The Pennsylvania State University
The Graduate School

MANAGING SYBIL IDENTITIES IN DISTRIBUTED NETWORKS

A Dissertation in
Computer Science and Engineering

by
Athichart Tangpong

¢ 2010 Athichart Tangpong

Submitted in Partial Ful llment
of the Requirements
for the Degree of

Doctor of Philosophy

May 2010

The Dissertation of Athichart Tangpong was reviewed and appved by the fol-
lowing:

George Kesidis
Professor of Computer Science and Engineering
Dissertation Advisor, Co-chair of Committee

Ali Hurson
Professor of Computer Science and Engineering
Co-chair of Committee

John Metzner
Professor of Computer Science and Engineering

David Miller
Professor of Electrical Engineering

Raj Acharya
Department Head

Signatures are on le in the Graduate School.

Abstract

This dissertation addresses Sybil identity obfuscation #gcks in two environments,
namely Mobile Ad-hoc Network (MANET) and BitTorrent. We proposed a locat-
ion-based Sybil detection framework for MANET. In our frameork, mobile nodes
voluntarily and cooperatively participate in Sybil attack detection by monitoring
their neighbors' network activities. For each packet obseed, a tra ¢ observation
record is created or updated and periodically shared. Our@g&e observation ex-
change protocol guarantee the tamper-proof observation. eRodically, the peers
reconstruct the path that each peer has traversed. Peers Wwisimilar paths are
grouped together with a simple clustering algorithm. Peeris the same cluster are
considered Sybil identities owned by the same attacker. Oudramework yielded
above 80% accuracy (true positive rate) at about a 10% falsegtive rate.

We also proposed a sybilproof referral system for BitTorrénWe rst introduce
a simple incentive framework, based on a stochastic game netdto encourage
peers to share their content. From experimental results, ehincentives successfully
motivate the peers to better contribute in form of the clusteng of the peers
according to their allocated upload rate. This incentive mghanism was a form of
direct reputation which was of rather limited use for a largsystem like BitTorrent.
A peer might not have adequate information to make a future jdgment about
another. We then propose a simple form of reputation sharingnamely chokelist
dissemination, where the peers shared their lists of freelers. The experimental
results showed that chokelist sharing helped accelerateetiprocess of banning free-
riders. We also investigated the behavior of BitTorrent uss in quasi steady state
with a deterministic game. This game revealed that proper Eztion of Internet
access fees could discourage free-riders.

Though more e ective, reputation sharing (i.e. indirect rgutation through
referrals such as chokelist dissemination) is vulnerabl® Sybil attack. A group
of Sybil identities owned by the same attacker can collude tmanipulate their

reputation scores, and signi cantly a ect other innocent geers, as well. To address
this problem, we propose a sybilproof referral system. In i system, the total
reputation score of a referral chain is the product of reputeon scores of referrals
in the chain beginning with \direct" reputation based on transactional experience.
The Sybil attacker can only improve the direct reputation va benign contributions.
Our reputation system ensure that the direct reputation of ach Sybil identity is
limited thus limiting the e ect of false referrals by them.

Table of Contents

List of Figures

List of Tables

Acknowledgments

Chapter 1
Introduction

Chapter 2
Background

2.1
2.2
2.3
2.4

Identity Management

Sybil Attack
BitTorrent
Sybilproof Reputation System

Chapter 3
Robust Sybil Detection for Mobile Ad-hoc Network 13

3.1

3.2

Background
3.1.1 ProblemSetting.

3.1.2 Attack Model

Design Framework
321 DesignGoals e
3.2.2 OVeIVIEW e e e e e
3.2.3 Packet Format
3.2.4 Proof of Trac Observation

3.2.5 Sybil Detection Algorithm

3.2.6 DISCUSSION e

viii

Xi

3.3 Performance Evaluation 25

3.3.1 ExperimentSetting, 25
3.3.2 Experimental Results 27
3.4 Conclusions and Futureworks 28
Chapter 4
Thwarting the Sybil Attack in BitTorrent 32
4.1 BitTorrent Incentive Based On A Stochastic Game Theorét Model 33
411 BasicModel 33
4.1.2 Rehabilitation 36
4.1.3 Experimental Result 38
4.1.3.1 Basic Simulation, . 39
4.1.3.2 Optimistically Unchoking 40
4.1.3.3 Rehabilitation. 0oL, 41
4.2 BitTorrent Incentive Based On A Deterministic Game 44
421 BasicModel 44
422 Asingle-classsystem a7
42.3 Atwo-classsystem 47
4.2.4 Experimental Results 48
4241 Asingle-classgame 50
4242 Atwo-classgame 51
42421 0O, 0U;>B: 52
42422 B ", 0O, 0O B:........... 52
42423 U, U <B "o ... 53
425 DISCUSSION 53
4.3 Sybilproof Referral System L. ®
4.3.1 Multiplicative reputation-based referrals 57
4.3.1.1 Direct reputations from Boolean transaction out-
COMES o ot e e e 57
43.1.2 One-stepreferrals. 58
4.3.1.3 Multiple-stepreferrals 59
4.3.2 Sybilattackers 60
4.3.2.1 Single sybil attackerrg+1;S) 60
4.3.2.2 Example: Sybil-proof one-step referrals 06
4.3.2.3 Additivereferrals L. 61
4324 Anumericalexample 62
4.3.3 DISCUSSION 63
4.4 Conclusions and Future work 64

Vi

Chapter 5

Conclusions and Future Works 66
Appendix A

Source Code for Sybil Attack Detection in MANET 68

Al sybilagenth. 68

A.2 sybilLagent.cc 77

A3 sybil2.tcl 111
Appendix B

Source Code for BitTorrent Simulators 116

B.1 torrent.cC e e e 116

B.2 game.cc 130

B.3 detcrv.cc 149

B.4 Sybiljava 159
Bibliography 162

Vil

List of Figures

3.1 PacketFormat. 18
3.2 Hop-by-Hop Packet Transmission a
3.3 Packet Observation Table 20
3.4 Packet Observation, 21
3.5 Path Similarity 22
3.6 Detection Avoidance 25
3.7 Detection e ectiveness when number of nodes = 30 and thsteold

=40 ... e 29
3.8 Detection e ectiveness when number of nodes = 30 and thsfeold

=50 .. e 29
3.9 Detection e ectiveness when number of nodes = 60 and ttsfeold

=40 ... e 30
3.10 Detection e ectiveness when number of nodes = 60 and #shold

=50 .. e 30
3.11 The e ect of mobility on detection e ectiveness 31

4.1 Average transaction success rates under no optimistigaunchoking 40
4.2 Average transaction success rate under optimisticallynchoking

and under no choking list dissemination. u
4.3 Average transaction success rate inters optimisticallunchoking

and choke-list dissemination 41
4.4 Experimental result under rehabilitation when peers ave simi-

larly and =5;¢c=0:0LU=200;M =1;C=1........... 42
4.5 Experimental result under rehabilitation when peers b@ve simi-

larly and =20;c=0:0,U=200;M =1;C=1 43
4.6 Experimental result under rehabilitation when peers ave simi-

larly and =20;c=0:0LU=250;M =1;C=1 43
4.7 Experimental result under rehabilitation when peers b@ve simi-

larly and =5;¢c=0:;U=200;0M =1;C=1 44
4.8 Experimental result under rehabilitation when peers b@ve simi-

larly and =5;c=0:,U=200;M =1;C=0:01.......... 44

viii

4.9 Experimental result under rehabilitation when peers beave di er-

entyand =5;¢c=0:1;U=200;M =30;C=0:01 45
4.10 Cost function and its derivatives 49
411 function and its derivatives oL 50
4.12 Example of the single-classcase 51
4.13 Example of the single-classcase 52
4.14 Example of the two-classcase 35
4.15 Example of the two-classcase 45
4.16 Example of the two-classcase 55

List of Tables

3.1 Simulation Parameter Summary

Acknowledgments

For me, Ph.D. study has been a long and winding road. It is an describable
feeling to have an opportunity to write this acknowledgemednpage because it
only means that this journey nally comes to an end. During tlis journey, there
have been many people to whom | feel so much obliged to. Somevéhdelped
me directly in my study, and the others in how to live my life abne happily in a
foreign country. It would be impossible for me to thank all othem. However, |
would like to express my gratitude to some who | cannot leavenacknowledged.

First of all, I would like to express my deepest gratitude andppreciation to my
adviser, Dr. George Kesidis, without whom | would have quit jndegree and this
dissertation would never have come to its completion. Dr. Kdis has given me
tremendous valuable guides regarding both research and el other important
things in life. Even after the graduation, Dr. Kesidis also &lped me signi cantly
to nd a job in such a tight job market.

In addition, | would like to thank all of my committee members Dr. Ali Hurson,
Dr. John Metzner, and Dr. David Miller, for their supervisim and valuable
feedback. Without them, this dissertation would never havéeen of this quality.

| also feel blessed to be given opportunities to work with anléarn from several
great people in the IT support team at the Department of Compter Science and
Engineering, especially Eric D. Prescott, Barbara EinfaJtand John Domico. In
addition to the nancial support, they gave me numerous oppunities to meet and
overcome new challenges. These opportunities provide aiddéchnical foundation
for my career ahead.

This journey was anything but rosy to me and in the time of cris, it was
these friends who helped me through, Mr. Kittikorn Khattirat, Mrs. Uthaiporn
Khattirat (Suriyaphapradilok), and Mr. Soranun Jiwasurat. They have played a
signi cant role in my growing-up and thought me so many impaant things in life.

Moreover, | want to thank friends from various sources e.g. hptography
friends, soccer friends, etc. They have enriched my life i\ eral unimaginable
ways. My life in State College would have been much harder \widut them.

Xi

It is almost impossible to conduct high-quality research whout su cient funds.
| would like to express my gratitude to the U.S. National Sciece Foundation (11S-
0324835, CISE-0524202, CISE-0915928) and Cisco (URP (it their generous
nancial support.

| also would like to thank my parents. | know it was not an easy ecision for
them to send their only son away for many years. But they haverpritized my
need, my desire, and my future prospective before their owin addition, they have
waited patiently and supported me in any possible ways thraghout these years. |
would have never come this far without their support and, masmportantly, love.
Last but not least, | would like to thank my beloved brother wto always sacri ced
his own desires in exchange of mine since | was a child. | wishé ¢ould share my
accomplishment with me.

Xii

Dedication

To my parents who have escorted me through this long Ph.D. jooey and to my
beloved brother who, unfortunately, cannot share my acconishment. He was an
important guiding star to me.

Xiii

Chapter

Introduction

As a rule of thumb, technological development usually comesgith opportunities
and challenges at the same time. The arrival of new generat® of higher per-
formance processors have shifted the focus and architeeuf computation from
client-server model to distributed peer-to-peer computmp A few decades ago when
high performance computers were far more expensive and lassessible, computer
users had to remote login from a thin client or a terminal to aexver/mainframe.
The server did all the computation while the terminals simpt displayed the result.
Back in those days, security was not much an issue as it is todaOne of the major
reasons was that all security checks, like computation, weperformed only on the
server in a centralized fashion. The server maintained alhé required information
and control. The possibility of information leakage or theéfwas then much lower.

Nowadays, though client-server computing remains a viab®mputing paradi-
gm, our daily life has become increasingly involved in disbuted computing. The
performance of high-end CPUs has signi cantly increased @wvlast few decades
while the cost has gone down. Therefore, in order to avoid th®ottleneck at the
server, more tasks and responsibilities have been shifteal the client side.

With the emergence of peer-to-peer (P2P) computing, a sirggimachine, also
called peer, becomes both client and server, simultanegusiThe peer both re-
guests and provides services to its fellows. This model prdes several bene ts
over its client-server counterpart,e.g, lower cost, higher performance, higher scal-
ability at the expense of greater total overhead compared toentralized systems.
As a result, many applications have migrated from the clierserver model to the

P2P modele.g, distributed computing (SETI), le-sharing (BitTorrent) , Mobile
Ad-hoc Network (MANET), event-noti cation (Instant Messenger), even live tele-
vision broadcast over the Internet (Sopcast). Distributedle sharing, especially
BitTorrent, is currently the most successful and popular PR application.

P2P computing opens door to many new security threats, espakty identity
management. Distributed identity authentication is much nore profound and de-
manding than that performed by a centralized server. Here farmation is more
spatially distributed and ensuring its consistency is mucharder. In addition, the
possibility of unauthorized data leakage is higher. Most syems resort to a hybrid
alternative, e.g, Napster and Skype. User authentication is carried out thrgh a
designated centralized server while normal service is parhed in a P2P fashion.
However, the hybrid system may not be possible or favorabla certain environ-
ments, e.g, MANET and BitTorrent. In addition, identity authenticati on goals
often con ict with privacy goals and trade-o are usually waranted.

Identity assignment is also much more complicated in a P2Pstributed system.
To the best of our knowledge, there is no distributed identt assignment that is as
secure as the centralized counterpart against, potentiglthe most serious identity-
related threat of Sybil attack.

The Sybil attack is the attack where a malicious attacker assnes multiple
identities while a normal participant has only one identity[1]. The attacker may
use these identities to mount a much more serious and harderdetect attack on
the P2P system. Identity assignment by a centralized servas the only way that
can entirely prevent the Sybil attack. However, such a requement is sometimes
impractical or even impossible.

Research Contributions

In this dissertation, we address the Sybil attack in two envonments, namely
MANET and BitTorrent. Due to the di erences in goals and archtectures, tra-
ditional measures against a Sybil attack are often not appiable in a MANET.
Devices in MANETs are mobile and possibly limited in both couting power
and power sources. In addition, message passing in a MANETngich less reli-
able; too expensive and impractical to authenticate messag and keep track of

devices with a centralized server. We proposed a frameworlkeve mobile nodes
voluntarily and cooperatively participate in Sybil attack detection in a distributed
fashion. The nodes monitor their neighbors' network actities, generate tra c ob-
servation proofs, and periodically exchange them. Our framwork guarantees the
integrity, privacy, and non-repudiation of the observatim exchange. These proofs
are later used to construct the path on which each mobile nodhas traveled. Nodes
with highly similar paths are considered manipulated by thesame attacker. We
also proposed a simple clustering algorithm for grouping des with similar paths
together.

We also studied the Sybil attack in BitTorrent. BitTorrent i s vulnerable to the
Sybil attack because some kind of shared reputation is usea address free-riding.
One of the major issues that signi cantly degrades the penfimance of BitTorrent
is free-riding. The performance of BitTorrent depends lagjy on number of peers
that upload content, called seeders. However, the majorityf peers are free-riders
who only download, but do not upload appreciably. To discoage free-riders, Bit-
Torrent is equipped with an intra-swarm tit-for-tat incentive, called optimistically
unchoking. To ameliorate the limited e ectiveness of the hid-in incentive, we
propose an incentive mechanism based on a stochastic gamethlis game, a peer
assigns a reputation score to each of its transaction partreeand this reputation
is applicable across di erent swarms. A peer's request iseéh honored according
to his/her reputation score. We also studied the behavior dBitTorrent users in
the quasi-steady state with a deterministic game to highlig the role played by
seeders.

In reality, BitTorrent is a global-scale system with a very arge number of
users. As a result, direct reputation alone may be too sparsad insu cient to
encourage content sharing. Shared reputation where a pedsause its fellow
peers' experience to make a judgment, is a promising altethe. However, it
is known that a shared reputation system is vulnerable to Sylbattack. A Sybil
attacker may be able to manipulate its own or other innocent @ers' reputation
scores. We proposed a sybilproof referral system. Though de not prevent the
attacker from obtaining multiple identities, we guaranteethat, through a type
of chain referral, the reputation score of the Sybil identies cannot be increased
beyond the reputation score that the attacker accumulatesdm its transactional

contribution to the system (i.e., , its total \direct" reputation).

Chapter

Background

2.1 Identity Management

An entity, either in the real world or in the digital world, is represented by some
type of identity. ldentity management involves three majoraspects: acquisition,
authentication, and authorization. Authentication is the process that veri es the
association between an entity and its identity. Many authetication mechanisms,
ranging from simple to complicated, have been widely used,g., password, smart
card (pre-authorized hardware), challenge and responsék@ CAPTCHA human
interface veri cation), and biometrics like ngerprints. Authorization grants an
authenticated identity access to resources that it is eligle for. The most com-
mon authorization mechanism is an access control list (ACLYnix-like operating
systems use a simpli ed form of ACL, permission bits.

In the Internet age, on-line identity management has becomacreasingly in-
volved in our daily lives. Many web sites,e.g, news, on-line stores, and social
media networks, aim to provide personalized content to theiusers. For exam-
ple, Amazon.com provides product recommendation based ds users' previous
transactions.

On-line identity management also plays an important part inon-line trust
management. Trust and reputation are a well-known mechamsto improve quality
of service in distributed systems. BitTorrent is equipped ith a tit-for-tat incentive
mechanism [2, 3, 4], called optimistic unchoking, to motita peers to share their
content. The centralized eBay allows participants to rateheir experience in past

transactions in a simple form of feedback (positive, neutlaor negative) [5]. This
feedback provides a guidance for future purchase decisio®©n-line stores, e.g
Amazon.com and epinions.com, allow customers to review th@ast purchases.

In addition to mitigating traditional threats to identity s uch as impersonation
attack, man-in-the-middle attack, it is important that on-line identity manage-
ment systems also guarantee the integrity of such feedbadkdareviews of previous
transaction outcomes. Malicious attackers may try to tampewith this informa-
tion for nancial gain. On-line stores generally have minimam, if any, registration
fee to attract customers. In other words, the cost of obtaing an identity to join
the system is cheap. This makes the system vulnerable to theniewashing or
join-and-leave attack. As a result, an ill-intended custo®r may cheat and, if ar-
rested in an on-line sense, leave the system and re-entertwd di erent identity,
as we have seen on eBay. Malicious sellers may also defamér tt@mpetitors by
fabricating false negative-feedback. On the other hand, #y may try to in ate
their own reputation score to appear more trustworthy than bey really are. Like-
wise, on eBay, some sellers may try to increase their auctignices or ratings by
bidding on their own merchandises using di erent identitis, i.e., a type of Sybil
problem.

2.2 Sybil Attack

The Sybil attack is the attack where a malicious attacker assnes multiple iden-
tities while a normal participant is allowed only one idently [1]. This attack is
facilitated when obtaining a new identity is inexpensive as often the case in a
Mobile Ad-hoc Network (MANET) and in a distributed le shari ng systems like
BitTorrent. A malicious node may be able to create several ual nodes by simply
assuming new identities. Thus, the cost of obtaining a new |Df any, is often not
proportional to the damage the attack can cause. A Sybil atzker may damage
the P2P system in several ways [6]. The integrity of reputadn systems can be
compromised by a join-and-leave and false referral actiyitin a distributed system
where a user is given a reputation score, possibly negatiagcording to, his/her
past transactional activities, malicious users may abandoan identity with low
reputation score and obtain a fresh new one (whitewashingY.hen they can con-

tinue to exploit the system with their misbehavior with the newly assumed identity.
Routing protocols can also be disrupted, both in on-line ovay and MANET con-
texts. In [1], an attack is described wherein a small numbeff analicious nodes can
take control of message forwarding and subvert a redundangystem.

The literature has proposed proactive and reactive approles to address Sybil
attacks. The proactive approaches typically rely on a secarlD assignment by a
centralized server [1], a pre-distribution of keying mateal [7, 8, 9] or an economic
incentive [6, 10]. One may be able to perfectly prevent the By attack using
a centralized server to assign an ID or pre-distribute keygninformation to each
node. However, such servers are dicult to implement for ceain distributed
environments. It is known that other proactive approachesra not perfect [11].
The responsive approaches are typically more exible and ycally are based on
resource testing or location-based detection [12]. The apaches based on resource
testing, e.g, radio, computation, and storage, are often not reliable ipractice
[1]. The approaches based on radio device ngerprinting [124] are still in their
infantile stage. The reliability is still questionable in a environment that devices
from di erent manufacturers are allowed.

Location-based Sybil attack detection is a promising classf Sybil detection
techniques for wireless networks.g., wireless sensor networks (WSNs) [15, 16, 17],
Vehicular Ad-hoc Networks (VANETS) [18, 19], and other kind of Mobile Ad-
hoc Networks (MANETS) [12]. These techniques are based onetlfact that IDs
owned by the same device share the same physical locationcfieiques depending
on location veri cation check the location claim of each iddier by using, for
example, distance measurement and triangulation. A node wght lying about its
location is considered a potential Sybil attacker. In addion, these approaches are
accurate enough to localize an identity so that if a group oflentities reside in the
same area, they are likely owned by the same Sybil attackert dhould be noted
that these techniques designed for WSNs or VANETSs cannot alypto MANETSs.
MANET devices are mobile and, more importantly, have no pradtable trac
pattern. In addition, one can not assume the presence of a tetized server in
MANET. In general, Sybil defenses are often easier to moumt WSNs or VANETs
because of ease of centralized identity management and potable mobility in a
sense that cars are restricted to roads. So, our focus is oretmore challenging

MANET context.

SybilGuard and SybilLimit extend the idea that Sybil identities will have simi-
lar network \coordinates" in a non-mobile setting [64, 66].The goal of SybilGuard
is to limit the number of Sybil Identities that an honest in a ®cial network will
have to perform transactions with. It assumes and leverag@suman-established"
trust edges between peers. This leads to a fundamental asgion that such
edges between Sybil identities and legitimate peers, callattack edges, are rare.
So a single Sybil attacker's pool of identities will appearsaa large subgraph with
very few edges connected to honest nodes. Once such an edgen®ved, a large
number of Sybil identities will be removed, as well. Howevesearching for such
edges is a NP-complete problem. Under SybilGuard's methoeich node generates
\random" routes of a certain hop-length with special propetes of convergence and
back-traceablity. By only \accepting” nodes with su ciently high random routes
intersection, SybilGuard can limit the number of Sybil trarsaction partners. Sybil-
Limit furthers the limit on the number of Sybil identities accepted under Sybil-
Guard and veri es the fast-mixing assumption which speakstoverall performance
of their framework. This work is similar to our framework in asense that they
also exploited \common coorrdinates”. However, they ap@d the technique in a
static social network environment where relationships areuman-established.

A cooperative Sybil attack defense framework for a MANET ba&sl on the de-
tection of the physical location of each node were proposed [[12]. Again, this
technique is based on the observation that all identities eated by the same phys-
ical participant share the same physical location with theicreator. Because of
the broadcast nature of packet delivery in MANET, each nodean overhear net-
work tra c transferred within its transmission range. If a node observes frequent
co-occurrence of network activities from the same set of negl it considers the
potential of a Sybil attack. To increase the detection e edveness, each monitor
takes into consideration the network activities overheartbhy others. This approach
does not necessarily require support from GPS hardware totdemine the exact
location of a mobile node. However, a number of known, trustemonitors among
which there exists secure communication are required. Thesiodes traverse or
cover the area of interest, observe tra c activities, and peodically broadcast ob-
served tra c information.

In chapter 3, we propose a location-based Sybil detectioramework without
the requirement of trusted nodes, which is nevertheless nadt to falsied trac
observations.

2.3 BitTorrent

File sharing systems such as BitTorrent are producing enowus tra ¢ volume on
the Internet [20] and motivating network management contreersies such as neu-
trality. As a result, changes to how broadband public access the Internet is man-
aged [21, 22]) and potentially signi cant architectural clanges (tiered/di erentiat-
ed services) may result.

To share les via BitTorrent, the initial le distributor cr eates a .torrent le
which speci es the tracker and describes how the le is patibned into small pieces,
called blocks. A block is a unit of data exchange in BitTorren The tracker is
an on-line server that keeps track of peers uploading (seesleand downloading
(leechers) the le. The initial distributor has to post the torrent le on a le
server accessible to peers that are interested in the le,g, , on a web server. The
tracker and the web server are not necessarily at the sameesit

To download a le via the BitTorrent protocol, a peer begins vith downloading
the .torrent le associated to the le of interest. From the tracker list available in
the .torrent le, the peer contacts the trackers to retrievethe list of peers (peer set)
that actually shares the data blocks of the le. In certain secalled \trackerless"
versions of BitTorrent, there is no designated tracker; hoswer, each participating
peer acts as a tracker and shares information via distributiehash table (DHT) [23].
Clients that implement this functionality are, for example utorrent [24], ktorrent
[25], BitComet [26].

A peer may select a block to download by using the rarest- rsalgorithm [2].
It maintains a list of number of copies of each block in its peeset. Assume that
m is the number of copies of the rarest block. All blocks wittm copies form a
rarest block set. The peer randomly selects a block to dowald from the rarest
block set.

A major problem in distributed le-sharing system is free-iders who only down-
load les of interest without any upload. In BitTorrent, tit -for-tat \choking" rules

10

are used to penalize peers that transmit their chunks at ragsesubstantially lower
than their partner peers in swap transactions [3, 4]. That ijspeers essentially
rank one another as a result of these transaction outcomes. rAsult of choking
is that peers are eventuallyclusteredinto groups with similar allocated uplinks
[27]. Such clustering e ects can be explicitly modeled [28f can also be seen to
be the results of simple shared reputation systems [29, 3Q,, 32, 33, 34, 35] or
di erent tit-for-tat rule-based systems [2, 3, 4]. That is,cumulative reputation sys-
tems can be made more accurate through sharing among trustogps (€.9. [35])
where, as a special case, a \global" reputation is akin to anaurrency [4] (though
transactions involving very small \micro" payments [36, 3y may not require as
rigorous authentication). Sharing does, however, open tlaoor to abuse through
misrepresentation (arti cially increasing or decreasingeputations prior to adver-
tising them); so peers need ttearn not to trust someone who lies. Also note that,
generally, reputation sharing may raise privacy concerngg location discovery in
a wireless context).

To turn such systems intoincentivesfor cooperative behavior, peers with unac-
ceptably (to them) poor transaction performance can be gimethe opportunity to
rehabilitate their reputation by increasing the uplink bandwidth they alocate for
le sharing; this is called \optimistic unchoking" in BitTo rrent. Such behavior is
modeled by a net utility function which captures how a user dances the benet
they derive from le sharing (download throughput) againstthe cost (allocated
uplink), e.g, [38, 39, 40]. Generally, game theoretic models are impantato as-
sess the e ectiveness of rehabilitation methods for freeders, which are known to
cause signi cant performance degradation [41, 42, 43, 44].

New peers to the swarm may be given a limited number of \free"aivnloads
(i.e., a client-server transactions) so that they can begin swapyp. This initial
benet of the doubt can be abused through the use of multiple ger identities,
i.e., a sybil exploitation of such an initialization mechanism.To deter Sybils one
can,e.g, create a identity registration mechanism that incurs someost, clients can
monitor secondary information such as IP addresses (notwgtanding peers behind
NATSs), or the number of peers with which one is actively exchming data can be
simply restricted to a small number (typically 4 in the case DBitTorrent). Sharing
of \positive" reputation information (rather than choke lists) may deter sybils

11

because multiple active identities would simply dilute thee ect of cooperative
behavior on the reputation of any given identity.

There is a signi cant literature on models of le-swapping gstems, including
swarm formation models based on branching processes [43, 48] and strati ed
epidemic (coupon collector) models [46, 47, 48], the lattexplicitly modeling peer
churn though not uplink bandwidthst. A macroscopic model is given in [28] where
formation of individual (transient) swarms and game-theagtic dynamics are not
modeled in detail. Rather than explicitly modeling transiet swarms, a generic
sequence of queries for a xed set of persistent swarms or coonity-of-interest
agglomerations is sometimes assumed. For example, rechk well-known result
that the stationary mean number of peers (in a xed populatio) participating
in, or caching information about, a particular swarm is proprtional to the square
root of the querying intensity of that swarm, assuming indegndent exponentially
distributed lifetime (aging) of cache entries [50].

We study BitTorrent-like tit-for-tat incentives in chapter 4. We model incen-
tives with a stochastic game where peers rank one another blgeir past trans-
actional behavior. A peer's requests are honored accorditg its reputation. In
e ect, misbehaving peers with bad reputation are punishedybdenial of service.
Nevertheless, they are given opportunities to rehabilita We also studied a sim-
ple form of shared reputation, namely chokelist disseminan. Finally, we studied
BitTorrent incentive using a deterministic game model to fous on the role played
by seeders.

2.4 Sybilproof Reputation System

Reputation is a popular approach to improve quality of serge in distributed sys-
tem. A peer evaluates its experience interacting with otherand responds to their
subsequent service requests accordingly. However, in agardistributed system,
direct experience, including our incentive mechanism disssed in Section 2.3,
is generally not su ciently informative to make helpful future judgment. Peers

We demonstrated that similar epidemic models, with bandwidh constraints, accurately re-
ected the spread of the Slammer worm [49] - the susceptible QL servers could be viewed as a
kind of social network spreading the single-packet contagin among each other.

12

then should exploit their neighbors' experience, in other evds indirect reputation
through referrals, as well. Though more e ective in determing the reputation
of a stranger, indirect reputation opens doors to the Sybilteack. Attackers may
hype the reputation scores of their Sybil identities throuly self-recommendation
or defame innocent users with similar tactics.

It is known that symmetric reputation systems are non-sybgroof [51]. For
this kind of reputation system, the relationship among pesrcan be represented
by a graph where all the reputation information is embeddedithe edges (edge
weights) of the graph. One can rename the vertices without ahging the structure
of the graph. An asymmetric reputation system where some pseare trusted,
i.e., superpeers, can be sybilproof. In chapter 4, we propose mpgie sybilproof
referral system. The reputation score of a referral chain ihis system is a product
form of each referral in the chain. If there are multiple refeal chains between two
parties, the total reputation score is the summation of theeputation score of each
chain.

Unlike SybilGuard and SybilLimit [64, 66], we do not assumeuman-establish-
ed relationships and focus on limiting the impact of Sybil aackers in the context
of accumulated reputation based on transaction outcomesei, how the \human-
established" trust might be securely formed on-line in therst place and how that,
in turn, the referral system based on it can be protected. Weaodnot approach it
from a \common coordinates" point of view.

Chapter 3

Robust Sybil Detection for Mobile
Ad-hoc Network

Mobile Ad-hoc Network (MANET) has gained tremendous populdty over recent
years. Signi cant e ort has been dedicated to improve bothhe performance and
the security of MANET. One of the biggest security issues faWIANET is Sybil at-
tack because of its decentralized characteristic. A Sybittacker can easily subvert
the entire network, e.g, by tampering with packet forwarding.

In this chapter, we propose a distributed technique for Sybattack detection for
MANET. Our technique requires no designated monitors. Hower, each mobile
node in the network observes and exchanges tra c observans in order to analyze
the potential existence of a Sybil attack. Recall that the Syil attack is the attack
where a normal user is supposed to have only one identity, btite attacker takes
control of multiply identities. Instead of assuming the poéntial of a Sybil attack
merely from the frequent co-occurrence of identities as [[L®ur technique attempts
to capture how all the identities owned by the same attackingevice have to travel
together when the device moves. The dynamic nature of a MANEfprecludes use
of a centralized server to keep track of each mobile node. Hower, mobile nodes
keep track of one another in a distributed and cooperative $aion with the help of
tra c observation proofs. The sender associates its locath with its packets. The
location can be obtained from the multilateration of distrbuted beacons [52] or
a GPS-like device. The next-hop forwarder or the end-pointeceiver store packet
signatures as the proof of tra c observations. The observadbns are periodically

14

exchanged. Our detection algorithm then constructs the pateach node traveled
based on these tra c observations.

In order to prevent a malicious node from fabricating or tamgring with an
observation, our approach requires a robust proof of tra c bservation. This is
achieved by using a hop-by-hop authentication protocol. E& packet may be
signed with the sender's private key so that, in a public-pvate key (PKI) setting,
the receiver can authenticate the sender with its public keyHowever, this may
cause signi cant computation overhead which may render odramework imprac-
tical for devices of MANET class. Therefore, we opt to sign dnthe hash of each
packet, instead of the packet itself. The computation costfgublic key encryption
basically depends on the size of the data to be encrypted. Asesult, this reduces
the computation overhead signi cantly.

