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ABSTRACT

Numerical Simulation of interior ballistic process@ gun and mortar systems is
a very difficult and interesting problem. The mattatical model for the physical
processes in the mortar systems consists of amsysfenon-linear coupled partial
differential equations, which also contain non-hgeeity in form of the source terms.
This work includes the development of a three-disi@mal mortar interior ballistic (3D-
MIB) code for a 120mm mortar system and its stagewalidation with multiple sets of
experimental data. The 120mm mortar system consisidlash tube contained within an
ignition cartridge, tail-boom, fin region, chargenciements containing granular
propellants, and a projectile payload. The igniteartridge discharges hot gas-phase
products and unburned granular propellants intartbgar tube through vent-holes on its
surface. In view of the complexity of interior bafic processes in the mortar propulsion
system, the overall problem was solved in a modidahion, i.e., simulating each
physical component of the mortar propulsion syssaparately. These modules were
coupled together with appropriate initial and boanycconditions.

The ignition cartridge and mortar tube contain auéllulose-based ball
propellants. Therefore, the gas dynamical procassiae 120mm mortar system are two-
phase, which were simulated by considering boths@haas an interpenetrating
continuum. Mass and energy fluxes from the flagetinto the granular bed of ignition
cartridge were determined from a semi-empiricahmégue. For the tail-boom section, a
transient one-dimensional two-phase compressildes fsolver based on method of

characteristics was developed. The mathematicakhfodthe interior ballistic processes
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in the mortar tube posed an initial value problerthwdiscontinuous initial conditions
with the characteristics of the Riemann problem thu¢he discontinuity of the initial
conditions. Therefore, the mortar tube model wasesb by using a high-resolution
Godunov-type shock-capturing approach was used evhige discretization is done
directly on the integral formulation of the consatron laws. A linearized approximate
Riemann Solver was modified in this work for thetphase flows to compute fully non-
linear wave interactions and to directly providemupling properties in the scheme. An
entropy fix based on Harten-Heyman method was wa#dd van Leer flux limiter for
total variation diminishing. The three dimensioneffects were simulated by
incorporating an unsplit multi-dimensional wave gagation method, which accounted
for discontinuities traveling in both normal andigbe coordinate directions.

For each component, the predicted pressure-timeedrashowed significant
pressure wave phenomena, which closely simulatedmbasured pressure-time traces
obtained at PSU. The pressure-time traces at tbecbrend of the mortar tube were
obtained at Aberdeen Test Center with 0, 2, andatge increments. The 3D-MIB code
was also used to simulate the effect of flash tdr@-hole pattern on the pressure-wave
phenomenon in the ignition cartridge. A comparisbrthe pressure difference between
primer-end and projectile-end locations of the ioa§ and modified ignition cartridges
with each other showed that the early-phase pressave phenomenon can be
significantly reduced with the modified pattern.eTtow property distributions predicted
by the 3D-MIB for 0, 2, and 4 charge increment saae well the projectile dynamics

predictions provided adequate validation of thdmyyexperiments.
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Chapter 1

INTRODUCTION

The central topic of interest in the proposed neteadas the modeling and
simulation of flame spreading and combustion preegsn a 120mm mortar system.
Completed work presented here addresses the flapreading, combustion,
pressurization process, and wave propagation ireqmarts of the 120mm mortar system.
The comprehensive modeling of the 120mm mortar egysunder realistic firing
conditions involves several complex processes, iwban be best described by two-phase

processes, for both gas-phase and condensed-phase.

1.1 Description of 120mm mortar system

The 120mm mortar system is one of the three megarems that are currently
used by the U.S. Army. The 120mm Mortar System iples/ close in and continuous
indirect fire support to maneuver forces. It isaalp of rapid response, which is critical
since a mortar platoon must move frequently to deoiunter fire. This mortar is used by
mechanized infantry, armor and cavalry units. TR@mMm mortar system consists of
many parts. The drawing of the cross-sectional wwéwhe 120mm mortar projectile is
shown in Figl-1. There are several components in this mortar sysdt@wever, in this
work, the 120mm mortar system is divided into thmeggor parts; flash tube, tail boom,

and mortar tube. These three major parts are testcas following:



Flash tube Tail-boom Charge Increments Obturating Ring Projectile  Mortar Tube
/ /L \ Z /

wuw ogl

Figurel-1: Cross-sectional view of the 120mm mortar projecti

1.1.1 Flash tube

This is the innermost cylindrical portion, whichas assembly of a primer and
igniter contained in a partially perforated cylimdd tube. The primer is located at one
end known as the primer-end. Primer is a comblastiaterial, which ignites upon

impact provided that the energy of impact is abthe threshold energy required for

ignition. The threshold energy required for igoitiis called initiation energ(/Ereq) and

it is related to the striking velocitwmp) of impact. The impact is delivered by a device

called firing pin, which hits the primer to igniie Next to the primer, five center
perforated annular black powder pellets are localdte hot gases produced by the
ignition of primer heat and subsequently ignite thiack powdered pellets. The
combustion products from the ignition of black p@wgellets comprise of both gas-
phase and condensed-phase products. There is emdegttube with 20 circular vent
holes on its surface after the black powder pellEltés tube is empty and closed on the
other end, which is called the projectile end. Bgés-phase and condensed-phase

products of combustion from primer and black powalgrand into this empty cylindrical
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tube. These products of combustion are subsequdigbharged from the flash tube
through the 20 vent holes on the flash tube. A ete diagram of flash tube assembly

is shown in Figl-2.

5 Black Powd llet
ack Powder pellets Vh2 Vh6 Vh10 Vh14 Vh 18

Vh3o Vh70 vhi1ie Vhi15° Vhi1®

0.635cm

I N D R
Vhl Vh5 vh9 Vh13 Vh17

x=0.0 cm x=15.15 cm

Figurel-2: Cross-sectional view of the flash tube with 2@tMeoles laving a diameter
0.165 cm.

1.1.2 Tail-boom section

The tail-boom section is the intermediate portisjch contains the flash tube
assembly. The interior of the tail-boom sectiogyBndrical and contains closely packed
ball propellants (referred as M48) in the annuéggion between flash tube and tail-boom.
The surface of tail-boom section is perforated iamés 28 circular holes known as "vent
holes." These vent holes are arranged in 8 rowsndrthe middle exterior surface of the
tail-ooom section. Four such rows have 4 vent hatesthe other four rows have 3 vent
holes each. These rows are uniformly arranged enriddle exterior surface of the tail-
boom section. There is a set of fins on the extesndace of the tail-boom section on
one end. This end is referred as the “primer erithése fins are used to aerodynamically
stabilize the projectile flight through the airspaoward its target. The other end of the

tail-boom section is referred as the “projectiled’eand is conical in shape from the
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outside. There are no vent holes in this part eftéil-boom section. The ball propellants
in the tail-boom section are contained in a papbet which fits the tail-boom section
from the inside and blocks the vent holes on théasa of tail boom till the pressure
reaches a threshold rupture pressure. The tail-bsection receives the discharge of
high-pressure and high-temperature combustion ptedfrom the flash tube. These
combustion products contain both the gas-phasecandensed-phase species. These
combustion products heat the ball propellants entdil-boom section. The assembly of
flash tube and tail-boom is also called the ignitcartridge or M1020 ignition cartridge.
Each tail boom section has 28 vent holes. For thpgse of experimental pressure-time
trace measurements, each tail boom section wdsdlfdr 16 additional threaded holes
so that pressure transducers could be mounted emathboom without affecting the
discharge process from the original 28 vent holBse tail-boom section and its

components can be seen in Hie.

M48 Ball Propellant Granular Propellant Vent Hole
Flash-tube Vent Hole Bed

5 BP Pellets

5 (C\( v-'yr Lw'1'1 L"Y'X*W'q
4"""\}:.} »/\Q"J‘»fgw ,4*.4%-{

AAIA“A“L“ /U U i A

[ ORON¢ 'YK'L"",('V"YYX‘
)4»4 '< pS ,

Port 0 Port 1 Port 2 Port 3
x=0.0cm x=0.48 cm x=2.98 cm Xx=5.96 cm x=8.94cm x=11.92 cm x=15.14cm

I:)IG

Figure1-3 Cross-sectional view of the granular bed of trétion cartridge.




1.1.3 Mortar tube section

The outermost portion of the 120mm mortar systencalled mortar tube as
shown in Figl-1 and Fig.1-4. The mortar tube section contains the ignitiortricige,
horseshoe-shaped charge increments, and the jimjgyload. There are four
horseshoe-shaped propelling charges mounted outkitie tail-boom. These horseshoe-
shaped charge increments are also filled with padpellants. The mortar tube has a
cylindrical shape from outside. The combustion pistsl discharged from the tail-boom
section heat the ball propellants in the horsesiaged charge increments. The
combustion of ball propellants in the charge inaeata results in pressurization in the
mortar tube, which initiates the projectile motiand sustains projectile acceleration
along the mortar tube. There is a sealing ringedathe obturating ring between the
mortar tube surface and projectile outer surfacaitomize the leakage (called blow-by)

of combustion products from the pressurized regiche mortar tube.

Figurel-4: 120mm mortar cartridgeamily (from left to right): M934/M934A1 HE
M929 WP smoke, M930/M983 illumination, M931 praetig5].




1.2 Motivation

Simulation of the flame spreading and combustimtesses in various parts of a
120mm mortar system under realistic firing condisiois imperative for design
modifications and improvement of the system per@oroe. The motivation for this work
came through the firing experiments at the PicgtiArsenal, in which mortar rounds did
not cover the desired distance and some of thenda@ahged fin bladesdéeFig. 1-5and

Fig. 1-6).

Figurel-5: Damaged fin-blade during the 120mm mortar firings

These instances provided the impetus for detailedeting and stepwise experimental
validation of the numerical predictions of the Isit behavior of the ignition cartridge
and propelling charges. The knowledge gained fimgrstmulation of these processes can
help to advance future improvements of the propualsiystem to achieve increased safety

for the operating personnel and greater reliabilitthe field. The numerical code can
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add a new tool for designing, developing and suppprthe production of mortar
systems. The numerical code also enables costigdalesign efforts by reducing costly
live fire testing, characterizes combustion andsgueization processes in various
components of the 120mm mortar system, and allomgineers to design mortar
cartridges with improved performance to meet thedseof the future combat system and
the future force. The model also assists evalnaifgroduction issues through modeling
and simulation of the effect of component variation performance, potential cost
savings proposals and other typical production tipes Therefore, it is beneficial to

study the interior ballistics of the existing desig

Figurel-6: Damaged fin-blade during the 120mm mortar firiggysd-view).




1.3 Specific objectives

The overall objective of this work was to develoganprehensive theoretical
model and an efficient numerical code to simuldte transient 3D interior ballistic
processes of the 120mm mortar system. To achievalibve objective, major physical
and chemical processes that need to be modeledhamerically simulated, are as
following:

1. Simulation of rate of discharge of combustion pidurom flash tube to the

granular bed in the tail-boom section.

2. Modeling and simulation of the burning behaviorgsénular propellants in
the tail-boom section by two-phase processes,adti@n of discharging jets
of combustion products from flash tube sectionhte granular bed in tail-
boom section.

3. Pressurization process, propagation of compresgiaves, rupture of the
paper tube, discharge of both gas-phase and caeul@msmse combustion
products, and subsequent depressurization in ilHeotam.

4. Modeling and simulation of the interaction of thesatharging jets of
combustion products from the tail-boom section he propelling charge
increments in the mortar tube section to initiadgmbustion in the mortar tube.

5. Subsequent combustion of granular propellants enftbe volume between

projectile and mortar tube while the projectilesiil stationary.
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6. Advancement of the current theoretical model fasctdiding the ignition and
combustion processes in order to achieve betteerstahding of the detailed
mechanism for performance improvement of a gemsoatar system.

All of the above steps were stepwise validatedXpeamental data.

1.4 General method of approach

In order to develop a comprehensive 3-dimensioratan interior ballistics (3D-
MIB) model and an efficient numerical code to siatalthe interior ballistic processes of
the 120mm mortar, various physical and chemicaktgsses occurring in the mortar
system must be considered. The mortar system ¢snsisseveral parts including an
ignition cartridge with a primer and a flash tulprppellant charge increments, the
projectile body, and the mortar tube. To understéinel ignition and combustion
processes, the modeling and simulation of intdyalistic processes in the mortar system
is performed in the following order.

1. An empirical flash tube sub-model for instantaneensrgy and mass fluxes of
the gas-phase and condensed-phase combustion (& &aune the flash tube.

2. Mobile granular bed combustion sub-model based wonmiservation equations of
gas-phase and particle-phase, equation of statgafoin granular bed inside the
tail boom, propellant burn rate, propellant surfatemperature, and an
intragranular stress relationship.

3. Sub-model to determine flame spreading rate instetus gas-phase and

condense-phase properties along the granular lsgtkithe tail boom, including:
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pressure, temperature, density, velocity, propeltann rate, propellant surface
temperature, intragranular stress, etc.

4. 3D combustion sub-model for propellant grains ie #xpanding free volume
between projectile and mortar tube pressure digidh around the projectile.

5. A projectile dynamics sub-model to predict the potije trajectory, including:
projectile acceleration, velocity, and any undddeacombustion phenomena, in-
bore p-t traces, effect of elevation angle, eftédaesign parameters, etc.

6. Integration of above sub models.

7. Model validation by experimental data up to thetstart.

8. Extending the theoretical model and numerical dod®ther mortar systems.

The major building blocks of the 3D-MIB code ar@wsin in Fig.1-7. A detailed

flow chart outlines the various steps in this waskshown in Figl-8.
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INTEGRATED 3D-MIB

PROJECTILE DYNAMICS SUBMODEL

A

MORTAR TUBE COMBUSTION SUBMODEL

A

IGNITION CARTRIDGE SUB MODEL

A

FLASH TUBE SUB MODEL

A

PRIMER DISCHARGE FUNCTION AND GO/NO GO CRITERION

Figurel-7: Major building blocks of the 3D-MIB code.
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Figurel1-8: Overall flow chart for the 3D-MIB code.
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1.5 Major advantages of theoretical/numerical work

Once validated, the 3D mortar interior ballisti@¢{MIB) code can be used to
provide the guidance for design and performanceargments of the mortar projectile.
For example, different primer material, flash tugeometry, pellets configurations,
granular bed loading densities, vent-hole distidng can be studied to achieve increased
reliability and higher performance. The numericadl€ can provide rigorous analysis and
deeper understanding of the ballistic processethefmortar system to proceed in the
right direction for performance improvements. 3DBVItode can provide predicted
pressure-time traces and many other physical paeanvariations at multiple axial
locations. These physical parameter variationsuasdul for reducing the pressure-wave
phenomena during the interior ballistic cycle ie tnortar firing. The knowledge gained
from the simulation of these processes can helgdace the possibilities for fin-blade
damage during operation in the field; thus, theecoah help to achieve greater safety for
the operating personnel with enhanced propulsiofopeance in the field. The 3D-MIB
code can also be used as an analytical tool fatystg any abnormal behavior of the
mortar projectile during operation. The numeridgaiidation with the code can be used to

partially replace the expensive experimental tessr

1.6 Literature review

Traditionally, the multiphase flow modeling has be®nsidered to be one of the
most challenging problems of research in applietheraatics and computational fluid

dynamics. There have been two major approacheslte the two-phase flow problems
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with one compressible phase and another incompiegsihase. One approach is to treat
the fluid phase as a continuum and the particidat®nd phase as single particles. This
approach, which predicts the particle trajectonrethe fluid phase as a result of forces
acting on particles, is called the Lagrangian apg@no This approach was used by Gough
[18-23] for modeling of medium and large caliber gun eyst with one-dimensional
two-phase flows with area change. The interioriftédl computer code based on this
approach is called XNOVAKTC (XKTC). This version ttfe code has chemical kinetics,
tank gun features and end burning traveling chargements. Other extensions include
the modeling of single perforated monolithic chargeharges bonded to the tube or the
projectile, and a ballistic control tube. The XKTGde was applied to the simulation of
traveling charges with finite reaction zones. Tlaglangian approach used in the XKTC
code was further extended to the two-dimensiondl thnee-dimensional compressible
flows to the development of next generation intebiallistic code known as NGENS1-

56]. This comprehensive code is developed by ArmyeResh Laboratory (ARL) and it
can be applied to simulate the interior ballisttogesses in various systems including
modularly packaged granular charg®&4d][[54], high-loading density (HLD) charges in
which various solid propellant media are employ88],[ and telescoped-ammunition
propelling charge §6]. The NGEN3 code incorporates three-dimensionadtinoaum
equations along with auxiliary relations by tregtigas-phase (i.e., air and gaseous
combustion products) as continuous and solid plaptsl as discrete phase thereby using
an Eulerian/Lagrangian approach to simulate the gystems. Recently, Miura and
Matsuo B6-48] have also used the Eulerian/Lagrangian type agbrdo perform two-

dimensional axisymmetric calculations for the ifdeballistic processes in an AGARD
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gun and projectile motion through a long-slottedutar gun. The AGARD (Advisory

Group for Aerospace Research and Development) gsrbhen used as a standard test
case to aid the development of UK internal bafisttodes for many years.

The other approach treats both solid-phase andplygase as continuum and
appropriate conservation equations are solveddtr phases. This approach is called the
Eulerian approach. The Lagrangian approach has adwentages for solving those two-
phase flows where the solid-phase experienced kEegelerations. This approach is also
useful in solving the two-phase consisting of pdigpersed particle size distributions.
The Eulerian approach has advantages in those wdmse the concentrations of solid
particles are high and the volume fraction of spldise could be a dominating flow
parameter. The models based on Eulerian approawist® of governing equations for
mass, momentum, and energy for both phase witintedacial exchange terms between
the two phase included in the source terms. BagMamziato B-4] were the first group
to propose such models and those are generallyedféo as B-N models. The B-N
model has emerged as the most prominent multipllase model for simulating
combustion of energetic materials such as explesamd propellants. The numerical
algorithms to solve the Eulerian type model inveleither solving the complete system,
using the method of characteristics for examplespditting the problem into a sequence
of two sub-problems that included the solution tramsport equation followed by an
ODE integration (to include the effect of algebramurce terms). Similar approaches

have been adopted to solve the B-N equations asmgmted by Bdzil et al5].
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1.7 Survey of numerical methods

The governing equations for the two-phase comprksfiows are almost always
non-linear hyperbolic equationsgeAppendix D). Numerically, it is generally accepted
that the hyperbolic terms of the partial differahtequations of the fluid flow are the
terms that pose the most stringent requirementsthen discretization techniques.
Fortunately, the theory of hyperbolic systems isimmore advanced than that for more
complete mathematical models, such as the NavakeSt equations. There are two
major numerical approaches to solve such equatimarsely finite difference methods
and finite volume methods. More recently, the @element methods have also been to
solve the governing equations of compressible flow.

The partial differential equations for any systegpresent a continuous physical
problem. Numerical methods replace the continuagublpm into a finite set of discrete
values. This process is called discretization ands iaccomplished by dividing the
physical domain into a finite set of points or ait number of volumes via a mesh or
grid. In the finite difference approach, physicatiables are calculated at each point in
the physical domain and their derivatives are axprated by the differences between
these points. In the finite volume approach, thgsmal quantities at each point in the
mesh are calculated as an average over a finitemel Averaging process indicates
integration of physical quantities over a voluméjich means that the finite volume
approach is an integral approach. It is widely pteg that the non-linear hyperbolic
equation may always consist of discontinuity anduanerical solution based on finite

difference method may break down. In case of dicoity, the derivatives of physical
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guantities do not exist but it is always possibte gerform integration over a
discontinuous domainsg]. Thus, finite volume methods are more popular dolving
such problems. Despite this, there have been saglikmown finite difference schemes
to solve the problems in compressible flows.

A dimensionless parameter called Courant numbers ialso known as the
Courant-Friedrichs-Lewy number, or CFL number isdiso determine the stability of
any discretization method. Physically, the CFL nem&an be interpreted as the ratio of
two speeds, namely the wave propagation speecipdttial differential equation in and
the grid speed defined by the discretization ofdbenain. In case, there are more than
one wave are present in the solution of the hygerlwoblem, the CFL number is
calculated by using the maximum wave speed. The gpeed is defined as the ratio of
spatial step and time step. Based on this defmitiee CFL number is given by E4..J)

max{|A|)

A whereA is the wave propagation speethei™ wave (Eq.1.1)

c=

Courant, Isaacson and Re8kfroposed a first order upwind method (also known
as CIR scheme) to solve the hyperbolic PDEs. Is théthod, the spatial derivative is
approximated by a first order Taylor series appr@tion. The Taylor series
approximation to calculate derivative is explaimedjreater details in a book by Roache
[58]. The term upwind (or upstream), refers to thet fd@mt spatial differencing is
performed using mesh points on the side from whidbrmation (wind) flows. The
major disadvantage of this method is numerical ipg®n, which results in heavy
smearing at the discontinuities. Another first-ardeheme is that of Lax and Friedrichs.

The scheme is sometimes also called the Lax MefBa®6], or the scheme of Keller
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and Lax. This does not require the differencingoéoperformed according to upwind
directions. In this scheme, the physical variaiblethe time derivative are replaced by an
average of these quantities at forward and backwairts, thereby making this a second
order accurate in space. However, the Lax and fclesl scheme is considered more
diffusive than the CIR scheme. A scheme of histagcwell as practical importance is
that of Lax and Wendroff37-38]. The basic Lax-Wendroff scheme is second-order
accurate in both space and time. This scheme gwasous oscillations in the numerical
solution in the vicinity of sharp gradients, such a discontinuities. Another second-
order accurate scheme is the upwind method of Weyrand Beam78]. This scheme
also gives oscillations in the vicinity of discantities. Yet another second order scheme
is the Fromm schem@4], which is also second order accurate in spadese®ond order
schemes are dispersive in nature, which means tti@tresults will suffer from
oscillations. A short summary of all of the abovesntioned finite difference methods is
shown in Tablel-1.

Due to the limitations of finite difference methddsproblem with discontinuities
like shock waves, finite volume methods are moteroused. These methods are also
called conservative methods because the partifarédiftial equations are written in terms
of conserved variables (like mass, momentum, aedggh and not in terms of primitive

variables (like density, velocity, and pressure).
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Tablel-1: Finite difference schemes for hyperbolic equation

Numerical Explicit form Accuracy
method
Courant, U™t =y - c( Y - Hfl) First order in
Isaacson and ' space and time
Rees (CIR)
Lax and | n Second order in
Friedrichs U ‘§(1+ o) s +_2(1_ 9 s space and first
order in time
Lax-Wendroff 1 1 1 Second order in
U ‘EC(“ o) +§(1_ ¢ 5 ¢2= ¢ 8. poth space and
time
Warming and 1 1 First order in
Beam =" c(1- gy, +§(1_ 9(2-9q ¥ space and time
+c( o)y,
Fromm PR | 1 First order in
U= —Zc(l— o 4, +z(5‘ 9 o, space and time

+2(F0)( 400 -5( + 9 ol

Godunov 5] first proposed a first order upwind scheme (ateesion of the CIR
scheme) for the equations of gas dynamic by solaisgt of Riemann problems to obtain
solution at a next time level. The Riemann probiena fundamental problem in gas
dynamics, which is described in extensive detail®\ppendix 5. Briefly, the Riemann
problem arises in the conservation equations of dyasamics if the initial data are
prescribed as two semi-infinite states with a lgtgep atx = 0. The key observation is
that if the approximation is viewed as a piecewssastant function, local Riemann
problems are introduced at cell boundaries. Howevee low accuracy and the
complexity of this method meant that other methagse mostly used for a long time.
The methods in use were typically based on modiéina of simple first or second order

schemes to improve the representation of discoitiésu There has been significant
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improvement over the past several years in thia.akecomprehensive literature review

in this field is provided in chapter 7.



Chapter 2

IGNITION CARTRIDGE COMBUSTION SUB-MODEL

This chapter describes theoretical modeling, nuraétiechnique, and results of
numerical simulation of the interior ballistic pesses in the ignition cartridge of a
120mm mortar system. The ignition cartridge coesistf a flash tube containing five
black powder pellets and a tail-boom loaded with8\danular propellant bed. The flash
tube model solved ordinary differential equatiomsl aised experimental pressure-time
traces to deduce the results; i.e., the dischaates rof gaseous and condensed-phase

products, enthalpy, temperature, and velocity efabmbustion products.

2.1 Introduction

The overall interior ballistic processes associatét the 120mm mortar ignition
cartridge firing are extremely complicated. Thesspsses include:

1. Initiation of primer function by firing pin impact;

2. Flame spreading over center-perforated black powdkets;

3. Discharging of combustion products from the venelmf the multi-perforated
flash tube;

4. Heating the M48 ball propellants in the tail-booactson to ignition;

5. Flame spreading and combustion of ball propellamtéhe tail-boom section of

the projectile;
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6. Puncturing of the paper tube through the 28 veteshof the tail boom section

followed by discharge of propellant products.
It is intended that the above physical processesbeaincorporated by coupling two
different sub-models that are described below:

» Simulation of pressure and temperature tracesdtilaish tube (packed with black

powder) using a generalized flow model.

» Simulation of pressure and temperature tracesentdih boom section (packed

with ball propellants) using both generalized trans1-D flow model.
The specific objectives of this chapter are:

(i) Computation and analysis of the combustion and missfarging processes in
the flash tube;

(i) Simulation of interior ballistics processes in tranular bed with the original
design of flash tube with black powder as the mebhic material,

(i) Simulation and analysis of interior ballistics peeses in the granular bed with
the modified design of flash tube with vent-holdtgans and black powder as
the pyrotechnic material;

(iv) Comparison of the interior ballistic processeshe granular bed of M1020
ignition cartridge of the 120mm mortar system udigck Powder (BP), and
Moisture Resistant Black Powder Substitute (MRBR£S) two different

pyrotechnic materials.
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2.2 Flash tube sub-model

The flash tube consists of an assembly of a priamer five black powder (BP)
pellets contained in a partially perforated cylindl tube. The primer is located near the
BP pellets. The primer contains combustible pytwotéc material, which ignites upon
impact when the impact energy is above the threlsboérgy required for ignition. The
hot products (both gas-phase and condensed-phesiespare generated from the primer
heat and ignite the BP pellets. In the hollow aytioal tube section following the BP
pellets, there are twenty circular vent holes anftish tube wall. This section is initially
empty and it is closed by a steel pin on the o#mel, which is called the projectile end.
Both gas-phase and condensed-phase products olisborbfrom primer and BP pellets
expand into this empty cylindrical tube. These pieid are discharged from the flash
tube through the twenty vent holes when a thin Midpe wrapped around the flash tube
is ruptured locally. A schematic of flash tube asskly is shown in Fig2-1 The
modeling of mass discharge process from the flalsé into the granular bed is described

in following sections.

