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Abstract

Process adjustment techniques based on the feedback control principle have be-

come popular among quality control researchers and practitioners, due to the recent

interest on integrating Statistical Process Control (SPC) and Engineering Process Con-

trol (EPC) techniques. Traditionally, quality engineers, who are more familiar with

SPC methods, avoid using process adjustment methods because of process tampering

concerns. This has resulted in very few systematic studies on how to apply process

adjustment strategies for continuous quality improvement. Most of the work in this

area concentrates on chemical processes which typically have long production runs. This

thesis focuses on studying sequential adjustment methods, closely related to well-known

Stochastic Approximation procedures, for the purpose of quality control of a short-run

manufacturing process.

First, the problem of adjusting a machine that starts production after a defective

setup operation is considered. A general solution based on a Kalman Filter estimator

is presented. This solution unifies some well-known process adjustment rules, and is

a particular case of Linear Quadratic (LQ) control methods. In essence, this solution

calls for a sequential adjustment strategy which recursively calculates the value of an

adjustable variable according to the prior knowledge of this variable and the most recent

observation from the process.

Next, the integration of sequential adjustments with SPC control charts are in-

vestigated for controlling an abrupt step-type process disturbance on a manufacturing
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process. The performance of this type of integrated methods depends on the sensitivity

of the control chart to detect shifts in the process mean, on the accuracy of the initial

estimate of shift size, and on the number of sequential adjustments that are made. It is

found that sequential adjustments are superior to single adjustment strategies for almost

all types of process shifts and shift sizes considered. A combined CUSUM chart plus

sequential adjustments approach has better performance than other methods when the

shift size is not very large.

If there are different costs associated with a higher-than-target quality character-

istic compared to a lower-than-target quality characteristic, that is, an asymmetric cost

function, the adjustment rule needs to be modified to avoid the quality characteristic

falling into the higher cost side. For this case, a sequential adjustment rule with an

additional bias term is proposed. A method to determine these bias terms is developed.

Furthermore, the effect of process measurement and adjustment costs on the decision of

whether or not to apply adjustment actions at each sampling instant is investigated. A

modified Silver-Meal scheduling algorithm is found to be good at providing robust and

close-to-optimal adjustment schedules for this problem.

Finally, methods for identifying and fine-tuning a manufacturing system oper-

ating in closed-loop are studied. When a process is operated under a linear feedback

control rule, the cross-correlation function between the process input and output has

no information on the process transfer function, and open-loop system identification

techniques cannot be used. In this research, it is shown that under certain general as-

sumptions on the controller and process disturbance structure, it is possible to identify

the process disturbance models from data obtained under closed-loop operation. After
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identification, it is proposed to tune the controller to a near-optimal setting according to

a performance criterion that considers both the variance of the output and the variance

of the adjustments.

In summary, a collection of mathematical models for short-run manufacturing

processes are proposed and studied systematically in this thesis. It is demonstrated that

by implementing proper adjustment strategies the stability of the process can be better

maintained; thus, significant economic benefits obtained from the consistent quality of

products will be achieved. This research contributes directly to the quality improvement

program of the manufacturing industry and to the field of applied statistics.
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Chapter 1

Introduction

1.1 Motivation

With growing competition in consumer markets, today’s manufacturers over-

whelmingly rely on the quality of their products and service for survive and success.

This research is motivated by the characteristics of modern manufacturing environments,

where the life cycle of products has decreased rapidly and customized short-run man-

ufacturing processes have become quite common for achieving customer satisfactions.

The objective of this thesis is to develop and study some statistical process adjustment

strategies used to maintain a manufacturing process on its stable and desirable level of

performance.

An industrial process is any production activity that comes in physical contact

with hardware or software that will be delivered to an external customer (Harrington

[47]). Although it is commonly accepted that in order to produce high-quality products

it is critical to maintain the stability of the manufacturing process and to make it robust

to external disturbances that may drive the process off-target, a traditionally-trained

quality engineer or quality manager does not consider process adjustments as potential

tools for continuous quality improvement. On the other hand, the techniques of Auto-

matic Process Control (APC), or Engineering Process Control (EPC), have been long

adopted by process engineers, who mostly concentrate on on-line process adjustments
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according to the type of disturbance on the process. The barrier between these two

groups is mainly caused by their different interpretations of process models instead of

their ultimate goals.

In this thesis, a typical manufacturing process is viewed as a stochastic process,

in which, due to the inherent process variation and measurement variation, some process

parameters cannot be observed directly. Traditional Statistical Process Control (SPC)

methods assume that as long as the process is stable and within statistical control, the

remaining observed variability is uncontrollable; therefore, no further process adjustment

actions are able to reduce the process variance. Even when the process is deemed to be

out-of-control, no adjustment strategies are explicitly specified in the SPC literature.

However, in a modern manufacturing environment, many assumptions used by SPC

are no longer valid. First, new manufacturing methods and sensor technologies often

imply that the values of the quality characteristic of a process are serially correlated in

time. Therefore, by applying a properly designed adjustment scheme, process variance

revealed by the quality data could be reduced. Second, in order to satisfy more and more

specific customer demands, customized short-run manufacturing operations have been

widely adopted by many companies. Short-run manufacturing processes imply the high

frequency of process setups, and thus a higher possibility of systematic process errors,

which, in turn, could drastically deteriorate product quality if the process is not adjusted

in time.

The technologies for implementing on-line adjustments on a manufacturing line

are available and usually are inexpensive. It is reasonable for a quality engineer to be

aware of their importance instead of ignoring them.
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1.2 Identification of the Problems under Study

1.2.1 Process monitoring

Traditional SPC methods provide a group of statistical tests of a general hypoth-

esis – that the mean value of the quality characteristic of a process, or process mean for

short, is consistently on its target level. A variety of graphical tools have been devel-

oped for monitoring a process mean, e.g., Shewhart charts, CUSUM charts, and EWMA

charts.

Shewhart charts, first introduced by W.A. Shewhart [87] in 1930’s, plot either

the individual process measure or the average value of a small sample group (usually

not more than five samples) along with the target level and control limits. Under the

assumption that the plotted data are normally distributed around the process target

when the process is within statistical control, the possibility of observing a point that is

out of the three-sigma control limits is less than 2.7 in a thousand. Therefore, when an

out-of-control-limit point is indeed found, it signals an out-of-control alarm and calls for

an investigation on the process. In principle, a Shewhart chart can be used for detecting

any type of process abnormality; however, it is not the most effective tool for some

common process errors, such as a small shift in the process mean.

The process mean is desired to be maintained at its target level consistently;

however, random process errors, or random “shocks”, could shift the process mean to an

unknown level. A control chart is required to detect this shift as soon as possible. At

the same time, it should not signal too many false alarms when the process mean is on

the target. These criteria are usually defined in terms of the Average Run Length of the
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control chart for the in-control operation and out-of-control operation of the process, i.e.,

in-control ARL and out-of-control ARL, respectively. When a shift in the process mean

is to be detected and the size of the shift is known, then a cumulative sum (CUSUM)

control chart is the most efficient method according to its ARL properties (Basseville

and Nikiforov [9]).

CUSUM charts were first introduced by Page [77] and its procedure can be seen

as equivalent to applying a sequential likelihood ratio test for a shift in the process

mean (see, e.g., Barnard [8], Ewan and Kemp [38]). A CUSUM chart monitors the

accumulated process deviation after the process is determined to be in the in-control

state. The parameters of a CUSUM chart can be assigned such that this chart is the

optimal likelihood ratio test on a particular shift size at each time.

The Exponentially Weighted Moving Average (EWMA) chart can be seen as a

variation of the CUSUM control scheme. Based on the assumption that the most recent

observed process deviation can have more information on process errors than the previous

deviations, we may assign different weights to data according to their recorded time. An

EWMA scheme lets the weights decrease exponentially with the age of each point, while a

CUSUM scheme keeps the same value for the weights. A Shewhart scheme, in contrast,

assigns the total weight to the most recent observation and zero to others. Usually,

an EWMA chart can be designed to have similar ARL properties as a CUSUM chart

through simulation studies (Crowder [25]).

For the quality control of a manufacturing process, one essential task is to detect

and remove any possible abnormal change in the process mean. However, a control chart

alone does not explicitly provide a process adjustment scheme even when the process
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mean is deemed to be off-target. The lack of an adjustment scheme in SPC applications

may cause a large process off-target cost, a problem of particular concern in short-run

manufacturing. Therefore, it is of importance to explore some on-line process adjustment

methods that are able to remove various types of process errors quickly and keep the

process mean right on a desirable level with relatively small effort.

1.2.2 Process adjustment

Suppose a shift in the mean of a process has been detected using a SPC scheme.

The next task is to adjust the process. There are two generic steps in process adjustment:

one is to estimate the shift size in the process mean and the other one is to take an action

on the manufacturing process to remove the error. Since the shift size is an unknown

parameter due to the inherent process variation and measurement variation, it has to

be estimated based on the data collected on-line. Therefore, a good process adjustment

strategy must take the uncertainty of the parameter estimate into consideration. It

seems reasonable to apply a sequence of adjustments, which refine the estimate of the

shift size over a period of time when an initial parameter estimate is imprecise.

In this thesis, we consider a sequential process adjustment strategy based on the

Stochastic Approximation (SA) technique. Stochastic approximation was first intro-

duced by Robbins and Monro [79], who studied the following problem. Suppose x is a

controllable factor taking values on the real line and y is a measurable process output

that is desired to be on target T . Assume that the following relation holds:

yt = M(xt−1) + εt (1.1)
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where M(·) is a general regression function of y on x. A value θ corresponds to a value

of x such that M(x) = T , and εt is a random variable with mean value of zero. The

question is how to design a sequence of input variables xt so that yt will converge to

its target in mean square. After further assuming that the regression function is such

that M(x) ≤ 0 if x < θ and M(x) ≥ 0 if x > θ, and that the distribution function of ε

has finite tails, Robbins and Monro designed the controllable factor x in the following

recursive fashion (this is the so-called R-M process):

xt+1 = xt − at(yt − T ), (1.2)

where the coefficient sequence {at} must satisfy the following conditions:

at → 0,
∞∑
t=1

at = ∞, and
∞∑
t=1

a2
t

< ∞.

These conditions guarantee the convergence of xt to the root θ in mean square, i.e.,

limn→∞E[(xt − θ)2] = 0. More SA procedures and asymptotic convergence properties

of SA were developed in subsequent research (see, e.g., Blum [11], Chung [23], Dvoret-

zky [36], Fabian [39], Lai and Robbins [59, 60]).

For the problem of applying quality control on a process having mean shifts, we

assume that there exists a controllable factor on the process which has a direct effect on

the process mean. Then, a sequence of adjustments on this factor which take the form

of equation (1.2) can be used to remove the mean shift eventually. As will be shown in
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Chapter 3, this process adjustment method can be derived from the well-known Kalman

Filter technique and several existing adjustment methods can be unified.

The topic of process adjustment is typically in the reign of the EPC literature. In

contrast to SPC, EPC promotes active regulation actions on a manufacturing process,

because it assumes that without active control the process will be either unstable or

highly correlated. However, it is well-known that when a process is in the state of

in-control, frequent adjustments will inflate the process variance and thus increase the

process off-target quality cost. Ironically, it has been reported in some manufacturing

case studies that switching down the automatic process controller is a way to improve

overall product quality (Kramer [56]).

Although both EPC and SPC are aimed at enhancing the consistency of the

process by reducing the variation of the quality of the products, they take different ap-

proaches based on their different assumptions on the process model. For the problem of

quality control of a process which experiences random mean shifts, an integration method

of control charts and sequential adjustment schemes will activate control actions only

after the process has been statistically tested to be in the state of out-of-control. There-

fore, this method is expected to have a better performance in the sense of minimizing

the process off-target cost than applying an automatic control alone.

1.2.3 An example: a modified Deming’s funnel

In this section, we demonstrate the significant effect of process adjustments on

process quality control through a modified version of Deming’s funnel experiment (this

experiment is also discussed in Del Castillo [31]). The original version of the funnel
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Fig. 1.1. Funnel experiment setup (Adapted from Davis [28])

experiment was described by Deming [34] and has become a classic example for Deming’s

principles of quality improvement. The experiment was conducted by mounting a funnel

over a target bull’s eye placed on a flat surface. Marbles were consecutively dropped

through the funnel, and their position with respect to the target was measured (see

Figure 1.1). The goal of this experiment is to minimize the deviations of the marble’s

resting positions to the target.

However, in this modified version of Deming’s funnel experiment, we suppose the

funnel is initially off-target and the direction and magnitude of this offset are unknown.

We drop 50 marbles through the funnel. Three adjustment strategies are considered in

this computer experiment: i) no adjustments, ii) at most one adjustment, and iii) a few

sequential adjustments. If the funnel is not adjusted, it is obvious that the dropped

marbles will congregate in a small region around the initially biased position away from

the true target as shown in Figure 1.2a. Figure 1.2b shows the result after one full

adjustment on the funnel is made according to the first observation, i.e., the funnel was

relocated onto the opposite position of the first dropped marble (such an adjustment
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Fig. 1.2. Off-target Deming’s funnel experiment. a. no adjustment; b. one adjustment;
c. five sequential adjustments

scheme was advocated by Taguchi [97] and criticized by Luceño [68]). In Figure 1.2c,

five sequential adjustments on the funnel position are conducted, one for each of the first

five marbles (i.e., the funnel is not adjusted for the remaining 45 marbles). Let pt be the

position of the tth marble, measured relative to the target. The five adjustments used

in the simulation follow the harmonic sequence {−p1, −p2/2, −p3/3,−p4/4, −p5/5}.

This is an adjustment strategy proposed by Grubbs [44] which will be studied in more

detail in Chapter 3. By comparing Figures 1.2b and c, it is clear that one adjustment is

inadequate while five sequential adjustments are able to bring the funnel very close to

its real target.

In practice, SPC control charts can be used to detect the shift in process mean

and to estimate the initial value of the shift size, and sequential adjustments can then be
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conducted to reset the off-target process back on-target. It is evident that the in-control

and out-of-control ARL performance of the control chart will affect the overall perfor-

mance of the integrated scheme. The performance of this type of integrated schemes

need to be studied under a variety of shift sizes in order to apply it on general cases.

In Chapter 4, the performance of several combinations of control charts and sequential

adjustment methods are evaluated by simulation.

1.2.4 Cost considerations

In previous sections, we related the quality cost to the squared deviation of process

measure from its target value because customer satisfaction usually deteriorates very

rapidly when the quality characteristic of a product is away from its specification. This

relation was originally advocated by Taguchi [98]; thus, it is often called the “Taguchi’s

quality loss function”.

For a Taguchi-type cost function, the quality cost associated with over-adjusting

a process and the cost associated with under-adjusting are assumed to be symmetric

around the process target. This assumption is frequently violated in some real manu-

facturing settings. For instance, consider a drilling process on a pre-machined part. An

under-size hole may be repaired by another refining machining process, but an over-size

hole is cannot be recovered and may result in scrapping the whole part. Therefore, there

are different cost implications associated with different types of process deviation from

its target. It is necessary to modify the sequential adjustment schemes for a process with

an asymmetric quality cost function.
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Other costs besides the process quality cost need to be included at evaluating the

benefit of any adjustment scheme. When either process measurement cost or process ad-

justment cost is significant in nature, frequent adjustments may not be desirable. Under

such cost structures, problems such as determining the optimal number of adjustments

or whether or not to skip an adjustment are worth of investigation. Some modified se-

quential adjustment schemes according to a variety of cost functions will be addressed

in Chapters 5 and 6 of this thesis.

1.2.5 Closed-loop processes

In many industrial instances, manufacturing processes are operated under the

adjustments of a pre-defined controller, but the controller works in an ad hoc manner,

i.e., it is designed to stabilize the process but it is not an optimal control rule in any sense.

In this closed-loop system, the process output is usually autocorrelated. Properties of

the closed-loop system need to be examined in order to improve the performance of any

on-line process controller.

However, it is well-known that the closed-loop identification is very difficult be-

cause of the collinearity between the input and output data. Most of the existing tech-

niques for process identification require the process to be operated in an open-loop man-

ner when the process data are collected, but this could be too expensive, particularly

when the process is not stable on its own. Therefore, identifying the stochastic model of

a process operating in closed-loop and then optimizing the controller’s performance is a

practical issue for process quality control.
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1.3 Research Objectives and Contributions

The overall goal of this research is to develop advanced statistical process adjust-

ment methods for application in short-run manufacturing processes. More specifically,

the following research objectives will be addressed:

1. Sequential process adjustment methods using Stochastic Approximation

A unifying view of several process adjustment methods found in the literature will

be established based on the Kalman Filter technique. The performance of these

methods will be compared according to their small-sample properties (see Chapter

3).

2. Integration of sequential adjustments and SPC techniques for process

monitoring

The success of an integrated quality control scheme relies on properly applying

techniques from both EPC and SPC fields. The proposed sequential adjustment

methods will be integrated with control charts so as to provide both detection and

correction of process abnormalities. Properties of this integrated scheme will be

studied (see Chapter 4).

3. A sequential control strategy for an asymmetric off-target cost function

Asymmetric cost structures are frequently met in various manufacturing processes.

This implies that an adjustment rule based on a symmetric cost function around
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the target may be inappropriate. A modified adjustment rule for asymmetric off-

target cost functions will be proposed in this thesis and its performance will be

compared with the conventional rules (see Chapter 5).

4. Modifying adjustment rules when measurement and adjustment costs

are considered

When the costs of making adjustments or taking measurements is significant, ad-

justing at every time instance may not be the most economical strategy to achieve

process correction. Some cost-saving opportunities, such as skipping diminutive

adjustments and determining optimal stopping rules, will be investigated in this

thesis (see Chapter 6).

5. Closed-loop process identification and fine-tuning

When a manufacturing process is already being regulated by a controller with non-

optimal parameter settings, it is beneficial to identify the process model on-line and

then to tune the controller parameters so as to drive the process to reach a better

controlled state. Methods for the identification and fine tuning of a closed-loop

process will be discussed in this research (see Chapter 7).

This research focuses on studying sequential adjustment methods based on Stochas-

tic Approximation (SA) techniques for the purpose of process quality control. In the

Statistics literature, SA is studied mostly from the estimation perspective; but its im-

portance in process control should not be ignored. An important difference between

the estimation problem and the control problem is that in the former the asymptotic

behavior of the SA procedure is of interest, whereas in the latter the transient effect is
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of interest. A short-run manufacturing process as discussed in this proposal will require

analytical or simulation results on the small-sample properties of SA procedure. These

have not been investigated in the Statistics literature with exception of Ruppert [84] and

Frees and Ruppert [40]. Furthermore, when the cost functions of some manufacturing

process settings are deviated from common assumptions, modified sequential adjustment

schemes are proposed and their performance are compared with that of the conventional

scheme.

This research also considers the integration of SPC and sequential adjustment

methods. A considerable amount of work on the integration of SPC and Engineering Pro-

cess Control (EPC) techniques has taken place during the recent years, but no previous

work has combined SPC with sequential process adjustments. Therefore, this research

provides a new approach to process quality control and this approach is established on

Stochastic Approximation techniques.

In summary, a collection of mathematical models for the adjustment of short-

run manufacturing processes is proposed and studied systematically in this thesis. It

is demonstrated that by implementing proper adjustment strategies the stability of the

process can be better maintained; thus, significant economic benefits obtained from the

consistent quality of products will be achieved. This research contributes directly to the

quality improvement program of the manufacturing industry and to the field of applied

statistics.
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1.4 Overview of Thesis

In the next chapter, a literature review of process monitoring, process adjustment

methods and integration of SPC and EPC is given. Then, the main body of this thesis

is organized as follows.

In Chapter 3, we consider the problem of adjusting a machine that starts pro-

duction after a defective setup operation. A general solution based on a Kalman Filter

estimator is presented and this solution calls for a sequential adjustment strategy.

Next, in Chapter 4, the integration of sequential adjustments with SPC con-

trol charts is investigated for controlling an abrupt step-type process disturbance on

both i.i.d. processes and autocorrelated processes. The performance of this integration

method is evaluated and compared to using either control charts or automatic adjust-

ments alone.

In Chapter 5, we suppose that there are different cost levels associated with a

higher-than-target process quality measure than with a lower-than-target quality mea-

sure. Under such an asymmetric cost structure the adjustment rules discussed in Chapter

3 need to be modified so as to avoid the quality characteristic falling into the higher cost

side. Adding a bias term into the linear feedback control rule is proposed and the for-

mulae for calculating this bias term is developed.

Furthermore, in Chapter 6, we discuss the influence of process measurement and

adjustment costs on the decision of whether to apply adjustment actions at each point

in time.
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In Chapter 7, a method for identifying and fine tuning an EPC controller from

closed-loop data is studied. We show that under certain general assumptions on the

controller structure and process disturbance, it is possible to identify an ARMA (au-

toregressive moving average) models for the process output. After identification, one is

able to to tune the controller to a near-optimal setting according to some performance

criteria.

Finally, Chapter 8 summarize the main contribution of this thesis and discusses

the further work.
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Chapter 2

Literature Review

Given the vast literature on the topics related to this research, it is important

to summarize them and present their connection with this research. In this chapter,

we first review several types of SPC control charts for both independent and identical

distributed (i.i.d.) processes and for autocorrelated processes. Then, some process ad-

justment techniques are described. We also survey the literature on integration of process

adjustments and statistical process control. Finally, previous work on closed-loop system

identification is discussed in the last section.

2.1 Control Charts for IID Processes and Autocorrelated Processes

2.1.1 Performance of control charts on an i.i.d. process

Two types of control charts – attribute control charts and variables control charts

– are usually employed for monitoring a manufacturing process. In this study, we are

mostly interested in step-type disturbances on process means, which implies that the

process mean is subject to shifting to unknown levels from its target and stays at that

level if no adjustments on the process are made. Thus, a control chart for variables, which

is used to detect a change on a quality characteristic that is measured on a continuous

scale, is suitable for our purposes. The most frequently used variables control charts for

monitoring process means include the Shewhart chart, the EWMA chart and the CUSUM
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chart. We briefly describe them in this section. More illustrations and applications of

them can be found in many quality control textbooks, for example, see Montgomery [73].

Shewhart control charts have been widely applied on industrial practice due to its

simplicity and easy of interpretation. On a Shewhart chart, sub-group (sample) means

or individual observations of a process quality characteristic, yt, are plotted in a time

sequence. Suppose these data are independently normally distributed and their standard

deviation, σ, is known. Then, if the process mean is right on its target, T , there is a

99.73% probability of observing a plotted point that is inside of the T ±3σ control limits.

Any point that is out of the control limits indicates a strong evidence that a shift in the

process mean has occurred. However, since a Shewhart chart makes inferences on the

process mean based on one observed data, it is only efficient for detecting large shifts

on the process mean and it is insensitive to small or moderate mean shifts. In order to

detect small shifts quickly, EWMA and CUSUM charts are recommended instead.

EWMA charts use the EWMA smoothing method to predict the process mean.

This utilizes not only the current measurement but the discounted historical data as

well. The EWMA statistic is defined as

zt = λyt + (1− λ)zt−1, 0 < λ < 1, (2.1)

where λ is the smoothing parameter or weight, which accounts for how much of the

past data should be discounted out at computing the current EWMA statistic. The

EWMA chart control limits are ±L σ

√
λ

(2−λ) [1− (1− λ)2t], which varies with time and

converges to ±Lσ

√
λ

(2−λ) in the long run (Crowder [25]).
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CUSUM charts also use previous observations, but unlike EWMA charts, CUSUM

charts use undiscounted information and are executed through two steps. First, the

process is judged whether it is deemed to be in-control. If it is in-control, the CUSUM

statistic would be set to its initial value (it is usually 0); otherwise, the CUSUM statistic

would be accumulated by adding the current observed data from the process and the

next judgement on whether the process is out-of-control could be made. If the process

data are independently normally distributed, the CUSUM scheme can be shown to be

the generalized likelihood ratio test for the hypothesis H0 : µ = 0 versus H1 : µ = µ0

where µ0 is a predetermined out-of-control process mean (Lorden [63]). To establish a

two-sided tabular CUSUM chart, two CUSUM statistics are needed:

c+
t

= max{0, yt −K + c+
t−1}

and

c−
t

= max{0,−yt −K + c−
t−1} (2.2)

where K = s
2σ and s is the shift size that one wishes to detect (Woodall and Adams

[113]). The control limit of the CUSUM statistics is defined as H = hσ. Whenever c+ or

c− exceeds H, an out-of-control alarm is signaled. Usually, CUSUM charts are designed

to detect small shifts in the process mean. For monitoring a process with a broad range

of shift sizes, a combined CUSUM-Shewhart chart is recommended (Lucas [66]).

The performance of a control chart is characterized by its run-length distribution.

As we can see from the above formulations, for each chart several parameters need to

be determined and they greatly affect on the run-length properties of the charts. The
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Shift in mean Shewhart chart EWMA chart CUSUM chart
for individuals for individuals for individuals

0 370 500 465
0.25 281 150 139
0.50 155 41.8 38.0
0.75 81.2 18.2 17.0
1.00 43.9 10.5 10.4
1.50 15.0 5.5 5.75
2.00 6.30 3.7 4.01
2.50 3.24 2.9 3.11
3.00 2.00 2.4 2.57
4.00 1.19 1.9 2.01

Table 2.1. ARL values for a Shewhart chart (control limit L = 3σ), EWMA chart
(λ = 0.2, L = 2.962σ), CUSUM chart (k = 0.5, h = 5) and CUSUM-Shewhart chart
(Shewhart limits at 3.5σ) (Adapted from Montgomery [73] and Lucas and Saccucci [67])

average run lengths (ARLs) of some commonly used Shewhart chart, EWMA chart and

CUSUM chart are given in Table 2.1.

2.1.2 Change-point detection in an autocorrelated process

Previous discussions on control charts are applicable to an i.i.d. process. It is well-

known that the presence of autocorrelation on process observations will deteriorate the

performance of control charts substantially. The detrimental effects of autocorrelation on

the performance of control charts have been actively researched in recent years (see, e.g.,

Alwan [4]). The problem associated with autocorrelated data mainly lies on two facets:

1) autocorrelations on data can induce a large amount of false alarms on a control chart,

which, in turn, damages the usability of the control chart; 2) it is hard to distinguish

a process mean shift from positive autocorrelations and the signal of the shift might be

delayed.
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Fig. 2.1. Plot of 50 simulated data from an i.i.d. process and from an AR(1) process,
yt = 0.5yt + εt, on a Shewhart individual chart. No alarm is generated from the i.i.d.
process, while two alarms are generated from the autocorrelated process.

Stamboulis [93] showed that for an AR(1) model (AutoRegressive model of order

one), yt = φyt−1 + εt where εt ∼
iid N(0, σ2), the ratio of V ar(ȳ)iid/V ar(ȳ)AR(1) is

proportional to (1 − φ)/(1 + φ) when the sample group is large. Therefore, applying

±3σ control limits on an autocorrelated process will increase the probability of false

alarms (see Figure 2.1). Vasilopoulos and Stamboulis [106] investigated the effect of

autocorrelation on Shewhart charts for an AR(2) process. Alwan [3] provided a measure

of the detrimental effect of autocorrelation given by a general ARMA(p,q) process on

Shewhart individual charts. He demonstrated that the moving-range based control limits

and run rules might suggest numerous searches for nonexist special causes of out-of-

control and distract from understanding the true process.
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2.1.2.1 Control charts on process residuals

Assume the process observations {yt} are generated from a general stable ARMA

(AutoRegressive Moving Average) time series model, A(B)yt = B(B)εt, where A(B) and

B(B) are some polynomial functions of the backshift operator B defined by Byt = yt−1.

If the process is invertible, an i.i.d. process of the residuals, i.e., εt = A(B)yt/B(B),

can be obtained. Straightforwardly, a conventional control chart can be applied on such

residuals.

Filtering out the autocorrelation on the original data by an ARMA model and

plotting the process residuals on a Shewhart chart was first proposed by Alwan and

Roberts [4]. They called this chart the Special Cause Chart because it is used to detect

any out-of-control signal triggered by special causes that needs to be removed. They

suggested to use this chart along with a time series plot of the original data.

Montgomery and Mastrangelo [74] proposed to use an IMA(1,1)(Integral Moving

Average) process to model a general nonstationary process so that the EWMA statistic of

the process observations is the next step prediction of the process mean. This prediction

and its 95% confidence intervals serve as the target and control limits for the next

process observation and this chart is called a Moving Center Line EWMA Control Chart.

However, MacGregor [70] and Ryan [85] pointed out that this chart is equivalent to a

residual Shewhart chart after imposing an IMA(1,1) model as the underlining model of

the observations; therefore, it has good performance only when the true model is close

to IMA(1,1).
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The run-length distributions of residual Shewhart charts were investigated in de-

tail by Wardell, Moskowitz and Plante [110, 109]. They mentioned that when a shift in

the mean occurrs, the probability of observing a signal at the first sample is much higher

than the probability of the following samples.

The performance of EWMA charts on residuals and CUSUM charts on residuals

for ARMA(1,1) processes was reported by Lu and Reynolds [64, 65]. They also compared

the ARLs of these charts with those of EWMA and CUSUM charts on the original (i.e.,

not filtered) observations. They found that an EWMA chart of the residuals is able

to detect shifts in the process mean more quickly than EWMA charts on the original

observations, but when the shift size is small or the autocorrelation is strong, an EWMA

chart on the original observations seems to have better run-length performance. The

performance of EWMA charts on residuals and EWMA charts on observations is very

sensitive to the parameter estimates of the ARMA model. They recommended that more

than 1,000 observations are needed for model estimation. For CUSUM charts, similar

conclusions were drawn.

English et al. [37] did a comparison of the performance of Shewhart charts and

EWMA charts on the residuals of a general autoregressive process, AR(p). It was found

that the EWMA chart was generally preferred.

It has long been observed that residual charts do not have the same capability

of detecting shifts in the process mean as the traditional control charts applied to an

i.i.d. process (Harris and Ross [49], Adams, Woodall and Superville [2]). The purpose

of using an ARMA filter to transform the observations to residuals is to obtain i.i.d.

data, on which traditional SPC can apply. However, the jump-type process mean shift
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will no longer exist in the residuals; instead, the shift will change to some dynamic

pattern depending on the filtering model. Hu and Roan [50] demonstrated such dynamic

patterns for AR(1), ARMA(1,1) and ARMA(2,1) models using z-transform formulae. For

example, when a “step shift” in the process mean is filtered through an AR(1) model

with high positive autocorrelation, the shift pattern changes to a high peak at the first

time and then settling down on a small steady value; if the autocorrelation is negative,

the shift pattern gradually reaches a large steady value.

Apley and Shi [6] called these patterns “process fault signatures”. Therefore, to

detect a shift in the process mean we need to detect any potential fault signature from

the residual data. This can be done by a generalized linear ratio test, which can also

be seen as a generalized CUSUM test. Correlations between the process residuals and

the predefined fault signatures are used to reveal when a mean shift has occurred. The

robustness of this method for misidentified process models was also discussed in their

paper. Similar ideas also appeared in Atienza, Tang and Ang [7], and Wright, Booth

and Hu [114].

2.1.2.2 Conventional control charts with modified control limits

Modifying the control chart limits is another approach to reduce the detrimental

effect of autocorrelation on chart performance when a control chart is applied on the

original autocorrelated observations. Traditional control charts tend to generate frequent

false alarms especially for positive autocorrelation. Therefore, it is desirable to relax their

control limits to avoid so many alarms. This approach has the advantages of avoiding

using ARMA filters for data transformation; thus the process mean shift pattern would
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not be altered and there is no risk of misidentification of ARMA models as the previous

approach has.

Stamboulis [93] and Vasilopoulos and Stamboulis [106] discussed the design of

a Shewhart x̄ chart for AR(1) and AR(2) processes. The key issue is to find a suit-

able control limit instead of 3σ. The property of CUSUM charts on an AR(1) process

was analyzed by Timmer, Pignatiello and Longnecker [99]. They modified the CUSUM

statistic and its control limits according to the sequential probability ratio test on the

joint distribution of autocorrelated data.

Yashchin [116, 118] has also discussed the design of a CUSUM chart for autocor-

related data. He showed that using transformed data is better than using the original

data, but the advantage is too small to justify using it over original data, especially

when the autocorrelation is not very strong. To obtain the desired run-length property,

he suggested to replace the autocorrelated data by some i.i.d. series for which the charts

has similar run-length characteristics. That is, i.i.d. data {y∗
t
} are used to replace auto-

correlated {yt} and
∑r

j=1 y∗
j

and
∑r

j=1 yj have the same distribution function (or the

same first and second moments), where r is the expected run length before the first false

alarm when the CUSUM statistics of autocorrelation data are plotted. Some analytical

results of in-control ARLs with different CUSUM design parameters (h and k) for ARMA

models were provided in his paper [118].