Like [12], our framework alone cannot distinguish the situgon when honest
nodes are static or travel together on the same path as a Sylattacker does.
Complementary approaches such as collision detection arseded [7]. For example,
in the case that each node is equipped with only one antennajroapproach can
be complemented by such a technique like radio resource iagt[7], where a node
may concurrently challenge a group of suspicious identise With the limitation
of single antenna, only one identity can honor the challenge

In this research, we employ the following techniques:

We propose to use a hop-by-hop packet signature as the prodfra c obser-
vation. The packet receiver or forwarder can provide a proahat the sender
transmitted the packet at the claimed location and time. Cosequently, no
malicious node can fabricate or modify an observation to lagh other at-
tacks, e.g, a defaming attack.

We employ secure tra ¢ observation for cooperative and distbuted location
tracking for MANET.

We propose a novel location-based Sybil attack detectiondenique for MA-
NETs based on path similarity. Essentially, identities trarersing similar paths
are considered Sybils. Again, this technique does not requidesignated, dis-
tributed and trustworthy monitors. However, each mobile nde in the net-
work voluntarily cooperates to detect identities belongig to the same Sybil

15

attacker.

3.1 Background

3.1.1 Problem Setting

We propose a location-based Sybil attack detection framevkofor a MANET in
which mobile nodes move with slow or moderate speed for exdmmobile devices
used by soldiers walking in a battle eld. This kind of mobilty allows time for
adequate data collection to make highly accurate judgmentach mobile node is
assumed equipped with a directional antenna. Despite theturrent limited usage,
directional antennas have a promising future. They providsome bene ts over
their omni-directional counterparts, e.g, improved spatial reuse, longer coverage
range, more network capacity [53]. Upon receiving a packed, node knows the
sector, in other words the direction, in which the packet casn Each mobile node
is also capable of self-positioning. In an in-door envirorent with periodically
broadcast beacons, a node can obtain its position via mulileration. In an out-
door environment, it can use the same technique or a GPS-likevice. Each mobile
node possesses at least one self-generated certi ed ID inat address space [54].
Each peer generates a pair of public key and private key. Theslsgenerated
certied ID is a hash of its public key. Then only the holder ofthe corresponding
private key can prove the ownership of the ID. The self-certéd ID also helps us
preserve the privacy of the node. No mobile node knows the &udentity of the
device. For simplicity, we assume the same maximum transreien range for all
mobile devices.

3.1.2 Attack Model

We consider a simultaneous Sybil attack [7] in which the attkers concurrently
use all their identities to launch other continuoushigh bit-rate applications e.g, ,
when an attacker tries to gain more than their fair share of aess to a wireless
channel to transfer a large amount of data.

We do not consider a join-and-leave attack in which attackerfrequently discard
and assume new IDs. These assumptions are justi ed under tegistence of some

16

time-sensitive incentive mechanismss.g, , an economic incentive or a reputation
system. Speci cally, each peer maintains the reputationd their transaction part-
ners and the quality of service which a peer receives deperas its reputation.
If idle, the accumulated reputation associated with a nodeld gradually decreases
over time. Therefore, the peer is encouraged to use its idéptregularly to accumu-
late reputation; otherwise, its reputation from the point d view of its transaction
partners declines, resulting in poor service. Even if the t@icker assumes a large
number of identities, each identity has to be used frequentlto gain enough repu-
tation to receive good service. This will make it easier to dect. The imposing of
a small cost for ID assignment may also discourage the attaskirom obtaining a
large number of identities.

In addition, we do not address device compromise and assume collusion
among multiple attacking devices. To launch the collusionteack successfully, at
least two separate physical devices need to travel togethehich makes the attack
much more di cult to mount.

3.2 Design Framework

3.2.1 Design Goals

Our Sybil detection framework is designed with the followig goals:

Security: Even though our technique is based on the voluntarcooperation
of mobile nodes among which malicious attackers may reside malicious
node should be able to defame innocent nodes.

Non-repudiation: No node should be able to repudiate its gerated tra c.
We use, e.g, , asymmetric keys for hop-by-hop authenticationj.e., , the
signature of a packet is the proof of its observation and onlthe owner of
the private key can generate this signature. In addition, a il attacker
should not be able to confuse the detection algorithm by falmating false
tra c observations.

Privacy preservation: we aim to protect the true identity ofa device by
representing it with a self-generated certi ed ID [54].

17

Scalability: We aim to make our technique scalable with thencreasing num-
bers of mobile devicese.g, , instead of always tracking the position of each
device in a real-time fashion, each device is tracked only @it is active.

Flexibility: Our framework should be adaptable to various Bvironments,
e.g, self-positions by multilateration of beacons in an in-daoenvironment
and by a GPS in an out-door environment.

No security-routing interdependency: For secure routinghia MANET, pack-
ets are generally assumed to be routed correctly and in ordedur protocol
is hop-by-hop and all identities are self-generated so thdtdoes not su er
from the security-routing interdependency.

3.2.2 Overview

As in the cooperative model proposed in [12], each mobile reoh our framework
overhears all in-range packet transmissions, generatesdgperiodically exchanges
tra c observations. Only direct observations are exchange. In other words,
an observation can be shared only by its observers and canrim re-distributed.
From these observations, the presence of the Sybil attackdstermined. However,
in contrast to [12], we do not assume that only a relatively sail group of trusted
nodes acts as monitors. As a result, malicious nodes can figate or modify
observation in an attempt to defame innocent nodes. We ovenme this problem
by employing an unforgeable proof of tra ¢ observation. Narely, we propose a
hop-by-hop protocol layer between the link layer and the neiork layer where the
digest of each packet is signed by the sender, and the receiee the next-hop
forwarder uses the signature as the proof that it has recenvehis packet.

To detect a Sybil attacker, we try to identify node identities that have traveled
on the same path. We assume that each device can determine ldgation. In
other words, we cluster nodes that follow the same path and ehcluster that
contains more than one nodes is the Sybil attacker. We alsosasne that each
device has a directional antenna that can determine the dicgdon of an incoming
packet. Each packet includeghe location claim of the senderand the direction
of the receiver. The packet digest is signed using a privateek of the sender.
Because of the ostensible secrecy of the private key, the dencannot repudiate

18

the packet. Upon receiving a packet, a node veri es the sighae and the location
of the sender. If the veri cation fails, it drops the packet. Otherwise, it either
forwards or consumes the packet. In addition, it caches thé&sature of the packet
and corresponding elds as the proof of tra c observation. FRriodically, nodes
exchange these observations from which the path that eachdwhas traveled can
be created. Each node then runa detection algorithmto determine the possible
Sybil attackers. Again, nodes that travel on the same path arsuspected.

3.2.3 Packet Format

The format of a packet is shown in Figure 3.1 wher&ND and REC are the
self-certied IDs of the sender and the next hop receiver, spectively, Ts the

timestamp, SEQ the sequence numbeR K,y the public key of the senderlLoc

the locations of the sender relative to the receiverLoceS, = (Psnp ; Slicel*%'s)

where Psyp is the sender's position andSlice*' is the slice of the sender's

coverage area where the receiver resides at the tifig. The sender can obtain
I'EC;TS

Sliceg,4 ° by the help of the underlying protocol layer,e.g, IEEE 802.11 and its
directional antenna [53].

SND | REC| Ty | SEQ PKgq | Lockhy| Content| SIC

Figure 3.1:. Packet Format

Figure 3.2 demonstrates how the sendé learns about the area in which the
receiver is located when it wants to transmit a packet to B. Acording to the IEEE
802.11 standard, before the transmission, the sendAr sends out aRequest-to-
Send (RTS) message and waits for &lear-to-Send (CLS)from receiverB. Upon
receiving CLS, senderA learns the sector where receivad resides and can start
to transmit the packet. For a broadcast packet, theREC is the broadcast address
and Slicel*5™s is a circle of which the radius equals the maximum transmigsi
range. For non-repudiation purposes, each packet is signky the sender's secret
key. Speci cally, SIG is (Hash(SND; REC; Ts; SEQ; P Ksng; LOcy; Hash(Con
tent))) sk.. - Because of the ostensible secrecy of the private key, no etmode

19

is expected to be able to generate this signature (unless thede is compromised
which is an issue beyond the scope of this research). Thisrature serves as
the proof of the observation that the sendelSND, claiming its location Psyp ,

transmitted a packet to the receiverREC at the time Ts. Though signature
generation based on public key is considered too costly foewices of MANET

class, the cost indeed depends on the data size. Here, we gty the hash or
digest of the packet which is much smaller than the packet i&tf. As a result, the
signing cost is signi cantly reduced.

Figure 3.2: Hop-by-Hop Packet Transmission

3.2.4 Proof of Tra c Observation

Upon receiving a packet, the receiver authenticates and vers the location of the
sender. Speci cally, the receiver veri es the two followig conditions:

ClDgg = Hash(PKsng) (3.1)
(SIG)pk., = Hash(SNDjREC jTsjSEQ]

20

P Ksna j LOCL | Hash(Content)) (3.2)

These two conditions prevent an impersonation attack and pserve the in-
tegrity of the packet. In addition to these conditions, the eceiver veries the
packet timestamp and the sender's location claim. We assurfe@ose time synchro-
nization among nodes where each node may receive time infation from beacons.
The sender's location claimPg,q has to reside in the correct sector of the receiver
and the distance between two nodes has to be less than the diste bound,R,
which is obtained from the distance bounding protocol [55]The receiver forwards
only authenticated packets with valid timestamp and locabn claim; otherwise, it
drops the packet.

List of observations sorted by timestamp

o1 - 02 - 03
Node ID o1 > 02
o1 - 02 = 03 =~ 04

Figure 3.3: Packet Observation Table

After a packet is forwarded or received, the forwarder or reoser stores a cor-
responding packet observation in its observation table, ahown in Fig 3.3. Each
entry in the table maintains a list of observations, sorted Y timestamp, for the
corresponding sender. As an observation represents the ders possible locations,
each list then represents the path that the sender has trawa. To decrease the
space requirement for the observation table, a new obseriat that overlaps with
previously-stored one is discarded.

Figure 3.4 demonstrates the format of the packet observatiowvhich is signed
by the receiver's private key 61G,). Header content, SIG represent the header,

21

the content and the signature of the corresponding packetespectively. The sig-
nature of the observation serves two purposes. Firstly, itugards against illegal
modi cation. Secondly, it is used to facilitate non-repudation. Periodically, nodes
exchange their observations.

PKec | LocNd: & | Header| Hash(Content) SIG| SIG

Figure 3.4: Packet Observation

Currently, each node naively broadcasts the whole obsenan table. In the
future, we plan to study a more e cient way to store and share he observation
proofs, e.g, to further remove redundancies and age-out old observatis.

3.2.5 Sybil Detection Algorithm

To detect a Sybil attacker, we employ one-level, bottom-uplastering, shown in
Algorithm 1, to group related identities together based onHheir path similarity.

Firstly, the path for each peer is constructed from the obseation table. Then
each path is compared against existing clusters and is addexthe most similar
cluster (Line 5). If no similar cluster exists, a new clusters created for it. The
similarity between a path and a cluster is the similarity betveen the path and the
longest path in that cluster.

Algorithm 1 Sybil Detection Algorithm

1: Cluster setC =
2. P = fpjpis apath in the observation tableg
3: C.add(P.removefront())
4: while P.size() I=0do
5
6

C.comparef .removefront())
: end while

The similarity between two paths (or a path and a cluster in Lne 5) depends
on the percentage of their overlapping components, as shownFigure 3.5. That

22

is, the similarity betweenL; and L, is de ned by:
P ! !
:(zl Temn, ¥ Tou,

Sim(L; L) =
Im(" 2) maX(Tobsl;Tong) i=1 Tcmni

whereTyps IS @ period that each node is observed,,, a period in which there are
observations of both nodes in the observation table (commignobserved), T, a
period that both nodes are commonly observed and co-occudn@ the same region,
and k the number of times in which they are commonly observed. Therst part
of the metric tries to capture how long both nodes are obsemye¢ogether. Though
being observed together, they may not be on the same path. Twwdes are
considered being on the same path if their observation regi® LocSi% s, overlap.
The second part of the metric tries to quantify this. Paths wih similarity above
a threshold are put in the same cluster and corresponding itl@ies are assumed
owned by the same physical device. This threshold is a parateeof our algorithm.

~ Tc”"l - ~ Tcmnk =

T Tt

Figure 3.5: Path Similarity

3.2.6 Discussion

In this section, we discuss the robustness of our frameworgganst di erent types
of attacks to the detection system itself. Recall that our imework addresses the
Sybil attack that the attacker simultaneously uses all theiidentities to mount
a high bit rate attack. Though we assume no colluding attackwe discuss some
attacks possibly mounted by it in Situation 3 below. We assumthat nodeA sends
a packet to a destination via nodeB. Under no-collusion assumption, eitheA or
B can be malicious at any one time, but not jointly.

23

Situation 1 SenderA is one of the identities owned by the attacker and the
next-hop neighborB of A is honest. Being aware of the existence of the detection
system,A may be tempted to lie about its timestamp or location in ordeto avoid
being detected. IfA makes a false timestamp or a false location claim, it will be
noticeable to the next-hop honest neighboB which will drop the packet.

Situation 2. SenderA is honest and the next-hop neighboB is malicious, in
which case there are several attacks that the malicious nelRbp neighbor can
mount against the system.

Packet dropping: B may want to drop rather than relay packets to deny
information to the Sybil detection system. Since passive latowledgments
are used in MANET, senderA can notice packets being dropped by its next-
hop neighborB. Consequently, it re-starts the route discovery procedurt®
circumvent B.

Impersonation attack: B may be tempted to impersonate and send pack-
ets on behalf of an honest node. In our framework, each packstsigned
by the sender. Due to the secrecy of the sender's private keyyur system
is invulnerable to this attack unless the sender is comprosed (again, that
particular issue is beyond the scope of this research).

Defaming attack: An attacker may try to deceive the detection system that
a set of honest identities belongs to a Sybil attacker. The teeming attacker
has to be able to transmit packets with those identities. Thd is possible only
when it compromise and obtain the secret keys of those idetmntis.

Replay attack: B may collect packets generated by honest nodes, modify
their header, and re-transmit them,e.g, , in order to launch the defaming
attack or disrupt the detection system. However, each packes guarded by
its signature, hence this attack is prevented.

False location claim in the observation: B as an observer may be
tempted to deceive the detection algorithm by lying about & own loca-
tion in the packet observation. However, this attack is fruless. After the

observation has been exchanged, honest nodes can discemititonsistency

24

between the senders location claim anB's location claim. Though unable
to determine the culprit, they can tell the inconsistency ad therefore drop
the observation. Recall that we do not address the collusiaattack.

Detection Avoidance: A Sybil attacker may try to confuse the detection
algorithm. The attacker designates some of its Sybils as a@rsers to generate
observations for others in which the location claim is fal&d.

Figure 3.6 demonstrates this kind of attack. A Sybil attacketraverses the
path P. At times Ty, T,, T3, T4, Ts, and Tg, it uses the identitiesS; and S,

to mount a high bit rate attack. The corresponding packets & observed,
likely, by an honest nodeA. Consequently, the tra c observations O’f;Tl,

05, ..., OT¢ and 05™® are captured whereO}'™* is an observation of
identity 1's tra c activity generated by identity A at time T;. From these
observations, the detection algorithm can regenerate thath of each identity

and determine the presence of the Sybil attacker. To deceitlee detection

system, using SybilsS; and Sy, the attacker tries to create an impression that
two di erent mobile devices, S; and S,, traverse two di erent paths, P, and

P, respectively. Therefore, the attacker fabricates obsert#rans containing

false location claims between those observations; name®;* ™, O3*2*,

O¥T#5 015 and 0% for S; and O35, O3+72%, 03135, 0F*+%,

and 03475* for S,.

Recall that our framework addresses a Sybil attack in whichhe attacker

sends packets at high bit rate. Therefore, observations afeequently gener-

ated. Each path is represented by a series of observationsem each obser-
vation represents the resident area of the sender at the obged time. Each

path is, then, represented by a area. Our detection algorith evaluates sim-
ilarity between two paths by determining the overlap of thai corresponding

areas. We note the possibility of false positive detectiorf &ybil attackers.

Our current framework considers only a continuous Sybil agick. An inter-
mittent attack for future work is an issue beyond the scope dhis work. In
the intermittent Sybil attack, the attacker may fabricate these observations
during a period with no connectivity or even intentionally pause the packet
transmission to do so. The attacker can then distribute thesobservations

25

later on in order to deceive or confuse the detection system.

. An observation Area

ffffff Path of §
- Path of S
AT AT, AT AT AE AB
) 02 02) 02 02
AT A, A, ATy : A,
el Qo Qs el el 9t
. oP Is . o3 25 0P 35 o3 A o3 55
P s T H s B s s 5 Tes 7 T
L =
T ST 5. ST, S T
‘vo?‘ 15 ng 25 ogr 135 o 145 an 5.5

Figure 3.6: Detection Avoidance

Situation 3 Both senderA and the next-hop neighborB are malicious (a col-
lusion attack). Two Sybil attackers can collude to fabrica¢ observations in which
the location claim or timestamp are tampered in order to deoe the detection
system. However, they have to physically travel together laithe time. This attack

is beyond the scope of this research.

3.3 Performance Evaluation

3.3.1 Experiment Setting

Although our framework and that in [12] are related, they areli erent in a few
aspects. First and foremost, [12] focuses on e ective Sylattack detection by
exploiting the co-occurrences of node IDs while our framemoaims at providing
a protocol for secure observation exchange. In doing so, [E&sumes a number
of known trusted mobile devices traversing the area of intest, observing network
activities and periodically broadcasting their observatins. They also assume the
connectivity among all trusted monitors at all times. From hese observations,
any normal node can determine the presence of a Sybil attackéVe believe this

26

assumption may be unrealistic for an open MANET. In addition if an attacker
compromises a trusted node, it can mislead the entire detemh system. Our
framework attempts to achieve a cooperative, distributed y®il attack detection
system with no requirement of known, trusted mobile nodes. iy mobile node
can participate in the network. Malicious nodes that try to sibvert the detection
system by fabricating false observations will be detectechd rendered ine ective.
Secondly, from the experimental result shown in [12], the tztion e ectiveness
depends on the number of installed, trusted monitors and tlrecoverage of the
area. To increase the e ectiveness, more monitors are nedgddence, implying
higher operational cost. In our framework, any node can caiibute to detection
while malicious nodes can do only limited harm. As a result,uo framework can
achieve higher e ectiveness at lower cost, though we beleethat both frameworks
should yield the same e ectiveness if the same number of umspromised monitors
are used. Moreover, our framework provides a certain degreferobustness to node
compromise. Namely, even if a compromised node, acting asybifattack, may
be able to elude the detection mechanism, it cannot subverhé whole detection
system. Note that preventing node compromise is beyond theape of this research.
We evaluated the e ectiveness of our framework by using thestwork simulator
ns2 We assumed that the area of interest was covered by a set ofabens by
which a participating node could determine its location. Eeh node abode by the
random way point mobility model. We assumed the presence ofSybil attacker
which possesses 5 identities. Each Sybil opened a randomitygsen number of
connections to random targets, with the average of 2 connemts per Sybil. We
varied the number of honest nodes between 30 and 60, aboutflafl which opened
a constant bit rate connection at 20Kbps to a random target. &Bch honest node
observed AODV route requests and the constant bit rate trac Observations
were exchanged every 60 seconds. We ignored an AODV Hello keddbecause
some routing protocols do not use them to maintain routing tale freshness. We
also ignored the observation exchange packets because atacker is unlikely to
transmit them or transmit them in a managed way. Otherwise, his may confuse
our detection framework. The topography size was varied im0 1500 to 4000 square
meters. The simulation time for each experiment was 6000 secs. We ran 10
trials of each experiment. In the following, we present expenental results with

27

Simulation Parameter | Value |
ns parameter: channel Wireless Channel

ns parameter: prop TwoRayGround

ns parameter: netif Phy/WirelessPhy

ns parameter: mac Mac/802_11

ns parameter: ifq DropTail/PriQueue

ns parameter: Il LL

ns parameter: ant OmniAntenna

ns parameter: rp AODV

ns parameter: ifglen 50

ns parameter: max speed 5

ns parameter: pause time 10

ns parameter: pkt size 512

ns parameter: pkt interval 0.2

No. of honest nodes 30, 60

No. of attackers 1

No. of Sybils per attacker 5

Topography size (m) 1500, 2000, 2500, 3000, 3500, 4000
Obs exchange period (sec) 60

Simulation time (sec) 6000

Table 3.1: Simulation Parameter Summary

error bars representing 95% con dence. Here we assumed tleaich mobile device
has su cient storage for observations. Storage overhead &subject of our future
work. Additional simulation parameters are shown in Table 2

3.3.2 Experimental Results

To evaluate the performance of our framework, we measuredetipercentage of
honest nodes that correctly determined an identity belongg to the attacker (Ac-
curacy) and that falsely accused an innocent node (False).ob¢ that, for the sake
of simplicity, our accuracy measures also included nodesathhad never encoun-
tered with the attacker. In fact, nodes that had never met theattacker could be
omitted from the consideration, thus resulting in higher acuracy. Figure 3.7, 3.9,
3.8,and 3.10 show the e ectiveness of our framework at di ent settings.

As we increased the similarity threshold from 40% to 50%, weigpressed false

28

positive at the expense of marginally lower accuracy. Compad with that of [12],
our framework yielded considerably better accuracy, espealty for larger coverage
areas. In addition, larger number of cooperative nodes prided lower false pos-
itive. For a larger area, there was a higher chance that an adaser noticed two
honest nodes traveling together for a short time and mistakéy/ concluded that
they belonged to the same Sybil attacker. Because of the spaness of the cover-
age area, it was unlikely that these two nodes might be seergether again and the
judgment remained unchanged. For the case of a smaller regionore information
about these two nodes might be available with passing time drfalse judgments
were corrected. Again, we believe that [12] may yield similgperformance if a
high number of trusted monitors are installed, however, thtawould come with
additional cost in their framework.

The number of sectors in an antenna also had e ects in our fraawork. For the
sake of simplicity, we assumed that all nodes were equippedwidentical antenna.
Across all setting, a four-sectored antenna yielded highaccuracy than its eight-
sectored and, in turn, sixteen-sectored counterparts. Thiwas because it covered a
bigger area than the other two, hence observing more actiigs. However, for the
same reason, the less number of sectors an antenna had, thesedalse positive
the system provided. At the threshold of 50%, an eight-seated antenna was the
best compromise. It delivered above 80% accuracy, while it false positive in
the range of 10%.

Our framework is designed for the scenario in which nodes neowith slow
mobility. As shown in Figure 3.11, our framework achieved ave 80% accuracy
at slow speede.g, 5 mps which is the speed at which a human walks in average. As
expected, the accuracy dropped when nodes moved faster hessaSybil identities
were observed together less frequently.

3.4 Conclusions and Future works

In this chapter, we proposed a distributed, cooperative l@ation-based Sybil de-
tection framework for a MANET. Our framework requires no tristed, dedicated
monitors. Mobile nodes themselves serve as a network momitdbserving the net-
work activities passing through it. They periodically exchnge evidence of tra c

Figure 3.7:

40

Percentage of detecting nodes

Percentage of detecting nodes

29

60 - E
40 E
]
_
20 | 4 sectors, accuracy ——+—i .
8 sectors, Accuracy ---*---
16 sectors, Accuracy :--*---
4 sectors, False 8-
8 sectors, False, ~ =
16 sectors, False ' 0. el
0 5, EAISE.on
1500 2000 2500 4000

Square root of topography size (m)

Detection e ectiveness when number of nodes = 20hd threshold =

40 |

20 |

4 sectors, accuracy ——+—i
8 sectors, accuracy ---x---
16 sectors, accuracy :--*---
4 sectors, False 8-
8 sectors, False +-—&-—
16 secto_[s, False ---0---' = e _g«f;t

0
1500

2000 2500 300
Square root of topography size (m)

4000

Figure 3.8: Detection e ectiveness when number of nodes = 20hd threshold =

50

30

1%}
Q
=
o
i=
j=2}
£ :
3 60 -
(3]
©
k]
(]
j=2)
8
g 40 i
IS
[
a
20 4 sectors, accuracy ——+—
8 sectors, Accuracy ---*--- -
16 sectors, Accuracy :--*--- ;

4 sectors, False 8- |

8 sectors, False +~—®— g . . =

16 sectors, False - | g

0 — F R 1
1500 2000 2500 3000 3500 4000

Square root of topography size (m)

Figure 3.9: Detection e ectiveness when number of nodes = &hd threshold =
40

40 | .

Percentage of detecting nodes

20 | 4 sectors, accuracy ——— _
8 sectors, accuracy --x--+
16 sectors, accuracy --*--- i
4 sectors, False 8- B
8 sectors, False +—#— o s
16 sectors, False o 7 e e f_r‘f;;,;?m/«./

0 '
1500 2000 2500 3000 3500 4000
Square root of topography size (m)

Figure 3.10: Detection e ectiveness when number of nodes 8 &nd threshold =
50

31

The Effect of Mobility on Detection Effectiveness

100 - 1

60 -

40

Percentage of detecting nodes

20

Accurate (n=30) ——+—
Accurate (n=60) ---x---
False (n=30) :--*---
False (n=60) &

- ok e

0 5 10 15 20
Speed (meters per second)

Figure 3.11: The e ect of mobility on detection e ectivenes

activities in order to determine the presence of a Sybil attker. The likelihood
that identities belong to the same Sybil attacker is deternmed by whether they
share the same path. From our experimental results with a Higdetection thresh-
old, a high number of nodes, above 80%, can correctly detettet attacker and a
low percentage, around 10%, falsely accuse innocent nodes.

In the future, we plan to improve our Sybil detection framewk for MANETS
by loosing some constraints and make it more suitable for pcal uses. In ad-
dition, we plan to reduce the storage overhead of our framenkoby intelligently
suppressing redundant observations. We also want to impreihe accuracy when
nodes move at higher speed. Moreover, we plan to study how tperformance
measures, e.g. accuracy, false positive, change with timfeurthermore, we plan to
address the situation that multiple devices collude to evathe detection system.

Chapter

Thwarting the Sybil Attack in
BitTorrent

In this chapter, we address the Sybil attack in BitTorrent. BtTorrent is currently
the most popular le-sharing system whose tra ¢ dominates hternet bandwidth
usage [56]. Two classes of players in BitTorrent are seedergdominate le up-
loader) and leecher (predominate le downloader). It is knon that the perfor-
mance of BitTorrent signi cantly depends on the number of geerous seeders who
are persistently on-line and share their les. Unfortunatly, the majority of Bit-
Torrent users are sel sh leechers, also known as free-ridgwho only download
and upload nothing in return. This leads to performance det@ration.

To promote good le sharing etiquette, BitTorrent has a buit-in incentive,
called optimistic unchoking. Each peer evaluates the upldarate of other peers
and those with signi cantly lower upload rate will be denied(choked) subsequent
download requests. Choked peers are given opportunities riehabilitate, e.g, to
increase their allocated upload rate for le sharing. Thoug optimistic unchoking
is fairly e ective, it is limited to a single swarm}!

We rst study incentive mechanisms for distributed peer-tepeer le-sharing
via BitTorrent. Our incentives span across multiple swarmsWe rst consider a
stochastic game model where peers rate and respond to thegrisaction partners
based on transaction outcomes. Then they adjust their subggent behavior ac-

1A swarm is a stream of data block exchanged among BitTorrent lients that is associated by
the same .torrent le.

33

cording to the quality of service received. Misbehaving oram-cooperative peers
will su er from poor quality of service and may have to increae their upload rate
to gain better reputation, and consequently better serviceTo leverage the inter-
swarm incentive mechanism, we incorporated a simple form i@&putation sharing,
namely chokelist dissemination. In addition, we study sucBitTorrent incentives
with a deterministic game in order to analyze the need for seéers. It is known
that, though more e ective, reputation sharing is vulneratte to the Sybil attack.
Therefore, we also propose a novel reputation system that $ybilproof.

In the following, we assume that peers do not distribute bogu les (or le
chunks) [57, 58]. Peers may also need to learn not to trust the that spread phony
chunks or chunks containing dangerous trojans or viruses7[558]. Here, we also
do not model swarm formation in detail and assume a xed peergpulation. That
said, the model we develop does not employ swarm-speci c anfnation and no
\aging" rules to deal with stale information as would be impaant in the presence
of peer (or swarm) churn.

4.1 BitTorrent Incentive Based On A Stochastic
Game Theoretic Model

4.1.1 Basic Model

Suppose that there ardN peers. Here assume peers are divided into groups accord-
ing to their maximum aggregate upload bandwidth. Speci cdy, assume four cat-
egories of peerd\ 4, so that each peej has an uplink rateu; 2 f 0; U; 2U; 3Ug
where U is the minimum upload rate and O corresponds to free-rideraVe focus
on just swap transactions and consider a sequence of swapattban correspond
to activities generated by di erent swarms.

Rjj is the reputation of peen from the point-of-view of peelj spanning multiple
swarms. Reputations are cached only for contacted peers. Ang previously
contacted peersC; by peerj, the reputations are normalized,

34

whereR; 08j;i. If i and] agree to swap for the rst time,j andi respectively
assign the initial reputations,

for some small positiveé' < 1.
Initially C; = ;. For agiven transaction, a pair of peergj is chosen at random,
i.e., , a particular i;j is chosen with probability
N ' 2
2 N(N 1)
Once the peers are chosen, iifand] meet for the rst time then the transaction
is attempted by them with probability

m r(Ry) r(Rji);

otherwise, with probability
!

m r F)iRU r }37le
k2c Rig koc, Rii

where the parametem > 0 weighs the transaction probability,r is a non-decreas-
ing function on [Q, 1] such thatr(0) =0 and r(1) = 1, and, say, r(") = P 1=3. The
last condition assures that two peers that have not beforeteracted will likely have
opportunities to do so {.e., will do so with probability 1/3). Note the probability
that a transaction is undertaken is determined by independ decisions by the
two peers.

If the transaction betweeni;| is attempted, then at peerj, the following steps
are performed:

G GI[i,
If ui =0, setRj =0 (i is choked byj) and X; X;[i,

else (i > 0), R;; Rj + ¢ (u uj) (each peer estimated the uplink of
the other so that] observedu;), where 0< c < 1 is the reputation reward

35

factorand 0 () 1 is a non-decreasing, non-negative function.

With some probability p, optimistically unchoke(OUC) one peerk selected at
random fromX; whereX; is the choke list of peef,i.e., R =0 ! Ry =".
P

It ¢, Ry > 1thenRy Ryj= ;. Ry (renormalize reputations atj).
And similarly for the reputations at i. Note the parameterc represents the amount
of \reward" given a successful transaction. Optimisticayl unchoking is intended
to provide peers an opportunity to modify their uplink. For exkample, a sel sh peer
may want to rehabilitate after su ering download bandwidth throttling.

To deal with free-riders (including sybils), peers with hig reputations can

disseminate their (current) \choke lists", i.e., , for peerj,

Xi fk2Cijuk=Og:
At the receiving end, peer will accepti's choke list if, e.g,

or if Rj is in the th percentile among the reputations maintained af 2. Upon
acceptance ofX;,] modies its choke list and contact list accordingly: X;
Xi[Xj, G C;[X;, and the corresponding reputations are set to zero; presungi
i andj agree on the leechers. Note that reputations are not symmatal, so that
one peer may disseminate its choked set while the other maytrnia the same
swap transaction. Here, we assume that there is no conict ijudging leechers
among peers. The con ict may come from the Sybil attack. Theydil attack in
BitTorrent will be addressed in Section 4.3.

