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ABSTRACT 

Numerical Simulation of interior ballistic processes in gun and mortar systems is 

a very difficult and interesting problem. The mathematical model for the physical 

processes in the mortar systems consists of a system of non-linear coupled partial 

differential equations, which also contain non-homogeneity in form of the source terms. 

This work includes the development of a three-dimensional mortar interior ballistic (3D-

MIB) code for a 120mm mortar system and its stage-wise validation with multiple sets of 

experimental data. The 120mm mortar system consists of a flash tube contained within an 

ignition cartridge, tail-boom, fin region, charge increments containing granular 

propellants, and a projectile payload. The ignition cartridge discharges hot gas-phase 

products and unburned granular propellants into the mortar tube through vent-holes on its 

surface. In view of the complexity of interior ballistic processes in the mortar propulsion 

system, the overall problem was solved in a modular fashion, i.e., simulating each 

physical component of the mortar propulsion system separately. These modules were 

coupled together with appropriate initial and boundary conditions.  

The ignition cartridge and mortar tube contain nitrocellulose-based ball 

propellants. Therefore, the gas dynamical processes in the 120mm mortar system are two-

phase, which were simulated by considering both phases as an interpenetrating 

continuum. Mass and energy fluxes from the flash tube into the granular bed of ignition 

cartridge were determined from a semi-empirical technique. For the tail-boom section, a 

transient one-dimensional two-phase compressible flow solver based on method of 

characteristics was developed. The mathematical model for the interior ballistic processes 
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in the mortar tube posed an initial value problem with discontinuous initial conditions 

with the characteristics of the Riemann problem due to the discontinuity of the initial 

conditions. Therefore, the mortar tube model was solved by using a high-resolution 

Godunov-type shock-capturing approach was used where the discretization is done 

directly on the integral formulation of the conservation laws. A linearized approximate 

Riemann Solver was modified in this work for the two-phase flows to compute fully non-

linear wave interactions and to directly provide upwinding properties in the scheme. An 

entropy fix based on Harten-Heyman method was used with van Leer flux limiter for 

total variation diminishing. The three dimensional effects were simulated by 

incorporating an unsplit multi-dimensional wave propagation method, which accounted 

for discontinuities traveling in both normal and oblique coordinate directions. 

For each component, the predicted pressure-time traces showed significant 

pressure wave phenomena, which closely simulated the measured pressure-time traces 

obtained at PSU. The pressure-time traces at the breech-end of the mortar tube were 

obtained at Aberdeen Test Center with 0, 2, and 4 charge increments. The 3D-MIB code 

was also used to simulate the effect of flash tube vent-hole pattern on the pressure-wave 

phenomenon in the ignition cartridge. A comparison of the pressure difference between 

primer-end and projectile-end locations of the original and modified ignition cartridges 

with each other showed that the early-phase pressure-wave phenomenon can be 

significantly reduced with the modified pattern. The flow property distributions predicted 

by the 3D-MIB for 0, 2, and 4 charge increment cases as well the projectile dynamics 

predictions provided adequate validation of theory by experiments. 
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Chapter 1 
 

INTRODUCTION 

The central topic of interest in the proposed research is the modeling and 

simulation of flame spreading and combustion processes in a 120mm mortar system. 

Completed work presented here addresses the flame spreading, combustion, 

pressurization process, and wave propagation in some parts of the 120mm mortar system. 

The comprehensive modeling of the 120mm mortar system under realistic firing 

conditions involves several complex processes, which can be best described by two-phase 

processes, for both gas-phase and condensed-phase. 

1.1 Description of 120mm mortar system 

The 120mm mortar system is one of the three mortar systems that are currently 

used by the U.S. Army. The 120mm Mortar System provides close in and continuous 

indirect fire support to maneuver forces. It is capable of rapid response, which is critical 

since a mortar platoon must move frequently to avoid counter fire. This mortar is used by 

mechanized infantry, armor and cavalry units. The 120mm mortar system consists of 

many parts. The drawing of the cross-sectional view of the 120mm mortar projectile is 

shown in Fig. 1-1.  There are several components in this mortar system; however, in this 

work, the 120mm mortar system is divided into three major parts; flash tube, tail boom, 

and mortar tube. These three major parts are described as following:  
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1.1.1 Flash tube 

This is the innermost cylindrical portion, which is an assembly of a primer and 

igniter contained in a partially perforated cylindrical tube.  The primer is located at one 

end known as the primer-end.  Primer is a combustible material, which ignites upon 

impact provided that the energy of impact is above the threshold energy required for 

ignition.  The threshold energy required for ignition is called initiation energy ( )reqE  and 

it is related to the striking velocity ( )impV  of impact. The impact is delivered by a device 

called firing pin, which hits the primer to ignite it.  Next to the primer, five center 

perforated annular black powder pellets are located. The hot gases produced by the 

ignition of primer heat and subsequently ignite the black powdered pellets. The 

combustion products from the ignition of black powder pellets comprise of both gas-

phase and condensed-phase products. There is an extended tube with 20 circular vent 

holes on its surface after the black powder pellets. This tube is empty and closed on the 

other end, which is called the projectile end. Both gas-phase and condensed-phase 

products of combustion from primer and black powder expand into this empty cylindrical 

 

 

Figure 1-1: Cross-sectional view of the 120mm mortar projectile. 
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tube. These products of combustion are subsequently discharged from the flash tube 

through the 20 vent holes on the flash tube. A schematic diagram of flash tube assembly 

is shown in Fig. 1-2. 

1.1.2 Tail-boom section 

The tail-boom section is the intermediate portion, which contains the flash tube 

assembly. The interior of the tail-boom section is cylindrical and contains closely packed 

ball propellants (referred as M48) in the annular region between flash tube and tail-boom. 

The surface of tail-boom section is perforated and it has 28 circular holes known as "vent 

holes." These vent holes are arranged in 8 rows around the middle exterior surface of the 

tail-boom section. Four such rows have 4 vent holes and the other four rows have 3 vent 

holes each. These rows are uniformly arranged on the middle exterior surface of the tail-

boom section. There is a set of fins on the external surface of the tail-boom section on 

one end. This end is referred as the “primer end.”. These fins are used to aerodynamically 

stabilize the projectile flight through the airspace toward its target. The other end of the 

tail-boom section is referred as the “projectile end” and is conical in shape from the 

 

 

Figure 1-2: Cross-sectional view of the flash tube with 20 vent holes having a diameter of 
0.165 cm. 
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outside. There are no vent holes in this part of the tail-boom section. The ball propellants 

in the tail-boom section are contained in a paper tube, which fits the tail-boom section 

from the inside and blocks the vent holes on the surface of tail boom till the pressure 

reaches a threshold rupture pressure. The tail-boom section receives the discharge of 

high-pressure and high-temperature combustion products from the flash tube. These 

combustion products contain both the gas-phase and condensed-phase species. These 

combustion products heat the ball propellants in the tail-boom section. The assembly of 

flash tube and tail-boom is also called the ignition cartridge or M1020 ignition cartridge. 

Each tail boom section has 28 vent holes. For the purpose of experimental pressure-time 

trace measurements, each tail boom section was drilled for 16 additional threaded holes 

so that pressure transducers could be mounted on the tail boom without affecting the 

discharge process from the original 28 vent holes. The tail-boom section and its 

components can be seen in Fig. 1-3. 

 

 

Figure 1-3: Cross-sectional view of the granular bed of the ignition cartridge. 
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1.1.3 Mortar tube section 

The outermost portion of the 120mm mortar system is called mortar tube as 

shown in Fig. 1-1 and Fig. 1-4. The mortar tube section contains the ignition cartridge, 

horseshoe-shaped charge increments, and the projectile payload. There are four 

horseshoe-shaped propelling charges mounted outside of the tail-boom. These horseshoe-

shaped charge increments are also filled with ball propellants. The mortar tube has a 

cylindrical shape from outside. The combustion products discharged from the tail-boom 

section heat the ball propellants in the horseshoe-shaped charge increments. The 

combustion of ball propellants in the charge increments results in pressurization in the 

mortar tube, which initiates the projectile motion and sustains projectile acceleration 

along the mortar tube. There is a sealing ring called the obturating ring between the 

mortar tube surface and projectile outer surface to minimize the leakage (called blow-by) 

of combustion products from the pressurized region in the mortar tube. 

 

 

Figure 1-4: 120mm mortar cartridge family (from left to right): M934/M934A1 HE, 
M929 WP smoke, M930/M983 illumination, M931 practice [75].  
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1.2 Motivation 

Simulation of the flame spreading and combustion processes in various parts of a 

120mm mortar system under realistic firing conditions is imperative for design 

modifications and improvement of the system performance. The motivation for this work 

came through the firing experiments at the Picatinny Arsenal, in which mortar rounds did 

not cover the desired distance and some of them had damaged fin blades (see Fig. 1-5 and 

Fig. 1-6). 

These instances provided the impetus for detailed modeling and stepwise experimental 

validation of the numerical predictions of the ballistic behavior of the ignition cartridge 

and propelling charges. The knowledge gained from the simulation of these processes can 

help to advance future improvements of the propulsion system to achieve increased safety 

for the operating personnel and greater reliability in the field. The numerical code can 

 

Bent Fin SectionBent Fin Section
 

Figure 1-5: Damaged fin-blade during the 120mm mortar firings. 
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add a new tool for designing, developing and supporting the production of mortar 

systems.  The numerical code also enables cost effective design efforts by reducing costly 

live fire testing, characterizes combustion and pressurization processes in various 

components of the 120mm mortar system, and allows engineers to design mortar 

cartridges with improved performance to meet the needs of the future combat system and 

the future force.  The model also assists evaluation of production issues through modeling 

and simulation of the effect of component variation on performance, potential cost 

savings proposals and other typical production questions. Therefore, it is beneficial to 

study the interior ballistics of the existing design. 

 

 

Figure 1-6: Damaged fin-blade during the 120mm mortar firings (end-view). 
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1.3 Specific objectives 

The overall objective of this work was to develop a comprehensive theoretical 

model and an efficient numerical code to simulate the transient 3D interior ballistic 

processes of the 120mm mortar system. To achieve the above objective, major physical 

and chemical processes that need to be modeled and numerically simulated, are as 

following: 

1. Simulation of rate of discharge of combustion products from flash tube to the 

granular bed in the tail-boom section. 

2. Modeling and simulation of the burning behavior of granular propellants in 

the tail-boom section by two-phase processes, interaction of discharging jets 

of combustion products from flash tube section to the granular bed in tail-

boom section. 

3. Pressurization process, propagation of compression waves, rupture of the 

paper tube, discharge of both gas-phase and condensed-phase combustion 

products, and subsequent depressurization in the tail-boom. 

4. Modeling and simulation of the interaction of the discharging jets of 

combustion products from the tail-boom section to the propelling charge 

increments in the mortar tube section to initiate combustion in the mortar tube. 

5. Subsequent combustion of granular propellants in the free volume between 

projectile and mortar tube while the projectile is still stationary. 
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6. Advancement of the current theoretical model for describing the ignition and 

combustion processes in order to achieve better understanding of the detailed 

mechanism for performance improvement of a general mortar system.  

All of the above steps were stepwise validated by experimental data.  

1.4 General method of approach 

In order to develop a comprehensive 3-dimensional mortar interior ballistics (3D-

MIB) model and an efficient numerical code to simulate the interior ballistic processes of 

the 120mm mortar, various physical and chemical processes occurring in the mortar 

system must be considered. The mortar system consists of several parts including an 

ignition cartridge with a primer and a flash tube, propellant charge increments, the 

projectile body, and the mortar tube. To understand the ignition and combustion 

processes, the modeling and simulation of interior ballistic processes in the mortar system 

is performed in the following order.  

1. An empirical flash tube sub-model for instantaneous energy and mass fluxes of 

the gas-phase and condensed-phase combustion products from the flash tube. 

2. Mobile granular bed combustion sub-model based upon conservation equations of 

gas-phase and particle-phase, equation of state for gas in granular bed inside the 

tail boom, propellant burn rate, propellant surface temperature, and an 

intragranular stress relationship. 

3. Sub-model to determine flame spreading rate instantaneous gas-phase and 

condense-phase properties along the granular bed inside the tail boom, including: 
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pressure, temperature, density, velocity, propellant burn rate, propellant surface 

temperature, intragranular stress, etc.  

4. 3D combustion sub-model for propellant grains in the expanding free volume 

between projectile and mortar tube pressure distribution around the projectile.  

5. A projectile dynamics sub-model to predict the projectile trajectory, including: 

projectile acceleration, velocity, and any undesirable combustion phenomena, in-

bore p-t traces, effect of elevation angle, effect of design parameters, etc. 

6. Integration of above sub models.  

7. Model validation by experimental data up to the shot start.  

8. Extending the theoretical model and numerical code to other mortar systems.  

The major building blocks of the 3D-MIB code are shown in Fig. 1-7. A detailed 

flow chart outlines the various steps in this work as shown in Fig. 1-8. 
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Figure 1-7: Major building blocks of the 3D-MIB code. 
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Figure 1-8: Overall flow chart for the 3D-MIB code. 
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1.5 Major advantages of theoretical/numerical work 

Once validated, the 3D mortar interior ballistics (3D-MIB) code can be used to 

provide the guidance for design and performance improvements of the mortar projectile. 

For example, different primer material, flash tube geometry, pellets configurations, 

granular bed loading densities, vent-hole distributions can be studied to achieve increased 

reliability and higher performance. The numerical code can provide rigorous analysis and 

deeper understanding of the ballistic processes of the mortar system to proceed in the 

right direction for performance improvements. 3D-MIB code can provide predicted 

pressure-time traces and many other physical parameter variations at multiple axial 

locations. These physical parameter variations are useful for reducing the pressure-wave 

phenomena during the interior ballistic cycle in the mortar firing. The knowledge gained 

from the simulation of these processes can help to reduce the possibilities for fin-blade 

damage during operation in the field; thus, the code can help to achieve greater safety for 

the operating personnel with enhanced propulsion performance in the field. The 3D-MIB 

code can also be used as an analytical tool for studying any abnormal behavior of the 

mortar projectile during operation. The numerical simulation with the code can be used to 

partially replace the expensive experimental test runs. 

1.6 Literature review 

Traditionally, the multiphase flow modeling has been considered to be one of the 

most challenging problems of research in applied mathematics and computational fluid 

dynamics. There have been two major approaches to solve the two-phase flow problems 
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with one compressible phase and another incompressible phase. One approach is to treat 

the fluid phase as a continuum and the particulate second phase as single particles. This 

approach, which predicts the particle trajectories in the fluid phase as a result of forces 

acting on particles, is called the Lagrangian approach. This approach was used by Gough 

[18-23] for modeling of medium and large caliber gun systems with one-dimensional 

two-phase flows with area change. The interior ballistic computer code based on this 

approach is called XNOVAKTC (XKTC). This version of the code has chemical kinetics, 

tank gun features and end burning traveling charge increments. Other extensions include 

the modeling of single perforated monolithic charges, charges bonded to the tube or the 

projectile, and a ballistic control tube. The XKTC code was applied to the simulation of 

traveling charges with finite reaction zones. The Lagrangian approach used in the XKTC 

code was further extended to the two-dimensional and three-dimensional compressible 

flows to the development of next generation interior ballistic code known as NGEN3 [51-

56]. This comprehensive code is developed by Army Research Laboratory (ARL) and it 

can be applied to simulate the interior ballistic processes in various systems including 

modularly packaged granular charges [51] [54], high-loading density (HLD) charges in 

which various solid propellant media are employed [55], and telescoped-ammunition 

propelling charge [56]. The NGEN3 code incorporates three-dimensional continuum 

equations along with auxiliary relations by treating gas-phase (i.e., air and gaseous 

combustion products) as continuous and solid propellants as discrete phase thereby using 

an Eulerian/Lagrangian approach to simulate the gun systems. Recently, Miura and 

Matsuo [46-48] have also used the Eulerian/Lagrangian type approach to perform two-

dimensional axisymmetric calculations for the interior ballistic processes in an AGARD 
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gun and projectile motion through a long-slotted tubular gun. The AGARD (Advisory 

Group for Aerospace Research and Development) gun has been used as a standard test 

case to aid the development of UK internal ballistics codes for many years. 

The other approach treats both solid-phase and gas-phase as continuum and 

appropriate conservation equations are solved for both phases. This approach is called the 

Eulerian approach. The Lagrangian approach has some advantages for solving those two-

phase flows where the solid-phase experienced large accelerations. This approach is also 

useful in solving the two-phase consisting of poly-dispersed particle size distributions. 

The Eulerian approach has advantages in those cases where the concentrations of solid 

particles are high and the volume fraction of solid-phase could be a dominating flow 

parameter. The models based on Eulerian approach consists of governing equations for 

mass, momentum, and energy for both phase with the interfacial exchange terms between 

the two phase included in the source terms. Baer and Nunziato [3-4] were the first group 

to propose such models and those are generally referred to as B-N models. The B-N 

model has emerged as the most prominent multiphase flow model for simulating 

combustion of energetic materials such as explosives and propellants. The numerical 

algorithms to solve the Eulerian type model involves either solving the complete system, 

using the method of characteristics for example, or splitting the problem into a sequence 

of two sub-problems that included the solution to a transport equation followed by an 

ODE integration (to include the effect of algebraic source terms). Similar approaches 

have been adopted to solve the B-N equations as demonstrated by Bdzil et al. [5]. 
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1.7 Survey of numerical methods 

The governing equations for the two-phase compressible flows are almost always 

non-linear hyperbolic equations (see Appendix D). Numerically, it is generally accepted 

that the hyperbolic terms of the partial differential equations of the fluid flow are the 

terms that pose the most stringent requirements on the discretization techniques. 

Fortunately, the theory of hyperbolic systems is much more advanced than that for more 

complete mathematical models, such as the Navier-Stokes equations. There are two 

major numerical approaches to solve such equations, namely finite difference methods 

and finite volume methods. More recently, the finite element methods have also been to 

solve the governing equations of compressible flow.  

The partial differential equations for any system represent a continuous physical 

problem. Numerical methods replace the continuous problem into a finite set of discrete 

values. This process is called discretization and it is accomplished by dividing the 

physical domain into a finite set of points or a finite number of volumes via a mesh or 

grid. In the finite difference approach, physical variables are calculated at each point in 

the physical domain and their derivatives are approximated by the differences between 

these points. In the finite volume approach, the physical quantities at each point in the 

mesh are calculated as an average over a finite volume. Averaging process indicates 

integration of physical quantities over a volume, which means that the finite volume 

approach is an integral approach. It is widely accepted that the non-linear hyperbolic 

equation may always consist of discontinuity and a numerical solution based on finite 

difference method may break down. In case of discontinuity, the derivatives of physical 
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quantities do not exist but it is always possible to perform integration over a 

discontinuous domain [58]. Thus, finite volume methods are more popular for solving 

such problems. Despite this, there have been some well known finite difference schemes 

to solve the problems in compressible flows.  

A dimensionless parameter called Courant number; it is also known as the 

Courant-Friedrichs-Lewy number, or CFL number is used to determine the stability of 

any discretization method. Physically, the CFL number can be interpreted as the ratio of 

two speeds, namely the wave propagation speed in the partial differential equation in and 

the grid speed defined by the discretization of the domain. In case, there are more than 

one wave are present in the solution of the hyperbolic problem, the CFL number is 

calculated by using the maximum wave speed. The grid speed is defined as the ratio of 

spatial step and time step. Based on this definition, the CFL number is given by Eq. (1.1)  

Courant, Isaacson and Rees [9] proposed a first order upwind method (also known 

as CIR scheme) to solve the hyperbolic PDEs. In this method, the spatial derivative is 

approximated by a first order Taylor series approximation. The Taylor series 

approximation to calculate derivative is explained in greater details in a book by Roache 

[58]. The term upwind (or upstream), refers to the fact that spatial differencing is 

performed using mesh points on the side from which information (wind) flows. The 

major disadvantage of this method is numerical dissipation, which results in heavy 

smearing at the discontinuities. Another first-order scheme is that of Lax and Friedrichs. 

The scheme is sometimes also called the Lax Method [32-36], or the scheme of Keller 

( )max
 where  is the wave propagation speed of the  wave

i th
ic i

x t

λ
λ≡

∆ ∆
 (Eq. 1.1) 
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and Lax. This does not require the differencing to be performed according to upwind 

directions. In this scheme, the physical variables in the time derivative are replaced by an 

average of these quantities at forward and backward points, thereby making this a second 

order accurate in space. However, the Lax and Friedrichs scheme is considered more 

diffusive than the CIR scheme. A scheme of historic as well as practical importance is 

that of Lax and Wendroff [37-38]. The basic Lax-Wendroff scheme is second-order 

accurate in both space and time. This scheme gives spurious oscillations in the numerical 

solution in the vicinity of sharp gradients, such as at discontinuities. Another second-

order accurate scheme is the upwind method of Warming and Beam [78]. This scheme 

also gives oscillations in the vicinity of discontinuities. Yet another second order scheme 

is the Fromm scheme [14], which is also second order accurate in space. All second order 

schemes are dispersive in nature, which means that the results will suffer from 

oscillations. A short summary of all of the above-mentioned finite difference methods is 

shown in Table 1-1.  

Due to the limitations of finite difference methods in problem with discontinuities 

like shock waves, finite volume methods are more often used. These methods are also 

called conservative methods because the partial differential equations are written in terms 

of conserved variables (like mass, momentum, and energy) and not in terms of primitive 

variables (like density, velocity, and pressure). 
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Godunov [15] first proposed a first order upwind scheme (an extension of the CIR 

scheme) for the equations of gas dynamic by solving a set of Riemann problems to obtain 

solution at a next time level. The Riemann problem is a fundamental problem in gas 

dynamics, which is described in extensive details in Appendix 5. Briefly, the Riemann 

problem arises in the conservation equations of gas dynamics if the initial data are 

prescribed as two semi-infinite states with a large jump at x = 0. The key observation is 

that if the approximation is viewed as a piecewise constant function, local Riemann 

problems are introduced at cell boundaries. However, the low accuracy and the 

complexity of this method meant that other methods were mostly used for a long time. 

The methods in use were typically based on modifications of simple first or second order 

schemes to improve the representation of discontinuities. There has been significant 

Table 1-1: Finite difference schemes for hyperbolic equations 

Numerical 
method 

Explicit form  Accuracy 

Courant, 
Isaacson and 
Rees (CIR) 

( )1
1

n n n n
i i i iu u c u u+

−= − −  First order in 
space and time 

Lax and 
Friedrichs ( ) ( )1

1 1

1 1
1 1

2 2
n n n
i i iu c u c u+

− += + + −  
Second order in 
space and first 
order in time 

Lax-Wendroff ( ) ( ) ( )1 2
1 1

1 1 1
1 1 1

2 2 2
n n n n
i i i iu c c u c u c c u+

− += + + − − −  
Second order in 
both space and 
time 

Warming and 
Beam ( ) ( )( )

( )

1
2

1

1 1
1 1 2

2 2
          2

n n n
i i i

n
i

u c c u c c u

c c u

+
−

−

= − − + − −

+ −
 

First order in 
space and time 

Fromm  ( ) ( )

( ) ( ) ( )

1
2 1

1

1 1
1 5

4 4
1 1

          1 4 1
4 4

n n n
i i i

n n
i i

u c c u c cu

c c u c cu

+
− −

+

= − − + −

+ − + − −
 

First order in 
space and time 
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improvement over the past several years in this area. A comprehensive literature review 

in this field is provided in chapter 7. 



 

Chapter 2 
 

IGNITION CARTRIDGE COMBUSTION SUB-MODEL 

This chapter describes theoretical modeling, numerical technique, and results of 

numerical simulation of the interior ballistic processes in the ignition cartridge of a 

120mm mortar system. The ignition cartridge consisted of a flash tube containing five 

black powder pellets and a tail-boom loaded with M48 granular propellant bed. The flash 

tube model solved ordinary differential equations and used experimental pressure-time 

traces to deduce the results; i.e., the discharge rates of gaseous and condensed-phase 

products, enthalpy, temperature, and velocity of the combustion products.  

2.1 Introduction 

The overall interior ballistic processes associated with the 120mm mortar ignition 

cartridge firing are extremely complicated. These processes include: 

1. Initiation of primer function by firing pin impact; 

2. Flame spreading over center-perforated black powder pellets; 

3. Discharging of combustion products from the vent holes of the multi-perforated 

flash tube; 

4. Heating the M48 ball propellants in the tail-boom section to ignition; 

5. Flame spreading and combustion of ball propellants in the tail-boom section of 

the projectile; 
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6. Puncturing of the paper tube through the 28 vent holes of the tail boom section 

followed by discharge of propellant products. 

It is intended that the above physical processes can be incorporated by coupling two 

different sub-models that are described below: 

• Simulation of pressure and temperature traces in the flash tube (packed with black 

powder) using a generalized flow model. 

• Simulation of pressure and temperature traces in the tail boom section (packed 

with ball propellants) using both generalized transient 1-D flow model. 

The specific objectives of this chapter are: 

(i) Computation and analysis of the combustion and mass discharging processes in 

the flash tube; 

(ii)  Simulation of interior ballistics processes in the granular bed with the original 

design of flash tube with black powder as the pyrotechnic material; 

(iii)  Simulation and analysis of interior ballistics processes in the granular bed with 

the modified design of flash tube with vent-hole patterns and black powder as 

the pyrotechnic material; 

(iv) Comparison of the interior ballistic processes in the granular bed of M1020 

ignition cartridge of the 120mm mortar system using Black Powder (BP), and 

Moisture Resistant Black Powder Substitute (MRBPS) as two different 

pyrotechnic materials. 
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2.2 Flash tube sub-model 

The flash tube consists of an assembly of a primer and five black powder (BP) 

pellets contained in a partially perforated cylindrical tube. The primer is located near the 

BP pellets. The primer contains combustible pyrotechnic material, which ignites upon 

impact when the impact energy is above the threshold energy required for ignition.  The 

hot products (both gas-phase and condensed-phase species) are generated from the primer 

heat and ignite the BP pellets. In the hollow cylindrical tube section following the BP 

pellets, there are twenty circular vent holes on the flash tube wall.  This section is initially 

empty and it is closed by a steel pin on the other end, which is called the projectile end.  

