The Pennsylvania State University
The Graduate School

College of Engineering

OPTIMIZING STORAGE SYSTEM POWER AND PERFORMANCE

A Thesis in
Computer Science and Engineering

by
Rajat Garg

© 2011 Rajat Garg

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Master of Science

May 2011

The thesis of Rajat Garg was reviewed and approved* by thexwig:

Mahmut T. Kandemir
Professor of Computer Science and Engineering
Thesis Adviser

Mary J. Irwin
Professor of Computer Science and Engineering

Raj Acharya
Professor of Computer Science and Engineering
Head of the Department of Computer Science and Engineering

*Signatures are on file in the Graduate School.

Abstract

The quest of building bigger and better computing systerssésulted in tremendous growth in the
size of the storage systems. Not only have they grown in 8igd, they play a significant role in
determining the overall performance of the applicatiors success of the entire computing system.
While the industry is concerned about reducing the hugesdasblved in running/maintaining
these storage systems, the scientific community has bedrnguihe limit to achieve maximum
performance. Apart from the contrasting demands of savowep vs. maximum performance,
there exist scenarios where a balance of power consumptidperformance is expected. In this
body of work, we propose/study software based techniquesatiti help achieve some or all of the

above requirements.

Contents

List of Figures Vi
List of Tables iX
Acknowledgments X
1 Introduction 1
2 Markov Model Based Disk Power Management for Data Intensie Workloads 3
2.1 Introduction e 3
2.2 Markov Model for Disk Idleness Prediction 5
2.3 Prediction Schemes e 6
2.4 Three-Speed Disk L 8
2.5 Algorithm e 9
2.6 Experimental Evaluation e 12

26.1 Setup

2.6.2 Results e
2.7 ConcludingRemarks e 18
3 Power Aware Disk Allocation 20
3.1 Introduction e 20
3.2 Related Work e 22
3.3 Problem Statement e e e 24
3.4 OurApproach e 24

3.4.1 Resource Pool
3.42 RequestFormat 6
3.43 MetricsofInterest 27
3.4.4 Evaluated Schemes 29
3.5 Experimental Evaluation 31
351 Setup e e e e
352 Results
3.5.3 Sensitivity Analysis 35
3.6 Conclusion 36
4 Dynamic Storage Cache Partitioning Using Feedback Conttdrheory 37
4.1 Introduction e 37
4.2 Background 39
42.1 ControlTheory 9
4.2.2 SystemlLayout e e
4.2.3 Disk Utilization 40
424 OurGoal
4.3 Empirical Motivation e 41
4.4 OurApproach 45
44.1 SpecificationoftheQoS o 45
4.4.2 Control Aspect 6
4.4.3 Cache Performance Model and the Learning Aspect 50
4.5 Algorithm 51
4.6 Experimental Setup e e 54
4.7 Discussion of Experimental Results oL 57
4.8 Discussionof RelatedWork e 58
5 Conclusions 60
Bibliography 61

List of Figures

1 Example showing the outcome of predictions with differssitemes specific tb;:
(a) ORing, (b) Most-probable, and (c) Summing. Note thatdefended scheme
(Summing) is different from the ORing and Most-probableesnks, and might as
well transition the system to a state which has zero proipati the probability
MAatriX. . . . o e 6
2 Three-speed disk. (a) State model. SUT: Spin-up Time; SEpin-down Time;
SUP: Spin-up Power; SDP: Spin-down Power; AP: Active Poveer IP: Idle
Power. Time is in seconds, and power is in watts. (b) Spetficdor the three-
speeddisk model. 9
3 (a) Prediction accuracies with different schemes. (b)tfmrtion of mispredictions
leading to performance loss (MPER). (c) Contribution ofpréslictions leading to
power loss (MPOW). 13
4 Effect of changing the important parameters: (a) warm-arnog, (b) threshold, and
(c)sample period. 13
5 Comparison of energy savings achieved by five- and threedsgdisk based systems
relative to the base case, namely, TPM.. 16
6 Comparison of energy savings with different schemes dicturesults with DRPM.
Results for DRPM were obtained from [12], where no tests vperdormed with

real traCes. o o o e e e e e e e e e 71

vi

7

10

11
12
13
14
15

16

17

18

19

20

21

(a) Architecture of our power aware disk allocation schevite each request spec-
ifying the requirement in terms of capacity (C) and bandiiBW) needed from
the disk. (b) Composition of different resource pools. Tresph shows the number
of disks of different speeds in each type of resource (disk).p
Variations in disk allocations from the resource pool toiougs disk requests by
different schemes. Disks are nhumbered from O to N in the resopool. Y-axis
depicts the disk number selected from the resource pookfercsng a disk request
whose number is given by X-axis.
Outline of our algorithm for power aware disk allocation.
(a) A possible disk request arrival distribution and tlesiecution times in our de-
fault setting. (b) Cumulative number of disks assigned hyous disk allocation
schemes. Values on horizontal axis represent the numbenoésts made so far.
Study of different metrics with respect to various didkedtion schemes.
Block diagram of a feedback control system.

System layout. e e
Table of all possible combinations for different cacheggrenance metrics.

A look at characteristics of the TPCC benchmark duringxescution on a 64MB
storage cache. (a) Hit rate computed per sample intervdl(tgriTotal I/O requests
generated persampleinterval. 0o
Control architecture for the target storage system.
Aggregate hit rate with increasing cache size.

An example snapshot of how the cache performance cunset and updated in
ourdefended scheme.
Minimum amount of cache needed by each application to the€DoS. The values
for mp-98 and tpch-94 are 1MB and 1MB, respectively.
High level view of the dynamic partitioning algorithm pegpplication. Note that
this represents only single iteration within the feedback loop.
Hit rates and cache allocation variations during the @&t of an application mix

with HB control on a shared storage cache.

Vii

25

29
31

32
33
40
41
41

43
46
49

50

52

22 Aggregate hit rate achieved by individual applicatiomslifferent workloads (ap-

plication mixes) using various cache partitioning schemes

viii

List of Tables

N o o B~ WN P

Py corresponding to disk speed levels in a five-speed disk.
Default system parameters.
Percentage of performance penalty. «.....
Major experimental parameters. e
Disk indices and their speeds for mid-size pool skewed fdrspeed disks.
Workloads (application mixes) used for experiments.

Default QoS targets in terms of aggregate hit rate for iddal applications.

Acknowledgments

I would like to express my sincere gratitude towards my azhizr. Mahmut Kandemir for guiding
me all the way through and correcting me for my mistakes. Ildiaiso like to thank Dr. Mary Jane
Irwin, Dr. Padma Raghavan, and Dr. Piotr Berman for theipsupand valuable suggestions. My
family and friends have provided me emotional support ancewey source of inspiration. Lastly,

special thanks to Karen and Cindy for making things easigtiwmy department.

Chapter 1

Introduction

In order to meet the increasing demands of present and upgaaia-intensive computer applica-
tions, there has been a major shift in the disk subsystenghamow consists of more disks with
higher storage capacities and higher rotational speedsseTltive made the disk subsystem a major
consumer of power, making disk power management an imgadsme. People have considered
the option of spinning down the disk during periods of idener serving the requests at lower
rotational speeds when performance is not an issue. Aatynattedicting future disk idle periods
is crucial to such schemes. An important characteristic afyrhigh performance applications is
disk intensiveness. Many scientific simulation codes faneple have frequent disk accesses. In
fact, large-scale simulations have become an integralotitapt, and in many cases, primary ap-
proach to solving complex science and engineering problemdsautomating scientific knowledge
discovery. These simulations tend to generate huge amofidita that must be stored on disks,
mined, analyzed, evaluated, check-pointed (on disks) ste&ted, in most cases dynamically dur-
ing the course of execution. Similarly, many data basefmgiipplications frequently exercise disk
systems of parallel architectures. In a disk storage systeared by multiple applications, one of
the critical problems is resource (disk) allocation actbgese applications. The main characteristic
that makes this problem challenging is the fact that diffeegplications demand different amounts
of disk space (capacity) and can tolerate different diskneies. As a result, allocating disks from a
heterogeneous disk pool to satisfy the needs of all apitaiising the same storage system is non-

trivial. Existence of additional constraints such as poarmgt reliability makes this disk allocation

problem even harder. In many other scenarios, applicatiteas demand certain quality of service
(QoS). This may be measured in terms of latency of a singlesjoest or the overall bandwidth.
Ensuring QoS becomes non-trivial in scenarios where neltpplications are contending for the
same resource. As an example, consider two applicatiommghaain memory of a compute node.

All the above requirements expected from the storage systeke it an important topic of research.

Chapter 2

Markov Model Based Disk Power
Management for Data Intensive

Workloads

2.1 Introduction

It is well understood that reducing the energy requiremehimrtable devices is important to pro-
long battery life. But when it comes to large storage systenaking them bigger and increasingly
powerful has been the priority, in order to attain the denedral/ailability and performance. Proces-
sors have become extremely powerful, making them more deigrip, and so have the data storage
needs, leading to a tremendous growth in the energy congumgft present data centers [6]. In a
typical data center, storage system contributes to more2B&o of total power consumption [62].
Apart from the energy consumed for disk operations, coatmg}s are also a major concern for this
high-density equipment [23]. In fact, the costs have alydaetome the second largest contributor
to data center total cost of ownership (TCO) [24]. High dnsicks and blade servers help reduce
total power consumption, but their power density levelsextcthe limits of many facilities.
Increasing the number of disks, apart from increasing tte storage space, also helps improve
the performance, as data distributed across the disks cab@accessed simultaneously [9]. The

reason for the rise in energy consumption is the way disksatg@eDisks are made to service the

4

requests at their maximum speeds. Normally, they contipirenig at their maximum rotational
speed even if they amot servicing any request and hence contribute to the wastagaefy.
A direct approach to reducing this energy wastage is to standll those components that are
not doing any useful work at the moment. Much research has téeee to obtain gains from this

approach. Two important issues arise in this context:
e How accurately can we predict the occurrence of idle times?

e What would be the energy/performance tradeoffs if we detmdgut down (spin down in the

context of disks)?

Recently, techniques that employ multi-speed disks [3V¢ladso proposed and evaluated. With
such techniques, when there is a slack (allowable incresls¢eincy), the disk is rotated at a lower
speed (compared to the maximum speed available), instebéig completely spun down. The
choice of speed is based on the length of the available slHis. approach has been shown to be
more applicable to high-performance scientific and datiensive workloads where disk idle periods
are typically small but numerous [17, 55]. While the mainipeon with spinning-down techniques
is that they may not be applicable to short idle times; thdlerm with multi-speed disks is the large
performance penalty incurred if disk idle and active pesiade not predicted accurately. Focusing
on a three-speed disk, in this paper we propose and expdeiltyeevaluate a novel Markov chain

[46] based disk power reduction scheme. Our main contohatcan be summarized as follows:

e A Markov model to help disk power management. The ration&leifd using a Markov
model is that disk access patterns exhibit a repetitive\nehand can therefore be captured
by using such a model. First, building a Markov model for aegidisk system is presented,

followed by the mechanism for making use of this model.

e A three-speed disk model. The need to have such a disk issdisdun detail and its benefits

are assessed.

e A prediction scheme. We introduce a scheme that uses themafwmn from the Markov
model of the disk system to predict future states of the gygte terms of active and idle

periods of disks).

e A runtime approach. This approach uses the Markov modethtlee-speed disk model, and
the prediction scheme for achieving disk energy savinge dpproach decides what needs

to be done and when.

Our experiments with various workloads, which include bgyhthetic traces and traces ex-
tracted from real applications, indicate that the Markowdelceffectively captures the behavior of
the disk system. The success of our proposed scheme camibetatt to being able to predict the
future states of the system. Since, our approaghnasctive, meaning the idle periods are predicted
in advance, the opportunities to save power are rarely ohiggemispredictions) and also are fully
utilized, spinning down to the lowest power mode with liftigpact on performance. The use of the
three-speed disk helps make the most of long idle times ®riegtthe standby mode, additionally

giving the flexibility to save energy even when idle timesifsgiown to a lower speed) are short.

2.2 Markov Model for Disk Idleness Prediction

We model the disk state transitions using Markov modelindM@kov model for a system can be
completely specified by the total number of stateand the transition probability matri® [29].

The number of potential states forM-disk system is given bg" (heren=2"). This is because

a disk is either busydN, represented by 1) servicing a request, or i&F, represented by 0).
Given the present state and all past states, if the futute efathe system depends only on the
present state, the system is said to haveMiagkov property. The transition probability matrix is

a square matrix of size x n, wheren is the number of states in the system. Values contained

h row and; column) is the probability of

in the matrix are probabilities, whet@; (located int
transitioning from state to statej.

In the context of disk power minimization, one can build ansition probability matrix by
sampling the state of the disk system at regular intervals (stategsepting disk being accessed or
not accessed). We sample all the disks at runtime, notinghehéhe disk was accessed during the
last sampling period. If it was, then the bit is set for theresponding disk; otherwise it is reset.
Even if a disk access starts toward the end of the samplinigcpéthus leaving the system in a

state of transition at the sampling point), we conservtigsesume that the disk w&N during the

whole sampling period. However, this assumption will notnib@de while calculating the energy
for the base case. We represent the state of the systerhitageator. For an eight-disk system, it
will be an eight-bit vector represented Bs D> D5 D, Ds D D7 Dg (D; stands for theé!” disk in the
disk subsystem) and an example state would be 1100111 1hvridicates that except disk3; and
Dy, all others were accessed. The transition probability isn&tbuilt and updated during runtime
with the help of these samples. There wam-up period (explained in Section 4.5), during which
the workload characteristics are monitored to help matenatrix, making it suitable for making
predictions on future state©N/OFF) of disks in the system. The probability matrix is updated
at regular intervals by including the most recent set of dampBecause of this regular update
on the probability matrix, our scheme is able to keep theodgate state of changing or mixed
workloads. Note that both sampling frequency for the digksgatem and the update frequency for
the probability matrix have to be chosen carefully. We latedy in Section 4.5 how crucial is the

value of the sampling period.

lost-probable sch

N)- Most-probs eme, next
state for D, = 0 (OFF) 0 States for Disk1(D,), i.e.,
OFF
D,D,D; 000 001 010 011 100 101 110 111 D.D.D. 000 G51 010 011 100 101 110 111
0.4\1 [lo5s T45 Joo Joo [o2 Jo1 Joo o2 | 128 D,D,D, 000 001 010 B11 100 101 110 111

011 [05 [45 [00 [0.0 [02 [04 [00 [02 | 011 [05 45 Joo Joo Joz Jo1 Joo Joz]

Current state Current state

Currentstate P, = (.05+.45+0+0) = 0.5, for
Al states with values > .05 (threshold), are ORed Maximum value in the row Disk1(D,)

(a) (b) (©)
Figure 1. Example showing the outcome of predictions witlfiedént schemes specific tb;:
(a) ORing, (b) Most-probable, and (c) Summing. Note that defended scheme (Summing) is
different from the ORing and Most-probable schemes, andhtvdig well transition the system to a
state which has zero probability in the probability matrix.

