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Abstract 

 

 The main topic of the research is the enhanced oil recovery (EOR) method of forward dry 

in-situ combustion (ISC).  ISC is an EOR method used to produce heavy oils with high viscosity 

levels that are either infeasible or not economical using other EOR methods. The ISC process is 

a thermal recovery method that initiates when hot air is injected into the injection well to create 

heat inside the reservoir, which will in turn create a burning front moving from the injection well 

toward the production well. During this process, some of the reservoir's oil will be utilized as 

fuel by the process of in situ oil burning. The fuel that is produced by this process will support 

the combustion front. Once the heat is generated steadily by the continuous injection of hot air, 

the oil viscosity in the reservoir will be decreased which allows the new less viscous oil to flow 

to the producer. The project's goal is to create an expert system for forward in-situ combustion 

that has the ability to predict similar outcomes to those obtained by a thermal recovery 

simulator 1 . The predicted outcomes are the oil production, the gas production and the 

abandonment time of the project. In order to develop the expert system, relevant output results of 

oil production, gas production and abandonment time of the project need to be obtained using a 

thermal simulator for three field patterns with varying sizes ranging from five acres to 25 acres. 

The numerical simulator uses ten input variables including field properties and design 

parameters. Such examples of these inputs are porosity, permeability, injection rate, oxygen 

content of injection, thickness of the reservoir, initial temperature and pressure of the reservoir 

and the initial oil and water saturation. Due to these different variables, it is expected that the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  The	  thermal	  simulator	  STARS	  from	  CMG	  was	  used	  for	  this	  work.	  	  
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output from the simulations will have a large range and wide scope, which will help in 

developing a useful and flexible expert system. 

The simulations generated data for three different sized patterns ranging from five to 

twenty five acres. The next objective in the project was to create an expert system for each 

different pattern using artificial neural networks (ANN)2. ANN is a tool that functions like the 

human brain. It is a mathematical model that uses an inter-connected set of neurons that is able to 

adapt itself depending on the data fed to the system.  Because of the characteristic of continuous 

adjustment, ANN is called an adaptive and a non-linear system. The ANN, when modeled 

correctly to fit a specified set of data, will be able to spot trends in the data when going through 

the learning process. If the learning process is successful, the ANN system will be able to predict 

the simulated data within a certain level of accuracy. The targeted level of accuracy for this work 

was five percent error or lower. The process meeting this target is called the validation process 

and in this project the average error of the ANN system is found to be below five percent, which 

deemed the expert system to be successful.	  

 

 

 

 

 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  The	  software	  NeuralPower	  2.5	  was	  used	  for	  the	  development	  of	  the	  expert	  system	  in	  this	  work.	  
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   Chapter  1   

	   	  

	  Introduction 

 

 The production of heavy oil is one of the challenges in the petroleum industry today. 

There have been projects that have used carbon dioxide injection, steam injection, in-situ 

combustion, water flooding and polymer flooding. Once the primary and secondary recovery has 

been exhausted, the last step of oil extraction is the tertiary recovery. Typically, in heavy oil 

reservoirs, primary recovery uses standard procedures in oil extraction and will produce less than 

ten percent of the oil in place. Secondary recovery, which usually uses the water-flood technique, 

will produce 30 to 45 percent of the oil in place. EOR processes or tertiary recovery, if run 

successfully, can produce up to 70 to 80 percent of the oil in place. All of the processes 

mentioned above have the same general goal in mobilizing the oil by lowering its viscosity in 

reservoir conditions. This work will concentrate on the production of heavy oil recovery using 

the in-situ combustion process.  

 There have been many studies of the in-situ combustion process using laboratory tubes, 

which are then scaled up to field scale. In this study, no laboratory experiments were used but 

instead the study directly analyzed the different scenarios of the field scale. The first order of 

work was to generate data using the numerical simulator and the in-situ combustion process for 

fields of sizes five acres, 15 acres and 25 acres. In the simulation portion of the work, many input 

variables were incorporated to yield widely varying output results. For each pattern, 

approximately 400 data points were generated by simulation so that it could give ample and 
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diverse data to train the expert ANN system. There were three categories of variables in this 

simulation experiment. The first part was the reservoir properties (permeability, porosity, 

reservoir thickness, etc). In the second part, there were design decisions that were included in the 

simulation work such as injection rate and oxygen injection content. The third part is the 

production output of oil production, gas production and length of the project. 

 After the simulator generated the output data, the last procedure was to use the output 

data to train and build an artificial neural networks (ANN) or the expert system. ANN is a tool 

that is able to spot trends in a set of input and output data and build a system using those data 

that will then be able to predict an output given a set of inputs. For each of the three patterns, an 

ANN expert system was developed using the data generated. Eighty-five percent of the data was 

used in the training of the neural networks and the remaining 15 percent of output data was used 

to validate the system. The goal of the ANN expert system is to have the capacity to predict an 

output, which closely resembles the output generated using the simulator. An error of five 

percent is the target between the simulator output and the expert system output.  
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                                                                     Chapter 2  

                 Literature Survey 

In-situ combustion (ISC) process is an enhanced oil recovery (EOR) method that has not 

been used extensively in the industry. There are some reasons for ISC’s lack of popularity such 

as the lack of extensive study on the subject and the lack of field data of the in-situ combustion 

process. Another reason for ISC’s lack of use in the industry is its requirement of high 

investment which discourages many companies from utilizing it as a viable method. There are 

several types of in-situ combustion processes including dry combustion, wet combustion, 

forward combustion and backward combustion. This work solely concentrates on the forward 

dry in-situ combustion process. There are many factors that will determine the success and 

feasibility of the process such as the type of in-situ oil, the thickness of the formation, the 

porosity of the reservoir, etc. In-situ combustion is typically used for heavy oil reservoirs with 

medium to high permeability. There have been some projects that used in-situ combustion for 

light oil reservoirs, but in general light oil is matched better with carbon dioxide injection and 

other EOR processes. Other variables that need to be studied in the field scale are the initial oil 

saturation, the porosity of the reservoir and the thickness of the reservoir and the injection rate 

needed to sustain the combustion front in the reservoir. This chapter will discuss the different 

types of in-situ combustions and the general description of artificial neural networks (ANN). 
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2.1 In-Situ Combustion 

The general premise of in-situ combustion is to have hot air injected into the injection 

well to create heat inside the reservoir by the ignition of the in situ oil. The burning of the oil will 

then form a combustion front that travels from the injection well to the production well. The fuel 

burned is the result of the cracking and distillation of the in situ oil. Naturally occurring coal can 

also be another source of the fuel that is needed for the combustion front. When the air is 

injected, vapors will form, which will attach to the liquid and condense in the colder zone ahead 

of the combustion zone. The combustion zone will reach temperatures ranging from 700 F to 

1500 F. At this temperature cracking of the heavy oil will take place in the hydrocarbon zone. 

The cracking of the heavy oils will generate the coke, which is needed to sustain the combustion 

front propagation. This process will continue to occur until the oil is displaced from the injection 

well to the production well to be extracted. Figure 2.1 on the next page illustrates the general in-

situ combustion process. 
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Fig 2.1- General set up of an in situ combustion project. 

(http://www.heavyoilinfo.com/feature_items/thai/thaiprocesss.jpg) 

From the figure above, one can see that there are a number of different zones in the in situ 

combustion process. Each zone has its functions in the complex behavior of an in-situ 

combustion process. The zones to be discussed next are the burned zone, the combustion zone, 

the cracking zone, the evaporation zone, the steam plateau, the water bank, the oil bank and the 

initial zone. 

A) The Burned Zone- Oil in this zone has been burned due to hot air injection and in turn has 

created the fuel to be later supplied for the combustion front. This zone is filled with air 

and is the first zone subjected to the air injection from the injection well. Due to the 

exposure of high temperatures, mineral alterations in this zone are possible. 
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B) The Combustion Zone- The zone of the highest temperature is found here.In this region 

oxygen combines with fuel and high temperature oxidation occurs. Water and carbon 

dioxide are the products of this combustion reaction. 

C) Cracking Zone – In this zone fuel is found. The fuel is formed due to cracking and 

pyrolisis which is deposited in the rock matrix.  

D)  Evaporation Zone- Oil  that remains in this zone is oil left behind the steam plateau. The 

composition of the in situ oil is modified in this zone due to  the high temperatures of the 

combustion zone; the lighter ends vaporize and move ahead to mix with the original oil 

while the heavy ends pyrolize and deposit as fuel on the rock. The heavy ends are the 

undesirable compounds that contain sulfur and metals. 

E) Steam Plateau- Most of the oil is displaced ahead of the steam plateau and in this zone 

the immobile oil undergoes steam distillation. The original oil will undergo thermal 

cracking and the magnitude of cracking that occurs depends on the temperature. The 

thermal cracking causes the oil’s viscosity level to decrease. 

F) Water bank-  This zone forms due to a decrease of temperature. 

G) Oil bank- This area contains the oil displaced and the light ends that were formed due to 

cracking. 