5 Black Powder pellets

Vh 2 Vh 6 Vh10 Vh14 Vh18
I I N R

Vh3° Vh70 vhi11° Vh15° Vh1®

0.635cm

I D R E——
Vh 1 Vh 5 vVh9 Vh13 Vh17

x=0.0 cm x=15.15 cm

Figure2-1: Cross-sectional view of the flash tube with 2@tJeoles.
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2.2.1 Go/No-Go ignition criterion for primer

The required initiation energ(/Ereq) in (in-o0z) and striking velocity(\/imp) in
(in/s) for Fed 150 primer were found to be relddgdhe following equation by Boyer et
al. [6].

Vi,
Eoq=c ™ — 2.

In Eq. €.1), a = 16.172 in-0z, I 0.22405 in and g (the gravitational acceleratien)
32.174 ft/4= 386.089 in/ & This equation can be regarded as the go/noitgion for
successful ignition upon impact. In terms of tlys cnits, the above equation can be

written in the following form:

av, 2
Ere = = * (Eq.2.2
! Vimp2 -2b g

In Eq. .2, the required initiation energ&Ereq) in (cal) and striking velocitx(\/imp) in

(cm/s), @ =0.02729 cal,b =0.5691 cm and g (the gravitational acceleratioBp=665

cm/<. At a given impact velocity, if the impact enerﬁﬁimp) is greater thar( Ereq)

ignition is considered to be successful.

2.2.2 Black powder combustion

The combustion reaction of black powder containfagmixture of potassium

nitrate, charcoal and sulfur) can be written as:
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20 KNG + 32 C + 8 S- 5 KoCOs + KoSOy + KoS03 +3 KoS +2 S + 11 Co+ 16 CO +

10N,

The combustion product has 43% of gaseous specttataout 57% solid residues. This
implies that the value of mass fraction of the aargkd phase produd¥() is 0.57; i.e.,
Y. = 0.57. The major flash tube output to be deteechifrom empirical correlation

includes the following:

2.2.3 Gas-phase mass flow rate from the nth seteént holes

Gas-phase mass flow rate from a single vent hokdehth set of vent holes on

the flash tube can be calculated from the chokad 8quation as shown by EQ.3):

- iy ®A
rnsvhg n(t) _r(y)Tn(i) (Eq23)

where A, is the area of a single vent hole on the flaske @i it is given by Eq2(4).

A, =md, >4 (Eq.2.4)

The gaseous mass flow rate from the nth set of hefgs is related tdhsvhgn by
Eq. .5 as following:

Ming n = Mg ¢ Nup (Eq.2.5

In the above equatiorf\,,.  is the number of vent holes in the nth set of \eiés. The

vh,n

current flash tube design has 10 sets of vent radtagy its length and each set has two
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vent holes of the same size with a diameterdgf=1.65 mm. The function of (y) is
shown by Eq.2.6):

y+1
3 (Eq.2.6)

N~

r) :W[i}

y+1

The combustion product of black powder is assunoedatve )y = 1.2 and R = 0.0598
cal/(gm-K) = 250.2 J/(kg-K). The flame temperatwas taken as 1,600 K before any
thermocouple measurements. The pressure at nth had@ was deduced from the
experimental data of flash tube tests. Severaspre transducers were used for pressure
measurement along the flash tube; including one tieaend of the stainless steel pin
(Ppin).  In addition to P-t traces, it is possible todadltra-fine thermocouple
measurements at one or more intermediate locatiorEherefore, for numerical
calculations, the ft) and T(t) traces are assumed to be known. thtiad, the delay
time for onset of mass and energy discharge fraannth vent hole t) is considered

known from the experimental data.

2.2.4 Condensed-phase mass flow rate from the nthtof vent holes

Condensed-phase mass flow rate from the nth sebeaalculated from the total

mass flow rate from the same set as shown byZEd: (
rTl/hqn(t) :qJCrT\/htr(D (Eq27)

where,m, . (1) is given by Eq.Z.8) as:
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Mg (D) = Mg £ 9/[1-Wc | (Eq.2.9)

2.2.5 Gas-phase energy flux and enthalpy from thetimset of vent holes

The energy flux and enthalpy of the dischargingegas products from a vent

hole of the nth set can be calculated as showngby2E9):
vhg n(t) C [ vhg n(t) TamJ svhg(1°/ A (EQ-2-9)

where T, (1) is the gas-phase temperature at the exit of thesett of vent holes, and

vhg, n

the relationship betwee'ﬁ,hg, «(Dand T, (t)is given by Eq.2.10:

thg, n(t) — 2
Ton(®  y+1

(Eq.2.10

The delay time for the energy flux of the nth vaote is the same as that for the mass

flow rate.

2.2.6 Condensed-phase energy flux from the nth set vent holes

The energy flux and enthalpy of the dischargingegas products from a vent

hole of the nth set can be calculated by BdL1):

vhqn(t) C [vhcn(t) T ; svthD/A (Eg.2.1]1)
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where, thg, n(t) is the gas-phase temperature at the exit of theset of vent holes.

Again, the delay time for the energy flux of thé nent hole is the same as that for the

mass flow rate. Itis reasonable to assume that
Tc,n(t) = Tg, n(t) (Eq.2.12

Before any reliable data is obtained fOf,, it has been assumed tHag, = C .

2.2.7 Rate of energy loss to the flash tube

Due to the extremely rapid combustion and discimargvent associated with the
flash tube, it is assumed that the energy losed@tuminum tube is negligible during the
initial time. However, the heat transfer procassf the ball propellant combustion will

be included in the granular bed sub-model.

2.2.8 Protective tube resistance

The wall thickness of the plastic protective tubevery thin. Its resistance for
penetration by hot combustion products of black gewis considered to be included in
the delay times of vent holes on the flash tubker&fore, no additional stress analysis is

performed on this penetration process.
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2.2.9 Calculated results from flash tube sub-model

The central objective of the flash tube sub-modeioi calculate mass discharge
rate of gaseous and condensed-phase productsuasteo of time and axial position.
The flash tube has five segments of cylindricalteeperforated black powder pellets to
generate combustion products as shown inZify.which are discharged through 20 vent
holes along the surface of flash tube into the giearmpropellant bed at 10 different axial
locations with vent holes alternate in their or&in. A separate experimental test set-
up was used to obtain pressure-time traces fromfldsh tube at 5 different axial
locations. A secure test apparatus was designeéhandated to house the flash tube and
its firing system. This was accomplished by mauptihe flash tube between two
stainless-steel stands on a test deck, as seeq. i»-E

A firing pin was installed inside of the test stamehr the primer end of the flash
tube to initiate the combustion process. This gdoce was performed by a retracted rod,
which held a heavy pendulum above the flash tubee pendulum then swung from its
initial position, impacting the firing pin with theame force used in the field. The impact
of the pendulum on the firing pin provided the fomecessary to compress the primer
between the deformed primer cup and the anvil ensiithe breech plug, initiating the
impact-sensitive charge. The hot gases and pastigenerated from the percussion
primer passed through the breech plug and intoflfsh tube, igniting the BP pellets
loaded near in the primer end of the flash tubee Tdtations of each of the pressure
transducer along with the cross section of thénftabe are shown in Fig@-3. In order to

measure this fast combustion event, 5 PCB dynangisspre transducers were installed
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at pre-selected axial locations along the flasle tiomeasure the instantaneous chamber
pressure at a sampling rate of 100,000 sample€Etgse port locations started near the
primer end and finished at the projectile end & tlash tube (Pto R). The pressure
transducers were held in place by a clamp-mourgnalsly, which allowed for pressure
measurements without hindering the discharging groduct gases through the vent
holes. Generally, five pressure transducers weed gssnultaneously in any experiment

owing to the limited space on the flash tube.
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Pressure
transducers

Pressure
transducer

End block Test rig sealed end clamps

Figure2-2: Photograph of the flash tube test setup (a) emést rig and (b) zoomed-
portion of the instrumented flash tulsd].
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33

3000( .

I —&—P' 16

2500? + Plz i

i =P

L 3 ]
= 2000 TP, S22 4
2 i =P |3
2 : o > 7
a [ N . S
g 15007 { Ry 1 s
5 : 4 1g ©
2 COA e N o
0] = S <
o AN L"\-J/\/\\'\ ] T
& 1000 ! \E, \ R

I . |

i ]lz .l[ o 1

L [ AV

500 ] 1 ‘\ B

L n'l.’l i

Ik |

0 L Ll Ll | CmenTna

0 1 2 3 4 5

Time, t [ms]

Figure2-4: Recorded pressure-time traces from a flash tedte t

A typical pressure-time trace from the flash tukiéhvb black powder pellets is
shown in Fig2-4. It can be observed from this plot that the gaBgeensed the initial
rise in pressure earlier than other gauges, whalegg B sensed the last increase in
pressure, indicating presence of a strong axiasome gradient that could have generated
a pressure wave inside the flash tube. The gaygeaP observed to have the highest
peak pressure level (between 1,700 and 2,700 pgigtbe tests conducted) and had the
fastest pressure rise rate. The average time ifgaition to depressurization of the flash
tube for the baseline testing was around 2-3 mise drder of first rise in pressure was

chronological according to distance away from theer (R—Ps).
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In addition to the results shown in FR&y4, four more tests were conducted and it
was found that there was poor reproducibility amdmg baseline black powder tests.
This characteristic is inherently associated withick powder pellets, even though these
BP pellets used for all testing were from the sdmaéch. The difference in peak
pressures on average of these five tests betweamd®R was around 1,200£240 psi.
The overall average pressure at different axiahtioos also varied significantly. The
average pressure af IBcation for the five flash tube tests was 640p4iQ, whereas the
average pressure at Bocation was 1,146+75 psig for the test duratiomhe non-
reproducibility of the baseline tests can be seem fthe high standard deviation for peak
pressures. This issue is discussed in greaterlsl@asections 2.5-2.6. The measured
pressure-time traces inside the flash tube werd tsevaluate mass flow rate of gas-
phase products through the vent holes using theh ftabe sub-model. The physical
parameters used in the flash tube sub-model arershoTable2-1.

The calculated mass flow rate-time traces fromhflage are shown in Fig-5.
Essentially, the deduced time variations of gasenass flow rates at various vent-hole
locations are very similar to the pressure-timedsa All traces monotonically decay to
zero around 4 ms. As shown in this figure, thera sgnificant difference in the mass
flow rate-time traces at various axial locationgisTimplies the non-uniformity of gas-
dynamic processes in the flash tube, which resintsnon-uniform discharge of
combustion products in the granular bed. The miasg fate is highest at the farthest
axial location from the black powder pellets (gatgdocation) and lowest at the closest
axial location (gauge jPlocation). This unusual behavior could be causgdthe

combined effect of (a) continuous compression &fegas products generated from the
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black powder and jammed at the far end of the stiémm zone of the flash tube, (b)

discharging of combustion products through the Veés on the surface of flash tube,

and (c) heating of gaseous products due to watidn as they travel along the tube.

In addition, there is a certain degree of non-regiehity in the pressure-time

traces from the flash tube. A statistical analydithese 5 baseline tests showed that the

total mass flow rates varied as much as 15%, itidiggoor reproducibility of BP pellets

with the original M1020 flash tube design

Table2-1: Input parameters for the flash tube sub-model

Description Input Value Units
parameter
Density of Black Pprop 1677 kg/m
Powder
Density of Condensed- Pcond 1900 kg/nd
phase Products
Specific Heat Ratio y 1.2 -
Flame Temperature T 923 K
Initial Chamber Volume Ve 3.4422x1¢ m°
Area of Throat (0.1321 At 1.37014x10 m?
cm diameter) 6
Molecular Weight of MW 33.526 kg/kmol

Product Gases

Source

literature and
calculation

assumed

assumed
measured
calculation

measurement

literature and
calculation
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Figure2-5. Deduced gas-phase mass flow rdiewe traces from the flash tube us
flash tube sub-model.

From a separate experimental characterization stfittye flash tube discharging
behavior, the measured pressure-time traces inksa@ash tube were used to evaluate
mass flow rate of gas-phase products through thé vales by the empirical flash tube
sub-model. These deduced mass flow rates at ditfereal locations are presented in

Fig. 2-5.

2.3 Granular bed combustion sub-model

Prior to the solution of the complete problem,sithietter to solve the problem

without propellant charge increments loaded onekiernal surfaces of the tail boom.
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Without being confined in the mortar tube, the costlon products generated from the
ignition cartridge are discharged directly into titenosphere. A schematic drawing of
the longitudinal cross-sectional view of the igmiticartridge is shown in Fig@-6. In this
design, the flash tube is initially loaded with dixcenter-perforated cylindrical black
powder pellets to generate combustion productschviiows into its cavity region and
are partially discharged into the granular beduglo20 vent holes along the surface of
flash tube. The existence of strong pressure wawvése combustion of ball propellants
in the granular bed is believed to be caused mdiylthe non-uniform discharge of both
gas-phase and condensed-phase products from dlashnto the tail boom section of the
projectile as shown in an experimental work periedrby Kuo et al.30]. Their test data
obtained from 65° ignition cartridge testing pradduseful information about the flame
spreading and combustion processes inside thédaiin. These data were utilized for

model validation in the present study.

M48 Ball Propellant Granular Propellant Vent Hole
Flash-tube Vent Hole Bed

5 BP Pellets

WA W "Vrr 'Y" '1 Y"Y'X'W'q
A ~ - 0-04-
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Figure2-6. Cross-sectional view of the granular bed of trétion cartridge.
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2.3.1 Method of approach

In this sub-model, the governing equations for granular bed combustion
processes are simulated in an unsteady and psenéalimensional form. These
equations represent a system of hyperbolic padifierential equations. They are
transformed into a system of ordinary differenteuations using the method of
characteristicsd8]. For hyperbolic equations, the flow propertieseach point in the
flow field depend on those properties in a finggion of the upstream flow field, but are
independent of the conditions at the next time .stdfhus, marching-type numerical
methods may be applied for obtaining the solutiohssuch flow fields. Method of
characteristics is the most accurate marching-tythod applicable to quasi-linear
partial differential equations. The concept of @téeristics may be introduced from
several points of viewseeAppendix D for hyperbolic equations):

1. From a physical point of view, a characteristicveurs defined as the path of
propagation of a physical disturbance. For exampleg supersonic flow field,
disturbances are propagated along the Mach lindseofiow. These Mach lines
are generally known as Prandtl-Meyer waves.

2. From a purely heuristics point of view, a charaster curve is defined as a curve
along which the governing partial differential ejoas can be manipulated into
total differential equations.

3. From a more rigorous mathematical point of viewgharacteristic curve is a
curve across which the derivates of a physical gmgpmay be discontinuous,

while the property itself remains continuous.
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4. From a most rigorous mathematical point of viewgclaracteristic curve is
defined as a curve along which the partial diffée#nequations reduce to
compatibility equations, which link the flow properchanges along the
characteristic curves. These compatibility equaticen be solved algebraically.

The above concepts have been employed for devegdpie numerical procedure for
solving the system of hyperbolic partial differahtequations described in this report.
The Noble-Abel equation of state for the gas-phasgture was adopted in this
formulation to account for the non-ideal behavibthe gas-phase. The eigenvalues and
eigenvectors of the system of equations were datedrfrom mathematical derivations.
The eigenvalues were then used to form the charstateequations of the system. Using
characteristic equations and eigenvectors, theiapadifferential equations were
transformed into ordinary differential equationdandfly, these ordinary differential

equations were then discretized to form linear g#goa for numerical solution.

2.3.2 Basic assumptions

A number of basic assumptions, listed below, haaenbmade in order to make
the problem tractable during the theoretical study.

1. The ball propellant grains are assumed to be smiein shape and they are
uniformly distributed initially in the annular spabetween the flash tube and
propellant container tube before the combustiomeve

2. Due to the tightly packed initial condition and thelatively small volume

between the flash tube and propellant containee,tube flow field in the
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granular bed is considered to be independent ohwthial angle ) and the
radial distancer] from the centerline. This implies that the twwape flow is
only a function of timetf and axial positionx) in the tail boom section of the
ignition cartridge.

3. The opening of any vent holes on the tail boomassed by the mechanical
shearing effect of the unsupported propellant doataube wall instead of
burning through by the hot combustion products.

4. It is assumed that the paper tube material doespadicipate in the overall
combustion process since very small amount of gnerigase is associated with
the combustion of propellant container tube.

5. The Noble-Abel dense gas law is assumed to belbdaitar describing the non-
ideal gas effect in the granular bed.

6. The intragranular stress relationship for WC 870 jmapellants can be applied
to ball propellants in tail-boom section.

7. The flow resistance correlation for WC 870 ball geiants can also be applied

to M48 (WC 816) ball propellants.

2.3.3 Governing equations

To determine the transient gas dynamic behavidnodfigniter gas and particle
penetration, flame propagation, chamber pressusizand combustion processes in the
granular propellant bed, the mass, momentum andygreeuations for the gas phase and

the mass and momentum equations for the solid pareselerived and expressed in a
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guasi one-dimensional form. The gas-phase contloime is the void portion occupied

by the gas-phase material, while the remainingiqoroccupied by the particles is

considered the control volume for the particle-ghasterial. The overall cross-sectional
area of the annular spaceAsnd it remains unchanged. The specific surface air¢he

granular propellants isA,, which represents the total exposed surface afetheo
propellant in the control volume per unit spati@lume. The value ofA, can be

calculated from instantaneous values of partictBusar,, and porosity or void fraction

@ by Eq. .13

3 3
A= (t-a)=2(-9) (Eq.2.13

P
The void fraction is defined by ER.(4) as following:

__void volume_

~4_ 5
= =1-1i| =
total volume (3 gt j (Ea.2.19

The gas phase mass equation is by E45:

ot A 0Xx 1 (Eq.2.1H
l, = Asbpprb + mFthg/VCV - mTthg{ Vi

In the above Eq2(19, A, is the specific surface area of the burning pladién the

control volume which is given by ER.06), Mg is the sum of gaseous mass flow rate

from all associated vent holes from the flash tube the control volume of the granular

bed andV,, = AAx. The parametern,  is the sum of gaseous mass flow rate from all

associated vent holes from the tail-boom sectidrobthe control volume of the granular

bed.



42

_ L B+ (t-t,) Eq.2.1
Agb(t)—AgT (Eq.2.18

In Eq. .16, & represents the half angle of the exhaust jet cgrourt of the vent hole
of the flash tube and, is the angular flame spreading rate in the prapelcup. The

term on the numerator of EQ.16) represents the half angle covering the instactane
zone of the burning particles. The maximum valdiethe half angle is 180 The

propellant particle phase mass equation is £4.7( as following:

6[(1—@,0[)} L1 0[(1—@,0DU pAJ |
ot A ox S 2 (Eq.2.17)
Iz :_A§bpprb+m|-—rvhJch_ mTthé V.

The gas phase momentum equation is E4.g as following:

ogpU,) , 19(aU5A)  10(¢PA)
ot A 09X A 09X s (Eq.2.18
I3 =A0Y s ~AD,

The particle-phase momentum equation is Ed.9j as following:

o[1-ApVs| , 19](1-AP A 19[(1-9)reA]_
ot A 0x A 0x S (Eq.2.19
L ==AgpoY o T AD

It is important to note thab, is the total drag force between the gas and partitéeses.

It is equal to the sum of the drag due to the presef relative velocity between the gas
and particle phases and the drag due to the ppgrsitient as shown by EQ.20):

D, :DV+Dp:DV—£g—§f (Eq.2.20
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For the non-fluidized region, the correlation ob& by Kuoet al. [29] was used
for D, . For the fluidized region, the expression 0y is deduced from AnderssonH [
expression, which is valid for porosities rangimgnii 0.45 to 1.0 and particle Reynolds
number Rg) from 0.003 to 2,000. Although the Reynolds numimerge is not wide
enough to cover the variation in the overall transiprocess, it is the best correlation
available in the literature for spherical particlEsr convective heat transfer calculations,
Denton's 10] formula was used for the non-fluidized regionor Fuidized regionsh
wasobtained from Rowe and Claxton&7] correlation. The gas phase energy equation

is Eq. @.2)) as following:

o(oge)  0(ptse) , O(PRY,) _,
ot o0x 0Xx >

2

|5:(mFthg/\/cv)[hFthg+ F;“g} - AR(T-TJ + A &Op[ Dnem’f—z"J (Eq.2.21)

2

- (merhg /VCV)[ hrBth+ VT;thj - ADQ Up

In the above Eq2(2)), hFthgis the average enthalpy of discharging gases frim a
associated vent holes of the flash tube into angoantrol volume of the granular bed and
Verung =V RTerng o The last term, associated with the sum of gaseass flow rate
from all related vent holes of the tail-boom settimut of the control volume of the
granular bec{ rherhg), represents the outgoing total enthalpy to thetandube after the
local propellant cup wall is ruptured.

It should be noted that the governing equationgHergas and particle phases are

simplified by neglecting some terms. These highdep neglected terms are: (a) the
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viscous normal stress in the gas-phase momentumtiegqu (b) the shear force at the
combustor wall for the particles in the particlememtum equation (this is justified since
the contact surface area between the particleschathber wall is small and also the
initial porosity considered is high), (c) the gdspe heat conduction term, (d) the work
done by the viscous normal stress in the gas-plasegy equation, (e) the heat loss to
the chamber wall in the extremely short transi@mhloustion experiments, (f) the rate of
pressure work for the dilatation of the gaseoudrobwolume in the gas-phase energy
equation, and (g) the rate of change of the taal transfer coefficient in the calculation

of propellant surface temperature. The relationshgiween the discharging solid

particles and gases from the vent holes of thébtaim is considered to be similar to that

from the flash tube; thus,

. . 1-
Mront) = Mrndt) =P (Eq.2.22

2.3.4 Equation of state in granular bed

In addition to the above governing equations, theatons of state for gas-and
particle-phases must be specified. The co-voluniecefoecomes important at high

pressures, so the Noble-Abel dense gas law was lsedhown in Eq.4.23:

P[%—bJ: RT (Eq.2.23
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The solid-propellant particles are assumed to lsempressible. Therefore, the
statement of a constant density for the solid-ptapeparticles serves as the equation of

state for the particles, i.eg, = constan.

2.3.5 Intragranular stress

To complete the theoretical model it is necessarggecify several empirical
correlations: the intragranular stress transmittedugh the packed granular particles, the
flow resistance due to the drag force betweengaréind gas phases, the convective heat
transfer coefficient and the regression rates @& $blid propellant particles. The
following relation shown by Eq2(24) relates the intragranular stress to the speed of
sound:

ezl d|(1-4)r, | (Eq.2.24
p, dg

Herec is the speed of sound in the aggregate of bapglants. The speed of sound in

solid propellant aggregate can also be expressé&ajb@.25:
2
2= [%J (Eq.2.25

In the above Eq2(25, C. is the speed of sound in solid at critical porosjty The

critical porosity is defined as the upper limitwafid fraction above which the aggregate

would be dispersed and no sound transmission den pgace through the dispersed
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particles. Therefore, whep=¢ , c=c, andr,= (. The expression for intragranular

stress can be written by EQ.26):

. 2(2-9)
T _pcref (quz@
" (1-9)
Differentiating Eq. 2.26) with respect tx, we get the following: Eq2(27)
ref 6(0 2 a¢
=pC— Eq.2.2
[ 91,]=p, ( j o P, (Eq.2.29)

This has been used in particle-phase momentumiequat

2.3.6 Burning rate expression of ball propellants

For burning rate calculations, the Lenoir and Ribétal [39] semi empirical burning
rate law was adopted. This burning rate expredsishown by Eq.2.28 as:

Br.p
r =aP"+ K h.exp ——2—2__ (Eq.2.29
b '{p\ug—up\

Hereh. is the local zero blowing convective heat transfeefficient,K is the erosive-
burning constant, and tifes erosive burning exponent. The rate of change irp#récle
radius is governed by the propellant burning ratergby Eq. 2.29:

dr, _
—P =

Eq.2.2
i (Eq.2.29
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2.3.7 Formulation of the heat equation

It is proposed that the condensed phase mass cdroimgflash tube into the tail
boom is deposited on the surface of ball propellantform of a thin coating. This
phenomenon has been confirmed by experiments atHitbe Pressure Combustion
Laboratory through previous studies. These balpgitants are a fraction of all the ball
propellants in the tail boom and these are locatele vicinity of vent holes on the flash

tube as shown in Fig-7.

Discharae from vent hole of flash tu

ort 4
Granular Ve

g gy ey (> ———— o
propellam\A
bec
granular be
> _ Particles coated by condensed

Length of a control phase products from flas 7

«— Uncoated particles in

Figure2-7. Region of coated ball propellant particles in tenity of a flashtube ven
hole and temperature profile in a coated patrticle.

There are both gas-phase and condensed-phase d¢mmbpsoducts in the
discharging jet from the vent holes of the flaslbetu The gas-phase products can
penetrate the granular bed in larger regions. Hewethe condensed-phase products
have usually limited distance of penetration. Tleathcontent in the condensed-phase
products can have a very strong impact on the iggniprocess of the granular
propellants, since they can directly deposit tlesiergy onto the ball propellant surface
during the coating process. Furthermore, the gaselproducts expand during the
discharging process and a part of their thermalggnis converted into the kinetic energy

during expansion. The condensed-phase productsierpe a very limited expansion
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during the discharging process. Thus, their theremadrgy is higher than that of gas-

phase products. In view of these reasons, the obnduheat transfer from the thin

coated layer of condensed phase to the ball pagels the dominant heat-transfer
mechanism to attain ignition for ball propellantsthe granular bed. The temperature
profile in the thin coated layer and the partidilyated ball propellant is shown in Fig.
Fig. 2-7(b). The solid propellant particle is referred ®ragion |. The thin condensed

phase coating has a thickness and it is referred t@gion Il. The surface of propellant
particle is the boundary of region I. In this gasaly the surface temperature of
propellant particle is of interest. In order tdedenine the surface temperature variation

with time, the heat equation for the propellanttipbe in spherical coordinates is used as

given by Eq. 2.30:

1 ,, 0T
—(,opcpr):—z—(rk p) (Eq.2.30

In the above equationgp, is the mass density of propellam, is the heat capacity of
propellant, k,is thermal conductivity of propellant and@, is the temperature as a

function ofr andt. In order to solve the heat equation, the initred &oundary conditions
given by Eq. 2.31) were used:

IC: T,(t=0,r)=T,
BC:9T,(t,0/or="0 (Eq.2.3))
aT, (t ,rpo)/ar =dp.. (1)/k, = Z(1)
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In the above, (., is the heat loss by thin condensed phase coatinthe solid
propellant particle by conduction. This term isegivby heat flux balance at the interface

of region | and Il as shown by EQ.82.