2.3 Prediction Schemes

Transition probability matrix by itself is of no use as far@sver reduction is concerned. There
is need for a prediction algorithm that predicts the nextestar the system by using the infor-
mation maintained by the probability matrix. We can evaudie accuracy of a given prediction
algorithm by comparing the percentage of matches betwesacthal andpredicted states. Below,
we describe four prediction schemes evaluated in this wdHese schemes aflestep |ookahead
schemes, meaning that only the state that directly follows the préstate is predicted and none

that may happen after this predicted state. We note thatqpiregi the next state from the current

state requires indexing into an appropriate row of the puditya matrix. This row is determined
by the current actual state of the system. Remember thatthamd column number of the matrix

represent the states and the matrix itself consists ofitramgrobabilities.

e ORing (conservative): After indexing into the correct row, ORtak states (recall that state
is represented as a bit vector) with transition probabdgitgreater than a certain probability
(0.05 for our case) to get the next state prediction. Themate behind this scheme is to
never predict an idleness if the probability of the disk ge®N in the next state is greater
than some minimum. This scheme tends to produc®Ildrprediction most of the time, not

usually giving a performance penalty but providing littieyer saving opportunities.

e Most-probable (aggressive): After indexing into the correct row, predict next state based
on the highest transition probability from the current estaBince we are just selecting the
maximum value in the row, it does not necessarily have to laegelvalue. For example, it
may be 0.05 and still be the maximum if other values in the readl individually less than
0.05 (but they all add up to 0.95). As a result, this schemehtpgedict anOFF even on
a value of 0.05. This scheme does produce good energy sawngg may also lead to a

performance penalty, resulting in spin-downs even wherdesirable.

e Last-state (does not use the probability matrix): The next predictetestill be the last
known state of the system. This is the value we used in allr@tlieemes for indexing into
the appropriate row (the current actual state). The suauietss scheme is based on the
assumption that the system possesses some inertia andidnmentinue to remain in its
present state for some time. The duration of this periodeésthicial factor in the success or
failure of the scheme. When the sampling period is kept srtadl scheme is bound to give
good results. We included this scheme in our evaluationgdeigle us with a baseline. We
note that this scheme also inherently makes use of the Mamaperty by considering only

the last state for future predictions.

e umming (the scheme defended in this paper): In this scheme, aflexing into the correct
row, we sum all probabilities leading to a OKF state). This is done for each disk separately

to obtain its next state. If probability of transitioning @o(denoted byF;) is greater than

8

certain threshold, then we decide to turn the dBKF else it is keptON. Note that this
scheme is slightly modified when used for disks with more tthmae levels, such that the

threshold value changes to a range defined for each speéd leve

An arbitrary row chosen from the transition probability mrabf our system is shown in Fig-
ure 14. This row contains eight entries (for a three-diskesys the number of possible states is
23), each entry being a probability for a three-disk systédmD,Ds). States are represented as
a bit vector with the leftmost bit for the first diskDf). Figures 14(a) and 14(b) show the results
obtained using the ORing scheme and the Most-probable shespectively. Figure 14(c), on the
other hand shows how the Last-state scheme predicts thestagetforD,. Figure 14(d) depicts
the computation of?y (probability of transitioning to 0), which if greater thafor example, 0.7,
will give an OFF prediction. How we decide this threshold value is discudatat in Section 4.5.
This scheme (Summing) is expected to give good energy sawiithout hurting the performance.

Results of prediction accuracies obtained with these sebare discussed in Section 2.6.2.

2.4 Three-Speed Disk

In this section, we descriliree-speed disk that will be used for evaluating our power management
scheme. The conventional two-speed disk either runs at éxémum speed or stays in the standby
(spin-down) mode where it does not spin at all. The condt@iroperating in one of these two
modes does not give the flexibility of transitioning to a levypewer mode when the duration of the
idle time is less than the break-even timeSince we sample the disk system without looking at
the actual start times of idle periods, we might miss soméesd idle time opportunities. We also
use a prediction scheme to guess the idle times that wereredpduring our sampling. Therefore,
using a conventional (two-speed) disk would not give us napgortunity to save disk energy most
of the time. Thus, the motivation for using a three-spee#t dido have the ability to capitalize
on all the idle time opportunities that we are able to prediad to have enough flexibility to save
energy even when the disk idle times are not long enough fitwlo-speed disk. We note that,

when we refer to saving energy, minimizing the performaremeafty automatically goes along with

!Break-even time is the minimum amount of idle time for whiginsing down a disk brings some energy benefits
without increasing original execution latency [36].

SUT: 10.9 SUP:12.3

IP:10.2
AP: 135

IP:25

SUT: 5.4 SUP: 5. IBM Ultrastar 36215
Individual Disk Capacity 18.4 GB
Maximum Disk Rotation Speed (S3) 15000 RPM
Intermediate Speed Level (S2) | 7000 RPM

Minimum Disk Speed (S1) 0 RPM
@) (b)

Figure 2: Three-speed disk. (a) State model. SUT: Spin-apeTiSDT: Spin-down Time; SUP:
Spin-up Power; SDP: Spin-down Power; AP: Active Power; ahddle Power. Time is in seconds,
and power is in watts. (b) Specification for the three-speaskl miodel.

SDT:.7 SDP:4.5 Ap-6 SDT:.7 SDP: 4

<

SDT: 1.5 SDP: 9

it. The flexibility with the three-speed disk comes from theermediate level of operation, where
we spin the disk at half of its maximum speed. A request whevicgal at the intermediate speed
almost doubles the service time but reduces the energy ogoign by a factor of four [17]. The

specifications of the three-speed disk along with the diséeheve employ are provided in Figure 2.
State transition times and energies are based on the liogarpnodel given in [17], and the disk
specifications have been extended for an IBM hard-disk [2¥¢ also note that disks with such
multi-speed capabilities, such as Western Digital CaviBr[&/] and Sony multi-mode disk [39],

are now commercially available in the market, though theyrat server-class disks.

2.5 Algorithm

With the Markov model representing the disk state transitiand accompanied by a prediction
scheme that helps predict the next state of the disk, tharaegd to have an overabntrol strategy
that can make high-level decisions for power management ¢fGa subsystem consisting of the

proposed three-speed disks. This requires making two ir@piodecisions:

e When can a disk be spun down (should try to maximize the engagings but it does not

matter if we miss some opportunities)?
e When should a disk be spun up (should not miss to spin-up wéeprined)?

Depending on how aggressively one makes these decisiaas) result in different energy savings
and performance degradations. To make a decision for thestete, we look at the probabiliti,

(probability of transitioning to a O state) for each disk. dmder for this algorithm to work for an

10

Table 1: P, corresponding to disk speed levels in a five-speed disk.
[Speed (RPM)] Py Range |

15000 0.00< Py < 0.30

11000 0.30< Py < 0.50

7000 0.50< Py <0.70
3000 0.70< Py <£0.85
0 0.85< Py <1.0

n-speed disk, one can set a threshold for each speed levehtizdly, as the value afy decreases,
the disk’s operating speed should increase. We choose shiidevalue of 0.7 foiP, in our three-
speed disk. In a multi-speed disk scenario, on the other,hhistthreshold will be a range and not
a value. But, the way we use our three-speed disk makes thigioation feasible. As an example,
Table 1 lists sample threshold values (as a range)Pfocorresponding to each speed level in a
five-speed disk.

We emphasize that increasing the number of operating sgesgdsmoving from a three-speed
disk to a five-speed disk) does not necessarily mean that weasee more energy. This can be seen
in a manner similar to when TPM (traditional power managemmehich spins down the disk after a
certain period of idleness) saves more energy than DRPMindke of very long idle periods, since
it can turn off the disk completely, whereas the DRPM scherillespin down only to a nominal
speed. Similarly, the three-speed disk provides enouglbiliéx to exploit small idle periods and
also the ability to save maximum energy when possible. We tiwdt as the idle periods grow
smaller, opportunities to save power become meagre ang sk a three-speed disk, one should
not decide to spin up if spin-up time plus the request sertioe is more than the service time at
the current disk speed. Also, One should spin down only iidleeenergy consumed in the current
state is more than the sum of the energy spent in spinning dowrthe idle energy in the lower
speed state.

All the disks start off from anormal state where the three-speed disk is in its intermediate speed
level. Once the transition probability matrix matures, wagtsmaking predictions about the future
disk states. A predictio®N will spin up the disk by one level from its current state. Agiotion
OFF will necessarily spin down the disk to its lowest speed. Tisk does not wait for a prediction
to transition to thenormal state if no disk requests were waiting. All these decisions heipdor
down the power consumption while minimizing the performanmtegradation. In the following

paragraphs, we discuss how the values of various parametetoyed in our approach affect the

11

behavior of our proposed scheme.

e Warmup Period: This is the period of time spent before building the initi@nsition proba-
bility matrix. This is an important step in getting startedhwnaking good predictions about
disk accesses. The transition probability matrix builtidgrthe warm-up period will rep-
resent more of the transient behavior of disk accessest buentually adapts itself to the
changing workload during execution because of the regyldating of the matrix. Note that
while updating the matrix, we give lower weight to the oldatues of the probability matrix.
Deciding the right value for the warm-up period is a tradéeffween the accuracy of predic-
tion (large value) vs the time of wait (small value) before firedictions begin. Instead of
operating in either of these extremes, we can keep the warpetiod moderately short to
obtain the best of energy savings and prediction accuraaud baseline implementation, we
set it to the time taken to gather 50 samples, a value detethbased on some preliminary

experiments.

e Threshold Probability: This threshold value is used to decide which state our disktan-
sition to by comparing? with this value. If we want to be aggressive and save morgggner
without caring much about the performance, then we can setitow value (e.g.0.4). On
the other hand, if we want to be conservative, then, say, 0l®&a good choice. It affects
directly the prediction accuracy, which in turn can hurthenergy savings and performance.
For our three-speed disk implementation, we chose thistiotd to be 0.7, again based on

some preliminary experiments.

e Sampling Period: The value of this parameter is crucial to the success of oedigtion
based scheme. It affects the overhead involved in the schiBmeloseness with which the
transition matrix represents the workload, and the eneagings achieved. If it is chosen to
be very small, the frequency of state predictions and maptates increases. Depending on
the disk state transition times and the energy consumedgltransitions, a small sampling
period may or may not be beneficial. On other hand, makingpéigd too large can lead
to missing some energy saving opportunities, specificalhgn the idle time is greater than

the break-even time but smaller than the sampling pericetétivas a short duration of disk

12

access). The length of sampling-period used in our defenptémentation is 12.5 seconds
for a simple (two-speed) disk, 7 seconds for a three-spestd @nd 4 seconds for a five-speed

disk.

Two overheads are associated with our scheme: updatinglpfityy matrix and prediction.
Since each prediction scheme uses a simple operationtfgvgise-OR or summation), the predic-
tion overhead is negligible. Updating the probability matnight have some overheads depending
on the size of matrix size. In an eight-disk system, the maize will be 256 £%) by 256. Since
this operation can also be done by using simple loop and tHatadrequency is at least tens of
seconds, we believe that the overhead associated withingdaatrix is also negligible.

In our experiments, we also vary the default warm-up petibagshold, and sampling period

values and conduct a sensitivity analysis.

2.6 Experimental Evaluation

In this section, we first introduce our experimental setugr{i®n 2.6.1) and then present the results

from our experiments (Section 2.6.2).

2.6.1 Setup

DiskSim [15] was used to simulate the behavior of our disksgatem and to measure the benefits
brought by our scheme. DiskSim is an accurate, highly cordlge disk system simulator to sup-
port research into various aspects of storage systemsSihisis a trace-driven simulator, and we
performed one simulation per each workload. Our simulagstesn has 8 disks; the specifications
for the disk were provided earlier in Figure 2. We augmentésk®m to help us carry out the
experiments for various prediction algorithms discusdealva to analyze how good they work in
saving energy. As the simulation runs, this augmented mersi DiskSim checks the state of the
disk system at regular intervals. This is referred tgampling the system.

DiskSim provides a synthetic workload generator used t@gga the workloads with desired
characteristics. Some characteristics common to all wadd are given in Table 2. We concen-

trated mainly on workloads with small inter-arrival times@ve TPM and other older techniques

13

[EORing M Most-probable [Last-state (1Summing @ ORing M Most-probable [JLast-state Dsumming‘ @ ORing M Most-probable [JLast-state Dsumming‘

100 T 25 = 20 —

35 —

40 11 10] [15

20 5 — — 12

) . . . e . . 0 . . . e B . 0 . . B e @ o
4

Percentage of MPER's
P
)
]
Percentage of MPOW's

Percentage of Prediction
Accuracy
o
<]

Workload Workload Workload

@ (b) (©)

Figure 3: (a) Prediction accuracies with different schenflgsContribution of mispredictions lead-
ing to performance loss (MPER). (c) Contribution of mispcédns leading to power loss (MPOW).

60

70

3

«
3

3

s
3

&

N
S

N oW oa ou oo
5

S

Percentage of Energy Savings
8

Percentage of Mispredictions

Percentage of Energy Savings

ocr N WAGON®O

o
5

0 ==

10 samples 50 samples 200 samples 500 samples 0.3 0.5 07 0.9 12.5sec 25sec 100sec

o

o

Warm-up Period Threshold Sample Period

@ (b) (c)

Figure 4: Effect of changing the important parameters: @mvup period, (b) threshold, and (c)
sample period.

have failed to save energy efficiently (that is, the hightgpenance workloads that exhibit short
disk idle periods) and results for DRPM [17] could be comgdareor the synthetic disk traces, we

used two types of workloads:

e Type 1: Inter-arrival times were exponentially distrilditand

e Type 2: Inter-arrival times followed the Pareto distrilouti

Type 1 workload is represented asexp, t >, wheret is the mean inter-arrival time in millisec-
onds. This type of workload models a purely Poisson procggh, arrival traffic showing some
kind of regularity. Type 2 workload is represented in a samfashion as< par,t >, with ¢ having
the same meaning as before. This workload offers more hesstiin the traffic behavior, meaning
that there exists a group of requests clustered close toathehat some places. We used synthetic
workloads to show that our scheme is well adapted to diffesgre of inter-arrival times. As far as
disk power management is concerned, inter-arrival timetsemeost because they will eventually
affect the length of disk idle periods. Thus, these two typlesorkloads do offer a good experi-

mental testspace. The original version of DiskSim doesungpart generation of Pareto workloads.

14

Thus, as a part of our work, it was also augmented to geneuate &workload. With these two
types of workloads, we vary the mean arrival times of reqqeshich affects the length of the
idle periods (the higher the value tfthe greater the idleness). Table 2 summarizes some default
characteristics of the synthetic workloads for the reqdesitibution across the disks.