H) Initial zone- This zone is the unchanged portion of the reservoir that is yet to undergo a 

process of combustion. 

The two main parts of the chemical reactions in the in-situ combustion process are 

pyrolysis due to an increase of temperature and oxidation, which occurs in the presence of 

oxygen. The two types of oxidation reactions encountered are low temperature oxidations 

(LTO) and high temperature oxidations (HTO). LTO occurs when oxygen that is mixed with 
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the oil to form oxidized hydrocarbons such ketones, alcohols and peroxides. LTO will 

generally raise the oil viscosity. When oxygen contacts the oil at higher temperatures (HTO), 

water and carbon dioxide are formed. Pyrolysis is the alteration of chemicals due to increase 

of heat. With pyrolysis, usually at temperatures above 500 degrees Celsius, light 

hydrocarbons and coke-like residue are formed. 

 LTO reactions are the only reactions in the in situ combustion process that raises the 

viscosity of the oil. With proper air injection, the LTOs will be minimized and the ISC 

process will deliver higher quality produced oil at lower viscosities and higher API oil 

gravities. 

  

2.2   Forward and Reverse Combustion  

a) Forward combustion 

The forward combustion process is the most typical. The combustion front moves from 

the injection well towards the production well. The process starts with the preheating of the oil 

near the injection well. Then, air is injected into the injection well to start the combustion front 

which will then move towards the production well. As more air is injected, the temperature 

inside of the reservoir will also increase, which will lower the viscosity of the oil in place 

promoting improved flow conditions, which will yield oil production at the producer.  
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b) Reverse Combustion 

             In reverse combustion, air is injected into the injection well, but the combustion front 

starts at the production well and flows counter to the air flow. The combustion front then will 

move due to an increase of temperature caused by air injection and coincidental to these high 

temperatures, the in-situ oil will be cracked: light ends vaporize and the heavy ends will turn to 

residue (Prats et al, 1985) and coke, which will be the fuel for the combustion front. The problem 

with reverse combustion is that it is difficult to sustain the combustion front because of low 

oxygen levels. Also, since more burning will take place in this process, there will be less oil to 

recover in comparison to forward combustion. This method is recommended for very high 

viscosity oils (Prats et al, 1985). 

 

2.3 Dry and Wet Combustion 

a) Dry Combustion 

Dry combustion is the type of in-situ combustion where the injection exclusively 

involves air. There is no water involved in the process hence the term “dry”. The initial 

step is to preheat the reservoir until a minimum temperature is reached to start the 

ignition. Next, the injection of air (oxygen) will follow to start the combustion front. If 

the air injection is too high, the combustion front will move too fast and burn unnecessary 

in-situ oil in the process yielding a lower output of oil. Conversely, if the air injection is 

too low, the combustion front will not be sustained and failure of the procedure is 

imminent. The range of temperature for dry combustion is from 700 F to 1500 F. If the 

temperature levels are very high, the combustion zone is rather thin. The disadvantage of 
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dry combustion is that the heat capacity of the injected air is too low, which creates very 

high temperatures in the burned zone (Prats et al, 1985). Sometimes the use of water 

injection is used to address this problem. 

b) Wet Combustion 

 Wet combustion is another type of in-situ combustion that uses water to aid in the 

heat transfer of the process. Also, wet combustion can help with the efficiency of the 

reservoir since there will be less oil burned due to a decrease of temperature when the 

water is injected. Usually, the process of wet combustion uses an alternate method of 

injecting of air and water instead of injecting them both simultaneously. The key factor in 

wet combustion is the water/air ratio, which is closely monitored to see how this ratio 

affects wet combustion front movement.  In a laboratory study (Coates et al,1995), it was 

shown that wet combustion can produce more oil in comparison to dry combustion if the 

process is commenced before the sand pack is depleted. Not only this, another advantage 

of wet combustion is that it lowers the fuel consumption of the oil in place resulting in a 

higher cumulative oil production. 

 

2.4 Artificial Neural Networks (ANN) 

An artificial neural network (ANN) is a mathematical model that has the ability to learn 

trends in a set of data that uses a set-up that mimics the human brain. The neurons in the 

ANN are each inter-connected with links and each link has a specific weight value. A neural 

network always contains one input layer and one output layer. In between, there are hidden  
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layers with some neurons. The size of the hidden layer and the number of neurons are 

dependent of the design of the neural network. The input layer is used for the input variables 

to the neural network and the output layer is the layer that will yield the results predicted by 

the neural network. 

The input layer is dependent on how many input variables are being tested by the ANN 

and the output layer is determined by how many output results are being predicted. The 

hidden layers and the number of neurons are the most determinant factor in the ANN. In each 

hidden layer, a transfer function needs to be selected for the network. There are many choices 

for the transfer functions for the hidden layers such as the sigmoid, the tan-sig, and the 

purelin transfer functions. A learning rate will also be selected for the ANN. If the learning 

rate is too high or too low the ANN architecture will suffer. If the learning rate is too low, the 

synaptic weights of each link will change slower over time, which will make the learning 

process much too slow. On the other hand, if the learning rate is too high, the system will 

become unstable (Haykin et al,2009). 

One of the most important features of an ANN system is that it is a non-linear adaptive      

system. The system parameters are being continuously changed during the training phase of 

the operation, which makes it adaptive .The nonlinear aspect of ANN gives the system a 

significant amount of flexibility to achieve any desired input and output map.	  An input is 

presented to the neural network and a corresponding desired or target response set at the 

output (when this is the case the training is called supervised). An error is composed from 

the difference between the desired response and the system output. This error information is 

fed back to the system and adjusts the system parameters in a systematic fashion (the 

learning rule). The process is repeated until the performance is acceptable. It is clear from 
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this description that the performance hinges heavily on the data used. If one does not have 

data that cover a significant portion of the operating conditions or if they are noisy, then 

neural network technology is probably not the right solution. On the other hand, if there is 

plenty of data and the problem is poorly understood to derive an approximate model, then 

neural network technology is a good choice. This operating procedure should be contrasted 

with the traditional engineering design, made of exhaustive subsystem specifications and 

intercommunication protocols. In artificial neural networks, the designer chooses the 

network architecture, the performance function, the learning rule, and the criterion to stop 

the training phase, but the system automatically adjusts the parameters. Therefore, it is 

difficult to bring a priori information into the design, thus, when the system does not work 

properly it is also difficult to incrementally refine the solution. Nevertheless, ANN-based 

solutions are extremely efficient in terms of development time and resources. In many 

difficult cases artificial neural networks provide performance that is difficult to match with 

other technologies. 

 The goal of the neural network developed in this work is to be able to predict similar          

outcomes when compared to the simulator used to obtain the production output data.     If the 

results are within five percent, the neural network is complete and can be considered an 

expert system for the particular data set. Two types of the neural network will be developed. 

The first will be a forward path neural network where the inputs will be the reservoir 

properties and design decisions to predict production output. The second type will be an 

inverse model of the ANN where the input variables will be the reservoir properties and 

production output and the design decisions will be the output of the ANN. The forward 

model of the neural network developed will have the capabilities to forecast production 
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outputs in oil and gas production as well as predicting the abandonment time of the project. 

The criterion to stop the project is either when the production well reaches 550 F to prevent 

well damage or if the project has run its course of 10 years. The second stage of the expert 

system development is the inverse model. Instead of forecasting production output and 

abandonment time, the inverse model’s task is to predict the design decisions needed to be 

made to reach the specified goal of production values and abandonment time. Later, this 

development will be helpful to create an optimization model or an economical analysis to be 

applied for this work. The inverse model is a more challenging task since the solutions 

provided by the expert system will not be unique unlike the solutions provided by the 

forward path network.  

 

 

2.5 Successful Applications of the ISC technique 

 

Since there have not been much data and enough experiments to fully understand the ISC 

procedure, the use of in-situ combustion is not as prevalent as carbon dioxide and steam 

injection in the tertiary stage of production. However, there have been some fields that have 

been produced successfully after implementing the ISC process. The Suplacu field in 

Romania, both the Santhal field and Balol field in India and South Belridge in California are 

all good examples of successful in situ combustion projects (Gadelle et al.1990). In each of 

these fields, the production from using ISC was higher than the expected production if those 

said fields used a different enhanced oil recovery technique. The similarities between these 

fields is that their permeability is usually on the high end ranging from 500 mD to 2000 mD, 
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the formations are not too thick ranging from 50 feet to 150 feet and the porosity levels of 

these fields are usually from 0.20 to 0.40. 

In-situ combustion is also an option for a field which has been unsuccessfully exploited 

by other types of EOR processes. For example, if a steam injection or a carbon dioxide 

process was used and was not successful in oil exploitation, ISC could be used to continue 

the production of the reservoir’s oil. Also, if well equipment is lacking in number and if there 

is no steam generator in the area for use of the steam injection method, ISC techniques could 

also be applied. 
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 Chapter 3  

Data generation via numerical data simulation 

  

In order to train an expert system via artificial neural networks, an ample amount of data 

of high quality must be generated. The simulator, which covers thermal recovery and in-situ 

combustion, was used for this purpose. This chapter will discuss and describe the numerical 

model used for this project.  