The successful transaction rate of a peer is the fraction afcessful transactions
as a fraction of the fraction of transactions in which the pees chosen, denoted
below. This quantity changes over time as does theeanreputation of each peer

2There are many alternative frameworks,e.g., where a choke-list's information is weighted by
the reputation of the peer that provides it.

36

X X
Rij = 1
j ii2c j ii2c

Note that we are not modeling individual swarms and the sequee of transac-
tions in the model could span multiple swarms, even in the psence of swarm (or
peer) churn. Neither are we modeling client-server trans@ens to, e.g, , \initial-
ize" a peer newly arrived to a swarm (the process that can beeg cally targeted
by sybils). Recall that we defer the issue of the Sybil attacto Section 4.3.

4.1.2 Rehabilitation

We divide time into a sequence of periods each of duratioh > 1 transactions.
For peeri during the n" period, now letu;(n) be its dynamic upload rate, and
u(n) be the vector of uplink rates ofall peers during periodn. Also, for the it"
peer, lets;(u(n)) be the success rate (note how it depends on the uplinks of al
other users),V;(s) be the utility it gains from the success rates, and v; be the net

utility:
vi(u(n)) = Vi(si(u(n))) Cui(n):
In the following, we will take
Vi(s) V" (2=)arctan(s);

where the maximum utility parameterV,™ = V(1) captures thei'" user'srelative
valuation of utility and the uplink bandwidth, C is the cost factor.

In the following, we assume that peers presume no direct kniedge of the
uplink rates of others when deciding how to modify their ownplink rates. Though
it can be expected that thei™ peer will seek to select;; to maximize v;, but v
also depends o ; (the other peers' uplink rates). So, the user needs to estirtea
the current sensitivity of s; to u;,

si(u) si(u9

ui ul

@s
@(9)

37

when uy; uJp forall j 6 i. Thus, if v; is unimodal (see stem:3 below), we can
formulate the following strategy employed by a generic usésuppress subscript
‘i) to modify their uplink rate at the start of a period (simplifying u(n) with n in
places).

0:0 Setn =0 and initialize u(0) 0.
0:1:1 Based on the nex{T transactions (period), computes(0) and then v(0).

0:1:2 Setn =1 and u(1) = u(0)+ or u(l) = u(0) , for some small positive
rate increment .

n:1 Computes(n);v(n) over the next period.
n:2 ComputeDg(n) =(s(n) s(n 1))= andD,(n) = Vqs(n))Ds(n) 1.

n:3 If Dy(n) >"> Oandu(n)+ <U M then setu(n+1)= u(n)+ ;elseif
Dy(n) < " andu(n) > 0 then setu(n +1) = u(n) ; elsestop.

n:4 n+ and go to stepn:1

Note that though v; may be a unimodal function ins;, it is not necessarily
so inu; [59]. In the event that multiple Nash equilibria exist (as in e.g, , [60]),
to avoid being trapped in a non-Pareto equilibrium (correspnding to, say, only
a local minimum of overall network success-rate/utilizabn), we could attempt to
use a simple annealing method [61]. Again, for a generic peer

0:1 Setn =0 and initialize u(0) O.
0:2 Based on the nexfl transactions (period), calculates(0) and then v(0).

n:l If 1+ un 1) uym (otherwise only some of the following moves
are possible), then

8
3 u(n 1) with probability 1 =3

uqn) := 5 u(n 1)+ with probability 1=3
- u(n 1) with probability 1 =3

38

n:2 Computes(n); v(n) over the next period and then

(n) = v(n) v(n 1)

n:3 If (n) 0, acceptu{n), i.e., setu(n) = uqn); otherwise, acceptud(n) with
probability e (M=T, whereT > 0 is the \temperature" of annealing search.

n:4 n+ and go to the stepn:1.

In a static network, one could try to slowly \cool" the anneaing process with
T(n) = T(0)=log,(n+2) and su ciently large T(0) [61]. Note that, generally, the
e ect of a change in the uplinku needs to be assessed and that even if there is
no change inu, the network itself could change so that is substantially di erent
from zero.

4.1.3 Experimental Result

We consider a simplied model for p2p-based content exchamgystems by le-
chunk swapping. When a transaction takes place, both parigants mutually
exchange content at their upload rates. In this work, we do maconsider query
processing overhead. The pseudocode of the simulation i®wh in Algorithm 2
and the code itself is given in Appendix B.

Algorithm 2 Simulation Model
while true do
Choose a transacting peers;()
if i andj have never met beforehen

Rij = Rji ="
Perform the transaction with probability r(R;;) r(R;i)
else

Perforrlg the transaction wigh probability
F(Rji= oc, Rix) T(Rji= o¢, Rik)
end if
Periodically unchoke nodes fronC; and C;
Normalize the reputations ofi and |
Periodically disseminate choke lists
Periodically rehabilitate each leecher with probability
end while

39

To evaluate the proposed model, we implemented a simulatiarsing C++ and
the GNU Scienti ¢ Library (GSL) for random number generatim. We assumed
that transactions occur sequentially among\N =100 peers in the system. The
model with parallel transactions will be our future work. The simulation param-
eters we used weré&) =250 kbps, " =0.005, r(") = P 1=3, ¢ =0.01, p =0.25, and

=0.001. Because the dierence between peers' upload bandihs is discrete,
we can specify the reputation reward function according tohe change in success
rate, ,as: (U)=0:005 (0)=0:075 (U)=0:1; (2U) =0:4; (3U) = 1.
We performed each experiment 10 times and subsequently pesthe results with
95% con dence bars.

4.1.3.1 Basic Simulation

In the rst simulation setting, we compared the system perfonance when the
choke-list dissemination was and was not employed. Underadte-list dissemina-
tion, peers periodically exchanged choke lists only with nefree-rider peers in their
contact lists C. Again, a received choke list would be accepted only if thepeta-
tion of the sender from the point of view of the receiver was gater than a threshold

. Here, optimistic unchoking was not employed. The simulain concluded when
all free-riders were identi ed and choked by all non-freeiders (.e., R; =0 8] such
that u; = 0). We chose = 0:001, small enough to ensure that choke lists would
be frequently accepted. Note that the may, in practice, need to be informed by
the size of the contact list,e.g, an \above average" normalized reputation is one
greater than 15Cj.

From the experimental results, all free-riders were idenéd and choked much
faster under choke-list dissemination (after 1020 transagons) than under no choke-
list dissemination (after 123,574 transactions). As a reliuthe average transaction
success rate under no choke-list dissemination was highbat that under choke-
list dissemination, as shown in gure 4.1a and 4.1, becausket simulation lasted
longer and peers had more time to build up their reputationsin addition, peers
were clustered according to their upload bandwidth, simikato the results shown
in [27].

40

)

0.015 - 0.015 -

S B

[bty]

0.005 - 4 0.005 -

0 L L L L L L L L L 0

Peer index Peer index

() Under no choke-list dissemination (b) Under choke-list dissemination

Figure 4.1: Average transaction success rates under no opistically unchoking

4.1.3.2 Optimistically Unchoking

To explore the e ect of the optimistic unchoking mechanism@UC) which allows
misbehaving peers to rehabilitate and rejoin the system, am we evaluated the
average transaction success rate. To observe the e ect of Oldlone, rehabilitation
was not assumed in the following experiment.f., next section.

Figures 4.2a and 4.2b show the success rate when choked pees pe-
riodically unchoked with probability p = 0.05 and 0.25, respectively, after 10
transactions. The OUC probability had signi cant e ect on the average success
rate of free-riders, but had only marginal e ect on that of wé-behaving peers
(i.e., non-leecher peers that actually upload content). This isdrause OUC un-
choked mostly free-riders and gave them opportunities to id up their success
rate. The higher the OUC probability, the greater the opportinities the free-riders
had to rehabilitate. However, excessively larger OUC probdity may negatively
impact the system as a whole because sel sh peers may obtaggood service as
well-behaving peers, as shown in Figure 4.2b.

In addition, we studied the synergy between the choke-listissemination and
OUC. Figures 4.3a and 4.3b indicate the average success nateen choke lists were
disseminated, as described above, every 100 and 10,000 seantions, respectively.
Similar to the previous results, the choke-list disseminain had signi cant e ect
on the average success rate of the free-riders and marginace on that of the
well-behaving peers for the same reason. All free-ridersreadenti ed and their
success rates became zero. The longer choke-list exchargygop generally yielded

41

" e e | R

0025 0025

0.02 0.02
2 2
[[
2 o015 | 2 o015
g g
@ @

0.01 0.01

e P
0.005 0.005
R i aaaiieac o
S
o ———— | ‘ ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
o 10 20 0 40 50 6 70 8 % 100 o 10 20 0 40 50 60 70 8 % 100
Peer index Peer index
(@ p=0:05 (b) p=0:25

Figure 4.2: Average transaction success rate under optirtically unchoking and
under no choking list dissemination

Transaction Success Rate Transaction Success Rate

R
0.03 - T A 0.03 | 4

001 - 1 001 i
R amasaas e

s S T,

- L L L L L L L L - L L L L L L L
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Peer index Peer index

(&) p=0:05 and choke-list exchange periof) p = 0:05 and choke-list exchange period
of 100 transactions of 10000 transactions

Figure 4.3: Average transaction success rate inters optistically unchoking and
choke-list dissemination

higher success rate simply because it took longer to idestthe free-riders. During
this time, the free-riders could participate in transactios, hence helping build-up
the reputation of their transaction partners.

4.1.3.3 Rehabilitation

To evaluate this model, we ran our simulations with 20 peershich are divided
into four classes according to theinnitial upload rates, namelyfO; U;2U;3Ug.

Note the initial group of free-riders. Every 10,000 transdions the peers evaluated
their success rates and adjusted their behaviors according Here, no choke-list

42

858
H

X
858

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

(a) Success rate (b) Upload rate (c) Net Utility

Figure 4.4: Experimental result under rehabilitation wherpeers behave similarly
and =5;c=0:0LU=200;M =1;C=1

dissemination was employed. We performed each simulatio fimes and present
the averages without error bar for clarity. Each simulationran for 1,0000,000
transactions.

In the rst set of experiments, we investigated the situatio where all peers
were the same except their start-up upload rate. In other wds, they employed
the same utility function. We used the following parameters " = 0:005 =
0:005c=0:0p=0:05C =1;M =1. Figures 4.4 and 4.5 show the results when
U is 200 KBps and are 5 and 20 KBps, respectively. In steady state, all peers
converged to the same equilibrium simply because all peersed alike. However,
when the step size was larger, that is 20 KBps, convergenceswaore abrupt.

However, some conditionse.g, when U = 250 and = 20, might cause a
bifurcation. That is, peers converged to di erent equilibra, as shown in Figure
4.6, because these two set of peers could not converge to thme bandwidth given
their initial uplink bandwidths and the step sizes. Also nog¢ that the success rates
shown in our experiments were low, less than 10%, because saecess rate in our
de nition is essentially the average of the normalized repation.

Figure 4.7 shows the e ect of the reputation reward parametgc. For a higher
reward level, namelyc = 0:1, utility functions were larger but convergence was
faster compared with Figure 4.4, as expected. The sharp camgence of the upload
rates resulted in the swift convergence of the success rates

Figure 4.8 shows that when the cost factor is low, her@ = 0:01, peers were
more motivated to cooperate. Free-riders increased theipload rates from those
shown in Figure 4.4 wherC = 1. However, though slowly, the peers still converged

43

uuuuuuuuuuuuuuuuuuu

(a) Success rate

11111

nnnnnnnnnnnnnnnnnnnn

(b) Upload rate

nnnnnnnnnnnnnnnnnnn

(c) Net Utility

Figure 4.5: Experimental result under rehabilitation wherpeers behave similarly

and

=20;c=0:0LU=200;M =1;C=1

< F
¥

s ——
TP PRI 1 e

zzzzzzzzzz
Number

(a) Success rate

xxxxx

;;;;;

(b) Upload rate

(c) Net Utili

Figure 4.6: Experimental result under rehabilitation wherpeers behave similarly

and

=20;c=0:0;U=250;M =1;C=1

to the same equilibrium. Note that the simulation time was iereased to 10,000,000

to ensure that the simulation reached the steady state.

Finally, we explored the situation where each group of peetsehaved di er-
ently, i.e., each group used di erent utility functions. Speci cally, the peer groups
f0; U;2U; 3Ug respectively hadVy.x = 100Q200Q 3000 400@. We set the pa-

rameters"” = 0:005

= 0:00c=0:0Lp=0:05C =0:0;M = 30. From the

experimental results shown in Figure 4.9, di erent groups fopeers converged to
di erent equilibria as expected. As such, the reputation mdel is incentive com-
patible in the manner of more complex, realistic BitTorrentsystems.

44

(a) Success rate (b) Upload rate (c) Net Utility

Figure 4.7: Experimental result under rehabilitation wherpeers behave similarly
and =5;c=0:1,U=200;M =1;C=1

(a) Success rate (b) Upload rate (c) Net Utility

Figure 4.8: Experimental result under rehabilitation wherpeers behave similarly
and =5;¢c=0:;U=200;M =1;C=0:01

4.2 BitTorrent Incentive Based On A Determin-
Istic Game

4.2.1 Basic Model

In this section, we study an incentive for le-sharing in Bifforrent with a deter-
ministic game model. We assume aNl peers have assessed other peers' uplinks
and use the same function to determine the bene t they have derived from the
other peers. To study the steady state behavior of each BitTent client, we con-
sider a synchronous, deterministic game where in thé" step, each playelj acts

to compute in the k" step, each playelj acts to compute

K -yl
uf = argmaxf; (uu') *1)

45

g%,

;;;;;

aaaaa

(a) Success rate (b) Upload rate (c) Net Utility

Figure 4.9: Experimental result under rehabilitation wherpeers behave di erently
and =5;c=0:1;U=200;M =30;C=0:01

where thenet utility (i.e., utility minus cost) is

i Y = widS ™ ¢

and the presumedcommonutility function 3
W) = V(()

depends on the (successful) download rates

X
j(u) = u (U w):

i6]
The u; terms in the summand corresponds to updating reputations i the re-
ceived rateu;. Note that ; dened above increases with increasing numbers
of peersi in the same uplink class ag as determined by (u; u;). Also
note that we could consider a more complex model with; above divided by

is; (U4) (and g := 0) to get an averagetransaction outcomes among un-

choked ((u; u;) > 0) trading partners i. Bounded, positive examples oV
include V(x) = V™ tanh(x) or V(x) = V™2 grctan(x), and unbounded ex-
amples includeV (x) = VY{0)1log(1+ x), all for constant > 0. This game is
similar to those of [59] in that the utilitiesW =V are non-concavein u.

31f we assumed di erent utility functions of the form V() = V,"&V (') for common concave
V 0, then the ijax terms could simply be factored into the costC; terms when optimizing
net utilities.

46

Here peers are now di erentiated by their cosfunctions C;. For the optimiza-
tion step, the rst order optimality conditions are clearly

@ j :
A J-(g))@—;l(g) CXu)=0 forl j N: (4.2)
Suppose that uplinksu 2 QjN:1 [0; U™] with positive U™ < 1 8 |, so that
a xed point u of (4.2) (a Nash equilibrium point for (4.1)) exists by assumred
continuity of the functions in play and Brouwer's theorem [@].

In the following, we will consider ramp cost functionsC; (u;) which are, for
someU; O,

concave and positive folJ; <u; < 1 including the linear case, and
zerofor0 u .

The cost may or may not be a bounded function of the allocatedplink bandwidth

for le-sharing, u;. For the case whereJd; > 0, the interval [0, 0;) of zero cost is
intended to model the situation where the peer is paying a atate for commod-
ity Internet access which s/he may be actively using for a vaety of applications
including le-sharing. Signi cant allocated uplink for background le-sharing ac-
tivity may contribute to excessive access delay for other gty by the same

subscriber.

So, in our model, the le-sharing costs only begin to be perneed when the
peer's uplink allocated for le-sharing exceeds a certainhteshold, O, at which
point the le-sharing activity may begin to impact the quality of service experi-
enced by his other applications or may contribute to networlcongestion in the
acces$. Obviously, a ramp model for cost could also be justi ed by eplicit usage-
based charges beyond a threshold (quota).e., overages. Peers less inclined to
cooperate in le sharing {.e., allocating lower uplinks) are modeled by a lower
threshold for the onset of usage-based co4l,

In the next two sections, we give simple analysis of the comgence to Nash
equilibria assumingall users begin with a common uplink and operate synchronous-

4As mentioned previously, one proposed application-neutra(protocol agnostic) approach to
congestion control employed by a broadband CMTS provider iwolves throttling heavy-hitter
(including le-sharing) peers during periods of access natork congestion [56]. In this paper, we
do not model network congestion dynamics.

47

ly. There are two scenarios that will subsequently be congted. One is a single-
class scenario (experimental results in the next sectionvgn for two dierent
(identical) players), and the other is a two-class scenarizvhere the players are
coupled (same initial uplinks) in each class. In subsequeskperimental results,
we consider the case where only same-class peers have commbal uplinks.

4.2.2 A single-class system

In this section, we analyze a game where all players behavetie same way. In
other words, we assum€&; C and U™ = U™ > 0 8j. Our objective here is
to develop conditions under whichu 1is a xed Nash equilibrium point (NEP) for
0 u U™ je., a\symmetric" (diagonal) NEP. Consider iterations beginiing
from one such symmetric point,ul® = ul91 for a scalarul®. In this case, for
all peersj: j(u;u1 ;) = (N 1)u® (u ul) and the rst order optimality
conditions are

VY ju;u)N Du Gy U@ cQuy) =o0: (4.3)

Note that 40) = 0 and CYu) =0 8u 2 [0;0). So, in particular, if ul” = O 8 |
(i.e., just less thanO), then (4.3) is met atul® = (O)1, a NEP.

In particular, note that the zero uplink strategy O corresponding to peers
opting out of the game, is a NEP for all0 0 sinceg—L(Q) = CY0) o.

4.2.3 A two-class system

Now suppose there are two types of cost functions in the systeC(;y and C,). Let
Ny be the number of peerg such thatC; = C fork =1;2,i.e., N = Ny + No.
Also suppose

O, < 0Oy

where C)(u) is de ned for u 2 [0; Uii™].

Claim 1. For the two-class system with common initial uplink for allgers in the

48

same class, if
Gu, upj)=0; (4.4)

and Cquy) = 0= CYu,) then (uy;u,) is a NEP.
Proof. Based on symmetry, we couple the updates of peers of the sarfass thus

e ectively creating a two-player game whereu = [U(); Up)]: fork =1;2,

(k)(!)
= (Nx Qugy (0)+ N3 Uk 3 (Uk Ugs K):

First order optimality conditions are now, fork =1; 2,

VI wW)INs Uz 1 YUk U «)
Clo(uwy) = O: (4.5)

Finally, (4.5) holds by hypothesis atu . O

4.2.4 Experimental Results

To simplify matters in our preliminary numerical experimers, we tookN; = N, =
1 (i.e., two peers) and assumed a common utility function

max

V() =

arctan() :

In addition, we assumed the same cost function and the samefunction. More
speci cally, let ,(x) = (2=a) exp(ajxj) for a> 0. Dene ", as a small positive
number such that ,(x) 0 forjxj >",. For c > 0, de ne the second derivative
of our cost function to be of the form,

Cuy=Cc™ (u O ")

Note that C®%u) Oforallu< U andu> U+2".. Figure 4.10 shows an example
cost function and its derivatives whenC™®* = 100;c=10;0 = 10;". = 0. Recall
that this ramp cost function represents the situation wherea user is charged a

49

at-rate fee for network access but either perceives condes (a cost) when the
allocated uplink bandwidth exceeds a thresholtl, or is explicitly charged usage-
based overages, where the onset of usage-based tbs lower for leechers than
seeders.

Value

Upload rate

Figure 4.10: Cost function and its derivatives

Now for each peej, take

) = [oX+B ") p(x B+"p;

forh, > 0,x=u; u and 2,<B. So, (0) hand qx) O forjxj>B
or jxj < B 2", Figure 4.11 shows the function and its derivatives when
B =200;b=1;",=20;h =0:5. With this function, the principal contributors
to the transaction success rate ; (u) will be those uplinksu; u; (more precisely,
jui ujj B 2"), otherwise peerj will either choke peeri (ui <u; B) or be
choked by peeri (u; >u; + B).

Given a initial upload u, our simulation iteratively optimized the net utility of
participating peers,i.e., (4.1), until a steady state was reached. Each peer itera-
tively adjusted its upload rate toward a local maximum usingNewton's method,

[k]- ("]
U-[k+1] - U[k] fo(u aQJ)_

J — [n],n;k 0;1 j N;
f?u !!J)

n+1]

where these iterations ended wheju! uj 0:0018. However, when

50

08 |

06 [

Value

0.4

02|

Figure 4.11: function and its derivatives

f%ui; u™) 0, the peer switched to a gradient descent method:
gt o=k W ink oL N
with xed scaling parameter =0:1.

4.2.4.1 A single-class game

In this experimental setting, we studied the situation thatthe peers were identical
and subject to the same costs, though they possibly starteditv di erent initial
uplinks. That is, they shared the same set of parameters, naty: U = 1100, =
1;B =400;C™* =100;c= b=1;"y=20;".=0. The simulation continued until
a stationary point (NEP) was reached.

Figure 4.12 shows the vector eld results of the single-clesase. For the sake
of clarity, we also shows its colored version in Figure 4.13The three distinct
blank regions in the square [00]? (yellow regions), separated by the two strips
B "p J Uz uyj B (green regions), are the stationary points where (4.3)
holds (blank region in the vector eld). In these regions, foexample on peer 2,

Quz u;) =0 becausej u, u; j<B ",orju, u;j>B andCXu,) =0
becauseu, < U,. Starting with initial uplink vectors outside the three stationary
regions, the peers modi ed their uplinks toward the boundar of the stationary
regions as the vector eld arrows indicate (in the strips pra@ously mentioned, the
arrows point to the nearest stationary region).

51

Notice two unstable NEPs near (1000,1500) and (1500,10009licated as yellow
dots. (4.3) also holds here becausé{u, u;) 6 0, C(u,) 6 0, and these two
terms cancel each other.

Figure 4.12 also demonstrates the possibility of free-riay, i.e., the triangle
stationary regionu, < U, andu, u; > B (respectively,u; < O; andu; u, >B)
where peer 1 (respectively, peer 2) is a free-rider. Theseotstationary areas will
obviously shrink asU #B.

2000

R 7 e
R A
R A S P
Voo : VAV Ay ard
| T ’ A YAV
1500 = v oy VA A A
[O | Y A A A Y 4
)
“('B' [T O A [VA P Y A 4
- . PR PR
©
3 - PR
o
2 1000 |- - S e e
1% - -
N
e T
<) BV
o
500 - e e e e e
0 | | |
0 500 1000 1500 2000

Peer 1's upload rate

Figure 4.12: Example of the single-class case

4.2.4.2 A two-class game

We also simulated the case of di erent cost functions,e., B U; < O, <U "™ =
Uy"® with b, and C™® the same for both classes, so that peer 1 was a leecher
and peer 2 a seeder. Their utility functions were as before. a\tonsidered three
cases ofJ, U; and borrowed the remaining parameters from the single-ckagame
previously described.

52

Figure 4.13: Example of the single-class case

42421 U, U, >B: We took U, = 300 and U, = 1100. The numerical
result, shown in Figure 4.14, is similar to that of the singkelass game but with
asymmetrical stationary region. Again,u; < O; and u, < U,, exceptB ",
U U B, are stationary regions, and non-stationary initial uplirk vectors
eventually converged to the boundary of the stationary regn following of the
vector eld. In this region, (4.5) clearly holds on both of the leecher and the
seeder because{uk) Ug k) =0 and C{,(ux) =0 for k =1;2.

Similar to the single-class game, the regions < U, andu, u; > B represent
the situation where the seeder 2 generously allows the leeci to download from
it.

42422 B ", o, U B: Here we setU; = 700 and U, = 1100.
Figure 4.15 shows the experimental result which is similabtcasel), however the
stationary region is wider becausé#; is larger.

53

2000

IR VA4 s P
A A A A A A A AR A Ay A A
Llﬁl////////////////
Lll////////////////
A A A A A A A A A A AP A .
1500 + .« Y A A A A A A A
o A A A S A S P O
S o TS A S S s
'; VA A A A Y G avde ! o0 7
c_g VA Y A A A A -
%1000* P A P P N P -
_U) P2 re N - -7
N
s | 0T]
nﬂ_) -~ - <~ — e - =4
500 - R S e
0 ! ! !
0 500 1000 1500 2000

Peer 1's upload rate

Figure 4.14: Example of the two-class case

42423 0O, U <B ", Weincreasedd; to 900 and maintainedd, at 1100.
As shown in Figure 4.16, the result is similar to previous twgases. However, the
regionu; < U; andu; u, <B ",is also stationary because (4.5) also holds
here.

Note that, for all three cases, there is a small saddle regi@about (1500,1000)
where: u; > Uy, u, < Uy, andu; u, > B, and (4.5) holds for the seeder, but
not for the leecher. For the seeder 2,9u, u;) = 0 and c3(uy) = O because
u, u; >B andu, < U, respectively. For the leecher 1, Qu; u,) = 0, but
cd(u;) 6 0 becauseu; > U;. Therefore, the leecher here will be motivated to pay
to download while the seeder pays nothing.

4.2.5 Discussion

We studied a simple, deterministic sequential transactiogame modeling a Bit-
Torrent-like tit-for-tat incentives for le sharing, with out consideration of indi-

54

2000

1500 -

e w e e o <
NN
NEENEENEE N N Y N
AN N N N N
AN N NN AN NN
AU N N N NN NN

1000 - e e e e S -

Peer 2's upload rate

500 - - L e o e]

- - e = = = e e e = = =
- e e e e e e e e =— =

- e = = = = = e e = = =

0 \ \ \
0 500 1000 1500 2000

Peer 1's upload rate

Figure 4.15: Example of the two-class case

vidual swarm dynamics. The tit-for-tat incentives were stdied under a at-rate
pricing model of an uplink cost function in the form of a ramp strictly positive,
i.e., usage-based, costs result in all peers opting out of the ganvith zero uplink).
Seeder peers were primarily modeled by a larger interval oérp cost. We consid-
ered the cases of two identical peers (or synchronized peevups of the same size)
and two di erent peers. Under certain conditions on the cosand utility param-
eters, the plotted vector elds clearly indicated signi cant regions of not-opt-out
(positive uplink) Nash equilibria, i.e., the stationary regions in the vector eld
were signi cantly larger than just the O point, and demonstrated how, starting
from non-stationary initial uplinks, the game converged ta boundary stationary
uplink.

We hypothesize that, despite BitTorrent's rule-based (domloading the rarest
block rst) and tit-for-tat (choking based on relative uplink and optimistic un-
choking) incentives framework for cooperative behavior d@nrehabilitation, good

55

2000

R ’ 4 e
O A A G P
O O O G P P e
LLLL (L[L#///////////
T e A A A P
1500 = v v v S R VAR
L e | / S O ¥ ¥ e | 4/
)
‘CE L e] A A A A Y e T Y e
5 . o . .o
(0]
3 .- - _]
o
S 1000 |- : S e e e — e e
_U) - = R |
N
5 .
(0] - - - - =
o
500 | - O
O | | |
0 500 1000 1500 2000

Peer 1's upload rate

Figure 4.16: Example of the two-class case

BitTorrent performance signi cantly depends on the persient presence of seeders.
Seeders largely engage in client-server transactions arteir presence is encour-
aged by at-rate pricing. In our model, peers were simply lsscooperative when
the perceived onset of usage-based costs for le-sharitig, was reduced ice., the
usage-based costs themselves increased), and completglycut of the game as
o! 0.

Simply adding bandwidth at the access to deal with the congésn caused by
aggressive le-sharing is not economical for the ISPs. Alstypical subscribers may
not wish to pay additional monthly fees for higher grade aces (more bandwidth
particularly on the uplink) simply to improve their le-sharing experience (a point
here is to get the content for free). For congestion controhiaccess networks,
rather than implementing explicit usage-based overagesh@e a quota) or the dy-
namic priority system of [56], ISPs could deploy atatic system of priority access
(di erentiated services) where peers/subscribers wouldgy additionally to access

56

premium service classes basis and ISPs would need to dynaltycauthenticate
approval of the corresponding usage-based costs, both oreason-by-session basis.
The mechanisms for such systems have already been standzedi and developed.
If such a di erentiated services framework is extended intthe core, security ben-
e ts may result. For example, denial-of-service oods areikely not to traverse
the network over thus authenticated premium services, andsone can e ectively
respond to them by blocking all non-premium (not authenticeed) tra ¢ at core
routers upstream from the targeted victim of the ood, thus peserving service for
priority tra c.

4.3 Sybilproof Referral System

In this section, we leverage a reputation system that accotmfor transaction
outcomes between the directly participating parties. The gph induced by such
a system, in which links are weighted by \direct" reputatiors, is related to the
framework of [51]. In the following, to infer additional inbrmation about peers
with whom no direct transactions have previously occurredgsymmetric direct rep-
utations will then be leveraged by a chain-referral systemWe will not leverage
any given trusted (super)peer [51, 63], except when discums distributed imple-
mentation issues. Moreover, we multiply instead of addeferrals in a chain/path,
and the results of dierent paths are added not maximized (asn a (max;+)
framework). That is, the system considered here will be sgexd by matrix mul-
tiplication, similar to that of [63] which, according to [5], is not \sybil-proof".
Obviously, these dierent systems have the same general prerty that referral
values are non-decreasing in component \direct" reputatiovalues of the peers in
the chain. Finally, we do not consider \fast-mixing*®issues of the social network as
in [64, 65, 66]. Note that, in our system, a sybil attacker magngage in legitimate
transactions and accrue reputation rewards as a result. Thisaid, these rewards
may naturally be distributed, and hence diluted, among theydil identities.

50r simply use the direct reputation of the penultimate peer in the chain, as may be the case
for privacy-preserving referrals.

5The social network is assumed to be fast mixing, meaning thaa random walk in the honest
part of the network quickly approaches the uniform distribution [65]. With a social network of
n honest nodes andm honest edges, the SybilLimit system [66] can tolerate up tdO(n=logn)

57

We make some basic assumptions of the referral/reputatioystem: peer iden-
tity authentication (which itself does not preclude sybil dentities) and secure refer-
ral communications over the Internet underlay [64, 67]. Fosimplicity of analysis
in this note, we also assume synchronous information exclggn Finally, when we
consider particular types of transactions, we assume thahey are unilateral with
Boolean-valued outcomes.

4.3.1 Multiplicative reputation-based referrals

In this section, assumen + 1 interacting peers all of whom can directly transact
with each other over the Internet and that all peers operatednestly and fault-free.

4.3.1.1 Direct reputations from Boolean transaction outco mes

In the following, atransaction directly involves a pair of peers. Prior to its \direct"

phase, a transaction may involve other peers in a prelimimanreferring” phase.

Let Rl(fi’) be the reputation of peerk from the point-of-view of peeri directly due

to the outcomes of their transactions. If a Boolean unilated transaction outcome
from k was good fromi's point of view, then we could update direct reputations
according to

P
(R £C)=((R”+C) if k=]
RY=C RY + C) else

RY (4.6)
for a xed reward parameter C > 0. Note that the reputations are assumed
normalized, i.e., g Rl((?) = 1 for all peersi, and how bad outcomes need not
be penalized as normalization will naturally \age-out" daa. In variations, one
could also normalize by the estimate of the currerttansaction rate y;, i.e., r\’ :=
R = i, or one could also explicitly penalize bad transaction outenes,i.e., R
C.

Assume a peej's transaction response does not depend on the requestingepe
I; thus, we denote with a single subscript; as peerj's propensity to cooperate in

attﬁck edges (social links from honest nodes to compromisedodes). The routing tables contain
O(mlogm) entries per node and are constructed e ciently by a distrib uted protocol.