Both gas-phase and condensed-phase products of combustion from primer and BP pellets 

expand into this empty cylindrical tube. These products are discharged from the flash 

tube through the twenty vent holes when a thin Mylar tape wrapped around the flash tube 

is ruptured locally. A schematic of flash tube assembly is shown in Fig. 2-1. The 

modeling of mass discharge process from the flash tube into the granular bed is described 

in following sections. 

 

 

Figure 2-1: Cross-sectional view of the flash tube with 20 vent holes. 
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2.2.1 Go/No-Go ignition criterion for primer 

The required initiation energy ( )reqE  in (in-oz) and striking velocity ( )impV  in 

(in/s) for Fed 150 primer were found to be related by the following equation by Boyer et 

al. [6]. 

In Eq. (2.1), a = 16.172 in-oz, b = 0.22405 in and g (the gravitational acceleration) = 

32.174 ft/s2= 386.089 in/ s2.  This equation can be regarded as the go/no-go criterion for 

successful ignition upon impact.  In terms of the cgs units, the above equation can be 

written in the following form: 

In Eq. (2.2), the required initiation energy ( )reqE  in (cal) and striking velocity ( )impV  in 

(cm/s), *a =0.02729 cal, *b =0.5691 cm and g (the gravitational acceleration)=980.665 

cm/s2. At a given impact velocity, if the impact energy ( )impE  is greater than ( )reqE  

ignition is considered to be successful. 

2.2.2 Black powder combustion 

The combustion reaction of black powder containing (a mixture of potassium 

nitrate, charcoal and sulfur) can be written as: 

2

2

a

2b
imp

req
imp

V
E

V g
=

−
 (Eq. 2.1) 
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−
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25 

 

20 KNO3 + 32 C + 8 S → 5 K2CO3 + K2SO4 + K2S2O3 +3 K2S +2 S + 11 CO2 + 16 CO + 

10 N2 

The combustion product has 43% of gaseous species and about 57% solid residues.  This 

implies that the value of mass fraction of the condensed phase product (Ψc) is 0.57; i.e., 

Ψc = 0.57. The major flash tube output to be determined from empirical correlation 

includes the following: 

2.2.3 Gas-phase mass flow rate from the nth set of vent holes 

Gas-phase mass flow rate from a single vent hole of the nth set of vent holes on 

the flash tube can be calculated from the choked flow equation as shown by Eq. (2.3): 

where vhA  is the area of a single vent hole on the flash tube and it is given by Eq. (2.4).  

The gaseous mass flow rate from the nth set of vent holes is related to ,svhg nmɺ  by 

Eq. (2.5) as following: 

In the above equation, ,vh nN  is the number of vent holes in the nth set of vent holes.  The 

current flash tube design has 10 sets of vent holes along its length and each set has two 

,
,

( )
( ) ( )

( )
n vh

svhg n
g n

P t A
m t

RT t
γ= Γɺ  (Eq. 2.3) 

2 / 4vh vhA dπ=  (Eq. 2.4) 

, , , = vhg n svhg n vh nm m N×ɺ ɺ  (Eq. 2.5) 
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vent holes of the same size with a diameter of vhd =1.65 mm. The function of ( )γΓ  is 

shown by Eq. (2.6): 

The combustion product of black powder is assumed to have γ  = 1.2 and R = 0.0598 

cal/(gm-K) = 250.2 J/(kg-K).  The flame temperature was taken as 1,600 K before any 

thermocouple measurements.  The pressure at nth vent hole was deduced from the 

experimental data of flash tube tests.  Several pressure transducers were used for pressure 

measurement along the flash tube; including one near the end of the stainless steel pin 

(Ppin).  In addition to P-t traces, it is possible to add ultra-fine thermocouple 

measurements at one or more intermediate locations.  Therefore, for numerical 

calculations, the Pn(t) and T(t) traces are assumed to be known.  In addition, the delay 

time for onset of mass and energy discharge from the nth vent hole (td,n) is considered 

known from the experimental data. 

2.2.4 Condensed-phase mass flow rate from the nth set of vent holes 

Condensed-phase mass flow rate from the nth set can be calculated from the total 

mass flow rate from the same set as shown by Eq. (2.7): 

where, , ( )vhc nm tɺ is given by Eq. (2.8) as: 

( )
1

2

1
12( )

1

γ
γ

γ γ γ

+
− 

 
 

Γ =
+

 (Eq. 2.6) 

, ,( ) ( )cvhc n vht nm t m t= Ψɺ ɺ  (Eq. 2.7) 
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2.2.5 Gas-phase energy flux and enthalpy from the nth set of vent holes 

The energy flux and enthalpy of the discharging gaseous products from a vent 

hole of the nth set can be calculated as shown by Eq. (2.9): 

where , ( )vhg nT t  is the gas-phase temperature at the exit of the nth set of vent holes, and 

the relationship between , ( )vhg nT t and  , ( )g nT t is given by Eq. (2.10): 

The delay time for the energy flux of the nth vent hole is the same as that for the mass 

flow rate. 

2.2.6 Condensed-phase energy flux from the nth set of vent holes 

The energy flux and enthalpy of the discharging gaseous products from a vent 

hole of the nth set can be calculated by Eq. (2.11): 

, ,( ) ( ) / 1 cvht n vhg nm t m t   = − Ψɺ ɺ  (Eq. 2.8) 

"
, , ,( ) ( ) ( ) /pgvhg n vhg n amb svhg n vhH t C T t T m t A 

 
= −ɺ ɺ  (Eq. 2.9) 

,

,

( ) 2
( ) 1

vhg n

g n

T t

T t γ=
+

 (Eq. 2.10) 

"
, , ,( ) ( ) ( ) /pcvhc n vhc n amb svhc n vhH t C T t T m t A 

 
= −ɺ ɺ  (Eq. 2.11) 
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where, , ( )vhg nT t  is the gas-phase temperature at the exit of the nth set of vent holes. 

Again, the delay time for the energy flux of the nth vent hole is the same as that for the 

mass flow rate.  It is reasonable to assume that  

Before any reliable data is obtained for pcC , it has been assumed that pc pgC C= . 

2.2.7 Rate of energy loss to the flash tube 

Due to the extremely rapid combustion and discharging event associated with the 

flash tube, it is assumed that the energy loss to the aluminum tube is negligible during the 

initial time.  However, the heat transfer process from the ball propellant combustion will 

be included in the granular bed sub-model. 

2.2.8 Protective tube resistance 

The wall thickness of the plastic protective tube is very thin.  Its resistance for 

penetration by hot combustion products of black powder is considered to be included in 

the delay times of vent holes on the flash tube.  Therefore, no additional stress analysis is 

performed on this penetration process. 

, ,( ) ( )c n g nT t T t=  (Eq. 2.12) 
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2.2.9 Calculated results from flash tube sub-model 

The central objective of the flash tube sub-model is to calculate mass discharge 

rate of gaseous and condensed-phase products as a function of time and axial position. 

The flash tube has five segments of cylindrical center-perforated black powder pellets to 

generate combustion products as shown in Fig. 2-1, which are discharged through 20 vent 

holes along the surface of flash tube into the granular propellant bed at 10 different axial 

locations with vent holes alternate in their orientation.  A separate experimental test set-

up was used to obtain pressure-time traces from the flash tube at 5 different axial 

locations. A secure test apparatus was designed and fabricated to house the flash tube and 

its firing system.  This was accomplished by mounting the flash tube between two 

stainless-steel stands on a test deck, as seen in Fig. 2-2. 

A firing pin was installed inside of the test stand near the primer end of the flash 

tube to initiate the combustion process.  This procedure was performed by a retracted rod, 

which held a heavy pendulum above the flash tube.  The pendulum then swung from its 

initial position, impacting the firing pin with the same force used in the field.  The impact 

of the pendulum on the firing pin provided the force necessary to compress the primer 

between the deformed primer cup and the anvil inside of the breech plug, initiating the 

impact-sensitive charge.  The hot gases and particles generated from the percussion 

primer passed through the breech plug and into the flash tube, igniting the BP pellets 

loaded near in the primer end of the flash tube. The locations of each of the pressure 

transducer along with the cross section of the flash tube are shown in Fig. 2-3.  In order to 

measure this fast combustion event, 5 PCB dynamic pressure transducers were installed 
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at pre-selected axial locations along the flash tube to measure the instantaneous chamber 

pressure at a sampling rate of 100,000 samples/s.  These port locations started near the 

primer end and finished at the projectile end of the flash tube (P1 to P5).  The pressure 

transducers were held in place by a clamp-mount assembly, which allowed for pressure 

measurements without hindering the discharging hot product gases through the vent 

holes. Generally, five pressure transducers were used simultaneously in any experiment 

owing to the limited space on the flash tube. 
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Figure 2-2: Photograph of the flash tube test setup (a) entire test rig and (b) zoomed-in 
portion of the instrumented flash tube [50]. 
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Figure 2-3: Cross sectional drawing of the flash tube and axial locations of pressure 
transducers used in this study. 
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A typical pressure-time trace from the flash tube with 5 black powder pellets is 

shown in Fig. 2-4. It can be observed from this plot that the gauge P1 sensed the initial 

rise in pressure earlier than other gauges, while gauge P5 sensed the last increase in 

pressure, indicating presence of a strong axial pressure gradient that could have generated 

a pressure wave inside the flash tube.  The gauge P5 was observed to have the highest 

peak pressure level (between 1,700 and 2,700 psig over the tests conducted) and had the 

fastest pressure rise rate.  The average time from ignition to depressurization of the flash 

tube for the baseline testing was around 2-3 ms.  The order of first rise in pressure was 

chronological according to distance away from the primer (P1→P5). 

 

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5

P'
1

P'
2

P'
3

P'
4

P'
5

0

4

8

12

16

P
re

ss
ur

e,
 P

 [p
si

g]

Time, t [ms]

P
ressure, P

 [M
P

a]

 

Figure 2-4: Recorded pressure-time traces from a flash tube test. 
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In addition to the results shown in Fig. 2-4, four more tests were conducted and it 

was found that there was poor reproducibility among the baseline black powder tests. 

This characteristic is inherently associated with black powder pellets, even though these 

BP pellets used for all testing were from the same batch.  The difference in peak 

pressures on average of these five tests between P5 and P1 was around 1,200±240 psi.  

The overall average pressure at different axial locations also varied significantly.  The 

average pressure at P1 location for the five flash tube tests was 640±47 psig, whereas the 

average pressure at P5 location was 1,146±75 psig for the test duration.  The non-

reproducibility of the baseline tests can be seen from the high standard deviation for peak 

pressures. This issue is discussed in greater details in sections 2.5-2.6. The measured 

pressure-time traces inside the flash tube were used to evaluate mass flow rate of gas-

phase products through the vent holes using the flash tube sub-model. The physical 

parameters used in the flash tube sub-model are shown in Table 2-1.  

The calculated mass flow rate-time traces from flash tube are shown in Fig. 2-5.  

Essentially, the deduced time variations of gaseous mass flow rates at various vent-hole 

locations are very similar to the pressure-time traces. All traces monotonically decay to 

zero around 4 ms. As shown in this figure, there is a significant difference in the mass 

flow rate-time traces at various axial locations. This implies the non-uniformity of gas-

dynamic processes in the flash tube, which results in non-uniform discharge of 

combustion products in the granular bed. The mass flow rate is highest at the farthest 

axial location from the black powder pellets (gauge P5 location) and lowest at the closest 

axial location (gauge P1 location). This unusual behavior could be caused by the 

combined effect of (a) continuous compression of gaseous products generated from the 
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black powder and jammed at the far end of the stagnation zone of the flash tube, (b) 

discharging of combustion products through the vent holes on the surface of flash tube, 

and (c) heating of gaseous products due to wall friction as they travel along the tube.  

In addition, there is a certain degree of non-repeatability in the pressure-time 

traces from the flash tube. A statistical analysis of these 5 baseline tests showed that the 

total mass flow rates varied as much as 15%, indicating poor reproducibility of BP pellets 

with the original M1020 flash tube design 

 

 

Table 2-1: Input parameters for the flash tube sub-model 

Description Input 
parameter 

Value Units Source 

Density of Black 
Powder 

ρprop 1677 kg/m3 literature and 
calculation 

Density of Condensed-
phase Products 

ρcond 1900 kg/m3 assumed 

Specific Heat Ratio γ 1.2 - assumed 

Flame Temperature Tf 923 K measured 

Initial Chamber Volume Vc 3.4422x10-6 m3 calculation 

Area of Throat (0.1321 
cm diameter) 

At 1.37014x10-
6 

m2 measurement 

Molecular Weight of 
Product Gases 

MWg 33.526 kg/kmol literature and 
calculation  
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From a separate experimental characterization study of the flash tube discharging 

behavior, the measured pressure-time traces inside the flash tube were used to evaluate 

mass flow rate of gas-phase products through the vent holes by the empirical flash tube 

sub-model. These deduced mass flow rates at different axial locations are presented in 

Fig. 2-5. 

2.3 Granular bed combustion sub-model 

Prior to the solution of the complete problem, it is better to solve the problem 

without propellant charge increments loaded on the external surfaces of the tail boom. 
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Figure 2-5: Deduced gas-phase mass flow rates-time traces from the flash tube using 
flash tube sub-model. 
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Without being confined in the mortar tube, the combustion products generated from the 

ignition cartridge are discharged directly into the atmosphere.  A schematic drawing of 

the longitudinal cross-sectional view of the ignition cartridge is shown in Fig. 2-6. In this 

design, the flash tube is initially loaded with five center-perforated cylindrical black 

powder pellets to generate combustion products, which flows into its cavity region and 

are partially discharged into the granular bed through 20 vent holes along the surface of 

flash tube. The existence of strong pressure waves in the combustion of ball propellants 

in the granular bed is believed to be caused mainly by the non-uniform discharge of both 

gas-phase and condensed-phase products from flash tube into the tail boom section of the 

projectile as shown in an experimental work performed by Kuo et al. [30].  Their test data 

obtained from 65° ignition cartridge testing provided useful information about the flame 

spreading and combustion processes inside the tail boom. These data were utilized for 

model validation in the present study. 
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Figure 2-6: Cross-sectional view of the granular bed of the ignition cartridge. 
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2.3.1 Method of approach 

In this sub-model, the governing equations for the granular bed combustion 

processes are simulated in an unsteady and pseudo one-dimensional form. These 

equations represent a system of hyperbolic partial differential equations. They are 

transformed into a system of ordinary differential equations using the method of 

characteristics [68].  For hyperbolic equations, the flow properties at each point in the 

flow field depend on those properties in a finite region of the upstream flow field, but are 

independent of the conditions at the next time step.  Thus, marching-type numerical 

methods may be applied for obtaining the solutions of such flow fields. Method of 

characteristics is the most accurate marching-type method applicable to quasi-linear 

partial differential equations. The concept of characteristics may be introduced from 

several points of view (see Appendix D for hyperbolic equations): 

1. From a physical point of view, a characteristic curve is defined as the path of 

propagation of a physical disturbance. For example, in a supersonic flow field, 

disturbances are propagated along the Mach lines of the flow.  These Mach lines 

are generally known as Prandtl-Meyer waves. 

2. From a purely heuristics point of view, a characteristic curve is defined as a curve 

along which the governing partial differential equations can be manipulated into 

total differential equations. 

3. From a more rigorous mathematical point of view, a characteristic curve is a 

curve across which the derivates of a physical property may be discontinuous, 

while the property itself remains continuous. 
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4. From a most rigorous mathematical point of view, a characteristic curve is 

defined as a curve along which the partial differential equations reduce to 

compatibility equations, which link the flow property changes along the 

characteristic curves. These compatibility equations can be solved algebraically. 

The above concepts have been employed for developing the numerical procedure for 

solving the system of hyperbolic partial differential equations described in this report. 

The Noble-Abel equation of state for the gas-phase mixture was adopted in this 

formulation to account for the non-ideal behavior of the gas-phase. The eigenvalues and 

eigenvectors of the system of equations were determined from mathematical derivations. 

The eigenvalues were then used to form the characteristic equations of the system. Using 

characteristic equations and eigenvectors, the partial differential equations were 

transformed into ordinary differential equations. Finally, these ordinary differential 

equations were then discretized to form linear equations for numerical solution. 

2.3.2 Basic assumptions 

A number of basic assumptions, listed below, have been made in order to make 

the problem tractable during the theoretical study. 

1. The ball propellant grains are assumed to be spherical in shape and they are 

uniformly distributed initially in the annular space between the flash tube and 

propellant container tube before the combustion event. 

2. Due to the tightly packed initial condition and the relatively small volume 

between the flash tube and propellant container tube, the flow field in the 
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granular bed is considered to be independent of azimuthal angle (θ) and the 

radial distance (r) from the centerline.  This implies that the two-phase flow is 

only a function of time (t) and axial position (x) in the tail boom section of the 

ignition cartridge. 

3. The opening of any vent holes on the tail boom is caused by the mechanical 

shearing effect of the unsupported propellant container-tube wall instead of 

burning through by the hot combustion products. 

4. It is assumed that the paper tube material does not participate in the overall 

combustion process since very small amount of energy release is associated with 

the combustion of propellant container tube. 

5. The Noble-Abel dense gas law is assumed to be suitable for describing the non-

ideal gas effect in the granular bed. 

6. The intragranular stress relationship for WC 870 ball propellants can be applied 

to ball propellants in tail-boom section. 

7. The flow resistance correlation for WC 870 ball propellants can also be applied 

to M48 (WC 816) ball propellants.  

2.3.3 Governing equations 

To determine the transient gas dynamic behavior of hot igniter gas and particle 

penetration, flame propagation, chamber pressurization and combustion processes in the 

granular propellant bed, the mass, momentum and energy equations for the gas phase and 

the mass and momentum equations for the solid phase are derived and expressed in a 
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quasi one-dimensional form.  The gas-phase control volume is the void portion occupied 

by the gas-phase material, while the remaining portion occupied by the particles is 

considered the control volume for the particle-phase material.  The overall cross-sectional 

area of the annular space is A and it remains unchanged.  The specific surface area of the 

granular propellants is sA , which represents the total exposed surface area of the 

propellant in the control volume per unit spatial volume.  The value of sA  can be 

calculated from instantaneous values of particle radius pr , and porosity or void fraction 

φ  by Eq. (2.13): 

The void fraction is defined by Eq. (2.14) as following: 

The gas phase mass equation is by Eq. (2.15): 

In the above Eq. (2.15), sbA  is the specific surface area of the burning particles in the 

control volume which is given by Eq. (2.16), FTvhgmɺ  is the sum of gaseous mass flow rate 

from all associated vent holes from the flash tube into the control volume of the granular 

bed and cv A xV = ∆ .  The parameter TBvhgmɺ  is the sum of gaseous mass flow rate from all 

associated vent holes from the tail-boom section out of the control volume of the granular 

bed. 

( ) ( )3 31 1s g
p p

A
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φ φ= − = −  (Eq. 2.13) 
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In Eq. (2.16), 0
oθ  represents the half angle of the exhaust jet coming out of the vent hole 

of the flash tube and ofsθ  is the angular flame spreading rate in the propellant cup.  The 

term on the numerator of Eq. (2.16) represents the half angle covering the instantaneous 

zone of the burning particles.  The maximum value of the half angle is 180o. The 

propellant particle phase mass equation is Eq. (2.17) as following: 

The gas phase momentum equation is Eq. (2.18) as following: 

The particle-phase momentum equation is Eq. (2.19) as following: 

It is important to note that tD  is the total drag force between the gas and particle phases. 

It is equal to the sum of the drag due to the presence of relative velocity between the gas 

and particle phases and the drag due to the porosity gradient as shown by Eq. (2.20):  
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For the non-fluidized region, the correlation obtained by Kuo et al. [29] was used 

for vD . For the fluidized region, the expression for vD  is deduced from Andersson's [1] 

expression, which is valid for porosities ranging from 0.45 to 1.0 and particle Reynolds 

number (Rep) from 0.003 to 2,000. Although the Reynolds number range is not wide 

enough to cover the variation in the overall transient process, it is the best correlation 

available in the literature for spherical particles. For convective heat transfer calculations, 

Denton's [10] formula was used for the non-fluidized region.  For fluidized regions, hc 

was obtained from Rowe and Claxton's [67] correlation.  The gas phase energy equation 

is Eq. (2.21) as following: 

In the above Eq. (2.21), FTvhgh is the average enthalpy of discharging gases from all 

associated vent holes of the flash tube into a given control volume of the granular bed and 

,FTvhg FTvhg nV RTγ= . The last term, associated with the sum of gaseous mass flow rate 

from all related vent holes of the tail-boom section out of the control volume of the 

granular bed ( )TBvhgmɺ , represents the outgoing total enthalpy to the mortar tube after the 

local propellant cup wall is ruptured. 

It should be noted that the governing equations for the gas and particle phases are 

simplified by neglecting some terms. These higher-order neglected terms are: (a) the 
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viscous normal stress in the gas-phase momentum equation, (b) the shear force at the 

combustor wall for the particles in the particle momentum equation (this is justified since 

the contact surface area between the particles and chamber wall is small and also the 

initial porosity considered is high), (c) the gas-phase heat conduction term, (d) the work 

done by the viscous normal stress in the gas-phase energy equation, (e) the heat loss to 

the chamber wall in the extremely short transient combustion experiments, (f) the rate of 

pressure work for the dilatation of the gaseous control volume in the gas-phase energy 

equation, and (g) the rate of change of the total heat transfer coefficient in the calculation 

of propellant surface temperature. The relationship between the discharging solid 

particles and gases from the vent holes of the tail boom is considered to be similar to that 

from the flash tube; thus,  

2.3.4 Equation of state in granular bed 

In addition to the above governing equations, the equations of state for gas-and 

particle-phases must be specified. The co-volume effect becomes important at high 

pressures, so the Noble-Abel dense gas law was used. It is shown in Eq. (2.23): 

( ) ( ) 1
TBvhc TBvhgt tm m φ

φ
−=ɺ ɺ  (Eq. 2.22) 
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The solid-propellant particles are assumed to be incompressible. Therefore, the 

statement of a constant density for the solid-propellant particles serves as the equation of 

state for the particles, i.e., constantpρ = .  

2.3.5 Intragranular stress 

To complete the theoretical model it is necessary to specify several empirical 

correlations: the intragranular stress transmitted through the packed granular particles, the 

flow resistance due to the drag force between particle and gas phases, the convective heat 

transfer coefficient and the regression rates of the solid propellant particles.  The 

following relation shown by Eq. (2.24) relates the intragranular stress to the speed of 

sound: 

Here c is the speed of sound in the aggregate of ball propellants. The speed of sound in 

solid propellant aggregate can also be expressed by Eq. (2.25): 

In the above Eq. (2.25), refc is the speed of sound in solid at critical porosity cφ . The 

critical porosity is defined as the upper limit of void fraction above which the aggregate 

would be dispersed and no sound transmission can take place through the dispersed 
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particles.  Therefore, when c ,   and 0prefc cφ φ τ= = = . The expression for intragranular 

stress can be written by Eq. (2.26): 

Differentiating Eq. (2.26) with respect to x, we get the following: Eq. (2.27)  

This has been used in particle-phase momentum equation.  

2.3.6 Burning rate expression of ball propellants 

For burning rate calculations, the Lenoir and Robbillard [39] semi empirical burning 

rate law was adopted. This burning rate expression is shown by Eq. (2.28) as: 

Here hc is the local zero blowing convective heat transfer coefficient, Ke is the erosive-

burning constant, and the β is erosive burning exponent. The rate of change in the particle 

radius is governed by the propellant burning rate given by Eq. (2.29): 
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2.3.7 Formulation of the heat equation 

It is proposed that the condensed phase mass coming from flash tube into the tail 

boom is deposited on the surface of ball propellants in form of a thin coating. This 

phenomenon has been confirmed by experiments at the High Pressure Combustion 

Laboratory through previous studies. These ball propellants are a fraction of all the ball 

propellants in the tail boom and these are located in the vicinity of vent holes on the flash 

tube as shown in Fig 2-7. 

There are both gas-phase and condensed-phase combustion products in the 

discharging jet from the vent holes of the flash tube. The gas-phase products can 

penetrate the granular bed in larger regions. However, the condensed-phase products 

have usually limited distance of penetration. The heat content in the condensed-phase 

products can have a very strong impact on the ignition process of the granular 

propellants, since they can directly deposit their energy onto the ball propellant surface 

during the coating process. Furthermore, the gas-phase products expand during the 

discharging process and a part of their thermal energy is converted into the kinetic energy 

during expansion. The condensed-phase products experience a very limited expansion 
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Figure 2-7: Region of coated ball propellant particles in the vicinity of a flash-tube vent 
hole and temperature profile in a coated particle. 
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during the discharging process. Thus, their thermal energy is higher than that of gas-

phase products. In view of these reasons, the conductive heat transfer from the thin 

coated layer of condensed phase to the ball propellant is the dominant heat-transfer 

mechanism to attain ignition for ball propellants in the granular bed.  The temperature 

profile in the thin coated layer and the partially heated ball propellant is shown in Fig. 

