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Abstract

The quest of building bigger and better computing systems has resulted in tremendous growth in the

size of the storage systems. Not only have they grown in theirsize, they play a significant role in

determining the overall performance of the applications and success of the entire computing system.

While the industry is concerned about reducing the huge costs involved in running/maintaining

these storage systems, the scientific community has been pushing the limit to achieve maximum

performance. Apart from the contrasting demands of saving power vs. maximum performance,

there exist scenarios where a balance of power consumption and performance is expected. In this

body of work, we propose/study software based techniques that will help achieve some or all of the

above requirements.
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Chapter 1

Introduction

In order to meet the increasing demands of present and upcoming data-intensive computer applica-

tions, there has been a major shift in the disk subsystem, which now consists of more disks with

higher storage capacities and higher rotational speeds. These have made the disk subsystem a major

consumer of power, making disk power management an important issue. People have considered

the option of spinning down the disk during periods of idleness or serving the requests at lower

rotational speeds when performance is not an issue. Accurately predicting future disk idle periods

is crucial to such schemes. An important characteristic of many high performance applications is

disk intensiveness. Many scientific simulation codes for example have frequent disk accesses. In

fact, large-scale simulations have become an integral, important, and in many cases, primary ap-

proach to solving complex science and engineering problemsand automating scientific knowledge

discovery. These simulations tend to generate huge amountsof data that must be stored on disks,

mined, analyzed, evaluated, check-pointed (on disks), andsteered, in most cases dynamically dur-

ing the course of execution. Similarly, many data base/mining applications frequently exercise disk

systems of parallel architectures. In a disk storage systemshared by multiple applications, one of

the critical problems is resource (disk) allocation acrossthese applications. The main characteristic

that makes this problem challenging is the fact that different applications demand different amounts

of disk space (capacity) and can tolerate different disk latencies. As a result, allocating disks from a

heterogeneous disk pool to satisfy the needs of all applications using the same storage system is non-

trivial. Existence of additional constraints such as powerand reliability makes this disk allocation

1
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problem even harder. In many other scenarios, applicationsmay demand certain quality of service

(QoS). This may be measured in terms of latency of a single i/orequest or the overall bandwidth.

Ensuring QoS becomes non-trivial in scenarios where multiple applications are contending for the

same resource. As an example, consider two applications sharing main memory of a compute node.

All the above requirements expected from the storage systemmake it an important topic of research.



Chapter 2

Markov Model Based Disk Power

Management for Data Intensive

Workloads

2.1 Introduction

It is well understood that reducing the energy requirementsof portable devices is important to pro-

long battery life. But when it comes to large storage systems, making them bigger and increasingly

powerful has been the priority, in order to attain the demanded availability and performance. Proces-

sors have become extremely powerful, making them more data hungry, and so have the data storage

needs, leading to a tremendous growth in the energy consumption of present data centers [6]. In a

typical data center, storage system contributes to more than 25% of total power consumption [62].

Apart from the energy consumed for disk operations, coolingcosts are also a major concern for this

high-density equipment [23]. In fact, the costs have already become the second largest contributor

to data center total cost of ownership (TCO) [24]. High density racks and blade servers help reduce

total power consumption, but their power density levels exceed the limits of many facilities.

Increasing the number of disks, apart from increasing the total storage space, also helps improve

the performance, as data distributed across the disks can now be accessed simultaneously [9]. The

reason for the rise in energy consumption is the way disks operate. Disks are made to service the

3
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requests at their maximum speeds. Normally, they continue spinning at their maximum rotational

speed even if they arenot servicing any request and hence contribute to the wastage ofenergy.

A direct approach to reducing this energy wastage is to shut down all those components that are

not doing any useful work at the moment. Much research has been done to obtain gains from this

approach. Two important issues arise in this context:

• How accurately can we predict the occurrence of idle times?

• What would be the energy/performance tradeoffs if we decideto shut down (spin down in the

context of disks)?

Recently, techniques that employ multi-speed disks [37] have also proposed and evaluated. With

such techniques, when there is a slack (allowable increase in latency), the disk is rotated at a lower

speed (compared to the maximum speed available), instead ofbeing completely spun down. The

choice of speed is based on the length of the available slack.This approach has been shown to be

more applicable to high-performance scientific and data-intensive workloads where disk idle periods

are typically small but numerous [17, 55]. While the main problem with spinning-down techniques

is that they may not be applicable to short idle times; the problem with multi-speed disks is the large

performance penalty incurred if disk idle and active periods are not predicted accurately. Focusing

on a three-speed disk, in this paper we propose and experimentally evaluate a novel Markov chain

[46] based disk power reduction scheme. Our main contributions can be summarized as follows:

• A Markov model to help disk power management. The rationale behind using a Markov

model is that disk access patterns exhibit a repetitive behavior and can therefore be captured

by using such a model. First, building a Markov model for a given disk system is presented,

followed by the mechanism for making use of this model.

• A three-speed disk model. The need to have such a disk is discussed in detail and its benefits

are assessed.

• A prediction scheme. We introduce a scheme that uses the information from the Markov

model of the disk system to predict future states of the system (in terms of active and idle

periods of disks).
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• A runtime approach. This approach uses the Markov model, thethree-speed disk model, and

the prediction scheme for achieving disk energy savings. The approach decides what needs

to be done and when.

Our experiments with various workloads, which include bothsynthetic traces and traces ex-

tracted from real applications, indicate that the Markov model effectively captures the behavior of

the disk system. The success of our proposed scheme can be attributed to being able to predict the

future states of the system. Since, our approach isproactive, meaning the idle periods are predicted

in advance, the opportunities to save power are rarely missed (on mispredictions) and also are fully

utilized, spinning down to the lowest power mode with littleimpact on performance. The use of the

three-speed disk helps make the most of long idle times by entering the standby mode, additionally

giving the flexibility to save energy even when idle times (spin-down to a lower speed) are short.

2.2 Markov Model for Disk Idleness Prediction

We model the disk state transitions using Markov modeling. AMarkov model for a system can be

completely specified by the total number of statesn and the transition probability matrixP [29].

The number of potential states for aN -disk system is given by2N (heren=2N ). This is because

a disk is either busy (ON, represented by 1) servicing a request, or idle (OFF, represented by 0).

Given the present state and all past states, if the future state of the system depends only on the

present state, the system is said to have theMarkov property. The transition probability matrix is

a square matrix of sizen × n, wheren is the number of states in the system. Values contained

in the matrix are probabilities, wherePij (located inith row andjth column) is the probability of

transitioning from statei to statej.

In the context of disk power minimization, one can build a transition probability matrix by

sampling the state of the disk system at regular intervals (states representing disk being accessed or

not accessed). We sample all the disks at runtime, noting whether the disk was accessed during the

last sampling period. If it was, then the bit is set for the corresponding disk; otherwise it is reset.

Even if a disk access starts toward the end of the sampling period (thus leaving the system in a

state of transition at the sampling point), we conservatively assume that the disk wasON during the
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whole sampling period. However, this assumption will not bemade while calculating the energy

for the base case. We represent the state of the system as abit vector. For an eight-disk system, it

will be an eight-bit vector represented asD1D2D3D4D5D6D7D8 (Di stands for theith disk in the

disk subsystem) and an example state would be 11001111, which indicates that except disksD3 and

D4, all others were accessed. The transition probability matrix is built and updated during runtime

with the help of these samples. There is awarm-up period (explained in Section 4.5), during which

the workload characteristics are monitored to help mature the matrix, making it suitable for making

predictions on future states (ON/OFF) of disks in the system. The probability matrix is updated

at regular intervals by including the most recent set of samples. Because of this regular update

on the probability matrix, our scheme is able to keep the up-to-date state of changing or mixed

workloads. Note that both sampling frequency for the disk subsystem and the update frequency for

the probability matrix have to be chosen carefully. We laterstudy in Section 4.5 how crucial is the

value of the sampling period.

0.1 0.00.2 0.20.00.0.45.05

000 001 010 011 100 101 110 111D1D2D3

ORing scheme, next state for

D1  = OR(0,1,1,1) = 1 (ON).

011

Current state

All states with values > .05 (threshold), are ORed.

0.1 0.00.2 0.20.00.0.45.05

000 001 010 011 100 101 110 111D1D2D3

Most-probable scheme, next

state for D1  = 0 (OFF)

011

Current state

Maximum value in the row

0.1 0.00.2 0.20.00.0.45.05

000 001 010 011 100 101 110 111D1D2D3

0 States for Disk1(D1), i.e.,

OFF

P0 = (.05+.45+0+0) = 0.5, for

Disk1(D1)

011

Current state

(a) (b) (c)

Figure 1: Example showing the outcome of predictions with different schemes specific toD1:
(a) ORing, (b) Most-probable, and (c) Summing. Note that ourdefended scheme (Summing) is
different from the ORing and Most-probable schemes, and might as well transition the system to a
state which has zero probability in the probability matrix.

2.3 Prediction Schemes

Transition probability matrix by itself is of no use as far aspower reduction is concerned. There

is need for a prediction algorithm that predicts the next state for the system by using the infor-

mation maintained by the probability matrix. We can evaluate the accuracy of a given prediction

algorithm by comparing the percentage of matches between the actual andpredicted states. Below,

we describe four prediction schemes evaluated in this work.These schemes are1-step lookahead

schemes, meaning that only the state that directly follows the present state is predicted and none

that may happen after this predicted state. We note that predicting the next state from the current
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state requires indexing into an appropriate row of the probability matrix. This row is determined

by the current actual state of the system. Remember that the row and column number of the matrix

represent the states and the matrix itself consists of transition probabilities.

• ORing (conservative): After indexing into the correct row, OR allthe states (recall that state

is represented as a bit vector) with transition probabilities greater than a certain probability

(0.05 for our case) to get the next state prediction. The rationale behind this scheme is to

never predict an idleness if the probability of the disk being ON in the next state is greater

than some minimum. This scheme tends to produce anON prediction most of the time, not

usually giving a performance penalty but providing little power saving opportunities.

• Most-probable (aggressive): After indexing into the correct row, predictthe next state based

on the highest transition probability from the current state. Since we are just selecting the

maximum value in the row, it does not necessarily have to be a large value. For example, it

may be 0.05 and still be the maximum if other values in the row are all individually less than

0.05 (but they all add up to 0.95). As a result, this scheme might predict anOFF even on

a value of 0.05. This scheme does produce good energy savings, but it may also lead to a

performance penalty, resulting in spin-downs even when notdesirable.

• Last-state (does not use the probability matrix): The next predicted state will be the last

known state of the system. This is the value we used in all other schemes for indexing into

the appropriate row (the current actual state). The successof this scheme is based on the

assumption that the system possesses some inertia and hencewill continue to remain in its

present state for some time. The duration of this period is the crucial factor in the success or

failure of the scheme. When the sampling period is kept small, the scheme is bound to give

good results. We included this scheme in our evaluations to provide us with a baseline. We

note that this scheme also inherently makes use of the Markovproperty by considering only

the last state for future predictions.

• Summing (the scheme defended in this paper): In this scheme, after indexing into the correct

row, we sum all probabilities leading to a 0 (OFF state). This is done for each disk separately

to obtain its next state. If probability of transitioning to0 (denoted byP0) is greater than
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certain threshold, then we decide to turn the diskOFF else it is keptON. Note that this

scheme is slightly modified when used for disks with more thanthree levels, such that the

threshold value changes to a range defined for each speed level.

An arbitrary row chosen from the transition probability matrix of our system is shown in Fig-

ure 14. This row contains eight entries (for a three-disk system, the number of possible states is

23), each entry being a probability for a three-disk system (D1D2D3). States are represented as

a bit vector with the leftmost bit for the first disk (D1). Figures 14(a) and 14(b) show the results

obtained using the ORing scheme and the Most-probable scheme, respectively. Figure 14(c), on the

other hand shows how the Last-state scheme predicts the nextstate forD1. Figure 14(d) depicts

the computation ofP0 (probability of transitioning to 0), which if greater than,for example, 0.7,

will give an OFF prediction. How we decide this threshold value is discussedlater in Section 4.5.

This scheme (Summing) is expected to give good energy savings without hurting the performance.

