " ";

}

return os;

}

ostream& operator<< (ostream& os, Cluster& c) {

deque<Cluster_Entry*>::iterator itr;

Cluster_Entry *ce;

int count = 0;

for(itr = c.cluster_.begin(); itr != c.cluster_.end();

itr++) {

ce = *itr;

if(ce->size() > 1)

os << "#C" << count << ": " << *ce << endl;

111

count++;

}

return os;

}

ostream& operator<< (ostream& os, Path& p) {

os << "(" << p.id() << ", " << p.len() << ")";

return os;

}

ostream& operator<< (ostream& os, Section_Entry& se) {

os << "start = " << se.start << " stop = " << se.stop;

return os;

}

A.3 sybil2.tcl
This is the NS2 script.

Class Agent/Sybil/SE -superclass Agent/Sybil

Agent/Sybil/SE instproc printme {args} {

global ns

set now [$ns now]

puts $now

}

Agent/Sybil/SE instproc recv {args} {

puts "Package received."

}

Define options

channel type

set val(chan) Channel/WirelessChannel

radio-propagation model

set val(prop) Propagation/TwoRayGround

network interface type

set val(netif) Phy/WirelessPhy

MAC type

set val(mac) Mac/802_11

interface queue type

set val(ifq) Queue/DropTail/PriQueue

link layer type

set val(ll) LL

antenna model

set val(ant) Antenna/OmniAntenna

max packet in ifq

set val(ifqlen) 50

number of mobile nodes

set val(nn) 4

112

routing protocol

set val(rp) AODV

X dimension of topography

set val(x) 500

Y dimension of topography

set val(y) 500

time of simulation end

set val(stop) 10

set val(cp) "cbr-50-20-4-512"

#set val(sc) "scen-670x670-50-600-20-0"

set val(sc) "scr-n4-p1-M10-t10-x500-y500"

set val(trace_output) mobile2.tr

set val(nam_output) mobile2.nam

########################### Function ################

proc log-movement {} {

global logtimer ns_ ns

set ns $ns_

source ../../ns-allinone-2.31/ns-2.31/tcl/mobility/t imer.tcl

Class LogTimer -superclass Timer

LogTimer instproc timeout {} {

global val node_;

for {set i 0} {$i < $val(nn)} {incr i} {

$node_($i) log-movement

}

$self sched 0.1

}

set logtimer [new LogTimer]

$logtimer sched 0.1

}

proc static_movement {} {

global node_

$node_(0) set X_ 0

$node_(0) set Y_ 0

$node_(0) set Z_ 0

$node_(1) set X_ 200

$node_(1) set Y_ 0

$node_(1) set Z_ 0

$node_(2) set X_ 400

$node_(2) set Y_ 0

$node_(2) set Z_ 0

$node_(3) set X_ 600

$node_(3) set Y_ 0

$node_(3) set Z_ 0

}

113

Load the scenario file

proc dynamic_movement {} {

global val ns_ node_

set god_ [God instance]

Load the scenario

if { $val(sc) == "" } {

puts "Program terminated abnormally.

The scenario $val(sc) is missing."

exit 1

} else {

puts "Loading scenario file..."

source $val(sc)

puts "Load complete..."

}

}

Ending nam and the simulation

proc stop {} {

global ns_ tracefd namtrace val

$ns_ flush-trace

close $tracefd

close $namtrace

exec nam $val(nam_output) &

exit 0

}

############################# Main ########################

set ns_ [new Simulator]

set tracefd [open $val(trace_output) w]

set namtrace [open $val(nam_output) w]

$ns_ trace-all $tracefd

$ns_ namtrace-all-wireless $namtrace $val(x) $val(y)

$ns_ use-newtrace

set up topograp hy object

set topo [new Topography]

$topo load_flatgrid $val(x) $val(y)

create-god $val(nn)

Create nn mobilenodes [$val(nn)] and attach them to the cha nnel.

Configure the nodes

$ns_ node-config

-adhocRouting $val(rp) \

-llType $val(ll) \

-macType $val(mac) \

-ifqType $val(ifq) \

114

-ifqLen $val(ifqlen) \

-antType $val(ant) \

-propType $val(prop) \

-phyType $val(netif) \

-channel [new $val(chan)] \

-topoInstance $topo \

-agentTrace ON \

-routerTrace ON \

-macTrace OFF \

-movementTrace ON

Create mobile nodes

for {set i 0} {$i < $val(nn)} {incr i} {

set node_($i) [$ns_ node]

}

All Sybil agents have to be on the same port.

for {set i 0} {$i < $val(nn)} {incr i} {

set sybil_($i) [new Agent/Sybil]

$node_($i) attach $sybil_($i) 250

}

#static_movement

dynamic_movement

log-movement

Load the connection pattern

#if { $val(cp) == "" } {

puts "Program terminated abnormally.

The connection pattern $val(cp) is missing."

exit 1

#} else {

puts "Loading connection pattern..."

source $val(cp)

puts "Load complete..."

#}

Create a UDP agent and attach it to node n0

set udp0 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp0

Create a CBR traffic source and attach it to udp0

set cbr0 [new Application/Traffic/CBR]

$cbr0 set packetSize_ 500

$cbr0 set interval_ 0.1

$cbr0 attach-agent $udp0

Create a NULL agent (a traffic sink) and attach it to node n1

set null0 [new Agent/Null]

$ns_ attach-agent $node_(3) $null0

Connect the traffic source with the traffic sink

$ns_ connect $udp0 $null0

115

Schedule events for the CBR agent

It is important to start moving after

the pause period otherwise the

unit vector is zero.

$ns_ at 1.0 "$cbr0 start"

$ns_ at $val(stop) "$cbr0 stop"

Define node initial position in nam

for {set i 0} {$i < $val(nn)} {incr i} {

30 defines the node size for nam

$ns_ initial_node_pos $node_($i) 30

}

for {set i 0} {$i < $val(nn)} {incr i} {

Telling nodes when the simulation ends

$ns_ at $val(stop) "$node_($i) reset";

}

for {set i 0} {$i < $val(nn)} {incr i} {

$ns_ at 9.0 "$sybil_($i) exchange_all"

}

$ns_ at 9.5 "$sybil_(1) detect"

$ns_ at $val(stop) "$ns_ nam-end-wireless $val(stop)"

$ns_ at $val(stop) "stop"

$ns_ at $val(stop).01 "puts \"Simulation completed succes sfully\";

$ns_ halt"

$ns_ run

Appendix B
Source Code for BitTorrent

Simulators

B.1 torrent.cc
This is the simulator that was used to generate Figure 4.1, 4.2, and 4.3.

#include <iomanip>

#include <fstream>

#include <iostream>

#include <math.h>

#include <stdlib.h>

#include <unistd.h>

#include <gsl/gsl_rng.h>

#include <gsl/gsl_randist.h>

using namespace std;

//#define __DEBUG1__

struct transaction_type {

int id, // ID of the mapping

p1, // src peer

p2; // dst peer

};

enum sim_mode {

// No optimistic unchoking, no chokelist

NOOUC_NOCKL,

// No optimistic unchoking with chokelist

NOOUC_CKL,

// Optimistic unchoking, no chokelist

OUC_NOCKL,

// Optimistic unchoking with chokelist

117

OUC_CKL,

// Optimistic unchoking with rehab, no chokelist

OUC_NOCKL_REHAB,

// Optimistic unchoking with rehab and chokelist

OUC_CKL_REHAB

};

// -------------------- Functions Prototypes ---------- -------

void init(int argc, char* argv[]);

int is_caught(int pid);

int is_caught_all();

float r_func(float reputation);

float s_func(float u_rate);

void test();

void print_sim_info();

void print_summary(int clock, int no_tran, int no_untran) ;

ostream& operator<< (ostream& os, transaction_type& t);

void test_caught_all();

void BC_choke_list();

void usage();

void update_reputation(int i, int j);

void free_memory();

void optimistically_unchoke(int unchoker);

void normalize(int i);

void print_summary(int clock, int no_tran, int no_untran) ;

void print_summary_machine(int clock, int no_tran, int no _untran);

void print_reputation_matrix();

void print_reputation_matrix_transpose();

void print_data_transfered();

void print_connection_matrix();

// ---------------------- Global Variables ------------ ---------

transaction_type* transaction_mapping;

const gsl_rng_type * T;

gsl_rng * r;

int OUC, CKL, REHAB;

// ------------------- Simulation Parameters ---------- ---------

// Rji matrix

float** Reputation_Matrix;

// Cj set

int** Connected;

// Amount of data transfered

float** Data_Transfered;

// u_j

float* Upload_Rate;

// N*(N-1)/2

int Num_Pair;

// Model parameters

// Simulation mode

118

sim_mode Mode = NOOUC_NOCKL;

// Number of iterations/rounds

int Num_Interval = 10000;

// Number of peers

int Num_Peer = 100;

// U, upload rate = 0, U, 2U, 3U

float U_rate = 250;

// Govern when a transaction occurs

float Transacting_Threshold = 0.3;

// Min reputaiton allowing a CHK to be accepted

float Accept_Threshold = 0.001;

// Initially given reputation score

float Epsilon = 0.005;

// c for updating reputation

float Coeff = 0.01;

// Period that a CKL is broadcast

int BC_Period = 100;

// Probability that a leecher rehabilitates

int Rehab_Period = 1000;

// Probability of OUC

float OUC_Prob = 0.25;

// Random number generator seed

int Seed;

// Print in a human-readable format or a machine-readable fo rmat

int HUMAN = 0;

// Output filename

char Filename[20] = "output.txt";

ofstream output;

// ---------------------------- Main ----------------- ------

int main(int argc, char* argv[]) {

int no_tran, no_untran;

no_tran = no_untran = 0;

init(argc, argv);

int clock = 0;

while(1) {

// Randomly choose a pair of peers.

int id = (int) nearbyint(gsl_ran_flat(r, 0, Num_Pair-1));

int i = transaction_mapping[id].p1;

int j = transaction_mapping[id].p2;

// Calculate the reputation of each peer

float Rij, Rji;

if((Connected[i][j] == 0) && (Connected[j][i] == 0)) {

// i and j have never met before

Reputation_Matrix[i][j] = Reputation_Matrix[j][i]

= Epsilon;

119

Rij = Reputation_Matrix[i][j];

Rji = Reputation_Matrix[j][i];

} else if(Connected[i][j] && Connected[j][i]) {

// i and j have met before

// Normalize

float sum1 = 0, sum2 = 0;

for(int k=0; k<Num_Peer; k++) {

if(Reputation_Matrix[i][k] >= 0)

sum1 += Reputation_Matrix[i][k];

if(Reputation_Matrix[j][k] >= 0)

sum2 += Reputation_Matrix[j][k];

}

if(sum1 > 0) Rij = Reputation_Matrix[i][j]/sum1;

if(sum2 > 0) Rji = Reputation_Matrix[j][i]/sum2;

if((Rij <0) || (Rij >1)) {

cout << "ERROR " << i << " " << j << " "

<< sum1 << " " << Rij << endl;

print_connection_matrix();

print_reputation_matrix();

exit(-1);

}

if((Rji <0) || (Rji >1)) {

cout << "ERROR " << j << " " << i << " "

<< sum2 << " " << Rji << endl;

print_connection_matrix();

print_reputation_matrix();

exit(-1);

}

} else {

// i and j have never met before, but one of

// them is choked via chokelist

// so this transaction will not occur.

continue;

}

// Perform the transaction with prob = r(Rji)*r(Rij).

if(gsl_ran_flat(r, 0, 1) < r_func(Rij)*r_func(Rji)) {

// Supposedly this is the transaction.