Fig. 2-7(b). The solid propellant particle is referred to as region I. The thin condensed 

phase coating has a thickness and it is referred to as region II.  The surface of propellant 

particle is the boundary of region I.  In this case, only the surface temperature of 

propellant particle is of interest.  In order to determine the surface temperature variation 

with time, the heat equation for the propellant particle in spherical coordinates is used as 

given by Eq. (2.30): 

In the above equation, pρ  is the mass density of propellant, pc  is the heat capacity of 

propellant, pk is thermal conductivity of propellant and pT  is the temperature as a 

function of r and t. In order to solve the heat equation, the initial and boundary conditions 

given by Eq. (2.31) were used:  

( ) 2
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1 p

p p p p

T
c T r k

t r r r
ρ

∂ ∂ ∂=  ∂ ∂ ∂ 
 (Eq. 2.30) 
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In the above, "
,loss IIqɺ  is the heat loss by thin condensed phase coating to the solid 

propellant particle by conduction. This term is given by heat flux balance at the interface 

of region I and II as shown by Eq. (2.32). 

In Eq. (2.32), lT  is the temperature in region II, lk is thermal conductivity of condensed 

phase andwδ  is the minimum of thermal wave penetration depth in condensed phase and 

thickness of coating.  The liquid coating thickness ( )lδ  can be solved from following 

equation: 

where cpn is the number of  coated particles, andlρ  the density of liquid coating. In order 

to solve for Tl, energy balance equation is used for region II as given by Eq. (2.34): 

In the above equation, ,F PelletT  is the temperature of liquid coating at the time of 

discharge from the flash tube and lc  the specific heat of liquid coating, respectively. The 

detailed derivation for the explicit form of propellant surface temperature equation is 

shown in Appendix A.  
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2.3.8 Method of characteristics formulation 

The system of governing equations is a set of six first-order, coupled, non-linear, 

inhomogeneous partial differential equations, which are hyperbolic in nature. After 

simplification and manipulation, the governing equations for this problem reduce to 

following inhomogeneous linear partial differential equations of first order. These 

equations can be represented by a vector equation shown in Eq. (2.35): 

where the coefficient matrix M and the inhomogeneous terms (hI ) are defined by 

Eqs. (2.36)- (2.37): 

T T

g p g pU T P U U T P U
t x
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The eigenvalues of this system of equations are determined by solving the characteristic 

equation given by Eq. (2.38): 

In Eq. (2.38), I  is the identity matrix and iλ  the eigenvalues of the system.  It is found 

that the eigenvalues of the system are six distinct real numbers under non-fluidized 

conditions. The eigenvalues are called the characteristic values indicating the various 

directions on x t− plot and are given by Eq. (2.39): 

The subscripts I, II, and III represent the right-running, left-running, and gaseous-path 

characteristic curves in the gas phase, respectively. The subscripts IV, V, and VI 

represent the right-running, left-running and particle-path characteristic curves in the 

solid phase, respectively. These characteristic curves on x t−  plane are shown at 

different spatial locations in Fig. 2-8.  

0i
T λ− =M I  (Eq. 2.38) 

1 2 3
I II III

54 6
IV V VI

, ,

, ,

dx dx dx
dt dt dt

dx dx dx
dt dt dt

λ λ λ

λ λ λ

     
     
     

     
     
     

= = =

= = =
 (Eq. 2.39) 



52 

 

The eigenvalues of the above system of equations are given by Eq. (2.40): 

The five adjoint eigenvectors W1, W2, W3, W4, and W5 are determined by solving 

Eq. (2.41):  

Here TM  is the transpose of the coefficient matrix and i = 1, 2, 3, 4, 5.  Since iW ’s are 

linearly independent vectors, the vector differential equation, Eq. (2.41) is multiplied by 

the transpose of iW  and five equivalent equations in a new set of dependent variables are 
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Figure 2-8: Characteristic curves at different locations. 
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obtained. The eigenvectors can be represented in terms of scalar functions of Ug, T, P, Up, 

and φ  called Zi. The derivatives of Zi must satisfy the conditions given by Eq. (2.42):  

By changing the dependent variables Ug, T, P, Up, and φ  to new variables Zi, using the 

above definition of Zi and applying chain rule, the Eq. (2.42) becomes:  

The characteristic equations shown in Eq. (2.43) can be further reduced to the total 

differential form by virtue of defined characteristic directions as shown by Eq. (2.44): 

The above characteristic equations can be represented by the differentials of Ug, T, P, Up, 

and φ  along the characteristic curves.  From the definition given by Eq. (2.42), we have 

Eq. (2.45): 

Since Zi=Zi(Ug, T, P, Up,φ ), by chain rule we have:  

Substituting Eq. (2.46) into Eq. (2.44):  
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Here the vector product of Wi with Ih is given by Eq. (2.48): 

Substituting Eq. (2.48) into Eq. (2.44), the characteristic equations were then obtained as:  

The sixth characteristic equation was derived from heat equation following the motion of 

ball propellant particle as shown in Eq. (2.50): 

The components of eigenvector, W61 and W62 and the source term Ω6 were determined as 

function of propellant grain radius (0pr ), thermal wave penetration depth (δ ) in the ball 

propellant and heat flux to the ball propellant particle from surroundings gas and 

condensed phase materials. These eigenvector components and the source term acquire 

different values depending on whether the thermal wave has penetrated through the 

particle radius and the relative magnitude of convective to conductive energy transfer 

rates to the particle.  

2.3.9 Linearization of the characteristic equations 

For interior points, all six characteristic curves are distinct when the granular bed 

is non-fluidized and therefore the variables of interest i.e., Up, φ, Ug, P, T, and Tps can be 

obtained by simultaneously solving the system of six characteristic equations.  After 

T
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several manipulations of characteristic equations, the algebraic expressions for major 

variables of interest at all interior points are given by Eqs. (2.51)-(2.56) as following: 
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For both right and left boundary control volumes, the boundary conditions shown by 

Eq. (2.57) were used. 

Therefore, the slope of the characteristic lines at these boundaries is given by Eq. (2.58) 

as following: 

The other quantities of interest are determined by using the characteristic equations at the 

boundaries.  The explicit forms for the right boundary are shown in Eqs. (2.59)-(2.62): 

Similar equations were obtained for left boundary also. The equations were solved along 

characteristic curves number I, III, and IV at the left boundary.  

2.3.10  Validation of calculated results 

The ignition cartridge was instrumented with six pressure transducers at different 

axial and azimuthal locations. The axial locations of these pressure transducers and the 
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notation used for these pressure transducers is shown in Fig. 2-9.  The pressure-time 

traces were measured from the ignition cartridge using 16 pressure transducers; 4 for 

each axial location at 90° intervals along the azimuthal direction. Based on these results, 

it was determined that the physical processes in the ignition cartridge are independent of 

radial and azimuthal directions. Therefore only 5 pressure transducers were employed in 

subsequent experimental work and compared with the computational results.  

Using the three dimensional mortar interior ballistics (3D-MIB) code, the 

calculated pressure-time traces at five port locations (port 0 through port 4) on the tail 

boom of the ignition cartridge are shown in Fig. 2-10. The measured pressure-time traces 

at these corresponding axial locations are shown in Fig. 2-11. By comparing these two 

figures, one can notice several similar characteristics. In both figures, pressure at Port 4 

location, P4 starts to rise before Port 1 location, P1. This behavior is attributed to stronger 

discharge of igniter products from the flash tube at P4. Once start to rise, P1 has higher 

pressurization rate than that of P4. This happens due to the generation of pressure wave 

from P4 propagating towards P1. Along with this pressure wave propagation, gas and 

particles are driven towards P1. 
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At a pressure around 41 MPa (6,000 psia), there is a slight drop in pressure at all 

port locations due to the rupture of the propellant container tube wall and subsequent 

discharge of combustion products to the surroundings through the vent holes on tail 

boom. Thereafter, pressure in the granular bed continues to rise due to continued burning. 

Both calculated and experimental results show that the P1 takes over that at P4 before 

reaching the peak at around 110 MPa (16,000 psia).  

 

 

Figure 2-9: Location of pressure transducers on the ignition cartridge. 
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At the onset of pressure decay from their peaks, the pressure gradient is higher at P1 than 

that at P4.  Finally, pressure-time traces at all port locations come closer and gradually 

converge during the later phase of the pressure decay.  Both calculated and experimental 

results show that the event duration of the processes in the tail boom of ignition cartridge 

is close to 3 ms.  In order to explain the flow property variations with respect to time and 

axial coordinate in the granular bed, it is beneficial to focus on a P-t trace at axial location 

P0. Near the stagnation region, closest to the primer end, pressure reached a substantially 

higher peak level than P1. In this region, there are no nearby vent holes to discharge the 

combustion products. The burned products can only leave this region by moving in the 

positive axial direction. Similarly, near the projectile end, P-t traces showed higher-

pressure levels than that of P4.  In view of the existence of the pressure gradients at these 

two ends, the burned gas and particles are driven towards the middle section of the 

granular bed where vent holes are accessible. The close similarity of the predicted P-t 

results with the experimental data partly validates the theoretical model. It is useful to 

note that the predicted maximum pressure occurred in the axial location (x = 0.48 cm) 

significantly below the P1 transducer location, which was not measured in the earlier set 

of experiments. After the numerical results were known, a pressure transducer port called 

P0 was added to the tail-boom section. The recorded P0-t traces were indeed much higher 

than the P1-t traces as predicted by the computer code. A more detailed comparison at 

each of the five port locations is shown in Figs. 2-12-2-17.   
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Figure 2-10: Computed pressure-time traces for ignition cartridge at five port locations. 
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Figure 2-11: Measured pressure-time traces for ignition cartridge at five port locations. 
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Figure 2-12: Comparison of 5 experimental pressure-time traces with the calculated 
pressure-time traces at port 0 location (x=0.11 cm). 
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Figure 2-13: Comparison of 5 experimental pressure-time traces with the calculated 
pressure-time traces at port 1 location (x=2.94 cm). 
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Figure 2-14: Comparison of 5 experimental pressure-time traces with the calculated 
pressure-time traces at port 2 location (x=5.86 cm). 
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Figure 2-15: Comparison of 5 experimental pressure-time traces with the calculated 
pressure-time traces at port 3 location (x=8.76 cm). 
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Figure 2-16: Comparison of 5 experimental pressure-time traces with the calculated 
pressure-time traces at port 4 location (x=8.78 cm). 
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Figure 2-17: Comparison of 5 experimental pressure-time traces with the calculated 
pressure-time traces at port 5 location (x=11.70 cm). 
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In the interior ballistic studies, it is useful to show the pressure wave phenomenon by 

plotting ∆P versus time. The calculated time variations of ∆P are shown in Fig. 2-18 and 

the comparison with the experimental data is shown in Figs. 2-19- 2-20. The ∆P rises first 

since the pressure at the P4 and P5 locations is significantly greater than P1 and P0 location 

due to earlier ignition of propellants there. This trend was reversed in the later phase of 

ballistic cycle since violent combustion near the primer end produced enormous amount 

of pressure rise in the stagnation region. The amplitudes of the peak ∆P are close to the 

experimentally observed values from many test firings. 

 

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

-40

-20

0

20

40

0 0.5 1 1.5 2

Baseline Ignition Cartridge
Lot No. POLO3G200-00

∆∆∆∆P=P
17

-P
0

P
re

ss
ur

e,
 P

, p
si

a

Time, t, ms

P
ressure, P

, M
P

a

∆∆∆∆P=P
16

-P
1

 

Figure 2-18: Comparison of calculated pressure difference-time traces. 
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Figure 2-19: Comparison of experimental pressure difference-time traces with the 
calculated pressure difference-time traces for ∆P=P5-P0. 
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These phenomena can also be observed from the calculated gas velocity-time 

traces at five port locations shown in Fig. 2-21. Prior to reaching the peak pressure, the 

gas velocity in the granular bed is strongly affected by the non-uniform ignition of ball 

propellants, pressure wave propagation processes, and the discharging of combustion 

products through vent holes. The order of onset of ignition at the five port locations can 

be examined from the plot of propellant surface temperature (Tps) variations with respect 

to time as shown in Fig. 2-22.  
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Figure 2-20: Comparison of experimental pressure difference-time traces with the 
calculated pressure difference-time traces for ∆P=P4-P1. 
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In the numerical calculations, a ball propellant is considered to reach an ablation 

condition at 525 K and full ignition condition is attained when the surface temperature 

reached 600 K. Once the particle is fully ignited, the energy equation for the ball 

propellant was no longer solved and it was assumed that the surface temperature remains 

at the ignition temperature. It can be seen that Tps increases first at P4 and last at P2 due to 

the profile and order of igniter products from the flash tube. 
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Figure 2-21: Comparison of gas velocity variation in the ignition cartridge at different 
axial locations. 
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The calculated gas temperature-time traces at the four port locations are shown in 

Fig. 2-23. The adiabatic flame temperature of M48 solid propellant is 2,831 K under 

constant-pressure combustion conditions. The calculated results for gas temperature in 

granular bed showed that during certain period of the ballistic cycle, the gas temperature 

at several port locations can exceed the constant-pressure adiabatic flame temperature 

value. This could be due to the reason that the combustion process is not at constant-

pressure but it was close to constant-volume process.  The gas temperature rises abruptly 

during the initial portion of the ballistic cycle following the order of ignition of ball 

propellants. During the final decay period, all gas temperature-time traces gradually reach 

the same rate of decay.  
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Figure 2-22: Comparison of surface temperature increase of propellant grain in the 
ignition cartridge. 
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The calculated porosity-time traces at the five port locations are shown in Fig. 2-

24. The porosity of the granular bed starts to increase first at P4 where first ignition and 

ball propellant combustion starts.  Burning of ball propellant grains produces gas-phase 

products while reducing the solid phase material at the same time. Hence the porosity, 

which is the fraction of gas-phase material in a two-phase mixture, increases. Porosity 

starts to increase later at P1 and P2 locations. During the whole ballistic cycle, the 

porosity increases monotonically. However, there was a period when the rate of increase 

was significantly reduced. The reason for this reduction is the influx of particle from 

adjacent high-pressure zone. This pressure gradient can be seen from Fig 2-26 between 

1.2 to 1.6 ms. During this interval, the porosity variations at P4 is insignificant due to 

presence of large pressure gradient which drove the particles into the local area and 

balanced with the particle leaving through the vent holes and to the neighboring regions. 

Near the later phase of the pressure decay period, the porosity magnitudes at various port 

locations approach each other and asymptotically increase to the level of unity.  
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Figure 2-23: Comparison of gas temperature variation in the ignition cartridge at different 
axial locations. 
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Figure 2-24: Comparison of porosity variations in the ignition cartridge at different axial 
locations. 
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Additional model validation was performed by comparing the diameter of M48 ball 

propellants with the experimental data. The experimental data was obtained by collecting 

over 100 M48 ball propellants at the end of ignition cartridge firing and taking their 

average diameter. The comparisons of calculated particle diameter with the experimental 

measurement are shown in Fig. 2-26 and Fig. 2-27 for two separate experiments. The 

calculations match with the experimental data within the error limits, which is another 

indication of the robustness of ignition cartridge sub-model.  
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Figure 2-25: Comparison of particle velocity variation in the ignition cartridge at 
different axial locations. 
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Figure 2-26: Comparison of calculated and measured particle diameter in the ignition 
cartridge at different axial locations at the end of ballistic event (Test 1). 
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Figure 2-27: Comparison of calculated and measured particle diameter in the ignition 
cartridge at different axial locations at the end of ballistic event (Test 2). 
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2.4 Summary of the ignition cartridge sub-model 

The ballistic processes in the ignition cartridge are highly non-uniform. The 

burning start in the projectile end of ignition cartridge and it propagates toward the 

primer end of the ignition cartridge. The ball propellants in the projectile end ignited first 

due to earlier and higher mass flow from flash tube in this region.  In the beginning of the 

combustion process, pressure is highest at the projectile end of ignition cartridge and it 

decreases towards the primer-end. Due to the presence of this pressure gradient, a 

pressure wave develops in the ignition cartridge, which moves from projectile end (high-

pressure end) towards the primer end (low-pressure end). The pressure wave starts to 

diminish once the vent holes on the ignition cartridge open and combustion products start 

to discharge from these vent holes. Due to this phenomenon and vigorous burning of ball 

propellants in the stagnation region near the primer end, the pressure in the primer end 

becomes highest and it decreases towards the projectile end. After this, a second pressure 

wave travels from primer end (high pressure end) towards the projectile end (low-

pressure end).  

The method of characteristics with stagnation boundary conditions proves to be 

adequate analysis technique for solving the complicated combustion problem addressed 

in this chapter. The mortar interior ballistic model is partially validated by the excellent 

agreement obtained between the calculated and measured P-t traces at various axial 

locations along the ignition cartridge.  The main reason for the generation of pressure 

waves in the granular bed of the ignition cartridge is due to the non-uniform discharge of 

combustion products from the flash tube mounted at the center of the cartridge. 



 

Chapter 3 
 

APPLICATION OF IGNITION CARTRIDGE SUB-MODEL FOR 
PERFORMANCE IMPROVEMENT 

The theoretical sub-model and numerical code developed for ignition cartridge 

performance prediction was used to predict the effect of design changes on the axial 

pressure gradients in the tail-boom section of the 120mm mortar propulsion system. In 

addition, the ignition cartridge sub-model was also used to predict the effect of primer 

material on the gas-dynamical processes in the tail-boom section. 

3.1 Background 

In the existing design of the flash tube, all vent holes on the flash tube were equal 

in diameter and were distributed evenly on the tube wall. However, the black powder 

(BP) pellets are located at the primer-end of the flash tube; such that after ignition, the 

combustion products travel from the primer-end toward the projectile-end of the flash 

tube. From the computational study described previously in chapter 1, it was concluded 

that the pressurization processes at various axial locations in the flash tube are highly 

non-uniform. This observation was also supported by the experimental study conducted 

by Moore et al. [49] by using a windowed flash tube test rig, where it was observed that 

there was a continuous compression of gaseous products toward the projectile-end of the 

flash tube. The mass discharge rate from a given vent hole is governed by the 

instantaneous local pressure and the discharge area of the vent hole by the choked flow 
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equation, if the condensed-phase products are considered to be fully entrained in the 

discharging flow and the particle sizes are much smaller than the vent hole port area. 

Therefore, this non-uniformity of local pressure coupled with the even distribution of 

vent holes (i.e., all vent holes having same diameter) on the flash tube outer surface 

results in significant differences between the instantaneous mass discharge rates from the 

flash tube at various axial locations.  

The tail-boom section contains closely-packed ball propellants (called M48) in the 

annular region between the flash tube and the wall of the tail boom. This region is called 

granular bed.  The ball propellants in this granular bed are contained in a paper tube, 

which fits the inner surface of the tail-boom and blocks the vent holes on the surface of 

tail-boom until the pressure reaches a threshold rupture pressure. The granular bed 

section receives the discharge of high-pressure and high-temperature combustion 

products from the flash tube. These combustion products contain both the gas-phase and 

condensed-phase species, which heat the ball propellants in the tail-boom section to their 

ignition temperature. In chapter 2, it was discussed that significant axial non-uniformity 

in the instantaneous mass discharge rates of combustion products from the flash tube to 

the granular bed results in significant differences in ignition delay time at these locations. 

As a consequence, this process generates strong axial pressure gradients and resulting 

pressure waves in the original ignition cartridge. The existence of strong pressure waves 

can contribute to higher standard deviations in the overall ballistic performance of the 

120mm mortar system during firings. Therefore, the primary focus of the work shown in 

this chapter is to use the ignition cartridge sub-model to examine that the effect of change 

in flash tube vent-hole patterns on the reduction in the strength of pressure waves in the 
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ignition cartridge. The predicted results were validated with the experimental pressure-

time traces. The design modification(s) could also increase the reliability and 

reproducibility of 120mm mortar systems.  

It was also observed that the black powder igniter pellets that are used in the flash 

tube produce highly non-repeatable pressure-time traces. Therefore, a substitute called 

moisture resistant black powder (MRBPS) was sought to remedy this problem. The 

ignition cartridge sub-model was utilized to compute the interior ballistics of the M1020 

ignition cartridge with MRBPS as an igniter material and the results were compared with 

the experimental data. The comparison of two pyrotechnic materials also facilitates 

model validation and increases the robustness of the code. Therefore, there are two 

specific objectives of the work shown in this chapter: 

(i) Simulation of interior ballistic processes in the granular bed by using 

modified flash tube(s) with various vent-hole patterns and the comparison 

of these predicted results with the available experimental data,  

(ii)  Comparison of the interior ballistic processes in the granular bed of 

M1020 ignition cartridge by using black powder (BP) and moisture 

resistant black powder substitute (MRBPS) as two different pyrotechnic 

materials.  

The secondary objective of this chapter is to partially demonstrate the usefulness of this 

model and code as a tool for analysis of interior ballistic processes in the 120mm mortar 

propulsion system. 
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3.2 Effect of vent hole pattern modification on the flash tube 

As a part of this study, simulation of ignition cartridge combustion behavior was 

conducted through a systematic variation of the flash tube vent-hole pattern to achieve a 

more uniform venting of combustion products into the ignition cartridge.  The mass flow 

rates of discharged gas and condensed-phase products from the flash tube vent holes to 

the granular bed were deduced from the flash tube sub-model, which was integrated with 

the ignition cartridge sub-model for the determination of pressurization rates at various 

axial locations in the granular bed. In order to examine the effect of vent-hole patterns on 

the interior ballistic processes in the ignition cartridge, five cases were considered: 

1. Original design (baseline or case 0): All vent holes are equal in diameter and their 

location on the flash tube is uniform in both longitudinal and azimuthal directions. 

2. First modification (case 1): The vent holes close to the primer-end are larger in 

diameter than those close to the projectile-end. The diameter of each vent hole is 

given in Table 2-1. This modification increased the total vent-hole discharge area by 

about 14% in comparison with case 0. 

3. Second modification (case 2): The vent holes close to the primer-end are even larger 

in diameter than those in case 1, but vent holes 13 through 20 do not change in 

diameter. This modification increased the total vent-hole discharge area by 22% in 

comparison with the baseline case. 

4. Third modification (case 3): In this case, the vent-hole diameters of the first twelve 

are identical to case 2, while the last eight vent holes are made slightly smaller. This 
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modification increased the total vent-hole discharge area by 19% in comparison with 

the baseline case.  

5. Final modification (final case): In this case, the diameters of the first four vent holes 

were increased significantly, the vent-hole diameters of subsequent sets decreased 

with axial distance and the last eight vent holes are made much smaller than the first 

four vent holes. This modification increased the total vent-hole discharge area by 

22% in comparison with the baseline case. 

The vent-hole diameter variations for all of the above cases are shown in Table 2-1. 

3.2.1 Calculated results 

In a parallel experimental study conducted by Moore et al. [50], a set of pressure-

time traces from the flash tube were obtained for baseline through the final case. The 

deduced mass flow rates of the gas-phase combustion products are shown in Figs. 3-1 to 

 3-9 for original flash tube design (baseline or case 0), 1st, 2nd, 3rd, and final modifications 

of the flash tube, respectively. For each case of flash tube vent-hole pattern, five tests 

Table 3-1: Distribution of flash tube vent-hole sizes at various axial locations 

Vent hole numbers and sizes [in] Case No. 

1-4 5-8 9-12 13-16 17-20 

Total 
discharge 
Area [in2] 

Percentage 
increase in 
area from 
baseline 

Baseline 0.0650 0.0650 0.0650 0.0650 0.0650 0.0664 0 
1 0.0730 0.0730 0.0700 0.0650 0.0650 0.0754 14 
2 0.0785 0.0760 0.0729 0.0650 0.0650 0.0807 22 
3 0.0785 0.0760 0.0729 0.0625 0.0625 0.0787 19 

Final 0.0860 0.0810 0.0760 0.0550 0.0550 0.0787 22  
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were conducted with black powder pellets. The pressure-time traces utilized in this study 

were obtained from one of these five tests. The detailed procedure for deducing the 

gaseous mass flow rates from the flash tube vent holes was previously described in 

chapter 2. The deduced gaseous mass flow rate from the flash-tube vent holes are shown 

only for the first 3 ms since the later event is not important in the ignition cartridge 

combustion event. All traces monotonically decay to 0 around 4 ms. A statistical analysis 

of the 5 tests showed that the total mass flow rates varied as much as 15%, indicating 

poor reproducibility of BP pellets. Among all 4 flash tube vent-hole pattern 

modifications, the net mass discharged from all vent holes remained conserved within the 

limit of experimental error.  
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Figure 3-1: Deduced gaseous mass flow rate vs. time traces from  one of the P-t traces of 
five flash tube tests with the original vent-hole pattern (case 0). 
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The deduced gaseous mass flow rates discharging from the flash tube vent holes 

for the baseline case is shown in Fig. 3-1. There is significant difference between the 

mass discharge rate from port 1 and port 5 locations (closer to primer- and projectile-

ends, respectively). This difference is most pronounces in first 1.5 ms of the ballistic 

cycle in the flash tube. The deduced gaseous mass flow rates discharging from the flash 

tube vent holes for case 1 modification is shown in Fig. 3-2.  These mass flow rate-time 

traces exhibit a different behavior than the baseline case, due to differences in vent-hole 

diameters at five axial locations.   

