

The Pennsylvania State University

The Graduate School

College of Engineering

POWER ANALYSIS OF CRYPTOGRAPHIC MODULE FOR WIRELESS

SENSOR NODE

A Thesis in

Electrical Engineering

by

Ravikant Gupta

© 2010 Ravikant Gupta

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

December 2010

The thesis of Ravikant Gupta was reviewed and approved* by the following:

Sven G. Bilén
Associate Professor of Engineering Design, Electrical Engineering, and

Aerospace Engineering
Thesis Advisor

Julio V. Urbina
Assistant Professor of Electrical Engineering

W. Kenneth Jenkins
Head of Department
Professor of Electrical Engineering

*Signatures are on file in the Graduate School

iii

Abstract

Wireless sensor networks, which are collections of spatially distributed sensor nodes controlled

and monitored by a master terminal, often must send sensitive data between master and node,

which requires that the data be encrypted. Additionally, wireless sensor nodes are often self

powered, thus node power consumption must be minimized.

This work presents a power analysis of a cryptographic module for wireless sensor networks.

The core elements of the cryptographic module system are two Texas Instruments MSP430

microprocessors: one functioning as master, the other as slave. This cryptographic module is

seeking to be certified to the Federal Information Processing Standard 140-2.

Master–slave communication is implemented through a Serial Peripheral Interface bus, which

facilitates ciphering, deciphering, and transfer of sensitive data using the AES Advanced

Encryption Algorithm. Implementation of FIPS-approved AES and Diffie–Hellman key

exchange cryptographic algorithms was a system requirement. Authentication and attack

prevention techniques include Known Answer Test, Error Correcting Code, and Zeroization.

The cryptographic module power is provided through vibration energy harvesting; therefore,

power management is critical. Accordingly, the cryptographic module design implements power

management via component selection, code optimization, and implementation of a Low Power

Mode. The cryptographic module was developed using Texas Instruments USB-Debug-Interface

and IAR Embedded Workbench. Subsequent to verification and certification, the cryptographic

module will be operationally deployed aboard U.S. Navy ships.

iv

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES .. x

NOMENCLATURE... xi

ACKNOWLEDGMENTS .. xii

Chapter 1 Introduction... 1
1.1 Wireless Sensor Network .. 1

1.2 Cryptography... 3

1.3 FIPS Overview .. 5

1.4 Need for Low Power Consumption... 6

1.5 System Overview .. 6

1.6 Contributions of this Work.. 8

1.7 Organization of this Thesis ... 8

Chapter 2 Background ... 9
2.1 Background of Cryptographic Modules.. 9

2.1.1 Similar Modules ... 9

2.1.2 Microprocessor Selection ... 10

2.1.3 Power Consumption for Different Cryptographic Algorithms......................... 11

2.1.3.1 Effect of Packet Size on Energy Consumption.. 12

2.1.3.2 Effect of Key Size on Energy Consumption.. 13

2.1.3.3 Effect of Number of Rounds on Energy Consumption.............................. 15

2.1.4 Power Consumption for Key Generation Algorithms...................................... 16

2.2 The Federal Information Processing Standard .. 17

2.2.1 FIPS 140-2 Certification Security Levels... 17

2.2.1.1 Security Level 1 ... 17

2.2.1.2 Security Level 2 ... 17

v

2.2.1.3 Security Level 3 ... 18

2.2.1.4 Security Level 4 ... 18

2.2.2 Security Requirements.. 19

2.2.2.1 Cryptographic Module Specification... 19

2.2.2.2 Cryptographic Module Ports and Interfaces .. 20

2.2.2.3 Roles, Services, and Authentication .. 21

2.2.2.3.1 Roles.. 21

2.2.2.3.2 Services ... 21

2.2.2.3.3 Operator Authentication.. 22

2.2.2.4 Finite State Model.. 22

2.2.2.5 Physical Security.. 23

2.2.2.5.1 Environmental Failure Protection ... 24

2.2.2.6 Cryptographic Key Management... 24

2.2.2.6.1 Random Number Generators... 25

2.2.2.6.2 Key Generation ... 25

2.2.2.6.3 Key Establishment... 25

2.2.2.6.4 Key Entry and Output ... 25

2.2.2.6.5 Key Storage ... 26

2.2.2.6.6 Key Zeroization... 26

2.2.2.7 Self Tests.. 26

Chapter 3 System Architecture and Interface ... 27

3.1 System Overview .. 27

3.1.1 Master MSP430 .. 28

3.1.2 FIPS MSP430 ... 28

3.1.3 Sensor Subsystem... 29

3.1.4 Dust Radio DN 2140 .. 29

3.2 System Interface.. 29

3.2.1 Cryptographic Module to Master MSP430 Interface 29

3.2.2 Master to Dust Radio.. 33

Chapter 4 System Implementation.. 34

4.1 Cryptographic Module .. 34

vi

4.1.1 Cryptographic Module States ... 34

4.1.2 Cryptographic Functions .. 36

4.1.2.1 Encryption/Decryption... 37

4.1.2.2 Key Generation .. 38

4.1.2.3 Zeroization ... 39

4.1.2.4 Known Answer Tests... 40

4.1.2.5 Start Up Test .. 40

4.2 Data Flow .. 40

4.3 Test Bench and Implementation.. 47

4.3.1 Test Bench Components... 47

4.3.1.1 Microcontroller .. 47

4.3.1.2 Development Kits .. 49

4.3.3.3 Programming Interface .. 50

4.3.3.4 IAR Embedded Workbench... 50

4.3.2 Implementation... 51

4.3.3 Test Inputs and Corresponding Outputs ... 53

Chapter 5 Power Analysis of the Module ... 56
5.1 Need for Low Power Consumption... 56

5.2 Power Optimization... 56

5.2.1 Voltage Supplied .. 56

5.2.2 Frequency of Operation.. 59

5.2.3 Low Power modes of Microcontroller ... 60

5.2.4 Code optimization .. 61

5.3 Power Analysis Results... 61

5.3.1 Calculations .. 61

5.3.2 Analysis of Results ... 63

5.3.3 Comparison of results... 64

Chapter 6 Conclusion and Future work ... 66
6.1 Conclusion... 66

6.2 Future Work .. 66

6.2.1 Testing on Impact-RLW boards ... 67

vii

6.2.2 EMI/EMC Testing .. 67

Bibliography .. 68

viii

LIST OF FIGURES

Figure 1-1: Architecture of sensor node [from coalesenses.com]3

Figure 1-2: Block diagram of CM ...5

Figure 1-3 Sensor Node Mesh Network [KCF Technologies, 2008]7

Figure 2-1: Energy consumption versus packet size using various algorithms
[from Kiratiwintakorn, 2005] ...13

Figure 2-2: Energy consumption versus key size for various algorithms
without key expansion [from Kiratiwintakorn, 2005]..14

Figure 2-3: Energy consumption versus key size for various algorithms with
key expansion [from Kiratiwintakorn, 2005] ...14

Figure 2-4: Energy consumption versus rounds of operation [from
Kiratiwintakorn, 2005] ...15

Figure 2-5: Energy consumption as a function of application data size
[from Gupta and Wurn, 2008] ..16

Figure 3-1: Wireless sensor network system overview ..27

Figure 3-2: Overview of System Interfaces ...30

Figure 3-3: Basic interface between master and slave module....................................31

Figure 3-4: Pin interface between Master MSP430 and Crypto MSP43032

Figure 4-1: State diagram of the CM ...36

Figure 4-2: Illustration of AES algorithm [from Nvidia.com]38

Figure 4-3: Diffie–Hellman key exchange algorithm [from Wikipedia.org]39

Figure 4 -4: Flow chart depicting the flow of packets [from Kanani, 2009]...............42

Figure 4 -5: Pin diagram for MSP430F1611 [from Texas Instruments, 2006]............48

Figure 4 -6: MSP-TS430PM64 target socket module [from Texas Instruments,
2009] ...50

Figure 4-7: MSP-FET430UIF MSP430 USB-Debug-Interface51

Figure 4-8: Experimental setup showing Master and CM interface.52

Figure 4-9 Screen shot of IAR Embedded Workbench with print statements.............53

Figure 5-1: MSP430 supply current versus supply voltage [from Day, 2009]............57

Figure 5-2: System configuration with and without linear regulator [from Day,
2009] ...58

ix

Figure 5-3: MSP430 current consumption versus supplied voltage [from Day,
2009] ...59

Figure 5-4: Frequency versus supply voltage for MSP430F16X [from Texas
Instruments, 2009] ..60

x

LIST OF TABLES

Table 2-1: Power consumption for microprocessors evaluated [Kanani, 2009]11

Table 2-2: Summary of physical requirements for each security level [NIST, 2009].24

Table 4 -1 Identifier Fields and their corresponding payloads [Kanani, 2009]...........41

Table 5-1: Energy comparison for encryption/decryption for several cryptographic
modules...64

Table 5-2: Energy comparison for key generation for several cryptographic
modules...65

xi

NOMENCLATURE

Abbreviations
ADC Analog-to-Digital Converter
AES Advanced Encryption Standard
AVG Average
CSP Critical Security Parameters
CLK Clock
CISC Complex Instruction Set Computing
CM Cryptographic Module
CRC Cyclic Redundancy Check
DES Data Encryption Standard
EMC Electromagnetic Compatibility
EMI Electromagnetic Interference
FIPS Federal Information Processing Standards
FCS Frame Check Sum
JTAG Joint Test Action Group
KAT Known Answer Test
LED Light Emitting Diode
NIST National Institute of Standards and Technology
PC Personal Computer
PIN Personal Identification Number
PIC Programmable Interface Controller
RSA Rivest, Shamir, and Adleman ciphering algorithm
RNG Random Number Generator
RISC Reduced Instruction Set Computing
RC4 Rivest Cipher 4
RC5 Rivest Cipher 5
RAM Random Access Memory
SPI Serial Peripheral Interface
TI Texas Instruments
UID Unique Identifier
UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus
ZIF Zero Insertion Force

Symbols
µ micro
@ at the rate of
+ addition
* pointer
number

xii

ACKNOWLEDGMENTS

I would like to thank first and foremost my adviser, Dr. Sven Bilén, for accepting me to work

under him and for his support and guidance as my graduate advisor. He has provided me with

great insight and feedback at every step. He has always been a source of inspiration, has shown

utmost commitment to me and my work, and provided me with all the help he possibly could.