// Add j to Ci and i to Cj

Connected[i][j] = Connected[j][i] = 1;

// Optimistically unchoke a choked node with

// the probability OUC_Prob

if(OUC) {

optimistically_unchoke(i); optimistically_unchoke(j) ;

}

120

// Update Rij and Rji, respectively

update_reputation(i, j); update_reputation(j, i);

#ifdef __DEBUG1__

cout << "At " << clock << " Transaction: ("

<< i << ", " << j << ")" << endl;

#endif

no_tran++;

} else {

no_untran++;

}

// Broadcast the chokelist

if(CKL && (clock != 0) && !(clock % BC_Period))

BC_choke_list();

// Rehabilitate some leechers

if(REHAB && (clock !=0) && !(clock % Rehab_Period)) {

}

// Normalize reputation

normalize(i); normalize(j);

// Print progress every 100 transactions

// if(clock % 10000 == 0)

// cout << "Clock = " << clock << endl;

// Without OUC, the loop terminates when all leechers are

// caught by all peers. With OUC, the loop terminates after

// a certain period of time.

if(!OUC) {

if(is_caught_all()) break;

} else {

if(clock == Num_Interval) break;

}

// Increment the clock

clock++;

} // While(1) loop

// Priting report

if(HUMAN) print_summary(clock, no_tran, no_untran);

else print_summary_machine(clock, no_tran, no_untran);

output.close();

free_memory();

gsl_rng_free(r);

return 0;

121

}

// -------------------- Functions Implementations ----- ----------

/*

* BC_choke_list : broadcast the choke list

*/

void BC_choke_list() {

int i, j, k;

for(i=0; i<Num_Peer; i++)

for(j=0; j<Num_Peer; j++)

if((i != j) && (Reputation_Matrix[i][j] == 0))

for(k=0; k<Num_Peer; k++)

// i & j is not the same peer. niether are j and k.

if((i != k) && (j != k) &&

// Exchange the chokelist only with neighbors

Connected[i][k] &&

// Exchange the chokelist only with

// non-leechers

(Reputation_Matrix[i][k] != 0) &&

(Reputation_Matrix[k][i] > Accept_Threshold)){

// cout << "Accepting " << i << " "

// << j << " " << k <<endl;

Connected[k][j] = 1;

Reputation_Matrix[k][j] = 0;

}

}

/*

* normalize : normalize a node reputation

* if sum of reputation exceeds 1.

*/

void normalize(int i) {

float sum = 0;

for(int k=0; k<Num_Peer; k++)

if(Reputation_Matrix[i][k] >= 0)

sum += Reputation_Matrix[i][k];

if(sum > 1)

for(int k=0; k<Num_Peer; k++)

if(Reputation_Matrix[i][k] > 0)

Reputation_Matrix[i][k] /= sum;

}

/*

* optimistically_unchoke: Optimistically unchoke

* a choked node with the probability OUC_Prob

*/

122

void optimistically_unchoke(int unchoker) {

int picked, count = -1, found = 0;

if(gsl_ran_flat(r, 0, 1) < OUC_Prob) {

// Count the number of choked peers

for(int c=0; c<Num_Peer; c++)

if(Reputation_Matrix[unchoker][c] == 0) count++;

// Randomly picked a peer to unchoke

if(count == -1) {

return;

} else if(count == 0) {

picked = 0;

} else {

picked = (int) nearbyint(gsl_ran_flat(r, 0, count));

}

// Unchoked the peer

int count2 = -1;

for(int d=0; d<Num_Peer; d++) {

if(Reputation_Matrix[unchoker][d] == 0) count2++;

if(count2 == picked) {

Reputation_Matrix[unchoker][d] = Epsilon;

found = 1;

break;

}

}

if(!found) {

cerr << "OUC error: out of range " << endl;

exit(-1);

}

}

}

/*

* free_memory : free allocated memory

*/

void free_memory() {

// Delete Reputation_Matrix, Connected, Upload_Rate

for(int i=0; i<Num_Peer; i++) {

delete [] Reputation_Matrix[i];

delete [] Connected[i];

delete [] Data_Transfered[i];

}

delete [] Upload_Rate;

delete [] Reputation_Matrix;

delete [] Connected;

delete [] Data_Transfered;

}

123

/*

* update_reputation : Update reputation of Rij

*/

void update_reputation(int i, int j) {

// Update Rij

if(Upload_Rate[j] == 0) {

Reputation_Matrix[i][j] = 0;

} else {

Reputation_Matrix[i][j]

+= Coeff*s_func(Upload_Rate[j] - Upload_Rate[i]);

// Record data transfered from j to i

Data_Transfered[i][j] += Upload_Rate[j];

}

}

/*

* is_caught : check if a leecher with pid is caught

* by all non-leechers or not

*/

int is_caught(int pid) {

int result = 1;

for(int i=0; i< Num_Peer; i++)

if((i != pid) && (Upload_Rate[i] != 0)

&& (Reputation_Matrix[i][pid] != 0)) {

result = 0;

break;

}

#ifdef __DEBUGX__

if(result) cout << pid << " is caught." << endl;

#endif

return result;

}

/*

* catch_all_leechers : check if all

* leechers are caught by all peers.

*/

int is_caught_all() {

int result = 1;

for(int i=0; i<Num_Peer; i++) {

if((Upload_Rate[i] == 0) && !is_caught(i)) {

result = 0;

break;

}

124

}

return result;

}

/*

* transaction_probability : this is the "r" function, deter mining

* the probability that the transaction may occur.

*/

float r_func(float reputation) {

float result;

if((0 <= reputation) && (reputation <= Epsilon)) {

result = sqrt(Transacting_Threshold)*reputation/Epsil on;

} else if((reputation > Epsilon) && (reputation <=1)) {

result = sqrt(Transacting_Threshold) +

(reputation - Epsilon) *

(1 - sqrt(Transacting_Threshold))/(1 - Epsilon);

} else {

cerr << "r_func: invalid reputation score \""

<< reputation << "\"" << endl;

print_reputation_matrix();

exit(-1);

}

return result;

}

/*

* s_func : this is the "s" function,

* determining the credit gained from

* the upload rate

*/

float s_func(float upload) {

if((upload < -3*U_rate) || (upload > 3*U_rate)) {

cerr << "s_func: differential reputation error "

<< upload << endl;

exit(-1);

}

float result;

if(upload < -1*U_rate) result = 0;

else if(upload == -1*U_rate) result = 0.005;

else if(upload == 0) result = 0.075;

else if(upload == U_rate) result = 0.1;

else if(upload == 2*U_rate) result = 0.4;

else if(upload == 3*U_rate) result = 1.0;

if(result < 0) {

cerr << "s_func: result is less than 0" << endl;

125

exit(-1);

} else if(result > 1) {

cerr << "s_func: result is greater than 1" << endl;

exit(-1);

}

return result;

}

/*

* usage : print usage message

*/

void usage(int argc, char* argv[]) {

cout << argv[0] << " [options]" << endl;

cout << "Valid options are : " << endl;

cout << "-a <accepting threshold>" << endl;

cout << "-b <CKL broadcast period>" << endl;

cout << "-f <output filename>" << endl;

cout << "-h Print help message" << endl;

cout << "-m <mode>" << endl;

cout << " 0 for No optimistic unchoking, no chokelist"

<< endl;

cout << " 1 for No optimistic unchoking with chokelist"

<< endl;

cout << " 2 for Optimistic unchoking, no chokelist"

<< endl;

cout << " 3 for Optimistic unchoking with chokelist"

<< endl;

cout << " 4 for Optimistic unchoking with rehab, no chokelist "

<< endl;

cout << " 5 for Optimistic unchoking with rehab and chokelist "

<< endl;

cout << "-n <number of peers>" << endl;

cout << "-o <OUC probability>" << endl;

cout << "-r Print in a human-readable format" << endl;

cout << "-s <seed>" << endl;

cout << "-t <maximum interval>" << endl;

}

/*

* init : initialize the simulation

*/

void init(int argc, char* argv[]) {

extern char *optarg;

int option;

// Process options

while ((option = getopt(argc, argv, "a:b:f:hm:n:o:rs:t:"))

!= -1) {

switch (option) {

126

case 'a':

sscanf(optarg, "%f", &Accept_Threshold); break;

case 'b':

sscanf(optarg, "%d", &BC_Period); break;

case 'f':

sscanf(optarg, "%s", &Filename); break;

case 'm':

sscanf(optarg, "%d", &Mode); break;

case 'n':

sscanf(optarg, "%d", &Num_Peer); break;

case 'o':

sscanf(optarg, "%f", &OUC_Prob); break;

case 'r':

HUMAN = 1; break;

case 's':

sscanf(optarg, "%d", &Seed); break;

case 't':

sscanf(optarg, "%d", &Num_Interval); break;

case 'h':

default: usage(argc, argv); exit(-1);

}

}

Num_Pair = (int) Num_Peer*(Num_Peer-1)/2;

switch(Mode) {

case NOOUC_NOCKL: OUC = 0; CKL = 0; REHAB = 0; break;

case NOOUC_CKL: OUC = 0; CKL = 1; REHAB = 0; break;

case OUC_NOCKL: OUC = 1; CKL = 0; REHAB = 0; break;

case OUC_CKL: OUC = 1; CKL = 1; REHAB = 0; break;

case OUC_NOCKL_REHAB: OUC = 1; CKL = 0; REHAB = 1; break;

case OUC_CKL_REHAB: OUC = 1; CKL = 1; REHAB = 1; break;

}

output.open(Filename);

if(!output.is_open()) {

cerr << "print_summary: error in opening output file"

<< endl;

exit(-1);

}

// Initialize the GSL library

gsl_rng_env_setup();

T = gsl_rng_default;

r = gsl_rng_alloc(T);

gsl_rng_set(r, Seed);

// Allocate required memory

Reputation_Matrix = new float* [Num_Peer];

Connected = new int* [Num_Peer];

Data_Transfered = new float* [Num_Peer];

127

Upload_Rate = new float [Num_Peer];

for(int i=0; i<Num_Peer; i++) {

// Initialize u_i = (0,U,2U,3U)