_ 0T
=K

oT
qloss 1} = kp a_rp

=k 5 (Eq.2.32

- — +
r=rpo =Ipo

In Eq. .32, T, is the temperature in region Ik is thermal conductivity of condensed
phase and, is the minimum of thermal wave penetration deptieandensed phase and
thickness of coating. The liquid coating thickneés?s) can be solved from following
equation:

d(47m%04) Myrne

dt Np (Eq.2.33

S
rate of liquid mass
deposition per particl

where n, is the number of coated particles, andhe density of liquid coating. In order
to solve forT;, energy balance equation is used for region Il esrgby Eq. 2.34):

d[q'q (47”504)1'-} - r‘.nFthc
dt Ny

Energy input from flash tube

GTe petiet ~ 47Tr§0qll'oss I (Eq.2.39

[ ——
Energy loss to propellan

In the above equation]; p., is the temperature of liquid coating at the tinfe o

discharge from the flash tube andthe specific heat of liquid coating, respectivaljie

detailed derivation for the explicit form of profseit surface temperature equation is

shown in Appendix A.
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2.3.8 Method of characteristics formulation

The system of governing equations is a set ofissx-6rder, coupled, non-linear,
inhomogeneous partial differential equations, whare hyperbolic in nature. After
simplification and manipulation, the governing etias for this problem reduce to
following inhomogeneous linear partial differentiafuations of first order. These
equations can be represented by a vector equadtawarsin Eq. 2.35:

0 0
oy TPy, ¢]T:M&[Ug T P U, ¢ +, (Eq.2.39

where the coefficient matriM and the inhomogeneous termg, X are defined by

Egs. .36- (2.37):

_Ug 0 _l 0 _ﬁ
P w
-(y-y7 -u, o0 0 0
P?(1-¢)
= -yP 0o - 0
M y o To (Eq.2.36
2
Cc
0 0o o0 U, )
0 0 0 (1-9) U,
o _
__9|l+i|3
pp - Py
Uz U
: |5_l 1t : Iy- ° I3
Cop = pp - 2Cpp =~ Cpp
PU?Z 2 PU
Iy = P I+ |, + P | ,———2] 4+ ZPZ !1——P|1 (Eq.2.37)
Coopl = 2CppT = @ pRT " GppT~ p°RTp = pg

(1s=Usl2)
Py(1- )
|2

o
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The eigenvalues of this system of equations arerahed by solving the characteristic
equation given by Eq2(38:

MT-Al =0 (Eq.2.39
In Eqg. .38, | is the identity matrix andl the eigenvalues of the system. It is found

that the eigenvalues of the system are six distinat numbers under non-fluidized
conditions. The eigenvalues are called the chaiatitevalues indicating the various

directions onx—tplot and are given by EQR.39:

dx dx dx

1 =) , i =) , i =A
[dtjl 1 [ dtjII 2 ( dt)“, 3
dx dx dx

- =1 — =A —_ =A
[dt).v “ [dtjv > [ dtll °

The subscripts |, I, and Il represent the rigltwing, left-running, and gaseous-path

(Eq.2.39

characteristic curves in the gas phase, respegtividie subscripts 1V, V, and VI
represent the right-running, left-running and mdetpath characteristic curves in the
solid phase, respectively. These characteristizesuron x—t plane are shown at

different spatial locations in Fig@-8.
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Figure2-8: Characteristic curves at different locations.

The eigenvalues of the above system of equatiengiaen by Eq.4.40):

R ~(Ug +c)

1

A, _(Ug _Cg)

A |=| U, (Eq.2.40
Ay _

Py (Up+c)

- _‘(Up_c) |

The five adjoint eigenvectors WW,, W3, W, and W are determined by solving

Eq. @.4D):
(MT-A1)wv; =0 (Eq.2.4)

Here M7 is the transpose of the coefficient matrix and1, 2, 3, 4, 5. Sinc&V,’s are

linearly independent vectors, the vector differ@néiquation, Eq.2.41) is multiplied by

the transpose oW, and five equivalent equations in a new set of ddpet variables are
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obtained. The eigenvectors can be representedns tef scalar functions &ly, T, P, U,

and ¢ calledz. The derivatives oZ; must satisfy the conditions given by ER.42):

0z, 0z 07 07 0%
3U, T oP aU, oy (Fq.2.42

A

By changing the dependent variablég T, P, U, and ¢ to new variableg;, using the

above definition o¥Z; and applying chain rule, the EQ.42 becomes:

aait , %Z +W'l,  whereé =1, 2, 3, 4, and (Eq.2.43

The characteristic equations shown in 348 can be further reduced to the total

differential form by virtue of defined characteigstlirections as shown by EQ®.44):

dz ) _04 (dx)0Z _,\ 1 .
(dtj T (dtj Ix =W/,  whera =1, 2, 3, 4, and (Eq.2.49

The above characteristic equations can be repexénytthe differentials dig, T, P, U,

and ¢ along the characteristic curves. From the dédnigiven by Eq.Z.42, we have

Eq. 2.49:

Ws[w e we W W= 0 G2 58 S S8 (a2as

SincezZ=2;(Uy, T, P, U, @), by chain rule we have:

07, .0 0
dz, = au' dU, + 9% a1+ 9% dp S Z dLg,+ (Eq.2.46

Substituting Eq.4.46) into Eq. @.44):

W, (dUy )+ W (dT) + Wi di+ W( d) + W @ =(Wh s (Eq.2.47)
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Here the vector product of \With I, is given by Eq.Z4.49):

Wl =0 (Eq.2.48
Substituting Eq.4.48) into Eq. @.44), the characteristic equations were then obtaased
Wa(dUy )+ Wo( dT) + W( dp+ W( dp)+ W @ =08 (Eq.2.49

The sixth characteristic equation was derived frerat equation following the motion of

ball propellant particle as shown in EQ.50:
W61( dTps)v| + V\éz( d VI :QGA . (Eq.2.50

The components of eigenvectdvg; andWs, and the source ter@s were determined as

function of propellant grain radius (), thermal wave penetration depth Xin the ball

propellant and heat flux to the ball propellant tighg from surroundings gas and
condensed phase materials. These eigenvector cemgoand the source term acquire
different values depending on whether the thermalevhas penetrated through the
particle radius and the relative magnitude of cetive to conductive energy transfer

rates to the particle.

2.3.9 Linearization of the characteristic equations

For interior points, all six characteristic cunage distinct when the granular bed
is non-fluidized and therefore the variables oérast i.e.U,, @ Uy, P, T, andTys can be

obtained by simultaneously solving the system a&f diaracteristic equations. After
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several manipulations of characteristic equatidhs, algebraic expressions for major

variables of interest at all interior points areegi by Eqs.Z.51)-(2.56) as following:

=y} i
p.k — 2(U p, intsct, IV +U p, intsct,V)

l L i+%2
2(Q4J|;tsct QSJiTnst At

jtV2
+ [ﬁ] (_(qg]tsct, VA qoiintSCth )

. 1/ .
(qg "= E(Wlntsct,lv + ¢IntSCt\/ )

qjtY2

(1-9) »
j+Y j+v;
* 2C (QSintsf:t Q4 mtszct) At
a :j+'/z
.19 (U} ey U )
2C p,intsctV p.intsct)V
j+V2 j+%2) g+l = -
Wigge ™ + Wosi ) I?< Ug kintsct,| Ug,k,intsct,ll

j+%2 pj j+%2 g
+VV13k I:?untsctl V\é3k I:Il’,intsctll

—V\/1’4+1/2(dU) B jzvz(djp)u

j+%2 J+1/z
~Wig (dg) - (),
j+%2 j+%2
+( K,intsct,| + QZk ,intsctll )At
j+1 —11i j+%2
U =U g, kintsct, I 13 k Ijk Jintsct)

W (dUp ) - Wl ()

j+%2 jt%2 pj+1
klntsctlAt W13k F|)<

1 |: J+1/2At V\é]‘”/z( dF)HI

W j+1/2 J+1/2( w)m ]

+1 - j+Y%s +V;
Tpsjk Tps k, intsct, VI +QG Lk 2|n'[sc'[ I\/At V\éZJ 2( dT)VI

T =T

k,intsct,lll

(Eq.2.5)

(Eq.2.52

(Eq.2.53

(Eq.2.59

(Eq.2.5H

(Eq.2.56
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For both right and left boundary control volumdse tboundary conditions shown by

Eq. .57 were used.
U =0 (Eq.2.57)

Therefore, the slope of the characteristic linethase boundaries is given by E2.59

as following:
T T
(A A A3 Ay &) =[cg —¢g 0 ¢ ¢ (Eq.2.58

The other quantities of interest are determineddigg the characteristic equations at the

boundaries. The explicit forms for the right boandare shown in Eqs2.69-(2.62:

(q(jﬂ = @,intsctv W J+1/2 [QS kJ |+r-11t/;,cAt _(dU p)\/} (Eq.2.59
j+v jt+V
piazpl 1| Qkineon AW "(4%), (Eq.2.60
k kiintsct,lI 72| i+ ]+1/z o
W23,k W2 (d(ﬂ)“ ( dUp)II

+1 _ 1 j+t% +% j +%2
TJ ! Tkmtsct 1] +\N—jk+1/z[Q3k |ntsct|||At V\éj (dF)III - V\éé@ ( (Zp)m } (Eq.2.6])

— Y2 )
TpSJk+1 Tpsk,mtsctVI I1<L|ntsctVIAt V\€2+ (dT)V| (EQ-2-62)

Similar equations were obtained for left bounddspaThe equations were solved along

characteristic curves number I, Ill, and IV at t&# boundary.

2.3.10 Validation of calculated results

The ignition cartridge was instrumented with siegsure transducers at different

axial and azimuthal locations. The axial locati@ighese pressure transducers and the
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notation used for these pressure transducers sk Fig.2-9. The pressure-time
traces were measured from the ignition cartridgeagud6 pressure transducers; 4 for
each axial location at 90° intervals along the a#iral direction. Based on these results,
it was determined that the physical processesadnghition cartridge are independent of
radial and azimuthal directions. Therefore onlyrésgure transducers were employed in
subsequent experimental work and compared witledhgputational results.

Using the three dimensional mortar interior batist (3D-MIB) code, the
calculated pressure-time traces at five port locati(port O through port 4) on the tail
boom of the ignition cartridge are shown in RRgl0. The measured pressure-time traces
at these corresponding axial locations are showfign2-11 By comparing these two
figures, one can notice several similar charadtesisin both figures, pressure at Port 4
location, R starts to rise before Port 1 location, Phis behavior is attributed to stronger
discharge of igniter products from the flash tubé&a Once start to rise,;fhas higher
pressurization rate than that of Fhis happens due to the generation of pressuve wa
from P, propagating towards;PAlong with this pressure wave propagation, gag an

particles are driven towards.P
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Figure2-9: Location of pressure transducers on the ignitiarridge.

At a pressure around 41 MPa (6,000 psia), thesesigght drop in pressure at all
port locations due to the rupture of the propellemttainer tube wall and subsequent
discharge of combustion products to the surrourgdithgough the vent holes on tall
boom. Thereafter, pressure in the granular bedrages to rise due to continued burning.
Both calculated and experimental results show thatR takes over that at,Pefore

reaching the peak at around 110 MPa (16,000 psia).
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At the onset of pressure decay from their peaksptiessure gradient is higher attan
that at B. Finally, pressure-time traces at all port lomasi come closer and gradually
converge during the later phase of the pressuraydeBoth calculated and experimental
results show that the event duration of the prasessthe tail boom of ignition cartridge
is close to 3 ms. In order to explain the flowgedy variations with respect to time and
axial coordinate in the granular bed, it is benafito focus on a P-t trace at axial location
Po. Near the stagnation region, closest to the priemer, pressure reached a substantially
higher peak level than;PIn this region, there are no nearby vent holedisoharge the
combustion products. The burned products can adyd this region by moving in the
positive axial direction. Similarly, near the prctiée end, P-t traces showed higher-
pressure levels than that of. PIn view of the existence of the pressure gradianthese
two ends, the burned gas and particles are driserartds the middle section of the
granular bed where vent holes are accessible. Tse similarity of the predicted P-t
results with the experimental data partly validates theoretical model. It is useful to
note that the predicted maximum pressure occurrdtieé axial location (x = 0.48 cm)
significantly below the Ptransducer location, which was not measured iretiréer set

of experiments. After the numerical results werewn, a pressure transducer port called
Po was added to the tail-boom section. The recordedraces were indeed much higher
than the Rt traces as predicted by the computer code. A rdetailed comparison at

each of the five port locations is shown in Fgd2-2-17



60

25000
I x,(cm) 1160
——0.11(P)
r 0
20000 ——204(p) | 140
r 1
_ =—5.86 (Pz) 120
=) --+--8.76 (P
2 15000 - (P 1003
= ~—11.70 (P ) @
[a 4 c
g i 180 &
@ 10000 o
o r 60 =
o 1 QT)J
5000 |- ] 40
20
| r—— S I R
0 0.5 1 1.5 2 25

Time, t (Ms)

Figure2-10 Computed pressure-time traces for ignition cageiat five port locations.
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Figure2-11 Measured pressure-time traces for ignition adgeiat five port locations.
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Figure2-12 Comparison of 5 experimental presstiree traces with the calculat
pressure-time traces at port O location (x=0.11 cm)
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Figure2-13 Comparison of 5 experimental presstiree traces with the calculat
pressure-time traces at port 1 location (x=2.94.cm)
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Figure2-14 Comparison of 5 experimental presstiree traces with the calculat
pressure-time traces at port 2 location (x=5.86.cm)
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Figure2-15 Comparison of 5 experimental presstiree traces with the calculat
pressure-time traces at port 3 location (x=8.76.cm)
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Figure2-16 Comparison of 5 experimental presstiree traces with the calculat
pressure-time traces at port 4 location (x=8.78 cm)
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In the interior ballistic studies, it is useful slhow the pressure wave phenomenon by
plotting AP versus time. The calculated time variationABfare shown in Fi2-18 and

the comparison with the experimental data is shiowrigs.2-19 2-20 TheAP rises first
since the pressure at theadd RBlocations is significantly greater than &d RBlocation
due to earlier ignition of propellants there. Ttrisnd was reversed in the later phase of
ballistic cycle since violent combustion near thiener end produced enormous amount
of pressure rise in the stagnation region. The @nugs of the peakP are close to the

experimentally observed values from many testdsin
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Figure2-18 Comparison of calculated pressure difference-tiaees.
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Figure2-19 Comparison of experimental pressure differencetitraes with th
calculated pressure difference-time traceMerR-P.
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Figure2-20 Comparison of experimental pressure differemoe traces with tt
calculated pressure difference-time trace\Me+P;-P;.

These phenomena can also be observed from thelateltgas velocity-time
traces at five port locations shown in R2g21 Prior to reaching the peak pressure, the
gas velocity in the granular bed is strongly a#ecby the non-uniform ignition of ball
propellants, pressure wave propagation processesthe discharging of combustion
products through vent holes. The order of onsegjifion at the five port locations can
be examined from the plot of propellant surfacegerature ¢ variations with respect

to time as shown in Fi@-22
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Figure2-21: Comparison of gas velocity variation in the ignitioartridge at differe
axial locations.

In the numerical calculations, a ball propellantcisnsidered to reach an ablation
condition at 525 K and full ignition condition istained when the surface temperature
reached 600 K. Once the particle is fully ignitede energy equation for the ball

propellant was no longer solved and it was assutmgicthe surface temperature remains
at the ignition temperature. It can be seen Thaincreases first at;/and last at Pdue to

the profile and order of igniter products from ftesh tube.
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Figure2-22 Compaison of surface temperature increase of propelignain in the
ignition cartridge.

The calculated gas temperature-time traces atilnepiort locations are shown in
Fig.2-23 The adiabatic flame temperature of M48 solid pilamt is 2,831 K under
constant-pressure combustion conditions. The caiedlresults for gas temperature in
granular bed showed that during certain periochefldallistic cycle, the gas temperature
at several port locations can exceed the constasspre adiabatic flame temperature
value. This could be due to the reason that thebastion process is not at constant-
pressure but it was close to constant-volume psocé&se gas temperature rises abruptly
during the initial portion of the ballistic cyclelfowing the order of ignition of ball
propellants. During the final decay period, all ¢emperature-time traces gradually reach

the same rate of decay.
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The calculated porosity-time traces at the fivet pmeations are shown in Fig-

24. The porosity of the granular bed starts to ineeefirst at i where first ignition and
ball propellant combustion starts. Burning of @aibpellant grains produces gas-phase
products while reducing the solid phase materighatsame time. Hence the porosity,
which is the fraction of gas-phase material in a-phase mixture, increases. Porosity
starts to increase later at Bnd B locations. During the whole ballistic cycle, the
porosity increases monotonically. However, thers waeriod when the rate of increase
was significantly reduced. The reason for this otida is the influx of particle from
adjacent high-pressure zone. This pressure gradanbe seen from Fi#-26 between
1.2 to 1.6 ms. During this interval, the porosigrigtions at Pis insignificant due to
presence of large pressure gradient which droveptrécles into the local area and
balanced with the particle leaving through the Joles and to the neighboring regions.
Near the later phase of the pressure decay pehedorosity magnitudes at various port

locations approach each other and asymptoticatiease to the level of unity.
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Figure2-23 Comparison of gas temperature variation in thetigmicartridge at differe
axial locations.
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Figure2-25 Comparison of particlevelocity variation in the ignition cartridge
different axial locations.

Additional model validation was performed by compgrthe diameter of M48 ball
propellants with the experimental data. The expenital data was obtained by collecting
over 100 M48 ball propellants at the end of igmiticartridge firing and taking their
average diameter. The comparisons of calculatetitigadiameter with the experimental
measurement are shown in Fig26 and Fig. 2-27 for two separate experiments. The
calculations match with the experimental data wittiie error limits, which is another

indication of the robustness of ignition cartridgd-model.
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2.4 Summary of the ignition cartridge sub-model

The ballistic processes in the ignition cartridge &ighly non-uniform. The
burning start in the projectile end of ignition talge and it propagates toward the
primer end of the ignition cartridge. The ball petants in the projectile end ignited first
due to earlier and higher mass flow from flash tubthis region. In the beginning of the
combustion process, pressure is highest at thegiilej end of ignition cartridge and it
decreases towards the primer-end. Due to the preseh this pressure gradient, a
pressure wave develops in the ignition cartridgeictv moves from projectile end (high-
pressure end) towards the primer end (low-presendy. The pressure wave starts to
diminish once the vent holes on the ignition cdge open and combustion products start
to discharge from these vent holes. Due to thisipim=non and vigorous burning of ball
propellants in the stagnation region near the priemsl, the pressure in the primer end
becomes highest and it decreases towards the fili@ged. After this, a second pressure
wave travels from primer end (high pressure enajatds the projectile end (low-
pressure end).

The method of characteristics with stagnation bampaonditions proves to be
adequate analysis technique for solving the comaadt combustion problem addressed
in this chapter. The mortar interior ballistic mbdepartially validated by the excellent
agreement obtained between the calculated and meelaglt traces at various axial
locations along the ignition cartridge. The magason for the generation of pressure
waves in the granular bed of the ignition cartridggdue to the non-uniform discharge of

combustion products from the flash tube mountdtietenter of the cartridge.



Chapter 3

APPLICATION OF IGNITION CARTRIDGE SUB-MODEL FOR
PERFORMANCE IMPROVEMENT

The theoretical sub-model and numerical code deeeldor ignition cartridge
performance prediction was used to predict theceféé design changes on the axial
pressure gradients in the tail-boom section oftR@mm mortar propulsion system. In
addition, the ignition cartridge sub-model was alsed to predict the effect of primer

material on the gas-dynamical processes in thétaim section.

3.1 Background

In the existing design of the flash tube, all vieokes on the flash tube were equal
in diameter and were distributed evenly on the twladl. However, the black powder
(BP) pellets are located at the primer-end of thshf tube; such that after ignition, the
combustion products travel from the primer-end talvéne projectile-end of the flash
tube. From the computational study described preshjoin chapter 1, it was concluded
that the pressurization processes at various #ogalions in the flash tube are highly
non-uniform. This observation was also supportedhgyexperimental study conducted
by Moore et al. 49] by using a windowed flash tube test rig, whereais observed that
there was a continuous compression of gaseous gsothward the projectile-end of the
flash tube. The mass discharge rate from a givem Vwle is governed by the

instantaneous local pressure and the dischargeo&itha vent hole by the choked flow
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equation, if the condensed-phase products are denesi to be fully entrained in the
discharging flow and the particle sizes are muclalenthan the vent hole port area.
Therefore, this non-uniformity of local pressureupled with the even distribution of
vent holes (i.e., all vent holes having same diamedn the flash tube outer surface
results in significant differences between theantineous mass discharge rates from the
flash tube at various axial locations.

The tail-boom section contains closely-packed padpellants (called M48) in the
annular region between the flash tube and the ofahe tail boom. This region is called
granular bed. The ball propellants in this granddad are contained in a paper tube,
which fits the inner surface of the tail-boom andcks the vent holes on the surface of
tail-boom until the pressure reaches a threshoftture pressure. The granular bed
section receives the discharge of high-pressure ligti-temperature combustion
products from the flash tube. These combustionymtsdcontain both the gas-phase and
condensed-phase species, which heat the ball profeln the tail-boom section to their
ignition temperature. In chapter 2, it was discdsbat significant axial non-uniformity
in the instantaneous mass discharge rates of cdimbysoducts from the flash tube to
the granular bed results in significant differenceggnition delay time at these locations.
As a consequence, this process generates stroagpmgssure gradients and resulting
pressure waves in the original ignition cartridgjee existence of strong pressure waves
can contribute to higher standard deviations indterall ballistic performance of the
120mm mortar system during firings. Therefore, phienary focus of the work shown in
this chapter is to use the ignition cartridge sulidel to examine that the effect of change

in flash tube vent-hole patterns on the reductiothe strength of pressure waves in the
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ignition cartridge. The predicted results were datéd with the experimental pressure-
time traces. The design modification(s) could alsmrease the reliability and
reproducibility of 120mm mortar systems.

It was also observed that the black powder igmtdiets that are used in the flash
tube produce highly non-repeatable pressure-timeet. Therefore, a substitute called
moisture resistant black powder (MRBPS) was soughtemedy this problem. The
ignition cartridge sub-model was utilized to con®the interior ballistics of the M1020
ignition cartridge with MRBPS as an igniter mateaad the results were compared with
the experimental data. The comparison of two pgtute materials also facilitates
model validation and increases the robustness efctide. Therefore, there are two
specific objectives of the work shown in this cleapt

0] Simulation of interior ballistic processes in theammular bed by using
modified flash tube(s) with various vent-hole patseand the comparison
of these predicted results with the available expental data,

(i) Comparison of the interior ballistic processes le tgranular bed of
M1020 ignition cartridge by using black powder (BB)d moisture
resistant black powder substitute (MRBPS) as twiemint pyrotechnic
materials.

The secondary objective of this chapter is to plytidemonstrate the usefulness of this
model and code as a tool for analysis of interaltistic processes in the 120mm mortar

propulsion system.
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3.2 Effect of vent hole pattern modification on thelash tube

As a part of this study, simulation of ignition tatge combustion behavior was

conducted through a systematic variation of thehflaube vent-hole pattern to achieve a

more uniform venting of combustion products inte tgnition cartridge. The mass flow

rates of discharged gas and condensed-phase pdduet the flash tube vent holes to

the granular bed were deduced from the flash tubensodel, which was integrated with

the ignition cartridge sub-model for the determratof pressurization rates at various

axial locations in the granular bed. In order taraie the effect of vent-hole patterns on

the interior ballistic processes in the ignitiomtddge, five cases were considered:

1.

4.

Original design (baseline or case 0): All vent Bodge equal in diameter and their
location on the flash tube is uniform in both ldndinal and azimuthal directions.
First modification (case 1): The vent holes closettie primer-end are larger in
diameter than those close to the projectile-ence @iameter of each vent hole is
given in Table2-1. This modification increased the total vent-holecarge area by
about 14% in comparison with case 0.

Second modification (case 2): The vent holes ctogée primer-end are even larger
in diameter than those in case 1, but vent holeshi®igh 20 do not change in
diameter. This modification increased the totaltvarle discharge area by 22% in
comparison with the baseline case.

Third modification (case 3): In this case, the vieole diameters of the first twelve

are identical to case 2, while the last eight Jesles are made slightly smaller. This
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modification increased the total vent-hole disckaagea by 19% in comparison with
the baseline case.

5. Final modification (final case): In this case, thiameters of the first four vent holes
were increased significantly, the vent-hole diamsetef subsequent sets decreased
with axial distance and the last eight vent holesraade much smaller than the first
four vent holes. This modification increased thw@ltowent-hole discharge area by
22% in comparison with the baseline case.

The vent-hole diameter variations for all of th@ab cases are shown in TaBld.

Table3-1: Distribution of flash tube vent-hole sizes ativas axial locations

Case No. Vent hole numbers and sizes [in] Total Percentage
discharge increase in
1-4 5-8 9-12 13-16 17-20 Area[in? area from

baseline
Baseline 0.0650 0.0650 0.0650 0.0650 0.0650 0.0664 0
1 0.0730 0.0730 0.0700 0.0650 0.0650 0.0754 14
2 0.0785 0.0760 0.0729 0.0650 0.0650  0.0807 22
3 0.0785 0.0760 0.0729 0.0625 0.0625 0.0787 19
Final 0.0860 0.0810 0.0760 0.0550 0.0550 0.0787 22

3.2.1 Calculated results

In a parallel experimental study conducted by Maairal. p0], a set of pressure-
time traces from the flash tube were obtained fasetine through the final case. The
deduced mass flow rates of the gas-phase combystolucts are shown in Fig3-1 to
3-9 for original flash tube design (baseline or casd¥) 2", 39, and final modifications

of the flash tube, respectively. For each casdashftube vent-hole pattern, five tests
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were conducted with black powder pellets. The prestime traces utilized in this study
were obtained from one of these five tests. Thailkdet procedure for deducing the
gaseous mass flow rates from the flash tube velgshwas previously described in
chapter 2. The deduced gaseous mass flow ratetfrerftash-tube vent holes are shown
only for the first 3 ms since the later event i moportant in the ignition cartridge

combustion event. All traces monotonically deca® taround 4 ms. A statistical analysis
of the 5 tests showed that the total mass flowsratgied as much as 15%, indicating
poor reproducibility of BP pellets. Among all 4 gk tube vent-hole pattern

modifications, the net mass discharged from alk Yehes remained conserved within the

limit of experimental error.
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Figure3-1: Deduced gaseous mass flow rate vs. time traoces fone of the Riraces c
five flash tube tests with the original vent-hobldtern (case 0).
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The deduced gaseous mass flow rates dischargingtfre flash tube vent holes
for the baseline case is shown in B¢l There is significant difference between the
mass discharge rate from port 1 and port 5 locat{@toser to primer- and projectile-
ends, respectively). This difference is most promas in first 1.5 ms of the ballistic
cycle in the flash tube. The deduced gaseous nawgsdtes discharging from the flash
tube vent holes for case 1 modification is showikion 3-2. These mass flow rate-time
traces exhibit a different behavior than the basetiase, due to differences in vent-hole

diameters at five axial locations.
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Figure3-2: Deduced gaseous mass flow rate vs. time traoes éme of the R-races c
five flash tube tests with modified vent-hole pattécase 1).