Results of prediction accuracies obtained with these schemes are discussed in Section 2.6.2.

2.4 Three-Speed Disk

In this section, we describethree-speed disk that will be used for evaluating our power management

scheme. The conventional two-speed disk either runs at the maximum speed or stays in the standby

(spin-down) mode where it does not spin at all. The constraint of operating in one of these two

modes does not give the flexibility of transitioning to a lower-power mode when the duration of the

idle time is less than the break-even time.1 Since we sample the disk system without looking at

the actual start times of idle periods, we might miss some of these idle time opportunities. We also

use a prediction scheme to guess the idle times that were captured during our sampling. Therefore,

using a conventional (two-speed) disk would not give us muchopportunity to save disk energy most

of the time. Thus, the motivation for using a three-speed disk is to have the ability to capitalize

on all the idle time opportunities that we are able to predictand to have enough flexibility to save

energy even when the disk idle times are not long enough for the two-speed disk. We note that,

when we refer to saving energy, minimizing the performance penalty automatically goes along with

1Break-even time is the minimum amount of idle time for which spinning down a disk brings some energy benefits
without increasing original execution latency [36].
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S1 S2 S3

SUT: 5.5 SUP: 6.5

SDT: .7 SDP: 4.5

IP: 2.5
IP: 10.2

AP: 13.5
 SUT: 5.4 SUP: 5.8

    SDT: .7 SDP: 4

SUT: 10.9  SUP: 12.3

         IP: 5

          AP: 6

SDT: 1.5  SDP: 9

IBM Ultrastar 36Z15
Individual Disk Capacity 18.4 GB

Maximum Disk Rotation Speed (S3) 15000 RPM
Intermediate Speed Level (S2) 7000 RPM

Minimum Disk Speed (S1) 0 RPM

(a) (b)

Figure 2: Three-speed disk. (a) State model. SUT: Spin-up Time; SDT: Spin-down Time; SUP:
Spin-up Power; SDP: Spin-down Power; AP: Active Power; and IP: Idle Power. Time is in seconds,
and power is in watts. (b) Specification for the three-speed disk model.

it. The flexibility with the three-speed disk comes from the intermediate level of operation, where

we spin the disk at half of its maximum speed. A request when serviced at the intermediate speed

almost doubles the service time but reduces the energy consumption by a factor of four [17]. The

specifications of the three-speed disk along with the disk model we employ are provided in Figure 2.

State transition times and energies are based on the linear power model given in [17], and the disk

specifications have been extended for an IBM hard-disk [21].We also note that disks with such

multi-speed capabilities, such as Western Digital Caviar GP [37] and Sony multi-mode disk [39],

are now commercially available in the market, though they are not server-class disks.

2.5 Algorithm

With the Markov model representing the disk state transitions and accompanied by a prediction

scheme that helps predict the next state of the disk, there isa need to have an overallcontrol strategy

that can make high-level decisions for power management of an I/O subsystem consisting of the

proposed three-speed disks. This requires making two important decisions:

• When can a disk be spun down (should try to maximize the energysavings but it does not

matter if we miss some opportunities)?

• When should a disk be spun up (should not miss to spin-up when required)?

Depending on how aggressively one makes these decisions, itcan result in different energy savings

and performance degradations. To make a decision for the next state, we look at the probabilityP0

(probability of transitioning to a 0 state) for each disk. Inorder for this algorithm to work for an
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Table 1:P0 corresponding to disk speed levels in a five-speed disk.
Speed (RPM) P0 Range

15000 0.00< P0 ≤ 0.30
11000 0.30< P0 ≤ 0.50
7000 0.50< P0 ≤ 0.70
3000 0.70< P0 ≤ 0.85

0 0.85< P0 ≤ 1.0

n-speed disk, one can set a threshold for each speed level. Essentially, as the value ofP0 decreases,

the disk’s operating speed should increase. We choose a threshold value of 0.7 forP0 in our three-

speed disk. In a multi-speed disk scenario, on the other hand, this threshold will be a range and not

a value. But, the way we use our three-speed disk makes this modification feasible. As an example,

Table 1 lists sample threshold values (as a range) forP0 corresponding to each speed level in a

five-speed disk.

We emphasize that increasing the number of operating speeds(e.g., moving from a three-speed

disk to a five-speed disk) does not necessarily mean that we can save more energy. This can be seen

in a manner similar to when TPM (traditional power management, which spins down the disk after a

certain period of idleness) saves more energy than DRPM in the case of very long idle periods, since

it can turn off the disk completely, whereas the DRPM scheme will spin down only to a nominal

speed. Similarly, the three-speed disk provides enough flexibility to exploit small idle periods and

also the ability to save maximum energy when possible. We note that as the idle periods grow

smaller, opportunities to save power become meagre and risky. For a three-speed disk, one should

not decide to spin up if spin-up time plus the request servicetime is more than the service time at

the current disk speed. Also, One should spin down only if theidle energy consumed in the current

state is more than the sum of the energy spent in spinning downand the idle energy in the lower

speed state.

All the disks start off from anormal state where the three-speed disk is in its intermediate speed

level. Once the transition probability matrix matures, we start making predictions about the future

disk states. A predictionON will spin up the disk by one level from its current state. A prediction

OFF will necessarily spin down the disk to its lowest speed. The disk does not wait for a prediction

to transition to thenormal state if no disk requests were waiting. All these decisions help bring

down the power consumption while minimizing the performance degradation. In the following

paragraphs, we discuss how the values of various parametersemployed in our approach affect the
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behavior of our proposed scheme.

• Warm-up Period: This is the period of time spent before building the initialtransition proba-

bility matrix. This is an important step in getting started with making good predictions about

disk accesses. The transition probability matrix built during the warm-up period will rep-

resent more of the transient behavior of disk accesses, but it eventually adapts itself to the

changing workload during execution because of the regular updating of the matrix. Note that

while updating the matrix, we give lower weight to the older values of the probability matrix.

Deciding the right value for the warm-up period is a tradeoffbetween the accuracy of predic-

tion (large value) vs the time of wait (small value) before the predictions begin. Instead of

operating in either of these extremes, we can keep the warm-up period moderately short to

obtain the best of energy savings and prediction accuracy. In our baseline implementation, we

set it to the time taken to gather 50 samples, a value determined based on some preliminary

experiments.

• Threshold Probability: This threshold value is used to decide which state our disk can tran-

sition to by comparingP0 with this value. If we want to be aggressive and save more energy

without caring much about the performance, then we can set itto a low value (e.g.,0.4). On

the other hand, if we want to be conservative, then, say, 0.9 will be a good choice. It affects

directly the prediction accuracy, which in turn can hurt both energy savings and performance.

For our three-speed disk implementation, we chose this threshold to be 0.7, again based on

some preliminary experiments.

• Sampling Period: The value of this parameter is crucial to the success of our prediction

based scheme. It affects the overhead involved in the scheme, the closeness with which the

transition matrix represents the workload, and the energy savings achieved. If it is chosen to

be very small, the frequency of state predictions and matrixupdates increases. Depending on

the disk state transition times and the energy consumed during transitions, a small sampling

period may or may not be beneficial. On other hand, making thisperiod too large can lead

to missing some energy saving opportunities, specifically,when the idle time is greater than

the break-even time but smaller than the sampling period (there was a short duration of disk
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access). The length of sampling-period used in our default implementation is 12.5 seconds

for a simple (two-speed) disk, 7 seconds for a three-speed disk, and 4 seconds for a five-speed

disk.

Two overheads are associated with our scheme: updating probability matrix and prediction.

Since each prediction scheme uses a simple operation (e.g.,bitwise-OR or summation), the predic-

tion overhead is negligible. Updating the probability matrix might have some overheads depending

on the size of matrix size. In an eight-disk system, the matrix size will be 256 (28) by 256. Since

this operation can also be done by using simple loop and the update frequency is at least tens of

seconds, we believe that the overhead associated with updating matrix is also negligible.

In our experiments, we also vary the default warm-up period,threshold, and sampling period

values and conduct a sensitivity analysis.

2.6 Experimental Evaluation

In this section, we first introduce our experimental setup (Section 2.6.1) and then present the results

from our experiments (Section 2.6.2).

2.6.1 Setup

DiskSim [15] was used to simulate the behavior of our disk subsystem and to measure the benefits

brought by our scheme. DiskSim is an accurate, highly configurable disk system simulator to sup-

port research into various aspects of storage systems. DiskSim is a trace-driven simulator, and we

performed one simulation per each workload. Our simulated system has 8 disks; the specifications

for the disk were provided earlier in Figure 2. We augmented DiskSim to help us carry out the

experiments for various prediction algorithms discussed above to analyze how good they work in

saving energy. As the simulation runs, this augmented version of DiskSim checks the state of the

disk system at regular intervals. This is referred to assampling the system.

DiskSim provides a synthetic workload generator used to generate the workloads with desired

characteristics. Some characteristics common to all workloads are given in Table 2. We concen-

trated mainly on workloads with small inter-arrival times where TPM and other older techniques
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Figure 3: (a) Prediction accuracies with different schemes. (b) Contribution of mispredictions lead-
ing to performance loss (MPER). (c) Contribution of mispredictions leading to power loss (MPOW).
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Figure 4: Effect of changing the important parameters: (a) warm-up period, (b) threshold, and (c)
sample period.

have failed to save energy efficiently (that is, the high-performance workloads that exhibit short

disk idle periods) and results for DRPM [17] could be compared. For the synthetic disk traces, we

used two types of workloads:

• Type 1: Inter-arrival times were exponentially distributed, and

• Type 2: Inter-arrival times followed the Pareto distribution.

Type 1 workload is represented as< exp, t >, wheret is the mean inter-arrival time in millisec-

onds. This type of workload models a purely Poisson process,with arrival traffic showing some

kind of regularity. Type 2 workload is represented in a similar fashion as< par, t >, with t having

the same meaning as before. This workload offers more burstiness in the traffic behavior, meaning

that there exists a group of requests clustered close to eachother at some places. We used synthetic

workloads to show that our scheme is well adapted to different type of inter-arrival times. As far as

disk power management is concerned, inter-arrival times matter most because they will eventually

affect the length of disk idle periods. Thus, these two typesof workloads do offer a good experi-

mental testspace. The original version of DiskSim does not support generation of Pareto workloads.
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Thus, as a part of our work, it was also augmented to generate such a workload. With these two

types of workloads, we vary the mean arrival times of requests, which affects the length of the

idle periods (the higher the value oft, the greater the idleness). Table 2 summarizes some default

characteristics of the synthetic workloads for the requestdistribution across the disks.

In addition to our experiments with these synthetic traces,we performed experiments with traces

extracted from real applications. These applications areparallel in that the number of clients issuing

the requests for our 8-disk system are more than one. More specifically, the number of clients

range from one to sixteen. One of the workloads is a trace froman online transaction processing

application (OLTP); the other trace is gathered from a popular Web search engine. OLTP traces

[57] are characterized by frequent insert/updates. The websearch trace we use [57] captures the

I/O traces of a system that processes web search queries. Both of these traces are obtained from

a publicly available repository [57]. The I/O accesses exhibited by these applications are small,

numerous, and concurrent. The results with the OLTP trace are indicated with< oltp >, whereas

those with the search engine trace are represented by using< wsearch >. We also tested our

scheme with a trace from a scientific application called BTIO, which is a disk-based version of a

flow-solver program from the NAS Parallel Benchmarks [64]. The main operation in the code is

periodic writes performed by all processors to a multidimensional array stored in a file. This trace is

represented as< btio >. The number of clients for this type of workload was kept as sixteen. Note

that the energy-saving opportunities in all these traces depend on the length of idle periods between

various accesses. Specifically, the workload from the search engine was found to contain less than 2

percent overall I/O system idle time. Our experiments were carried out with these diverse (synthetic

plus real) workloads to obtain statistics for the following.

• Total energy consumed by disk system when no optimization isperformed(Etot)

• Percentage of energy savings with different power management schemes(Sav)

• Performance penalty

• Accuracy of various prediction schemes

• Effect of changing the important parameters employed in ourscheme
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Table 2: Default system parameters.
Parameters Values

Request Number 100000
Number of Disks 8

Disk Size 18 GB
Sequential Access Probability 0.1

Local Access Probability 0.2
Read Access Probability 0.6

Maximum Local Distance 100 blocks

We also conducted experiments with a five-speed disk based execution scenario in order to

evaluate the effect of increasing the number of speed levelsin a disk. The energy savings produced

with the five-speed disk are compared against those achievedwith the three-speed disk and TPM.