// int coeff = (int) nearbyint(gsl_ran_flat(r, 0, 3));

int coeff;

if((i >= 0) && (i < (int) Num_Peer/4)) {

coeff = 0;

} else if((i >= (int) Num_Peer/4) &&

(i < (int) Num_Peer/2)) {

coeff = 1;

} else if((i >= (int) Num_Peer/2) &&

(i < (int) 3*Num_Peer/4)) {

coeff = 2;

} else {

coeff = 3;

}

Upload_Rate[i] = coeff * U_rate;

Reputation_Matrix[i] = new float [Num_Peer];

Connected[i] = new int [Num_Peer];

Data_Transfered[i] = new float [Num_Peer];

// Initialize Rji and Cj

for(int j=0; j<Num_Peer; j++) {

// i & j have never connected

Connected[i][j] = 0;

// No data transfered yet

Data_Transfered[i][j] = 0;

// i = j, invalid

if(i == j) Reputation_Matrix[i][j] = -9.0;

// i & j have never connected

else Reputation_Matrix[i][j] = -1.0;

}

}

// Initialize the data structure that holds transaction pai rs.

transaction_mapping = new transaction_type [Num_Pair];

int counter = 0;

for(int i=0; i<Num_Peer; i++)

for(int j=i+1; j<Num_Peer; j++) {

transaction_mapping[counter].id = counter;

transaction_mapping[counter].p1 = i;

transaction_mapping[counter].p2 = j;

counter++;

}

}

/*

* print_sim_info : print simulation parameters

*/

void print_sim_info() {

128

output << "Simulation condition = ";

if(OUC) output << "OUC + ";

else output << "No OUC + ";

if(CKL) output << "CKL + ";

else output << "No CKL + ";

if(REHAB) output << "REHAB";

else output << "No REHAB";

output << endl;

output << "Number of peers (N) = "

<< Num_Peer << endl;

output << "Upload rate (U) = "

<< U_rate << endl;

output << "Transaction threshold = "

<< Transacting_Threshold << endl;

output << "CHK accepting threshold = "

<< Accept_Threshold << endl;

output << "Epsilon (e) = "

<< Epsilon << endl;

output << "Coefficient (c) = "

<< Coeff << endl;

output << "CKL broadcast period = "

<< BC_Period << endl;

output << "Rehabilitating period = "

<< Rehab_Period << endl;

output << "OUC probability (p) = "

<< OUC_Prob << endl;

output << "Seed = "

<< Seed << endl;

output << "Output = "

<< Filename << endl;

}

void print_connection_matrix() {

output << "Connection Matrix (Cj)" << endl;

for(int i=0; i<Num_Peer; i++) {

for(int j=0; j<Num_Peer; j++)

output << Connected[i][j] << " ";

output << endl;

}

output << endl;

}

void print_reputation_matrix() {

output << "Reputation Matrix" << endl;

for(int i=0; i<Num_Peer; i++) {

for(int j=0; j<Num_Peer; j++)

output << setprecision(5) << setw(10)

<< Reputation_Matrix[i][j] << " ";

output << endl;

129

}

output << endl;

}

void print_data_transfered() {

output << "Data Transfered" << endl;

for(int i=0; i<Num_Peer; i++) {

for(int j=0; j<Num_Peer; j++)

output << setprecision(5) << setw(10)

<< Data_Transfered[i][j] << " ";

output << endl;

}

output << endl;

}

void print_reputation_matrix_transpose() {

output << "Reputation Matrix (Rij) Transpose (For Excel)"

<< endl;

for(int i=0; i<Num_Peer; i++) {

for(int j=0; j<Num_Peer; j++)

if(i != j)

output << setprecision(5) << setw(10)

<< Reputation_Matrix[j][i] << " ";

else

output << setprecision(5) << setw(10) << 0 << " ";

output << endl;

}

output << endl;

}

/*

* print_summary : print simulation result in

* a human-readable format

*/

void print_summary(int clock, int no_tran, int no_untran) {

print_reputation_matrix_transpose();

output << "Transaction Success Rate" << endl;

for(int i=0; i<Num_Peer; i++) {

int count = 0;

float sum_reput = 0;

for(int j=0; j<Num_Peer; j++)

if(Connected[j][i] != 0) {

count++;

sum_reput += Reputation_Matrix[j][i];

}

if(count) output << i << " " << sum_reput/count << endl;

else output << i << " N/A" << endl;

130

}

output << endl;

print_sim_info();

output << "Simulation time = " << clock << endl;

output << "Attmepted transaction = "

<< no_tran << " (" << setprecision(4)

<< float ((no_tran*100.0)/(no_tran + no_untran)) << "%)"

<< endl;

}

/*

* print_summary_machine : print the summary

* result in a machine-readable format

*/

void print_summary_machine(int clock, int no_tran, int no _untran) {

// Print transaction success rate

for(int i=0; i<Num_Peer; i++) {

int count = 0;

float sum_reput = 0;

for(int j=0; j<Num_Peer; j++)

if(Connected[j][i] != 0) {

count++;

sum_reput += Reputation_Matrix[j][i];

}

if(count) output << sum_reput/count << " ";

else output << "-1 ";

}

output << endl;

// Simulation time

output << clock << endl;

// Attmepted transactions

output << no_tran*100.0/clock << endl;

}

ostream& operator<< (ostream& os, transaction_type& t) {

os << "(" << t.id << ", " << t.p1 << ", " << t.p2 << ")";

return os;

}

B.2 game.cc

This is the simulator that was used to generate Figure 4.4, 4.5, 4.6, 4.7, 4.8,

and 4.9.

131

/*

* game.cc : simulation of BitTorrent

* need to install gsl and gsl-devel

* 11/23/2008

*/

#include <iomanip>

#include <fstream>

#include <iostream>

#include <math.h>

#include <stdlib.h>

#include <unistd.h>

#include <gsl/gsl_rng.h>

#include <gsl/gsl_randist.h>

using namespace std;

//#define __DEBUG1__

struct transaction_type {

int id,// ID of the mapping

p1,// src peer

p2; // dst peer

};

enum sim_mode {

// No optimistic unchoking, no chokelist

NOOUC_NOCKL,

// No optimistic unchoking with chokelist

NOOUC_CKL,

// Optimistic unchoking, no chokelist

OUC_NOCKL,

// Optimistic unchoking with chokelist

OUC_CKL,

// Optimistic unchoking with rehab, no chokelist

OUC_NOCKL_REHAB,

// Optimistic unchoking with rehab and chokelist

OUC_CKL_REHAB

};

// -------------------- Functions Prototypes ---------- -----

void init(int argc, char* argv[]);

void game2(int clock);

int is_caught(int pid);

int is_caught_all();

float r_func(float reputation);

float s_func(float u_rate);

float V_func(int id, float succ_rate);

void test();

void print_sim_info();

void print_summary(int clock, int no_tran, int no_untran) ;

ostream& operator<< (ostream& os, transaction_type& t);

132

void test_caught_all();

void BC_choke_list();

void usage();

void update_reputation(int i, int j);

void free_memory();

void optimistically_unchoke(int unchoker);

void normalize(int i);

inline float compute_success_rate(int index);

void print_summary(int clock, int no_tran, int no_untran) ;

void print_summary_machine(int clock, int no_tran, int no _untran);

void print_reputation_matrix();

void print_reputation_matrix_transpose();

void print_data_transfered();

void print_connection_matrix();

// ---------------------- Global Variables ------------ -----

transaction_type* transaction_mapping;

const gsl_rng_type * T;

gsl_rng * r;

int OUC, CKL, REHAB, CONT;

// ------------------- Simulation Parameters ---------- ------

// Rji matrix

float** Reputation_Matrix;

// Cj set

int** Connected;

// Amount of data transfered

float** Data_Transfered;

// u_j

float* Upload_Rate;

// Success rate in previous period

float *Old_Succ_Rate;

// Net utility in previous period

float *Old_Net_Utility;

// Upload_Rate in previous period

float *Old_Upload_Rate;

// N*(N-1)/2

int Num_Pair;

// Model parameters

// Simulation mode

sim_mode Mode = NOOUC_NOCKL;

// Number of iterations/rounds

int Num_Interval = 1000000;

// Number of peers

int Num_Peer = 100;

// Number of groups

int Num_Group = 4;

// U, upload rate = 0, U, 2U, 3U; Umax = 3*U_rate

float U_rate = 250;

// Upload increment step

133

float Upload_Inc_Step = 5;

// Maximum upload rate

float Umax = 4*U_rate;

// Maximum utility

float Vmax = Umax;

// Reputation Multiplier

int Mult = 1;

// Alpha for calculating the utility, V(s)

float Alpha = 100;

float Coeff_C = -6.4;

float Coeff_D = M_PI_2;

// Temperature for calculating the utility, V(s)

float Temperature = 1;

// Govern when a transaction occurs

float Transacting_Threshold = 0.3;

// Min reputaiton allowing a CHK to be accepted

float Accept_Threshold = 0.001;

// Initially given reputation score

float Epsilon = 0.005;

// c for updating reputation

float Coeff = 0.1;

// Period that a CKL is broadcast

int BC_Period = 100;

// Probability that a leecher rehabilitates

int Rehab_Period = 10000;

// Probability of OUC

float OUC_Prob = 0.25;

// Random number generator seed

int Seed;

// Print in a human-readable format or a machine-readable fo rmat

int HUMAN = 0;

// 0 for same player, 1 for diff players

int Behavior = 0;

// Output filename

char Filename[20] = "output.txt";

// Cost factor in V_func

float Cost_factor = 1;

ofstream output;

int NodeID = 0;

// ---------------------------- Main ----------------- -------

/*

void test2() {

float i;

i = 0; cout << i << " " << V_func(i) << endl;;

i = 0.003; cout << i << " " << V_func(i) << endl;;

i = 0.005; cout << i << " " << V_func(i) - 250 << endl;;

i = 0.007; cout << i << " " << V_func(i) - 500 << endl;;

i = 0.009; cout << i << " " << V_func(i) - 750 << endl;;

134

cout << endl;

i = 0.005; cout << i << " " << V_func(i) << endl;;

i = 0.01; cout << i << " " << V_func(i) << endl;;

i = 0.03; cout << i << " " << V_func(i) << endl;;

}

*/

/*

* main:

*/

int main(int argc, char* argv[]) {

int no_tran, no_untran;

no_tran = no_untran = 0;

init(argc, argv);

// Setting 1 : for real-time

// Vmax = 4*U_rate; Alpha = 700; Coeff_C = -6.4; Coeff_D = M_PI _2;

// Setting 2

Vmax = 4000; Alpha = 100; Coeff_C = 0; Coeff_D = 0;

// Vmax = 8000; Alpha = 100; Coeff_C = 0; Coeff_D = 0;

//

// test2(); exit(0);

int clock = 0;

while(1) {

// Randomly choose a pair of peers.