For the initial rise time (< 1 ms), the hierarcHyneass discharge rates is similar
in nature to that of the baseline tests, though difference in mass discharge rates
between port 5 and port 1 locations is lower tHan haseline flash tube design. This

period is very important as it is during this pdribat hot products from the pyrotechnic
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pellets spread down the flash tube and exit thé veles into the granular propellant bed,
when the flash tube is actually used in an igniteartridge. On an average, the
difference in mass flow rates between port 5 armtl bpressure-gauge locations are 40 +
15% lower than the baseline flash tube design, visi@ significant reduction in the non-

uniformity of the venting process.

In keeping with the enlargement of the vent halles,second modifications to the
flash tube (case 2) were conducted by increasiegotterall vent-hole area to around
22% compared to the baseline case. Similar to tatlds was accomplished by taking
the original M1020 flash tubes and opening up tn&t fl2 vent holes closest to the
primer-end in sets of 4 by using larger drill B#7 (d = 0.0785 inch), #48 (d = 0.0760
inch), and #49 (d = 0.0700 inch), respectively.sltimportant to note that by enlarging
the first 12 vent holes so that the total vent-faokea increased nearly 22%, the mass flow
rate of all 5 measured locations along the fladse tbecame closer, especially in the
initial portion of port 5 and port 1 locations af8 + 15% lower than the baseline flash
tube design, which is an even further reductiorth@ non-uniformity of the venting
process than case 1. These results showed thatt@asing the vent-hole area close to
the primer-end of the flash tube, the local massldirge rates could be increased even
though pressure at these locations were still lothan the port 5 location. This
observation was used for the next two modificatiohthe vent-hole pattern on the flash

tube.
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Figure3-3: Deduced gaseous mass flow rate vs. time traoes éme of the P-t trace$ o
five flash tube tests with modified vent-hole pattécase 2).

For the third modification to the flash tube veptds (case 3), it was decided to
slightly reduce the total flash tube vent hole drean case 2 in order to further reduce
the mass flow rate fromsRocation. To accomplish this, it was determinledt the first
12 vent holes closest to the primer end would hhgesame exit hole diameters as that of
case 2. However, the diameters of the remainingr8 holes near the projectile-end
were decreased by drilling 1/16 inch holes (d ®62%inch). Selection of this drill size
was based on the next smallest drill size fromahginal flash tube vent hole diameter.
The reason for diminishing the vent hole area ig thgion was to try to reduce the mass
flow rate near the end of the flash tube, forcinyengas to discharge via the 12 enlarged
vent holes near the primer-end; thus, increasiagribss flow rate at positiongtRrough

Ps;, and decreasing the mass flow rate at positiqgren® R locations. This modification
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gave a total vent-hole area 19% higher than thelin@scase. Typical deduced mass flow
rate results of case 3 can be seen in3-g}.
With the case 3 design, the overall difference assnflow rates between Bnd

P1 locations is 8k 15% lower than the baseline case. However, itilshbe noted that
the mass flow rate at port 5 is lower than thataat 1 location. Also, the mass flow rates
at B, Ps, and R locations show very similar mass flow rates, imsocases overlapping
one another, which is a significant improvement pared to the baseline case. Even
though the BP pellets have poor reproducibility g behavior, the vent hole
modification for case 3 indeed produced a nearlrlapping mass discharge rates from

different vent holes along the flash tube.
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Figure3-4: Deduced gaseous mass flow rate vs. time traoes éme of the R-traces c
five flash tube tests with modified vent-hole pattécase 3).

In order to examine the effect of modified flashdudesigns on the pressurization

processes in the M48 granular bed, the flash tabelts were coupled with the ignition
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cartridge sub-model for each of the three modifocest. The interior ballistic processes in
the granular bed with original flash tube desiguehbeen discussed in chapter 2 in great
detail. The calculated pressure-time traces at fhort locations (Port O through Port 4)
on the tail-boom of the ignition cartridge with theginal flash tube design are shown in
Fig.2-10. There is noticeable difference in the rise timevatious pressure-gage port
locations with the original flash tube design. Atrip4 location, B starts to rise before
port O location, B This behavior is attributed to stronger dischasgégniter products
from the flash tube at,POnce start to rise,ofhas higher pressurization rate than that of
P4. This happens due to the generation of a presgave from R propagating towards
Po. Along with this pressure wave propagation, gad particles are driven towards. P
At a pressure around 41 MPa (6,000 psia), theeesbght drop in pressure at all port
locations due to the rupture of the propellant amr tube wall and subsequent
discharge of combustion products to the surroursdthgough the vent holes on the tail-
boom. Thereafter, pressure in the granular bedskasing due to continued burning. The
calculated results show that the pressure &ales over at fbefore reaching the peak at
around 140 MPa (20,000 psia). Finally, pressurettraces at all port locations come
closer and gradually converge during the later plodishe pressure decay.

The pressure-traces with first modification arevehan Fig.3-5 and they exhibit
a similar behavior to that of original flash tubes@yn. However, it can be observed that
during the initial rise time, the differences irepsure at various port locations are smaller
than the case with original flash tube design. Thleulated pressure-time traces fof 2

flash-tube vent-hole pattern modification (i.e s&&) are shown in Fi§-6.
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Figure3-5. Computed pressutigne traces for a M1020 ignition cartridge at vae
pressure-gage port locations with a modified flaghe vent-hole pattern (case 1).
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Figure3-6: Computed pressure-time traces for M1020 ignitiartridge at five pressure
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These results show even further reduction of tlierénces in pressure-time traces at

various port locations than the previous two cakesg the initial rise time.
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Figure3-7. Computed pressutigne traces for a M1020 ignition cartridge at -
pressure-gage port locations with a modified flagie vent-hole pattern (case 3).

In the case with "8 modification of the flash tube, the pressure-tinages at each
of the five port locations almost overlap with eaather during the initial rise time as
shown in Fig3-7. This trend can be explained on the basis of ook@nition in the
granular bed, which strongly depends on the seguand magnitude of mass discharge
events from the flash tube into the granular bed.

In the interior ballistic studies, it is useful $bow the existence and intensity of
pressure-wave phenomenon by plottihl§ E Ps-Pp) versus time. The calculated time
variations ofAP for all four cases in the granular bed are showhig. 3-8. The AP-t

behavior is very similar between the original flagsbhe design and the first modification
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(case 1). However, a reduction in the amplitudeABf can be observed with the first
modification of the vent-hole pattern on the flasbe. The second modification (i.e.,
case 2 with larger vent holes close to the prinmet}@esults in even greater reduction in
the amplitude ofAP between the projectile and primer ends of tha@iamncartridge. The

case 3 results show even lower yet significantqunesdifference during the initial period

(t< 1.2 ms) of the ballistic cycle that the previousdifications.
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Figure3-8: A comparison of predicted time variations AP between projectile a
primer ends in the granular for various flash-tubget-hole patterns.

With the above three modifications, the differemeethe mass discharge rates
relatively reduced from the original design butsiill stayed significant. In order to

remedy that, a final modification was made withraeager reduction in the diameters of
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vent holes no. 13-20. The diameters of vent hold2 Wwere significantly made larger.

The deduced mass discharge rates at five axididosaare shown in Fig-9.
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Figure3-9: Deduced gaseous mass flow rate vs. time traoes éme of the R-traces c
five flash tube tests with modified vent-hole pattéfinal case).

A comparison of the integrated mass dischargediffierence between vent hole

20 (near the projectile-end) and vent hole 1 (learprimer-end) is shown in Fig-10.

It is very clear that the final modification resuin a noticeable reduction in the mass
discharge rates into the M48 granular bed betwleenwo closed ends, especially during
the first 1 ms of the discharging process. The graage difference of each of these
modifications from the original flash tube desidpaged upon the overall mass difference
between vent hole 20 (near the projectile-end)\aamd hole 1 (near the primer-end) was
40+15%, 73 +15%, 81%, and 130% from the originasHil tube design for thé' 12", 3¢,

and final modifications, respectively.
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Figure3-10 Difference in deduced mass flow rate from flashetudth five BP pellet
between projectile and primer-ends for various sreié designs.

The computed pressure-time traces in the M48 gaarhgéd with the modified
flash tube with final modification are shown in F&gll. The pressure differences
between port 17-port 0 and port 16-port 1 with tiewee shown in Fig3-12. The

comparison with experimental data is shown in Bi@d3and Fig.3-14, respectively.
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91

Pressure, P, psia

8000
6000

4000

N
o
o
o

-2000

-4000
-6000

-8000 [

140

N
o

i -— AP=P_-P
17 0
- AP=P_-P
16 1
L A
£
. e NP
\\'_j\\ ! B,/
B i !
!
0.5 1 1.5
Time, t [ms]

o
edIN ‘d ‘ainssaid

R
o

Figure3-12 Comparison of numericdlP (R-P,)-time traces and with modifiedjnition
cartridge modified ignition cartridge [final modiftion].

Pressure, P [psia]

8000
6000
4000

2000

-2000 |
-4000
-6000

-8000 L

0

L L L A B A B
Experimental Data

—MVMC-01

-— MVMC-02
J - MvMC-04
';’.-,\ """ MVMC-05
¥ [——Numerical |

| 40

o

Time, t [ms]

N
o

[edIN] 4 ‘einssalid

Figure3-13 Comparison of experimental and numeri® (Re-P;)-time traces andP

(P17Po)-time traces with modified ignition cartridge [Ehmodification].




92

8000 1+
I Experimental Data
6000 L — MVMC-01 i 40
I ) -— MVMC-02
4000 A
] i - MVMC04 |
< - -\ W ulalals MVMC-05 ] @
< |
g 2000 [ [——Numerical | é
o F | o
0 1 0
o i TR 02
S [ <
ﬁ -2000 | I
T i . 1-20=
-4000 | )
I i 1
-6000 - i -1 -40
[ ' ’
8000 Lo oo e
0 0.5 1 1.5 2
Time, t [ms]
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The differences in the magnitudes of mass flowsrdtem the flash tube vent
holes at various axial locations are significamégluced with the stepwise modifications
of the flash tube, thereby reducing the differeniceshe time of onset of ignition at
various axial locations in the granular bed. Thimomenon results in more uniform
ignition and pressurization of the granular bedcése of the final modification, near
isochronic ignition of granular propellants occuradl interior axial locations, which
results in more uniform mass discharge from flaghetinto the granular bed. As a
results, there is uniform pressurization during ¢aely phase of the ballistic event, thus
the pressure gradient in the granular bed is sotislly reduced during this period. This

physical phenomenon is narrated by Bd.5.
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Figure3-15 Narration of physical processes in the flash tube

However, in the later period of the ballistic cycepressure difference can still be
observed, though it is significantly lower than tbeginal flash-tube design. The
generation of pressure difference during this lptease is caused by the presence of two
stagnation regions close to the primer and prdgeetids, where, there are no nearby vent
holes on the tail-boom to discharge the combuspimducts. The burned products can
only leave these regions by moving towards the haiddction of the granular bed where
vent holes are accessible, thereby resulting ingdmeeration of a weak pressure wave

during the later phase of the combustion events plocess is shown in Fig-16.

\_' No vent holes No vent holes
} |

Combustion products

o — moving towards middle
section
I N
Primer-end Case 6 vent-hole size
Stagnatlon zone distribution

Figure3-16 Explanation of pressure-time traces behaviofinal modification of th
flash tube.
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The significant reduction in the strength of presswaves can be further
understood by a comparison of the net dischargadestsed-phase mass at various axial
locations in the M48 granular bed. The net discbdrgondensed-phase mass at the j
port location on the flash tube is defined by EBql)

tfinal
M, = j m; (1) dt (Eq.3.1)
0
The net discharged condensed-phase mass at falrl@sations with the original flash
tube design is shown in Fig-17 and with the flash tube with final modificationgdeown
in Fig.3-18 It is useful to note that the accumulated massooflensed-phase products

discharging from different vent holes on the finabdification flash tube is much closer

in their magnitudes than the baseline case.
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Figure3-17. Computed accumulated condensed-phase mass fesm flibe at arious
ports (original design).
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Figure3-18 Computed accumulated condensed-phase mass frafhfiedoflash tubeat
various ports (final modification).

3.2.2 Discussion of vent-hole pattern analysis

Although the existing flash tube design of the MAdgnition cartridge has a
uniformly distributed vent-hole pattern on its flaibe with equal diameters, there is a
significant difference in their pressure-time trgceesulting in substantially different
mass discharge rates of the combustion produats thhe black powder pellets.

» These results show that by changing the vent-hakteqm on the flash tube
containing five black powder pellets, more unifomass discharge rates from

these vent holes can be obtained.



96

* Numerical solution from the ignition cartridge soimdel show that the axial
pressure gradient in the granular bed of an M1@f0tion cartridge can be
significantly reduced by modifying the vent-holettpan on the flash tube.
Physically, this can be interpreted as the attaminoé more uniform ignition
(with isochronic ignition as the optimum design) tine granular bed, thus
resulting in more uniform combustion of the solidllbpropellants. The
reproducibility and reliability of the mortar systecan be improved with the

substantially reduced pressure wave phenomena.

3.3 Effect of pyrotechnic materials in the flash tbe

There were two specific reasons to simulate thecefff pyrotechnic materials in
the flash tube on the pressurization processeBeinghition cartridge: 1) the flash tube
shows a very high variability in overall mass dede rates with the black powder (BP)
igniter pellet, which was thought to be cause fa higher variation in performance of
the 120mm mortar system, 2) to examine the robastieé the ignition cartridge sub-
model by comparing the calculated pressure-timeegravith a different type of igniter
pyrotechnic material in the flash tube to the meagpressure-time traces.

Black powder is an important energetic material duse several military
applications. However, there are certain limitiniga@acteristics that make it highly
unreliable material. The black powder absorbs mogsaind its charcoal content varies
from lot to lot, which alters its burning rate belta, thereby resulting in the non-

repeatability of the flash tube pressurization psses. In addition, the BP combustion
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produces sulfur dioxide that is toxic by inhalatiand is an acid rain precursor. The
alternative pyrotechnic material is known as mosstesistance black powder substitute
(MRBPS). The principle constituent of MRBPS is ssiam nitrate (KN@), which is
same as the black powder. This material is charaodlsulfur free and phenolphthalein
is used as a replacement fuel for charcoal. Thedfeaxplosion of MRBPS (798 kcal/g)

is comparable to that of black powder (810 kcalldnfe pressure exponents are somewhat

higher for MRBPS (>>0.33) than BP (=0.20).

3.3.1 Flash tube results

The deduced mass flow rates from the original flagke design are shown in
Fig. 3-1 with the black powder pellets for one experiméite deduced mass flow rates
from the original flash tube design for another exxpent are shown in Fi@-5. A
comparison of these two plots shows that therepeas reproducibility among the flash
tube performance with black powder between the separate tests, even though these
BP pellets used for all testing were from the séiakeh. The other noticeable features of
these results are that there are multiple pealgasfphase mass flow rates and highest
mass flow rate is at the farthest axial locatiamfrthe black powder pellets and lowest at

the closest axial location.
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Figure3-19 Deduced gaseous mass flow rate vs. time traces & set of R-traces c
five flash tube tests with the original vent-hobldtprn.

The deduced mass flow rates from the original flagke design are shown in
Fig. 3-20with MRBPS pellets for one experiment. The comimusévent inside the flash
tube differs significantly between the two types mfrotechnic pellets. Firstly, the
magnitudes of gaseous mass discharge rates froffasiiietube into the granular bed are
significantly higher with the MRBPS pellets. Seclyna single peak of gas-phase mass
flow rates can be observed with the MRBPS pelleter@as the black powder show
multiple peaks. However, the combustion productSIBBPS pellets contained a higher

percentage of gas-phase products than the blaclgrgeellets.
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Figure3-20 Deduced gaseous mass flow rate vs. time traces the flash tubevith
MRBPS pellets.

3.3.2 Ignition cartridge results

These gas-phase mass flow rates were deducedtimflfash tube sub-model and
then used in the granular bed sub-model for thero®hation of pressurization rates at
various axial locations in the granular propellbet. The calculated pressure-time traces
are shown in corresponding to BP and MRBPS pelketspectively. In both figures,
pressure at port 4 location, Btarts to rise before port 1 location. This bebavs
attributed to stronger discharge of igniter producom the flash tube neay B cation.
The pressure rise starts earlier when MRBPS peflegsused in comparison with BP

pellets due to earlier and higher rate of masshdige. In general, the pressure wave
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behavior in the granular bed using MRBPS pelleth@initiator is similar to those using
BP pellets as initiator. However, the pressure sisrts earlier when MRBPS pellets are
used in comparison with BP pellets due to earlt lsigher rate of mass discharge.

The computational results from the numerical code aompared with
experimental results for the case with MRBPS pellas shown in Fig-21 The
predicted pressure-time traces match the pressaxe Wwhenomenon very closely for
both BP and MRBPS cases as well as the peak peessmagnitude and rise time. It is
useful to note that the predicted maximum pressarairred in the axial location (x =
0.11 cm) significantly below the;Rransducer location, which was not measured in the
earlier set of experiments. After the numericaliisswere known, a pressure transducer
port called i was added to the tail-boom section. The recordetdtiaces were indeed
much higher than the,;R traces as predicted by the computer code. Ttper@nental
confirmation further verifies the predictability tfe numerical code. Similar to BP case,
pressure at port 4 location, Btarts to rise before port 1 location. This expental

confirmation further verifies the predictability tife numerical code.
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Figure3-21 Computed P-t traces in ignition cartridge usMBBPS pellets in the fla:
tube.

The combustion event starts earlier with MRBPSeteland shows more rapid
pressurization rate. In both cases, pressure tsdwmsed significant axial pressure wave
phenomena, which were simulated reasonably clo8eetmeasured pressure-time traces.
The predicted pressure in the igniter-end matchegt well with the experimental data

that was obtained later, thus affirming the religbof the numerical code.
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3.4 Summary

This work demonstrates the successful implememtatiothe ignition cartridge
sub-model and numerical code for prediction of tignicombustion, flame spreading,
and pressurization processes in the ignition cy#risection of the 120mm mortar
propulsion system. The computational results weniglly validated by experimental
data from ignition cartridge tests. The computedults show the pressure wave
generation, propagation, and wave-reflection initign cartridge with a number of
modified flash tubes and two different igniter miatks in the flash tube. In essence, the

theoretical model and numerical code developedidoition cartridge performance
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prediction proves to be a useful predictive toalioTmain goals were accomplished with

the work described here:

1. The model was successfully tested and validateld avihumber of design changes in
the ignition cartridge, thus showing the robustreddhiis numerical code;

2. It was demonstrated that a numerical code can ld s provide guidance for
performance improvement of complex engineeringesystas shown by the in-depth

analysis of modified flash tube vent-hole pattanalgsis.



Chapter 4

FORMULATION OF MORTAR TUBE COMBUSTION SUB-MODEL

The mortar tube section is the most complex path@f120mm mortar system. It
contains a projectile payload, up to four horseshklbaped charge increments (called
M234) containing granular propellants (called M4dhd a fin region. A mathematical
model for the simulation of the ignition and comtus of the M47 granular propellants
and the resulting two-phase interior ballistic meses was developed. Heating, ignition,
flame spreading, combustion, and chamber pressionzarocesses in the mortar tube in
the mortar tube section were coupled with the teamisgas dynamic behavior of hot
product gas and particles that are dischargedtireanortar tube section from the vent
holes of the tail-boom section. The mass, momenand, energy equations for the gas-
phase, and the mass, momentum, and heat equatiotie fgranular propellants with the

appropriate boundary and initial conditions arecdbsd in this chapter.

4.1 Assumptions

There are four basic assumptions considered inmbear tube sub-model in
order to render the model solvable within the sooipihne present work. They are listed
below:

1. The combustible charge increment cases contairaligsbaped propellant grains

are considered to have negligible mechanical @sist to the hot plume jets
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issuing from the vent holes on the tail-boom sextiafter the rupture of the
yellow colored propellant cup.

2. The heat of reaction of the combustible cases ler ¢harge increments is
considered to be negligibly small. Any heat ofctean due to the burning of the
combustible cases can be added at a later stageatsary.

3. The flow rate associated with the blow-by phenomanthe obturating ring is
considered to be negligibly small.

4. Due to the relatively short firing time, the heasd from the combustion products

to the mortar tube wall and the projectile is cdesed to be negligible.

4.1.1 Governing equations for the mortar tube gasyhamics

The mass, momentum, and energy equations for th@lyase, and the mass and
momentum equations for the granular propellantsiandar to those described earlier for
the tail-boom section. However, the physical preessin the mortar tube section are
transient and three-dimensional in nature. Theeefaa three dimensional (3-D)
computational model can capture the combustion\behanore efficiently due to the
complexity of geometry in this case. The major aopuns are listed below for the
convenience. The governing equations for this systee as follows. The gas-phase mass

conservation equation is given by E4.1] as:

0
2. orf o)==,

where, 2, = A p rc+a,f(rimy, +ta,f (r)r'ng tt

(Eq.4.1)
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The mass conservation equation for the solid pfiasegranular propellants) is given by

Eq. @.2):

M +0(1-9) U, )=,

: . (Eq.4.2
where, 2, =-A o r¢—a, f(r)my, nta, f(r)mg,

The parameteny is introduced to account for the presence of heilg at an axial
location. It is equal to 1 if a tail-boom vent hadelocated on the surface of this element,
and 0 otherwise since there is no direct souree feym the tail-boom boundary surface.

_ |1 if vent hole presel
¢ |0 otherwise

The parametera, is similar to the parameterr,and it also accounts for the
presence of vent hole at an axial location. Itdsia to 1 if a tail-boom vent hole is

located on the surface of this element, and O wfilsersince there is no direct source term

from the tail-boom boundary surface.

a, )
O otherwise

_{1 if vent hole presel
The function f (r) represents the radial distribution function fopasition of

ejected gas and patrticle from the tail-boom. Sdaha radial distance from the surface of

tail-boom sectionr increases, value of (r) may decrease slightly depending upon the

strength of the ejected gas and particle from #ilebbom vent hole. For the current

version of calculations, the radial dependency amswered uniform. Thus, the
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functionf (r) has been treated as a constant. For exampleré #re five radial intervals
in the mortar tube then the value dfr) would be 1/5.

The source terms in the above two equations comtaee terms; the first term
represents gas generation due to burning of M4rudga propellant, the second term
represents the gas-generation due to burning of ¢fid8ular propellants that are injected
into the mortar tube from tail-boom, and the thiedm represents the gas-phase mass
addition from the tail-boom. Similarly, the sourtem in the condensed-phase mass
conservation equation consists of the three tethes first term represents condensed-
phase mass loss due to burning of M47 granularglieogs, the second term represents
the condensed-phase mass loss due to burning of dgvi@&ular propellants that are
injected into the mortar tube from tail-boom, ahd third term represents the condensed-
phase mass addition from the tail-boom. In the abeguations, subscriptl® means

“tail-boom” and ‘tb-in” means incoming from the tail boom. In E4.3}, p, is the

density of M48 ball propellants that are incomingnfi the tail-boom section any is the
burning rate of particles ejected from tail-boontts®48 ball propellants calculated
based on the local pressure. The téfy,;,in Eq. @.1) and Eq.4.2) Eq. @.3) is given

as following:
I’nb—in = ( &bpp rb[ Plocaljl)tb—in (Eq- 4-3)

The gas-phase momentum equations are given byl as:
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0pgcU, o0
ot

lg :agf(r)mg,tbu g,i+Asbrbor§(U pi_U gD_AgD v
+agf(r)mb,tb—inc(u p,i_Ug,i)_CA&nran,i

ppcU, U, +U@cP =1
where,

(Eq.4.9)

Even though the viscous stress effects betweergdlsemolecules are present,
their effect to the overall momentum balance isdveld to be negligible in comparison
with the drag force between the solid particles gasiphase. The latter is approximated
by an empirical correlation; thus, there is no needetain the higher order derivative
terms in the governing momentum equations. Itripdrtant to note that the total drag
force between the gas and particle ph&kess equal to the sum of the drag force due to
the presence of relative velocity between the gasparticle phases and the drag force
induced by change of flow area due to particle semation in a given plane. The latter
effect can also be interpreted as the porosityignad.e. Eq.4.5).

P
Dt:Dv+Dp:Dv_KD¢ (Eq.4.9

The particle-phase momentum equations are derivatdd similar manner as the gas-

phase and it is shown in Ed. ).
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0
5P (1=9)6U, [+ 0py(1-9)¢U U = D¢ (1-¢)7 ;=1
I =a,f(r)m U, -a,f (r)m,,tb_ej(u ,—U g)
where,
+ &CDt - &brbppcu p
(Eq.4.6)
%(Q)
1,(Q)=| ()
%(Q)
The energy equation for gas-phase is given by £a). (
a(p‘”“%)m[q u,)+0dePu,)=5
= +0degeU, )+ DacPy, ) =,
where,
%y = Ay0ytikC o (Ti= To) = (A= A) h( T= T)e+a () mguh, -
+agf (r)mb,tb—ejcp’-r% (T‘f_Tref)_ ACU pDDt o
0p
a E a C(AEU p |:IDt)tb—ej

In the above equations, is the total energy per unit mass and it is defiog Eq. 4.8) as

following:

1 1
qse+§uguug=q(T— Tef)+—2Uguug (Eq.4.9)

In the given model, the constant-pressure spehiiat has been taken to be a known
function of pressure and temperature as in its eotional form. The energy equation for
spherical particles in the charge increment woddséme as that used for the tail-boom

section. The surface temperature equation for #iepoopellants is given by E4.9).
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Unlike ignition cartridge, there is no condenseadg#h coating on the M47 ball
propellants and therefore, the ball propellanthémortar tube are heated by convection
heat transfer. The combustion products of M48 piapts do not contain any liquid-

phase products.

o EA T
= +U, [T =
ot {Grp0 -0 h[ﬂ
r k
PO P (Eq.4.9
oh
+ s (%—T +U, DDT)
[6rpo -0 +5} t
o Kp

4.2 Initial conditions

4.2.1 Initial condition for velocity

In the mortar tube, both the gas-phase and soliiclgs are stationary at= 0,
which is defined as the time before the primer watiated. Therefore, the initial
conditions for both gas-phase velocity and parti@kcity are given by Eg4(10 and

Eq. @.1)) as following:

0 (Eq.4.10
(x,t=0)=0 (Eq.4.12)
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4.2.2 Initial condition for porosity

The initial condition for porosity is given by tip@sitioning of charge increments
in the mortar tube. The charge increments are kaitee shaped. There are four such
charge increments in the mortar tube and they legmatively positionedseeFig. 4-1).
Therefore, the initial condition for porosity refte this arrangement and it is given by
Eq. @.12 and Eq.4.13:

Forz <z<z,andz,<z<z,

1 ifo<9<@ (Eq.4.12

empt

@ o Otherwise

P(t=0,x) = {
Forz,<z<z, andz, <z<z

¢(t:0,X): {%,CI if Osgs(ﬂ_gempt) (Eq.4.13
1 otherwise

where, ¢, is the initial porosity in the mortar tube chaigerements andg,,, is the

half angle between the ends of the horse-shoe dhdmege increments. If the loading
of charge increments is changed from alternateligmexd arrangement then the above

initial condition must be modified to reflect thetaal loading condition.
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Figure4-1: Fin region of the 120mm mortar projectile.