Note that all the energy saving results presented here consider the savings across all disks in our

8-disk system. The energy spent in transitioning the disk toa different state was considered in all

our calculations. In the context of this work, the performance penalty of a disk system is defined

as the percentage increase in the execution time for the given workload. More specifically, if the

last request of the workload was serviced at timeT when no energy optimization was applied and

now with the optimizations it gets serviced at time(T + x), the percentage performance penalty is

calculated as(x/T ) ∗ 100. The results presented below includeall the overheads incurred by our

scheme.

2.6.2 Results

We conducted experiments to test and validate the three-speed disk model along with the prediction

schemes and verify the usefulness of Markov modeling. First, the prediction algorithms described

earlier were evaluated for their prediction accuracies. Specifically, we tested each prediction scheme

on all the workload types we have. Figure 10(a) shows the prediction accuracies of the four schemes

discussed earlier. The average prediction accuracies (when all workloads are considered) are 86.0%,

84.2%, 87.6%, and 92.0% for the Last-state, ORing, Most-probable, and Summing schemes, respec-

tively. Since inaccurate prediction of disk idleness can bedetermined from a performance perspec-

tive, we consider 90% or higher as a good accuracy, and our prediction accuracies are in this range.

The total mispredictions (TMPs) can be broken down into two types:

• Mispredictions leading to performance loss (MPER), and
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Figure 5: Comparison of energy savings achieved by five- and three-speed disk based systems
relative to the base case, namely, TPM.

• Mispredictions leading to energy loss (MPOW).

MPER happens when one predicts a spin-down for the disk but the disk was actually accessed

and hence we incur spin-up delays. In comparison,MPOW happens when the disk is predictedON

but it was never accessed during that period, and consequently, an opportunity to spin-down was

missed. We see from Figures 10(b) and 10(c) that the ORing technique gives more mispredictions

leading to energy loss, whereas the Last-state technique gives more mispredictions leading to per-

formance loss. Overall, our defended prediction scheme (Summing) performs better in all respects.

Although all these schemes do provide a good percentage of correct predictions, the Summing

scheme has significantly lowerMPER value. It is also clear from these results that all the prediction

schemes tend to become less accurate as the sampling period increases, specifically the Last-state

scheme. In cases where even a slight performance degradation is intolerable, one should try to

minimize the percentage of theMPER even if, in doing so, we increase the contribution ofMPOW.

Note that a higherMPOW value only means that we missed some energy saving opportunities, but

a higherMPER value may be intolerable in a high-performance computing environment.

There should be enough samples to build the transition probability matrix initially so it really

does reflect the workload characteristics with a reasonableaccuracy. Hence we decided to take at

least 50 samples to capture the workload behavior. Obviously, the more samples we take, the better

our knowledge of the workload. However, this also means we start the energy optimizations late.

Figure 4(a) shows that the energy savings decrease when the warm-up period is increased. Fig-

ure 4(b) shows the effect of varying the threshold value on the percentage of mispredictions leading

to performance loss (MPER). Decreasing the threshold value means that we aggressively turn disks
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Figure 6: Comparison of energy savings with different schemes including results with DRPM.
Results for DRPM were obtained from [12], where no tests wereperformed with real traces.

Table 3: Percentage of performance penalty.
Workload Penalty (TPM) Penalty (Three-Speed Disk)

< exp, 100 > 0.0 0.0
< exp, 500 > 0.03 0.0
< exp,1000 > 0.015 0.0
< par, 50 > 0.0 0.0
< par, 100 > 0.0 0.0
< oltp > 1.42 1.76
< btio > 0.0 0.0

OFF and therefore increase the chances of mispredictions, which is reflected in Figure 4(b). In Fig-

ure 4(c), on the other hand, the effect of increasing the length of the sampling period is shown. The

energy savings decrease because we miss some idle time opportunities. We also tested the effective-

ness of these prediction schemes using a five-speed disk. Theresults given in Figure 5 indicate that

three-speed disk provides better energy savings in most cases. The response of a five-speed disk

to a disk state prediction is more gradual than that of the three-speed disk. The reason is that the

five-speed disk slows down the disk speed one step at a time unless a disk experiences big slowdown

in the response time. Consequently, it takes more time to transition to a lowest power mode, in turn

producing less savings. This one step approach is a bit less aggressive in lowering the disk speed,

but it enables us to identify the system state at all times andensures easy recovery on misprediction

(there are forced spin-ups and spin-downs when the actual state is not equal to the current state of

the system). Note that one has more flexibility with a five-speed disk when it comes to selecting a

speed level, which can be helpful, as is the case for the savings on OLTP and BTIO workloads in

Figure 5. Although we achieve better energy savings with a five-speed disk, it also leads to more

performance penalty (not shown in results because of lack ofspace). This can be attributed to the

increased overhead of transitioning across different speed levels.
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In Figure 6, the energy savings obtained with the three-speed disk supported by our scheme are

compared with TPM and DRPM savings. All energy savings are normalized with respect to the

base case, where no power saving scheme is employed. The energy consumption evaluated and

the power saving results consider the entire disk system. Weregenerate the energy savings with

DRPM (denoted asDRPMperf in [17]) where it can predict the idle times with full accuracy; con-

sequently, there is no performance loss. Since we are using the same simulation tool for generating

the same workload types, it makes sense to compare the results. We see from these results that

our scheme provides more energy savings compared to TPM. It also does better than DRPM. The

reason can be attributed to the ability of the disk to totallyspin down (standby mode) whenever

possible, and save energy even when the duration of idle periods is not sufficiently long (spin at

an intermediate speed level). Although the opportunity to save energy with these workloads may

look meagre, it is the result of using the predictive scheme along with the concept of a multi-speed

disk that helps save energy. There is not much performance penalty from TPM as this scheme trig-

gers a shutdown only when the disk has been idle for a long period of time. However, when we

use prediction algorithms and perform spin-ups and spin-downs proactively, there is a chance of

significant performance penalty. This can be a result of a mispredicted spin-down (MPER) when

the disk is being actually accessed. Table 3 shows that, withour scheme, there is very small or no

performance penalty with the used traces. Gurumurthi et al.[17] give performance degradation in

terms of response times, but does not show the net effect on the total execution time.

2.7 Concluding Remarks

The main contribution of this paper is a novel Markov model based disk idleness prediction scheme

that can be used for reducing disk power consumption when used with a three-speed disk. The

paper explains in detail why the defended prediction mechanism is better than others and why it

saves disk power. To evaluate the effectiveness of our approach, we implemented it using DiskSim

and performed experiments with both synthetic traces and real application traces.

Our experimental results show that (i) the prediction accuracies of the proposed scheme are

very good (87.5% on average); (ii) it generates significant energy savings over the traditional power

saving method of spinning down the disk when idle (35.5% on average); (iii) it performs better
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than a previously proposed multi-speed disk management scheme (19% on average); and (iv) the

performance penalty it brings is negligible (less than 1% onaverage). Overall, our implementation

and experimental evaluation demonstrate the feasibility of a Markov model based approach to saving

disk power. Our ongoing work involves integrating this scheme with existing disk power saving

strategies and testing them under different workloads. We are also investigating whether high-

level (application level) information supplied by programmers can be used for improving our power

savings.



Chapter 3

Power Aware Disk Allocation

Disk power consumption is one of the major concerns in adopting applications with large scale I/O

in both mobile and scientific computing domains. Virtualization and the resulting abstraction of

large scale storage systems and variety in the I/O demands ofapplications call for a power efficient

disk allocation strategy across simultaneously executingapplications that provides necessary per-

formance guarantees. In order to abstract the underlying diversity in capacities and rotation speeds

of disks and attain a performance and power efficient allocation, a disk allocation algorithm has to

often choose from a set of conflicting optimization criteria. This paper presents the trade-offs as-

sociated with power and performance across different disk allocation schemes, targeting a scenario

where multiple applications exercise the same disk storagesystem at the same time. We also present

a novel disk allocation scheme that reduces overall power consumption of a disk system while sat-

isfying the performance and storage capacity constraints set by applications. Extensive analysis of

our proposed disk allocation scheme shows that it reduces disk power consumption compared to

other alternate disk allocation schemes, while providing similar or better performance guarantees.

3.1 Introduction

An important characteristic of many high performance applications is disk intensiveness. Many

scientific simulation codes for example have frequent disk accesses. In fact, large-scale simulations

have become an integral, important, and in many cases, primary approach to solving complex sci-

20
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ence and engineering problems and automating scientific knowledge discovery. These simulations

tend to generate huge amounts of data that must be stored on disks, mined, analyzed, evaluated,

check-pointed (on disks), and steered, in most cases dynamically during the course of execution.

Similarly, many data base/mining applications frequentlyexercise disk systems of parallel archi-

tectures. In a disk storage system shared by multiple applications, one of the critical problems is

resource (disk) allocation across these applications. Themain characteristic that makes this problem

challenging is the fact that different applications demanddifferent amounts of disk space (capac-

ity) and can tolerate different disk latencies. As a result,allocating disks from a heterogeneous disk

pool to satisfy the needs of all applications using the same storage system is non trivial. Existence of

additional constraints such as power and reliability makesthis disk allocation problem even harder.

Disk power consumption poses severe challenges in terms of electricity costs, overall system

design and reliability. Power consumption can put a limit onhow much designers can push perfor-

mance, as power dissipation generates heat that affects component stability and reliability, especially

for large server systems [17]. While recent research has focused on hiding most performance bottle-

necks by overlapping computation with disk I/O [38, 43], power bottlenecks cannot be hidden. Note

that both cost and reliability are very important for large scale server systems in general and disk

storage systems in particular. Disk power consumption can be high in systems that execute large

data-intensive scientific applications, e.g., those from the domain of astrophysics, genome research,

computational chemistry, and nuclear simulation. In fact,a recent research [22] shows that disk

storage can be responsible from up to 27% of total system power consumed by data centers.

Motivated by these observations, this paper presents several disk allocation schemes and exper-

imentally evaluates them using multiple metrics. One of these schemes is defended in this paper

and performs disk allocation across multiple, concurrently running applications such that overall

disk power consumption (of the underlying storage system) is reduced and performance and storage

constraints specified by applications are satisfied. At a high level, one can see our disk allocator as a

virtualization layer that maps virtual disk requests to physical disks in the storage system such that

the application needs are satisfied.

We implemented our disk allocation schemes and tested theireffectiveness under a wide range

of execution scenarios, which involve different resource (disk) pool sizes, different sets of disks
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(with different disk speeds), and different disk request arrival patterns. We can summarize our

results as follows. Our defended scheme performs consistently better than other schemes tested

when multiple metrics of interest are consolidated. Specifically, it reduces power consumption over

a performance-only scheme by 20%, while improving performance over a power-only scheme by

almost 23%. This paper also discusses the results from our sensitivity study in which we change

several storage system characteristics. Our experimentaldata for this sensitivity study suggests that

proposed power-aware disk allocation scheme is robust under varying values of major experimental

parameters.

The rest of this paper is organized as follows. Section 3.2 presents a description of relevant

efforts in solving similar or related problems followed by the precise problem addressed in this

paper in Section 3.3. A comprehensive description of designparameters considered in this study

including types of resource pools, metrics of interest, format of application request and various

disk allocation schemes are presented in Section 3.4. Section 4.6 describes the experimental setup,

results and the sensitivity of our scheme to various design parameters, and finally, our conclusions

are presented in Section??.

3.2 Related Work

Significant previous work exists on power aware disk management in both mobile and server do-

mains. The prior studies have ranged over various layers of the system including the hardware and

software managed schemes. Spinning down disks [13, 14, 20] or reducing the speeds of the disk

when it is used sparsely is a popular technique for disk powermanagement. Simunic et al. [59]

proposed to use a semi-Markov decision process to obtain optimal power management policy for

laptop hard disks with a system model that can handle non-exponential inter-arrival times in the

idle and the sleep states. An alternative hardware based strategy is DRPM [17, 7] which involves

dynamic modulation of disk rotation speeds. Zedlewski et al. [69] extended a disk simulator to

examine the energy consumption behavior of the hard disk drive.