I am also thankful to Prof. Julio Urbina for providing me his valuable comments and feedback. I

would also like to acknowledge Bob Capuro for helping me throughout my research. His timely

inputs and suggestions have helped me enormously during my work. I am also thankful to

Graduate office staff, especially SherryDawn for helping me with administrative paper work and

meeting the deadlines.

I wish to thank KCF Technologies of State College, PA, which supported some of the work

described in this thesis via a Navy STTR.

Last, but not the least, I would like to thank all my friends and family for their love and support

during my research work at Penn State.

Chapter 1
Introduction

This chapter provides an overview of wireless sensor networks and sensor nodes used in such

networks. This chapter also provides an introduction to the concepts of cryptography and its need

in various sensor networks. A brief introduction is provided to the FIPS standard and the need

for low power usage in cryptographic modules.

1.1 Wireless Sensor Network

A wireless sensor network (WSN) consists of various sensor nodes controlled by a central master

terminal. These nodes are a combination of sensor technology, microprocessor, power source,

and wireless communication interface as shown in Figure 1-1. WSNs are deployed using a

particular topology in an area of interest to allow monitoring of environmental conditions and

events. In such a wireless network, all nodes collect and forward data to one or several central

controller nodes.

The main components of sensor node are: controller, transceiver, external memory, power

source, and sensors, each described here in brief.

• Controller: Performs tasks, processes data, and controls the functionality of other

components in the sensor node. The most commonly used controller is a microcontroller

due to their low cost, flexibility to connect to other devices, ease of programming, and

low power consumption; other options are microprocessors, FPGAs, and ASICs, which

may be selected depending on the requirements of the WSN.

• Transceiver: The functionality of both transmitter and receiver are merged into a single

device called a transceiver, which is used in a sensor node for communication. Sensor

1

nodes often make use of the ISM (industrial, scientific, and medical) bands as they

provide unlicensed radio spectrum allocation and global availability. The various options

for wireless transmission media are radio frequency, optical, and infrared. Radio

frequency (RF) is generally the best fit for most WSN applications.

• External memory: Due to energy constraints, most commonly used memory devices are

the on-chip memory in the microcontroller and flash memory. Flash is used due to its cost

and large memory capacity.

• Power source: Power in a sensor node is required for sensing, communication, and data

processing. Of these, data communications is the most power consuming operation.

Commonly used sources of power are chargeable and non-chargeable batteries, but

nowadays power-harvesting techniques enable nodes to be self-powered (as in our case).

Sensors: These are devices that produce responses to changes in temperature, vibration,

and other physical and environmental stimuli. A sensor generally provides a continuous

analog signal that is then digitized by an analog-to-digital converter (ADC) and sent to

the controller for further processing. The S5NAP sensor node, which is a proprietary

design by Impact RLW, Inc., was used in this work. More information and design details

are provided in Chapters 3 and 4.

2

Figure 1-1: Architecture of sensor node [from coalesenses.com]

1.2 Cryptography

Cryptography is defined as the science of converting raw data into scrambled code that can be

deciphered at other end. Cryptography uses two types of encryption: symmetric and asymmetric.

Symmetric encryption uses the same key for encryption and decryption, whereas asymmetric

uses different keys and, because of that, asymmetric is proven to be more secure.

In cryptography, a cipher is an algorithm that is used for performing encryption and decryption

of raw data. The need for sending the data between two parties without the fear of getting

intercepted by a third party has driven the evolution of ciphering. The ciphering procedure

depends on a piece of information called a key that can be generated using different key-

generating algorithms such as Diffie–Hellman key exchange, Elliptical Curve Cryptography

(ECC), Digital Signature Algorithm (DSA), and RSA (Rivest, Shamir, and Adleman). Most

ciphers can be categorized into two types: block cipher and stream cipher. In block cipher,

operations are performed on a fixed length of bits/bytes called blocks; for example, a block

3

cipher will take set of 128 bits as input and, after encryption or decryption, it will return 128 bits

of information. In a stream cipher, plaintext bits are combined using exclusion or operation with

pseudorandom cipher bit stream called a key-stream.

When digital data is required to be securely stored in or exchanged between computers, then

based on the sensitivity of the information, the need for protecting this data from unauthorized

access must be considered. These requirements lead to a need for protecting this data which can

be accomplished through ciphering.

The development of digital computers has made it possible to implement even the most complex

ciphering algorithms available. As the complexity of the algorithm increases, so does the need

for computational resources, which has lead to the development of modern-day cryptographic

modules (CMs). A CM integrates cryptographic algorithms in software and hardware elements

into a dedicated ciphering unit.

A CM first generates a key using a key generation algorithm and then takes a block or stream of

raw data (depending on the type of algorithm used for encryption) and ciphers the data. The

encrypted data can then be sent over a channel without worrying about interception by a third

party. At the other end, there is a counterpart CM doing the exact opposite process called

decryption. In this manner, data is securely transferred between different ends. Figure 1-2 shows

the structure of a typical CM.

4

Figure 1-2: Block diagram of CM

CMs have been developed to secure important information, but poor design or weak algorithms

can make the ciphering process insecure and place highly sensitive information at risk. Ideally, a

CM should be implemented such that the ciphered data can only be deciphered by a module of

the same type. This has lead to series of requirements and procedures and to the development of

the Federal Information Processing Standard (FIPS).

1.3 FIPS Overview

With the requirement to use cryptography by the military and other federal agencies, a standard

was needed to provide security assurance for the data transferred. In January 1994, the National

Institute of Standards and Technology (NIST) released the Federal Information Processing

Standard. The FIPS standard tests and validates a CM and its underlying algorithm against

established standards to provide security assurance.

A CM that follows these specific rules as stated by NIST can seek what is known as FIPS

certification. This certification updates its rules every few years, latest being FIPS 140-2 released

in 2002. In FIPS 140-2, there are different levels of security certification, which depend on

5

which security conditions are satisfied. The higher the security level, the stricter are the security

requirements.

1.4 Need for Low Power Consumption

With the increased use of embedded systems in industries such as consumer electronics, home

automation, medical, security, and many others, the need for low power consumption has

become important. This is because many embedded systems are battery powered and by

choosing a system that consumes the lowest power, the battery life can be extended.

Low power consumption has always been a key concern for hardware developers, but there are

limits based on the hardware selected. An active system can minimize power usage through

proper hardware design and by optimizing the manner in which that hardware is used, i.e., by

optimization with respect to power of the embedded software. This software has generally been

written with considerations such as optimization of memory, but to minimize power usage and to

achieve a system that consumes low power, optimization of the software with respect to power is

also required.

There are a number of ways by which power can be optimized through software, such as using

the low power mode(s) of the microcontroller, minimizing the current consumption by

controlling processor frequency, minimizing the voltage level of the controller’s supply, code

optimization, among others. Each of these methods is explained in more detail in the following

chapters.

1.5 System Overview

The sensor nodes for which the CMs have been developed in this work are called S5NAP, which

is a product of Impact RLW Systems, Inc., of State College, PA. The system consists of a

6

wireless sensor network that is capable of transferring the data between different nodes. The

sensor nodes present in the system collect data of interest (e.g., temperature, vibrations,

humidity, and other various measurements) and transfers this data to other nodes using a radio

link. These sensor nodes are self powered as they generate their power from vibration-based

energy-harvesting technology. Figure 1-3 shows a mesh sensor network connected to a host hub

where all the information is collected and stored.

The sensor node contains a low power CM to securely transfer the data between different nodes

using various FIPS approved algorithms. The CM consists of two Texas Instruments MSP430

processors, which act in master–slave configuration. The master MSP430 collects the data from

the sensor nodes and the slave MSP430 ciphers this data. Henceforth, this will be referred to as

the MSP430 crypto module.

Figure 1-3 Sensor Node Mesh Network [KCF Technologies, 2008]

7

1.6 Contributions of this Work

Our primary contribution in this project has been to design a low power CM that is capable of

encrypting and decrypting data using various FIPS approved algorithms. The software developed

for the CM has been designed with low power usage as a key objective. This was mainly

achieved by using low power modes of the microcontroller and optimizing the code used for

encryption and decryption.

Furthermore, the module we developed can be used in almost any device that requires data

security and low power consumption. The module can be used by any wireless senor network

independent of any routing protocol used for communication.

1.7 Organization of this Thesis

The remainder of the thesis is organized as follows. Chapter 2 provides background information

and a literature review. It also provides information about the CM and details of FIPS security

requirements. Chapter 2 covers the selection process for the microcontroller and algorithm used

for encryption and decryption. Chapter 3 provides information about the system architecture and

the various protocols used for communication between different system elements. It also

provides detailed descriptions of the roles of the system modules. Chapter 4 overviews the power

analysis of the CM, the methods by which low power consumption can be achieved, and the

workbench used to develop the module. Chapter 5 provides the testing results of the CM,

specifically the results from the power analysis of the system. Finally, Chapter 6 concludes the

work and suggests future work.

8

Chapter 2
Background

This chapter provides an overview of past work performed in this field and other similar

cryptographic modules. Also covered is a study of microprocessors for low power usage and the

selection process that chose the MSP430, which included factors such as key size, packet size,

type of algorithm, and number of cipher rounds.

The second half of the chapter reviews in detail the Federal Information Processing Standard

(FIPS) requirements for certifying a CM. As described earlier, NIST has specified a number of

security requirements that must be satisfied by any CM used by a federal agency. This chapter

also describes the need for FIPS and gives a background that led to the development of FIPS.

2.1 Background of Cryptographic Modules

The goal of this project was to design a system that can implement certain algorithms specified

by FIPS and to minimize the power consumption of this system using various methods for power

management.

2.1.1 Similar Modules

A number of CMs have been developed by other groups. One such device is the “Telos”, which

is an ultra low power wireless sensor module for research and experimentation purposes

developed by the University of California, Berkeley [Polastre et al., 2005]. Telos was built with

three goals in mind: ease of use, minimum power consumption, and increased software and

hardware robustness. It consists of a TI MSP430 microcontroller, Chipcon IEEE 802.15.4–

complaint radio, and USB interface.