58

transactions with Boolean outcome’s Essentially by the law of large numbers for
the rate-normalized direct reputations (4.6), the direct eputations satisfy:

RY=RY 1 "= 8kjii: (4.7)

4.3.1.2 One-step referrals

Now consider a referral mechanism so that peercan assess the reputation of
j even thoughi and j have had no or insu cient prior direct contact or direct
contact occurred in the distant past and has been forgottenWe herein assume
indirect reputations of the multiplicative form:

iD= X RERY; (4.8)
K6 ;i
where a \correct" (honest and not faulty) peerk will refer j using their own
direct reputation values. So, the referred reputations areveightedby the direct
reputations Rl((?) of the referring peersk and self referralsare excluded,j.e., k 6 j.
Now assume that indirect (referred) reputations are used taugment direct
reputation values. For example, this can be done additively
RY = aj’+@a aR{’ (4.9)
for some non-negative constana < 1, where here the lack of direct reputation
information is coded zero [68]. This is similar to the appra@h of [63] to secure
the system from false referrals except they employ refersadboutj from highly
reputed peers (from's point-of view) instead of the second term'Rj(id) component.
This said, in the framework of (4.9), such super-peers willawe an implicit, and
possibly highly dominant, e ect on theJ® component of the rst term.
Alternatively, referrals can be used only if no direct priocontact (which can be
separately communicated/ agged so as not to con ate with z® direct reputation):

R{" if prior direct contact

4.10
I else (#+.10)

)

’On the other hand, in bilateral BitTorrent i;j transactions, the quality of a peerj's response,
(i.e., j 's uplink) from the other peer i's point-of-view depends oni's uplink.

59

The reputations R® may be normalized by each peer aR@ to give Iﬁj(il) =
Rj(il): K6 R&), where the sum is only over directly informed referrals for4(10).

4.3.1.3 Multiple-step referrals

The system (4.10) may continue to exchange indirect reputan referrals until
direct reputation information informs all pairs of peers. ©nsider an arbitrary
peer,n + 1, selected for subsequent notational convenience. LB dﬂl be the row
n-vector with entries Ry, ., and let R® be then n zero-diagonal matrix with
(k;i) entries R for k;i n. For m > 0, de ne the m-step referrals

Jmy - = R@ (R@)m: (4.11)

ji
not \directly informed" by referrals of length g < m, i.e., take q as the least integer

such that (R@) 6 0.
For the additive system (4.9), we can compose

We can leverage these referrals to generalize (4.10)R§™ = 3™ only if J{¥ is

X
R(™ = ™l 8isj; (4.12)
1=0

whereJ©@ = RO |f M 2 .. the (m+ 12)—dimensional simplex, is of the
form I(m) = a=A, where 0O<a< landA, = |5, &, then R(™ of (4.12) will

converge asn ! 1 : for the case of the peerr(+ 1)'s reputations in (4.11), to
(1 @R (1 arR@)

To see why, note thatA,, ! (1 a) !, R@ is column sub-stochastit and the
J(M 1 0[69]. Alternatively, if the referrals are simply added togther,i.e., (™ =
18;m, thenR™ 1 RY (1 R@) 1 Similar convergence results follow when
reputations R(™ are iteratively normalized.

l_)
8Thatis,0 , ,R¥ =1 RY

(n+1) i 1.

60

4.3.2 Sybil attackers
4.3.2.1 Single sybil attacker (n+1;S)

Consider two scenarios. The rst is that of the previous semin where indirect
reputations are computed when no sybils are present and ale@rs are correct,
i.e., no attack. The sybil attack scenario is the same as the rst>eept that
the (n + 1) peer is assumed to be a peer identity that is part of a sybil gop
S. Thus, there aren + jSj dierent peer identities in the system, though only
n+1 <n + jSj distinct peers. We assume that the sybil identities refer t@ach
other with maximum reputation R™. In the following, we use tilde " ' to indicate
reputations in the presence of sybil attack.

As mentioned earlier and as assumed in [SHjirect reputation values are divided
among sybil identities. Thus,

X

d d . d : .

ST RY = RY 8i62S: (4.13)
k2Ss

Extensions of the following to multiple independent or caliding sybil attackers
is straight-forward.

4.3.2.2 Example: Sybil-proof one-step referrals

In this subsection, we consider the e ects of sybils on onéep referralsJ® . Again,
for notational convenience taken +1 2 S as a typical sybil identity in the attack
scenario, whose reputation from the point of view af62sS is

X X
1) — (d) (d) (d) .
‘T((n+1)i = R kR + RT™R,:
k63[f ig k2Snfn+lg
By (4.13),
1) —)] (d) (d)
‘T((n+1)i - ‘J(n+1)i + R™(Rg; R(n+l)i)
1) maxp(d) .
‘](n+l)i + R R(n+l)i’ (4.14)

thus limiting the sybil's self-referral.
Furthermore, for two di erent peersj;i 62S, assume the sybil attacker wants to

61

referj to i using Rjs to unfairly hype (Rjs = R™) or defame R]js = R™" 0)
j,i.e., it may be the case thatRjs 6 Rj((gwl) . So, by (4.13), we see

X X
1) . (d) n(d) (d)
‘Tj(i = Ry R’ + Ris R
K6B[f ij g k2s
_ (d) »(d) (d) .
= Ri Rii’ + Ris Ry (4.15)
K6B[f i g

Thus, there is no motive for a peer to adopt sybil identitiesd a ect the one-
step referrals of another peer. Note that this does not mearhdt there is no
a ect by simple false referral on the reputation ofj 628S, i.e., J‘j(il) 6 Jj(il) if
Ris 6 Rj(‘?nﬂ) = Rj(g), c.f., Section 4.3.3. So, the extent to which (4.10) is sybil-
proof [51] (and, inductively, for higher-order referrals)s given by (4.13), (4.14)

and (4.15).

4.3.2.3 Additive referrals

Claim 2. The additive one-step reputation system (4.9) is sybil-pbif

1

Proof. For the sybil attack scenario,
1 _ 1 d d
Fzgn)ﬂ)i - a‘]((n)+1)i + aRmax(R(Si) FQ’En)ﬂ)i)
+1 9 RE:)+1) i
subject to (4.13). So, sincR(),,; RS) > R 8k 2 S during the sybil attack,
aR™ 1 a (by hypothesis), and (4.14):
r® R®

62

As in the previous subsection for two di erentj;i 6 n+1,

X X
1 . d d d d
RY = a RERY +a RisRY +(1 a)R
K6B[f iij g k2s
_ (@ R (@ (@) OF
= a Ri’ R + aRjsRLy) + (1 @Ry
K6B[f ijj g

where, again,Rjs 2 [R™"; R™] is the putative reputation of j from the point of
view of each sybil identityk 2 S. O
Recall Rjs = 0 if the Sybils want to defame;] .

4.3.2.4 A numerical example

In this section, we demonstrated the e ectiveness of our siproof reputation

system by using a numerical example. For the sake of simpticiwe show only
one-step referral. Multiple-step referral is very similar Firstly, we selected a
(n+1) (n+1) matrix as the direct reputation matrix, R@, wheren = 3. Here

we assumed no Sybil attack:

0 1
0:000 0500 0400 Q200

0:300 Q000 (0500 @800
0:400 Q500 Q000 0.000
0.300 0.000 0.100 0.000

RO =

Given R™ =1 and a = 0:4, assume the following joint reputation matrix,
R®, was calculated from (4.9).

0 1
0:000 0380 0348 0280

0:356 0:000 0:380 0:504
0.300 0.380 0:000 0192
0.196 0.080 0.108 0.000

RM =

P n 6] P n @ - .
Note that ;_, R;” = 1. However [, Rj” is not neccessarily 1. Now we
assumed that node 4 turned into a Sybil attacker with two Sylbiidentities, namely
nodes 4 and 5.

63

0 1
0:000 0500 Q400 Q000 0:000

0:300 Q000 0500 Q000 0:000
R® =8 0400 0500 0000 0.000 0.000
0.200 0.000 0.050 0.000 1.000
0.100 0.000 0.050 1.000 0.000

Note that RY) = RY + RY recall (4.13). Suppose the goal of the attacker
is to in ate its reputation by using self-referral among itsSybil identities. Again,
from (4.9), we can obtainR®.

0 1
0:000 Q380 0340 Q000 QOO0

0:260 0:000 0:348 0:000 Q000
R® = 0.300 0.380 0:000 QOO0 Q000
0.168 0.050 0.082 0.000 0.600
0.148 0.030 0.066 0.600 0.000

From the result, we can notice that none of the Sybil identigs could increase
its reputation beyond that of node 4 when there is no Sybil a#tck. In other words,
Rg) Rf&) and Rg) Rg) 8i. Therefore, our reputation system is Sybilproof.
Also note that we do not guarantee thatRf&) + Rg) Rf&) 8i.

Now consider the scenario that the attacker intends to defaenan innocent peer
3, i.e., Rgi) = 0. Note that Rgll) = Rgll) and R(glz) = Rglz) consistent with (4.15).
Therefore, there is no incentive to mount an Sybil attack her.

Also, recall that our reputation framework does not addrestalse referral (ly-
ing). Here the attacker lies about, for exampIeR(zcil) < R(ZCL) As a result, R(zll) <
R{Y.

4.3.3 Discussion

In a at, distributed peer-to-peer implementation, each réerral iteration obviously
requires a total of Of1?) message-passing overhead (through a kind of masked mul-
ticast to prevent peers from receiving direct feedback abbtheir own reputations).
Alternatively, current direct reputation data could be batched and periodically sent
to a single trusted super-peer (reputation-referral indegerver) which could calcu-

64

late referrals on behalf of the peer community and dissemiteathem periodically
or on-demand. A distributed and scalably hierarchical supeeer (or managed
server-based) framework would be based on \local" peer gmuags, Inter-group
reputation queries could be handled by the super-peers (aferral servers). Also,
the identities of particularly high or low reputed peers cold be more broadly dis-
seminated in the hierarchy in an automatic way. Generally toeduce the required
communication, computation and memory, potential sparsesss and/or quantiza-
tion of the inter-group direct reputations R@ could be leveraged. Distributed
referral frameworks which address sybil attackers includé3, 70, 65, 66].

Reputation frameworks are not immune to non-sybil false refrals (.e., those
not subject to (4.13)), though this problem can be limited byeedbaclof transaction
outcomes to impact the \direct” reputations of associatedeferring peers used to
weight referrals. Higher-order indirect referrals may siply exacerbate the problem
of non-sybil false referrals, thus motivating only singlstep referralsR® even
though this might not yield enough reputation information or all pairs of peers
considering a transaction. Note that such aggregated refats are alsonot used for
the single important\Byzantine" decision task, typically involving equally weighted
referrals (the lieutenants) and a single \direct" reputaton source (the general)
[71, 68].

4.4 Conclusions and Future work

We addressed Sybil attacks in peer-to-peer le-sharing bag on the BitTorrent
protocol. The e ectiveness of the built-in BitTorrent incentive called optimisti-
cally unchoking is practically limited because it is applie¢ within a single swarm.
Incentives based on peer reputation is applicable acrossasms. However, in such
a sparsely connected environment as BitTorrent, direct exgsience may be inade-
guate to make a useful judgment of other peers. Therefore, \weay have to resort
to reputation sharing. But again, it is known that reputation sharing is vulnerable
to the Sybil attack.

We rst proposed a simple stochastic game model where eachepeadjusts
its behavior according to the quality of service it has receted. Like [27], the
experimental results show the clustering of peers accordito their upload rate. We

65

also studied a simple form of reputation sharing, namely ckelist dissemination.
The chokelist dissemination helps the peers to identify feeriders faster.

In addition, we analyzed the reliance on seeder peers usingi@ple determinis-
tic game. This game modeled the real world situation in whichsers are charged a
at rate Internet access fee. However, additional cost is qeiired for premium ser-
vice. We modeled the cost with a ramp function modeling the @et of usage-based
prices, and showed how free-riders can be controlled.

Then we proposed a Sybilproof referral system. Our referraystem can be
used to leverage BitTorrent incentives without being vulneble to an attempt to
manipulate reputation scores by Sybil identities.

Chapter

Conclusions and Future Works

This dissertation addressed aspects of one of the major pleims related to identity
management in distributed environment, namely Sybil attaks. We addressed the
Sybil attack in two environments: Mobile Ad-hoc Network (MANET) and on-line
peer-to-peer le-sharing systems using a BitTorrent-likgrotocol.

We proposed a Sybil detection framework for a MANET. In our fimework,
mobile nodes voluntarily and cooperatively participate irihe Sybil attack detection
in a distributed fashion. The nodes monitor their neighbotsietwork activities and
generate tra ¢ observation proofs. Then, they periodical}y exchange the trac
observation proofs with their neighbors while they are momg. Our framework
guarantees the integrity, privacy, and non-repudiation othe observation exchange
without the requirement of dedicated, trusted monitors. Tkese proofs are used to
construct the path on which each mobile node has traveled. Waso propose a
simple clustering algorithm that arranges nodes with simar path into the same
cluster. The nodes in the same cluster are assumed manipaldtby the same
attacker. The experimental results showed that our framewk achieves precision
over 80% (true positives) at about a 10% false positive rate.

We also investigated the e ect of incentive mechanisms fomeine distributed
le-sharing via the BitTorrent protocol. We proposed a gamenodel for BitTorrent-
like tit-for-tat incentives. In the game, each peer evaluas the quality of service it
has received and adjusts its behavior to gain maximum utijt The experimental
results showed that the incentives can motivate the peer todeome more coopera-
tive. In addition, we see the clustering of peers according their upload rates. We

67

then analyzed the BitTorrent users' behavior in steady sta with a deterministic
game. This game models real-world Internet usage where treeffor basic access
is at and that for premium service is an overage. We discoved that free-riders
can be discouraged by imposing an appropriate overage feee Also found that a
simple form of shared reputation, chokelist disseminatiors e ective in identifying
and discouraging free-riders.

However, reputation sharing is vulnerable to the Sybil attek. Therefore, we
introduced a shared reputation system which is sybilproofA Sybil attacker can
still obtain multiple identities, but it cannot gain any bene t by doing so.

In the future, we plan to improve our Sybil detection framewk for MANETS
by loosing some constraints and make it more suitable for ptcal uses. In ad-
dition, we plan to reduce the storage overhead of our framenkoby intelligently
suppressing redundant observations. We also want to impreihe accuracy when
nodes move at higher speed. Furthermore, we plan to addreseetsituation that
multiple devices collude to evade the detection system.

As for the BitTorrent incentives, we want to model the systermore realistically.
For example, we want to model the e ect of swarm churn and swar formation.
We would also plan to extend our model to be able to handle migle swarms,
that is, peers concurrently join multiple swarms. Then we wat to explore scalable
implementation issues for inter-swarm referrals in BitTaent.

Appendix

Source Code for Sybil Attack
Detection in MANET

A.1 sybil _agent.n

This is the simulator for Chapter 3.

/*

* $Author: tangpong $

* $Date: 2008/03/13 19:51:20 $

* $ld: sybil_agent.h,v 1.1.1.1 2008/03/13 19:51:20 tangpo ng Exp $
* $Revision: 1.1.1.1 $

*

* sybil_agent.h

*

#include <deque>

#ifndef __ sybil_h__
#define __sybil h__

/l#define _ DEBUG___
/l#define _ DEBUG1_
/l#define _ DEBUG4___
/l#define _ DEBUG5___
/l#define _ DEBUG6___

/I For the sake of simplicity, | define the maximum number
/I of mobile nodes, including all Sybil identities, allowed

/I observation table.

#define MAX_ID 1024

#define MAX_SLICE 12

69

/I To find the similarity between two section entry,

/I there are two options when the common time is 0.
/I SIM_TYPE_STRONG vyields the similarity of

/I zero. SIM_TYPE_WEAK just ignores it.

#define SIM_TYPE_STRONG 0

#define SIM_TYPE_WEAK 1

/********************** Slmulatlon Parameters *kkkkkkk *****/
/I The distance tolerance factor - if two nodes are

/I with in this distance,

/I they are considered in the same region.

#define DISTANCE_TOLERANCE 1

/I If two observations are PERIOD_TOLERANCE away from each dher,
/I they are unrelated.

/'S = 2*Transmission_range = 500 = Vmax * Tmin = 20 * Tmin
/I Then, Tmin = 25

/I PERION_TOLERANCE must be greater than 25.

/I This is not clear yet!

#define PERIOD_TOLERANCE 30

/I Path similarity threshold

#define THRESHOLD 60.0

/I Confidence which is the minimum time between two paths
#define CONFIDENCE 20

/I This is the minimum time between two observation.
#define MIN_OBSERVED_TIME 5

/

int sim_type = SIM_TYPE_STRONG,;

/lint sim_type = SIM_TYPE_WEAK;

Fhkkk |

/I Buffer size for an observation (56 bytes)

int BUFFER_SIZE = sizeof(int) // observation number
sizeof(int) // sender

sizeof(int) // receiver
sizeof(double) // timestamp
3*sizeof(float) // position
4*sizeof(float) // vector
sizeof(int) // slice_no
sizeof(float); // radius

+ o+ o+ + + o+ o+

int ONO_OFFSET = 0;

int SND_OFFSET = ONO_OFFSET + sizeof(int);

int RCV_OFFSET = SND_OFFSET + sizeof(int);

int TMP_OFFSET = RCV_OFFSET + sizeof(int);

int POS_OFFSET_X = TMP_OFFSET + sizeof(double);
int POS_OFFSET_Y = POS_OFFSET_X + sizeof(float);
int POS_OFFSET_Z = POS_OFFSET_Y + sizeof(float);
int VEC_OFFSET_X = POS_OFFSET_Z + sizeof(float);
int VEC_OFFSET_Y = VEC_OFFSET_X + sizeof(float);
int VEC_OFFSET_Z = VEC_OFFSET_Y + sizeof(float);
int VEC_OFFSET_D = VEC_OFFSET_Z + sizeof(float);

int SLC_OFFSET = VEC_OFFSET_D + sizeof(float);
int RAD_OFFSET = SLC_OFFSET + sizeof(int);

/I Packet Header
struct hdr_sybil {
/I Required
static int offset_; // required by PacketHeaderManager
inline static int& offset() { return offset_; }
inline static hdr_sybil* access(const Packet* p) {
return (hdr_sybil*) p->access(offset);

/I Packet fields
int id_;
int seq;

/I Header access method
int& id() { return id_; }

class Point;

class Triangle;
class Rectangle;
class Vector;

class Region;

class Observation;
class Observation_Table;
class Bulffer;

class Path;

class Cluster_Entry;
class Cluster;

class Section_Entry;
class Section;

class Sim_Entry;
class Similarity;

/I Agent Class
class Sybil_Agent: public Tap, public Agent {
public:
Sybil_Agent();
int seq;
virtual int command(int argc, const char* const* argv);
virtual void recv(Packet*, Handler*);
void tap(const Packet *p);
void exchange_all();
void detect();
void move();
protected:
Observation_Table* obs_table; // Observation table
Observation_Table* imp_table; // Import observations

Mac *mac_;

float px, py, pz;

int activate_;

double threshold, confidence;

h
class Point {
float x, vy, z;
public:

Point(float x_, float y_, float z_) : x(x), y(y_), z(z.) {
Point(Point *p) { x = p->X; y = p->y; z = p->z; }
int equal(Point *p) {
if(x == p->x) && (y == p->y) && (z == p->z)) return 1;
else return O;
}
float distance(Point *p) {
return sqgrt(powf(p->x - x, 2) +
powf(p->y -y, 2) + powf(p->z - z, 2));

friend class Line;

friend class Triangle;

friend class Vector;

friend class Region;

friend class Observation;

friend ostream& operator<< (ostream&, Point&);

class Line {

Point *start, *end;

int type_; // 0 for Y = mX + aand 1 for X = ¢

float m, // slope
a, // constant in Y = mX + a
c; /Il constant in X = ¢

public:

Line(Point *s, Point *e);

int type() { return type_; }

float get_x(float y) { return (y - ¢)/m; }

float get y(float x) { return m*x + c; }

float get m() { return m; }

int is_left(Point *p);

int is_above(Point *p);

int is_on_line(Point *p);

int intersect(Line *I, float &x, float &y);

friend class Rectangle;
friend class Observation;

class Triangle {

Point *point[3];

float min_x, max_x, min_y, max_y;
public:

Triangle(Point *p0, Point *pl, Point *p2);

int is_inside(Point *p);

¥
class Rectangle {
Line *I1, *I2;
Triangle *t1, *t2;
public:

Rectangle(Line *I, Line *r) : 11(I), 12(r) {
Line* I3 = new Line(I1->start, 12->start);
Line* 14 = new Line(I11->end, [2->end);

float x, y;
if(13->intersect(l4, x, y)) {
t1 = new Triangle(l1->start, |1->end, 12->start);
t2 = new Triangle(I1->start, 12->end, I12->start);
} else {
tl = new Triangle(I1->start, I1->end, 12->end);
t2 = new Triangle(l1->start, 2->start, 12->end);

delete [3;
delete 14;
}
~Rectangle() { delete t1; delete t2; }
int is_inside(Point *p) {
if(t1->is_inside(p) || t2->is_inside(p))
return 1,
else
return 0;

/I Unit vector
class Vector {
float x, vy, z;
float degree_;
public:
Vector(float x_, float y_, float z_);
Vector(Point* src, Point* dst);
float degree() { return degree_; }

friend class Region;
friend class Observation;
friend ostream& operator<< (ostreamé&, Vector&);

class Region {
Point* center;
Vector* rec2dst;
int slice_no;
float radius;
public:
Region(Point* ¢, Vector* v, int slc, float rad) :
center(c), rec2dst(v), slice_no(slc), radius(rad) {}
~Region() { delete center; delete rec2dst; }
int is_inside(Point* p);

friend class Observation;
friend ostream& operator<< (ostream&, Region&);

class Observation {
int obs_no_;
int sender_; // Il sender
int receiver_; // Il receiver
double timestamp_;
Region* region_;
public:
static int obs_counter;
Observation(int s, int r, double t, Region* reg) :
sender_(s), receiver_(r), timestamp_(t), region_(reg) {
obs_no_ = obs_counter++;
}
Observation(char *);
~Observation() { delete region_; }
Region* region() { return region_; }
double timestamp() { return timestamp_; }
int is_in_region(Observation *begin, Observation *end);
/I Convert the observation to a buffer and
/I make it ready for transfer
char* export_buffer(char *);
void print_buffer(char *);

bool operator== (const Observation &other) const {
return obs_no_ == other.obs_no_;

}

bool operator> (const Observation &other) const {
return timestamp_ > other.timestamp_;

friend class Observation_Table;
friend class Section_Entry;
friend ostream& operator<< (ostream&, Observation&);

class Buffer {

public:
int size_;
char* buffer_;
Buffer(int s, char* b) : size_(s), buffer_(b) {}
~Buffer() { if(buffer_ != NULL) delete buffer_; }

class Path {
int id_;
double len_;
public:
Path(int id, double len) : id_(id), len_(len) {}
int id() { return id_; }
double len() { return len_; }
bool operator> (const Path &other) const {
return len_ > other.len_;

class Observation_Table {
deque<Observation*> table_[MAX_ID];
public:

void push_back(int id, Observation *o0) {
table_{[id].push_back(o);

}

void add_observation(int id, Observation *o);

int check_observation(int id, Observation *o);

Observation* last(int id);

Buffer* export_table();

void import_table(Buffer*);

void merge(Observation_Table* t);

void similarity(Cluster_Entry *c, Path *p,
double &sim_score, double &confidence);

Path* convert2path(int id);

void generate_cluster(int nid, double threshold,
double confidence);

Section* split_path(int id);

int size();

friend ostream& operator<< (ostreamé&, Observation_Table

class Cluster_Entry {
deque<Path*> element_;
public:
Cluster_Entry(Path *p) { add_path(p); }
~Cluster_Entry() {
while(element_.size()) {

deque<Path*>:iterator itr = element_.begin();
Path *p = *itr;

&);

delete p;
element_.pop_front();

}
void add_path(Path *p) { element_.push_back(p); }
int cluster_head_id() {

if(element_.size() == 0) {
return -1,

} else {
deque<Path*>:iterator itr = element_.begin();
Path* p = *itr;

return p->id();

}

int size() { return element_.size(); }

friend ostream& operator<< (ostream& os, Cluster_Entry& c e);

class Cluster {
deque<Cluster_Entry*> cluster_;
Observation_Table* ot_;
double threshold;
double confidence;
public:
Cluster(Observation_Table *ot, double thr, double conf) :
ot_(ot), threshold(thr), confidence(conf) {}
~Cluster();
void add_cluster(Cluster_Entry* ¢) { cluster_.push_back (c);
void compare_cluster(Path *p);

friend ostream& operator<< (ostream& os, Cluster& c);

class Section_Entry {
deque<Observation*> element_;
double start, stop;
public:
Section_Entry(Observation *o) {
start = stop = o->timestamp_;
}
void add_observation(Observation *o0) {
element_.push_back(o);
stop = o->timestamp_;
}
int size() { return element_.size(); }
double length() { return stop - start; }
int sim_section(Section_Entry *s, double &overlap_time,
double &obs_common_time);
int is_in_region(Observation *o);

friend ostream& operator<< (ostream& o0s, Section_Entry& s

class Section {
deque<Section_Entry*> selement_;
public:

~Section();

double length();

int size() { return selement_.size(); }

void similarity(Section *s, double &sim_score,

double &confidence);

void add_section(Section_Entry *se) {

selement_.push_back(se);

class Sim_Entry {
Cluster_Entry *ce_;
double sim_;
public:

Sim_Entry (Cluster_Entry *ce, double sim) : ce_(ce),
sim_(sim) {}

void add_path(Path *p) { ce_->add_path(p); }

bool operator> (const Sim_Entry &other) const {

return sim_ > other.sim_;

class Similarity {
deque<Sim_Entry*> element_;
public:
void add(Sim_Entry *se) { element_.push_back(se); }
int size() { return element_.size(); }
void sort_queue();
void add_top_entry(Path *p);
~Similarity();

ostream& operator<< (ostreamé&, Point&);

ostream& operator<< (ostreamé&, Vector&);

ostream& operator<< (ostreamé&, Region&);

ostream& operator<< (ostreamé&, Observation&);
ostream& operator<< (ostreamé&, Observation_Table&);
ostream& operator<< (ostream& os, Cluster_Entry&);
ostream& operator<< (ostreamé& os, Cluster&);
ostream& operator<< (ostream& os, Path&);

#endif

e);

76

A.2 sybil _agent.cc

/*
* $Author: tangpong $
* $Date: 2008/03/13 19:50:53 $

* $ld: sybil_agent.cc,v 1.1.1.1 2008/03/13 19:50:53 tangp

* $Revision: 1.1.1.1 $

*

* sybil_agent.cc

*

* To Do

*

* To work

* 1. Detection work

* 2. Location verification to prevent collusion
*/

#include <functional>
#include <iostream>

#include <math.h>

#include <stdlib.h>

#include "address.h"

#include "agent.h"

#include "aodv/aodv.h"
#include "aodv/aodv_packet.h"
#include "ip.h"

#include "mac.h"

#include "mobilenode.h"
#include "packet.h"

#include "tclcl.h”

#include "sybil_agent.h"

int hdr_sybil::offset_;
int Observation::obs_counter = 0;

! Static Classes ****xx+k/

static class SybilHeaderClass: public PacketHeaderClass

public:

SybilHeaderClass() : PacketHeaderClass("PacketHeader/

sizeof(hdr_sybil)) {
bind_offset(&hdr_sybil::offset_);
}
} class_sybilhdr;

static class SybilClass: public TclClass {
public:
SybilClass() : TclClass("Agent/Sybil") {}
TclObject* create(int, const char* const*) {
return (new Sybil_Agent());

ong Exp $

Sybil",

77

} class_sybil;

/ helper function *****xx/

bool obs_compare(Observation *x, Observation *y) {
return !(*x > *y);

template <class T>
struct ptr_equal_to : public binary_function<T, T, bool> {
bool operator()(const T &x, const T &y) const {
return *x == *y,

bool path_compare(Path *x, Path *y) {
return (*x > *y);

bool se_compare(Sim_Entry *x, Sim_Entry *y) {
return (*x > *y);

/ /
/*
* Extend2Agent constructor
*
Sybil_Agent::Sybil_Agent() : Agent(PT_EXTEND2), seq(0) ,
px(0), py(0), pz(0), activate_(0) {
bind(“threshold”, &threshold);
bind("confidence", &confidence);

obs_table = new Observation_Table();
imp_table = new Observation_Table();

}

/*

* command - process TCL commands

*

int Sybil_Agent::command(int argc, const char* const* arg v) {

if(argc == 2) {
if(strcmp(argv[1], "send") == 0) {
/I Create a new packet
Packet* pkt = allocpkt();
/I Access the Extend2 header fo the new packet
hdr_sybil* hdr = hdr_sybil::access(pkt);
hdr->seq = seq++;
/I Send the packet
send(pkt, 0);

78

return (TCL_OK);

} else if(stremp(argv[l], "show_table") == 0) {
cout << *obs_table << endl;
return (TCL_OK);

} else if(stremp(argv[l], “"exchange_all") == 0) {
exchange_all();
return (TCL_OK);

} else if(strcmp(argv[1], "detect”) == 0) {
detect();
return (TCL_OK);

} else if(strcmp(argv[1l], "move") == 0) {
move();
return (TCL_OK);

} else if(stremp(argv[l], “activate”) == 0) {
activate_ = 1,

1 cout << "Sybil " << addr() << " is active" << endl;
return(TCL_OK);
} else if(stremp(argv([l], "mem_size") == 0) {
int mem = obs_table->size() + imp_table->size();
cout << addr() << " " << (intf) mem/1024 << endl;
return(TCL_OK);
}

} else if(argc == 3) {
if(strcmp(argv[l], “install-tap”) == 0) {
mac_ = (Mac *)TclObject::lookup(argv[2]);
iflmac_ == 0) return TCL_ERROR;
mac_->installTap(this);
return TCL_OK;

return (Agent::command(argc, argv));

void Sybil_Agent::move() {

/I Update my px, py, pz (previous direction)

MobileNode* me =
(MobileNode *)Node::get_node_by address(addr());

iflme == NULL) {
cerr << "Sybil_Agent::move - can not locate a mobile node "

<< addr() << endl;

exit(-1);

float len = sgrt(me->dX()*me->dX() +
me->dY()*me->dY() + me->dZ()*me->dZ());

iflen = 0) {
px = me->dX();
py = me->dY();

79

pz = me->dZ();
} else {
cerr << "Sybil_Agent::move error" << endl;
exit(-1);
}
}
/*
* ONLY designated receiver do this
*

void Sybil_Agent::tap(const Packet *p) {
hdr_cmn* hdr = hdr_cmn::access(p);
hdr_ip* iph = hdr_ip::access(p);
int sender_id;

/I Only activated Sybil_Agent runs this. We disable the
/I Sybil_Agent on Sybil nodes.
if(lactivate_) { return; }

/I Observe only messages destined to me,
/I IP broadcast address, or LL
/I broadcast address

/I AODV_RREP is sent to next_hop_
if((hdr->next_hop_ != addr()) &&
/I Broadcast address for AODV RREQ
(hdr->next_hop_ = -2) &&
(iph->daddr() != addr()) &&
/I Broadcast IP address
(iph->daddr() '= (nsaddr_t)IP_BROADCAST))
return;

/*
* Determine the packet sender
* 1. AODV REQ - Sender's IP in hdr_ip

* 2. AODV RREP - Reply Source IP (rp_src in hdr_adov_reply)

* 3. CBR - prev_hop_ in hdr_cmn (forwarder)

*

* Note: currently, we don't care about AODV RREP because
* we focus

* only on AODV_REQ & CBR packets. We are not considering the

* situation that attackers send AODV_RREP. In addition, it
* obviously will not report route error. We focus only on
* layers

* above our protocol and ignore packets from all layers below

* jt. This is the old code snippet.