The interval between the successive disk I/O requests is crucial for effective power management

of disks. Therefore, several studies attempted to increasethese intervals via postponing dispatch of

I/O requests [63, 41]. Son et al. [54] proposed an energy-aware data prefetching scheme for multi-
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speed disks, which is compiler driven. In comparison, Okadaet al. [39] developed a hard disk

drive which can operate at different speeds. They used two RPM modes: file download/upload and

audio/video application. Rao et al. [47] found the optimal revolution speed and length of standby

period for a certain playback rate.

The power management issue has also drawn significant attention in the domain of server class

storage systems. [8, 7] exploited the multi-mode disk drivetechnology in massive scale storage

systems These studies proposed to monitor the I/O queue length and to adjust the disk revolution

speed subject to I/O queue length. Pinheiro et al. [45] suggested to place the frequently used files

into a small number of disks so that the hot spot disks are in active mode while other disks are

maintained at low power mode. A number of studies exploited the memory hierarchy of the I/O

subsystem, i.e., via intelligent caching, for reducing energy consumption of hard disk based storage

subsystem [31].

Application-level optimizations for reduced power consumption in the disk have also been stud-

ied. The approach proposed in [26] restructures a given application code considering the disk lay-

outs of the datasets it manipulates. Son et al [55] presentedcompiler analysis to extract disk access

patterns and use this information to insert explicit disk power management calls at appropriate

places in the program code. Use of feedback directed adaptive resource control has been studied in

the literature for disk space allocation [40], throttling the storage access requests to ensure system

throughput is shared fairly [28].

Providing performance guarantees in distributed storage systems is more complex because

clients may have different data layouts and access their data through different coordinators (access

nodes), yet the performance guarantees required are global. In this context, Wang and Merchant

[61] presented an adaptation of fair queuing algorithms fordistributed servers that enforces an ex-

tra delay (possibly zero) that corresponds to the amount of service the client gets on other servers.

Several recent efforts [4, 11, 10, 27] have also considered the use of feedback control theory for

handling performance specifications.

Many of these prior efforts have concentrated on manipulating the disk’s rotational speed or

modifying the occurrence and duration of disk idle periods for power management. We attack the

power management problem from a different angle by considering it as aresource allocation prob-
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lem, where the aim is to reduce overall power needs of the I/O system in presence of performance

constraints coming from different applications concurrently exercising the same disk storage sys-

tem.

3.3 Problem Statement

This paper presents a novel approach of allocating disks from a resource pool of disks with different

rotational speeds (RPMs). The proposed disk allocation scheme strives to reduce disk power con-

sumption of an I/O system, while providing the necessary performance guarantees as requested by

the applications. The incoming applications issue disk requests specifying their needs from the I/O

subsystem in terms of storage capacity (disk space needed) and performance (minimum bandwidth).

Given a specific resource pool with a large number of disks with different RPMs, and an appli-

cation workload’s consolidated set of requirements (a set of disk requests), our approach attempts

to reduce the power consumption of disks while providing theperformance guarantees. Applica-

tions state their I/O requests in terms of disk requirementswhich are fed to theDisk Allocator, that

helps achieving the performance goals expected by the application user while making the best use

of the available storage resource(minimizing power). The general architecture of our approach is

presented in Figure 13(a). At any given instant in time, an arbitrary number of disk requests may

demand allocation from the available set of disks with a storage constraint in terms of disk capacity

needed (C) and a performance constraint in terms of bandwidth (BW). In this paper, we use the term

’demand’ to indicate the set of disk requests made by an application that uses our I/O system.

3.4 Our Approach

While building a large storage system, one can only estimatethe amount of storage required, based

on which the type (various speeds) and number of disks are decided. This means that there can be no

storage system which will be optimal at all times, once it is built. Here, optimality can be associated

with many factors: power usage, performance, etc. Our goal,given a storage system, allocate the

available set of disks to the applications in a way that guarantees performance and reduces the power

consumption. In the following subsections, we discuss the major components of our approach.
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(a) (b)

Figure 7: (a) Architecture of our power aware disk allocation scheme with each request specifying
the requirement in terms of capacity (C) and bandwidth (BW) needed from the disk. (b) Composi-
tion of different resource pools. This graph shows the number of disks of different speeds in each
type of resource (disk) pool.

3.4.1 Resource Pool

A resource pool in case of our storage system is a collection of disks. Since there is no fixed

pool which is good for all situations, we try to look at various types of resource pools, when the

different allocation schemes are used. For our experiments, we consider five types of pools, which

are different from each other in terms of the total number of disks or the number of disks for a

particular speed. All the disks considered for building theresource pool have a fixed capacity of

10GB, while the speeds (RPM) range from 5k to 15k. Note that the speed range is not for a single

disk, but these are ranges of speeds available in the resource pool. Composition of our disk pools in

terms of the number of disks with different speeds is presented in Figure 13(b).

• Small Pool: The number of available disks in the resource pool gives a good measure of its

power costs, availability, ease of administration, etc. Our intuition behind deciding the pool size as

small is to use the number of demands1 that will be using this resource pool as a metric for defining

its size. For example, if the number of demands is X and the maximum number of disks each

demand may request is Y, then a small pool can be one in which the number of disks is a fraction of

X*Y. Note that in all types of resource pools that we will be considering, all the disks (with different

speeds) will have the same fixed capacity. The distribution of disk speeds is uniform in this type of

1Recall that we use the term ’demand’ to indicate the set of disk requests made by an application.
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pool, meaning that the number of disks for each speed will be same.

• Large Pool: This pool is similar to the small pool described above in organization and char-

acteristics, except that the number of disks is greater. This pool is considered to observe the effect

when the resources available are almost infinite, meaning that we have more than the required re-

sources. Again, if X*Y is the total number of requests predicted, then having a multiple of X*Y

disks in the resource pool can be described as a large pool.

• Pool Skewed to High Speeds: This and the following pools have reasonable number of disks

(mid-size) which is neither small nor large. Our goal here isto measure the effect when the size

of the pool is moderate, but the disk speed distribution is non-uniform. Specifically, the number of

the disks of high speeds is more than the number of the disks ofmoderate or low speeds. Since the

number of disks in the system remains the same, we reduce the number of disks with low speeds

when increasing the number of high speed disks and keep the number of disks with moderate speed

to be the same.

• Pool Skewed to Mid Speeds: This is again a mid-sized pool in the number of disks it contains,

as compared to the number of disk requests that might be generated, difference being the disks with

moderate speeds are more in number as compared to other disk speeds in the pool.

• Pool Skewed to Low Speeds: Similarly, this pool is skewed to the low speed disks with them

more in number as compared to other disk speeds in the pool.

These different types of disk pools should give us a good picture of what happens when various

disk allocation schemes are applied to service competing application’s storage requests.

3.4.2 Request Format

The disk allocation schemes presented in the paper are all runtime schemes, that is they allo-

cate/deallocate the disks as the applications come in and leave the system. Each application has

a start time and an end time. As the applications come in, theyprovide information to the resource

pool regarding their disk requirements in terms of the capacity (C) and the bandwidth (BW). Each

application might ask for more than one type of disk. It is possible that at the time when the applica-

tion leaves the system, the disks that were allocated for that application may be reclaimed for further

use. For our basic experiments, we will consider that the data used/generated by the application was
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persistent and hence those disks cannot be reclaimed. However, in our sensitivity analysis, we will

also consider reclaiming of the disks. For the purpose of ourexperiments, we generate random start

and end times for different applications. We will be assuming that the maximum number of requests

generated by a particular application does not exceed five (though this parameter can assume any

other value). For the disk allocation schemes evaluated in this work, it is not mandatory to assign

a new disk for every request of the application. This means that, if there is a disk that can service

more than one request, one is allowed to use the disk in such a manner. It should be clear that, under

this execution model, an application demands certain performance level and storage capacity from

the storage system. This demand is an aggregation of requests, which in turn are not actual disk I/O

requests, but specifications of a disk that might be used to service that application. In our setting,

each application has a demand which consists of at most five such disk specifications (which might

be stated as disk requests from this point on). This again is aparameter that can be changed if

desired.

Since the disk requirement is specified in terms of space and bandwidth, it gives us an option of

using more than one disk for fulfilling such a request. This means in practice that we can derive the

bandwidth requirement from multiple disks, making the diskallocation across applications an even

more interesting problem. For all our experiments, we will keep a bound on the number of disks

that might be used to share the load (at most five). When splitting bandwidth, the ratio in which the

capacity is split will be proportional to the amount of bandwidth and vice versa.

3.4.3 Metrics of Interest

Disk allocation needs to be done in a way such that it helps reduce the power consumption of the

disk storage system, improves availability of resources, and ensure certain performance guarantees

to the applications. All the schemes that we present here guarantee some level of performance

to the applications (if the allocation is granted) in the sense that if the application requests some

bandwidth, then the disks allocated will be able to provide at least that amount. This way, we do

guarantee the performance, but it can be easily seen that, there are a lot of strategies that can give

different disk assignments, hence producing different setof performance or power values. We will

look at all these metrics and schemes, targeting specifically each one of them taken individually. It
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can be easily seen that when all of these metrics are considered simultaneously for generating a disk

allocation, one decision might not confirm with the other (e.g., a performance aware allocation may

not be power aware or vice versa). Also, these metrics are usually not very clearly defined and their

measurement varies depending on how one defines them. Let us try to define these metrics and the

way we calculate their values for our experiments.

• Performance: One thing we ensure in all allocations is that a request willalways be allo-

cated a disk with higher than or equal to requested bandwidth(BW). In order to provide a relative

measure of performance for the various disk allocation schemes, we consider the extra bandwidth

available for the allocated requests. As mentioned earlier, a single disk might be servicing more

than one request. In such scenarios, merely providing the bandwidth demanded by the request,

might not ensure the desired performance. This can be attributed to the degradation offered by the

other workloads present on that disk. Keeping this in mind, there can be a possible degradation in

the overall performance of applications, if such scenariosare not handled carefully. We measure

these degradations or enhancements by using a parameter from our power aware scheme (explained

shortly) called ”buffer”. To capture the effect of more thanone workload on a disk, we say that

some ”buffer” amount of bandwidth is wasted over the bandwidth already used by the workload. As

the number of workloads increases, so does the wasted bandwidth. Hence, if the number of work-

loads present on a disk is N, then the wasted bandwidth is buffer × N. The spare bandwidth’s on

active disks are summed up over all the serviced requests andthen the effect of wasted bandwidth

is evened out.

• Power: There are two mechanical components to disk power, namely the spinning of the plat-

ters and the head movement (seeks). As pointed out previously in [17], spindle motor is responsible

for nearly 50% of overall idle power and the number is close to82% in server class disks with ten

platters. Power consumed by a disk is proportional to the square of the speed of its rotation (based

on the model suggested by [17]). We use this model to compute the total power consumption of

the storage system when various disk allocation schemes areused. In order to compute the total

power, all the active disks are identified, their speeds are squared and summed. The goal behind our

power–aware scheme is to reduce the value of this metric as much as possible.

• Availability: Clearly, in order to satisfy a request, we must have enough capacity and the
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required bandwidth left on disks. The availability criteria shows how good an allocation scheme

is in maximizing the number of serviced requests. It is not clear if the quality of service may be

ignored when marking the request as serviced or unserviced.For our experiments, we do not look at

the quality of service to qualify the allocation as serviced/unseviced request. The higher the number

of unserviced requests, the weaker the scheme is in terms of availability. We simply sum up all the

unserviced requests at various phases during the executionto build our availability graphs.

3.4.4 Evaluated Schemes

We now describe the disk allocation strategies evaluated inthis work. We assume that all the disks in

the resource pool are initially idle and become active only when allocated to a particular application.

Disks can also become idle once all the workloads they were servicing have left/finished.
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(a) Disk allocations using the
Power Only scheme.
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(b) Disk allocations using the Per-
formance Only scheme.
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(c) Disk allocations using the
Power Aware scheme.