int id = (int) nearbyint(gsl_ran_flat(r, 0, Num_Pair-1));

int i = transaction_mapping[id].p1;

int j = transaction_mapping[id].p2;

// Calculate the reputation of each peer

float Rij, Rji;

if((Connected[i][j] == 0) && (Connected[j][i] == 0)) {

// i and j have never met before

Reputation_Matrix[i][j] = Reputation_Matrix[j][i]

= Epsilon;

Rij = Reputation_Matrix[i][j];

Rji = Reputation_Matrix[j][i];

} else if(Connected[i][j] && Connected[j][i]) {

// i and j have met before

// Normalize

float sum1 = 0, sum2 = 0;

for(int k=0; k<Num_Peer; k++) {

if(Reputation_Matrix[i][k] >= 0)

sum1 += Reputation_Matrix[i][k];

if(Reputation_Matrix[j][k] >= 0)

sum2 += Reputation_Matrix[j][k];

}

135

if(sum1 > 0) Rij = Reputation_Matrix[i][j]/sum1;

if(sum2 > 0) Rji = Reputation_Matrix[j][i]/sum2;

if((Rij <0) || (Rij >1)) {

cout << "ERROR " << i << " " << j << " "

<< sum1 << " " << Rij << endl;

print_connection_matrix();

print_reputation_matrix();

exit(-1);

}

if((Rji <0) || (Rji >1)) {

cout << "ERROR " << j << " " << i << " "

<< sum2 << " " << Rji << endl;

print_connection_matrix();

print_reputation_matrix();

exit(-1);

}

} else {

// i and j have never met before, but one of

// them is choked via chokelist so this

// transaction will not occur.

continue;

}

// Perform the transaction with prob = r(Rji)*r(Rij).

if(gsl_ran_flat(r, 0, 1) < Mult*r_func(Rij)*r_func(Rji)) {

// Supposedly this is the transaction.

// Add j to Ci and i to Cj

Connected[i][j] = Connected[j][i] = 1;

// Optimistically unchoke a choked node with the

// probability OUC_Prob

if(OUC) {

optimistically_unchoke(i); optimistically_unchoke(j) ;

}

// Update Rij and Rji, respectively

update_reputation(i, j); update_reputation(j, i);

#ifdef __DEBUG1__

cout << "At " << clock << " Transaction: ("

<< i << ", " << j << ")" << endl;

#endif

no_tran++;

} else {

no_untran++;

}

136

// Broadcast the chokelist

if(CKL && (clock != 0) && !(clock % BC_Period)) {

BC_choke_list();

}

// Normalize reputation

normalize(i); normalize(j);

// Rehabilitate some leechers

if(REHAB && (clock !=0) && !(clock % Rehab_Period)) {

game2(clock);

}

// Print progress every 100 transactions

if((clock != 0) && (clock % 200000 == 0)) {

if(HUMAN) print_summary(clock, no_tran, no_untran);

else print_summary_machine(clock, no_tran, no_untran);

}

// Without OUC, the loop terminates when all leechers are

// caught by all peers. With OUC, the loop terminates after

// a certain period of time.

if(!CONT) {

if(is_caught_all()) break;

} else {

if(clock == Num_Interval) break;

}

// Increment the clock

clock++;

} // While(1) loop

output.close();

free_memory();

gsl_rng_free(r);

return 0;

}

/*

* game2:

*/

void game2(int clock) {

for(int a=0; a<Num_Peer; a++) {

// if(a<5) continue;

if((clock/Rehab_Period) == 1) {

// The first period

// Calculate s(0) and v(0)

Old_Succ_Rate[a] = compute_success_rate(a);

Old_Net_Utility[a] = V_func(a,

137

(Old_Succ_Rate[a] != -1)?Old_Succ_Rate[a]:0) -

Cost_factor*Upload_Rate[a];

Old_Upload_Rate[a] = Upload_Rate[a];

/*

cout << a << "\t" << Old_Succ_Rate[a] << "\t"

<< V_func(a, (Old_Succ_Rate[a] != -1)?

Old_Succ_Rate[a]:0)

<< "\t" << Old_Net_Utility[a] << endl;

*/

} else {

float succ = compute_success_rate(a);

float net_util = V_func(a, (succ != -1)?succ:0) -

Cost_factor*Upload_Rate[a];

float util_diff = net_util - Old_Net_Utility[a];

/*

if(a==NodeID)

cout << clock << " " << a << " "

<< Upload_Rate[a] << " "

<< util_diff << " " << succ << endl;

*/

Old_Succ_Rate[a] = succ;

Old_Net_Utility[a] = net_util;

// Accept or reject the new rate

if((util_diff >= 0) ||

((util_diff < 0) && (gsl_ran_flat(r,0,100) <

pow(M_E,util_diff/Temperature)))) {

Old_Upload_Rate[a] = Upload_Rate[a];

} else {

Upload_Rate[a] = Old_Upload_Rate[a];

}

}

// Adapt the upload rate

double step = 1000.0/3.0;

double i = gsl_ran_flat(r, 0, 1000);

int choice;

if((i >= 0) && (i < 333.33)) choice = 0;

else if((i >= 333.33) && (i < 666.66)) choice = 1;

else choice = 2;

switch(choice) {

case 0: break;

case 1: if(Upload_Rate[a] >= Upload_Inc_Step)

Upload_Rate[a] -= Upload_Inc_Step;

break;

case 2: if(Upload_Rate[a] <= Umax - Upload_Inc_Step)

Upload_Rate[a] += Upload_Inc_Step;

138

break;

}

}

}

// -------------------- Functions Implementations ----- --------

/*

* BC_choke_list : broadcast the choke list

*/

void BC_choke_list() {

int i, j, k;

for(i=0; i<Num_Peer; i++)

for(j=0; j<Num_Peer; j++)

if((i != j) && (Reputation_Matrix[i][j] == 0))

for(k=0; k<Num_Peer; k++)

// i & j is not the same peer. niether are j and k.

if((i != k) && (j != k) &&

// Exchange the chokelist only with neighbors

Connected[i][k] &&

// Exchange the chokelist only

// with non-leechers

(Reputation_Matrix[i][k] != 0) &&

(Reputation_Matrix[k][i] > Accept_Threshold))

{

// cout << "Accepting "

<< i << " " << j << " " << k <<endl;

Connected[k][j] = 1;

Reputation_Matrix[k][j] = 0;

}

}

/*

* normalize : normalize a node reputation if

* sum of reputation exceeds 1.

*/

void normalize(int i) {

float sum = 0;

for(int k=0; k<Num_Peer; k++)

if(Reputation_Matrix[i][k] >= 0)

sum += Reputation_Matrix[i][k];

if(sum > 1)

for(int k=0; k<Num_Peer; k++)

if(Reputation_Matrix[i][k] > 0)

Reputation_Matrix[i][k] /= sum;

}

/*

139

* optimistically_unchoke: Optimistically unchoke a choke d

* node with the probability OUC_Prob

*/

void optimistically_unchoke(int unchoker) {

int picked, count = -1, found = 0;

if(gsl_ran_flat(r, 0, 1) < OUC_Prob) {

// Count the number of choked peers

for(int c=0; c<Num_Peer; c++)

if(Reputation_Matrix[unchoker][c] == 0) count++;

// Randomly picked a peer to unchoke

if(count == -1) {

return;

} else if(count == 0) {

picked = 0;

} else {

picked = (int) nearbyint(gsl_ran_flat(r, 0, count));

}

// Unchoked the peer

int count2 = -1;

for(int d=0; d<Num_Peer; d++) {

if(Reputation_Matrix[unchoker][d] == 0) count2++;

if(count2 == picked) {

Reputation_Matrix[unchoker][d] = Epsilon;

found = 1;

break;

}

}

if(!found) {

cerr << "OUC error: out of range " << endl;

exit(-1);

}

}

}

/*

* free_memory : free allocated memory

*/

void free_memory() {

// Delete Reputation_Matrix, Connected, Upload_Rate

for(int i=0; i<Num_Peer; i++) {

delete [] Reputation_Matrix[i];

delete [] Connected[i];

delete [] Data_Transfered[i];

}

delete [] Upload_Rate;

delete [] Reputation_Matrix;

140

delete [] Connected;

delete [] Data_Transfered;

}

/*

* update_reputation : Update reputation of Rij

*/

void update_reputation(int i, int j) {

// Update Rij

if(Upload_Rate[j] == 0) {

Reputation_Matrix[i][j] = 0;

} else {

Reputation_Matrix[i][j] +=

Coeff*s_func(Upload_Rate[j] - Upload_Rate[i]);

// Record data transfered from j to i

Data_Transfered[i][j] += Upload_Rate[j];

}

}

/*

* is_caught : check if a leecher with pid is

* caught by all non-leechers or not

*/

int is_caught(int pid) {

int result = 1;

for(int i=0; i< Num_Peer; i++)

if((i != pid) && (Upload_Rate[i] != 0) &&

(Reputation_Matrix[i][pid] != 0)) {

result = 0;

break;

}

#ifdef __DEBUGX__

if(result) cout << pid << " is caught." << endl;

#endif

return result;

}

/*

* catch_all_leechers : check if all leechers

* are caught by all peers.

*/

int is_caught_all() {

int result = 1;

for(int i=0; i<Num_Peer; i++) {

if((Upload_Rate[i] == 0) && !is_caught(i)) {

141

result = 0;

break;

}

}

return result;

}

/*

* V_func : utility function

*/

float V_func(int id, float succ_rate) {

float max;

if(Behavior == 0) {

max = Vmax;

} else {

int ppg = (int) Num_Peer/Num_Group; // peers per group

int coeff = (int) id/ppg + 1;

max = coeff*Vmax/Num_Group;

}

return max*(atan(Alpha*succ_rate + Coeff_C) + Coeff_D)/M _PI;

}

/*

* transaction_probability : this is the "r" function, deter mining

* the probability that the transaction may occur.