For the initial rise time (< 1 ms), the hierarchy of mass discharge rates is similar 

in nature to that of the baseline tests, though the difference in mass discharge rates 

between port 5 and port 1 locations is lower than the baseline flash tube design.  This 

period is very important as it is during this period that hot products from the pyrotechnic 
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Figure 3-2: Deduced gaseous mass flow rate vs. time traces from one of the P-t traces of 
five flash tube tests with modified vent-hole pattern (case 1). 
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pellets spread down the flash tube and exit the vent holes into the granular propellant bed, 

when the flash tube is actually used in an ignition cartridge.  On an average, the 

difference in mass flow rates between port 5 and port 1 pressure-gauge locations are 40 ± 

15% lower than the baseline flash tube design, which is a significant reduction in the non-

uniformity of the venting process. 

In keeping with the enlargement of the vent holes, the second modifications to the 

flash tube (case 2) were conducted by increasing the overall vent-hole area to around 

22% compared to the baseline case.  Similar to case 1, this was accomplished by taking 

the original M1020 flash tubes and opening up the first 12 vent holes closest to the 

primer-end in sets of 4 by using larger drill bits #47 (d = 0.0785 inch), #48 (d = 0.0760 

inch), and #49 (d = 0.0700 inch), respectively.  It is important to note that by enlarging 

the first 12 vent holes so that the total vent-hole area increased nearly 22%, the mass flow 

rate of all 5 measured locations along the flash tube became closer, especially in the 

initial portion of port 5 and port 1 locations are 73 ± 15% lower than the baseline flash 

tube design, which is an even further reduction in the non-uniformity of the venting 

process than case 1.  These results showed that by increasing the vent-hole area close to 

the primer-end of the flash tube, the local mass discharge rates could be increased even 

though pressure at these locations were still lower than the port 5 location.  This 

observation was used for the next two modifications of the vent-hole pattern on the flash 

tube. 
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For the third modification to the flash tube vent holes (case 3), it was decided to 

slightly reduce the total flash tube vent hole area from case 2 in order to further reduce 

the mass flow rate from P5 location.  To accomplish this, it was determined that the first 

12 vent holes closest to the primer end would have the same exit hole diameters as that of 

case 2.  However, the diameters of the remaining 8 vent holes near the projectile-end 

were decreased by drilling 1/16 inch holes (d = 0.0625 inch).  Selection of this drill size 

was based on the next smallest drill size from the original flash tube vent hole diameter.  

The reason for diminishing the vent hole area in this region was to try to reduce the mass 

flow rate near the end of the flash tube, forcing more gas to discharge via the 12 enlarged 

vent holes near the primer-end; thus, increasing the mass flow rate at positions P1 through 

P3, and decreasing the mass flow rate at positions P4 and P5 locations.  This modification 
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Figure 3-3: Deduced gaseous mass flow rate vs. time traces from one of the P-t traces of 
five flash tube tests with modified vent-hole pattern (case 2). 
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gave a total vent-hole area 19% higher than the baseline case. Typical deduced mass flow 

rate results of case 3 can be seen in Fig. 3-3. 

With the case 3 design, the overall difference in mass flow rates between P5 and 

P1 locations is 81 ≤ 15% lower than the baseline case.  However, it should be noted that 

the mass flow rate at port 5 is lower than that at port 1 location.  Also, the mass flow rates 

at P2, P3, and P4 locations show very similar mass flow rates, in some cases overlapping 

one another, which is a significant improvement compared to the baseline case.  Even 

though the BP pellets have poor reproducibility burning behavior, the vent hole 

modification for case 3 indeed produced a nearly overlapping mass discharge rates from 

different vent holes along the flash tube.  

In order to examine the effect of modified flash tube designs on the pressurization 

processes in the M48 granular bed, the flash tube results were coupled with the ignition 
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Figure 3-4: Deduced gaseous mass flow rate vs. time traces from one of the P-t traces of 
five flash tube tests with modified vent-hole pattern (case 3). 
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cartridge sub-model for each of the three modifications. The interior ballistic processes in 

the granular bed with original flash tube design have been discussed in chapter 2 in great 

detail.  The calculated pressure-time traces at five port locations (Port 0 through Port 4) 

on the tail-boom of the ignition cartridge with the original flash tube design are shown in 

Fig. 2-10.  There is noticeable difference in the rise time at various pressure-gage port 

locations with the original flash tube design. At port 4 location, P4 starts to rise before 

port 0 location, P0. This behavior is attributed to stronger discharge of igniter products 

from the flash tube at P4. Once start to rise, P0 has higher pressurization rate than that of 

P4. This happens due to the generation of a pressure wave from P4 propagating towards 

P0. Along with this pressure wave propagation, gas and particles are driven towards P0. 

At a pressure around 41 MPa (6,000 psia), there is a slight drop in pressure at all port 

locations due to the rupture of the propellant container tube wall and subsequent 

discharge of combustion products to the surroundings through the vent holes on the tail-

boom. Thereafter, pressure in the granular bed keeps rising due to continued burning. The 

calculated results show that the pressure at P0 takes over at P4 before reaching the peak at 

around 140 MPa (20,000 psia). Finally, pressure-time traces at all port locations come 

closer and gradually converge during the later phase of the pressure decay.  

The pressure-traces with first modification are shown in Fig. 3-5 and they exhibit 

a similar behavior to that of original flash tube design. However, it can be observed that 

during the initial rise time, the differences in pressure at various port locations are smaller 

than the case with original flash tube design. The calculated pressure-time traces for 2nd 

flash-tube vent-hole pattern modification (i.e., case 2) are shown in Fig. 3-6.  
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Figure 3-5: Computed pressure-time traces for a M1020 ignition cartridge at various 
pressure-gage port locations with a modified flash-tube vent-hole pattern (case 1). 
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Figure 3-6: Computed pressure-time traces for M1020 ignition cartridge at five pressure-
gage port locations with modified flash-tube vent-hole pattern (case 2). 
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These results show even further reduction of the differences in pressure-time traces at 

various port locations than the previous two cases during the initial rise time. 

In the case with 3rd modification of the flash tube, the pressure-time traces at each 

of the five port locations almost overlap with each other during the initial rise time as 

shown in Fig. 3-7. This trend can be explained on the basis of onset of ignition in the 

granular bed, which strongly depends on the sequence and magnitude of mass discharge 

events from the flash tube into the granular bed.  

In the interior ballistic studies, it is useful to show the existence and intensity of 

pressure-wave phenomenon by plotting ∆P (≡ P4-P0) versus time. The calculated time 

variations of ∆P for all four cases in the granular bed are shown in Fig. 3-8. The ∆P-t 

behavior is very similar between the original flash tube design and the first modification 
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Figure 3-7: Computed pressure-time traces for a M1020 ignition cartridge at five 
pressure-gage port locations with a modified flash-tube vent-hole pattern (case 3). 
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(case 1). However, a reduction in the amplitude of ∆P can be observed with the first 

modification of the vent-hole pattern on the flash tube. The second modification (i.e., 

case 2 with larger vent holes close to the primer-end) results in even greater reduction in 

the amplitude of ∆P between the projectile and primer ends of the ignition cartridge. The 

case 3 results show even lower yet significant pressure difference during the initial period 

(t ≤ 1.2 ms) of the ballistic cycle that the previous modifications. 

With the above three modifications, the difference in the mass discharge rates 

relatively reduced from the original design but it still stayed significant. In order to 

remedy that, a final modification was made with a greater reduction in the diameters of 
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vent holes no. 13-20. The diameters of vent holes 1-12 were significantly made larger. 

The deduced mass discharge rates at five axial locations are shown in Fig. 3-9.  

A comparison of the integrated mass discharge rate difference between vent hole 

20 (near the projectile-end) and vent hole 1 (near the primer-end) is shown in Fig. 3-10.  

It is very clear that the final modification results in a noticeable reduction in the mass 

discharge rates into the M48 granular bed between the two closed ends, especially during 

the first 1 ms of the discharging process. The percentage difference of each of these 

modifications from the original flash tube design (based upon the overall mass difference 

between vent hole 20 (near the projectile-end) and vent hole 1 (near the primer-end) was 

40±15%, 73 ±15%, 81%, and 130% from the original flash tube design for the 1st, 2nd, 3rd, 

and final modifications, respectively. 
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Figure 3-9: Deduced gaseous mass flow rate vs. time traces from one of the P-t traces of 
five flash tube tests with modified vent-hole pattern (final case). 
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The computed pressure-time traces in the M48 granular bed with the modified 

flash tube with final modification are shown in Fig. 3-11.  The pressure differences 

between port 17-port 0 and port 16-port 1 with time are shown in Fig. 3-12. The 

comparison with experimental data is shown in Fig. 3-13 and Fig. 3-14, respectively. 
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Figure 3-11: Computed pressure-time traces for ignition cartridge at five pressure-gage 
port locations with a modified flash-tube vent-hole pattern (final case). 
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Figure 3-12: Comparison of numerical ∆P (P4-P1)-time traces and with modified ignition 
cartridge modified ignition cartridge [final modification]. 
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Figure 3-13: Comparison of experimental and numerical ∆P (P16-P1)-time traces and ∆P
(P17-P0)-time traces with modified ignition cartridge [final modification].  
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The differences in the magnitudes of mass flow rates from the flash tube vent 

holes at various axial locations are significantly reduced with the stepwise modifications 

of the flash tube, thereby reducing the differences in the time of onset of ignition at 

various axial locations in the granular bed. This phenomenon results in more uniform 

ignition and pressurization of the granular bed. In case of the final modification, near 

isochronic ignition of granular propellants occur at all interior axial locations, which 

results in more uniform mass discharge from flash tube into the granular bed. As a 

results, there is uniform pressurization during the early phase of the ballistic event, thus 

the pressure gradient in the granular bed is substantially reduced during this period. This 

physical phenomenon is narrated by Fig. 3-15.  
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Figure 3-14: Comparison of experimental and numerical ∆P (P17-P0)-time traces with 
modified ignition cartridge [final modification]. 
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However, in the later period of the ballistic cycle, a pressure difference can still be 

observed, though it is significantly lower than the original flash-tube design. The 

generation of pressure difference during this later phase is caused by the presence of two 

stagnation regions close to the primer and projectile ends, where, there are no nearby vent 

holes on the tail-boom to discharge the combustion products. The burned products can 

only leave these regions by moving towards the middle section of the granular bed where 

vent holes are accessible, thereby resulting in the generation of a weak pressure wave 

during the later phase of the combustion event. This process is shown in Fig. 3-16. 
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Figure 3-15: Narration of physical processes in the flash tube. 
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flash tube. 
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The significant reduction in the strength of pressure waves can be further 

understood by a comparison of the net discharged condensed-phase mass at various axial 

locations in the M48 granular bed. The net discharged condensed-phase mass at the jth 

port location on the flash tube is defined by Eq. (3.1). 

The net discharged condensed-phase mass at four axial locations with the original flash 

tube design is shown in Fig. 3-17 and with the flash tube with final modification is shown 

in Fig. 3-18. It is useful to note that the accumulated mass of condensed-phase products 

discharging from different vent holes on the final modification flash tube is much closer 

in their magnitudes than the baseline case.   

( ), ,
0

finalt

c j c jM m t dt= ∫ ɺ  (Eq. 3.1) 
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Figure 3-17: Computed accumulated condensed-phase mass from flash tube at various 
ports (original design). 
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3.2.2 Discussion of vent-hole pattern analysis 

Although the existing flash tube design of the M1020 ignition cartridge has a 

uniformly distributed vent-hole pattern on its flash tube with equal diameters, there is a 

significant difference in their pressure-time traces, resulting in substantially different 

mass discharge rates of the combustion products from the black powder pellets.   

• These results show that by changing the vent-hole pattern on the flash tube 

containing five black powder pellets, more uniform mass discharge rates from 

these vent holes can be obtained.  
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Figure 3-18: Computed accumulated condensed-phase mass from modified flash tube at 
various ports (final modification). 
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• Numerical solution from the ignition cartridge sub-model show that the axial 

pressure gradient in the granular bed of an M1020 ignition cartridge can be 

significantly reduced by modifying the vent-hole pattern on the flash tube. 

Physically, this can be interpreted as the attainment of more uniform ignition 

(with isochronic ignition as the optimum design) in the granular bed, thus 

resulting in more uniform combustion of the solid ball propellants. The 

reproducibility and reliability of the mortar system can be improved with the 

substantially reduced pressure wave phenomena.  

3.3 Effect of pyrotechnic materials in the flash tube 

There were two specific reasons to simulate the effect of pyrotechnic materials in 

the flash tube on the pressurization processes in the ignition cartridge: 1) the flash tube 

shows a very high variability in overall mass discharge rates with the black powder (BP) 

igniter pellet, which was thought to be cause for the higher variation in performance of 

the 120mm mortar system, 2) to examine the robustness of the ignition cartridge sub-

model by comparing the calculated pressure-time traces with a different type of igniter 

pyrotechnic material in the flash tube to the measured pressure-time traces.  

Black powder is an important energetic material used in several military 

applications. However, there are certain limiting characteristics that make it highly 

unreliable material. The black powder absorbs moisture and its charcoal content varies 

from lot to lot, which alters its burning rate behavior, thereby resulting in the non-

repeatability of the flash tube pressurization processes. In addition, the BP combustion 
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produces sulfur dioxide that is toxic by inhalation and is an acid rain precursor.  The 

alternative pyrotechnic material is known as moisture resistance black powder substitute 

(MRBPS). The principle constituent of MRBPS is potassium nitrate (KNO3), which is 

same as the black powder. This material is charcoal and sulfur free and phenolphthalein 

is used as a replacement fuel for charcoal. The heat of explosion of MRBPS (798 kcal/g) 

is comparable to that of black powder (810 kcal/g). The pressure exponents are somewhat 

higher for MRBPS (>>0.33) than BP (=0.20). 

3.3.1 Flash tube results 

The deduced mass flow rates from the original flash tube design are shown in 

Fig. 3-1 with the black powder pellets for one experiment. The deduced mass flow rates 

from the original flash tube design for another experiment are shown in Fig. 2-5. A 

comparison of these two plots shows that there was poor reproducibility among the flash 

tube performance with black powder between the two separate tests, even though these 

BP pellets used for all testing were from the same batch. The other noticeable features of 

these results are that there are multiple peaks of gas-phase mass flow rates and highest 

mass flow rate is at the farthest axial location from the black powder pellets and lowest at 

the closest axial location.  
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The deduced mass flow rates from the original flash tube design are shown in 

Fig. 3-20 with MRBPS pellets for one experiment. The combustion event inside the flash 

tube differs significantly between the two types of pyrotechnic pellets. Firstly, the 

magnitudes of gaseous mass discharge rates from the flash tube into the granular bed are 

significantly higher with the MRBPS pellets. Secondly, a single peak of gas-phase mass 

flow rates can be observed with the MRBPS pellets whereas the black powder show 

multiple peaks. However, the combustion products of MRBPS pellets contained a higher 

percentage of gas-phase products than the black powder pellets. 
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Figure 3-19: Deduced gaseous mass flow rate vs. time traces from a set of P-t traces of 
five flash tube tests with the original vent-hole pattern. 
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3.3.2 Ignition cartridge results 

These gas-phase mass flow rates were deduced from the flash tube sub-model and 

then used in the granular bed sub-model for the determination of pressurization rates at 

various axial locations in the granular propellant bed. The calculated pressure-time traces 

are shown in corresponding to BP and MRBPS pellets, respectively. In both figures, 

pressure at port 4 location, P4 starts to rise before port 1 location. This behavior is 

attributed to stronger discharge of igniter products from the flash tube near P4 location. 

The pressure rise starts earlier when MRBPS pellets are used in comparison with BP 

pellets due to earlier and higher rate of mass discharge. In general, the pressure wave 
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Figure 3-20: Deduced gaseous mass flow rate vs. time traces from the flash tube with 
MRBPS pellets. 
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behavior in the granular bed using MRBPS pellets in the initiator is similar to those using 

BP pellets as initiator.  However, the pressure rise starts earlier when MRBPS pellets are 

used in comparison with BP pellets due to earlier and higher rate of mass discharge.  

The computational results from the numerical code are compared with 

experimental results for the case with MRBPS pellets as shown in Fig. 3-21. The 

predicted pressure-time traces match the pressure wave phenomenon very closely for 

both BP and MRBPS cases as well as the peak pressure magnitude and rise time.  It is 

useful to note that the predicted maximum pressure occurred in the axial location (x = 

0.11 cm) significantly below the P1 transducer location, which was not measured in the 

earlier set of experiments. After the numerical results were known, a pressure transducer 

port called P0 was added to the tail-boom section. The recorded P0-t traces were indeed 

much higher than the P1-t traces as predicted by the computer code. This experimental 

confirmation further verifies the predictability of the numerical code. Similar to BP case, 

pressure at port 4 location, P4 starts to rise before port 1 location. This experimental 

confirmation further verifies the predictability of the numerical code. 
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The combustion event starts earlier with MRBPS pellets and shows more rapid 

pressurization rate. In both cases, pressure traces showed significant axial pressure wave 

phenomena, which were simulated reasonably close to the measured pressure-time traces. 

The predicted pressure in the igniter-end matched very well with the experimental data 

that was obtained later, thus affirming the reliability of the numerical code.  
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Figure 3-21: Computed P-t traces in ignition cartridge using MRBPS pellets in the flash 
tube. 
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3.4 Summary 

This work demonstrates the successful implementation of the ignition cartridge 

sub-model and numerical code for prediction of ignition/combustion, flame spreading, 

and pressurization processes in the ignition cartridge section of the 120mm mortar 

propulsion system. The computational results were partially validated by experimental 

data from ignition cartridge tests. The computed results show the pressure wave 

generation, propagation, and wave-reflection in ignition cartridge with a number of 

modified flash tubes and two different igniter materials in the flash tube. In essence, the 

theoretical model and numerical code developed for ignition cartridge performance 
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Figure 3-22: Measured P-t traces in ignition cartridge using MRBPS pellets in the flash 
tube. 
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prediction proves to be a useful predictive tool. Two main goals were accomplished with 

the work described here: 

1. The model was successfully tested and validated with a number of design changes in 

the ignition cartridge, thus showing the robustness of this numerical code; 

2. It was demonstrated that a numerical code can be used to provide guidance for 

performance improvement of complex engineering systems as shown by the in-depth 

analysis of modified flash tube vent-hole pattern analysis. 



 

Chapter 4 
 

FORMULATION OF MORTAR TUBE COMBUSTION SUB-MODEL 

The mortar tube section is the most complex part of the 120mm mortar system. It 

contains a projectile payload, up to four horseshoe shaped charge increments (called 

M234) containing granular propellants (called M47), and a fin region. A mathematical 

model for the simulation of the ignition and combustion of the M47 granular propellants 

and the resulting two-phase interior ballistic processes was developed. Heating, ignition, 

flame spreading, combustion, and chamber pressurization processes in the mortar tube in 

the mortar tube section were coupled with the transient gas dynamic behavior of hot 

product gas and particles that are discharged into the mortar tube section from the vent 

holes of the tail-boom section. The mass, momentum, and energy equations for the gas-

phase, and the mass, momentum, and heat equations for the granular propellants with the 

appropriate boundary and initial conditions are described in this chapter.  

4.1 Assumptions 

There are four basic assumptions considered in the mortar tube sub-model in 

order to render the model solvable within the scope of the present work.  They are listed 

below: 

1. The combustible charge increment cases containing ball-shaped propellant grains 

are considered to have negligible mechanical resistance to the hot plume jets 
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issuing from the vent holes on the tail-boom section, after the rupture of the 

yellow colored propellant cup. 

2. The heat of reaction of the combustible cases for the charge increments is 

considered to be negligibly small.  Any heat of reaction due to the burning of the 

combustible cases can be added at a later stage if necessary. 

3. The flow rate associated with the blow-by phenomena at the obturating ring is 

considered to be negligibly small. 

4. Due to the relatively short firing time, the heat loss from the combustion products 

to the mortar tube wall and the projectile is considered to be negligible.  

4.1.1 Governing equations for the mortar tube gas dynamics 

The mass, momentum, and energy equations for the gas phase, and the mass and 

momentum equations for the granular propellants are similar to those described earlier for 

the tail-boom section. However, the physical processes in the mortar tube section are 

transient and three-dimensional in nature. Therefore, a three dimensional (3-D) 

computational model can capture the combustion behavior more efficiently due to the 

complexity of geometry in this case.  The major equations are listed below for the 

convenience. The governing equations for this system are as follows. The gas-phase mass 

conservation equation is given by Eq. (4.1) as: 

( ) ( ) 1gt

ρφς
ρφς

∂
+ ∇ ⋅ = Σ

∂
U  

where, ( ) ( )1 , ,p g gsb b b tb in g tbA r f r m f r mρ ς α α−Σ ≡ + +ɺ ɺ  
(Eq. 4.1) 



106 

 

The mass conservation equation for the solid phase (i.e., granular propellants) is given by 

Eq. (4.2): 

The parameter αg is introduced to account for the presence of vent hole at an axial 

location. It is equal to 1 if a tail-boom vent hole is located on the surface of this element, 

and 0 otherwise since there is no direct source term from the tail-boom boundary surface. 

1  if vent hole present

0 otherwise
α = 


g  

The parameter α p  is similar to the parameter αg and it also accounts for the 

presence of vent hole at an axial location. It is equal to 1 if a tail-boom vent hole is 

located on the surface of this element, and 0 otherwise since there is no direct source term 

from the tail-boom boundary surface. 

1  if vent hole present

0 otherwise
α = 


p  

The function ( )f r  represents the radial distribution function for deposition of 

ejected gas and particle from the tail-boom.  So, as the radial distance from the surface of 

tail-boom section, r increases, value of ( )f r  may decrease slightly depending upon the 

strength of the ejected gas and particle from the tail-boom vent hole.  For the current 

version of calculations, the radial dependency is considered uniform.  Thus, the 

( ) ( ) 2

1
1

p
p pt

φ ρ ς
φ ρ ς

 
   

 

∂ −
+ ∇ ⋅ − = Σ

∂
U  

where, ( ) ( )2 , ,p p psb b b tb in c tbA r f r m f r mρ ς α α−Σ ≡ − − +ɺ ɺ  
(Eq. 4.2) 
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function ( )f r has been treated as a constant.  For example, if there are five radial intervals 

in the mortar tube then the value of ( )f r  would be 1/5.  

The source terms in the above two equations contain three terms; the first term 

represents gas generation due to burning of M47 granular propellant, the second term 

represents the gas-generation due to burning of M48 granular propellants that are injected 

into the mortar tube from tail-boom, and the third term represents the gas-phase mass 

addition from the tail-boom. Similarly, the source term in the condensed-phase mass 

conservation equation consists of the three terms, the first term represents condensed-

phase mass loss due to burning of M47 granular propellants, the second term represents 

the condensed-phase mass loss due to burning of M48 granular propellants that are 

injected into the mortar tube from tail-boom, and the third term represents the condensed-

phase mass addition from the tail-boom. In the above equations, subscript “tb” means 

“tail-boom” and “tb-in” means incoming from the tail boom. In Eq. (4.2), ρ p  is the 

density of M48 ball propellants that are incoming from the tail-boom section and br  is the 

burning rate of particles ejected from tail-boom sect M48 ball propellants calculated 

based on the local pressure.  The term −ɺ tb inm in Eq. (4.1) and Eq. (4.2) Eq. (4.3) is given 

as following:  

The gas-phase momentum equations are given by Eq. (4.4) as: 

( )ptb in sb b local tb in
m A r Pρ− −

  =ɺ  (Eq. 4.3) 
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Even though the viscous stress effects between the gas molecules are present, 

their effect to the overall momentum balance is believed to be negligible in comparison 

with the drag force between the solid particles and gas-phase.  The latter is approximated 

by an empirical correlation; thus, there is no need to retain the higher order derivative 

terms in the governing momentum equations.  It is important to note that the total drag 

force between the gas and particle phases Dt, is equal to the sum of the drag force due to 

the presence of relative velocity between the gas and particle phases and the drag force 

induced by change of flow area due to particle size variation in a given plane. The latter 

effect can also be interpreted as the porosity gradient, i.e. Eq. (4.5).  

The particle-phase momentum equations are derived in the similar manner as the gas-

phase and it is shown in Eq. (4.6).  

 g
g g gP

t

ρφς
ρφς φς

∂
+ ∇ ⋅ + ∇ =

∂
U

U U I  

where, 
( ) ( )

( ) ( )
, , , , ,

, , , , ,      

g g g tb g i sb b p p i g i s v i

g b tb in p i g i s tb in v i

f r m A r A

f r m A

α ρ ς ς

α ς ς− −

= + − −

+ − −

I U U U D

U U D

ɺ

ɺ
 

and ( )
( )
( )
( )

3

4

5

g

Σ 
 ≡ Σ 
 Σ 

Q

I Q Q

Q

 

 

(Eq. 4.4) 

φ= + = − ∇D D D Dt v p v
s

P

A
 (Eq. 4.5) 
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The energy equation for gas-phase is given by Eq. (4.7): 

In the above equations, et is the total energy per unit mass and it is defined by Eq. (4.8) as 

following: 

In the given model, the constant-pressure specific heat has been taken to be a known 

function of pressure and temperature as in its conventional form. The energy equation for 

spherical particles in the charge increment would be same as that used for the tail-boom 

section. The surface temperature equation for the ball propellants is given by Eq. (4.9). 