9

Another such device, released in 2001, is the “Mica” [Hill et al., 2002], which was designed to

serve as a general purpose platform for WSN research. Mica was useful for development, but

unsuitable for deployments purposes because of its short range for radio communication. To

overcome the shortcomings of Mica, “Mica2” was developed, which used an ATmega128

microcontroller and Chipcon CC1000 transceiver offering tunable frequencies from 300 to 900

MHz. To continue the Mica family, “MicaZ” was released in 2004 and uses a CC2420 radio,

which is an IEEE 802.15.4–compatible radio.

A single-chip mote implementation called “Spec” [Hill, 2003] resulted from the Mica platform.

Spec uses a number of dedicated hardware accelerators to perform encryption. Unlike the Mica

family, Spec is fully integrated and offers limited interface flexibility.

2.1.2 Microprocessor Selection

To select the microprocessor used in this project, we performed a comparative study of a large

subset of the available microprocessors on the market. For example, the PIC microprocessor

class, particularly the PIC16F87, is very power efficient with features that include four low

power modes and two-speed oscillators. However, after careful study of the available options,

the Texas Instruments MSP430FXXX was selected due to its overall power consumption and its

low power modes [Kanani, 2009]. For each of the processors considered, specifications as

derived from data sheets are presented in Table 2-1.

The MSP430 was found to have the lowest power consumption in sleep and active modes. The

microcontroller operates down to 1.8 V, which is important depending on the power source, e.g,

AA batteries have a cutoff of voltage of 0.9 V and if two such batteries are used the system

10

cutoff voltage will be 1.8 V. Compare this to the Atmel processor, which can only run down to

2.7 V, leaving some of the power in the AA batteries unused.

Table 2-1: Power consumption for microprocessors evaluated [Kanani, 2009]
Power Consumption

Company Processor
8 or
16
bit

of
Power
Modes Mode 1 Mode 2 Mode 3 Mode 4

Microchip PIC16F87/88 8 bit 4
152 µW @

1 MHz
14 µW @
31.25 kHz

18 µW @
32 kHz

0.2 µW

Atmel AT89C5115 8 bit 3
3.7 mW @

1 MHz
2.6 mW @

1 MHz
NA —

Texas
Instruments

MSP430F1611
16
bit

3
726 µW @

1 MHz
2.2 µW @

1 MHz
0.2 µW —

Maxim MAXQ2000
16
bit

2
4.75 mW

@ 14 MHz
12 mW @
32.77 kHz

NA —

EM
Microelectronic

EM6812 8 bit 4
360 µW @

1 MHz
6 µW @
32 kHz

0.8 µW
0.16
µW

The MSP430 has the fastest wakeup time of all the microcontrollers evaluated, transitioning

from standby mode to active mode in 6 µs. The MSP430 also has a DMA controller to reduce

load from MCU core, which lowers the power consumption and increases the performance. In

addition, the MSP430 has the advantage of having the largest on-chip buffer (10 kB), which is

very useful for on-chip signal processing.

2.1.3 Power Consumption for Different Cryptographic Algorithms

Cryptographic algorithms are known to be computationally intensive as they consume a lot of

resources such as memory space, CPU cycles, and power. Wireless devices are mostly battery

operated, so power consumption due to running the cryptographic algorithm becomes a

significant consideration. Hence, selecting the proper algorithm to meet cryptographic

requirements is of utmost importance.

11

Energy consumption by cryptographic algorithms depends on various factors, such as the size of

the block of data to be ciphered (assuming block ciphering), the size of the key used, and the

number of cycles used in ciphering or deciphering the data. In the following sections, the effect

of these factors is described in more detail.

2.1.3.1 Effect of Packet Size on Energy Consumption

Packet size is an important factor in wireless networks. Transmitting long packets improves the

network utilization because there is overhead information that has to be transmitted with each

packet. On the other hand, as the size of the packet increases, the error rate also increases

[Lettieri et al., 1999].

The packet size also has an effect on energy consumption as every encryption requires a key

expansion process that consumes a constant amount of energy independent of the size of the key

used. According to Prasithsangree and Krishnamurthy [2003], long packets consume less energy

than short packets using same key length and number of operations. From work done by

Kiratiwintakorn [2005], Figure 2-1 shows the energy consumption comparison between different

algorithms as a function of packet size while keeping constant the key size and number of

rounds. For this experiment, an 800-MHz, mobile Pentium III was used. As can be seen from the

figure, AES consumes least amount of energy compared to the other methods when encrypting

small packets, which is an important result for the current project as our system used 80-byte

packets.

12

Figure 2-1: Energy consumption versus packet size using various algorithms [from
Kiratiwintakorn, 2005]

2.1.3.2 Effect of Key Size on Energy Consumption

We now discuss the effect of key size on energy consumption of a cipher algorithm. We consider

two cases: with and without key expansion. The difference between these two is that, for the case

without key expansion, the number of cycles is counted after the key expansion process. Figures

2-2 and 2-3 show the amount of energy consumed per byte using different key sizes, packet

sizes, and algorithms with and without key expansion. As shown in the figures, the amount of

energy consumed in the case of AES depends on the size of the key used, whereas all other

algorithms (i.e., Blowfish, RC4, and RC5) are almost independent of size of the key in both with

and without key expansion. This behavior of AES is due to the fact that, as the size of the key

increases, the number of ciphering rounds increases, which means more CPU cycles and, hence,

higher energy consumption. In the case of other algorithms, as the size of the key increases there

is only a slight increase in the number of rounds of operation and, hence, no significant effect on

energy consumption.

13

Figure 2-2: Energy consumption versus key size for various algorithms without key
expansion [from Kiratiwintakorn, 2005]

Figure 2-3: Energy consumption versus key size for various algorithms with key expansion

[from Kiratiwintakorn, 2005]

14

2.1.3.3 Effect of Number of Rounds on Energy Consumption

The energy consumption in a cryptographic algorithm depends heavily on the number of

ciphering rounds, especially in the case of block ciphers like AES and RC4. In a block cipher

algorithm, the input data go through a number of repetitive rounds and, as the number of rounds

increases, energy consumption by the algorithm increases. In the previous section, we saw the

effect of key size on the power consumption of the AES algorithm, but the effect due to the

number of operational rounds is much larger than for key size. According to the AES standard,

there is certain number of rounds that must be performed depending on the key size. Key sizes of

128, 196, and 256 bits require 10, 12, and 14 rounds of operation, respectively. The standard

requires particular rounds of operation because of the security considerations. The algorithm

becomes more and more susceptible to cryptanalysis attacks as number of rounds of operation

decreases. Figure 2-4 shows the effect of number of rounds on energy consumption per byte for

different algorithms.

Figure 2-4: Energy consumption versus rounds of operation [from Kiratiwintakorn, 2005]

15

2.1.4 Power Consumption for Key Generation Algorithms

Cryptographic algorithms require a key generation algorithm so that the key can be generated

from time to time and shared securely between different nodes of the WSN. There are various

public key-generation algorithms available, such as Diffie–Hellman Key Exchange, Elliptical

Curve Cryptography (ECC), Digital Signature Algorithm (DSA), and RSA (Rivest, Shamir, and

Adleman). These algorithms consume different amounts of energy based on their complexity. In

Figure 2-5 where the plot intersects the Y axis denotes the amount of energy consumed by

different algorithms for key generation, while the slope indicate the energy needed to transfer

data..

Figure 2-5: Energy consumption as a function of application data size [from Gupta and
Wurn, 2008]

16

2.2 The Federal Information Processing Standard

As mentioned earlier, every CM used by a U.S. federal agency meet certain requirements as

defined by NIST. A CM meeting these requirements, once certified, is awarded FIPS

Certification (the current version is Version 140-2).

2.2.1 FIPS 140-2 Certification Security Levels

Since security requirements vary for different applications, FIPS provides four levels of security.

It is incumbent on an organization to determine their requirement for level of security, which will

depend on the sensitivity of the data and possible impact of interception. Security levels provided

by FIPS vary depending on the requirements levied. Level 1 is the easiest to achieve and level 4

is the toughest.

2.2.1.1 Security Level 1

Security level 1 is the lowest level of security among the four levels provided by FIPS. Its does

not require any particular physical security requirements besides the basic requirement for

production grade component [NIST, 2009]. It allows software and firmware components of a CM

to be implemented on any general computing system. This security level is best suited for low

cost CMs for which physical and network security are limited or not required. For example, a

personal computer encryption board will qualify for security level 1.

2.2.1.2 Security Level 2

Security level 2 provides better physical security compared to level 1. In this level, there is a

requirement for tamper evidence, such as tamper-evident coatings or seals or pick-resistant locks.

These coatings are placed such that it has to broken to get a physical access to the CM [NIST,

2009]. Security level 2 also requires a minimum level of authentication of the operator for

17

specified roles and services. Security level 2 imposes much stricter requirements on the type of

operating system used by a CM. The operating system has to meet specific requirements as

outlined in Annex B of the NIST [2009] document.

2.2.1.3 Security Level 3

Security level 3 has much stricter physical security requirements including detecting and

responding to tampering. Level 3 prevents intruders from access to Critical Security Parameters

(CSP). The physical security in level 3 may include tamper evidence and response circuitry for

any physical tampering with the system.

Security level 3 has identity-based authentication requirements, which improves the security

provided over that of level 2 [NIST, 2009]. Level 3 requires the CM to make sure that it is

capable of authenticating the identity of the operator and verifies that the operator is authorized

for the specific role or task.

2.2.1.4 Security Level 4

Security level 4 is the highest level of security defined by FIPS. At this level, the physical

security mechanism provides a complete shield from any unauthorized attempts to gain physical

access to the CM. Any penetration of the CM via any method will result in complete zeroization

of all the CSPs in the module. This kind of security is most useful for unprotected environmental

conditions [NIST, 2009].

Security level 4 also protects the module from any harsh environmental conditions that are

outside of the normal operating ranges for voltage and temperature. A CM is required to detect

any fluctuation in these values that occurs and to zeroize all CSPs when out of range.

18

2.2.2 Security Requirements

There are various design and implementation requirements for CMs that are needed to achieve

FIPS certification. This include requirements on module port and interfaces; roles and services;

finite state module; physical security; operational environment; and more.