Zhang [120] proposed an EWMAST chart, which is an EWMA chart with wider

control limits applied on a stationary time series. His simulation results showed that

for the AR(1) model with mild positive autocorrelation (ρ < 0.5), the EWMAST chart

outperformed other charts.
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The EWMA statistic studied in Zhang was generalized by Jiang, Tsui and Woodall [52].

They proposed a new test statistic, ARMA statistic. The ARMA(1,1) statistic was tested

and compared with EWMAST, but it did not give a better performance on detecting

process mean shifts in general.

Two general approaches to detect a mean shift in an autocorrelated process have

been surveyed so far. We notice that control charts on process residuals, although they

are mostly discussed in literature, are not generally better than control charts on original

data. Therefore, the second approach will be followed in this thesis. More specifically,

the CUSUM chart designed by Yashchin [118] will be applied on autocorrelated obser-

vations in Chapter 4 when SPC/EPC integration schemes for non-i.i.d. processes are

investigated.

2.2 Process Adjustment Techniques and Stochastic Approximation

It can be said that, in general, there are two types of industrial controllers: one

is a feedforward controller and the other one is a feedback controller. Feedforward

control adjusts some controllable process variables before the process starts based on the

measurement of process inputs. For example, raw material properties may vary from

batch to batch, but by adjusting some process variables accordingly it might be possible

to obtain consistent process outputs. Feedback control, in contrast, adjusts controllable

process variables directly according to process output measures. The most widely used

feedback controllers include discrete integral controllers, also called the EWMA controller
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in the semiconductor manufacturing literature, and proportional integral (PI) controllers.

Feedback-type control is the focus of this research.

In industrial practice, some simple yet powerful feedback control schemes are be-

coming a relevant part of the toolkit of a quality engineer. This is especially true in the

semiconductor industry. For example, the Run-to-Run (R2R) controller, with its em-

bedded EWMA or double EWMA control algorithm, has been successfully implemented

in the semiconductor industry for batch-to-batch product quality control (Sachs et al.

[86], del Castillo and Hurwitz [33], Moyne et. al [76]).

The optimal feedback controller, especially the celebrated Kalman filter controller

(Kalman [53]), has a long successful history in the field of automatic control (see, e.g.,

Åström and Wittenmark [95], Ljung and Söderström [62], Lewis [61]). But since au-

tomatic control mainly focuses on adjustments at the equipment level where there is

usually a very large number of measurements, the short-run performance and the dis-

continuous adjustments often required for adjustment of the quality of the products are

largely ignored.

In the statistical literature, there are many stochastic processes that can be stud-

ied from a control point of view. The Robbins-Monro process (Stochastic Approximation)

as illustrated in Chapter 1 is one of the most famous one.

Let x be the controllable variable on a process. If the process output y is a regres-

sion function on x, y = M(x)+ ε, then a sequence {xt} that is recursively computed via

(1.2) makes yt converge to its target T . Robbins and Siegmund [80] provided an elegant

proof of the consistency of xt. Chung [23] and Fabian [39] established the asymptotic

distribution of xt by making some further assumptions on the sequence {at}. Loosely
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speaking, when at takes a “quasi-linear” form such as at = c/t, then we have that,

asymptotically, xt is normally distributed, i.e.,

√
t(xt − θ) →D N(0, σ2c2/(2βc− 1)) (2.3)

where θ is a value such that M(θ) = T and β is the slope of regression function at θ.

By choosing c = 1/β, the asymptotic variance in (2.3) is minimized. Since β is usually

unknown to process operators, it needs to be estimated. SA procedures with a consistent

estimate of β are called adaptive.

Venter [107] proposed taking observations in pairs at xt±ct for a suitable positive

sequence {ct}. Let y1
t

and y2
t

be the corresponding responses, and define

zt =
y2
t
− y1

t
2ct

,

then β can be estimated by

bt =

∑t
i=1 wizi∑t
i=1 wi

where {wi} are suitable positive weights.

Lai and Robbins [60] showed that bt can be estimated by the usual least square

estimation, i.e.,

bt =

∑t
i=1(xi − x̄t)(yi − ȳt)∑t

i=1(xi − x̄t)
2 ,

then the optimal asymptotic distribution of (xt − θ) still holds.
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It is well known that the conventional SA procedure has a slow convergence rate.

Kesten [55] derived a procedure which permits to bring the process closer to target more

quickly than the conventional scheme. He considered that if the measured variable, yt,

is near zero in the neighborhood of the target, it would have its sign greatly obscured

by the process noise. Therefore, the number of reversals of sign indicates whether the

search of xt is near or far from the root, θ. The sequence {at} can be set as

at =
1

1 +
∑t

i=2 sign(yiyi−1)

where

sign(x) =


1 if x ≤ 0

0 if x > 0
.

Although in the literature SA procedures have been mentioned to be useful to

solve control problems (see, e.g., Comer [24], Lai and Robbins [59], Ruppert [82, 83]),

they have not been broadly perceived by quality engineers as a powerful tool for process

quality improvement. A reason for this lack of interest is that the small-sample properties

of SA have often been neglected.

2.2.1 Grubbs’ harmonic rule

One classical application of using process adjustments for product quality control

is the Grubbs’ harmonic rule for adjusting a machine after a bad setup operation.

To give some context to this problem, suppose it is of interest to adjust a machine

tool that manufactures discrete metal parts because of concerns about a machine offset
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due to a bad setup. Measurements {yt} correspond to the deviations from target of

a predefined quality characteristic of parts as they are produced at sequential points

in time t. The machine adjustment at time t (∇xt = xt − xt−1) has a direct impact

on the quality level of the subsequent part. In some machining processes, an incorrect

setup operation can result in drastic consequences in the quality of the parts produced

thereafter. However, the observation from the process is subject to both the process

inherent variation and the measurement error. The precision of the offset estimate can

be improved if more measurements are available. Therefore, a good adjustment strategy

will sequentially estimate the offset and suggest adjustments to the process accordingly.

Grubbs [44] proved that by using equation (1.2) and choosing {at} to be a har-

monic sequence, i.e.,

at = 1/t, t = 1, 2, ... (2.4)

the expected value of the process characteristic of every next sample will be the same

as the target value. Furthermore the variance of the quality characteristic is minimal

comparing to using other linear adjustment methods.

Recently, Trietsch [100] and del Castillo [29] made detailed analysis and exten-

sion of the Grubbs’ rule for the problem of adjusting machine setup errors. It is evident

that unifying these control schemes by using SA and evaluating their small-sample per-

formance are two prerequisite steps before applying them on the quality control of a

general manufacturing process. This topic will be presented in detail in Chapter 3.
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2.3 Integration of SPC and EPC

Statistical Process Control and Engineering Process Control are two sets of toolk-

its used by Quality Engineers and Process Engineers, respectively. Although they have

the common goal – to maintain the process outcome as close to its target as possible

– these two types of techniques take different approaches, which seems to contradict

each other in some sense. SPC emphasizes process monitoring and fault detection. It

opposes frequent process adjustment actions because when the process is in the statis-

tically in-control state process tampering can only inflate the process variance instead

of decreasing it. In contrast, EPC advocates various process adjustment schemes for

guarding the process from drifting away from its target. It should be pointed out that

the different approaches of SPC and EPC come from their fundamental assumptions on

a manufacturing process and in practice they are not rivals of each other at all. Recently,

the integration of these two techniques have been discussed by many researchers (see, for

example, Box and Kramer [14], MacGregor [69], Vander Wiel, et. al. [105] and Tucker,

et. al [104])

If a manufacturing process is initially in the statistically in-control state, as as-

sumed by SPC, control charts are employed to detect any random abnormal change on

the process. When this abnormal change is indeed found, process adjustment actions

that can compensate for this change are necessary. A second way in which EPC and

SPC scheme can be integrated is as follows. If a manufacturing process exhibits drifting

behavior or autocorrelation in its output measures, as assumed by EPC, an automatic

controller can be designed to regulate this process. However, it is still wise to have a
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Fig. 2.2. Two types of SPC/EPC integration. a. SPC chart acting as a deadband; b.
SPC monitoring EPC output.

control chart to monitor the quality characteristic of the process and signal alarms due to

other types of process changes that the controller cannot guard against. However, if an

EPC scheme is continuously functioning, the process output is usually autocorrelated in

time; therefore, a control chart designed for autocorrelated data should be used. These

two types of SPC/EPC integration are illustrated in Figure 2.2.

In this thesis, we mainly discuss the first type of integration. The basic procedure

of applying both monitoring and adjustment techniques for quality control is through

three steps: 1) employ a control chart on-line to detect any possible process change, such

as shifts in the process mean; 2) estimate the parameters of the process change; and 3)

adjust the process based on a control scheme.

Taguchi [97] emphasized the importance of adjustments and recommended adjust-

ing by the opposite deviation (−yt) whenever yt exceeds the control limit of a Shewhart

chart. This means that the process mean at the time of the out-of-control is estimated
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by the last observed data point. This estimate always gives a large shift size, thus is sig-

nificantly biased when the actual shift size is small. Adams and Woodall [1] also showed

that the optimal control parameters and loss functions given by Taguchi are severely

misleading in many situations.

An alternative feedback adjustment method recommended by Luceño [68] is to use

an EWMA statistic of the past data collected from the process. It has been shown that

if the disturbance is an integrated moving average (IMA(1,1)) process with parameter

θ, the EWMA statistic is optimal in the sense of mean square error when its smoothing

parameter λ is equal to (1− θ). If the disturbance is not an IMA(1,1), this adjustment

scheme still contains integral action and is quite robust (Box and Luceño [18], Del Castillo

[31]).

Kelton et al. [54] suggested that continuously observing (without adjustment)

several data after receiving the first “out-of-control” alarm will improve the process

mean estimates. For instance, they suggest that the average of 10 deviations yt after an

alarm occurs is a good estimate of a shift size of 1.5σ. Delaying the mean estimation

was also recommended by Ruhhal, Runger and Dumitrescu [81], although they dealt

with a generalized IMA process model. Evidently, this method is only acceptable for

a manufacturing process with high process capabilities and long production runs. For

a short-run process or a process with tight specification, this approach may produce a

high scrap rate.

Wiklund [111, 112] proposed a maximum likelihood estimation (MLE) method

based on a truncated normal probability density function. His argument relies on the

fact that the estimation of the process mean is made on the condition that one finds a
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µs Taguchi’s Wiklund’s CUSUM EWMA
method MLE method (h = 5, k = 0.5) (λ = 0.25, L = 3)

0 0 (3.30) 0 (1.38) 0 (2.39) 0 (1.22)
0.5σ 3.1 (1.28) 1.1 (1.11) 1.0 (0.67) 1.24 (0.14)
1σ 3.3 (0.71) 1.3 (1.10) 1.3 (0.54) 1.27 (0.14)

1.5σ 3.4 (0.54) 1.5 (1.22) 1.6 (0.55) 1.31 (0.14)
2σ 3.5 (0.50) 1.8 (1.33) 1.9 (0.67) 1.36 (0.17)
3σ 3.8 (0.60) 2.5 (1.50) 2.6 (0.77) 1.44 (0.26)
4σ 4.3 (0.78) 3.5 (1.60) 3.2 (0.82) 1.55 (0.32)

Table 2.2. Shift size estimates (and their standard errors) obtained using different
methods [adapted from Wiklund [111]]

point exceeding the control limit of Shewhart chart. He also discussed other estimation

methods based on using CUSUM and EWMA control charts. Table 2.2 provides results

of the estimated shift size by different methods from simulation study, where the standard

errors of the estimates appear in parenthesis. One can see that Taguchi’s method is very

misleading on small to moderate shifts, that the EWMA is not a sensitive estimator of

the shift sizes, and that the MLE and CUSUM perform comparatively better, but they

are still inefficient when the shift size becomes large.

More accurate estimation methods of the process mean has appeared in recent

research. Chen and Elsayed [22] provide a Bayesian estimation method for detecting

the shift size and estimating the time of the shift. Crowder and Eshleman [27] applied

a Bayesian method to the short-run process control. They assumed that the process

mean is subject to small frequent changes that result in serial autocorrelation, so the

hypothesis test of whether a major shift in the mean occurred is not relevant. Yashchin

[117] proposed an adaptive EWMA estimator of the process mean, and he showed that

his estimator is good at detecting abrupt mean changes. However, this method require
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extensive computational effort for estimating the process mean at each step and is un-

suitable for on-line process control.

Most SPC/EPC integration methods found in the literature use only a single step

adjustment; therefore, the accuracy and the precision of the process mean estimate de-

termine the effectiveness of this adjustment. In contrast, sequential adjustment methods

have the substantial benefit of reducing the negative effect of an inaccurate initial esti-

mation. Guo, Chen and Chen [45] presented an EWMA process mean estimator with

the capability of dynamic parameter tuning. They used two EWMA charts to detect

moderate and large process shifts, and then developed an EWMA controller with a se-

quentially adjusted parameter. In Chapter 3 we show that their sequential adjustment

procedure is actually the same as Grubbs’ harmonic rule.

Integration of sequential adjustment strategy and control charts will be fully stud-

ied in Chapter 4. We will apply this method on both i.i.d and autocorrelated processes.

2.4 Modified Adjustment Rules under Some Special Cost Considera-

tions

Two cost issues often arise from real manufacturing settings: 1) asymmetric cost

functions and 2) significant measurement and adjustment costs. The sequential adjust-

ment scheme, such as Grubbs’ harmonic rule, must be modified for these cases.

It is well-known that in many practical process, like, for instance, in hole-finishing

or milling operations, asymmetric off-target quality cost functions are appropriate be-

cause the cost of oversized and undersized quality characteristics are different. The

impact of asymmetric cost functions has been studied from several perspectives. Wu
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and Tang [115] and Maghsoodloo and Li [71] considered tolerance design with asymmet-

ric cost functions, while Moorhead and Wu [75] analyzed the effect of this type of cost

function on parameter design. Ladany [58] presented a solution to the problem of setting

the optimal target of a production process prior to starting the process under a constant

asymmetric cost function. Harris [48] discussed the design of minimum-variance con-

trollers with asymmetric cost functions for a process characterized by a linear dynamic

model and ARIMA (AutoRegressive Integrated Moving Average) noise. Despite of the

generality of this model, a possible process start-up error has not been included into

consideration, probably because his emphasis was on chemical processes, not discrete

part manufacturing.

We once again look at the machine setup error problem. Former research on

the setup adjustment procedure only dealt with the case of symmetric cost functions.

When the setup error exists under an asymmetric off-target quality cost function, it is

intuitive to have the value of the quality characteristic converge to the optimal setting

from the lower cost side. This is related to certain stochastic approximation techniques

in which a bias term is added to allow for one-side convergence, as discussed by Anbar

[5] and Krasulina [57]. However, their approaches are oriented to asymptotic or long-

term performance and the conditions they impose on the control rule parameters are

too complicated for practical engineering application. In Chapter 5, a biased sequential

adjustment rule for asymmetric off-target quality cost will be derived and its small sample

properties will be studied.
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In Chapter 6, a modified sequential adjustment strategy will be illustrated when

the process measurement and process adjustment costs are significant. A variety of pro-

cess adjustment and process measurement cost models have been discussed in literature.

Adams and Woodall [1] and Box and Kramer [14] investigated several types of adjust-

ment and measurement cost models for the “machine tool problem”, which was first

proposed in Box and Jenkins [12]. Crowder [26] derived the control limits for adjust-

ments to minimize the total cost for a finite horizon (short-run) manufacturing process.

Single-step adjustment methods (i.e., adjusting only once when the process is deemed

to be out-of-control) were used in these papers. An optimal adjustment strategy for

the setup error problem was discussed by Sullo and Vandeven [96]. They considered a

single adjustment method with a 0-1 type quality cost for conforming or nonconforming

manufactured items.

For the machine setup error problem, a sequential process adjustment scheme

has two purposes – to move the process close to its target quickly and to collect the

process information for the next adjustment. Sometimes, especially when there exists

a significant process disturbance, these two purposes conflict with each other. The

harmonic adjustment rule is an elegant procedure that achieves the process adjustment

goal along with the information collection goal. It is also interpreted as a special version

of mean square error regression (Lai and Robbins [59]). This procedure can be re-

examined from another viewpoint, that is, the maximum likelihood estimation of the

unknown process parameters, as illustrated in what follows.
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Fig. 2.3. A different view of the machine setup problem

Suppose the model for this problem is

yt = d + xt−1 + εt (2.5)

where d is an unknown start-up offset and where we assume εt ∼ N(0, σ2). In this case,

the regression function of y on x is M(x) = d + x. Without loss of generality, we let the

target of y be equal to zero. Using the harmonic adjustment rule, the process adjustment

scheme is

xt = xt−1 −
1
t
yt. (2.6)

Graphically, the model is a linear regression line with a slope of 45o and an

intercept at d, as shown in Figure 2.3. Of course, the regression line is buried in random
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noise. The first measurement y1 is taken before any adjustment action, i.e., at x0 = 0.

After y1 is obtained, x1 can be calculated by x1 = x0 − y1 = −d− ε1. The variable x1

will likely fall into a ±3σ interval around θ, where θ is the root of the regression function

M(x) and it is equal to −d in this problem. Let y2 be the second measurement taken

after setting the machine at x1, i.e., y2 = d + x1 + ε2. If the noise ε2 is coincidentally

equal to ε1, then y2 = d + x1 + ε1 = 0. Therefore, two measurements could be obtained

at the setpoint x1. An unbiased maximum likelihood estimate (MLE) of y is 1
2(y2 + 0),

which is identical to the second term of equation (2.6) when t = 2. Following this

argument, it can be seen that any further adjustment quantity is the same as the MLE

of y at that point in time. Therefore, the adjustment formula can be rewritten as

xt = xt−1 − ŷ(xt−1). (2.7)

In this way, it is clear that xt is likely to fall inside a ±3σ
t range around θ.

The above explanation implies that the intermediate adjustments between two

arbitrary adjustment steps are not necessary for maintaining the optimal property of the

last adjustment. Skipping some unnecessary process adjustments (but keep measuring

the process) will not alter the optimality of the subsequent adjustment if the harmonic

rule is slightly modified. This is specially important when the process measurement cost

and adjustment cost need to be included into consideration.

Trietsch [101] showed that after some slight modifications the Grubbs’ harmonic

adjustment rule can be carried out in a series of arbitrary discrete points of time, i.e.,
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the adjustments need not be conducted one following another successively, and the opti-

mality of this rule would not change. He proposed an approximated scheduling method

for discontinued adjustments. Chapter 6 presents an even simpler and more powerful

scheduling method for the adjustments.

2.5 Closed-loop Systems

In previous sections, the importance of selecting an adjustment scheme to regulate

an out-of-control manufacturing process was discussed. Now, suppose instead that an

automatic feedback controller has already been installed on a process. We intend to

model this closed-loop system and to seek any opportunity to optimize it.

Consider an open-loop process, where the relation between the process input xt

(controllable factor) and the process output yt (process measure) can be characterized

by a rational transfer function as

(1− a1B − a2B
2...− arB

r)yt = (b0 + b1B + ... + bsB
s)xt−b (2.8)

where B is a backshift operator and it is defined by Byt = yt−1, and this transfer

function is called of (r, s, b) order. Let Ar(B) = (1−a1B−a2B
2...−arB

r) and Bs(B) =

(b0 + b1B + ... + bsB
s), then the transfer function can be written as

yt =
Ar(B)
Bs(B)

Bbxt. (2.9)
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However, it is a deterministic relation between yt and xt. By adding a process noise

term, which is modelled by an ARIMA (AutoRegressive Integrated Moving Average)

process, the stochastic open-loop process becomes

yt =
Ar(B)
Bs(B)

Bbxt +
Cq(B)

D(B)
εt (2.10)

where {εt} is an i.i.d. noise sequence, Cq(B) = 1 − c1B − ... − cqB
q and D(B) =

(1− d1B− ...− dpB
p)(1−B)d; therefore, the noise term is referred as an ARIMA(p,q,d)

process and the whole open-loop process model is known as Box-Jenkins model with

TF(r,s,b) plus ARIMA(p,q,d) (Box et. al. [13]).

However, many manufacturing processes are operated under the action of some

feedback controller. One common type of the controller is the proportional-integral (PI)

controller, which takes the form of

xt = kP yt + kI

t∑
j=1

yj (2.11)

where kP and kI are the weights for proportional portion and integral portion of the

feedback control respectively. The aforementioned EWMA controller is a special case of

PI controller, where only the integral control is in use, i.e., kP = 0; therefore, it is also

called the integral (I) controller. Frequently, these controller is activated on the process

in a precautious manner, i.e., they are used to stabilize the process but are not optimal

in improving the process performance. The conventional process identification methods

used in open-loop processes (i.e., when the controllable factors are independent of the
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quality characteristic measurements) makes use of the cross-correlation function between

process input and output data (Box et al. [13]). For a closed-loop process, however, it

is well-known that control actions and the estimated process disturbance are correlated,

thus the conventional identification method becomes infeasible. Box and MacGregor

[16, 17] proposed a method based on adding a “dither” signal to break the collinearity

between the process input and output.

Identifying a closed-loop process by analyzing the autocorrelation of the process

output was recently discussed by Del Castillo [30, 32]. He provided a family of dis-

turbance models that consists of several types of models especially useful for discrete

part manufacturing. He also showed that identifying a process transfer function in a

closed-loop process is the same as identifying an ARMA model of the process output

deviations, if the disturbance is a member of the assumed family. Chapter 7 will present

a methodology of identifying closed-loop processes and fine-tuning the controller that

extends and generalizes his results.
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Chapter 3

An Unifying View of Some Process Adjustments

Methods and Their Small-Sample Performance

In this chapter, some process adjustment rules for the machine setup error prob-

lem, which was previously introduced in Section 2.2.1, are investigated from a Bayesian

point of view. The Bayesian formulation unifies some well-known process adjustment

schemes, including Grubbs’s harmonic and extended rules [44], adjustment methods

based on stochastic approximation and recursive least squares, and a recent method on

adaptive EWMA controllers due to Guo, Chen and Chen [45]. Small-sample performance

comparisons between these methods and discrete integral feedback controllers (EWMA

controllers) are provided. In case the offset is an unknown constant, performance mea-

sures for a single realization of the adjusted process are considered. If the offset is instead

a random variable, performance over the ensemble of all possible realizations is studied.

3.1 A Kalman Filter Model for Process Adjustment

This section provides a Bayesian formulation to the machine setup adjustment

problem based on a Kalman Filter estimator. As stated in Grubbs [44], the setup

adjustment problem can be investigated in two cases – one is a single process where

the setup error is an unknown constant and the other one is a group of similar processes

(or process ensemble) where the setup error is better to be modelled by a probabilistic

distribution. Consider the more general case when the setup error d is a random variable
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with known mean d and known variance P0. Then, for the first manufactured part the

mean deviation from target of the quality characteristic is assumed equal to:

µ1 = d + x0 (3.1)

where x0 is the initial setting of the machine setpoint (the controllable factor).

The first observed deviation from target will be given by

y1 = µ1 + ε1 = d + x0 + ε1 (3.2)

where the εt’s are assumed identically and independently distributed as a normal with

mean 0 and variance σ2
ε

and models both the part-to-part variability and the measure-

ment error.

It will be assumed that adjustments affect the mean of the process. This is in

sharp contrast with some EPC methods where the adjustment is supposed to modify

the observed deviation, simply compensating for some inherent deviation that cannot be

corrected (Del Castillo [29]). Thus, in this case, the first set point adjustment ∇x1 =

x1 − x0 will result in a new process mean of

µ2 = µ1 +∇x1

and the second deviation from target will be

y2 = µ2 + ε2.
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Continuing in this form, the general expressions for the mean of the process and the

deviations from target are, respectively,

µt = µt−1 +∇xt−1 (3.3)

and

yt = d + xt−1 + εt (3.4)

or, equivalently:

yt = µt + εt. (3.5)

Suppose the objective is to find the process adjustments ∇x1,∇x2, ...,∇xn−1

that minimize

E

[
n∑

t=1
µ2
t

]
. (3.6)

In other words, it is assumed that there are quadratic off-target costs but no cost is

incurred when performing the adjustments. Optimization of this type of criterion is

based on the separation principle (Åström [94], Lewis [61]). For the setup adjustment

problem under consideration, this principle indicates that the optimal solution can be

found by solving separately the problem of estimating the µt’s (process means) from the

problem of finding the best adjustments {∇xt}. If the optimal adjustment equation that

is obtained through this separation is identical to what would have been obtained if the

process were deterministic, the controller is said to be a certainty equivalence controller.

This essentially means that the parameter estimates are used in the control equation as if

they were the true parameters. In our case, if the means µt were known it is evident that
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the best adjustment would be simply to set ∇xt = −µt which from equations (3.3-3.5)

yields a minimum variance process which is on-target on average. In what follows, it is

shown that Grubbs’ extended rule is a simple case of a certainty equivalence controller

in which we adjust by ∇xt = −µ̂t where the mean µt is estimated separately using a

Kalman Filter.

It has been shown that certainty equivalence holds for processes that obey linear

difference equations (such as Equation (3.3)) when the criterion to optimize is a quadratic

function of the state variable and the control factor (µt and ∇xt in our case). This is the

celebrated Linear Quadratic (LQ) control problem. The Appendix shows the solution

to a more general LQ control problem applied to setup adjustment problems. We now

show how Grubbs’ extended rule is the optimal solution for criterion (3.6). Recently,

Trietsch [100] pointed out the optimality of Grubbs’ extended rule. We emphasize that

this optimality property only holds if the first two moments of the setup error distribution

are known.

The estimation problem is solved in a Bayesian framework using a simple Kalman

Filter (Meinhold and Singpurwalla [72]). Given the model (3.3-3.5), define

yt|µt ∼ N(µt, σ
2
ε
)

and define the prior distribution of µt:

µt|y
t−1 ∼ N(µ̂t−1 +∇xt−1, Pt−1)
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where yt = {y1, y2, ..., yt} are all available data at time t. The first mean has a prior

distribution µ1 ∼ N(d + x0, P0) where d = E[d], Var[d] = P0 and x0 is the initial

setpoint of the machine. Note that if d is known, then we should set x0 = −d and get

µ1 ∼ N(0, P0). If suppose d is an unknown constant, then P0 can be interpreted as our

confidence (a prior variance) on the initial estimate of the setup error, d̂0, from Bayesian

point of view.

The posterior mean of µt is µ̂t = E[µt|y
t], and the posterior variance of µt is

defined as

Pt = Var(µt|y
t).

Given this setup, we have that

µt|y
t ∼ N(µ̂t, Pt)

with

µ̂t = µ̂t−1 +∇xt−1 +
Pt−1

Pt−1 + σ2
ε

[yt − (µ̂t−1 +∇xt−1)]

and

Pt =
Pt−1σ2

ε

σ2
ε

+ Pt−1

which is a recurrence equation easily solved by iteration yielding

Pt =
σ2
ε
P0

σ2
ε

+ tP0
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where P0 is known. The Kalman Filter estimate of the process mean given the data is

E[µt|y
t] = µ̂t = µ̂t−1 +∇xt−1 + Kt(yt − (µ̂t−1 +∇xt−1)) (3.7)

where the quantities

Kt =
Pt−1

Pt−1 + σ2
ε

=
1

t +
σ2
ε

P0

(3.8)

are the “Kalman weights”. Note that expression (3.7) is independent of the particular

choice of the ∇xt’s (a consequence of the separation principle). Under the stated as-

sumptions of normality, µ̂t is the minimum mean square error (MMSE) estimator of µt.

As shown by Duncan and Horn [35], if the normality assumptions are relaxed, µ̂t is the

MMSE linear estimator, i.e., among all estimators that are linear combinations of the

observations it has smallest MSE, but there may be better nonlinear estimators.

To minimize E[
∑n

t=1 µ2
t
] one can argue as follows. Conditioning on all available

data at time t− 1 we have that

E[µ2
t
|yt−1] = Var(µt|y

t−1) + [E(µt|y
t−1)]2

=
σ2
ε
P0

σ2
ε

+ (t− 1)P0
+ (µ̂t−1 +∇xt−1)2

which is minimized by taking ∇xt−1 = −µ̂t−1. From our earlier discussion, this is a

certainty equivalence controller. Applying this adjustment rule at every point in time

also minimizes the sum of the squared deviations (3.6). This can be formally proved by
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showing how this problem is a particular instance of a LQ problem and utilizing the LQ

solution (see Appendix A).

Substituting the control rule into the process mean estimate, we get

µ̂t = µ̂t−1 + Ktyt (3.9)

and the adjustment rule is

xt = xt−1 −Ktyt. (3.10)

We conclude that Grubbs’ extended rule minimizes the expected sum of squared

deviations provided the setup error mean and variance are known. If the errors are all

normally distributed, Grubbs extended rule is the optimal solution for criterion (3.6).

If the errors are not normal, Grubbs extended rule is the best linear control law that

minimizes (3.6) (Åström [94], Lewis [61]). These additional facts can also be proved

using LQ or LQG (linear control gaussian) theory.

The Kalman Filter equation (3.8) together with equation (3.10) provide four par-

ticular cases of interest:

1. Grubbs harmonic rule and Robbins and Monro stochastic approximation.-

Suppose one realization of the process is investigated. In this case, the process

setup offset d is an unknown constant. Since it is lack of any a priori information

on d before the process starts, it is reasonable to let P0 → ∞. Then, Grubbs’
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harmonic rule is obtained, because under these conditions the Kalman weights

Kt =
1
t
. (3.11)

The mean estimates become

µ̂t =
1
t
yt

and

∇xt = −1
t
yt

or

xt = xt−1 −
1
t
yt (3.12)

which is exactly Grubbs’ harmonic rule.

Grubbs obtained (3.12) by solving a constrained optimization problem (i.e., min

V ar(yt+1), subject to E[yt+1] = 0) under the assumption the setup error d was

an unknown constant (a machine offset).

Interestingly, equation (3.12) allows to see that Grubbs’ harmonic rule is a special

case of Robbins and Monro’s [79] stochastic approximation algorithm for the se-

quential estimation of the offset d. Robbins and Monro’s procedure was obtained

by investigating the conditions under which the sequence Kt makes limt→∞E[d−

d̂t]
2 = 0 (i.e., the mean square convergence of the estimates d̂t to d). Later,

Blum [11] established the stronger result of convergence with probability one for

the Robbins-Monro scheme. Since then, a wealth of asymptotic results have been
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reported with respect to Robbins and Monro’s procedure and its modifications.

The setup adjustment application requires a study of the finite sample properties

of these methods, which will be presented in the next section.

2. Grubbs extended rule.-

An extended adjustment rule was also proposed by Grubbs. In this case, the

setup offset d is modelled as a random variable with the mean of value 0 and

known variance σ2
d
. According to Grubbs, the “variance of the setup” (σ2

d
) is

due to changes in the machine over many “occasions”, where an occasion may

be understood as one setup operation. Not surprisingly, Grubbs’ extended rule is

exactly same as what was derived from Kalman Filter technique, i.e.,

Kt =
1

t + σ2
ε
/σ2

d

. (3.13)

Although there exists many optimal properties of this adjustment rule, in order to

apply this rule, the second moments of both process error and setup offset must

be known, which is quite unrealistic in practice. In the next section, it is shown

that when these second moments are unknown the extended rule does not perform

better than the harmonic rule in general.

3. Recursive least squares.-
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If σ2
ε

= 1 is fixed in (3.8), the so-called recursive least squares (RLS, Young [119],

Ljung and Söderström [62]) estimate of d is obtained:

d̂t = d̂t−1 +
1

1/P0 + t
yt.

It is of interest to study the performance of such an adjustment scheme given that

recursive least square estimates are reputed to converge faster than those obtained

using stochastic approximation methods in adaptive control applications.

4. Unreliable measurements.-

If σ2
ε
→ ∞, i.e., if the measurements are completely unreliable, this implies that

Kt → 0 and d̂t = d̂t−1 = · · · = d̂0, with d̂0 being the prior estimate of the offset.

In such case, it is optimal to let xt = −d̂0 for all periods, implying no adjustments

are made. Evidently, if we had d̂0 = d then setting xt = −d̂0 would be optimal.