*/

float r_func(float reputation) {

float result;

if((0 <= reputation) && (reputation <= Epsilon)) {

result = sqrt(Transacting_Threshold)*reputation/Epsil on;

} else if((reputation > Epsilon) && (reputation <=1)) {

result = sqrt(Transacting_Threshold) +

(reputation - Epsilon) *

(1 - sqrt(Transacting_Threshold))/(1 - Epsilon);

} else {

cerr << "r_func: invalid reputation score \""

<< reputation << "\"" << endl;

print_reputation_matrix();

exit(-1);

}

return result;

}

/*

* s_func : this is the "s" function, determining the

142

* credit gained from the upload rate

*/

float s_func(float upload) {

float result;

if((upload < -4*U_rate) || (upload > 4*U_rate)) {

cerr << "s_func: differential reputation error "

<< upload << endl;

exit(-1);

}

if(upload < -1*U_rate)

result = 0;

else if(upload = -1*U_rate)

result = 0.005;

else if((upload > -1*U_rate) && (upload <= 0))

result = 0.075;

else if((upload > 0) && (upload <= U_rate))

result = 0.1;

else if((upload > U_rate) && (upload <= 2*U_rate))

result = 0.4;

else if((upload > 2*U_rate) && (upload <= 4*U_rate))

result = 1.0;

if(result < 0) {

cerr << "s_func: result is less than 0" << endl;

exit(-1);

} else if(result > 1) {

cerr << "s_func: result is greater than 1" << endl;

exit(-1);

}

return result;

}

/*

* usage : print usage message

*/

void usage(int argc, char* argv[]) {

cout << argv[0] << " [options]" << endl;

cout << "Valid options are : " << endl;

cout << "-a <accepting threshold>" << endl;

cout << "-b <CKL broadcast period>" << endl;

cout << "-C <Cost factor in the V_func>" << endl;

cout << "-c <Coeff for updating reputation>" << endl;

cout << "-D <0 for same behavior, 1 for different>" << endl;

cout << "-f <output filename>" << endl;

cout << "-h Print help message" << endl;

cout << "-M <Repuation Multiplier>" << endl;

cout << "-m <mode>" << endl;

143

cout << " 0 for No optimistic unchoking, no chokelist"

<< endl;

cout << " 1 for No optimistic unchoking with chokelist"

<< endl;

cout << " 2 for Optimistic unchoking, no chokelist"

<< endl;

cout << " 3 for Optimistic unchoking with chokelist"

<< endl;

cout << " 4 for Optimistic unchoking with rehab,

no chokelist" << endl;

cout << " 5 for Optimistic unchoking with rehab

and chokelist" << endl;

cout << "-n <number of peers>" << endl;

cout << "-o <OUC probability>" << endl;

cout << "-r Print in a human-readable format" << endl;

cout << "-S All peers use the same Vmax" << endl;

cout << "-s <seed>" << endl;

cout << "-t <maximum interval>" << endl;

cout << "-u <Upload increment step>" << endl;

cout << "-u <Upload step>" << endl;

}

/*

* init : initialize the simulation

*/

void init(int argc, char* argv[]) {

extern char *optarg;

int option;

// Process options

while ((option = getopt(argc, argv,

"a:b:C:c:d:f:hi:M:m:n:o:rs:t:u:U:")) != -1) {

switch (option) {

case 'a':

sscanf(optarg, "%f", &Accept_Threshold); break;

case 'b':

sscanf(optarg, "%d", &BC_Period); break;

case 'C':

sscanf(optarg, "%f", &Cost_factor); break;

case 'c':

sscanf(optarg, "%f", &Coeff); break;

case 'd':

sscanf(optarg, "%d", &Behavior); break;

case 'f':

sscanf(optarg, "%s", &Filename); break;

case 'i':

sscanf(optarg, "%d", &NodeID); break;

case 'M':

sscanf(optarg, "%d", &Mult); break;

case 'm':

144

sscanf(optarg, "%d", &Mode); break;

case 'n':

sscanf(optarg, "%d", &Num_Peer); break;

case 'o':

sscanf(optarg, "%f", &OUC_Prob); break;

case 'r': HUMAN = 1; break;

case 's':

sscanf(optarg, "%d", &Seed); break;

case 't':

sscanf(optarg, "%d", &Num_Interval); break;

case 'u':

sscanf(optarg, "%f", &Upload_Inc_Step); break;

case 'U':

sscanf(optarg, "%f", &U_rate); Umax = 4*U_rate; break;

case 'h':

default: usage(argc, argv); exit(-1);

}

}

Num_Pair = (int) Num_Peer*(Num_Peer-1)/2;

switch(Mode) {

// Mode 0

case NOOUC_NOCKL:

OUC = 0; CKL = 0; REHAB = 0; CONT = 0; break;

// Mode 1

case NOOUC_CKL:

OUC = 0; CKL = 1; REHAB = 0; CONT = 0; break;

// Mode 2

case OUC_NOCKL:

OUC = 1; CKL = 0; REHAB = 0; CONT = 1; break;

// Mode 3

case OUC_CKL:

OUC = 1; CKL = 1; REHAB = 0; CONT = 1; break;

// Mode 4

case OUC_NOCKL_REHAB:

OUC = 1; CKL = 0; REHAB = 1; CONT = 1; break;

// Mode 5 (Not used)

case OUC_CKL_REHAB:

OUC = 1; CKL = 1; REHAB = 1; CONT = 1; break;

}

output.open(Filename);

if(!output.is_open()) {

cerr << "print_summary: error in opening output file"

<< endl;

exit(-1);

}

// Initialize the GSL library

gsl_rng_env_setup();

145

T = gsl_rng_default;

r = gsl_rng_alloc(T);

gsl_rng_set(r, Seed);

// Allocate required memory

Reputation_Matrix = new float* [Num_Peer];

Connected = new int* [Num_Peer];

Data_Transfered = new float* [Num_Peer];

Upload_Rate = new float [Num_Peer];

Old_Succ_Rate = new float [Num_Peer];

Old_Net_Utility = new float [Num_Peer];

Old_Upload_Rate = new float [Num_Peer];

for(int i=0; i<Num_Peer; i++) {

// Initialize u_i = (0,U,2U,3U)

// int coeff = (int) nearbyint(gsl_ran_flat(r, 0, 3));

int coeff;

if((i >= 0) && (i < (int) Num_Peer/Num_Group)) {

coeff = 0;

} else if((i >= (int) Num_Peer/Num_Group) &&

(i < (int) 2*Num_Peer/Num_Group)) {

coeff = 1;

} else if((i >= (int) 2*Num_Peer/Num_Group) &&

(i < (int) 3*Num_Peer/Num_Group)) {

coeff = 2;

} else {

coeff = 3;

}

Upload_Rate[i] = coeff * U_rate;

Reputation_Matrix[i] = new float [Num_Peer];

Connected[i] = new int [Num_Peer];

Data_Transfered[i] = new float [Num_Peer];

// Initialize Rji and Cj

for(int j=0; j<Num_Peer; j++) {

// i & j have never connected

Connected[i][j] = 0;

// No data transfered yet

Data_Transfered[i][j] = 0;

// i = j, invalid

if(i == j) Reputation_Matrix[i][j] = -9.0;

// i & j have never connected

else Reputation_Matrix[i][j] = -1.0;

}

}

// Initialize the data structure that holds transaction pai rs.

transaction_mapping = new transaction_type [Num_Pair];

int counter = 0;

for(int i=0; i<Num_Peer; i++)

for(int j=i+1; j<Num_Peer; j++) {

146

transaction_mapping[counter].id = counter;

transaction_mapping[counter].p1 = i;

transaction_mapping[counter].p2 = j;

counter++;

}

}

/*

* print_sim_info : print simulation parameters

*/

void print_sim_info() {

cout << "Simulation condition = ";

if(OUC) cout << "OUC + ";

else cout << "No OUC + ";

if(CKL) cout << "CKL + ";

else cout << "No CKL + ";

if(REHAB) cout << "REHAB";

else cout << "No REHAB";

cout << endl;

cout << "Number of peers (N) = "

<< Num_Peer << endl;

cout << "Upload rate (U) = "

<< U_rate << endl;

cout << "Upload Increment Step = "

<< Upload_Inc_Step << endl;

cout << "Transaction threshold = "

<< Transacting_Threshold << endl;

cout << "CHK accepting threshold = "

<< Accept_Threshold << endl;

cout << "Epsilon (e) = "

<< Epsilon << endl;

cout << "Coefficient (c) = "

<< Coeff << endl;

cout << "CKL broadcast period = "

<< BC_Period << endl;

cout << "Rehabilitating period = "

<< Rehab_Period << endl;

cout << "OUC probability (p) = "

<< OUC_Prob << endl;

cout << "Seed = "

<< Seed << endl;

cout << "Output = "

<< Filename << endl;

cout << "Multiplier = "

<< Mult << endl;

cout << "Behavior = "

<< (Behavior==0?"Same":"Diff") << endl;

}

147

void print_connection_matrix() {

output << "Connection Matrix (Cj)" << endl;

for(int i=0; i<Num_Peer; i++) {

for(int j=0; j<Num_Peer; j++)

output << Connected[i][j] << " ";

output << endl;

}

output << endl;

}

void print_reputation_matrix() {

output << "Reputation Matrix" << endl;

for(int i=0; i<Num_Peer; i++) {

for(int j=0; j<Num_Peer; j++)

output << setprecision(5) << setw(10)

<< Reputation_Matrix[i][j] << " ";

output << endl;

}

output << endl;

}

void print_data_transfered() {

output << "Data Transfered" << endl;

for(int i=0; i<Num_Peer; i++) {

for(int j=0; j<Num_Peer; j++)

output << setprecision(5) << setw(10)

<< Data_Transfered[i][j] << " ";

output << endl;

}

output << endl;

}

void print_reputation_matrix_transpose() {

output << "Reputation Matrix (Rij) Transpose (For Excel)"

<< endl;

for(int i=0; i<Num_Peer; i++) {

for(int j=0; j<Num_Peer; j++)

if(i != j)

output << setprecision(5) << setw(10)

<< Reputation_Matrix[j][i] << " ";

else

output << setprecision(5) << setw(10) << 0 << " ";

output << endl;

}

output << endl;

}

/*

* compute_success_rate : calculate the success

* rate of the "index" peer

148

*/

inline float compute_success_rate(int index) {

int count = 0;

float sum_reput = 0;

for(int j=0; j<Num_Peer; j++)

if(Connected[j][index] != 0) {

count++;

sum_reput += Reputation_Matrix[j][index];

}

if(count) return sum_reput/count;

else return -1;

}

/*

* print_summary : print simulation result in

* a human-readable format

*/

void print_summary(int clock, int no_tran, int no_untran) {

output << "Clock = " << clock << endl;

print_reputation_matrix_transpose();

output << "Transaction Success Rate" << endl;

for(int i=0; i<Num_Peer; i++) {

float succ = compute_success_rate(i);

if(succ != -1) output << i << " " << succ << endl;

else output << i << " N/A" << endl;

}

output << endl;

print_sim_info();

output << "Simulation time = " << clock << endl;

output << "Attmepted transaction = "

<< no_tran << " (" << setprecision(4)

<< float ((no_tran*100.0)/(no_tran + no_untran)) << "%)"

<< endl;

}

/*

* print_summary_machine : print the summary result

* in a machine-readable format

*/

void print_summary_machine(int clock, int no_tran, int no _untran) {

// Print current time

output << clock << endl;

// Print percentage of attmepted transactions

149

output << no_tran*100.0/clock << endl;

// Print transaction success rate

for(int i=0; i<Num_Peer; i++) {

float succ = compute_success_rate(i);

if(succ != -1) output << succ << " ";

else output << -1;

}

output << endl;

// Print upload rate

if(REHAB) {

for(int j=0; j<Num_Peer; j++)

output << Upload_Rate[j] << " ";

output << endl;

}

// Print net utility

for(int i=0; i<Num_Peer; i++) {

float succ = compute_success_rate(i);

float net_util = V_func(i, (succ != -1)?succ:0) -

Cost_factor*Upload_Rate[i];

output << net_util << " ";

}

output << endl;

}

ostream& operator<< (ostream& os, transaction_type& t) {

os << "(" << t.id << ", " << t.p1 << ", " << t.p2 << ")";

return os;

}

B.3 det crv.cc

This is the simulator that was used to generate Figure 4.12, 4.13, 4.14, 4.15,

and 4.16.