 

3.1 Data file description 

 A) Grid and Reservoir Definition 

               In this portion of the numerical simulator, the size and geometry of the pattern are 

defined. The model for this project has 400 grid-blocks total in the shape of a square with 20 

blocks on each side. The pattern is homogenous with constant porosity and permeability. 

Porosity and permeability values are also specified in this section. Reservoir thickness is another 

variable set in the initial part of the data file. 

            B) Fluid Definitions 

             The second part of the data file deals with the fluid in place in the reservoir. The 

composition of the oil and its properties such as viscosity, critical pressures and temperatures of 

the compositions and the kinetic reactions are listed here. 
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            C) Initial Conditions 

              This portion of the data file controls the initial conditions of the simulation. Things such 

as initial temperature, initial pressure, oil saturation and water saturation are specified. 

           D) Well Specifications 

            The last part of the data file controls the specifications of the injection well and the 

production well. The user can specify the design characteristics of the injection well such as the 

diameter size. In addition to that, the reservoir production designs can be specified in this section 

such as well configurations of a five-spot or even a nine-spot well configuration. For this project 

a five-spot design was used. The injection well is placed in the middle of the pattern and four 

production wells are placed in all the four corners of the pattern. The injection rate and the 

injection content (oxygen percentage) values are also specified in this section. The total amount 

of time the simulation is to be run is also specified along with increase of injection rates in 

following years.  

 

3.2 Input parameters used in the simulation 

Table 3.1 below shows the list of input parameters used to run the numerical data simulator and 

which input parameters were variables and which were constant throughout each simulation run. 

Table	  3.1-‐	  Reservoir	  variables	  for	  the	  simulations.	  

Pattern acreage Constant 

Porosity Variable 

Thermal conductivity of the rock  Constant 
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Initial pressure Variable 

Initial temperature Variable 

Initial oil saturation Variable 

Heat capacity of the rock Constant 

Thermal conductivity of water, oil and gas Constant 

Permeability Variable 

Oil API Variable 

Oil viscosity Variable 

Critical Temperature of fluids  Constant 

Critical Pressure of fluids Constant 

Solid density of the coke Constant 

	  	  

3.3 Reservoir properties effects 

           There are many reservoir properties that affect the final outcome of production in an in-

situ combustion project or in any oil extraction projects. The studies of reservoir properties are 

significant because they are essentially the determinants of whether a reservoir will be 

economically sustainable. The correct estimation of a particular reservoir’s properties is 

paramount to the success of that project economically. 

 

3.3.1 Pattern Acreage 

 One of the reservoir properties studies in this work was the acre size of the pattern. 

Extensive simulations were run for patterns of five acres, fifteen acres and twenty five acres. 

Naturally speaking, a pattern with a larger pattern will yield a higher cumulative oil production. 

However, it does not necessarily mean it is the most profitable. A reservoir field of 100 acres can 

be divided into four sections of 25 acre patterns or 20 sections of five acre patterns. The more 
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profitable of these two decisions depend on the cost of each procedure, which will take time, 

equipment, drilling of wells, amount of air injected, oxygen content in injection and other factors 

into consideration.  

 

3.3.2 Porosity and oil saturation 

 Porosity is one of the biggest factors for overall cumulative production since the larger 

the porosity, the more oil in place will be available for the production. The range for porosity in 

the simulations is from 0.25 to 0.40.  In-situ combustion reservoirs are recommended for 

reservoirs with least a porosity of 0.20, since anything lower would not be worth the effort and 

over-pressuring may occur due to the air injection.  

 Oil saturation is also important in determining if a project is worthwhile to pursue. The 

higher the oil saturation, the more oil is in the system, and this fact will let the reservoir 

engineers be more flexible with the type of methods to recover the oil. For example, a reverse 

combustion method can be used in a high oil saturation pattern since more oil is afforded to be 

burned for the fuel. In lower oil saturated fields, using reverse combustion would not be ideal 

since the oil production would be diminished.  In real life oil extraction projects, the prediction 

of a reservoir’s initial oil saturation is extremely important work and is one of the initial steps to 

determine if a reservoir is economically attractive to undergo production. A reservoir’s initial oil 

saturation can be over-estimated or under-estimated by a company and both have negative 

effects. If a company has predicted that initial oil saturation of a given reservoir is significantly 

higher than the actual oil saturation of the reservoir, the oil production project can net a heavy 

loss economically. On the other hand, if a company predicts the oil saturation of a given 
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reservoir is lower than the reservoir’s actual oil saturation, a great opportunity of oil production 

will be ignored and ultimately a loss in profit will also occur. 

3.4 Design parameters effects 

Like reservoir properties, design parameters play an integral part in the results of an in-

situ combustion project. Unlike reservoir properties, these factors are controlled by the project 

design engineers who are working on the project. The role of air injection and oxygen content in 

injection are two of the most important factors in in-situ combustion project. Generally, the 

higher the injection rate, the faster the combustion rate will be. However, if the combustion rate 

is too fast, too much oil is burned and production values are going to be lower. Not only this, a 

higher injection rate will be costlier. 

The next design decision that is crucial to in-situ combustion is the oxygen content of the 

injection. The higher the oxygen content (oxygen enriched), the faster the combustion process 

will be and like injection rate an over use of oxygen content can be detrimental to the project, 

since enriching the oxygen is expensive and it does not necessarily mean better production. 

Enriched-air injection is more needed in reservoirs of heavy oils when compared to light oils.  

The use of enriched-air has its economical advantages also since it can be used for large scale 

operations requiring high pressures (Petit,H.J.M et al, 1987). It also has some advantages in the 

technical aspects of a project. The production of carbon dioxide produced by the combustion 

downstream from the burned zone is another advantage of using enriched-air in the injection 

process since the carbon dioxide will increase sweep efficiency. On the following page, Table 

3.2 lists which design parameters were kept constant and ones that were varied for the 

simulations.   
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Table 3.2- Design variables of the simulations.  

Injection Rate                          Variable 

Concentration of air in injection                          Variable 

Time of Air injection                           Constant 

 

As mentioned before, the injection rate of oxygen and the oxygen content of the injection 

are crucial to the success of an ISC project. An ISC project is more economical when compared 

to other popular methods such as steam injection. According to Lorimer, the energy required to 

supply heat to the reservoir compares favorably with steam injection. The estimated cost to place 

1 GJ of energy in a 7 MPa reservoir is 2.6 to 4.4 dollars in steam and only 1 dollar in in-situ 

combustion. This is due to the fact that ISC is not compromised by large heat losses due to 

overburden and underburden in thin formations. However, ISC projects have been less successful 

than steam injection projects because of the difficulty of maintaining the combustion front in in-

situ combustion. Sometimes, the injection rate is too small to maintain the combustion and even 

if the injection rate is thought to be sufficient and not excessive, the direction of the front will 

inexplicably become erratic. This erratic behavior will create problems such as increasing the oil 

saturation which will then immobilize the oil even further. This is why the injection rate and 

frequency of injection are paramount to the success of ISC projects. 
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3.5 Sample simulation runs and analysis 

The next segment of this chapter shows preliminary tests of the project by running a few 

sample runs and exhibiting how reservoir properties and design decisions affect the shape of a 

simulation run. It is also a test to see if the input ranges to be used in the thesis is well within the 

realistic boundaries of practical use of this technique: 

In situ combustion (ISC) is a type of enhanced oil recovery (EOR) technique that has 

been studied extensively for the past 50-60 years. The general process is that oxygenated air is 

injected into the well to create a burning front which is produced by burning of some of the 

original oil in place. In ISC, heat is generated through igniting the formation oil and then 

propagating a combustion front through the reservoir. The fuel that is used in this process is 

supplied by the coke that is embedded in the sand grains ahead of the combustion front.  

Consequently, the oil in the reservoir will have its viscosity lowered and will be able to flow to 

the production well to be produced. ISC is feasible for all three types of oil which are heavy, 

medium and light oil. In this section, there will be two ISC sample projects discussed simulating 

the ISC process of a heavy oil reservoir.  The constraints that will stop the projects are if the 

projects reach 10 years (87600 hours) or if the producer temperature reaches 550 F. There were 

two simulations runs both with every input variable held constant except the nature of the 

injection process. The first sample employs an injection rate that is constant throughout the 

simulation from the beginning until the end. The second simulation run incorporates a technique 

of an incremental increase of injection rate per year and continually increased throughout the 

simulation.  
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Table 3.3 lists the input parameters that were used for both experiments: 

 

                                              Table 3.3: Sample runs set-up. 

 Porosity 0.325 

Permeability 1000 Md 

Oxygen content 25 % 

Initial temperature 102 F 

Initial pressure 2470 psi 

Reservoir thickness 120 ft 

Initial injection rate 984,000 SCF/day 

Oil saturation 0.61 

Water saturation 0.39 

Acre of pattern 15 

Oil viscosity 1113 cp 
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For each of these two simulation runs the output results that are of the main focus are the 

oil production rate and the cumulative oil production. Surely, the design parameters of the 

project and the reservoir properties will play a role in these results which will also be discussed. 