Unfortunately, if the prior estimate d̂0 is far from d, and σ2
ε

tends to infinity, the

prior estimate cannot be improved based on new measurements. If σ2
ε

is large but

finite and d̂0 far from d, the adjustment method will eventually bring the process

to target, but the convergence will be very slow.

Although it is not a special case of (3.8), it is also of interest to consider the

case when Kt = λ, in which case a discrete integral controller (Box and Luceño, [18]),

also called an EWMA controller (Sachs et. al. [86], Del Castillo and Hurwitz [33]) is

obtained:

xt = xt−1 − λyt,
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where the integration constant is the EWMA weight λ. This controller has the main

advantage of compensating against sudden shifts that can occur at any point in time

besides of the initial offset d. This means that the controller remains “alert” to compen-

sate for shifts or other disturbances. A disadvantage is that it is not clear what value

of λ to use. Because of this, some attempts have been made at developing adaptive

techniques that modify λ as the control session evolves (see, for example, Patel and

Jenkins [78]). In particular, Guo, Chen and Chen [45], apparently unaware of the paper

by Grubbs, proposed to apply a “time varying” EWMA controller such that it minimizes

the mean square deviation of the quality characteristic after a sudden shift occurs. Not

surprisingly, the optimal weights obey, once again, Grubbs’ harmonic rule:

λ∗
t

=
1

t− τ + 1

where τ is the point in time when a shift in the mean occurs. Guo et. al. proposed to

determine the change point τ using an SPC control chart. To achieve the permanent

protection and robustness against a variety of disturbances that a discrete integral con-

troller provides, together with the advantage of using temporarily larger weights after a

shift occurs, Guo and co-workers actually suggested to use

λt = max(λ0, λ∗
t
)
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where λ0 is typically a small value, say 0.1. The large and small values of λ correspond,

respectively, to the “rapid control mode” and “gradual control mode” which have been

applied on semiconductor manufacturing processes (Moyne et. al. [76]).

3.2 Small-sample Performance of Process Adjustment Rules

3.2.1 Performance indices for small samples

The performance indices that will be used in the remainder of this chapter are

presented in this section for two cases, which were also considered by Grubbs.

Consider first the case where the setup error d is an unknown constant or “offset”.

For this case, the performance index considered is the scaled Average Integrated Square

Deviation (AISD) incurred over m time instants or parts. This is defined for integer

m > 0 as:

AISD(m) =
1

mσ2
ε

m∑
t=1

E[y2
t
] =

1
mσ2

ε

m∑
t=1

(
V ar(yt) + E[yt]

2
)

. (3.14)

The AISD is a common performance index in the control engineering literature.

Since yt models deviations from target, the AISD index is like an average “variance

plus squared bias” calculation, and is a surrogate of a quadratic off-target “quality loss”

function. We avoid dependency on σ2
ε

by dividing by this quantity.

Consider now the case where the setup error d is a random variable. The per-

formance measure to be used when d is random is once again the AISD but we need to
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account for the additional variability in the setup error, so we define

AISDd(m) =
1

mσ2
ε

Ed

[
m∑

t=1
E[y2

t
]

]
=

1
mσ2

ε

∫ ∞

−∞

m∑
t=1

E[y2
t
]fd(x)dx, (3.15)

where the outer expectation is taken over the distribution of d. The case when d is

normal with known mean and known variance was discussed by Trietsch [100]. Under

such conditions, Grubbs’ extended rule is optimal for the AISDd criterion.

3.2.2 Performance for an unknown constant setup offset

Suppose d is an unknown constant, but unaware of this fact a user applies Grubbs’

extended rule (i.e., the Kalman Filter adjustment scheme given by (3.10)) to the process.

By Bayesian interpretation, P0 is the user’s confidence of the initial estimate of process

offset d. Then, this rule applied to the process yt = d + xt−1 + εt results in

E[yt]
σε

=
A

B1(t− 1) + 1
(3.16)

and

V ar(yt)
σ2
ε

= 1 +
t− 1

(1/B1 + t− 1)2
(3.17)

where A = (d − d̂0)/σε measures how far off the initial estimate of the offset was. The

quantity B1 = P0/σ2
ε

is a measure of the “confidence” on the initial offset estimate.
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Taking these formulae (3.16) and (3.17) into the AISD equation, after some alge-

bra, equation (3.14) can be written as:

AISD(m) = C1A2 + C2, (3.18)

and C1 and C2 are defined as:

C1 =
Ψ′(1/B1)−Ψ′(m + 1/B1)

B2
1m

and

C2 =
B1[Ψ(m + 1

B1
)−Ψ( 1

B1
)] + Ψ′(m + 1

B1
)−Ψ′( 1

B1
)

B1m
+ 1

where Ψ(x) = d ln Γ(x)/dx (Psi or digamma function), and Ψ′(x) = dΨ(x)/dx (trigamma

function).

Taking limit as B1 →∞, we get a simple formula for the AISD given by Grubbs

harmonic rule:

AISDG(m) = 1 +
Ψ(m) + γ + A2

m
≡ A2/m + C3 (3.19)

where C3 = 1 + (Ψ(m) + γ)/m and γ ≈ 0.5772156 is Euler’s constant.

These analytical results can be easier to use if a software that computes the

polygamma function is available (e.g., Mathematica or Maple).

For a discrete integral controller (or EWMA controller), it can be shown that

E[yt]
σε

= (1− λ)t−1A (3.20)



57

and

V ar(yt)
σ2
ε

=
2− λ(1− λ)2(t−1)

2− λ
. (3.21)

From them, the closed-form expression of AISD(m) can be computed as:

AISDEWMA(m) =
2

2− λ
+

(
1− (1− λ)2m

m(2− λ)

)(
A2

λ
− 1

2− λ

)
. (3.22)

AISD expressions allow to study the trade-offs between the sum of the variances

and the sum of squared expected deviations (squared bias). For the Kalman Filter

scheme, as B1 = P0/σ2
ε
→ 0, implying increasingly higher confidence in the a pri-

ori offset estimate, then m−1∑m
t=1 V ar(yt)/σ2

ε
→ 1 (i.e., we get lower variance), but

m−1∑m
t=1 E[yt]

2/σ2
ε
→ A2 (i.e., we get larger bias). Similarly, for the EWMA con-

troller, as λ → 0, implying less weight given to the last observation, we have that

m−1∑m
t=1 V ar(yt)/σ2

ε
→ 1 (lower variance), but m−1∑m

t=1 E[yt]
2/σ2

ε
→ A2 (larger

bias).

The performance of the following adjustment rules has been evaluated based on

the AISD criterion:

1. Grubbs harmonic rule, where d̂t = d̂t−1 + yt/t;

2. Kalman Filter rule 1 (assumes σ2
ε

is known), where d̂t = d̂t−1 + yt
σ2
ε
/P0+t

. This is

equivalent to Grubbs’ extended rule;

3. Kalman filter rule 2 which is same as above but σ2
ε

is estimated on-line from

zt = yt − xt−1 using only the data available at time t;

4. Discrete integral controller (EWMA controller), where d̂t = d̂t−1 + λyt.
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B1 small B1 large
|A| small good choice (case 1) bad choice (case 2)
|A| large bad choice (case 3) good choice (case 4)

Table 3.1. Scenarios of interested adjusting schemes, A = (d− d̂0)/σε, B1 = P0/σ2
ε
.

There are two parameters that can be modified in Grubbs’ adjustment rules: d̂0

and P0. The effect of these parameters can be studied from looking at the effect of

changes in A and B1, as previously defined. Therefore, the four scenarios presented in

Table 3.1 were investigated.

In the table, if the initial prior variance P0 is large relative to σ2
ε

(i.e., if B1

is large), the weights Kt will be close to 1/t (Grubbs’ harmonic rule), i.e., the initial

estimate d̂0 will be discounted faster. This turns out to be a good decision if the initial

offset estimate is far from d, where the distance between d and d̂0 is measured relative

to σε. A similar good decision is when P0 is low and d̂0 is a good estimate of the offset

(B1 small, A small). In such case, Kt < 1/t, so there will be a slower discounting of the

initial estimate d̂0. Cases (2) and (3) on the table indicate bad decisions, when the value

of P0 does not reflect how good the initial offset estimate really is. Since in the absence

of historical information it is difficult to know a priori the value of d, it is of practical

interest to study the four cases on the Table.

Table 3.2 contrasts the AISD performance of Grubbs’ harmonic rule, the dis-

crete integral controller (EWMA controller) and the Kalman Filter adjusting scheme

(σ2
ε

known). The table shows the values of AISD(m) for m = 5, 10 and 20. As can be
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m = 5
B1 : |A| = 0 |A| = 1 |A| = 2 |A| = 3
1/90 1.00023 1.95791 4.83092 9.61929
0.5 1.09344 1.48656 2.66589 4.63144
1 1.16394 1.45667 2.33483 3.79844
2 1.24138 1.47815 2.18847 3.37233
90 1.41043 1.61046 2.21056 3.21074

Grubbs 1.41667 1.61667 2.21667 3.21667
I controller (λ = 0.1) 1.01655 1.70215 3.75895 7.18696
I controller (λ = 0.2) 1.05601 1.55191 3.03962 5.51914
I controller (λ = 0.3) 1.10922 1.49030 2.63354 4.53894

m = 10
B1 : |A| = 0 |A| = 1 |A| = 2 |A| = 3
1/90 1.00049 1.91004 4.63869 9.18644
0.5 1.09038 1.31359 1.98323 3.09930
1 1.13792 1.29290 1.75783 2.53271
2 1.18491 1.30578 1.66840 2.27276
90 1.27952 1.37954 1.67959 2.17969

Grubbs 1.28290 1.38290 1.68290 2.18290
I controller (λ = 0.1) 1.02830 1.49063 2.87761 5.18925
I controller (λ = 0.2) 1.08060 1.35518 2.17890 3.55178
I controller (λ = 0.3) 1.14190 1.33782 1.92558 2.90518

m = 20
B1 : |A| = 0 |A| = 1 |A| = 2 |A| = 3
1/90 1.00090 1.82739 4.30685 8.43929
0.5 1.07243 1.19211 1.55117 2.14960
1 1.10008 1.17989 1.41931 1.81835
2 1.12585 1.18691 1.37009 1.67539
90 1.17564 1.22565 1.37568 1.62573

Grubbs 1.17739 1.22739 1.37739 1.62739
I controller (λ = 0.1) 1.03899 1.29825 2.07606 3.37240
I controller (λ = 0.2) 1.09568 1.23455 1.65116 2.34552
I controller (λ = 0.3) 1.15917 1.25721 1.55133 2.04152

Table 3.2. Kalman Filter adjusting scheme (σ2
ε

known), Grubbs’ harmonic rule and

Integral controller AISD performance. A = (d− d̂0)/σε, B1 = P0/σ2
ε
. Bold numbers are

minimums by column.
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seen from the Table, the “gap” between the column minimum and the AISD provided by

Grubbs rule shrinks as the offset d gets much larger than σε (i.e., as |A| increases). This

gap, however, is quite moderate except in the unrealistic case where one is very confident

(B1 = P0/σ2
ε

small) of our a priori offset estimate and the a priori offset estimate turns

out to be quite accurate (i.e., A = 0). This is an unrealistic case because it implies we

practically know the value of the offset d.

If A = 0, it can be seen from (3.16) and (3.17) that the AISD indices equal the

average scaled variance since the deviations from target will always equal zero on average.

If d = d̂0 = 0, the AISD quantifies the average inflation in variance we will observe for

adjusting a process when there is no need to do so. Note that for A = 0 (no offset),

one can get an inflation in variance equal to zero if B1 = 0 in the Kalman Filter scheme

or if λ = 0 in the integral control scheme. This inflation in variance has been studied,

for discrete integral controllers, by Box and Luceño [18] and Del Castillo [30], although

these authors looked at asymptotic variances, and not at small-sample variances as we

do here.

Perhaps it should be pointed out that if one were extremely confident on the

estimate of the offset of the machine (B1 → 0), simply setting xt = −d̂0 for t = 0, 1, ....

will result in an on-target process assuming we indeed have d̂0 = d. Thus, for most

practical cases where a sequential adjustment rule is needed, the Kalman Filter rule

(and Grubbs’ extended rule) does not perform significantly better than Grubbs’ harmonic

scheme in the case of a constant unknown setup error.

Intuitively, if the variance σ2
ε

is unknown the performance of the Kalman Filter

scheme can only worsen. This was confirmed by estimating AISD using simulation. Thus



61

Grubbs harmonic rule is also superior, in the single realization case, to the Kalman Filter

scheme with variance unknown.

Turning to the discrete integral controller, it can be seen that it also provides a

very competitive scheme compared to the Kalman Filter scheme. The parameter λ has

the effect of bringing the process back to target more rapidly the larger λ is. The trade-

off is that there is an increase, for small A, of the AISD index as λ is increased. That is,

the inflation in variance due to adjusting an on-target process increases as λ increases.

From the Table, it appears the value λ = 0.2 provides a relatively good trade-off between

fast return to target and inflation of variance if the process is really on-target (no offset).

3.2.3 Performance when the setup offset is a random variable

Suppose now that the offset d is a random variable such that d ∼ (d̄0, σ2
d
). Note

that no assumption on the distribution of d is made. We wish to evaluate the performance

of the different adjustment methods by averaging over the possible realizations of the

random offset d. As mentioned earlier, if the mean and variance of d are known, then

the Kalman Filter scheme, and hence, Grubbs extended rule are optimal for a quadratic

loss function such as our AISDd criterion. This was the case discussed by Grubbs [44]

and Trietsch [100]. In this section we consider the more general case when the mean and

variance of d are both unknown.

When d is random, we need to use a prior estimate d̂0 with associated variance

P0 (confidence on the a prior estimate d̂0) to start the Kalman Filter scheme (3.10). The

situation is depicted in Figure 3.1. Using (3.15) as our performance index, the expression
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Fig. 3.1. Starting the Kalman filter scheme, d̄0 and/or σ2
d

unknown

for AISDd(m) is obtained from its definition as follows

AISDd(m)KF =
∫ ∞

−∞
AISDKF (m)fd(x)dx

= C1

∫ ∞

−∞

(d− d̂0)2

σ2
ε

fd(x) + C2

∫ ∞

−∞
fd(x)dx

=
C1
σ2
ε

∫ ∞

−∞
(d2 − 2dd̂0 + d̂2

0)fd(x)dx + C2

Since
∫∞
−∞ d2fd(x)dx = σ2

d
− d̄2

0 and
∫∞
−∞ d fd(x)dx = d̄0, then

AISDd(m)KF =
C1
σ2
ε

(σ2
d

+ (d̄0 − d̂0)2) + C2 (3.23)

= C1(B2 + A2
2) + C2, (3.24)
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where A2 = (d̄0−d̂0)/σε is a measure of the average error incurred by the offset estimate,

B2 = σ2
d
/σ2

ε
is a measure of the variability of the setup. The AISDd(m) formula for

Grubbs’ harmonic rule is obtained in a similar way,

AISDd(m)G =
B2 + A2

2
m

+ C3 (3.25)

where C1, C2, and C3 are functions of B1 and m as shown in the last section. Recall

that B1 is a measure of confidence in d̂0, therefore, since σ2
d

is not known, we have that

in general B1 6= B2.

For the discrete integral (or EWMA) controller, the corresponding closed-form

expression for AISDd(m)EWMA is

AISDd(m)EWMA =
2

2− λ
+

1− (1− λ)2m

(2− λ)m

[
B2 + A2

2
λ

− 1
2− λ

]
. (3.26)

The AISDd performance of the Kalman Filter approach, Grubbs harmonic rule,

and that of an integral controller are evaluated using equations (3.23) (3.25) and (3.26).

Figure 3.2 shows cases when the Kalman filter approach is better than Grubbs’ harmonic

rule for different values of B1, B2, A2, and m. The shaded regions correspond to cases

where AISDd(m)KF < AISDd(m)G. As it can be seen, for large average offsets (A2

large) and/or large setup noise (B2 large), Grubbs harmonic rule is better. Here “large”

and “small” are terms relative to the process variance σ2
ε
. The advantage of the harmonic

rule over the Kalman Filter scheme decreases with increasing value of B1 = P0/σ2
ε
. Note

that under the assumptions in Case 1 above (when d0 and σ2
ε

are known), i.e., when we
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Fig. 3.2. Kalman Filter and Grubbs rule performance, random setup error. Shaded
regions indicate cases for which AISDd(m)KF < AISDd(m)G. B1 = P0/σ2

ε
, B2 =

σ2
d
/σ2

ε
, A2 = |d0 − d̂0|/σε
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Fig. 3.3. Kalman Filter and discrete integral (EWMA) controller (with λ = 0.2) per-
formance, random setup error. Shaded regions indicate cases for which AISDd(m)KF <

AISDd(m)EWMA. B1 = P0/σ2
ε
, B2 = σ2

d
/σ2

ε
, A2 = |d0 − d̂0|/σε
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Fig. 3.4. Kalman Filter and discrete integral (EWMA) controller (with λ = 0.1) per-
formance, random setup error. Shaded regions indicate cases for which AISDd(m)KF <

AISDd(m)EWMA. B1 = P0/σ2
ε
, B2 = σ2

d
/σ2

ε
, A2 = |d0 − d̂0|/σε
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Fig. 3.5. Grubbs harmonic rule and discrete integral (EWMA) controller perfor-
mance, random setup error. Shaded regions indicate cases for which AISDd(m)G <

AISDd(m)EWMA. B2 = σ2
d
/σ2

ε
, A2 = |d0 − d̂0|/σε
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have that B1 = B2 and A2 = 0, the Kalman Filter method always dominates Grubbs

rule. This agrees with our earlier comment which indicated that the Kalman Filter

scheme (and Grubbs extended rule) is optimal for the AISDd criterion if the parameters

are known.

Figures 3.3 and 3.4 compare the AISDd performance of the Kalman Filter ap-

proach with that of an Integral controller with λ = 0.2 and λ = 0.1, respectively. As it

can be seen, the Kalman Filter scheme is to be preferred in more cases as the number of

observations m increases. The integral controller should be preferred when the average

offset is large (A2 large) and/or the setup is very variable (large B2). This is even more

true as the confidence in the initial offset mean decreases (i.e., the larger B1). Observe

how for cases where the average offset is very small the integral controller also dominates

the Kalman Filter approach.

Finally, Figure 3.5 shows the AISDd comparisons between Grubbs’ harmonic rule

and an integral controller. The integral controller outperforms the harmonic rule for

cases near the origin, when A2 is small (small average error in offset estimate) and

B2 is small (low setup variance). As the sample size increases, Grubbs’ harmonic rule

dominates the integral controller scheme.

3.3 Summary

In this chapter, an unifying point of view of some process adjustment procedures

for setting up a machine was presented based on a Kalman Filter approach. A connection

between Grubbs harmonic rule and stochastic approximation was made. The small

sample properties of Grubbs adjustment schemes and that of an integral controller were
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analyzed for the cases when a setup error is systematic (non-random) and when it is a

random variable with unknown mean and variance. The performance metric used was a

quadratic off-target process cost.

If the setup error is an unknown constant it was shown that for most practical

cases when sequential adjustments are necessary, Grubbs’ harmonic rule represents a

better strategy than the Kalman Filter scheme. The even simpler integral or EWMA

controller with weight λ = 0.2 provides a competitive alternative to the harmonic rule

for cases when the offset is small (in the order of less than one standard deviation of the

process). If the setup error is instead a random variable, an integral controller performs

better than the Kalman Filter scheme when the setup noise is relatively high and the

offset is very large on on average. When the offset is large and/or the setup noise is

large, Grubbs harmonic rule outperforms the Kalman Filter scheme.

The analytic formulae presented in this chapter allow to obtain similar results

for other values of the process and controller parameters without recourse to simulation.

Further recommendations about when to use each method in the random setup error

case can be reached by looking at Figures 3.2-3.5.
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Chapter 4

Integration of Sequential Process Adjustments

and SPC Control Charts

One essential task of Quality Engineers is to maintain a stable manufacturing

process in the sense that the mean value of the quality characteristic of the process is

kept right on its desired target level. However, random shocks on the initially on-target

process may shift the process mean to an off-target value. Traditional Statistical Process

Control (SPC) employs different types of control charts to detect such shifts in mean since

the time of the shift is not predictable, but SPC techniques do not explicitly provide

a process adjustment method. Process adjustment is usually regarded as a function

pertaining to Engineering Process Control (EPC), an area that traditionally has belonged

to process engineers rather than to quality engineers. The lack of adjustments existing

in the SPC applications can cause large process off-target quality costs – a problem of

particular concern in a short-run manufacturing process.

This chapter focuses on integrating different control charts with the sequential

process adjustment method developed in Chapter 3 for monitoring and controlling a

manufacturing process which experiences infrequent shifts in the process mean. Corre-

sponding to the conditions prevalent in a short-run manufacturing environment, small-

sample properties of this SPC/EPC integration scheme will be investigated. The per-

formance of the integration scheme will be evaluated on both i.i.d. and autocorrelated

processes.
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4.1 Process Model

We assume a univariate process that consists of a measurable quality characteristic

y and a single controllable factor x. The process mean is defined as the expectation of y

and it is initially on its target level, but random shocks could shift it off-target. We also

assume that the inherent process random errors are a sequence of identical independent

distributed (i.i.d.) random numbers or a sequence of mildly autocorrelated random

numbers.

If the process is an i.i.d. process, the process model is given by the following

difference equation:

yt = xt−1 + µt + εt (4.1)

where µt is the process mean at sample or part t and {εt} are a sequence of i.i.d. random

errors, εt ∼ (0, σ2
ε
). In the simulation presented later, normality of the errors is assumed.

Without loss of generality, the target of yt is assumed to be zero, or yt can be understood

as a deviation from target. The process starts from the in-control state which is assumed

to be such that the mean of the process equals the target, i.e., µ1 = 0 and

µt = µt−1 + δ(t), for t = 2, 3, ... (4.2)

with

δ(t) =


0 if t < t0,

δ ∼ N(µs, σ
2
s
) if t ≥ t0, where t0 = shift time.
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Fig. 4.1. Step-type disturbance on the process mean

If the process is an autocorrelated process, an ARMA model for the process is

used instead. However, the autocorrelation considered in this chapter is stationary and

mild; otherwise, an automatic control scheme is recommended to be put on the process

to overcome the autocorrelation. The stationary ARMA model of process observations

is

A(B)(yt − µt) = B(B)εt, (4.3)

where A(B) and B(B) are polynomials in the backshift operator B and µ is the process

mean, which is again assumed to be 0 when the process is in control. So, at the in-control

state, the process is modelled as

A(B)yt = B(B)εt.
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After a random shock, µ is shifted to an unknown level, say, s, then the process model

changes to:

A(B)(yt − s) = B(B)εt.

For example, for an ARMA(1,1) process, before the mean shift the process is modelled

by

yt = φyt−1 + εt − θεt−1,

and after the mean shift, the process changes to

yt = (1− φ)s + φyt−1 + εt − θεt−1

and

yt0
= s + φyt0−1 + εt0

− θεt0−1,

where t0 is the time of the mean shift. We still assume that the adjustment after the

mean shift has been detected is additive to the whole process, that is, by applying

adjustments, the whole process model is like

A(B)(yt − s) = xt + B(B)εt. (4.4)

In this simple model one can see that the effect of the random shift in process

mean can be eliminated by varying the controllable factor x after the shift is detected.

In recent work (see, e.g, Chen and Elsayed [22], Crowder and Eshleman [27], Yashchin

[117]), there is considerable emphasis on estimating a time-varying process mean instead



74

of adjusting for such variability. Because the true process mean is not observable directly,

adjustments based only on one estimate are almost always biased. In this chapter, the

sequential adjustment procedure presented in Chapter 3 will be integrated with several

commonly used control charts for controlling a process with random mean shifts. In

order to simplify the setup of the control chart, the process variance is assumed known

in advance. It will be shown that this strategy – integrating control charts and sequential

adjustments – is good at monitoring and adjusting a process under infrequent random

shocks and it also simplifies the requirement for process mean estimation.

4.2 Control Charts and Adjustment Methods

As reviewed in Chapter 2, the commonly used control chart methods include

Shewhart charts, EWMA charts and CUSUM charts. In the following sections, we

will concentrate on comparing performance of integrating Shewhart charts and CUSUM

charts with different adjustment methods. The adjustment methods that will be used

include the single adjustment method based on the shift estimate from the control chart,

sequential adjustment method and discrete integral (EWMA) control.

A control chart can be used not only to detect the time of the mean shift, but also

to estimate the magnitude of the shift. Taguchi [97] advocated adjusting an opposite

amount of observation whenever an observation on a Shewhart chart is out of control

limits. This is criticized by Wiklund [111], since a single process observation could be

severely biased from the true process mean. Wiklund proposed to use a maximum like-

lihood estimate calculated from a conditional probability density function. His method

and other methods are compared in Table 2.2. In addition, the following equation is
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used for the CUSUM estimate of the mean:

µ̂ =


K +

c+
t

N+ if c+
t

> H

−K −
c−
t

N− if c−
t

> H

(4.5)

where N+ and N− are the number of periods in which a run of non zero values of c+

or c− (as defined in (2.2)) were observed (Montgomery [73]). Shift detection and shift

size estimation are valuable for process adjustment purposes. If the shift size is precisely

known, it is obvious that by letting xt+1 = −µt the process will be reset back to its

target in view of equation (4.1). Nevertheless, due to the process disturbances {εt}, the

process mean is not directly observable.

One alternative to adjust this process was given in Chapter 3, namely, Grubbs’

harmonic and extended rules. Suppose the setup error can be adjusted directly, then the

solution which minimizes the variance of the next process observation yt+1 is obtained

by applying the adjustment rule as xt = xt−1 − atyt with at = 1/t, which constitutes a

harmonic sequence. Clearly, this solution can be easily applied on a general manufactur-

ing process, where its process mean might be shifted to an unknown level at a random

time.

An alternative process adjustment method is to apply consistent process control

actions on the process regardless whether the process mean is off-target or not. One of

the most commonly used controllers is the discrete integral (EWMA) controller, which

adjust the process setting according to this equation: xt = xt−1 − λyt, where λ is a

constant and 0 < λ < 1. This automatic control scheme has been intensively discussed
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in recent process control literature, especially for the semiconductor industry (see, for

example, Sachs et. al. [86]). In the next section, its performance on adjusting for process

mean shifts will be compared with other SPC/EPC integration schemes.

4.3 Integration of Control Charts and Sequential Adjustments for IID

Processes

The proposed integrated process monitoring and adjustment scheme consists of

three steps: monitor the process using a control chart, estimate the shift size when a shift

in the process mean is detected, and finally apply the sequential adjustment procedure

to bring the process mean back to target. The performance of the integrated scheme

depends on the sensitivity of the control chart to detect shifts in the process mean, on the

accuracy of the initial estimate of shift size and on the number of sequential adjustment

that are made. To compare the performance of various combinations of control charts

and adjustment methods, we first simulate an i.i.d. manufacturing process (4.1) for a

total of 50 observations, and monitor and adjust it using one of the six methods listed on

Table 4.1. The performance of each method is evaluated by the index AISD as defined

in Chapter 3.

In the simulation, a shift in process mean occurs after the fifth observations and

adjustments are conducted immediately after the shift is detected. The mean value of

10,000 simulation results are illustrated in Figure 4.2. The y axis in the figure represents

the percentage improvement in the AISD of using some adjustment method compared

to the AISD without adjustment, i.e.,
AISDno adjust−AISDmethod i

AISDno adjust
× 100, so this is a

“larger the better” value. This value is plotted with respect to the actual shift size which
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Method Shift detection Shift size estimation Adjustment
1 Shewhart chart for Last observation one adjustment after

individuals (3σ limits) (Taguchi’s method) an out-of-control alarm
2 Shewhart chart for Maximum Likelihood Estimate one adjustment according

individuals (3σ limits) (Wiklund’s method) to the MLE value
3 CUSUM chart for CUSUM estimate one adjustment according

individuals (k=0.5 h=5) (equation (4.5)) to the CUSUM estimate
4 Shewhart chart for last observation 5 sequential adjustments

individuals (3σ) (Taguchi’s method) following with at = 1/(t− t′)
5 Shewhart chart for MLE 5 sequential adjustments

individuals (3σ) (Wiklund’s method) following with at = 1/(t− t′)
6 CUSUM chart for CUSUM estimate 5 sequential adjustments

individuals (k=0.5 h=5) (equation (4.5)) following with at = 1/(t− t′)

Table 4.1. Six methods of integrating control charts and sequential adjustments. t′ is
the time of detecting a mean shift.

was varied from 0 to 4σ. Here the shift sizes are constant (i.e., σs = 0). One can see

that the sequential adjustment methods (4 to 6) are superior to the one-step adjustment

methods (1 to 3) for almost all shift sizes. More specifically, using a CUSUM chart and

sequential adjustments (Method 6) has significant advantage over other methods when

the shift size is small or moderate, and using a Shewhart chart and sequential adjustments

(Method 4) is better for large shifts. Moreover, one-step adjustment methods, especially

the Taguchi’s method, may dramatically deteriorate a process when the shift size is small.

No method can improve the AISD when the shift size is very small, but comparatively

Method 6 is still better than others.

To study a general shifting process, the mean shift in the following simulation is

changed to a stochastic process in which shifts occur randomly in time according to a

geometric distribution. Specifically, the occurrence of a shift at each run is a Bernoulli

trial with probability p = 0.05 and the shift size is normally distributed as s ∼ N(µs, 1).
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Fig. 4.2. Performance of six integrated methods of control charts and adjustments (the
process mean was shifted after the 5th observation)
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Besides the previous six methods, an integral control scheme (i.e., an EWMA controller)

was studied for comparison purposes. The convergence of EWMA schemes with a small

control parameter for adjusting a step type disturbance has been shown by Sachs et

al. [86]. The control parameter λ of the EWMA controller was set at 0.2. There is

no process monitoring needed for the integral control scheme because the controller is

always in action. The simulations were repeated 10,000 times.

For this general shift model, it can be seen from Figure 4.3 that sequential ad-

justment methods still out-perform any one-step adjustment method. Evidently, the

EWMA controller performs better than any other sequential method when the shift

size mean is small, which explains the popularity of EWMA controllers. However, one

main advantage of the proposed SPC/EPC integrated methods is that they detect pro-

cess changes using common SPC charts whereas the EWMA controller alone does not

have this SPC function, in other words, there is no possibility for process improvement

through correction of assignable causes if only an EWMA controller is utilized. Process

improvement through human intervention is facilitated by having a monitoring (SPC)

mechanism that triggers the adjustment procedure and keeps a time-based record of

alarms useful for process diagnostics.

The step-type random shift process considered in this chapter is similar to Barnard’s

model (Barnard, [8]). When the shifts occur more and more frequently, the process ap-

proaches an IMA (Integrated Moving Average) disturbance. As it is well-known, the

EWMA controller is the minimum variance controller for a responsive process with IMA

disturbance (Box and Luceño, [18]). This explains why the EWMA controller works

better when shifts occur more frequently (larger p) than less frequently (smaller p).
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Fig. 4.3. Performance of EPC and SPC integration for a more general shift model (the
shift occurs with probability p = 0.05 at each observation)
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However, since this scheme conducts adjustments at every process run, it cannot be suit-

able for a process where adjustment costs are considerable. The economic consideration

of adjustments will be discussed in Section 4.3.2.

Another drawback of the EWMA controller is that one has to decide what value

of the control parameter λ to use. It is recommended that this parameter should be

small in order to maintain the stability of the process, but small parameter values may

not be optimal from an AISD point of view, especially when the mean shift size is large.

Moreover, the high performance of the EWMA scheme comes from the frequent random

shifts modeled in the previous simulation study (an average of 2.5 shifts per 50 runs).

If the chance of shifts decreases, the inflation of variance which is caused by adjusting

an on-target process will deteriorate the effectiveness of this scheme. The small-sample

properties of the variance provided by EWMA and harmonic adjusting rules have been

discussed in Chapter 3.