( ) ( ) ( )1 1 1p p p p p p pt
ρ φ ς ρ φ ς ς φ τ 
 

∂ − + ∇ − ⋅ − ∇ − =
∂

U U U I  

where, 
( ) ( ) ( ), ,

      

p p p p p gc TB b tb ej

s t p psb b

f r m f r m

A A r

α α
ς ρ ς
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D U

ɺ ɺ
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Q

I Q Q

Q

 

 

(Eq. 4.6) 

( ) ( ) ( ) 9
t

t g g

e
e P

t

ρφς
ρφς φς

∂
+ ∇ ⋅ + ∇ ⋅ = Σ

∂
U U  

where, 

( ) ( ) ( ) ( )
( ) ( )

( )
'

9 , , ,

'
, ,

       

       

f

f

sb p b p T f ref s sb t ps g g tb g tb

g b tb ej f ref s p tp T

s p t tb ej

A r c T T A A h T T f r m h

f r m c T T A

P A
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Unlike ignition cartridge, there is no condensed-phase coating on the M47 ball 

propellants and therefore, the ball propellants in the mortar tube are heated by convection 

heat transfer. The combustion products of M48 propellants do not contain any liquid-

phase products.  

4.2 Initial conditions   

4.2.1 Initial condition for velocity 

In the mortar tube, both the gas-phase and solid particles are stationary at t = 0, 

which is defined as the time before the primer was actuated.  Therefore, the initial 

conditions for both gas-phase velocity and particle velocity are given by Eq. (4.10) and 

Eq. (4.11) as following: 
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( ), 0 0= =U xg t  (Eq. 4.10) 

( ), 0 0= =U xp t  (Eq. 4.11) 
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4.2.2 Initial condition for porosity  

The initial condition for porosity is given by the positioning of charge increments 

in the mortar tube. The charge increments are horse-shoe shaped. There are four such 

charge increments in the mortar tube and they are alternatively positioned (see Fig. 4-1). 

Therefore, the initial condition for porosity reflects this arrangement and it is given by 

Eq. (4.12) and Eq. (4.13): 

where, ,φo CI  is the initial porosity in the mortar tube charge increments and, θempt  is the 

half angle between the ends of the horse-shoe shaped charge increments.  If the loading 

of charge increments is changed from alternate to aligned arrangement then the above 

initial condition must be modified to reflect the actual loading condition.  

For 1 2≤ ≤z z z and 3 4< ≤z z z  
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(Eq. 4.12) 
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4.2.3 Initial condition for temperature and pressure 

In the mortar tube, the temperature and pressure at t = 0, which is defined as the 

time before the primer was actuated are given by Eq. (4.14) and Eq. (4.15): 

In the above expressions, subscript amb represents the ambient or pre-specified 

conditions.  

 

Figure 4-1: Fin region of the 120mm mortar projectile. 

( ), 0= =x ambT t T  (Eq. 4.14) 

( ), 0= =x atmP t P  (Eq. 4.15) 
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4.3 Boundary conditions 

In general, solid wall boundary conditions are used for most of the variables in 

radial, axial, and tangential directions. The boundary conditions for the gas-phase 

velocity and condensed-phase velocity were complex. These boundary conditions were 

defined based on the geometry of the mortar tube and projectile.  

4.3.1 On ignition cartridge surface in the vent hole region 

The boundary conditions on the projectile surface for gas-phase velocity and 

particle velocity are given by Eq. (4.16) and Eq. (4.17) as: 

Due to very short duration of the ballistic cycle in the mortar tube, the energy transfer 

through tail-boom outer surface, projectile surface, and mortar tube surface are assumed 

to be negligible. Therefore, the solid wall boundary condition was applied for gas density, 

porosity, and gas-phase temperature. This means that the gradients of these variables in 

the direction of surface normal were taken as zero, implying that there is no mass or 

energy transport through the wall.  
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4.3.2 In the fin region 

Fin region is the part of tail-boom where fins are located as shown in Fig. 4-1.  If 

fins are assigned a number (n) from 1 to 8 then the boundary conditions for the gas-phase 

and particle at the surface of fin are given by Eq. (4.18) as:  

The above boundary conditions imply that the “average” tangential velocity of numerous 

particles at the fin surface is zero, even though particles can bounce at the wall upon 

impact. Similarly, gas cannot penetrate the fin surface, the average Ug =0.  

4.3.3 The z-direction boundary conditions 

Since the primer end of mortar tube is closed, there can not be any penetration 

through the wall. Therefore, the average gas-phase velocity in z-direction will be zero at 

the primer-end location.  The gas-phase at the obturating ring location moves along the 

projectile. Therefore, the gas-phase velocity in z-direction at this axial location is same as 

the projectile velocity. These boundary conditions are given by Eq. (4.19) as: 
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The solid wall boundary condition was applied for gas density, porosity, and gas-phase 

temperature. This means that the gradients of these variables in the direction of surface 

normal were taken as zero, implying that there is no mass or energy transport through the 

walls.  

4.4 Summary of mortar tube sub-model 

The interior ballistic processes in the mortar tube section are modeled by the governing 

equations, initial conditions, and the boundary conditions described in this chapter. The 

governing equations are strongly coupled.  In order to have direct temporal derivatives of 

major unknowns, those equations have been simplified using mathematical 

manipulations.  In order to solve this system of equations, an efficient numerical 

technique is necessary. Two approaches for solving this system of equations were 

considered; one by using a finite element method (FEM) based numerical approach and 

another by using a finite volume method based Riemann solver approach. The results 

obtained from these two different approaches and issues related to them are described in 

following chapters.  



 

Chapter 5 
 

FORMULATION OF PROJECTILE DYNAMICS SUB-MODEL 

5.1 Basic assumptions 

Several basic assumptions have been considered in this analysis as a part of the 

3D Mortar Interior Ballistics (3D-MIB) model in order to render the equations solvable 

within the scope of the present work.  These assumptions are listed below: 

1. Particles striking the projectile surface have elastic collision with the surface, 

which means that particles striking the surface return with the same velocity 

magnitude; thus they do not loose kinetic energy as a result of collision. 

2. The solid surface of projectile is considered to be non-permeable except through 

vent holes on the fin-boom section. 

3. The pressure force acting on the projectile is mainly due to gas-phase pressure. 

Since the porosity will be very close to 1, the force exerted on projectile surface 

by condensed-phase particles is assumed to be negligible with respect to gas-

phase pressure force. 

4. The shear stress on projectile surface due to boundary layer is neglected. 

5. There are no body forces except gravity acting on projectile.  
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5.2 Net force and pressure distribution 

The net force on the projectile and the force distribution on projectile surface in 

all three dimensions are formulated in this section. The vector sum of all axial forces (due 

to gas-pressure, tube-projectile wall friction, and gravity) acting on the projectile is 

defined as net rate of change of momentum of the projectile in axial direction. Change of 

projectile momentum is partly due to ejection of partially burned ball propellant and the 

gas jet through the vent holes on fin-boom section.  

In Eq. (5.1), β is the angle of elevation of the mortar tube and g is gravitational 

acceleration and MProj is the instantaneous mass of the projectile. The instantaneous mass 

of projectile is given by Eq. (5.2) as: 

Here Nvh is the total number of vent holes on the fin-boom section. The terms TBvhgmɺ  and 

TBvhcmɺ are the rate of gas-phase and condensed-phase mass flowing out of the vent holes 

on the tail-boom section.  

The gas pressure is computed from the gas-phase conservation equations and it is 

always perpendicular to the surface. Therefore, net force on projectile due to gas pressure 

is vector sum of the product of pressure and area of all the control volume attached to the 

projectile surface. Force on projectile surface in z-direction due to gas-phase is given by 

Eq. (5.3): 

( ) PressureProj Proj Proj cosFriction
d

M U F F M g
dt

β= − −  (Eq. 5.1) 

( )
10

( ) ( 0) '
vhN t

projProj TBvhg TBvhc kk
M t M t m m dt

=
= = − +∑∫ ɺ ɺ  (Eq. 5.2) 
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The area ProjA is a vector and it is defined by Eq. (5.4) as following: 

where α is the local angle between the z-axis and tangent plane to the projectile surface 

as shown in Fig. 5-1 and n is the outward normal vector to local projectile surface.  

 

Therefore, the projectile dynamics is governed by Eq. (5.5): 

The control volumes attached to the projectile surface are shown as grey colored regions 

in Fig. 5-2.  

In general, force is a vector with three components in r-, θ-, and z- directions. For 

the desired operation of projectile, the scalar sum of force component in r- and θ-

Proj

Pressure Projsin  α= ⋅∫ n A�
A

F P d  
(Eq. 5.3) 

Proj Proj=A nd dA  (Eq. 5.4) 

 

 

Figure 5-1: Pressure acting on a local projectile surface at angle α. 

( )
Proj

Proj Proj Proj Projsin  cosFriction
A

d M U P d F M g
dt

α β= ⋅ − −∫ n A�  (Eq. 5.5) 

z-axis  
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directions should be zero when summed over the entire surface area of projectile exposed 

to the high-pressure region. Therefore, 

The detailed vibrational and rotational motions of the projectile payload were not treated 

in the present analysis due to the scope limitation.  

5.3 Mesh generation with the moving projectile 

In order to simplify the numerical procedure in handling the moving projectile case, it 

was proposed that the finite difference grid in the region between projectile and the 

mortar tube moves with the projectile.  Therefore, the solution for pressure from gas-

0 =∑ r
j

F  (Eq. 5.6) 

0θ =∑
j

F  (Eq. 5.7) 

 

Figure 5-2: Cartoon of a portion of projectile surface profile and control volumes attached to 
the surface. 
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phase conservation equations can be used in Eq. (5.5) for solving the projectile velocity.  

It is shown in Fig. 5-3 and Fig. 5-4 that the finite difference grid in the region between 

projectile and the mortar tube moves along the projectile at the same velocity as the 

projectile and thus these control volumes do not change while the projectile is in motion. 

The space generated between the base of the projectile and the closed-end of the mortar 

tube is occupied by several control volumes, which are expanded along the axial direction 

at the rate governed by the instantaneous projectile velocity. The alternative to the 

cylindrical grid is to use triangular grid in order to accommodate the curved surface of 

the projectile.  

 

 

 

Figure 5-3: Schematic of projectile motion and axial expansion of the gas-phase region 
near the base of the projectile in an earlier phase. 

 

 

Figure 5-4: Schematic of projectile motion and axial expansion of the gas-phase region 
near the base of the projectile at a later time. 
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5.4 Summary of projectile dynamics sub-model 

The above analysis is to determine the motion of projectile body under dynamic loading 

conditions. The instantaneous velocity of the projectile was used to determine the grid 

size in axial direction.  



 

Chapter 6 
 

FINITE ELEMENT SOLUTION FOR MORTAR TUBE SUB-MODEL 

Theoretically, the finite element method should offer greater accuracy and higher 

flexibility in simulating the flow-field distributions in a complex geometry [8]. A finite 

element based numerical scheme can also prove to be more suitable for coupling the flow 

solution with the structural mechanics of the mortar systems. Keeping these issues in 

mind, an attempt to formulate a finite-element based numerical scheme for the two-phase 

compressible flow was initiated, which is described in this chapter. The governing partial 

differential equations were converted into a set of linear algebraic equations using the 

Taylor-Galerkin method based on finite element analysis. This numerical method was 

applied on the mortar tube sub-model to give the solution for the stationary mortar tube 

condition when the projectile motion was not allowed.  The purpose of this effort was to 

predict the pressure-time traces at various locations in the mortar tube.  It was also to 

predict the pressure wave phenomena, and time variations of flow property distributions 

in the combustion zone. 

6.1 Finite element model for two-phase governing equations 

The selected numerical method is described below: 
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6.1.1 Galerkin method 

In order to solve the set of governing equations within an element, the Galerkin 

method has been selected. This method is a weighted residual method, which converts the 

set of governing equations into an integral form. The weighted residual method sets the 

residual to zero relative to a weighting function.  The residual represents the difference 

between exact solution and approximate or numerical solution. For the differential 

equation Lu=P, where L is operating on u, the exact solution needs to satisfy governing 

equation at every point in space.  If u  is an approximate solution and it introduces an 

error e(x) called the residual, then the residual is given by Eq. (6.1)  

The approximate methods revolve around setting the residual relative to a weighting 

function ζ to zero. Therefore, the Eq. (6.1) becomes Eq. (6.2): 

where, Ωv is the domain of a particular element.  In the Galerkin method, the weighting 

functions are chosen from the basis functions in order to construct the unknown variable 

in the equation. Weighing functions can be a linear combination of basis (shape) 

functions. Let u be represented by Eq. (6.3): 

Weighting functions are then represented by Eq. (6.4): 

( )e x Lu P= −  (Eq. 6.1) 

( ) 0Lu P dζ
Ω

⋅ − =∫
V

V  (Eq. 6.2) 

1

,  where,  are basis functions (usually functions of local coordinates).
n

i i i
i

u Q G G
=

=∑  (Eq. 6.3) 

1

n

i i
i

Gζ ζ
=

=∑  (Eq. 6.4) 



124 

 

where the coefficient iζ  are arbitrary except for the requirement that iζ  satisfy 

homogeneous boundary conditions where u is prescribed.  

6.1.2 Leap-Frog Taylor-Galerkin finite element scheme 

Let us consider a scalar convection equation shown by Eq. (6.5) : 

The time derivative can be written as follows using leap-frog discretization:  

As it is well known that use of center-difference method to discretized the left-hand side 

of Eq. (6.6) produces a method which is second-order accurate in time [11] [12]. For the 

case when a = constant and Courant number c ≤ 1, the leap-frog method is marginally 

stable. Using a standard Galerkin discretization method on a uniform mesh, the method 

becomes fourth-order accurate in space, but remains indeed second-order accurate in the 

time. The Eq. (6.6) represents a generalized leap-frog discretization of the convection 

equation. The associated Galerkin equation is given by Eq. (6.7). 

The above formulation offers the basis for leap-frog-Taylor-Galerkin (LFTG) finite 

element schemes, which is used in this numerical simulation.  

u u
a

t x

∂ ∂=
∂ ∂

 (Eq. 6.5) 

1 1

2

nn nu u u
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t x

+ −− ∂=
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 (Eq. 6.6) 

( )1 1 2 0
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n n u
u u a t dx
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ζ + −

Ω

 ∂− − ∆ = 
∂  

∫  (Eq. 6.7) 
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6.1.3 Reduction of governing equations using LFTG method 

The leap-frog finite difference scheme for marching in time using Taylor series 

expansion gives second-order accuracy in time. The Galerkin method gives fourth-order 

accuracy in space. Therefore, the difference equations for the above set of governing 

equations can be derived as following: 
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Particle-velocity 

 

Gas-temperature 

 

where,  

 

Particle Surface Temperature 

where,  

( )
( )( )

21 1
21

1  
2 1

nn
n n

np p pc
p p refn

p

c
t

φφ ς ς φ
φ ρφ ς

+ −  
  −   
 = − − ⋅∇ + ∇ −       ∆  −    

 

U U I
U U  (Eq. 6.13) 

( ) ( ) ( )( )
1 1

1 2 9

1

1
1

2

n n nn n n

g g pn

T T
T

t
ξ ξ φ ρ φ

ξ

+ −−   = − ⋅∇ + ∇ ⋅ + ∇ ⋅ − − Ω  ∆  
U U U  (Eq. 6.14) 

( )
2 3 2

9 9 1 1 22 2

p
g p

p

cRT RT
h c

P P t

ρ ρ ρ φ
ρ

∂ 
Ω ≡ Σ − Σ + Σ + Σ − + ⋅∇ ∂ 

U  (Eq. 6.15) 

2

1 21 , 1pc TR RT

P P P

ρρ φ ρξ ξ ρ
   ≡ − ≡ −   

  
 (Eq. 6.16) 

( )

( )

1 1
3 2

3
1

3 2 3

1 1

3
10

1

2

1 0

n n n nn nnps ps n n n n n
p ps g p gn

n n n nn nn n
g pn n

n n nn n
pn

T T N
T N T

t

N N

N

ξ φξ
ξ ρφ φξ ξ
ρ φξ

+ −
⋅ ⋅

⋅∇

− + ∇ + − ∇ + ⋅∇∆

+ ∇⋅ −

+ − ∇⋅ −Ω =

U U

U

U U

U

U

 (Eq. 6.17) 



127 

 

and 

6.1.4 Weight functions 

Several weight functions for different equations are defined below: 

Π: weight function for porosity equation 

Γ: weight function for pressure equation 

W: {W1, W2, W3}: weight function for gas-phase velocity equation 

Λ: {  Λ1, Λ2, Λ3}: weight function for condensed-phase velocity equation 

Θ: weight function for gas-phase temperature equation,  

Φ: weight function for particle surface temperature equation   
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6.1.5 Formulated finite element equations 

Using the Galerkin method described earlier, the governing equations can be 

transformed into integral form from their partial differential equation form using 

weighting functions for minimizing the error over each element. Mathematically, it can 

be written in following form of equations. To simplify the notation, the overhead bar as 

mentioned before has not been used here even though all the quantities solved are 

numerical solutions, which are not the exact solutions. 
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Particle-velocity 

 

 

Gas-temperature 

 

 

Particle Surface Temperature 

 

 

The shape functions used in the above equations are described in Appendix A.  
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6.1.6 The Ritz-Galerkin finite element models 

The unknown variables within each element are interpolated by a linear 

distribution. This approximation becomes increasingly accurate as more elements are 

considered in the model. Shape functions are introduced to implement this linear 

interpolation. If both the unknown variable and the coordinate are interpolated using the 

same shape function within the element, then it is called isoparameteric formulation. This 

is also a weak-form finite element model. In this work, isoparameteric formulation has 

been adopted. The interpolation functions for major unknowns are given as following: 

The vectors ( ), , ,i i psg pφ,P,U ,U ,T T  in Eq. (6.26)-Eq. (6.31) contain the nodal values of the 

respective quantities in each element and similarly vectors ( ),i iλ,ψ,α ,β ,χ σ  contain the 

nodal values of shape functions corresponding to the major unknowns in each element. 

Since isoparameteric formulation is used, the weight functions will be same as the 

interpolation functions. Therefore, 
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The vectors ( ),i iΠ,Γ,W ,Λ ,Θ Φ  in Eq. (6.32)-Eq. (6.37) contain the nodal values of the 

respective quantities in each element and similarly vectors ( ),i iλ,ψ,α ,β ,χ σ  contain the 

nodal shape functions corresponding to the major unknowns in each element.  Using 

leap-frog Taylor-Galerkin scheme for the time derivative and substituting the weak 

formulation in Eqs. (4.14)- (4.18), following equations are obtained: 
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Π = λ  (Eq. 6.32) 

i iW = α  (Eq. 6.33) 

Γ=ψ  (Eq. 6.34) 

i iΛ =β  (Eq. 6.35) 

Θ = χ  (Eq. 6.36) 

Σ =σ  (Eq. 6.37) 
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6.1.7 Mesh generation  

The finite element code mesh was created using the mesh generation software 

package, “Gambit”, developed and distributed by Fluent Inc.  The geometry of the 

120mm mortar system was also generated using this software.  The dimensions were 

taken using the drawing of 120mm mortar system and these dimensions were used to 

create a geometry shown in Fig. 6-3.  In the calculations shown here, only a 1/8 section of 

the 120mm mortar system was simulated because this region could represent the entire 

space between the tail-boom and the mortar tube.  This section is shown as the meshed 

region in Fig. 6-3. The four regions are identified in this geometry as i) fin-blade region, 

ii) vent-hole region, iii) conical region, and iv) projectile-payload region.  The vent-hole 

region is the uniform cylindrical section of ignition cartridge where all vent holes are 

located. The ignition cartridge has a conical section ahead of this cylindrical region, 

which does not have any vent holes and connects with the projectile-payload region. This 

section is called conical region. The section where a portion of the explosive charge is 

loaded is called the projectile-payload region.  This is the section before the obturating 

ring in the mortar system. 

There are several mesh generation software packages available for finite element 

mesh generation and these were considered for use in this work. These include FEAP, 

Triangulation, DISTMESH, FEMLAB, ANSYS, and Gambit. These software packages 

are all very good options.  However, in this work the geometry is meshed using mesh 

generation software Gambit, developed by Fluent Inc. Gambit mesh generation program 

was used, since it was readily available to us through the Mechanical Engineering 
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departmental license at PSU. In the current work, hexahedral, wedge and tetrahedral 

elements were used. The general shape and node locations for these two types of 

elements are shown in Fig. 6-4. A hexahedral element with uniformly distributed 

propellant grains is shown in Fig. 6-2. 

 

 

             
4 Node tetrahedral element                            5 Node tetrahedral element 

 

              
 

8 Node brick element                                            20 Node brick element 
 

Figure 6-1: Several types of elements and node locations. 
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There are total 28 vent holes on the cylindrical surface of the tail-boom and 

combustion products (both in gas-phase and condensed-phase) are discharged from these 

vent holes into the mortar tube section.  The mass flux of these discharges was computed 

from the ignition cartridge sub-model, which was explained in chapter 2.  In the mortar 

tube sub-model, these outputs were used for the gas and condensed-phase velocity 

boundary conditions, and source terms in the governing equations.  The vent-hole region 

has 14 axial divisions, 5 radial divisions, and 5 angular divisions for a 1/8 portion of the 

full cross-section of the mortar projectile.  Hence, there are a total of 350 elements in the 

1/8 portion of the vent-hole region of mortar tube.  The axial meshing ensures that each 

axial division in 1/8 portion received mass flow discharge from tail-boom equivalent of 

25% of a vent hole.  The fin-blade region, conical region, and the projectile-payload 

region are divided in 5 axial, 5 radial, and 5 angular divisions each for the 1/8 portion of 

the projectile.  Therefore, the 1/8 section of the mortar projectile is meshed into total of 

 

 

Figure 6-2: Hexahedral element with uniform distribution of ball propellants. 
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725 elements.  These meshed sections are displayed in Fig. 6-4 for oblique and y-z views 

respectively.  The hexahedral finite element geometries are used for fin region and vent-

hole region. However, both the conical region and the projectile region are converging 

regions; therefore a combination of hexahedral elements and wedge elements has been 

utilized for these regions.  The wedge finite element is similar to the hexahedral element 

but all faces are not necessarily perpendicular to each other.  The finite element 

formulation does not change for wedge elements and therein lays one of the advantages 

of finite element method for this complex geometry.  
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(a)                                                                                                (b) 

                                      
(c)                                                                                      (d) 

Figure 6-3: Finite element mesh generated in a section of mortar tube: (a) vent-hole 
region meshed, (b) vent-hole and conical regions meshed, (c) all regions meshed except 
fin-blade region, (d) all regions meshed. 

Vent-hole regions 

Conical and vent-
hole regions 

 

Fin-blade region 
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conical, & vent-hole 
regions 
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6.1.8 Computed results and discussions 

The solution of mortar tube sub-model starts with calculation of mass fluxes of 

gas-phase and condensed-phase combustion products from the ignition cartridge into the 

vent hole region of mortar tube. In addition, the diameter of M48 particles that are ejected 

 

           
 

(a) Isometric View     (b) y-z view 

Figure 6-4 A section of mortar tube region with finite element mesh. 
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from the ignition cartridge through the vent holes and the porosity of the two-phase flow 

from ignition cartridge into the mortar tube are also used as input to the mortar tube sub-

model. The computed mass fluxes of combustion products (both gas-phase and 

condensed-phase) from the ignition cartridge sub-model were further converted into per 

unit volume for each element in the mortar tube section. This was done because the 

volume of ignition cartridge is different than the volume of elements in the mortar tube. 

These volumetric mass flow rates into the mortar tube section at various axial locations 

are shown in Fig. 6-5.  
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Figure 6-5: Computed mass flow rates from tail-boom into mortar tube at various axial 
locations. 
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The computed pressure-time traces at 5 representative axial locations are shown 

in Fig. 6-6. The non-uniform axial variation of the discharging combustion products from 

the ignition cartridge causes the sequential pressurization event in the mortar tube, 

resulting in non-uniform pressurization in the mortar tube. Since the uppermost vent-

holes at z = 15.67 cm started discharging first, the M47 ball propellants in the charge 

increment located at this axial position are ignited earlier than the other charge 

increments. 

Following the rapid combustion of M47 granular propellant grains at this location 

(i.e, z=15.67 cm), the pressure-waves are generated and they propagate in both directions 

toward fin-blade and conical regions (located at z = 19.95 cm and z = 31.95 cm) and 

projectile-payload region (located at z = 0.0 cm and z = 4.27 cm), which do not contain 
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Figure 6-6: Computed P-t traces in the mortar tube at various axial locations. 
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any propellant at the beginning. The pressurization processes in these regions occur later; 

the pressure in the fin-blade region rises faster than the other regions and later exceeds 

those at other regions. This phenomenon occurs due to the downward motion of 

propellant grains, which were driven by the pressure wave.  

 

The detailed pressure-time traces in the vent-hole region are shown in Fig. 6-7 , 

which shows that the pressurization event starts at z = 15.67 cm and continues toward the 

projectile-payload region, starting last at z = 4.27 cm, although the time delay between 

the pressurization processes at these various axial locations in the vent-hole region are 

less than the time delay between vent-hole region and other regions. This observation is 
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Figure 6-7: Computed P-t traces in the vent-hole region of mortar tube at various axial 
locations. 
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consistent with the postulation that the order of hot combustion products discharge from 

the ignition cartridge governs the initiation of pressurization in the mortar tube. 

 

The detailed pressure-time traces in the projectile-payload region and the conical 

region are shown in Fig. 6-8 and Fig. 6-9.  In addition to the sequential pressurization, 

these results also show a pressure-wave phenomenon, which means that the location for 

the highest pressure alternates between various axial positions. The pressure-wave 

phenomenon is a typical characteristic of ballistic behavior in such systems. 
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Figure 6-8: Computed P-t traces in the projectile-payload region of mortar tube at various 
axial locations. 
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The computed pressure-time traces in the fin-blade region are shown in Fig. 6-10. 

