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Abstract  

Wireless sensor networks, which are collections of spatially distributed sensor nodes controlled 

and monitored by a master terminal, often must send sensitive data between master and node, 

which requires that the data be encrypted. Additionally, wireless sensor nodes are often self 

powered, thus node power consumption must be minimized. 

This work presents a power analysis of a cryptographic module for wireless sensor networks. 

The core elements of the cryptographic module system are two Texas Instruments MSP430 

microprocessors: one functioning as master, the other as slave. This cryptographic module is 

seeking to be certified to the Federal Information Processing Standard 140-2. 

Master–slave communication is implemented through a Serial Peripheral Interface bus, which 

facilitates ciphering, deciphering, and transfer of sensitive data using the AES Advanced 

Encryption Algorithm.  Implementation of FIPS-approved AES and Diffie–Hellman key 

exchange cryptographic algorithms was a system requirement. Authentication and attack 

prevention techniques include Known Answer Test, Error Correcting Code, and Zeroization. 

The cryptographic module power is provided through vibration energy harvesting; therefore, 

power management is critical. Accordingly, the cryptographic module design implements power 

management via component selection, code optimization, and implementation of a Low Power 

Mode. The cryptographic module was developed using Texas Instruments USB-Debug-Interface 

and IAR Embedded Workbench. Subsequent to verification and certification, the cryptographic 

module will be operationally deployed aboard U.S. Navy ships. 
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Chapter 1 
Introduction  

 

This chapter provides an overview of wireless sensor networks and sensor nodes used in such 

networks. This chapter also provides an introduction to the concepts of cryptography and its need 

in various sensor networks. A brief introduction is provided to the FIPS standard and the need 

for low power usage in cryptographic modules.  

1.1 Wireless Sensor Network 

A wireless sensor network (WSN) consists of various sensor nodes controlled by a central master 

terminal. These nodes are a combination of sensor technology, microprocessor, power source, 

and wireless communication interface as shown in Figure 1-1. WSNs are deployed using a 

particular topology in an area of interest to allow monitoring of environmental conditions and 

events. In such a wireless network, all nodes collect and forward data to one or several central 

controller nodes.  

The main components of sensor node are: controller, transceiver, external memory, power 

source, and sensors, each described here in brief. 

• Controller: Performs tasks, processes data, and controls the functionality of other 

components in the sensor node. The most commonly used controller is a microcontroller 

due to their low cost, flexibility to connect to other devices, ease of programming, and 

low power consumption; other options are microprocessors, FPGAs, and ASICs, which 

may be selected depending on the requirements of the WSN.  

• Transceiver: The functionality of both transmitter and receiver are merged into a single 

device called a transceiver, which is used in a sensor node for communication. Sensor 
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nodes often make use of the ISM (industrial, scientific, and medical) bands as they 

provide unlicensed radio spectrum allocation and global availability. The various options 

for wireless transmission media are radio frequency, optical, and infrared. Radio 

frequency (RF) is generally the best fit for most WSN applications. 

• External memory: Due to energy constraints, most commonly used memory devices are 

the on-chip memory in the microcontroller and flash memory. Flash is used due to its cost 

and large memory capacity. 

• Power source: Power in a sensor node is required for sensing, communication, and data 

processing. Of these, data communications is the most power consuming operation. 

Commonly used sources of power are chargeable and non-chargeable batteries, but 

nowadays power-harvesting techniques enable nodes to be self-powered (as in our case). 

Sensors: These are devices that produce responses to changes in temperature, vibration, 

and other physical and environmental stimuli. A sensor generally provides a continuous 

analog signal that is then digitized by an analog-to-digital converter (ADC) and sent to 

the controller for further processing. The S5NAP sensor node, which is a proprietary 

design by Impact RLW, Inc., was used in this work. More information and design details 

are provided in Chapters 3 and 4.  
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Figure 1-1: Architecture of sensor node [from coalesenses.com] 
 

1.2 Cryptography  

Cryptography is defined as the science of converting raw data into scrambled code that can be 

deciphered at other end. Cryptography uses two types of encryption: symmetric and asymmetric. 

Symmetric encryption uses the same key for encryption and decryption, whereas asymmetric 

uses different keys and, because of that, asymmetric is proven to be more secure.  

In cryptography, a cipher is an algorithm that is used for performing encryption and decryption 

of raw data. The need for sending the data between two parties without the fear of getting 

intercepted by a third party has driven the evolution of ciphering. The ciphering procedure 

depends on a piece of information called a key that can be generated using different key-

generating algorithms such as Diffie–Hellman key exchange, Elliptical Curve Cryptography 

(ECC), Digital Signature Algorithm (DSA), and RSA (Rivest, Shamir, and Adleman). Most 

ciphers can be categorized into two types: block cipher and stream cipher. In block cipher, 

operations are performed on a fixed length of bits/bytes called blocks; for example, a block 
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cipher will take set of 128 bits as input and, after encryption or decryption, it will return 128 bits 

of information. In a stream cipher, plaintext bits are combined using exclusion or operation with 

pseudorandom cipher bit stream called a key-stream.  

When digital data is required to be securely stored in or exchanged between computers, then 

based on the sensitivity of the information, the need for protecting this data from unauthorized 

access must be considered. These requirements lead to a need for protecting this data which can 

be accomplished through ciphering. 

The development of digital computers has made it possible to implement even the most complex 

ciphering algorithms available. As the complexity of the algorithm increases, so does the need 

for computational resources, which has lead to the development of modern-day cryptographic 

modules (CMs). A CM integrates cryptographic algorithms in software and hardware elements 

into a dedicated ciphering unit.  

A CM first generates a key using a key generation algorithm and then takes a block or stream of 

raw data (depending on the type of algorithm used for encryption) and ciphers the data. The 

encrypted data can then be sent over a channel without worrying about interception by a third 

party. At the other end, there is a counterpart CM doing the exact opposite process called 

decryption. In this manner, data is securely transferred between different ends. Figure 1-2 shows 

the structure of a typical CM.  
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Figure 1-2: Block diagram of CM 
 

CMs have been developed to secure important information, but poor design or weak algorithms 

can make the ciphering process insecure and place highly sensitive information at risk. Ideally, a 

CM should be implemented such that the ciphered data can only be deciphered by a module of 

the same type. This has lead to series of requirements and procedures and to the development of 

the Federal Information Processing Standard (FIPS).  

1.3 FIPS Overview 

With the requirement to use cryptography by the military and other federal agencies, a standard 

was needed to provide security assurance for the data transferred. In January 1994, the National 

Institute of Standards and Technology (NIST) released the Federal Information Processing 

Standard. The FIPS standard tests and validates a CM and its underlying algorithm against 

established standards to provide security assurance. 

A CM that follows these specific rules as stated by NIST can seek what is known as FIPS 

certification. This certification updates its rules every few years, latest being FIPS 140-2 released 

in 2002. In FIPS 140-2, there are different levels of security certification, which depend on 
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which security conditions are satisfied. The higher the security level, the stricter are the security 

requirements. 

1.4 Need for Low Power Consumption 

With the increased use of embedded systems in industries such as consumer electronics, home 

automation, medical, security, and many others, the need for low power consumption has 

become important. This is because many embedded systems are battery powered and by 

choosing a system that consumes the lowest power, the battery life can be extended.  

Low power consumption has always been a key concern for hardware developers, but there are 

limits based on the hardware selected. An active system can minimize power usage through 

proper hardware design and by optimizing the manner in which that hardware is used, i.e., by 

optimization with respect to power of the embedded software. This software has generally been 

written with considerations such as optimization of memory, but to minimize power usage and to 

achieve a system that consumes low power, optimization of the software with respect to power is 

also required.  

There are a number of ways by which power can be optimized through software, such as using 

the low power mode(s) of the microcontroller, minimizing the current consumption by 

controlling processor frequency, minimizing the voltage level of the controller’s supply, code 

optimization, among others. Each of these methods is explained in more detail in the following 

chapters. 

1.5 System Overview 

The sensor nodes for which the CMs have been developed in this work are called S5NAP, which 

is a product of Impact RLW Systems, Inc., of State College, PA. The system consists of a 
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wireless sensor network that is capable of transferring the data between different nodes. The 

sensor nodes present in the system collect data of interest (e.g., temperature, vibrations, 

humidity, and other various measurements) and transfers this data to other nodes using a radio 

link. These sensor nodes are self powered as they generate their power from vibration-based 

energy-harvesting technology. Figure 1-3 shows a mesh sensor network connected to a host hub 

where all the information is collected and stored. 

The sensor node contains a low power CM to securely transfer the data between different nodes 

using various FIPS approved algorithms. The CM consists of two Texas Instruments MSP430 

processors, which act in master–slave configuration. The master MSP430 collects the data from 

the sensor nodes and the slave MSP430 ciphers this data. Henceforth, this will be referred to as 

the MSP430 crypto module. 