In Figure 4.4, the probability of random shifts p was decreased to 0.01 and the

same simulation as in Figure 4.3 was conducted. Under these conditions, the EWMA

method cannot compete well with the sequential adjustment methods combined with

CUSUM or Shewhart chart monitoring. More simulation results for different probabilities

of shifts p are listed in Table 4.2. It is found that the EWMA adjustment method is

better for small shifts and Method 4 is better for large shifts when p is large; as p gets

smaller (p < 0.02), i.e., the process is subject to infrequent random shocks, Method 6

gets harder to beat. Therefore, the proposed SPC/EPC integrated methods work better

when p is small. This is relevant in certain types of manufacturing where process upsets

occur very rarely, e.g., microelectronic and semiconductor industries.
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Fig. 4.4. Performance of EPC and SPC integration for the general shift model, less
frequent shifts (p=0.01).
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Mean of shift size
% improvement on AISD 0 1σ 2σ 3σ 4σ

p=0.05 Method 4 11.20 36.05 62.27 74.93 81.04
(0.30) (0.38) (0.36) (0.31) (0.29)

Method 6 18.89 41.50 64.07 73.90 78.73
(0.28) (0.35) (0.33) (0.30) (0.29)

EWMA controller 24.91 43.11 60.47 67.76 70.71
(λ = 0.1) (0.27) (0.32) (0.30) (0.28) (0.28)

EWMA controller 24.51 45.32 65.26 73.31 76.68
(λ = 0.2) (0.30) (0.36) (0.33) (0.31) (0.30)

EWMA controller 21.16 44.02 65.59 74.21 78.38
(λ = 0.3) (0.33) (0.39) (0.36) (0.33) (0.32)

p=0.035 Method 4 6.65 24.31 47.76 62.41 68.85
(0.26) (0.37) (0.40) (0.39) (0.38)

Method 6 13.80 30.35 50.56 61.91 66.68
(0.25) (0.33) (0.36) (0.36) (0.36)

EWMA controller 18.31 32.18 48.68 56.01 59.58
(λ = 0.1) (0.25) (0.32) (0.34) (0.34) (0.34)

EWMA controller 16.82 32.81 51.21 61.09 64.35
(λ = 0.2) (0.29) (0.36) (0.39) (0.38) (0.39)

EWMA controller 13.13 30.33 51.76 60.82 65.48
(λ = 0.3) (0.32) (0.40) (0.41) (0.41) (0.42)

p=0.02 Method 4 1.48 11.85 28.86 41.60 48.34
(0.24) (0.32) (0.39) (0.43) (0.45)

Method 6 8.07 17.52 32.53 41.94 47.20
(0.21) (0.29) (0.36) (0.39) (0.41)

EWMA controller 10.37 18.86 30.68 38.05 41.06
(λ = 0.1) (0.22) (0.29) (0.35) (0.38) (0.39)

EWMA controller 7.35 17.09 31.40 39.49 43.57
(λ = 0.2) (0.26) (0.33) (0.40) (0.43) (0.45)

EWMA controller 2.16 13.03 28.90 38.19 42.28
(λ = 0.3) (0.28) (0.37) (0.44) (0.47) (0.49)

p=0.005 Method 4 -3.36 -1.02 3.64 9.02 12.57
(0.18) (0.21) (0.28) (0.34) (0.37)

Method 6 1.32 3.60 7.88 11.77 14.37
(0.12) (0.16) (0.23) (0.28) (0.32)

EWMA controller -0.36 1.55 5.53 7.72 9.95
(λ = 0.1) (0.13) (0.17) (0.24) (0.27) (0.30)

EWMA controller -5.55 -2.91 1.42 4.89 7.19
(λ = 0.2) (0.16) (0.21) (0.27) (0.32) (0.35)

EWMA controller -11.25 -8.47 -2.94 0.42 3.15
(λ = 0.3) (0.18) (0.23) (0.31) (0.36) (0.39)

Table 4.2. Performance of SPC/EPC integrated adjustment schemes and EWMA
scheme when varying the probability of a shift. The numbers are the mean values and
standard errors (in parenthesis) of the percentage improvement on AISD (compared to
the process without adjustment) computed from 10,000 simulations. Bold numbers are
largest improvement for each p and mean shift size combination.
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4.3.1 An improved integrated SPC/EPC method

The performance of the different SPC/EPC integration methods studied herein

depends on 1) their ability to detect a shift and 2) their ability to estimate the process

mean. When a process is in the in-control state, an out-of-control alarm signaled by

the control chart is called a false alarm. Adjustments triggered by false alarms will

inflate the variance of the in-control process, although the inflation will decrease when

sequential adjustments are used. On the other hand, if the control chart cannot signal

an alarm quickly after a real shift has occurred, it will also impede a quick recovery

through adjustment.

Since the detection properties of a CUSUM chart can be tuned by modifying its

design parameters h and k, it is of interest to study Method 6 with different CUSUM

chart parameters. In Figure 4.5, several different values of h were tried while fixing k at

0.5 to make the chart sensitive to small shifts. It was found that when h is small, the

process will suffer from a large number of false alarms generated by the control chart;

when h is large, the improvement in AISD will be limited for large shift sizes due to

the lack of sensitivity that the CUSUM chart has to large shifts. A CUSUM chart with

h = 5 seems to be the best choice since it gives fewer false alarms for a normal process

and has comparatively short ARLs for large shift sizes.

In order to improve further the performance of Method 6 for large frequent shifts,

we propose a hybrid monitoring scheme combined with a sequential adjustment scheme.

A combined CUSUM-Shewhart chart is used, where the parameters on the CUSUM are

k = 0.5 and h = 5 and the control limits on the Shewhart chart are set at ±3.5σ.
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Fig. 4.5. Performance of Method 6 with different parameters in the CUSUM chart (the
process mean was shifted after the 5th observation)

Shift size
ARL 0 1σ 2σ 3σ 4σ

CUSUM (h=3) 59 6.36 2.56 1.59 1.15
CUSUM (h=4) 169 8.34 3.22 1.98 1.44
CUSUM (h=5) 469 10.34 3.89 2.39 1.72

CUSUM-Shewhart 391 10.20 3.77 2.10 1.34
Shewhart (3σ) 370 43.96 6.30 2.00 1.19

Table 4.3. ARLs of CUSUM and CUSUM-Shewhart charts. The value k = 0.5 was
used in the CUSUM charts and k = 0.5, h = 5 and c = 3.5(Shewhart control limit) were
used in the CUSUM-Shewhart chart. The ARLs of CUSUM charts are approximated
using equations given by Siegmund [88] and the ARLs of CUSUM-Shewhart chart are
from Montgomery [73].
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Fig. 4.6. Performance of a hybrid monitoring and adjusting method (the process mean
was shifted after the 5th observation)
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Whenever the combined chart signals an alarm, the initial estimate of the shift size will

be given by the CUSUM estimate if it is smaller than 1.5σ; otherwise, it will be the

negative value of yt (Taguchi’s method, Taguchi [97]). The average run lengths of this

combined monitoring approach are contrasted with those of a CUSUM chart in Table 4.3.

Comparing this new method to Methods 4 and 6 (see Figure 4.6), one can see that the

new method makes a considerable improvement on the large shift size while sacrificing

a little for small shift sizes. This trade-off cannot be avoided due to the nature of this

hybrid monitoring method.

We finally point out in this section that a method for sequentially adjusting the

parameter of an EWMA controller was recently proposed by Guo, Chen and Chen [45].

They use two EWMA control charts for detecting moderate (2σ) and large (3σ) shifts.

After detection, a harmonic adjustment sequence is triggered when either chart signals

an alarm. In Figure 4.7, the two-EWMA method with the suggested chart parameters

by Guo et. al. is compared with Method 4, Method 6 and with the hybrid monitoring

method proposed before by using the general shift model with the shift probability

p equals 0.05. Clearly, the two-EWMA method performs worse than other methods,

especially on large shift sizes. This can be explained by the insensitivity of EWMA

chart on estimating a general shift size (see Table 2.2).

4.3.2 Cost justification

In quality control, the cost of adjusting a process usually can not be ignored,

because the adjustment is a set of decisions and actions such as stopping the process,

investigating the causes of out-of-control and resetting the process. In the simulations
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Fig. 4.7. Comparing the two-EWMA method with other SPC/EPC integrated schemes.
λ1 = 0.6, L1 = 3.285 and λ2 = 0.33, L2 = 3.25 were used for the two EWMA charts.
Shifts occur with p = 0.05.
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shown in the previous section, the number of sequential adjustments was arbitrarily se-

lected as five. The economic consideration of the number of adjustments will be discussed

in this section.

When the harmonic adjustment rule is applied on a shifted process with shift size

s, (xt + s) is asymptotically normally distributed [84], that is

(xt + µs) →
D N(0, σ2/t).

Therefore, xt will be likely in the interval of ±3σ/
√

t around −s and the effect of an

adjustment will decrease rapidly when the number of adjustments grows. Figure 4.8

presents the results of the simulation studies where different numbers of adjustments

are applied. The process was assumed to have a mean shift after the 5th run and the

simulation was repeated 1,000 times. It was found that after four or five adjustments

the AISDs of the process can not be further improved significantly. In Figure 4.9, a

3-D plot of the AISD improvement function of Method 6 (integrated CUSUM chart and

sequential adjustments) is shown as a function of the mean shift size (µs) and the number

of adjustments. The AISD improvement function is very flat on the adjustment number

axis, as opposed to the AISD as a function of the shift size. Therefore, it is not worth

to do many adjustments.

The optimal number of adjustments can be obtained if the cost elements of the off-

target process and the cost of adjustments are known. By marginal analysis, adjustments

should be conducted as long as the adjustment cost is lower than the savings obtained

from decreasing the AISD by adjusting the process one more time. Suppose a process is
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Fig. 4.8. Improvements on AISDs when the adjustment number increases (a general
shift model with p=0.05, µs = 2 and σs = 1 was used.)
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Fig. 4.9. A 3-D view of the AISD improvements from Method 6 when both shift size
and adjustment number change (σs = 1)
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M/Ω 1 2 5 10
n 6 4 2 1

Table 4.4. Optimal number of adjustments

going to be run for N observations or parts, and it will be adjusted sequentially for the

first n parts. Then the AISD is defined as:

AISD(n, N) =
n AISD(n) + (N − n)(V ar(yn+1) + E[yn+1]2)

N
(4.6)

So the adjustment is only profitable when

ΩN{AISD(n, N)−AISD(n + 1, N)} > M, (4.7)

where Ω is the unit off-target quality cost and M is the adjustment cost. By using

equations (3.18), (3.20), (3.21) and (4.6), we get

n <

√
(M + Ωσ2)2 + 4(N − 1)MΩσ2 − (M + Ωσ2)

2M
(4.8)

For example, with N = 50 and σ = 1, the optimal number of adjustments computed by

equation (4.8) is given in Table 4.4.
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4.4 Integrated SPC/EPC Methods for Autocorrelated Processes

When process observations are autocorrelated, it is well-known that traditional

control charts that are designed for detecting changes in an i.i.d. process would have

substantially deteriorated shifts detection properties. The main problem associated with

autocorrelated data is that the autocorrelation may induce a large amount of false alarms,

which, in turn, reduce the usability of a control chart for detecting true shifts in the

process mean.

Two categories of SPC methods for autocorrelated data were reviewed in Chapter

2. In the first approach, filtering out the autocorrelation of the process (fitting an ARMA

model to the data and inverting it), process mean shifts are also transformed into some

complicated transient patterns which are hard to detect even when the process residuals

are an i.i.d. sequence. In the second approach, changing the control chart limits allows

to maintain the normal ARL property of a control chart and it is easy to apply since

the ARMA model of the autocorrelated process is not necessary. Therefore, in this

section, we will recalculate the control chart limits for AR(1) and MA(1) processes.

Specifically, the method proposed by Yashchin [118] for CUSUM charts will be used and

this modified chart will be applied on simulated mildly autocorrelated processes. Similar

to the previous section, the shifts in the process mean occur at random times. Whenever

this shift is detected by the control chart, five sequential adjustments are applied on the

process.

Yashchin’s design of CUSUM charts consists of two steps. First, use an i.i.d.

sequence {y∗
t
} to substitute the original autocorrelated sequence {yt}, where {y∗

t
} must
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satisfy the following two requirements: i) its “runaway range” r (the run-length before

its CUSUM statistic exceeds control limits) should be approximately equal to that of the

original sequence; and ii)
∑r

t=1 y∗
t

and
∑r

t=1 yt should have the same first and second

moments. Then, a suitable CUSUM chart for this i.i.d. sequence can be designed.

For an ARMA(1,1) process, like yt = φyt−1 + εt − θεt−1, the mean of the i.i.d

sequence {y∗
t
} should be equal to the mean of {yt}, which is µ, and the variance of {y∗

t
}

can be computed from

σ2
r

=
1
r
V ar

(
r∑

t=1
yt

)
= σ2

y

[
1 +

2φd

1− φ
+

2φd(1− φr)
r(1− φ2)

]
, (4.9)

where σ2
y

is the marginal variance of {yt}, and

σ2
y

=
σ2
ε
(1 + θ2 − 2φθ)

1− φ2 and d =
(1− φθ)(φ− θ)
φ(1 + θ2 − 2φθ)

.

The “runaway range”, r, can then be obtained by considering a Brownian Motion process

with drift µ and standard deviation per unit time σr. The value r is the expected time

to absorption at the control limit h of this Brownian Motion process starting from 0 at

time 0, given it does not return to 0, i.e.,

r =
σ2
r

µ2

(
µh/σ2

r

th(µh/σ2
r
)
− 1

)
(4.10)

where th(.) is the hyperbolic tangent function and h is the control limit on a one-side

CUSUM chart. Using equations (4.9) and (4.10), we can calculate the variance of the
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Coefficients of
autocorrelation φ=0.2 φ = 0.15 φ = 0.1 φ = 0.05

Design parameter
for CUSUM charts h = 6.3 h = 5.8 h = 5.3 h = 4.9

Shift size ARL (SRL) ARL (SRL) ARL (SRL) ARL (SRL)
0 299 (17.2) 304 (17.2) 299 (16.8) 304 (17.1)

0.5 42.2 (5.84) 40.6 (5.64) 37.7 (5.51) 35 (5.34)
1 13.1 (2.72) 12 (2.58) 11.1 (2.46) 10.4 (2.43)

1.5 7.31 (1.75) 6.71 (1.69) 6.17 (1.59) 5.7 (1.53)
2 4.95 (1.31) 4.65 (1.25) 4.27 (1.21) 3.93 (1.14)

2.5 3.83 (1.06) 3.57 (1.02) 3.28 (0.98) 3.05 (0.95)
3 3.15 (0.91) 2.95 (0.88) 2.72 (0.84) 2.53 (0.82)

Table 4.5. Run-length distributions of CUSUM charts with modified control limits for
AR(1) processes, yt = φyt−1 + εt, where εt ∼ N(0, 1)

i.i.d. sequence according to various selections of h; thus, the ARLs of this sequence for

the CUSUM chart with control limit h can be obtained.

In this research, Yashchin’s method is used to find an initial design value of the

CUSUM chart’s limit, then the chart’s ARL property is verified by simulation study and

the chart’s limit may be further modified until the simulation result is desired. Tables 4.5

and 4.6 list the ARLs and SRLs (standard deviations of run lengths) of several modified

CUSUM charts for AR(1) and MA(1) processes by the simulation study (Here, another

parameter of the CUSUM chart, k, is 0.5. Recall a usual CUSUM for an i.i.d. process,

yt ∼
iid (0, 1), has k = 0.5 and h = 5). The in-control ARLs are set to be roughly 300.

The modified CUSUM charts are applied on an autocorrelated process. When-

ever an “out-of-control” signal is triggered, this activates five sequential adjustments for

removing the process mean shift. As in the previous section, fifty process observations

were simulated. At each observation there is a small possibility (from 0.5% to 5%) such
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Coefficients of
autocorrelation θ=-0.2 θ =- 0.15 θ =- 0.1 θ = -0.05

Design parameter
for CUSUM charts h = 6.0 h = 5.6 h = 5.3 h = 4.9

Shift size ARL (SRL) ARL (SRL) ARL (SRL) ARL (SRL)
0 299 (17.2) 304 (17.2) 299 (16.8) 304 (17.1)

0.5 42.2 (5.84) 40.6 (5.64) 37.7 (5.51) 35 (5.34)
1 13.1 (2.72) 12 (2.58) 11.1 (2.46) 10.4 (2.43)

1.5 7.31 (1.75) 6.71 (1.69) 6.17 (1.59) 5.7 (1.53)
2 4.95 (1.31) 4.65 (1.25) 4.27 (1.21) 3.93 (1.14)

2.5 3.83 (1.06) 3.57 (1.02) 3.28 (0.98) 3.05 (0.95)
3 3.15 (0.91) 2.95 (0.88) 2.72 (0.84) 2.53 (0.82)

Table 4.6. Run-length distributions of CUSUM charts with modified control limits for
MA(1) processes, yt = εt − θεt−1, where εt ∼ N(0, 1)

that the process mean could be shifted to a random number s, where s ∼ N(µs, 1).

The simulation was repeated 10,000 times. Five methods were tested: modified CUSUM

chart plus single adjustment, modified CUSUM chart plus five sequential adjustments,

and EWMA controllers with the control parameter λ ( λ = 0.1, 0.2, 0.3). The percent-

age of improvements on the AISDs of the adjusted process compared to the unadjusted

process are listed in Tables 4.7-4.10. More results are included in Appendix B.

From these tables, one can see that clearly a scheme which integrates a CUSUM

charts with sequential adjustments outperforms those where only a single adjustment is

made. However, EWMA controllers with properly selected λ values are very competitive

especially when shift sizes are not large. This result is reasonable since the EWMA

controller keeps constant adjustments on the process, which will not only adjust for

possible process mean shifts but also compensate for the autocorrelations in the original
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process observations. The advantage of integration schemes becomes visible only when

the process autocorrelations are small and the chance of mean shifts is small.

4.5 Summary

In this chapter, several combinations of process monitoring and adjusting methods

were studied for both i.i.d. processes and autocorrelated processes. It was found that

sequential adjustments are superior to single adjustment strategies for almost all types of

process shifts and magnitudes considered. A CUSUM chart used together with a simple

sequential adjustment scheme was found to reduce the AISDs of a shifted process more

than any other combined scheme when the shift size is not very large. It was further

proposed that a hybrid CUSUM-Shewhart monitoring method, when coupled with a

sequential adjustment scheme, has a more competitive performance on both small and

large shift sizes.

Unlike some commonly used automatic process control methods, the integrated

SPC/EPC schemes that we proposed do not require continuous adjustments on the

process. Therefore, these methods are suitable for process control when the process is

subject to infrequent random shocks. The number of adjustments can be justified by

comparing the cost and the benefit of the adjustment. Since sequential adjustments are

applied, the effect of the initial estimate of the process mean is not as critical as in the

single adjustment method, so this method requires much less computation effort and is

easy to be implemented on the manufacturing floor.
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Mean of shift size
% improvement on AISD 0 1σ 2σ 3σ 4σ

p=0.05 CUSUM chart + 9.18 34.56 59.73 71.95 78.73
Single adj. (0.35) (0.40) (0.37) (0.33) (0.30)

CUSUM chart + 17.33 40.31 62.98 73.87 80.04
Sequential adj. (0.29) (0.36) (0.34) (0.31) (0.28)

EWMA controller 24.87 42.76 59.78 66.96 70.70
(λ = 0.1) (0.26) (0.31) (0.30) (0.28) (0.26)

EWMA controller 26.18 46.04 65.13 73.33 77.76
(λ = 0.2) (0.29) (0.34) (0.32) (0.30) (0.28)

EWMA controller 25.09 46.01 66.17 74.94 79.76
(λ = 0.3) (0.30) (0.36) (0.34) (0.32) (0.29)

p=0.035 CUSUM chart + 4.96 22.80 45.47 58.63 65.86
Single adj. (0.32) (0.39) (0.40) (0.39) (0.39)

CUSUM chart + 12.53 28.70 49.22 61.29 67.67
Sequential adj. (0.26) (0.34) (0.37) (0.37) (0.37)

EWMA controller 19.13 31.97 47.62 55.70 59.60
(λ = 0.1) (0.24) (0.31) (0.33) (0.33) (0.34)

EWMA controller 19.39 33.79 51.67 61.01 65.60
(λ = 0.2) (0.27) (0.35) (0.37) (0.37) (0.37)

EWMA controller 17.66 32.92 52.03 62.07 67.05
(λ = 0.3) (0.29) (0.37) (0.39) (0.39) (0.39)

p=0.02 CUSUM chart + 1.00 10.12 26.97 38.42 45.60
Single adj. (0.27) (0.34) (0.39) (0.43) (0.45)

CUSUM chart + 7.13 16.04 31.26 41.69 47.97
Sequential adj. (0.21) (0.29) (0.36) (0.40) (0.43)

EWMA controller 11.64 19.38 30.92 38.14 42.08
(λ = 0.1) (0.22) (0.28) (0.34) (0.37) (0.38)

EWMA controller 10.55 19.48 32.80 41.25 45.89
(λ = 0.2) (0.25) (0.31) (0.38) (0.41) (0.43)

EWMA controller 8.03 17.64 31.95 41.10 46.13
(λ = 0.3) (0.27) (0.34) (0.40) (0.44) (0.46)

p=0.005 CUSUM chart + -4.25 -2.01 3.49 7.57 10.13
Single adj. (0.21) (0.24) (0.29) (0.33) (0.37)

CUSUM chart + 0.13 2.39 7.47 11.02 13.28
Sequential adj. (0.13) (0.17) (0.25) (0.29) (0.33)

EWMA controller 1.86 3.85 7.94 10.22 11.56
(λ = 0.1) (0.13) (0.17) (0.23) (0.27) (0.29)

EWMA controller -0.73 1.55 6.34 9.08 10.68
(λ = 0.2) (0.15) (0.20) (0.27) (0.31) (0.33)

EWMA controller -4.09 -1.64 3.54 6.53 8.28
(λ = 0.3) (0.17) (0.21) (0.29) (0.33) (0.36)

Table 4.7. Performance of integrated SPC/EPC adjustment schemes and an EWMA
adjustment scheme on an AR(1) process when varying the probability of a shift.



99

Mean of shift size
% improvement on AISD 0 1σ 2σ 3σ 4σ

p=0.05 CUSUM chart + 10.48 35.43 61.34 73.54 79.07
Single adj. (0.36) (0.41) (0.37) (0.32) (0.30)

CUSUM chart + 18.77 41.40 64.51 75.35 80.25
Sequential adj. (0.30) (0.36) (0.34) (0.30) (0.29)

EWMA controller 24.54 42.51 59.80 67.14 70.11
(λ = 0.1) (0.26) (0.32) (0.30) (0.28) (0.27)

EWMA controller 24.70 44.85 64.69 73.21 76.74
(λ = 0.2) (0.30) (0.36) (0.33) (0.31) (0.30)

EWMA controller 22.31 43.81 65.22 74.50 78.37
(λ = 0.3) (0.32) (0.38) (0.35) (0.32) (0.32)

p=0.035 CUSUM chart + 5.74 24.26 47.34 59.71 66.02
Single adj. (0.33) (0.39) (0.40) (0.40) (0.39)

CUSUM chart + 13.17 30.18 51.05 62.15 67.75
Sequential adj. (0.27) (0.35) (0.37) (0.37) (0.38)

EWMA controller 18.30 31.94 47.79 55.17 58.51
(λ = 0.1) (0.25) (0.31) (0.34) (0.34) (0.35)

EWMA controller 17.23 32.85 51.09 59.88 63.89
(λ = 0.2) (0.29) (0.36) (0.38) (0.38) (0.39)

EWMA controller 14.05 30.89 50.64 60.29 64.75
(λ = 0.3) (0.31) (0.38) (0.41) (0.41) (0.41)

p=0.02 CUSUM chart + 0.14 11.60 27.58 39.34 45.35
Single adj. (0.29) (0.35) (0.41) (0.43) (0.45)

CUSUM chart + 6.91 17.51 31.89 42.26 47.69
Sequential adj. (0.23) (0.31) (0.37) (0.41) (0.43)

EWMA controller 10.27 19.08 29.82 36.98 40.22
(λ = 0.1) (0.22) (0.29) (0.35) (0.37) (0.39)

EWMA controller 7.67 17.88 30.48 39.05 43.06
(λ = 0.2) (0.25) (0.33) (0.40) (0.43) (0.44)

EWMA controller 3.51 14.58 28.37 37.81 42.31
(λ = 0.3) (0.28) (0.36) (0.43) (0.46) (0.48)

p=0.005 CUSUM chart + -4.94 -1.96 2.90 7.34 10.01
Single adj. (0.23) (0.25) (0.30) (0.34) (0.38)

CUSUM chart + -0.13 2.46 6.90 10.88 13.33
Sequential adj. (0.15) (0.19) (0.25) (0.30) (0.34)

EWMA controller 0.28 2.32 5.71 8.36 10.10
(λ = 0.1) (0.14) (0.18) (0.23) (0.27) (0.30)

EWMA controller -4.13 -1.75 2.31 5.52 7.60
(λ = 0.2) (0.16) (0.21) (0.27) (0.32) (0.35)

EWMA controller -9.44 -6.85 -2.36 1.22 3.50
(λ = 0.3) (0.18) (0.23) (0.30) (0.35) (0.38)

Table 4.8. Performance of integrated SPC/EPC adjustment schemes and an EWMA
adjustment scheme on an AR(1) process with φ = 0.05 when varying the probability of
a shift.
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Mean of shift size
% improvement on AISD 0 1σ 2σ 3σ 4σ

p=0.05 CUSUM chart + 9.44 34.67 59.13 72.12 78.44
Single adj. (0.35) (0.40) (0.37) (0.33) (0.30)

CUSUM chart + 17.74 40.46 62.34 74.15 79.79
Sequential adj. (0.29) (0.36) (0.34) (0.31) (0.28)

EWMA controller 24.68 42.50 58.74 67.03 70.37
(λ = 0.1) (0.26) (0.31) (0.30) (0.28) (0.27)

EWMA controller 25.74 45.50 63.80 73.24 77.23
(λ = 0.2) (0.29) (0.35) (0.33) (0.30) (0.29)

EWMA controller 24.41 45.22 64.66 74.76 79.12
(λ = 0.3) (0.31) (0.37) (0.35) (0.32) (0.30)

p=0.035 CUSUM chart + 5.16 22.58 45.93 58.74 64.74
Single adj. (0.32) (0.38) (0.40) (0.39) (0.39)

CUSUM chart + 12.93 28.75 49.89 61.45 66.58
Sequential adj. (0.26) (0.34) (0.37) (0.37) (0.37)

EWMA controller 18.92 31.42 47.68 55.62 58.28
(λ = 0.1) (0.25) (0.31) (0.33) (0.33) (0.34)

EWMA controller 18.88 33.04 51.54 60.79 63.95
(λ = 0.2) (0.28) (0.35) (0.37) (0.37) (0.38)

EWMA controller 16.91 31.98 51.74 61.73 65.19
(λ = 0.3) (0.30) (0.37) (0.39) (0.39) (0.40)

p=0.02 CUSUM chart + 0.58 10.70 27.50 38.84 44.11
Single adj. (0.28) (0.34) (0.40) (0.42) (0.45)

CUSUM chart + 7.17 16.19 31.82 41.88 46.74
Sequential adj. (0.22) (0.29) (0.37) (0.40) (0.43)

EWMA controller 11.44 18.85 31.07 37.96 40.63
(λ = 0.1) (0.22) (0.28) (0.34) (0.37) (0.38)

EWMA controller 10.11 18.55 32.70 40.80 44.09
(λ = 0.2) (0.25) (0.32) (0.38) (0.41) (0.43)

EWMA controller 7.38 16.41 31.62 40.44 44.08
(λ = 0.3) (0.27) (0.34) (0.41) (0.44) (0.46)

p=0.005 CUSUM chart + -4.21 -2.22 2.84 6.97 10.43
Single adj. (0.22) (0.24) (0.29) (0.34) (0.37)

CUSUM chart + 0.34 2.33 7.05 10.73 13.69
Sequential adj. (0.14) (0.17) (0.24) (0.30) (0.33)

EWMA controller 1.51 3.32 7.08 9.62 11.31
(λ = 0.1) (0.14) (0.17) (0.23) (0.27) (0.29)

EWMA controller -1.52 0.61 5.11 8.09 10.12
(λ = 0.2) (0.16) (0.19) (0.26) (0.31) (0.34)

EWMA controller -5.25 -2.94 2.00 5.24 7.46
(λ = 0.3) (0.18) (0.21) (0.28) (0.33) (0.36)

Table 4.9. Performance of integrated SPC/EPC adjustment schemes and an EWMA
adjustment scheme on a MA(1) process with θ = −0.2 when varying the probability of
a shift.
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Mean of shift size
% improvement on AISD 0 1σ 2σ 3σ 4σ

p=0.05 CUSUM chart + 10.63 35.02 60.85 72.47 78.66
Single adj. (0.35) (0.40) (0.36) (0.33) (0.31)

CUSUM chart + 18.96 40.78 63.95 74.40 79.90
Sequential adj. (0.30) (0.36) (0.34) (0.31) (0.29)

EWMA controller 24.51 41.69 59.31 66.34 69.73
(λ = 0.1) (0.26) (0.32) (0.30) (0.29) (0.28)

EWMA controller 24.66 44.03 64.10 72.33 76.33
(λ = 0.2) (0.30) (0.35) (0.34) (0.31) (0.30)

EWMA controller 22.26 42.99 64.58 73.57 77.94
(λ = 0.3) (0.32) (0.38) (0.36) (0.33) (0.32)

p=0.035 CUSUM chart + 5.45 24.11 47.45 60.14 66.61
Single adj. (0.33) (0.39) (0.40) (0.39) (0.39)

CUSUM chart + 13.20 30.14 51.18 62.56 68.41
Sequential adj. (0.27) (0.35) (0.37) (0.37) (0.37)

EWMA controller 18.20 31.79 47.65 55.54 59.00
(λ = 0.1) (0.25) (0.32) (0.34) (0.34) (0.34)

EWMA controller 17.11 32.59 50.97 60.22 64.49
(λ = 0.2) (0.28) (0.36) (0.38) (0.38) (0.38)

EWMA controller 13.91 30.55 50.52 60.63 65.40
(λ = 0.3) (0.31) (0.39) (0.41) (0.41) (0.41)

p=0.02 CUSUM chart + 0.46 11.10 27.55 39.59 44.91
Single adj. (0.29) (0.35) (0.41) (0.43) (0.46)

CUSUM chart + 7.05 16.86 31.95 42.58 47.54
Sequential adj. (0.23) (0.31) (0.38) (0.41) (0.43)

EWMA controller 10.42 18.59 30.20 37.12 40.30
(λ = 0.1) (0.22) (0.29) (0.35) (0.37) (0.39)

EWMA controller 7.86 17.31 30.88 39.22 43.13
(λ = 0.2) (0.25) (0.33) (0.40) (0.43) (0.44)

EWMA controller 3.73 13.97 28.77 38.01 42.38
(λ = 0.3) (0.28) (0.36) (0.43) (0.46) (0.48)

p=0.005 CUSUM chart + -4.61 -1.40 3.11 7.57 9.97
Single adj. (0.22) (0.25) (0.30) (0.35) (0.38)

CUSUM chart + -0.28 2.64 6.94 11.11 13.31
Sequential adj. (0.15) (0.20) (0.26) (0.31) (0.34)

EWMA controller -0.06 2.63 5.85 8.77 9.97
(λ = 0.1) (0.13) (0.18) (0.23) (0.27) (0.29)

EWMA controller -4.58 -1.37 2.47 6.03 7.52
(λ = 0.2) (0.16) (0.21) (0.27) (0.32) (0.34)

EWMA controller -9.98 -6.43 -2.19 1.77 3.47
(λ = 0.3) (0.17) (0.23) (0.30) (0.35) (0.38)

Table 4.10. Performance of integrated SPC/EPC adjustment schemes and an EWMA
adjustment scheme on a MA(1) process with θ = −0.05 when varying the probability of
a shift.
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In this study, it was also found that EWMA control schemes with proper control

parameters can outperform other schemes for a process with frequent mean shifts, es-

pecially when the process is autocorrelated. But since this control scheme requires no

process monitoring, it does not provides the opportunity for quality engineers to distin-

guish process mean shifts from process autocorrelations and to understand and correct

the root cause of the shifts.
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Chapter 5

Sequential Adjustment Methods for Asymmetric

Off-target Quality Cost Functions

In previous chapters, sequential process adjustment rules were evaluated by the

criterion AISD, i.e., the accumulated off-target costs, assumed quadratic. Such criterion

is similar to Taguchi’s quadratic quality loss function (Taguchi [98]). This and the next

chapters present some alternative process adjustment methods when other manufacturing

cost functions are used directly as the performance criteria of the adjustment rules instead

of the AISD.

In many industrial cases, some non-quadratic quality cost functions are prevalent.