#include <iostream>

#include <iomanip>

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

using namespace std;

#define __HYBRID__

class Game;

150

class Peer;

//--- ---

// print cost function

int Cost_Test = 0;

// print beta function

int Beta_Test = 0;

// Gradiant coeff

float Gradiant = 0.1;

// Newton's error tolerance

float Epsilon = 0.5;

//float Epsilon = 0.001;

// Scaling in Newton's method

float Newton_Coeff = 0.01;

// Coeff in sigma_func and beta_func

float Alpha = 10;

// Coeff in V function

//float Gamma = 0.00005;

float Gamma = 1;

// Coeff in arctan cost function

float Atan_Coeff = 0.08;

// Number of peers

int Num_Peer = 2;

// Number of groups of peers

int Num_Group = 2;

// Simulation time

int Num_Interval = 20;

float U_rate = 250;

// Maximum upload rate

float U_max = 5000;

// Vmax

float Vmax = 4000;

float U0 = 1;

float U1 = 1;

// Cmax

float C0 = 5;

// Cmax

float C1 = 5;

// u tilda in cost function

float L0 = 500;

// u tilda in cost function

float L1 = 1000;

int DEBUG = 0;

int Detail = 0;

float *Cost, *Upload, *Limit;

// Global ID counter

int id_counter = 0;

float B_max =0.5, B_width = 200, B_esp = 20, C_eps = 0;

void init(int argc, char **argv);

151

void usage(int argc, char **argv);

ostream& operator<< (ostream& os, Peer &p);

//--- ----

class Peer {

protected:

int pid;

float upload;

float cost;

float succ_rate;

float utility;

Game *game;

float u_limit;

float c_eps;

public:

Peer() { pid = id_counter++; }

void set_game(Game *g) { game = g; }

void set_limit(float u) { u_limit = u; }

void set_c_eps(float c) { c_eps = c; }

void calculate_upload();

float dif_impulse(float x) {

if(x<0) return pow(Alpha,2)*exp(Alpha*x);

else return -1*pow(Alpha,2)*exp(-1*Alpha*x);

}

float impulse(float x) {

return Alpha*exp(-1*Alpha*fabs(x));

}

float int_impulse(float x) {

if(x<0) return exp(Alpha*x);

else return 2 - exp(-1*Alpha*x);

}

float int_int_impulse(float x) {

if(x<0) return exp(Alpha*x)/Alpha;

else return 2*x + exp(-1*Alpha*x)/Alpha;

}

float ddcost_func(float u) {

return impulse(u - u_limit - c_eps);

}

float dcost_func(float u) {

return int_impulse(u - u_limit - c_eps);

}

float cost_func(float u) {

return int_int_impulse(u - u_limit - c_eps);

}

float beta_func(float u) {

return B_max*(int_impulse(u + B_width - B_esp) -

152

int_impulse(u - B_width + B_esp));

}

float diff_beta_func(float u) {

return B_max*(impulse(u + B_width - B_esp) -

impulse(u - B_width + B_esp));

}

float ddiff_beta_func(float u) {

return B_max*(dif_impulse(u + B_width - B_esp) -

dif_impulse(u - B_width + B_esp));

}

float succ_func(float u);

float diff_succ_func(float u);

float ddiff_succ_func(float u);

float V_func(float succ) {

return 2*Vmax*atan(Gamma*succ)/M_PI;

}

float diff_V_func(float succ) {

return 2*Gamma*Vmax/(M_PI*(1+pow(Gamma*succ,2)));

}

float ddiff_V_func(float succ) {

return -4*pow(Gamma,3)*Vmax*succ/(M_PI *

pow(1 + pow(Gamma*succ,2),2));

}

float diff_w_func(float u) {

float succ = succ_func(u);

return diff_V_func(succ)*diff_succ_func(u) -

dcost_func(u);

}

float ddiff_w_func(float u) {

float succ = succ_func(u);

return ddiff_V_func(succ)*pow(diff_succ_func(u),2) +

diff_V_func(succ)*ddiff_succ_func(u) - ddcost_func(u) ;

}

void cost_test();

void beta_test();

friend class Game;

friend ostream& operator<< (ostream& os, Peer &p);

};

class Game {

private:

Peer *peer;

float *history;

public:

153

Game(int num_peer);

~Game() { delete [] history; delete [] peer; }

void rehabilitate(int clock);

void report(int clock);

void cost_test() { peer[0].cost_test(); }

void beta_test() { peer[0].beta_test(); }

friend class Peer;

};

//--- ---

int main(int argc, char **argv) {

init(argc, argv);

Game game(Num_Peer);

if(Cost_Test) { game.cost_test(); return 0; }

if(Beta_Test) { game.beta_test(); return 0; }

int clock = 0;

while(clock <= Num_Interval) {

game.report(clock);

game.rehabilitate(clock);

clock++;

}

return 0;

}

void init(int argc, char **argv) {

extern char *optarg;

int option;

while((option = getopt(argc, argv,

"a:c:C:de:E:g:hl:L:n:pPt:v:u:U:w:xz:")) != -1) {

switch(option) {

case 'a':

sscanf(optarg, "%f", &Alpha); break;

case 'c':

sscanf(optarg, "%f", &C0); break;

case 'C':

sscanf(optarg, "%f", &C1); break;

case 'd':

DEBUG = 1; break;

case 'e':

sscanf(optarg, "%f", &Epsilon); break;

case 'E':

sscanf(optarg, "%f", &Newton_Coeff); break;

case 'g':

sscanf(optarg, "%f", &Gamma); break;

154

case 'l':

sscanf(optarg, "%f", &L0); break;

case 'L':

sscanf(optarg, "%f", &L1); break;

case 'M':

sscanf(optarg, "%f", &U_max); break;

case 'n':

sscanf(optarg, "%d", &Num_Peer); break;

case 'p': Cost_Test = 1; break;

case 'P': Beta_Test = 1; break;

case 'u':

sscanf(optarg, "%f", &U0); break;

case 'U':

sscanf(optarg, "%f", &U1); break;

case 't':

sscanf(optarg, "%d", &Num_Interval); break;

case 'v':

sscanf(optarg, "%f", &Vmax); break;

case 'w':

sscanf(optarg, "%f", &B_width); break;

case 'x': Detail = 1; break;

case 'z':

sscanf(optarg, "%f", &Atan_Coeff); break;

case 'h':

default: usage(argc, argv); exit(-1);

}

}

if(DEBUG) {

cout << setprecision(2) << setiosflags(ios::fixed)

<< "Alpha = " << Alpha

<< setprecision(5) << setiosflags(ios::fixed)

<< " Gamma = " << Gamma

<< setprecision(5) << setiosflags(ios::fixed)

<< " Epsilon = " << Epsilon

<< setprecision(5) << setiosflags(ios::fixed)

<< " Newton_Coeff = " << Newton_Coeff;

cout << endl;

}

Cost = new float[Num_Group];

Upload = new float[Num_Group];

Limit = new float[Num_Group];

Cost[0] = C0; Cost[1] = C1;

Upload[0] = U0; Upload[1] = U1;

Limit[0] = L0; Limit[1] = L1;

}

void usage(int argc, char* argv[]) {

155

cout << argv[0] << " [options]" << endl;

cout << "Valid options are : " << endl;

cout << "-a <Coefficient Alpha in gamma function>" << endl;

cout << "-c <Max cost of group 0>" << endl;

cout << "-C <Max cost of group 1>" << endl;

cout << "-d Print debug info" << endl;

cout << "-e <Coefficient Epsilon (Newton stopping criterio r)>"

<< endl;

cout << "-E <Scaling in Newton method>"

<< endl;

cout << "-g <Coefficient Gamma in V utility function>"

<< endl;

cout << "-h Print help message" << endl;

cout << "-l <U_limit in impulse cost function of group 0>"

<< endl;

cout << "-L <U_limit in impulse cost function of group 1>"

<< endl;

cout << "-M <U_max>" << endl;

cout << "-n <number of peers>" << endl;

cout << "-p Print the cost function and exit" << endl;

cout << "-P Print the beta function and exit" << endl;

cout << "-t <maximum interval>" << endl;

cout << "-v <Vmax>" << endl;

cout << "-u <Max upload of group 0>" << endl;

cout << "-u <Max upload of group 0>" << endl;

cout << "-x Print in high-precision" << endl;

cout << "-z <Coefficient in atan cost function>" << endl;

}

//--- -

Game::Game(int num_peer) {

peer = new Peer[num_peer];

int group_size = Num_Peer/Num_Group;

for(int i=0; i<Num_Peer; i++) {

int index = peer[i].pid/group_size;

peer[i].upload = Upload[index];

peer[i].cost = Cost[index];

peer[i].set_limit(Limit[index]);

peer[i].set_c_eps(C_eps);

peer[i].set_game(this);

}

history = new float[Num_Peer];

}

void Game::rehabilitate(int clock) {

for(int i=0; i<Num_Peer; i++)

peer[i].calculate_upload();

156

}

void Game::report(int clock) {

int counter, size = Num_Peer/Num_Group;

float upload_sum, succ_sum, util_sum, cost_sum;

for(int i=0; i<Num_Peer; i++)

history[i] = peer[i].upload;

upload_sum = succ_sum = util_sum = cost_sum = 0;

counter = 1;

cout << setw(2) << clock << " ";

for(int i=0; i<Num_Peer; i++) {

if(((counter-1)*size <= peer[i].pid

&& peer[i].pid < counter*size)

|| (counter == Num_Group

&& (counter-1)*size <= peer[i].pid

&& peer[i].pid < Num_Peer)) {

upload_sum += peer[i].upload;

succ_sum += peer[i].succ_func(peer[i].upload);

util_sum +=

peer[i].V_func(peer[i].succ_func(peer[i].upload));

cost_sum += peer[i].cost_func(peer[i].upload);

} else {

counter++;

if(!Detail)

cout << setiosflags(ios::fixed) << setprecision(2);

cout << setw(8) << upload_sum/size << " "

<< setw(8) << succ_sum/size << " "

<< setw(8) << util_sum/size << " "

<< setw(8) << cost_sum/size << " ";

upload_sum = peer[i].upload;

succ_sum += peer[i].succ_func(peer[i].upload);

util_sum +=

peer[i].V_func(peer[i].succ_func(peer[i].upload));

cost_sum += peer[i].cost_func(peer[i].upload);