 

Figure 1-3 Sensor Node Mesh Network [KCF Technologies, 2008] 
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1.6 Contributions of this Work 

Our primary contribution in this project has been to design a low power CM that is capable of 

encrypting and decrypting data using various FIPS approved algorithms. The software developed 

for the CM has been designed with low power usage as a key objective. This was mainly 

achieved by using low power modes of the microcontroller and optimizing the code used for 

encryption and decryption. 

Furthermore, the module we developed can be used in almost any device that requires data 

security and low power consumption. The module can be used by any wireless senor network 

independent of any routing protocol used for communication. 

1.7 Organization of this Thesis  

The remainder of the thesis is organized as follows. Chapter 2 provides background information 

and a literature review. It also provides information about the CM and details of FIPS security 

requirements. Chapter 2 covers the selection process for the microcontroller and algorithm used 

for encryption and decryption. Chapter 3 provides information about the system architecture and 

the various protocols used for communication between different system elements. It also 

provides detailed descriptions of the roles of the system modules. Chapter 4 overviews the power 

analysis of the CM, the methods by which low power consumption can be achieved, and the 

workbench used to develop the module. Chapter 5 provides the testing results of the CM, 

specifically the results from the power analysis of the system. Finally, Chapter 6 concludes the 

work and suggests future work. 
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Chapter 2 
Background 

 

This chapter provides an overview of past work performed in this field and other similar 

cryptographic modules. Also covered is a study of microprocessors for low power usage and the 

selection process that chose the MSP430, which included factors such as key size, packet size, 

type of algorithm, and number of cipher rounds.  

The second half of the chapter reviews in detail the Federal Information Processing Standard 

(FIPS) requirements for certifying a CM. As described earlier, NIST has specified a number of 

security requirements that must be satisfied by any CM used by a federal agency. This chapter 

also describes the need for FIPS and gives a background that led to the development of FIPS. 

2.1 Background of Cryptographic Modules 

The goal of this project was to design a system that can implement certain algorithms specified 

by FIPS and to minimize the power consumption of this system using various methods for power 

management. 

2.1.1 Similar Modules  

A number of CMs have been developed by other groups. One such device is the “Telos”, which 

is an ultra low power wireless sensor module for research and experimentation purposes 

developed by the University of California, Berkeley [Polastre et al., 2005]. Telos was built with 

three goals in mind: ease of use, minimum power consumption, and increased software and 

hardware robustness. It consists of a TI MSP430 microcontroller, Chipcon IEEE 802.15.4–

complaint radio, and USB interface. 
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Another such device, released in 2001, is the “Mica” [Hill et al., 2002], which was designed to 

serve as a general purpose platform for WSN research. Mica was useful for development, but 

unsuitable for deployments purposes because of its short range for radio communication. To 

overcome the shortcomings of Mica, “Mica2” was developed, which used an ATmega128 

microcontroller and Chipcon CC1000 transceiver offering tunable frequencies from 300 to 900 

MHz. To continue the Mica family, “MicaZ” was released in 2004 and uses a CC2420 radio, 

which is an IEEE 802.15.4–compatible radio.  

A single-chip mote implementation called “Spec” [Hill, 2003] resulted from the Mica platform. 

Spec uses a number of dedicated hardware accelerators to perform encryption. Unlike the Mica 

family, Spec is fully integrated and offers limited interface flexibility.   

2.1.2 Microprocessor Selection  

To select the microprocessor used in this project, we performed a comparative study of a large 

subset of the available microprocessors on the market. For example, the PIC microprocessor 

class, particularly the PIC16F87, is very power efficient with features that include four low 

power modes and two-speed oscillators. However, after careful study of the available options, 

the Texas Instruments MSP430FXXX was selected due to its overall power consumption and its 

low power modes [Kanani, 2009]. For each of the processors considered, specifications as 

derived from data sheets are presented in Table 2-1. 

The MSP430 was found to have the lowest power consumption in sleep and active modes. The 

microcontroller operates down to 1.8 V, which is important depending on the power source, e.g, 

AA batteries have a cutoff of voltage of 0.9 V and if two such batteries are used the system 
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cutoff voltage will be 1.8 V. Compare this to the Atmel processor, which can only run down to 

2.7 V, leaving some of the power in the AA batteries unused. 

Table 2-1: Power consumption for microprocessors evaluated [Kanani, 2009] 
Power Consumption 

Company Processor 
8 or 
16 
bit 

# of 
Power 
Modes Mode 1 Mode 2 Mode 3 Mode 4 

Microchip PIC16F87/88 8 bit 4 
152 µW @ 

1 MHz 
14 µW @ 
31.25 kHz 

18 µW @ 
32 kHz 

0.2 µW 

Atmel AT89C5115 8 bit 3 
3.7 mW @ 

1 MHz 
2.6 mW @ 

1 MHz 
NA — 

Texas 
Instruments 

MSP430F1611 
16 
bit 

3 
726 µW @ 

1 MHz 
2.2 µW @ 

1 MHz 
0.2 µW — 

Maxim MAXQ2000 
16 
bit 

2 
4.75 mW 

@ 14 MHz 
12 mW @ 
32.77 kHz 

NA — 

EM 
Microelectronic 

EM6812 8 bit 4 
360 µW @ 

1 MHz 
6 µW @ 
32 kHz 

0.8 µW 
0.16 
µW 

 

The MSP430 has the fastest wakeup time of all the microcontrollers evaluated, transitioning 

from standby mode to active mode in 6 µs. The MSP430 also has a DMA controller to reduce 

load from MCU core, which lowers the power consumption and increases the performance. In 

addition, the MSP430 has the advantage of having the largest on-chip buffer (10 kB), which is 

very useful for on-chip signal processing.  

2.1.3 Power Consumption for Different Cryptographic Algorithms 

Cryptographic algorithms are known to be computationally intensive as they consume a lot of 

resources such as memory space, CPU cycles, and power. Wireless devices are mostly battery 

operated, so power consumption due to running the cryptographic algorithm becomes a 

significant consideration. Hence, selecting the proper algorithm to meet cryptographic 

requirements is of utmost importance.  
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Energy consumption by cryptographic algorithms depends on various factors, such as the size of 

the block of data to be ciphered (assuming block ciphering), the size of the key used, and the 

number of cycles used in ciphering or deciphering the data. In the following sections, the effect 

of these factors is described in more detail.  

2.1.3.1 Effect of Packet Size on Energy Consumption  

Packet size is an important factor in wireless networks. Transmitting long packets improves the 

network utilization because there is overhead information that has to be transmitted with each 

packet. On the other hand, as the size of the packet increases, the error rate also increases 

[Lettieri et al., 1999].  

The packet size also has an effect on energy consumption as every encryption requires a key 

expansion process that consumes a constant amount of energy independent of the size of the key 

used. According to Prasithsangree and Krishnamurthy [2003], long packets consume less energy 

than short packets using same key length and number of operations. From work done by 

Kiratiwintakorn [2005], Figure 2-1 shows the energy consumption comparison between different 

algorithms as a function of packet size while keeping constant the key size and number of 

rounds. For this experiment, an 800-MHz, mobile Pentium III was used. As can be seen from the 

figure, AES consumes least amount of energy compared to the other methods when encrypting 

small packets, which is an important result for the current project as our system used 80-byte 

packets.   
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Figure 2-1: Energy consumption versus packet size using various algorithms [from 
Kiratiwintakorn, 2005] 

2.1.3.2 Effect of Key Size on Energy Consumption  

We now discuss the effect of key size on energy consumption of a cipher algorithm. We consider 

two cases: with and without key expansion. The difference between these two is that, for the case 

without key expansion, the number of cycles is counted after the key expansion process. Figures 

2-2 and 2-3 show the amount of energy consumed per byte using different key sizes, packet 

sizes, and algorithms with and without key expansion. As shown in the figures, the amount of 

energy consumed in the case of AES depends on the size of the key used, whereas all other 

algorithms (i.e., Blowfish, RC4, and RC5) are almost independent of size of the key in both with 

and without key expansion. This behavior of AES is due to the fact that, as the size of the key 

increases, the number of ciphering rounds increases, which means more CPU cycles and, hence, 

higher energy consumption. In the case of other algorithms, as the size of the key increases there 

is only a slight increase in the number of rounds of operation and, hence, no significant effect on 

energy consumption. 
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Figure 2-2: Energy consumption versus key size for various algorithms without key 
expansion [from Kiratiwintakorn, 2005] 

 

 
Figure 2-3: Energy consumption versus key size for various algorithms with key expansion 

[from Kiratiwintakorn, 2005] 
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2.1.3.3 Effect of Number of Rounds on Energy Consumption 

The energy consumption in a cryptographic algorithm depends heavily on the number of 

ciphering rounds, especially in the case of block ciphers like AES and RC4. In a block cipher 

algorithm, the input data go through a number of repetitive rounds and, as the number of rounds 

increases, energy consumption by the algorithm increases. In the previous section, we saw the 

effect of key size on the power consumption of the AES algorithm, but the effect due to the 

number of operational rounds is much larger than for key size. According to the AES standard, 

there is certain number of rounds that must be performed depending on the key size. Key sizes of 

128, 196, and 256 bits require 10, 12, and 14 rounds of operation, respectively. The standard 

requires particular rounds of operation because of the security considerations. The algorithm 

becomes more and more susceptible to cryptanalysis attacks as number of rounds of operation 

decreases. Figure 2-4 shows the effect of number of rounds on energy consumption per byte for 

different algorithms.  