Figure 8: Variations in disk allocations from the resource pool to various disk requests by different
schemes. Disks are numbered from 0 to N in the resource pool. Y-axis depicts the disk number
selected from the resource pool for servicing a disk requestwhose number is given by X-axis.

• Power Only: The sole aim of this disk allocation scheme is to reduce the power consumption

of the storage system, without considering the effect it might have on other metrics of interest.

The intuition will be to activate the least number of disks such that their rotational speeds are also

the lowest. This will at least ensure reducing the power consumption, a parameter dependent on

square of the disk’s speed of rotation [17]. The conversion from RPM to bandwidth they can offer is

straightforward [44]2. For the power only scheme, the minimum speed disk from the resource pool

is selected. Note here that the selected disk might be already active or it may be idle at the time of

2User data transfer rate in MB/s = RPM/60*sectors per track*512*8/1,000,000
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allocation. Changing the state from idle to active is a one time cost, and its effect on performance is

typically insignificant. Allocation of more than one request on a disk might hinder the performance,

but the primary goal of this scheme is to minimize the power consumption.

• Performance Only: An application when given bandwidth more than its minimum require-

ment, might finish early, hence creating opportunity to reclaim some of the disks it was using. In

this scheme, the highest speed available is allocated first.In doing so, we hope that each request

will have the most spare bandwidth available, helping it to improve its performance.

• Power Aware (Our Defended Scheme) : In this scheme, we try to maintain a balance amongst

the various metrics while providing the performance guarantees, saving power being the priority.

The disk allocation returned from this scheme tries to bringthe best from the previously-described

schemes. This means that it tries to improve performance, begood in terms of availability, and

reduces the power demand. One aspect that we ignored in previous two schemes is the effect

on achieved performance in presence of more than one workload per disk. The result is lack of

reliability in terms of disk’s performance. In order to ensure the application with the demanded

performance, we introduce a degradation term ”buffer”.Buffer is the bandwidth wasted on a disk

due to the presence of a workload. The value of buffer will be constant for all workloads. Hence,

as the number of workloads increases, the wasted bandwidth increases. The net result is, when

allocating disk to a new workload, the available bandwidth is computed taking into consideration

the degradation due to already present workloads on the disk. By doing so, we ensure that even in

the presence of degradation, the application’s performance will not suffer. In order to keep the power

low, we use the same strategy used by the power only scheme, and select minimum speed disks as

much as possible. Interestingly, by doing so, we indirectlymake the availability good too. Since

we are consuming the low speed disks earlier on, servicing the lowest bandwidth requirement first,

it helps in keeping the disk fragmentation low (we measured the total unused bandwidth on all the

active disks), while reserving the high speed disks for requests with high bandwidth requirements.

Figure 9 gives the pseudo code for this allocation scheme. The complexity of this scheme is O(n

log n), where n is the total number of I/O requests generated by all the applications.
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main () {
do{
for each application
sort disk requests in ascending order of speed requirement;
for each request

allocate a minimum speed disk with the required capacity;
update disk capacity and available bandwidth;

}}

Figure 9: Outline of our algorithm for power aware disk allocation.

Table 4: Major experimental parameters.

Parameter Value

Number of requests 50
Disk requests per request 2-5

Capacity requested 1-10GB
Bandwidth requested 15-65Mb/s
Resource Pool size (Small, 66 disks)

(Mid-size, 154 disks)
(Large, 242 disks)

Type of disks Single Speed
Capacity of each disk 10GB

Disk Speeds 5-15K

Table 5: Disk indices and their speeds for
mid-size pool skewed for mid-speed disks.

Disk Indices Speeds

D1-D22 9K
D23-D44 10K
D45-D66 11K
D67-D88 12K
D89-D94 5K
D95-D100 6K
D101-D106 14K
D107-D112 15K
D113-D126 7K
D127-D140 8K
D141-D154 13K

3.5 Experimental Evaluation

The experiments were conducted using a simulation infrastructure we developed in C++ which

could perform disk allocations as the applications enter and exit the system providing their I/O

requests. This simulator can be thought of as a part of the operating system which can communicate

with the block I/O device controller to get the required information about the composition of the

storage system and the I/O requests generated by the applications. It can also be employed as a part

of a storage virtualization layer such as [1] and [2]. The virtualization software has all the necessary

information about the physical storage lying underneath and the allocation decisions can easily be

guided by our power aware scheme.

3.5.1 Setup

The main components of our experimental setup consists of the resource pool and the application

request stream. The applications running on different clients come in and exit the system which

includes the client machines and the storage system. The storage system (referred to as resource

pool) consists of a variety of disks which get allocated to different applications’ demands as per
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the different disk allocation schemes. The range of values for all our experimental parameters

are described in Table 6. Table 7 provides the correspondence among the disk indices and their

respective speeds for mid-size pool skewed for mid-speed disks. Note that, this correspondence

among the disk indices and their speeds is different for other types of pool (see Figure 13(b) for a

general description of composition of each of different resource pools in terms of the disk speeds).

Specifically, the mid-sized pool with disk speeds skewed formid-speeds depicted in Table 7 is used

for our main set of experiments comparing the benefits from different schemes. The rest of the pool

types will be used as part of our sensitivity analysis.
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Figure 10: (a) A possible disk request arrival distributionand their execution times in our default
setting. (b) Cumulative number of disks assigned by variousdisk allocation schemes. Values on
horizontal axis represent the number of requests made so far.

The application request stream is not fixed and Figure 10(a) provides a possible sequence of

applications’ arrival order and exiting times, usable as input to the experiments. The relative arrival

order is important for the disk assignment, as the disks get allocated in terms of the arrival order.

On the other hand, the application exiting time is importantto free/reuse the disks assigned to

the applications for further use (if the data on those disks was impersistent). Note that, if all the

applications using a particular disk exit the system, that disk is spun-down totally until further

assignment.
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(a) Disk power consumption of various disk al-
location schemes.
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(b) Performance of various disk allocation
schemes.
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(c) Availability under various disk allocation
schemes.
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(d) Absolute performance under different allo-
cation schemes.

Figure 11: Study of different metrics with respect to various disk allocation schemes.

3.5.2 Results

We performed experiments with all the disk allocation schemes explained above in order to evaluate

each of their potentials. The input to the experiments was a resource pool consisting of disks with

different speeds and a set of application requests. The format of the application requests has been

described earlier. We varied the size of the resource pool (keeping the number of disks for each

speed and the disk speeds available to be uniform) and also the type of disks within the pool.

The output of the schemes produces a disk allocation for the demands laid by applications, and is

evaluated on the basis of three parameters explained earlier: performance, power, and availability.

We now show the disk allocations by various schemes proposedindividually over a set of fifty

demands. The timing characteristics, namely, arrival order and processing time of the requests

captured by these demands in our default setting are as shownin Figure 10(a). The indices of disks
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allocated from the resource pool by each of the schemes, namely, Power Only, Performance Only

and Power Aware schemes, are depicted in Figures 8 (a), (b), and (c) respectively. The cumulative

number of disks allocated by the individual schemes are shown in Figure 10(b). Although the

cumulative number of disks used by each scheme look similar,it does not provide an exact picture

of the power consumption or the performance offered.

The number of unserviced requests in each of the schemes (theinverse of availability) is depicted

in Figure 11 (c). As seen from this figure, the performance only scheme has the highest number of

unserviced requests. Note also that the power aware scheme performs better in terms of availability

with lower number of unserviced requests, at the same time keeping the performance at par with the

performance only scheme. This is due to allocation of the lowest speed disks for each request that is

performed by the power aware scheme which retains the high speed disks until they are necessary.

In terms of power, the power aware scheme lies mid way betweenthe extremes of power only and

performance only. Towards the end, the power aware scheme has the highest power consumption

because of the higher speed disks chosen and the large numberof disks used, as a consequence of

servicing of more requests and taking care of the performance degradation.

It can be seen from these results (Figures 11 (a) and (b)), power only and performance only

schemes perform optimally (as can be expected) with respectto power and performance metric,

respectively. We also see that our power aware scheme performs very well with respect to power

and fares well with respect to performance, and it also has higher availability (lesser number of un-

serviced requests). Specifically, the power aware scheme consumes approximately 9% more power

than power only scheme when the number of disks requested is fifty. On the other hand, power

aware scheme performs quite similarly to the performance only scheme with a slight depreciation

for the same case.

Figure 11 (d) gives the best description in terms of how the allocations schemes fare in terms

of providing performance guarantees to the application demands. As is evident from the figure, the

performance only scheme does very well when the number of requests in the system is low, as each

request goes to a new disk, thus leaving a lot of spare bandwidth as compared to the bandwidth

utilized. In order to compute this, we used the value of sparebandwidth computed to measure

performance values in Figure 11 (a), and divided it by the total bandwidth allocated to all the ser-
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viced requests. The value generated gives a measure of the change in performance due to the spare

bandwidth. Note that all the performance values were normalized by referencing with the lowest

performance value. This was necessary because for the poweronly scheme, there was in fact degra-

dation in performance which resulted in negative values of spare bandwidth. This means that for

the power only scheme, the workloads suffer in terms of performance because of the presence of

more than 1 workload per disk. The power values in all graphs are also normalized to the power

consumption of a disk at unit speed.

3.5.3 Sensitivity Analysis

We performed various sensitivity experiments using our power aware disk allocation scheme. Due

to the space constraints, we are not presenting the related graphs for these experiments; instead, we

only summarize our major observations.

Firstly, we varied the way applications data is handled (in terms of persistency) during the

course of their execution and once they finish. Data which is non-persistent (not required once the

application finishes) uses up the disk space which can be reclaimed. Identification and reclaiming of

such disks can help provide more allocation options for the incoming applications. We experimented

with partial reclaim strategy which reclaims about 50% of this volatile disk capacity to be allocated

to the fresh requests. The results obtained indicate that the relative behavior of our power aware

disk allocation scheme is not highly sensitive to the reclaim strategy.

We then varied the constitution of the resource pool mentioned in Section 3.4. The results

indicated that, when the number of applications in the system was not high (approximately 10 in

our experiments), the power was less for large pool as compared to the small one. This is because,

in a large pool there are more options (in terms of availability of low speed disks) to choose from.

But, as the number of the applications increase, the power usage for large pool exceeds that of the

small pool. For the three variants of mid-size pool, the poolthat was skewed towards low speeds

had the least power consumption, whereas the one skewed for high speeds had the highest. This is

intuitively due to the dependency of power consumption on disk speeds.

Thirdly, we varied the application request pattern that is fed as input to the power aware scheme.

Four different access patterns were randomly generated with four distinct randomly generated seeds.
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It was found that the scheme is quite robust. For a fixed resource pool, an application request pattern

with more requests consumed more power and performed relatively poor as compared to an a request

pattern with less number of requests.

Finally, we varied the the amount of degradation offered by the presence of multiple workloads

on a single disk. We tested for three values, when buffer value was 1,3, or 5 Mb/s. As one can

expect, the higher the value of the buffer used, the higher performance one achieves while at the

same time sacrificing on power and availability. This was backed up by the results we obtained

where the performance was highest for buffer equal to 5. Deciding the right value of buffer is a

tricky question and may depend on the metric one is looking toimprove.

3.6 Conclusion

One of the critical problems in managing a complex storage system is the allocation of available

disks across competing applications. The main characteristic that makes this problem challenging

is the fact that different applications demand different amount of disk space and can tolerate differ-

ent disk latencies. As a result, allocating disks for a disk pool that contains multiple heterogenous

disks is not trivial. Providing performance guarantees considering additional constraints such as

power and reliability makes the problem even harder. In order to abstract the underlying variety

in capacities and rotation speeds of disks and provide performance and power efficient allocation,

a disk allocation algorithm was proposed in this paper that considers various trade-offs associated

with power, performance and availability in disk allocation schemes. A novel disk allocation scheme

that reduces overall power consumption of a disk system while satisfying performance constraints

of individual requests was also presented. Extensive analysis of our disk allocation scheme with

a large number of applications shows that it reduces disk power consumption compared to other

traditional disk allocation schemes, while providing similar performance guarantees. Our scheme

performs consistently better than multiple schemes when multiple metrics of interest are consoli-

dated. Specifically, it reduces power consumption over performance only scheme by 33.4% while

improves performance over power only scheme by almost 67.1%.