4.2.3 Initial condition for temperature and pressue

In the mortar tube, the temperature and pressure &, which is defined as the

time before the primer was actuated are given hyEf4) and Eq. 4.15:

amb (Eq.4.19

T(xt=0)=T,
=0)=Fun (Eq.4.19

P(x,t=0)

In the above expressions, subscrgainb represents the ambient or pre-specified

conditions.
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4.3 Boundary conditions

In general, solid wall boundary conditions are uggdmost of the variables in
radial, axial, and tangential directions. The bamdconditions for the gas-phase
velocity and condensed-phase velocity were complé&ese boundary conditions were

defined based on the geometry of the mortar tublepanjectile.

4.3.1 On ignition cartridge surface in the vent ha region

The boundary conditions on the projectile surface das-phase velocity and

particle velocity are given by E4.06 and Eq. 4.17) as:

Ug,r (r:ri,e,z,t):Ug-tb‘in
Oa=1 (Eq4.16
U p.r (r:ri 8z ,t): U p,tb=in
ou
p.r = =
ar |(zr=561) O Oa=0 (Eq.4.17)

Due to very short duration of the ballistic cyctethe mortar tube, the energy transfer
through tail-boom outer surface, projectile surfeaned mortar tube surface are assumed
to be negligible. Therefore, the solid wall bounydemndition was applied for gas density,
porosity, and gas-phase temperature. This meanshinaradients of these variables in
the direction of surface normal were taken as zenp)ying that there is no mass or

energy transport through the wall.
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4.3.2 In the fin region

Fin region is the part of tail-boom where fins &veated as shown in Fig-1. If
fins are assigned a numbe) {rom 1 to 8 then the boundary conditions for gas-phase

and particle at the surface of fin are given by @dL8 as:

Uge (r,g:(n—l)ﬂ/4,2 ,t) B

for z,< z< 2 (Eq.4.19

(r ,92(n—1)n/4,z ,t) B

U, s

The above boundary conditions imply that the “agefaangential velocity of numerous
particles at the fin surface is zero, even thougttigles can bounce at the wall upon

impact. Similarly, gas cannot penetrate the firffesie, the averagdy =0.

4.3.3 The z-direction boundary conditions

Since the primer end of mortar tube is closed,etfean not be any penetration
through the wall. Therefore, the average gas-plakeity in z-direction will be zero at
the primer-end location. The gas-phase at theratig ring location moves along the
projectile. Therefore, the gas-phase velocity-direction at this axial location is same as

the projectile velocity. These boundary conditians given by Eq.4.19 as:

(z=0,r 6 1)

g,z
(Eq.4.19

(z: %. r,e,t) _VProjectiIe

U

9,z
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The solid wall boundary condition was applied fasglensity, porosity, and gas-phase
temperature. This means that the gradients of thasables in the direction of surface
normal were taken as zero, implying that thereoisnass or energy transport through the

walls.

4.4 Summary of mortar tube sub-model

The interior ballistic processes in the mortar tgbetion are modeled by the governing
equations, initial conditions, and the boundarydittons described in this chapter. The
governing equations are strongly coupled. In otddrave direct temporal derivatives of
major unknowns, those equations have been simglifiesing mathematical
manipulations. In order to solve this system obiampns, an efficient numerical
technique is necessary. Two approaches for soltnmg system of equations were
considered; one by using a finite element methdMFbased numerical approach and
another by using a finite volume method based Rmmsolver approach. The results
obtained from these two different approaches asugess related to them are described in

following chapters.



Chapter 5

FORMULATION OF PROJECTILE DYNAMICS SUB-MODEL

5.1 Basic assumptions

Several basic assumptions have been considerddsimrnalysis as a part of the

3D Mortar Interior Ballistics (3D-MIB) model in oed to render the equations solvable

within the scope of the present work. These astiomgpare listed below:

1.

Particles striking the projectile surface have taasollision with the surface,
which means that particles striking the surfacerrretwith the same velocity
magnitude; thus they do not loose kinetic energg eesult of collision.

The solid surface of projectile is considered tonba-permeable except through
vent holes on the fin-boom section.

The pressure force acting on the projectile is igadlue to gas-phase pressure.
Since the porosity will be very close to 1, theceexerted on projectile surface
by condensed-phase particles is assumed to begitdgliwith respect to gas-
phase pressure force.

The shear stress on projectile surface due to myrdyer is neglected.

There are no body forces except gravity actingrofeptile.
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5.2 Net force and pressure distribution

The net force on the projectile and the force iistron on projectile surface in
all three dimensions are formulated in this sectidre vector sum of all axial forces (due
to gas-pressure, tube-projectile wall friction, agdvity) acting on the projectile is
defined as net rate of change of momentum of thggtile in axial direction. Change of
projectile momentum is partly due to ejection oftjadly burned ball propellant and the
gas jet through the vent holes on fin-boom section.

d

a(M PrOJU Proj) = I:Pressure_ I:Friction -M Prog COS:B (Eq- 5-1)

In Eqg. 6.1), Fis the angle of elevation of the mortar tube apds gravitational
acceleration anip;is the instantaneous mass of the projectile. Th@imaneous mass

of projectile is given by Eq5(2) as:

pd

vh

t
M ppoj (t) = M i (t =0) - 1J.(rh|'thg + mTthJk dt (Eq.5.2
0

]
1

HereNy is the total number of vent holes on the fin-bo@ttion. The term$'anvhg and

Mrgyncare the rate of gas-phase and condensed-phasdlavesg out of the vent holes

on the tail-boom section.

The gas pressure is computed from the gas-phasem@tion equations and it is
always perpendicular to the surface. Thereforeforee on projectile due to gas pressure
is vector sum of the product of pressure and afadl the control volume attached to the

projectile surface. Force on projectile surface-direction due to gas-phase is given by

Eq. 6.3:
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Fresse= ¢ PNIBinadA

Proj Eq.5.
AProj ( q 3)
The areaAis a vector and it is defined by E§.4) as following:
dA Proj = dAPrOIn (Eq 54)

wherea is the local angle between the z-axis and tangmepto the projectile surface

as shown in Figh-1 andn is the outward normal vector to local projectileface.

p Z-axis

Figure5-1: Pressure acting on a local projectile surfacngtea.

Therefore, the projectile dynamics is governed Qy&5):

d

a( Proj Prol) Cﬁ Pnisina dA Proj Frriction ~ Prog coyB (Eq.5.95

roj
The control volumes attached to the projectileaefare shown as grey colored regions
in Fig.5-2

In general, force is a vector with three components, &, andz directions. For

the desired operation of projectile, the scalar safnforce component in- and &
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directions should be zero when summed over theeestirface area of projectile exposed

to the high-pressure region. Therefore,
2F. =0 (E.5.6
]
2.Fe=0 (Eq.5.7
]

The detailed vibrational and rotational motiongte# projectile payload were not treated

in the present analysis due to the scope limitation

F Friction
<+

—High Pressure Region

5 Projectile Surface

U projectile

F Gravity
‘_

» Z-axis

Figure5-2: Cartoon of a portion of projeatilsurface profile and control volumes attache¢
the surface.

5.3 Mesh generation with the moving projectile

In order to simplify the numerical procedure in dlamg the moving projectile case, it
was proposed that the finite difference grid in tlkgion between projectile and the

mortar tube moves with the projectile. Therefdhes solution for pressure from gas-
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phase conservation equations can be used inbEg).for solving the projectile velocity.

It is shown in Fig5-3 and Fig.5-4 that the finite difference grid in the region beeme
projectile and the mortar tube moves along theegptdg at the same velocity as the
projectile and thus these control volumes do nange while the projectile is in motion.
The space generated between the base of the pogud the closed-end of the mortar
tube is occupied by several control volumes, wlaighexpanded along the axial direction
at the rate governed by the instantaneous pragesgtlocity. The alternative to the
cylindrical grid is to use triangular grid in ordeEr accommodate the curved surface of

the projectile.

Upro]ecléile
..... E—’._._.-._.-

Figure5-3: Schematic of projectile motion and axial expansid the gagphase regic
near the base of the projectile in an earlier phase

Upréjeclile
_._._.__é__+._._._._ _____________

Figure5-4: Schematic of projectile motion and axial expansid the gagphase regic
near the base of the projectile at a later time.
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5.4 Summary of projectile dynamics sub-model
The above analysis is to determine the motion ofegtile body under dynamic loading
conditions. The instantaneous velocity of the prile was used to determine the grid

size in axial direction.



Chapter 6

FINITE ELEMENT SOLUTION FOR MORTAR TUBE SUB-MODEL

Theoretically, the finite element method shoulceofjreater accuracy and higher
flexibility in simulating the flow-field distributins in a complex geometr@][ A finite
element based numerical scheme can also provernwhesuitable for coupling the flow
solution with the structural mechanics of the moggstems. Keeping these issues in
mind, an attempt to formulate a finite-element blasemerical scheme for the two-phase
compressible flow was initiated, which is descriliethis chapter. The governing partial
differential equations were converted into a setiregar algebraic equations using the
Taylor-Galerkin method based on finite element gsial This numerical method was
applied on the mortar tube sub-model to give tHatem for the stationary mortar tube
condition when the projectile motion was not alloweThe purpose of this effort was to
predict the pressure-time traces at various looatio the mortar tube. It was also to
predict the pressure wave phenomena, and timetiossaof flow property distributions

in the combustion zone.

6.1 Finite element model for two-phase governing eqtions

The selected numerical method is described below:
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6.1.1 Galerkin method

In order to solve the set of governing equationthiwian element, the Galerkin
method has been selected. This method is a weigbsatlal method, which converts the
set of governing equations into an integral forrhe weighted residual method sets the
residual to zero relative to a weighting functiomhe residual represents the difference
between exact solution and approximate or numerscddition. For the differential
equationLu=P, whereL is operating om, the exact solution needs to satisfy governing
equation at every point in space. Ufis an approximate solution and it introduces an

errore(x)called the residual, then the residual is givefeQy 6.1
e(¥)=Lu-P (Eq.6.1)

The approximate methods revolve around settingréisedual relative to a weighting

function {'to zero. Therefore, the Ed.1) becomes Eq6(2):

JVZ[QLU—P)dV:O (Eq.6.2

where,Q, is the domain of a particular element. In theeBah method, the weighting
functions are chosen from the basis functions depto construct the unknown variable
in the equation. Weighing functions can be a lineambination of basis (shape)

functions. Lett be represented by E®.9):

u =ZQG, where,G are basis functions (usuailpétions of local coordinate: (Eq.6.3)
i=1

Weighting functions are then represented by Bdl(

7=Y46 (Eq.6.9
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where the coefficient, are arbitrary except for the requirement that satisfy

homogeneous boundary conditions wheie prescribed.

6.1.2 Leap-Frog Taylor-Galerkin finite element scheme

Let us consider a scalar convection equation showiqg. 6.5) :

ou oJu
—=—a— Eq.6.
ot 1) (Ea.6.9

The time derivative can be written as follows udieap-frog discretization:

un+l _ un—l Ou n
~  C —a= Eq.6.
2/t ox (Fa.6.9

As it is well known that use of center-differencethod to discretized the left-hand side
of Eq. 6.6) produces a method which is second-order accurdtme [11] [12]. For the
case whera = constant and Courant numbegk 1, the leap-frog method is marginally
stable. Using a standard Galerkin discretizatiomhioe on a uniform mesh, the method
becomes fourth-order accurate in space, but reniadleed second-order accurate in the
time. The EQ.§.6) represents a generalized leap-frog discretizatibthe convection

equation. The associated Galerkin equation is goyeBq. 6.7).

=n+l _ =n-1) _ a_U
J;Z (u '-T 1) ZaAtaX

}dxz 0 (Eq.6.7)

The above formulation offers the basis for leagHi@ylor-Galerkin (LFTG) finite

element schemes, which is used in this numerioallsition.
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6.1.3 Reduction of governing equations using LFTG ethod

The leap-frog finite difference scheme for marchingime using Taylor series
expansion gives second-order accuracy in time.Gélerkin method gives fourth-order
accuracy in space. Therefore, the difference egustfor the above set of governing

equations can be derived as following:

Porosity
+1_ n-1 n
il = a)eu, | +ayf
A (E.69
s .6.
where, £, =~
LS
Pressure
Pn+1 _ Pn—l 1 IOCV pCp Q "
—=| ——U_ O¢P——"0 U, |J—oO01- U +=2 Eq.6.9
! [Cgc odey,)-2e0t-ge, + 52| (Ea.69
where,
_P pPC, T
= -1 Eq.6.1
n P[ P (Eq.6.10
and
_ 1] pR Pz, | p°@RT(0C
Q, =z{?(zg -hz,)+ cp(zl+—;J—T(a—t"+ U, D]]cpﬂ (Eq.6.1)
Gas-velocity

Ug+l _ Ug—l _ 1
2At ( ,0¢()

} (Eq.6.12)
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Particle-vel ocity

g Ao (M‘D‘”}

n

_IP

(Eq.6.13

p

Gas-temperature
=T 1 n " "
Ton i [(4‘1 ,T)[ + &0 U, ) + (00 (a-g)u, ) -le} (Eq.6.14
where,
_P'RT p s _PPRT(0c,
Qy=——(2,-hZ))+Z,+—5,— +U_[c Eq.6.1
9 P2 ( ) pp P2 at g p ( q a
_ PPgR( pc,T _ ( ,oRTj
= -1 G = p| 1 6.
¢ P [ b $EpP P (Eq.6.19
Particle Surface Temperature
Tn+1 Tps 0 N 52
Twnmw +NJ(Ug-U T + Wl ¥
Nn n n Nn n
+ 3;:2 WDEUJQ\ -ET',?U?,EDM“ (Eq.6.17)
{p (1-g)0w,[ -0, =0
1

where,
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N, = S (Eq.6.19

Z
w

1]

1

|

and

Q= Nl(Tps - TO) + Nz( T- Tps) + %19 (Eq.6.19

6.1.4 Weight functions

Several weight functions for different equations defined below:

I: weight function for porosity equation

I": weight function for pressure equation

W: {W31, W,, Wz}: weight function for gas-phase velocity equation
N { A1, N2, A3} weight function for condensed-phase velocity &fipn
©: weight function for gas-phase temperature eqoatio

®: weight function for particle surface temperatageiation
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6.1.5 Formulated finite element equations

Using the Galerkin method described earlier, theegang equations can be
transformed into integral form from their partialfférential equation form using
weighting functions for minimizing the error oveaah element. Mathematically, it can
be written in following form of equations. To sinfglthe notation, the overhead bar as
mentioned before has not been used here even thalighe quantities solved are

numerical solutions, which are not the exact sohsi

Porosity
g g 1 ol gy =
n ————--0Mi- ul| -Q ([dV.=0 .0.
A; L oA c Eﬂ ¢7)C b 1| e (Eq.6.20
Pressure
Pn+1_Pn—1 n 0C, n
o +(ugcmcp)‘ +ETDE(C¢JQ)]
ir ] ] ) dV, =0 (Eq.6.2)
+[%DE(1—§0)UF,] %
Gas-velocity

W, EE[U;Z;tUg_l} ( 1 : [(p@Ug D]]Ug)‘n +(0P)

" J”Have:o (Eq.6.22
PK)




Particle-vel ocity

(1-¢)cu,mu, )

n+l _pn-1
iAi Up2Atup 1 2, [ eve=0
-0l |+ &) o] -2
Gas-temperature
i@ T 1 (QUQDDT)‘ +(5ZD[@¢U9)) dv,=0
2At n n ¢
&l +p0f1-9)u, ]| -2
Particle Surface Temperature
Tn+1_ n;l . ] ] N
TR, (U -Un)mT]
J@z n‘tz Ut myg" + dv,=0
p n npn n n
_ % Ut g + gln (1-¢)ow,| -Q,

The shape functions used in the above equatiordescribed in Appendix A.
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(Eq.6.23

(Eq.6.29

(Eq.6.25
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6.1.6 The Ritz-Galerkin finite element models

The unknown variables within each element are puated by a linear
distribution. This approximation becomes increalsirgccurate as more elements are
considered in the model. Shape functions are intted to implement this linear
interpolation. If both the unknown variable and tu®rdinate are interpolated using the
same shape function within the element, thendtlked isoparameteric formulation. This
is also a weak-form finite element model. In thisrky isoparameteric formulation has

been adopted. The interpolation functions for majgknowns are given as following:

(o(x,t):i/]m(x)qd“(t):ﬂ(p (Eq.6.26
P(xt)= 2 um(x)P()=v"P (€627
Ug,i(x,t):i“lam,i(x)ugfi(t):afug’i (Eq.6.29
Up,i(x,t):iﬁm’i(x)ugi(t):BiTUp,i (Eq.6.29
g =3 a0 T =T (£q.630
o0 )= 0T, () =07T, (E0.6.21

The vectors(e,P,U,; ,U,, , T, T,.) in Eq. 6.26-Eq. (6.31) contain the nodal values of the

respective quantities in each element and simileglgtors (i,y,a,,p;,x.¢) contain the

nodal values of shape functions corresponding ¢ontlajor unknowns in each element.
Since isoparameteric formulation is used, the wefginctions will be same as the

interpolation functions. Therefore,



131

Im=A (Eq.6.32
W, =a (Eq.6.33
I'=vy (Eq.6.39
A =B, (Eq.6.35
0=y (Eq.6.36
Y=¢ (Eq.6.37)

The vectors(I,LT,W,, A,,0,®) in Eq. 6.32-Eq. 6.37) contain the nodal values of the
respective quantities in each element and simileelgtors (1,y,0;,B,,%,6) contain the

nodal shape functions corresponding to the majé&nowns in each element. Using
leap-frog Taylor-Galerkin scheme for the time dafive and substituting the weak

formulation in Egs. (4.14)- (4.18), following eqigats are obtained:

Porosity

[J'M»TdVeJ((p”ﬂ—(p )+2At[jMSTU;},ax d\é}P
e (Eq.6.39

—2At[j k(l—kT(p”)%dVeJUBJ - 20t[ 2Q,"dV,= 0
Qe o



Pressure
w%{u%ip]
A;‘" +'0,;nq’n[ﬂ(p”%ug‘j+a}un]%ﬂ
PG (- M"’n)gg? Us.i o
! BTUP j ?;(T ¢" d
Gas-velocity

[J.aiafd\é](ugfil—ugil)+2At[J.aiaiTUg”'.
Qe

TTn T
+20 jaiRXTft:"Pa"’dv pr
v'P 0%

TTn+ T
_ZA{I - TP”X?(ZH

£,y AV, ]I ;=0

Particle-vel ocity

n aBI
TUpJa

Cor & oA’
Mt{gj);ﬁi (ﬂp“) (1 AT n) ox dv, }P 2Atuepp

[jmmd%]AJUw?—u;ﬂ+2A{jﬂ
Qe

g

da'
9% 4v lu
0%, \éJ g

VP

T
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(Eq.6.39

(Eq.6.40



Gas-temperature
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Tun

o

+2/

—
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6.1.7 Mesh generation

The finite element code mesh was created usingrtbeh generation software

package, “Gambit”, developed and distributed byektulnc. The geometry of the
120mm mortar system was also generated using tiiiseage. The dimensions were
taken using the drawing of 120mm mortar system thiede dimensions were used to
create a geometry shown in F&33. In the calculations shown here, only a 1/8 seatif
the 120mm mortar system was simulated becausedbisn could represent the entire
space between the tail-boom and the mortar tuldgs Section is shown as the meshed
region in Fig.6-3. The four regions are identified in this geometsyi) fin-blade region,
i) vent-hole region, iii) conical region, and ipyojectile-payload region. The vent-hole
region is the uniform cylindrical section of igwoiti cartridge where all vent holes are
located. The ignition cartridge has a conical secihead of this cylindrical region,
which does not have any vent holes and connectstiét projectile-payload region. This
section is called conical region. The section wreegortion of the explosive charge is
loaded is called the projectile-payload region.isTik the section before the obturating
ring in the mortar system.

There are several mesh generation software packegdable for finite element
mesh generation and these were considered fornugesi work. These include FEAP,
Triangulation, DISTMESH, FEMLAB, ANSYS, and Gambithese software packages
are all very good options. However, in this wolle tgeometry is meshed using mesh
generation software Gambit, developed by Fluent ®ambit mesh generation program

was used, since it was readily available to usutjinothe Mechanical Engineering
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departmental license at PSU. In the current woskahedral, wedge and tetrahedral
elements were used. The general shape and nodgofscdor these two types of
elements are shown in Fig:4. A hexahedral element with uniformly distributed

propellant grains is shown in Fig-2.

4 Node tetrahedral element 5 Node tetrahedral element
8 Node brick element 20 Node brick element

Figure6-1: Several types of elements and node locations.
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Figure6-2: Hexahedral element with uniform distribution @flpropellants.

There are total 28 vent holes on the cylindricalfasie of the tail-boom and
combustion products (both in gas-phase and condeisase) are discharged from these
vent holes into the mortar tube section. The rflagsof these discharges was computed
from the ignition cartridge sub-model, which wapleined in chapter 2. In the mortar
tube sub-model, these outputs were used for theagdscondensed-phase velocity
boundary conditions, and source terms in the gongrequations. The vent-hole region
has 14 axial divisions, 5 radial divisions, andngar divisions for a 1/8 portion of the
full cross-section of the mortar projectile. Hentteere are a total of 350 elements in the
1/8 portion of the vent-hole region of mortar tubEhe axial meshing ensures that each
axial division in 1/8 portion received mass flovscharge from tail-boom equivalent of
25% of a vent hole. The fin-blade region, coniaion, and the projectile-payload
region are divided in 5 axial, 5 radial, and 5 dagdivisions each for the 1/8 portion of

the projectile. Therefore, the 1/8 section of mhertar projectile is meshed into total of
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725 elements. These meshed sections are displayegl. 6-4 for oblique and y-z views
respectively. The hexahedral finite element gedsgetire used for fin region and vent-
hole region. However, both the conical region amel projectile region are converging
regions; therefore a combination of hexahedral efemand wedge elements has been
utilized for these regions. The wedge finite elats similar to the hexahedral element
but all faces are not necessarily perpendiculare@ach other. The finite element
formulation does not change for wedge elementstia@in lays one of the advantages

of finite element method for this complex geometry.
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Vent-hole regions

Conical and ven
hole regions

Projectile-payload,
conical, & vent-hol
regions

Fin-blade region

(©) (d)
Figure6-3. Finite element mesh generated in a section oftandube: (a) venhole

region meshed, (b) velle and conical regions meshed, (c) all regionshee exce|
fin-blade region, (d) all regions meshed.



139

Projectlle-payload Reglon

Prajectile-payload Region

o

Conical Region
Conical Region

Axial Distance, Z (M) se—_g

Auxial Distance, z (m)

Vent hale Region Vent hole Region |8

b

Fin-blade Reglon | i
Fin-blade Reglon i

(a) Isometric View (b) y-z view

Figure6-4 A section of mortar tube region with finite elerhemesh.

6.1.8 Computed results and discussions

The solution of mortar tube sub-model starts waltcalation of mass fluxes of
gas-phase and condensed-phase combustion produtishe ignition cartridge into the

vent hole region of mortar tube. In addition, thendgeter of M48 particles that are ejected
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from the ignition cartridge through the vent hodesl the porosity of the two-phase flow

from ignition cartridge into the mortar tube arealsed as input to the mortar tube sub-
model. The computed mass fluxes of combustion misdyboth gas-phase and
condensed-phase) from the ignition cartridge sudehwere further converted into per
unit volume for each element in the mortar tubetisec This was done because the
volume of ignition cartridge is different than thielume of elements in the mortar tube.

These volumetric mass flow rates into the morthetsection at various axial locations

are shown in Fige-5.

510° —
2
T
410° | 4
o —e—2=0.0753 m
0 '-‘ =-=8=-7=0.0834 m
E 310 P --— 7=0.1078 m
2 ' -a—7-0.1323 m
© ——7=0.1486 m
g --@--7=0.1567 m
3
2 210
k= I
()]
w0
©
s I
110°
0 100 | | | | | | | | h -

Time, t'(ms)

Figure6-5. Computed mass flow rates from thdom into mortar tube at various a
locations.
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The computed pressure-time traces at 5 represeniatial locations are shown
in Fig.6-6. The non-uniform axial variation of the dischaggitombustion products from
the ignition cartridge causes the sequential presgion event in the mortar tube,
resulting in non-uniform pressurization in the naortube. Since the uppermost vent-
holes at z = 15.67 cm started discharging first, M7 ball propellants in the charge
increment located at this axial position are ighitearlier than the other charge

increments.

10000 - J
S 1000 |
%) C
e L
o
g
>
[2]

4
- v .
100 1 o4 ——z=00m I Fin-blade i
r Region ]
==6--2=0.0427 m ] ]
-— 7201567 m Vent-hole Region 1
—-— 7=-0.1995m Conical Region
——7=0.3195m - Projectile-payload
Region
10\\\\\\\\\\\\\\\\\\\\\\\\
0 0.5 1 1.5 2 25
Time, t' (ms)

Figure6-6. Computed P-t traces in the mortar tube at varéoial locations.

Following the rapid combustion of M47 granular pelignt grains at this location
(i.e, z=15.67 cm), the pressure-waves are geneaaigdhey propagate in both directions
toward fin-blade and conical regions (located a ¥9.95 cm and z = 31.95 cm) and

projectile-payload region (located at z = 0.0 crd an= 4.27 cm), which do not contain
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any propellant at the beginning. The pressurizgbimtesses in these regions occur later;
the pressure in the fin-blade region rises fastan tthe other regions and later exceeds
those at other regions. This phenomenon occurs tduthe downward motion of

propellant grains, which were driven by the pressuave.

10000 - ]
S 1000 - |
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e —e—7=0.0427 m
100 --5--2=0.0590 m E
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-2— 7=0.1078 m
——7=0.1323 m
--4--7=0.1567 m
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0 0.5 1 15 2 2.5
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Figure6-7: Computed P-t traces in the vent-hole region oftamdube at various axi
locations.

The detailed pressure-time traces in the vent-redeon are shown in Fi§-7 ,
which shows that the pressurization event starts=al5.67 cm and continues toward the
projectile-payload region, starting last at z =74@n, although the time delay between
the pressurization processes at these various laxialions in the vent-hole region are

less than the time delay between vent-hole regimmhaher regions. This observation is
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consistent with the postulation that the order aff édombustion products discharge from

the ignition cartridge governs the initiation oepsurization in the mortar tube.
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25

Figure6-8. Computed P-t traces in the projectile-payloadar@f mortar tubeat variou

axial locations.

The detailed pressure-time traces in the projeptioad region and the conical

region are shown in Fi¢-8 and Fig.6-9. In addition to the sequential pressurization,

these results also show a pressure-wave phenomehah means that the location for

the highest pressure alternates between variousl @asitions. The pressure-wave

phenomenon is a typical characteristic of ballisetavior in such systems.
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Figure6-9: Computed R-traces in the conical region of mortar tube atiotss axia
locations.