* if(strcmp(packet_info.name(hdr->ptype_),"ARP") == 0)
*

if(hdr->ptype() == PT_AODV) {

return;

80

hdr_aodv *ah = hdr_aodv::access(p);

if(ah->ah_type == AODVTYPE_RREQ) {
sender_id = iph->saddr();

} else if(ah->ah_type == AODVTYPE_RREP) {
hdr_aodv_reply *rp = HDR_AODV_REPLY(p);
sender_id = rp->rp_src;
return; // lgnore AODV_RREP

} else if(ah->ah_type == AODVTYPE_RERR) {
return; // lgnore AODV_RERR

} else if(ah->ah_type == AODVTYPE_HELLO) {
return; // lgnore AODV_HELLO

}

} else if(hdr->ptype() == PT_CBR) {

/I | hacked the AODV code to make this possible.

sender_id = hdr->prev_hop_;

} else if(hdr->ptype() == PT_SYBIL) {

/I As of now, we ignore PT_SYBIL packets because

/I we assume that

/I no Sybil nodes will exchange their observation

/I table if they

/I do it at all. If they do it, they expose themselves.

sender_id = iph->saddr();

return; // Ignore PT_SYBIL packages

} else {
return;

#ifdef _ DEBUG___
char txt[20] = "
if(hdr->ptype() == PT_AODV) {
hdr_aodv *ah = hdr_aodv::access(p);

if(ah->ah_type == AODVTYPE_RREQ) {
hdr_aodv_request *rq = HDR_AODV_REQUEST(p);
sprintf(txt, "RREQ %d %d", rg->rq_src, rqg->rq_dst);

} else if(ah->ah_type == AODVTYPE_RREP) {
hdr_aodv_reply *rp = HDR_AODV_REPLY(p);
sprintf(txt, "RREP %d %d", rp->rp_src, rp->rp_dst);

} else if(ah->ah_type == AODVTYPE_RERR) {
sprintf(txt, "RERR");

} else if(ah->ah_type == AODVTYPE_HELLO) {
sprintf(txt, "HELLO");

}
}
cout << "Me = " << addr() << ", "
<< "Snd = " << sender_id << ", "
<< "Fwd = " << hdr->prev_hop_ << ", "

<< "Next = " << hdr->next_hop_ << ", "

81

#endif

<< "SndIP = " << iph->saddr() << ", "
<< "DstlP =" << iph->daddr() << ", "

<< "Now = " << Scheduler:instance().clock() << " "
<< packet_info.name(hdr->ptype_) << " "

<< txt

<< endl

MobileNode* snd =

(MobileNode *)Node::get_node_by address(sender_id);

MobileNode* rec =

(MobileNode *)Node::get_node_by_address(addr());

iftsnd == NULL) {

cerr << "Sybil_Agent::itap - can not locate a mobile node "
<< sender_id << endl;
exit(-1);

} else if(rec == NULL) {

/*

cerr << "Sybil_Agent::itap - can not locate a mobile node "
<< addr() << endl;
exit(-1);

* Generate a region that the receiver observes the sender.

*

* snd2rec = the unit vector from sender to receiver.

*

*

*

*

*

*

*

rec2dst = the unit vector representing
the receiver's orientation

Note: if the sender(snd_loc) and the receiver(rec_loc) me
the unit vector snd2rec is of length zero. Use the unit
vector of sender as snd2rec.

Point* snd_loc = new Point(snd->X(), snd->Y(), snd->Z());
Point* rec_loc = new Point(rec->X(), rec->Y(), rec->Z());
float distance = rec->distance(snd);

Vector* rec2dst;

Vector* rec2snd; // Unit vector from the sender to the receiv

float | = sqrt(rec->dX()*rec->dX() + rec->dY()*rec->dY()
rec->dZ()*rec->dZ());

if(

1= 0.0) {
rec2dst = new Vector(rec->dX(), rec->dY(), rec->dZ());

} else {

}

rec2dst = new Vector(px, py, pz);

if(snd_loc->equal(rec_loc) == 1) {

/I For now, when snd_loc and rec_loc coincide, we simply
/I assume that that the direction of the sender is the same
/I as the direction of the transmission.

et,

82

float t = sqrt(snd->dX()*snd->dX() + snd->dY()*snd->dY() +
snd->dZ()*snd->dZ());
if(t '= 0.0) {
rec2snd = new Vector(snd->dX(), snd->dY(), snd->dZ());
} else {
rec2snd = new Vector(rec->dX(), rec->dY(), rec->dZ());
}
} else {
rec2snd = new Vector(rec_loc, snd_loc);

/I Find the slice of the receiver that the sender resides.
float angle_per_slice = (float) 360/MAX_SLICE;
float angle = rec2snd->degree() - rec2dst->degree();
int slice_no;
iflangle == 0)
slice_no = O;
else if(angle > 0)
slice_no = (int) ceil(angle/angle_per_slice) - 1;
else

slice_no = MAX_SLICE - (int) ceil(-1*angle/angle_per_sli ce);

if((slice_no < 0) || (slice_no > (MAX_SLICE-1))) {
cout << "Error in computing slice_no "

<< "angle = " << angle
<< "angle_per_slice = " << angle_per_slice
<< "slice_no = " << slice_no << endl;
exit(-1);
}
/*
cout << "vector rec2dst angel = " << rec2dst->degree() << end l;
cout << "vector snd2rec angle = " << rec2snd->degree() << end l;
cout << "angle = " << angle << endl;
cout << "slice = " << slice_no << endl;
*
/*
* Check whether the sender is in the old region or not.
* If yes, do

* nothing. | don't know if this a good idea or not.
* Maybe we should
* drop some observation, not all like this.
*
/I Let check the region compression later
Observation* last_obs = obs_table->last(sender_id);
if(last_obs != NULL) {

Region* last_region = last_obs->region();

double local_time = Scheduler::instance().clock();
if(last_region != NULL) {

83

/I Time difference is less than 1 second.
if(fabsl(local_time - last_obs->timestamp()) <=
MIN_OBSERVED_TIME) return;

/I Still in the same region
if(last_region->is_inside(snd_loc) == 1) return;

Region* reg = new Region(rec_loc, rec2dst, slice_no, dista

/I The uniqueness of an observation is not important
/I at all because
/I we combine regions anyway. Then we don't need the
/I sequence number
1
/
/I observation around, we don't want duplicated observatio
/I the same node. We handle this by using a static variable
/I inside the observation class.
Observation* o =

new Observation(sender_id, addr(), p->time_, reg);
obs_table->push_back(sender_id, o);

=

=

#ifdef _ DEBUG__
cout << *snd_loc << " - " << *0 << endl;
cout << "Node " << addr() << " Observation Table" << endl;
cout << *obs_table << endl;

#endif

delete snd_loc;
delete rec2snd;

/*
/I Pass the control to the TCL level.
char out[100];
sprintf(out, "%s printme %s", name(), "baa");
Tcl& tcl = Tcl:instance();
tcl.eval(out);
*/
}
/*

* exchange_all : a node exports its entire observation

* table into a

* buffer and then broadcast to its neighbors.t*/

void Sybil_Agent::exchange_all() {
Buffer* obs_table_buffer = obs_table->export_table();

#ifdef _ DEBUG___
cout << "Node " << addr() << " Observation Table" << endl;
cout << *obs_table;

03/13/08 Update: now it is important because when we excha

84

#endif

/I The obs_table is empty.
if(obs_table_buffer == NULL) return;

Packet* pkt = allocpkt();

PacketData* pData = new PacketData(obs_table_buffer->si

pkt->setdata(pData);

memcpy((void*) pData->data(), (void*) obs_table_buffer
obs_table_buffer->size);

delete obs_table_buffer;

/I Common header

hdr_cmn* cmn = hdr_cmn::access(pkt);

double local_time = Scheduler::instance().clock();
cmn->timestamp() = local_time;

cmn->ptype() = PT_SYBIL;

/I Sybil header

hdr_sybil* sh = hdr_sybil::access(pkt);
sh->id() = addr();

hdr_ip* iph = hdr_ip::access(pkt);
iph->daddr() = IP_BROADCAST;
iph->dport() = here_.port_;

send(pkt, 0);

/*

* delect - detect the Sybil attack

*

void Sybil_Agent::detect() {
obs_table->merge(imp_table);
obs_table->generate_cluster(addr(), threshold, confid

#ifdef _ DEBUG6___
int size = obs_table->size();
cout << "# OBS = " << size <<
" Mem = " << BUFFER_SIZE*size << endl;
cout << *obs_table << endl;
#endif

/*

* recv - recv in the C++ level

*

void Sybil_Agent::recv(Packet* pkt, Handler*) {
hdr_cmn* cmn = hdr_cmn::access(pkt);

ze),

->puffer_,

ence);

85

I/l recv in the C++ level
ifcmn->ptype() == PT_SYBIL) {
char* buffer = new char[pkt->datalen()];

PacketData* data = (PacketData*)pkt->userdata();
memcpy(buffer, data->data(), data->size());

Buffer* ref_buff = new Buffer(data->size(), buffer);

#ifdef _ DEBUG2__
hdr_ip* ip = hdr_ip::access(pkt);
[lif(addr() == 0)
cout << addr() << " got from " << ip->saddr() << " "
<< pkt->datalen()
<< endl;
#endif

imp_table->import_table(ref_buff);
delete ref_buff;

/I recv in the TCL level
/*
char out[100];
sprintf(out, "%s recv %d", name(),
hdrip->src_.addr_ >> Address::instance().NodeShift_[1
Tcl& tcl = Tcl:instance();
tcl.eval(out);
*

/I Discard the packet
Packet::free(pkt);

/ Line FhkkFxARK [

Line::Line(Point *s, Point *e) : start(s), end(e) {

if(s->x == e->x) {
type_ = 1;
c = s->X;

} else {
type_ = 0;

m = (s->y - e->y)/(s->X - e->X);
a = s>y - m*s->x;

int Line:is_left(Point *p) {
if(type_) {
if(p->x <= c) return 1;
else return O;

D

86

} else if(m == 0) {
return -1;
} else {
float x = (p->y - a)/m;

if(p->x <= x) return 1;
else return 0O;

}
}
int Line::is_above(Point *p) {
if(type_) {
return -1;

} else if(m == 0) {
if(p->x >= a) return 1,
else return O;

} else {
float y = m*p->x + a;

if(p->y >=vy) return 1;
else return 0;

int Line:is_on_line(Point *p) {

if(type_) {
if(p->x == c) return 1;
else return 0;

} else if(m == 0) {
if(p->y == a) return 1,
else return O;

} else {
float x = (p->y - a)/m;

if(x == p->x) return 1;
else return 0;

int Line:intersect(Line *I, float &x, float &y) {
if(type_ && I->type()) { // Parallel lines

return O;

} if(m == I->m) {
return O;

} else if(type_) {
X = ¢
y = I->m*x + |->a;
return 1,

} else if(I->type()) {

X = I->c;

/I Parallel lines

87

y = m* + a
return 1,
} else {
X = (a - I->a)/(->m - m);
y = m* + a
return 1,

/ Tr|ang|e *kkkkkkkkkkkkk *******/
Triangle:: Triangle(Point *p0, Point *pl, Point *p2) {
point[0] = pO; point[1] = pl1; point[2] = p2;

min_x = min_y = 10e6;

max_x = max_y = -10e6;

for(int i=0; i<3; i++) {
if(min_x > point[i]->x) min_x = point[i]->x;
if(min_y > point[i]->y) min_y = point[i]->y;
if(max_x < point[i]->x) max_x = point[i]->X;
if(tmax_y < point[i]->y) max_y = point[i]->y;

int Triangle::is_inside(Point *p) {
if(l((p->x >= min_x) && (p->x <= max_X) && (p->y >= min_y) &&
(p->y <= max_y)))
return O;

for(int i=0; i<3; i++) {
Line* | = new Line(point[i], point[(i+1)%3]);

if(I->is_on_line(p)) {
delete |
return 1;

if(->get_m() !'= 0) {
if(I->is_left(point[(i+2)%3])) {
if(!I->is_left(p)) return O;
} else {
if(I->is_left(p)) return O;
}
} else {
if(I->is_above(point[(i+2)%3])) {
if(!I->is_above(p)) return O;
} else {
if(l->is_above(p)) return O;

88

delete |,

return 1;

!

/*
* Vector Constructor
*/

*kkkkkkkkkkkkk *kkkkkkk
Vector /

Vector::Vector(float x_, float y_, float z_) :

/*

X(x), vy, z(z) {
/I Check the length of the vector.
float len = sqrt(x*x + y*y + z*z);
if((len <= 0) || (len > 1)) {
cerr << "Error : the size of the unit vector is not 1"
<< endl;

Cerr << "(" << x_ << " <<y << "' << z_ << ") << end!:
double local_time = Scheduler::instance().clock();
cerr << "Time = " << local_time << endl;

exit(-1);

/I Find the angle between the vector and the X axis.
/I radian = acos([x,y].[1,0]) = acos(x*1 + y*0)
degree_ = acos(x)*180/M_PI;

ifly < 0) degree_ = 360-degree_;

* Vector Constructor

*

Vector::Vector(Point* src, Point* dst) {

if(src->equal(dst)) {
cerr << "Error: unit vector of size zero" << endl;
exit(-1);

dst->x - src->x;
dst->y - src->y;
z = dst->z - src->z;

float length = sqgrt(x*x + y*y + z*z);

if(length == 0) {
cerr << "Error: unit vector of size zero" << endl;
exit(-1);

}
X /= length;
y /= length;

z /= length;

89

90

degree_ = acos(x)*180/M_PI;
ifly < 0) degree_ = 360-degree_;

}

/ Reglon *kkkkkkkkkkkkkk ********/
/*

* is_inside : check if the point "p" is inside the region or not

*

int Region:is_inside(Point* p) {
/I The locations of sender and receiver coincide.
if(center->equal(p)) {
#ifdef _ DEBUG___
cout << "## Observation compressed - positions coincide. ##
<< endl;
#endif
return 1,

/I Sender and receiver have moved away from each other.

/I To reduce the number of observation, if the node is less tha n

/I DISTANCE_TOLERANCE far away, we consider that they are still

/I in the same region.

if(fabs(center->distance(p) - radius) > DISTANCE_TOLERA NCE)
return O;

/I Check whether the sender is sftill in the same slice.
int each_slice = (int) 360/MAX_SLICE;

float zeta = rec2dst->degree();

float zetal = zeta + slice_no*each_slice;

float zeta2 = zeta + (slice_no + 1)*each_slice;

Vector* ctr2snd = new Vector(center, p);

float beta = ctr2snd->degree();

zetal -= ((int)zetal/360)*360;
zeta2 -= ((int)zeta2/360)*360;
beta -= ((int)beta/360)*360;
int result = 0;
if(zeta2 < zetal) {
if(beta >= zetal) && (beta < 360)) {
#ifdef _ DEBUG__
cout << "### Observation compressed - same sector . ##H"
<< endl;
#endif
result = 1;
} else if((beta >= 0) && (beta <= zeta2)) {
#ifdef _ DEBUG___
cout << "### Observation compressed - same sector . ##H"
<< endl;
#endif

result = 1;
} else {
result = O;
}
} else {

if(beta >= zetal) && (beta <= zeta2)) {

#ifdef _ DEBUG___
cout << "### Observation compressed - same sector . ##H"

<< endl;
#endif
result = 1;
} else {
result = 0O;
}
} 11 else

delete ctr2snd;
return result;

/ Observaﬂon *kkkkkkkkkk *********/
/*
* Constructor : create an observation from a pointer of char
*
Observation::Observation(char *ptr) {
if(ptr == NULL) return;

int ono = *((int *)(ptr + ONO_OFFSET));

int snd = *((int *)(ptr + SND_OFFSET));

int rec = *((int *)(ptr + RCV_OFFSET));
double tmp = *((double *)(ptr + TMP_OFFSET));
float p_x = *((float*)(ptr + POS_OFFSET_X));
float p_y = *((float*)(ptr + POS_OFFSET_Y));
float p_z = *((float*)(ptr + POS_OFFSET_2));
float v_x = *((float*)(ptr + VEC_OFFSET_X));
float v_y = *((float*)(ptr + VEC_OFFSET_Y));
float v_z = *((float*)(ptr + VEC_OFFSET_Z));
int slc = *((int *)(ptr + SLC_OFFSET));
float rad = *((float*)(ptr + RAD_OFFSET));

Point* p = new Point(p_x, p_y, p_2);
Vector* v = new Vector(v_x, V_y, V_z);

this->obs_no_ = ono;

this->sender_ = snd;

this->receiver_ = rec;

this->timestamp_ = tmp;

this->region_ = new Region(p, v, slc, rad);

/*

* export_buffer : convert an observation into a pointer of ch ar
*
* Note : the pointer must be allocated and provided.
*
char* Observation::export_buffer(char *ptr) {
if(ptr == NULL) return NULL;

/I obs_number_
memcpy(ptr + ONO_OFFSET, &obs_no_, sizeof(int));
/I sender_
memcpy(ptr + SND_OFFSET, &sender_, sizeof(int));
Il receiver_
memcpy(ptr + RCV_OFFSET, &receiver_, sizeof(int));
/I timestamp_
memcpy(ptr + TMP_OFFSET, ×tamp_, sizeof(double));
/I region_->center
memcpy(ptr + POS_OFFSET_X, ®ion_->center->x, sizeof(float));
memcpy(ptr + POS_OFFSET_Y, ®ion_->center->y, sizeof(float));
memcpy(ptr + POS_OFFSET_Z, ®ion_->center->z, sizeof(float));
/I region_->rec2dst
memcpy(ptr + VEC_OFFSET_X, ®ion_->rec2dst->X, sizeof (float));
memcpy(ptr + VEC_OFFSET_Y, ®ion_->rec2dst->y, sizeof (float));
memcpy(ptr + VEC_OFFSET_Z, ®ion_->rec2dst->z, sizeof (float));
memcpy(ptr + VEC_OFFSET_D,
®ion_->rec2dst->degree_, sizeof(float));
/I region_->slice_no
memcpy(ptr + SLC_OFFSET, ®ion_->slice_no, sizeof(int));
/I region_->radius
memcpy(ptr + RAD_OFFSET, ®ion_->radius, sizeof(float));

#ifdef _ DEBUG__
print_buffer(ptr);
#endif

return ptr;

/*
* print_buffer : assuming that the pointer is derived from an
* observation, this function show the original observation
*
void Observation::print_buffer(char *ptr) {

if(ptr == NULL) return;

int ono = *((int *)(ptr + ONO_OFFSET));

int snd = *((int *)(ptr + SND_OFFSET));

int rec = *((int *)(ptr + RCV_OFFSET));

double tmp = *((double *)(ptr + TMP_OFFSET));
float p_x = *((float*)(ptr + POS_OFFSET_X));
float p_y = *((float*)(ptr + POS_OFFSET_Y));

92

/*

* is_in_region - check whether or not this observation is in

float p_z = *((float*)(ptr + POS_OFFSET_Z));
float v_x = *((float*)(ptr + VEC_OFFSET_X));
float v_y = *((float*)(ptr + VEC_OFFSET_Y));
float v_z = *((float*)(ptr + VEC_OFFSET_Z));
int slc = *((int *)(ptr + SLC_OFFSET));
float rad = *((float*)(ptr + RAD_OFFSET));

cout << ono << " " << snd << " " << rec << " " << tmp

<< "' << pX << " << py << "' << pz <<)"
<M ("SK VX << "MKV y << "< vz <<) "

<< slc << " " << rad << endl;

* the same region defined by two observations, begin and end.

*/
int

Observation::is_in_region(Observation *begin,
Observation *end) {

/I First determin the 3 points that define each regions.

Point *a[3], *b[3], *my_point[3];

float slice = (int) 360/MAX_SLICE;

/I The observation begin

float angle_al = begin->region_->slice_no*slice +
begin->region_->rec2dst->degree();

float angle_a2 = (begin->region_->slice_no+1)*slice +
begin->region_->rec2dst->degree();

a[0] = new Point(begin->region_->center);

a[l] = new Point(begin->region_->radius*cos(angle_al*M
begin->region_->center->x,
begin->region_->radius*sin(angle_al*M_PI1/180) +
begin->region_->center->y, 0);

a[2] = new Point(begin->region_->radius*cos(angle_a2*M
begin->region_->center->Xx,
begin->region_->radius*sin(angle_a2*M_PI/180) +
begin->region_->center->y, 0);

/I The observation end

float angle_bl = end->region_->slice_no*30 +
end->region_->rec2dst->degree();

float angle_b2 = (end->region_->slice_no+1)*30 +
end->region_->rec2dst->degree();

b[0] = new Point(end->region_->center);

b[1] = new Point(end->region_->radius*cos(angle_b1*M_P
end->region_->center->x,
end->region_->radius*sin(angle_b1*M_PI1/180) +
end->region_->center->y, 0);

b[2] = new Point(end->region_->radius*cos(angle_b2*M_P
end->region_->center->x,
end->region_->radius*sin(angle_b2*M_PI1/180) +

_PI/180) +

_P1/180) +

1/180) +

1/180) +

93

94

end->region_->center->y, 0);

/I Create 3 points from this observation

float angle_m1 = region_->slice_no*slice +
region_->rec2dst->degree();

float angle_m2 = (region_->slice_no + 1)*slice +
region_->rec2dst->degree();

my_point[0] = new Point(region_->center);

my_point[1] = new Point(region_->radius*cos(angle_m1*M _Pl1/180) +
region_->center->x, region_->radius*sin(angle_m1*M_P 1/180)
+ region_->center->y, 0);

my_point[2] = new Point(region_->radius*cos(angle_m2*M _P1/180) +
region_->center->x, region_->radius*sin(angle_m2*M_P 1/180)
+ region_->center->y, 0);

Line* 1_a[3], *I_b[3];

I_a[0] = new Line(a[0], a[1]);
I_a[1] = new Line(a[0], a[2]);
I_a[2] = new Line(a[1], a[2]);
|_b[0] = new Line(b[0], b[1]);
I_b[1] = new Line(b[0], b[2]);
I_b[2] = new Line(b[1], b[2]);

=

/I Check if any of these three points are in any triangles.
/I If yes, return true. Otherwise, do the next step.
Triangle tri_begin(a[0], a[l], a[2]);
Triangle tri_end(b[0], b[1], b[2]);
for(int z=0; z<3; z++) {
if(tri_begin.is_inside(my_point[z]) ||
tri_end.is_inside(my_point[z])) {

delete a[z];

delete b[z];

delete my_point[z];

return 1;

int result = 0;
for(int i=0; i<3; i++) { // lines from obs start (I_a)
for(int j=0; j<3; j++) { // lines from obs end (I_b)
for(int k=0; k<3; k++) { // my_point
Rectangle* rec = new Rectangle(l_a[i], I_b[j]);

if(rec->is_inside(my_point[K])) {
result = 1,
delete rec;
goto found;

delete rec;
} Il for(int k..
} 1 for(int j..
} /1 for(int i..

found:

for(int z=0; z<3; z++) {
delete |_a[z];
delete |_b[z];
delete a[z];
delete b[z];
delete my_point[z];

return result;

/*********************** Observatlon Table *kkkkkkkkk
I* -
* last : access the last-seen observation of this node id
*/
Observation* Observation_Table::last(int id) {
deque<Observation*>::iterator itr = table_[id].end();
if(itr == table_[id].begin()) // An empty queue
return NULL;
else
return *(--itr);

/*
* export_table : convert the whole observation table
* into a pointer
* return
* - NULL if the table is empty
* - Otherwise, pointer to the buffer structure
*
Buffer* Observation_Table::export_table() {
/I Determine the buffer size
/I The 1st int is the number of obs nodes.
int buf_size = sizeof(int);
/I Number of observed nodes
int count = 0O;
for(int i=0; i<KMAX_ID; i++) {
int s = table_[i].size();

if(s = 0) {
/*
* The 1st int = ID of the observed node
* The 2nd int = NO. of obs

*****/

95

* Then the list of obs

*

buf_size += 2*sizeof(int) + BUFFER_SIZE*s;
count++;

iflcount == 0) return NULL;

char *buffer = new char[buf_size];

if(buffer == NULL) {
cerr << “"export_table : memory allocation error." << endl;
exit(-1);

Buffer* ret_buff = new Buffer(buf_size, buffer);
char *ptr = buffer;

/I Copy the number of non-empty entries into the first elemen
/I of the buffer.

memcpy(ptr , &count, sizeof(int));

ptr = (char *)(buffer + sizeof(int));

for(int i=0; i<KMAX_ID; i++) {
int s = table_[i].size();

if(s I= 0) {

/I Node ID

memcpy(ptr, &i, sizeof(int));

ptr = (char *)(ptr + sizeof(int));

/I Number of observations

memcpy(ptr, &s, sizeof(int));

ptr = (char *)(ptr + sizeof(int));

/I Copy each observation

deque<Observation*>::iterator itr;

for(itr = table_[i].begin(); itr != table_[i].end();

itr++) {

Observation *o = *itr;
o->export_buffer(ptr);
ptr = (char *)(ptr + BUFFER_SIZE);

return ret_buff;

/*
* Observation_Table::import_table - given a buffer stored
* observations

* transfered from another node, this function imports these
* observations and stores in this observation table.
*
void Observation_Table::import_table(Buffer *buf) {
if(ouf == NULL) {
cout << "test - Null pointer" << endl;
return;

char* ptr = buf->buffer_;
int node_no = *((int *)ptr); // No. of the observed
ptr = (char *)(ptr + sizeof(int));
#ifdef _ DEBUG2___
cout << "No. of nodes in the received observation table "
<< node_no << endl;
#endif

for(int i=0; i<node_no; i++) {
int id = *((int *)ptr); // Sender (the observed)
ptr = (char *)(ptr + sizeof(int));
int size = *((int *)ptr); // No. of observations
ptr = (char *)(ptr + sizeof(int));
#ifdef _ DEBUG2__
cout << "ID = " << id << " Size = " << size << endl
#endif

for(int j=0; j<size; j++) {
Observation* obs = new Observation(ptr);

#ifdef _ DEBUG2__
cout << *obs << endl;

#endif

if(check_observation(id, obs)) {
add_observation(id, obs);

} else {
delete obs;

}

ptr = (char *)(ptr + BUFFER_SIZE);

}
}

#ifdef _ DEBUG2___
cout << *this;

#endif

}

/*
* Observation_Table::add_observation - add an observatio
* respective table and sort it according to the timestamp

n in the

97

98

*
void Observation_Table::add_observation(int id, Observ ation *o0) {
deque<Observation*>::iterator itr;

/I Check if this node is in the table or not. If yes, check the
/I duplication of the observation. Otherwise, just add the
/I observation to the table.
if(table_[id].size() != 0) {
itr = find_if(table_[id].begin(), table_[id].end(),
bind2nd(ptr_equal_to<Observation*>(), 0));
if(itr == table_[id].end()) {
/I This observation is not duplicated. So record it.
table_[id].push_back(o);
/I For the sake of simplicity, we use sort for now.
/I We can change to insert later if necessary.

sort(table_[id].begin(), table_[id].end(), obs_compar e);
}
} else {
table_[id].push_back(o);
}
}
/*

* check whether there is an observation in the table that is
* more than 1 second apart from this observation or not.

*
int Observation_Table::check_observation(int id, Obser vation *0) {
if(table_[id].size() == 0) {
return 1;

} else if(table_[id].size() == 1) {
deque<Observation*>::iterator itr = table_[id].begin()
Observation *obs = *itr;
double otime = o->timestamp();

if(fabsl(otime - obs->timestamp()) >= MIN_OBSERVED_TIME)
return 1,

else
return O;

} else {

deque<Observation*>::iterator itr;

Observation *prev, *curr;

double otime = o->timestamp();

itr = table_[id].begin();
prev = *itr;
itr++;

while(itr != table_J[id].end()) {
curr = *jtr;

if((otime >= prev->timestamp()) &&
(otime < curr->timestamp())) {
if((fabsl(otime - prev->timestamp())
>= MIN_OBSERVED_TIME) &&
(fabsl(otime - curr->timestamp())
>= MIN_OBSERVED_TIME))

return 1,
else
return 0;
}
prev = curr;
itr++;

if((fabsl(otime - prev->timestamp()) >= MIN_OBSERVED_TI ME) &&
(fabsl(otime - curr->timestamp()) >=
MIN_OBSERVED_TIME))

return 1,
else
return O;
}

}
/*
* Observation_Table::merge - merge two observation tables together
*

void Observation_Table::merge(Observation_Table* t) {
for(int i=0; iKMAX_ID; i++) {
while(t->table_[i].size() != 0) {
deque<Observation*>::iterator itr = t->table_[i].begin 0;
Observation* o = *itr;

if(check_observation(i, 0)) {
add_observation(i, 0);

} else {
delete o;

t->table_[i].pop_front();

#ifdef _ DEBUG3__
print_table();

#endif

}

/*
* Observation_Table::convert2path - convert an entry in

100

* the observation
* table associated with id into a path.
*/
Path* Observation_Table::convert2path(int id) {
deque<Observation*>::iterator itr;
int no_obs = table_Jid].size();
int cnt = 0O;
double len = 0;

#ifdef _ DEBUG4
double s = 100000, e = -100000;
#endif

itr = table_[id].begin();

while(cnt < no_obs -1) {
Observation *cur, *next;
double start, end;

cur = *itr;

next = *(itr+1);

start = cur->timestamp_;

end = next->timestamp_;

/I If two observations are more far apart than

/I PERIOD_TOLERANCE

/I in the time domain, they are unrelated.

iflend-start <= PERIOD_TOLERANCE) len += (end-start);

#ifdef _ DEBUG4___
if(s>start) s = start;
ifle<end) e = end;

#endif

itr++;
cnt++;

#ifdef _ DEBUG4__
cout << "ID: " << id
<< " Count: " << cnt
<< " Length: " << len
<" ("< s << e <) << endl;
#endif

return new Path(id, len);

/*

* Observation_Table::generate_cluster - generate cluste rs
*/

void Observation_Table::generate_cluster(int nid,

101

double threshold, double confidence) {
deque<Path*> path_queue;
deque<Path*>::terator itr;
Path* p;
Cluster cluster(this, threshold, confidence);

/I 1. Push all paths into the path queue. We don't
/| care about paths
/I that have only one point.
for(int i=0; iKMAX_ID; i++)

if(table_[i].size() >1)

path_queue.push_back(convert2path(i));

/I 2. Sort the path queue by the length of the paths.
sort(path_queue.begin(), path_queue.end(), path_compa re);

#ifdef _ DEBUG4__
deque<Path*>::iterator i;

for(i = path_queue.begin(); i != path_queue.end(); i++) {
Path *t = *;
cout << "Path: " << *t << endl;
}
#endif
if(path_queue.size() == 0) return;

/I 3. Create a cluster for the first path in the path queue
itr = path_queue.begin();

p = *tr;

path_queue.pop_front();

Cluster_Entry* ce = new Cluster_Entry(p);
cluster.add_cluster(ce);

#ifdef _ DEBUG4__
cout << endl << "Processing " << *p << endl;
#endif

/I 4. lteratively compare a path with existing clusters.
while(path_queue.size() '= 0) {
itr = path_queue.begin();
p = *itr;
path_queue.pop_front();
#ifdef _ DEBUG4__
cout << endl << "Processing " << *p << endl;

#endif

cluster.compare_cluster(p);

cout << "#n:" << nid << endl;

cout << cluster;

/*
* Observation_Table::similarity - determine the similari
* a cluster and a path
*
void Observation_Table::similarity(Cluster_Entry *c, P
double &sim_score, double &confidence) {
Section *sl, *s2;
int a = c->cluster_head_id();
int b = p->id();

if((table_[a].size() <= 1) || (table_[b].size() <= 1)) {
sim_score = confidence = -1;
return;

sl = split_path(a);
s2 = split_path(b);

if((s1 == NULL) || (s2 == NULL) || s1->size() == 0 ||
s2->size() == 0) {
} else {
/*

ty b/w

ath *p,

cout << "%% " << a << " size = " << sl->size() << " "

<< " length = " << sl->length() << endl;

cout << "%% " << b << " size = " << s2->size() << " "

<< " length = " << s2->length() << endl;
*/

/I cout << "Before" << endl;
s1->similarity(s2, sim_score, confidence);

#ifdef _ DEBUG4__
if(sim_score > 50.0)
cout << "(Similairy, Confidence) between ("

<a<<" "<«<<b<<")=("
<< sim_score << ", " << confidence << ")"
<< endl;
#endif
delete s1;
delete s2;
}
}
/*

* Observation_Table::split_path - split a path into sectio
*

ns.