For example, 0-1 type quality costs are often used for modelling the quality of conforming

and nonconforming products. In this chapter, a more general quality cost structure

based on asymmetric off-target costs is considered. Under this cost structure, higher-

than-target observations imply a different cost than lower-than-target observations. This

is especially relevant when material is removing during a manufacturing process, such

as when drilling a hole, where an undersized hole can be reworked but an oversized hole

may result in scrapping the whole part.

5.1 Asymmetric Cost Models

In this section, the machine setup error problem is once again studied; however,

the process off-target cost is assumed to be an asymmetric function around the target
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value as opposed to the previously considered quadratic cost function where the costs

of over target and under target are symmetric. Suppose the quality characteristic y of

each machined part is measured with reference to a nominal value, which is assumed,

without loss of generality, to be equal to 0. After an erroneous start-up, the process

is assumed to be off-target by d units, but this value cannot be observed directly due

to the inherent production variability and the error of measurement. After the quality

characteristic is measured a control parameter x can be set, which is assumed to have an

immediate effect on the process output. Therefore, the process is the same as Equation

(2.5) and it is repeated here

yt = d + xt−1 + εt (5.1)

where t = 1, ..., N denotes a discrete time index or part number, and εt∼N(0, σ2
ε
) are

normally distributed i.i.d. sequence.

To evaluate the costs associated with the control procedure, two cost models often

adopted in industrial practice will be considered. In the first case, costs are assumed to

arise only when the part processed is non-conforming, i.e., when the quality characteristic

is out of the specification limits. In particular, it will be assumed that nonconforming

to the lower or the upper specification limit could lead to different costs. For example,

consider the case of a quality characteristic related with a dimension obtained after a

finishing operation. In such operation, the costs associated with oversized and undersized

items, which are mainly determined by either scrapping or re-working, are almost always

different.
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Fig. 5.1. The asymmetric constant cost function with different costs when the quality
characteristic is below the LSL or above the USL.

Therefore, two constants, cc1 and cc2, are used to represent the costs associated

with the violation of the LSL and USL, respectively. The superscript c indicates the

constant cost model, thus we have

Cc
n

=



cc1 if yt < LSL

0 if LSL ≤ yt ≤ USL

cc2 if yt > USL

(5.2)

(see Figure 5.1).

Another asymmetric cost model of interest is based on a piecewise quadratic cost

function. In this case, the cost function can be more properly considered as a penalty

function, in which the loss is assumed to be proportional to the square of the distance
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of the quality characteristic from its nominal value. The asymmetry in the cost function

is modeled through two constants, c
q
1 and c

q
2, where the superscript q indicates the

quadratic cost model, given by

Cq
n

=


c
q
1Y 2

n
if yt < 0

c
q
2Y 2

n
if yt ≥ 0 .

(5.3)

The value of the constants c
q
1 and c

q
2 can be computed with reference to the Specification

Limits as suggested by Wu and Tang [115]. The distance between the nominal value and

the LSL or USL is denoted by ∆, and the cost corresponding to a quality characteristic

equal to LSL or USL is L1 or L2, respectively. The constants, c
q
1 and c

q
2, are given by:

cq1 =
L1
∆2 and cq2 =

L2
∆2 (5.4)

(see Figure 5.2). The correspondence between the coefficients adopted with the constant

and the quadratic cost models can be found from (5.4) by letting L1 = cc1 and L2 = cc2.

The traditional symmetric cost models are therefore special cases of the above models,

i.e., cc1 = cc2 and c
q
1 = c

q
1.

Since most of the recently developed devices for on-line inspection and measure-

ment can transmit the data acquired to the controller of the machine, the assumption of

an automatic feedback procedure is realistic. In this scenario, the cost of the adjustments

can be neglected and therefore has not been considered in the following analysis.

The asymmetry in the cost function implies two issues that have to be considered

in designing the adjustment rule. The first is related to the long-term or steady-state
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Fig. 5.2. The asymmetric quadratic cost function with different costs when the quality
characteristic is below the LSL or above the USL.

target T • that has to be entered on the machine at start-up, where the superscript • is

replaced by either c or q to indicate either a constant or a quadratic cost function. The

problem of determining this value, referred to in the literature as the optimum target

point, has been addressed for asymmetric cost functions in manufacturing by Ladany

[58] and Wu and Tang [115].

The second issue is related to the way in which, starting from an initial offset,

the quality characteristic should converge to the target as determined by the adjust-

ment procedure. Both of these issues are considered in the remainder of this chapter.

In particular, the steady-state target T • will be derived by minimizing the long term

expected costs, and the adjustment rule will be determined by considering all the costs

associated with the transient period, evaluating the Average Integrated Expected Cost
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(AIEC) performance index:

AIEC• =
1
N

N∑
n=1

E(C•
n
) (5.5)

where E(C•
n
) indicates the expected value of the costs at the nth step of the adjustment

procedure.

5.2 A Biased Feedback Adjustment Rule

Since a control variable is available for removing a possible start-up error of a

process, it is necessary to design a feedback adjustment rule to manipulate this variable.

A common feedback linear adjustment rule is one of the form:

xt = xt−1 −Kt(yt − T •) . (5.6)

That is, the adjustments xt − xt−1 are proportional to the latest measured deviation

of the quality characteristic yt from the steady-state target T •. In Chapter 3, it was

shown that, depending on the selection of the sequence {Kn}, this sequential adjustment

results in Grubbs’ harmonic and extended rules [44], which in turn is a direct application

of Robbins and Monro’s stochastic approximation techniques [79], the EWMA or integral

controller, and an approach based on Recursive Least Squares. The performance of all

the rules mentioned above was studied with respect to symmetric cost functions only.

Since the asymmetry in the cost model induces different losses depending on

the side from which the quality characteristic approaches the steady-state target, the
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performance of the linear adjustment rule could be enhanced by introducing a bias term

in (5.6). Anbar [5] proposed a biased stochastic approximation procedure, further studied

by Krasulina [57], for the problem of one-sided convergence. In this model, a bias term

bt is introduced into the adjustment rule, i.e.,

xt = xt−1 −Kn(yt − T • + bt) . (5.7)

Using the law of the repeated logarithm, Anbar demonstrated the convergence of

Yn as n →∞ when bn converges to zero in n
1
2 (log(log n))−

1
2 .

Equation (5.7) is the adjustment rule we will consider in what follows; however,

the conditions of the process variables outlined in Anbar [5] do not give insight on the

selection of the sequence {bt} with reference to a specific asymmetric cost function. The

adjustment procedure proposed in this paper is instead oriented to derive a sequence

of bias coefficients {bt} that minimize the costs incurred during the transient phase of

convergence of the quality characteristic to its steady-state target. In order to preserve

its easiness of use, the bias sequence {bt} should be able to be computed off-line even

when the process measurements are not available. This condition assures the control

rule to be applicable to any manufacturing process, independently from the time units

characterizing its dynamics.

By recursively substituting (5.7) in (5.1), the general expression of the quality

characteristic at the nth step of the procedure is given by:
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yt =
t−1∏
i=1

(1−Ki)d−
t−1∑
i=1

Ki(εi + bi)
t−1∏

j=i+1
(1−Kj)

+T •
t−1∑
i=1

Ki

t−1∏
j=i+1

(1−Kj)

+εt

(5.8)

where:
t−1∏
j=t

(1−Kj) = 1 .

Since process errors are normally distributed, the quality characteristic yt at each

step of the procedure is also normally distributed, i.e., yt ∼ N(µt, σ
2
t
), with mean and

variance equal to:

µt =
t−1∏
i=1

(1−Ki)d−
t−1∑
i=1

Kibi

t−1∏
j=i+1

(1−Kj)

+ T •
t−1∑
i=1

Ki

n−1∏
j=i+1

(1−Kj)


(5.9)

σ2
t

= σ2
ε

1 +
t−1∑
i=1

K2
i

t−1∏
j=i+1

(1−Kj)
2

 . (5.10)

As it can be observed, the sequence of bias terms {bi} affects only the mean value µt of

the quality characteristic. Therefore, for a given selection of {Ki}, the bias terms {bi}

can be determined by equating the right hand side of expression (5.9) to the optimal

mean at the nth step m•
t
, i.e., the nth component of the vector m• = {m•

n
, n = 1, ..., N}

that minimizes the AIEC• given by (5.5). The computation of m• will be addressed in

the next section.

Although the approaches in Anbar [5] and Krasulina [57] utilize the harmonic

sequence for {Kt}, i.e., Kt = 1, 1/2, 1/3, ..., it is in principle possible to consider a
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different sequence, while maintaining the form of the controller given by (5.7). For

example, besides considering the harmonic sequence (Grubbs’ approach), a constant

sequence (the EWMA or integral control approach) can be considered instead.

In the case when Ki = 1/i, i = 1, 2, ..., t− 1 (a harmonic series), the value of the

mean and the variance of the quality characteristic at each step are given by:

µt = T • − 1
t− 1

t−1∑
i=1

bi (5.11)

σ2
t

= σ2
ε

(
t

t− 1

)
. (5.12)

If Ki is instead set equal to a constant λ, as in the EWMA approach, the resulting

mean and variance are:

µt = T • + (1− λ)t−1(d− T •)− λ(1− λ)t−1
t−1∑
i=1

bi
(1− λ)i

(5.13)

σ2
t

= σ2
ε

[
2− λ(1− λ)2(t−1)

2− λ

]
. (5.14)

It is noticed that in Equation (5.11) the value of µt does not depend on the initial

unknown offset d, thus an off-line computation of bn is possible. For the biased EWMA

approach, µt is a function of the unknown offset d, so the sequence of biased coefficients

{bt} can not be computed off-line. Therefore, we will only consider the biased harmonic

adjustment rule in what follows. From Equation (5.11), the general expression for bt can

be obtained by equating the mean of the response to the optimal mean at the tth and

the t + 1th steps, i.e.,
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− 1
t− 1

t−1∑
i=1

bi + T • = m•
t

and

−1
t
(
t−1∑
i=1

bi + bt) + T • = m•
t+1 ,

from where the general expression for the bias term bt is given by

bt = t(T • −m•
t+1)− (t− 1)(T • −m•

t
) . (5.15)

5.3 Formulae for the Optimal Target and the Sequence of Bias Term

To complete the adjustment rule, the optimal steady-state target T • and the

sequence of bias terms {bt} have to be specified. As previously mentioned, the first

value represents the optimal mean m•
t

as t → ∞, while the sequence of bias terms can

be computed using (5.15), once the vector of optimal means m• is known. To compute

this vector, the minimization problem that has to be solved can be stated as:

min
µ

AIEC
• (5.16)

where µ = {µ
t
, t = 1, ..., N} is the vector composed by the means of the response at each

step of the procedure, and AIEC
• is the performance index given by equation (5.5). As

showed in Appendix C, when the linear control rule (5.7) is in use, the optimization in
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(5.16) is equivalent to the following set of minimization problems:

min
µ

t

E(C•
t
) , t = 1, 2, ..., N . (5.17)

Problems in (5.17) will be solved for the two types of cost functions studied.

Consider first the constant asymmetric cost function. The expected cost at time t is

given by:

E(Cc

t
) = c

c

1

LSL∫
−∞

f
N

(y
t
;µ

t
, σ

2

t
)dy

t
+ c

c

2

∞∫
USL

f
N

(y
t
;µ

t
, σ

2

t
)dy

t

= c
c

1
Φ

(
LSL− µ

t
σ
t

)
+ c

c

2

[
1− Φ

(
USL− µ

t
σ
t

)]
(5.18)

where f
N

(·) is the normal density function and Φ(·) is the standard normal distribution

function. The minimum of this function with respect to µ
t

can be derived by computing

the first and second order derivatives of E(Cc

t
). As reported in Appendix D, the optimal

mean m
c

t
, obtained by equating the first derivative of E(Cc

t
) to zero, is given by

m
c

t
=

σ
2

t
ln(cc

1
/c

c

2
)

(USL− LSL)
+

1
2
(USL + LSL). (5.19)

As a special case, when the cost function is symmetric, i.e. c
c

1
= c

c

2
, the result

obtained is m
c

t
= (USL+LSL)/2, which is equal to 0 when USL and LSL are symmetric

around the nominal value. Since the second derivative with respect to µ
t

(see Appendix
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D) is always greater than zero when the condition LSL < µ
t

< USL is satisfied, the

value of m
c

t
obtained is the minimum for the expected cost E(Cc

t
).

The steady-state target T
c can be derived as a particular case of the general

expression (5.19) by considering the limit, as t → ∞, of σ
2

t
given by (5.12). Since this

limit is equal to σ
2

ε
, we get

T
c =

σ
2

ε
ln(cc

1
/c

c

2
)

(USL− LSL)
+

1
2
(USL + LSL) . (5.20)

Substituting (5.20) and (5.19) into the expression of the bias term, given by (5.15),

the values of the bias terms b
t

for the asymmetric constant cost function can be directly

computed. In this case, all b
t
’s except the first one equal to zero, i.e.,

b
t
=


−

ln(cc
1
/c

c

2
)σ2

ε
(USL−LSL) if t=1

0 if t=2,...,N .

(5.21)

Although the feedback adjustment procedure has a non-zero bias b
t

only at the

first step, b1 affects the following adjustments through the x
t−1 term in the expression

of the controller (5.7).

Consider now the quadratic asymmetric cost function. The expected cost at the

t
th step of the procedure is given by

E(Cq

t
) = c

q

1

0∫
−∞

y
2

t
f
N

(t
t
;µ

t
, σ

2

t
)dy + c

q

2

∞∫
0

y
2

t
f
N

(y
t
;µ

t
, σ

2

t
)dy

t
.
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By solving the two integrals (as reported in Appendix E), the following expression for

the expected value of the cost is obtained:

E(Cq

t
) = c

q

2
(µ2

t
+ σ

2

t
) + (cq

2
− c

q

1
)

[
σ
t
µ
t
φ

(
µ
t

σ
t

)
− (µ2

t
+ σ

2

t
)Φ

(
−

µ
t

σ
t

)]
. (5.22)

Computing the first derivative with respect to µ
t

and equating it to zero, the optimal

mean m
q

t
is determined by the following equation:

2c
q

2
m

q

t
+ 2(cq

2
− c

q

1
)

σ
t
φ

m
q

t
σ
t

−m
q

t
Φ

−m
q

t
σ
t

 = 0 (5.23)

where φ(·) is the standard normal density function and Φ(·) is the standard normal

distribution function. Although there is no closed form expression for m
q

t
, it can be

computed numerically off-line, since all the quantities in expression (5.23) do not depend

on the actual observations of the quality characteristic. Similarly as the constant cost

function, if the quadratic cost function is symmetric, i.e., c
q

1
= c

q

2
, the optimal mean m

q

t

is zero for t = 1, 2, ..., N .

The second derivative of E(Cq

t
) with respect to µ

t
is always positive (see Appendix

E), so m
q

t
given by equation (5.23) determines a minimum of the expected cost. Again,

the steady-state target T
q can be computed as a special case by considering lim

t→∞σ
t
=

σ
ε
, in equation (5.23), so T

q is the solution of

2c
q

2
T

q + 2(cq
2
− c

q

1
)

[
σ
ε
φ

(
T

q

σ
ε

)
− T

qΦ

(
−T

q

σ
ε

)]
= 0 . (5.24)
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Therefore, in the case of the quadratic cost model, the feedback adjustment rule can be

obtained by evaluating numerically the optimal means m
q

t
that satisfy equation (5.23)

for t = 1, 2, ..., N , and the optimal target T
q can be obtained from equation (5.24).

Substituting these values in equation (5.15), we obtain the sequence of bias coefficients

{b
t
}.

In summary, the biased linear adjustment procedure for constant and quadratic

cost functions are as follows:

Solution to the Asymmetric Constant Cost Model

Given: c
c

1
, c

c

2
, USL, LSL, σ

ε
, N .

1. Compute the steady-state target T
c using (5.20);

2. Compute the bias coefficient b1 using (5.21);

3. Adjust the control variable on-line according to the following equation:

x
t
=


−[y1 − T

c + b1] if t = 1

x
t−1 −

1
t [y

t
− T

c] if t = 2, ..., N .

(5.25)

Solution to the Asymmetric Quadratic Cost Model

Given: c
q

1
, c

q

2
, σ

ε
, N .

1. Compute the steady-state target T
q by solving numerically equation (5.24);

2. Find the sequence of bias terms {b
t
} for t = 1, ..., N :

• Compute the optimal mean m
q

t
by solving numerically equation (5.23) where

σ
t
= σ

ε

√
t

t−1 ;
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• Substitute T
q

t
and m

q

t
into (5.15) to obtain b

t
;

3. Adopt the biased linear adjustment rule for on-line process adjustment:

x
t
= x

t−1 −
1
t
(y

t
− T

q + b
t
) .

5.4 An Application to a Real Machining Process

In this section, the biased linear adjustment procedure for start-up errors will

be applied to a real machining problem. The performance of the biased rule will be

compared with that of Grubbs’ rule and with the EWMA (integral) controller. The

latter two procedures follow the adjustment rules of the form (5.6) where K
t

is equal to

1/t for Grubbs’ rule and equal to a constant λ for the EWMA controller.

A hole-finishing operation is performed on a pre-existing hole in a raw aluminum

part made by pressure casting. The specification limits on the final hole diameter are at

57.000 ±0.030mm. After the execution of the operation, the diameter of the hole (D)

is measured in an automatic inspection station constituted by a probe that acquires the

diameter while the workpiece rotates 360 degrees around the axis of the hole. The mean

diameter is computed and recorded. Due to the materials machined and the tools used

(polycrystalline inserts), the tool wear can be neglected and no trend is present in the

data collected. We let the quality characteristic of this process be the difference between

measurement D
t

and the nominal value of the hole diameter, i.e., y
t

= D
t
− 57000,

in microns. The standard deviation of the process σ
ε

is estimated through
√

MSE

(the square root of Mean Square Error), which is obtained from an ANOVA analysis of
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historical process data after start-ups and which is equal to 10 microns (thus the process

capability ratio, PCR, is 1). From the ANOVA analysis, it is also found that after setup

or maintenance operations the process mean often exhibits a shift or offset, which is, on

average, in the order of 3σ
ε
. In this case, parts are produced in lots of size 15.

The costs related to non-conforming items are different depending on whether

the diameter obtained is below the lower or above the upper specification limit. Indeed,

when the hole diameter is less than the LSL, an additional machining operation can

correct the defect by opportunely selecting the depth of cut. On the other hand, when

the diameter obtained is greater than USL, the part has to be scrapped, since there is

no possibility to recover the nonconforming workpiece. The cost of an undersized hole,

c
c

1
, is determined by considering the additional repairing operation while the cost of an

oversized hole, c
c

2
, is equal to the margin lost minus the value of the scrap. In this case,

the asymmetric ratio r (r = c
c

2
/c

c

1
) is 6.5. If a quadratic cost model is assumed, by

adopting the relation outlined in expressions (5.4), the same ratio between c
q

2
and c

q

1
can

be obtained.

As showed in Figure 5.3, the controllable variable x
t

is the radial position of the

tool. In fact, by opportunely selecting this variable, the depth of cut can be changed,

thus modifying the dimension of the diameter obtained. Furthermore, the adoption of a

parametric part program can in principle allow for an automatic adjustment procedure:

once a diameter is measured, the value of the controllable variable can be determined

and transmitted to the control unit of the machining center that will process the next

part accordingly. In a real-life application of an adjustment procedure, the resolution

of the machine in setting the tool position should be considered in order to derive the
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Fig. 5.3. The hole finishing operation.

approximation of the adjustment size. In this case a precision in the order of microns

determines that we round the adjustment to zero decimal places.

Assuming the asymmetric constant cost function model, the expected value of

the cost reported in (5.18) can be rewritten as a function of r, thus a scaled form of the

expected costs at each step of the adjustment procedure is obtained as:

E(Cc

t
)

cc

1

= Φ

(
LSL− µ

t
σ
t

)
+ r

[
1− Φ

(
USL− µ

t
σ
t

)]
(5.26)

Therefore, the performance comparisons among the different control rules will be evalu-

ated using as performance index the Scaled Average Integrated Expected Cost (SAIEC),

defined as:

SAIEC
c =

1
N

N∑
t=2

E(Cc

t
)

cc

1

(5.27)
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where the index in the summation starts from 2, since the quality characteristic of the

first part machined does not depend on the adjustment procedure. To define the biased

adjustment rule, the steady-state target T
c and the biased coefficients b

t
need to be

computed and rounded to the closest integer. Using equation (5.20), the steady-state

target results T
c = −3 micron. Therefore, according to (5.21), the biased coefficients

are given by:

b
t
=


3 t = 1

0 t = 2, ..., 15
(5.28)

Figure 5.4 reports the plots of the expected value of the quality characteristic

obtained with both the biased and Grubbs’ procedures. In particular, the piecewise

behavior of the biased mean converging to the target value is due to the approximation

(rounding) adopted to consider the precision of the machine in setting the tool position.

In fact, changing the precision of the approximation to the second decimal place, the

mean at each step of the biased procedure is represented by the dotted line in Figure

5.4. As it can be observed, the adoption of the biased procedure induces a convergence

of the mean to the steady-state target value T
c from the side of lower nonconforming

costs.

The savings in cost obtained by the biased rule are shown in Figure 5.5, where

the percentage difference in SAIEC
c determined by the biased and Grubbs’ procedures

is reported as a function of the items processed (computed from data in Table 5.1).

A further comparison between the biased and different EWMA control rules,

characterized by values of the parameter λ ranging from 0.2 to 0.8 has been carried out.

Since the performance of an EWMA controller depends on the initial offset d, a constant
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Fig. 5.4. Trajectory of the optimal mean of the quality characteristic (mc

t
) using Grubbs’

and the biased procedures (considering 0 and 2 decimal places) under the constant cost
model (r = 6.5 and N = 15).

n EWMA0.2 EWMA0.4 EWMA0.6 EWMA0.8 Grubbs Biased
2 1.227 0.532 0.234 0.119 0.092 0.080
3 0.898 0.341 0.149 0.088 0.064 0.057
4 0.689 0.245 0.112 0.076 0.051 0.046
5 0.553 0.192 0.092 0.070 0.043 0.039
6 0.461 0.158 0.080 0.067 0.037 0.034
7 0.393 0.135 0.072 0.065 0.033 0.031
8 0.342 0.118 0.066 0.063 0.030 0.028
9 0.303 0.106 0.062 0.062 0.028 0.026
10 0.271 0.096 0.058 0.061 0.026 0.024
11 0.246 0.089 0.055 0.060 0.024 0.023
12 0.225 0.082 0.053 0.059 0.023 0.022
13 0.207 0.077 0.051 0.059 0.022 0.021
14 0.193 0.072 0.050 0.058 0.021 0.020
15 0.180 0.068 0.048 0.058 0.020 0.019

Table 5.1. The SAIEC
c adopting different control rules (r = 6.5, N = 15 and A = 3).
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Fig. 5.5. The percentage savings in SAIEC
c (

SAIEC
c

G
−SAIEC

c

B
SAIECc

G

× 100) obtained by

using the biased procedure compared to Grubbs’ rule under the constant cost function
model (r = 6.5 and N = 15).
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A = (d−T
•)/σ

ε
, i.e., the difference between d and the target value in standard deviation

units is assumed equal to 3 according to the practical case we have discussed.

The Scaled Average Integrated Expected Costs SAIEC
c obtained with the biased

procedure and the EWMA controllers are reported in Table 5.1 and plotted in Figure 5.6.

As it can be observed, the biased procedures has the smallest expected cost compared to

all the EWMA controllers and the advantage reduces as λ increases, So a value λ = 0.8

was used in the next comparison. It should be pointed out that much smaller values of

λ are recommended in the literature (Box and Luceño [15]), but for these values of λ the

EWMA performs relatively worse.

The cost comparison between the EWMA controller with λ = 0.8 and the biased

controller is given in Figure 5.7, where the percentage saving in SAIEC
c induced by the

biased procedure over the EWMA is plotted. It is interesting to find that the advantage

induced by the biased procedure is even higher as the number of parts produced increases.

The reason for this behavior lies on the long-term performance of the EWMA control

rule. In fact, as t tends to infinity, the mean of the y
t
regulated by the EWMA controller

approaches zero, but the variance approaches to the value 2σ
2

ε
/(2− λ), which is greater

than σ
2

ε
. This inflation in variance has been discussed in Chapter 3.

For the quadratic cost function model, an analogous comparison was performed.

In this case, the expected cost reported in equation (5.22) can be rewritten in scaled

form by manipulating the expression as follows:

E(Cq

t
) = c

q

1
σ
2

t


c
q

2
cq

1

µ
2

t

σ2
t

+ 1

+

c
q

2
cq

1

− 1


µ

t
σ
t

φ

(
µ
t

σ
t

)
−

µ
2

t

σ2
t

+ 1

Φ

(
−

µ
t

σ
t

)
 .
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Fig. 5.6. Comparison of SAIEC
c’s determined by the EWMA controllers (with different

values of λ) and the biased procedure under the constant cost function model (r = 6.5,
N = 15 and A = 3).
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Fig. 5.7. The percentage savings in SAIEC
c (

SAIEC
c

EWMA0.8
−SAIEC

c

B
SAIECc

EWMA0.8

× 100) ob-

tained by using the biased procedure compared to the EWMA rule with λ = 0.8 under
the constant cost function model (r = 6.5, N = 15 and A = 3).
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Considering that the variance at each step of the adjustment procedure (5.12) is

proportional to the variance of the error σ
2

ε
, the expected cost at the t

th step of the

procedure is given by:

E(Cq

t
)

cq

1

= s
t
σ
2

ε

{
r(δ2

t
+ 1) + (r − 1)

[
δ
t
φ(δ

t
)− (δ2

t
+ 1)Φ(−δ

t
)
]}

,

where s
t

=

[
1 +

∑t−1

i=1
K

2

i

t−1∏
j=i+1

(1−K
j
)2
]

represents the ratio between σ
2

t
and σ

2

ε
in

equation (5.12), r denotes the ratio between c
q

2
and c

q

1
and δ

t
the ratio between µ

t
and

σ
t
.

As in the constant cost function case, the performance index considered is related

to the Scaled Average Integrated Expected Cost defined as:

SAIEC
q =

1
N

N∑
t=2

E(Cq

t
)

cq

1

(5.29)

Figure 5.8 reports the plot of the mean of the quality characteristic obtained with

Grubbs’ rule (in which the mean is constant and equal to the steady-state target value),

and the biased rule (in which the mean is set to m
q

t
and converges to the target value).

Similarly as in the constant cost model case, the mean induced by the biased procedure

is computed by considering the assumption on the control variable resolution (in Figure

5.8 the theoretical behavior of one-sided convergence of m
q

t
is reported with a dotted

line, which was obtained by rounding m
q

t
to the second decimal place). The values of

the biased coefficients b
t

are also shown in Table 5.2. As it can be observed, when the

precision of the machine is considered, the sequence {b
t
} adopted is basically the same as
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t b
t

b
t

(2 decimal precision)
1 3 3.06
2 0 0.26
3 0 0.11
4 0 0.06
5 0 0.04
6 0 0.03
7 0 0.02
8 0 0.01
9 0 0.01
10 0 0.01
11 0 0.01
12 0 0.01
13 0 0.01
14 0 0.00
15 0 0.00

Table 5.2. The bias coefficients b
n

computed under the quadratic cost function rounding
to the nearest integer or considering the second decimal place (r = 6.5 and N = 15).

obtained with the asymmetric constant cost model (5.28), but the computation of b
t

in

the constant cost model is much easier because of the closed form expressions. Therefore,

this numerical result permits to outline an approximated way to compute the b
n

that

does not require the numerical solution of equation (5.23).

Data on the SAIEC
q
/σ

2

ε
obtained with the Grubbs’ rule, the biased rule and the

EWMA controller are reported in Table 5.3. The percentage in savings from adopting

the biased procedure instead of Grubbs’ rule are reported in Figure 5.9. Figures 5.10 and

5.11 report respectively the SAIEC
q
/σ

2

ε
obtained with the biased procedure and the

EWMA controllers and the detail on the percentage savings obtained over the EWMA

controller with λ = 0.8.
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Fig. 5.8. Trajectory of the optimal mean of the quality characteristic (mq

t
) using Grubbs’

and the biased procedures (considering 0 and 2 decimal places) under the quadratic cost
model (r = 6.5 and N = 15).

t EWMA0.2 EWMA0.4 EWMA0.6 EWMA0.8 Grubbs Biased
2 25.461 14.947 8.674 5.625 4.818 4.539
3 20.721 11.046 6.545 4.851 4.158 3.970
4 17.300 8.761 5.560 4.544 3.798 3.657
5 14.829 7.452 5.028 4.391 3.566 3.451
6 13.035 6.579 4.685 4.298 3.402 3.305
7 11.635 5.974 4.457 4.237 3.280 3.195
8 10.505 5.543 4.294 4.193 3.184 3.109
9 9.614 5.219 4.172 4.160 3.107 3.039
10 8.889 4.958 4.077 4.135 3.043 2.982
11 8.287 4.749 4.001 4.114 2.990 2.933
12 7.794 4.579 3.939 4.098 2.944 2.892
13 7.370 4.436 3.887 4.084 2.904 2.856
14 7.011 4.316 3.843 4.072 2.869 2.824
15 6.696 4.213 3.805 4.062 2.838 2.796

Table 5.3. The SAIEC
q
/σ

2

ε
adopting different control rules (r = 6.5, N = 15 and

A = 3)



129

Fig. 5.9. The percentage savings in SAIEC
q (

SAIEC
q

G
−SAIEC

q

B
SAIECq

G

× 100) obtained by

using the biased procedure compared to Grubbs’ rule under the quadratic cost function
model (r = 6.5 and N = 15).
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Fig. 5.10. Comparison of SAIEC
q
/σ

2

ε
’s determined by the EWMA controllers (with

different values of λ) and the biased procedure under the quadratic cost function model
(r = 6.5, N = 15 and A = 3).
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Fig. 5.11. The percentage savings in SAIEC
q (

SAIEC
q

EWMA0.8
−SAIEC

q

B
SAIECq

EWMA0.8

× 100)

obtained by using the biased procedure compared to the EWMA rule with λ = 0.8
under the quadratic cost function model (r = 6.5, N = 15 and A = 3).
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The comparisons between the biased control rule, Grubbs’ procedure and the

EWMA indicate the same conclusions as for the constant asymmetric cost model, but

quantitatively, the magnitude of the percentage advantage obtained with the biased rule

is greater when adopting the constant cost model.

5.4.1 Sensitivity analysis

A numerical comparison of the performance obtained with the biased procedure,

Grubbs’ rule and the EWMA controllers was conducted to characterize situations in

which the adoption of the feedback adjustment could be more profitable. The compar-

ison has been carried out first for the biased procedure versus Grubbs’ rule, since the

performance in this case does not depend on the initial offset. The variables affecting the

results in this case are the coefficient r, representing the asymmetry of the cost function,

and N , the number of parts processed in each lot. The value of r was varied from 1

to 11 as in Ladany [58]. We point out that two real cases of asymmetric cost functions

considered in Wu and Tang [115] and Moorhead and Wu [75] have r to be 4 and 6,

respectively, and they are inside the range examined. The number of parts in the lot, N,

was varied from 1 to 40.

Figures 5.12 and 5.13 present the savings in cost obtained with the biased pro-

cedure over Grubbs’ rule for the constant and quadratic cost models, respectively. As

it can be observed, the biased procedure has an advantage especially on the first parts

produced (this suggests the adoption of the biased rule when parts are produced in

small lots) and this advantage increases as the asymmetry in the function becomes more

evident (i.e., as r increases).
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Fig. 5.12. Sensitivity analysis: the percentage saving in SAIEC
c (

SAIEC
c

G
−SAIEC

c

B
SAIECc

G

×

100) obtained by using the biased procedure compared to Grubbs’ procedure under the
constant cost function model, when the asymmetry ratio r = c

c

2
/c

c

1
is varied.
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Fig. 5.13. Sensitivity analysis: the percentage saving in SAIEC
q (

SAIEC
q

G
−SAIEC

q

B
SAIECq

G

×

100) obtained by using the biased procedure compared to Grubbs’ rule under the
quadratic cost function model, when the asymmetry ratio r = c

q

2
/c

q

1
is varied.
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Since the performance of the EWMA controllers depend on the initial offset d,

standardized by the constant A = (d− T
•)/σ

ε
, the comparison between the biased rule

and the EWMA controller has been performed by considering A ranging from −4 to 4.

Figures 5.14 and 5.15 report the difference in the Scaled Average Integrated Expected

costs obtained with the EWMA and the biased controller, under the constant and the

quadratic cost models, respectively. In particular, the difference is reported for the two

extreme values of λ (i.e., λ = 0.2 and λ = 0.8) and the lot size (i.e., N = 5 and N = 40).