}

}

if(!Detail) cout << setiosflags(ios::fixed) << setprecis ion(2);

cout << setw(8) << upload_sum/size << " "

<< setw(8) << succ_sum/size << " "

<< setw(8) << util_sum/size << " "

<< setw(8) << cost_sum/size << " "

<< endl;

}

//--- -

157

void Peer::calculate_upload() {

float old_upload, new_upload;

int direction = 0;

new_upload = upload;

do {

succ_rate = succ_func(new_upload);

utility = V_func(succ_rate);

float first = diff_w_func(new_upload);

float second = ddiff_w_func(new_upload);

old_upload = new_upload;

#ifdef __HYBRID__

if(second) {

float diff = first/second;

if(fabs(diff) > 0.1*old_upload) {

if(diff > 0) diff = 0.1*old_upload;

else diff = -0.1*old_upload;

}

// Oscillatin occurs.

if(direction == 0) {

if(diff >= 0) direction = 1;

else direction = -1;

} else if((direction == 1 && diff < 0) ||

(direction == -1 && diff > 0)) {

break;

}

new_upload = old_upload - diff;

if(DEBUG) {

cout << pid << " "

<< succ_rate << " " << utility << " "

<< cost_func(new_upload) << " "

<< first << " " << second << " "

<< first/second << " "

<< new_upload << endl;

}

// new_upload = old_upload - Newton_Coeff*first/second;

} else {

new_upload = old_upload + Gradiant*first;

if(DEBUG) {

cout << pid << " "

<< old_upload << " "

<< Gradiant*first << " "

158

<< new_upload << endl;

}

}

#elif __GRADIANT__

#endif

if(new_upload <= 0) {

new_upload = 0; break;

} else if(new_upload >= U_max) {

new_upload = U_max; break;

}

} while(fabsf(new_upload - old_upload) > Epsilon);

upload = new_upload;

}

float Peer::succ_func(float u) {

float sum = 0;

for(int i=0; i<Num_Peer; i++)

if(pid != i)

sum += game->history[i] *

beta_func(u - game->history[i]);

return sum;

}

float Peer::diff_succ_func(float u) {

float sum = 0;

for(int i=0; i<Num_Peer; i++)

if(pid != i)

sum += game->history[i] *

diff_beta_func(u - game->history[i]);

return sum;

}

float Peer::ddiff_succ_func(float u) {

float sum = 0;

for(int i=0; i<Num_Peer; i++)

if(pid != i)

sum += game->history[i] *

ddiff_beta_func(u - game->history[i]);

return sum;

}

void Peer::cost_test() {

159

set_limit(10);

set_c_eps(2);

for(int i=0;i<20000;i++)

cout << i << " "

<< cost_func(i) << " "

<< dcost_func(i) << " "

<< ddcost_func(i) << " "

<< endl;

}

void Peer::beta_test() {

for(int i=-250;i<250;i++)

cout << i << " "

<< beta_func(i) << " "

<< diff_beta_func(i) << " "

<< ddiff_beta_func(i)

<< endl;

}

//--

ostream& operator<< (ostream& os, Peer &p) {

os << "("

<< p.pid << ","

<< p.upload << ","

<< p.succ_rate << ","

<< p.utility << ","

<< p.cost_func(p.upload) << ","

<< ")";

}

B.4 Sybil.java
This is the simulator used in Section 4.3.2.4.

import java.util.*;

public class Sybil {

public static void main(String[] args) {

Sybil s = new Sybil();

s.run();

}

public void run() {

double [][] R = {{ 0, 0.5, 0.4, 0.2},

{0.3, 0, 0.5, 0.8},

{0.4, 0.5, 0, 0},

{0.3, 0, 0.1, 0}};

double [][]J = new double[MAX][MAX];

160

double [][]RJ = new double[MAX][MAX];

for(int a=0; a<MAX; a++)

for(int b=0; b<MAX; b++)

J[a][b] = 0;

calculate_indirect_referral(J, R, MAX);

calculate_referral(RJ, J, R, MAX);

System.out.println("No Attack");

System.out.println("Direct");

print_array(R, MAX);

System.out.println("Indirect");

print_array(J, MAX);

System.out.println("Total");

print_array(RJ, MAX);

System.out.println();

int NMAX = MAX + 1;

double [][] R2 = {{ 0, 0.5, 0.4, 0.2, 0.2},

{0.3, 0, 0.5, 0.8, 0.8},

{0.4, 0.5, 0, 0, 0},

{0.2, 0, 0.05, 0, 0},

{0.1, 0, 0.05, 0, 0}};

double [][]J2 = new double[NMAX][NMAX];

double [][]RJ2 = new double[NMAX][NMAX];

for(int a=0; a<NMAX; a++)

for(int b=0; b<NMAX; b++)

J2[a][b] = 0;

calculate_indirect_referral(J2, R2, NMAX);

calculate_referral(RJ2, J2, R2, NMAX);

System.out.println("Sybil Attack");

System.out.println("Direct");

print_array(R2, NMAX);

System.out.println("Indirect");

print_array(J2, NMAX);

System.out.println("Total");

print_array(RJ2, NMAX);

System.out.println();

}

public void calculate_referral(double[][] RJ,

double[][] J, double[][] R, int size) {

for(int j=0; j<size; j++)

for(int i=0; i<size; i++)

RJ[i][j] = Coeff_a*J[i][j] + (1-Coeff_a)*R[i][j];

}

161

public void calculate_indirect_referral(double[][] J,

double[][] R, int size) {

for(int j=0; j<size; j++)

for(int i=0; i<size; i++)

if(i != j) {

J[j][i] = 0;

for(int k=0; k<size; k++)

if(j != k && i != k)

J[j][i] += R[j][k] * R[k][i];

}

}

public void print_array(double[][] a, int size) {

for(int i=0; i<size; i++) {

for(int j=0; j<size; j++)

System.out.format("%.3f ",a[i][j]);

System.out.println();

}

}

final private int MAX = 4;

final private double Coeff_a = 0.4;

final private double R_max = 1;

}

Bibliography

[1] Douceur, J. R. (2002) \The Sybil Attack," in Proc. IPTPS, Cambridge,
MA.

[2] Cohen, B. , \BitTorrent Protol Speci�cation,"
http://www.bittorrent.com/protocol.html.

[3] Cohen, B. (2003) \Incentives Build Robustness in BitTorrent," in Workshop
on Economics of Peer-to-Peer Systems, Berkeley, CA, USA.

[4] Antoniadis, P. , C. Courcoubetis , and R. Mason (2004) \Comparing
economic incentives in peer-to-peer networks,"Computer Networks, 46(1),
pp. 133{146.

[5] \Ebay," http://www.ebay.com.

[6] Margolin, N. B. and B. N. Levine (2005) Quantifying Sybil Attacks
against Network Applications, Tech. Rep. 67, Dept. of Com. Sci., U. Mass-
Amherst.

[7] Newsome, J. , E. Shi , D. Song , and A. Perrig (2004) \The Sybil Attack
in Sensor Networks : Analysis & Defenses," inProc. IPSN'04, Berkeley.

[8] Zhang, Q. , P. Wang , D. S. Reeves , and P. Ning (2005) \Defending
against Sybil attacks in sensor networks," inProc. IEEE ICDCS.

[9] Traynor, P. , H. Choi , G. Cao , S. Zhu , and T. L. Porta (2006) \Es-
tablishing Pair-Wise Keys in Heterogeneous Sensor Networks," in Proc. IEEE
INFOCOM.

[10] Margolin, N. and B. Levine (2007) \Informant: Detecting Sybils Using
Incentives," Financial Cryptography.

163

[11] Buttyan, L. and J. Hubaux (2003) \Report on a Working Session on
Security in Wireless Ad Hoc Network," ACM Mobile Computing and Com-
munications Review, 7(1), pp. 74 { 94.

[12] Piro, C. , C. Shields , andB. N. Levine (2006) \Detecting the Sybil Attack
in Mobile Ad Hoc Networks," in Proc. IEEE/ACM SecureComm.

[13] Sieka, B. (2006) \Using Radio Device Fingerprinting for the Detection of
Impersonation and Sybil Attacks in Wireless Networks," inProceedings of
ESAS.

[14] Rasmussen, K. B. and S. Capkun (2007) \Implications of Radio Finger-
printing on the Security of Sensor Networks," inProceedings of IEEE Se-
cureComm, 2007.

[15] Wang, J. , G. Yang , Y. Sun , and S. Chen (2007) \Sybil Attack Detection
Based on RSSI for Wireless Sensor Network," inProc. WiCom.

[16] Demirbas, M. andY. Song (2006) \An RSSI-based Scheme for Sybil Attack
Detection in Wireless Sensor Networks," inProc. WoWMoM.

[17] Zhang, Y. , W. Liu , and W. Lou (2006) \Location-based Compromise-
tolerant Security Mechanisms for Wireless Sensor Networks," IEEE Journal
on Selected Areas in Communications, 24(2), pp. 247{255.

[18] Zhou, T. , R. R. Choudhury , P. Ning , and K. Chakrabarty (2007)
\Privacy-Preserving Detection of Sybil Attacks in Vehicular Ad Hoc Net-
works," in Proc. MobiQuitous, Philadelphia.

[19] Yan, G. , G. C. an M. C. Weigle , and S. Olariu (2007) \Providing
VANET Security Through Active Position Detection," in Proc. ACM Work-
shop on Vehicular ad hoc networks (Poster), Montreal.

[20] \Top applications (bytes) for subinterface 0[0]: SD-NAP tra�c,"
http://www.caida.org/analysis/workload/byapplicatio n/sdnap/.

[21] Reardon, M. (2008), \Comcast targets bandwidth hogs in test," CNET
News, http://news.cnet.com/8301-107843-9959597-7.html.

[22] Kang, C. (2008), \Heavy Internet Users Targeted: Providers to Test
Charges, Delays," Washington Post, http://www.washingtonpost.com/wp-
dyn/content/article/2008/06/03/AR2008060303248 .html.

[23] Fry, C. P. and M. K. Reiter (2006) Really Truly Trackerless BitTorrent,
Tech. Rep. CMU-CS-06-148, School of Computer Science, Carnegie Mellon
University.

164

[24] \utorrent," http://www.utorrent.com.

[25] \ktorrent," http://www.ktorrent.org.

[26] \BitComet," http://www.bitcomet.com.

[27] Legout, A. , A. Liogkas , E. Kohler , and L. Zhang (June 2007) \Clus-
tering and Sharing incentives in BitTorrent systems," inProc. ACM SIG-
METRICS, San Diego, CA.

[28] Qiu, D. and R. Srikant (2004) \Modeling and Performance Analysis of
BitTorrent-Like Peer-to-Peer Networks," in Proc. ACM SIGCOMM, Portland,
Oregon.