2.2.2.1 Cryptographic Module Specification

A CM is a set or combination of software, hardware, and firmware that is capable of

implementing cryptographic algorithms or processes, and optionally, a key-generation algorithm

[NIST, 2009]. A CM should implement at least one approved security function used in approved

mode of operation.

The “cryptographic boundary” defines the perimeter or physical boundary of the CM. Within

that boundary should exist any software or firmware used in cryptographic functions and any

hardware to support that firmware or software. When seeking certification, the application

package should

• specify any hardware, software, or firmware that is not a part of these security

requirements and explain the reason for the same;

• document and specify all input and output data ports of the CM;

• account for all logical control and logical status indicators of the CM;

• document all security functions approved and unapproved that are employed by the CM;

• document and specify a block diagram depicting all hardware components and the

interconnections between different hardware elements of the CM; and

• document all security related information, such as public and private keys, authentication

data, and CSPs.

19

2.2.2.2 Cryptographic Module Ports and Interfaces

A CM should restrict all data flow and access points to physical ports and logical interfaces that

are defined as entry and exit points of the module [NIST, 2009]. A CM should have the following

logical interfaces:

• Data Input Interface: all data including plaintext data, ciphered data, cryptographic keys,

and CSPs that are processed by the CM shall enter through data input interface.

• Data Output Interface: all data including plaintext data, ciphered data, cryptographic

keys, and CSPs, but excluding status data, shall exit through data output interface.

• Control Input Interface: all input commands, signals, and control data including the

manual control like switches and keyboards shall enter through control input interface.

• Status Output Interface: all status data, indicators, and output signals used to indicate the

status of the CM shall exit through the status output interface. These data may include

return codes and physical indicators such as LEDs and displays.

All power entering the CM, including the external power from a power supply or battery, should

enter through the power port. There is no requirement for a power port if the power is supplied

internally to CM within its cryptographic boundary.

Each security level levies different requirements: for levels 1 and 2, physical ports and logical

interfaces used for authentication data, CSPs, and cryptographic keys can be shared with other

ports and interfaces of the CM; whereas, levels 3 and 4 require either physical or logical

separation from other port and interfaces.

20

2.2.2.3 Roles, Services, and Authentication

A CM should be able to support authentication for operators and their respective roles, which

should be implemented via software using a password mechanism.

2.2.2.3.1 Roles

A CM should be able to support the following roles for an operator:

• User Role: to perform general purpose security activities, which include cryptographic

operations and approved security functions.

• Crypto Officer Role: to perform basic cryptographic initialization and management

functions like input and output of cryptographic keys and module initialization.

• Maintenance Role: to perform physical or logical maintenance services. All the CSPs and

plaintext keys should be zeroized when entering or exiting this role.

2.2.2.3.2 Services

The document describing the CM should provide all the services and functions that can be

executed by CM, which should be able to provide the following functions:

• Show Status: output the current status of the CM.

• Perform Self Tests: initiate and execute the self tests.

• Perform Approved Security Functions: the CM should be able to perform at least one

approved security function in Approved mode of operation.

The document for services should provide:

• both approved and non approved cryptographic functions and services;

• inputs, expected outputs, and authorized roles in which the service can be performed for

every specific service provided by the CM; and

21

• any services provided by CM for which operator is not required to gain any Authorized

role.

2.2.2.3.3 Operator Authentication

Authentication mechanisms may be required in a CM to authenticate the operator for doing some

roles and functions and for verifying that the operator is authorized to do so. Depending on the

security level, a CM should be able to support one of the following mechanisms:

• Role-based Authentication: in role-based authentication, the module shall require that one

or more roles either be implicitly or explicitly selected by the operator and shall

authenticate the assumption of the selected role in this mode the module does not need to

authenticate an individual for a role.

• Identity-based Authentication: in identity-based authentication, the module shall require

that one or more roles either be implicitly or explicitly selected by the operator and shall

authenticate the identity of the operator and authorization of the operator to assume the

selected role. If the CM allows an operator to change roles, then the module should check

the authorization of identified operator.

2.2.2.4 Finite State Model

The functions of a CM should be specified using a finite state model represented by a state

transition diagram or state table. The transition table should consist of:

• all error and functional states of the CM;

• corresponding transitions from one to another state;

• events that cause the transition; and

• output event resulting from the transition.

22

A CM should include following states:

• Power On/Off States: states for primary, secondary, or backup power.

• Crypto Officer States: states in which crypto officer services are performed.

• Key/CSP Entry States: states in which cryptographic keys and CSPs are entered in the

CM.

• User States: states in which authorized user obtain security services and perform

approved and unapproved functions.

• Self-test States: states in which the CM performs self tests.

• Error States: states in which the CM faces an error.

A CM may or may not contain other states such as Bypass and Maintenance.

2.2.2.5 Physical Security

A CM shall employ physical security mechanisms in order to avoid any unauthorized physical

access to the contents of the module. All the important components including the software,

hardware, and firmware should be protected. Table 2-2 below summarizes the physical

requirements for each of the four security levels.

23

Table 2-2: Summary of physical requirements for each security level [NIST, 2009]

2.2.2.5.1 Environmental Failure Protection

All electronic devices and circuitry are designed to operate within some particular environmental

conditions; any deviation from the normal operating ranges of voltage and temperature can cause

failure of electronic circuitry that can compromise the security of a CM [NIST, 2009]. Proper

assurance that security of the CM cannot be compromised can be achieved by having the module

employ environmental failure protection (EFP) features or undergo environmental failure testing

(EFT).

2.2.2.6 Cryptographic Key Management

FIPS has some requirements for cryptographic key management for the entire life cycle of

cryptographic keys, cryptographic key components, and CSPs. Key management mainly includes

Random Number Generation (RNG), key generation, key establishment, key distribution, and

key zeroization.

24

2.2.2.6.1 Random Number Generators

A CM may use an approved or an unapproved random number generator (RNG) in an approved

mode of operation; however, the data output from RNG should pass the continuous random

number generator test. The output from an unapproved RNG can be used for the following:

• as input to an approved deterministic RNG; and

• to generate or initialize vectors for approved security functions.

2.2.2.6.2 Key Generation

A CM can generate a key internally. If a CM generates keys for an approved algorithm or

security function, then it should be generated using an approved key generation method. If an

approved key generation method requires input data from the RNG, then an approved RNG

should be used.

2.2.2.6.3 Key Establishment

There are various methods of key establishment, such as a manually transported key loading

device, an automated public key algorithm, or a combination of both manual and automated. If

key establishment methods are used in a CM, only approved methods should be used.

2.2.2.6.4 Key Entry and Output

Cryptographic keys can be entered into or output from a CM. If cryptographic keys are entered

into or output from CM, the entry or the output of keys should be performed using either manual

methods such as via a keyboard or electronic methods such as via PC cards or smart cards.

25

2.2.2.6.5 Key Storage

Cryptographic keys in a CM can be stored either in plain text or encrypted form. Plaintext and

private keys should not be accessible from outside the CM to any unauthorized operator.

2.2.2.6.6 Key Zeroization

All CMs should provide methods to zeroize all plaintext and private keys within a module. This

function is used mainly when there is a breach in physical security of the module by an

unauthorized operator.

2.2.2.7 Self Tests

For ensuring that the CM is functioning properly, Power-up Self Tests and Conditional Self

Tests should be performed. A Power-up Self Test, as the name suggests, should be performed

when a CM is powered up and Conditional Self Test should be performed when an applicable

security function or operation is invoked.

26

Chapter 3
System Architecture and Interface

This chapter provides an overview of the system architecture and the interface between different

modules. The chapter also includes information on the flow of data from sensor nodes to main

master terminal and back to the nodes. The entire process includes encryption, decryption, and

key generation using various FIPS approved algorithms.

3.1 System Overview

Figure 3-1 provides a system overview for the wireless sensor network and highlights the

location of the CM. In short, the system concept of operations can be described in four steps:

first, the Master collects data from sensor nodes and send it to Crypto module for

encryption/decryption. Then, after performing the particular function the Crypto module sends

the data back to Master MSP430. The Master collects this ciphered data and sends it to the Dust

Radio, which sends the packet to the required destination via the Dust Network.

Figure 3-1: Wireless sensor network system overview

27

The WSN system architecture consists of three main subsystems: S5NAP Node, Dust Network,

and Receiver. The S5NAP node consists of four major components: Master MSP430, FIPS

MSP430, Sensor subsystem, and Dust Radio as shown in the Figure 3-1. The Master acts as the

backbone of the system as all other components communicate through the Master. The receiver-

side Master Terminal, which is mainly a connector program, is connected to the Dust Network

on one side and the CM on the other side.

3.1.1 Master MSP430

The Master is one of the main components of the S5NAP module, which carries out several

important functions such as maintaining Serial Peripheral Interface (SPI) communication with

the CM, providing a clock to the CM, and waking up the CM from sleep mode. The Master is

also responsible for running the S5NAP firmware, which in turn is responsible for collecting the

sensor data from the ADC, reporting its status; transferring its data wirelessly using the Dust

radio, and performing all the wireless firmware updates.

3.1.2 FIPS MSP430

The CM is responsible for encrypting the raw data supplied by Master so as to enable secure

communication of this data over the air. It is also responsible for decrypting this encrypted data

at the receiver end. The CM uses the Advanced Encryption Standard (AES) algorithm for

encryption and decryption of data. After encryption or decryption, the output data are sent back

to the Master terminal. Another important function of CM is to generate keys using the Diffie–

Hellman key exchange algorithm. This key is used by the AES algorithm for encryption and

decryption of data. The CM communicates only with the Master using identifier bits to let the

Master know what kind of information is in the packet it is being sent.

28

3.1.3 Sensor Subsystem

The sensor subsystem is responsible for collecting the data of interest. In our case, this data are

vibrations that are measured using an integrated charge-mode accelerometer. The output of the

charge-mode accelerometer serves as the input to two circuits: a) the waveform acquisition

circuitry and b) the continuous vibration monitoring circuitry.

3.1.4 Dust Radio DN 2140

The Dust DN2140 radio is a proprietary IEEE 802.15.4 wireless mesh networking solution

provided by Dust Networks. The DN2140’s communication protocol is proprietary in nature so it

is like a black box in the S5NAP system.