 

Figure 2-4: Energy consumption versus rounds of operation [from Kiratiwintakorn, 2005] 
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2.1.4 Power Consumption for Key Generation Algorithms 

Cryptographic algorithms require a key generation algorithm so that the key can be generated 

from time to time and shared securely between different nodes of the WSN. There are various 

public key-generation algorithms available, such as Diffie–Hellman Key Exchange, Elliptical 

Curve Cryptography (ECC), Digital Signature Algorithm (DSA), and RSA (Rivest, Shamir, and 

Adleman). These algorithms consume different amounts of energy based on their complexity. In 

Figure 2-5 where the plot intersects the Y axis denotes the amount of energy consumed by 

different algorithms for key generation, while the slope indicate the energy needed to transfer 

data..  

 

Figure 2-5: Energy consumption as a function of application data size [from Gupta and 
Wurn, 2008] 
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2.2 The Federal Information Processing Standard  

As mentioned earlier, every CM used by a U.S. federal agency meet certain requirements as 

defined by NIST. A CM meeting these requirements, once certified, is awarded FIPS 

Certification (the current version is Version 140-2). 

2.2.1 FIPS 140-2 Certification Security Levels 

Since security requirements vary for different applications, FIPS provides four levels of security. 

It is incumbent on an organization to determine their requirement for level of security, which will 

depend on the sensitivity of the data and possible impact of interception. Security levels provided 

by FIPS vary depending on the requirements levied. Level 1 is the easiest to achieve and level 4 

is the toughest.  

2.2.1.1 Security Level 1  

Security level 1 is the lowest level of security among the four levels provided by FIPS. Its does 

not require any particular physical security requirements besides the basic requirement for 

production grade component [NIST, 2009]. It allows software and firmware components of a CM 

to be implemented on any general computing system. This security level is best suited for low 

cost CMs for which physical and network security are limited or not required. For example, a 

personal computer encryption board will qualify for security level 1.  

2.2.1.2 Security Level 2 

Security level 2 provides better physical security compared to level 1. In this level, there is a 

requirement for tamper evidence, such as tamper-evident coatings or seals or pick-resistant locks. 

These coatings are placed such that it has to broken to get a physical access to the CM [NIST, 

2009]. Security level 2 also requires a minimum level of authentication of the operator for 
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specified roles and services. Security level 2 imposes much stricter requirements on the type of 

operating system used by a CM. The operating system has to meet specific requirements as 

outlined in Annex B of the NIST [2009] document.  

2.2.1.3 Security Level 3 

Security level 3 has much stricter physical security requirements including detecting and 

responding to tampering. Level 3 prevents intruders from access to Critical Security Parameters 

(CSP). The physical security in level 3 may include tamper evidence and response circuitry for 

any physical tampering with the system.  

Security level 3 has identity-based authentication requirements, which improves the security 

provided over that of level 2 [NIST, 2009]. Level 3 requires the CM to make sure that it is 

capable of authenticating the identity of the operator and verifies that the operator is authorized 

for the specific role or task.  

2.2.1.4 Security Level 4 

Security level 4 is the highest level of security defined by FIPS. At this level, the physical 

security mechanism provides a complete shield from any unauthorized attempts to gain physical 

access to the CM. Any penetration of the CM via any method will result in complete zeroization 

of all the CSPs in the module. This kind of security is most useful for unprotected environmental 

conditions [NIST, 2009].  

Security level 4 also protects the module from any harsh environmental conditions that are 

outside of the normal operating ranges for voltage and temperature. A CM is required to detect 

any fluctuation in these values that occurs and to zeroize all CSPs when out of range.  
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2.2.2 Security Requirements  

There are various design and implementation requirements for CMs that are needed to achieve 

FIPS certification. This include requirements on module port and interfaces; roles and services; 

finite state module; physical security; operational environment; and more. 

2.2.2.1 Cryptographic Module Specification  

A CM is a set or combination of software, hardware, and firmware that is capable of 

implementing cryptographic algorithms or processes, and optionally, a key-generation algorithm 

[NIST, 2009]. A CM should implement at least one approved security function used in approved 

mode of operation.  

The “cryptographic boundary” defines the perimeter or physical boundary of the CM. Within 

that boundary should exist any software or firmware used in cryptographic functions and any 

hardware to support that firmware or software. When seeking certification, the application 

package should  

• specify any hardware, software, or firmware that is not a part of these security 

requirements and explain the reason for the same; 

• document and specify all input and output data ports of the CM; 

• account for all logical control and logical status indicators of the CM; 

• document all security functions approved and unapproved that are employed by the CM; 

• document and specify a block diagram depicting all hardware components and the 

interconnections between different hardware elements of the CM; and 

• document all security related information, such as public and private keys, authentication 

data, and CSPs.  
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2.2.2.2 Cryptographic Module Ports and Interfaces  

A CM should restrict all data flow and access points to physical ports and logical interfaces that 

are defined as entry and exit points of the module [NIST, 2009]. A CM should have the following 

logical interfaces:  

• Data Input Interface: all data including plaintext data, ciphered data, cryptographic keys, 

and CSPs that are processed by the CM shall enter through data input interface.   

• Data Output Interface: all data including plaintext data, ciphered data, cryptographic 

keys, and CSPs, but excluding status data, shall exit through data output interface.  

• Control Input Interface: all input commands, signals, and control data including the 

manual control like switches and keyboards shall enter through control input interface.  

• Status Output Interface: all status data, indicators, and output signals used to indicate the 

status of the CM shall exit through the status output interface. These data may include 

return codes and physical indicators such as LEDs and displays.  

All power entering the CM, including the external power from a power supply or battery, should 

enter through the power port. There is no requirement for a power port if the power is supplied 

internally to CM within its cryptographic boundary.  

Each security level levies different requirements: for levels 1 and 2, physical ports and logical 

interfaces used for authentication data, CSPs, and cryptographic keys can be shared with other 

ports and interfaces of the CM; whereas, levels 3 and 4 require either physical or logical 

separation from other port and interfaces.  
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2.2.2.3 Roles, Services, and Authentication 

A CM should be able to support authentication for operators and their respective roles, which 

should be implemented via software using a password mechanism.  

2.2.2.3.1 Roles 

A CM should be able to support the following roles for an operator:  

• User Role: to perform general purpose security activities, which include cryptographic 

operations and approved security functions.  

• Crypto Officer Role: to perform basic cryptographic initialization and management 

functions like input and output of cryptographic keys and module initialization.    

• Maintenance Role: to perform physical or logical maintenance services. All the CSPs and 

plaintext keys should be zeroized when entering or exiting this role.  

2.2.2.3.2 Services  

The document describing the CM should provide all the services and functions that can be 

executed by CM, which should be able to provide the following functions:  

• Show Status: output the current status of the CM.  

• Perform Self Tests: initiate and execute the self tests.  

• Perform Approved Security Functions: the CM should be able to perform at least one 

approved security function in Approved mode of operation.   

The document for services should provide:  

• both approved and non approved cryptographic functions and services; 

• inputs, expected outputs, and authorized roles in which the service can be performed for 

every specific service provided by the CM; and 
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• any services provided by CM for which operator is not required to gain any Authorized 

role.  

2.2.2.3.3 Operator Authentication 

Authentication mechanisms may be required in a CM to authenticate the operator for doing some 

roles and functions and for verifying that the operator is authorized to do so. Depending on the 

security level, a CM should be able to support one of the following mechanisms:  

• Role-based Authentication: in role-based authentication, the module shall require that one 

or more roles either be implicitly or explicitly selected by the operator and shall 

authenticate the assumption of the selected role in this mode the module does not need to 

authenticate an individual for a role.  

• Identity-based Authentication: in identity-based authentication, the module shall require 

that one or more roles either be implicitly or explicitly selected by the operator and shall 

authenticate the identity of the operator and authorization of the operator to assume the 

selected role. If the CM allows an operator to change roles, then the module should check 

the authorization of identified operator.  

2.2.2.4 Finite State Model  

The functions of a CM should be specified using a finite state model represented by a state 

transition diagram or state table. The transition table should consist of: 

• all error and functional states of the CM;  

• corresponding transitions from one to another state;  

• events that cause the transition; and  

• output event resulting from the transition.  
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A CM should include following states: 

• Power On/Off States: states for primary, secondary, or backup power.  

• Crypto Officer States: states in which crypto officer services are performed.  

• Key/CSP Entry States: states in which cryptographic keys and CSPs are entered in the 

CM.  

• User States: states in which authorized user obtain security services and perform 

approved and unapproved functions.  

• Self-test States: states in which the CM performs self tests.  

• Error States: states in which the CM faces an error.  

A CM may or may not contain other states such as Bypass and Maintenance. 