The obvious variables which will enhance oil production are porosity, reservoir thickness, oil 

saturation and permeability. The two design techniques that will be looked into in this discussion 

are the injection rate and the oxygen content of the injection and how they both affect the 

combustion front and in turn the overall oil production profiles.  These two design parameters 

also need to be considered because some reservoirs that cannot handle high injection rates or 

high oxygen content will show some fracturing. Even if the reservoir could handle higher 

injection rates and oxygen contents, it might not be economically feasible even if the project time 

is be shorter. There are high operating costs for using high injection rates and high oxygen 

contents and these costs could offset negatively the saved costs of having a shorter project time 

gained by having those high injection rates with high oxygen content. 

 The injection rate is a very important design parameter for in-situ combustion because 

this is the driving force to supply oxygen to maintain the combustion front. Sample one and 

sample two runs’ initial injection content are the same (980,000 SCF/day). The difference 

between the two runs is that sample two has an incremental increase of injection rate of 600,000 

SCF/day per year which is done to aid in the combustion front movement. According to a study 

(Coates et al,1995), “Air is injected through the formation through a slot and as the combustion 

front expands outward radially, the injection flux needs to be continuously increased to supply 

sufficient oxygen to sustain combustion.” 
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That is the main difference in sample one and sample two. Where sample one has a 

constant injection rate, sample two will feature an increase of injection rate as time goes on. The 

oil rate profile is altered greatly using these two techniques. 

 

Figure 3.1: Oil production rate and cumulative oil production for sample one (constant injection 
rate). 
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Figure 3.2: Oil production rate and cumulative oil production for sample two 
(incremental increase in injection rate). 
 

 The figures of 3.1 and 3.2 on the previous page show that using a constant injection rate 

will yield a good initial oil rate, but as the combustion front increases in radius, this injection rate 

is not enough to sustain combustion. After one year (8760 hours) of the project, the oil rate will 

stay stagnant at around the same level.  In contrast, using an incremental increase of injection 

provided better results for the oil rate. In this case, when the oil rate reaches a plateau after one 

year, there is an increase of injection rate to aid the combustion front movement which will in 

turn increase the oil rate. As mentioned above, there are associated operating costs of using a 

higher injection rate. However, when the discrepancy of oil rate is as significantly high as 
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between these two examples, it is beneficial to use a higher rate of injection. The oil production 

rate and cumulative oil production graphs for sample one and two are found on the next page. 

 

This can also be seen through the temperature profiles provided for the two runs. At 

24,000 hours and 35,000 hours the front is more advanced for sample two when compared to 

sample one due to the increase of injection rate.  

 

 
 

  

 

Figure 3.3: Temperature profile for sample one (constant injection). 
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When comparing figure 3.3 with figure 3.4, the simulation run associated with 

incremental increase of injection rate, it is evident that the temperature increases at a much 

slower rate. The combustion front can be concluded to move at a slower pace which will prolong 

the project time.  

 

 

 

  

  

 

Figure 3.4: Temperature profile for sample two (incremental increase of injection). 
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From viewing figure 3.4, it is clear how an increase of injection rate could aid the 

combustion front in a positive way which will increase the oil production rate and shorten the 

length of time of the project.  

 

The next set of figures shows that the ISC process is functioning appropriately. The 

decrease of the oil saturation in the figures representing each simulation run shows that the oil 

production has taken place in the production well.  

 

 
 

  

 

Figure 3.5: Oil saturation profile for sample two (incremental increase in injection). 
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Figure 3.6: Oil saturation profile of sample one. (constant injection). 

Again, it is evident that the oil saturation in sample two decreases faster due to the faster 

oil production which was caused by the different techniques of injection rate applied to these two 

sample simulations. 
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quality crude oil with a higher API. Just like the oil saturation, the oil viscosity of sample two 
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decreases at a faster rate when compared to sample one and that can be seen by the figures 

below. 

 

 

 

  

 

Figure 3.7: Oil viscosity profile for sample two (incremental increase of injection). 
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Figure 3.8: Oil viscosity profile of sample one (constant injection). 
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content of the injection is raised from 25 % to 50 %.  On the next page are the two oil production 

rate and cumulative oil production figures (fig 3.9 and 3.10) of sample “1” and sample “1A” to 

show the differences in oil flow rate and cumulative oil production just by raising the oxygen 

content of the injection.  
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Figure 3.9: Oil production rate of sample one with 50 percent oxygen content in injection. 
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Figure 3.10: Oil production rate of sample 2 with 25 percent oxygen content in injection. 

 

3.6 Sampling method and its use in preparing data files to be simulated 

These types of simulation runs are performed for each pattern that ranges from five to 25 

acres. Most of the simulation runs included above were done on the medium scale of pattern size 

(15 acres) but if simulations are done for the larger pattern (25 acres), the initial injection is 

raised to help sustain the combustion front for that particular pattern. For each pattern there are 

approximately 400 simulations done to ensure that all input parameters are scattered and not just 

centrally located in one area. For example, the range of porosity used in the project will be 

between 0.25 and 0.40. If 450 runs are made and 375 of those experiments used the range of  

0.25 to porosity to.30, it means the project  does not cover a large enough range of possibilities 
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to generate varied output data that can be used for the development of the artificial neural 

networks.  

When all of the simulation runs are completed, the final step of the study is the training 

and the validation of the expert system using the output data procured via the numerical 

simulator. The goal of the expert system is to be able to predict outcomes similar to those 

predicted by the simulator. The explicit objective is to reach an error difference of five percent or 

lower. However, before the numerical simulations are run, the 400 data files need to be 

generated. It can be generated manually (picking and choosing random input variables to be used 

in the runs), but this method  can create problems such as overuse of time, overlapping data files 

and random manual technique has the possibility of  not covering the whole scope of the project 

since the large spectrum of  input variable possibilities are not covered. Due to these reasons, the 

bootstrap sampling method was implemented for the project. 

In this project, there were a total of ten input variables and three output variables. Each 

input variable had its ranges, for example porosity’s range was from 0.25 to 0.40. Initial 

temperature range was from 100 F to 200 F, etc. Since the range is wide and the number of input 

variables is not small, the total number of possibilities for the input data set is huge reaching 

hundreds of thousands total possibilities (total population). The challenge was to draw a sample 

from this population which will represent each area and scope of the total population. In this 

work, only 1200 total combinations of input data files were used. However, those input samples 

did cover the scope of the total number of possibilities and represented the population well. To 

put it in simple terms, consider a government election polling from the state of Pennsylvania. 

Imagine the total votes reached five million people, and a news agency wants to see the trend of 

the poll in the early hours after the votes have been made to see which candidate will win. They 
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decide to take 50 thousand votes from all counties in Pennsylvania.  If those 50 thousand votes 

were taken only from two or three counties in the state, the wrong result might be predicted since 

it does not represent the total population well enough. On the other hand, if those 50 thousand 

votes covered all of the counties in Pennsylvania, the prediction of a correct result is much 

likelier since the sample does represent the whole state of Pennsylvania. It is the same idea in 

theory with the sampling used for this work. If of the 1200 total input data samples, the porosity 

used for the simulation runs was in the range of 0.37 to 0.40, the project’s output results are not 

wide enough to be used for a neural network model training nor is it realistic enough to produce 

an expert system. No engineer will ever consider a system close to being adequate if only 10 to 

15 percent of real-life range is analyzed. That is why before the simulations were run, it was vital 

to verify that the data files do cover the entire spectrum for input variables. 

 The sampling method used for this thesis is called the bootstrapping sampling method. 

Bootstrap is a simple and powerful type of Monte Carlo sampling method used to assess 

statistical integrity or estimate distribution from a sample’s statistics. The two assumptions of the 

Bootstrap Method are: 

1) The sample or the ranges are a valid representation of the whole population 

2) Bootstrap method will take sampling with replacement from the sample. Each sub-

sampling is independent. It means that the method assumes the sub- samples come 

from the same distribution of the population, but each sample is drawn independently 

from other samples. 
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Some examples of the uses of bootstrap method are when a user has a small sample of data that 

he is not sure of its theoretical distribution. Bootstrap method can estimate variance and mean 

average of the sample. Also, bootstrap can check if two samples come from the same population.  