Depending on the initial offset, the advantage of using the biased procedure varies

dramatically. Considering the case in which λ = 0.2, when A is greater than 1 the per-

formance of the biased procedure dominates that of the EWMA controller, but the

difference between the two procedures is almost negligible as A is close to zero. Fur-

thermore, the advantage is asymmetric too. In particular, if A is positive, i.e. the offset

d arises from the side in which non-conforming items are more expensive, the advan-

tage of adopting the biased procedure is significantly greater, compared with the case

in which the initial shift has the same magnitude but different sign. As the number of

parts processed in the lot increases, the difference between the two procedures maintains

the same behavior while reducing in magnitude (both approaches tend to reach their

asymptotic performance, which are different only with respect to the variance σ
2

t
of the

quality characteristic).

In the case when λ = 0.8 is used in the EWMA control rule, the advantage

determined by the biased approach is reduced but is always greater than zero, regardless

of the direction of the initial offset. Also in this case, the effect of A becomes even less

significant when N increases.
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Fig. 5.14. Sensitivity analysis: the difference in SAIEC
c (SAIEC

c

EWMA
−SAIEC

c

B
)

obtained under the constant cost model, when r = c
c

2
/c

c

1
, A = (d − T

c)/σ
ε

and N are

varied. a.λ = 0.2 and N = 5; b. λ = 0.8 and N = 5; c. λ = 0.2 and N = 40; d. λ = 0.8
and N = 40.



137

Fig. 5.15. Sensitivity analysis: the difference in SAIEC
q
/σ

2

ε

(
SAIEC

q

EWMA
−SAIEC

q

B

σ2

ε

) obtained under the quadratic cost model, when r = c
q

2
/c

q

1
,

A = (d − T
q)/σ

ε
and N are varied. a. λ = 0.2 and N = 5; b. λ = 0.8 and N = 5; c.

λ = 0.2 and N = 40; d. λ = 0.8 and N = 40.
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5.5 Summary

Previous approaches to the setup adjustment problem considered only symmetric

quadratic quality loss functions. This chapter presented a feedback adjustment rule that

can be adopted when an asymmetric cost model can better represent the process quality

losses entailed. Two asymmetric cost functions that are often encountered in manufac-

turing were considered. In the first case, the cost of a non-conforming item is assumed

constant but changes depending whether the quality characteristic is below the lower or

above the upper specification limit. In the second case, costs are supposed to be propor-

tional to the square of the distance of the quality characteristic from the nominal value,

but the proportional constant is allowed to change with the sign of this difference. Start-

ing from the general form of a linear controller, a biased feedback adjustment rule was

derived by minimizing the quality cost incurred during the transient phase in which the

quality characteristic converges to its steady-state target. A numerical comparison of the

cost incurred by the adjustment rule proposed and other rules discussed in the literature

showed that the proposed procedure is effective, especially when the asymmetry in the

cost function or the initial process offset are significant. Compared to Grubbs’ harmonic

rule, the proposed biased adjustment rule is recommended especially for manufacturing

expensive parts which usually are produced in small lots.
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Chapter 6

Process Adjustments with Significant Measurement

and Adjustment Costs

As mentioned briefly in Chapter 4, the number of sequential adjustments should

be determined based on the adjustment cost. In this chapter, the effects of the adjustment

cost and measurement cost are systematically investigated. A new adjustment method,

which apply sequential adjustments at nonconsecutive process runs, is proposed and

scheduling methods to program the adjustments are discussed. A manufacturing cost

function, which includes process off-target cost, measurement cost and adjustment cost,

is used as the performance criterion for various adjustment rules.

6.1 Cost Model and Sample-Average Adjustment Procedure

The cost criterion used in previous discussions for the process adjustment of a

machine setup error considers only an off-target quality cost, either with a symmet-

ric quadratic function or other an asymmetric function. However, in quality control,

measurement and adjustment costs usually cannot be ignored. In previous chapters, ad-

justments were suggested on every single run, but this is clearly not the most economic

strategy when the measurement and adjustment costs are significant. In this chapter,

we wish to minimize the total manufacturing cost which it is assumed consists of the

following components:
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• Expected off-target quality cost, C
q
, which is the expectation of the sum of a

quadratic function of y
t

around its target, i.e., C
q

=
∑N

t=1
E[Ω(y

t
− T )2]. Here,

a symmetric cost function is used and without loss of generality, the target, T ,

is assumed to be 0. The number, N , is the number of parts that need to be

manufactured in the lot and Ω is the quadratic cost per unit.

• Adjustment cost,C
a
, which is assumed to be fixed and independent of the magni-

tude of the adjustment, i.e., C
a

= M × (
∑n

t=1
δ(t)), where δ(t) equals to 0 when

no adjustment is scheduled and is 1 otherwise.

• Measurement cost, C
m

, which is assumed to be proportional to the number of

adjustments, i.e., C
m

= G × m, where m is the time of the last adjustment.

Obviously, when the last adjustment has been executed and no more adjustments

are needed till the end of production, measurements on the following runs are not

necessary.

For the machine setup error problem, it is supposed that an error d can happen

on the machine before the manufacturing process starts. Since there is a controllable

factor x
t

on the machine which can be adjusted to eliminate the effect of d, the essential

question is how to estimate d based on the process observations {y
t
}. Chapter 3 provides

a Kalman Filter estimate of d
t
, namely

d̂
t
= d̂

t−1 +
1

σ2
ε
/P0 + t

y
t
, (6.1)
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where d̂0 is an a priori estimate of d and P0 is a measure of confidence on this initial

estimator. The Kalman Filter estimator is the minimum mean square error linear es-

timator if the process variance is known (Duncan and Horn [35]), so the “controller”

x
t
= −d̂

t
is optimal in that sense.

This adjustment procedure requires adjustments at every time period, an adjust-

ment policy that may be undesirable if the costs of measurement and adjustment are

significant. This implies that it is possible to design an adjustment schedule which skips

some time periods between two successive adjustments and maintains the cost optimality

of the whole procedure (Trietsch [100]). This idea has been illustrated in Chapter 1, that

is, if there are no adjustments between time i and j, then Ȳ
ij

, the average of Y
i+1...Y

j
,

is the unbiased MLE (maximum likelihood estimate) of (d+X
i
); therefore, it is intuitive

to change the estimate of d to the following equation when the simple adjustment rule,

x
j

= −d̂
j
, is applied:

d̂
j

= d̂
i
+

1

σ2
ε
/P0 + j

j∑
t=i+1

y
t
. (6.2)

In the remaining of this section, we will show that the adjustment procedure

based on equation (6.2) provides the same general expression for y
j+1 as a function of

the adjustments as given by the procedure based on equation (6.1). The performance of

this adjustment rule will then be studied in subsequent sections.

Suppose y
i
, the value of the quality characteristic at time i, is known. Then, from

(6.1) we have that x
i
, which is a function of y

i
, is also known. We first use the procedure

based on (6.1) to derive the function of y
j+1. From the process model and adjustment
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function, we have

y
i+1 = d + x

i
+ ε

i+1,

x
i+1 = x

i
−K

i+1y
i+1,

where K
i+1 = 1/(σ2

ε
/P0 + i + 1). So,

y
i+2 = d + x

i+1 + ε
i+2 = (1−K

i+1)(d + x
i
)−K

i+1ε
i+1 + ε

i+2.

By substituting x
i+2, x

i+3, ... into y
i+3, y

i+4, ..., we find after some algebra that

y
j+1 = (d + x

i
)

j∏
l=i+1

(1−K
l
)−

j∑
l=i+1

K
l
ε
l

j∏
r=l+1

(1−K
r
) + ε

j+1.

This can be simplified to:

y
j+1 =

i + σ
2

ε
/P0

j + σ2
ε
/P0

(d + x
i
)− 1

j + σ2
ε
/P0

j∑
l=i+1

ε
l
+ ε

j+1. (6.3)

Now consider using the estimation procedure based on (6.2) to derive a general

expression for y
j+1. We have that

y
l
= d + x

i
+ ε

l
,
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for l = i + 1, i + 2, ..., j. So, the sum of y
i+1...y

j
is

j∑
l=i+1

y
l
= (j − i)(d + x

i
) +

j∑
l=i+1

ε
l
.

Substituting this last result into (6.2) and taking the result back into y
j+1 = d + x

j
+

ε
j+1 = d− d̂

j
+ ε

j+1, we have that

y
j+1 = d + x

i
− j − i

j + σ2
ε
/P0

(d + x
i
+

1
j − i

j∑
l=i+1

ε
l
) + ε

j+1.

One can see that this simplifies and equals to (6.3).

Notice that equation (6.2) can be written as

d̂
j

= d̂
i
+

j − i

σ2
ε
/P0 + j

ȳ
ij

where ȳ
ij

is the arithmetic average of y
i+1...y

j
. Thus, we call this adjustment method

“sample-average adjustment”.

6.2 Algorithmic and Heuristic Methods for Optimal Adjustment Sched-

ule

Since the sample-average adjustment procedure provides the opportunity of skip-

ping adjustment actions between two arbitrary adjusting times, this procedure is espe-

cially useful when there are fixed adjustment costs independent of the magnitude of the

adjustments. The goal is to find an optimal adjustment schedule that minimizes the total
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Fig. 6.1. The graphical representation of an adjustment schedule

cost when N is given and all of the cost parameters are known. The optimal schedule

can be obtained by using dynamic programming. The formulation is analogous to what

in the inventory control literature is the well-known Wagner-Whitin (W-W) algorithm

(Wagner and Whitin, [108]). In Figure 6.1, we represent the starting time of manufac-

turing each part as a node on a network used to determine the production timeline, so

the optimal schedule is equivalent to a minimal cost path from node 1 to node n.

As before, the target of y
t

is assumed to be zero, so C
q

= Ω
∑N

t=1
(E2[y

t
] +

V ar(y
t
)). From (6.3), it is easy to derive that

E[y
t
]

σ
ε

=
d− d̂0

P0/σ2
ε
(t− 1) + 1

and

V ar(y
t
)

σ2
ε

= 1 +
t− 1

(σ2
ε
/P0 + t− 1)2

.
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If d̂0 is an unbiased estimate of d (recall that d is an unknown constant), then E[y
t
] = 0,

i.e., y
t

is also unbiased. Define C
ij

to be the cost from node i + 1 to node j. Then, we

have that

C
ij

= M + Ω(j − i)[1 +
i

(σ2
ε
/P0 + i)2

]σ2

ε
+ (j − i)G. (6.4)

The last item on the right hand side of the equation is dropped when j = N . The

W-W algorithm requires computation of the cost between pairs of nodes according to

the recursion:

C
w−w(j) = min{C

ij
+ C

w−w(i), j = i + 1, i + 2, ..., N} for i = N − 1, N − 2, ..., 1,

and

C
w−w(N) = 0,

where C
w−w(i) is the minimum cost from node i to j.

The computational effort of the W-W algorithm consists of at least N(N + 1)/2

calculations for the C
ij

’s and N(N − 1)/2 comparisons. Therefore, it has a 2nd-order

polynomial complexity. Many heuristic methods have been proposed in the inventory

control literature to overcome some of the difficulties of the W-W method (Silver, Pyke

and Peterson, [90]). For example, a simpler method, based on the Silver-Meal (S-M)

heuristic which has been proved to have close to optimal performance in inventory control

applications (Silver and Meal, [89], Simpson, [91]), can be applied to this problem. This

method searches for the minimum unit cost, C
ij

/(j− i) by fixing period i and increasing

period j until a local minimum is obtained. Obviously, in equation (6.4), if i is fixed and
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j increased, the unit cost will decrease consistently, that is, no adjustment is scheduled

except for the first period. This result is rather uninteresting. So we work out the

procedure in the backward direction: we fix j and decrease i to find the minimum

unit cost. We call this searching method the backward S-M method. It has a 1st-order

polynomial computational complexity.

To illustrate the backward S-M method, consider the case where N = 20, G = 0,

M = 0.5 and σ
ε

= P0 = 1. Substituting these values into equation (6.4), setting

j = 20 and decreasing i from 19 to 1, it is easy to find that C
ij

/(j − i) is minimized

to 1.1319 when i = 11. Then setting j = 11 and decreasing i from 10 to 1, it is found

that C
ij

/(j − i) is minimized to 1.2222 when i = 5. Finally, after letting j = 5 and

recalculating C
ij

/(j − i) for i < j, the minimal value is found at i = 1. Thus, the

adjustment steps given by this method are 1, 5 and 11.

Trietsch [101] proposed another approximating method for the optimal adjust-

ment schedule, in which the time of adjustment, t, is treated as a continuous number

and the results need to be rounded to the closest integers. To use this method, one needs

to solve two complicated equations numerically when the procedure starts and also needs

to solve another equation numerically at every subsequent iteration, so the computation

effort greatly depends on the initial values selected for these equations. Furthermore, a

improper selection of initial values used in this method can cause incorrect results.
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6.3 Comparison of Numerical Results

Adjustment schedules with different total production runs and different measure-

ment and adjustment costs were studied. Notice that the total cost is a linear com-

bination of three components, so we can assume without loss of generality that the

off-target quality cost parameter, Ω, is one unit. In this section, we assume that the

first adjustment, if it is needed, is always applied at time 1, i.e., before the start of the

manufacturing process, based on our previous knowledge of a possible setup error (d is

usually assumed to be 0, so in this case no adjustment is needed before manufacturing

starts). It is also assumed that the initial estimate of the mean of d, d̂0, is unbiased, so

the first adjustment will bring the process to target on average. More importantly, the

inherent process variance σ
2

ε
is assumed to be known in this section. Sections 4.1 and

4.2 show further analysis where some of these assumptions were removed.

In Tables 6.1-6.4, we contrast results from the three methods mentioned in the last

section. The number of parts produced varies from 20 to 500, the costs of measurement

and adjustment vary from 0 to 2 units and from 0.5 to 2 units, respectively. For those

cases in the table, σ
ε

= P0 = 1. The W-W algorithm provides the optimal adjustment

schedule for each case, but the computation effort of this algorithm is much greater than

that of the other methods, especially when the total number of production runs, n, is

large. By comparing the S-M and Trietsch’s methods with the W-W method, we can

make the following remarks.

Remark 1. The cost of measurement and adjustment will greatly affect the total

number of adjustments. Generally, when these costs increase, the number of adjustments
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N G M method cost time(sec.) adjustments
20 0 0.5 WW 22.92 ∼ 0 1-7

SM 23.02 ∼ 0 1-5-11
Trietsch’s 23.36 0.21 1-3-6-11

1 WW 23.92 ∼ 0 1-7
SM 24.62 ∼ 0 1-3-9
Trietsch’s 25.36 0.22 1-3-6-11

2 WW 25.75 ∼ 0 1
SM 25.92 ∼ 0 1-7
Trietsch’s 27.78 0.14 1-2-7

1 0.5 WW 24.25 0.02 1
SM 24.25 ∼ 0 1
Trietsch’s 25.69 0.13 1-3

1 WW 24.75 ∼ 0 1
SM 24.75 ∼ 0 1
Trietsch’s 26.25 0.1 1-2

2 WW 25.75 ∼ 0 1
SM 25.75 ∼ 0 1
Trietsch’s 28.25 0.1 1-2

2 0.5 WW 24.25 0.02 1
SM 24.25 ∼ 0 1
Trietsch’s 26.25 0.11 1-2

1 WW 24.75 ∼ 0 1
SM 24.75 ∼ 0 1
Trietsch’s 27.25 0.1 1-2

2 WW 25.75 ∼ 0 1
SM 25.75 ∼ 0 1
Trietsch’s 29.25 0.11 1-2

Table 6.1. Comparison of costs, time and adjustment schedules of 3 schedule design
methods, when the total number of parts produced is 20. The numbers in the columns
G and M can be viewed as the ratios of the per unit measurement cost to the off-target
quality cost (G/Ω), and of the unit adjustment cost to the off-target quality cost (M/Ω).
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N G M method cost time(sec.) adjustments
50 0 0.5 WW 54.78 0.09 1-7-20

SM 55.08 ∼ 0 1-4-8-16-28
Trietsch’s 55.46 0.29 1-3-7-14-22-33

1 WW 56.28 0.09 1-7-20
SM 56.86 ∼ 0 1-4-11-24
Trietsch’s 57.62 0.26 1-3-7-14-27

2 WW 58.45 0.08 1-12
SM 59.29 ∼ 0 1-7-19
Trietsch’s 61.15 0.18 1-2-7-19

1 0.5 WW 61.11 0.08 1-4
SM 61.11 ∼ 0 1-4
Trietsch’s 61.63 0.17 1-3-5

1 WW 62.11 0.08 1-4
SM 62.11 ∼ 0 1-4
Trietsch’s 62.25 0.13 1-5

2 WW 63.25 0.08 1
SM 64.11 ∼ 0 1-4
Trietsch’s 64.11 0.1 1-4

2 0.5 WW 61.75 0.09 1
SM 61.75 ∼ 0 1
Trietsch’s 64.11 0.13 1-4

1 WW 62.25 0.08 1
SM 62.25 ∼ 0 1
Trietsch’s 65.11 0.13 1-4

2 WW 63.25 0.08 1
SM 63.25 ∼ 0 1
Trietsch’s 66.31 0.1 1-3

Table 6.2. Comparison of costs, time and adjustment schedules of 3 schedule design
methods, when the total number of parts produced is 50.
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N G M method cost time(sec.) adjustments
100 0 0.5 WW 106.22 0.32 1-7-18-43

SM 106.52 ∼ 0 1-5-10-18-33-58
Trietsch’s 106.89 0.33 1-3-7-14-27-42-65

1 WW 108.06 0.32 1-10-33
SM 108.82 0.02 1-4-10-23-49
Trietsch’s 109.6 0.28 1-3-8-19-33-58

2 WW 111.06 0.32 1-10-33
SM 112.28 ∼ 0 1-5-15-40
Trietsch’s 114.12 0.23 1-2-6-16-40

1 0.5 WW 117.67 0.32 1-7
SM 117.92 ∼ 0 1-3-7
Trietsch’s 118.02 0.17 1-3-8

1 WW 118.67 0.32 1-7
SM 118.67 ∼ 0 1-7
Trietsch’s 119.67 0.13 1-2-8

2 WW 120.67 0.32 1-7
SM 120.67 ∼ 0 1-7
Trietsch’s 122.67 0.13 1-2-8

2 0.5 WW 122.11 0.32 1-4
SM 122.11 ∼ 0 1-4
Trietsch’s 123.15 0.11 1-2-6

1 WW 123.11 0.32 1-4
SM 123.11 ∼ 0 1-4
Trietsch’s 124.65 0.13 1-2-6

2 WW 125.11 0.32 1-4
SM 125.11 ∼ 0 1-4
Trietsch’s 127.65 0.13 1-2-6

Table 6.3. Comparison of costs, time and adjustment schedules of 3 schedule design
methods, when the total number of parts produced is 100.
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N G M method cost time(sec.) adjustments
500 0 0.5 WW 509.65 7.93 1-7-18-43-99-223

SM 510.12 0.08 1-5-10-18-33-57-99-170-229
Trietsch’s 510.18 0.4 1-3-7-15-31-54-95-166-288

1 WW 512.37 7.92 1-8-25-70-188
SM 513.2 0.07 1-5-13-29-60-123-249
Trietsch’s 514.03 0.36 1-3-8-19-44-99-170-292

2 WW 516.62 7.93 1-11-42-147
SM 518.8 0.06 1-4-13-34-84-206
Trietsch’s 520.64 0.29 1-2-7-22-63-126-251

1 0.5 WW 544.16 7.92 1-7-19
SM 544.29 0.04 1-5-10-19
Trietsch’s 544.39 0.21 1-3-8-20

1 WW 545.66 7.99 1-7-19
SM 546.37 0.04 1-3-8-19
Trietsch’s 546.55 0.16 1-2-7-20

2 WW 548.28 7.94 1-18
SM 548.66 0.03 1-7-18
Trietsch’s 549.35 0.14 1-3-19

2 0.5 WW 558.91 7.93 1-6-13
SM 559.21 0.04 1-3-7-13
Trietsch’s 559.26 0.18 1-3-7-14

1 WW 560.3 7.93 1-13
SM 560.41 0.04 1-5-13
Trietsch’s 560.49 0.15 1-5-14

2 WW 562.3 7.92 1-13
SM 563.49 0.03 1-4-13
Trietsch’s 563.8 0.13 1-3-14

Table 6.4. Comparison of costs, time and adjustment schedules of 3 schedule design
methods, when the total number of parts produced is 500.
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decreases, and the measurement cost only affects the time of the last adjustment. This

occurs because after the last adjustment no more measurements are needed, whereas

before that time measurements should be conducted at every period (or part). Therefore,

when the production runs are short and significant measurement or adjustment costs

exist, it is optimal to adjust just once.

Remark 2. The distance between adjacent adjustments increases steadily in the

sequence of adjustments. This can be explained as follows: when the process has been

adjusted close but not exactly on target, we need stronger evidence from the process

to demonstrate there is still an offset and to obtain an unbiased estimate of it. Such

evidence is only obtained with longer runs of observations between adjustments.

Remark 3. Comparing the backward S-M and Trietsch’s methods, the backward S-

M method always give fewer or equal number of adjustments than the Trietsch’s method

does, and the schedule from S-M is usually closer to the one given by W-W. Thus the

backward S-M method is a better heuristic in terms of minimizing total cost.

Remark 4. The S-M method has the advantage of reducing computing effort

significantly comparing to the W-W algorithm and its computing time is consistently

less than that of the Trietsch’s method. In fact, this method can be easily implemented

by using a handheld calculator or a spreadsheet software to support on-line process

adjustment decisions.

6.3.1 The case when the process variance (σ
ε
) is unknown

In the following discussion, we vary the true value of σ
ε

to 0.8 and to 1.2, that

is, the estimate σ̂
ε
, which was assumed to be 1 in the previous discussion and was used
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in the three methods to obtain the optimal or near-optimal adjustment schedules is now

an over- or under-estimate, respectively, of the true σ
ε
. The minimum cost and the

optimal adjustment schedule can be obtained by introducing the true value of σ
ε

into

the W-W algorithm. This was used as a benchmark to compare cost increments due to

a poorly estimated σ
ε
. The cost increments induced by over- or under-estimating σ

ε
are

investigated and presented in Figures 6.2 and 6.3.

Remark 5. When the production run, n, is large (n = 100, or 500), the cost

increments by introducing over- or under-estimated σ
ε

of using the three methods are

very small and can be ignored.

Remark 6. The backward S-M method generally performs better than Trietsch’s

method, except in some particular cases (see, e.g., in Figure 6.2, when n = 50, G = 2,

M = 0.5, 1 and 2) if σ
ε

is over-estimated. The W-W method still performs well when

G = 0 (no measurement cost). But when the measurement cost is considered, the W-W

method is not better than the backward S-M method in general.

Remark 7. Under-estimating σ
ε

(σ
ε

= 1.2) will induce larger increases in cost than

when over-estimating σ
ε

for all rules. Normally when the true value of σ
ε

is larger than

expected, longer runs of parts between adjustments are needed since these provide more

measurements for estimating the setup error magnitude; therefore, the total number of

adjustments will decrease. Since Trietsch’s method always provides more adjustments

than the other two methods, it will incur in a higher cost. Conversely, when σ
ε

is over-

estimated, we find that Trietsch’s method has an advantage in three cases: N = 50,

G = 2, and M = 0.5, 1 and 2.
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Fig. 6.2. Performance of adjustment scheduling methods for the case when σ
ε

is over-
estimated (σ

ε
= 0.8, σ̂

ε
= 1). All of the cases presented in Tables 6.1-6.4 are investigated

and compared.
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Fig. 6.3. Performance of adjustment scheduling methods for the case when σ
ε

is under-
estimated (σ

ε
= 1.2, σ̂

ε
= 1) .
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6.3.2 The case when a biased initial estimate of the offset is used

In the previous calculations, we assume the initial estimation, d̂0, equals to d;

however, this assumption is hardly realistic since if d is exactly known, a one-step ad-

justment (or calibration) is enough for removing the offset. A biased initial estimate of

d will lead to an increase in cost in the adjustment schedule calculated by each method.

Similarly as in Section 4.1, the robustness of the three methods under such situation are

compared and presented in Figures 6.4 and 6.5. We varied |d− d̂0| to 1 and to 2.

Remark 8. Similarly as in remark 5, when the production run is large, the cost

increments caused by the biased initial estimate of d are insignificant.

Remark 9. When n is small, Trietsch’s method is generally the best one and the

W-W method is worst. We observe that when d̂0 is close to d the backward S-M method

can out-perform the Trietsch’s method, e.g., see the cases when |d− d̂0| = 1σ
ε
, N = 50

and G = 0. But when d̂0 is strongly biased for d or when the measurement cost is high,

the S-M method may lead to a high cost increase, e.g., see the cases when |d̂0−d| = 2σ
ε
,

N = 50 and G = 2.

Remark 10. When |d − d̂0| is large, the cost increments are more severe and

Trietsch’s method is more robust compared to other methods since it adjusts more often

than the other two methods.

It was found that when |d−d̂0| 6= 0, more adjustments are required by the optimal

schedule, especially in the first few periods. Since Trietsch’s method happens to provide

more adjustments, it results in the lowest cost increments.
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Fig. 6.4. Performance of adjustment scheduling methods for the case when |d − d̂0| =
1σ

ε
.
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Fig. 6.5. Performance of adjustment scheduling methods for the case when |d − d̂0| =
2σ

ε
.
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Fig. 6.6. Comparison of performance of the modified S-M heuristic and other methods
when |d− d̂0| = 1σ

ε
or |d− d̂0| = 2σ

ε
and N = 20 or N = 50.
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To enhance the performance of the backward S-M method when |d− d̂0| 6= 0, we

suggest to add one more adjustment at the beginning of the production run. The small-

sample (N = 20 and N = 50) performance comparison of this modified S-M heuristic

and other methods is presented in Figure 6.6 for some inaccurate initial estimate of the

offset. The results show that the adjustment schedule given by this heuristic method

has a similar cost as that given by the Trietsch’s method. However, Trietsch’s method

seems to still have a slight cost advantage over the modified S-M approach but this is

not enough, in our view, to justify its more complex computations over the modified S-M

method. To illustrate the modified S-M heuristic, consider the case when n = 50, G = 2

and M = 0.5. The backward S-M method suggests a single adjustment at node 1. This

schedule will incur in more than a 50% cost increase compared to the minimal cost if the

initial estimate of the setup error is two units from the true value, i.e., if |d − d̂0| = 2.

By inserting a second adjustment after the first one, i.e., by changing the adjustment

steps to 1-2, the cost increment reduces to only 14%.

6.4 Summary

In this chapter, a sample-average adjustment procedure for adjusting the setup

error was introduced when process measurement and process adjustment cost cannot

be ignored. We compare the performance of three adjustment scheduling methods,

which can achieve the optimal or close-to-optimal expected total manufacturing cost:

the Wagner-Whitin method, a backward implementation of the Silver-Meal method and

a method due to Trietsch [101]. It was found that when the production run is long

(i.e., large lots of product), there is not significant difference between the performance of



161

the three methods. For a short-run manufacturing process, the proposed backward S-M

method has the advantage of providing a close-to-optimal solution with small computa-

tional effort, even when the process variance estimate is biased. However, when there

exists a significant bias on the initial estimate of the setup error and when the adjustment

or the measurement costs are relatively high, the schedule provided by the backward S-M

method may incur in a much higher cost increase than Trietsch’s method. Finally, it

is demonstrated that simply adding one more adjustment close to the beginning of the

schedule enhances the robustness of the backward S-M method.
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Chapter 7

Identification and Fine-Tuning of Closed-Loop Processes

In previous chapters, sequential process adjustment methods were discussed as an

alternative to some process control schemes that continuously adjust the process, such as

the discrete integral (or EWMA) controller. It was shown that if the autocorrelation in

the original process observations is pronounced, or if the random shocks on the process

mean are frequent, it is better to use a time series process model, such as an ARIMA

(AutoRegressive Integrated Moving Average) model, and design a controller accordingly

to minimize the process variance. Methods for designing such controllers for a process

operating in open loop, that is, without the actions of any controller, are discussed

extensively in the time series and control literature (see, e.g., Box, Jenkins and Reinsel

[13]). However, in this chapter, a methodology for identifying a process already operating

under the actions of a given controller (closed-loop operation) is proposed. Furthermore,

it is suggested how to tune the controller based on the identified process to optimize the

closed-loop performance of the process.

Conventional process identification techniques of an open-loop process use the

cross-correlation function between historical values of the process input and of the pro-

cess output. If the process is operated under the actions of a linear feedback controller,

however, the cross-correlation function has no information on the process transfer func-

tion because of the linear dependency of the input on the output. In this chapter, several
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circumstances where a closed-loop system can be identified by the autocorrelation func-

tion of the output are discussed. It is assumed that a proportional integral controller or

an EWMA controller with known parameters is acting on the process while the process

observations (output data) were collect. The disturbance is assumed to be a member

of a simple yet useful family of stochastic models. It is shown that, with these general

assumptions, it is possible to identify some dynamic process models commonly encoun-

tered in manufacturing. After process identification, tuning the controller parameters to

optimize its performance becomes possible.

7.1 Process Model and Disturbance Dynamics

In this chapter, a more complicated process model will be used, where, unlike

the simple adjustment models assumed in previous chapters, the process output (ob-

servations) is connected to the process input (controllable factor) through a non-trivial

transfer function (ratio of two polynomial in the backshift operator), so the input can

have delayed and dynamic transient effects on the output. Also, the process disturbance

is assumed to be autocorrelated and it is modelled by an instance of an ARIMA model.

Following the modelling approach due to Box et al. [13], it is assumed that an observed

output deviation from target, y
t
, consists of two components – a process “signal”, S

t
,

and disturbance, N
t
. That is, the signal generated by the underlying manufacturing

mechanism can only be observed under the presence of a disturbance as follows:

y
t
= S

t
+ N

t
(7.1)
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where S
t

is written as a rational transfer function and the disturbance N
t

is an ARIMA

process. The assumed process is then

y
t
= α +

(β0 + β1B + · · ·+ β
s
Bs)

(1− φ1B − · · · − φ
r
Br)

Bb
x
t
+ N

t
(7.2)

and

N
t
= δ + N

t−1 − θε
t−1 + ε

t
, |θ| ≤ 1 (7.3)

where B is the backshift operator (defined as Be
t
= e

t−1), {ε
t
} are i.i.d. random numbers

and α is a constant (not necessarily zero) representing the expected deviation from target

when the input is set at a value of zero.

According to the Box-Jenkins taxonomy, the process is an (r,s,b) order transfer

function plus an IMA(1,1) with drift disturbance. In practice, r, s and b are rarely larger

than 2. According to Del Castillo [32], the disturbance model contains a useful family

of models. Depending on the different values δ and θ take, the disturbance is one of

the processes listed on Table 7.1. Note that we allow θ to be equal to one; then the

disturbance model is either a deterministic trend disturbance, which is useful to model

wearing-off of a tool in a variety of manufacturing processes, or a white noise process in

case δ = 0.
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δ θ Disturbance
0 0 Random Walk
6= 0 0 Random Walk with Drift
0 6= 0 IMA(1,1)
6= 0 6= 0 IMA(1,1) with Drift
6= 0 1 Deterministic Trend
0 1 White Noise

Table 7.1. Disturbance models described by Equation (7.3)

7.2 Process Identification

7.2.1 ARMA modelling of process observations from closed-loop data

Suppose that for a manufacturing process operating in closed-loop, no first prin-

ciple knowledge of the process dynamic mechanism is available. Therefore, it is nec-

essary to identify an empirical transfer function model that best describes the process

behaviour. On the other hand, the feedback controller functioning on the input data

is intently designed and installed by control engineers, so its adjustment scheme is as-

sumed to be known. When the controller is not optimal in the sense of not minimizing

the mean square error of the process output, the output deviations will exhibit certain

autocorrelation patterns that are useful for process identification. In this section, we will

derive the ARMA models that describe the output deviations for some processes that are

commonly encountered in manufacturing and show how to use some advanced statistical

techniques to identify them. Here, we assume that one of two types of controller - either

an EWMA or a PI controller - is in use in the closed-loop while the data were collected.
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The EWMA controller has attracted considerable attention in recent years, espe-

cially for the run-to-run control of batch productions in semiconductor manufacturing

(see Ingolfsson and Sachs [51], Del Castillo and Hurwitz [33]). In such a closed-loop

system, the effect of the process adjustments will be fully observed at the next output

value, i.e., the process can be described by the following model:

y
t
= α + βx

t−1 + N
t
, (7.4)

where α is the process offset, and β is the process gain. Note that in previous chapters,

β was assumed to be 1. This is a particular case of model (7.2) with a (r,s,b)=(0,0,1)

transfer function. For the EWMA controller, the process gain, β, is estimated by off-line

experiments and is represented by b, and the initial estimate of α is a0. The control

scheme is as follows:

x
t
= −

a
t
b

and

a
t
= λ(y

t
− bx

t−1) + (1− λ)a
t−1 (0 ≤ λ ≤ 1)

where λ is a parameter that can be adjusted to achieve a desired behavior. The EWMA

controller updates a
t

in order to reduce the estimation error of the process offset, α. In

fact, it is easy to show that the adjustment at each step is proportional to the present

output deviation, that is,

∇x
t
= −

∇a
t

b
= −

λ(y
t
− bx

t−1) + (1− λ)a
t−1 − a

t−1
b

= −
λy

t
b

. (7.5)
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One can compare this controller with a PI controller, a widely used industrial

controller, which is a combination of two control schemes - proportional control and

integral control:

x
t
= k

P
y
t
+ k

I

t∑
i=1

y
i

(7.6)

where k
P

and k
I

are the proportional and integral control constants respectively. An

equivalent form of equation (7.6) would make the input adjustment depend linearly on

the last two output deviations:

∇x
t
= c1y

t
+ c2y

t−1 (7.7)

where c1 = k
P

+ k
I

and c2 = −k
P

. As one can see from Equation (7.5), the EWMA

controller is actually a special PI controller, i.e., a pure I controller with c1 = k
I

= −λ
b .