Chapter 4

Dynamic Storage Cache Partitioning

Using Feedback Control Theory

In this paper, we propose a new quality-of-service (QoS) aware storage cache partitioning scheme

that dynamically partitions cache space amongst simultaneously running I/O-intensive applications.

The QoS specification is given in terms of latency of data access. Apart from data access latency

which is perceived by the user, there can be more constraintsput forth from the system administra-

tors point of view. One of the more important constraints is the disk utilization level in a storage

system. Normally, higher disk utilization levels are preferred by the system administrators for bet-

ter resource consolidation. In this paper, we focus on thesetwo constraints, namely, data access

latency and disk utilization, which are translated into an overall storage cache hit rate requirement.

We employ feedback control theory to achieve the required hit rate target per application. Our ex-

perimental results indicate that the proposed storage cache partitioning scheme is able to meet the

required storage cache hit rate targets and improve overallstorage system performance.

4.1 Introduction

Present day computing makes use of resource sharing for improving resource utilization. One of

the implications of resource sharing for the user is lack of performance guarantees. We focus our

attention on the disk sub-system where one disk may serve requests from more than one applica-

37
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tion. Similarly, the storage cache (implemented in memory)is usually shared by the simultaneously

running applications. With the decrease in manufacturing cost, computers today have larger memo-

ries and thus have larger storage caches. These storage caches are typically shared by applications

simultaneously running on the same system. These applications may interact in several ways, some-

times improving the overall performance of the system, as inthe case of, multitasking which can

help increase CPU utilization. However, not all shared resources can be efficiently utilized when

multiple applications contend for the shared resource. In fact, very often, inter-application effects

may lead to destructive interferences [49] (one application kicking out the data of some other ap-

plication). These effects may become very pronounced in modern operating systems (OSs) as they

do not normally allow applications to control resource usage, and they themselves are unable to

provide any guarantees (known as differentiated Quality-of-Service (QoS)) to the applications. Our

goal in this paper is to make use of I/O access latency and diskutilization as metrics for governing

the storage cache partitioning across multiple applications. Our main contributions in this paper

include:

• Use feedback control theory to adaptively partition a storage cache at runtime amongst multi-

ple applications such that their QoS (data access latency inour case) can be met.

• Build a storage cache performance model which helps guidingthe main controller (used in

the defended scheme).

• Experimentally evaluate the proposed cache partitioning scheme using a diverse set of appli-

cations. Through extensive experiments using a variety of real application traces, we verified the

applicability of feedback control for the storage cache partitioning and the utility of our cache per-

formance model to the success of the approach. Not only were we able to achieve the aggregate hit

rate targets per application, but in some cases we improved upon it. Specifically, for a mix of five

applications, we saw an improvement in aggregate hit rate byat least 2% and a maximum of 9% per

application.

The rest of the paper is organized as follows. We start with building up some background in

Section 4.2. In Section 4.3, we motivate the use of feedback control theory and the need to partition

the storage cache wisely. We describe the main aspects of ourapproach in Section 4.4. In Section

4.5, we provide the algorithm used to meet the targets specified to our system. Experimental setup
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and evaluation of our defended scheme are presented in Section 4.6, followed by a discussion of

experimental results in Section 4.7. Finally, section 4.8 presents a body of research that has used

ideas related to our work.

4.2 Background

4.2.1 Control Theory

Control theory has been successfully applied to many electro-mechanical systems. Feedback con-

trol has found its application to computing systems as well,as demonstrated by recent research

efforts [4, 11, 10, 18, 25, 34, 33, 42]. The basic idea behind feedback control is to measure the

output of the system which is being controlled and use the error (the difference between output and

target input) as a guide to achieve a specified goal. This goalin computing environments can be

response time, throughput, resource utilization, etc. Since the output of the system is guiding the

control input which in turn affects the output, the approachis calledfeedback control. Though not

formally employed, the idea of feedback is inherently present or used in many other techniques em-

ployed in computer science to achieve certain objectives. Asuccessful implementation of feedback

control requires a good understanding of how the control input affects the measured output. Apart

from the control effort, there may be other inputs to the system which are not controllable. These

are generally referred to as disturbances and a robust design should minimize the effect of these

disturbances. Hence, identifying the disturbances present in a system may be vital to the success

of the controller. Depending on the requirements posed, there can be different control objectives.

They can be broadly classified asRegulatory Control, Disturbance Rejection, andOptimization. In

this work, we are mainly interested in regulatory control, where the idea is to minimize the differ-

ence between the measured output and the target input. A basic control loop is shown in Figure 12

with the controller making the main decisions based on the control error which are fed to the target

system. More information on formal control theory can be found in [19, 35, 42, 18].
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Figure 12: Block diagram of a feedback control system.

4.2.2 System Layout

The basic layout of our target system is shown in Figure 13. Inthis system, each application speci-

fies its QoS in terms of maximum tolerable I/O latency at the time of instantiation, and the proposed

approach partitions the storage cache to satisfy the specified QoS’s for all applications. The system

model we simulate here is generic and the main idea is to mimica scenario where multiple applica-

tions share a common resource (in our case it is the storage cache). This model is easily extensible

(with minor modifications) for various other system implementations used in industry or research.

More specifically, it can be looked at as a buffer cache used byLinux kernel. In Linux, there is

buffering for the block I/O devices that is done by maintaining lists of buffers for each device. The

management of these lists of buffers is what we intend to do inthis body of work. The management

of the buffers using feedback control and the use of cache performance model brings novelty to our

work. This kernel buffer cache is a part of the main memory that performs the function of a storage

cache. The default Linux cache management scheme uses LRU [53] as the data replacement policy,

which, as we see later, may not be a good choice when considering multiple application scenario.

4.2.3 Disk Utilization

We definedisk utilization as the percentage of time disk is busy servicing a request. When there

is a miss at the storage cache, it leads to a disk access which makes the disk busy. The ratio

of busy to idle time for a disk can be approximated as a productof the number of transfers per

second and the average access time for the disk. Note that each disk in the storage system may
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have a different data access time specification (disks can have different RPMs). Also, depending

on the disk utilization level, this average access latency value can change for the disk. A higher

disk utilization value means the disk is busy for a larger percentage of time which in turn is due

to the higher number of I/O requests sent to the disk per unit of time. One may wish to have

a high disk utilization value to achieve better resource consolidation. Note however that, higher

utilization may affect the performance of the application in an undesirable manner. As a result,

typically, storage administrators determine an acceptable disk utilization level, which in turn affects

the average latency of a disk access.

4.2.4 Our Goal

In the presence of multiple applications sharing the same storage cache, our aim is to achieve a

specified data access latency per application and also to keep the disk utilization levels within a

certain range. Our cache partitioning scheme considers these two constraints, one from user’s point

of view, while the other as seen by the storage system administrator. The QoS used by our control

strategy will be an overall (or aggregate, used interchangeably in this work) hit rate target which

will factor in these two constraints. We discuss more on thistranslation (from latency specification

to hit rate requirement) later in Section 4.4.

Server 
Node ……

Shared Storage Cache

Compute 
Nodes

……

Figure 13: System layout.

Case Number of requests Hit rate Cache usage Class

1 L L L 2
2 L L H 1
3 L H L 2
4 L H H 1
5 H L L 2
6 H L H 1
7 H H L 2
8 H H H 1

Figure 14: Table of all possible combinations for
different cache performance metrics.

4.3 Empirical Motivation

As pointed out earlier in Section 4.1, when there are multiple applications exercising the same

storage cache concurrently, there is a need to partition that cache dynamically. The part that makes
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this partitioning interesting and nontrivial can be explained better by looking at curves in Figure 15.

The curves in this figure plot the characteristics of a benchmark (TPCC) captured over its execution

on a fixed size storage cache. The x-axis denotes the execution time units. The curve in Figure

15(b) indicates that the number of accesses (I/O requests generated by the application) made during

each time quanta are different. Similarly, the plot in Figure 15(a) indicates that storage cache hit

rate is not constant either. Although not presented here, most of the applications we experimented

with exhibit a similar behavior. This suggests that the applications’ I/O behavior changes over time.

The most common requirement for any user of the application is data access latency. The average

data access latency of an I/O request is dependent on cache hit rate and the disk access time. The hit

rate is affected by the cache space provided to the application (usually increases with more cache

space), whereas disk access time is dependent on the disk utilization level (disk access time grows

exponentially with increase in disk utilization level). Asa result, in order to keep data access latency

under tolerable limits, we need to control either or both of these parameters.

A request generated by an application reaches a disk only when there is a miss at the storage

cache. This implies that the disk utilization can be regulated by controlling the number of storage

cache misses. The easiest way to keep this check is to allocate cache space for an application

carefully. At first glance, one might think of giving more cache space to applications during periods

when number of requests is more. There are phases in an applications’ execution where the number

of requests are more, but the hit rate is high and cache usage being low, indicating low cache

requirement. Let us try to look at all such possible combinations. A list of all these combinations is

given in Figure 14.

In order to refine the cases of interest, let us try to understand what application behavior to

expect from a particular response. Note that when the cache usage is low (L), it means there was

some free cache available. Similarly, when the cache usage is high (H), it indicates that the whole

available cache is being used. Using the above mentioned inferences, we can identify the following

scenarios and make the following conclusions:

• Case 1: Cache usage and hit rate both are L, indicating that during the period of interest,

the values obtained are the maximum hit rates achievable andthe maximum storage cache

requirement of the application. It will not benefit to provide more cache during this period.
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(a) (b)

Figure 15: A look at characteristics of the TPCC benchmark during its execution on a 64MB storage
cache. (a) Hit rate computed per sample interval, and (b) Total I/O requests generated per sample
interval.

• Case 2: When the cache usage is high and the hit rate is low, it is possible to improve the hit

rate if the application is given more cache.

• Case 3: The high hit rate might be due to the good cache locality as the cache usage is low. It

indicates that the maximum hit rate is already achieved withthe amount of cache used.

• Case 4: This is similar to case 3 but the cache usage is H indicating a possibility for improve-

ment in hit rate by providing more cache.

• Case 5: It is intuitive to see that even though the number of I/O requests is H, the cache usage

and hit rate are L, indicating that the application will not use more cache if provided; hence,

no improvement in hit rate with more cache. This is similar tocase 1.

• Case 6: A low hit rate with a high cache usage hints that the application would have used

more cache if available. Hence, there is a possibility of improvement in hit rate with more

cache considering that the number of requests is H.

• Case 7: This is again a case where the hit rate is high due to high cache locality, indicated

by low cache usage. We infer that the maximum hit rate is already achieved and maximum

cache requirement is low.
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• Case 8: Possibility of improvement with more cache even though the hit rate is high. This is

because the cache usage and the number of requests are also H.

Going through the above interpretations, one can group all the above cases into two main classes:

one in which there is a possibility of hit rate improvement (class 1), the other where the maximum

hit rate is already achieved (class 2). Class1 cases are of interest to us as they provide opportunity

of improvement. From amongst the four cases in Class1, i.e.,cases 2, 4, 6, and 8; only cases

2 and 6 should be of concern because of the low hit rates achieved. Both these cases indicate a

possibility of improvement if given more storage cache space, but the part that distinguishes them

is the number of requests. When we consider case 6 as comparedto case 2 from a disk utilization

control perspective, it is easy to see that case 6 is of greater concern. This is mainly due to the

higher number of I/O requests generated during an interval.Even with a low cache miss rate, the

number of requests reaching the disk may be higher as compared to case 2 or some other cases.

If the number of I/O requests reaching the disk is not regulated, this might lead to overloading the

disk, thereby compromising the desired data access latency.

The above analysis illustrates that it is non-trivial to make cache allocation decisions for an

application during the course of execution without having sufficient information at hand. This

problem of storage cache allocation becomes even more interesting and complicated when multiple

applications share a cache which has to be partitioned in order to achieve a certain goal. The biggest

problems that arise are due to unpredictability in application behavior and conflicting allocation

decisions.

We must better understand the equation for latency of an I/O request in order to get a better idea

on what to control and how to control:

Latency = H ∗ Thit + (1−H) ∗ Tmiss.