The computed pressure-time traces in the fin-btaden are shown in Fig-10.
In general, the calculated results at the fin-blegtgion are in the same peak pressure
range and rise time of a measured pressure-time tiatained from the base area of an

actual mortar firing performed at Yuma Proving GrduAZ as shown in Figs-11
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Figure6-11 Measured P-t traces of projectile firing (P~18,@8ig, rise time ~ 2.6 m).
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The calculated temperature-time traces are showhign6-12 These traces
indicate the earlier temperature rise in the venéhregion since the discharge of
combustion products from the tail-boom takes platethis area. Also the charge
increments are located in this section therefdre,gas-mixture temperature rises earlier
in this region in comparison with other regionswkeer, the rate of temperature rise is
faster in the fin-blade region once it starts tegsurize quickly. The axial temperature
variations in the fin-blade region are relativemadl as shown by the results given in
Fig.6-13 This is partly caused by the relatively unifodistribution of M47 ball

propellants that enter in this region with the fia& from the vent-hole region.
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Figure6-12 Computed temperature-t traces in the mortar atlvarious axial locations.
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Figure6-13 Computed temperature-t traces in the fin-bladg@reof mortar tube.

The calculated propellant surface temperature-tnaees are shown in Fig-14
From this figure, one can see that the propellaaing are ignited first in the upper
portion of the vent-hole region and then the flaspeeads downwards to the fin-blade
region. This behavior is similar to that inside th#-boom section due early discharge of
hot combustion products out of the vent holes atuphpermost axial location in the vent-
hole region near the projectile end. The computedl gas velocity-time traces for
various axial locations in the mortar projectilsmkhowed that the combustion products

flow downward from vent-hole region to fin-bladegien and upward into the conical
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and projectile-payload regions. In each of theggons, there are oscillations in the axial
gas-velocity component due to localized axial presgradients. The oscillations are

most pronounced in the fin-blade region due to éigiressure gradients.
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Figure6-14 Computed particle surface temperature-t tracéeermortar tubat variou
axial locations.

The calculated linear regression rate of granutapglants in the mortar tube
section is shown in Fig-15 Even though there are limited variations in tiegnitude
of the burning rates at various axial locationg, ¢glnanular propellant near the fin-blade
region rises to a higher level than those in theotocations in the vent-hole region in
the first millisecond interval of the ballistic ewe The burning rate was then taken over

by those near the conical region in the later peabthe event. This behavior is dictated
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by the pressure wave phenomena in the vent-holerred the mortar tube as shown in

Fig.6-10
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Figure6-15 Computed burn rate-t trace in the vent-hole negid the mortar tubel
various axial locations.

The pressure wave phenomena in the mortar tubdudter illustrated in the
computed solution by the expansion of the red-ealaegion from the top-row of the
vent holes towards both upward and downward doastin Fig.6-16. It can be clearly
seen from these plots that pressure wave is straageards the fin-blade region than the
projectile-payload region. This is due to the bnghof propellant grains in the charge

increments that are located unevenly in the loveetign of the vent-hole region.
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Figure6-17. Computed pressure contours in the mortar tubar&us time instances.
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Figure6-18 Computed pressure contours in the mortar tubaraus time instances.
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Figure6-19 Computed pressure contours in the mortar tubaraus time instances.
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6.2 Remarks on calculated results from mortar tubesub-model

This work demonstrates the successful developmeiat 8D theoretical model
and implementation of a numerical code for predictof ignition/combustion, flame
spreading, and pressurization processes in botigtiigon cartridge and the mortar tube
sections of the 120mm mortar propulsion systemreefioe onset of projectile motion.
The computational results are partially validatgcekperimental data from both ignition
cartridge and mortar tests. The computed resultsvdime pressure wave generation,
propagation, and wave-reflection in both ignitiartadge and mortar tube sections. The
pressure wave in the ignition cartridge is mainlyedto the uneven discharge of
combustion products from the flash tube. The diggdhaf combustion products from the
tail-boom vent-holes also occurs in the same semgpias the flash tube. The non-uniform
burning in the ignition cartridge combined with theeven loading of M47 propellant
grains in the mortar tube can result in a strorgggure-wave generation in the mortar.
The overall combustion process in the existing igamétion is strongly influenced by the
non-uniformity of mass and energy discharge fromstltube. The fluid state may jump
across shock waves or contact surfaces, and ithaag discontinuous derivatives across

any characteristic.



Chapter 7

MORTAR TUBE SUB MODEL SOLUTION WITH TWO-PHASE
APPROXIMATE RIEMANN SOLVER

In the development and implementation of the fp@idtion of this work, i.e., the
mortar tube sub-model, a high-resolution Godun@etghock-capturing approach was
used where the discretization is done directly be tntegral formulation of the
conservation laws. All the schemes available heagesthe following key ingredients:

1. A linearized approximate Riemann Solver to compiuidy non-linear wave
interactions and to directly provide upwinding pedges in the scheme,

2. An entropy fix based on Harten-Heyman method,

3. Avan Leer flux limiter for total variation diminlisng,

4. A three dimensional wave propagation method,

5. An explicit four stage fourth order Runge-Kutta ¢édmarching scheme for time-
integration of the source terms.

The projectile motion is accounted for by using thesh generation scheme
proposed in chapter 5. The calculated is verifigdihie exact Riemann solution. The
computed solutions are validated extensively byitket experimental data obtained from

instrumented mortar simulator firings.
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7.1 General approach

The non-linear coupled conservation equations énntlortar tube sub-model pose
an initial value problem with discontinuous init@dnditions for conservative variables.
For example, the initial conditions for condenséadge mass are discontinuous in the
axial and radial directions (based on the porodistribution). Similarly, the initial
conditions for gas-phase velocity and condensedegtelocity components in radial and
tangential directions are also discontinuous oviinthe non-uniform flow of combustion
products from the ignition cartridge into the mortabe, as shown by Egt.Q) and
Eq. @.2) in chapter 4. This situation poses a very comgieblem for obtaining the
numerical solution of the sub-model. Based on tlasservations, it can be concluded
that the conservation equations for the mortar sud®emodel possess characteristics of
the Riemann problem, although the conservation tempsaare two-phase and contain
non-homogeneity in form of the source terms. Fitss$, important to address the problem
of solving the conservation equations without therse terms.

A Riemann problem is an initial value problem, whin its simplest form is
defined by a single linear advection equation antdial condition with a single

discontinuity (as shown in Fig-1).
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Figure7-1: lllustration of the initial data for the Riemaproblem. At the initial time tt
data consists of two constant states separatediisgantinuity ai = 0.

Physically, the Riemann problem can be interpreied flow field in a tube of
infinite length, containing two gases separated loyaphragm ak =0, which has a gas

with densityu, at the left hand side and another gas of densjtsit the right hand side,

where L and R mean left and right of the discontintespectively. The rupture of the
diaphragm generates a nearly centered wave sybtnoduld consist of a shock wave a
contact discontinuity, and a rarefaction wave. Amnynerical method used to solve the
Riemann problem should be capable of addressinfptheation of flow structure such as
shock formation, contact discontinuities, and racgbns. The accurate representation of
these flow discontinuities determines the overaltumacy of such numerical method.
Therefore, an ingenious approach to solve a systemmyperbolic equations that are
initial value problems would be to account for fteav field structure through the non-
linear superposition of the solutions of the loB&mann problems. This approach was

first proposed by Godunow§].
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7.2 Godunov methods

The conservation equation for a one-dimensionaleggized initial boundary

value problem (IVBP) is shown in Eq.0):

au+6f(u)

ot 0Xx (Ea.7.0

In the above equationf is the flux vector and is the conservative variable vector. The
choice of flux f(u):au reproduces the linear advection equation showheean

Fig. 7-1. A conservative scheme for the scalar conservddenEg. {.1) is a numerical

method of the following form given by Ed/.9):

n+ n At
u™ =y +&[ f, - f%] (Eq.7.2

The numerical intercell fluxt.

i+Y%

is given by Eq.7.3):

n

frog = fra (U ool ) (Eq.7.3
In Eq. (7.3, I, and I, are two non-negative integers. It can be proved thoice of 0

and 1 for these two numbers gives a stable solutothe linear advection equation.

Thus, the intercell numerical flux can be represdity the following Eq.1.4):

fio = T (qn’qul) (Eq.7.9
Godunov's first-order upwind method is a conseveatnethod of the form Eq7(Q),

where the intercell numerical fluxe$

., are computed by using solutions of local

Riemann problems. A basic assumption of the methadhdat at a given time levelthe

data has a piece-wise constant distribution, agtdebin Fig.7-2.
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Figure7-2: Piece-wise constant distribution of data at tleveln [71].

The data at time level may be seen as pairs of constant sta(le?su'll) separated by a

discontinuity at the intercell boundary,,,. Then, one can define a local Riemann
problem by Eq.1.5):

ppE: 24,21 (Y)
ot 0X

_ _ _Jju' ifx<0
c uld=u0d= {5

(Eq.7.5

This local Riemann problem may be solved analyyicaf desired. Thus, at a

given time leveln, at each intercell boundary,,,, we have the local Riemann problem
RP(ui”,q'll) with initial data(ui”,q"ﬂ). The time-averaged intercell fluxefs,, and f_,
are given as Eq7(6) and Eq. 7.7):
1 At
0

1% . .
ﬁ%:ZEf[Mx%JHm (EQ.7.7)
0
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The integrandf [ G(x,t)] at each cell interface depends on the exact salut(x t) of

the Riemann problem along tiv@xis (local coordinates); this is given by Ef.8 and

Eq. (7.9):

=)

(X0 ) = U, (0) (Eq.7.9

e

The intercell fluxesf,,,, and f,_,, become Eq.4.10 and Eq. 7.11):

fioe = f (U (0)) (Eq.7.10

fi, = (u, (0)) (Eq.7.11)
In general, the Godunov intercell numerical fluxepresented as following Eq..12):

i, = T (Ul (0)) (Eq.7.12
whereu’,, is the exact solution’,,, (x/t) of the Riemann problen’RP(ui”,qﬂl)evaluated

at x/t=0, i.e. the solution is evaluated along the intérbeundary, which coincides

with the t-axis in the local frame of the Riemann problemusoh. The structure of

Riemann solution is shown in Fig-3.
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Figure7-3: Structure of Riemann problem solution for thepktshree dmensional Eule
equationsT1].

7.3 Issues with Gudonov’'s method

The method of Godunov and its high-order extensreqgsiire the solution of the
Riemann problem, which is an iterative proceduieusl the computational cost of such
numerical method for practical problems is extrgmeigh and poses a hurdle in
successful implementation of Gudonov’'s method. @seie of computational cost is
further complicated by equations of state of coogiBd algebraic form or by the
complexity of the particular system of equationsngesolved, or both. Thus, a non-
iterative approach was introduced by approximatetisms of the Riemann problem.
There are essentially two ways of extracting apipnate information from the solution
of the Riemann problem to be used in Godunov-typethods: 1) to find an
approximation to the numerical fllemployed in the numerical method, directly or@) t
find anapproximation to a stataend then evaluate the physical flux function & #tate.
The latter route was used in this work. The apprnae Riemann solvers do not need an

iteration process. An approximate solution for sitete is used to evaluate the Godunov
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flux at cell boundaries. Some of the approximatipresented are exceedingly simple but
not accurate enough to produce robust numericahadst This difficulty is resolved by
designing hybrid schemes that combine various aqpete solvers in and adaptive

fashion.

7.4 Approximate Riemann solver: Roe-Pike method

The generalized conservation equations for theetdmmensional problem can be
expressed in a in a very compact notation by dajira column vecto® of conserved
variables and flux vectors @), G(Q), H(Q) in the three directions, respectively. This

form is shown in Eq.4.13.

a_Q+6F(Q) +6G(Q) ,OH Q)
ot 0x oy 0z

[l

(Q) (Eq.7.13

Recall that the conserved variables in the moudbe tsub-model are gas-phase mass,
condensed-phase mass, gas-phase momentum, congéasedmomentum, and total
energy. The conservation equations for these Vagabere discussed in chapter 4 with
considerable details. For convenience, they areated here and the conservation
equation for gas-phase mass is shown by E@4), for condensed-phase mass is shown
by Eq. (.19, for gas-phase momentum is shown EqlL§), for condensed-phase mass is

shown Eq.T7.17), and for gas-phase energy is shown EdLj.



0(ogx)

ot

6[(1— ¢) 'OPC:|

ot

0pgU, o0

ot

0
E[,Op(l—qo)(’Up:|+D,0p(l—¢J)CU p U p_DC(l_@Tp:I P

d(pee)
ot

+ 0oy, ) =2,

+U [ﬁ(l—@ppCU p] =2,

pecU, U, +U@P =1

+0ogey, ) +0{gPy, ) =2,

163
(Eq.7.14
(Eq.7.19
(Eq.7.16
(Eq.7.17)

(Eq.7.18

Therefore, the column vector Q consisting of covseévariables is shown in Ed..19.

L)
1l
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0,
Qs
q,
Os
Qs
q,
Os
G

P
(1-9) pys
P&y,
Py,
puy,,

(Eq.7.19

The flux vectorsF (Q)in x-direction, G (Q) in y-direction andH (Q) in the z-directions

are shown by Eqs7(20- (7.22, respectively.
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(Eq.7.20

(Eq.7.21)

(Eq.7.22
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The source term vector is shown by E§2@. The components of source term vector

were defined in chapter 2.
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The direct approximation to the flux vect(ﬁf(Q) is obtained by introducing the

Jacobian of the flux functions, which is defined Hy. (7.24). This approach was

proposed by Roép] and Roe and Pikéf|:

(Eq.7.249

Using the chain rule on the conservation equatitims, Eq. .13 can be written as

following:

0 0 0 0Q _ _
ARG8T +c(Q) 52 ==(0) (Eq.729

In order to obtain the Jacobian matnix(Q)by using the Eq.1.249), the flux vector

F(Q)is expressed in terms of conserved variables vesteshown in Eq7(26):
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By using the EQq.1.24), the Jacobian matrixA(Q)is obtained and it is shown in

Eq. (7.27):
0 0 1 0 0 0O 0 0]
0 0 0 1 0 0 O 0 O
1Y, U, 2 _
> _a _Ugl 0 (3—y)Ugl PUQB _Wgz 0 0O 0 vy
9
VU, 0 U, U, 0 0 0 0 0
U,U, 0 U, 0 U, 0O 0 0 0
A=l0 uz-c, 0 0 0 2, o o o | (Eq7.27
0 YU, 0 0 0 U, U, 0 0
0 U,u, 0 0 0 u, 0 U, 0
4 3
_Ug mJgU% é_aw;l
0 JUU, UU. 0 0 0 W
_c;UgJl +yUg W, g %9 q
L Y 2 i
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The Eigenvalues of matriR (Q) are shown in Eq7(28):

A=U, —c,
A=A =A,=U,
A =U, +c,
' EqQ.7.2
) =U, —c, (Eq.7.29
A =A=U,
A =U, *C,
The corresponding right eigenvectors/b(Q) are shown in Eq.7(29:
K=K, K, K,K ,K ;K K K K |
[1 1 0 0 1 0 0 0
U,-c, U, 0 0 Ug+c, O 0 00
. U, 1 0 U 0 0 00
U, u, o 1 U 0 0 00
’ ’ (Eq.7.29
=|H-U,c, %U,LU, U, U, H+Uc, O 0 00
0 0 0 0 0 1 1 0 ¢
0 0 0 0 0 u,-c, U,+c, 0 0
0 0 0 0 O u, U, 01
0 0 0 0 0 U, U, 10

Similarly, the Jacobian matrices of flux vectd® and H are defined as follows:

Eq. (7.30 and Eq. 7.3)).

0G

B(Q)= aéQ) (Eq.7.30
oH

c(Q)= ac(gQ) (Eq.7.31)

Again, the flux vectoiG (Q) andH (Q) are expressed in terms of variable vector

Qas shown in Eq.7(32 and Eq. 7.33.
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Thus, the Jacobian matrices B and C are shown by7Ef) and Eq. (.35,

respectively.
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(Eq.7.3H
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7.4.1 Roe’s method

Roe’s approach replaces the Jacobian matrices i7E2%, Eg. /.30 and

Eq. (/.3) by constant Jacobian matrices, which are funstiof two data states;
represented by(Q,_,Qg). For instance, the Jacobian matix(Q)is replaced by a
constantJacobian matrixA (Q) that is a function of data s¢@ ,Q). The original

Riemann problem is thus replaced byagproximate linearized Riemann problem with

constant coefficientsvhich can be solved directly, shown by E30):

Q210192450199 +E(0)192 - =
o FAQ)G +B(R) T +C(Q)57=E(Q)
Q, ifx<0 (Eq.7.39

Q(xt) :{QR if x>0

The approximatematrix K(Q) is known as Roe-averaged matrix. The determinaifon

Roe’s Jacobian matriXA (Q)requires that this matrix satisfy three importaondition,
i.e, hyperbolicity of the system, consistency wilik exact Jacobian, and continuity with
the property jump, ie.,F(Q )-F(Qg)=A(Q.,-Qg). These conditions make the
construction of matrixA (Q) for a generalized problem computationally expesskor

the specific case of Euler equations, this issue msgolved by defining a parameter

vector such that both the vectors of conservedabdws Q and the flux vector

F(Q)could be expressed in termsés shown by Eq7(37):

Q=Q(U) F=F(Q) (Eq.7.37)
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Roe’s parameter vector is defined in E§30Q.

[

(1-¢)p¢

s Uy
UE%: (19U, |7|w (Eq.7.38
Vo e
A, | |
Jw ||
Py (1—(0)CU% -

q

pwce

The parameter vector has the property that evanpooent of variable vect@

and every component flux matr(Q) in Eq. (.26 is a quadratic in the compone@s
For instanceq, = U7 and g, = u,u,, etc. This property is also valid for the compdseof
the G andH fluxes for the full three-dimensional equationkeTparameter vector is then
used to express the jump in conserved variabd3=Q, -Q and flux vectors
AF =F(Q,)-F(Qg)in terms of the changAU = U, - U, via two matricesX andY .
This is shown by Eq.7(39 and Eq. 7.40:

AQ = XAU (Eq.7.39

AF =YAU (Eq.7.40
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Using the above two equations, the Roe-averagedixmiat produced as shown in
Eq. (7.4)).

AF =(YX7)AQ =AM (EqQ.7.47)
Once the matrixA is known, its eigenvaluels and the right eigenvector€' can be

determined. The intercell Godunov fluk’, can be determined by usin@{‘%(o),

which is the solution to the local Riemann problasndescribed in an earlier section. In

order to determind’.,, (0), the data differencdQ =Q, - Q,, is projected on the right

i+%
eigenvectors of matrixA by using Eq.7.42, where@ =& (QL,QR)are called wave

strengths and can be deduced for a specific probleasing the Roe-average matéx.
AQ=Q, -Qg :Zﬁilzi (Eq.7.42
i=1

Thus, the solutioQ!,,, (0)is given by Eq.7.43:

Q.. (0)=1or (Eq.7.43

n

By using the definition of intercell Godunov fluxié solution of(_QH%(O) given by

Eq. (7.43, it can be concluded that the intercell Goduntwx fF}, is given by

Eq. (7.49):.
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L =1 =D GAK (Eq.7.44)

7.4.2 Roe-Pike method

In Roe-Pike method, the philosophy for calculatidrthe intercell Godunov flux
is same as that of Roe’s method. However, it is whmsimpler technique due to
elimination of the Roe-averaged matri from the calculation procedure. Instead of
calculating the matrixA by using the procedure described by Roe’s mettaod,
approximate Jacobian matri® is used, which is evaluated at a reference ¥ate
vector consisting of the primary variables. Theserage primitive variables are also
used to determine the eigenvalues, right eigenv®cod wave strengths needed in
Eq. (7/.44. The components of vectW are known as Roe averaged primitive variables.
Usually, evaluation of the Roe-averaged quantisedone by using gas densigy as a
parameter. Since the mortar tube sub-model is tras@ flow with variable volume, a
new parameter was defined. In place of density;pj@se mass was used as a primitive

variable are given by Eq7 @5:

= Py (Eq.7.49

3
I
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For the case considered in this work, the Roe-geserasalues are given by a
number of equations. The average density, gasdtgla@ctor, enthalpy, porosity,
condensed-phase velocity vector, speed of sourgh$iphase, and speed of sound in

solid particles are given by Eq3.46)- (7.52), respectively.

N OLA P+ Pt
o+ ot
o _ quU L + pR¢RU R
N TN (Eq.7.4)
H :\/MHL +\)pR¢RH R
NEY RN

- _paa +\ ot
¢_

p= (Eq.7.49

, WhereH =¢ + Pp (Eq.7.48

(Eq.7.49
NEX RN
~ pL(q_Up,L + PV o R 1
0 = _ Eq.7.5
" nalee py(1-9) (£6-7:°9
&, =7(A-%0,0,) (Eq.7.51)
¢, = b & (Eq.7.52
7

7.5 Entropy condition and entropy fix

The admissible discontinuities in the weak solutanthe linearized Riemann
problem represented by the speed of such discati¢i®g ; must obey two conditions,
which are known as the Rankine-Hugoniot conditiod antropy jump condition (also

known as the Lax entropy condition). These are rgibg Eq. 7.53 and Eq. (.54,

respectively. (For details, please see Appendix E.)
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F(QR)_F(QL):SI(QR_QL) (Eq.7.53
A (QL) >3 >4 (QR) (Eq.7.59

Roe-Pike method utilizes the weak solution of Inesd Riemann problem at the
boundary of each cell. These Riemann solutionsisbi$ discontinuous jumps only,
which are a good approximation for contact discanties and shocks, in that the
discontinuous character of the wave is corredhoalgh the size of the jump may not be
correctly approximated by the linearized solutiBiarefaction waves, on the other hand,
carry a continuous change in flow variables, andirae increases, they tend to spread;
that is spatial gradients tend to decay. Quiterlsie¢hen, the linearized approximation via
discontinuous jumps is grossly incorrect. In a pcat computational set up however, it
is only in the case in which the rarefaction wawdransonic or sonic where linearized
approximations encounter difficulties; these shgwinuthe form of unphysical, entropy
violating discontinuous waves, sometimes calledefeation shocks. Presence of
rarefaction shock violates the Lax entropy conditio the Roe-Pike technique. Roe’s
solver can be modified so as to avoid entropy vViegpsolutions. This is usually referred
to as entropy fix. Harten and HymaR5] suggested an entropy fix for Roe’s method,
which has widespread use. Other ways of corre¢tiegscheme have been discussed by
Roe and Piked6], Roe B0], Sweby [/3], and Dubois and Mehimarld], amongst

others. A Harten-Hyman entropy fix was utilizedtake the solution admissible.
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7.6 Flux limiter

The Roe-Pike scheme described so far is first oadeurate scheme. A higher
order scheme could give higher resolution to thecathtinuities but it also exhibits
spurious oscillations around discontinuities. Thebpem of spurious oscillations in the
vicinity of high gradients is depicted in the sketif Fig.7-4, where the full line denotes
the exact solution and the dotted line denotesntimaerical solution obtained by some
linear method of second or higher order of accurf@dy. Different methods produce
different patterns for the oscillatory profile. Fexample, the Lax-Wendroff method
(second order accurate) will produce spurious laghs behind the wave, whereas the
Warming-Beam method (second order accurate) wiltipce spurious oscillations ahead
of the wave. This is related to the form of thallag term in the local truncation error of

the method.

Mumerical solution

Exact solution

Figure7-4: lllustration of the numerical phenomenon of spus oscillations near hi
gradients T1].
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Thus, a middle ground to retain the stability oé teolution (known as total
variation diminishing or TVD) and get higher resadan was proposed by HarteRq by
using flux limiters with the first order scheme.ighs obtained by replacing the right

eigenvectors by a corrected right eigenvectorhaws in Eq. 7.55:
RP=o(gP)K ” (Eq.7.55

The term@°is a measure of the smoothness of the solutios. determined by

considering the ratio of wave strengtisin upwind direction as shown in Eq..$6):

a’/aP A, >0
p = i-1 i p
7 {airil/a,ip /]p <0 (Eq.7.56

van Leer J6] [77] derived a scheme using a flux limiter in his skafor the
ultimate conservative difference scheme, and Re#® (itilized flux limiting in his
original monotonicity preserving second order sche@hakravarthy and Oshéf] have
used limiters, as has Harte?4] who also introduced the notion of TVD (total \&ron
diminishing) to characterize oscillation free sclesmin this work, the flux limiter

proposed by van Leer was used. The van Leer floitdr is determined by Eq7 67):

I

(6) ro (Eq.7.57)

7.7 Higher order correction

The numerical scheme described above is only dirder accurate in space. In
order to increase the order of accuracy, seconer @arection terms were introduced as

shown by Eq.7.598:
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— At At At At -~ At~ At~
=Q-| S AAQ+BAQ+ECALQ|-| S AF + 2L AG + 25 AR
Q=Q [Ax < Ay Ay ZQ} (Ax Ay Az j (Eq.7.58

Second order correction

The second order correction term for the x-direti® given by Eq.41.59. The second
order correction terms for the other two coordirditections follow the same principle
and they are shown in Eq..60 for y-direction and in Eq.7(61) for z-direction. The

indices i, j, and k represent x-direction, y-dirent and z-direction respectively.
AF =F., ~F
13 At
where,F, —Eé‘/ip‘( }‘Ap‘(&jm] a KP
(Atj 1( At | At
and |—| == +—
AX ave 2 A)g—l AX
AG =G, -G,
9
where,G, :12‘/113‘ 1—‘/1‘)‘ At a K?
2 p=1 Ay ave
(At] 1( At | At
and |—| == +—
Ay ave 2 Ayi—l Ayl
OH =H,, —H

13 A
whereH, :Epzﬂpp\( i o)

(Atj 1 At At
and |—| == +—
AZ ave 2 A%—l A 4

(Eq.7.59

(Eq.7.60

ave

ja“K Fk) (Eq.7.61)

7.8 Three dimensional wave propagation

A common approach when solving multi-dimensiongbdrpolic problems is to

use a dimensional splitting method suggested byoGaowm [L7]. This means that the three
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dimensional conservation equations are divided itiicee initial value boundary
problems with each problem representing one doectAt a time stem, the one-
dimensional approach is used in each of the thireertsions sequentially. For instance,
first the IVBP is solved in x-direction. This stép called the x-sweep. The solution
obtained from this first step is used as an intt@hdition for the next step in y-direction
or y-sweep. Then the solution of the second stepsésl as the initial condition for the
final step in z-direction or the z-sweep. This s is demonstrated by E@.q2. The
above algorithm is very popular because it produmesd results and it is very simple.
Basically, any one-dimensional Riemann solver can dasily extended to the
multi-dimensional case by using this approach. Herethis method only allows flow of
fluxes in the three coordinate directions, whichamgethat the discontinuities traveling in
directions oblique to the grid orientation will llamore smearing than those traveling
along the coordinate directions. The implementatdrcomplex boundary conditions
may also be complicated using this strategy. Theeefanother approach was utilized
that does not require dimensional splitting. Sucbthods are known as the unsplit

methods.
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PDE: ‘2—?+A(Q)6—Q+B(Q)6—Q+C(Q)6—Q=

ox oy 0z
IC: Q(x,y,z,f‘)=Qo(X,y’3
X-sweep
. 9Q 9Q_
PDE: — +A(Q)8x 0

IC: Q(x,y,z,l“)=Qo( X,¥,3
Solution: Q" (xy ,2)

y-sweep (Eq.7.62)
q.7.
PDE: a—Qc((g)a—Q= 0
ot 0z

IC: Q(x.y.zf)=Q (xy.3
Solution: Q" (x, y, 2)

z-sweep
0Q 0Q
PDE: —=+C(Q)=*=0
ot (Q) 0z

IC: Q(x,y.zf)=Q" (x,v.3
Solution: Q(x Y .z ,f”)

In unsplit methods, information is propagated imalti-dimensional way. The
unsplit scheme used in this work was first descrilmean unfinished form indp]. As
shown in Eq.T.44), the flux term can be expressed in terms of watrengths,
eigenvalues, and right eigenvectors and as lefiggand right-going parts. Since the flux
terms act like increments to the variable vecttingy are also called the increment
waves. The second order terms also have wave fipeegsions and thus, they are called
the correction waves. The unsplit method usedis work, both the increment waves
and correction waves are split into parts propagaith both the direction normal to the
interface between two spatial locations and thestrarse direction by solving Riemann

problems in coordinate directions tangential toithierfaces.
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This models cross-derivative terms necessary fdaioipng both a stable and
formally second order scheme. One-dimensional Remaroblems are solved at the
interfaces. Limiter functions are applied to sugprepurious oscillations arising from
second derivative terms. The scheme extends theroagp used for two

space-dimensions and the advection scheme for-thmeensional problems considered

in [31].
y
A
<—AX—>
7 i i
V. | i +1) T
I I k +1
| Az | L : ’J
e W
i /// ;l, J ,k) i l

Figure7-5: Discretization of a thredimensional Cartesian domain into finite volume
volume AxAyAz.
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7.9 Runge-Kutta method

The conservation equations in the mortar tube sabeincontain source terms.
The general equation for the problem in the mottdre sub-model is defined by
Eq. (7.13. A split approach was used to handle the advediaod source terms of this
equation. With this approach, the Eg.13 was split into an advection problem and a

source problem. The two-step procedure is showBpy7.63 and Eq. 7.64):

0Q , 9F(Q), 9G(Q) , oH(Q)

PDE: —+ - + =0 _
ot  ox ay 0z =Q(xy.zt) (Eq.7.63
IC: Q(xyzf‘)=Q0(X,y12)
DQ _
ODE: —=
Dt =(Q) :>Q(x, Y, Z, 1“*1) (Eq.7.69

IC: Q(x,y,z,f):(_g(x,y,z,'t)

The advection part of the problem described by(E®3 was solved using the
approximate Riemann solver. The solution obtaimednfthis method was used as an
initial condition for the second step in which theblem was defined as an ordinary
differential equation (ODE). In order to integraibese source terms for solving the ODE
described by EQq.7(64), a fourth order and four-stage Runge-Kutta metivad used.
This is an explicit method and it is considereceayvaccurate method for solving ODEs.