The bootstrap algorithm for this project was implemented in code for MS-Excel. The 

program will first ask all input variables, ranges and distribution. Uniform distribution was 

selected. Next, the user will input the total number of samples he wants from the program. After 

a click of button, all the samples will appear in the Excel spreadsheet. Figure 3.11 on the 

following page shows the set up of the selection of the input variables and their ranges. After 

they have been selected, a number of sample data files will be generated depending on the 

amount that the user requested. 
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Name   Distribution   MIN MAX 

Oxygen content   
 

  
 

  0.21 0.50 

Permeability     500 2500 

Porosity  
 

 
 

  0.25 0.40 

Oil saturation  
 

 
 

  0.5 0.7 

Water saturation  
 

 
 

  1-oilsat 1-oil 
sat 

Initial temperature  
 

 
 

  100 200 

Initial pressure  
 

 
 

  1000 2500 

Thickness     100 150 

Area of pattern  
 

 
 

  5 25 

Injection rate  
 

 
 

  30000 75000 

       

 

Figure 3.11: Data Samples.          
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                   Figures 3.12 to 3.15 will illustrate how the simulations cover the whole spectrum of 

the ranges of the input variables. There was no bias in the sampling method that would result in 

the use of a specific area such as areas of the low range, middle range or the high range. All areas 

are evenly distributed to achieve complete coverage of these input variables. All variables and 

their ranges were well represented after using the bootstrap method. The figures will have two 

axes each showing an input variable. For example, the figure 3.12 represents the sampling 

variables of oxygen content and permeability. The range for permeability was from 750 mD to 

2500 mD. The range of oxygen content was from 0.21 to 0.50. The figure shows that every 

corner of the ranges of these two input variables has been covered. The figures on the following 

pages show similar results when checking the coverage area of other input variables. 

 

 

 

 

 

 

 

 

 

 

               Figure 3.12: Oxygen content vs permeability input variable map. 
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                          Figure 3.13: Oil saturation vs initial reservoir temperature input variable map. 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Initial reservoir temperature vs initial reservoir pressure input variable       
map. 
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                        Figure 3.15: Reservoir thickness vs injection rate input variable map. 

      

       These figures do clearly illustrate that the bootstrap sampling method did its job in preparing 

the input data for the simulations that were ran by the numerical simulator. After the simulations 

have been run, the data obtained by the simulator will be used to train the expert system until it 

learns the trends of the data and can then predict similar outcomes compared to those predicted 

by the numerical simulator. 
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Chapter 4- Development of the ANN expert system 

The development of the ANN expert system involves a basic understanding of neural 

networks. There are some rules of thumb that are important for the network such as the more 

varied and higher quality data you feed to the network for training, the quicker and more 

efficient the network will learn trends in the data to make accurate output predictions. However, 

the quality of data is much more significant in order to achieve success in building an expert 

system. Like the previous chapter mentioned, if an ANN system is given a large number of data 

for training, but the scope of the data covers only one side of the spectrum range of the input 

variables, the network will not properly learn all trends and in turn will make inaccurate final 

output predictions. Thus, the three initial steps taken in this work to ensure that the data were of 

good quality were: 

1) Ensuring that the data covered all the ranges of the input variables properly. 

2) Verifying that the data generated by the simulator were of good quality and were 

sufficient in number. 

3) Observing which simulation runs contained low quality results. After each simulation 

process was finished, one could check the material balance error of that particular run. A 

simulation run that finished with a material balance error of less than one percent was 

deemed to be of high quality. This was a challenge in the smallest pattern of five acres 

because it was rather sensitive to the injection rates. For example, if the injection rate for 

a five acre pattern was high and the oil saturation and permeability were on the lower end 

of the spectrum range, the pressure in the system would rise above realistic levels and 

cause a low quality result when verified at the end via the material balance error. In 

addition, the simulation would sometimes experience unrealistic behaviors and crash. 
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Thus, it was important to eliminate these low quality data from the data pool that were to 

be later used in the training and development of the expert system.  

 

Topological characteristics now have to be considered to build an ANN system. The total 

number of hidden layers, number of neurons, transfer functions, learning rate and momentum 

are the most important aspects of developing an ANN system. Also, the number of samples 

to be used from the data pool for training and validation needs to be determined. For each 

acreage pattern, the total number of samples ran were approximately 400 each. Initially, it 

was only 150 each, but as mentioned previously, a lower number of data samples would give 

bigger challenges in developing the expert system even if those 150 samples are of high 

quality and cover a wide range. 

 

 4.1 Expert system coverage 

The expert system to be developed will specialize in predicting three output values (oil 

and gas production and abandonment time) using ten input values in a field application of an 

in-situ combustion project. The ANN expert system will focus on fields that have medium 

permeability (500 mD) to high permeability (2000 mD). Typical porosity values will be 

tested from 0.25 to0.40 porosity. ISC has been utilized for the production of light oil 

reservoirs, however this work focuses on the production of heavy oil that employs the ISC 

technique. One of the main objectives of this neural network development is to gauge the 

importance of oxygen-enriched air in the injection process as well as the incremental increase 

of injection rates for all three different sized patterns.  Most laboratory studies have focused 
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on constant injection rates throughout the simulations, however for this work, the injection 

rates were increased after a set period of time to aid in the movement and velocity of the 

combustion front.  

 Oxygen enriched air is sometimes used in ISC projects that deals with low permeability, 

but this work will only study the effects and predict outcomes of production using varying 

degrees of oxygen enriched air in a medium to high levels of permeability. The range for the 

oxygen content of the injection is from 21% oxygen (air humans breathe) to 50% oxygen 

(enriched air).  

 

4.2 Initial steps in development of the forward model of the expert system 

The feed-forward backward propagation algorithm was used to train the expert system 

using the data generated by the numerical simulator. The output is calculated in the forward 

direction and the error is counted backwards. The number of neurons in the input layer 

represents the total number of inputs of the system (ten inputs) and the number of neurons in 

the output layers represents the total number of output values (three outputs). The number of 

hidden layers and the number of neurons in those layers are the most important in making an 

ANN expert system. The issue of overtraining and under-training is often caused by using 

too many or too few hidden layers and neurons. For a rough estimate this equation was used: 

Number of hidden neurons = ( SQRT(total of data samples) + (total inputs + total outputs) ) 
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 Another feature of the back-propagation algorithm is the transfer functions. Transfer 

functions are the basic equations that calculate the output, errors and weights in this 

algorithm. They are the links for the relationship between inputs and outputs. 

The three typical transfer functions used for this algorithm are the logsig, the tansig and the 

purelin functions. The next section focuses on the training of the expert system and the steps 

taken to ensure that the system could make accurate predictions. 

 

4.3 Training of the forward expert system 

The art of an ANN development also relies on trial and error. So, the first model was 

started with three hidden layers with 25, 15 and 20 neurons respectively. At this point of the 

training, the variable of learning rate was focused on. Learning rate in neural networks is a	  

constant used in error back-propagation learning and other artificial neural network learning 

algorithms to affect the speed of learning. The mathematics of the back-propagation 

algorithm is based on small changes being made to the weights at each step. If the changes 

made to weights are too large, the algorithm may "bounce around" the error surface in a 

counter-productive fashion. In this case, it is necessary to reduce the learning rate. On the 

other hand, the smaller the learning rate, the more steps it takes to get to the stopping 

criterion. The stopping criteria for all the expert system training in this work was set at 0.99 

in correlation factor. Initially, the learning rate was set at 1.5, and the system was training 

rather quickly. The correlation factor reached an average of 0.85 for the three outputs after 

only fifteen minutes of training and it was approaching the stopping criteria of 0.99. 

However, when the correlation factor reached higher levels, the training system started to 
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“bounce around” exactly as predicted by the theories of artificial neural networks. The next 

step consequently was to lower the learning rate to see its specific effect on the system with 

all other variables (hidden layers, neurons, and momentum) held constant. The learning 

parameter was lowered to 0.5 and the training system took a much slower approach in its 

learning process. While a learning rate of 1.5 reached a correlation factor of 0.85 after fifteen 

minutes, using this new learning rate took a significantly longer time to reach that point. This 

process was too slow so a good learning rate could be found between 0.5 and 1.5. A 

momentum variable was also added for the training process to alleviate this possible problem 

with the learning rate. 

Another challenge for the training process was that there were three data samples for the 

three different sized patterns to consider. So, an expert system that might be developed 

properly for the smaller sized pattern might not work for the largest sized pattern. This was 

encountered several times in the training process and expected from very early in the work.  

Since, the number of input and output variables were not overwhelmingly wide (ten 

inputs and three outputs), the three hidden layers were changed to two hidden layers to see if 

the new architecture could improve the final predictions. After more trial and error and 

adjustments, a final architecture was reached for all three different sized acre patterns. The 

system contains 2 hidden layers with 18 and 13 neurons respectively and a learning rate and 

momentum of 0.8. Figure 4.1 on the following page is the graphical representation of the 

final architecture for the forward expert system. 
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Figure 4.1- The final architecture for the forward model of the expert system. 
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Once this final architecture of the ANN was finalized, there needed to be a final stage of 

testing to make sure that the system provided good predictions because it properly learned the 

system instead of memorizing it. If the system memorized the data instead of learning the data, 

the “expert” system will only be valid for that particular set of data and cannot be used for any 

other sets of data. That is why this final testing stage is crucial in determining the quality of an 

expert system.  