[29] Buchegger, S. and J.-Y. L. Boudec (June 2004) \Robust Reputation
System for P2P and Mobile Ad-hoc networks," inSecond Workshop on Eco-
nomics of Peer-to-Peer Systems.

[30] Marti, S. and H. Garcia-Molina (May 2004) \Limited reputation sharing
in P2P systems," inProc. of the 5th ACM conference on Electronic commerce.

[31] Ma, R. , S. Lee, J. Lui , and D. Yau (2003) \Incentive P2P networks: a
protocol to encourage information sharing and contribution." SIGMETRICS
Performance Evaluation Review, 31(2), pp. 23{25.

[32] Yu, B. , M. Singh , and K. Sycara (2004) \Developing trust in large-scale
peer-to-peer systems," inProc. of First IEEE Symposium on Multi-Agent
Security and Survivability.

[33] Papaioannou, T. and G. Stamoulis (April, 2004) \E�ective Use of Rep-
utation in Peer-to-Peer Environments," in Fourth International Scienti�c
Workshop on Global and Peer-to-Peer Computing.

[34] Kamvar, S. , M. Schlosser , and H. Garcia-Molina (2003) \The Eigen-
trust algorithm for reputation management in P2P networks," in Proc. of the
12th international conference on World Wide Web (WWW), New York, NY,
pp. 640{651.

[35] Mortazavi, B. and G. Kesidis (March 2006) \Incentive-compatible cu-
mulative reputation systems for peer-to-peer �le-swapping," in Proc. CISS,
Princeton.

[36] Micali, S. and R. Rivest (2002) \Micropayments Revisited," in Lecture
Notes in Computer Science, Springer-Verlag, pp. 149{163.

[37] Rivest, R. (2004) \Peppercoin Micropayments," inLecture Notes in Com-
puter Science, Springer-Verlag, pp. 2{8.

165

[38] Ma, R. , S. Lee, J. Lui , and D. Yau (2004) \A game theoretic approach
to provide incentive and service di�erentiation in P2P networks," in Proc. of
the joint international conference on Measurement and modeling of computer
systems, New York, NY, pp. 189{198.

[39] Ma, R. T. B. , S. C. M. Lee , J. C. S. Lui , and D. K. Y. Yau (2004) \An
Incentive Mechanism for P2P Networks," inProc. of the 24th International
Conference on Distributed Computing Systems (ICDCS), Washington, DC,
USA, pp. 516{523.

[40] Mortazavi, B. and G. Kesidis (Feb. 2006) \Model and simulation study of
a peer-to-peer game with a reputation-based incentive mechanism," in Proc.
IEEE Information Theory and Applications (ITA) Workshop, UC San Diego.

[41] Figueiredo, D. R. , J. K. Shapiro , and D. Towsley (2004) A Public
Good Model of Availability in Peer-to-Peer Systems, Tech. Rep. 04-27, CSE
Dept, Michigan State University.

[42] Ramaswamy, L. and L. Liu (2003) \Free Riding: A New Challenge to Peer-
to-Peer File Sharing Systems," in36th Hawaii International Conference On
System Sciences (HICSS).

[43] de Veciana, G. and X. Yang (2003) \Fairness, incentives and performance
in peer-to-peer networks," inAllerton Conference on Communication, Control
and Computing.

[44] Yang, X. and G. de Veciana (2004) \Service Capacity of Peer-to-Peer
Networks," in Proc. IEEE INFOCOM , San Francisco.

[45] Ge, Z. , D. R. Figueiredo , S. Jaiswal , J. Kurose , and D. Towsley
(April 2004) \Modeling Peer-to-Peer �le sharing systems, In Proc. of , Apr.
2004," in IEEE Infocom 2003, Sanfrasico, CA.

[46] Vojnovic, M. and L. Massoulie (June 2008) \Coupon replication sys-
tems," IEEE/ACM Transactions on Networking, Vol. 16, No. 3 .

[47] Kesidis, G. , T. Konstantopoulos , and P. Sousi (Apr. 2007) \Modeling
�le-sharing with BitTorrent-like incentives," in Proc. IEEE ICASSP, Hon-
olulu.

[48] Konstantopoulos, T. , G. Kesidis , and P. Sousi (Sept. 2008) \A
stochastic epidemiological model and deterministic limitfor peer-to-peer �le-
swapping networks,"Springer LNCS Proc. of NET-COOP, Paris.

[49] Kesidis, G. , I. Hamadeh , S. Jiwasurat , and M. Vojnovic (2008) \A
Model of the Spread of Randomly Scanning Internet Worms thatSatura te
Access Links,"ACM TOMACS.

166

[50] Ross, K. and D. Rubenstein (2004), \Tutorial on P2P systems,"
http://cis.poly.edu/ � ross/papers/P2PtutorialInfocom.pdf.

[51] Cheng, A. and E. Friedman (2005) \Sybilproof reputation mechanisms,"
in Proc. ACM SIGCOMM workshop on Economics of peer-to-peer systems
(P2PECON), pp. 128{132.

[52] Ward, A. , A. Jones , and A. Hopper (1997) \A New Location Technique
for the Active O�ce," IEEE Personal Communications.

[53] T. Korakis, G. J. and L. Tassiulas (2003) \A MAC protocol for full
exploitation of directional antennas in ad-hoc wireless networks," in Proc.
ACM Symposium on Mobile Ad Hoc Networking & Computing, Annapolis,
MD.

[54] Castro, M. , P. Druschel , A. Ganesh , A. Rowstron , and D. S. Wal-
lach (2002) \Secure Routing for Structured Peer-to-Peer Overlay Networks,"
in Proc. USENIX Symposium on Operating Systems Design and Implementa-
tion, Boston.

[55] Brands, S. and D. Chaum (1993) \Distance-bounding protocols (extended
abstract)," in Proc. Eurocrypt.

[56] Corporation., C. , \Description of planned network management practices
to be deployed following the termination of current practices, attachment b."
Warning{I didn't �nd a database entry for "comcast09".

[57] Walsh, K. and E. Sirer (2005) Thwarting P2P Pollution Using Object
Reputation, Tech. rep., Cornell University, Computer Science Department.

[58] Walsh, K. and E. G. Sirer (2005) \Fighting Peer-to-Peer SPAM and De-
coys with Object Reputation," in Proceedings of the Third Workshop on the
Economics of Peer-to-Peer Systems (p2pecon), Philadelphia, PA.

[59] Jin, Y. and G. Kesidis (Oct. 2005) \Dynamics of usage-priced communica-
tion networks: the case of a single bottleneck resource,"IEEE/ACM Trans.
Networking.

[60] ||| (March 2002) \A pricing strategy for an ALOHA networ k of hetero-
geneous users with inelastic bandwidth requirements," inCISS, Princeton.

[61] Aarts, E. and J. Korst (1989) Simulated Annealing and Boltzmann Ma-
chines, Wiley.

[62] Border, K. (1985) Fixed Point Theorems with Applications to Economics
and Game Theory, Cambridge University Press, London.

167

[63] Kamvar, S. D. , M. T. Schlosser , and H. Garcia-Molina (2003) \The
Eigentrust algorithm for reputation management in P2P networks," in Proc.
of the 12th international conference on World Wide Web (WWW), New York,
NY, pp. 640{651.

[64] Yu, H. , M. Kaminsky , P. Gibbons , andA. Flaxman (2006) \SybilGuard:
Defending against sybil attacks via social networks," inIn ACM SIGCOMM
'06, ACM Press, pp. 267{278.

[65] Lesniewski-Lass, C. (Apr. 2008) \A Sybil-proof one-hop DHT," in Proc.
ACM SocialNets, Glasgow, Scotland.

[66] Yu, H. , P. Gibbons , M. Kaminsky , and F. Xiao (2008) \SybilLimit: A
Near-Optimal Social Network Defense against Sybil Attacks," in IEEE Sym-
posium on Security and Privacy.

[67] DeFigueiredo, D. and E. Barr (July 2005) \TrustDavis: A non-
exploitable online reputation system," inProc. 7th IEEE International Con-
ference on E-Commerce Technology (CEC).

[68] Garay, J. andY. Moses (1998) \Fully Polynomial Byzantine Agreement for
n > 3t Processors int + 1 Rounds," SICOMP: SIAM Journal on Computing,
27.

[69] Householder, A. (1986) Matrices in Numerical Analysis, Dover.

[70] Abrams, Z. , R. McGrew , and S. Plotkin (July 2005) \A Non-
Manipulable Trust System Based on EigenTrust,"ACM SIGecom Exchanges,
Vol. 5, No. 4 .

[71] Bar-Noy, A. , D. Dolev , C. Dwork , and R. Strong (1987) \Shifting
Gears: Changing Algorithms on the Fly to Expedite ByzantineAgreement,"
in Proc. 6th Annual ACM Symp. Principles Distributed Computing, pp. 42 {
51.

Vita

Athichart Tangpong

296/9 Tivanon 28, Bangkasor, Muang,
Nontaburi, Thailand 11000
Date of Birth: November 18, 1977
Citizenship: Thailand

Phone: (66) 02-589-1963
Email: g41act@yahoo.com
Homepage:
http://g41act.multiply.com

Education

Ph.D. Computer Science, The Pennsylvania State University, 2010.

M.Eng. Computer Engineering, Kasetsart University, 2001.

B.Eng. Electrical Engineering, Kasetsart University, 1998.

Publications

A. Tangpong, G. Kesidis, "File Sharing Costs and Quality of Service", The
44th Annaul Conference on Information Sciences and Systems(CISS 2010),
Prince-ton, NJ, 2010

G. Kesidis, A. Tangpong, C. Gri�n, "A Sybil-proof Referal System Based
on Multiplicative Reputation Chains, IEEE Communication Letters, 2009

A. Tangpong, G. Kesidis, A. Hurson, H. Hsu, "Robust Sybil Detection for
MANETs, ICCCN 2009 Workshop on Security, Privacy and Trust of Com-
puter and Cyber-Physical Networks (SecureCPN 09), San Fancisco, CA, 2009

A. Tangpong, G. Kesidis, "A Simple Reputation Model for BitTorrent-like
incentives, International Conference on Game Theory for Networks
(GAMENETS 2009), Istanbul, Turkey, 2009

P. Laohawee, A. Tangpong, A. Rungsawang, "Parallel DSIR Text Indexing
System using Multiple Master/Slave Concept, EuroPVM/MPI 2000, Bala-
tonfred, Hungary, September, 2000

A. Tangpong, A. Rungsawang, Applying Association Rules Discovery in
Query Expansion Process, World Multi-confernece on Systemics, Cybernet-
ics, and Informatics 2000 (SCI 2000), Orlando, Florida, USA, July, 2000

A. Rungsawang, A. Tangpong, P. Laohawee, "Parallel DSIR Text Retrieval
System, EuroPVM/MPI 1999, Barcelona, Spain, September, 1999