3.2 System Interface

There are several interfaces in the S5NAP system, some software and some hardware. One of the

most important interfaces is that between Master and the CM using the SPI bus. Other interfaces

include that between Master and Dust Radio using the serial command interface and the interface

between the Dust Radio and Dust Network via the IEEE 802.15.4 protocol.

3.2.1 Cryptographic Module to Master MSP430 Interface

The interface between Master and the CM is maintained using the SPI bus, which is the most

important interface to the CM as most of the traffic flow takes place in this part of the module.

29

Figure 3-2: Overview of System Interfaces

The SPI bus is a synchronous serial standard that allows a master device to communicate with a

slave device. SPI operates in full duplex mode. Devices communicate using a master–slave

relationship, in which master generates a clock, selects a slave device, starts transmitting packets,

and simultaneously receives packets as SPI communication is always in both directions. There is

no error check in SPI, which requires that the master and slave check that the data received are

understandable. Multiple slave devices can be used with individual chip select lines and, as such,

SPI is called as “4-wire” SPI. The SPI bus specifies four logic signals (Figure 3-3):

• SCLK — Serial Clock from master;

• MOSI — Master Output, Slave Input;

• MISO — Master Input, Slave Output; and

• SS — Slave Select, active low from master;

30

 Master Slave

 SCLK

 OUT

 INPUT

 Slave Select

CLK

INPUT

OUT

CE

Figure 3-3: Basic interface between master and slave module

For our system, the complete pin interface is shown below in Figure 3-4. SPI _CLK is used by

Master to provide clock to the Crypto MSP430; this clock plays a very important role for

successful and error free communication between the two devices. Clock frequency can be

varied to the processor depending on its function. In our system, we use a clock frequency of

4 MHz. The second connection is SPI_MOSI (SPI Master Out Slave In), which is the output line

of Master MSP430. Similarly, SPI_MISO (SPI Master In and Slave Out) is the output line of the

slave MSP430, i.e., the CM. FIPS_MCU_SEL is used by the master to select the CM, as the

Master is connected to several slave devices. FIPS_MCU_INT is an interrupt line used by the

Master to wake up the CM from the Low Power Mode (LPM). After waking up the CM, the

Master starts sending and receiving bytes from CM, which, after processing the data (encryption,

decryption, or key generation), generates the MAIN_MCU_INT interrupt and, as soon as the

Master is ready, it again starts receiving the data sent by the CM.

31

Figure 3-4: Pin interface between Master MSP430 and Crypto MSP430

The interface between the Master and CM is the backbone of entire logical system. The Master

collects the vibration data from Sensor subsystem, which needs to be transmitted over the Dust

Network. If this critical data are not encrypted, they could be intercepted and read by anyone

over the air. So, this data has to be encrypted before transmission, which is accomplished by the

CM. As soon as the Master receives data from Sensor subsystem, it wakes up CM and starts

sending packets for encryption. The CM encrypts the data using the AES algorithm and sends it

back to the Master. At the receiver end, the reverse process occurs, i.e., the Master sends

encrypted packets to the CM for decryption, which then decrypts the packet and sends it back to

Master.

For the CM to perform encryption and decryption of data using the AES algorithm, it must have

a key for doing so. If the CM does not have the key, then it starts the key exchange using the

Diffie–Hellman algorithm. Only after successful generation and exchange of the key is the CM

capable of encrypting and/or decrypting the data.

32

3.2.2 Master to Dust Radio

The Master and Dust Radio communicate using a Universal Asynchronous Receiver/Transmitter

(UART) at a baud rate of 9600. The Master sends the Dust Radio packets that contain ciphered

data, a heartbeat message, and an identifier field. All the packets received are checked using 16-

bit frame checksum (FCS) and the packets containing an FCS error are discarded. There is no

mechanism by which the Master can be informed of a discarded packet. The Dust Radio receives

packets from the network and forwards them to the Master. Along with packets Dust Radio also

attaches the originating address of the packet to the Master as this is important information for

Master when it is passing the packet to CM. CM use this information to know where the packet

has come from. Similarly when the packet passes through the Dust Radio into the Network, the

Dust Radio appends a header that contains important information regarding the network, such as

the routing path, number of hops, destination address, etc. So, when the packet is received at the

other side, the Dust Radio removes the header and passes the rest of message to the Master.

Another important thing to note is that when the packet is sent from CM it contains information

about the destination address. But, this part is clipped off when it forwarded to the Dust Radio to

save some bytes.

33

Chapter 4
System Implementation

This chapter is divided in to three parts. The first part describes the CM algorithm and the

functions performed by the CM. Next, the flow of packets in the WSN system from one node to

another is described. A new system specific algorithm was designed is explained. Finally, this

chapter gives an overview of the test bench used to implement the system and also shows some

test inputs and corresponding outputs of the system.

4.1 Cryptographic Module

As mentioned above, the CM performs a series of operations and algorithms on the data received

from Master. The CM goes through several stages when performing these operations; these

stages are explained below in detail and flow charts for stage transitions are provided. To

maintain similarity between the two ends, there is a similar CM at the connector end to

implement the same functions.

4.1.1 Cryptographic Module States

The CM goes through various states when performing encryption/decryption and key generation.

Figure 4-1 shows these states in the order of their occurrence. Brief descriptions of all the states

of the CM are given below:

• Initialization State: In this state the CM initializes various buffers it is going to use, such

as its buffers for storing keys and input and output data. It also initializes various pointers

to these buffers and functions for encryption, decryption, key generation, storing and

stuffing keys, and the RNG function. In this state the CM also starts preparing the

34

communication channel with the Master. In order to do this, it initializes the SPI bus and

initializes the interrupt lines to the Master.

• Sleep State: After preparing the channel for communication and initializing the variables,

CM goes into a sleep state (i.e., LPM4). This state is very important as power

consumption in this state is very low, which helps in power conservation for the module.

• Active State: As soon as the Master gets data from sensor node it interrupts the CM. The

module goes back into active mode and waits for a clock signal from the Master.

• Tx and Rx State: The CM waits for a Tx interrupt signal from the Master and, as soon it

sees that interrupt, there is a exchange of 80 bytes from the Master to the CM and vice

versa. The data sent by the CM to the Master, however, contains garbage values. The

reason for this is that SPI Communication is a two-way communication link, so a module

has to transmit and receive at the same time. When the CM is done processing the data, it

sends the Master an interrupt signal and again there is an exchange of 80 bytes.

• Data Processing: In this state the CM process the data it received and perform functions

such as encryption, decryption, and key generation. Again, as mentioned earlier, the type

of operation that the CM performs depends on the packet identifier bits.

Figure 4-1 shows all the states mentioned above and the transitions between them. The CM starts

from the Initialization state and, after initializing the variables, it goes to the Ready state in

which initialization of the SPI bus takes place. After the Ready state, the CM sits in Sleep mode

until it is interrupted by the Master interrupt (FIPS_MCU_INT), which brings the CM to the

Active state. In the Active state, the CM waits for a clock from the Master and then goes back to

the Sleep state until it is again interrupted by the Master interrupt (Tx interrupt) signal. As soon

35

as the CM gets the Tx interrupt, it goes into the Tx and Rx state, in which it exchanges 80 bytes

with the Master. After the data exchange, the CM goes into the Data Processing state, in which it

processes all the data depending on the identifier bits. After processing the data, the CM goes

back into the Tx and Rx state, which it sends the processed data to the Master. This completes

one cycle of the CM, after which it goes back into Sleep mode.

Figure 4-1: State diagram of the CM

4.1.2 Cryptographic Functions

Detailed descriptions for all the operations and functions performed by CM are provided below.

36

4.1.2.1 Encryption/Decryption

After careful examination of all the algorithms available, AES was chosen as the encryption

algorithm for this project mainly because of its low energy consumption when used for small

packets. The basic steps of the AES algorithm are described briefly below:

• Substitute Bytes: this is a nonlinear substitution and one of the main reasons for the

security of the AES algorithm. This step can be considered as lookup table step. Using

this lookup table, the 16 bytes are substituted by the respective values found in the table.

• Shift Rows: as the name implies, this step processes different rows. A simple rotate with

different rotation width is performed. For example, if we have 4×4 bytes of input data,

the second row will be shifted one byte to the left in the array, the third by two bytes, and

the fourth by three byte positions. The first row is not shifted.

• Mix Columns: this is one of the most complex operations to implement in software. The

Mix Column operation is pretty similar to “Shift Row”, with the only difference being it

works on columns instead of rows. To make this operation reversible at the other end,

instead of multiplication and addition, Galois field operations are used.

• Add Round Key: is a very simple step in the entire AES algorithm. The corresponding

bytes of the input data and the expanded key are XORed.

• Key Expansion: This is the last step in the AES algorithm. Considering the case of 128-

bit AES, in this process 128 bits of the original key are expanded into eleven 128-bit

round keys.

Figure 4-2 below shows the implementation of AES:

37

Figure 4-2: Illustration of AES algorithm [from Nvidia.com]

4.1.2.2 Key Generation

As mentioned before, the Diffie–Hellman key exchange algorithm is used for key generation in

this project. The Diffie–Hellman key exchange method allows two different nodes, with no

previous knowledge about each other, to jointly establish a shared secret key over an insecure

channel. This shared secret key can be of variable length, which determines the strength of the

ciphering.

With reference to Figure 4-3, we describe the Diffie–Hellman key exchange method below. In

this method, there is a prime number P and a generator g that are known to all the nodes in the

WSN. Now, suppose that Alice and Bob want to generate a shared symmetric key, they already

know the value of P and g. Alice generates a random number a and Bob generates a random

number b. Then each of them computes their public value using g × mod P:

38

Alice’s public key : g a mod P

Bob’s public key: g b mod P

Now these values are exchanged and a final private key is generated at each node:

Alice computes g a b mod P = (g b mod P) a mod P

Bob computes g b a mod P = (g a mod P) b mod P

As can be seen, both the values are same, so Alice and Bob have a same secret key, which can be

used for ciphering or deciphering purposes.