In addition to our experiments with these synthetic trasesperformed experiments with traces
extracted from real applications. These applicationgarallel in that the number of clients issuing
the requests for our 8-disk system are more than one. Momfigpdy, the number of clients
range from one to sixteen. One of the workloads is a trace &oronline transaction processing
application (OLTP); the other trace is gathered from a papWeb search engine. OLTP traces
[57] are characterized by frequent insert/updates. The seeloch trace we use [57] captures the
I/O traces of a system that processes web search querieb.oBtitese traces are obtained from
a publicly available repository [57]. The I/O accesses leixéi by these applications are small,
numerous, and concurrent. The results with the OLTP tragéndicated with< oltp >, whereas
those with the search engine trace are represented by «singearch >. We also tested our
scheme with a trace from a scientific application called BTWAich is a disk-based version of a
flow-solver program from the NAS Parallel Benchmarks [64heTmain operation in the code is
periodic writes performed by all processors to a multidisienal array stored in a file. This trace is
represented as btio >. The number of clients for this type of workload was kept ategin. Note
that the energy-saving opportunities in all these tracpsm on the length of idle periods between
various accesses. Specifically, the workload from the keamgine was found to contain less than 2
percent overall I/O system idle time. Our experiments wareied out with these diverse (synthetic

plus real) workloads to obtain statistics for the following

e Total energy consumed by disk system when no optimizatipeiormed(E;)

Percentage of energy savings with different power managesohemesgSav)

Performance penalty

Accuracy of various prediction schemes

Effect of changing the important parameters employed inrscbeme

15

Table 2: Default system parameters.

| Parameters | Values |
Request Number 100000
Number of Disks 8
Disk Size 18 GB
Sequential Access Probabilit 0.1
Local Access Probability 0.2
Read Access Probability 0.6
Maximum Local Distance | 100 blocks

We also conducted experiments with a five-speed disk basecuten scenario in order to
evaluate the effect of increasing the number of speed lavelglisk. The energy savings produced
with the five-speed disk are compared against those achigitbdhe three-speed disk and TPM.
Note that all the energy saving results presented heredmmsie savings across all disks in our
8-disk system. The energy spent in transitioning the disk different state was considered in all
our calculations. In the context of this work, the performeupenalty of a disk system is defined
as the percentage increase in the execution time for the gioekload. More specifically, if the
last request of the workload was serviced at tiheshen no energy optimization was applied and
now with the optimizations it gets serviced at tifié + =), the percentage performance penalty is
calculated agx/T") * 100. The results presented below inclualé the overheads incurred by our

scheme.

2.6.2 Results

We conducted experiments to test and validate the thresdgtiek model along with the prediction
schemes and verify the usefulness of Markov modeling. ,Rhst prediction algorithms described
earlier were evaluated for their prediction accuracie®cBjgally, we tested each prediction scheme
on all the workload types we have. Figure 10(a) shows thagired accuracies of the four schemes
discussed earlier. The average prediction accuraciemn(alheorkloads are considered) are 86.0%,
84.2%, 87.6%, and 92.0% for the Last-state, ORing, Moshgote, and Summing schemes, respec-
tively. Since inaccurate prediction of disk idleness caméiermined from a performance perspec-
tive, we consider 90% or higher as a good accuracy, and odigtin accuracies are in this range.

The total mispredictions (TMPs) can be broken down into tyyes:

¢ Mispredictions leading to performance loss (MPER), and

16

\D Five-speed M Three-speed CJTPM \

70
60
50 -
40 1
30 -
20 -
10
0l

Percentage Energy Savings

4 4 g g 4 7 g
S § ,\@Q PN S & Y

S < N S O
3y & S oS X
Lefg ﬁg L,zj? = £

Workload

Figure 5: Comparison of energy savings achieved by five- Anektspeed disk based systems
relative to the base case, namely, TPM.

e Mispredictions leading to energy loss (MPOW).

MPER happens when one predicts a spin-down for the disk but tikevehs actually accessed
and hence we incur spin-up delays. In compariddROW happens when the disk is predictod
but it was never accessed during that period, and consdguantopportunity to spin-down was
missed. We see from Figures 10(b) and 10(c) that the ORirgnigge gives more mispredictions
leading to energy loss, whereas the Last-state techniges giore mispredictions leading to per-
formance loss. Overall, our defended prediction schemm(&ing) performs better in all respects.
Although all these schemes do provide a good percentagermct@redictions, the Summing
scheme has significantly lowBtPERvalue. It is also clear from these results that all the prestic
schemes tend to become less accurate as the sampling peniedses, specifically the Last-state
scheme. In cases where even a slight performance degmadsitintolerable, one should try to
minimize the percentage of tMPER even if, in doing so, we increase the contributiorPOW.
Note that a higheMPOW value only means that we missed some energy saving oppiesjriut
a higherM PE R value may be intolerable in a high-performance computingrenment.

There should be enough samples to build the transition pifityamatrix initially so it really
does reflect the workload characteristics with a reasoretiiaracy. Hence we decided to take at
least 50 samples to capture the workload behavior. Obvwiptl# more samples we take, the better
our knowledge of the workload. However, this also means &g #te energy optimizations late.
Figure 4(a) shows that the energy savings decrease whenattme-up period is increased. Fig-
ure 4(b) shows the effect of varying the threshold value erpércentage of mispredictions leading

to performance lossMPER). Decreasing the threshold value means that we aggressivel disks

17

EOTPM EDRPM [Three-speed

1Al

<exp,100> <exp,500> <exp,1000> <par,50> <par,100>
Workload

-3
3

S

S

N oW s @
S

S

Percentage Energy Savings

=)

o

Figure 6: Comparison of energy savings with different sobenmcluding results with DRPM.
Results for DRPM were obtained from [12], where no tests \weréormed with real traces.

Table 3: Percentage of performance penalty.
[Workload | Penalty (TPM)| Penalty (Three-Speed DisK)

< exp, 100 > 0.0 0.0
< exp, 500 > 0.03 0.0
< exp, 1000 > 0.015 0.0
< par,50 > 0.0 0.0

< par,100 > 0.0 0.0
< oltp > 1.42 1.76

< btio > 0.0 0.0

OFF and therefore increase the chances of mispredictions vighieflected in Figure 4(b). In Fig-
ure 4(c), on the other hand, the effect of increasing thetteafithe sampling period is shown. The
energy savings decrease because we miss some idle timewppes. We also tested the effective-
ness of these prediction schemes using a five-speed diske$tiks given in Figure 5 indicate that
three-speed disk provides better energy savings in mosscakhe response of a five-speed disk
to a disk state prediction is more gradual than that of theettspeed disk. The reason is that the
five-speed disk slows down the disk speed one step at a tirmesualdisk experiences big slowdown
in the response time. Consequently, it takes more time tsitian to a lowest power mode, in turn
producing less savings. This one step approach is a bit ¢ggessive in lowering the disk speed,
but it enables us to identify the system state at all timesegsdires easy recovery on misprediction
(there are forced spin-ups and spin-downs when the actial istnot equal to the current state of
the system). Note that one has more flexibility with a fiveespdisk when it comes to selecting a
speed level, which can be helpful, as is the case for the gawin OLTP and BTIO workloads in
Figure 5. Although we achieve better energy savings withedpeed disk, it also leads to more
performance penalty (not shown in results because of lacgpate). This can be attributed to the

increased overhead of transitioning across differentépmels.

18

In Figure 6, the energy savings obtained with the threeesgdesk supported by our scheme are
compared with TPM and DRPM savings. All energy savings amenabzed with respect to the
base case, where no power saving scheme is employed. Thyy emgrsumption evaluated and
the power saving results consider the entire disk system.régfenerate the energy savings with
DRPM (denoted a®) RP M., in [17]) where it can predict the idle times with full accuyacon-
sequently, there is no performance loss. Since we are usinggime simulation tool for generating
the same workload types, it makes sense to compare thesteSMlt see from these results that
our scheme provides more energy savings compared to TPN4oldaes better than DRPM. The
reason can be attributed to the ability of the disk to totafyn down (standby mode) whenever
possible, and save energy even when the duration of idlegseis not sufficiently long (spin at
an intermediate speed level). Although the opportunityaeesenergy with these workloads may
look meagre, it is the result of using the predictive scheloegawith the concept of a multi-speed
disk that helps save energy. There is not much performantatgdrom TPM as this scheme trig-
gers a shutdown only when the disk has been idle for a longgei time. However, when we
use prediction algorithms and perform spin-ups and spmndoproactively, there is a chance of
significant performance penalty. This can be a result of gmdcted spin-down (MPER) when
the disk is being actually accessed. Table 3 shows that,auittscheme, there is very small or no
performance penalty with the used traces. Gurumurthi ¢1@].give performance degradation in

terms of response times, but does not show the net effecteaiotdl execution time.

2.7 Concluding Remarks

The main contribution of this paper is a novel Markov modeddehdisk idleness prediction scheme
that can be used for reducing disk power consumption whed wsth a three-speed disk. The
paper explains in detail why the defended prediction meishatis better than others and why it
saves disk power. To evaluate the effectiveness of our apprave implemented it using DiskSim
and performed experiments with both synthetic traces agidapplication traces.

Our experimental results show that (i) the prediction aacies of the proposed scheme are
very good (87.5% on average); (i) it generates significaergy savings over the traditional power

saving method of spinning down the disk when idle (35.5% agraye); (iii) it performs better

19

than a previously proposed multi-speed disk managemeetrset{19% on average); and (iv) the
performance penalty it brings is negligible (less than 1% weerage). Overall, our implementation
and experimental evaluation demonstrate the feasibilisfdarkov model based approach to saving
disk power. Our ongoing work involves integrating this soleewith existing disk power saving
strategies and testing them under different workloads. Weeadso investigating whether high-
level (application level) information supplied by prognaw@rs can be used for improving our power

savings.

Chapter 3

Power Aware Disk Allocation

Disk power consumption is one of the major concerns in adgmpplications with large scale 1/0
in both mobile and scientific computing domains. Virtudiiaa and the resulting abstraction of
large scale storage systems and variety in the I/O demarajgpti€ations call for a power efficient
disk allocation strategy across simultaneously execudipglications that provides necessary per-
formance guarantees. In order to abstract the underlyivergity in capacities and rotation speeds
of disks and attain a performance and power efficient alioeat disk allocation algorithm has to
often choose from a set of conflicting optimization criterighis paper presents the trade-offs as-
sociated with power and performance across different diskation schemes, targeting a scenario
where multiple applications exercise the same disk stagggiem at the same time. We also present
a novel disk allocation scheme that reduces overall powaswoption of a disk system while sat-
isfying the performance and storage capacity constragttbysapplications. Extensive analysis of
our proposed disk allocation scheme shows that it reducspdiwer consumption compared to

other alternate disk allocation schemes, while providinglar or better performance guarantees.

3.1 Introduction

An important characteristic of many high performance agpions is disk intensiveness. Many
scientific simulation codes for example have frequent diglesses. In fact, large-scale simulations

have become an integral, important, and in many cases, gyriapproach to solving complex sci-

20

21

ence and engineering problems and automating scientifiwlkedge discovery. These simulations
tend to generate huge amounts of data that must be storedsks) diined, analyzed, evaluated,
check-pointed (on disks), and steered, in most cases dgaiynduring the course of execution.
Similarly, many data base/mining applications frequesetigrcise disk systems of parallel archi-
tectures. In a disk storage system shared by multiple agifgits, one of the critical problems is
resource (disk) allocation across these applications.nidia characteristic that makes this problem
challenging is the fact that different applications demdiiitrent amounts of disk space (capac-
ity) and can tolerate different disk latencies. As a resulgcating disks from a heterogeneous disk
pool to satisfy the needs of all applications using the sanrage system is non trivial. Existence of
additional constraints such as power and reliability mdkessdisk allocation problem even harder.

Disk power consumption poses severe challenges in termkedfieity costs, overall system
design and reliability. Power consumption can put a limihow much designers can push perfor-
mance, as power dissipation generates heat that affectsocmnt stability and reliability, especially
for large server systems [17]. While recent research has@ston hiding most performance bottle-
necks by overlapping computation with disk 1/0 [38, 43], mowottlenecks cannot be hidden. Note
that both cost and reliability are very important for largals server systems in general and disk
storage systems in particular. Disk power consumption @high in systems that execute large
data-intensive scientific applications, e.g., those froendomain of astrophysics, genome research,
computational chemistry, and nuclear simulation. In factecent research [22] shows that disk
storage can be responsible from up to 27% of total system poovesumed by data centers.

Motivated by these observations, this paper presentsalalisk allocation schemes and exper-
imentally evaluates them using multiple metrics. One oééhschemes is defended in this paper
and performs disk allocation across multiple, concuryenthning applications such that overall
disk power consumption (of the underlying storage systsmgduced and performance and storage
constraints specified by applications are satisfied. At legel, one can see our disk allocator as a
virtualization layer that maps virtual disk requests to physical disks in theagi®isystem such that
the application needs are satisfied.

We implemented our disk allocation schemes and testeddffeativeness under a wide range

of execution scenarios, which involve different resourdisk) pool sizes, different sets of disks

22

(with different disk speeds), and different disk requesivar patterns. We can summarize our
results as follows. Our defended scheme performs consisteetter than other schemes tested
when multiple metrics of interest are consolidated. Speadlfj, it reduces power consumption over
a performance-only scheme by 20%, while improving perforoeaover a power-only scheme by
almost 23%. This paper also discusses the results from ositiséy study in which we change
several storage system characteristics. Our experiméatalfor this sensitivity study suggests that
proposed power-aware disk allocation scheme is robustrwaaiging values of major experimental
parameters.

The rest of this paper is organized as follows. Section 3eBqmts a description of relevant
efforts in solving similar or related problems followed kyetprecise problem addressed in this
paper in Section 3.3. A comprehensive description of degaameters considered in this study
including types of resource pools, metrics of interestmiatr of application request and various
disk allocation schemes are presented in Section 3.4.0betib describes the experimental setup,
results and the sensitivity of our scheme to various des@gameters, and finally, our conclusions

are presented in Sectiat?.

3.2 Related Work

Significant previous work exists on power aware disk managernm both mobile and server do-
mains. The prior studies have ranged over various layetseo$ystem including the hardware and
software managed schemes. Spinning down disks [13, 14,r2@dacing the speeds of the disk
when it is used sparsely is a popular technique for disk ponenagement. Simunic et al. [59]
proposed to use a semi-Markov decision process to obtaimappower management policy for
laptop hard disks with a system model that can handle noorexgial inter-arrival times in the
idle and the sleep states. An alternative hardware basa@gyris DRPM [17, 7] which involves
dynamic modulation of disk rotation speeds. Zedlewski et[@9] extended a disk simulator to
examine the energy consumption behavior of the hard disk dri

The interval between the successive disk I/O requests atifor effective power management
of disks. Therefore, several studies attempted to incriteese intervals via postponing dispatch of

I/0 requests [63, 41]. Son et al. [54] proposed an energy@data prefetching scheme for multi-

23

speed disks, which is compiler driven. In comparison, Okaidal. [39] developed a hard disk
drive which can operate at different speeds. They used twd RBdes: file download/upload and
audio/video application. Rao et al. [47] found the optinetalution speed and length of standby
period for a certain playback rate.

The power management issue has also drawn significantiatténtthe domain of server class
storage systems. [8, 7] exploited the multi-mode disk dte@hnology in massive scale storage
systems These studies proposed to monitor the /0O queuthland to adjust the disk revolution
speed subject to 1/0 queue length. Pinheiro et al. [45] sstgdeto place the frequently used files
into a small number of disks so that the hot spot disks are tileamode while other disks are
maintained at low power mode. A number of studies exploitedrhemory hierarchy of the I/O
subsystem, i.e., via intelligent caching, for reducingrgpeonsumption of hard disk based storage
subsystem [31].

Application-level optimizations for reduced power conguion in the disk have also been stud-
ied. The approach proposed in [26] restructures a givericgpigin code considering the disk lay-
outs of the datasets it manipulates. Son et al [55] presemegbiler analysis to extract disk access
patterns and use this information to insert explicit diskvep management calls at appropriate
places in the program code. Use of feedback directed agaghource control has been studied in
the literature for disk space allocation [40], throttlifigetstorage access requests to ensure system
throughput is shared fairly [28].

Providing performance guarantees in distributed storgggesis is more complex because
clients may have different data layouts and access thartdabugh different coordinators (access
nodes), yet the performance guarantees required are glob#his context, Wang and Merchant
[61] presented an adaptation of fair queuing algorithmgifstributed servers that enforces an ex-
tra delay (possibly zero) that corresponds to the amoungmice the client gets on other servers.
Several recent efforts [4, 11, 10, 27] have also considdreduse of feedback control theory for
handling performance specifications.