2.2.2.5 Physical Security 

A CM shall employ physical security mechanisms in order to avoid any unauthorized physical 

access to the contents of the module. All the important components including the software, 

hardware, and firmware should be protected. Table 2-2 below summarizes the physical 

requirements for each of the four security levels.  
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Table 2-2: Summary of physical requirements for each security level [NIST, 2009] 

 

2.2.2.5.1 Environmental Failure Protection  

All electronic devices and circuitry are designed to operate within some particular environmental 

conditions; any deviation from the normal operating ranges of voltage and temperature can cause 

failure of electronic circuitry that can compromise the security of a CM [NIST, 2009]. Proper 

assurance that security of the CM cannot be compromised can be achieved by having the module 

employ environmental failure protection (EFP) features or undergo environmental failure testing 

(EFT).  

2.2.2.6 Cryptographic Key Management 

FIPS has some requirements for cryptographic key management for the entire life cycle of 

cryptographic keys, cryptographic key components, and CSPs. Key management mainly includes 

Random Number Generation (RNG), key generation, key establishment, key distribution, and 

key zeroization. 
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2.2.2.6.1 Random Number Generators 

A CM may use an approved or an unapproved random number generator (RNG) in an approved 

mode of operation; however, the data output from RNG should pass the continuous random 

number generator test. The output from an unapproved RNG can be used for the following: 

• as input to an approved deterministic RNG; and 

• to generate or initialize vectors for approved security functions.  

2.2.2.6.2 Key Generation 

A CM can generate a key internally. If a CM generates keys for an approved algorithm or 

security function, then it should be generated using an approved key generation method. If an 

approved key generation method requires input data from the RNG, then an approved RNG 

should be used.  

2.2.2.6.3 Key Establishment 

There are various methods of key establishment, such as a manually transported key loading 

device, an automated public key algorithm, or a combination of both manual and automated. If 

key establishment methods are used in a CM, only approved methods should be used.   

2.2.2.6.4 Key Entry and Output 

Cryptographic keys can be entered into or output from a CM. If cryptographic keys are entered 

into or output from CM, the entry or the output of keys should be performed using either manual 

methods such as via a keyboard or electronic methods such as via PC cards or smart cards.   
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2.2.2.6.5 Key Storage 

Cryptographic keys in a CM can be stored either in plain text or encrypted form. Plaintext and 

private keys should not be accessible from outside the CM to any unauthorized operator.   

2.2.2.6.6 Key Zeroization 

All CMs should provide methods to zeroize all plaintext and private keys within a module. This 

function is used mainly when there is a breach in physical security of the module by an 

unauthorized operator.   

2.2.2.7 Self Tests 

For ensuring that the CM is functioning properly, Power-up Self Tests and Conditional Self 

Tests should be performed. A Power-up Self Test, as the name suggests, should be performed 

when a CM is powered up and Conditional Self Test should be performed when an applicable 

security function or operation is invoked.  
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Chapter 3 
System Architecture and Interface 

 

This chapter provides an overview of the system architecture and the interface between different 

modules. The chapter also includes information on the flow of data from sensor nodes to main 

master terminal and back to the nodes. The entire process includes encryption, decryption, and 

key generation using various FIPS approved algorithms. 

3.1 System Overview  

Figure 3-1 provides a system overview for the wireless sensor network and highlights the 

location of the CM. In short, the system concept of operations can be described in four steps: 

first, the Master collects data from sensor nodes and send it to Crypto module for 

encryption/decryption. Then, after performing the particular function the Crypto module sends 

the data back to Master MSP430. The Master collects this ciphered data and sends it to the Dust 

Radio, which sends the packet to the required destination via the Dust Network.  

 

Figure 3-1:  Wireless sensor network system overview  
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The WSN system architecture consists of three main subsystems: S5NAP Node, Dust Network, 

and Receiver. The S5NAP node consists of four major components: Master MSP430, FIPS 

MSP430, Sensor subsystem, and Dust Radio as shown in the Figure 3-1. The Master acts as the 

backbone of the system as all other components communicate through the Master. The receiver-

side Master Terminal, which is mainly a connector program, is connected to the Dust Network 

on one side and the CM on the other side. 

3.1.1 Master MSP430  

The Master is one of the main components of the S5NAP module, which carries out several 

important functions such as maintaining Serial Peripheral Interface (SPI) communication with 

the CM, providing a clock to the CM, and waking up the CM from sleep mode. The Master is 

also responsible for running the S5NAP firmware, which in turn is responsible for collecting the 

sensor data from the ADC, reporting its status; transferring its data wirelessly using the Dust 

radio, and performing all the wireless firmware updates. 

3.1.2 FIPS MSP430  

The CM is responsible for encrypting the raw data supplied by Master so as to enable secure 

communication of this data over the air. It is also responsible for decrypting this encrypted data 

at the receiver end. The CM uses the Advanced Encryption Standard (AES) algorithm for 

encryption and decryption of data. After encryption or decryption, the output data are sent back 

to the Master terminal. Another important function of CM is to generate keys using the Diffie–

Hellman key exchange algorithm. This key is used by the AES algorithm for encryption and 

decryption of data. The CM communicates only with the Master using identifier bits to let the 

Master know what kind of information is in the packet it is being sent.  

 
 

28



 

3.1.3 Sensor Subsystem 

The sensor subsystem is responsible for collecting the data of interest. In our case, this data are 

vibrations that are measured using an integrated charge-mode accelerometer. The output of the 

charge-mode accelerometer serves as the input to two circuits: a) the waveform acquisition 

circuitry and b) the continuous vibration monitoring circuitry.  

3.1.4 Dust Radio DN 2140  

The Dust DN2140 radio is a proprietary IEEE 802.15.4 wireless mesh networking solution 

provided by Dust Networks. The DN2140’s communication protocol is proprietary in nature so it 

is like a black box in the S5NAP system. 

3.2 System Interface 

There are several interfaces in the S5NAP system, some software and some hardware. One of the 

most important interfaces is that between Master and the CM using the SPI bus. Other interfaces 

include that between Master and Dust Radio using the serial command interface and the interface 

between the Dust Radio and Dust Network via the IEEE 802.15.4 protocol. 

3.2.1 Cryptographic Module to Master MSP430 Interface 

The interface between Master and the CM is maintained using the SPI bus, which is the most 

important interface to the CM as most of the traffic flow takes place in this part of the module. 
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Figure 3-2: Overview of System Interfaces  
 

The SPI bus is a synchronous serial standard that allows a master device to communicate with a 

slave device. SPI operates in full duplex mode. Devices communicate using a master–slave 

relationship, in which master generates a clock, selects a slave device, starts transmitting packets, 

and simultaneously receives packets as SPI communication is always in both directions. There is 

no error check in SPI, which requires that the master and slave check that the data received are 

understandable. Multiple slave devices can be used with individual chip select lines and, as such, 

SPI is called as “4-wire” SPI. The SPI bus specifies four logic signals (Figure 3-3): 

• SCLK —  Serial Clock from master; 

• MOSI —  Master Output, Slave Input; 

• MISO —  Master Input, Slave Output; and 

• SS —  Slave Select, active low from master; 
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Figure 3-3: Basic interface between master and slave module 
 

For our system, the complete pin interface is shown below in Figure 3-4. SPI _CLK is used by 

Master to provide clock to the Crypto MSP430; this clock plays a very important role for 

successful and error free communication between the two devices. Clock frequency can be 

varied to the processor depending on its function. In our system, we use a clock frequency of      

4 MHz. The second connection is SPI_MOSI (SPI Master Out Slave In), which is the output line 

of Master MSP430. Similarly, SPI_MISO (SPI Master In and Slave Out) is the output line of the 

slave MSP430, i.e., the CM. FIPS_MCU_SEL is used by the master to select the CM, as the 

Master is connected to several slave devices. FIPS_MCU_INT is an interrupt line used by the 

Master to wake up the CM from the Low Power Mode (LPM). After waking up the CM, the 

Master starts sending and receiving bytes from CM, which, after processing the data (encryption, 

decryption, or key generation), generates the MAIN_MCU_INT interrupt and, as soon as the 

Master is ready, it again starts receiving the data sent by the CM. 
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Figure 3-4: Pin interface between Master MSP430 and Crypto MSP430 
 

The interface between the Master and CM is the backbone of entire logical system. The Master 

collects the vibration data from Sensor subsystem, which needs to be transmitted over the Dust 

Network. If this critical data are not encrypted, they could be intercepted and read by anyone 

over the air. So, this data has to be encrypted before transmission, which is accomplished by the 

CM. As soon as the Master receives data from Sensor subsystem, it wakes up CM and starts 

sending packets for encryption. The CM encrypts the data using the AES algorithm and sends it 

back to the Master. At the receiver end, the reverse process occurs, i.e., the Master sends 

encrypted packets to the CM for decryption, which then decrypts the packet and sends it back to 

Master. 