Figure 4-3: Diffie–Hellman key exchange algorithm [from Wikipedia.org]

4.1.2.3 Zeroization

This is one of the security functions needed for FIPS certification. It is a process that involves

zeroization of all the CSPs in the case of any physical security breach. It can be manual or

39

automatic depending on the FIPS security level. After zeroization, on startup the CM goes

through self integrity and known answer tests. The CM also goes through the key establishment

process, since all the keys have been zeroized during the process.

4.1.2.4 Known Answer Tests

The known answer test (KAT) is used to test the integrity of the software implemented on a CM.

In our case, we use AES and Diffie–Hellman algorithms, so at start up the values from the

algorithm will be tested using a KAT. In the zeroization process, only the CSP values are

zeroized, the software remains intact and so do the KATs. Thus, on startup, the processor will

pick up the memory values from the AES and Diffie–Hellman algorithms and compare them

with pre-calculated values. If this passes, the CM can go ahead and perform all other functions,

otherwise it will go into an error state.

4.1.2.5 Start Up Test

This test is done to check if the software stored in the memory is intact. To do this, we use a

check sum algorithm, in which the values stored in memory are taken as a block of data and are

input into an algorithm and compared to an output value before shutting down the system. If

these two values match, then that means the software has not been tampered with and the

microcontroller can move ahead to do other functions.

4.2 Data Flow

A unique data flow diagram was designed for this project. Figure 4-4 shows the flow of packets

as the packet moves from one module to another. Table 4-1 below provides values for the

identifier, which differentiates between different packet types.

40

Table 4 -1 Identifier Fields and their corresponding payloads [Kanani, 2009]

Step 1:

This is the first step in the key building process and it initiates the key exchange. Bxx is defined

as the address of the receiver node; xxxx111 is the identifier bit that indicates that this is a plain

text data; Hmsp is the header used for Master. In this step, the Master needs to cipher some data,

so it sends the data to CM for ciphering.

Step 2:

The CM receives the packet and after looking into the values of the identifier bit (xxxxx111), it

realizes that it contains plain text data that need ciphering. Bxx helps CM to know where the

packet is coming from and thus helps in finding the appropriate key for that node. After checking

its flag value, the CM realizes that it does not have key for ciphering this packet as there has

been no key exchange process started yet. The CM sends the same packet back to the Master

without any modification.

41

Figure 4 -4: Flow chart depicting the flow of packets [from Kanani, 2009]

42

Step 3:

The Master is expecting a ciphered packet from the CM, but instead it receives the same packet it

sent and thus realizes that CM does not have the key to cipher the packet. The Master starts the

key generation process by sending three (this number can be modified) empty packets to the CM

with identifier bits as xxxxx000 indicating that the packet is empty.

Step 4:

The Master sends the above packets to the CM, where Bxx again represents the address of the

Master terminal. Packet 1 is identified with identifier xxxxx001 and, similarly, Packets #2 and 3

are identified with xxxxx010 and xxxxx011, respectively. As the CM receives the empty packets

for key generation, it start generating the partial key using the Diffie–Hellman key exchange

algorithm and sends the three packets back to Master after stuffing in the key it generated.

Step 5:

In this step, the Master receives the key material sent by the CM and sends this to Dust Radio for

transmission out onto the Dust Network. Before the Master sends the packet out on the Dust

Network, there is a small modification it makes, which helps in saving transmission bandwidth

and avoiding the sending of redundant information: the Master strips off the address field Bxx

from the packet. The reason for this is that, at the other end, the Dust Radio does not require

knowledge of its own address, but it does require information on where the packet is coming

from. Thus, it may sound logical to strip off the receiver address and instead attach the

43

transmitter address (Axx). Now when the packet is received at the other end by the Dust Radio

and is transferred to the Master and finally to the CM, it will know where the packet is coming

from. However, there is another way by which this information can be achieved at the receiving

end (explained in Step 7), so by not sending this information we can save bandwidth on the

communication channel, which is really important.

Step 6:

Hdust stands for header attached by the Dust Radio, Tdust is the trailer attached by Dust radio,

and xxxx001 implies this is Packet # 1. As the packet is transmitted out of the Master to the Dust

Network, it requires a header and trailer to reach the specific destination. The header and trailer

contain useful information that will help in deciding the route for the packet and the destination

address. At the receiving end, these packets are collected and forwarded to Dust Radio for

further processing.

Step 7:

In this step, Axx is the address of the transmitter node. Every node in the network has a unique

address, which helps in identifying different nodes. The packet transmitted over the Dust

Network contains a header and trailer that are stripped off before forwarding them to Master.

Along with the packet, Dust Radio also sends information about the transmitter node from where

the packet originated. Since this information (Axx) was easily available from Dust Radio at the

receiver end, this part of the packet was not included while transmitting, which saves some

useful bandwidth in the Dust Network.

44

Step 8:

As mentioned in Step 7, the Master receives two pieces of information from Dust Radio: the

transmitter address Axx and the packet containing key information. The Master then combines

these pieces and sends the combined packet to CM. Again, xxxxx001 represents the first packet

and next two with identifiers xxxxx010 and xxxxx011 follow.

Step 9:

As the Master sends the packets containing key information to CM, the CM understands that the

key generation process has been initiated. The Master also sends three empty packets and, as in

Step 3, the CM receives these three empty packets and starts generating its half of the key.

Step 10:

In this step, Axx stands for the address of the transmitter, which is now going to be the receiver.

xxxxx001 indicates that this is Packet # 1 containing the key material, xxxxx010 represents

Packet # 2 and, xxxxx011 represents Packet # 3 containing key material. As the CM receives the

empty packets from the Master, it starts generating other half of the key using the Diffie–

Hellman key exchange algorithm, which is then stuffed in to the packets and transmitted over

Dust Radio.

Step 11:

45

In this step, the Master terminal receives the packets from the CM containing the key

information. As in Step 5, the Master terminal strips off the address field Axx; the reason for this

is the same as explained in Steps 5 and 7. The packet after collection is then forwarded to the

Dust Radio for transmission out onto the Dust Network.

Step 12:

After receiving the packets from the Master terminal in Step 11, Dust Radio transmits these

packets through the Dust Network. Hdust stands for the packet header, Tdust stands for the

packet trailer, and Hmsp implies header for the Master terminal. These headers and trailers are

important as they help in deciding the route of the packet through the Dust Network as explained

in Step 6 above.

Step 13:

In this step, Bxx is the address of the receiver node, which can now be addressed as a transmitter.

Dust Radio receives the packet from the Dust Network and strips off the header and trailer from

the packet before forwarding it to the Master terminal. Along with this packet, the Dust Radio

also sends information about the address of the transmitter, i.e., Bxx. Thus, the receiver node

now knows from where the packet has come.

Step 14:

The Master terminal receives two items from the Dust radio, Bxx, which is the address of

receiver, and packet information containing the key material. The Master combines these two

46

pieces of information and sends this to the CM, which completes the entire key exchange

process. The important thing to notice here is that the Master terminal does not sends the empty

packet again as in Step 3, because it knows it was the one who initiated the key exchange

process.

4.3 Test Bench and Implementation

This part of the chapter concentrates on the components of the test bench on which the system

was implemented and tested, including the hardware and software components. Using images

and screenshots, we also provide some testing results and output from the workbench.

4.3.1 Test Bench Components

The development of the project was done on general purpose development kits, i.e., the Texas

Instruments MSP-TS430PM64. IAR Embedded Workbench was used as the software

development platform. In-circuit emulators were used, i.e., the Texas Instruments MSP-

FET430UIF, to connect the software and hardware components.

4.3.1.1 Microcontroller

After careful study of available low power microcontrollers on the market, the Texas Instruments

MSP430F1611 was chosen for this project (Figure 4-5). The MSP430 family of ultra low power

microcontrollers consists of several devices featuring different set of peripherals targeted for

various applications [Texas Instruments, 2006]. The MSP430F1611 device features four low

power modes, a 16-bit RISC CPU and 16-bit registers for high code and power efficiency.

47

Figure 4 -5: Pin diagram for MSP430F1611 [from Texas Instruments, 2006]

Some of the important elements and features of MSP430 are described below:

• CPU: the MSP430 is a 16-bit RISC architecture CPU, which contains 16 registers that

reduces instruction execution time. The register-to-register execution time is one cycle of

the CPU clock [Texas Instruments, 2006]. Out of the 16 registers, four are special-

purpose registers and the remainder are all general purpose. Special-purpose registers

include Program Counter, Stack Pointer, Status Register, and Constant Generator.

48

• Bootstrap Loader (BSL): the MSP430 bootstrap loader allows the user to program the

RAM or flash using a UART serial interface. The access to BSL to can be controlled

using a user defined password.

• Direct Memory Access Controller (DMA): this is a very important component of this

microcontroller as it helps in moving data from one memory location to another without

CPU intervention. This feature improves the throughput of the peripheral devices and

helps power conservation by allowing the CPU to remain in sleep state.

• Hardware Multiplier: there is a separate module for high level multiplication in the

MSP430. This module can perform all 8-bit and 16-bit multiplication operations,

including with signed and unsigned numbers.

4.3.1.2 Development Kits

We have used the 64-pin MSP-TS430PM64 as a target board for the code development. Made by

Texas Instruments, it is a zero-insertion force (ZIF) socket target board used for programming

and debugging the MSP430 through the JTAG interface or the SPY BI–Wire, which is a JTAG

protocol developed by Texas Instruments. Figure 4-6 shows the PCB layout of this target board.

The figure shows some important connections, such as Jumper J7, which is used for measuring

the current consumption by the microcontroller, and J6, which is used to connect or disconnect

the LED.

49

Figure 4 -6: MSP-TS430PM64 target socket module [from Texas Instruments, 2009]

4.3.3.3 Programming Interface

We have used the MSP-FET430UIF (Figure 4-7), which is a powerful flash emulation tool for

application development on the MSP430 [Texas Instruments, 2009]. This tool includes a USB

debug interface that can be used to program the MSP430 through the JTAG interface and can

connect a flash-based MSP430 MCU to a PC for real-time programming and debugging.

4.3.3.4 IAR Embedded Workbench

We used the IAR Embedded Workbench to develop the firmware for the project. IAR software

includes a C/C++ compiler, assembler, linker, text editor, and C-SPY Debugger in an integrated

development environment (IDE).