There were 400 samples and the first 340 samples were used for training and the last 60 

samples for validation. To ensure proper learning and not memorization, the architecture was 

tested using the first 60 samples for validation and the last 340 for training. If the result predicted 

here were satisfactory, the next stage of testing was to pick out 60 random samples from the 

whole population of 400 and use them as a validation set and the rest of the samples were for 

training the expert system.  

The final architecture predicted the simulator results within the five percent error target 

and could be said as an expert system for this specific area of a forward dry in-situ combustion 

field project. The following pages will contain illustrations of the training results obtained for all 

three outputs (abandonment time, oil and gas production) for all three different sized reservoir 

patterns for the forward direction neural networks.	  
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4.4 Visual representation of the training of the forward expert system 

Figures 4.2 to 4.7 show the training process of the forward expert system. The goal of the 

training process was to reach a correlation factor of at least 0.99 and for each of these training 

figures, that goal was reached.  

 

   

Figure 4.2- Training the expert system for the cumulative gas production in 
MMSCF in the five acre pattern. 
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Figure 4.3- Training the expert system for the cumulative oil production in MSCF 
in the five acre pattern. 

 

 

Figure 4.4- Training the expert system for the abandonment time in the five acre 
pattern. 

 

 

-‐48-‐	  



	  

	  

 

 

 

 

Figure 4.5- Training the expert system for the cumulative gas production in 
MMSCF in the 15 acre pattern. 

 

 

 

 

 

 

 

Figure 4.6- Training the expert system for the cumulative oil production in MSCF 
in the 15 acre pattern. 
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Figure 4.7- Training the expert system for the abandonment time in the 15 acre 
pattern. 

 

 

4.5 The inverse model of the expert system 

The forward model of the expert system was able to predict outcomes in reservoir production 

and abandonment time given a set of reservoir properties and crucial design parameters. The 

inverse model’s aim is to predict what design decisions should be taken to reach a specified 

production target. 

For example: 

1) In a five acre pattern with a given set of reservoir properties, what should be the injection rate 

be if the target production for oil in that pattern is 20 thousand barrels? 

2) What should be the oxygen content of the injection in a given reservoir if the maximum time 

that could be spent in production is eight years? 
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These are all questions that should be able to be answered if one develops an inverse model 

for the expert system. Since most projects are oriented to reach certain goals, this 

optimization tool is a more valuable technique in real world applications. While the forward 

model lets the user understand how reservoir properties and design parameters affect the 

production outcome, the inverse model will show what design decisions need to be made to 

reach specified production goals and time constraints. The main difference between the 

forward and the inverse model is that the forward version of the expert system provides a 

unique solution to each problem while the inverse is not unique. For example, a reservoir 

with its embedded field properties will be produced using an initial injection rate of one 

million SCF/day and an oxygen content of 0.25. With these design configurations, the 

forward model of the network will give one set of solution of abandonment time and oil and 

gas production. For the example above, the oil production will be 50,000 barrels with an 

abandonment time of 7 years. When the process is switched to an inverse model and the goal 

of the project is to reach 50,000 barrels of oil produced and an abandonment time of 7 years, 

either the initial set up (an initial injection rate of 1 million SCF/day, an oxygen content of 

0.25) or a new set up with different design decisions can provide the same results.  

The inverse model of the expert system can also be used for an economical analysis of an 

in-situ combustion project. A higher injection rate and higher oxygen content in the injection will 

be costlier, but with the inverse expert system, the ANN will be able to show how these design 

decisions affect the final outcome of the project and the user will be able to analyze further the 

economic gain or repercussions of those decisions. 
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4.6 Development of the inverse expert system 

 The idea of the inverse model is to use the reservoir properties and the production results 

obtained from the numerical simulations to be used as the input of the ANN expert system, and 

the design parameters to be the output of the ANN expert system. Initially, the same architecture 

for the forward model was used for the inverse model but that attempt failed since the prediction 

results with that architecture had too many errors. The goal was the same as the forward model 

so that the ANN predictions could be five percent over or under the numerical simulations. A 

different ANN architecture needed to be constructed so that the inverse model could function 

properly. Another challenge was that one architecture had to be constructed that would apply to 

all three different sized patterns. Like the forward model, if an ANN architecture functioned 

properly for the five acre pattern, it does not necessarily mean that it would work for the other 

sized patterns. The key guidelines were followed in building the inverse model just like it was 

followed constructing the forward model and the final architecture of the inverse model was two 

hidden layers with 36 and 30 neurons respectively, with a learning rate and momentum of 0.8 

and stopping criteria of 0.99 in the correlation factor. Figure 4.8 on the following page is a 

graphical representation of the final architecture for the inverse expert system: 

-‐52-‐	  



	  

	  

 

Figure 4.8: Final architecture for the inverse model. 
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 4.7 Visual representation of the training of the inverse expert system 

The figures 4.9 to 4.11 show the training configurations of the reverse model for 

two different sized acreage patterns (five and 15 acres) and the two design decisions of 

the project (injection rate and oxygen content in injection). All trainings were stopped 

when a correlation factor of 0.99 was reached. 

 

 

Figure 4.9- Training of the initial injection rate in the five acre pattern. 

 

 

Figure 4.10- Training of the oxygen content in the five acre pattern. 
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Figure 4.11: Training of the initial injection rate in the 15 acre pattern. 
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Chapter  5 

Results and Discussion 

After all the training was performed for both the forward and the inverse model, the 

results predicted by these expert systems were compared to those results predicted by the 

simulator. The main objective is to have the expert system’s output predictions within five 

percent of the output obtained via the numerical simulator. This chapter will display those results 

as well as discuss how greatly the variables from reservoir properties and design parameters 

affect an actual in-situ combustion project. 

 

5.1 Sample compilation of the results obtained by the expert system 

Table 5.1 below presents the results of the forward model of the neural networks in the 

five acre pattern compared to the results of the simulator with the predictions of the expert 

system.  The goal of the forward neural network was to predict three production values using 

given reservoir properties and a few design parameters. The focus of Table 5.1 is solely on the 

oil production of the five acre pattern.  From Table 5.1, the reader can understand where the 

ANN vs simulator figures shown later in the chapter was drawn from. This is one such example. 

Table 5.1 Oil Production results for the five acre pattern. 

CMG	  (MSCF)	   ANN(MSCF)	   Percent	  error	  
612.3400	  
574.9000	  
483.2700	  
441.9900	  
768.3700	  
784.8100	  

612.088	  
571.6871	  
481.3927	  
447.6606	  
739.8034	  
842.8161	  

0.041177	  
0.562012	  
0.389964	  
-‐1.26673	  
3.861372	  
-‐6.88242	  
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669.7100	  
904.2500	  
969.8600	  
574.4000	  
460.4750	  
708.6100	  
585.3200	  
565.7400	  
864.5600	  
766.6700	  
573.8200	  
549.6200	  
773.1000	  

1037.8000	  
958.7900	  
942.7300	  
862.8500	  
576.2500	  
769.8700	  
735.5400	  
678.7300	  
672.1100	  
889.1700	  
739.9500	  

1295.0800	  
533.0330	  
809.3500	  
604.6400	  
561.9200	  

1125.4700	  
1329.4800	  
608.8800	  
606.5200	  
868.6400	  

1010.8700	  
468.2900	  
430.0450	  
821.1900	  

1059.9300	  
533.1850	  
663.9400	  

	  

665.1587	  
909.0428	  
965.0507	  
561.9175	  
450.3656	  
723.8886	  
594.9556	  
556.2779	  
856.0879	  
765.7743	  
579.1794	  
550.5023	  
751.1012	  
1028.408	  
967.4208	  
941.3574	  
865.1783	  
579.6248	  
762.2113	  
754.2821	  
685.1519	  
686.9076	  
872.4052	  
740.624	  

1267.078	  
525.8835	  
786.8874	  
596.7169	  
551.2528	  
1133.368	  
1284.611	  
607.3914	  
608.795	  

876.6224	  
984.2297	  
470.5176	  
425.2285	  
841.0715	  
1094.535	  
525.0016	  
627.893	  

	  

0.684243	  
-‐0.52724	  
0.498349	  
2.221417	  
2.244703	  
-‐2.11062	  
-‐1.61955	  
1.700963	  
0.989636	  
0.116963	  
-‐0.92535	  
-‐0.16027	  
2.92888	  

0.913295	  
-‐0.89215	  
0.145809	  
-‐0.26912	  
-‐0.58224	  
1.004803	  
-‐2.48476	  
-‐0.93729	  
-‐2.15424	  
1.921678	  

-‐0.091	  
2.209958	  
1.359525	  
2.854617	  
1.327784	  
1.935091	  
-‐0.69683	  
3.492808	  
0.245084	  
-‐0.37369	  
-‐0.91058	  
2.706712	  
-‐0.47344	  
1.13268	  
-‐2.36383	  
-‐3.1616	  
1.55874	  

5.740946	  
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By observing Table 5.1, the accuracy of the forward model for the five acre pattern 

predicting oil production is accurate. The biggest prediction error in the table is at 6.83 percent 

which means the average error for this expert system is well below five percent. From this table, 

this compact ANN figure was created. All ANN figures use the blue to denote the numerical 

simulation and the red to denote the ANN predictions):  

 

             Figure 5.1: Oil production (MSCF) vs number of validation data. 