102

Section* Observation_Table::split_path(int id) {

/*

/I Unlikely to happen because we call this function only

/I when we pick an observation. Therefore, it is not possible
/I that the corresponding table entry is of zero size.
if(table_[id].size() <= 1) return NULL;

deque<Observation*>::iterator itr;
Observation *prev, *cur;

itr = table_[id].begin();

prev = *itr;

itr++;

Section_Entry *se = new Section_Entry(prev);
Section *section = new Section();

while(itr != table_[id].end()) {
cur = *itr;

if((cur->timestamp_ - prev->timestamp_) <=
PERIOD_TOLERANCE) {
se->add_observation(cur);
} else {
if(se->size() > 1) section->add_section(se);
else delete se;

se = new Section_Entry(cur);

prev = cur;
itr++;

/I Each valid sub_section has to have at least 2 observations
/I ALERT! - will observation compression effect this?
if(se->size() > 1) {

section->add_section(se);

return section;
} else {

delete se;

if(section->size() > 0) {
return section;

} else {
delete section;
return NULL;

}
} Il if(se...

103

* Observation_Table::size - return the total number of obse rvation
* stored in the table
*/
int Observation_Table::size() {
int num_obs = 0;

for(int i=0; i< MAX_ID; i++) {
num_obs += table_[i].size();

return num_obs;

/ Slmllanty *************/
void Similarity::sort_queue() {
sort(element_.begin(), element_.end(), se_compare);

void Similarity::add_top_entry(Path *p) {
deque<Sim_Entry*>:iterator sitr = element_.begin();
Sim_Entry *s = *sitr;
s->add_path(p);

Similarity::~Similarity() {
while(element_.size()) {
deque<Sim_Entry*>::iterator sitr = element_.begin();
Sim_Entry *s = *sitr;
delete s;
element_.pop_front();

/ Cluster okkk|
/*
* Destructor
*
Cluster::~Cluster() {
while(cluster_.size()) {
deque<Cluster_Entry*>:iterator itr = cluster_.begin()
Cluster_Entry* ¢ = *itr;
delete c;
cluster_.pop_front();

/*

* Cluster::compare_cluster - compare the path p to each
* Cluster_Entry.

* A Cluster_Entry is a collection of similar paths.

104

105

* If there is no
* Cluster_Entry similar to the path p, add a new
* Cluster_Entry for
* this path into the cluster. Otherwise, add the path p
* to the most
* similar Cluster_Entry.
*
void Cluster::compare_cluster(Path *p) {
deque<Cluster_Entry*>::iterator itr;
Cluster_Entry *ce;
Similarity similarity;

for(itr = cluster_.begin(); itr != cluster_.end(); itr++) {
ce = *tr;

double sim_score, conf;

ot_->similarity(ce, p, sim_score, conf);

if(sim_score >= threshold && conf >= confidence) {
Sim_Entry *s = new Sim_Entry(ce, sim_score);
similarity.add(s);

if(similarity.size() != 0) {
similarity.sort_queue();
similarity.add_top_entry(p);

} else {
/I Create a new cluster for the path
Cluster_Entry *new_entry = new Cluster_Entry(p);
add_cluster(new_entry);

i Section *rrkrkkkkkrkk kAR |
/*

* Section::~Section - Destructor

*/

Section::~Section() {
while(selement_.size()) {

deque<Section_Entry*>:iterator itr = selement_.begin();
Section_Entry *se = *itr;
delete se;

selement_.pop_front();

/*
* Section::length - find the length of a Section in the
* time domain.

*

double Section::length() {
deque<Section_Entry*>::iterator itr;
Section_Entry *se;
double len = 0.0;

for(itr = selement_.begin(); itr != selement_.end(); itr+
se = *tr;
len += se->length();

return len;

/*
* Section::similarity - find similarity b/w 2 section group
*
void Section::similarity(Section *s, double &sim_score,
double &confidence) {
deque<Section_Entry*>::iterator sitr, pitr;
Section_Entry *secl, *sec2;
double overlap_time, common_time;
double mul = 1.0;
double len = 0.0;
double total_len = max(length(), s->length());
int flag = O;

/I total_len should not be 0 because both Sections are not
/I NULL and not of size 0.
if(total_len == 0) {
cerr << "Section::similarity - total_len = 0" << endl;
exit(-1);

for(sitr = selement_.begin(); sitr != selement_.end(); si
secl = *sitr;

for(pitr = s->selement_.begin();
pitr != s->selement_.end(); pitr++) {
sec2 = *pitr;

if(sec1->sim_section(sec2, overlap_time,
common_time) > 0) {
flag = 1;

/*

* common_time = period that both sections have
* observations

* overlap_time = period that both nodes were

* observed together. In general, overlap_time <=

+) {

tr++) {

106

107

* common_time.
*
if(common_time != 0) {
mul *= overlap_time/common_time;
len += overlap_time;
} else {
if(sim_type == SIM_TYPE_STRONG) {
mul = len = 0;

}
}
#ifdef _ DEBUG5__
cout << "ot or len = " << overlap_time
<< " ¢t = " << common_time
<< " mul =" << mul
<< endl;
#endif
} /1 if(secl...

} 11 for(pitr...
} 11 for(sitr...

sim_score = flag*rmul*len*100/total_len;
confidence = len;

/*********************** SeCtIOI’]_EntI’y *kkkkkkkkkkkkk ******/
/*
* Section_Entry::sim_section - find the similarity betwee n two

* Section_Entry. This function returns overlap_time and
* obs_common_time by using pass-by-reference. Then the sim ilarity
* between the two is overlap_time/obs_common_time.

* 0-0-0-0-0-0

* s-S-S-S-S-S-S

* |--- cmn - |

*

* cmn = obs_common_time

* overlap_time = time that o and s are in the same region.
*/

int Section_Entry::sim_section(Section_Entry *s,
double &overlap_time, double &obs_common_time) {
Section_Entry *denominator, *nominator;
deque<Observation*>::iterator itr;
Observation *prev, *curr;
double cmn_time = 0, ovl_time = 0;
int state;

/I find command time in here too
if((start > s->stop) || (stop < s->start)) {
/I Two section do not overlap.

return -1;

} else if((start <= s->start) && (stop <= s->stop)) {
/I Two sections overlap.
denominator = this;
nominator = s;

} else if((start >= s->start) && (stop >= s->stop)) {
/I Two sections overlap.
denominator = s;
nominator = this;

} else if((start <= s->start) && (stop >= s->stop)) {
/I One section is a subset of the other. (OK)
denominator = this;
nominator = s;

} else if((start >= s->start) && (stop <= s->stop)) {
/I One section is a subset of the other. (OK)
denominator = s;
nominator = this;

itr = nominator->element_.begin();

rev = *itr; // obs should not be NULL.
if(denominator->is_in_region(prev)) state = 1,
else state = 0;

itr++;

while(itr != nominator->element_.end()) {
curr = *itr;

if((curr->timestamp_ > denominator->start) &&
(curr->timestamp_ < denominator->stop)) {

cmn_time += curr->timestamp_ - prev->timestamp_;

if(denominator->is_in_region(curr))
if(state == 1)

ovl_time += curr->timestamp_ - prev->timestamp_;

else
state = 1;

prev = curr;
itr++;

} else {
break;

obs_common_time = cmn_time;
overlap_time = ovl_time;

return 1;

108

/*

* Section_Entry:is_in_region - check if the observation o is in
* this sub_section or not.

*/

int Section_Entry::is_in_region(Observation *0) {
deque<Observation*>::iterator itr;

if((o->timestamp_ < start) || (o->timestamp_ > stop)) retu m O;

Observation *curr, *next;

for(itr = element_.begin(); itr != element_.end(); itr++) {
if((itr+1) '= element_.end()) {
curr = *itr;

next = *(itr+1);

if((o->timestamp_ >= curr->timestamp_) &&
(o->timestamp_ <= next->timestamp_)) {
if(o->is_in_region(curr, next)) return 1;
else return O;

}
Yt
} 1l for
return 0O;
}
/********************** Overloadlng the 0pel’at0r<< *kkk *********/

ostream& operator<< (ostream& o0s, Point& p) {

wn

0s << "(" << pXx << << py << "M << pz <<)Y

return os;

}

ostream& operator<< (ostream& os, Vector& v) {
05 << "(" << VX << " << vy << " << vz <<)
return os;

ostream& operator<< (ostreamé& o0s, Region& r) {
0s << *r.center << " "
<< *rrec2dst << " "
<< rslice_no << " "
<< r.radius;

return os;

ostream& operator<< (ostream& o0s, Observation& 0) {

109

0s <<
<<
<<
<<

<<

return

ostream&
for(int

"(" << 0.0bs_no_ << ") "
o.sender_ << " "
o.receiver_ << " "
o.timestamp_ << " "

"[" << *(o.region_) << "

0s;

operator<< (ostreamé& o0s, Observation_Table& 0) {
i=0; iIKMAX_ID; i++) {

if(o.table_[i].size() !'= 0) {

0s << "ID = " << i << " Size ="
<< o.table_[i].size()
<< endl;
deque<Observation*>::iterator itr;
for(itr = o.table_[i].begin();itr != o.table_[i].end();
itr++) {
Observation *obs = *itr;
0s << *obs << endl;

return os;

ostream& operator<< (ostream& os, Cluster_Entry& ce) {
deque<Path*>::iterator itr;
Path *p;

for(itr

= ce.element_.begin(); itr = ce.element_.end();
itr++) {

p = *itr;
0s << p->id() << ;

return os;

ostream& operator<< (ostream& os, Cluster& c) {
deque<Cluster_Entry*>::iterator itr;
Cluster_Entry *ce;

int count = O;

for(itr = c.cluster_.begin(); itr != c.cluster_.end();
itr++) {
ce = *tr;

if(ce->size() > 1)

0S << "#C" << count << ": " << *ce << endl;

110

count++;
}
return os;
}
ostream& operator<< (ostream& os, Path& p) {
0s << "(" << pid() << ", " << plen() << ")
return os;
}
ostream& operator<< (ostream& o0s, Section_Entry& se) {
0s << "start = " << se.start << " stop = " << se.stop;
return os;

A.3 sybil2.tcl
This is the NS2 script.

Class Agent/Sybil/SE -superclass Agent/Sybil

Agent/Sybil/SE instproc printme {args} {
global ns
set now [$ns now]
puts $now

}

Agent/Sybil/SE instproc recv {args} {
puts "Package received."

Define options

channel type

set val(chan) Channel/WirelessChannel
radio-propagation model

set val(prop) Propagation/TwoRayGround
network interface type

set val(netif) Phy/WirelessPhy

MAC type

set val(mac) Mac/802_11

interface queue type

set val(ifq) Queue/DropTail/PriQueue
link layer type

set val(ll) LL

antenna model

set val(ant) Antenna/OmniAntenna

max packet in ifg

set val(ifglen) 50

number of mobile nodes

set val(nn) 4

111

routing protocol

set val(rp) AODV

X dimension of topography

set val(x) 500

Y dimension of topography

set val(y) 500

time of simulation end

set val(stop) 10

set val(cp) "cbr-50-20-4-512"

#set val(sc) "scen-670x670-50-600-20-0"
set val(sc) "scr-n4-p1-M10-t10-x500-y500"
set val(trace_output) mobile2.tr

set val(nam_output) mobile2.nam

TR Function #HHHHEHEHEHIHEHE

proc log-movement {} {
global logtimer ns_ ns

set ns $ns_

source ../../ns-allinone-2.31/ns-2.31/tcl/mobility/t

Class LogTimer -superclass Timer
LogTimer instproc timeout {} {
global val node_;

for {set i O} {$i < $val(nn)} {incr i} {

$node_($i) log-movement

}
$self sched 0.1

set logtimer [new LogTimer]
$logtimer sched 0.1

proc static_movement {} {
global node_

$node_(0) set X_ 0O
$node_(0) set Y_ O
$node_(0) set Z_ 0
$node_(1) set X_ 200
$node_(1) set Y
$node_(1) set Z
$node_(2) set X_ 400
$node_(2) set Y
$node_(2) set Z
$node_(3) set X_ 600
$node_(3) set Y
$node_(3) set Z_

112

Load the scenario file
proc dynamic_movement {} {
global val ns_ node_

set god_ [God instance]

Load the scenario
if { $val(sc) == "™ } {
puts "Program terminated abnormally.
The scenario $val(sc) is missing."
exit 1
} else {
puts "Loading scenario file..."
source $val(sc)
puts "Load complete..."

Ending nam and the simulation
proc stop {} {
global ns_ tracefd namtrace val
$ns_ flush-trace
close $tracefd
close $namtrace
exec nam $val(nam_output) &
exit 0

e e e e e R s e e e W e e e e e e e
set ns_ [new Simulator]

set tracefd [open $val(trace_output) w]

set namtrace [open $val(nam_output) w]

$ns_ trace-all $tracefd

$ns_ namtrace-all-wireless $namtrace $val(x) $val(y)

$ns_ use-newtrace

set up topograp hy object
set topo [new Topography]
$topo load_flatgrid $val(x) $val(y)

create-god $val(nn)

Create nn mobilenodes [$val(nn)] and attach them to the cha
Configure the nodes
$ns_ node-config

-adhocRouting $val(rp) \

-IType $val(ll) \

-macType $val(mac) \

-ifgType $val(ifg) \

nnel.

113

114

-ifgLen $val(ifglen) \
-antType $val(ant) \
-propType $val(prop) \
-phyType $val(netif) \
-channel [new $val(chan)] \
-topolnstance $topo \
-agentTrace ON \
-routerTrace ON \
-macTrace OFF \
-movementTrace ON

Create mobile nodes
for {set i O} {$i < $val(nn)} {incr i} {
set node_($i) [$ns_ node]

All Sybil agents have to be on the same port.
for {set i 0} {$i < $val(nn)} {incr i} {

set sybil_($i) [new Agent/Sybil]

$node_($i) attach $sybil_($i) 250

#static_movement
dynamic_movement
log-movement

Load the connection pattern

#if { $val(cp) == " } {

puts "Program terminated abnormally.

The connection pattern $val(cp) is missing."
exit 1

#} else {

puts "Loading connection pattern..."

source $val(cp)

puts "Load complete..."

#}

Create a UDP agent and attach it to node nO
set udpO [new Agent/UDP]

$ns_ attach-agent $node_(0) $udpO

Create a CBR traffic source and attach it to udpO
set cbrO [new Application/Traffic/CBR]

$cbrO set packetSize_ 500

$cbr0 set interval_ 0.1

$cbr0 attach-agent $udpO

Create a NULL agent (a traffic sink) and attach it to node nl1
set null0 [new Agent/Null]

$ns_ attach-agent $node_(3) $null0

Connect the traffic source with the traffic sink
$ns_ connect $udp0 $nullo

115

Schedule events for the CBR agent
It is important to start moving after
the pause period otherwise the

unit vector is zero.

$ns_ at 1.0 "$cbr0 start"

$ns_ at $val(stop) "$cbr0 stop"

Define node initial position in nam
for {set i O} {$i < $val(nn)} {incr i} {
30 defines the node size for nam
$ns_ initial_node_pos $node_($i) 30

for {set i 0} {$i < $val(nn)} {incr i} {
Telling nodes when the simulation ends
$ns_ at $val(stop) "$node_($i) reset”;

for {set i O} {$i < $val(nn)} {incr i} {
$ns_ at 9.0 "$sybil_($i) exchange_all"

}
$ns_ at 9.5 "$sybil_(1) detect”

$ns_ at $val(stop) "$ns_ nam-end-wireless $val(stop)"

$ns_ at $val(stop) "stop"

$ns_ at $val(stop).01 "puts \"Simulation completed succes sfully\";
$ns_ halt"

$ns_ run

Appendix

Source Code for BitTorrent
Simulators

B.1 torrent.cc

This is the simulator that was used to generate Figure 4.1, Z.and 4.3.

#include <iomanip>
#include <fstream>
#include <iostream>
#include <math.h>
#include <stdlib.h>
#include <unistd.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
using namespace std,;

/l#define _ DEBUG1__

struct transaction_type {
int id, // ID of the mapping

pl, /I src peer

p2; /I dst peer

enum sim_mode {
/I No optimistic unchoking, no chokelist
NOOUC_NOCKL,
/I No optimistic unchoking with chokelist
NOOUC_CKL,
/I Optimistic unchoking, no chokelist
OUC_NOCKL,
/I Optimistic unchoking with chokelist

OUC_CKL,

/I Optimistic unchoking with rehab, no chokelist
OUC_NOCKL_REHAB,

/I Optimistic unchoking with rehab and chokelist
OUC_CKL_REHAB

/] = Functions Prototypes ----------

void init(int argc, char* argv[]);

int is_caught(int pid);

int is_caught_all();

float r_func(float reputation);

float s_func(float u_rate);

void test();

void print_sim_info();

void print_summary(int clock, int no_tran, int no_untran)
ostream& operator<< (ostream& o0s, transaction_type& t);
void test_caught_all();

void BC_choke_list();

void usage();

void update_reputation(int i, int j);

void free_memory();

void optimistically_unchoke(int unchoker);

void normalize(int i);

void print_summary(int clock, int no_tran, int no_untran)
void print_summary_machine(int clock, int no_tran, int no
void print_reputation_matrix();

void print_reputation_matrix_transpose();

void print_data_transfered();

void print_connection_matrix();

| ~mmemmemmmeemeceeen Global Variables ------------
transaction_type* transaction_mapping;

const gsl_rng_type * T;

gsl_rng *r;

int OUC, CKL, REHAB;

e Simulation Parameters ----------
/I Rji matrix

float** Reputation_Matrix;

/I Cj set

int** Connected;

/I Amount of data transfered
float** Data_Transfered;

Il u_j

float* Upload_Rate;

/I N*(N-1)/2

int Num_Pair;

/I Model parameters

/I Simulation mode

_untran);

117

sim_mode Mode = NOOUC_NOCKL;

/I Number of iterations/rounds

int Num_Interval = 10000;

/I Number of peers

int Num_Peer = 100;

/I U, upload rate = 0, U, 2U, 3U

float U_rate = 250;

/I Govern when a transaction occurs
float Transacting_Threshold = 0.3;

/I Min reputaiton allowing a CHK to be accepted
float Accept_Threshold = 0.001;

/I Initially given reputation score

float Epsilon = 0.005;

/I ¢ for updating reputation

float Coeff = 0.01;

/I Period that a CKL is broadcast

int BC_Period = 100;

/I Probability that a leecher rehabilitates
int Rehab_Period = 1000;

/I Probability of OUC

float OUC_Prob = 0.25;

/I Random number generator seed

int Seed;

/I Print in a human-readable format or a machine-readable fo
int HUMAN = 0;

/I Output filename

char Filename[20] = "output.txt";
ofstream output;

1 Main ------emmemeee- e

int main(int argc, char* argv[]) {
int no_tran, no_untran;

no_tran = no_untran = O;
init(arge, argv);

int clock = 0;
while(1) {
/I Randomly choose a pair of peers.
int id = (int) nearbyint(gsl_ran_flat(r, 0, Num_Pair-1));
int i = transaction_mappinglid].p1;
int j = transaction_mapping[id].p2;

/I Calculate the reputation of each peer
float Rij, Rji;
if((Connected[i][j] == 0) && (Connected[j][i] == 0)) {
/l'i and j have never met before
Reputation_Matrix[i][j] = Reputation_Matrix[j][i]
= Epsilon;

rmat

118

119

Rij = Reputation_Matrix[i][j];
Rji = Reputation_Matrix[j][i];
} else if(Connected[i]j] && Connected[j][i]) {
/l'i and j have met before
/I Normalize
float suml = 0, sum2 = O;
for(int k=0; k<Num_Peer; k++) {
if(Reputation_Matrix[i][k] >= 0)
suml += Reputation_Matrix[i][k];
if(Reputation_Matrix[j][k] >= 0)
sum2 += Reputation_Matrix[j][k];

ifsuml > 0) Rij = Reputation_Matrix[i][jl/sum1,;
if(sum2 > 0) Rji = Reputation_Matrix[j][i}/sum2;
if((Rij <0) |I (Rij >1)) {
cout << "ERROR " << j << " " << J << "M
<< suml << " " << Rij << end];
print_connection_matrix();
print_reputation_matrix();

exit(-1);

}

if((Rji <0) I (Rii >1)) {
cout << "ERROR " << j << " " << j <" "

<< sum2 << " " << Rji << endl;

print_connection_matrix();
print_reputation_matrix();
exit(-1);

}

} else {

/l'i and j have never met before, but one of
/I them is choked via chokelist

/I so this transaction will not occur.

continue;

/I Perform the transaction with prob = r(Rji)*r(Rij).
if(gsl_ran_flat(r, 0, 1) < r_func(Rij)*r_func(Rji)) {
/I Supposedly this is the transaction.

/I Add j to Ci and i to Cj
Connected([i][j] = Connected[j][i] = 1;

/I Optimistically unchoke a choked node with
/I the probability OUC_Prob
if(OUC) {
optimistically_unchoke(i); optimistically_unchoke(j)

120

/I Update Rij and Rji, respectively
update_reputation(i, j); update_reputation(j, i);

#ifdef _ DEBUG1__
cout << "At " << clock << " Transaction: ("

<< "< << ") << endl
#endif
no_tran++;
} else {
no_untran++;
}

/I Broadcast the chokelist
if(CKL && (clock != 0) && !(clock % BC_Period))
BC_choke_list();

/I Rehabilitate some leechers
if(REHAB && (clock !=0) && !(clock % Rehab_Period)) {
}

/I Normalize reputation
normalize(i); normalize(j);

/I Print progress every 100 transactions
/I if(clock % 10000 == 0)
1 cout << "Clock = " << clock << endl;

/I Without OUC, the loop terminates when all leechers are
/I caught by all peers. With OUC, the loop terminates after
/I a certain period of time.

if('lOUC) {

if(is_caught_all()) break;
} else {

if(clock == Num_Interval) break;
}

/I Increment the clock
clock++;
} 1/ While(1) loop

/I Priting report
if(HUMAN) print_summary(clock, no_tran, no_untran);
else print_summary_machine(clock, no_tran, no_untran);

output.close();
free_memory();

gsl_rng_free(r);

return 0O;

}
I e Functions Implementations ----- -meeeeeees
/*
* BC_choke_list : broadcast the choke list
*
void BC_choke_list() {
int i, j, k;
for(i=0; i<Num_Peer; i++)
for(j=0; j<Num_Peer; j++)
if((i = j) && (Reputation_Matrix[i][j] == 0))
for(k=0; k<Num_Peer; k++)
/l'i & j is not the same peer. niether are j and k.
if((il 1= k) && (= k) &&
/I Exchange the chokelist only with neighbors
Connected[i][k] &&
/I Exchange the chokelist only with
/I non-leechers
(Reputation_Matrix[i][k] != 0) &&
(Reputation_Matrix[k][i] > Accept_Threshold)){
/I cout << "Accepting " << i << " "
Il << j << " " << k <<endl
Connected[K][]] = 1;
Reputation_Matrix[K][j] = O;
}
}
/*

* normalize : normalize a node reputation
* if sum of reputation exceeds 1.
*
void normalize(int i) {
float sum = 0;

for(int k=0; k<Num_Peer; k++)
if(Reputation_Matrix[ij[k] >= 0)
sum += Reputation_Matrix[i][K];

if(sum > 1)
for(int k=0; k<Num_Peer; k++)
if(Reputation_Matrix[i][k] > 0)
Reputation_Matrix[i][k] /= sum;

/*

* optimistically_unchoke: Optimistically unchoke
* a choked node with the probability OUC_Prob
*

121

void optimistically_unchoke(int unchoker) {
int picked, count = -1, found = O;

if(gsl_ran_flat(r, 0, 1) < OUC_Prob) {
/I Count the number of choked peers
for(int c=0; c<Num_Peer; c++)
if(Reputation_Matrix[unchoker][c] == 0) count++;

/I Randomly picked a peer to unchoke
if(count == -1) {

return;

} else if(count == 0) {
picked = 0;

} else {

picked = (int) nearbyint(gsl_ran_flat(r, 0, count));

/I Unchoked the peer
int count2 = -1,
for(int d=0; d<Num_Peer; d++) {
if(Reputation_Matrix[unchoker][d] == 0) count2++;
if(count2 == picked) {
Reputation_Matrix[unchoker][d] = Epsilon;

found = 1;
break;
}
}
if(ffound) {
cerr << "OUC error: out of range " << endl;
exit(-1);
}
}
}
/*
* free_memory : free allocated memory
*

void free_memory() {

/I Delete Reputation_Matrix, Connected, Upload_Rate

for(int i=0; i<Num_Peer; i++) {
delete [] Reputation_Matrix[i];
delete [] Connected][i];
delete [] Data_Transfered[i];

}

delete [] Upload_Rate;

delete [] Reputation_Matrix;

delete [] Connected;

delete [] Data_Transfered,;

122

123

/*
* update_reputation : Update reputation of Rij
*
void update_reputation(int i, int j) {
/I Update Rij
if(Upload_Rate[j] == 0) {
Reputation_Matrix[i][j] = O;
} else {
Reputation_Matrix[i][j]
+= Coeff*s_func(Upload_Rate[j] - Upload_Rate[i]);

/I Record data transfered from j to i
Data_Transfered[i][j] += Upload_Rate][j];

/*
* is_caught : check if a leecher with pid is caught
* py all non-leechers or not
*
int is_caught(int pid) {
int result = 1,

for(int i=0; i< Num_Peer; i++)
if((i != pid) && (Upload_Ratel[i] != 0)
&& (Reputation_Matrix[i][pid] '= 0)) {
result = O;
break;

#ifdef _ DEBUGX__
if(result) cout << pid << " is caught." << endl;
#endif

return result;

/*
* catch_all_leechers : check if all
* leechers are caught by all peers.
*
int is_caught_all() {

int result = 1,

for(int i=0; i<Num_Peer; i++) {
if((Upload_Rate[i] == 0) && lis_caught(i)) {
result = 0;
break;

124

return result;

/*
* transaction_probability : this is the "r* function, deter mining
* the probability that the transaction may occur.
*
float r_func(float reputation) {
float result;

if((0 <= reputation) && (reputation <= Epsilon)) {
result = sqgrt(Transacting_Threshold)*reputation/Epsil on;
} else if((reputation > Epsilon) && (reputation <=1)) {
result = sqgrt(Transacting_Threshold) +
(reputation - Epsilon) *
(1 - sqrt(Transacting_Threshold))/(1 - Epsilon);
} else {
cerr << "r_func: invalid reputation score \""
<< reputation << "\"' << endl;
print_reputation_matrix();
exit(-1);

return result;

/*

* s_func : this is the "s" function,

* determining the credit gained from

* the upload rate

*

float s_func(float upload) {

if((upload < -3*U_rate) || (upload > 3*U_rate)) {
cerr << "s_func: differential reputation error "
<< upload << endl;

exit(-1);

float result;

iflupload < -1*U_rate) result = 0;

else if(upload == -1*U_rate) result = 0.005;
else if(upload == 0) result = 0.075;

else if(upload == U_rate) result = 0.1;
else if(upload == 2*U_rate) result = 0.4,
else if(upload == 3*U_rate) result = 1.0;

if(result < 0) {
cerr << "s_func: result is less than 0" << endl;

exit(-1);

} else if(result > 1) {
cerr << "s_func: result is greater than 1" << endl;
exit(-1);

return result;

/*

* usage : print usage message

*

void usage(int argc, char* argv[]) {
cout << argv[0] << " [options]" << endl;
cout << "Valid options are : " << endl;
cout << "-a <accepting threshold>" << endl;
cout << "-b <CKL broadcast period>" << endl;
cout << "-f <output filename>" << endl;
cout << "-h Print help message" << endl;
cout << "-m <mode>" << endl;
cout << " 0 for No optimistic unchoking, no chokelist"

<< endl;

cout << " 1 for No optimistic unchoking with chokelist"
<< endl;

cout << " 2 for Optimistic unchoking, no chokelist"
<< endl;

cout << " 3 for Optimistic unchoking with chokelist"
<< endl;

cout << " 4 for Optimistic unchoking with rehab, no chokelist "
<< endl;

cout << " 5 for Optimistic unchoking with rehab and chokelist "
<< endl;

cout << "-n <number of peers>" << endl,

cout << "-0 <OUC probability>" << endl;

cout << "-r Print in a human-readable format" << endl;
cout << "-s <seed>" << endl;

cout << "-t <maximum interval>" << endl;

/*
* init : initialize the simulation
*
void init(int argc, char* argv[]) {
extern char *optarg;
int option;

/I Process options
while ((option = getopt(argc, argv, "a:b:f:hm:n:o:rs:t:")
1= 1) {

switch (option) {

125

case 'a"

sscanf(optarg, "%f", &Accept_Threshold); break;
case 'b"

sscanf(optarg, "%d", &BC_Period); break;
case 'f:

sscanf(optarg, "%s", &Filename); break;
case 'm"

sscanf(optarg, "%d", &Mode); break;
case 'n"

sscanf(optarg, "%d", &Num_Peer); break;
case '0"

sscanf(optarg, "%f", &OUC_Prob); break;
case '

HUMAN = 1; break;
case 's'"

sscanf(optarg, "%d", &Seed); break;
case 't

sscanf(optarg, "%d", &Num_Interval); break;
case 'h"

default: usage(argc, argv); exit(-1);

}

Num_Pair = (int) Num_Peer*(Num_Peer-1)/2;

switch(Mode) {
case NOOUC_NOCKL: OUC = 0; CKL = 0; REHAB = 0; break;
case NOOUC_CKL: OUC = 0; CKL = 1; REHAB = 0; break;
case OUC_NOCKL: OUC = 1; CKL = 0; REHAB = 0; break;
case OUC_CKL: OUC = 1; CKL = 1; REHAB = 0; break;
case OUC_NOCKL_REHAB: OUC = 1; CKL = 0; REHAB = 1, break;
case OUC_CKL_REHAB: OUC = 1; CKL = 1; REHAB = 1; break;

output.open(Filename);
if(foutput.is_open()) {
cerr << "print_summary: error in opening output file"
<< endl;
exit(-1);

/I Initialize the GSL library
gsl_rng_env_setup();
T = gsl_rng_default;
r = gsl_rng_alloc(T);
gsl_rng_set(r, Seed);

/I Allocate required memory
Reputation_Matrix = new float* [Num_Peer];
Connected = new int* [Num_Peer];
Data_Transfered = new float* [Num_Peer];

126

/*

Upload_Rate = new float [Num_Peer];

for(int i=0; i<Num_Peer; i++) {

/I Initialize u_i = (0,U,2U,3U)

/I int coeff = (int) nearbyint(gsl_ran_flat(r, 0, 3));

int coeff;
if((i >= 0) && (i < (int) Num_Peer/4)) {
coeff = 0;
} else if((i >= (int) Num_Peer/4) &&
(i < (int) Num_Peer/2)) {
coeff = 1,
} else if((i >= (int) Num_Peer/2) &&
(i < (int) 3*Num_Peer/4)) {

coeff = 2;
} else {
coeff = 3;

}

Upload_Rate[i] = coeff * U_rate;

Reputation_Matrix[i] = new float [Num_Peer];
Connected[i] = new int [Num_Peer];
Data_Transfered[i] = new float [Num_Peer];
/I Initialize Rji and Cj
for(int j=0; j<Num_Peer; j++) {
/l'i & j have never connected
Connected[i][j] = 0;
/I No data transfered yet
Data_Transfered[i][j] = O;
/l'i = j, invalid
ifi == j) Reputation_Matrix[i][j] = -9.0;
/l'i & j have never connected
else Reputation_Matrix[i][j] = -1.0;

/I Initialize the data structure that holds transaction pai
transaction_mapping = new transaction_type [Num_Pair];
int counter = 0;

for(int i=0; i<Num_Peer; i++)

for(int j=i+1; j<Num_Peer; j++) {
transaction_mapping[counter].id = counter;
transaction_mapping[counter].pl = i;
transaction_mapping[counter].p2 = j;
counter++;

* print_sim_info : print simulation parameters

*

void print_sim_info() {

Is.