50

Figure 4-7: MSP-FET430UIF MSP430 USB-Debug-Interface

IAR Workbench has the capability of building very efficient and reliable flash code for MSP430.

It can output files in various formats such as .a43 and ihex, which can be used to download the

firmware on MSP430 using any target board.

4.3.2 Implementation

As described in the above sections, the system implementation includes IAR Embedded

Workbench, target boards with MSP430 microcontroller, and serial emulator. The two target

boards are connected with each other via SPI bus as shown Figure 4-8. One of the boards acts as

a Master MSP430 and the other as the CM used for encryption and decryption of data. The

interface shown in Figure 4-8 is an exact copy of on the interface in the actual hardware (shown

in Figure 3-4 above). Both of the target boards have an MSP430 microcontroller on them that

can be programmed using the serial emulator. The serial emulator is connected to the PC via

51

USB, from where it gets powered up and also builds a connection between software and

hardware platforms.

Figure 4-8: Experimental setup showing Master and CM interface.

IAR Workbench has an I/O window in which you can print various statements while the actual

encryption and decryption is going on. This helps in understanding how the algorithm runs and

the order of steps and also helps the programmer for debugging purposes. Figure 4-9 give a

screen shot of the IAR software (I/O window) when the code implemented on the Master module

was running.

52

Figure 4-9 Screen shot of IAR Embedded Workbench with print statements

4.3.3 Test Inputs and Corresponding Outputs

As explained in the previous chapters, the CM uses identifier bits to recognize what kind of

operation needs to be done on the packet received and also what kind of information packet is

carrying. For example, if the packet sent has identifier bits as 07, then that implies the Master is

asking for the packet to be encrypted. The CM will read this information and perform the

encryption algorithm. After encrypting the packet, the CM changes the identifier bit value to 04

53

indicating that the packet is encrypted and then it is forwarded to Master. Another important

thing to note here is that the first 16 bytes of the 80-byte packet sent by Master has header

information and that part is not encrypted by the CM and is used for other purposes. The data

below shows a sample run of CM using a specified key. Master sends the data with 07 identifier

bit indicating plain text data, after receiving the packet CM module performs the encryption

algorithm and send the data back to Master with 04 identifier bit indicating encrypted data.

Key used : 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f

Input from Master:

ff 07 ff e9 fb dd 59 b9 bd 6d 47 97 fc c5 ff ee

b3 cf 7e fc df fa f5 ff e7 3f ff e7 1d ef 8d 7f

d3 ff b1 5f d2 ff f9 ef f6 dd fe f7 ef b7 8b ec

fd bd ba ff fa 7e 97 f6 6e 7f 7e fe f3 ef 38 ef

83 ed 5a 6b be b7 ff 7d e7 9a fb dd ef bf be f5

Output from Crypto:

ff 04 ff e9 fb dd 59 b9 bd 6d 47 97 fc c5 ff ee

70 9b 63 d4 30 24 3d 70 d0 c6 91 56 13 1f d8 bf

0a 36 ec cc a0 28 a8 2b 21 64 de 99 a7 bc 1d 5d

c7 b7 f1 47 bc 84 ec 20 a4 bb 7b 59 c6 26 6a 2f

be 84 00 35 45 57 d2 1a 2f b6 9d de f0 3c 63 f0

54

Now suppose that the same packet has to be decrypted at the other end. The Master sends the

packet to CM with identifier bit set as 04 and the CM will again read this and decrypt the packet

using the key. When sending the packet back, the CM will change the identifier bit to 07

indicating that it contains plain text data now.

Input from Master:

ff 04 ff e9 fb dd 59 b9 bd 6d 47 97 fc c5 ff ee

70 9b 63 d4 30 24 3d 70 d0 c6 91 56 13 1f d8 bf

0a 36 ec cc a0 28 a8 2b 21 64 de 99 a7 bc 1d 5d

c7 b7 f1 47 bc 84 ec 20 a4 bb 7b 59 c6 26 6a 2f

be 84 00 35 45 57 d2 1a 2f b6 9d de f0 3c 63 f0

Output from Crypto:

ff 07 ff e9 fb dd 59 b9 bd 6d 47 97 fc c5 ff ee

b3 cf 7e fc df fa f5 ff e7 3f ff e7 1d ef 8d 7f

d3 ff b1 5f d2 ff f9 ef f6 dd fe f7 ef b7 8b ec

fd bd ba ff fa 7e 97 f6 6e 7f 7e fe f3 ef 38 ef

83 ed 5a 6b be b7 ff 7d e7 9a fb dd ef bf be f5

55

Chapter 5
Power Analysis of the Module

In this chapter we discuss the power analysis of the CM developed in this project. This chapter is

divided in to three parts. First, we discuss the need for low power consumption and why it is an

important factor to consider in WSNs. Next, we describe methods to control the power

consumption in the CM. Finally, we show some results from power analysis of the module and

compare these results with other similar modules.

5.1 Need for Low Power Consumption

As explained in Section 1.4, with the increased use of embedded system in various industries like

medical, defense, automation, consumer electronics, and many others, the need for low power

consumption microcontrollers is increasing. In the current project, low power becomes even

more important as the system is self powered and uses energy harvested from vibrations to

generate power.

5.2 Power Optimization

There are different methods by which power optimization can be achieved, such as adjusting the

voltage supplied, the frequency of operation of the microcontroller, optimization of the code, and

using low power modes of the microcontroller. All of these factors are described below:

5.2.1 Voltage Supplied

The voltage supplied to the MSP430 is very important as it controls the current and the power

consumption. As shown in Figure 5-1, MSP430 supply current varies linearly with input voltage,

so operating the system at low voltages reduces the input current and, hence, overall power

consumption.

56

Figure 5-1: MSP430 supply current versus supply voltage [from Day, 2009]

In order to operate the system at low voltage, there is a linear regulator requirement which can

control the voltage supplied to the system but adding a linear regulator between MSP430 and

input-voltage source to increase the battery life might be contradictory because of two reasons:

• All power supplies have a quiescent current at no load that sinks current from battery to

the ground.

• Power supplies have less than 100% efficiency.

To make the point more clear, let us consider two test cases. The first is to operate directly from

the battery voltage and other is to insert a linear regulator between MSP430 and battery.

According to Day [2009], it can been shown that, even after considering linear regulator

efficiency and quiescent current loss, the case with linear regulator is much more efficient than

the case without.

Figure 5-2 shows the two cases mentioned above. System 1 operates directly using two alkaline

AA batteries, so all power supplied by the batteries is available to MSP430 as there is no loss

57

due to quiescent current or linear regulator efficiency. System 2 uses a TPS780XX linear

regulator with an average efficiency of 90% and quiescent current loss of 500 nA.

Figure 5-2: System configuration with and without linear regulator [from Day, 2009]

When the battery voltage is more than 2.2 V, System 1 consumes more current as compared to

System 2 because, as shown before in Figure 5-1, the MSP430 operating current is a linear

function of input voltage. System 2 in Figure 5-2 consumes a constant current as the linear

regulator maintains a constant voltage of 2.2 V. As the battery voltage drops, both systems

consume the same current at 2.2 V and below. There is additional current consumption of

500 nA by System 2 because of the quiescent current of the linear regulator (Figure 5-3).

58

Figure 5-3: MSP430 current consumption versus supplied voltage [from Day, 2009]

The two cases mentioned above were implemented and it was found that System 1 operated for

223 hours, whereas System 2 with linear regulator operated for 298 hours. Hence, the addition of

a linear regulator increased battery life by 30% [Day, 2009].

5.2.2 Frequency of Operation

Microcontroller frequency of operation affects the power consumption of the MSP430. The

greater the microcontroller frequency, the less time it spends in active mode and lower will be

the power consumed. However, for higher frequency we need to supply higher voltage to the

microcontroller and, as discussed in Section 5.2.1, higher voltage means higher current and

power consumption. So, depending on the system requirements, an equilibrium state can be

found. If the system requires low execution time, then the microcontroller can be operated at

maximum frequency; on the other hand, if the system requirement is low power then

microcontroller frequency can be reduced.

Figure 5-4 shows the supply voltage required by MSP430 at different frequency values.

59

Figure 5-4: Frequency versus supply voltage for MSP430F16X [from Texas Instruments,
2009]

5.2.3 Low Power modes of Microcontroller

The MSP430 has several operating modes in which it consumes different amounts of power. The

MSP430 has one active mode and five software-selectable low power modes of operation. An

interrupt function can be used to wake up the MSP430 from any of the low power modes, service

the request, and go back into the low-power mode. The list below provides all the operating

modes that can be configured by software:

• Active mode: In this mode all the clocks and different peripherals are active.

• Low Power Mode 0 (LPM0): In this mode the CPU is disabled along with MCLK.

• Low Power Mode 1 (LPM1): CPU and MCLK are disabled along with DCO dc

generator.

• Low Power Mode 2 (LPM 2): In this mode CPU, MCLK and SMLK are disabled but

DCO is active.

60

• Low Power Mode 3 (LPM3): ACLK is active in this mode, whereas the CPU, MCLK,

and SMLK remain inactive like LPM2.

• Low Power Mode 4 (LPM4): In this mode all the clocks are disabled along with the CPU,

so this mode consumes the least energy.

In practice, there are three common modes used (Table 2-1): Active, LPM3, and LPM 4.

5.2.4 Code Optimization

Code optimization also helps in power conservation of the microcontroller. The compiler tool in

the IAR Workbench includes an optimization function that improves the execution speed and

reduces the size of C/C++ programs by performing functions like rearranging statements,

simplifying loops, and allocating variables in registers.

5.3 Power Analysis Results

After keeping all the points mentioned above (Section 5.2) in mind, a system was designed to

minimize the power consumed by the module. In this system we are using MSP430F1611 as the

microcontroller. For maximum power optimization, the microcontroller use a supply voltage of

1.8 V in order to consumes minimum power. At 1.8 V, the microcontroller can run at a

maximum frequency of 4 MHz. The CM was kept in LPM4 mode during the time no operations

were required. Code optimization was implemented using the optimization tool of IAR

Workbench.

5.3.1 Calculations

Below are the experimental values for power consumed by different cryptographic functions

such as encryption, decryption, and key generation.

61

• Encryption - AES 128 bit encryption was carried out using the MSP430 at 1.8 V and

4 MHz. The total number of cycles was calculated using CYCLECOUNTER variable

provided by IAR Workbench.