In this formulation,H is the hit ratio and gives an idea about the number of accessesthat can

be serviced by the storage cache from the total number of I/O accesses generated by the applica-

tion. Thit is usually quite small and constant when compared toTmiss, which is the time taken to

service a request reaching the disk. When considering this equation, it is tempting to assume that

Tmiss is a constant quantity, which does not change during the execution. As a result, for meeting
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certain latency targets, this simple assumption leads to controlling the hit rate alone. However, in

reality,Tmiss is affected by the disk utilization level and may change during the course of execution

depending on the load at the disk. Rearranging the terms of the above equation and assuming that

Thit is much smaller thanTmiss, one can find the hit rate percentage required to meet a latency

target (assumingTmiss is known for various disk utilization levels for all type of disks in the storage

system) by using the following equation:

H% = (1− Latency/Tmiss) ∗ 100.

We use the above equation for factoring the latency and disk utilization constraints in to an

overall hit rate target specification.

4.4 Our Approach

As discussed in Section 4.3, keeping in mind the equation of latency, our system uses two input

constraints to guide the storage cache partitioning scheme. Both these inputs are necessary to make

an appropriate hit rate requirement estimation which in turn is used to guide the controller for

partitioning the storage cache wisely.

4.4.1 Specification of the QoS

When an application is being run on a shared resource system,the user is mainly concerned about

the application meeting the performance goals. One of the most common methods to specify QoS

for an application is in terms of data access latency. This requirement for latency can be translated to

a hit rate requirement for the I/O requests. The equation required for such a translation is presented

earlier in Section 4.3.

In this work, we are not only concerned with meeting the user’s need for latency of access but

we also try to maintain a certain disk utilization level. As stated earlier, depending on the disk

utilization levels in the storage system, the power and performance achieved may vary. A storage

administrator may want to maintain high resource utilization to meet some power budget or it could
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Figure 16: Control architecture for the target storage system.

be for resource consolidation purposes.1 From the latency equation presented earlier, one can see

that as the disk access latency increases (as a result of increased disk utilization level), so does the

hit rate required to achieve the desired latency of access. Therefore, we see that there are two factors

that affect data access latency: the hit rate and the disk access latency. The inputs for our scheme

are the latency targets for each application which are provided by the user and a time of access

for each disk in the storage system (provided by the system administrator). We assume that system

administrator has enough knowledge about disk access timesunder various levels of disk utilization.

As a result, if she/he wants to keep the utilization under a certain range, the corresponding time of

access for the disk is used in the latency equation.

4.4.2 Control Aspect

The control architecture in Figure 16 is inspired from previous work on storage cache partitioning

[27]. There are two main components to our design:

1. Main Controller: This is the controller (left portion of Figure 16) which makes suggestions

for storage cache space allocation. Each application has its own main controller. The job

of a controller in general is to help track the reference input ti as accurately as possible.

1Note that, if the overall storage system utilization is low,the system administrator may choose to power off/discard
certain disks.
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The reference input in our scenario is a hit rate target. Recall that this target is a translation

taking into consideration the original two input constraints, namely, data access latency and

disk utilization level. The controller outputs a possible cache allocationbi for the application

of concern, which if provided, may help the application attain the required hit rate target.

The response of the system to the current allocation is measured at the end of each time

interval and is compared with the reference input. A good controller is one that minimizes

this difference, more commonly referred to as theerror signal in control theory. In this work,

we implemented and tested two different types of controllers.

• PID Controller: This is a very popular controller used in many control applications. It has

three components which provide proportional, integral andderivative control. Each has its

own effect on the system response and error control. For example, a large value of propor-

tional gainKp, will make the system response quicker but might hurt the system stability.

Similarly, the derivative gainKd is used to reduce the magnitude of the overshoot but it also

magnifies the noise signal. The governing equation for this kind of controller can be expressed

as:

b(t) = b(t− 1) +Kpe(t) +Ki

∑t
u=1

e(u) +Kd(e(t) − e(t− 1)).

The output of the controller is a storage cache allocation suggestion denoted byb(t). Thus,

e(t) represents the error term which is computed as the difference of the measured hit rate

m and the target hit rateti. Kp,Kd, andKi are the controller gains which have a constant

value. Estimation of these gain values is crucial to the success of the PID controller. For our

experiments, we chose the values which gave the best resultsfrom amongst a set of tested

values. Note that since this is a per application controller, the set of gain values can be

different for each, making the design process quite tedious.

• History Based Controller: This is the controller that is defended in this paper. The governing

control equation can be stated as:

b(t) = b(t− 1) + δb(t),

whereδb(t) is a correction factor computed as a difference ofpb(t) (the predicted cache size

using the cache performance model), andm(t−1) (the moving average of the previous values
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of b) determined using the same control law. The moving average can be computed over the

previous intervals of time using the following equation:

m(t− 1) = βm(t− 2) + (1− β)b(t− 1).

The older values of average cache size (m) are exponentially attenuated with a factor ofβ,

where0 < β < 1. A higher value ofβ will increase the window size over whichb is averaged.

The motivation for using a history based controller is to make use of the knowledge about the

past cache behavior operating under the current workload. Instead of developing a complex

control system with components for model prediction of the system, we employ a machine

learning based technique that uses curve fitting. Note that,as opposed to the PID control,

there is no need to determine the suitable gain values in advance for making the control loop

successful. More details on the working of this controller are given in Section 4.5.

2. Redistributor: The job of this component is to handle the scenarios where the amount of cache

available is either less than the amount demanded by the running applications or is more than

what is needed to meet their QoS demands (this demand is the sum of all cache suggestions

made by each of the main controller). In both these cases, there is a need to redistribute the

available storage cache space. This is achieved by enforcing some high level policies. For the

case where the amount of the storage cache in the system is less than the demanded cache,

we take away a certain amount of cache from each cache suggestion. The amount taken

away is decided by the incremental loss in hit rate if the sameamount is taken away from all

the applications. This is decided by looking at the slope of the hit rate curves in the cache

performance model. Intuitively, we would like to take away more cache from an application

which is going to have the least depreciation in its hit rate.On the other hand, when we are left

with some unallocated cache space and none of the applications were flagged, we distribute

this space in proportion to the hit rate benefits we might achieve upon giving that extra cache

to the application. The intuition is to maximize the overallhit rate achieved by the system.

More about the policy employed and its usage in our control system is given later in Section

4.5.
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It is hard to control the number of disk accesses for each timeinterval. The reason is that, one

cannot accurately predict the number of requests that are going to be generated for the next time

interval. On the other hand, controlling the aggregate hit rate or the instantaneous hit rate are both

achievable targets. Aggregate hit rate here means the cumulative hit rate achieved from the start of

the applications execution up to the current instant. Long term hit rate target is easier to achieve and

will also cause less fluctuations in the cache allocations suggested during the execution period. Long

term hit rate target may not be a good idea for applications with high degree of fluctuations in their

I/O access patterns. On the other hand, instantaneous hit rate is evaluated for each control interval

separately by finding the ratio of the number of hits to numberof requests within that interval. This

solves the problem of keeping the disk utilization within the required range for each time interval.

This is also a better approach in achieving the hit rate target for applications with highly fluctuating

I/O access patterns, though it may lead to a similarly fluctuating cache allocation pattern which is

not very desirable. The advantage with the scheme being the latency of access target is more closely

tracked as the allocation decisions are based on application behavior in the last interval only. As

mentioned earlier, our goal will be to achieve an aggregate hit rate target per application. Note that

in our defended scheme we will make cache size predictions for every interval based on a cache

performance model which accounts for instantaneous hit rate changes. Though the cache prediction

is made based in the instantaneous hit rate, the control law used by the main controller minimizes

the error in overall hit rate.

Figure 17: Aggregate hit rate with increasing
cache size.

Figure 18: An example snapshot of how the cache
performance curve is used and updated in our de-
fended scheme.
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4.4.3 Cache Performance Model and the Learning Aspect

Figure 19: Minimum amount of cache needed by
each application to meet the QoS. The values for
mp-98 and tpch-94 are 1MB and 1MB, respec-
tively.

Figure 20: High level view of the dynamic parti-
tioning algorithm per application. Note that this
represents only asingle iteration within the feed-
back loop.

We employ a storage cache performance model for each application which helps our cache

controller better partition the cache amongst the various applications. A simplistic cache model

shown in Figure 17 tries to capture the effect of varying the cache size on the hit rate achieved

at the storage cache. Note that this model is developed by looking at the entire execution of an

application under different cache sizes. We target to achieve an aggregate hit rate during the entire

execution of the application, we develop and update a similar cache model for our defended scheme.

The updating will help make the predictions more accurate (by keeping track of the changes in

application behavior) for the cache size required to achieve the required hit rate. As an example

illustration, consider Figure 18. Here, we consider two applications with different QoS targets.

The targets are mentioned after the applications name in thelegend bar. Note that, this curve will

be different from the one shown in Figure 17 as the prior is depicting the hit rate achieved after

the entire execution of a single application on a particularcache size and the latter (Figure 18)

is updated every quanta of the control interval when multiple applications share the same storage
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cache. Note that there is a separate curve for every application sharing the cache. Also, a value

on the y-axis corresponding to a particular x-axis value canchange with time. In Figure 18, we

look at the minimum cache space required to meet the QoS demands for each application, marked

asP1 andP2 in the figure. This predicted cache size is used in the governing equation of the

main controller (for our defended scheme) to suggest a cachesize. The updating of this curve is

done when the final allocation is made and the hit rate achieved with that allocation is measured.

This continuous updating during runtime will ensure that the cache performance curve captures the

dynamic variations in application behavior and one is able to partition the storage cache wisely

amongst the applications.

The cache performance model developed is used by the two components in our control archi-

tecture, namely, the main controller and the redistributor. As mentioned earlier, these components,

when generating their outputs, can base their decisions on some higher level policies. The pol-

icy used by both the components can be targeted towards improving the hit rate of the system as

a whole. Let us consider the case where we are left with some free (unused) cache space after

meeting the QoS demands of all applications. In this case, redistributor comes into the picture by

dividing this free cache space amongst the running applications such that the overall hit rate (of the

storage system) improves to the maximum possible extent. The cache performance curves for the

applications give an insight as to which application will benefit most in terms of hit rate if a fixed

amount of cache was given to it. This can be interpreted by looking at the slopes of various curves

and then allocating the free cache in proportion to the slopevalues attained form their respective

cache performance models. An application with a higher slope indicates more incremental gain.

Similarly, the redistributor can take away the extra cache from the suggestion given by the individ-

ual main controllers such that the depreciation in overall hit rate is minimized. In this way, we make

use of the simple and characteristic cache performance model to introduce machine learning into

our design.

4.5 Algorithm

All the pieces and components of our approach have already been discussed in the previous section.

Let us now see how these components work together. Our feedback control based storage cache
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(a) Mix of Three TPCC Instances. (b) Mix of Three TPCC Instances.

(c) Mix of Iozone, Lu, and MXM. (d) Mix of Iozone, Lu, and MXM.

Figure 21: Hit rates and cache allocation variations duringthe execution of an application mix with
HB control on a shared storage cache.

partitioning algorithm can be divided into three phases of operation.

• Phase 1: We call this phase the prediction phase. As discussed earlier, we maintain a storage

cache hit rate curve for each application that will be used tomake a coarse predictions about the

size of storage cache that should be made available for the application in the next control interval.2

We make this prediction for the cache size in a conservative fashion by looking at the minimum

cache that can possibly achieve the demanded QoS (see Figure18). Based on the curves in Figure

17, the minimum cache size required by each of the application is provided in Figure 19. Note that

this information can only be available if one has profiled theentire execution of an application. One

2As stated earlier, this curve maintains the (cache space, hit rate) points observed so far, for the application during
execution.
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(a) 64MB Cache. (b) 256MB Cache.

(c) 256MB Cache. (d) 384MB Cache.

Figure 22: Aggregate hit rate achieved by individual applications in different workloads (application
mixes) using various cache partitioning schemes.

of the major assumptions we make here is that we start off withthree initial points in the cache

performance curves. These points correspond to cache sizesequal to 1MB, total storage cache size

(C), and C/2.