For the CM to perform encryption and decryption of data using the AES algorithm, it must have 

a key for doing so. If the CM does not have the key, then it starts the key exchange using the 

Diffie–Hellman algorithm. Only after successful generation and exchange of the key is the CM 

capable of encrypting and/or decrypting the data. 
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3.2.2 Master to Dust Radio 

The Master and Dust Radio communicate using a Universal Asynchronous Receiver/Transmitter 

(UART) at a baud rate of 9600. The Master sends the Dust Radio packets that contain ciphered 

data, a heartbeat message, and an identifier field. All the packets received are checked using 16-

bit frame checksum (FCS) and the packets containing an FCS error are discarded. There is no 

mechanism by which the Master can be informed of a discarded packet. The Dust Radio receives 

packets from the network and forwards them to the Master. Along with packets Dust Radio also 

attaches the originating address of the packet to the Master as this is important information for 

Master when it is passing the packet to CM. CM use this information to know where the packet 

has come from. Similarly when the packet passes through the Dust Radio into the Network, the 

Dust Radio appends a header that contains important information regarding the network, such as 

the routing path, number of hops, destination address, etc. So, when the packet is received at the 

other side, the Dust Radio removes the header and passes the rest of message to the Master.  

Another important thing to note is that when the packet is sent from CM it contains information 

about the destination address. But, this part is clipped off when it forwarded to the Dust Radio to 

save some bytes. 
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Chapter 4 
System Implementation  

 

This chapter is divided in to three parts. The first part describes the CM algorithm and the 

functions performed by the CM. Next, the flow of packets in the WSN system from one node to 

another is described. A new system specific algorithm was designed is explained. Finally, this 

chapter gives an overview of the test bench used to implement the system and also shows some 

test inputs and corresponding outputs of the system.  

4.1 Cryptographic Module 

As mentioned above, the CM performs a series of operations and algorithms on the data received 

from Master. The CM goes through several stages when performing these operations; these 

stages are explained below in detail and flow charts for stage transitions are provided. To 

maintain similarity between the two ends, there is a similar CM at the connector end to 

implement the same functions.  

4.1.1 Cryptographic Module States 

The CM goes through various states when performing encryption/decryption and key generation. 

Figure 4-1 shows these states in the order of their occurrence. Brief descriptions of all the states 

of the CM are given below:  

• Initialization State: In this state the CM initializes various buffers it is going to use, such 

as its buffers for storing keys and input and output data. It also initializes various pointers 

to these buffers and functions for encryption, decryption, key generation, storing and 

stuffing keys, and the RNG function. In this state the CM also starts preparing the 
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communication channel with the Master. In order to do this, it initializes the SPI bus and 

initializes the interrupt lines to the Master.  

• Sleep State: After preparing the channel for communication and initializing the variables, 

CM goes into a sleep state (i.e., LPM4). This state is very important as power 

consumption in this state is very low, which helps in power conservation for the module.  

• Active State: As soon as the Master gets data from sensor node it interrupts the CM. The 

module goes back into active mode and waits for a clock signal from the Master.  

• Tx and Rx State: The CM waits for a Tx interrupt signal from the Master and, as soon it 

sees that interrupt, there is a exchange of 80 bytes from the Master to the CM and vice 

versa. The data sent by the CM to the Master, however, contains garbage values. The 

reason for this is that SPI Communication is a two-way communication link, so a module 

has to transmit and receive at the same time. When the CM is done processing the data, it 

sends the Master an interrupt signal and again there is an exchange of 80 bytes.  

• Data Processing: In this state the CM process the data it received and perform functions 

such as encryption, decryption, and key generation. Again, as mentioned earlier, the type 

of operation that the CM performs depends on the packet identifier bits.  

Figure 4-1 shows all the states mentioned above and the transitions between them. The CM starts 

from the Initialization state and, after initializing the variables, it goes to the Ready state in 

which initialization of the SPI bus takes place. After the Ready state, the CM sits in Sleep mode 

until it is interrupted by the Master interrupt (FIPS_MCU_INT), which brings the CM to the 

Active state. In the Active state, the CM waits for a clock from the Master and then goes back to 

the Sleep state until it is again interrupted by the Master interrupt (Tx interrupt) signal. As soon 
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as the CM gets the Tx interrupt, it goes into the Tx and Rx state, in which it exchanges 80 bytes 

with the Master. After the data exchange, the CM goes into the Data Processing state, in which it 

processes all the data depending on the identifier bits. After processing the data, the CM goes 

back into the Tx and Rx state, which it sends the processed data to the Master. This completes 

one cycle of the CM, after which it goes back into Sleep mode. 

 

Figure 4-1: State diagram of the CM  
 

4.1.2 Cryptographic Functions 

Detailed descriptions for all the operations and functions performed by CM are provided below.  
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4.1.2.1 Encryption/Decryption 

After careful examination of all the algorithms available, AES was chosen as the encryption 

algorithm for this project mainly because of its low energy consumption when used for small 

packets. The basic steps of the AES algorithm are described briefly below: 

• Substitute Bytes: this is a nonlinear substitution and one of the main reasons for the 

security of the AES algorithm. This step can be considered as lookup table step. Using 

this lookup table, the 16 bytes are substituted by the respective values found in the table. 

• Shift Rows: as the name implies, this step processes different rows. A simple rotate with 

different rotation width is performed. For example, if we have 4×4 bytes of input data, 

the second row will be shifted one byte to the left in the array, the third by two bytes, and 

the fourth by three byte positions. The first row is not shifted.  

• Mix Columns: this is one of the most complex operations to implement in software. The 

Mix Column operation is pretty similar to “Shift Row”, with the only difference being it 

works on columns instead of rows. To make this operation reversible at the other end, 

instead of multiplication and addition, Galois field operations are used.  

• Add Round Key: is a very simple step in the entire AES algorithm. The corresponding 

bytes of the input data and the expanded key are XORed. 

• Key Expansion: This is the last step in the AES algorithm. Considering the case of 128-

bit AES, in this process 128 bits of the original key are expanded into eleven 128-bit 

round keys. 

Figure 4-2 below shows the implementation of AES: 
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Figure 4-2: Illustration of AES algorithm [from Nvidia.com] 
 

4.1.2.2 Key Generation  

As mentioned before, the Diffie–Hellman key exchange algorithm is used for key generation in 

this project. The Diffie–Hellman key exchange method allows two different nodes, with no 

previous knowledge about each other, to jointly establish a shared secret key over an insecure 

channel. This shared secret key can be of variable length, which determines the strength of the 

ciphering.   

With reference to Figure 4-3, we describe the Diffie–Hellman key exchange method below. In 

this method, there is a prime number P and a generator g that are known to all the nodes in the 

WSN. Now, suppose that Alice and Bob want to generate a shared symmetric key, they already 

know the value of P and g. Alice generates a random number a and Bob generates a random 

number b. Then each of them computes their public value using g × mod P: 
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Alice’s public key : g a mod P  

Bob’s public key: g b mod P  

Now these values are exchanged and a final private key is generated at each node: 

Alice computes g a b mod P = (g b mod P) a mod P 

Bob computes g b a mod P = (g a mod P) b mod P 

As can be seen, both the values are same, so Alice and Bob have a same secret key, which can be 

used for ciphering or deciphering purposes.   

 

Figure 4-3: Diffie–Hellman key exchange algorithm [from Wikipedia.org] 
 

4.1.2.3 Zeroization 

This is one of the security functions needed for FIPS certification. It is a process that involves 

zeroization of all the CSPs in the case of any physical security breach. It can be manual or 
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automatic depending on the FIPS security level. After zeroization, on startup the CM goes 

through self integrity and known answer tests. The CM also goes through the key establishment 

process, since all the keys have been zeroized during the process.  

4.1.2.4 Known Answer Tests 

The known answer test (KAT) is used to test the integrity of the software implemented on a CM. 

In our case, we use AES and Diffie–Hellman algorithms, so at start up the values from the 

algorithm will be tested using a KAT. In the zeroization process, only the CSP values are 

zeroized, the software remains intact and so do the KATs. Thus, on startup, the processor will 

pick up the memory values from the AES and Diffie–Hellman algorithms and compare them 

with pre-calculated values. If this passes, the CM can go ahead and perform all other functions, 

otherwise it will go into an error state. 

4.1.2.5 Start Up Test 

This test is done to check if the software stored in the memory is intact. To do this, we use a 

check sum algorithm, in which the values stored in memory are taken as a block of data and are 

input into an algorithm and compared to an output value before shutting down the system. If 

these two values match, then that means the software has not been tampered with and the 

microcontroller can move ahead to do other functions.  

4.2 Data Flow  

A unique data flow diagram was designed for this project. Figure 4-4 shows the flow of packets 

as the packet moves from one module to another. Table 4-1 below provides values for the 

identifier, which differentiates between different packet types.  
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Table 4 -1 Identifier Fields and their corresponding payloads [Kanani, 2009] 

 

Step 1:           

This is the first step in the key building process and it initiates the key exchange. Bxx is defined 

as the address of the receiver node; xxxx111 is the identifier bit that indicates that this is a plain 

text data; Hmsp is the header used for Master. In this step, the Master needs to cipher some data, 

so it sends the data to CM for ciphering. 