To derive the “closed-loop description” of the output deviations, we take first-

order differences on the process and disturbance equations, then substitute the controller

and disturbance functions into the process equation to obtain an ARMA model of the

deviation. For instance, by taking first-order differences on process equation (7.4) and

disturbance function (7.3), we have

∇y
t
= β∇x

t−1 +∇N
t
, (7.8)

and

∇N
t
= δ + (1− θB)ε

t
. (7.9)
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Substituting Equations (7.9) and (7.5) into (7.8), we get

(1− (1− λξ)B)y
t
= δ + (1− θB)ε

t
(7.10)

where, ξ = β
b , is a measure of the bias in the gain estimate. Therefore, under the

adjustment of an EWMA controller, the sequence of deviations from this closed-loop

system is an ARMA(1,1) process with an asymptotic mean value of δ
λξ . This result had

been reported in Del Castillo [32].

Equation (7.4) describes a simple manufacturing process where the process output

is fully determined by the most recent value of the controllable factor. In some more

complicated processes, the delay between the input adjustment and output observation

could be longer than one time period and also the effect of adjustments could extend

to several subsequent time periods. Therefore, it is important to study all possible

ARMA models that describe the output deviations for a class of transfer functions.

Commonly found process transfer functions include one-time or two-time delay and first-

order dynamic models. The ARMA models that describe the output deviations can be

derived by using the same procedure as we did for the transfer function of order (0,0,1).

For brevity, our results for EWMA and PI controllers are summarized on Tables 7.2

and 7.3 respectively. On these tables, a transfer function is given first, followed by the

ARMA model of the deviations from target and by the asymptotic process mean. Note

that the order of the ARMA models does not exceed two for an EWMA controller and

three for a PI controller. This implies that to identify a closed-loop process under these
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controllers, we should focus on searching a low order ARMA pattern from the process

output data.

7.2.2 Stationarity of ARMA(2,q) process

Identifying a closed-loop process only based on the ARMA model of the output

deviations could be ambiguous, because, as found in Table 7.2, there exist more than

one transfer function corresponding to ARMA models of the same order, like in the

case of an ARMA(2,1) or an ARMA(2,2). Carefully comparing the estimated values

of parameters in these models may help to distinguish different processes if reliable

parameter estimates are available. Since it is assumed that the closed-loop process has

been stabilized by the adjustments of a suboptimal controller, the stationarity conditions

of an ARMA(2,q) provide some additional constraints for the process parameters that

are useful for identification purposes.

As it is well-known, a stationary ARMA(2,q) process (1−a1B−a2B
2)y

t
= Θ(B)ε

t

must satisfy the following conditions:

a1 + a2 < 1 a2 − a1 < 1 |a2| < 1.

Applying these conditions to the two ARMA(2,2) processes listed on Table 7.2, for the

transfer function of order (1,0,1), we get

0 < λξ < 2(1 + φ) − 1 < φ < 1.
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EWMA Controller
Transfer function r=0, s=0, b=1 y

t
= α + βx

t−1
Output deviation
from target ARMA(1,1) (1− (1− λξ)B)y

t
= δ + (1− θB)ε

t
Process mean µ = δ

λξ

Transfer function r=1, s=0, b=1 (1− φB)y
t
= α + βx

t−1
Output deviation ARMA(2,2) (1− (1 + φ− λξ)B − (−φ)B2)y

t
=

(1− φ)δ + (1− (θ + φ)B − (−θφ)B2)ε
t

Process mean µ = (1−φ)δ
λξ

Transfer function r=0, s=1, b=1 y
t
= α + β1x

t−1 + β2x
t−2

Output deviation ARMA(2,1) (1− (1− λξ1)B − (−λξ2)B2)y
t
=

δ + (1− θB)ε
t

Process mean µ = δ
λ(ξ

1
+ξ

2
)

Transfer function r=0, s=0, b=2 y
t
= α + βx

t−2
Output deviation ARMA(2,1) (1− B − (−λξ)B2)y

t
= δ + (1− θB)ε

t
Process mean µ = δ

λξ

Transfer function r=1, s=0, b=2 (1− φB)y
t
= α + βx

t−2
Output deviation ARMA(2,2) (1− (1 + φ)B − (−λξ − φ)B2)y

t
=

(1− φ)δ + (1− (θ + φ)B − (−θφ)B2)ε
t

Process mean µ = (1−φ)δ
λξ

Table 7.2. ARMA models describing the deviations from target from different EWMA
controlled processes. In all cases, the disturbance is N

t
= δ + N

t−1 − θε
t−1 + ε

t
.



171

PI Controller
Transfer function r=0, s=0, b=1 y

t
= α + βx

t−1
Output deviation
from target ARMA(2,1) (1− (1 + c1β)B − c2βB2)y

t
= δ + (1− θB)ε

t
Process mean µ = δ

(c
1
+c

2
)β

Transfer function r=1, s=0, b=1 (1− φB)y
t
= α + βx

t−1
Output deviation ARMA(2,2) (1− (1 + φ + c1β)B − (c2β − φ)B2)y

t
=

(1− φ)δ + (1− (θ + φ)B − (−θφ)B2)ε
t

Process mean µ = (1−φ)δ
(c

1
+c

2
)β

Transfer function r=0, s=1, b=1 y
t
= α + β1x

t−1 + β2x
t−2

Output deviation ARMA(3,1) (1− (1 + c1β1)B − (c2β1 + c1β2)B2 − c2β2B
3)e

t
=

δ + (1− θB)ε
t

Process mean µ = δ
(c

1
+c

2
)(β

1
+β

2
)

Transfer function r=0, s=0, b=2 y
t
= α + βx

t−2
Output deviation ARMA(3,1) (1− B − c1βB2 − c2βB3)y

t
= δ + (1− θB)ε

t
Process mean µ = δ

(c
1
+c

2
)β

Transfer function r=1, s=0, b=2 (1− φB)y
t
= α + βx

t−2
Output deviation ARMA(3,2) (1− (1 + φ)B − (c1β − φ)B2 − c2βB3)y

t
=

(1− φ)δ + (1− (θ + φ)B − (−θφ)B2)ε
t

Process mean µ = (1−φ)δ
(c

1
+c

2
)β

Table 7.3. ARMA models describing the deviations from target of different PI controlled
processes. In all cases, the disturbance model is N

t
= δ + N

t−1 − θε
t−1 + ε

t
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Fig. 7.1. Stability region of two ARMA(2,2) processes

For the transfer function of order (1,0,2), we have

0 < λξ 2(1 + φ) < λξ − 1− φ < λξ < 1− φ.

The feasible regions of φ and λξ for these two processes are shown in Figure 7.1.

These two regions nicely separate from each other, which indicates that one would be able

to select a correct transfer function after comparing the estimated process parameters

with their feasible regions. For example, if φ and λξ estimated from an ARMA(2,2)

process are 0.5 and 1 in an EWMA controlled process, then the transfer function of

order (1,0,1) is the only one that should be accepted. Similarly, the feasible regions for

the two ARMA(2,1) models on Table 7.2 are drawn in Figure 7.2. Again, there is little

difficulty in identifying these two processes from their parameter estimates, because one

process has the coefficient of B equal to one unit and the other does not.
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Fig. 7.2. Stability region of two ARMA(2,1) processes

As shown in Table 7.3, a process controlled by a PI controller may have a closed-

loop description equal to an ARMA process of order as high as 3. It is difficult to draw

the feasible parameter regions for ARMA(3,q), since there are three parameters involved.

But one can see that for the two ARMA(3,1) processes, one has the coefficient of B equal

to one and the other does not. Therefore, distinguishing between these alternatives based

on the parameter estimates is possible in principle.

In practice, when the manufacturing process is exposed to substantial random

noise, precise estimation of parameters in ARMA models is unrealistic. In addition,

an accurate form of the model is not guaranteed and there is the possibility of model

bias. However, as long as the model is a reasonable approximation of the true process,

closed-loop identification will provide useful information for tuning the controller and

improving performance as desired.
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7.2.3 Techniques for identification of ARMA processes

Identifying an ARMA model from the sequence of output deviations is an essen-

tial procedure for obtaining a good process model. However, it is frequently difficult

to identify a mixed ARMA process. The traditional approach of model identification

utilizes the autocorrelation and partial autocorrelation functions of the process data and

compares them with some theoretical patterns. This approach is only effective when

dealing with pure AR or MA processes; but it is very difficult to determine a mixed

ARMA model this way. Since the late 1980’s, more identification techniques have been

developed to handle this problem (see, e.g., Gray, Kelley and McIntire [43], Hannan and

Rissanen [46]). Most of them compare the process data with a series of tentative models

and select the one that fits best. The extended sample autocorrelation function (ESACF)

and smallest canonical correlation (SCAN) proposed by Tsay and Tiao [102, 103] are

two identification techniques that have been implemented in some statistical analysis

program, such as SAS. They will be used for closed-loop identification purposes.

In the ESACF method, data are filtered through an AR model, whose autocor-

relation coefficients are determined by a candidate ARMA model. The residuals of this

filter are called the extended samples. It has been shown that the autocorrelation of

these extended samples follows an MA(q) model if the true model is an ARMA(p,q),

and the ARMA candidate we entertain has a MA polynomial of order higher or equal

to q. More specifically, Tsay and Tiao had shown how to arrange the different condi-

date information in a table. The ESACF table will exhibit a triangular pattern of zeros

when the candidate ARMA model has higher order than the true ARMA model. The
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SCAN method is based on some consistency properties of suitably normalized second-

order sample moment equations and make use of the method of canonical correlation in

standard multivariate analysis. The zeroes pattern on a SCAN table will be rectangular

for any candidate model having higher order than the true model.

We use an example to illustrate the usage of ESACF and SCAN tables on identi-

fying a mixed ARMA process. This example also appeared in Tsay and Tiao [102], but

they only gave the ESACF table. The data are taken from the Series A in Box et. al.

[13] and a fitted ARMA(1,1) model given by authors is as

(1− 0.92B)y
t
= 1.45 + (1− 0.58B)ε

t

The ESACF and SCAN tables computed by SAS are as in Figure(7.3). Clearly, one can

see the triangular zeros pattern and rectangular zeros pattern starting from AR(1) and

MA(1) block in the ESACF and SCAN respectively. It is very unlikely that the order

of an ARMA model from real manufacturing data is higher than 2 for EWMA control

or 3 for PI control; therefore, one should search the zero pattern starting from AR(1) or

AR(2) block. We suggest to use both methods because closed-loop data may not exhibit

a nice clear pattern in one table.

7.3 Tuning the Controller

After the process transfer function has been identified and its parameters have

been estimated, it is possible to tune the controller to a near-optimal control state. By

tuning a closed-loop process, it is meant to adjust the parameters of the controller to
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Fig. 7.3. SCAN and ESACF tables of Series A
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improve its performance. Usually, a controller has some parameters that can be reset

by process engineers, such as λ in an EWMA controller or (c1, c2) in a PI controller.

The performance of the controller can be evaluated by the Asymptotic Mean Square

Deviation (AMSD) of the process outputs, which is similar to the quadratic quality

cost of the process as used in previous chapters. However, here, the transient effect

of process adjustment is ignored since the closed-loop process is identified at its stable

status. The AMSD criterion is valid when there is little cost associated with changing

the controllable factor; otherwise, the variance of the controllable factor needs to be

taken into consideration.

In this section, the AMSD is used as the controller performance criterion. The

variance of the controllable factor will be discussed in Section 7.5. It is well known that

the AMSD of a process consists of two parts: the variance of output deviations and the

square of the bias. The calculation formula for the variance of an ARMA(2,q) process is

given in Appendix F. The goal of tuning a closed-loop system is to minimize the AMSD

subject to the process stationarity condition, that is,

Min AMSD(y
t
) = V ar(y

t
) + Bias(y

t
)2

S.T. stationarity conditions.

By consulting the variance formula in Appendix F, exact AMSD expressions of

many closed-loop processes can be obtained. For instance, for a process with the transfer

function of order (1,0,1) being operated under an EWMA controller, its output deviations

follow an ARMA(2,2) process with asymptotic mean value of (1−φ)δ/λξ. Therefore, its
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AMSD is

AMSD(y
t
) =

(1 + φ)(1− φ)2(1− θ)2 + 2φλξ(1− θ)2 + 2θλξ(1− φ
2 + φλξ)

λξ(1− φ)(2 + 2φ− λξ)
σ
2

ε

+(
δ(1− φ)

λξ
)2. (7.11)

If instead the process has a transfer function (1,0,2), the output deviations relate to

another ARMA(2,2) model with different parameters and its AMSD is

AMSD(y
t
) =

(1 + φ)(1− φ)2(1− θ)2 + λξ(1 + θ
2)(1 + φ

2)− 2θφλξ(2φ + λξ)
λξ(1− φ− λξ)(2 + 2φ + λξ)

σ
2

ε

+(
δ(1− φ)

λξ
)2. (7.12)

In a previous section, it was shown that in principle, process transfer functions

can be identified correctly even when more than one closed-loop process follow an ARMA

model of the same order. However, this strongly depends on the quality of our parameter

estimates. Therefore, it is of interest to investigate the possibility of improving the con-

troller’s performance when the transfer function has been mis-identified. In the following

example, we will show that a controller can be tuned to a near-optimal state as long as

the estimated model is a reasonable approximation of the true one.
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7.4 Example: A Simulated Controlled Process with Real Disturbance

Data

Boyles [20] recently reported an uncontrolled process in which the fill weight

deviation from target for a powdered food product was recorded with the controller

turned off. He mentioned that the process was unstable and autocorrelated, because

powder density was affected by several uncontrollable variables, such as batch-to-batch

variations, and he also suggested that an integral-type controller should be used. In this

section, those data of fill weight deviations are regarded as the disturbance, to which a

non-optimal EWMA controller is applied. We then apply the closed-loop identification

and tuning methodology described in previous sections and optimize the controller.

First, the data set reported by Boyles is identified as an IMA(1,2) process, which

is ∇N
t

= (1 − 0.61

(0.07)

B − 0.26

(0.07)

B2)ε
t

, where the numbers in paranthesis below the

coefficients of B and B2 are the corresponding standard errors. The white noise sequence,

{ε
t
}, has an estimated variance of 207.5. This model will be used as the true disturbance

in a simulated manufacturing process. Suppose the true process is repeatedly adjusted

by an EWMA controller with control parameter λ = 0.4. The adjusting action may

be thought as twisting a valve that directly determines the powder volume per time

unit, hence, the powder weight. Normally, the effect of this type of adjustment can be

realized only partially during one time interval. This results in a first order process

transfer function with a one time delay. So the transfer function is characterized by the

equation, (1−φB)y
t
= βx

t−1. Here, let us assume that φ = 0.4, β = 1 and b = 0.8 (b is
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Fig. 7.4. A controlled closed-loop process

the off-line estimate of β), so ξ = β
b = 1.25. By adding the same disturbance sequence as

that in the open-loop process, we reconstruct a controlled process of fill weight deviation

data as shown in Figure 7.4. It is evident that the process has been stabilized with

mean value around 0. The estimated process variance is 292.2. We now illustrate our

closed-loop identification methodology assuming the true model description is unknown.

SCAN and ESACF methods are applied to the simulated process output data to

identify an ARMA model from which we can identify the process. The SCAN and ESACF

tables are shown in Figure 7.5. One can see from the SCAN table that the pattern of

rectangular zeroes starts from the AR(2) row and MA(1) column. This means that any

ARMA process with order higher or equal to an ARMA(2,1) could be a candidate. The

ESACF table does not shows a clear triangular pattern at low AR or MA order. Based on

the parsimony principle, it is reasonable to guess that the closed-loop description of the

process is ARMA(2,1). By fitting an ARMA(2,1) model to the output deviations from
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target, we have that the maximum likelihood estimators of the AR and MA parameters

are â1 = 0.688(0.179), â2 = −0.338(0.131) and b̂1 = 0.808(0.189), where the standard

errors of these estimates appear in parenthesis. All of these estimates are significant by

t-test. Therefore, the identified ARMA model is (1− 0.69B + 0.34B2)y
t
= (1− 0.8B)ε

t
.

After consulting the list of EWMA closed-loop descriptions in Table 7.2, we speculate

that the process transfer function is either y
t

= β1x
t−1 + β2x

t−2 or y
t

= α + βx
t−2.

However, since for the latter alternative a1 must be equal to 1 and our estimate â1

indicates this is not true, we conclude the process transfer function is y
t

= β1x
t−1 +

β2x
t−2. Note that this model is a reasonable approximation of the true model, since the

complete true parametric model is (1−0.9B+0.4B2)y
t
= (1−B−0.02B2−0.10B3)ε

t
if the

controller and disturbance functions are substituted into the assumed process transfer

function. Of course, the real process is never known to process engineers.

From the ARMA(2,1) model parameter estimates, the parameters in the identified

transfer function and disturbance models are estimated as ξ̂1 = 0.775 (because, 1−λξ̂1 =

0.69), ξ̂2 = 0.85 (because, −λξ̂2 = −0.34), θ̂ = 0.8, and δ̂ = 0. Substituting them into

the process equation, we can optimize the AMSD(y
t
) subject to the process stationarity

conditions, that is,

Min AMSD(y
t
) =

1.64(1 + 0.85λ)− 1.6(1− 0.775λ)
1.625λ(1− 0.85λ)(2− 0.075λ)

S.T. 0 < λ < 1.

Solution to this problem yields an optimal solution of λ equal to 0.12. By resetting λ in

the EWMA controller and running the process with the same 190 disturbance data in



182

Fig. 7.5. SCAN and ESACF tables of the simulated example
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Boyles under the re-tuned EWMA controller, we find that the estimated variance of the

process output is reduced to 231.4. Note that this value is very close to the minimum

variance one can achieve for the output of this process, namely, σ̂
2

y
= 228.0, but the

minimum variance can only be obtained when the correct ARMA model is identified and

estimated perfectly.

7.4.1 Including the cost of adjustments

Sometimes the cost of adjustments cannot be ignored, so the objective function

of the optimization model should be changed to a combination of that balances output

variability and adjustment effort as proposed by Box and Luceño [18]:

Min J =
AMSD(y

t
)

σ2
ε

+ ρ
V ar(∇x

t
)

σ2
ε

(7.13)

For this example, Table 7.4 lists the optimal λ, the associated cost functions, the AMSD,

and the adjustment variance for different values of ρ (which is a quantity defined by the

user). Suppose from the table the value λ = 0.08 is chosen. If the process is controlled

by such EWMA controller and the same disturbance data as in Boyles [20], we find

that ÂMSD(y
t
)/σ

2

ε
= 1.0001, and V̂ ar(∇x

t
)/σ

2

ε
= 0.0100, which closely agree with the

table.

7.5 Summary

In this chapter, a method for identifying a process operating under the actions of

a feedback controller was proposed. This method works for processes regulated with PI
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ρ λ J AMSD
σ2

ε

V ar(∇x
t
)

σ2

ε
0 0.12175 1.0122 1.0122 0.0234

0.1 0.11934 1.0145 1.0122 0.0225
0.5 0.11154 1.0229 1.0130 0.0198
1 0.10441 1.0321 1.0148 0.0173
2 0.09460 1.0477 1.0192 0.0143
5 0.07886 1.0831 1.0329 0.0100

Table 7.4. Optimal solutions to problem (7.13) in the example

or EWMA controllers under the assumption that the disturbance is IMA(1,1) with drift.

It was shown that when the disturbance function is one from the proposed disturbance

family, it is possible to identify some dynamic process models commonly encountered

in manufacturing. ARMA models of the output deviations from these processes are

provided. After identification, the approach suggests to tune the controller to a near-

optimal setting according to a well-known performance criterion, which is either the

AMSD of the process output, or a weighted sum of AMSD of the output and variance

of the adjustments.
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Chapter 8

Research Contributions and Future Work

This chapter summarizes the research contributions of this thesis and comments

on some possible extensions of the current research. The contributions of this thesis are

summarized in Section 7.1. Section 7.2 describes the further research on using Markov

Chain Monte Carlo (MCMC) methods for setup error adjustments.

8.1 Research Contributions

The contributions of this thesis are summarized as follows:

• The setup adjustment problem was discussed and a new unifying point of view

for this problem was presented based on a Kalman Filter approach. The Bayesian

interpretation of the sequential adjustment procedure was given both for a single

realization of the process and for a process ensemble. A connection between this

procedure with the Linear Quadratic Gaussian (LQG) controller, a well-known

method in the control engineering literature, and the Stochastic Approximation

method was made.

• Small-sample properties of various process adjustment rules, including Grubbs’

harmonic rule, an adjustment based on a Kalman Filter approach and an discrete

integral (or EWMA) controller were analyzed in response to the concern of the

performance of these rules on a short-run manufacturing process. The performance
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metric used was a quadratic off-target quality cost. It was shown that if the

setup error is an unknown constant, Grubbs’ harmonic rule represents a better

strategy than the Kalman Filter scheme (equivalent to Grubbs’ extended rule).

The even simpler integral controller with weight λ = 0.2 provides a competitive

alternative to the harmonic rule for cases when the process offset is small. If the

setup error is instead a random variable with known first and second moments, then

the Kalman Filter scheme is optimal in the sense of minimizing the total quadratic

quality cost. But when the first and second moments of the offset are unknown (a

situation common in practice), the harmonic rule and the integral controller can

often outperform the Kalman Filter scheme when the setup noise is relatively high

and/or the offset is large on average. Based on these results, a quality engineer can

select select his/her own process adjustment strategy according to the case he/she

is dealing with.

• Sequential adjustment strategies were further studied beyond the application to

the process setup adjustment problem. For on-line quality control, guarding the

process from a step-type shift in the process mean is an important task. Such a

shift can occur at any point in time, not necessarily at startup. The process upset is

detected with an SPC chart. It was shown that sequential adjustments are superior

to using one single adjustment. When the shift in the process mean is frequent, it is

better to install an automatic process controller, such as the integral controller, to

adjust the process constantly without monitoring the process mean. On the other

hand, when the shift is infrequent (which is a valid assumption in many modern
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industries), the integrated SPC/EPC scheme (with several sequential adjustments)

has a better performance. Furthermore, such integrated scheme provides the op-

portunity of recording the time and frequency of shifts, thus the root cause of the

shift in the process mean can be analyzed later on. For a process with i.i.d. noise,

a CUSUM chart used in conjunction with the sequential adjustment method is rec-

ommended, while it was also pointed out that a hybrid Shewhart-CUSUM chart

with sequential adjustments has an improved performance on large shift sizes while

slightly sacrificing performance on small shift sizes. For a process with autocor-

related noise, the control chart limits are modified in order to give a run-length

performance comparable to that of the chart for an i.i.d. process, following recom-

mendation by Yashchin [118]. The performance of modified CUSUM charts with

sequential adjustments was also evaluated for a variety of autocorrelated processes

and compared with the performance of integral controllers. It was found that this

integrated scheme has similar performance as that for the i.i.d. process, but as the

process autocorrelation increases, the integral controller with a proper parameter

λ becomes to dominate other adjustment methods.

• A modified sequential adjustment strategy for the asymmetric off-target quality

cost was proposed. Asymmetric quality cost functions are associated with many

manufacturing processes, for example, a machining process where materials are

removed from the bulk part. In this case, a value of the quality characteristic above

its target has a different cost implication from it below the target. Therefore, it

is desirable that, during the process adjustment period, the likelihood of the value
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of the quality characteristic falling into the lower cost region will be higher than

the likelihood of the opposite case. It was shown that by adding a bias term into

the sequential adjustment scheme, it is possible to let the process mean converge

to its target from the low cost side. The bias term was computed for the cases

of a constant asymmetric cost function and a quadratic asymmetric cost function.

The performance of the biased adjustment rule was compared with that of Grubbs’

harmonic rule and of integral controllers, and significant cost savings were found

for short-run processes.

• Another modified sequential adjustment strategy was proposed when process mea-

surement and process adjustment costs are significant. The adjustment rule skips

several process runs after one adjustment has been executed, while still maintain-

ing the optimality of the adjustment rule based on the Kalman Filter approach.

The scheduling method of determining the optimal time instants for adjusting for

a setup offset was discussed. In particular, the performance of three scheduling

methods – one based on the Wagner-Whitin algorithm, one based on the Silver-

Meal heuristic, and the other one based on a method due to Trietsch [101] – was

compared. A backward implementation of the Silver-Meal heuristic was recom-

mended and a slight modification of this method was shown to be robust to with

respect to an unknown process variance. This strategy can be easily applied for

on-line process control.

• In the final part of this thesis, a closed-loop process scenario was presented. In

such case, an automatic controller is put on the process for stabilizing the process



189

instead of optimizing the process. In order to improve the process performance,

it is necessary to obtain the process transfer function and process noise models.

However, conventional open-loop process identification methods cannot be used

because of the dependency of the process input on the output. Under certain as-

sumptions on the process controller and noise models, a catalog of possible ARMA

models of the closed-loop processes was given. These provide a mapping to the

open-loop transfer functions. It was found that the information obtained from

fitting ARMA models to the output obtained during closed-loop operation can be

used to fine-tune the process controller to improve the process even if the true

transfer function cannot be exactly obtained. Therefore, this controller updating

method is suitable for an established process where overhauling the whole process

is impractical.

In summary, this thesis discussed several statistical adjustment strategies for a

variety of process abnormalities and manufacturing cost considerations. The adjustment

tools can empower a quality engineer to actively conduct continuous process quality

improvements and they also broaden the manufacturing applications of statistical and

probabilistic principles.

8.2 Future Work

As discussed in this thesis, in a modern manufacturing environment products

are often manufactured in short-run processes, i.e., similar parts are processed in small
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batches. In such case, two sources of variability – “within-batch” variability and “between-

batches” variability – become relevant. The between-batch and with-batch variances are

also important for a quality engineer to determine the process capability of the current

manufacturing process and to conduct actions for further quality improvements. Also,

frequent process setups due to short runs may lead to a higher possibility of setup errors

on the machine. The setup error can be modelled as a random variable. If its first and

second moments are known and the variance of process is known exactly, it was shown

in Chapter 3 that Grubbs’ extended rule is optimal when the only cost of interest is a

quadratic off-target quality cost. However, it was also shown in Chapter 3 that when

no information on the moments of the setup offset is available, the simpler Grubbs’ har-

monic rule or an EWMA controller may have a better performance than the extended

rule for minimizing the total off-target quality cost of short-run processes.

Future work can be undertaken to develop a process adjustment approach over a

set of batches, where no previous knowledge on the setup offset distribution and on the

process variance is available. The resulting adjustment procedure proposed would be

very useful for the quality control of an experimental manufacturing process or a newly

installed process. In this section we sketch the main idea behind such an adjustment

procedure based on a hierarchical Bayesian model and the use of Markov Chain Monte

Carlo (MCMC) methods.

Let y
ij

be the value of quality characteristic of the process observed for batch i,

part j, where i = 1, ..., I and j = 1, ..., J . This quality characteristic is measured with

reference to a target value T which is assumed, without loss of generality, equal to zero.

The initial (unknown) process offset of the i
th batch is denoted by d

i
. It is assumed that
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this offset is a random occurrence from a normal distribution with mean µ and variance

σ
2

d
, i.e.,

d
i
|µ, σ

2

d
∼ N(µ, σ

2

d
) . (8.1)

where both µ and σ
2

d
are assumed unknown. Here, µ can be seen as a common offset

which is due to some systematic setup error that is of interest to be removed. The

process model is

y
ij

= d
i
+ x

i(j−1) + ε
ij

, (8.2)

where ε
ij

is process noise with 0 mean and unknown variance σ
2

ε
. Considering that at

the time y
ij

is observed, x
i(j−1) is known, a different variable z

ij
can be derived as:

z
ij

= y
ij
− x

i(j−1) = d
i
+ ε

ij
. (8.3)

This allows to derive an analogy with a one-way random effects model, i.e.,

z
ij
|d

i
, σ

2

ε
∼ N(d

i
, σ

2

ε
) , (8.4)

d
i
|µ, σ

2

d
∼ N(µ, σ

2

d
) .

Finally, the adjustment can be written as

x
ij

= −d̂
i
|xij

, (8.5)

where xij = {x11, x12, ..., x1J
, ..., x

i1, ..., x
ij
} represent all (transformed) data observed

at the time the estimate of d
i

is computed and d̂
i
|xij represents the estimate of the i

th
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mean in the random effect model, given all available data. As clear from the last equation,

selecting the adjustments at each step involves means in an unbalanced one-way random

effect model.

From a Bayesian perspective, the one-way random effects model is a special case

of a hierarchical model, used in describing multi-parameter problems in which parameters

are related with some structure, depending on the specific problem addressed (Box and

Tiao [19]). The choice of the number of levels or stages in the hierarchy is strictly

related with the problem addressed, although most of the applications, as the one way

random-effect model, require a three-level model (Carlin and Louis [21]).

In a three-stage hierarchical model, the first stage in the hierarchy represents the

observed data, conditionally on a set of unknown parameters. The second stage of the

model specifies the distributions of the parameters. A traditional Bayesian model can

be considered as a hierarchical model consisting of these two stages, in which the second

stage is constituted by priors on unknown parameters. However, when at least one of

the parameters in the second stage has a probabilistic specification which depends on a

further set of unknown parameters, called hyperparameters, a third stage in the hierarchy

is required.

For the problem of adjustments in a batch-to-batch process with initial process

setup offsets, the first stage of the hierarchy models the distribution of the observations

conditionally on unknown parameters as given by the first equation in (8.4). The second

stage in the hierarchy specifies the distribution of the current process mean d
i

and the

between-batch variance σ
2

ε
. The parameter σ

2

ε
does not have any further hierarchical

structure. Adopting conjugacy at each step of the hierarchical model (a common choice
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Fig. 8.1. The hierarchical model of data, parameters and hyperparameters

for the random effects model, Gelfand et al. [42]; Gelfand and Smith, [41]), the prior

distribution for σ
2

ε
is given by:

σ
2

ε
|a2, b2 ∼ IG(a2, b2) , (8.6)

where IG represents an Inverse-Gamma distribution and a2, b2 are assumed known and

are typically very small numbers to model ”vague” prior information (Spiegelhalter et al.

[92]). Another unknown parameter modelled at the second stage in the hierarchy is the

initial off-set d
i
, given by equation (8.1). Its distribution is given conditionally on other

two random parameters µ and σ
2

d
. These hyperparameters are modelled at the third

stage in the hierarchy. Adopting once again conjugacy, priors on these hyperparameters
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are given by:

µ|µ0, σ
2

0
∼ N(µ0, σ

2

0
) , (8.7)

σ
2

d
|a1, b1 ∼ IG(a1, b1) , (8.8)

where µ0, σ
2

0
, a1, b1 are again assumed known, but“vague”.