Many of these prior efforts have concentrated on manimdathe disk’s rotational speed or
modifying the occurrence and duration of disk idle periogisdower management. We attack the

power management problem from a different angle by corisigétras aresource allocation prob-

24

lem, where the aim is to reduce overall power needs of the 1/Gesy&h presence of performance
constraints coming from different applications concutlseexercising the same disk storage sys-

tem.

3.3 Problem Statement

This paper presents a novel approach of allocating disks &oesource pool of disks with different
rotational speeds (RPMs). The proposed disk allocatiorraehstrives to reduce disk power con-
sumption of an I/O system, while providing the necessarjoperance guarantees as requested by
the applications. The incoming applications issue diskiests specifying their needs from the 1/0
subsystem in terms of storage capacity (disk space needégeaformance (minimum bandwidth).
Given a specific resource pool with a large number of diskh different RPMs, and an appli-
cation workload’s consolidated set of requirements (a Bdisik requests), our approach attempts
to reduce the power consumption of disks while providinggbgformance guarantees. Applica-
tions state their I/O requests in terms of disk requiremeshish are fed to th®isk Allocator, that
helps achieving the performance goals expected by thecagiplh user while making the best use
of the available storage resource(minimizing power). Taeegal architecture of our approach is
presented in Figure 13(a). At any given instant in time, dotary number of disk requests may
demand allocation from the available set of disks with aagjerconstraint in terms of disk capacity
needed (C) and a performance constraint in terms of band\{Bi). In this paper, we use the term

'demand’ to indicate the set of disk requests made by ancaijmn that uses our I/O system.

3.4 Our Approach

While building a large storage system, one can only estitgt@mount of storage required, based
on which the type (various speeds) and number of disks ardatecThis means that there can be no
storage system which will be optimal at all times, once itidtbHere, optimality can be associated
with many factors: power usage, performance, etc. Our gihan a storage system, allocate the
available set of disks to the applications in a way that guaes performance and reduces the power

consumption. In the following subsections, we discuss te@ncomponents of our approach.

25

W5k mek m7k W8k MmOk W10k W11k m12k =13k m 14k =15k

.

small large mid high mid mid mid low
Disk Speeds

(a) (b)
Figure 7: (a) Architecture of our power aware disk allocatscheme with each request specifying
the requirement in terms of capacity (C) and bandwidth (B8ded from the disk. (b) Composi-
tion of different resource pools. This graph shows the nunobeisks of different speeds in each
type of resource (disk) pool.

Number of Disks
BoR NN W oW
n o h ot dh

o

3.4.1 Resource Pool

A resource pool in case of our storage system is a collectfotisis. Since there is no fixed
pool which is good for all situations, we try to look at variotypes of resource pools, when the
different allocation schemes are used. For our experimamsonsider five types of pools, which
are different from each other in terms of the total numberiskslor the number of disks for a
particular speed. All the disks considered for building tesource pool have a fixed capacity of
10GB, while the speeds (RPM) range from 5k to 15k. Note thasfieed range is not for a single
disk, but these are ranges of speeds available in the respaot. Composition of our disk pools in
terms of the number of disks with different speeds is preskimt Figure 13(b).

e Small Pool: The number of available disks in the resource pool givesaa goeasure of its
power costs, availability, ease of administration, etcr @tuition behind deciding the pool size as
small is to use the number of demahdisat will be using this resource pool as a metric for defining
its size. For example, if the number of demands is X and theirmax number of disks each
demand may request is Y, then a small pool can be one in whichumber of disks is a fraction of
X*Y. Note that in all types of resource pools that we will bensalering, all the disks (with different

speeds) will have the same fixed capacity. The distributfatisix speeds is uniform in this type of

!Recall that we use the term 'demand’ to indicate the set &ftiquests made by an application.

26

pool, meaning that the number of disks for each speed wilblees

e Large Pool: This pool is similar to the small pool described above inamigation and char-
acteristics, except that the number of disks is greaters pbol is considered to observe the effect
when the resources available are almost infinite, meanisigwth have more than the required re-
sources. Again, if X*Y is the total number of requests presgtic then having a multiple of X*Y
disks in the resource pool can be described as a large pool.

e Pool Skewed to High Speeds: This and the following pools have reasonable number ofsdisk
(mid-size) which is neither small nor large. Our goal her&isneasure the effect when the size
of the pool is moderate, but the disk speed distribution ismaiform. Specifically, the number of
the disks of high speeds is more than the number of the diskederate or low speeds. Since the
number of disks in the system remains the same, we reduceuthbar of disks with low speeds
when increasing the number of high speed disks and keep thbemof disks with moderate speed
to be the same.

e Pool Skewed to Mid Speeds: This is again a mid-sized pool in the number of disks it ciorgta
as compared to the number of disk requests that might beagededifference being the disks with
moderate speeds are more in number as compared to othepdisitssin the pool.

e Pool Skewed to Low Speeds: Similarly, this pool is skewed to the low speed disks witbrth
more in number as compared to other disk speeds in the pool.

These different types of disk pools should give us a goodipgodf what happens when various

disk allocation schemes are applied to service competiplicagion’s storage requests.

3.4.2 Request Format

The disk allocation schemes presented in the paper are rdlhme schemes, that is they allo-
cate/deallocate the disks as the applications come in awve lhe system. Each application has
a start time and an end time. As the applications come in, pheyide information to the resource
pool regarding their disk requirements in terms of the capd€) and the bandwidth (BW). Each
application might ask for more than one type of disk. It isgdole that at the time when the applica-
tion leaves the system, the disks that were allocated foattiaication may be reclaimed for further

use. For our basic experiments, we will consider that tha ds¢d/generated by the application was

27

persistent and hence those disks cannot be reclaimed. legvirewur sensitivity analysis, we will
also consider reclaiming of the disks. For the purpose okaperiments, we generate random start
and end times for different applications. We will be assugrirat the maximum number of requests
generated by a particular application does not exceed fiaigh this parameter can assume any
other value). For the disk allocation schemes evaluatelignvtork, it is not mandatory to assign
a new disk for every request of the application. This meaas ththere is a disk that can service
more than one request, one is allowed to use the disk in su@naen It should be clear that, under
this execution model, an application demands certain pedoce level and storage capacity from
the storage system. This demand is an aggregation of regwdsth in turn are not actual disk I/0
requests, but specifications of a disk that might be usedrtaceethat application. In our setting,
each application has a demand which consists of at most foledisk specifications (which might
be stated as disk requests from this point on). This againparameter that can be changed if
desired.

Since the disk requirement is specified in terms of space andviidth, it gives us an option of
using more than one disk for fulfilling such a request. Thignsein practice that we can derive the
bandwidth requirement from multiple disks, making the dilkacation across applications an even
more interesting problem. For all our experiments, we wag a bound on the number of disks
that might be used to share the load (at most five). Whenisglittandwidth, the ratio in which the

capacity is split will be proportional to the amount of bandilv and vice versa.

3.4.3 Metrics of Interest

Disk allocation needs to be done in a way such that it helpsaeethe power consumption of the
disk storage system, improves availability of resourced,ensure certain performance guarantees
to the applications. All the schemes that we present hereagtee some level of performance
to the applications (if the allocation is granted) in thesgethat if the application requests some
bandwidth, then the disks allocated will be able to provitkast that amount. This way, we do
guarantee the performance, but it can be easily seen tleat, #ine a lot of strategies that can give
different disk assignments, hence producing differenbgeerformance or power values. We will

look at all these metrics and schemes, targeting specifiealth one of them taken individually. It

28

can be easily seen that when all of these metrics are cordidenultaneously for generating a disk
allocation, one decision might not confirm with the otheg(ea performance aware allocation may
not be power aware or vice versa). Also, these metrics arlyswot very clearly defined and their
measurement varies depending on how one defines them. Ligttosdefine these metrics and the
way we calculate their values for our experiments.

e Performance: One thing we ensure in all allocations is that a request alillays be allo-
cated a disk with higher than or equal to requested bandwiitti). In order to provide a relative
measure of performance for the various disk allocation reese we consider the extra bandwidth
available for the allocated requests. As mentioned eadiaingle disk might be servicing more
than one request. In such scenarios, merely providing theviidth demanded by the request,
might not ensure the desired performance. This can bewttdlio the degradation offered by the
other workloads present on that disk. Keeping this in mihdreé can be a possible degradation in
the overall performance of applications, if such scenagi@snot handled carefully. We measure
these degradations or enhancements by using a parameteodirqpower aware scheme (explained
shortly) called "buffer”. To capture the effect of more thane workload on a disk, we say that
some "buffer” amount of bandwidth is wasted over the bantiwédready used by the workload. As
the number of workloads increases, so does the wasted bdthdwience, if the number of work-
loads present on a disk is N, then the wasted bandwidth igtbuffN. The spare bandwidth’s on
active disks are summed up over all the serviced requestthandhe effect of wasted bandwidth
is evened out.

e Power: There are two mechanical components to disk power, narhelgginning of the plat-
ters and the head movement (seeks). As pointed out preyiwuldl7], spindle motor is responsible
for nearly 50% of overall idle power and the number is closB2% in server class disks with ten
platters. Power consumed by a disk is proportional to thamgaf the speed of its rotation (based
on the model suggested by [17]). We use this model to combetéotal power consumption of
the storage system when various disk allocation schemessace In order to compute the total
power, all the active disks are identified, their speedsguared and summed. The goal behind our
power—aware scheme is to reduce the value of this metric ab amipossible.

e Availability: Clearly, in order to satisfy a request, we must have enoaglacty and the

29

required bandwidth left on disks. The availability cri,eshows how good an allocation scheme
is in maximizing the number of serviced requests. It is netclif the quality of service may be
ignored when marking the request as serviced or unservieatbur experiments, we do not look at
the quality of service to qualify the allocation as servicedeviced request. The higher the number
of unserviced requests, the weaker the scheme is in termaitdilaility. We simply sum up all the

unserviced requests at various phases during the exec¢atmrld our availability graphs.

3.4.4 Evaluated Schemes

We now describe the disk allocation strategies evaluatddsmork. We assume that all the disks in
the resource pool are initially idle and become active ortigmwallocated to a particular application.
Disks can also become idle once all the workloads they wewicggg have left/finished.

160 160 - 160

140 L

-
5
s
o
L 2
-
5
S
=
.
L

120 120

100 » 100 v
g

£ 80

3 &0 |

Disk Indices
®
=)
<«
Disk Indices
®
=)
b]
»
Disk Indi

40 &]
20 []
0
0 10 20 30 40 50 60 0 10 20 30 40 50 60 o 10 2 30 w0 50 0
Disk Requests Disk Requests Disk Requests

(a) Disk allocations using the (b) Disk allocations using the Per- (c) Disk allocations using the
Power Only scheme. formance Only scheme. Power Aware scheme.

Figure 8: Variations in disk allocations from the resouroelgo various disk requests by different
schemes. Disks are numbered from O to N in the resource poeakisydepicts the disk number
selected from the resource pool for servicing a disk requésise number is given by X-axis.

e Power Only: The sole aim of this disk allocation scheme is to reduce tvegp consumption
of the storage system, without considering the effect ithhigave on other metrics of interest.
The intuition will be to activate the least number of diskststhat their rotational speeds are also
the lowest. This will at least ensure reducing the power gontion, a parameter dependent on
square of the disk’s speed of rotation [17]. The conversiomfRPM to bandwidth they can offer is
straightforward [44]. For the power only scheme, the minimum speed disk from theuree pool

is selected. Note here that the selected disk might be glr@ett/e or it may be idle at the time of

2User data transfer rate in MB/s = RPM/60*sectors per tratR*8/1,000,000

30

allocation. Changing the state from idle to active is a ometcost, and its effect on performance is
typically insignificant. Allocation of more than one reques a disk might hinder the performance,
but the primary goal of this scheme is to minimize the powersconption.

e Performance Only: An application when given bandwidth more than its minimwquire-
ment, might finish early, hence creating opportunity toaigclsome of the disks it was using. In
this scheme, the highest speed available is allocated firdoing so, we hope that each request
will have the most spare bandwidth available, helping imtpiove its performance.

e Power Aware (Our Defended Scheme) : In this scheme, we try to maintain a balance amongst
the various metrics while providing the performance guees, saving power being the priority.
The disk allocation returned from this scheme tries to btiregbest from the previously-described
schemes. This means that it tries to improve performanceobd in terms of availability, and
reduces the power demand. One aspect that we ignored iropsetivo schemes is the effect
on achieved performance in presence of more than one waorldeadisk. The result is lack of
reliability in terms of disk’s performance. In order to ersuhe application with the demanded
performance, we introduce a degradation term "buff@uffer is the bandwidth wasted on a disk
due to the presence of a workload. The value of buffer will biestant for all workloads. Hence,
as the number of workloads increases, the wasted bandwidtbases. The net result is, when
allocating disk to a new workload, the available bandwidtltoamputed taking into consideration
the degradation due to already present workloads on the Bigkloing so, we ensure that even in
the presence of degradation, the application’s perforeaviitnot suffer. In order to keep the power
low, we use the same strategy used by the power only schemagsatt minimum speed disks as
much as possible. Interestingly, by doing so, we indireptgke the availability good too. Since
we are consuming the low speed disks earlier on, serviciadptiiest bandwidth requirement first,
it helps in keeping the disk fragmentation low (we measuhedtdtal unused bandwidth on all the
active disks), while reserving the high speed disks for estgiwith high bandwidth requirements.
Figure 9 gives the pseudo code for this allocation scheme. cbmplexity of this scheme is O(n

log n), where n is the total number of I/O requests generayedll the applications.

31

main () {
do{
for each application
sort disk requests in ascending order of speed requirement;
for each request
allocate a minimum speed disk with the required capacity;
update disk capacity and available bandwidth;

1
Figure 9: Outline of our algorithm for power aware disk a#iton.

_ _ Table 5: Disk indices and their speeds for
Table 4: Major experimental parameters. mid-size pool skewed for mid-speed disks.

| Parameter | Value | [Disk indices | Speeds|

Number of requests 50 D1-D22 oK
Disk requests per request 2-5 D23-D44 10K
Capacity requested 1-10GB D45-D66 11K
Bandwidth requested 15-65Mb/s D67-D88 12K
Resource Pool size (Small, 66 disks) D89-D94 5K
(Mid-size, 154 disks) D95-D100 6K

(Large, 242 disks) D101-D106 | 14K

Type of disks Single Speed D107-D112 15K
Capacity of each disk 10GB D113-D126 7K
Disk Speeds 5-15K D127-D140 8K

D141-D154 13K

3.5 Experimental Evaluation

The experiments were conducted using a simulation infrestre we developed in C++ which
could perform disk allocations as the applications entet exit the system providing their I/O
requests. This simulator can be thought of as a part of theatipg system which can communicate
with the block 1/O device controller to get the required imh@tion about the composition of the
storage system and the I/O requests generated by the dijgplicdt can also be employed as a part
of a storage virtualization layer such as [1] and [2]. Théudlization software has all the necessary
information about the physical storage lying underneaththae allocation decisions can easily be

guided by our power aware scheme.