Step 2:          

The CM receives the packet and after looking into the values of the identifier bit (xxxxx111), it 

realizes that it contains plain text data that need ciphering. Bxx helps CM to know where the 

packet is coming from and thus helps in finding the appropriate key for that node. After checking 

its flag value, the CM realizes that it does not have key for ciphering this packet as there has 

been no key exchange process started yet. The CM sends the same packet back to the Master 

without any modification. 

 
 

41



 

 

Figure 4 -4: Flow chart depicting the flow of packets [from Kanani, 2009] 
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Step 3:                     

The Master is expecting a ciphered packet from the CM, but instead it receives the same packet it 

sent and thus realizes that CM does not have the key to cipher the packet. The Master starts the 

key generation process by sending three (this number can be modified) empty packets to the CM 

with identifier bits as xxxxx000 indicating that the packet is empty.  

Step 4:  

The Master sends the above packets to the CM, where Bxx again represents the address of the 

Master terminal. Packet 1 is identified with identifier xxxxx001 and, similarly, Packets #2 and 3 

are identified with xxxxx010 and xxxxx011, respectively. As the CM receives the empty packets 

for key generation, it start generating the partial key using the Diffie–Hellman key exchange 

algorithm and sends the three packets back to Master after stuffing in the key it generated.  

Step 5:  

In this step, the Master receives the key material sent by the CM and sends this to Dust Radio for 

transmission out onto the Dust Network. Before the Master sends the packet out on the Dust 

Network, there is a small modification it makes, which helps in saving transmission bandwidth 

and avoiding the sending of redundant information: the Master strips off the address field Bxx 

from the packet. The reason for this is that, at the other end, the Dust Radio does not require 

knowledge of its own address, but it does require information on where the packet is coming 

from. Thus, it may sound logical to strip off the receiver address and instead attach the 
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transmitter address (Axx). Now when the packet is received at the other end by the Dust Radio 

and is transferred to the Master and finally to the CM, it will know where the packet is coming 

from. However, there is another way by which this information can be achieved at the receiving 

end (explained in Step 7), so by not sending this information we can save bandwidth on the 

communication channel, which is really important.  

Step 6:        

Hdust stands for header attached by the Dust Radio, Tdust is the trailer attached by Dust radio, 

and xxxx001 implies this is Packet # 1. As the packet is transmitted out of the Master to the Dust 

Network, it requires a header and trailer to reach the specific destination. The header and trailer 

contain useful information that will help in deciding the route for the packet and the destination 

address. At the receiving end, these packets are collected and forwarded to Dust Radio for 

further processing. 

Step 7:  

In this step, Axx is the address of the transmitter node. Every node in the network has a unique 

address, which helps in identifying different nodes. The packet transmitted over the Dust 

Network contains a header and trailer that are stripped off before forwarding them to Master.  

Along with the packet, Dust Radio also sends information about the transmitter node from where 

the packet originated. Since this information (Axx) was easily available from Dust Radio at the 

receiver end, this part of the packet was not included while transmitting, which saves some 

useful bandwidth in the Dust Network. 
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Step 8:       

As mentioned in Step 7, the Master receives two pieces of information from Dust Radio: the 

transmitter address Axx and the packet containing key information. The Master then combines 

these pieces and sends the combined packet to CM. Again, xxxxx001 represents the first packet 

and next two with identifiers xxxxx010 and xxxxx011 follow. 

Step 9:    

As the Master sends the packets containing key information to CM, the CM understands that the 

key generation process has been initiated. The Master also sends three empty packets and, as in 

Step 3, the CM receives these three empty packets and starts generating its half of the key. 

Step 10: 

  

In this step, Axx stands for the address of the transmitter, which is now going to be the receiver. 

xxxxx001 indicates that this is Packet # 1 containing the key material, xxxxx010 represents 

Packet # 2 and, xxxxx011 represents Packet # 3 containing key material. As the CM receives the 

empty packets from the Master, it starts generating other half of the key using the Diffie–

Hellman key exchange algorithm, which is then stuffed in to the packets and transmitted over 

Dust Radio.  

Step 11:   
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In this step, the Master terminal receives the packets from the CM containing the key 

information. As in Step 5, the Master terminal strips off the address field Axx; the reason for this 

is the same as explained in Steps 5 and 7. The packet after collection is then forwarded to the 

Dust Radio for transmission out onto the Dust Network.  

Step 12:  

After receiving the packets from the Master terminal in Step 11, Dust Radio transmits these 

packets through the Dust Network. Hdust stands for the packet header, Tdust stands for the 

packet trailer, and Hmsp implies header for the Master terminal. These headers and trailers are 

important as they help in deciding the route of the packet through the Dust Network as explained 

in Step 6 above.  

Step 13:     

In this step, Bxx is the address of the receiver node, which can now be addressed as a transmitter. 

Dust Radio receives the packet from the Dust Network and strips off the header and trailer from 

the packet before forwarding it to the Master terminal. Along with this packet, the Dust Radio 

also sends information about the address of the transmitter, i.e., Bxx. Thus, the receiver node 

now knows from where the packet has come. 

Step 14:     

The Master terminal receives two items from the Dust radio, Bxx, which is the address of 

receiver, and packet information containing the key material. The Master combines these two 
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pieces of information and sends this to the CM, which completes the entire key exchange 

process. The important thing to notice here is that the Master terminal does not sends the empty 

packet again as in Step 3, because it knows it was the one who initiated the key exchange 

process. 

4.3 Test Bench and Implementation  

This part of the chapter concentrates on the components of the test bench on which the system 

was implemented and tested, including the hardware and software components. Using images 

and screenshots, we also provide some testing results and output from the workbench.  

4.3.1 Test Bench Components 

The development of the project was done on general purpose development kits, i.e., the Texas 

Instruments MSP-TS430PM64. IAR Embedded Workbench was used as the software 

development platform. In-circuit emulators were used, i.e., the Texas Instruments MSP-

FET430UIF, to connect the software and hardware components.  

4.3.1.1 Microcontroller 

After careful study of available low power microcontrollers on the market, the Texas Instruments 

MSP430F1611 was chosen for this project (Figure 4-5). The MSP430 family of ultra low power 

microcontrollers consists of several devices featuring different set of peripherals targeted for 

various applications [Texas Instruments, 2006]. The MSP430F1611 device features four low 

power modes, a 16-bit RISC CPU and 16-bit registers for high code and power efficiency. 
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Figure 4 -5: Pin diagram for MSP430F1611 [from Texas Instruments, 2006] 
 

Some of the important elements and features of MSP430 are described below:  

• CPU: the MSP430 is a 16-bit RISC architecture CPU, which contains 16 registers that 

reduces instruction execution time. The register-to-register execution time is one cycle of 

the CPU clock [Texas Instruments, 2006]. Out of the 16 registers, four are special-

purpose registers and the remainder are all general purpose. Special-purpose registers 

include Program Counter, Stack Pointer, Status Register, and Constant Generator. 
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• Bootstrap Loader (BSL): the MSP430 bootstrap loader allows the user to program the 

RAM or flash using a UART serial interface. The access to BSL to can be controlled 

using a user defined password. 

• Direct Memory Access Controller (DMA): this is a very important component of this 

microcontroller as it helps in moving data from one memory location to another without 

CPU intervention. This feature improves the throughput of the peripheral devices and 

helps power conservation by allowing the CPU to remain in sleep state.  

• Hardware Multiplier: there is a separate module for high level multiplication in the 

MSP430. This module can perform all 8-bit and 16-bit multiplication operations, 

including with signed and unsigned numbers.  

4.3.1.2 Development Kits  

We have used the 64-pin MSP-TS430PM64 as a target board for the code development. Made by 

Texas Instruments, it is a zero-insertion force (ZIF) socket target board used for programming 

and debugging the MSP430 through the JTAG interface or the SPY BI–Wire, which is a JTAG 

protocol developed by Texas Instruments. Figure 4-6 shows the PCB layout of this target board. 

The figure shows some important connections, such as Jumper J7, which is used for measuring 

the current consumption by the microcontroller, and J6, which is used to connect or disconnect 

the LED.  
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Figure 4 -6: MSP-TS430PM64 target socket module [from Texas Instruments, 2009]  
 

4.3.3.3 Programming Interface 

We have used the MSP-FET430UIF (Figure 4-7), which is a powerful flash emulation tool for 

application development on the MSP430 [Texas Instruments, 2009]. This tool includes a USB 

debug interface that can be used to program the MSP430 through the JTAG interface and can 

connect a flash-based MSP430 MCU to a PC for real-time programming and debugging.  

4.3.3.4 IAR Embedded Workbench  

We used the IAR Embedded Workbench to develop the firmware for the project. IAR software 

includes a C/C++ compiler, assembler, linker, text editor, and C-SPY Debugger in an integrated 

development environment (IDE). 

 
 

50



 

 

Figure 4-7: MSP-FET430UIF MSP430 USB-Debug-Interface 
 

IAR Workbench has the capability of building very efficient and reliable flash code for MSP430. 

It can output files in various formats such as .a43 and ihex, which can be used to download the 

firmware on MSP430 using any target board.   