The traditional inference procedure on a random effects model is performed by

the analysis of variance (ANOVA). However, ANOVA is not appropriate for the problem

under study, where data are collected from a short-run process, since ANOVA requires

considerable data. Furthermore, it is possible that the variance components estimated by

ANOVA be negative. The Bayesian method is a natural alternative to this problem, since

the Bayesian estimator is based on process data and prior distribution only. The Bayesian

approach also permits to easily tackle the lack of normality and/or independence and

possible heterogeneity of variances (Box and Tiao [19]).

In future research, a Bayesian approach could be developed for setting adjustments

on the batch by batch production. In particular, Markov Chain Monte Carlo (MCMC)

techniques, which perform Monte Carlo integration using Markov Chains, can be utilized.

A Gibbs sampler can be applied on-line to predict the process setup offset of each batch

and to suggest an adjustment accordingly prior to the first part of each batch. Although

a Bayesian approach allows to overcome difficulties induced by sampling theory and

to derive easy extensions to more complex problems, this approach requires intensive

computational efforts in calculation of marginal posterior densities. Therefore, how
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to simplify the computation and how to automate this approach for on-line process

adjustment application are challenges worth of further study.
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Appendix A

The Linear Quadratic Setup Adjustment Problem

In this appendix we give the solution to a general linear quadratic setup adjust-

ment problem. It corresponds to the classic LQG control problem with incomplete state

information, and it is derived, for example, in Åström [94]. Suppose there are p con-

trollable factors (machine setpoints) and p outputs modelled as deviations from target.

Assume the process is described by the linear equation

µt = µt−1 +∇xt−1 + wt−1, µ1 ∼ N(d,Σd), wt ∼ N(0,Σw)

and

yt = µt + εt, εt ∼ N(0,Σ
ε
).

The criterion to minimize is quadratic and equals:

E

µ
′
n
Qµn +

n−1∑
t=1

(µ′
t
Qµt +∇x′

t
R∇xt)

 .

The optimal solution is as follows (Åström [94], Lewis [61]):

1. Let S
n

= Q. Compute (off-line) for t = n−1, n−2, ..., 1 the controller gain matrix

L
t

as follows:

L
t
= (S

t+1 + R)−1
S

t+1
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where

S
t
= S

t+1 − L
′
t
(S

t+1 + R)L
t
+ Q.

2. For t = 1, 2, ..., n compute (can be done off-line as well) the Kalman weight matrices

K
t

as follows:

K
t
= (P

t−1 + Σ
w

)(P
t−1 + Σ

w
+ Σ

ε
)−1

where

P
t
= [I − (P

t−1 + Σ
w

+ Σ
ε
)−1](P

t−1 + Σ
w

)′

with P0 = Σ
d
.

3. Let µ̂1 = d + x0. Compute (on-line), for t = 1, 2, ..., n − 1 the adjustments as

follows:

∇xt = −Ltµ̂t

where

µ̂t = µ̂t−1 +∇xt−1 + K
t
(yt − (µ̂t−1 +∇xt−1)).

From the LQG model, Grubbs’ extended rule is obtained by letting Q = 1, R =

0,Σ
w

= 0.
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Appendix B

Additional Tables on the Performance of Different

Adjustment Schemes for Autocorrelation Processes
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Mean of shift size
% improvement on AISD 0 1σ 2σ 3σ 4σ

p=0.05 CUSUM chart + 9.83 35.18 60.29 72.76 78.24
Single adj. (0.35) (0.40) (0.37) (0.32) (0.31)

CUSUM chart + 17.97 41.12 63.60 74.69 79.54
Sequential adj. (0.29) (0.36) (0.33) (0.30) (0.29)

EWMA controller 24.62 43.16 59.84 67.36 69.99
(λ = 0.1) (0.26) (0.31) (0.30) (0.28) (0.27)

EWMA controller 25.53 46.13 64.98 73.65 76.85
(λ = 0.2) (0.29) (0.35) (0.33) (0.30) (0.29)

EWMA controller 23.98 45.74 65.83 75.16 78.70
(λ = 0.3) (0.31) (0.37) (0.34) (0.32) (0.31)

p=0.035 CUSUM chart + 5.26 23.34 46.17 58.99 65.98
Single adj. (0.32) (0.39) (0.40) (0.39) (0.39)

CUSUM chart + 12.94 29.42 49.85 61.44 67.71
Sequential adj. (0.26) (0.34) (0.37) (0.37) (0.37)

EWMA controller 18.69 32.16 47.58 55.35 59.17
(λ = 0.1) (0.25) (0.31) (0.34) (0.34) (0.34)

EWMA controller 18.48 33.73 51.27 60.37 64.95
(λ = 0.2) (0.28) (0.35) (0.38) (0.38) (0.38)

EWMA controller 16.26 32.51 51.30 61.17 66.20
(λ = 0.3) (0.30) (0.37) (0.40) (0.40) (0.40)

p=0.02 CUSUM chart + 0.63 10.46 26.59 38.98 44.23
Single adj. (0.28) (0.34) (0.39) (0.43) (0.45)

CUSUM chart + 7.16 16.24 30.65 42.12 46.77
Sequential adj. (0.22) (0.29) (0.37) (0.41) (0.43)

EWMA controller 11.13 18.84 29.81 38.06 40.45
(λ = 0.1) (0.22) (0.28) (0.34) (0.37) (0.38)

EWMA controller 9.58 18.38 31.17 40.86 43.80
(λ = 0.2) (0.25) (0.32) (0.38) (0.42) (0.44)

EWMA controller 6.55 15.99 29.82 40.37 43.64
(λ = 0.3) (0.27) (0.34) (0.41) (0.45) (0.47)

p=0.005 CUSUM chart + -4.27 -1.64 3.45 7.94 10.81
Single adj. (0.22) (0.24) (0.29) (0.34) (0.37)

CUSUM chart + 0.16 2.59 7.34 11.26 13.86
Sequential adj. (0.13) (0.18) (0.25) (0.30) (0.33)

EWMA controller 1.16 3.41 7.11 9.81 11.21
(λ = 0.1) (0.13) (0.17) (0.23) (0.27) (0.29)

EWMA controller -2.11 0.48 4.83 8.10 9.82
(λ = 0.2) (0.16) (0.20) (0.27) (0.31) (0.34)

EWMA controller -6.16 -3.39 1.32 4.97 6.84
(λ = 0.3) (0.17) (0.22) (0.29) (0.34) (0.37)

Table B.1. Performance of integrated SPC/EPC adjustment schemes and an EWMA
adjustment scheme on an AR(1) process with φ = 0.15 when varying the probability of
a shift.
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Mean of shift size
% improvement on AISD 0 1σ 2σ 3σ 4σ

p=0.05 CUSUM chart + 10.38 35.49 60.14 72.66 78.99
Single adj. (0.36) (0.40) (0.37) (0.32) (0.30)

CUSUM chart + 18.60 41.22 63.46 74.64 80.31
Sequential adj. (0.30) (0.36) (0.34) (0.30) (0.29)

EWMA controller 24.81 42.62 59.27 66.83 70.40
(λ = 0.1) (0.26) (0.31) (0.30) (0.28) (0.27)

EWMA controller 25.36 45.31 64.26 73.00 77.20
(λ = 0.2) (0.30) (0.35) (0.33) (0.31) (0.29)

EWMA controller 23.40 44.62 64.94 74.39 78.96
(λ = 0.3) (0.32) (0.37) (0.35) (0.32) (0.31)

p=0.035 CUSUM chart + 5.41 23.99 46.83 59.73 66.19
Single adj. (0.32) (0.39) (0.40) (0.39) (0.39)

CUSUM chart + 12.87 29.83 50.74 62.20 68.01
Sequential adj. (0.27) (0.35) (0.37) (0.37) (0.37)

EWMA controller 18.24 31.82 47.82 55.52 59.04
(λ = 0.1) (0.25) (0.32) (0.34) (0.34) (0.34)

EWMA controller 17.54 32.97 51.41 60.46 64.67
(λ = 0.2) (0.28) (0.36) (0.38) (0.38) (0.38)

EWMA controller 14.77 31.31 51.25 61.12 65.74
(λ = 0.3) (0.31) (0.38) (0.40) (0.40) (0.40)

p=0.02 CUSUM chart + 0.90 11.45 28.46 38.92 45.26
Single adj. (0.28) (0.35) (0.40) (0.43) (0.45)

CUSUM chart + 7.35 17.08 32.51 42.01 47.59
Sequential adj. (0.23) (0.30) (0.37) (0.41) (0.43)

EWMA controller 11.14 18.98 30.93 37.31 40.61
(λ = 0.1) (0.22) (0.29) (0.35) (0.37) (0.39)

EWMA controller 9.08 18.09 32.04 39.73 43.75
(λ = 0.2) (0.25) (0.33) (0.39) (0.42) (0.44)

EWMA controller 5.47 15.22 30.37 38.85 43.33
(λ = 0.3) (0.28) (0.35) (0.42) (0.45) (0.47)

p=0.005 CUSUM chart + -4.04 -1.97 3.09 7.89 10.21
Single adj. (0.21) (0.25) (0.30) (0.35) (0.37)

CUSUM chart + 0.08 2.39 7.01 11.37 13.36
Sequential adj. (0.14) (0.18) (0.25) (0.31) (0.34)

EWMA controller 0.45 2.65 6.42 9.35 10.38
(λ = 0.1) (0.13) (0.17) (0.23) (0.27) (0.29)

EWMA controller -3.49 -0.88 3.63 7.09 8.50
(λ = 0.2) (0.16) (0.20) (0.27) (0.32) (0.34)

EWMA controller -8.24 -5.38 -0.44 3.37 5.02
(λ = 0.3) (0.17) (0.22) (0.29) (0.35) (0.37)

Table B.2. Performance of integrated SPC/EPC adjustment schemes and an EWMA
adjustment scheme on an AR(1) process with φ = 0.1 when varying the probability of a
shift.
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Mean of shift size
% improvement on AISD 0 1σ 2σ 3σ 4σ

p=0.05 CUSUM chart + 9.81 35.07 60.58 71.83 78.45
Single adj. (0.35) (0.40) (0.36) (0.33) (0.30)

CUSUM chart + 18.12 40.75 63.76 73.83 79.71
Sequential adj. (0.29) (0.35) (0.33) (0.31) (0.29)

EWMA controller 24.69 42.43 59.74 66.38 70.06
(λ = 0.1) (0.26) (0.31) (0.30) (0.28) (0.27)

EWMA controller 25.47 45.22 64.84 72.54 76.79
(λ = 0.2) (0.29) (0.35) (0.33) (0.31) (0.30)

EWMA controller 23.80 44.66 65.66 73.97 78.57
(λ = 0.3) (0.31) (0.37) (0.35) (0.32) (0.31)

p=0.035 CUSUM chart + 5.59 23.96 46.32 59.07 65.93
Single adj. (0.32) (0.39) (0.40) (0.39) (0.39)

CUSUM chart + 13.09 30.04 50.02 61.62 67.73
Sequential adj. (0.26) (0.34) (0.37) (0.37) (0.37)

EWMA controller 18.52 32.35 47.34 55.50 59.17
(λ = 0.1) (0.25) (0.31) (0.34) (0.34) (0.34)

EWMA controller 18.12 33.80 50.91 60.39 64.80
(λ = 0.2) (0.28) (0.35) (0.38) (0.38) (0.38)

EWMA controller 15.73 32.48 50.84 61.11 65.95
(λ = 0.3) (0.30) (0.38) (0.40) (0.40) (0.40)

p=0.02 CUSUM chart + 0.63 10.77 27.96 38.54 45.71
Single adj. (0.28) (0.34) (0.40) (0.43) (0.45)

CUSUM chart + 7.13 16.50 32.33 41.86 47.94
Sequential adj. (0.22) (0.30) (0.37) (0.40) (0.43)

EWMA controller 11.04 18.83 31.10 37.46 41.40
(λ = 0.1) (0.22) (0.28) (0.34) (0.37) (0.39)

EWMA controller 9.28 18.26 32.52 40.03 44.64
(λ = 0.2) (0.25) (0.32) (0.39) (0.42) (0.44)

EWMA controller 6.07 15.76 31.19 39.37 44.39
(λ = 0.3) (0.27) (0.35) (0.41) (0.45) (0.47)

p=0.005 CUSUM chart + -4.00 -1.53 3.28 7.36 10.09
Single adj. (0.22) (0.24) (0.29) (0.34) (0.37)

CUSUM chart + 0.28 2.57 7.07 10.98 13.35
Sequential adj. (0.14) (0.18) (0.24) (0.30) (0.33)

EWMA controller 1.16 3.06 6.47 9.35 10.78
(λ = 0.1) (0.14) (0.17) (0.23) (0.27) (0.29)

EWMA controller -2.28 -0.08 4.01 7.43 9.19
(λ = 0.2) (0.16) (0.20) (0.26) (0.31) (0.34)

EWMA controller -6.48 -4.13 0.37 4.10 6.08
(λ = 0.3) (0.18) (0.22) (0.29) (0.34) (0.37)

Table B.3. Performance of integrated SPC/EPC adjustment schemes and an EWMA
adjustment scheme on a MA(1) process with θ = −0.15 when varying the probability of
a shift.
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Mean of shift size
% improvement on AISD 0 1σ 2σ 3σ 4σ

p=0.05 CUSUM chart + 9.50 35.37 60.59 72.70 78.31
Single adj. (0.35) (0.40) (0.36) (0.32) (0.31)

CUSUM chart + 17.64 41.15 63.72 74.53 79.56
Sequential adj. (0.29) (0.36) (0.34) (0.30) (0.29)

EWMA controller 23.89 42.47 59.52 66.68 69.73
(λ = 0.1) (0.26) (0.31) (0.30) (0.28) (0.28)

EWMA controller 24.27 45.12 64.43 72.79 76.36
(λ = 0.2) (0.29) (0.35) (0.33) (0.31) (0.30)

EWMA controller 22.17 44.37 65.04 74.13 78.03
(λ = 0.3) (0.31) (0.37) (0.35) (0.33) (0.32)

p=0.035 CUSUM chart + 5.81 23.66 46.31 59.41 66.37
Single adj. (0.32) (0.39) (0.40) (0.39) (0.39)

CUSUM chart + 13.66 29.74 50.19 61.88 68.11
Sequential adj. (0.27) (0.35) (0.37) (0.37) (0.37)

EWMA controller 18.91 31.73 47.43 55.18 59.03
(λ = 0.1) (0.25) (0.31) (0.34) (0.34) (0.34)

EWMA controller 18.27 32.79 50.85 60.02 64.62
(λ = 0.2) (0.28) (0.35) (0.38) (0.38) (0.38)

EWMA controller 15.54 31.08 50.58 60.61 65.66
(λ = 0.3) (0.31) (0.38) (0.40) (0.41) (0.40)

p=0.02 CUSUM chart + 0.73 11.58 28.45 39.46 45.74
Single adj. (0.28) (0.34) (0.40) (0.43) (0.45)

CUSUM chart + 7.16 17.17 32.67 42.48 48.11
Sequential adj. (0.22) (0.30) (0.37) (0.41) (0.43)

EWMA controller 10.84 18.91 31.22 37.66 41.03
(λ = 0.1) (0.22) (0.29) (0.34) (0.37) (0.39)

EWMA controller 8.66 17.97 32.34 40.09 44.11
(λ = 0.2) (0.25) (0.33) (0.39) (0.42) (0.44)

EWMA controller 4.99 15.04 30.67 39.23 43.65
(λ = 0.3) (0.27) (0.35) (0.42) (0.45) (0.47)

p=0.005 CUSUM chart + -4.19 -1.89 3.38 7.83 10.46
Single adj. (0.21) (0.25) (0.29) (0.34) (0.37)

CUSUM chart + 0.06 2.60 7.34 11.27 13.47
Sequential adj. (0.14) (0.18) (0.25) (0.30) (0.34)

EWMA controller 0.40 2.56 6.30 9.14 10.47
(λ = 0.1) (0.13) (0.17) (0.23) (0.27) (0.29)

EWMA controller -3.57 -1.08 3.38 6.83 8.44
(λ = 0.2) (0.15) (0.20) (0.27) (0.31) (0.34)

EWMA controller -8.37 -5.67 -0.76 3.07 4.85
(λ = 0.3) (0.17) (0.22) (0.29) (0.34) (0.37)

Table B.4. Performance of integrated SPC/EPC adjustment schemes and an EWMA
adjustment scheme on a MA(1) process with θ = −0.1 when varying the probability of
a shift.



203

Appendix C

Equivalence Between Minimization of the AIEC•

criterion and Minimization of Each E(C•
t
)

Consider the minimization problem

Min
µ

AIEC
•

where µ = {µ
t
, t = 1, ..., N} is the N × 1 vector of the means of the quality charac-

teristic and AIEC
• is given by (5.5). The assumption of a linear feedback adjustment

rule induces an affine relation among the means of the response variable, which can be

generally expressed as µ = Rµ + s, where R is a N ×N matrix and s is a N × 1 vector.

In particular the mean at the t
th step µ

t
can be written as:

µ
t
=

N∑
i=1

r
ti

µ
i
+ s

t
(C.1)

where r
ti

is the entry in row t and column i of the matrix R and s
t
is the t

th component

of s. In particular, the mean at each step is a function only of the previous ones, therefore

r
ti

= 0 for i ≥ t.

To minimize AIEC
• the first order condition consists in equating to zero all the

components of the gradient vector, i.e.:

∇AIEC
• = 0 ,
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where 0 is a N×1 vector of zeros. Considering the expression of AIEC
• given in Chapter

5, the i
th component of the gradient can be rewritten as:

∂AIEC
•

∂µ
i

=
1
N

N∑
t=1

∂E(C•
t
)

∂µ
i

=
1
N

N∑
t=1

∂E(C•
t
)

∂µ
t

∂µ
t

∂µ
i

=
1
N

N∑
t=1

∂E(C•
t
)

∂µ
t

r
ti

.

Therefore, the first order condition is satisfied when

∂E(C•
t
)

∂µ
t

= 0 , t = 1, 2, ..., N . (C.2)

The second order condition can be determined by considering two theorems, de-

rived by extending to strictly convex functions results reported in (Bazaraa et al. [10])

for convex functions.

Theorem 1

Let f1, f2, ..., f
k

: E
n
→ E1 be strictly convex functions. Then, the function f defined as

f(x)=
∑k

j=1
α

j
f
j
(x), where α

j
> 0 for j = 1, ..., k is strictly convex.

Theorem 2

Let g : E
m
→ E1 be a strictly convex function and let h: E

n
→ E

m
be an affine function

of the form h(x) = Ax + b, where A is an m × n matrix and b is an m × 1 vector.

Then, the composite function f : E
n
→ E1, defined as f(x)= g [h(x)], is strictly convex.

Consider that AIEC
• can be seen as a linear combination of E(C•

t
) with weights

1/N . Therefore the first theorem allows to assert that AIEC
• is strictly convex when

each component E(C•
t
) is also a strictly convex function of the vector of means µ. On

the other hand, the expected cost at time n, E(C•
t
), is a composite function, since it is
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directly related only to one component of the vector, namely µ
t
, which in turn depends

on the whole vector µ through an affine relation (given by equation C.1). Therefore,

considering the second theorem, the strictly convexity of E(C•
t
) as a function of the

whole vector µ, is proved once it is showed that E(C•
t
) is a strictly convex function of

the scalar µ
t
. Merging the results from the first and second theorems, the second order

condition can be stated as:

∂
2
E(C•

t
)

∂2µ
t

> 0 . (C.3)

This condition implies that AIEC
• is a strictly convex function, thus characterized by a

unique and global minimum. Considering both the first and the second order conditions,

given respectively by (C.2) and (C.3), the minimization of AIEC
• considered can be

replaced by the following set of minimization problems:

min
µ

t

E(C•
t
) , t = 1, 2, ..., N .
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Appendix D

Minimization of E(Cc

t
) for the Asymmetric

Constant Cost Function

In the case of the asymmetric constant cost function

E(Cc

t
) = c

c

1
Φ

(
LSL− µ

t
σ
t

)
+ c

c

2

[
1− Φ

(
USL− µ

t
σ
t

)]
,

taking the first derivative with respect to µ
t

and equating it to zero, we get

∂

∂µ
t

E(Cc

t
) = −

c
c

1
σ
t

φ

(
LSL− µ

t
σ
t

)
+

c
c

2
σ
t

φ

(
USL− µ

t
σ
t

)
= 0 .

Therefore, the condition for the optimal target at time t, m
c

t
, is given by

φ

USL−m
c

t
σ
t


φ

(
LSL−mc

t
σ
t

) =
c
c

1
cc

2

. (D.1)
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Considering the analytical expression of the normal density φ(·), equation (D.1)

can be rewritten as:

1√
2π

exp

−1
2

USL−m
c

t
σ
t

2
1√
2π

exp

−1
2

(
LSL−mc

t
σ
t

)2
 = exp

−1
2


USL−m

c

t
σ
t

2

−

LSL−m
c

t
σ
t

2

 =

c
c

1
cc

2

(D.2)

By taking the logarithm on both sides of equation (D.2), the closed form expres-

sion of the optimal target m
c

t
can be obtained as follows:

USL
2 + m

c 2

t
− 2 USL m

c

t
− LSL

2 −m
c 2

t
+ 2 LSL m

c

t

σ2
t

= −2 ln

c
c

1
cc

2



USL
2 − LSL

2 − 2(USL− LSL)mc

t
= −2σ

2

t
ln

c
c

1
cc

2



m
c

t
=

2σ
2

t
ln(

c
c

1
cc

2

) + USL
2 − LSL

2

2(USL− LSL)
=

σ
2

t
ln(

c
c

1
cc

2

)

(USL− LSL)
+

1
2
(USL + LSL) . (D.3)
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In order to evaluate if the optimal mean m
c

t
obtained determines a minimum of

the cost function, the second order derivative has to be considered:

∂
2

∂µ2
t

E(Cc

t
) =

∂

∂µ

−c
c

1
σ
t

φ

(
LSL− µ

t
σ
t

)
+

c
c

2
σ
t

φ

(
USL− µ

t
σ
t

)

=
c
c

1
σ3
t

(µ
t
− LSL)φ

(
LSL− µ

t
σ
t

)
+

c
c

2
σ3
t

(USL− µ
t
)φ

(
USL− µ

t
σ
t

)
.(D.4)

As it can be observed, this is always greater than zero as long as the condition LSL <

µ
t
< USL is satisfied.
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Appendix E

Minimization of E(Cc

t
) for the Asymmetric

Quadratic Cost Function

Consider the expected cost at time t given by:

E(Cq

t
) = c

q

1

0∫
−∞

y
2

t
f
N

(y
t
;µ

t
, σ

2

t
)dy

t
+ c

q

2

∞∫
0

y
2

t
f
N

(y
t
;µ

t
, σ

2

t
)dy

t
. (E.1)

Since c
q

1
and c

q

2
are constants, the expression of the expected value of cost at time t is

completely defined by solving the generic integral:

b∫
a

y
2
f
N

(y;µ, σ
2)dy =

1√
2πσ

b∫
a

y
2 exp

[
−(y − µ)2

2σ2

]
dy . (E.2)

Let z = y−µ
σ , thus y = µ + σz → dy = σdz, y = a → z = a−µ

σ = c and

y = b → z = b−µ
σ = d. Hence, the integral in (E.2) can be rewritten as:

1√
2πσ

d∫
c

(µ + σz)2 exp

(
−z

2

2

)
σdz = (E.3)

1√
2π

µ
2

d∫
c

exp

(
−z

2

2

)
dz + σ

2
d∫

c

z
2 exp

(
−z

2

2

)
dz + 2µσ

d∫
c

z exp

(
−z

2

2

)
dz

 .
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The first term on the right hand side of (E.3) can be simply calculated as:

µ
2

√
2π

d∫
c

exp

(
−z

2

2

)
dz = µ

2 [Φ(d)− Φ(c)] ,

where Φ(·) represents the cumulative standard normal distribution function. The second

term can be evaluated integrating by parts as follows:

σ
2

√
2π

d∫
c

z
2 exp

(
−z

2

2

)
dz = − σ

2
√

2π

d∫
c

z(−z) exp

(
−z

2

2

)
dz

= − σ
2

√
2π

d∫
c

z

[
d

dz
exp

(
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Finally, the third term in (E.3) can be computed as follows:
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Therefore:

b∫
a

y
2
f
N

(y;µ, σ
2)dy = (µ2 + σ

2) [Φ(d)− Φ(c)] + (E.4)

− σ
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√
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[
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−d

2

2

)
− c exp

(
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2

2

)]
+−2µσ [φ(d)− φ(c)] ,

where a−µ
σ = c and b−µ

σ = d. With this result, the first integral in (E.1) can be computed

by evaluating (E.4) when c → −∞ and d = −µ
σ . We have that:
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and, by using De L’Hospital’s rule:
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Hence,
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The second integral in (E.1) can be analogously computed, considering that in

this case c = −µ
σ and d →∞. This is given by:

∞∫
0

y
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t
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(y
t
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µ
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σ
t

)
.

Therefore, the expected costs in equation (E.1) can be rewritten as:
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In order to minimize E(Cq

t
), given by expression (E.5), the first and the second

order derivatives with respect to µ
t

are given by:
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Equations (E.6) and (E.7) can be computed from the first and second order derivatives

of φ

(
µ

t
σ
t

)
and Φ
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)
. With respect to φ
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, given by
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the derivatives are obtained as follows:
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Therefore, the first derivative of the expected costs is:
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while the second order optimality condition is given by:
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Appendix F

Variance of an ARMA(2,q) Process, where q ≤ 2.

For an ARMA(2,1) process such as

(1− a1B − a2B
2)z

t
= (1− b1B)ε

t
, (F.1)

its autocovariance is computed by multiplying both sides of the above equation by z
t−k

and taking expectation:

(1− a1B − a2B
2)γ

k
= γ

zε
(k)− b1γ

zε
(k − 1)

where γ
k

is the autocorrelation coefficient of z, and γ
zε

is the cross-correlation coefficient

of z and ε.

When k = 0, we have that

γ0 = a1γ1 + a2γ2 + σ
2

ε
− b1γ

zε
(−1).

When k = 1,

γ1 = a1γ0 + a2γ1 − b1σ
2

ε

and when k ≥ 2,

γ
k

= a1γ
k−1 + a2γ

k−2.
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Also, multiplying both sides of equation (F.1) by ε
t−1 and taking expectation, we get

γ
zε

(−1) = (a1 − b1)σ2

ε
.

Therefore, the variance of z
t

is

γ0 =
(1− a2)(1 + b

2

1
)− 2b1a1

(1 + a2)(1− a1 − a2)(1 + a1 − a2)
σ
2

ε
. (F.2)

Following a similar derivation, the variance of an ARMA(2,2) process (1− a1B−

a2B
2)z

t
= (1− b1B − b1B

2)ε
t

can be shown to be equal to

γ0 =
(1− a2)(1 + b

2

1
+ b

2

2
)− 2b1(1− b2)a1 − 2b2a2 − 2b2(a2

1
− a

2

2
)

(1 + a2)(1− a1 − a2)(1 + a1 − a2)
σ
2

ε
. (F.3)

ARMA(2,1) model a1B a2B
2

b = 1, r = 0, s = 1 1− λξ1 −λξ2
b = 2, r = 0, s = 0 1 λξ

ARMA(2,2) model a1B a2B
2

b = 1, r = 1, s = 0 1 + φ− λξ −φ
b = 2, r = 1, s = 0 1 + φ −λξ − φ

Table F.1. Parameters of four ARMA models
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As one can see from Table 7.2, each closed-loop process has a different expression

for the coefficients of B and B2 in its ARMA model of the output deviations. The

coefficients are listed in Table F.1.
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[62] L. Ljung and T. Söderström. Theory and Practice of Recursive Identification.

Cambridge, Mass., The MIT Press, 1987.

[63] G. Lorden. Procedures for reacting to a change in distribution. Annals of Mathe-

matical Statistics, 41(2):520–527, 1971.

[64] C. Lu and M.R. Reynolds Jr. EWMA control charts for monitoring the mean of

autocorrelated processes. Journal of Quality Technology, 31(2):166–188, 1999.

[65] C. Lu and M.R. Reynolds Jr. Cusum charts for monitoring an autocorrelated

processes. Journal of Quality Technology, 33(3):316–334, 2001.

[66] J.M. Lucas. Combined Shewhart-CUSUM quality control schemes. Journal of

Quality Technology, 14(2):51–59, 1982.

[67] J.M. Lucas and M.S. Saccucci. Exponentially weighted moving average control

schemes: Properties and enhancement. Technometrics, 32(1):1–12, 1990.

[68] A. Luceño. Performance of EWMA versus last observation for feedback control.

Commu. Statist. - Theory Meth., 22(1):241–255, 1993.

[69] J.F. MacGregor. On-line statistical process control. Chemical Engineering

Progress, Oct., pages 21–31, 1988.

[70] J.F. MacGregor. Discussion. Journal of Quality Technology, 23(3):198–199, 1991.



226

[71] S. Maghsoodloo and M.C. Li. Optimal asymmetric tolerance design. IIE Transac-

tions, 32(12):1127–1137, 2000.

[72] R.J. Meinhold and N.D. Singpurwalla. Understanding the Kalman Filter. The

American Statistician, 37(2):123–127, 1983.

[73] D.C. Montgomery. Introduction to Statistical Quality Control, 3rd edition. New

York, Wiley, 1996.

[74] D.C. Montgomery and C.M. Mastrangelo. Some statistical process control methods

for autocorrelated data. Journal of Quality Technology, 23(3):179–193, 1991.

[75] P.R. Moorhead and C.F.J. Wu. Cost-driven parameter design. Technometrics,

40(2):111–119, 1998.

[76] J. Moyne, E. del Castillo, and A. Hurwitz. Run to Run Process Control in Semi-

conductor Manufacturing. CRC Press, Boca Raton, FL, 2000.

[77] E.S. Page. Continuous inspection schemes. Biometrika, 41(1-2):100–115, 1954.

[78] N.S. Patel and S.T. Jenkins. Adaptive optimization of run-to-run controllers: The

ewma example. IEEE Transactions on Semiconductor Engineering, 13(1):97–107,

2000.

[79] H. Robbins and S. Monro. A stochastic approximation method. Annals of Math-

ematical Statistics, 22(3):400–407, 1951.



227

[80] H. Robbins and D. Siegmund. A convergence theorem for non-negative almost

positive supermartingales and some applications. Optimizing Methods in Statistics,

J.S. Rustagi, pages 237–257, 1971. Academic Press, NY.

[81] N.H. Ruhhal, G.C. Runger, and M. Dumitrescu. Control charts and feedback ad-

justments for a jump disturbance model. Journal of Quality Technology, 32(4):379–

394, 2000.

[82] D. Ruppert. A new dynamic stochastic approximation procedure. The Annals of

Statistics, 7(6):1179–1195, 1979.

[83] D. Ruppert. Stochastic approcimation of an implicitly defined function. The

Annals of Statistics, 9(3):555–566, 1981.

[84] D. Ruppert. Stochastic approximation. Handbook of Sequential Analysis, 1991. B.

K. Ghosh and P. K. Sen, Marcel Dekker, NY, 1991.

[85] T.P. Ryan. Discussion. Journal of Quality Technology, 23(3):200–202, 1991.

[86] E. Sachs, A. Hu, and A. Ingolfsson. Run by run process control: Combining

spc and feedback control. IEEE Transactions on Semiconductor Manufacturing,

8(1):26–43, 1995.

[87] W.A. Shewhart. Economic Control of Quality of Manufactured Product. Van

Nostrand, New York, 1931.

[88] D. Siegmund. Sequential Analysis: Tests and Confidence Intervals. Springer-

Verlag, New York, 1985.



228

[89] E.A. Silver and H.C. Meal. A heuristic for selecting lot size quantities for the

case of a deterministic time-varying demand rate and discrete opportunities for

replenishment. Production and Inventory Management, 10(4):64–74, 1973.

[90] E.A. Silver, D.F. Pyke, and R. Peterson. Inventory Management and Production

Planning and Scheduling, 3rd Edition. John Wiley and Sons, Inc., 1998.

[91] N.C. Simpson. Questioning the relative virtues of dynamic lot sizing rules. Com-

puters and Operations Research, 28(9):899–914, 2001.

[92] D.J. Spiegelhalter, A. Thomas, N.G. Best, and W.R. Gilks. BUGS: Bayesian infer-

ence Using Gibbs Sampling, version 0.30. Cambridge: Medical Research Council

Biostatistics Unit, 1994.

[93] A.P. Stamboulis. First order autoregressive model applied to quality control. New

York University memorandum, 1971.
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