 

This is just one figure showing the accuracy between the numerical simulation and the 

ANN predictions. From Figure 5.1, one can see the accuracy of the expert system when 

compared with the numerical data simulation.  The remaining ANN vs simulator figures will be 

presented later in the chapter to show the accuracy of the expert system, however, a discussion 

on the effects of reservoir properties and design parameters will be presented first to give a better 

understanding on their role in the process of dry forward in-situ combustion. 
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5.2 Reservoir properties effects on ISC projects 

There are many factors that affect the oil production for an in-situ combustion project. 

The main reservoir properties that affect oil production are the oil saturation, the porosity and the 

thickness of the reservoir. These three properties are the more important factors when an in-situ 

combustion project is considered.  

The figures 5.2 to 5.4 on the following pages show how these three factors can affect oil 

production. As mentioned before, these three reservoir properties are some of the first few 

reservoir properties to be inspected before a decision on a production product is made since they 

are vital to a project’s success. 
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Figure 5.2- Effects of porosity on oil production. The top graph had a porosity of 0.25 and the 
bottom graph a porosity of 0.30. 
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Figure 5.2 shows how the results for oil production will be different with each variable 

held constant except porosity which was raised from 0.25 to 0.30. The difference of oil 

production is more than one million MSCF.  

Figure 5.3 on the next page shows how oil saturation can affect oil production: 

 

 

 

Figure 5.3- when oil saturation was raised from 0.65 to 0.70. The top graph has an oil saturation 
of 0.65 and the bottom graph has oil saturation of 0.70. 
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Just by raising the oil saturation by 0.05, an extra 200,000 SCF of oil would be produced. 

Another obvious reservoir property that affects oil production is the thickness of the formation. 

The thicker the formation is, the more oil in place (OOIP) the reservoir has. These three reservoir 

properties were arbitrarily selected for this project but in real life projects the reservoir thickness 

is one of the first things a reservoir engineer looks for as they are critical in the determining the 

success of an oil production project.  

 Permeability is the next reservoir property variable to be examined. From the simulations 

performed for this work using a permeability range of 500mD to 2500 mD, permeability has a 

role in the abandonment time of the project and also the economics. If the permeability is too 

low, it has to be offset with a higher injection rate and possibly more oxygen content to aid in the 

combustion movement in the reservoir which will in turn make the project more expensive. 

Since the stopping criteria for the simulations is if the producer well reaches 550 degrees F, a 

low permeability in the reservoir will take longer to reach that threshold than a reservoir with a 

higher permeability. Consequently, if a 25 acre pattern is designated to be produced in only 10 

years and no more, and the economic constraints do not allow a higher injection rate nor a high 

oxygen content of the injection, the combustion front will not reach that 550 degree threshold 

and will decrease the overall production in the reservoir since the combustion was not 

maximized. 

Another way to view the situation is what happens when two reservoirs with differing 

permeability reach the threshold temperature of 550 degrees in the production well with every 

reservoir property and design parameter held constant. The overall cumulative oil production 

will stay the same, but the production rate will be higher since the reservoir with the higher 

permeability will reach the production well threshold of 550 degrees F quicker. On the next page 
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is an illustration of how permeability alone can affect the shape of the production and how fast it 

can be done. Overall production is more or less the same, but the time that it takes to produce 

theoil is different. The first graph is a production profile of a reservoir with permeability of 1000 

mD and the second graph is the same reservoir in terms of all the properties and design 

decisions, except this time, the permeability was raised to 1500 mD. 

 

 

 

Figure 5.4- Permeability effects. The top graph used a permeability of a 1000 mD and the bottom 
graph used a permeability of 1500 mD. 
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 From looking at the figures of the permeability effects, the difference in abandonment 

time is not too significant but it is present. The first graph with 1000 mD finished overall 

production in 80,000 hours or 9.20 years while the second graph with a permeability of 1500 mD 

finished producing after 74,000 hours or 8.44 years.  

5.3 Design parameters affecting ISC projects. 

         Permeability is a reservoir property that affects the speed of the oil production; however, it 

is not as influential for the role of production speed when compared to either injection rate or the 

oxygen content of the injection. Again, this is a give and take situation since increasing injection 

rate and oxygen content in the injection will speed up the production process but, unlike 

permeability, these two design parameters come with a cost. It is not necessarily beneficial to 

neither maximize the oxygen content nor the rate of injection due to this reason. For example, an 

oxygen content of 0.50 will make the project time shorter while producing a similar amount of 

oil when compared to the slower process of 0.21 oxygen content. But will the saved time in the 

project cover the cost of the higher oxygen content usage?  That question could be answered with 

an economical model that studies these two decisions. So, for a given reservoir, it is conceivable 

that the ideal solution to maximize profit could either be the minimum oxygen content in 

injection and injection rate, the maximum or somewhere in between. This work does not focus 

on the economic model of the reservoirs, so the next set of figures will only show how injection 

rate and oxygen content of injection will affect abandonment time and production rate. To 

demonstrate the effects of the oxygen content, the first graph is a simulation run with an oxygen 

content of 0.23 and the second graph is a simulation run using 0.50 oxygen content. Both figures 

(will be shown on the next page). 
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Figure 5.5 – Oxygen content effects on oil production. The top graph uses 0.23 oxygen content 
and the bottom graph uses an oxygen content of 0.50. 
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              One can see the effects of using higher oxygen content in this example. The oil flow rate 

using lower oxygen content was significantly lower than when using higher oxygen content. This 

is due to the slower combustion front movement when using lower oxygen content. Also, using 

lower oxygen content in injection made the project approximately three years longer when 

compared to the simulation that used a higher oxygen content of injection. In accordance with an 

ISC study (Adewusi et al,2002), the increase of injection rate will yield an earlier time of oil 

production when compared to regular air injection processes. Not only that, the oil produced will 

have lower viscosity and a higher API gravity level due to the faster velocity of combustion. 

       The next area to be examined is the injection rate and how it affects the oil flow rate and 

abandonment time. One thing to consider is that this work deals with three different sized acre 

patterns. So, the injection rate was adjusted for each pattern. Each pattern features an initial 

injection rate and naturally the bigger patterns have the largest initial injection rate. Furthermore, 

the simulations used the technique of the incremental increase of injection for each simulation 

run. The rate of increase of the injection rate also differed when performing a simulation run of a 

bigger pattern size. For example, for the smallest pattern of five acres the initial injection rate 

was 150,000 SCF/day and used an incremental increase of 250,000 SCF/day per year. The 25 

acre pattern used an initial injection rate of 300,000 SCF/day while using an incremental increase 

of 500,000 SCF/day per year. If the incremental increase was kept constant for all the patterns, 

the largest pattern would suffer in its production due to its larger radius of the combustion front. 

Thus, an adjustment was made to make the incremental increase of injection rate bigger for the 

bigger sized pattern due to this logic. Most laboratory tests have used constant injection rates to 

study the behavior of in-situ combustion projects and some runs of those types were made for 
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comparison purposes. Figure 5.6 on the next page show how production rate and abandonment 

time are affected when both techniques are used (constant injection and incremental increase of 

injection rates. 
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Figure 5.6 – Incremental increase in injection effects on oil production. The top graph uses the 
incremental increase of injection rate while the bottom graph uses constant injection. 
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                If the incremental increase in injection rate is kept constant for all the different sized 

acres, the production in the larger sized patterns will surely suffer as the combustion front 

movement in the larger pattern will not be fast enough. Since the larger patterns cover a larger 

space, with a lower rate of injection, the combustion front will not move as well and affect oil 

production. If the incremental rate of injection rate is too high for the smaller sized patterns, too 

much of the oil in place will be burned and it will also affect the oil production adversely. In 

addition, the operational costs with those higher injection rates will rise. Thus, it is important to 

have different initial injection rates and also differing incremental increases in the injection rates 

for different sized patterns with the larger patterns obviously having a larger initial injection rate 

and a larger gap between their periodical increases in injection rates. 

          The last variable to be discussed is the size of the pattern in which in-situ combustion will 

be used in. If a reservoir engineer decides to use a series of small patterns, there will be a need to 

use more injection and production wells over the whole field than if using a larger sized pattern. 

Again, this is where economic analysis can show which technique would maximize profit. The 

high costs of using more wells (injector and producer) will be offset by the shorter abandonment 

time when using those smaller sized patterns. There will be less worry about increasing interest 

rates, damage of equipment when compared with projects that have a longer project time. 

Another advantage of lowering the abandonment time is that a reservoir engineer can more 

quickly evaluate the project’s success rate, another important aspect of the economics of 

petroleum. A shorter abandonment time will allow the reservoir engineer to know if the 

remaining prospect of the project will be profitable. The figures on the next page show the 

production profile when using three different sized patterns of five acres, 15 acres and 25 acres 

respectively. 
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Figure 5.7 – Pattern size effects on oil production (five acre pattern). 
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Figure 5.8: Pattern size effects on oil production (15 acre pattern). 
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Figure 5.9:Pattern size effects on oil production (25 acre pattern). 
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5.4– Neural network results. 