In general, the calculated results at the fin-blade region are in the same peak pressure 

range and rise time of a measured pressure-time trace obtained from the base area of an 

actual mortar firing performed at Yuma Proving Ground, AZ as shown in Fig. 6-11. 
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Figure 6-9: Computed P-t traces in the conical region of mortar tube at various axial 
locations. 
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Figure 6-10: Computed P-t traces in the fin-blade region of mortar tube at various axial 
locations. 
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Figure 6-11: Measured P-t traces of projectile firing (P~13,000 psig, rise time ~ 2.6 m). 
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The calculated temperature-time traces are shown in Fig. 6-12.  These traces 

indicate the earlier temperature rise in the vent-hole region since the discharge of 

combustion products from the tail-boom takes place in this area. Also the charge 

increments are located in this section therefore, the gas-mixture temperature rises earlier 

in this region in comparison with other regions, however, the rate of temperature rise is 

faster in the fin-blade region once it starts to pressurize quickly.  The axial temperature 

variations in the fin-blade region are relatively small as shown by the results given in 

Fig. 6-13.  This is partly caused by the relatively uniform distribution of M47 ball 

propellants that enter in this region with the gas flow from the vent-hole region. 
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Figure 6-12: Computed temperature-t traces in the mortar tube at various axial locations. 
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The calculated propellant surface temperature-time traces are shown in Fig. 6-14. 

From this figure, one can see that the propellant grains are ignited first in the upper 

portion of the vent-hole region and then the flame spreads downwards to the fin-blade 

region. This behavior is similar to that inside the tail-boom section due early discharge of 

hot combustion products out of the vent holes at the uppermost axial location in the vent-

hole region near the projectile end.  The computed axial gas velocity-time traces for 

various axial locations in the mortar projectile also showed that the combustion products 

flow downward from vent-hole region to fin-blade region and upward into the conical 
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Figure 6-13: Computed temperature-t traces in the fin-blade region of mortar tube. 
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and projectile-payload regions.  In each of these regions, there are oscillations in the axial 

gas-velocity component due to localized axial pressure gradients.  The oscillations are 

most pronounced in the fin-blade region due to higher pressure gradients. 

 

The calculated linear regression rate of granular propellants in the mortar tube 

section is shown in Fig. 6-15.  Even though there are limited variations in the magnitude 

of the burning rates at various axial locations, the granular propellant near the fin-blade 

region rises to a higher level than those in the other locations in the vent-hole region in 

the first millisecond interval of the ballistic event. The burning rate was then taken over 

by those near the conical region in the later period of the event.  This behavior is dictated 
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Figure 6-14: Computed particle surface temperature-t traces in the mortar tube at various 
axial locations. 
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by the pressure wave phenomena in the vent-hole region of the mortar tube as shown in 

Fig. 6-10. 

 

The pressure wave phenomena in the mortar tube are further illustrated in the 

computed solution by the expansion of the red-colored region from the top-row of the 

vent holes towards both upward and downward directions in Fig. 6-16.  It can be clearly 

seen from these plots that pressure wave is stronger towards the fin-blade region than the 

projectile-payload region. This is due to the burning of propellant grains in the charge 

increments that are located unevenly in the lower portion of the vent-hole region. 
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Figure 6-15: Computed burn rate-t trace in the vent-hole region of the mortar tube at 
various axial locations. 
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(a) t = tvent    (b) t = tvent+ 0.18 ms 

Figure 6-16: Computed pressure contours in the mortar tube at the beginning of ballistic 
cycle. 
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(c) t = tvent+ 0.26 ms     (d) t = tvent+0.34 ms 

 
(e) t = tvent+0.42 ms      (f) t = tvent+0.5 ms 

Figure 6-17: Computed pressure contours in the mortar tube at various time instances. 
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(g) t = tvent +0.58 ms    (h) t = tvent+0.66 ms 

  
(i) t = tvent +0.74 ms    (j) t = tvent+0.80 ms 

Figure 6-18: Computed pressure contours in the mortar tube at various time instances. 
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(k) t = tvent +0.90 ms    (l) t = tvent+0.94 ms 

  
(m) t = tvent +0.98 ms     (n) t = tvent+1.00 ms 

Figure 6-19: Computed pressure contours in the mortar tube at various time instances. 
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6.2 Remarks on calculated results from mortar tube sub-model 

This work demonstrates the successful development of a 3D theoretical model 

and implementation of a numerical code for prediction of ignition/combustion, flame 

spreading, and pressurization processes in both the ignition cartridge and the mortar tube 

sections of the 120mm mortar propulsion system before the onset of projectile motion. 

The computational results are partially validated by experimental data from both ignition 

cartridge and mortar tests. The computed results show the pressure wave generation, 

propagation, and wave-reflection in both ignition cartridge and mortar tube sections. The 

pressure wave in the ignition cartridge is mainly due to the uneven discharge of 

combustion products from the flash tube. The discharge of combustion products from the 

tail-boom vent-holes also occurs in the same sequence as the flash tube. The non-uniform 

burning in the ignition cartridge combined with the uneven loading of M47 propellant 

grains in the mortar tube can result in a strong pressure-wave generation in the mortar.  

The overall combustion process in the existing configuration is strongly influenced by the 

non-uniformity of mass and energy discharge from flash tube. The fluid state may jump 

across shock waves or contact surfaces, and it may have discontinuous derivatives across 

any characteristic. 



 

Chapter 7 
 

MORTAR TUBE SUB MODEL SOLUTION WITH TWO-PHASE 
APPROXIMATE RIEMANN SOLVER 

In the development and implementation of the final portion of this work, i.e., the 

mortar tube sub-model, a high-resolution Godunov-type shock-capturing approach was 

used where the discretization is done directly on the integral formulation of the 

conservation laws. All the schemes available here share the following key ingredients: 

1. A linearized approximate Riemann Solver to compute fully non-linear wave 

interactions and to directly provide upwinding properties in the scheme,  

2. An entropy fix based on Harten-Heyman method,  

3. A van Leer flux limiter for total variation diminishing, 

4. A three dimensional wave propagation method, 

5. An explicit four stage fourth order Runge-Kutta time-marching scheme for time-

integration of the source terms. 

The projectile motion is accounted for by using the mesh generation scheme 

proposed in chapter 5. The calculated is verified by the exact Riemann solution. The 

computed solutions are validated extensively by detailed experimental data obtained from 

instrumented mortar simulator firings. 
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7.1 General approach 

The non-linear coupled conservation equations in the mortar tube sub-model pose 

an initial value problem with discontinuous initial conditions for conservative variables. 

For example, the initial conditions for condensed-phase mass are discontinuous in the 

axial and radial directions (based on the porosity distribution). Similarly, the initial 

conditions for gas-phase velocity and condensed phase velocity components in radial and 

tangential directions are also discontinuous owing to the non-uniform flow of combustion 

products from the ignition cartridge into the mortar tube, as shown by Eq. (4.1) and 

Eq. (4.2) in chapter 4. This situation poses a very complex problem for obtaining the 

numerical solution of the sub-model. Based on these observations, it can be concluded 

that the conservation equations for the mortar tube sub-model possess characteristics of 

the Riemann problem, although the conservation equations are two-phase and contain 

non-homogeneity in form of the source terms. First, it is important to address the problem 

of solving the conservation equations without the source terms.  

A Riemann problem is an initial value problem, which in its simplest form is 

defined by a single linear advection equation and initial condition with a single 

discontinuity (as shown in Fig. 7-1).  
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Physically, the Riemann problem can be interpreted as a flow field in a tube of 

infinite length, containing two gases separated by a diaphragm at 0x = , which has a gas 

with density Lu  at the left hand side and another gas of density Ru  at the right hand side, 

where L and R mean left and right of the discontinuity respectively. The rupture of the 

diaphragm generates a nearly centered wave system that could consist of a shock wave a 

contact discontinuity, and a rarefaction wave. Any numerical method used to solve the 

Riemann problem should be capable of addressing the formation of flow structure such as 

shock formation, contact discontinuities, and rarefactions. The accurate representation of 

these flow discontinuities determines the overall accuracy of such numerical method. 

Therefore, an ingenious approach to solve a system of hyperbolic equations that are 

initial value problems would be to account for the flow field structure through the non-

linear superposition of the solutions of the local Riemann problems. This approach was 

first proposed by Godunov [15]. 

 

 

Figure 7-1: Illustration of the initial data for the Riemann problem. At the initial time the 
data consists of two constant states separated by a discontinuity at x = 0. 
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7.2 Godunov methods 

The conservation equation for a one-dimensional generalized initial boundary 

value problem (IVBP) is shown in Eq. (7.1): 

In the above equation, f is the flux vector and u is the conservative variable vector. The 

choice of flux ( )f u au=  reproduces the linear advection equation shown earlier in 

Fig. 7-1. A conservative scheme for the scalar conservation law Eq. (7.1) is a numerical 

method of the following form given by Eq. (7.2): 

The numerical intercell flux if +½  is given by Eq. (7.3): 

In Eq. (7.3), Ll  and Rl  are two non-negative integers. It can be proved that choice of 0 

and 1 for these two numbers gives a stable solution to the linear advection equation. 

Thus, the intercell numerical flux can be represented by the following Eq. (7.4):  

Godunov's first-order upwind method is a conservative method of the form Eq. (7.2), 

where the intercell numerical fluxes if +½  are computed by using solutions of local 

Riemann problems. A basic assumption of the method is that at a given time level n the 

data has a piece-wise constant distribution, as depicted in Fig. 7-2.  

( )
0

f uu

t x

∂∂ + =
∂ ∂

 (Eq. 7.1) 

[ ]1n n
i i i i

t
u u f f

x
+

− +
∆= + −
∆ ½ ½  (Eq. 7.2) 

( ),......,
L R

n n
i i i l i lf f u u+ + − +=
½ ½  (Eq. 7.3) 

( )1,n n
i i i if f u u+ + +=
½ ½  (Eq. 7.4) 
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The data at time level n may be seen as pairs of constant states, ( )1,n n
i iu u+  separated by a 

discontinuity at the intercell boundary, ix +½ . Then, one can define a local Riemann 

problem by Eq. (7.5):  

This local Riemann problem may be solved analytically, if desired. Thus, at a 

given time level n, at each intercell boundary, ix +½  we have the local Riemann problem 

RP( )1,n n
i iu u+  with initial data ( )1,n n

i iu u+ . The time-averaged intercell fluxes if +½  and if −½  

are given as Eq. (7.6) and Eq. (7.7): 

 

 

Figure 7-2: Piece-wise constant distribution of data at time level n [71]. 
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( )
0

1
,

t

i if f u x t dt
t

∆

+ + =  ∆ ∫ ɶ
½ ½

 (Eq. 7.6) 

( )
0

1
,

t

i if f u x t dt
t

∆

− − =  ∆ ∫ ɶ
½ ½

 (Eq. 7.7) 
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The integrand ( ),f u x t  ɶ  at each cell interface depends on the exact solution ( ),u x tɶ  of 

the Riemann problem along the t-axis (local coordinates); this is given by Eq. (7.8) and 

Eq. (7.9): 

The intercell fluxes if +½  and if −½  become Eq. (7.10) and Eq. (7.11): 

In general, the Godunov intercell numerical flux is represented as following Eq. (7.12): 

where n
iu +½  is the exact solution ( )n

iu x t+½  of the Riemann problem RP( )1,n n
i iu u+ evaluated 

at 0x t = , i.e. the solution is evaluated along the intercell boundary, which coincides 

with the t-axis in the local frame of the Riemann problem solution. The structure of 

Riemann solution is shown in Fig. 7-3. 

( ) ( ), 0i iu x t u+ +=ɶ
½ ½

 (Eq. 7.8) 

( ) ( ), 0i iu x t u− −=ɶ
½ ½

 (Eq. 7.9) 

( )( )0n
i if f u+ +=
½ ½  (Eq. 7.10) 

( )( )0n
i if f u− −=
½ ½  (Eq. 7.11) 

( )( )0n
i if f u+ +=
½ ½  (Eq. 7.12) 
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7.3 Issues with Gudonov’s method 

The method of Godunov and its high-order extensions require the solution of the 

Riemann problem, which is an iterative procedure. Thus, the computational cost of such 

numerical method for practical problems is extremely high and poses a hurdle in 

successful implementation of Gudonov’s method. The issue of computational cost is 

further complicated by equations of state of complicated algebraic form or by the 

complexity of the particular system of equations being solved, or both. Thus, a non-

iterative approach was introduced by approximate solutions of the Riemann problem. 

There are essentially two ways of extracting approximate information from the solution 

of the Riemann problem to be used in Godunov-type methods: 1) to find an 

approximation to the numerical flux employed in the numerical method, directly or 2) to 

find an approximation to a state and then evaluate the physical flux function at this state. 

The latter route was used in this work. The approximate Riemann solvers do not need an 

iteration process. An approximate solution for the state is used to evaluate the Godunov 

 

 

Figure 7-3: Structure of Riemann problem solution for the x-split three dimensional Euler 
equations [71].  
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flux at cell boundaries. Some of the approximations presented are exceedingly simple but 

not accurate enough to produce robust numerical methods. This difficulty is resolved by 

designing hybrid schemes that combine various approximate solvers in and adaptive 

fashion. 

7.4 Approximate Riemann solver: Roe-Pike method  

The generalized conservation equations for the three-dimensional problem can be 

expressed in a in a very compact notation by defining a column vector Q of conserved 

variables and flux vectors F(Q), G(Q), H(Q) in the three directions, respectively. This 

form is shown in Eq. (7.13). 

Recall that the conserved variables in the mortar tube sub-model are gas-phase mass, 

condensed-phase mass, gas-phase momentum, condensed-phase momentum, and total 

energy. The conservation equations for these variables were discussed in chapter 4 with 

considerable details. For convenience, they are repeated here and the conservation 

equation for gas-phase mass is shown by Eq. (7.14), for condensed-phase mass is shown 

by Eq. (7.15), for gas-phase momentum is shown Eq. (7.16), for condensed-phase mass is 

shown Eq. (7.17), and for gas-phase energy is shown Eq. (7.18). 

( ) ( ) ( ) ( )
t x y z

∂ ∂ ∂∂ + + + =
∂ ∂ ∂ ∂

F Q G Q H QQ
Ξ Q  (Eq. 7.13) 
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Therefore, the column vector Q consisting of conserved variables is shown in Eq. (7.19).  

The flux vectors ( )F Q in x-direction, ( )G Q  in y-direction and ( )H Q  in the z-directions 

are shown by Eqs. (7.20)- (7.22), respectively. 

 

( ) ( ) 1

ρφς
ρφς

∂
+ ∇ ⋅ = Σ

∂
Ugt
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The source term vector is shown by Eq. (7.23). The components of source term vector 

were defined in chapter 2. 

The direct approximation to the flux vector ( )F Q  is obtained by introducing the 

Jacobian of the flux functions, which is defined in Eq. (7.24). This approach was 

proposed by Roe [59] and Roe and Pike [66]: 

Using the chain rule on the conservation equations, the Eq. (7.13) can be written as 

following:  

In order to obtain the Jacobian matrix ( )A Q by using the Eq. (7.24), the flux vector 

( )F Q is expressed in terms of conserved variables vector as shown in Eq. (7.26): 
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( ) ( )∂
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  (Eq. 7.24) 
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Q Q Q Q

A Q B Q C Q Ξ Q  (Eq. 7.25) 
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By using the Eq. (7.24), the Jacobian matrix ( )A Q is obtained and it is shown in 

Eq. (7.27): 
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The Eigenvalues of matrix ( )A Q  are shown in Eq. (7.28): 

The corresponding right eigenvectors of ( )A Q  are shown in Eq. (7.29):  

Similarly, the Jacobian matrices of flux vectors G and H are defined as follows: 

Eq. (7.30) and Eq. (7.31). 

Again, the flux vector ( )G Q  and ( )H Q  are expressed in terms of variable vector 

Q as shown in Eq. (7.32) and Eq. (7.33). 
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Thus, the Jacobian matrices B and C are shown by Eq. (7.34) and Eq. (7.35), 

respectively. 
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7.4.1 Roe’s method 

Roe’s approach replaces the Jacobian matrices in Eq. (7.25), Eq. (7.30) and 

Eq. (7.31) by constant Jacobian matrices, which are functions of two data states; 

represented by ( ),L RQ Q . For instance, the Jacobian matrix ( )A Q is replaced by a 

constant Jacobian matrix ( )A Q  that is a function of data sets( ),L RQ Q . The original 

Riemann problem is thus replaced by an approximate linearized Riemann problem with 

constant coefficients, which can be solved directly, shown by Eq. (7.36):  

The approximate matrix ( )A Q  is known as Roe-averaged matrix. The determination of 

Roe’s Jacobian matrix ( )A Q requires that this matrix satisfy three important condition, 

i.e, hyperbolicity of the system, consistency with the exact Jacobian, and continuity with 

the property jump, i.e., ( ) ( ) ( )L R L R= F Q - F Q A Q - Q . These conditions make the 

construction of matrix ( )A Q  for a generalized problem computationally expensive. For 

the specific case of Euler equations, this issue was resolved by defining a parameter 

vector such that both the vectors of conserved variables Q  and the flux vector 

( )F Q could be expressed in terms ofQ as shown by Eq. (7.37): 
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(Eq. 7.36) 

( )    Q = Q U  F = F(U) (Eq. 7.37) 



171 

 

Roe’s parameter vector is defined in Eq. (7.38).  

The parameter vector has the property that every component of variable vector Q 

and every component flux matrix F(Q) in Eq. (7.26) is a quadratic in the components Q. 

For instance 2
1 1q u=  and 3 1 3q u u= , etc. This property is also valid for the components of 

the G and H fluxes for the full three-dimensional equations. The parameter vector is then 

used to express the jump in conserved variables L R∆Q = Q -Q and flux vectors 

( ) ( )L R∆F = F Q - F Q in terms of the change -L R∆ =U U U  via two matrices X  and Y . 

This is shown by Eq. (7.39) and Eq. (7.40): 
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(Eq. 7.38) 

∆ = ∆Q X U  (Eq. 7.39) 

∆ = ∆F Y U  (Eq. 7.40) 



172 

 

Using the above two equations, the Roe-averaged matrix is produced as shown in 

Eq. (7.41). 

Once the matrix A  is known, its eigenvaluesiλ  and the right eigenvectors iK  can be 

determined. The intercell Godunov flux ni +F
½

 can be determined by using ( )0n
i+Q
½

, 

which is the solution to the local Riemann problem as described in an earlier section. In 

order to determine ( )0n
i +Q
½

, the data difference L R∆ = −Q Q Q  is projected on the right 

eigenvectors of matrix A  by using Eq. (7.42), where ( ),i i L Rα α= Q Q are called wave 

strengths and can be deduced for a specific problem by using the Roe-average matrix A .  

Thus, the solution ( )0n
i +Q
½

is given by Eq. (7.43):

  

By using the definition of intercell Godunov flux and solution of ( )0n
i +Q
½

 given by 

Eq. (7.43), it can be concluded that the intercell Godunov flux n
i +F
½

 is given by 

Eq. (7.44): 

( )1−∆ = ∆ = ∆F YX Q A Q  (Eq. 7.41) 
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7.4.2 Roe-Pike method 

In Roe-Pike method, the philosophy for calculation of the intercell Godunov flux 

is same as that of Roe’s method. However, it is a much simpler technique due to 

elimination of the Roe-averaged matrix A  from the calculation procedure. Instead of 

calculating the matrix A  by using the procedure described by Roe’s method, an 

approximate Jacobian matrix Â  is used, which is evaluated at a reference stateW , a 

vector consisting of the primary variables. These average primitive variables are also 

used to determine the eigenvalues, right eigenvectors and wave strengths needed in 

Eq. (7.44). The components of vector W  are known as Roe averaged primitive variables. 

Usually, evaluation of the Roe-averaged quantities is done by using gas density ρ  as a 

parameter. Since the mortar tube sub-model is two-phase flow with variable volume, a 

new parameter was defined. In place of density, gas-phase mass was used as a primitive 

variable are given by Eq. (7.45): 
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gm ρφς≡  (Eq. 7.45) 
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For the case considered in this work, the Roe-averaged values are given by a 

number of equations. The average density, gas-velocity vector, enthalpy, porosity, 

condensed-phase velocity vector, speed of sound in gas-phase, and speed of sound in 

solid particles are given by Eqs. (7.46)- (7.52), respectively. 

7.5 •Entropy condition and entropy fix 

The admissible discontinuities in the weak solution of the linearized Riemann 

problem represented by the speed of such discontinuities iS ; must obey two conditions, 

which are known as the Rankine-Hugoniot condition and entropy jump condition (also 

known as the Lax entropy condition). These are given by Eq. (7.53) and Eq. (7.54), 

respectively. (For details, please see Appendix E.) 
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Roe-Pike method utilizes the weak solution of linearized Riemann problem at the 

boundary of each cell. These Riemann solutions consist of discontinuous jumps only, 

which are a good approximation for contact discontinuities and shocks, in that the 

discontinuous character of the wave is correct, although the size of the jump may not be 

correctly approximated by the linearized solution. Rarefaction waves, on the other hand, 

carry a continuous change in flow variables, and as time increases, they tend to spread; 

that is spatial gradients tend to decay. Quite clearly then, the linearized approximation via 

discontinuous jumps is grossly incorrect. In a practical computational set up however, it 

is only in the case in which the rarefaction wave is transonic or sonic where linearized 

approximations encounter difficulties; these show up in the form of unphysical, entropy 

violating discontinuous waves, sometimes called rarefaction shocks. Presence of 

rarefaction shock violates the Lax entropy condition in the Roe-Pike technique. Roe’s 

solver can be modified so as to avoid entropy violating solutions. This is usually referred 

to as entropy fix. Harten and Hyman [25] suggested an entropy fix for Roe’s method, 

which has widespread use. Other ways of correcting the scheme have been discussed by 

Roe and Pike [66], Roe [60], Sweby [73], and Dubois and Mehlman [13], amongst 

others. A Harten-Hyman entropy fix was utilized to make the solution admissible.  

( ) ( ) ( )R L i R LS− = −F Q F Q Q Q  (Eq. 7.53) 

( ) ( )i L i i RSλ λ> >Q Q  (Eq. 7.54) 
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7.6 Flux limiter 

The Roe-Pike scheme described so far is first order accurate scheme. A higher 

order scheme could give higher resolution to the discontinuities but it also exhibits 

spurious oscillations around discontinuities. The problem of spurious oscillations in the 

vicinity of high gradients is depicted in the sketch of Fig. 7-4 , where the full line denotes 

the exact solution and the dotted line denotes the numerical solution obtained by some 

linear method of second or higher order of accuracy [71]. Different methods produce 

different patterns for the oscillatory profile. For example, the Lax-Wendroff method 

(second order accurate) will produce spurious oscillations behind the wave, whereas the 

Warming-Beam method (second order accurate) will produce spurious oscillations ahead 

of the wave. This is related to the form of the leading term in the local truncation error of 

the method.  

 

 

Figure 7-4: Illustration of the numerical phenomenon of spurious oscillations near high 
gradients [71]. 
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Thus, a middle ground to retain the stability of the solution (known as total 

variation diminishing or TVD) and get higher resolution was proposed by Harten [25] by 

using flux limiters with the first order scheme. This is obtained by replacing the right 

eigenvectors by a corrected right eigenvectors as shown in Eq. (7.55): 

The term p
iθ is a measure of the smoothness of the solution. It is determined by 

considering the ratio of wave strengths pα in upwind direction as shown in Eq. (7.56):  

van Leer [76] [77] derived a scheme using a flux limiter in his search for the 

ultimate conservative difference scheme, and Roe [62] utilized flux limiting in his 

original monotonicity preserving second order scheme. Chakravarthy and Osher [7] have 

used limiters, as has Harten [24] who also introduced the notion of TVD (total variation 

diminishing) to characterize oscillation free schemes. In this work, the flux limiter 

proposed by van Leer was used. The van Leer flux limiter is determined by Eq. (7.57): 

7.7 Higher order correction 

The numerical scheme described above is only first order accurate in space. In 

order to increase the order of accuracy, second order correction terms were introduced as 

shown by Eq. (7.58): 

( )p p p
i i iθ= ΦK Kɶ  (Eq. 7.55) 
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The second order correction term for the x-direction is given by Eq. (7.59). The second 

order correction terms for the other two coordinate directions follow the same principle 

and they are shown in Eq. (7.60) for y-direction and in Eq. (7.61) for z-direction. The 

indices i, j, and k represent x-direction, y-direction, and z-direction respectively. 

7.8 Three dimensional wave propagation  

A common approach when solving multi-dimensional hyperbolic problems is to 

use a dimensional splitting method suggested by Gudonov [17]. This means that the three 

Second order correction
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dimensional conservation equations are divided into three initial value boundary 

problems with each problem representing one direction. At a time step n, the one-

dimensional approach is used in each of the three dimensions sequentially. For instance, 

first the IVBP is solved in x-direction. This step is called the x-sweep. The solution 

obtained from this first step is used as an initial condition for the next step in y-direction 

or y-sweep. Then the solution of the second step is used as the initial condition for the 

final step in z-direction or the z-sweep. This process is demonstrated by Eq. (7.62). The 

above algorithm is very popular because it produces good results and it is very simple. 