The four stages of the fourth order Runge-Kuttahoétare shown in Eq7 (65

Q")

(v
(t"+346Q"+18)
(
(t

At=E

At

[Il

At

[Il

t"+2AL,Q"+1S,) (Eq.7.65
ME(t"+AL,Q"+S,)
Q“+1:Q +%[31+232+253+ 5]
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7.10 Boundary conditions

The boundary conditions were implemented by extenthe computational grid.
Two cells were used outside the physical domairaoh dimension. These cells are
known as the “ghost cells.” The ghost cells werggeed values at the beginning of each
time step. Only one cell is needed outside the ipAlyslomain in order to compute the
flux difference splitting, the right eigenvectoasd the associated eigenvalues. However,
a flux limiter was used in this work and therefareadditional block of ghost cells were
needed. The limiting is based on comparing wak@s the same family emanating from
neighboring cells. This comparison is done in tlmviad direction. Hence, if the
boundary condition models a general inflow situatittvo ghost cells are needed outside
the boundary. The reflective boundary conditionsengsed for all variables except gas-
phase and condensed-phase velocities. For thehgae welocity and condensed-phase

velocity, a wall boundary condition was used ivasn’t specified otherwise.

7.11 Calculated results and discussions

The numerical method described above was usedeocailpled mortar tube sub-
model and the projectile dynamics sub-model. Thieutaions were performed in
following order:

» Comparison with the exact solution of a Riemanrbj@m: the numerical
code was reduced to gas-phase only since the saltion is known for

that condition.
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» Comparison of three-dimensional calculations wite éxperimental data
(including pressure-time traces at multiple loaagio projectile
displacement, and muzzle velocity) obtained frorstruimented mortar

tube firings.

7.11.1 Exact solution versus calculated solution

A test problems for the one-dimensional, time dejeen Euler equations for ideal

gases withy= 1.4; which has exact solutions. In all chosenstedata consists of two
constant state®, ={,0,,U,,R.} and Q; ={px,U » P4 separated by a discontinuity at an
axial positiorx=2. The statesQ, and Qgare given in Tabl&-1 The exact and

numerical solutions were found in the spatial dom@k x<5. The numerical solution

was computed with reflective boundaries and CFL lbemwas close to 0.7. The
comparisons of exact solution for density and vigfoat time = 0.25 s with numerical
results are shown in Fig-6 andFig. 7-7. The numerical results without flux limiter are
also shown in these plots and the oscillatory bielaxf numerical method without the
flux limiter near discontinuity is clearly visibleyhich is smoothed out when a flux
limiter is used. Also, the numerical results withxflimiter match very well with the

exact solution of this Riemann problem.

Table7-1: Data for test problem with exact solution forettimedependent. or
dimensional Euler equations

pL U P PR Ur Pr
10 0 100 1.0 0 1.0
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10 I Exact
Numerical w/o flux limiter
L\ e Numerical w/ flux limiter
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Figure7-6. Comparison of exact density profile with calcathtesults at time 0.25 s.

B Exact
B Numerical w/o flux limiter
e Numerical w/ flux limiter
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Position, x [m]

Figure7-7. Comparison of exact velocity profile with calcidd results at time 0.25 s.
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7.11.2 Validation of calculated results by experim#al data

The mortar tube is the outermost cylindrical portad the 120mm mortar system,
which has a fin-blade region, a vent-hole cylindricegion, and a projectile-payload
region. The vent-hole region contains charge mems loaded with the M47 ball
propellants. The number of charge increments canfvam O to 4. Thereafter, predicted
results were obtained for the mortar tube with ,0ar®d 4 charge increments and results
are validated with the experimental data for brgaessure from the instrumented mortar
tube (IMS) test firings at Aberdeen Test Center CA.TA total of 38 pressure transducers
were installed along a 1.5 m long mortar tube différent axial locations. The schematic

of IMS test stand is shown in Fig-8.

BAD Row 2: 37 - 38
BAD Row 1: 33 - 36

Tube Row 5: 29 - 32
x=1.51m

Tube Row 4: 25 - 28
x=0.808 m

Tube Row 3: 21 -24
Tube Row 2: 13 - 20

Tube Row 1: 5 - 12 :
Breech: 1 -4

x=0m

Figure7-8. Schematic of instrumented mortar simulation anésgure ransduce
locations.
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The three major axial locations are at 0, 8.08 nd 4.5 m distance from the
breech plug. The comparison of calculated and nmedguessure-time traces as well as
the projectile travel was made at these three #&galions. The pressure variations in the
azimuthal directions were not significant.

The non-uniform axial variation of the dischargo@nbustion products from tail-
boom causes the sequential pressurization eveheimortar tube. The pressure-waves
are generated and they propagate in both directtomsard fin-blade region and
projectile-payload region. These waves subside thighprojectile motion as shownxrt
diagrams for pressure, axial gas velocity, parti@cities, and porosity with O charge
increments loading (see Figs9-. 7-14). The x-t diagrams for porosity and particle
velocity show the initial downward motion of prolait grains towards breech and later
movement towards the projectile driven by the gadion. Thex-t diagram for early-
phase pressure variations are shown in b0, which demonstrates strong compression
and rarefaction waves in the mortar tube. The coispa of calculated breech pressure-
time trace with the experimental data shows agreénre Fig.7-15 The predicted

projectile trajectory and velocity are shown in.HgL6.
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Figure7-9: Calculated pressure variation in the taotube with projectile motion (wi
0 charge increments).
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Figure7-10 Early phase ggssure wave phenomena in the mortar tube befajeqpite
motion (with O charge increments).
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Figure7-11 Calculated porosityariation in the mortar tube with projectile mati¢with
0 charge increments).
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Figure7-12 Calculated axial gas-velocityariation in the mortar tube with projec
motion (with O charge increments).
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Figure7-13 Calculated axial particle velocitsariation in the mortar tube with projec
motion (with O charge increments).
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Figure7-14 Calculated gas temperatuvariation in the mortar tube with projec
motion (with O charge increments).
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Figure7-15 Comparison of 3D-MIB predictions for pressuimme traces at 3 pc
locations along the mortar tube with measured data.
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The detailed results for pressure, porosity, gagpeFature, axial gas velocity, and
axial particle velocity in the mortar tube with Bazge increments are shown in Figs.
17-7-22 Like the 0 charge increments case, here alsmaheauniform axial variation of
the discharging combustion products from tail-bcmanses the sequential pressurization
event in the mortar tube. The pressurization ratenigher due to additional M47
propellants. The-t diagrams for porosity (Fig-19 and the particle velocity (Fig-22)
show the initial downward motion of propellant grsitowards breech and later
movement towards the projectile driven by the gasgion, which is similar to the case
with no charge increments. These plots also shaithie propellants burn quickly within
the first 4 milliseconds of the ballistic event ahé later phase phenomena contains only
the gas-phase. The early-phase pressurization ggacethe mortar tube before the
projectile motion is initiated is shown in Figr18 This process shows similar behavior
to the case with zero charge increments. The cosgmaof calculated pressure-time
traces with the experimental data at three axiehtions in the mortar tube is shown
Fig. 7-23 The calculated results show agreement with thasomed data including the
rise time at all three axial locations and magretud pressure. However, the pressure
decay profile during the last few milliseconds se@s@me departure from the calculated
pressure-time traces. This is believed to be dua pyocess called “blow-by”, which
means that the obturating ring allows some gasalgakresulting in faster pressure
decay. This phenomenon depends on the manufactopiradjity of the ring and is
regarded as an experimental error. The calculategbgtile velocity and displacement
profiles show good agreement with the measuremamtshown in Fig7-24. Muzzle

velocity is defined as projectile velocity at thedeof the mortar tube.
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Figure7-17. Calculated pessure variation in the mortar tube with projectiiotion (witt
2 charge increments).
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Figure7-18 Early phase qgssure wave phenomena in the mortar tube befojeqpite
motion (with 2 charge increments).
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Figure7-19 Calculated porosityariation in the mortar tube with projectile matifwith
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Figure7-20 Calculated gas temperature variation in the amottibe with projectil
motion (with 2 charge increments).
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Figure7-21 Calculated axial gas velocityariation in the mortar tube with projec
motion (with 2 charge increments).
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Figure7-22 Calculated axial particle velocityariation in the mortar tube with projec
motion (with 2 charge increments).
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Figure7-24 Comparison of 3D-MIB predictions for projectilgrdhmics with measec
data for 2 charge increments loading.




197

The detailed results for pressure, porosity, gagpeFature, axial gas velocity, and
axial particle velocity in the mortar tube with BAacge increments are shown in Fig:s
25.7-30 Like the 0 and 2 charge increments cases, onci,at@ pressure wave
phenomena during the early phase of the ballistends visible. This process is also
aided by the non-uniform axial distribution of M&#all propellants in the mortar tube.
The early-phase pressurization process in the mte before the projectile motion is
initiated is shown in Figr-18 The MA47 ball propellants contained in the charge
increments are initially located in the vent-hoégyion. The pressurization rate with 4
charge increments is higher than both 0 chargeiments and 2 charge increments case
due to additional M47 propellants. Thxet diagrams for porosity (Fig-27) and the
particle velocity (Fig7-30) show the first the ball propellants move towabdsech and
later towards the projectile driven by the gas omtiThese plots also show that the
propellants burn even faster than the 2 chargeiments case. This phenomenon is due
to dependency of propellant burning rate on presstine mortar tube pressure with 4
charge increments is significantly higher than2heharge increments case.

The comparison of calculated pressure-time tradds thve experimental data at
three axial locations in the mortar tube is showgn 31 The calculated results show
agreement with the measured data including thetinse at all three axial locations and
magnitude of pressure. However, the pressure dgxafile during the last few
milliseconds shows some departure from the caledlg@iressure-time traces, which is
similar to the earlier cases with O charge incremaand 2 charge increments. The
calculated projectile velocity and displacementfipge show good agreement with the

measurements as shown in Heg32
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Figure7-25 Calculated pessure variation in the mortar tube with projectiiotion (witt

4 charge increments).
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Figure7-26 Early phase ggssure wave phenomena in the mortar tube befajeqpite

motion (with 4 charge increments).
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Figure7-27. Calculated porosityariation in the mortar tube with projectile matiQwith
4 charge increments).
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Figure7-28 Calculated gas temperatuxariation in the mortar tube with projec
motion (with 4 charge increments).
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Figure7-29 Calculated axial gas velocityariation in the mortar tube with projec
motion (with 4 charge increments).
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Figure7-30 Calculated axial particle velocityariation in the mortar tube with projec
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7.12 Summary of mortar tube sub-model simulation

The simulation of flow field in mortar tube withraoving projectile is a complex
problem. The flow is three dimensional, compressililvo-phase, and the physical
domain expands due to projectile motion. The ihgi@rosity distribution is non-uniform
depending on the number of charge increments loawdise mortar tube. In addition, the
ignition of ball propellants in the mortar tubesisongly coupled with the discharging of
hot combustion products from the ignition cartridfpue to these reasons, the finite
element solver described in chapter 6 could notemedty accurate predictions of wave
propagation velocities. The approximate Riemannesslare known to work very well
for the gas-phase compressible flows. The resuktsemted in this chapter show that
these solvers can be successfully applied to tleeptvase flows with the modifications
shown in this work. A comparison of 3D-MIB predarnis for muzzle velocities with the

IMS data is shown in Tablg2.

Table7-2: Comparison of 3D-MIB calculations for the muzzielocity with the IM<
data

Muzzle velocity [m/s] 3D-MIB calculations IMS data
Charge 0 103.2 99.74£0.35
Charge 2 225.2 227+0.35
Charge 4 332.6 324.6£1.15

Although the comparison seems extremely closeditierence can be further improved
by addition certain empirical relations (i.e., by phenomena, friction on the

obturating ring) in the 3D-MIB model and code.



Chapter 8

CONCLUSIONS AND FUTURE WORK

In this work, the development and validation of hmee dimensional mortar
interior ballistic code (3D-MIB) for prediction d¥vo-phase interior ballistic processes in
the 120mm mortar system was achieved. A stepwipeoaph was adopted to solve the
various processes in the system and three sepawatenter-linked sub-models were
developed. The granular bed combustion sub-modehmsient quasi one-dimensional.
Six coupled quasi-linear inhomogeneous hyperbditig differential equations (PDES)
were solved by using the method of characterift®©C) approach. The presence of
pressure waves was found in the ignition cartridge based on the analysis of this sub-
model; it was determined to be the non-uniform litksge of mass and energy of the
combustion products from the vent holes of thehflabe.

Based on this analysis, it was found that thisquresswave phenomenon depends
strongly upon the hierarchy and magnitudes of nagssharge rates of hot combustion
products exiting through the 20 circular vent hotes the flash tube, which varied
significantly along axial direction even though thent-holes were distributed evenly.
The highly non-uniform discharge of combustion pratd from the flash tube into the
granular bed is believed to be the main reasogdaerating strong pressure waves in the
existing 120mm ignition cartridge. The vent-holettpan on the flash tube was
systematically modified to achieve a more uniforischarge of igniter products into the

granular bed. Numerical results showed that siggifi reduction in axial pressure
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gradients can be obtained by modifying the flagtetuent-hole sizes such that the igniter

products are discharged more evenly at varioud &gations in the granular bed. The
reduction of the axial pressure gradient in theitigm cartridge can improve the
reliability and reproducibility of the 120mm morgaropulsion system. In addition, it was
also noted that the black powder produces highhymepeatable pressure-time traces and
a substitute called moisture resistant black powW#BPS) was sought to remedy this
problem. The ignition cartridge sub-model was algiized to compute the interior
ballistics of the M1020 ignition cartridge with MBRE as an igniter material and the
results were compared with the experimental dale domparison of two pyrotechnic
materials also facilitates model validation and@ases the robustness of the code.

Two different numerical approaches were adoptedsfdving the mortar tube
sub-model, i.e., a finite-element method based LEapy Taylor-Galerkin (LFTG)
approach and an approximate Riemann solver apprdach common to use a finite
volume based numerical approach to solve compiesdw problems. The numerical
code based on Finite element method showed stramgige for application in two-phase
and multi-phase problems such as one discussedisnwiork. However, presence of
discontinuities is a major stumbling block in apption of such methods. In order to
resolve these issues, the second approach wasaipted to solve the mortar tube sub-
model. Approximate Riemann solver such as Roe-Rikthod with Rankine-Hugoniot
conditions, flux limiters, and second order corni@ts worked successfully for this
problem. It was shown that such approach can béedpi two-phase problems with

modified equations presented in this work.
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8.1 Major contributions

There is only a limited body of work available inetdevelopment of interior
ballistic codes as noted in the literature reviewtion of this work. NGEN3 developed
by Army Research Laboratory is the only major cadailable for numerical simulation
of interior ballistic processes. The NGEN3 codeb&sed on an Eulerian/Lagrangian
approach and is extremely comprehensive. The worle chere for the development of
the 3D-MIB code offers an alternative approach Ime tarea of interior ballistic
simulation. This code is also very comprehensivaydver, it offers a very different
approach for simulation of interior ballistic preses in the 120mm mortar system.

The overall 3D-MIB code has been designed to hawnymindependent
subprograms for each physical component of the an@stem. Each subprogram was
validated by specially designed experiments. Tippr@ach is effective since some
subsystems can be tested and simulated easily.mOueilar design of 3D-MIB code
enables the users to apply the code without anpmmapdification when one or more
physical components are upgraded or changed im thesign. Stable and efficient
numerical techniqgues have been adopted, which pdlmicode to be executed on a
personal computer or single processor or a multpplecessor machine with shared
memory. The 3D-MIB code can also be used to prowde guidance for design and
performance improvements of the mortar projectile.

» Effect of different primer material, flash tube geetry, pellet
configurations, granular bed loading densities,t\te distributions can

be studied as demonstrated by this work.
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» The numerical code can be helpful to acquire deepderstanding of the
ballistic processes of mortar systems.

» 3D-MIB code can provide predicted pressure-timedsaand many other
physical parameter variations at multiple axialalbens. These physical
parameter variations are useful for reducing tlesgure wave phenomena
during the interior ballistic cycle in the mortanirig.

* The knowledge gained from the simulation of thesEg@sses can help to
reduce the possibilities for critical failures dwgioperation in the field by
better understanding the combustion process andrdhlelting peak
pressures and pressure waves.

* The 3D-MIB code can also be used as an analyocdlfor studying any
abnormal behavior of the mortar projectile duriqpg@tion. For example,
the local region overpressure generated by aligalhgharge increments
in one orientation or the effect of out of speslidoles.

* The numerical simulation with the code can be usegkplace or reduce
the need for expensive ballistic test firing thrbagt the lifecycle of the
program.

Overall, the 3D-MIB code should be an extremelyfuiseol for advancing the

state-of-the-art for both mortar and gun systems.
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8.2 Future work

As mentioned in chapter 7, the predictions fromNB as it is show excellent
comparisons with the experimental data for eachhefthree stages, i.e., flash tube,
ignition cartridge, mortar tube, and projectile dgrics. However, there is still scope of
improvements in this work. The major area of futwmerk can be both experimental and
numerical directions. Experimentally, a better ustending of flame spreading
mechanism in the granular bed could enable the 3B-d¢dde to provide more accurate
information. Also, some physical processes likséssdue to friction in ignition cartridge
and mortar tube, blow-by phenomena are extremety ttaquantify. It would be helpful
to gather some information in these areas.

Although, the robustness of the 3D-MIB code wasettdo a certain extent by
using the ignition cartridge sub-model for studyithg effect of flash tube vent-hole
pattern modification, there are wide range of aggtions where an interior ballistic code
such as 3D-MIB can be applied. One such majoramdd be the 60mm mortar system
and 81mm mortar systems. Another interesting amddcbe to further improve the
finite-element approach for such problems, whicls Baown some promise for the

interior ballistic applications as shown by thegamt work.
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Appendix A

Formulation of Heat Equation for Ball Propellants

The ignition cartridge and mortar tube charge imepts contain ball propellants.
The ball propellants are assumed to be sphericsthape. The heat equation for a single

spherical propellant particle is given by EA.X) in spherical coordinates as:
10 oT
— ,opcpr) :—2—[ r’ —p] (Eq.A.1)

In the above equationp, is the mass density of the ball propellants, is the heat
capacity of the ball propellantg, is the thermal conductivity of the ball propelignand
T, is the temperature in the ball propellant as &tfon of radial coordinate and timet.

If the properties of ball propellantso(, c,, and k) are independent of radius then

p )

Eq. (A.1) can be written as following:

oT 02
p =% (er) (Eq.A.2)

In the above equationg, is the thermal diffusivity of ball propellants. &hnitial

condition for Eg. A.2) is given as following:
T, (t=0,1) =T, (Eq.A.3)

The boundary conditions for EcA.Q) are given as following:
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0T, (t9) _, (Eq.A.4)
or
o, (tr,0)  CGosslt
= S=7(t Eqg.A5
pp ” (t) (Eq.A.5)

The heat flux loss from the propellant partictg () could be conductive if there

is a coating of condensed-phase material on iterasurface. If that is the case (for
example, some ball propellants in ignition cartejjgthen the heat flux loss at the
propellant surface is given by Ed.6):

(TI _TPS)
0,

w

:kﬂ :kﬂ
s Poar|l . o

r=rpo

=K

— +
r=rpo

Choss (Eq.A.6)

Here, k is the thermal conductivity of condensed ph&agds the temperature of liquid
phase, T is the temperature of the ball propellant at théeo surface, and, is the

minimum of thermal wave penetration depth in comseein phase and thickness of
coating. If there is no condensed-phase coatintherball propellant, then the heat flux

loss is given by EqA.7)

qloss

,=h(T-T,) (Eq.A7)
In the above equatiorhy is the sum of convective and radiation heat transbefficient
given by Eq. A.8):

h :r’t+£p0(T+ Tps)(T2+ 1;2) (Eq.A.8)

The heat equation can be transformed into a Foureat equation by following

transformation:
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T=T-T, (Eq.A.9)

(rT;) (Eq.A.10)
The initial condition for Eq.A.2) is given as following:
T, (t=0.r)=0 (Eq.A.11)

The boundary conditions for EcA.Q) are given as following:

oT, (1.0) _ 0 (Eq.A.12)
or
0T, (t.10) _ G (1)), (Eq.A.13)
or K

p

A function for T is proposed as following:

g tgr+cri+cr’
r

(Eq.A.14)

T (t.r)

As the ball propellants are heated, a radial teatpeg profile is developed, which
is known as thermal wave. Before the thermal waareeprates to the centre of the sphere,

these four constants can be determined by folloiong conditions:

oT, (t,r,, = 9)

5 =0 (Eq.A.15)
.

T, (try,—3)=0 (Eq.A.16)
0T, (t700) _ Ges(t)

= ot = 7(t Eq.A.1

or K, ( ) (Eq 7

21 _

0°T, (t. 1o 5)=0 (Eq.A.18)

or?
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In the above equationsg is called the thermal wave thickness or wave
penetration depth. The boundary condition specifisd Eq. A.18) is a smoothing
condition that tends to make the temperature grofib smoothly into the initial
temperature. Using the above conditions for solvitgy (A.14), the expressions for

constants used in the polynomial are as following:

I
c, = (Eq.A.19)
’ 2r50+r63_3p2cf5
c 35T (Eq.A.20)
= g.A.
2r% 41 =3 5
-3r,r2
¢, =— 53,)02 . (Eq.A.21)
20ty =3 45
_ roZ
C, (Eq.A.22)

20341, -3 %,
In the above equations, the temp=r ,-J. Substituting above in EgA(14),

following profile is obtained for temperature afuaction of radial coordinate in the ball

propellants:

2 _ 3
T = — rp(’zz(t) Ui RS (Eq.A.23)
(er0—3p0r5+l’5) r

Differentiating Eq. A.23) with respect to r:

* 2 _ 2
9Ty _ T (2+15)(r 1) (Eq.A.24)
or r (2rp0+r5)(rpo—r5)

o ez ()
or? (2rjo—3p2(;5+r63) rs

(Eq.A.25)

At r =r_,, T, =T, and substituting this into EcAR3):
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. rpo(rpo—rd)z (t)
Tps - (ero +r5) (EQA26)

By substitutingr, by r—9J in Eq. A.26), the analytical expression for the
surface temperature is obtained as:

r o0
T = 2Z(t
ps (3rp0_0—) ( ) (Eq.A.27)

The equation EqA.27) expresses a relationship between the particleacair

temperature and the wave penetration distaceAs a result, there is really only one

unknown (i.e., eitherTgsor 0) in Eg. A.27). This unknown can be obtained by

integrating the heat balance equation BglQ).
Assuming that the thermal properties of propellané constant and then

integrating the heat equation between wave permtrdistance and outer radius, we get

the following form:

po 2
j r—= an dr =a jmdr (Eq.A.28)

The RHS of Eq.A.28) can be expressed as following:

"0 02 (1T a(rT’ v .
a, #dr:apl%] =a [ ThtroZ(1)] (Eq.A.29)

The LHS of Eg. A.28) can be expressed as following:

rpfra—T;’kolr: o d| ()2 (1) Eq.A.30
ot 4 dt (2r,0+15) (E4-AS0

Is
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After substituting Eq.A.29) & Eq. (A.30) into Eqg. A.28), and some rearranging

of terms, following integral equation is obtained:

dz do

3 -0)0°—+|6,-I0)Z0—

( Mo ) at +( sz ) dt _ 4a;pr [T;s"- rpoz (t)] (Eq.A.3))
(3rp0 —5) Too

Differentiating Eq. A.27) with respect to time, we get the following:

2
3r,-0) | dT o0
d _ (30 )[ ps___ oo dZ] (Eq.A.32)

dt 3z dt (3, —5)E
Substituting Eqg.A.32) into Eq. A.31) and by using the definitions af and T;S,

we finally get the following equation:

12a dz
T -To+rZ(t) [+0—
dTps - 5[‘;{) [ P ° P ] dt (Eq A 33)
dt (6rp0—5) o

I'oo

The thermal wave penetration depilis obtained from EqA.27) as following:

_ 3 (The—To)
(Tps B TO) ol

(Eq.A.34)



Appendix B

Shape Functions

In a finite element model, the unknown variableghimi each element are
interpolated by a linear distribution. This approgtion becomes increasingly accurate
as more elements are considered in the model. Shaptons have been introduced to
implement this linear interpolation. If both thekaown variablesd4, ¢ u, v, w, Tandp)
and the coordinates, (6, andz) are interpolated using the same shape functitmmihe

element, then it is called isoparameteric formaolati

B.1 Master element

In two- and three-dimensional problems, the integng required by the finite
element method can become intractable if carrietd inuthe physical (or global)
coordinates, i.e, &, andz But since the method is an integral one, thekrilzdions can
instead be carried out in a local (or natural) dowate system on the master element,
where it is relatively easy to integrate. In fabe concept of the master element is one of
the keys for understanding the power of the fielement method, because it is possible
to use this integral approach on problems with demngeometries by mapping the
difficult actual physical geometry into a collectiof well-arranged master elements. The
master element also represents a "common denomirfatoelement calculations, so

calculations common to a large number of elemestsbe performed once and for all at
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the master element level, and the cost (or comiputttime) of these calculations can

be decreased by the large number of elements foutie finite element mesh. Both of

these characteristics enable the finite-elementoteto be used on a wide variety of

difficult problems that would be intractable or exsively expensive by any other means.