 Now that the reader understands how the factors predicted in the expert system affect the 

general ongoing of an in-situ combustion project, this section will provide graphs to show how 

the expert system was able to function and predict the rest of the variables and design decisions 

in all the different sized patterns 

 

5.4.1 Results of the forward model of the expert system  

These figures on the following pages are results of the validation data for the forward 

ANN developed for the five acre 15 acre and 25 patterns. They all use two layers in the 

architecture with 18 and 13 neurons respectively and a learning rate and momentum of 0.8. The 

transfer function used for both layers was the sigmoid transfer function. The stopping criterion 

was when the correlation factor reached 0.99. 
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Figures 5.10 to 5.12 represent the validation data results for the five acre pattern. The 

blue lines represent the results from the CMG simulation and the red lines represent the data 

predicted by the ANN. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Figure	  5.10:	  Total	  time	  of	  project	  (hrs)	  vs	  the	  number	  of	  validation	  data.	  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Figure	  5.11:	  Cumulative	  gas	  production(MMSCF)	  vs	  number	  of	  validation	  data	  .	  
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Figure	  5.12:	  Cumulative	  oil	  production	  (bbl)	  vs	  number	  of	  validation	  data.	  

	  

The	  next	  set	  of	  figures	  of	  5.13	  to	  5.15	  represents	  the	  validation	  data	  for	  the	  15	  acre	  pattern	  of	  

the	  project	  still	  predicting	  the	  three	  outputs	  of	  oil	  production,	  gas	  production	  and	  abandonment	  time.	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Figure	  5.13:	  Total	  time	  of	  project	  (hrs)	  vs	  number	  of	  validation	  data.	  
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Figure	  5.14:	  	  Cumulative	  gas	  production	  (MMSCF)	  vs	  number	  of	  validation	  data.	  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Figure	  5.15:	  	  Cumulative	  oil	  production	  (bbl)	  vs	  number	  of	  validation	  data.	  
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Now	  for	  the	  25	  acre	  pattern	  and	  its	  three	  output	  results	  of	  oil	  production	  gas	  production	  and	  

abandonment	  time	  represented	  by	  figures	  5.16	  to	  5.18:	  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Figure	  5.16:	  Total	  time	  of	  project	  (hours)	  vs	  number	  of	  validation	  data.	  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Figure	  5.17:	  Cumulative	  gas	  production	  (MMSCF)	  vs	  number	  of	  validation	  data.	  
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Figure5.18:	  Cumulative	  oil	  production	  (bbl)	  vs	  number	  of	  validation	  data.	  

	  

         For the forward model and the three different acreage sizes, the results showed that the 

architecture was stable. The largest error for the forward model was just over seven percent and 

the average error for each pattern was below five percent. Due to these statistics, the 

development of the forward model was finalized and the focus was shifted into checking the 

more challenging inverse model results. 

5.4.2 – Results of the inverse model of the expert system 

The next set of figures from 5.19 to 5.24 represents the validation data for the inverse 

model of the ANN for the five, 15 and 25 acre patterns. The design decisions to be predicted 

were initial injection rate and oxygen content of injection in the producer.  The architecture used 

for the inverse model was different. It used the same two layers but the number of neurons for 

each layer was 36 and 31 respectively. A learning rate and momentum of 0.8 were used along 

with the stopping criteria of 0.99 correlation factor. The transfer functions used for each hidden 

layer were also the sigmoid function. 
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Figure	  5.19:	  Oxygen	  percentage	  in	  injection	  (pct)	  vs	  number	  of	  validation	  of	  data.	  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Figure	  5.20:	  Initial	  injection	  rate	  (SCF)	  vs	  number	  of	  validation	  data.	  
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Now	  for	  the	  15	  acre	  pattern:	  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Figure	  5.21:	  Oxygen	  content	  of	  the	  injection	  vs	  number	  of	  validation	  data.	  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Figure	  5.22:	  Initial	  injection	  rate	  (SCF)	  vs	  number	  of	  validation	  data.	  
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Now	  for	  the	  25	  acre	  pattern:	  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Figure	  5.23:	  Oxygen	  content	  in	  injection	  vs	  number	  of	  validation	  data.	  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Figure	  5.24:	  Initial	  injection	  rate	  (SCF)	  vs	  number	  of	  validation	  data.	  
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As one can see, the accuracy of both forward and inverse expert systems was sufficient. 

The forward model was more accurate because the neural network predicts a unique solution 

while for the inverse model, the solution is not unique. Also, since the solutions are not unique 

for the inverse model, some the results were then fed back to the simulator to verify if the 

production and abandonment time matched the expected values. Just by verifying the statistics of 

the inverse model, for all the three different sized patterns, the largest error was at 12 percent. 

However, the average error was still below the target of five percent. The final statistics also 

reinforced the fact that the inverse model is a more challenging task to complete. The average 

error for the forward model was well below five percent, but the average error for the inverse 

model just was below the five percent target.  
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Conclusions 

 

              In this study, the importance of several reservoir properties in the in-situ combustion 

process has been established. Furthermore, it is seen that ISC processes are driven by the 

injection parameters of the project such as the injection rate and the oxygen content of the 

injection. A total of 1200 reservoir systems were ran via a thermal simulator and its results of oil 

and gas production as well as their abandonment time were used for training and validating of 

the expert system.   

 Due to the large number of data and its wide scope of range, the forecasting of results of 

production that was obtained via the development of the expert system needed to be tested even 

more. This was done by testing the expert system against randomized input variables that were 

within the original range of each input variable but with a combination that the expert system had 

never seen before. After obtaining the results via the numerical simulator, the predictions of the 

expert system were very similar to those simulator results.  

 The inverse model was also developed for this in-situ combustion project predicting what 

design parameters injection rate and oxygen content of injection) needed to be taken to reach a 

specified production goal. This aspect of the expert system is imperative for later development of 

an optimization model and a detailed economical analysis for this particular work. The following 

conclusions were reached after studying the forward in-situ combustion process of heavy oils of 

medium to high permeability: 
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1) Oil saturation, formation thickness, and porosity are the most important reservoir 

properties for production since it indicates how much oil/gas is inside the system initially. 

2) Permeability plays a decent role in speeding up the process of production and will save 

time for the project to enhance profit. 

3) Injection rate and the oxygen content of the injection are the most influential design 

parameters in an in-situ combustion project. Too high of an injection rate will burn too 

much of the oil in place and not enough injection rate will stunt the movement of the 

combustion front. Both problems will lead to inefficient production. 

4) Building the expert system for both the forward and the inverse models required testing 

the output results so that the system did not over/under-train. Therefore, the selection of 

the number of hidden neurons is crucial. The wrong choice will lead to over or under-

training. Firstly, the samples to be run need to cover both extremes of the spectrum of the 

input variables’ range and secondly, the expert system needs to be validated by checking 

its output prediction capabilities with randomized input data. It ensures that the expert 

system does not only memorize a particular section of the data field but the whole area of 

the field. 

5) The forward model of the ANN provides a unique solution in the prediction while the 

inverse model does not.  

6) There needs to be an adequate economical analysis to determine which combination of 

variables provides the most profitable solution. For a specific field, a five acre pattern 

configuration could be the best, while for some other fields a 25 acre pattern 

configuration is most efficient. 
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7) Incremental increase of the injection rate should be used due to the continually increasing 

radius of the combustion front. If the injection rate is constant throughout and it is too 

high at the start, too much oil could be burned which will reduce the overall oil 

production, but if the injection rate is not sufficient, the combustion front will be slowed 

down significantly in the later stages of the project and will negatively impact the 

production of the reservoir as well. 

8) This work lays the base foundation for future work in this area. By reading this thesis, 

one should understand the main factors that affect the ISC process as well as how inputs 

and outputs need to be used to create an accurate expert system. 
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Limitations and future work possibilities 

1) The expert system developed is for one type of heavy oil. A study could be made for 

various fluids in reservoirs ranging from light oil to medium-heavy oil. 

2) The study concentrated on reservoirs of medium to high permeability and a study can be 

extended in inspecting reservoirs with low permeability. 

3) The reservoirs studied were of the constant porosity type. Perhaps, another study could be 

done for reservoirs with variable porosity levels. 

4) No economical analysis was done for this work, however the foundations to building an 

economical analysis model were made after developing the inverse expert system. 

Economical analysis is a key component of the reservoir engineer as financial support is 

the backbone of any EOR processes and especially for in-situ combustion since not many 

field scale projects have been done using this technique when compared to steam or CO2 

injection. 

5) The well configurations could also be added for future studies. In this work, a 

conventional five spot setting was used with one injector in the center and four producers 

on the corners. A nine spot pattern could be added for study as one of the design 

parameters of an in-situ combustion project.  
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