127

output

<< "Simulation condition =9

if(OUC) output << "OUC + ";
else output << "No OUC + *;
if(CKL) output << "CKL + "
else output << "No CKL + *;
if(REHAB) output << "REHAB";
else output << "No REHAB";

output

output
<<
output
<<
output
<<
output
<<
output
<<
output
<<
output
<<
output
<<
output
<<
output
<<
output
<<

<< endl;

<< "Number of peers (N) =

Num_Peer << endl;

<< "Upload rate (U) =
U_rate << endl;

<< "Transaction threshold =
Transacting_Threshold << endl;

<< "CHK accepting threshold = "

Accept_Threshold << endl;

<< "Epsilon (e) =
Epsilon << endl;

<< "Coefficient (c) =
Coeff << endl;

<< "CKL broadcast period =
BC_Period << endl;

<< "Rehabilitating period =
Rehab_Period << endl;

<< "OUC probability (p) =
OUC_Prob << endl;

<< "Seed

Seed << end|

<< "Output =

Filename << endl;

void print_connection_matrix() {

output << "Connection Matrix (Cj)" << endl;

for(int i=0; i<Num_Peer; i++) {

for(int j=0; j<Num_Peer; j++)
output << Connected[i][j] << " ";
output << endl;

}

output << endl;

void print_reputation_matrix() {
output << "Reputation Matrix" << endl;

for(int

i=0; i<Num_Peer; i++) {

for(int j=0; j<Num_Peer; j++)

output << setprecision(5) << setw(10)
<< Reputation_Matrix[i][j] << " *;

output << endl;

128

129

}

output << endl;

void print_data_transfered() {

output << "Data Transfered" << endl;

for(int i=0; i<Num_Peer; i++) {
for(int j=0; j<Num_Peer; j++)

output << setprecision(5) << setw(10)
<< Data_Transfered[i][j] << " *;

output << endl;

}

output << endl;

void print_reputation_matrix_transpose() {
output << "Reputation Matrix (Rij) Transpose (For Excel)"
<< endl;
for(int i=0; i<Num_Peer; i++) {
for(int j=0; j<Num_Peer; j++)
if(i 1= j)
output << setprecision(5) << setw(10)
<< Reputation_Matrix[jJ[i] << " *;
else
output << setprecision(5) << setw(10) << 0 << " ",
output << endl;

}

output << endl;

/*

* print_summary : print simulation result in

* a human-readable format

*

void print_summary(int clock, int no_tran, int no_untran) {
print_reputation_matrix_transpose();

output << "Transaction Success Rate" << endl;
for(int i=0; i<Num_Peer; i++) {

int count = O;

float sum_reput = O;

for(int j=0; j<Num_Peer; j++)
if(Connected([j][i] !'= 0) {
count++;
sum_reput += Reputation_Matrix[j][i];

if(count) output << i << " " << sum_reput/count << endl;
else output << j << " N/A" << endl;

130

}

output << endl;

print_sim_info();

output << "Simulation time = " << clock << endl

output << "Attmepted transaction =
<< no_tran << " (" << setprecision(4)
<< float ((no_tran*100.0)/(no_tran + no_untran)) << "%)"
<< endl;

/*
* print_summary_machine : print the summary
* result in a machine-readable format
*
void print_summary_machine(int clock, int no_tran, int no _untran) {
/I Print transaction success rate
for(int i=0; i<Num_Peer; i++) {
int count = 0;
float sum_reput = O;

for(int j=0; j<Num_Peer; j++)
if(Connected([j][i] !'= 0) {
count++;
sum_reput += Reputation_Matrix[j][i];

if(count) output << sum_reput/count << " *;
else output << "-1 "

}

output << endl;

/I Simulation time

output << clock << endl;

/I Attmepted transactions

output << no_tran*100.0/clock << endl;

}

ostream& operator<< (ostreamé& o0s, transaction_type& t) {
05 << "(" << tid << ", " << tpl << ", " << tp2 << ")
return os;

B.2 game.cc

This is the simulator that was used to generate Figure 4.4, 3. 4.6, 4.7, 4.8,
and 4.9.

131

/*

* game.cc : simulation of BitTorrent
* need to install gsl and gsl-devel
* 11/23/2008

*

#include <iomanip>

#include <fstream>

#include <iostream>

#include <math.h>

#include <stdlib.h>

#include <unistd.h>

#include <gsl/gsl_rng.h>

#include <gsl/gsl_randist.h>

using namespace std,;

/l#define _ DEBUG1__

struct transaction_type {
int id,// ID of the mapping
pl,/l src peer
p2; /I dst peer

enum sim_mode {
/I No optimistic unchoking, no chokelist
NOOUC_NOCKL,
/I No optimistic unchoking with chokelist
NOOUC_CKL,
/I Optimistic unchoking, no chokelist
OUC_NOCKL,
/I Optimistic unchoking with chokelist
OUC_CKL,
/I Optimistic unchoking with rehab, no chokelist
OUC_NOCKL_REHAB,
/I Optimistic unchoking with rehab and chokelist
OUC_CKL_REHAB

I e Functions Prototypes ---------- -
void init(int argec, char* argv[]);

void game2(int clock);

int is_caught(int pid);

int is_caught_all();

float r_func(float reputation);

float s_func(float u_rate);

float V_func(int id, float succ_rate);

void test();

void print_sim_info();

void print_summary(int clock, int no_tran, int no_untran) ;
ostream& operator<< (ostream& o0s, transaction_type& t);

void test_caught_all();

void BC_choke_list();

void usage();

void update_reputation(int i, int j);

void free_memory();

void optimistically_unchoke(int unchoker);

void normalize(int i);

inline float compute_success_rate(int index);

void print_summary(int clock, int no_tran, int no_untran)
void print_summary_machine(int clock, int no_tran, int no
void print_reputation_matrix();

void print_reputation_matrix_transpose();

void print_data_transfered();

void print_connection_matrix();

| ~mmemmemmmeemceeen Global Variables ------------
transaction_type* transaction_mapping;

const gsl_rng_type * T,

gsl_rmg *r;

int OUC, CKL, REHAB, CONT;

I wmmmememmmeeeeeeen Simulation Parameters ----------
/I Rji matrix

float** Reputation_Matrix;

/I Cj set

int** Connected;

/I Amount of data transfered
float** Data_Transfered;

Il u_j

float* Upload_Rate;

/I Success rate in previous period
float *Old_Succ_Rate;

/I Net utility in previous period
float *Old_Net_Utility;

/I Upload_Rate in previous period
float *Old_Upload_Rate;

/I N*(N-1)/2

int Num_Pair;

/I Model parameters

/I Simulation mode

sim_mode Mode = NOOUC_NOCKL;
/I Number of iterations/rounds

int Num_Interval = 1000000;

/I Number of peers

int Num_Peer = 100;

/I Number of groups

int Num_Group = 4;

/I U, upload rate = 0, U, 2U, 3U; Umax = 3*U_rate
float U_rate = 250;

/I Upload increment step

_untran);

132

float Upload_Inc_Step = 5;

/I Maximum upload rate

float Umax = 4*U_rate;

/I Maximum utility

float Vmax = Umax;

/I Reputation Multiplier

int Mult = 1;

/I Alpha for calculating the utility, V(s)
float Alpha = 100;

float Coeff_C = -6.4;

float Coeff_ D = M_PI_2;

/I Temperature for calculating the utility, V(s)
float Temperature = 1;

/I Govern when a transaction occurs
float Transacting_Threshold = 0.3;

/I Min reputaiton allowing a CHK to be accepted
float Accept_Threshold = 0.001;

/I Initially given reputation score

float Epsilon = 0.005;

/I ¢ for updating reputation

float Coeff = 0.1;

/I Period that a CKL is broadcast

int BC_Period = 100;

/I Probability that a leecher rehabilitates
int Rehab_Period = 10000;

/I Probability of OUC

float OUC_Prob = 0.25;

/I Random number generator seed

int Seed;

/I Print in a human-readable format or a machine-readable fo
int HUMAN = 0;

/I 0 for same player, 1 for diff players
int Behavior = 0;

/I Output filename

char Filename[20] = "output.txt";

/I Cost factor in V_func

float Cost_factor = 1,

ofstream output;

int NodelD = 0;
1 Main ----memmeemeee— o ceeee
/*
void test2() {
float i;
i =0; cout << i << " " << V_func(i) << endl;
i = 0.003; cout << i << " " << V_func(i) << endl;;
i = 0.005; cout << i << " " << V_func(i) - 250 << endl;
i = 0.007; cout << i << " " << V_func(i) - 500 << endl;;

0.009; cout << i << " " << V_func(i) - 750 << endl;;

rmat

133

cout << endl;
i = 0.005; cout << i << " " << V_func(i) << endl;
i = 0.01; cout << i << " " << V_func(i) << endl;;
i = 0.03; cout << i << " " << V_func(i) << endl;
}
*
/*
* main:
*

int main(int argc, char* argv[]) {
int no_tran, no_untran;

no_tran = no_untran = O;
init(arge, argv);

/I Setting 1 : for real-time
/I Vmax = 4*U_rate; Alpha = 700; Coeff C = -6.4; Coeff D = M_PI
/I Setting 2
Vmax = 4000; Alpha = 100; Coeff C = 0; Coeff_ D = 0;
/I Vmax = 8000; Alpha = 100; Coeff C = 0; Coeff D = 0;
1
Il test2(); exit(0);

int clock = 0;
while(1) {
/I Randomly choose a pair of peers.
int id = (int) nearbyint(gsl_ran_flat(r, 0, Num_Pair-1));
int i = transaction_mappinglid].p1;
int j = transaction_mapping[id].p2;

/I Calculate the reputation of each peer
float Rij, Rji;
if((Connected[i][j] == 0) && (Connected[j][i] == 0)) {
/l'i and j have never met before
Reputation_Matrix[i][j] = Reputation_Matrix[j][i]
= Epsilon;

Rij = Reputation_Matrix[i][j];
Rji = Reputation_Matrix[j][i];
} else if(Connected]i][j] && Connected[j][i]) {
/l'i and j have met before
/I Normalize
float suml = 0, sum2 = 0;
for(int k=0; k<Num_Peer; k++) {
if(Reputation_Matrix[i][k] >= 0)
suml += Reputation_Matrix[i][k];
if(Reputation_Matrix[j][k] >= 0)
sum2 += Reputation_Matrix[j][k];

_2;

134

135

if(suml > 0) Rij = Reputation_Matrix[i][jl/sum1,;
if(sum2 > 0) Rji = Reputation_Matrix[j][i}/sum2;
if((Rij <0) I (Rij >1)) {
cout << "ERROR " << j << " " << J << "M
<< suml << " " << Rij << endl;
print_connection_matrix();
print_reputation_matrix();

exit(-1);

}

if((Rji <0) I (Rji >1)) {
cout << "ERROR " << j << " " << j << " "

<< sum2 << " " << Rji << endl;

print_connection_matrix();
print_reputation_matrix();
exit(-1);

}

} else {

/l'i and j have never met before, but one of
/I them is choked via chokelist so this

/I transaction will not occur.

continue;

/I Perform the transaction with prob = r(Rji)*r(Rij).
if(gsl_ran_flat(r, 0, 1) < Mult*r_func(Rij)*r_func(Rji)) {
/I Supposedly this is the transaction.

/I Add j to Ci and i to Cj
Connected(i][j] = Connected[j][i] = 1;

/I Optimistically unchoke a choked node with the
/I probability OUC_Prob
if(OUC) {
optimistically_unchoke(i); optimistically_unchoke(j) ;

/I Update Rij and Rji, respectively
update_reputation(i, j); update_reputation(j, i);

#ifdef _ DEBUG1__
cout << "At " << clock << " Transaction: ("

<< i< "< <<)" << end;
#endif
no_tran++;
} else {

no_untran++;

/I Broadcast the chokelist
if(CKL && (clock != 0) && !(clock % BC_Period)) {
BC_choke_list();

/I Normalize reputation
normalize(i); normalize(j);

/I Rehabilitate some leechers
if(REHAB && (clock !=0) && !(clock % Rehab_Period)) {
game2(clock);

/I Print progress every 100 transactions

if((clock = 0) && (clock % 200000 == 0)) {
if(HUMAN) print_summary(clock, no_tran, no_untran);
else print_summary_machine(clock, no_tran, no_untran);

/I Without OUC, the loop terminates when all leechers are
/I caught by all peers. With OUC, the loop terminates after
/I a certain period of time.

if(lCONT) {

if(is_caught_all()) break;
} else {

if(clock == Num_Interval) break;
}

/I Increment the clock
clock++;

} /1 While(1) loop
output.close();
free_memory();

gsl_rng_free(r);

return 0O;

* game2:

void game2(int clock) {
for(int a=0; a<Num_Peer; a++) {

if(a<5) continue;
if((clock/Rehab_Period) == 1) {
/I The first period
/I Calculate s(0) and v(0)
Old_Succ_Rate[a] = compute_success_rate(a);
Old_Net_Utility[a] = V_func(a,

136

137

(Old_Succ_Rate[a] = -1)?0Ild_Succ_Rate[a]:0) -
Cost_factor*Upload_Rate[a];
Old_Upload_Rate[a] = Upload_Rate[a];
/*
cout << a << "\t" << Old_Succ_Rate[a] << "\t"
<< V_func(a, (Old_Succ_Rate[a] != -1)?
Old_Succ_Rate[a]:0)
<< "\t" << Old_Net_Utility[a] << endl;

*/
} else {
float succ = compute_success_rate(a);
float net_util = V_func(a, (succ != -1)?succ:0) -

Cost_factor*Upload_Rate[a];
float util_diff = net_util - Old_Net_Utility[a];

/*
if(@==NodelD)
cout << clock << " " << @a << " "
<< Upload_Rate[a] << " "
<< util_diff << " " << succ << endl;
*/

Old_Succ_Rate[a] = succ;
Old_Net_Utility[a] = net_util;
/I Accept or reject the new rate
if((util_diff >= 0) ||
((util_diff < 0) && (gsl_ran_flat(r,0,100) <
pow(M_E,util_diff/ Temperature)))) {
Old_Upload_Rate[a] = Upload_Rate[a];
} else {
Upload_Rate[a] = Old_Upload_Rate[a];

/I Adapt the upload rate

double step = 1000.0/3.0;

double i = gsl_ran_flat(r, 0, 1000);
int choice;

if(i >= 0) && (i < 333.33)) choice = 0;
else if((i >= 333.33) && (i < 666.66)) choice = 1,
else choice = 2;

switch(choice) {
case 0: break;
case 1: if(Upload_Rate[a] >= Upload_Inc_Step)
Upload_Rate[a] -= Upload_Inc_Step;
break;
case 2: if(Upload_Rate[a] <= Umax - Upload_Inc_Step)
Upload_Rate[a] += Upload_Inc_Step;

break;

/*
* BC_choke_list : broadcast the choke list
*/
void BC_choke_list() {
int i, j, k;

for(i=0; i<Num_Peer; i++)
for(j=0; j<Num_Peer; j++)
if((il '= j) && (Reputation_Matrix[i][j] == 0))
for(k=0; k<Num_Peer; k++)

/l'i & j is not the same peer. niether are j and k.

if((i = k) && (j = k) &&
/I Exchange the chokelist only with neighbors
Connected[i][k] &&
/I Exchange the chokelist only
/I with non-leechers
(Reputation_Matrix[i][k] != 0) &&
(Reputation_Matrix[k][i] > Accept_Threshold))

/I cout << "Accepting "

<< i<<""<<j<< " << k <<endl;
Connected[K][j] = 1;
Reputation_Matrix[K][j] = O;

/*
* normalize : normalize a node reputation if
* sum of reputation exceeds 1.
*
void normalize(int i) {

float sum = 0;

for(int k=0; k<Num_Peer; k++)

if(Reputation_Matrix[i][k] >= 0)
sum += Reputation_Matrix[i][K];

if(sum > 1)
for(int k=0; k<Num_Peer; k++)
if(Reputation_Matrix[i][k] > 0)
Reputation_Matrix[i][k] /= sum;

/*

138

* optimistically_unchoke: Optimistically unchoke a choke
* node with the probability OUC_Prob
*
void optimistically_unchoke(int unchoker) {
int picked, count = -1, found = O;

if(gsl_ran_flat(r, 0, 1) < OUC_Prob) {
/I Count the number of choked peers
for(int c=0; c<Num_Peer; c++)
if(Reputation_Matrix[unchoker][c] == 0) count++;

/I Randomly picked a peer to unchoke
if(count == -1) {

return;

} else if(count == 0) {
picked = 0;

} else {

picked = (int) nearbyint(gsl_ran_flat(r, 0, count));

/I Unchoked the peer
int count2 = -1,
for(int d=0; d<Num_Peer; d++) {
if(Reputation_Matrix[unchoker][d] == 0) count2++;
if(count2 == picked) {
Reputation_Matrix[unchoker][d] = Epsilon;

found = 1;
break;
}
}
if(ffound) {
cerr << "OUC error: out of range " << endl;
exit(-1);
}
}
}
/*
* free_memory : free allocated memory
*

void free_memory() {
/I Delete Reputation_Matrix, Connected, Upload_Rate
for(int i=0; i<Num_Peer; i++) {
delete [] Reputation_Matrix[i];
delete [] Connected(i];
delete [] Data_Transfered][i];
}
delete [] Upload_Rate;
delete [] Reputation_Matrix;

139

140

delete [] Connected,
delete [] Data_Transfered;

/*
* update_reputation : Update reputation of Rij
*
void update_reputation(int i, int j) {
/I Update Rij
if(Upload_Rate[j] == 0) {
Reputation_Matrix[i][j] = O;
} else {
Reputation_Matrix[i][j] +=
Coeff*s_func(Upload_Rate[j] - Upload_Rate[i]);

/I Record data transfered from j to i
Data_Transfered[i][j] += Upload_Rate][j];

/*
* is_caught : check if a leecher with pid is
* caught by all non-leechers or not
*
int is_caught(int pid) {
int result = 1;

for(int i=0; i< Num_Peer; i++)
if((i '= pid) && (Upload_Rate[i] != 0) &&
(Reputation_Matrix[i][pid] != 0)) {
result = 0;
break;

#ifdef _ DEBUGX__
if(result) cout << pid << " is caught." << endl;
#endif

return result;

/*
* catch_all_leechers : check if all leechers
* are caught by all peers.
*/
int is_caught_all() {
int result = 1;

for(int i=0; i<Num_Peer; i++) {
if((Upload_Rate[i] == 0) && lis_caught(i)) {

result = 0;
break;

return result;

/*

* V_func : utility function

*

float V_func(int id, float succ_rate) {
float max;

if(Behavior == 0) {
max = Vmax;
} else {
int ppg = (int) Num_Peer/Num_Group; // peers per group
int coeff = (int) id/ppg + 1;
max = coeff*VYmax/Num_Group;

return max*(atan(Alpha*succ_rate + Coeff_C) + Coeff_D)/M _PI

/*
* transaction_probability : this is the "r" function, deter mining
* the probability that the transaction may occur.
*
float r_func(float reputation) {
float result;

if((0 <= reputation) && (reputation <= Epsilon)) {
result = sqrt(Transacting_Threshold)*reputation/Epsil on;
} else if((reputation > Epsilon) && (reputation <=1)) {
result = sqgrt(Transacting_Threshold) +
(reputation - Epsilon) *
(1 - sgrt(Transacting_Threshold))/(1 - Epsilon);
} else {
cerr << "r_func: invalid reputation score \"
<< reputation << "\"" << endl;
print_reputation_matrix();
exit(-1);

return result;

/*
* s_func : this is the "s" function, determining the

141

* credit gained from the upload rate

*

float s_func(float upload) {
float result;

if((upload < -4*U_rate) || (upload > 4*U_rate)) {

cerr << "s_func: differential reputation error

<< upload << endl;
exit(-1);

if(lupload < -1*U_rate)

result = 0O;

else if(upload = -1*U_rate)
result = 0.005;

else if((upload > -1*U_rate) && (upload <= 0))
result = 0.075;

else if((upload > 0) && (upload <= U_rate))
result = 0.1;

else if((upload > U_rate) && (upload <= 2*U_rate))
result = 0.4;

else if((upload > 2*U_rate) && (upload <= 4*U_rate))
result = 1.0;

if(result < 0) {

cerr << "s_func: result is less than 0" << endl;

exit(-1);
} else if(result > 1) {

cerr << "s_func: result is greater than 1" << endl;
exit(-1);

}

return result;

/*

* usage :

*

print usage message

void usage(int argc, char* argv[]) {
argv[0] << " [options]" << endl;

cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

<<

"Valid options are :

"-a
"-b
"-C
"-Cc
"-D
-f

"-h

"-M
"-m

<< endl;

<accepting threshold>" << endl;

<CKL broadcast period>" << endl;

<Cost factor in the V_func>" << endl;
<Coeff for updating reputation>" << endl;
<0 for same behavior, 1 for different>" <<
<output filename>" << endl;

Print help message" << endl;

<Repuation Multiplier>" << endl;

<mode>" << endl;

endl;

142

cout <<
<< endl;
cout << "
<< endl;
cout << "
<< endl;
cout << "
<< endl;

cout <<

143

0 for No optimistic unchoking, no chokelist"
1 for No optimistic unchoking with chokelist"
2 for Optimistic unchoking, no chokelist"
3 for Optimistic unchoking with chokelist"

4 for Optimistic unchoking with rehab,

no chokelist" << endl;

cout << "

5 for Optimistic unchoking with rehab

and chokelist" << endl;

cout << "-n
cout << "-0
cout << "-r
cout << "-S
cout << "-s
cout << "-t
cout << "-u
cout << "-u

}

/*

*init : initialize
*/

void init(int argc,

<number of peers>" << endl;

<OUC probability>" << endl;

Print in a human-readable format" << endl;
All peers use the same Vmax" << endl;
<seed>" << endl;

<maximum interval>" << endl;

<Upload increment step>" << endl;
<Upload step>" << endl;

the simulation

char* argv[]) {

extern char *optarg;

int option;

/I Process options

while ((option

= getopt(argc, argv,

"a:b:C:c:d:fhi:M:m:n:ors:tu:U:") 1= -1) {
switch (option) {

case 'a"

sscanf(optarg, "%f", &Accept_Threshold); break;
case 'b"

sscanf(optarg, "%d", &BC_Period); break;
case 'C"

sscanf(optarg, "%f", &Cost_factor); break;
case 'c"

sscanf(optarg, "%f", &Coeff); break;
case 'd"

sscanf(optarg, "%d", &Behavior); break;
case 'f:

sscanf(optarg, "%s", &Filename); break;
case 'i"

sscanf(optarg, "%d", &NodelD); break;
case 'M"

sscanf(optarg, "%d", &Mult); break;
case 'm"

144

sscanf(optarg, "%d", &Mode); break;
case 'n"

sscanf(optarg, "%d", &Num_Peer); break;
case '0"

sscanf(optarg, "%f", &OUC_Prob); break;
case ' HUMAN = 1; break;
case 's'"

sscanf(optarg, "%d", &Seed); break;
case 't"

sscanf(optarg, "%d", &Num_Interval); break;
case 'u"

sscanf(optarg, "%f", &Upload_Inc_Step); break;
case 'U"

sscanf(optarg, "%f", &U_rate); Umax = 4*U_rate; break;
case 'h"

default: usage(argc, argv); exit(-1);

}

Num_Pair = (int) Num_Peer*(Num_Peer-1)/2;

switch(Mode) {
/[Mode 0O
case NOOUC_NOCKL:

OUC = 0; CKL = 0; REHAB = 0; CONT = 0; break;
/I Mode 1
case NOOUC_CKL:

OUC = 0; CKL = 1; REHAB = 0; CONT = 0; break;
/I Mode 2
case OUC_NOCKL:

OUC = 1; CKL = 0; REHAB = 0; CONT = 1; break;
/I Mode 3
case OUC_CKL:

OUC = 1; CKL = 1; REHAB = 0; CONT = 1; break;
/I Mode 4
case OUC_NOCKL_REHAB:

OUC = 1; CKL = 0; REHAB = 1; CONT = 1, break;
/I Mode 5 (Not used)
case OUC_CKL_REHAB:

OUC = 1; CKL = 1; REHAB = 1; CONT = 1; break;

output.open(Filename);
if(lfoutput.is_open()) {
cerr << "print_summary: error in opening output file"
<< endl;
exit(-1);

/I Initialize the GSL library
gsl_rng_env_setup();

T = gsl_rng_default;
r = gsl_rng_alloc(T);
gsl_rng_set(r, Seed);

/I Allocate required memory
Reputation_Matrix = new float* [Num_Peer];
Connected = new int* [Num_Peer];
Data_Transfered = new float* [Num_Peer];
Upload_Rate = new float [Num_Peer];
Old_Succ_Rate = new float [Num_Peer];
Old_Net_Utility = new float [Num_Peer];
Old_Upload_Rate = new float [Num_Peer];
for(int i=0; i<Num_Peer; i++) {

/I Initialize u_i = (0,U,2U,3V)

/I int coeff = (int) nearbyint(gsl_ran_flat(r, 0, 3));

int coeff;

if((i >= 0) && (i < (int) Num_Peer/Num_Group)) {

coeff = 0;

} else if((i >= (int) Num_Peer/Num_Group) &&
(i < (int) 2*Num_Peer/Num_Group)) {

coeff = 1;

} else if((i >= (int) 2*Num_Peer/Num_Group) &&
(i < (int) 3*Num_Peer/Num_Group)) {

coeff = 2;
} else {
coeff = 3;

}
Upload_Rate[i] = coeff * U_rate;

Reputation_Matrix[i] = new float [Num_Peer];

Connected[i] = new int [Num_Peer];

Data_Transfered[i] = new float [Num_Peer];

/I Initialize Rji and Cj

for(int j=0; j<Num_Peer; j++) {
/l'i & j have never connected
Connected[i][j] = 0;
/Il No data transfered yet
Data_Transfered[i][j] = O;
/l'i = j, invalid
ifi == j) Reputation_Matrix[i][j] = -9.0;
/l'i & j have never connected
else Reputation_Matrix[i][j] = -1.0;

/I Initialize the data structure that holds transaction pai
transaction_mapping = new transaction_type [Num_Pair];

int counter = 0;
for(int i=0; i<Num_Peer; i++)
for(int j=i+1; j<Num_Peer; j++) {

IS.

145

146

transaction_mapping[counter].id = counter;
transaction_mapping[counter].pl = i
transaction_mapping[counter].p2 = j;

counter++;
}
}
/*
* print_sim_info : print simulation parameters
*

void print_sim_info() {
cout << "Simulation condition ="
if(OUC) cout << "OUC + ";
else cout << "No OUC + "
if(CKL) cout << "CKL + ";
else cout << "No CKL + *;
if(REHAB) cout << "REHAB";
else cout << "No REHAB";
cout << endl;
cout << "Number of peers (N) ="
<< Num_Peer << endl;
cout << "Upload rate (U) "
<< U_rate << endl;
cout << "Upload Increment Step =
<< Upload_Inc_Step << endl,
cout << "Transaction threshold =
<< Transacting_Threshold << endl;
cout << "CHK accepting threshold = "
<< Accept_Threshold << endl;
cout << "Epsilon (e)
<< Epsilon << end|;
cout << "Coefficient (c) =
<< Coeff << endl;
cout << "CKL broadcast period =
<< BC_Period << endl;
cout << "Rehabilitating period =
<< Rehab_Period << endl;
cout << "OUC probability (p) "
<< OUC_Prob << endl;
cout << "Seed =
<< Seed << endl;
cout << "Output =

<< Filename << endl;

cout << "Multiplier =
<< Mult << endl;

cout << "Behavior =
<< (Behavior==0?"Same":"Diff") << endl;

147

void print_connection_matrix() {
output << "Connection Matrix (Cj)" << endl;
for(int i=0; i<Num_Peer; i++) {
for(int j=0; j<Num_Peer; j++)
output << Connected[i][j] << " "}
output << endl;

}

output << endl;

void print_reputation_matrix() {
output << "Reputation Matrix" << endl;
for(int i=0; i<Num_Peer; i++) {
for(int j=0; j<Num_Peer; j++)
output << setprecision(5) << setw(10)
<< Reputation_Matrix[i][j] << " *;
output << endl;

}

output << endl;

void print_data_transfered() {
output << "Data Transfered" << endl;
for(int i=0; i<Num_Peer; i++) {
for(int j=0; j<Num_Peer; j++)
output << setprecision(5) << setw(10)
<< Data_Transfered[i][j] << " *;
output << endl;

}

output << endl;

void print_reputation_matrix_transpose() {
output << "Reputation Matrix (Rij) Transpose (For Excel)"
<< endl;
for(int i=0; i<Num_Peer; i++) {
for(int j=0; j<Num_Peer; j++)
if(i 1= j)
output << setprecision(5) << setw(10)
<< Reputation_Matrix[jJ[i] << " *;
else
output << setprecision(5) << setw(10) << 0 << "
output << endl;

}

output << endl;

/*
* compute_success_rate : calculate the success
* rate of the "index" peer

*

inline float compute_success_rate(int index) {
int count = 0;
float sum_reput = O;

for(int j=0; j<Num_Peer; j++)
if(Connected[j][index] != 0) {
count++;
sum_reput += Reputation_Matrix[j][index];

if(count) return sum_reput/count;
else return -1;

/*

* print_summary : print simulation result in

* a human-readable format

*

void print_summary(int clock, int no_tran, int no_untran)
output << "Clock = " << clock << endl;

print_reputation_matrix_transpose();

output << "Transaction Success Rate" << endl;
for(int i=0; i<Num_Peer; i++) {
float succ = compute_success_rate(i);

if(succ != -1) output << i << " " << succ << endl;
else output << i << " N/A" << endl;

}

output << endl;

print_sim_info();

output << "Simulation time = " << clock << endl

output << "Attmepted transaction =
<< no_tran << " (" << setprecision(4)

<< float ((no_tran*100.0)/(no_tran + no_untran)) << "%)"

<< endl;
}
/*
* print_summary_machine : print the summary result
* in a machine-readable format
*

void print_summary_machine(int clock, int no_tran, int no
/I Print current time
output << clock << endl;

/I Print percentage of attmepted transactions

_untran) {

148

output << no_tran*100.0/clock << endl;

/I Print transaction success rate
for(int i=0; i<Num_Peer; i++) {
float succ = compute_success_rate(i);

if(succ != -1) output << succ << " *;
else output << -1;

}

output << endl;

/I Print upload rate
if(REHAB) {
for(int j=0; j<Num_Peer; j++)

output << Upload_Rate[j] << " ";

output << endl;

/I Print net utility
for(int i=0; i<Num_Peer; i++) {
float succ = compute_success_rate(i);
float net_util = V_func(i, (succ != -1)?succ:0) -

Cost_factor*Upload_Rateli];

output << net_util << " ",

}

output << endl;

ostream& operator<< (ostream& 0s, transaction_type& t) {

0s << (" << tid << "

"< tpl << Y << tp2 <<)Y

return os;

B.3

This is the simulator that was used to generate Figure 4.12,

det _crv.cc

and 4.16.