3.5.1 Setup

The main components of our experimental setup consistseofetbource pool and the application
request stream. The applications running on differennhtdicome in and exit the system which
includes the client machines and the storage system. Thagsteystem (referred to as resource

pool) consists of a variety of disks which get allocated tifedént applications’ demands as per

32

the different disk allocation schemes. The range of valoesall our experimental parameters
are described in Table 6. Table 7 provides the correspoedamong the disk indices and their
respective speeds for mid-size pool skewed for mid-spesgksdiNote that, this correspondence
among the disk indices and their speeds is different forrdifpes of pool (see Figure 13(b) for a
general description of composition of each of differenbrese pools in terms of the disk speeds).
Specifically, the mid-sized pool with disk speeds skewedhfiml-speeds depicted in Table 7 is used
for our main set of experiments comparing the benefits frdferdint schemes. The rest of the pool

types will be used as part of our sensitivity analysis.

49
45 —

41 - -—

M power only M perf only M power aware

180

.
@
o

37 —

33
29 - - 1
25 e p—————
21 =

d Dis|
A
NS
o o

=
o
=)

o
L

17 —

13

Disk Requests

Number of Allocated Disks
) [=2)]
o o
|

N}
o
L

o
=)

5 10 15 20 25 30 35 40 45 S0

Number of Current Disk Requests

(a) (b)
Figure 10: (a) A possible disk request arrival distributeomd their execution times in our default
setting. (b) Cumulative humber of disks assigned by varitigk allocation schemes. Values on
horizontal axis represent the number of requests made.so far

The application request stream is not fixed and Figure 10@)iges a possible sequence of
applications’ arrival order and exiting times, usable gmitrto the experiments. The relative arrival
order is important for the disk assignment, as the disks kpteded in terms of the arrival order.
On the other hand, the application exiting time is importemfree/reuse the disks assigned to
the applications for further use (if the data on those disks inpersistent). Note that, if all the
applications using a particular disk exit the system, thsk ds spun-down totally until further

assignment.

33

m power only ® perfonly power aware mpower only ® perfonly power aware
18000 2500
16000
14000 2000
12000 =
10000 E 100
(=]
& 8000 £ 1000
6000
4000 500
2000
0 = I I 0 — —
reql0 req20 req30 req40 req50 reql0 req20 req30 req40 req50
(a) Disk power consumption of various disk al- (b) Performance of various disk allocation
location schemes. schemes.
mpower only ® perfonly power aware mpower only ® perfonly power aware
30 80

70

m ' 011111

reql0 req20 req30 req40 req50 reql0 req20 req30 req40 req50
(c) Availability under various disk allocation (d) Absolute performance under different allo-
schemes. cation schemes.

N
@

-

=}

)
o

%

o

w
o

i
o

N

o

Number of Unserviced Requests
=
G
I
Absolute Performance
IS
o

el
-
15

Figure 11: Study of different metrics with respect to vasalisk allocation schemes.

3.5.2 Results

We performed experiments with all the disk allocation sceeexplained above in order to evaluate
each of their potentials. The input to the experiments wassaurce pool consisting of disks with
different speeds and a set of application requests. Theatoofithe application requests has been
described earlier. We varied the size of the resource paapikg the number of disks for each
speed and the disk speeds available to be uniform) and aéstyple of disks within the pool.
The output of the schemes produces a disk allocation for ¢éneadds laid by applications, and is
evaluated on the basis of three parameters explainedreg@digormance, power, and availability.
We now show the disk allocations by various schemes propiosidddually over a set of fifty
demands. The timing characteristics, namely, arrival et processing time of the requests

captured by these demands in our default setting are as shdwigure 10(a). The indices of disks

34

allocated from the resource pool by each of the schemes, IypaRwver Only, Performance Only
and Power Aware schemes, are depicted in Figures 8 (a),n).ca respectively. The cumulative
number of disks allocated by the individual schemes are showFigure 10(b). Although the

cumulative number of disks used by each scheme look sintildoes not provide an exact picture
of the power consumption or the performance offered.

The number of unserviced requests in each of the schemas\(énse of availability) is depicted
in Figure 11 (c). As seen from this figure, the performance soheme has the highest number of
unserviced requests. Note also that the power aware schenfioerps better in terms of availability
with lower number of unserviced requests, at the same tirapikRg the performance at par with the
performance only scheme. This is due to allocation of theekivspeed disks for each request that is
performed by the power aware scheme which retains the higgdsgisks until they are necessary.
In terms of power, the power aware scheme lies mid way betwheeextremes of power only and
performance only. Towards the end, the power aware schemthaighest power consumption
because of the higher speed disks chosen and the large nofritisks used, as a consequence of
servicing of more requests and taking care of the performdegradation.

It can be seen from these results (Figures 11 (a) and (b))eponly and performance only
schemes perform optimally (as can be expected) with respgudwer and performance metric,
respectively. We also see that our power aware scheme pexfeery well with respect to power
and fares well with respect to performance, and it also hglseniavailability (lesser number of un-
serviced requests). Specifically, the power aware schemsuiomes approximately 9% more power
than power only scheme when the number of disks requesteftyis @n the other hand, power
aware scheme performs quite similarly to the performandg stheme with a slight depreciation
for the same case.

Figure 11 (d) gives the best description in terms of how tlhecations schemes fare in terms
of providing performance guarantees to the applicationat&ts. As is evident from the figure, the
performance only scheme does very well when the number akstg in the system is low, as each
request goes to a new disk, thus leaving a lot of spare bathisigl compared to the bandwidth
utilized. In order to compute this, we used the value of sjmmedwidth computed to measure

performance values in Figure 11 (a), and divided it by thal todndwidth allocated to all the ser-

35

viced requests. The value generated gives a measure ofdhgeln performance due to the spare
bandwidth. Note that all the performance values were nozelby referencing with the lowest
performance value. This was necessary because for the polyescheme, there was in fact degra-
dation in performance which resulted in negative valuespafe bandwidth. This means that for
the power only scheme, the workloads suffer in terms of perémce because of the presence of
more than 1 workload per disk. The power values in all graphsalso normalized to the power

consumption of a disk at unit speed.

3.5.3 Sensitivity Analysis

We performed various sensitivity experiments using ourgrosware disk allocation scheme. Due
to the space constraints, we are not presenting the releaptigfor these experiments; instead, we
only summarize our major observations.

Firstly, we varied the way applications data is handled émis of persistency) during the
course of their execution and once they finish. Data whicloispersistent (not required once the
application finishes) uses up the disk space which can baimeesdl. Identification and reclaiming of
such disks can help provide more allocation options forriberining applications. We experimented
with partial reclaim strategy which reclaims about 50% a tolatile disk capacity to be allocated
to the fresh requests. The results obtained indicate teateflative behavior of our power aware
disk allocation scheme is not highly sensitive to the reclsirategy.

We then varied the constitution of the resource pool meetioim Section 3.4. The results
indicated that, when the number of applications in the systeas not high (approximately 10 in
our experiments), the power was less for large pool as caedparthe small one. This is because,
in a large pool there are more options (in terms of availghilf low speed disks) to choose from.
But, as the number of the applications increase, the povegeutor large pool exceeds that of the
small pool. For the three variants of mid-size pool, the pgbat was skewed towards low speeds
had the least power consumption, whereas the one skewedfospeeds had the highest. This is
intuitively due to the dependency of power consumption @k dpeeds.

Thirdly, we varied the application request pattern thagdds input to the power aware scheme.

Four different access patterns were randomly generatédovit distinct randomly generated seeds.

36

It was found that the scheme is quite robust. For a fixed resquool, an application request pattern
with more requests consumed more power and performedvaiatioor as compared to an a request
pattern with less number of requests.

Finally, we varied the the amount of degradation offeredhaygresence of multiple workloads
on a single disk. We tested for three values, when bufferevalas 1,3, or 5 Mb/s. As one can
expect, the higher the value of the buffer used, the highdopeance one achieves while at the
same time sacrificing on power and availability. This waskbdcup by the results we obtained
where the performance was highest for buffer equal to 5. diagithe right value of buffer is a

tricky question and may depend on the metric one is lookingfwove.

3.6 Conclusion

One of the critical problems in managing a complex storagtesy is the allocation of available
disks across competing applications. The main charatitetigt makes this problem challenging
is the fact that different applications demand differenbant of disk space and can tolerate differ-
ent disk latencies. As a result, allocating disks for a digélghat contains multiple heterogenous
disks is not trivial. Providing performance guaranteessatgring additional constraints such as
power and reliability makes the problem even harder. Inotdebstract the underlying variety
in capacities and rotation speeds of disks and provide pedoce and power efficient allocation,
a disk allocation algorithm was proposed in this paper tbasiers various trade-offs associated
with power, performance and availability in disk allocatechemes. A novel disk allocation scheme
that reduces overall power consumption of a disk systemevgatisfying performance constraints
of individual requests was also presented. Extensive aisatf our disk allocation scheme with
a large number of applications shows that it reduces diskep@onsumption compared to other
traditional disk allocation schemes, while providing daniperformance guarantees. Our scheme
performs consistently better than multiple schemes wheltipteumetrics of interest are consoli-
dated. Specifically, it reduces power consumption overoperance only scheme by 33.4% while

improves performance over power only scheme by almost 67.1%

Chapter 4

Dynamic Storage Cache Partitioning

Using Feedback Control Theory

In this paper, we propose a new quality-of-service (QoS)awtorage cache partitioning scheme
that dynamically partitions cache space amongst simuwtasig running I/O-intensive applications.
The QoS specification is given in terms of latency of data s&cépart from data access latency
which is perceived by the user, there can be more constiaunt®rth from the system administra-
tors point of view. One of the more important constraintshis dlisk utilization level in a storage
system. Normally, higher disk utilization levels are preée by the system administrators for bet-
ter resource consolidation. In this paper, we focus on th&seconstraints, namely, data access
latency and disk utilization, which are translated into &arall storage cache hit rate requirement.
We employ feedback control theory to achieve the requiredale target per application. Our ex-
perimental results indicate that the proposed storageecpattitioning scheme is able to meet the

required storage cache hit rate targets and improve osaaige system performance.

4.1 Introduction

Present day computing makes use of resource sharing foouimgr resource utilization. One of
the implications of resource sharing for the user is lackefgrmance guarantees. We focus our

attention on the disk sub-system where one disk may serveesésjfrom more than one applica-

37

38

tion. Similarly, the storage cache (implemented in memirysually shared by the simultaneously
running applications. With the decrease in manufacturivgj,computers today have larger memo-
ries and thus have larger storage caches. These storages @ettypically shared by applications
simultaneously running on the same system. These applisathay interact in several ways, some-
times improving the overall performance of the system, abéncase of, multitasking which can
help increase CPU utilization. However, not all shared ueses can be efficiently utilized when
multiple applications contend for the shared resource att, fvery often, inter-application effects
may lead to destructive interferences [49] (one applicakizking out the data of some other ap-
plication). These effects may become very pronounced inemodperating systems (OSs) as they
do not normally allow applications to control resource @saand they themselves are unable to
provide any guarantees (known as differentiated Quafitervice (QoS)) to the applications. Our
goal in this paper is to make use of I/O access latency andutiisfation as metrics for governing
the storage cache partitioning across multiple applioatioOur main contributions in this paper
include:

e Use feedback control theory to adaptively partition a gfereache at runtime amongst multi-
ple applications such that their QoS (data access latenayrinase) can be met.

¢ Build a storage cache performance model which helps guitiagnain controller (used in
the defended scheme).

e Experimentally evaluate the proposed cache partitionamgimie using a diverse set of appli-
cations. Through extensive experiments using a varietgalff application traces, we verified the
applicability of feedback control for the storage cachdifianing and the utility of our cache per-
formance model to the success of the approach. Not only wergble to achieve the aggregate hit
rate targets per application, but in some cases we improped il. Specifically, for a mix of five
applications, we saw an improvement in aggregate hit ratg ast 2% and a maximum of 9% per
application.

The rest of the paper is organized as follows. We start wiildimg up some background in
Section 4.2. In Section 4.3, we motivate the use of feedbankal theory and the need to partition
the storage cache wisely. We describe the main aspects ajppuoach in Section 4.4. In Section

4.5, we provide the algorithm used to meet the targets spddifi our system. Experimental setup

39

and evaluation of our defended scheme are presented iro8ec8, followed by a discussion of
experimental results in Section 4.7. Finally, section 4éspnts a body of research that has used

ideas related to our work.

4.2 Background

4.2.1 Control Theory

Control theory has been successfully applied to many elentchanical systems. Feedback con-
trol has found its application to computing systems as vesldemonstrated by recent research
efforts [4, 11, 10, 18, 25, 34, 33, 42]. The basic idea beheetiback control is to measure the
output of the system which is being controlled and use thar €tine difference between output and
target input) as a guide to achieve a specified goal. Thisigoadmputing environments can be
response time, throughput, resource utilization, etccéthe output of the system is guiding the
control input which in turn affects the output, the approa&cballedfeedback control. Though not
formally employed, the idea of feedback is inherently pnése used in many other techniques em-
ployed in computer science to achieve certain objectivesudeessful implementation of feedback
control requires a good understanding of how the contraltigffects the measured output. Apart
from the control effort, there may be other inputs to the aystvhich are not controllable. These
are generally referred to as disturbances and a robustrdskmuld minimize the effect of these
disturbances. Hence, identifying the disturbances ptésegn system may be vital to the success
of the controller. Depending on the requirements posedgtban be different control objectives.
They can be broadly classified Begulatory Control, Disturbance Rejection, andOptimization. In
this work, we are mainly interested in regulatory contrdherne the idea is to minimize the differ-
ence between the measured output and the target input. & dm@dirol loop is shown in Figure 12
with the controller making the main decisions based on tmeroberror which are fed to the target

system. More information on formal control theory can benibin [19, 35, 42, 18].

40

Disturbance Noise

Input Input
Reference CIcE)rr:t;:I Control \ Measured
nbut Controller Input [T Output
System
Transducer
Transduced
Input

Figure 12: Block diagram of a feedback control system.

4.2.2 System Layout

The basic layout of our target system is shown in Figure 13hikisystem, each application speci-
fies its QoS in terms of maximum tolerable I/O latency at theetdf instantiation, and the proposed
approach partitions the storage cache to satisfy the spegc)foS’s for all applications. The system
model we simulate here is generic and the main idea is to maragenario where multiple applica-
tions share a common resource (in our case it is the storafpe)carhis model is easily extensible
(with minor modifications) for various other system implertaions used in industry or research.
More specifically, it can be looked at as a buffer cache useHifmyx kernel. In Linux, there is

buffering for the block I/O devices that is done by maintagnlists of buffers for each device. The
management of these lists of buffers is what we intend to dioigbody of work. The management
of the buffers using feedback control and the use of cachenpeaince model brings novelty to our
work. This kernel buffer cache is a part of the main memory pleaforms the function of a storage
cache. The default Linux cache management scheme uses I3RE[fhe data replacement policy,

which, as we see later, may not be a good choice when congydenltiple application scenario.

4.2.3 Disk Utilization

We definedisk utilization as the percentage of time disk is busy servicing a requeseniere
is a miss at the storage cache, it leads to a disk access wtikhsnhe disk busy. The ratio
of busy to idle time for a disk can be approximated as a prodtithe number of transfers per

second and the average access time for the disk. Note thatdésicin the storage system may

41

have a different data access time specification (disks cem tlifferent RPMs). Also, depending

on the disk utilization level, this average access lateradyescan change for the disk. A higher

disk utilization value means the disk is busy for a largercpetage of time which in turn is due

to the higher number of I/O requests sent to the disk per unitnee. One may wish to have

a high disk utilization value to achieve better resourcesotidation. Note however that, higher

utilization may affect the performance of the applicationan undesirable manner. As a result,

typically, storage administrators determine an acceetdisk utilization level, which in turn affects

the average latency of a disk access.