4.3.2 Implementation 

As described in the above sections, the system implementation includes IAR Embedded 

Workbench, target boards with MSP430 microcontroller, and serial emulator. The two target 

boards are connected with each other via SPI bus as shown Figure 4-8. One of the boards acts as 

a Master MSP430 and the other as the CM used for encryption and decryption of data. The 

interface shown in Figure 4-8 is an exact copy of on the interface in the actual hardware (shown 

in Figure 3-4 above). Both of the target boards have an MSP430 microcontroller on them that 

can be programmed using the serial emulator. The serial emulator is connected to the PC via 
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USB, from where it gets powered up and also builds a connection between software and 

hardware platforms.  

 

Figure 4-8: Experimental setup showing Master and CM interface.  
 

IAR Workbench has an I/O window in which you can print various statements while the actual 

encryption and decryption is going on. This helps in understanding how the algorithm runs and 

the order of steps and also helps the programmer for debugging purposes. Figure 4-9 give a 

screen shot of the IAR software (I/O window) when the code implemented on the Master module 

was running.  
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Figure 4-9 Screen shot of IAR Embedded Workbench with print statements 
 

4.3.3 Test Inputs and Corresponding Outputs  

As explained in the previous chapters, the CM uses identifier bits to recognize what kind of 

operation needs to be done on the packet received and also what kind of information packet is 

carrying. For example, if the packet sent has identifier bits as 07, then that implies the Master is 

asking for the packet to be encrypted. The CM will read this information and perform the 

encryption algorithm. After encrypting the packet, the CM changes the identifier bit value to 04 
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indicating that the packet is encrypted and then it is forwarded to Master. Another important 

thing to note here is that the first 16 bytes of the 80-byte packet sent by Master has header 

information and that part is not encrypted by the CM and is used for other purposes. The data 

below shows a sample run of CM using a specified key. Master sends the data with 07 identifier 

bit indicating plain text data, after receiving the packet CM module performs the encryption 

algorithm and send the data back to Master with 04 identifier bit indicating encrypted data.    

Key used : 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 

0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f 

Input from Master:   

ff  07  ff  e9  fb  dd  59  b9  bd  6d  47  97  fc  c5  ff  ee 

b3  cf  7e  fc  df  fa  f5  ff  e7  3f  ff  e7  1d  ef  8d  7f 

d3  ff  b1  5f  d2  ff  f9  ef  f6  dd  fe  f7  ef  b7  8b  ec 

fd  bd  ba  ff  fa  7e  97  f6  6e  7f  7e  fe  f3  ef  38  ef 

83  ed  5a  6b  be  b7  ff  7d  e7  9a  fb  dd  ef  bf  be  f5 

Output from Crypto:  

ff  04  ff  e9  fb  dd  59  b9  bd  6d  47  97  fc  c5  ff  ee 

70  9b  63  d4  30  24  3d  70  d0  c6  91  56  13  1f  d8  bf 

0a  36  ec  cc  a0  28  a8  2b  21  64  de  99  a7  bc  1d  5d 

c7  b7  f1  47  bc  84  ec  20  a4  bb  7b  59  c6  26  6a  2f 

be  84  00  35  45  57  d2  1a  2f  b6  9d  de  f0  3c  63  f0 
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Now suppose that the same packet has to be decrypted at the other end. The Master sends the 

packet to CM with identifier bit set as 04 and the CM will again read this and decrypt the packet 

using the key. When sending the packet back, the CM will change the identifier bit to 07 

indicating that it contains plain text data now.  

Input from Master:  

ff  04  ff  e9  fb  dd  59  b9  bd  6d  47  97  fc  c5  ff  ee 

70  9b  63  d4  30  24  3d  70  d0  c6  91  56  13  1f  d8  bf 

0a  36  ec  cc  a0  28  a8  2b  21  64  de  99  a7  bc  1d  5d 

c7  b7  f1  47  bc  84  ec  20  a4  bb  7b  59  c6  26  6a  2f 

be  84  00  35  45  57  d2  1a  2f  b6  9d  de  f0  3c  63  f0 

 

Output from Crypto:  

ff  07  ff  e9  fb  dd  59  b9  bd  6d  47  97  fc  c5 ff  ee 

b3  cf  7e  fc  df  fa  f5  ff  e7  3f  ff  e7  1d  ef 8d  7f 

d3  ff  b1  5f  d2  ff  f9  ef  f6  dd  fe  f7  ef  b7 8b  ec 

fd  bd  ba  ff  fa  7e  97  f6  6e  7f  7e  fe  f3  ef 38  ef 

83  ed  5a  6b  be  b7  ff  7d  e7  9a  fb  dd  ef  bf be  f5 
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Chapter 5 
Power Analysis of the Module  

 

In this chapter we discuss the power analysis of the CM developed in this project. This chapter is 

divided in to three parts. First, we discuss the need for low power consumption and why it is an 

important factor to consider in WSNs. Next, we describe methods to control the power 

consumption in the CM. Finally, we show some results from power analysis of the module and 

compare these results with other similar modules. 

5.1 Need for Low Power Consumption 

As explained in Section 1.4, with the increased use of embedded system in various industries like 

medical, defense, automation, consumer electronics, and many others, the need for low power 

consumption microcontrollers is increasing. In the current project, low power becomes even 

more important as the system is self powered and uses energy harvested from vibrations to 

generate power.  

5.2 Power Optimization 

There are different methods by which power optimization can be achieved, such as adjusting the 

voltage supplied, the frequency of operation of the microcontroller, optimization of the code, and 

using low power modes of the microcontroller. All of these factors are described below:  

5.2.1 Voltage Supplied 

The voltage supplied to the MSP430 is very important as it controls the current and the power 

consumption. As shown in Figure 5-1, MSP430 supply current varies linearly with input voltage, 

so operating the system at low voltages reduces the input current and, hence, overall power 

consumption. 
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Figure 5-1: MSP430 supply current versus supply voltage [from Day, 2009] 
 

In order to operate the system at low voltage, there is a linear regulator requirement which can 

control the voltage supplied to the system but adding a linear regulator between MSP430 and 

input-voltage source to increase the battery life might be contradictory because of two reasons:  

• All power supplies have a quiescent current at no load that sinks current from battery to 

the ground. 

•  Power supplies have less than 100% efficiency. 

To make the point more clear, let us consider two test cases. The first is to operate directly from 

the battery voltage and other is to insert a linear regulator between MSP430 and battery. 

According to Day [2009], it can been shown that, even after considering linear regulator 

efficiency and quiescent current loss, the case with linear regulator is much more efficient than 

the case without.  

Figure 5-2 shows the two cases mentioned above. System 1 operates directly using two alkaline 

AA batteries, so all power supplied by the batteries is available to MSP430 as there is no loss 
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due to quiescent current or linear regulator efficiency. System 2 uses a TPS780XX linear 

regulator with an average efficiency of 90% and quiescent current loss of 500 nA.  

 

Figure 5-2: System configuration with and without linear regulator [from Day, 2009] 
 
 

When the battery voltage is more than 2.2 V, System 1 consumes more current as compared to 

System 2 because, as shown before in Figure 5-1, the MSP430 operating current is a linear 

function of input voltage. System 2 in Figure 5-2 consumes a constant current as the linear 

regulator maintains a constant voltage of 2.2 V. As the battery voltage drops, both systems 

consume the same current at 2.2 V and below. There is additional current consumption of        

500 nA by System 2 because of the quiescent current of the linear regulator (Figure 5-3).  
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Figure 5-3: MSP430 current consumption versus supplied voltage [from Day, 2009] 
 

The two cases mentioned above were implemented and it was found that System 1 operated for 

223 hours, whereas System 2 with linear regulator operated for 298 hours. Hence, the addition of 

a linear regulator increased battery life by 30% [Day, 2009].  

5.2.2 Frequency of Operation  

Microcontroller frequency of operation affects the power consumption of the MSP430. The 

greater the microcontroller frequency, the less time it spends in active mode and lower will be 

the power consumed. However, for higher frequency we need to supply higher voltage to the 

microcontroller and, as discussed in Section 5.2.1, higher voltage means higher current and 

power consumption. So, depending on the system requirements, an equilibrium state can be 

found. If the system requires low execution time, then the microcontroller can be operated at 

maximum frequency; on the other hand, if the system requirement is low power then 

microcontroller frequency can be reduced.  

Figure 5-4 shows the supply voltage required by MSP430 at different frequency values.  
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Figure 5-4: Frequency versus supply voltage for MSP430F16X [from Texas Instruments, 
2009]  

 

5.2.3 Low Power modes of Microcontroller  

The MSP430 has several operating modes in which it consumes different amounts of power. The 

MSP430 has one active mode and five software-selectable low power modes of operation. An 

interrupt function can be used to wake up the MSP430 from any of the low power modes, service 

the request, and go back into the low-power mode. The list below provides all the operating 

modes that can be configured by software:   

• Active mode: In this mode all the clocks and different peripherals are active.  

• Low Power Mode 0 (LPM0): In this mode the CPU is disabled along with MCLK.  