Basically, any one-dimensional Riemann solver can be easily extended to the 

multi-dimensional case by using this approach. However, this method only allows flow of 

fluxes in the three coordinate directions, which means that the discontinuities traveling in 

directions oblique to the grid orientation will have more smearing than those traveling 

along the coordinate directions. The implementation of complex boundary conditions 

may also be complicated using this strategy. Therefore, another approach was utilized 

that does not require dimensional splitting. Such methods are known as the unsplit 

methods. 
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In unsplit methods, information is propagated in a multi-dimensional way. The 

unsplit scheme used in this work was first described in an unfinished form in [42]. As 

shown in Eq. (7.44), the flux term can be expressed in terms of wave strengths, 

eigenvalues, and right eigenvectors and as left-going and right-going parts. Since the flux 

terms act like increments to the variable vectors, they are also called the increment 

waves. The second order terms also have wave like expressions and thus, they are called 

the correction waves.  The unsplit method used in this work, both the increment waves 

and correction waves are split into parts propagating in both the direction normal to the 

interface between two spatial locations and the transverse direction by solving Riemann 

problems in coordinate directions tangential to the interfaces.  
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This models cross-derivative terms necessary for obtaining both a stable and 

formally second order scheme. One-dimensional Riemann problems are solved at the 

interfaces. Limiter functions are applied to suppress spurious oscillations arising from 

second derivative terms. The scheme extends the approach used for two 

space-dimensions and the advection scheme for three-dimensional problems considered 

in [31]. 
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Figure 7-5: Discretization of a three-dimensional Cartesian domain into finite volumes of 
volume x y z∆ ∆ ∆ . 
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7.9 Runge-Kutta method 

The conservation equations in the mortar tube sub-model contain source terms. 

The general equation for the problem in the mortar tube sub-model is defined by 

Eq. (7.13). A split approach was used to handle the advection and source terms of this 

equation. With this approach, the Eq. (7.13) was split into an advection problem and a 

source problem. The two-step procedure is shown by Eq. (7.63) and Eq. (7.64): 

The advection part of the problem described by Eq. (7.63) was solved using the 

approximate Riemann solver. The solution obtained from this method was used as an 

initial condition for the second step in which the problem was defined as an ordinary 

differential equation (ODE). In order to integrate these source terms for solving the ODE 

described by Eq. (7.64), a fourth order and four-stage Runge-Kutta method was used. 

This is an explicit method and it is considered a very accurate method for solving ODEs. 

The four stages of the fourth order Runge-Kutta method are shown in Eq. (7.65)  
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7.10 Boundary conditions 

The boundary conditions were implemented by extending the computational grid. 

Two cells were used outside the physical domain in each dimension. These cells are 

known as the “ghost cells.” The ghost cells were assigned values at the beginning of each 

time step. Only one cell is needed outside the physical domain in order to compute the 

flux difference splitting, the right eigenvectors, and the associated eigenvalues. However, 

a flux limiter was used in this work and therefore an additional block of ghost cells were 

needed.  The limiting is based on comparing waves from the same family emanating from 

neighboring cells. This comparison is done in the upwind direction. Hence, if the 

boundary condition models a general inflow situation, two ghost cells are needed outside 

the boundary. The reflective boundary conditions were used for all variables except gas-

phase and condensed-phase velocities. For the gas-phase velocity and condensed-phase 

velocity, a wall boundary condition was used if it wasn’t specified otherwise. 

7.11 Calculated results and discussions 

The numerical method described above was used on the coupled mortar tube sub-

model and the projectile dynamics sub-model. The calculations were performed in 

following order: 

• Comparison with the exact solution of a Riemann problem: the numerical 

code was reduced to gas-phase only since the exact solution is known for 

that condition. 
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• Comparison of three-dimensional calculations with the experimental data 

(including pressure-time traces at multiple locations, projectile 

displacement, and muzzle velocity) obtained from instrumented mortar 

tube firings. 

7.11.1 Exact solution versus calculated solution 

A test problems for the one-dimensional, time dependent Euler equations for ideal 

gases with γ= 1.4; which has exact solutions. In all chosen tests, data consists of two 

constant states { }, ,L L L LU Pρ=Q and { }, ,R R R RU Pρ=Q separated by a discontinuity at an 

axial position 2x = . The states LQ  and RQ are given in Table 7-1. The exact and 

numerical solutions were found in the spatial domain 0 5x< < . The numerical solution 

was computed with reflective boundaries and CFL number was close to 0.7. The 

comparisons of exact solution for density and velocity at time = 0.25 s with numerical 

results are shown in Fig. 7-6 and Fig. 7-7. The numerical results without flux limiter are 

also shown in these plots and the oscillatory behavior of numerical method without the 

flux limiter near discontinuity is clearly visible, which is smoothed out when a flux 

limiter is used. Also, the numerical results with flux limiter match very well with the 

exact solution of this Riemann problem.  

Table 7-1:  Data for test problem with exact solution for the time-dependent. one 
dimensional Euler equations 

ρL UL PL ρR UR PR 
10 0 100 1.0 0 1.0  
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Figure 7-6: Comparison of exact density profile with calculated results at time 0.25 s. 
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Figure 7-7: Comparison of exact velocity profile with calculated results at time 0.25 s. 
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7.11.2 Validation of calculated results by experimental data 

The mortar tube is the outermost cylindrical portion of the 120mm mortar system, 

which has a fin-blade region, a vent-hole cylindrical region, and a projectile-payload 

region.  The vent-hole region contains charge increments loaded with the M47 ball 

propellants. The number of charge increments can vary from 0 to 4. Thereafter, predicted 

results were obtained for the mortar tube with 0, 2, and 4 charge increments and results 

are validated with the experimental data for breech pressure from the instrumented mortar 

tube (IMS) test firings at Aberdeen Test Center (ATC). A total of 38 pressure transducers 

were installed along a 1.5 m long mortar tube at 6 different axial locations. The schematic 

of IMS test stand is shown in Fig. 7-8. 

 

 

Figure 7-8: Schematic of instrumented mortar simulation and pressure transducer 
locations. 
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The three major axial locations are at 0, 8.08 m, and 1.5 m distance from the 

breech plug. The comparison of calculated and measured pressure-time traces as well as 

the projectile travel was made at these three axial locations. The pressure variations in the 

azimuthal directions were not significant.  

The non-uniform axial variation of the discharging combustion products from tail-

boom causes the sequential pressurization event in the mortar tube. The pressure-waves 

are generated and they propagate in both directions toward fin-blade region and 

projectile-payload region. These waves subside with the projectile motion as shown in x-t 

diagrams for pressure, axial gas velocity, particle velocities, and porosity with 0 charge 

increments loading (see Figs. 7-9-. 7-14). The x-t diagrams for porosity and particle 

velocity show the initial downward motion of propellant grains towards breech and later 

movement towards the projectile driven by the gas motion. The x-t diagram for early-

phase pressure variations are shown in Fig. 7-10, which demonstrates strong compression 

and rarefaction waves in the mortar tube. The comparison of calculated breech pressure-

time trace with the experimental data shows agreement in Fig. 7-15. The predicted 

projectile trajectory and velocity are shown in Fig. 7-16.  
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Figure 7-9: Calculated pressure variation in the mortar tube with projectile motion (with 
0 charge increments). 

 

 

Figure 7-10: Early phase pressure wave phenomena in the mortar tube before projectile 
motion (with 0 charge increments). 



189 

 

 

 

 

Figure 7-11: Calculated porosity variation in the mortar tube with projectile motion (with 
0 charge increments). 

 

 

Figure 7-12: Calculated axial gas-velocity variation in the mortar tube with projectile 
motion (with 0 charge increments). 
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Figure 7-13:  Calculated axial particle velocity variation in the mortar tube with projectile 
motion (with 0 charge increments). 

 

 

Figure 7-14  Calculated gas temperature variation in the mortar tube with projectile 
motion (with 0 charge increments). 
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Figure 7-15: Comparison of 3D-MIB predictions for pressure-time traces at 3 port 
locations along the mortar tube with measured data. 
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Figure 7-16: Comparison of 3D-MIB predictions for projectile dynamics with measured 
data for 0 charge increments loading 
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The detailed results for pressure, porosity, gas temperature, axial gas velocity, and 

axial particle velocity in the mortar tube with 2 charge increments are shown in Figs. 7-

17- 7-22.  Like the 0 charge increments case, here also, the non-uniform axial variation of 

the discharging combustion products from tail-boom causes the sequential pressurization 

event in the mortar tube. The pressurization rate is higher due to additional M47 

propellants. The x-t diagrams for porosity (Fig. 7-19) and the particle velocity (Fig. 7-22) 

show the initial downward motion of propellant grains towards breech and later 

movement towards the projectile driven by the gas motion, which is similar to the case 

with no charge increments. These plots also show that the propellants burn quickly within 

the first 4 milliseconds of the ballistic event and the later phase phenomena contains only 

the gas-phase. The early-phase pressurization process in the mortar tube before the 

projectile motion is initiated is shown in Fig. 7-18. This process shows similar behavior 

to the case with zero charge increments.  The comparison of calculated pressure-time 

traces with the experimental data at three axial locations in the mortar tube is shown 

Fig. 7-23. The calculated results show agreement with the measured data including the 

rise time at all three axial locations and magnitude of pressure. However, the pressure 

decay profile during the last few milliseconds shows some departure from the calculated 

pressure-time traces. This is believed to be due to a process called “blow-by”, which 

means that the obturating ring allows some gas leakage, resulting in faster pressure 

decay. This phenomenon depends on the manufacturing quality of the ring and is 

regarded as an experimental error. The calculated projectile velocity and displacement 

profiles show good agreement with the measurements as shown in Fig. 7-24. Muzzle 

velocity is defined as projectile velocity at the end of the mortar tube. 
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Figure 7-17: Calculated pressure variation in the mortar tube with projectile motion (with 
2 charge increments). 

 

 

Figure 7-18:  Early phase pressure wave phenomena in the mortar tube before projectile 
motion (with 2 charge increments). 
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Figure 7-19:  Calculated porosity variation in the mortar tube with projectile motion (with 
2 charge increments). 

 

 

Figure 7-20: Calculated gas temperature variation in the mortar tube with projectile 
motion (with 2 charge increments). 
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Figure 7-21: Calculated axial gas velocity variation in the mortar tube with projectile 
motion (with  2 charge increments). 

 

 

Figure 7-22: Calculated axial particle velocity variation in the mortar tube with projectile 
motion (with 2 charge increments). 
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Figure 7-23: Comparison of 3D-MIB predictions for pressure-time traces at 3 port 
locations along the mortar tube with measured data for 2 charge increments loading. 
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Figure 7-24: Comparison of 3D-MIB predictions for projectile dynamics with measured 
data for 2 charge increments loading. 
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The detailed results for pressure, porosity, gas temperature, axial gas velocity, and 

axial particle velocity in the mortar tube with 4 charge increments are shown in Fig.s 7-

25-. 7-30.  Like the 0 and 2 charge increments cases, once again, the pressure wave 

phenomena during the early phase of the ballistic even is visible. This process is also 

aided by the non-uniform axial distribution of M47 ball propellants in the mortar tube. 

The early-phase pressurization process in the mortar tube before the projectile motion is 

initiated is shown in Fig. 7-18. The M47 ball propellants contained in the charge 

increments are initially located in the vent-hole region. The pressurization rate with 4 

charge increments is higher than both 0 charge increments and 2 charge increments case 

due to additional M47 propellants. The x-t diagrams for porosity (Fig. 7-27) and the 

particle velocity (Fig. 7-30 ) show the first the ball propellants move towards breech and 

later towards the projectile driven by the gas motion. These plots also show that the 

propellants burn even faster than the 2 charge increments case. This phenomenon is due 

to dependency of propellant burning rate on pressure. The mortar tube pressure with 4 

charge increments is significantly higher than the 2 charge increments case.  

The comparison of calculated pressure-time traces with the experimental data at 

three axial locations in the mortar tube is shown Fig. 7-31. The calculated results show 

agreement with the measured data including the rise time at all three axial locations and 

magnitude of pressure. However, the pressure decay profile during the last few 

milliseconds shows some departure from the calculated pressure-time traces, which is 

similar to the earlier cases with 0 charge increments and 2 charge increments. The 

calculated projectile velocity and displacement profiles show good agreement with the 

measurements as shown in Fig. 7-32.  
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Figure 7-25: Calculated pressure variation in the mortar tube with projectile motion (with 
4 charge increments). 

 

 

Figure 7-26: Early phase pressure wave phenomena in the mortar tube before projectile 
motion (with 4 charge increments). 
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Figure 7-27: Calculated porosity variation in the mortar tube with projectile motion (with 
4 charge increments). 

 

 

Figure 7-28: Calculated gas temperature variation in the mortar tube with projectile 
motion (with 4 charge increments). 
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Figure 7-29: Calculated axial gas velocity variation in the mortar tube with projectile 
motion (with 4 charge increments). 

 

 

Figure 7-30: Calculated axial particle velocity variation in the mortar tube with projectile 
motion (with 4 charge increments). 



201 

 

 

 

1

10

100

1000

104

105

0.01

0.1

1

10

102

0 1 2 3 4 5 6 7 8

3D-MIB P
0

3D-MIB P
25

3D-MIB P
30

IMS P
0

IMS P
25

IMS P
30

P
re

ss
ur

e,
 P

 [M
P

a]
Time, t [ms]

P
re

ss
ur

e,
 P

 [p
si

g]

 

Figure 7-31: Comparison of 3D-MIB predictions for pressure-time traces at 3 port 
locations along the mortar tube with measured data for 4 charge increments loading. 
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Figure 7-32: Comparison of 3D-MIB predictions for projectile dynamics with measured 
data for 4 charge increments loading. 
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7.12 Summary of mortar tube sub-model simulation 

The simulation of flow field in mortar tube with a moving projectile is a complex 

problem. The flow is three dimensional, compressible, two-phase, and the physical 

domain expands due to projectile motion. The initial porosity distribution is non-uniform 

depending on the number of charge increments loaded in the mortar tube. In addition, the 

ignition of ball propellants in the mortar tube is strongly coupled with the discharging of 

hot combustion products from the ignition cartridge. Due to these reasons, the finite 

element solver described in chapter 6 could not make very accurate predictions of wave 

propagation velocities. The approximate Riemann solvers are known to work very well 

for the gas-phase compressible flows. The results presented in this chapter show that 

these solvers can be successfully applied to the two-phase flows with the modifications 

shown in this work. A comparison of 3D-MIB predictions for muzzle velocities with the 

IMS data is shown in Table 7-2.  

Although the comparison seems extremely close, the difference can be further improved 

by addition certain empirical relations (i.e., blow-by phenomena, friction on the 

obturating ring) in the 3D-MIB model and code. 

Table 7-2: Comparison of 3D-MIB calculations for the muzzle velocity with the IMS 
data 

Muzzle velocity [m/s] 3D-MIB calculations IMS data 
Charge 0 103.2 99.7±0.35 
Charge 2 225.2 227±0.35 
Charge 4 332.6 324.6±1.15  

 



 

Chapter 8 
 

CONCLUSIONS AND FUTURE WORK 

In this work, the development and validation of a three dimensional mortar 

interior ballistic code (3D-MIB) for prediction of two-phase interior ballistic processes in 

the 120mm mortar system was achieved. A stepwise approach was adopted to solve the 

various processes in the system and three separate but inter-linked sub-models were 

developed. The granular bed combustion sub-model is transient quasi one-dimensional. 

Six coupled quasi-linear inhomogeneous hyperbolic partial differential equations (PDEs) 

were solved by using the method of characteristics (MOC) approach. The presence of 

pressure waves was found in the ignition cartridge and based on the analysis of this sub-

model; it was determined to be the non-uniform discharge of mass and energy of the 

combustion products from the vent holes of the flash tube.  

Based on this analysis, it was found that this pressure-wave phenomenon depends 

strongly upon the hierarchy and magnitudes of mass discharge rates of hot combustion 

products exiting through the 20 circular vent holes on the flash tube, which varied 

significantly along axial direction even though the vent-holes were distributed evenly. 

The highly non-uniform discharge of combustion products from the flash tube into the 

granular bed is believed to be the main reason for generating strong pressure waves in the 

existing 120mm ignition cartridge. The vent-hole pattern on the flash tube was 

systematically modified to achieve a more uniform discharge of igniter products into the 

granular bed. Numerical results showed that significant reduction in axial pressure 
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gradients can be obtained by modifying the flash tube vent-hole sizes such that the igniter 

products are discharged more evenly at various axial locations in the granular bed. The 

reduction of the axial pressure gradient in the ignition cartridge can improve the 

reliability and reproducibility of the 120mm mortar propulsion system. In addition, it was 

also noted that the black powder produces highly non-repeatable pressure-time traces and 

a substitute called moisture resistant black powder (MRBPS) was sought to remedy this 

problem. The ignition cartridge sub-model was also utilized to compute the interior 

ballistics of the M1020 ignition cartridge with MRBPS as an igniter material and the 

results were compared with the experimental data. The comparison of two pyrotechnic 

materials also facilitates model validation and increases the robustness of the code. 

Two different numerical approaches were adopted for solving the mortar tube 

sub-model, i.e., a finite-element method based Leap Frog Taylor-Galerkin (LFTG) 

approach and an approximate Riemann solver approach. It is common to use a finite 

volume based numerical approach to solve compressible flow problems. The numerical 

code based on Finite element method showed strong promise for application in two-phase 

and multi-phase problems such as one discussed in this work. However, presence of 

discontinuities is a major stumbling block in application of such methods. In order to 

resolve these issues, the second approach was later adopted to solve the mortar tube sub-

model. Approximate Riemann solver such as Roe-Pike method with Rankine-Hugoniot 

conditions, flux limiters, and second order corrections worked successfully for this 

problem. It was shown that such approach can be applied to two-phase problems with 

modified equations presented in this work.  
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8.1 Major contributions 

There is only a limited body of work available in the development of interior 

ballistic codes as noted in the literature review section of this work. NGEN3 developed 

by Army Research Laboratory is the only major code available for numerical simulation 

of interior ballistic processes. The NGEN3 code is based on an Eulerian/Lagrangian 

approach and is extremely comprehensive. The work done here for the development of 

the 3D-MIB code offers an alternative approach in the area of interior ballistic 

simulation. This code is also very comprehensive; however, it offers a very different 

approach for simulation of interior ballistic processes in the 120mm mortar system.  

The overall 3D-MIB code has been designed to have many independent 

subprograms for each physical component of the mortar system. Each subprogram was 

validated by specially designed experiments. This approach is effective since some 

subsystems can be tested and simulated easily. The modular design of 3D-MIB code 

enables the users to apply the code without any major modification when one or more 

physical components are upgraded or changed in their design. Stable and efficient 

numerical techniques have been adopted, which permit the code to be executed on a 

personal computer or single processor or a multiple processor machine with shared 

memory. The 3D-MIB code can also be used to provide the guidance for design and 

performance improvements of the mortar projectile.  

• Effect of different primer material, flash tube geometry, pellet 

configurations, granular bed loading densities, vent-hole distributions can 

be studied as demonstrated by this work. 
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• The numerical code can be helpful to acquire deeper understanding of the 

ballistic processes of mortar systems. 

• 3D-MIB code can provide predicted pressure-time traces and many other 

physical parameter variations at multiple axial locations. These physical 

parameter variations are useful for reducing the pressure wave phenomena 

during the interior ballistic cycle in the mortar firing. 

• The knowledge gained from the simulation of these processes can help to 

reduce the possibilities for critical failures during operation in the field by 

better understanding the combustion process and the resulting peak 

pressures and pressure waves.  

• The 3D-MIB code can also be used as an analytical tool for studying any 

abnormal behavior of the mortar projectile during operation. For example, 

the local region overpressure generated by aligning all charge increments 

in one orientation or the effect of out of spec flash holes. 

• The numerical simulation with the code can be used to replace or reduce 

the need for expensive ballistic test firing throughout the lifecycle of the 

program. 

Overall, the 3D-MIB code should be an extremely useful tool for advancing the 

state-of-the-art for both mortar and gun systems. 
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8.2 Future work 

As mentioned in chapter 7, the predictions from 3D-MIB as it is show excellent 

comparisons with the experimental data for each of the three stages, i.e., flash tube, 

ignition cartridge, mortar tube, and projectile dynamics. However, there is still scope of 

improvements in this work. The major area of future work can be both experimental and 

numerical directions. Experimentally, a better understanding of flame spreading 

mechanism in the granular bed could enable the 3D-MIB code to provide more accurate 

information. Also, some physical processes like losses due to friction in ignition cartridge 

and mortar tube, blow-by phenomena are extremely hard to quantify. It would be helpful 

to gather some information in these areas.  

Although, the robustness of the 3D-MIB code was tested to a certain extent by 

using the ignition cartridge sub-model for studying the effect of flash tube vent-hole 

pattern modification, there are wide range of applications where an interior ballistic code 

such as 3D-MIB can be applied. One such major area would be the 60mm mortar system 

and 81mm mortar systems. Another interesting area could be to further improve the 

finite-element approach for such problems, which has shown some promise for the 

interior ballistic applications as shown by the present work.  
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Appendix A 
 

Formulation of Heat Equation for Ball Propellants 

The ignition cartridge and mortar tube charge increments contain ball propellants. 

The ball propellants are assumed to be spherical in shape. The heat equation for a single 

spherical propellant particle is given by Eq. (A.1) in spherical coordinates as: 

In the above equation, pρ  is the mass density of the ball propellants, pc  is the heat 

capacity of the ball propellants, pk  is the thermal conductivity of the ball propellants, and 

pT  is the temperature in the ball propellant as a function of radial coordinate r and time t. 

If the properties of ball propellants (pρ , pc , and pk ) are independent of radius then 

Eq. (A.1) can be written as following: 

In the above equation, pα  is the thermal diffusivity of ball propellants. The initial 

condition for Eq. (A.2) is given as following: 

The boundary conditions for Eq. (A.2) are given as following: 
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The heat flux loss from the propellant particle ("
lossqɺ ) could be conductive if there 

is a coating of condensed-phase material on its outer surface. If that is the case (for 

example, some ball propellants in ignition cartridge), then the heat flux loss at the 

propellant surface is given by Eq. (A.6): 

Here, lk  is the thermal conductivity of condensed phase, lT  is the temperature of liquid 

phase, psT  is the temperature of the ball propellant at the outer surface, and wδ  is the 

minimum of thermal wave penetration depth in condensed phase and thickness of 

coating. If there is no condensed-phase coating on the ball propellant, then the heat flux 

loss is given by Eq. (A.7)  

In the above equation, th is the sum of convective and radiation heat transfer coefficient 

given by Eq. (A.8): 

The heat equation can be transformed into a Fourier heat equation by following 

transformation: 
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where 0T =ambient temperature. Substituting Eq. (A.9) in Eq. (A.1): 

The initial condition for Eq. (A.2) is given as following: 

The boundary conditions for Eq. (A.2) are given as following: 

A function for *
pT is proposed as following: 

As the ball propellants are heated, a radial temperature profile is developed, which 

is known as thermal wave. Before the thermal wave penetrates to the centre of the sphere, 

these four constants can be determined by following four conditions: 
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In the above equations, δ  is called the thermal wave thickness or wave 

penetration depth. The boundary condition specified by Eq. (A.18) is a smoothing 

condition that tends to make the temperature profile go smoothly into the initial 

temperature. Using the above conditions for solving Eq. (A.14), the expressions for 

constants used in the polynomial are as following: 

In the above equations, the term 0pr rδ δ≡ − . Substituting above in Eq. (A.14), 

following profile is obtained for temperature as a function of radial coordinate in the ball 

propellants: 

Differentiating Eq. (A.23) with respect to r: 

At 0pr r= , * *
p psT T=  and substituting this into Eq. (A.23): 
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By substituting rδ  by r δ−  in Eq. (A.26), the analytical expression for the 

surface temperature is obtained as:  

The equation Eq. (A.27) expresses a relationship between the particle surface 

temperature and the wave penetration distance rδ . As a result, there is really only one 

unknown (i.e., either *
psT or δ ) in Eq. (A.27). This unknown can be obtained by 

integrating the heat balance equation Eq. (A.10).  

Assuming that the thermal properties of propellant are constant and then 

integrating the heat equation between wave penetration distance and outer radius, we get 

the following form:  

The RHS of Eq. (A.28) can be expressed as following:  

The LHS of Eq. (A.28) can be expressed as following:  
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After substituting Eq. (A.29) & Eq. (A.30) into Eq. (A.28), and some rearranging 

of terms, following integral equation is obtained:  

Differentiating Eq. (A.27) with respect to time, we get the following:  

Substituting Eq. (A.32) into Eq. (A.31) and by using the definitions of Z and *
psT , 

we finally get the following equation:  

The thermal wave penetration depth δ is obtained from Eq. (A.27) as following: 
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Appendix B 
 

Shape Functions 

In a finite element model, the unknown variables within each element are 

interpolated by a linear distribution. This approximation becomes increasingly accurate 

as more elements are considered in the model. Shape functions have been introduced to 

implement this linear interpolation. If both the unknown variables (ρ, φ, u, v, w, T, and p) 

and the coordinates (r, θ, and z) are interpolated using the same shape function within the 

element, then it is called isoparameteric formulation.  

B.1 Master element 

In two- and three-dimensional problems, the integrations required by the finite 

element method can become intractable if carried out in the physical (or global) 

coordinates, i.e, r, θ, and z. But since the method is an integral one, these calculations can 

instead be carried out in a local (or natural) coordinate system on the master element, 

where it is relatively easy to integrate. In fact, the concept of the master element is one of 

the keys for understanding the power of the finite element method, because it is possible 

to use this integral approach on problems with complex geometries by mapping the 

difficult actual physical geometry into a collection of well-arranged master elements. The 

master element also represents a "common denominator" for element calculations, so 

calculations common to a large number of elements can be performed once and for all at 



222 

 

the master element level, and the cost (or computational time) of these calculations can 

be decreased by the large number of elements found in the finite element mesh. Both of 

these characteristics enable the finite-element method to be used on a wide variety of 

difficult problems that would be intractable or excessively expensive by any other means. 