4.2.4 Our Goal

In the presence of multiple applications sharing the samegé cache, our aim is to achieve a

specified data access latency per application and also i tkeedisk utilization levels within a

certain range. Our cache partitioning scheme considese tfne constraints, one from user’s point

of view, while the other as seen by the storage system admaittis The QoS used by our control

strategy will be an overall (or aggregate, used interchalpigein this work) hit rate target which

will factor in these two constraints. We discuss more ontitasisslation (from latency specification

Compute
Nodes

Server
Node

AN /
Shared Storage Cache

50 5..8

Figure 13: System layout.

4.3 Empirical Motivation

| Case [Number of requestd Hit rate [Cache usagd Class |
2

| N|o| g B w| |-
I|I(r|r|T|Tirr
I r|IT|r|T|r|{r

I I T

RN RNk N -

Figure 14: Table of all possible combinations for
different cache performance metrics.

As pointed out earlier in Section 4.1, when there are maltggbplications exercising the same

storage cache concurrently, there is a need to partitidrcieine dynamically. The part that makes

42

this partitioning interesting and nontrivial can be expéad better by looking at curves in Figure 15.
The curves in this figure plot the characteristics of a berakriTPCC) captured over its execution
on a fixed size storage cache. The x-axis denotes the exedirtie units. The curve in Figure
15(b) indicates that the number of accesses (I/O requestsaed by the application) made during
each time quanta are different. Similarly, the plot in Fegd5(a) indicates that storage cache hit
rate is not constant either. Although not presented herst nfahe applications we experimented
with exhibit a similar behavior. This suggests that the &aibns’ I/0 behavior changes over time.
The most common requirement for any user of the applicaBaitata access latency. The average
data access latency of an I/O request is dependent on cdchéehand the disk access time. The hit
rate is affected by the cache space provided to the applicétisually increases with more cache
space), whereas disk access time is dependent on the disétiath level (disk access time grows
exponentially with increase in disk utilization level). Asesult, in order to keep data access latency
under tolerable limits, we need to control either or bothhefse parameters.

A request generated by an application reaches a disk only teze is a miss at the storage
cache. This implies that the disk utilization can be regadty controlling the number of storage
cache misses. The easiest way to keep this check is to @loaahe space for an application
carefully. At first glance, one might think of giving more &&cspace to applications during periods
when number of requests is more. There are phases in anappi& execution where the number
of requests are more, but the hit rate is high and cache ussigg low, indicating low cache
requirement. Let us try to look at all such possible comlxamest A list of all these combinations is
given in Figure 14.

In order to refine the cases of interest, let us try to undedstahat application behavior to
expect from a particular response. Note that when the cashgeuis low (L), it means there was
some free cache available. Similarly, when the cache usalgigh (H), it indicates that the whole
available cache is being used. Using the above mentioneteimes, we can identify the following

scenarios and make the following conclusions:

e Case 1. Cache usage and hit rate both are L, indicating thiatgdthe period of interest,
the values obtained are the maximum hit rates achievablghenthaximum storage cache

requirement of the application. It will not benefit to progichore cache during this period.

43

100 i : . ! 25

N
T

80

-
)]
3

60

40}

Number of Accesses
-

Instantaneous Hit Rate %

20+ 1 0.5-
0) ; . . .
0 5 10 15 20 25 0 5 10 15 20 25
Time Time

(@) (b)

Figure 15: A look at characteristics of the TPCC benchmarindLits execution on a 64MB storage
cache. (a) Hit rate computed per sample interval, and (3l T requests generated per sample
interval

e Case 2: When the cache usage is high and the hit rate is lapdssible to improve the hit

rate if the application is given more cache.

e Case 3: The high hit rate might be due to the good cache Ip@alithe cache usage is low. It

indicates that the maximum hit rate is already achieved thithamount of cache used.

e Case 4: This is similar to case 3 but the cache usage is H iitdjca possibility for improve-

ment in hit rate by providing more cache.

e Case 5: Itis intuitive to see that even though the numbeiféquests is H, the cache usage
and hit rate are L, indicating that the application will ngeunore cache if provided; hence,

no improvement in hit rate with more cache. This is similacase 1.

e Case 6: A low hit rate with a high cache usage hints that thdicapipon would have used
more cache if available. Hence, there is a possibility ofrmapment in hit rate with more

cache considering that the number of requests is H.

e Case 7: This is again a case where the hit rate is high due todaiche locality, indicated
by low cache usage. We infer that the maximum hit rate is direhieved and maximum

cache requirement is low.

44

e Case 8: Possibility of improvement with more cache evenghdbe hit rate is high. This is

because the cache usage and the number of requests are also H.

Going through the above interpretations, one can group@kbove cases into two main classes:
one in which there is a possibility of hit rate improvemenasgs 1), the other where the maximum
hit rate is already achieved (class 2). Classl cases aréeoést to us as they provide opportunity
of improvement. From amongst the four cases in Classl,dases 2, 4, 6, and 8; only cases
2 and 6 should be of concern because of the low hit rates aghieBoth these cases indicate a
possibility of improvement if given more storage cache sp#cit the part that distinguishes them
is the number of requests. When we consider case 6 as conmparade 2 from a disk utilization
control perspective, it is easy to see that case 6 is of greatecern. This is mainly due to the
higher number of I/O requests generated during an inteB&n with a low cache miss rate, the
number of requests reaching the disk may be higher as cothparase 2 or some other cases.
If the number of I/O requests reaching the disk is not regdlathis might lead to overloading the
disk, thereby compromising the desired data access latency

The above analysis illustrates that it is non-trivial to malache allocation decisions for an
application during the course of execution without havindfisient information at hand. This
problem of storage cache allocation becomes even moregtileg and complicated when multiple
applications share a cache which has to be partitioned &r ¢ochchieve a certain goal. The biggest
problems that arise are due to unpredictability in apgbeabehavior and conflicting allocation
decisions.

We must better understand the equation for latency of andéDest in order to get a better idea

on what to control and how to control:
Latency = H * Thiyy + (1 — H) * Thpiss-

In this formulation, H is the hit ratio and gives an idea about the number of accéisaesan
be serviced by the storage cache from the total number of d6@sses generated by the applica-
tion. T}, is usually quite small and constant when compared,tg s, which is the time taken to
service a request reaching the disk. When considering tjuat®n, it is tempting to assume that

Thiss IS @ constant quantity, which does not change during theutiec As a result, for meeting

45

certain latency targets, this simple assumption leads itraiting the hit rate alone. However, in
reality, T,,.;ss iS affected by the disk utilization level and may changemythe course of execution
depending on the load at the disk. Rearranging the termsedditbve equation and assuming that
Thie IS much smaller thaT,,,;ss, one can find the hit rate percentage required to meet a jatenc
target (assumin@,;ss is known for various disk utilization levels for all type ofs#ts in the storage

system) by using the following equation:
H% = (1 — Latency/Tpiss) * 100.

We use the above equation for factoring the latency and diikation constraints in to an

overall hit rate target specification.

4.4 Our Approach

As discussed in Section 4.3, keeping in mind the equatioratehty, our system uses two input
constraints to guide the storage cache partitioning sch8oih these inputs are necessary to make
an appropriate hit rate requirement estimation which im tigrused to guide the controller for

partitioning the storage cache wisely.

4.4.1 Specification of the QoS

When an application is being run on a shared resource systemiser is mainly concerned about
the application meeting the performance goals. One of th& ocmmmon methods to specify QoS
for an application is in terms of data access latency. Thyjsirement for latency can be translated to
a hit rate requirement for the 1/0 requests. The equatiounired, for such a translation is presented
earlier in Section 4.3.

In this work, we are not only concerned with meeting the gse€ed for latency of access but
we also try to maintain a certain disk utilization level. Asted earlier, depending on the disk
utilization levels in the storage system, the power andgperdnce achieved may vary. A storage

administrator may want to maintain high resource utilatio meet some power budget or it could

Cache allocation .
Cache allocation

suggestions ; L
99 for it application
b, m,
Target ‘
InEUt i .) R J)
. Main b, Redistributor b " m_
Controller (| | |
tn bn* mn
B Measured Output (Hit Rate) i

Figure 16: Control architecture for the target storageesyst

be for resource consolidation purpodeBrom the latency equation presented earlier, one can see
that as the disk access latency increases (as a result ehgea disk utilization level), so does the
hit rate required to achieve the desired latency of accdssrefore, we see that there are two factors
that affect data access latency: the hit rate and the disdlsadatency. The inputs for our scheme
are the latency targets for each application which are gealiby the user and a time of access
for each disk in the storage system (provided by the systemingstrator). We assume that system
administrator has enough knowledge about disk access tintes various levels of disk utilization.

As a result, if she/he wants to keep the utilization underreatgerange, the corresponding time of

access for the disk is used in the latency equation.

4.4.2 Control Aspect

The control architecture in Figure 16 is inspired from poess work on storage cache partitioning

[27]. There are two main components to our design:

1. Main Controller: This is the controller (left portion ofdtire 16) which makes suggestions
for storage cache space allocation. Each application basnih main controller. The job

of a controller in general is to help track the reference inpuas accurately as possible.

INote that, if the overall storage system utilization is Ithee system administrator may choose to power off/discard
certain disks.

47

The reference input in our scenario is a hit rate target. Rt this target is a translation
taking into consideration the original two input consttajmamely, data access latency and
disk utilization level. The controller outputs a possibéelse allocatior; for the application

of concern, which if provided, may help the application iattdne required hit rate target.
The response of the system to the current allocation is medsat the end of each time
interval and is compared with the reference input. A goodrodier is one that minimizes
this difference, more commonly referred to aséhr signal in control theory. In this work,

we implemented and tested two different types of contreller

e PID Controller: This is a very popular controller used in maontrol applications. It has
three components which provide proportional, integral dedvative control. Each has its
own effect on the system response and error control. For gheara large value of propor-
tional gain K,,, will make the system response quicker but might hurt théesysstability.
Similarly, the derivative gairi(, is used to reduce the magnitude of the overshoot but it also
magnifies the noise signal. The governing equation for tinid &f controller can be expressed

as:
b(t) =b(t — 1) + Kpe(t) + K; ZZ:l e(u) + Kqe(t) —e(t — 1)).

The output of the controller is a storage cache allocatiggsstion denoted by(¢). Thus,
e(t) represents the error term which is computed as the differefithe measured hit rate
m and the target hit ratg. K,, K, and K; are the controller gains which have a constant
value. Estimation of these gain values is crucial to the sssof the PID controller. For our
experiments, we chose the values which gave the best réaritsamongst a set of tested
values. Note that since this is a per application controllee set of gain values can be

different for each, making the design process quite tedious

o History Based Controller: This is the controller that iseteded in this paper. The governing

control equation can be stated as:
b(t) =b(t — 1) + db(t),

whereob(t) is a correction factor computed as a differenceif) (the predicted cache size

using the cache performance model), and— 1) (the moving average of the previous values

48

of b) determined using the same control law. The moving averagebe computed over the

previous intervals of time using the following equation:

m(t — 1) = Bm(t —2) + (1 — B)b(t — 1).

The older values of average cache sizg Gre exponentially attenuated with a factormf
where0 < § < 1. A higher value of3 will increase the window size over whiéhs averaged.
The motivation for using a history based controller is to mmake of the knowledge about the
past cache behavior operating under the current worklaztedd of developing a complex
control system with components for model prediction of thetam, we employ a machine
learning based technique that uses curve fitting. Note #sagpposed to the PID control,
there is no need to determine the suitable gain values imadvar making the control loop

successful. More details on the working of this controller given in Section 4.5.

. Redistributor: The job of this component is to handle tenarios where the amount of cache
available is either less than the amount demanded by théngiapplications or is more than
what is heeded to meet their QoS demands (this demand ishefsall cache suggestions
made by each of the main controller). In both these cases the need to redistribute the
available storage cache space. This is achieved by enfosome high level policies. For the
case where the amount of the storage cache in the systens ih#esthe demanded cache,
we take away a certain amount of cache from each cache sigygedthe amount taken
away is decided by the incremental loss in hit rate if the sameunt is taken away from all
the applications. This is decided by looking at the slopehefhit rate curves in the cache
performance model. Intuitively, we would like to take awagnscache from an application
which is going to have the least depreciation in its hit r@ta.the other hand, when we are left
with some unallocated cache space and none of the apptisatiere flagged, we distribute
this space in proportion to the hit rate benefits we mighte@hupon giving that extra cache
to the application. The intuition is to maximize the ovetdtl rate achieved by the system.
More about the policy employed and its usage in our contrsiesy is given later in Section

4.5,

49

It is hard to control the number of disk accesses for each itimeeval. The reason is that, one
cannot accurately predict the number of requests that dang go be generated for the next time
interval. On the other hand, controlling the aggregatedié or the instantaneous hit rate are both
achievable targets. Aggregate hit rate here means the ativeuhit rate achieved from the start of
the applications execution up to the current instant. Lengnthit rate target is easier to achieve and
will also cause less fluctuations in the cache allocatioggested during the execution period. Long
term hit rate target may not be a good idea for applicatiorts high degree of fluctuations in their
I/O access patterns. On the other hand, instantaneougéisravaluated for each control interval
separately by finding the ratio of the number of hits to nundfeequests within that interval. This
solves the problem of keeping the disk utilization withie ttequired range for each time interval.
This is also a better approach in achieving the hit rate tdagepplications with highly fluctuating
I/0O access patterns, though it may lead to a similarly flugtgacache allocation pattern which is
not very desirable. The advantage with the scheme beingthiedy of access target is more closely
tracked as the allocation decisions are based on applich8bavior in the last interval only. As
mentioned earlier, our goal will be to achieve an aggregatate target per application. Note that
in our defended scheme we will make cache size predictionsviery interval based on a cache
performance model which accounts for instantaneous leitoteinges. Though the cache prediction
is made based in the instantaneous hit rate, the control $&g by the main controller minimizes
the error in overall hit rate.

—iozone-85 - 1u-70

100

90 -
- 80
‘*-lozone =y mp tpcc =%tpch -&-mxm L
i

100 : 70 /

o % S % % 60 / /
50

90 4 " J
80 4]
70 4 /.——/_. ;]
60 QoS

Hit Rate %

40

// / 204 Predicted Gache
50 1 ;

Size
40 20

/\
30 - 10 1 E}/E*/ / \ ‘
201 / \
107 1 2 Pie 128 102 P2
Storage Cachesize

Hit Rate %

1 32 64 128 192 256 384 512
Cache size (Mb)

Figure 18: An example snapshot of how the cache
Figure 17: Aggregate hit rate with increasing performance curve is used and updated in our de-
cache size. fended scheme.

50

4.4.3 Cache Performance Model and the Learning Aspect

Predict cachesize
Using HR curve

|

Cachesize suggested
by control law

}

Is
Cache suggestion
feasible?