Instantaneous current consumption in active mode: 517 µA

Instantaneous power consumption in active mode = V × I = 1.8 V × 517 µA = 930.6 µW

Total number of cycles used = ~40958 cycles

Total time consumed = ~40958 × 0.25µs = 10239.5 µs (frequency = 4 MHz)

Total energy consumed for decrypting 64 bytes is = ~930.6 µW × 10239.5 µs = ~9.528 µJ

Energy consumed per byte = 0.149 µJ/byte

• Decryption - AES 128 bit decryption was carried out using the MSP430 at 1.8 V and

4 MHz.

Instantaneous current consumption in active mode: 514 µA

Instantaneous power consumption in active mode = V × I = 1.8 V × 514 µA = 925.2 µW

Total number of cycles used = ~49000 cycles

Total time consumed = ~49000 × 0.25 µs = 12250 µs

Total energy consumed for decrypting 64 bytes is = ~925.2 µW × 12250 µs = ~11.33 µJ

Energy consumed per byte = 0.177 µJ/byte

• Key generation- Diffie–Hellman was used for generating the key using MSP430 at 1.8 V

and 4 MHz.

Instantaneous Current consumption in active mode: 518 µA

Instantaneous power consumption in active mode = V × I = 1.8 V × 518 µA = 932.6 µW

Total number of cycles used= ~36,800K cycles

62

Total time consumed = ~36,800K × 0.25 µs = ~ 9.2 s

Total energy consumed for decrypting 64 bytes is = ~932.6 µW × 9.2 s = ~8.57 mJ

5.3.2 Analysis of Results

We now calculate the overhead due to cryptographic functions on the total power consumed by

the system. According to Karri and Mishra [2003], the amount of energy consumed for securely

transferring 8 kB of data in a WSN system is 1164 mJ, which includes energy used in

cryptographic computation and communication purposes. Cryptographic functions, which

include key generation, data encryption, and authentication, consume 7.7% of the total energy.

Energy consumed for communication purposes for transferring 8 kB of ciphered data was 1074

mJ (92.3 %).

Using the results from Karri and Mishra [2003], total energy consumed by our system for

transferring 8 kB of data can be calculated as follows:

Energy consumption for encryption of 8 kB of data = 0.149 × 8000 µJ

Energy consumption for decryption of 8 kB of data = 0.177 × 8000 µJ

Energy consumption for key generation (assuming 2 key refresh) = 8.57 × 2 mJ

Total Energy consumed for cryptographic computation

 = 0.149 × 8000 µJ + 0.177 × 8000 µJ +8.57 × 2 mJ = 19.74 mJ

Using the above information, we can predict the energy consumed by our system for transfer of

8 kB of data will be 1074 mJ + 19.74 mJ = 1093 mJ, of which only < 2% of energy will be used

for cryptographic computation and remainder is for data communication.

63

5.3.3 Comparison of Results

We now compare the results mentioned in above to other similar modules developed. The test

bench used with different modules depends on the requirements of the system, which also affects

the energy consumed. Table 5-1 shows the comparison between various modules with a

description of their test bench and type of operation. The first entry is the module developed for

this project as mentioned. The second entry refers to a WSN developed on Atmel Atmega128L

microcontroller running at 4 MHz [Wander et al., 2005]. The last entry refers to module

implemented on StrongArm SA-1110 processor running at 206 MHz [Karri and Mishra, 2003]

The energy consumed by the key generation algorithm was also compared, but because of the

vast number of key generation algorithms available, it was difficult to find similar modules for

comparison. We have used the Diffie–Hellman key exchange algorithm for MSP430 running at

4 MHz and 1.8 V power supply. Another module developed by Sun Microsystems Laboratories

used an MSP430 and Elliptical Curve Diffie–Hellman (ECDH) algorithm for key generation.

ECDH uses Elliptical Curve Cryptography (ECC), which is a much newer and more efficient

method of key generation.

Table 5-1: Energy comparison for encryption/decryption for several cryptographic
modules

Type of Operation Test Bench Energy Consumption

Encryption/Decryption MSP430, 1.8 V, 4 MHz 0.149/0.177 µJ/byte

Encryption/Decryption
Atmel Atmega128L, 4

MHz
1.62/2.49 µJ/byte

Encryption
StrongArm SA-1110,

206 MHz
0.536 µJ/byte

64

The same module was tested for RSA algorithm, which is not as energy efficient as Diffie–

Hellman and the results are shown in Table 5-2.

Table 5-2: Energy comparison for key generation for several cryptographic modules

Type of Operation Test Bench Energy Consumption

Key Generation (Diffie–
Hellman)

MSP430, 1.8 V , 4 MHz ~8.57 mJ

Key Generation
(Elliptical Curve Diffie–

Hellman)
MSP430, 3 V, 8 MHz 5.35 mJ

Key Generation (RSA) MSP430, 3V, 8MHz 45.3 mJ

As can be seen from Tables 5-1 and 5-2, the amount of energy consumed by the module

developed in this project is much lower than the other such modules available. The energy

consumed for key generation is a little higher because of the difference in efficiency of the

algorithm used. If either the same or equally efficient algorithms are used, then the current

system will be most power efficient.

65

Chapter 6
Conclusion and Future work

This chapter provides some of the concluding remarks about the project and future work that can

be considered. The goal of this project is to implement the FIPS approved sensor nodes for use

on Navy ships. We have developed a cryptographic module with a CM–Master interface for use

in Impact-RLW sensor nodes and deployed on ships.

6.1 Conclusion

In the work presented herein, we have implemented a security framework for data generated by

sensor nodes and their subsequent transmission over the wireless channel. We have proposed an

algorithm for encapsulating packets as they move from one module to another in the system.

Since the system developed in this project between two MSP430s is not restricted to any wired

or wireless communication protocol, it is quite flexible.

We successfully developed this low power CM capable of performing NIST approved algorithms

such as AES, Diffie–Hellman key exchange, and KATs. Power optimization was another

important goal of the project, since the sensor nodes are self powered and use vibration energy

for harvesting power. Various methods of power optimization were implemented including code

optimization, low power modes of microcontroller, and variation of microcontroller frequency

and supply voltage.

6.2 Future Work

To make the module commercially viable, additional work must be done, including testing on

RLW boards and EMC testing.

66

6.2.1 Testing on Impact-RLW boards

The code for the CM was developed and tested using Texas Instruments development kits and a

JTAG emulator in a lab environment. To make the module ready for deploying on ships, the

codes must to be transferred to the RLW sensor nodes and tested for all cryptographic functions.

The power consumption of the microcontroller should again be tested and verified on RLW

boards and the results should match the values mentioned in Chapter 5.

6.2.2 EMI/EMC Testing

As mentioned earlier in Chapter 2, one of the FIPS requirements for the CM is to undergo

EMI/EMC testing. After the module has been tested and verified on RLW boards, it should

undergo testing in a harsh environment like setting up the senor network in high electromagnetic

interference environment. All the cryptographic functions and operation should be verified in

this environment and made sure that the readings are correct.

67

Bibliography

(n.d). Wireless sensor Network Technology [online]. Available from

http://www.coalesenses.com/index.php?page=technology

Atmel (2008). Atmel 8051 Datasheet. Atmel Datasheet for 8051. Atmel.

Day, M. (2009). Using power solutions to extend battery life in MSP430 applications. Texas

Instruments.

Damutz, B. (2008). Diffie-Hellman Key Exchange [online]. Available from

http://en.wikipedia.org/wiki/File:Diffie-Hellman-Schl%C3%BCsselaustausch.svg

Gupta, V., and Wurn, M. (June 12, 2008). The Energy Cost of SSL in Deeply Embedded Systems.

Sun Microsystems Laboratories.

Hill, J., and Culler, D. (2002). “Mica: a wireless platform for deeply embedded networks”.Micro

IEEE, vol. 22, no. 6.

Impact-RLW Systems, Inc., (July 2, 2009). S5NAP InfoSensor User Manual.

Kanani, J. (2009). Embedded Based Cryptographic Module for Low Power Wireless Sensor

Nodes Complying with FIPS 140-2. M.S. Thesis. Pennsylvania State University.

Karri, R., and Mishra, P. (2003). Optimizing the Energy Consumed by Secure Session- Wireless

Transport layer Security Case Study. Journal ACM, Mobile Networks and Applications,

vol 8, no 2

Kiratiwintakorn, P. (April 15, 2005). Energy Efficient Security Framework for wireless local

area networks. Ph.D. Dissertation. University of Pittsburgh.

Lettieri, P., Schurgers, C., and Srivastava, M. (1999). “Adaptive Link Layer strategies for energy

efficient wireless networking.” Wireless Networks, vol. 5, no. 5, pp. 339–355.

68

Microchip (2009). PIC 16F87/88 Data Sheet. Microchip.

National Institute of Standard and Technology (2002, 12 03). Security Requirements for

Cryptographic Module. Retrieved 2009, from www.nist.gov:

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

NIST (October 22, 2009). Implementation Guidance for FIPS PUB 140-2 and the Cryptographic

Module Validation Program.

NIST: L. E. Bassham (August 2008). A Statistical Test Suite for Random and Pseudorandom

Number Generators for Cryptographic Applications.

Polastre, J., Szewczyk, R., and Culler, D. (2005). Telos: enabling ultra-low power wireless

research. Fourth International Symposium on Information Processing in Sensor Networks,

IEEE .

Prasithsangree, P., and Krishnamurthy, P. (2003). Analysis of energy consumption of RC4 and

AES algorithms in wireless LANs. Global Telecommunication Conference (pp. 1445–1449).

Globecom’03’, IEEE.

Texas Instruments (May 2009). TI MSP430F1611 SLAS368F. MSP430F161X Datasheet.

Texas Instruments, (Feb .2009). MSP-FET430 Flash Emulation Tool (FET) User Guide.

Wander, A., Gura, N., Eberle, H., Gupta, V., and Shantz, S. (2005). Energy Analysis of Public

Key Cryptography for Wireless Sensor Networks. University of California, Santa Cruz.

Yamanouchi, T. (2007). AES Encryption and Decryption on the GPU [Online] Available from

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch36.html

69