Fig. B-1 shows transformation of an actual element in the physical coordinate system(x1, 

x2, x3 system) into a master element in the natural coordinate system (ξ, η, ζ system).   
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Figure B-1: Transformation of an actual element into a master element. 

Actual Element 
In physical co-ordinates 

Master Element 
In natural co-ordinates 
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The transformation of physical coordinates (x1, x2, x3) into natural coordinates 

(ξ,η,ζ) is also given by the shape functions that are used to interpolate other variables in 

the element. Therefore,  

Here, Nm is the nodal shape function and M is the number of nodes in nth single element. 

For a 8-node hexahedral element, M is equal to 8. The shape function has the following 

property as demonstrated by Eq. (B.2): 

Taking the derivates of xi with respect to the natural (or local) co-ordinates, a Jacobian 

can be calculates as shown in Eq. (B.3): 

The above formulation is used in order to solve the finite element model. The 

elements of the Jacobian matrix given in Eq. (B.3) can be easily evaluated since the nodal 

coordinates are known, and the derivatives of the shape function are equally simple to 

calculate as described in next section.  

B.2 Lagrange polynomials 

Lagrange isoparametric elements are perhaps the most commonly used 

quadrilateral (2D) and hexahedral (3D) elements. Interpolation functions obtained using 
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the dependent unknown (not its derivatives) are Lagrange interpolation functions known 

as Lagrange polynomials. The one-dimensional linear element and the two-dimensional 

quadratic element are examples of elements constructed from Lagrange linear 

interpolation functions, and their shape functions are given by Eq. (B.4) for 1-

dimensional element and by Eq. (B.5) for 2-dimensional element. 

It should be noted that the so-called “linear” interpolation functions are linear 

with respect to each independent parameter only, and not as a whole. For example, the 

shape function ( )3 ,N ξ η  for 2D element is linear with respect to ξ or η  but not to both of 

them.  

The local node numbering for the quadrilateral or hexahedral element follows the 

convention for the counterclockwise numbering as shown in Fig. B-1. The three-

dimensional shape functions are constructed from products of one-dimensional 

interpolation functions in the three independent coordinates ξ, η and ζ. For 8-node 

hexahedral element, the shape functions are given by Eq. (B.6): 
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This process can easily be generalized for higher-order elements. In the present version of 

the numerical code, an 8-node hexahedral element is used with the option of adding more 

nodes (upto 20) to the element if needed. The general form of shape functions for 

hexahedral element with 8-20 nodes is given as shown by Eq. (B.7): 

where, gj and G are defined by Eq. (B.8) and Eq. (B.9), respectively. 

 

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( )( )( )

1 2

3 4

5 6

7

1 1
1 1 1 ,                              1 1 1

8 8
1 1

1 1 1 ,                              1 1 1
8 8
1 1

1 1 1 ,                              1 1 1
8 8
1

1 1 1 ,        
8

N N

N N

N N

N

ξ η ς ξ η ς

ξ η ς ξ η ς

ξ η ς ξ η ς

ξ η ς

= − − − = + − −

= + + − = − + −

= − − + = + − +

= + + + ( )( )( )8

1
                      1 1 1

8
N ξ η ς= − + +

 (Eq. B.6) 

( ) ( )
( ) ( )
( ) ( )
( )

1 1 9 12 17 2 2 9 10 18

3 3 10 11 19 4 4 11 12 20

5 5 13 16 17 6 6 13 14 18

7 7 14 15 19

2                          2  

2                        2

2                        2

2     

N g g g g N g g g g

N g g g g N g g g g

N g g g g N g g g g

N g g g g

= − + + = − + +

= − + + = − + +

= − + + = − + +

= − + + ( )8 8 15 16 20                  2

    9,...20j j

N g g g g

N g for j

= − + +
= =

 (Eq. B.7) 

( ) ( ) ( )
0       

, , ,  j
j j j

if node j is not included
g

G G G otherwiseξ ξ η η ς ς
= 


 (Eq. B.8) 

( ) ( )
( )2

1
1      1

2,
1-             0

j j

j

j

for
G

for

α α α
α α

α α

 + = ±= 
 =

 (Eq. B.9) 



 

Appendix C 
 

Numerical Integration on the Master Element 

The basic formula for a change of integration variables is given by Eq. (C.1):  

where, |J| is the determinant of Jacobian for the co-ordinate transformation given by 

Eq. (C.2):  

Note that this expression implicitly defines the element volume Vn in terms of the global 

coordinates of the corner nodes.  

The element integrals are not evaluated by analytic integration (i.e., computing 

the integrals in closed form), because in general, the integrands are very complicated 

nonlinear functions of the local coordinates (recall that the determinant of the Jacobian 

and of its inverse appears throughout the integrands). Instead, a numerical integration 

scheme involving NSP integration points with corresponding weights wp (p = 1, 2, ... NP) 

is employed. In schematic terms, the process looks like:  

Generally, a Gaussian Integration scheme (Gauss Quadrature) is employed, but 

there are notable exceptions (such as the use of Simpson's Rule in certain specialized 

cases). In this work, Gaussian Quadrature is used with the option of using upto 10 point 
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integration in 3-dimensions. These points and corresponding weights are given in 

Table C-1. Note that this scheme will integrate exactly any polynomial of degree 3 or less 

(i.e. an arbitrary cubic). In general, a one-dimensional Gauss-Legendre numerical 

integration scheme (such as this one) with NSP sampling points will integrate any 

polynomial of degree 2*NSP–1 exactly on the integral [–1,1]. In three dimensions, 

separate one-dimensional schemes for numerical integration in the three master element 

coordinate directions are composed to obtain appropriate approximations for calculation 

of the element matrices. The sampling points are merely the combination of three 

independent one-dimensional sampling. The weights are simply the product of the 

weights in the three directions, and in this case of 2-point scheme, remain as unity. This 

four-point scheme is capable of exact integration of functions that are cubic in x1, x2, and 

x3.  
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Table C-1: Gauss-Legendre abscissae and weights 

No. of points Value of points Weights Maximum polynomial order 

2 ±0.57735 1.0 3.0 

0.0 0.888888889 3 
±0.77459 0.555555559 

5.0 

±0.33998104 0.65214515 4 
±0.86113631 0.34785485 

7.0 

0.0 0.56888889 
±0.53846931 0.47862867 

5 

±0.90617985 0.23692689 

9.0 

±0.23861918 0.46791393 
±0.66120939 0.36076157 

6 

±0.93246951 0.17132449 

11.0 

0.0 0.41795918 
±0.40584515 0.38183005 
±0.74153119 0.27970539 

7 

±0.94910791 0.12948497 

13.0 

±0.18343464 0.36268378 
±0.52553241 0.31370665 
±0.79666648 0.22238103 

8 

±0.96028986 0.10122854 

15 

±0.14887434 0.29552422 
±0.43339539 0.26926672 
±0.67940957 0.21908636 
±0.86506337 0.14945135 

10 

±0.97390653 0.06667134 

19 

 
 



 

Appendix D 
 

Hyperbolic Systems 

The conservation equations for problems in gas dynamics can be written in form 

of first order partial differential equations (PDE) as shown by Eq. (D.1): 

In the above equations, the vector Q  contains variables like mass, momentum, energy 

etc. These variables are known as conserved variables. The primary variables like 

density, pressure, velocity etc. are known as the primitive variables. The vector ( )F Q is 

called the flux vector and its components is a function of vector Q . The vector 

( )B Q contains the source terms. If the vector ( )B Q  is zero then the PDE are called 

homogeneous. Generally, the components of matrix ( )A Q are functions of conserved 

variables Q  and the source vector ( )B Q  is not zero. Such equations are known as 

inhomogeneous non-linear (or quasi-linear) partial differential equations. For 

convenience, the source term vector is ignored here since it does not change the 

fundamental behavior of hyperbolic equations.  

The governing equations written in terms of conserved variables are called 

“conservative” equations. By applying the chain rule on the derivative of the flux vector 

it can be written in terms of a Jacobian and a derivative of vector Q as following: 

( )d dx

dt t x dt

∂ ∂= + =
∂ ∂

Q Q Q
B Q  (Eq. D.1) 

( ) ( ) ( )
i i ix x x

∂ ∂ ∂ ∂≈ =
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F Q F Q Q Q
A Q

Q
 (Eq. D.2) 
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By substituting above in Eq. (D.1), it becomes Eq. (D.3) as shown below: 

If the components of matrix ( )A Q are constant values then the system of equations 

Eq. (D.3) is called linear with constant coefficients. If the components of matrix 

( )A Q are variable but functions of spatial variable xi and t only then the system of 

equations Eq. (D.3) is called linear with variable coefficients.  

The general behavior of the system of equations mentioned above can be 

understood by two major parameters called eigenvalues and eigenvectors. Sometimes, 

they are combined together and jointly called the eigensystem. The eigenvalues of matrix 

( )A Q are determined by solving the characteristic polynomial 0iλ− =A I , where I is 

the identity matrix. Physically, the eigenvalues iλ  represent speeds of propagation of 

information in the x-t space. The speeds are measured positive in the direction of 

increasing x and negative otherwise. The other important parameter is eigenvectors of 

matrix ( )A Q , which are further divided into two categories of right eigenvectors and left 

eigenvectors.  The right eigenvectors iK  of matrix ( )A Q corresponding to eigenvalues 

iλ  are determined by solving equation i i
iλ=A K K . Similarly, the left eigenvectors iL  

of matrix ( )A Q corresponding to eigenvalues iλ are determined by solving equation 

i i
iλ=L A L .  

A system of equations shown by Eq. (D.1) is said to be hyperbolic at a point (x ,t ) 

if matrix ( )A Q  has m real eigenvalues iλ , and a corresponding set of m linearly 

( ) 0
it x

∂ ∂+ =
∂ ∂
Q Q

A Q  (Eq. D.3) 
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independent right eigenvectors iK . The system is said to be strictly hyperbolic if the 

eigenvalues iλ  are all distinct. Strict hyperbolicity implies hyperbolicity, because real 

and distinct eigenvalues ensure the existence of a set of linearly independent 

eigenvectors. If the effects of viscosity and heat conduction are neglected (which is very 

often the case in gas dynamics) then the conservation equations shown by Eq. (D.1) 

reduce to hyperbolic equations.  

The partial differential equations Eq. (D.3) can be transformed into ordinary 

differential equations (ODE) by using chain rule: 

The curves in x-t space that have slopes dx dt are called characteristic curve. 

Along the characteristic curve, the PDEs become ODEs. By comparing Eq. (D.4) with 

Eq. (D.3), it becomes evident that the eigenvalues of the Jacobian ( )A Q are the slopes of 

characteristic curves, idx dt λ= and that for a strict hyperbolic system; the number of 

characteristic curves is equal to the number of eigenvalues of the system. The slope of 

characteristic curves is sometimes called characteristic speeds.  

By using this information, the characteristic curve can be defined by an ODE 

given by Eq. (D.5)  

The solution of above ODE is given by Eq. (D.6): 

d dx

dt t x dt

∂ ∂= +
∂ ∂

Q Q Q
 (Eq. D.4) 

0 with IC: i

dx
x x

dt
λ= =  (Eq. D.5) 

0 ix x tλ= +  (Eq. D.6) 
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If the source term in Eq. (D.4) is zero then this equation implies that the rate of change of 

vector Q  is zero along a characteristic curve defined by Eq. (D.6). Therefore, if vector 

Q  is given an initial value at time t = 0 then along the whole characteristic curve 

( ) 0 itx x tλ= +  that passes through the initial point 0x  on the x-axis, the solution is equal 

to its values at point 0x , i.e.,  

The Eq. (D.7) means that the hyperbolic differential equations can be transformed 

into ordinary differential equations with a specified initial condition and that is why they 

are often called the initial value problems, indicating that the solution depends on the 

initial condition of the problem. The solution of initial value problem at a given point in 

x t− space depends solely on the initial data at points 0 ix tλ+ on the x-axis. These points 

are obtained by tracing back the characteristic curves passing through the point x.  

The interval between the points 0 max i tx λ+  and 0 min i tx λ+  is known as 

domain of dependence. The solution obtained at time t at position 1x  can only affect the 

solution at point between 1 max i tx λ+  and 1 min i tx λ+  in future. The interval between 

these two points is known as region of influence.  

D.1 Wave formation 

One of the distinguishing features of non-linear hyperbolic PDEs is wave 

steepening, shock formation, and rarefaction wave formation. This can be explained by 

( ) ( )0 00 itx x λ= −=Q Q Q  (Eq. D.7) 
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studying the behavior of characteristic curves in x-t space. In the non-linear PDEs, the 

Jacobian ( )A Q is a function of vector Q ; thereby the eigenvalues iλ  of Jacobian ( )A Q  

are also functions of Q . Thus, slopes of characteristic curves, which in fact are the 

eigenvalues iλ  depend on the solution itself, which results in distortions. This can be 

explained by considering the initial data shown in Fig. D-1   

For convenience, the system is assumed to be one-dimensional. A smooth initial 

profile is shown in Fig xx along with five initial points and their corresponding initial 

data values. If the flux function is convex, i.e., ( )' 0>F Q then ' 0λ >  meaning that the 

characteristic speeds will be an increasing function of Q . Given this condition, higher 

value of ( )0 0xQ  travel faster than the its lower values. There are two intervals on the x-

axis where distortions are most evident. These are the intervals [ ]01 03IE ,x x=  and 

[ ]03 05IC ,x x= . In the interval IE, ( )0 0xQ  is increasing with x, therefore the slope of 

characteristic curves increases with x. This results in a broader IE at a later time. This 

 

 

Figure D-1: Wave steepening in a convex , non-linear hyperbolic conservation law, (a) 
Initial condition, (b) Slopes of characteristic curves 
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phenomenon is called expansion or rarefaction wave. In the interval IC, the gradient of λ  

is negative; the value 03Q  will propagate faster than the value 05Q . The interval IC is 

called compressive and it will get narrower and steeper as the time evolves. Eventually, 

the wave steepening mechanism in the compressive interval will produce an anomalous 

condition with corresponding crossing over of the characteristic curves and three values 

of the solution at one point. This condition implies that the ODE solution cannot be used 

at this point of intersection. The locus of this point is known as shock wave. It can also be 

concluded from this analysis that the solution of a non-linear hyperbolic PDE may always 

contain discontinuities if the initial condition is non-uniform, no matter how smooth it is. 

This is the most important feature of non-linear hyperbolic equations and an essential 

difference from linear hyperbolic equations. It is this phenomenon that leads to special 

difficulties. 

D.2 Rankine-Hugoniot condition 

The solution of the IVP Eq. (D.3) at the point of shock formation is approximated 

by mathematical discontinuities. The solution is continuous in the regions left and right of 

a line ( )s s t=  on the x t−  plane, across which there is a jump discontinuity. The line 

( )s s t=  represents the locus of point of shock formation and the slope of this line is the 

shock speed S . If a finite region [ ],L Rx x  on the x t−  plane is considered then 

( )L Rx s t x< < . By using the integral form of the conservation equation Eq. (D.3) on the 

control volume [ ],L Rx x we have: 
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The Eq. (D.8) can be re-written as: 

In Eq. (D.9), 
( )

limL

Lx s t→
=Q Q from the left and 

( )
limR

Rx s t→
=Q Q  from the right. The 

function LQ  and RQ  are bounded, thus the integrals in Eq. (D.9) vanish and we have: 

The above algebraic expression relating the jumps ∆F , ∆Q  and the speed of 

shock wave S is called the Rankine-Hugoniot condition and it is usually expressed as: 

By the above analysis, it is evident that the shock speed is not same as the 

characteristic speeds or eigenvalues of Jacobian ( )A Q .  

D.3 Entropy condition 

The solution of the IVP shown by Eq. (D.3) contains discontinuities as explained 

in the earlier section. In order to ensure the uniqueness of the IVP solution, an additional 

condition is required to obtain a physically relevant solution. It has been identified that 

the discontinuity of such acceptable solution must satisfy the following condition [57]: 

( ) ( ) ( )
( )

( )
( )

, ,
R

L

s t x

L R
x s t

d d
x t dx x t dx

dt dt
− = +∫ ∫F Q F Q Q Q  (Eq. D.8) 

( ) ( ) ( ) ( )
( )

( )
( )

, ,
R

L

L R

s t x

L R
x s t

S
d d

x t dx x t dx
dt dt

− +− = +∫ ∫Q QF Q F Q Q Q  (Eq. D.9) 

( ) ( ) ( )L RL R S−− = Q QF Q F Q  (Eq. D.10) 

S
∆=
∆

F
Q

 (Eq. D.11) 
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The above condition is called the entropy condition. Oleinik [57] has shown that 

the weak solutions satisfying the above conditions are uniquely determined by their initial 

data. The rarefaction waves violate the entropy condition; therefore isentropic equations 

are used to determine an entropy-satisfying solution. 

L RSλ λ> >  (Eq. 4.12) 



 

Appendix E 
 

Riemann Problem 

The Riemann problem is one of the fundamental problems in gas dynamics. The 

Riemann problem is a represented by a set of conservation laws in form of hyperbolic 

partial differential equations with the simplest and non-trivial initial conditions. The 

solution of Riemann problem contains the fundamental physics and mathematical 

character of the conservation laws that were formulated in this work and are generally 

applied to the compressible flows and various similar problems in gas-dynamics. Thus, a 

solution of the Riemann problem provides an invaluable reference solution for the 

numerical schemes applied to the theoretical models in such areas. Due to this reason, it 

is invariably used to assess the performance and correctness of such numerical methods. 

In addition, Godunov methods and their high-order extensions use the exact or 

approximate solutions of the Riemann problem locally. The numerical methods used to 

solve the mortar tube sub-model are Godunov–type methods. Therefore, it is very 

important to understand the Riemann problem and its solution.  

The Riemann problem does not actually have an exact closed-form solution (even 

for much simpler models such as isentropic or isothermal equations). However, an 

iterative solution with a practical degree of accuracy has been obtained and refined by 

many researchers. The key issues in solving Riemann problem are the selected variables 

(conservative or primitive), the equations used and their number, the technique for the 

iterative procedure, the initial guess and handling of the unphysical conditions such as 
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negative pressure. The major work in this direction has been done and refined by many 

researchers over past several years. 

The Riemann problem for transient one-dimensional process is defined by 

conservation law shown in Eq. (E.1) and initial conditions shown in Eq. (E.2)  

The domain of interest in the x-t plane are point ( ),x t  with x−∞ < < ∞ and 0t > . 

In practice, x is varied in a finite interval [ ],L Rx x around the point 0x = . The vector Q is 

known as vector of conserved variables. The Riemann solution used a vector 

[ ], ,u Pρ=W  of primitive variables rather than the vector of conserved variables. 

Physically, the Riemann problem defined by Eq. (E.1) - Eq. (E.2) is a slight 

generalization of the so called shock-tube problem: two stationary gases 

( )0 and 0L Ru u= =  in a tube are separated by a diaphragm. The rupture of the diaphragm 

generates a nearly centered wave system that typically consists of a rarefaction wave, a 

contact discontinuity and a shock wave. In the Riemann problem the particle speeds Lu  

and Ru  are allowed to be non-zero, but the structure of the solution is the same as that of 

the shock-tube problem.  

The solution of Riemann problem defined by Eq. (E.1) - Eq. (E.2) also consists of 

three waves (i.e, a shock wave, a rarefaction wave, and a contact discontinuity), which 

( )

[ ] ( ) ( )2

PDE:   0

where 

, ,      , ,

t x

u E u u P u E pρ ρ ρ ρ

∂∂ + =
∂ ∂

 = = + + 

F QQ

Q F Q

 (Eq. E.1) 

( ) ( )0

 if  0
IC:   ,0

 if  0
L

R

x
x x

x

<
= =  >

Q
Q Q

Q
 (Eq. E.2) 
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are associated with the eigenvalues of the system shown by Eq. (E.1). A shock wave is a 

discontinuous wave across which all primitive variables like density, pressure, and 

velocity change. The shock waves are generated by strong compression, which means 

that the pressure ahead of discontinuity is higher than the pressure behind it resulting in 

generation of a compression wave. A contact discontinuity (or contact wave) is also a 

discontinuous wave across which both pressure and velocity are constant but density 

jumps discontinuously as do such variables that depend on density including specific 

internal energy, temperature, sound speed, and entropy. A rarefaction wave is a smooth 

wave across which density, velocity, and pressure change. This wave has a fan-like 

structure and it is enclosed by two bounding characteristics corresponding to the Head 

and Tail of the wave. Generally, speeds of these waves are not same as the characteristic 

speeds given by the eigenvalues. The Riemann problem at 0t = can be represented by 

Fig. E-1. The contact discontinuity is usually in the middle and the right and left waves 

could be either shock waves or rarefaction waves.  

 
 

0x =  
x  

t  

1λ  

RW  LW  

2λ  

3λ  

*
LW  *

RW  

Star Region 

 

Figure E-1: Structure of the solution of the Riemann problem on the x-t plane for the one-
dimensional time-dependent Euler equations [71]. 
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The three waves in this solution separate four constant states namely, LW , *
LW , 

*
RW , and RW . The variables in the region between the states LW  and RW  are unknown. 

This region is typically called the star region and it is divided by the middle wave into 

two sub-regions star left ( *
LW ) and star right ( *

RW ). The middle wave is always a contact 

discontinuity and it is shown by a dashed line. The left and right waves could be either 

rarefaction waves or shock waves. Therefore, according to the type of these non-linear 

waves, there could be four possible solutions, which are shown in Fig. E-2. There could 

be two possible variations of these, namely when the left or right non-linear wave is a 

sonic rarefaction wave. Such condition may exist while using Godunov type methods and 

an entropy fix is used to modify the Riemann solution.  

An analysis based on the eigensystem (i.e., eigenvalues and eigenvectors) of the 

Euler equations reveals that both pressure *P and velocity *u in the star region are 

constant while the density takes on the two constant values *
Lρ  and *

Rρ  across the contact 

 

 

Figure E-2: Possible wave patterns in the solution of the Riemann problem: (a) left 
rarefaction, contact, right shock (b) left shock, contact, right rarefaction (c) left 
rarefaction, contact, right rarefaction (d) left shock, contact, right shock [71]. 
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discontinuity Therefore, the major unknown physical quantities are *P , *u , *
Lρ  and *

Rρ . 

By using the constancy of pressure and velocity in the star region, an algebraic non-linear 

equation for pressure with the ideal gas equation of state is given by Eq. (E.3)  

The functions Lf  and Rf  can have two algebraic expressions depending on 

whether the left and right non-linear waves are shock waves or rarefaction waves. If 

either of the left or right non-linear waves is a shock wave then the functions Lf  and Rf  

are derived by using the Rankine-Hugoniot conditions by using the pre-shock and post-

shock values for the primitive variables. The pre-shock values for the left shock wave are 

( ), ,L L Lu Pρ and those for the right shock wave are( ), ,R R Ru Pρ . The post-shock values for 

the left shock wave are ( )* * *, ,L u Pρ and those for the right shock wave are( )* * *, ,R u Pρ . If 

either of these waves is a rarefaction wave then isentropic relations are used to connect 

the unknown vectors *
LW or *

RW  with the left or right data state. The functions Lf  and Rf  

obtained by this procedure are shown in Eq. (E.4) and Eq. (E.5) as: 

( ) ( ) ( )* * *, , , , 0

where  

L R L L R R

R L

f P f P f P u

u u u

≡ + + ∆ =

∆ ≡ −

W W W W
 (Eq. E.3) 
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The algebraic expressions for the unknown velocity *u  in the star region are also 

obtained using either Rankine-Hugoniot condition or isentropic relations depending on 

whether there is a shock wave or a rarefaction wave at left and right wave fronts. By 

combining these expressions, the algebraic equation for the velocity in star region is 

given by Eq. (E.6) as: 

As mentioned earlier, unknown pressure *P in the star region is found by solving the non-

linear algebraic Eq. (E.3). This is accomplished by using an iterative procedure. The 

iterative procedure can be used because the pressure function ( )*f P is differentiable and 

an analytical expression for its derivative can be obtained. A Newton-Raphson [228] 
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( ) ( ) ( )* * *1 1

2 2L R R Lu u u f P f P = + + −   (Eq. E.6) 
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iterative procedure can be used to find the root of ( )* 0f P = . The general procedure is 

shown by Eq. (E.7) as: 

In the above equation, index k represents the iteration level. The iteration 

procedure is stopped whenever the relative pressure change is less than the prescribed 

tolerance level, which is typically set to 1e-6. The relative pressure change between two 

iterations is shown by Eq. (E.8) as: 

The other two unknowns in the star region, i.e., *
Lρ  and *

Rρ .are determined by 

comparing the pressure p* to pl and pr. The relations used to accomplish this depend on 

the type of non-linear waves at left and right locations. The analytical expressions for *
Lρ  

are given by Eq. (E.9) as: 

The analytical expressions for *Rρ  are given by Eq. (E.10) as: 
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The speeds of shock and rarefaction waves are also parameters of interest. The 

explicit expression for speed of shock wave LS  or RS can also be derived by using the 

Rankine-Hugoniot condition. They are given by Eq. (E.11) and Eq. (E.12) as: 

The rarefaction wave is enclosed by a head and a tail, which are characteristics of 

speeds given respectively by Eq. (E.13) and Eq. (E.14)  

Similarly, the speeds for head and tail of right rarefaction waves are given by 

Eq. (E.15) and Eq. (E.16)  
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 (Eq. E.12) 

,HL L g LS u c= −  (Eq. E.13) 

* *
,TL g LS u c= −  (Eq. E.14) 

,HR R g RS u c= +  (Eq. E.15) 

* *
,TR g RS u c= +  (Eq. E.16) 
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