Best Static Partition (bsp)
No

Final cache allocation
< Cache suggested

Yes

N
a
o

Final cache allocation
>= cache suggested

n

=]

=]
L

-

@

=)
L

Update HR curve with
final cache allocation

-
o
t=]

Cachesize in MB

a
o

18 1 .

iozone-85 lu-70 mp-98 tpcc-85 tpch-94 mxm-97
Applications

o

Figure 19: Minimum amount of cache needed byFigure 20: High level view of the dynamic parti-
each application to meet the QoS. The values fotioning algorithm per application. Note that this
mp-98 and tpch-94 are 1IMB and 1MB, respec-represents only gingle iteration within the feed-
tively. back loop.

We employ a storage cache performance model for each ajticahich helps our cache
controller better partition the cache amongst the variq@ieations. A simplistic cache model
shown in Figure 17 tries to capture the effect of varying thehe size on the hit rate achieved
at the storage cache. Note that this model is developed ynipat the entire execution of an
application under different cache sizes. We target to aehag aggregate hit rate during the entire
execution of the application, we develop and update a sirélehe model for our defended scheme.
The updating will help make the predictions more accuratek@eping track of the changes in
application behavior) for the cache size required to aehiée required hit rate. As an example
illustration, consider Figure 18. Here, we consider twoliaafions with different QoS targets.
The targets are mentioned after the applications name itegfemnd bar. Note that, this curve will
be different from the one shown in Figure 17 as the prior isalgw the hit rate achieved after
the entire execution of a single application on a particekehe size and the latter (Figure 18)

is updated every quanta of the control interval when mutggbplications share the same storage

51

cache. Note that there is a separate curve for every applicaharing the cache. Also, a value
on the y-axis corresponding to a particular x-axis value dagnge with time. In Figure 18, we
look at the minimum cache space required to meet the QoS dinfaneach application, marked
as P, and P, in the figure. This predicted cache size is used in the gowgraguation of the
main controller (for our defended scheme) to suggest a csigke The updating of this curve is
done when the final allocation is made and the hit rate actiieith that allocation is measured.
This continuous updating during runtime will ensure that ¢hche performance curve captures the
dynamic variations in application behavior and one is ablgdrtition the storage cache wisely
amongst the applications.

The cache performance model developed is used by the twoarants in our control archi-
tecture, namely, the main controller and the redistribuéa mentioned earlier, these components,
when generating their outputs, can base their decisione $igher level policies. The pol-
icy used by both the components can be targeted towards wngrthe hit rate of the system as
a whole. Let us consider the case where we are left with soeee (finused) cache space after
meeting the QoS demands of all applications. In this caskstrdutor comes into the picture by
dividing this free cache space amongst the running appitatsuch that the overall hit rate (of the
storage system) improves to the maximum possible exterg.c@ibhe performance curves for the
applications give an insight as to which application wilhbét most in terms of hit rate if a fixed
amount of cache was given to it. This can be interpreted biithgpoat the slopes of various curves
and then allocating the free cache in proportion to the si@bees attained form their respective
cache performance models. An application with a higheresiogicates more incremental gain.
Similarly, the redistributor can take away the extra cacbhmfthe suggestion given by the individ-
ual main controllers such that the depreciation in oveiialidte is minimized. In this way, we make
use of the simple and characteristic cache performance Inmé®roduce machine learning into

our design.

4.5 Algorithm

All the pieces and components of our approach have alreagty discussed in the previous section.

Let us now see how these components work together. Our fekdimentrol based storage cache

52

[«2]
o

9000 : ; ‘ ‘ :
8000} . —*—tpce-85 70
®» ‘f\"’k —tpce-75
X —— -
§ 7000 tpcc-65 f 60!
= 2
< 6000 /\/‘ = o —o— tpcc-85
§ 5000 EE ——tpee-75
= I
<_g, 4000 %40* ——tpcc-65
< o
° 3000 - _ - B
& 2000
20
1000
0 L L L L L 10 L L L L L
0 20 40 60 80 100 120 ()} 20 40 60 80 100 120
Time Time
(a) Mix of Three TPCC Instances. (b) Mix of Three TPCC Instances.
4
5x10
100f
—e—iozone-85
% a4t 1 e
8 —— mxm-97 ° 80
e ——Iu-70 o
= S -
S = 60 —e—iozone-85
® I —mxm-97
[4] Q
Sol < ——|u-70
< g a0
2 3
8 4l <
o 20+t
0 ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Time Time
(c) Mix of lozone, Lu, and MXM. (d) Mix of lozone, Lu, and MXM.

Figure 21: Hit rates and cache allocation variations dutlfirggexecution of an application mix with
HB control on a shared storage cache.

partitioning algorithm can be divided into three phasesparation.

e Phase 1. We call this phase the prediction phase. As distessker, we maintain a storage
cache hit rate curve for each application that will be usethéde a coarse predictions about the
size of storage cache that should be made available for ffigaiion in the next control interval.
We make this prediction for the cache size in a conservatigbion by looking at the minimum
cache that can possibly achieve the demanded QoS (see ERjurBased on the curves in Figure
17, the minimum cache size required by each of the applicasiprovided in Figure 19. Note that

this information can only be available if one has profilede¢h&re execution of an application. One

2As stated earlier, this curve maintains the (cache spateathi) points observed so far, for the application during
execution.

53

©
=3

120
[Stpce-85 Mtpce-75 Otpee-65) [@mxm-97 Wiozone-85 01u-70]

100 -
80
2
60 1
40 -
20+
T T 0+
bsp

~
=}
I

Hit Rate %
N w - o [~}
o o o o o
Hit Rate %

o

o
|

np eq pid hb bsp
Partitioning Scheme

(a) 64MB Cache.

Partitioning Scheme

(b) 256MB Cache.

np pid hb
120

120

\Dtpch-94 Wtpcc-85 Clmplayer-98 Dlu-70\ \D iozone-85 M |u-70 Cimplayer-98 Otpcc-85 Mmxm-97

100 -

80 -
60 -
40
20 -
o/ M [:

np eq pid hb bsp np eq pid hb bsp

100 -

80 -

60 -

Hit Rate %
Hit Rate %

40 -

20

Partitioning Scheme Partitioning Scheme

(c) 256MB Cache. (d) 384MB Cache.

Figure 22: Aggregate hit rate achieved by individual aggtlans in different workloads (application
mixes) using various cache partitioning schemes.

of the major assumptions we make here is that we start off thitbe initial points in the cache
performance curves. These points correspond to cacheesjpasto 1MB, total storage cache size
(C), and C/2.

e Phase 2: This phase is where the control laws come into teeteffhe predicted storage cache
size is used as a suggestion by the main controller that insiwggests another cache size based on
its control law. The history based control law used by ourmeantroller has already been discussed
earlier. Recall that the decision for allocations suggkbiethese main controllers are independent
of each other. Due to this reason, the cache size suggestiades by all the main controllers cannot
be directly applied to partition the storage cache. Sombeasd decisions may lead to an infeasible
partitioning. Consequently, the redistributor comporientsed to make a final cache allocation
decision which is feasible and efficient. The allocationgasgjed by the redistributor is done so as
to use exactly the amount of total storage cache availall¢hedistribution is such that it improves
the overall hit rate of the system. Infeasibility stems imtvases where the sum of the storage cache

size suggested by the individual controllers is more thatighavailable or is less than that can be

54

used.

In the first scenario, the cache size suggestions are summemfind the extra space that is
being demanded overall from the total storage cache almilalthe system. All the cache sug-
gestions are pruned so as to fit in the available storage cdttieis done by reducing each cache
space size suggestion in the proportion of the slope valudiseir respective cache performance
curves. In this manner all the applications will be hit in ayvga as to minimize the impact on the
overall progress of the system. We choose this policy toigeofairness when there is overload
present in the system. In the second scenario, where wefewattefree cache after providing each
application with the minimum cache space that will satis§y@oS, we allocate each application
more cache space so as to maximize the overall hit rate otdhege cache (when all applications
are considered). This is achieved by allocating a cacheesjgaeach application in proportion to
the benefit it might achieve in terms of improving its hit ratih the same amount of incremental
cache given to it. This decision is made by looking at the edthrate curves we maintain for each
application. The slope of the curve between the points fariimim cache size allocated and the
incremental cache given is used as the comparison metrie tNat we base our pruning decision
by considering slope values assuming the curve is linedramdgion of interest. This assumption
about the linearity has been applied before in [16].

e Phase 3: The final phase is the cache hit rate curve updataggpln this phase, we look at
the hit rate achieved by the cache allocation decision mgdbeoredistributor. If this new cache
allocation resulted in a different hit rate as already pnesethe hit rate curve, we make an update.

One iteration that illustrates the flow of decisions in ountcol approach to partitioning the
cache is given in Figure 20. This iteration repeats in evemtrol interval until the application

execution finishes.

4.6 Experimental Setup

We made use of a cache simulator called Accusim [5] for ouegrEents. Accusim is a trace-
driven, buffer cache simulator originally designed fordstimg cache replacement algorithms. We
modified it to simulate a shared storage cache scenario wiltipte applications sharing it such that

it can be partitioned and the individual hit rate behavian ba studied. It can accurately simulate

55

Table 7: Default QoS targets in terms of aggregate

Table 6: Workloads (application mixes) used for hit rate for individual applications.
experiments.

| Application | QoS |

| Workload | Included Applications | tpc-c 85
MIX2 tpc-c, tpe-c, tpe-c tpc-h 94
MIX3 mxm, iozone, lu mplayer 98
MIX4 tpc-h, lu, mplayer, tpc-c lu 70
MIX5 mxm, lu, mplayer, tpc-c, iozone iozone 85

mxm 97

I/O time under prefetching. We enabled prefetching in all@periments. The layout of our target
system is given earlier in Figure 13. The main controller #rel redistributor are implemented
inside Accusim. The workloads used for our experiments aseribed briefly below:

We selected a few representative applications and mergedtthces to form mixed traces
which mimic traces captured when those individual apgilcet would have run simultaneously on
a system. We used TPC-C and TPC-H benchmarks which are ardimgaction processing (OLTP)
applications. An open source implementation of TPC-C knawi PCC-UVa [32] was used. Both
these applications generate a high volume of I/O read artg wagquests. These applications have
mostly low data reuse, and exhibit sequential data accessmpaWhile TPC-H was run on a data
set of size 1GB, TPC-C ran on a data set of size 137MB. We akth Mplayer which is a software
used in Linux to play audio/video files. This application weed to provide us a streaming kind
of 1/0 behavior. Mplayer has very good spatial reuse. Ouegrpental suite also includes an out-
of-core implementation of LU decomposition from ScaLAPAQIR]. Most of the applications we
tested ran over data sets of sizes greater than 100MB. 1d3ne a filesystem benchmark tool
which generates and measures a variety of filesystem opesateffectively generating a lot I/O
requests. We ran lozone in the automatic mode on a Linux meckinally, we also implemented
an application called MXM, which is again an out-of-core mamultiplication application. The
composition of various mix traces we used for our experimeame given in Table 6. All these
mix traces were used to evaluate the various storage cactifoping schemes. The intuition
behind the choice of applications when forming a certain mas to create mixes with diverse

set of 1/0 requirements, such that they could exercise thagé cache partitioning scheme well.

56

The numerical value suffixed to the application name denibiedit rate percentage required by
the application (translated QoS). A table showing the Hit targets we used for the individual
applications is given in Table 7. Again, these values wemseh keeping in mind the maximum

achievable hit rates by these individual applications. 3¢teemes we evaluated in this work are:

e No-Partition (np): This is the default scheme used in thessurUnix systems. In fact, it does
not perform any kind of partitioning. Instead, the defaulheme (LRU [53]) works on the

principle of supply as per demand.

e Equal-Partition (eq): This is a naive static partitionirepeme in which the total storage cache

is equally shared by the simultaneously running applioatio

e PID (pid): Thisis the base control scheme, which partitittrescache dynamically at runtime.
PID is a very general and useful control law which appliesl ¥zemost common scenarios.
The aim of the controller will be to achieve the QoS objedies specified by individual

applications.

e History-based (hb): The main idea and working of this cdil@rdias been presented in the

earlier sections. This is the storage cache partitionirgjesiy defended in this work.

e Best-static partition (bsp): This scheme provides us sorsgglit into what an ideal static
cache allocation could do in terms of achieving the QoS targ&his is not a dynamic or
runtime scheme. Applications are given the partitions iloglat their storage cache perfor-
mance behavior assuming we have prior knowledge aboutékegution. This scheme can
be thought of as an oracle predictor which tells us the mininsache an application would
need to achieve a certain QoS target. such predictions &aee @i Figure 19, showing the
minimum cache required in MB by each application to meet s @arget. This prediction
will only work when the application requirements do not fluate over time. The results from
this scheme would help us compare our dynamic schemes fiorstieecess in achieving the

required QosS.

57

4.7 Discussion of Experimental Results

We conducted experiments to test the feasibility and effeyieof our storage cache partitioning
scheme. The various mixes we used are given in Table 6. Adgobout earlier, our main goal
in this work is to achieve an overall hit rate target that mett demanded data access latency
and also keeps the disk utilization levels under the rangeard by the system administrator.
Figure 22 summarizes the main results where different cpehttioning schemes are compared.
We varied the size of the total available cache for diffenenites to pressurize the I/O system
and hence create a more interesting scenario to test vasahesnes. Figure 22(a) shows results
when a mix with three instances of the same application wilerént QoS was tested. It can
be seen that no-partition and equal-partition cannot miffeate amongst the QoS requirements.
History based control provides differentiation amongst different instances and makes the best
effort in achieving the QoS targets. We also show how ouwohysbased control scheme is able
to quickly track the QoS requirement in Figure 21(b). FigRi€a) shows how the corresponding
cache allocation decisions are made for achieving the QaS.evident that there are not many
fluctuations in the cache allocations and it stabilizes adca certain size. Similarly, Figures 21(c)
and (d), show the hit rate variations and cache allocatianisabms for mix3. The corresponding
overall hit rate graph is shown in Figure 22(b). It can be gbanhnone of the schemes were able
to achieve the QoS posed by LU. Specifically, the two statiestes, i.e., no-partition and equal-
partition perform very poorly. The control based schemegtibe best performance. Note that
in scenarios where the QoS posed are such that they areibbdets achieve from the available
storage cache, our defended scheme tries to make a best Efiobest static partitioning, even if
we have prior knowledge about its cache performance madelight not be feasible to allocate
the predicted size due to limited cache space. Relativédypiy-based control outperforms all
other adaptive schemes. Even the best-static-partitidnichnis based on the prior knowledge of
applications execution performs poorly as compared to eferdled scheme. Figures 22(c) and
(d) validate the usage of our scheme even when the apphcatiges are very diverse. It confirms
the applicability of the scheme even if the mix containsdangmber of applications with diverse
I/0 requirements. Our history-based control outperforthsther schemes. Not only it is able to

achieve the QoS demanded, but it also improves the ovetatitieiwhenever possible.

58

We also performed sensitivity experiments to test our hydbased scheme when various related
parameters used in the scheme change. We varied the totjetoache size available, the cache
block size that is the minimum unit of allocation, the sizecoftrol interval time, and the QoS
requirements posed to experiment on mix4. Results are pitted here due to space constraints.
In summary, the results indicated that the history-baskdrse is robust with regards to changes in

these parameters.