•Phase 2: This phase is where the control laws come into the effect. The predicted storage cache

size is used as a suggestion by the main controller that in turn suggests another cache size based on

its control law. The history based control law used by our main controller has already been discussed

earlier. Recall that the decision for allocations suggested by these main controllers are independent

of each other. Due to this reason, the cache size suggestionsmade by all the main controllers cannot

be directly applied to partition the storage cache. Some of these decisions may lead to an infeasible

partitioning. Consequently, the redistributor componentis used to make a final cache allocation

decision which is feasible and efficient. The allocation suggested by the redistributor is done so as

to use exactly the amount of total storage cache available and the distribution is such that it improves

the overall hit rate of the system. Infeasibility stems in two cases where the sum of the storage cache

size suggested by the individual controllers is more than that is available or is less than that can be
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used.

In the first scenario, the cache size suggestions are summed up to find the extra space that is

being demanded overall from the total storage cache available in the system. All the cache sug-

gestions are pruned so as to fit in the available storage cache. This is done by reducing each cache

space size suggestion in the proportion of the slope values in their respective cache performance

curves. In this manner all the applications will be hit in a way so as to minimize the impact on the

overall progress of the system. We choose this policy to provide fairness when there is overload

present in the system. In the second scenario, where we are left with free cache after providing each

application with the minimum cache space that will satisfy its QoS, we allocate each application

more cache space so as to maximize the overall hit rate of the storage cache (when all applications

are considered). This is achieved by allocating a cache space to each application in proportion to

the benefit it might achieve in terms of improving its hit ratewith the same amount of incremental

cache given to it. This decision is made by looking at the cache hit rate curves we maintain for each

application. The slope of the curve between the points for minimum cache size allocated and the

incremental cache given is used as the comparison metric. Note that we base our pruning decision

by considering slope values assuming the curve is linear in the region of interest. This assumption

about the linearity has been applied before in [16].

• Phase 3: The final phase is the cache hit rate curve updating phase. In this phase, we look at

the hit rate achieved by the cache allocation decision made by the redistributor. If this new cache

allocation resulted in a different hit rate as already present in the hit rate curve, we make an update.

One iteration that illustrates the flow of decisions in our control approach to partitioning the

cache is given in Figure 20. This iteration repeats in every control interval until the application

execution finishes.

4.6 Experimental Setup

We made use of a cache simulator called Accusim [5] for our experiments. Accusim is a trace-

driven, buffer cache simulator originally designed for studying cache replacement algorithms. We

modified it to simulate a shared storage cache scenario with multiple applications sharing it such that

it can be partitioned and the individual hit rate behavior can be studied. It can accurately simulate
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Table 6: Workloads (application mixes) used for
experiments.

Workload Included Applications

MIX2 tpc-c, tpc-c, tpc-c
MIX3 mxm, iozone, lu
MIX4 tpc-h, lu, mplayer, tpc-c
MIX5 mxm, lu, mplayer, tpc-c, iozone

Table 7: Default QoS targets in terms of aggregate
hit rate for individual applications.

Application QoS

tpc-c 85
tpc-h 94

mplayer 98
lu 70

iozone 85
mxm 97

I/O time under prefetching. We enabled prefetching in all our experiments. The layout of our target

system is given earlier in Figure 13. The main controller andthe redistributor are implemented

inside Accusim. The workloads used for our experiments are described briefly below:

We selected a few representative applications and merged their traces to form mixed traces

which mimic traces captured when those individual applications would have run simultaneously on

a system. We used TPC-C and TPC-H benchmarks which are onlinetransaction processing (OLTP)

applications. An open source implementation of TPC-C knownas TPCC-UVa [32] was used. Both

these applications generate a high volume of I/O read and write requests. These applications have

mostly low data reuse, and exhibit sequential data access pattern. While TPC-H was run on a data

set of size 1GB, TPC-C ran on a data set of size 137MB. We also used Mplayer which is a software

used in Linux to play audio/video files. This application wasused to provide us a streaming kind

of I/O behavior. Mplayer has very good spatial reuse. Our experimental suite also includes an out-

of-core implementation of LU decomposition from ScaLAPACK[12]. Most of the applications we

tested ran over data sets of sizes greater than 100MB. Iozone[3] is a filesystem benchmark tool

which generates and measures a variety of filesystem operations, effectively generating a lot I/O

requests. We ran Iozone in the automatic mode on a Linux machine. Finally, we also implemented

an application called MXM, which is again an out-of-core matrix multiplication application. The

composition of various mix traces we used for our experiments are given in Table 6. All these

mix traces were used to evaluate the various storage cache partitioning schemes. The intuition

behind the choice of applications when forming a certain mixwas to create mixes with diverse

set of I/O requirements, such that they could exercise the storage cache partitioning scheme well.
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The numerical value suffixed to the application name denotesthe hit rate percentage required by

the application (translated QoS). A table showing the hit rate targets we used for the individual

applications is given in Table 7. Again, these values were chosen keeping in mind the maximum

achievable hit rates by these individual applications. Theschemes we evaluated in this work are:

• No-Partition (np): This is the default scheme used in the current Unix systems. In fact, it does

not perform any kind of partitioning. Instead, the default scheme (LRU [53]) works on the

principle of supply as per demand.

• Equal-Partition (eq): This is a naive static partitioning scheme in which the total storage cache

is equally shared by the simultaneously running applications.

• PID (pid): This is the base control scheme, which partitionsthe cache dynamically at runtime.

PID is a very general and useful control law which applies well to most common scenarios.

The aim of the controller will be to achieve the QoS objectives as specified by individual

applications.

• History-based (hb): The main idea and working of this controller has been presented in the

earlier sections. This is the storage cache partitioning strategy defended in this work.

• Best-static partition (bsp): This scheme provides us some insight into what an ideal static

cache allocation could do in terms of achieving the QoS targets. This is not a dynamic or

runtime scheme. Applications are given the partitions looking at their storage cache perfor-

mance behavior assuming we have prior knowledge about theirexecution. This scheme can

be thought of as an oracle predictor which tells us the minimum cache an application would

need to achieve a certain QoS target. such predictions are given in Figure 19, showing the

minimum cache required in MB by each application to meet its QoS target. This prediction

will only work when the application requirements do not fluctuate over time. The results from

this scheme would help us compare our dynamic schemes for their success in achieving the

required QoS.
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4.7 Discussion of Experimental Results

We conducted experiments to test the feasibility and efficiency of our storage cache partitioning

scheme. The various mixes we used are given in Table 6. As pointed out earlier, our main goal

in this work is to achieve an overall hit rate target that meets its demanded data access latency

and also keeps the disk utilization levels under the range expected by the system administrator.

Figure 22 summarizes the main results where different cachepartitioning schemes are compared.

We varied the size of the total available cache for differentmixes to pressurize the I/O system

and hence create a more interesting scenario to test variousschemes. Figure 22(a) shows results

when a mix with three instances of the same application with different QoS was tested. It can

be seen that no-partition and equal-partition cannot differentiate amongst the QoS requirements.

History based control provides differentiation amongst the different instances and makes the best

effort in achieving the QoS targets. We also show how our history-based control scheme is able

to quickly track the QoS requirement in Figure 21(b). Figure21(a) shows how the corresponding

cache allocation decisions are made for achieving the QoS. It is evident that there are not many

fluctuations in the cache allocations and it stabilizes around a certain size. Similarly, Figures 21(c)

and (d), show the hit rate variations and cache allocation decisions for mix3. The corresponding

overall hit rate graph is shown in Figure 22(b). It can be seenthat none of the schemes were able

to achieve the QoS posed by LU. Specifically, the two static schemes, i.e., no-partition and equal-

partition perform very poorly. The control based schemes have the best performance. Note that

in scenarios where the QoS posed are such that they are infeasible to achieve from the available

storage cache, our defended scheme tries to make a best effort. For best static partitioning, even if

we have prior knowledge about its cache performance model, it might not be feasible to allocate

the predicted size due to limited cache space. Relatively, history-based control outperforms all

other adaptive schemes. Even the best-static-partition, which is based on the prior knowledge of

applications execution performs poorly as compared to our defended scheme. Figures 22(c) and

(d) validate the usage of our scheme even when the application mixes are very diverse. It confirms

the applicability of the scheme even if the mix contains large number of applications with diverse

I/O requirements. Our history-based control outperforms all other schemes. Not only it is able to

achieve the QoS demanded, but it also improves the overall hit rate whenever possible.
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We also performed sensitivity experiments to test our history based scheme when various related

parameters used in the scheme change. We varied the total storage cache size available, the cache

block size that is the minimum unit of allocation, the size ofcontrol interval time, and the QoS

requirements posed to experiment on mix4. Results are not depicted here due to space constraints.

In summary, the results indicated that the history-based scheme is robust with regards to changes in

these parameters.

4.8 Discussion of Related Work

Control theory has been vastly used to help make resource allocation decisions. One of such works

[30], present an operating system where a global resource allocator using control theory partitions

various shared resources in order to achieve the QoS demandsof distributed multimedia appli-

cations. Multimedia streams posses temporal and informational property that help in design and

implementation of the controller. In [27], hit ratio is being controlled. The results plot hit ratio

vs the number of accesses as the execution progresses. Although, the number of accesses show

progress of the application but it does not indicate the application behavior with respect to time. It

hides the fact that the number of accesses can be different for each time interval depending on the

application behavior. [34] introduces control theory for managing web-proxy cache shared by the

web applications which may belong to different classes and hence may pose different performance

goals. [35, 71, 28, 40] also present adaptive techniques to achieve some form of performance dif-

ferentiation applicable to different scenarios. Cache replacement policies [70, 68] try to make the

best selection of the candidates for eviction when a new datahas to be brought in to the cache. Such

an approach may tend to improve the overall hit rate from the point of view of the cache, but it is

hard to make performance differentiation amongst the applications sharing the cache. Scheduling

of the I/O requests is another way of improving the I/O performance but it has the same limitation

of not being able to differentiate amongst applications QoSrequirements [65, 51, 50, 52]. Appli-

cations can provide hints [66] which can be used to partitionthe cache with a similar objective

of maximizing the overall hit rate. There have been numerousother techniques trying to improve

the I/O performance wither by partitioning disk bandwidth wisely [67, 66] or prefetching data in a

smarter way [58]. Partitioning of cache can be done for performance insulation and efficiency [60]



59

or to minimize power [48]. Minimizing the miss-rate of the memory in a multiprocessor by proper

scheduling and partitioning was presented in [56]. They make use of some hardware counters to

accurately estimate the isolated miss-rates of each process. Most of these prior works have focussed

on maximizing the overall hit rate of the system by cache partitioning. Our idea is to make a best

effort in meeting the QoS requirements of all the applications running on the system by partitioning

the storage cache space using a control theoretic approach.May be the most closely related work to

ours is [27].



Chapter 5

Conclusions

Overall we presented three bodies of work keeping in mind power and performance requirements in

different scenarios. We started with a novel Markov model based disk idleness prediction scheme

that can be used for reducing disk power consumption when used with a three-speed disk. The work

explained in detail why the defended prediction mechanism was better than others and why it saves

disk power. To evaluate the effectiveness of our approach, we implemented it using DiskSim and

performed experiments with both synthetic traces and real application traces. This was followed

by a novel algorithm for managing the disks under your storage system. One of the critical prob-

lems in managing a complex storage system is the allocation of available disks across competing

applications. The main characteristic that makes this problem challenging is the fact that different

applications demand different amount of disk space and can tolerate different disk latencies. As

a result, allocating disks for a disk pool that contains multiple heterogeneous disks is not trivial.

Providing performance guarantees considering additionalconstraints such as power and reliability

makes the problem even harder. Finally, the storage cache was realized as an important resource

for controlling the I/O performance of applications using that cache. Through extensive experi-

ments using a variety of real application traces, we verifiedthe applicability of feedback control for

the storage cache partitioning and the utility of our cache performance model to the success of the

approach. As future work, it would be interesting to investigate dynamic migration of processes

running simultaneously on a compute node, where the number of compute nodes is more than one.

Observing the current trends where multiple cache hierarchies exist in the storage system, a wiser

60
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choice of grouping the applications sharing a cache should help improve performance.
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