Fig. B-1 shows transformation of an actual element in thysigal coordinate system(x

X2, X3 System) into a master element in the natural ¢oatel systemé( n, { system).

X
g
6 5
: :
 — _2______1_______3\1
g
E————— 3 1 4 f2
k] S 4
Co-Ordinates of Points Edges Face
1) {-1.-1,-1} 1,234 1
@ { L-1L-1} 9,5,10,1 2
3 {L 1L-1} 10,6,11,2 3
) {-1, 1,-1} 4,12,8.9 4
(5) {-L-L 1} 11,7,12.3 5
@ {1.-1 1} 8,7,6,5 6
M{L L 1L}
3 ®{-1, 1, 1}
Actual Element Master Element
In physical c-ordinate In natural c-ordinate

FigureB-1: Transformation of an actual element into a masitement.
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The transformation of physical coordinates, (¢, X3) into natural coordinates
(&,n,Q) is also given by the shape functions that are ts@dterpolate other variables in

the element. Therefore,

X (£,1,6) =2 N, (€.7.6) ;. (Eq.B.1)

m=1

Here,Np is the nodal shape function aktlis the number of nodes if' single element.
For a 8-node hexahedral eleméhitjs equal to 8. The shape function has the follgwin
property as demonstrated by EB.2):

Nm(f,mc)={

lat node m

0 at any node other than | (Ea.B.2)

Taking the derivates of with respect to the natural (or local) co-ordinat@slacobian

can be calculates as shown in E.3f:

_axl axl axl_ [ ™ aNm M aNm M aNm_
a9 A, A~ X —— X —m
o o7 ac| |&EOmor Hhman o
0x, 0%, 0% o ON M AN M aN
J=|—& —= —=|= m m m
0§ 0n 0¢ mZ: 2" 9& ;X'b ™ on X'Lm (Eq.B.3)
0% 0% 0%| g N, N,
9% 9% 9% o ONn
o o oc| |&Smae Ao ;1 B

The above formulation is used in order to solve fth#e element model. The
elements of the Jacobian matrix given in B3] can be easily evaluated since the nodal
coordinates are known, and the derivatives of theps function are equally simple to

calculate as described in next section.

B.2 Lagrange polynomials

Lagrange isoparametric elements are perhaps thet rmmosimonly used

guadrilateral (2D) and hexahedral (3D) elementerpolation functions obtained using
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the dependent unknown (not its derivatives) arerdrge interpolation functions known
as Lagrange polynomials. The one-dimensional limé@ament and the two-dimensional
guadratic element are examples of elements comsttuérom Lagrange linear
interpolation functions, and their shape functiomse given by Eq.R.4) for 1-
dimensional element and by E&.%) for 2-dimensional element.

1D N()=3(%¢) N, (€)= ()

2 (Eq.B.4)

200 N(En)=H(w)(¥n)  N(En)=3( 48)( )

A A (Eq.B.5)
N(ED)=E(rE(n)  N(En)=2( 48)( W)

It should be noted that the so-called “linear” iptdation functions are linear
with respect to each independent parameter only,nah as a whole. For example, the
shape functiom, (¢,7) for 2D element is linear with respect §mr ; but not to both of
them.

The local node numbering for the quadrilateral @xdhedral element follows the
convention for the counterclockwise numbering aswsh in Fig.B-1. The three-
dimensional shape functions are constructed frorodymts of one-dimensional
interpolation functions in the three independenbrdmatesé, n and (. For 8-node

hexahedral element, the shape functions are giyétgbB.6):
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N, = (1-¢)(1-7)(1-) N, =2( +)( -B)( -¥)
N, =2(L+€)(1+n)(1-¢). N, =2( %)( +8)( %)
1 1 (Eq.B.6)
N =2(1-8)(1-7) (24 <) N, =2( +)( -3)( +%)
N, =2 (1+€)(Len)(1r6), N =( £8)( 47)( 4)

This process can easily be generalized for highgercelements. In the present version of
the numerical code, an 8-node hexahedral elemersieid with the option of adding more
nodes (upto 20) to the element if needed. The gérferm of shape functions for

hexahedral element with 8-20 nodes is given as simwmE(Q. B.7):

N, = (99"' O, 917)/2 N,= gz_( Ot gt 919/ z
Ny =0, = (Gt Gut Gg)/2 N,= g-( gt Gt 9)/ -
Ny =05~ ( G+ Gis+ Gr)/2 No= g-( 9t 94t @)/ ¢ (EQ.B.7)
N, =0, =( 9+ Gt G)/2 Ng = gg—(915+ ot Go)/ 2
N, =g, forj=9,..20
where,g; andG are defined by EqB(8) and Eq. B.9), respectively.
0 if node jis not included
= . Eq.B.8
9; G(E,fj)G(n,qj)G(c,cj) otherwist (Eq )
1(1+crj.cr) for a; =+1
G(a.a;)= (Eq.B.9)

(1-a2) for a;= 0



Appendix C

Numerical Integration on the Master Element

The basic formula for a change of integration \a@dsa is given by EqQ.1):

Il flouxx)dxdydx= [[[ (&)l Ad 44 (Eq.C.1)

VA rbitrary Element VMaste Element
where, |J| is the determinant of Jacobian for #@rdinate transformation given by
Eq. C.2):

Volume of actual element Volume of actual eleh
Volume of Master element 1/8

1JE (Eq.C.2)

Note that this expression implicitly defines thereent volumeé/, in terms of the global
coordinates of the corner nodes.

The element integrals are not evaluated by anaigtegration (i.e., computing
the integrals in closed form), because in genéha,integrands are very complicated
nonlinear functions of the local coordinates (redadt the determinant of the Jacobian
and of its inverse appears throughout the integlaridstead, a numerical integration
scheme involvingNSPintegration points with corresponding weighis(p = 1, 2, ... NP)

is employed. In schematic terms, the process loké&s

I f(&ne)13 |d£dr7dc=NZSPV\g (&, 7, 6,) 19,0, 6,) (Eq.C.3)
p=1

Master Element

Generally, a Gaussian Integration sche@auss Quadratuneis employed, but
there are notable exceptions (such as the usengbsBn's Rule in certain specialized

cases). In this work, Gaussian Quadrature is ustdtihae option of using upto 10 point
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integration in 3-dimensions. These points and spoading weights are given in
TableC-1. Note that this scheme will integraggactlyany polynomial of degree 3 or less
(i.,e. an arbitrary cubic). In general, a one-dinemsl Gauss-Legendre numerical
integration scheme (such as this one) WiBP sampling points will integrate any
polynomial of degree2*NSP-1exactly on the integra]-1,1]. In three dimensions,
separate one-dimensional schemes for numericaratien in the three master element
coordinate directions are composed to obtain apja@papproximations for calculation
of the element matrices. The sampling points areeijethe combination of three
independent one-dimensional sampling. The weigiés samply the product of the
weights in the three directions, and in this cas2-point scheme, remain as unity. This

four-point scheme is capable of exact integratibfunctions that are cubic ix, X, and

Xa.
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TableC-1: Gauss-Legendre abscissae and weights
No. of points

Value of points Weights

2
3

4

10

+0.57735

0.0

+0.77459
+0.33998104
+0.86113631
0.0
+0.53846931
+0.90617985
+0.23861918
+0.66120939
+0.93246951
0.0
+0.40584515
+0.74153119
+0.94910791
+0.18343464
+0.52553241
+0.79666648
+0.96028986
+0.14887434
+0.43339539
+0.67940957
+0.86506337
+0.97390653

1.0

0.888888889
0.555555559
0.65214515
0.34785485
0.56888889
0.47862867
0.23692689
0.46791393
0.36076157
0.17132449
0.41795918
0.38183005
0.27970539
0.12948497
0.36268378
0.31370665
0.22238103
0.10122854
0.29552422
0.26926672
0.21908636
0.14945135
0.06667134

Maximum polynomial order

3.0
5.0

7.0

9.0

11.0

13.0

15

19




Appendix D

Hyperbolic Systems

The conservation equations for problems in gas myjecgcan be written in form

of first order partial differential equations (PD&) shown by EqX.1):

dQ_9Q, aQ dx_
at ot ox dt B(Q) (Eq.D.1)

In the above equations, the vec@r contains variables like mass, momentum, energy

etc. These variables are known as conserved vesiadlhe primary variables like

density, pressure, velocity etc. are known as timaifive variables. The vectoF(Q)is
called the flux vector and its components is a fimmc of vector Q. The vector

B(Q) contains the source terms. If the vec®(Q) is zero then the PDE are called
homogeneousGenerally, the components of matrix(Q)are functions of conserved

variables Q and the source vecttB(Q) IS not zero. Such equations are known as

inhomogeneous non-linear (or quasi-linear) partdfferential equations. For
convenience, the source term vector is ignored lsamee it does not change the
fundamental behavior of hyperbolic equations.

The governing equations written in terms of consdrwariables are called
“conservative” equations. By applying the chairerah the derivative of the flux vector

it can be written in terms of a Jacobian and avdérie of vectorQ as following:

oF(Q) _ aF(Q)a_Q:A(Q)a_Q
0x 0Q 0x 0X

(Eq.D.2)
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By substituting above in EqD(1), it becomes Eq.3) as shown below:

R
ot

a_Q:O

+A(Q)6>§

(Eq.D.3)

If the components of matrixA (Q)are constant values then the system of equations
Eq. ©.3) is called linear with constant coefficientslf the components of matrix
A(Q)are variable but functions of spatial varialeandt only then the system of

equations Eq.04.3) is calledlinear with variable coefficients
The general behavior of the system of equationstioreed above can be
understood by two major parameters called eigeegahnd eigenvectors. Sometimes,

they are combined together and jointly called tigersystem. The eigenvalues of matrix

A(Q)are determined by solving the characteristic patyiad |A—)Iil | =0, wherel is

the identity matrix. Physically, the eigenvaluds represent speeds of propagation of

information in thex-t space. The speeds are measured positive in teetidir of

increasingx and negative otherwise. The other important patamme eigenvectors of

matrix A (Q) , Which are further divided into two categoriegight eigenvectors and left
eigenvectors. The right eigenvectds of matrix A(Q) corresponding to eigenvalues
A are determined by solving equatidnK' = AK'. Similarly, the left eigenvectork'
of matrix A(Q)corresponding to eigenvaluegare determined by solving equation
LA =AL".

A system of equations shown by EB.J) is said to be hyperbolic at a poimt,{)

if matrix A(Q) has m real eigenvaluesA, and a corresponding set of linearly
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independentight eigenvectorsK'. The system is said to be strictly hyperboliché t

eigenvaluesA are alldistinct Strict hyperbolicity implies hyperbolicity, becsai real

and distinct eigenvalues ensure the existence o$et of linearly independent
eigenvectors. If the effects of viscosity and he@tduction are neglected (which is very
often the case in gas dynamics) then the conservaguations shown by Ed.Q)
reduce to hyperbolic equations.

The partial differential equations Ed.B) can be transformed into ordinary

differential equations (ODE) by using chain rule:

dQ _0Q ,9Q dx (Eq.D.4)
dt odt ox dt

The curves in x-t space that have slogbgdt are called characteristic curve.
Along the characteristic curve, the PDEs become OBy comparing Eq.4) with

Eq. 0.3), it becomes evident that the eigenvalues of #iteldianA (Q) are the slopes of

characteristic curvesdx/dt= A and that for a strict hyperbolic system; the numbier

characteristic curves is equal to the number oéreiglues of the system. The slope of
characteristic curves is sometimes called chaiattespeeds.

By using this information, the characteristic cumen be defined by an ODE
given by Eq. D.5)

% =A with IC:x = x, (Eq.D.5)

The solution of above ODE is given by ER.§):

X=X tAt (Eq.D.6)
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If the source term in EqD(4) is zero then this equation implies that the cdtehange of
vector Q is zero along a characteristic curve defined by(Bdp). Therefore, if vector

Q is given an initial value at time = 0 then along the whole characteristic curve

X(t) = X, + A t that passes through the initial poixt on thex-axis, the solution is equal

to its values at poink,, i.e.,

Q=0Q, (%) =Qy(x-At) (Eq.D.7)

The Eqg. D.7) means that the hyperbolic differential equatioas be transformed
into ordinary differential equations with a spe&tfiinitial condition and that is why they
are often called the initial value problems, intileg that the solution depends on the
initial condition of the problem. The solution aiitial value problem at a given point in

X—tspace depends solely on the initial data at pokyts At on thex-axis. These points
are obtained by tracing back the characteristigesipassing through the poiat

The interval between the points, +maxA |t and x, +min|A|t is known as
domain of dependence. The solution obtained at tiatgpositionX;, can only affect the
solution at point betweem, +max|A|t and x, +min|A|t in future. The interval between

these two points is known as region of influence.

D.1 Wave formation

One of the distinguishing features of non-lineampdmpolic PDEs is wave

steepening, shock formation, and rarefaction wawvmétion. This can be explained by
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studying the behavior of characteristic curves dhspace. In the non-linear PDEs, the
JacobianA (Q)is a function of vectoR ; thereby the eigenvalues of JacobianA (Q)
are also functions of). Thus, slopes of characteristic curves, which adot fare the
eigenvaluesA, depend on the solution itself, which results istalitions. This can be

explained by considering the initial data showikiig. D-1

FigureD-1: Wave steepening in a convex , rorear hyperbolic conservation law,
Initial condition, (b) Slopes of characteristic ces

For convenience, the system is assumed to be omendional. A smooth initial

profile is shown in Fig xx along with five initigoints and their corresponding initial

data values. If the flux function is convex, i.€.(Q) >0then A" >0 meaning that the
characteristic speeds will be an increasing fumctd Q. Given this condition, higher
value of Q,(X,) travel faster than the its lower values. Theretareintervals on the-
axis where distortions are most evident. These thee intervals IE=[x01, x03] and
IC =X, %] - In the interval IE,Q,(X,) is increasing wittx, therefore the slope of

characteristic curves increases withThis results in a broader IE at a later time.sThi
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phenomenon is called expansion or rarefaction wiavéhe interval IC, the gradient of

is negative; the valu€), will propagate faster than the val@,. The interval IC is
called compressive and it will get narrower ancegéz as the time evolves. Eventually,
the wave steepening mechanism in the compressigevat will produce an anomalous
condition with corresponding crossing over of tiaracteristic curves and three values
of the solution at one point. This condition imgligat the ODE solution cannot be used
at this point of intersection. The locus of thismas known as shock wave. It can also be
concluded from this analysis that the solution aba-linear hyperbolic PDE may always
contain discontinuities if the initial condition mon-uniform, no matter how smooth it is.
This is the most important feature of non-lineapdmpolic equations and an essential
difference from linear hyperbolic equations. Itthés phenomenon that leads to special

difficulties.

D.2 Rankine-Hugoniot condition

The solution of the IVP EqD(3) at the point of shock formation is approximated

by mathematical discontinuities. The solution istag@uous in the regions left and right of

a line s=s( ) on the x—t plane, across which there is a jump discontinditye line
s= s( t) represents the locus of point of shock formatiod tne slope of this line is the
shock speedS. If a finite region [xL, xR] on the x—t plane is considered then
X < s( t) < X%. By using the integral form of the conservatiomapn Eq. D.3) on the

control volume[x, , %] we have:
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d S( XR
F(QL R d—xj X+Ets(It)Q(x t) dx (Eq.D.8)

The Eg. D.8) can be re-written as:

—

s()

F(QU)-F(Qu)=(Qu ~Qu) S+ | 2Q(

XR d
dtQ X, t)dx+sJ‘taQ( x{dx (Eq.D.9)

In Eq. ©.9), Q. = |jm Q from the left andQ, = |jm Q@ from the right. The
- %~

function Q, and Q. are bounded, thus the integrals in E29f vanish and we have:

F(Q.)-F(Qr)=(Q.-Qx)S (Eq.D.10)

The above algebraic expression relating the judps AQ and the speed of
shock wavesSis called the Rankine-Hugoniot condition and iussially expressed as:

AF
s=—"
20 (Eq.D.11)

By the above analysis, it is evident that the shepked is not same as the

characteristic speeds or eigenvalues of JacoBif@) .

D.3 Entropy condition

The solution of the IVP shown by EdP.@) contains discontinuities as explained
in the earlier section. In order to ensure the waigess of the IVP solution, an additional
condition is required to obtain a physically reletvaolution. It has been identified that

the discontinuity of such acceptable solution nsasisfy the following condition7):
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A >S> A, (Eq.4.12)

The above condition is called the entropy conditi@feinik [57] has shown that
the weak solutions satisfying the above conditiaresuniquely determined by their initial
data. The rarefaction waves violate the entropyditimm; therefore isentropic equations

are used to determine an entropy-satisfying salutio



Appendix E

Riemann Problem

The Riemann problem is one of the fundamental problin gas dynamics. The
Riemann problem is a represented by a set of ceatsen laws in form of hyperbolic
partial differential equations with the simplestdanon-trivial initial conditions. The
solution of Riemann problem contains the fundamieptaysics and mathematical
character of the conservation laws that were foatedl in this work and are generally
applied to the compressible flows and various sinproblems in gas-dynamics. Thus, a
solution of the Riemann problem provides an invialeareference solution for the
numerical schemes applied to the theoretical madetsich areas. Due to this reason, it
is invariably used to assess the performance amdatness of such numerical methods.
In addition, Godunov methods and their high-ordetemsions use the exact or
approximate solutions of the Riemann problecally. The numerical methods used to
solve the mortar tube sub-model are Godunov-typéhads. Therefore, it is very
important to understand the Riemann problem ansbitgtion.

The Riemann problem does not actually have an etased-form solution (even
for much simpler models such as isentropic or motfal equations). However, an
iterative solution with a practical degree of aemyr has been obtained and refined by
many researchers. The key issues in solving Rierpasisiem are the selected variables
(conservative or primitive), the equations used #dredr number, the technique for the

iterative procedure, the initial guess and handbhghe unphysical conditions such as
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negative pressure. The major work in this directias been done and refined by many
researchers over past several years.
The Riemann problem for transient one-dimensionaicgss is defined by

conservation law shown in Edg.Q) and initial conditions shown in EGEQ)

poe: 99, F(Q)_ g

ot 0x
where (Eq.E.1)
Q=[p.pu,E] F(Q)=[pupt+ P Er p]
) _ _[Qqif x<0
IC: Q(X’O)—QO(X)—{QR £ %50 (Eq.E.2)

The domain of interest in thet plane are poin(x, t) with —o <x<ocoandt>0.

In practicex is varied in a finite intervaﬂxL, xR] around the point=0. The vectorQis
known as vector of conserved variables. The Riemaphlution used a vector
W=[p,u,P] of primitive variables rather than the vector adnserved variables.

Physically, the Riemann problem defined by Hfl] - Eq. E.2) is a slight
generalization of the so called shock-tube probletwo stationary gases
(u =0 andu, = § in a tube are separated by a diaphragm. The ripfithe diaphragm
generates a nearly centered wave system that Bypaznsists of a rarefaction wave, a
contact discontinuity and a shock wave. In the Riemproblem the particle speeds
and u, are allowed to be non-zero, but the structurdefdolution is the same as that of

the shock-tube problem.
The solution of Riemann problem defined by Hf1J - Eq. E.2) also consists of

three waves (i.e, a shock wave, a rarefaction wand,a contact discontinuity), which
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are associated with the eigenvalues of the systewrs by Eq. E.1). A shock wave is a
discontinuouswave across which all primitive variables like diéyy pressure, and
velocity change. The shock waves are generatedrbggs compression, which means
that the pressure ahead of discontinuity is highan the pressure behind it resulting in
generation of a compression wave. A contact disgoity (or contact wave) is also a
discontinuouswave across which both pressure and velocity arestant but density
jumps discontinuously as do such variables thaexepon density including specific
internal energy, temperature, sound speed, andmntA rarefaction wave is smooth
wave across which density, velocity, and pressir@nge. This wave has a fan-like
structure and it is enclosed by two bounding charastics corresponding to the Head
and Tail of the wave. Generally, speeds of theseeware not same as the characteristic
speeds given by the eigenvalues. The Riemann prohtet =0can be represented by
Fig. E-1. The contact discontinuity is usually in the mel@ind the right and left waves

could be either shock waves or rarefaction waves.

x=0

FigureE-1: Structure of the solution of the Riemann problemthex-t plane for the one
dimensional time-dependent Euler equatiofig. [
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The three waves in this solution separate four temtistates namelyw,, W, ,

W, and W,,. The variables in the region between the st&¥esand W,, are unknown.
This region is typically called the star region ahaés divided by the middle wave into
two sub-regions star lef\W, ) and star right (V). The middle wave is always a contact

discontinuity and it is shown by a dashed line. Téfeand right waves could be either
rarefaction waves or shock waves. Therefore, aaugrth the type of these non-linear
waves, there could be four possible solutions, Wwisie shown in Fige-2. There could

be two possible variations of these, namely whenléft or right non-linear wave is a
sonic rarefaction wave. Such condition may exisievirssing Godunov type methods and

an entropy fix is used to modify the Riemann solui

Case (c) Case (d)

FigureE-2: Possible wave patterns in the solution of the Riemproblem: (a) le
rarefaction, contact, right shock (b) left shoclgntact, right rarefaction (c) It
rarefaction, contact, right rarefaction (d) lefosk, contact, right shock'1].

An analysis based on the eigensystem (i.e., eigj@@yand eigenvectors) of the
Euler equations reveals that both press&éand velocity u'in the star region are

constant while the density takes on the two constalnes o, and o, across the contact
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discontinuity Therefore, the major unknown physigahntities areP”, u’, p, and p,.

By using the constancy of pressure and velocithénstar region, an algebraic non-linear

equation for pressure with the ideal gas equatictate is given by EqQE(3)

(P W, W)= (P W, )+ (P W,)+Au=0

(Eg.E.3)
where Au = u, —u,
The functions f, and f; can have two algebraic expressions depending on

whether the left and right non-linear waves areckhwaves or rarefaction waves. If

either of the left or right non-linear waves isheosk wave then the function§ and f,

are derived by using the Rankine-Hugoniot condgiby using the pre-shock and post-

shock values for the primitive variables. The pneek values for the left shock wave are
(po.,u_,R)and those for the right shock wave @og, U, Py). The post-shock values for
the left shock wave arép[,u* P )and those for the right shock wave @og u,P ) If
either of these waves is a rarefaction wave thentispic relations are used to connect
the unknown vectoi/, or W, with the left or right data state. The functiofisand f,

obtained by this procedure are shown in Egd) and Eq. E.5) as:
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1
(P*—PL){P*?BLT ifP > P (shock)
fL(P*’WL): , o
2
ycg,; [%} 1 ifP" < P (rarefaction (Eq.E.4)
- L
_ 2 _(y-1
A (V"'l),OL’BL (y+1) "
1
(P _PL)[P*?BLT if P > P (shock)
fL(P*’WL): a1
2C P\ )
yi; [FJ -1 ifP" <P (rarefactior (Eq.E.5)
L
2 (r-1)
= ’ — o)
A (y+1) p, 4 (y+1) *

The algebraic expressions for the unknown veloaityn the star region are also
obtained using either Rankine-Hugoniot conditionisemtropic relations depending on
whether there is a shock wave or a rarefaction vavieft and right wave fronts. By
combining these expressions, the algebraic equdtiothe velocity in star region is
given by Eq. E.6) as:

u :%(uL + uR)+—;[ R(P)- 1(P)] (Eq.E.6)

As mentioned earlier, unknown pressian the star region is found by solving the non-

linear algebraic EqQH.3). This is accomplished by using an iterative pdure. The
iterative procedure can be used because the pessation f (P*)is differentiable and

an analytical expression for its derivative candi@ained. A Newton-Raphson [228]
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iterative procedure can be used to find the roof ()P) =0. The general procedure is

shown by Eq.E.7) as:

A (Eq.E.7)

In the above equation, index k represents the titeralevel. The iteration
procedure is stopped whenever the relative presshaege is less than the prescribed
tolerance level, which is typically set to 1le-6.eTielative pressure change between two

iterations is shown by EQE(8) as:

_ ‘Pk* B Fi—l‘

m (Eq.E.B)

The other two unknowns in the star region, ig., and p,.are determined by
comparing the pressure p* to pl and pr. The refatiosed to accomplish this depend on
the type of non-linear waves at left and right tamss. The analytical expressions for

are given by Eq.K.9) as:

P, (v-1)
R (y+)
oL (VL_T ifP" > P (shock)
A== |(y+r (Eq.E.9)
N
oL %Jy iP" <P (rarefactiol
L

The analytical expressions faz, are given by Eq.H.10) as:



P ()
5 P. (y+1)
R «
o (y_l)i+1
Pr == _(y+1) P,
1
P
Pr F
R
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ifP* > P, (shock)
(Eq.E.10)

iP" <P, (rarefactiol

The speeds of shock and rarefaction waves arepalsometers of interest. The

explicit expression for speed of shock waSe or S,can also be derived by using the

Rankine-Hugoniot condition. They are given by Bf1Q) and Eq. E.12) as:

S =y- %’{(1’2;1)%}(1/2;1)}2 (Eq.E.11)
S= g R{(VZT)%*JVZT)T (Eq.E.12)

The rarefaction wave is enclosed by a head and, avtach are characteristics of

speeds given respectively by EF.13) and Eq. E.14)
SHL =yU-G.

(Eq.E.13

Sy = u- ég,L (Eq.E.19)

Similarly, the speeds for head and tail of rightefaction waves are given by

Eq. €.15 and Eq. E.16)

Sip= U+ Gr (Eq.E.15
(Eq.E.16)

Sip= U+ G
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