4.8 Discussion of Related Work

Control theory has been vastly used to help make resou@eatitbn decisions. One of such works
[30], present an operating system where a global resoulmeatdr using control theory partitions
various shared resources in order to achieve the QoS denadirdistributed multimedia appli-
cations. Multimedia streams posses temporal and infoomaltiproperty that help in design and
implementation of the controller. In [27], hit ratio is bgirrontrolled. The results plot hit ratio
vs the number of accesses as the execution progresses.udtiththe number of accesses show
progress of the application but it does not indicate theieaipbn behavior with respect to time. It
hides the fact that the number of accesses can be differeatifh time interval depending on the
application behavior. [34] introduces control theory foamaging web-proxy cache shared by the
web applications which may belong to different classes até may pose different performance
goals. [35, 71, 28, 40] also present adaptive techniqueshi@ee some form of performance dif-
ferentiation applicable to different scenarios. Cachdament policies [70, 68] try to make the
best selection of the candidates for eviction when a newltgado be brought in to the cache. Such
an approach may tend to improve the overall hit rate from tiatf view of the cache, but it is
hard to make performance differentiation amongst the eatidins sharing the cache. Scheduling
of the 1/0O requests is another way of improving the I/O perfance but it has the same limitation
of not being able to differentiate amongst applications Qafilirements [65, 51, 50, 52]. Appli-
cations can provide hints [66] which can be used to partiti@ cache with a similar objective
of maximizing the overall hit rate. There have been numemibsr techniques trying to improve
the 1/O performance wither by partitioning disk bandwidttsely [67, 66] or prefetching data in a

smarter way [58]. Partitioning of cache can be done for parémce insulation and efficiency [60]

59

or to minimize power [48]. Minimizing the miss-rate of the mery in a multiprocessor by proper
scheduling and partitioning was presented in [56]. Theyenade of some hardware counters to
accurately estimate the isolated miss-rates of each wobtsst of these prior works have focussed
on maximizing the overall hit rate of the system by cacheiti@ntng. Our idea is to make a best
effort in meeting the QoS requirements of all the applicagicunning on the system by partitioning
the storage cache space using a control theoretic apprivkghbe the most closely related work to

ours is [27].

Chapter 5

Conclusions

Overall we presented three bodies of work keeping in mindgr@md performance requirements in
different scenarios. We started with a novel Markov modekedadisk idleness prediction scheme
that can be used for reducing disk power consumption wheshwih a three-speed disk. The work
explained in detail why the defended prediction mechanisms etter than others and why it saves
disk power. To evaluate the effectiveness of our approaehimplemented it using DiskSim and
performed experiments with both synthetic traces and ngplication traces. This was followed
by a novel algorithm for managing the disks under your s®ragstem. One of the critical prob-
lems in managing a complex storage system is the allocafiewailable disks across competing
applications. The main characteristic that makes thislprokchallenging is the fact that different
applications demand different amount of disk space and @anate different disk latencies. As
a result, allocating disks for a disk pool that contains ipldtheterogeneous disks is not trivial.
Providing performance guarantees considering additicoastraints such as power and reliability
makes the problem even harder. Finally, the storage cachaemtized as an important resource
for controlling the 1/0 performance of applications usitgtt cache. Through extensive experi-
ments using a variety of real application traces, we verifiedapplicability of feedback control for
the storage cache partitioning and the utility of our cackkgomance model to the success of the
approach. As future work, it would be interesting to invgsté dynamic migration of processes
running simultaneously on a compute node, where the nunilsemapute nodes is more than one.

Observing the current trends where multiple cache hiersoéxist in the storage system, a wiser

60

choice of grouping the applications sharing a cache shaeljglimprove performance.

61

Bibliography

[1] http://en. w ki pedi a. org/ wi ki / EMC I nvi st a.

[2] http://ww. dat acore. com product s/ prod_sannel ody_govi rtual . asp.

[3] http://ww.iozone.org/.

[4] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performancmamntees for web server end-

systems: A control-theoretical approadEEE Transactions on Parallel and Distributed Sys-
tems, 13, 2002.

[5] A. R. Butt, C. Gniady, and Y. C. Hu. The performance impaickernel prefetching on buffer
cache replacement algorithm&EE Trans. Comput., 56(7), 2007.

[6] E. Carrera, E. Pinheiro, and R. Bianchini. ConservingkJEnergy in Network Servers. In
Proceedings of the International Conference on Supercomputing, pages 8697, 2003.

[7] E. V. Carrera, E. Pinheiro, and R. Bianchini. Conservitigk energy in network servers. In
ICS’03: Proceedings of the 17th Annual International Conference on Supercomputing, San
Francisco, CA, USA, 2003.

[8] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, Rn&. Doyle. Managing en-
ergy and server resources in hosting centersSO8P '01: Proceedings of the 18th ACM
Symposium on Operating Systems Principles, 2001.

[9] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Begbn. RAID: High-
Performance, Reliable Secondary Stora§y@M Comput. Surv., 26(2):145-185, 1994.

[10] Y. Diao, N. G, J. L. Hellerstein, S. Parekh, and D. M. Titlp. Using MIMO feedback con-
trol to enforce policies for interrelated metrics with dpation to the apache web server. In
Proceedings of the Network Operations and Management Symposium 2002, 2002.

[11] Y. Diao, J. L. Hellerstein, and S. Parekh. A businesserded approach to the design of feed-
back loops for performance management.

[12] J. Dongarra and E. F. D'’Azevedo. The design and impleaiem of the parallel out-of-core
ScalLAPACK LU, QR, and cholesky factorization routines. Ar@cal Report UT-CS-97-347,
1997.

[13] F. Douglis, P. Krishnan, and B. N. Bershad. Adaptivekdipin-down policies for mobile
computers. INMLICS *95: Proceedings of the 2nd Symposium on Mobile and Location-
Independent Computing, 1995.

[14] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the powungry disk. INWTEC' 94: Pro-
ceedings of the USENIX Winter 1994 Technical Conference on USENIX Winter 1994 Technical
Conference, San Francisco, California, 1994.

62

63

[15] G. Ganger, B. Worthington, and Y. Patt. The DiskSim dation Environment Version 3.0
Reference Manuaht t p: // ww. pdl . crmu. edu/ Di skSi m .

[16] P. Goyal, D. Jadav, D. S. Modha, and R. Tewari. Cached@us for storage system caches.
In Eleventh International Workshop on Quality of Service (IWQoS 03), Monterey, CA, 2003.

[17] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, anderlnke. Drpm: dynamic speed
control for power management in server class disksISIPA '03: Proceedings of the 30th
Annual International Symposium on Computer Architecture, San Diego, California, 2003.

[18] J. L. Hellerstein. Challenges in control engineerirfgcomputing systems. Imerican
Control Conference, 2004.

[19] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilburyzeedback control of computing
systems, 2006.

[20] D. P. Helmbold, D. D. E. Long, T. L. Sconyers, and B. Shdrr Adaptive disk spindown for
mobile computersMob. Netw. Appl., 5(4), 2000.

[21] IBM. Ultrastar 36z15 hard disk drive. http://ww. hgst.conf hdd/ ul tra/
ul 36z15. ht m 2003.

[22] M. 1. Inc. Power, heat, and sledgehamméhite Paper, 2002.

[23] Intel. Addressing Power and Thermal Challenges in th&benterht t p: / / downl oad.

i ntel.com desi gn/ servers/technol ogi es/t hermnal . pdf .

[24] Intel. Increasing Data Center Density While Driving \bo Power and Cooling Costs.
http://ww. intel.conl busi ness/bss/infrastructure/enterprisel/
power _t hermal . pdf.

[25] R. Joseph, D. Brooks, and . M. Martonosi. Control teghes to eliminate voltage emergen-
cies in high performance processors Nimth International Symposium on High Performance
Computer Architecture, 2003.

[26] M. Kandemir, S. W. Son, and M. Karakoy. Improving diskise for reducing power con-
sumption. InISLPED ’07: Proceedings of the 2007 International Symposium on Low Power
Electronics and Design, Portland, OR, USA, 2007.

[27] B.-J. K. Kang-Won, K. won Lee, K. Amiri, and S. Calo. Sahle service differentiation in a
shared storage cache. I@GDCS 2003.

[28] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: Periance differentiation for storage
systems using adaptive contrdkans. Sorage, 1(4), 2005.

[29] G. Latouche and V. Ramaswanhntroduction to Matrix Analytic Methods in Sochastic Mod-
eling. PH Distributions, 1999.

[30] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,Evers, R. Fairbairns, and E. Hy-
den. The design and implementation of an operating systemmgoort distributed multimedia
applications.|EEE Journal on Selected Areasin Communications, 14(7), 1996.

[31] X. Li, Z. Li, Y. Zhou, and S. Adve. Performance directedeegy management for main
memory and disksTrans. Sorage, 1(3), 2005.

[32] D. R. Llanos. Tpcc-uva: an open-source tpc-c implemtgon for global performance mea-
surement of computer system8GMOD Rec., 35(4), 2006.

[33] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Feedbackrobreal-time scheduling: Frame-
work, modeling, and algorithms, 2001.

[34] Y. Lu, T. F. Abdelzaher, C. Lu, and G. Tao. An adaptivettoihframework for QoS quarantees
and its application to differentiated caching service 20

64

[35] Y. Lu, A. Saxena, and T. F. Abdelzaher. Differentiategtlting services; a control-theoretical
approach. IrR1st International Conference on Distributed Computing Systems, 2001.

[36] Y.-H. Lu, E.-Y. Chung, T. Simunic, L. Benini, and G. D. Btieli. Quantitative Comparison
of Power Management Algorithms. Rroceedings of the Conference on Design, Automation
and test in Europe, pages 20-26, 2000.

[37] C. Mellor. Western Digital launches power-efficientsklidrives. http://wwv.
techwor | d. conf green-it/ news/index. cf nPnewsi d=10711&enmi | .

[38] M. C. Michael and M. J. Quinn. Overlapping computatioc@mmunications and i/o in parallel
sorting. Journal of Parallel and Distributed Computing, 28, 1994.

[39] K. Okada, N. Kojima, and K. Yamashita. A novel drive dtebture of hdd: "multimode hard
disc drive”. InProceedings of the International Conference on Consumer Electronics, 2000.

[40] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Sirigha Merchant, and K. Salem.
Adaptive control of virtualized resources in utility conijmg environments.S GOPS Oper.
Syst. Rev., 41(3), 2007.

[41] A. E. Papathanasiou and M. L. Scott. Energy Efficienf&ohing and Caching. IRroceed-
ings of the USENIX Annual Technical Conference, pages 255—-268, 2004.

[42] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T.r3ag, and J. Bigus. Using control theory
to achieve service level objectives in performance managémReal-Time Syst., 23(1/2),
2002.

[43] C. M. Patrick, S. W. Son, and M. T. Kandemir. Enhancing plerformance of mpi-io applica-
tions by overlapping i/o, computation and communicationPPoPP ' 08: Proceedings of the
13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2008.

[44] D. Patterson and J. Hennesgomputer Organization and Design. Morgan Kauffman, 2005.

[45] E. Pinheiro and R. Bianchini. Energy conservation teghes for disk array-based servers. In
ICS’04: Proceedings of the 18th Annual International Conference on Supercomputing, 2004.

[46] L. R. Rabiner. A Tutorial on Hidden Markov Models and &kd Applications in Speech
Recognition.Proceedings of the IEEE, 77(2):257—-286, 1989.

[47] R. Rao, S. Vrudhula, and M. S. Krishnan. Disk drive egeogtimization for audio-video
applications. INCASES’ 04: Proceedings of the 2004 International Conference on Compilers,
Architecture, and Synthesis for Embedded systems, Washington DC, USA, 2004.

[48] R. Ravindran, M. Chu, and S. Mahlke. Compiler-managedifioned data caches for low
power. INLCTES, 2007.

[49] J. Reumann, A. Mehra, K. G. Shin, and D. Kandlur. Virtsalvices: a new abstraction for
server consolidation. IATEC, 2000.

[50] A.Riska, J. Larkby-Lahet, and E. Riedel. Evaluatingdil-level optimization through the I/O
path. INUSENIX, 2007.

[51] S.R. SeelamTowards dynamic adaptation of 1/0O scheduling in commodity operating systems.
PhD thesis, The University of Texas at El Paso, 2006.

[52] P.J. Shenoy and H. M. Vin. Cello: a disk scheduling framek for next generation operating
systems. Ir8EGMETRICS, 1998.

[53] A.J. Smith. Cache memorieACM Computing Surveys, 14, 1982.

[54] S. W. Son and M. Kandemir. Energy-aware data prefetcfon multi-speed disks. I€F '06:
Proceedings of the 3rd Conference on Computing Frontiers, Ischia, Italy, 2006.

[55] S. W. Son, M. Kandemir, and A. Choudhary. Software-ctied disk power management for

65

scientific applications. IMPDPS’05: Proceedings of the 19th |IEEE International Parallel
and Distributed Processing Symposium (IPDPS 05) - Papers, 2005.

[56] G.E. Suh, S. Devadas, and L. Rudolph. A new memory mangcscheme for memory-aware
scheduling and partitioning. IHPCA, 2002.

[57] UMass Trace Repositomtt p: //traces. cs. umass. edu.

[58] S.P.Vanderwiel and D. J. Lilja. Data prefetch mechausisACM Comput. Surv., 32(2), 2000.

[59] T. Simunié, L. Benini, P. Glynn, and G. D. Micheli. Dynamic pemmanagement of laptop
hard disk. INDATE '00: Proceedings of the Conference on Design, Automation and Test in
Europe, Paris, France, 2000.

[60] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Gangegon: performance insulation
for shared storage servers. RAST, 2007.

[61] Y. Wang and A. Merchant. Proportional-share schedufor distributed storage systems. In
FAST’07: Proceedings of the 5th Conference on USENIX Conference on File and Storage
Technologies, 2007.

[62] C. Weddle, M. Oldham, J. Qian, A.-l. A. Wang, P. Reiharda. Kuenning. PARAID: A
Gear-Shifting Power-Aware RAID. IRroceedings of the USENIX Conference on File and
Sorage Technologies, pages 245-260, 2007.

[63] A.Weissel, B. Beutel, and F. Bellosa. Cooperative B@ovel I/O semantics for energy-aware
applications. INOSDI '02: Proceedings of the 5th Symposium on Operating Systems Design
and Implementation, Boston, Massachusetts, 2002.

[64] P. Wong and R. F. V. der Wijngaart. NAS Parallel BenchksdfO Version 2.4. Technical
Report NAS-03-002, NASA Advanced Supercomputing Divisidemuary 2003.

[65] B. L. Worthington, G. R. Ganger, and Y. N. Patt. Schealylalgorithms for modern disk
drives. SGMETRICS Perform. Eval. Rev., 22(1), 1994.

[66] J. Wu and S. A. Brandt. Storage access support for salftimme applications. IfRTAS, 2004.

[67] J. Wu and S. A. Brandt. The design and implementation QUA: An adaptive quality of
service aware object-based storage devicéM 83T, 2006.

[68] G. Yadgar, M. Factor, and A. Schuster. Karma: KnowHitgplacement for a multilevel cache.
In FAST, 2006.

[69] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnathyrand R. Wang. Modeling hard-
disk power consumption. IRAST '03: Proceedings of the 2nd USENIX Conference on File
and Sorage Technologies, San Francisco, CA, 2003.

[70] Y. Zhou, J. F. Philbin, and K. Li. The multi-queue remacent algorithm for second level
buffer caches. IJSENIX, 2001.

[71] X.Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. SiaigB. McKee, C. Hyser, D. Gmach,
R. Gardner, T. Christian, and L. Cherkasova. 1000 islanttegtated capacity and workload
management for the next generation data centerPrémeedings of the 2008 International
Conference on Autonomic Computing, 2008.