• Low Power Mode 1 (LPM1): CPU and MCLK are disabled along with DCO dc 

generator.  

• Low Power Mode 2 (LPM 2): In this mode CPU, MCLK and SMLK are disabled but 

DCO is active.  
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• Low Power Mode 3 (LPM3): ACLK is active in this mode, whereas the CPU, MCLK, 

and SMLK remain inactive like LPM2.  

• Low Power Mode 4 (LPM4): In this mode all the clocks are disabled along with the CPU, 

so this mode consumes the least energy.  

In practice, there are three common modes used (Table 2-1): Active, LPM3, and LPM 4. 

5.2.4 Code Optimization  

Code optimization also helps in power conservation of the microcontroller. The compiler tool in 

the IAR Workbench includes an optimization function that improves the execution speed and 

reduces the size of C/C++ programs by performing functions like rearranging statements, 

simplifying loops, and allocating variables in registers. 

5.3 Power Analysis Results 

After keeping all the points mentioned above (Section 5.2) in mind, a system was designed to 

minimize the power consumed by the module. In this system we are using MSP430F1611 as the 

microcontroller. For maximum power optimization, the microcontroller use a supply voltage of 

1.8 V in order to consumes minimum power. At 1.8 V, the microcontroller can run at a 

maximum frequency of 4 MHz. The CM was kept in LPM4 mode during the time no operations 

were required. Code optimization was implemented using the optimization tool of IAR 

Workbench.  

5.3.1 Calculations 

Below are the experimental values for power consumed by different cryptographic functions 

such as encryption, decryption, and key generation.   
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• Encryption - AES 128 bit encryption was carried out using the MSP430 at 1.8 V and           

4 MHz. The total number of cycles was calculated using CYCLECOUNTER variable 

provided by IAR Workbench.  

Instantaneous current consumption in active mode: 517 µA 

Instantaneous power consumption in active mode = V × I = 1.8 V × 517 µA = 930.6 µW 

Total number of cycles used = ~40958 cycles 

Total time consumed = ~40958 × 0.25µs = 10239.5 µs (frequency = 4 MHz) 

Total energy consumed for decrypting 64 bytes is = ~930.6 µW × 10239.5 µs = ~9.528 µJ 

Energy consumed per byte = 0.149 µJ/byte 

• Decryption - AES 128 bit decryption was carried out using the MSP430 at 1.8 V and           

4 MHz. 

Instantaneous current consumption in active mode: 514 µA 

Instantaneous power consumption in active mode = V × I = 1.8 V × 514 µA = 925.2 µW 

Total number of cycles used = ~49000 cycles  

Total time consumed = ~49000 × 0.25 µs = 12250 µs 

Total energy consumed for decrypting 64 bytes is = ~925.2 µW × 12250 µs = ~11.33 µJ  

Energy consumed per byte = 0.177 µJ/byte 

• Key generation- Diffie–Hellman was used for generating the key using MSP430 at 1.8 V 

and 4 MHz.   

Instantaneous Current consumption in active mode: 518 µA 

Instantaneous power consumption in active mode = V × I = 1.8 V × 518 µA = 932.6 µW 

Total number of cycles used= ~36,800K cycles 
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Total time consumed = ~36,800K × 0.25 µs = ~ 9.2 s 

Total energy consumed for decrypting 64 bytes is = ~932.6 µW × 9.2 s = ~8.57 mJ 

5.3.2 Analysis of Results 

We now calculate the overhead due to cryptographic functions on the total power consumed by 

the system. According to Karri and Mishra [2003], the amount of energy consumed for securely 

transferring 8 kB of data in a WSN system is 1164 mJ, which includes energy used in 

cryptographic computation and communication purposes. Cryptographic functions, which 

include key generation, data encryption, and authentication, consume 7.7% of the total energy. 

Energy consumed for communication purposes for transferring 8 kB of ciphered data was 1074 

mJ (92.3 %). 

Using the results from Karri and Mishra [2003], total energy consumed by our system for 

transferring 8 kB of data can be calculated as follows: 

Energy consumption for encryption of 8 kB of data = 0.149 × 8000 µJ   

Energy consumption for decryption of 8 kB of data = 0.177 × 8000 µJ   

Energy consumption for key generation (assuming 2 key refresh) = 8.57 × 2 mJ 

Total Energy consumed for cryptographic computation  

                                              = 0.149 × 8000 µJ + 0.177 × 8000 µJ +8.57 × 2 mJ = 19.74 mJ  

Using the above information, we can predict the energy consumed by our system for transfer of  

8 kB of data will be 1074 mJ + 19.74 mJ = 1093 mJ, of which only < 2% of energy will be used 

for cryptographic computation and remainder is for data communication.   
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5.3.3 Comparison of Results 

We now compare the results mentioned in above to other similar modules developed. The test 

bench used with different modules depends on the requirements of the system, which also affects 

the energy consumed. Table 5-1 shows the comparison between various modules with a 

description of their test bench and type of operation. The first entry is the module developed for 

this project as mentioned. The second entry refers to a WSN developed on Atmel Atmega128L 

microcontroller running at 4 MHz [Wander et al., 2005]. The last entry refers to module 

implemented on StrongArm SA-1110 processor running at 206 MHz [Karri and Mishra, 2003] 

The energy consumed by the key generation algorithm was also compared, but because of the 

vast number of key generation algorithms available, it was difficult to find similar modules for 

comparison. We have used the Diffie–Hellman key exchange algorithm for MSP430 running at  

4 MHz and 1.8 V power supply. Another module developed by Sun Microsystems Laboratories 

used an MSP430 and Elliptical Curve Diffie–Hellman (ECDH) algorithm for key generation. 

ECDH uses Elliptical Curve Cryptography (ECC), which is a much newer and more efficient 

method of key generation. 

Table 5-1: Energy comparison for encryption/decryption for several cryptographic 
modules 

 

Type of Operation Test Bench Energy Consumption 

Encryption/Decryption MSP430, 1.8 V, 4 MHz 0.149/0.177 µJ/byte 

Encryption/Decryption 
Atmel Atmega128L, 4 

MHz 
1.62/2.49 µJ/byte 

Encryption 
StrongArm  SA-1110, 

206 MHz 
0.536 µJ/byte 
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The same module was tested for RSA algorithm, which is not as energy efficient as Diffie–

Hellman and the results are shown in Table 5-2. 

Table 5-2: Energy comparison for key generation for several cryptographic modules 
 

Type of Operation Test Bench Energy Consumption 

Key Generation (Diffie–
Hellman ) 

MSP430, 1.8 V , 4 MHz ~8.57 mJ 

Key Generation 
(Elliptical Curve Diffie–

Hellman ) 
MSP430, 3 V, 8 MHz 5.35 mJ 

Key Generation (RSA) MSP430, 3V, 8MHz 45.3 mJ 

 

As can be seen from Tables 5-1 and 5-2, the amount of energy consumed by the module 

developed in this project is much lower than the other such modules available. The energy 

consumed for key generation is a little higher because of the difference in efficiency of the 

algorithm used. If either the same or equally efficient algorithms are used, then the current 

system will be most power efficient.  
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Chapter 6 
Conclusion and Future work 

 

This chapter provides some of the concluding remarks about the project and future work that can 

be considered. The goal of this project is to implement the FIPS approved sensor nodes for use 

on Navy ships. We have developed a cryptographic module with a CM–Master interface for use 

in Impact-RLW sensor nodes and deployed on ships.   

6.1 Conclusion 

In the work presented herein, we have implemented a security framework for data generated by 

sensor nodes and their subsequent transmission over the wireless channel. We have proposed an 

algorithm for encapsulating packets as they move from one module to another in the system. 

Since the system developed in this project between two MSP430s is not restricted to any wired 

or wireless communication protocol, it is quite flexible.  

We successfully developed this low power CM capable of performing NIST approved algorithms 

such as AES, Diffie–Hellman key exchange, and KATs. Power optimization was another 

important goal of the project, since the sensor nodes are self powered and use vibration energy 

for harvesting power. Various methods of power optimization were implemented including code 

optimization, low power modes of microcontroller, and variation of microcontroller frequency 

and supply voltage.  

6.2 Future Work  

To make the module commercially viable, additional work must be done, including testing on 

RLW boards and EMC testing.  
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6.2.1 Testing on Impact-RLW boards 

The code for the CM was developed and tested using Texas Instruments development kits and a 

JTAG emulator in a lab environment. To make the module ready for deploying on ships, the 

codes must to be transferred to the RLW sensor nodes and tested for all cryptographic functions. 

The power consumption of the microcontroller should again be tested and verified on RLW 

boards and the results should match the values mentioned in Chapter 5.  

6.2.2 EMI/EMC Testing  

As mentioned earlier in Chapter 2, one of the FIPS requirements for the CM is to undergo 

EMI/EMC testing. After the module has been tested and verified on RLW boards, it should 

undergo testing in a harsh environment like setting up the senor network in high electromagnetic 

interference environment. All the cryptographic functions and operation should be verified in 

this environment and made sure that the readings are correct. 
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