#include
#include
#include
#include
#include

<iostream>
<iomanip>
<math.h>
<stdio.h>
<stdlib.h>

using namespace std,;

#define _ HYBRID___

class Game;

149

8, 4.14, 4.15,

150

class Peer;

I
/I print cost function

int Cost_Test = 0;

/I print beta function

int Beta_Test = 0;

/I Gradiant coeff

float Gradiant = 0.1;

/I Newton's error tolerance
float Epsilon = 0.5;

/[float Epsilon = 0.001;

/I Scaling in Newton's method
float Newton_Coeff = 0.01;

/I Coeff in sigma_func and beta_func
float Alpha = 10;

/I Coeff in V function

/[float Gamma = 0.00005;
float Gamma = 1;

/I Coeff in arctan cost function
float Atan_Coeff = 0.08;

/I Number of peers

int Num_Peer = 2;

/I Number of groups of peers
int Num_Group = 2;

/I Simulation time

int Num_lInterval = 20;

float U_rate = 250;

/I Maximum upload rate

float U_max = 5000;

/I Vmax

float Vmax = 4000;

float U0 = 1,

float U1l = 1,

/I Cmax

float CO = 5;

/I Cmax

float C1 = 5;

/I u tilda in cost function
float LO = 500;

/I u tilda in cost function

float L1 = 1000;

int DEBUG = 0;

int Detail = 0;

float *Cost, *Upload, *Limit;

/I Global ID counter

int id_counter = 0;

float B_max =0.5, B_width = 200, B_esp = 20, C_eps = 0;

void init(int argc, char **argv);

void usage(int argc, char **argv);
ostream& operator<< (ostreamé& os, Peer &p);

I
class Peer {
protected:
int pid;
float upload;
float cost;
float succ_rate;
float utility;
Game *game;
float u_limit;
float c_eps;

public:
Peer() { pid = id_counter++; }
void set_game(Game *g) { game = g; }
void set_limit(float u) { u_limit = u; }
void set_c_eps(float c) { c_eps = c; }
void calculate_upload();

float dif_impulse(float x) {
if(x<0) return pow(Alpha,2)*exp(Alpha*x);
else return -1*pow(Alpha,2)*exp(-1*Alpha*x);
}
float impulse(float x) {
return Alpha*exp(-1*Alpha*fabs(x));
}
float int_impulse(float x) {
if(x<0) return exp(Alpha*x);
else return 2 - exp(-1*Alpha*x);
}
float int_int_impulse(float x) {
if(x<0) return exp(Alpha*x)/Alpha;
else return 2*x + exp(-1*Alpha*x)/Alpha;

float ddcost_func(float u) {
return impulse(u - u_limit - c_eps);
}
float dcost_func(float u) {
return int_impulse(u - u_limit - c_eps);
}
float cost_func(float u) {
return int_int_impulse(u - u_limit - c_eps);
}
float beta_func(float u) {
return B_max*(int_impulse(u + B_width - B_esp) -

151

152

int_impulse(u - B_width + B_esp));
}
float diff_beta_func(float u) {
return B_max*(impulse(u + B_width - B_esp) -
impulse(u - B_width + B_esp));
}
float ddiff_beta_func(float u) {
return B_max*(dif_impulse(u + B_width - B_esp) -
dif_impulse(u - B_width + B_esp));

float succ_func(float u);
float diff_succ_func(float u);
float ddiff_succ_func(float u);

float V_func(float succ) {

return 2*Vmax*atan(Gamma*succ)/M_PI,
}
float diff_V_func(float succ) {

return 2*Gamma*Vmax/(M_PI*(1+pow(Gamma*succ,2)));
}
float ddiff_V_func(float succ) {

return -4*pow(Gamma,3)*Vmax*succ/(M_PI *

pow(l + pow(Gamma*succ,?2),2));

float diff_ w_func(float u) {
float succ = succ_func(u);
return diff_V_func(succ)*diff_succ_func(u) -
dcost_func(u);
}
float ddiff_w_func(float u) {
float succ = succ_func(u);

return ddiff_V_func(succ)*pow(diff_succ_func(u),2) +
diff_V_func(succ)*ddiff_succ_func(u) - ddcost_func(u)
void cost_test();

void beta_test();

friend class Game;
friend ostream& operator<< (ostream& o0s, Peer &p);

}
class Game {
private:
Peer *peer;

float *history;
public:

153

Game(int num_peer);

~Game() { delete [] history; delete [] peer; }
void rehabilitate(int clock);

void report(int clock);

void cost_test() { peer[0].cost_test(); }

void beta_test() { peer[0].beta_test(); }

friend class Peer;
I

int main(int argc, char **argv) {
init(arge, argv);

Game game(Num_Peer);

if(Cost_Test) { game.cost_test(); return O; }
if(Beta_Test) { game.beta_test(); return O; }

int clock = 0;

while(clock <= Num_Interval) {
game.report(clock);
game.rehabilitate(clock);
clock++;

return 0O;

void init(int argc, char **argv) {
extern char *optarg;
int option;

while((option = getopt(arge, argv,
"a:c:C:de:E:g:hl:L:n:pPtiviu:U:w:ixz:")) 1= -1) {
switch(option) {

case 'a"

sscanf(optarg, "%f", &Alpha); break;
case 'c"

sscanf(optarg, "%f", &C0); break;
case 'C":

sscanf(optarg, "%f", &C1); break;
case 'd"

DEBUG = 1; break;
case 'e"

sscanf(optarg, "%f", &Epsilon); break;
case 'E"

sscanf(optarg, "%f", &Newton_Coeff); break;
case 'g"

sscanf(optarg, "%f", &Gamma); break;

case I

sscanf(optarg, "%f", &LO0); break;
case 'L"

sscanf(optarg, "%f", &L1); break;
case 'M"

sscanf(optarg, "%f", &U_max); break;
case 'n"

sscanf(optarg, "%d", &Num_Peer); break;
case 'p": Cost_Test = 1; break;
case 'P": Beta_Test = 1; break;
case 'u"

sscanf(optarg, "%f", &U0); break;
case 'U"

sscanf(optarg, "%f", &U1); break;
case 't

sscanf(optarg, "%d", &Num_Interval); break;
case 'V

sscanf(optarg, "%f", &Vmax); break;
case 'w"

sscanf(optarg, "%f", &B_width); break;
case ‘X" Detail = 1; break;
case 'z"

sscanf(optarg, "%f", &Atan_Coeff); break;
case 'h"
default: usage(argc, argv); exit(-1);

if(DEBUG) {

cout << setprecision(2) << setiosflags(ios::fixed)
<< "Alpha = " << Alpha
<< setprecision(5) << setiosflags(ios::fixed)
<< " Gamma = " << Gamma
<< setprecision(5) << setiosflags(ios::fixed)
<< " Epsilon = " << Epsilon
<< setprecision(5) << setiosflags(ios::fixed)
<< " Newton_Coeff = " << Newton_Coeff;

cout << endl;

Cost = new floatfNum_Group];
Upload = new floatfNum_Group];
Limit = new float[Num_Group];

Cost[0] = CO; Cost[1] = C1,

Upload[0] = UO; Upload[1] = U1,
Limit[0] = LO; Limit[1] = L1;

void usage(int argc, char* argv[]) {

154

155

cout << argv[0] << " [options]" << endl;

cout << "Valid options are : " << endl;

cout << "-a <Coefficient Alpha in gamma function>" << endl;
cout << "-¢c <Max cost of group 0>" << endl;

cout << "-C <Max cost of group 1>" << endl;

cout << "-d Print debug info" << endl;

cout << "-e <Coefficient Epsilon (Newton stopping criterio r>"
<< endl;

cout << "-E <Scaling in Newton method>"
<< endl;

cout << "-g <Coefficient Gamma in V utility function>"
<< endl;

cout << "-h Print help message" << endl;

cout << "I <U_limit in impulse cost function of group 0>"
<< endl;

cout << "-L <U_limit in impulse cost function of group 1>"
<< endl;

cout << "-M <U_max>" << endl;

cout << "-n <number of peers>" << endl;

cout << "-p Print the cost function and exit" << endl;
cout << "-P Print the beta function and exit" << endl;
cout << "t <maximum interval>" << endl;

cout << "-v <Vmax>" << endl,

cout << "-u <Max upload of group 0>" << endl;

cout << "-u <Max upload of group 0>" << endl;

cout << "-x Print in high-precision” << endl;

cout << "-z <Coefficient in atan cost function>" << endl;

I -
Game::Game(int num_peer) {
peer = new Peer[num_peer];

int group_size = Num_Peer/Num_Group;
for(int i=0; i<Num_Peer; i++) {
int index = peer[i].pid/group_size;

peer[i].upload = Upload[index];
peer[i].cost = Cost[index];
peerfi].set_limit(Limit[index]);
peer[i].set_c_eps(C_eps);
peer[i].set_game(this);

history = new floatiNum_Peer];

void Game::rehabilitate(int clock) {
for(int i=0; i<Num_Peer; i++)
peerli].calculate_upload();

156

void Game::report(int clock) {
int counter, size = Num_Peer/Num_Group;
float upload_sum, succ_sum, util_sum, cost_sum;

for(int i=0; i<Num_Peer; i++)
history[i] = peer]i].upload;

upload_sum = succ_sum = util_sum = cost_sum = 0;
counter = 1;

cout << setw(2) << clock << " ";
for(int i=0; i<Num_Peer; i++) {
if(((counter-1)*size <= peer[i].pid

&& peer[i].pid < counter*size)
|| (counter == Num_Group
&& (counter-1)*size <= peer[i].pid
&& peer|i].pid < Num_Peer)) {

upload_sum += peer[i].upload;

succ_sum += peer[i].succ_func(peer[i].upload);

util_sum +=
peer[i].V_func(peer[i].succ_func(peer[i].upload));

cost_sum += peer]i].cost_func(peer[i].upload);

} else {

counter++;

if('Detail)
cout << setiosflags(ios::fixed) << setprecision(2);

cout << setw(8) << upload_sum/size << " "
<< setw(8) << succ_sum/size << " "
<< setw(8) << util_sum/size << " "
<< setw(8) << cost_sum/size << " ";

upload_sum = peer[i].upload;

succ_sum += peer[i].succ_func(peer[i].upload);

util_sum +=
peer[i].V_func(peer[i].succ_func(peer[i].upload));

cost_sum += peer]i].cost_func(peer[i].upload);

if(!Detail) cout << setiosflags(ios::fixed) << setprecis ion(2);
cout << setw(8) << upload_sum/size << " "

<< setw(8) << succ_sum/size << " "

<< setw(8) << util_sum/size << " "

<< setw(8) << cost_sum/size << " "

<< endl;

Il -

157

void Peer::calculate_upload() {
float old_upload, new_upload;
int direction = O;

new_upload = upload;

do {
succ_rate = succ_func(new_upload);
utility = V_func(succ_rate);

float first = diff_w_func(new_upload);
float second = ddiff_w_func(new_upload);

old_upload = new_upload;

#ifdef _ HYBRID__
if(second) {
float diff = first/second,;
if(fabs(diff) > 0.1*old_upload) {
if(diff > 0) diff = 0.1*old_upload;
else diff = -0.1*old_upload,;

/I Oscillatin occurs.
if(direction == 0) {
if(diff >= 0) direction = 1;
else direction = -1,
} else if((direction == 1 && diff < 0) ||
(direction == -1 && diff > 0)) {
break;

new_upload = old_upload - diff;

if(DEBUG) {
cout << pid << " "
<< succ_rate << " " << utility << " "
<< cost_func(new_upload) << " "
<< first << " " << second << " "
<< first/second << " "
<< new_upload << endl;

/I new_upload = old_upload - Newton_Coeff*first/second,;
} else {
new_upload = old_upload + Gradiant*first;

if(DEBUG) {
cout << pid << " "
<< old_upload << " "
<< Gradiant*first << "

<< new_upload << endl;

}
#elif __ GRADIANT

#endif

if(new_upload <= 0) {
new_upload = 0; break;

} else if(new_upload >= U_max) {
new_upload = U_max; break;

}

} while(fabsf(new_upload - old_upload) > Epsilon);

upload = new_upload;

float Peer:succ_func(float u) {
float sum = 0;

for(int i=0; i<Num_Peer; i++)
if(pid 1= i)

sum += game->history[i] *
beta_func(u - game->history[i]);

return sum,;

float Peer::diff_succ_func(float u) {
float sum = 0;

for(int i=0; i<Num_Peer; i++)
if(pid 1= i)
sum += game->history[i] *
diff_beta_func(u - game->historyf[i]);

return sum,;

float Peer::ddiff_succ_func(float u) {
float sum = 0;

for(int i=0; i<Num_Peer; i++)

if(pid != i)
sum += game->history[i] *

ddiff_beta_func(u - game->historyf[i]);

return sum;

void Peer:cost_test() {

158

set_limit(10);
set_c_eps(2);

for(int

i=0;i<20000;i++)

cout << j << " "

<< cost_func(i) << " "
<< dcost_func(i) << " "
<< ddcost_func(i) << "
<< endl;

void Peer::beta_test() {

for(int

i=-250;i<250;i++)

cout << j << " "

}
I

<< beta_func(i) << " "

<< diff_beta_func(i) << " "
<< ddiff_beta_func(i)

<< endl;

ostreamé&
0s <<

<<

<<

<<

<<

<<

<<

B.4

operator<< (ostream& os, Peer &p) {
e

p.pid << ""

p.upload << ""

p.succ_rate << ","

p.utility << "

p.cost_func(p.upload) << ","

"

Sybil.java

This is the simulator used in Section

import java.util.*;

public class Sybil {
public static void main(String[] args) {
Sybil s = new Sybil();

s.run();

public void run() {
double [I[] R = {{ 0, 0.5, 0.4, 0.2},

{0.3, 0, 0.5, 0.8},
{04, 05 0, O},
{03, 0, 01, O}

double [][IJ = new double[MAX][MAX];

4.3.2.4.

159

160

double [[[IRJ = new double[MAX][MAX];

for(int a=0; a<MAX; at++)
for(int b=0; b<MAX; b++)
J[a][b] = O;

calculate_indirect_referral(J, R, MAX);
calculate_referral(RJ, J, R, MAX);

System.out.printin("No Attack");
System.out.printin("Direct");
print_array(R, MAX);
System.out.printin("Indirect");
print_array(J, MAX);
System.out.printin("Total");
print_array(RJ, MAX);
System.out.printIn();

int NMAX = MAX + 1;

double Il R2 = {{ 0, 0.5, 0.4, 0.2, 0.2}
{03, 0, 05 08, 038}
{0.4, 0.5, 0, 0, 0}
{0.2, 0, 005 0, 0}
{0.1, 0, 005 0, O}

double [[[1J2 = new double[NMAX][NMAX];

double [[[IRI2 = new double[NMAX][NMAX];

for(int a=0; a<NMAX; a++)
for(int b=0; b<NMAX; b++)
J2[a]b] = O;

calculate_indirect_referral(J2, R2, NMAX);
calculate_referral(RJ2, J2, R2, NMAX);

System.out.printin("Sybil Attack");
System.out.printin("Direct");
print_array(R2, NMAX);
System.out.printin("Indirect");
print_array(J2, NMAX);
System.out.printin("Total");
print_array(RJ2, NMAX);
System.out.printIn();

public void calculate_referral(double[][] RJ,
double[][] J, double[]] R, int size) {
for(int j=0; j<size; j++)
for(int i=0; i<size; i++)
RJ[i][j] = Coeff_a*J[i][j] + (1-Coeff_a)*R[il[j];

public void calculate_indirect_referral(double[][] J,
double[][] R, int size) {
for(int j=0; j<size; j++)
for(int i=0; i<size; i++)
ifi 1= j) {
JOl] = 0
for(int k=0; k<size; k++)
if(j = k && i 1= k)
JOI += ROk * RIK]L;

public void print_array(double[][] a, int size) {
for(int i=0; i<size; i++) {
for(int j=0; j<size; j++)
System.out.format("%.3f ",a[il[j]);
System.out.printin();

final private int MAX = 4;
final private double Coeff_a = 0.4;
final private double R_max = 1,

161

Bibliography

[1] Douceur, J. R. (2002) \The Sybil Attack,” in Proc. IPTPS, Cambridge,
MA.

[2] Cohen, B., \BitTorrent Protol Speci cation,”
http://www.bittorrent.com/protocol.html.

[3] Cohen, B. (2003) \Incentives Build Robustness in BitTorrent," in Workshop
on Economics of Peer-to-Peer System8erkeley, CA, USA.

[4] Antoniadis, P. , C. Courcoubetis , and R. Mason (2004) \Comparing
economic incentives in peer-to-peer networks,Computer Networks 46(1),
pp. 133{146.

[5] \Ebay," http://www.ebay.com.

[6] Margolin, N. B. and B. N. Levine (2005) Quantifying Sybil Attacks
against Network Applications Tech. Rep. 67 Dept. of Com. Sci., U. Mass-
Ambherst.

[7] Newsome, J., E. Shi, D. Song, and A. Perrig (2004) \The Sybil Attack
in Sensor Networks : Analysis & Defenses," iRroc. IPSN'04, Berkeley.

[8] Zhang, Q. , P. Wang , D. S. Reeves, and P. Ning (2005) \Defending
against Sybil attacks in sensor networks," irfProc. IEEE ICDCS.

[9] Traynor, P. , H. Choi, G. Cao, S. Zhu, and T. L. Porta (2006) \Es-
tablishing Pair-Wise Keys in Heterogeneous Sensor Netwatkin Proc. IEEE
INFOCOM.

[10] Margolin, N. and B. Levine (2007) \Informant: Detecting Sybils Using
Incentives," Financial Cryptography.

163

[11] Buttyan, L. and J. Hubaux (2003) \Report on a Working Session on
Security in Wireless Ad Hoc Network," ACM Mobile Computing and Com-
munications Review 7(1), pp. 74 { 94.

[12] Piro, C. , C. Shields , andB. N. Levine (2006) \Detecting the Sybil Attack
in Mobile Ad Hoc Networks," in Proc. IEEE/ACM SecureComm.

[13] Sieka, B. (2006) \Using Radio Device Fingerprinting for the Detectio of
Impersonation and Sybil Attacks in Wireless Networks," inProceedings of
ESAS

[14] Rasmussen, K. B. and S. Capkun (2007) \Implications of Radio Finger-
printing on the Security of Sensor Networks," inProceedings of IEEE Se-
cureComm, 2007

[15] Wang, J. , G. Yang , Y. Sun, and S. Chen (2007) \Sybil Attack Detection
Based on RSSI for Wireless Sensor Network," iaroc. WiCom.

[16] Demirbas, M. andY. Song (2006) \An RSSI-based Scheme for Sybil Attack
Detection in Wireless Sensor Networks," ifProc. WoWMoM.

[17] Zhang, Y. , W. Liu , and W. Lou (2006) \Location-based Compromise-
tolerant Security Mechanisms for Wireless Sensor NetworksIEEE Journal
on Selected Areas in Communication®24(2), pp. 247{255.

[18] Zhou, T. , R. R. Choudhury , P. Ning , and K. Chakrabarty (2007)
\Privacy-Preserving Detection of Sybil Attacks in Vehicubr Ad Hoc Net-
works," in Proc. MobiQuitous, Philadelphia.

[19] Yan, G., G. C. an M. C. Weigle , and S. Olariu (2007) \Providing
VANET Security Through Active Position Detection,” in Proc. ACM Work-
shop on Vehicular ad hoc networks (PosterMontreal.

[20] \Top applications (bytes) for subinterface O0[0]: SD-WP trac,"
http://www.caida.org/analysis/workload/byapplicatio n/sdnap/.

[21] Reardon, M. (2008), \Comcast targets bandwidth hogs in test,” CNET
News, http://news.cnet.com/8301-107843-9959597-7.html.

[22] Kang, C. (2008), \Heavy Internet Users Targeted: Providers to Test
Charges, Delays," Washington Post, http://www.washingtapost.com/wp-
dyn/content/article/2008/06/03/AR2008060303248 .html.

[23] Fry, C. P. and M. K. Reiter (2006) Really Truly Trackerless BitTorrent,
Tech. Rep. CMU-CS-06-148 School of Computer Science, Carnegie Mellon
University.

164

[24] \utorrent,” http://www.utorrent.com.
[25] \ktorrent," http://www.ktorrent.org.
[26] \BitComet," http://www.bitcomet.com.

[27] Legout, A. , A. Liogkas , E. Kohler , andL. Zhang (June 2007) \Clus-
tering and Sharing incentives in BitTorrent systems,” inProc. ACM SIG-
METRICS, San Diego, CA.

[28] Qiu, D. and R. Srikant (2004) \Modeling and Performance Analysis of
BitTorrent-Like Peer-to-Peer Networks," in Proc. ACM SIGCOMM, Portland,
Oregon.

[29] Buchegger, S. and J.-Y. L. Boudec (June 2004) \Robust Reputation
System for P2P and Mobile Ad-hoc networks," inrSecond Workshop on Eco-
nomics of Peer-to-Peer Systems

[30] Marti, S. andH. Garcia-Molina (May 2004) \Limited reputation sharing
in P2P systems," inProc. of the 5th ACM conference on Electronic commerce

[31] Ma, R., S. Lee, J. Lui, and D. Yau (2003) \Incentive P2P networks: a
protocol to encourage information sharing and contributin." SIGMETRICS
Performance Evaluation Review31(2), pp. 23{25.

[32] Yu, B. , M. Singh , and K. Sycara (2004) \Developing trust in large-scale
peer-to-peer systems," inProc. of First IEEE Symposium on Multi-Agent
Security and Survivability

[33] Papaioannou, T. and G. Stamoulis (April, 2004) \E ective Use of Rep-
utation in Peer-to-Peer Environments,” in Fourth International Scientic
Workshop on Global and Peer-to-Peer Computing

[34] Kamvar, S. , M. Schlosser , and H. Garcia-Molina (2003) \The Eigen-
trust algorithm for reputation management in P2P networks; in Proc. of the
12th international conference on World Wide Web (WWW,) New York, NY,
pp. 640{651.

[35] Mortazavi, B. and G. Kesidis (March 2006) \Incentive-compatible cu-
mulative reputation systems for peer-to-peer le-swappi,” in Proc. CISS
Princeton.

[36] Micali, S. and R. Rivest (2002) \Micropayments Revisited," in Lecture
Notes in Computer ScienceSpringer-Verlag, pp. 149{163.

[37] Rivest, R. (2004) \Peppercoin Micropayments," inLecture Notes in Com-
puter Science Springer-Verlag, pp. 2{8.

165

[38] Ma, R. , S. Lee, J. Lui, and D. Yau (2004) \A game theoretic approach
to provide incentive and service di erentiation in P2P netvorks," in Proc. of
the joint international conference on Measurement and motieg of computer
systems New York, NY, pp. 189{198.

[39] Ma, R. T.B. ,S.C. M. Lee ,J. C. S. Lui ,andD. K. Y. Yau (2004) \An
Incentive Mechanism for P2P Networks," inProc. of the 24th International
Conference on Distributed Computing Systems (ICDCSWashington, DC,
USA, pp. 516{523.

[40] Mortazavi, B. and G. Kesidis (Feb. 2006) \Model and simulation study of
a peer-to-peer game with a reputation-based incentive mexhism," in Proc.
IEEE Information Theory and Applications (ITA) Workshop, UC San Diego.

[41] Figueiredo, D. R. , J. K. Shapiro , and D. Towsley (2004) A Public
Good Model of Availability in Peer-to-Peer Systemslech. Rep. 04-27 CSE
Dept, Michigan State University.

[42] Ramaswamy, L. andL. Liu (2003) \Free Riding: A New Challenge to Peer-
to-Peer File Sharing Systems," in36th Hawaii International Conference On
System Sciences (HICSS)

[43] de Veciana, G. andX. Yang (2003) \Fairness, incentives and performance
in peer-to-peer networks," inAllerton Conference on Communication, Control
and Computing

[44] Yang, X. and G. de Veciana (2004) \Service Capacity of Peer-to-Peer
Networks," in Proc. IEEE INFOCOM, San Francisco.

[45] Ge, Z., D. R. Figueiredo , S. Jaiswal , J. Kurose , and D. Towsley
(April 2004) \Modeling Peer-to-Peer le sharing systems, n Proc. of , Apr.
2004," in IEEE Infocom 2003 Sanfrasico, CA.

[46] Vojnovic, M. and L. Massoulie (June 2008) \Coupon replication sys-
tems," IEEE/ACM Transactions on Networking, Vol. 16, No. 3 .

[47] Kesidis, G. , T. Konstantopoulos , and P. Sousi (Apr. 2007) \Modeling
le-sharing with BitTorrent-like incentives,” in Proc. IEEE ICASSP, Hon-
olulu.

[48] Konstantopoulos, T. , G. Kesidis , and P. Sousi (Sept. 2008) \A
stochastic epidemiological model and deterministic limitor peer-to-peer le-
swapping networks,"Springer LNCS Proc. of NET-COOP, Paris

[49] Kesidis, G. , |. Hamadeh , S. Jiwasurat , and M. Vojnovic (2008) \A
Model of the Spread of Randomly Scanning Internet Worms thaBatura te
Access Links,"ACM TOMACS.

166

[50] Ross, K. and D. Rubenstein (2004), \Tutorial on P2P systems,"
http://cis.poly.edu/ ross/papers/P2Ptutorialinfocom.pdf.

[51] Cheng, A. and E. Friedman (2005) \Sybilproof reputation mechanisms,"
in Proc. ACM SIGCOMM workshop on Economics of peer-to-peer sgsns
(P2PECON), pp. 128{132.

[52] Ward, A. , A. Jones , and A. Hopper (1997) \A New Location Technique
for the Active O ce," IEEE Personal Communications

[53] T. Korakis, G. J. and L. Tassiulas (2003) \A MAC protocol for full
exploitation of directional antennas in ad-hoc wireless heorks," in Proc.
ACM Symposium on Mobile Ad Hoc Networking & ComputingAnnapolis,
MD.

[54] Castro, M. , P. Druschel , A. Ganesh , A. Rowstron ,andD. S. Wal-
lach (2002) \Secure Routing for Structured Peer-to-Peer OvenjaNetworks,"
in Proc. USENIX Symposium on Operating Systems Design and Irepienta-
tion, Boston.

[55] Brands, S. and D. Chaum (1993) \Distance-bounding protocols (extended
abstract),” in Proc. Eurocrypt.

[56] Corporation., C. , \Description of planned network management practices
to be deployed following the termination of current practies, attachment b."
Warning{l didn't nd a database entry for "comcast09".

[57] Walsh, K. and E. Sirer (2005) Thwarting P2P Pollution Using Object
Reputation, Tech. rep. Cornell University, Computer Science Department.

[58] Walsh, K. and E. G. Sirer (2005) \Fighting Peer-to-Peer SPAM and De-
coys with Object Reputation,” in Proceedings of the Third Workshop on the
Economics of Peer-to-Peer Systems (p2pecorbhiladelphia, PA.

[59] Jin, Y. and G. Kesidis (Oct. 2005) \Dynamics of usage-priced communica-
tion networks: the case of a single bottleneck resourcd EEE/ACM Trans.
Networking

[60] ||| (March 2002) \A pricing strategy for an ALOHA networ k of hetero-
geneous users with inelastic bandwidth requirements," i€1SS, Princeton

[61] Aarts, E. and J. Korst (1989) Simulated Annealing and Boltzmann Ma-
chines Wiley.

[62] Border, K. (1985) Fixed Point Theorems with Applications to Economics
and Game Theory Cambridge University Press, London.

167

[63] Kamvar, S. D. , M. T. Schlosser , and H. Garcia-Molina (2003) \The
Eigentrust algorithm for reputation management in P2P netwrks," in Proc.
of the 12th international conference on World Wide Web (WWW,)New York,
NY, pp. 640{651.

[64] Yu, H. , M. Kaminsky , P. Gibbons , andA. Flaxman (2006) \SybilGuard:
Defending against sybil attacks via social networks," itn ACM SIGCOMM
'06, ACM Press, pp. 267{278.

[65] Lesniewski-Lass, C. (Apr. 2008) \A Sybil-proof one-hop DHT," in Proc.
ACM SocialNets Glasgow, Scotland.

[66] Yu, H. , P. Gibbons , M. Kaminsky , and F. Xiao (2008) \SybilLimit: A
Near-Optimal Social Network Defense against Sybil Attacksin IEEE Sym-
posium on Security and Privacy

[67] DeFigueiredo, D. and E. Barr (July 2005) \TrustDavis: A non-
exploitable online reputation system," inProc. 7th IEEE International Con-
ference on E-Commerce Technology (CEC)

[68] Garay, J. andY. Moses (1998) \Fully Polynomial Byzantine Agreement for
n > 3t Processors irt +1 Rounds,” SICOMP: SIAM Journal on Computing
27.

[69] Householder, A. (1986) Matrices in Numerical Analysis Dover.

[70] Abrams, Z. , R. McGrew , and S. Plotkin (July 2005) \A Non-
Manipulable Trust System Based on EigenTrust,’ACM SlGecom Exchanges
Vol. 5, No. 4 .

[71] Bar-Noy, A. , D. Dolev , C. Dwork , and R. Strong (1987) \Shifting
Gears: Changing Algorithms on the Fly to Expedite ByzantineAgreement,"
in Proc. 6th Annual ACM Symp. Principles Distributed Computimg, pp. 42 {
51.

Vita
Athichart Tangpong

296/9 Tivanon 28, Bangkasor, Muang, Phone: (66) 02-589-1963

Nontaburi, Thailand 11000 Email: g4lact@yahoo.com

Date of Birth: November 18, 1977 Homepage:

Citizenship: Thailand http://g41act.multiply.com
Education

Ph.D. Computer Science, The Pennsylvania State Universjt2010.
M.Eng. Computer Engineering, Kasetsart University, 2001.

B.Eng. Electrical Engineering, Kasetsart University, 198.

Publications

A. Tangpong, G. Kesidis, "File Sharing Costs and Quality of &vice", The
44th Annaul Conference on Information Sciences and Systef@&ISS 2010),
Prince-ton, NJ, 2010

G. Kesidis, A. Tangpong, C. Grin, "A Sybil-proof Referal System Based
on Multiplicative Reputation Chains, IEEE Communication Letters, 2009

A. Tangpong, G. Kesidis, A. Hurson, H. Hsu, "Robust Sybil Detction for
MANETSs, ICCCN 2009 Workshop on Security, Privacy and Trust & Com-
puter and Cyber-Physical Networks (SecureCPN 09), San Fasco, CA, 2009

A. Tangpong, G. Kesidis, "A Simple Reputation Model for BitTorrent-like
incentives, International Conference on Game Theory for Meorks
(GAMENETS 2009), Istanbul, Turkey, 2009

P. Laohawee, A. Tangpong, A. Rungsawang, "Parallel DSIR Téxndexing
System using Multiple Master/Slave Concept, EuroPVM/MPI 2000, Bala-
tonfred, Hungary, September, 2000

A. Tangpong, A. Rungsawang, Applying Association Rules Disvery in
Query Expansion Process, World Multi-confernece on Systers, Cybernet-
ics, and Informatics 2000 (SCI 2000), Orlando, Florida, USAJuly, 2000

A. Rungsawang, A. Tangpong, P. Laohawee, "Parallel DSIR TéxRetrieval
System, EuroPVM/MPI 1999, Barcelona, Spain, September, 29

