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ABSTRACT 

Watershed models are used to simulate the streamflow for a given climatic scenarios 

and also for ungauged basins. They have become increasingly important to predict the 

behavior of watersheds under the expected climate change where the watersheds will 

experience climates which will be much different from their historical climate. Most of the 

waterheds models require a simulation based approach to arrive at optimal parameter sets. 

One of the major problems is dependence of watershed models on calibration, whose outcome 

is dependent on the climatic regime of the calibration data, or on a priori parameter estimates, 

which often perform poorly even in reproducing historical data. In addition there is an urgent 

need to for the estimation of uncertainty in climate change impact assessment. 

 Streamflow elasticity is defined as the percent change in streamflow for a percent 

change in precipitation or temperature. It is an indicator of the sensitivity of streamflow to 

climate change. Elasticity can be derived from historical observations or from watershed 

model simulations.  

In this study we develop a new uncertainty framework utilizing trading-space-for-

time to establish model constraints that reduce predictive uncertainty while accounting for the 

impact of climate nonstationarity on parameter estimates. The driving hypothesis is that 

observed spatial gradients in watershed signatures such as runoff ratio, baseflow index etc can 

be used as a proxy for temporal gradients. Thus, relationships developed over vast spatial 

extent spanning a variety of watersheds and climate, can be used to predict the nature of a 

watershed as it moves to climates that it never experienced before.  

 The main conclusion of the study is that as we move towards more extreme climates, 

the importance of including nonstationarity in parameters increases. Moreover, drier climates 

are more sensitive to climate change than wetter climates for most of the watersheds 

considered in the study. The latter scenario is likely to be the case for many less developed 

countries, which typically already lie in regions where water availability is lower and climate 

variability is higher. The results shown here suggest that previously used frameworks will 

likely underestimate the hydrologically-controled risks posed by climate change! 
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Chapter 1 
 

Introduction 

Global problem of understanding climate change impacts 

Global climate change is posing a challenge to hydrological science. Since its impacts 

are likely to alter freshwater resources availability in many regions of the world, there is 

therefore an urgent need to understand how climate change will propagate into regional 

hydrology, i.e. the scale of decision-making [Wagener et al., 2010].  To manage water 

resources in the context of high hydrologic variability, potentially changes in mean flows and 

an increasing occurrence of extremes, we are interested in predicting the response of 

environmental systems with respect to any hydrologically-controlled endpoints relevant for 

the management of water resources or to understand aquatic ecosystem health and 

biodiversity. For developing management strategies for water resources we need credible 

tools to make such projections at relevant scales including estimates of uncertainty for 

effective risk assessment and adaptation. 

To aid the management strategies we need characterization tools to assess the 

extremity of expected impact. One measure to quantify the sensitivity of hydrological systems 

to climate change is streamflow elasticity. In one of the first studies of its kind, Schaake and 

Nemek (1982) forced a hydrologic model calibrated on historical period with a changed 

precipitation and temperature forcing to estimate runoff sensitivity and concluded that 

sensitivity is higher for arid areas as compared to humid. Several studies followed which 

attempted to give a theoretical definition to elasticity and applying them to outputs from a 

hydrologic model to evaluate elasticity values for given watersheds. Schaake and Liu (1989) 

developed a map of streamflow elasticity due to precipitation change for the United States in 
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such a manner. Other studies that also derived predictions of elasticity using hydrologic 

models include Nash and Gleick [1990], Jones et al.[2006] and Fu et al.[2007]. These studies 

include both numerical estimates of elasticity and contour maps developed across a range of 

climate change regimes.  The studies by Dooge [1992] and Dooge et al. [1999] focused on 

analytical methods of obtaining elasticity as a function of climate. Some studies like Vogel et 

al.[1999] evaluate elasticity based on regression models. Risbey and Entekhabi [1996] 

developed contour plots of elasticity for the Sacremento river basin by using data records of 

100 years. They computed elasticity directly from historical records. An extensive study on 

the different definitions of elasticity and their applicability has been carried out by 

Sankarasubramanian et al. [2001]. They compared various methods of obtaining elasticity. 

One of their important conclusions is that elasticity is a model dependent quantity. They 

showed that estimates of precipitation elasticity depends on both model choice and model 

calibration by evaluating elasticity by different models. Elasticity, in general, is computed 

from output derived from hydrologic model or from observed records. The basic definition is 

given by Schaake and Liu [1989] : 

                                                             ��
�
� ��� ��

�
                                            (1) 

                   Where, Q is the historical mean flow and δQ is the departure from this historical 

value due; X can be precipitation or evapotranspiration; δX is the departure from the 

historical value of X. Therefore � can be precipitation elasticity or evapotranspiration 

elasticity of streamflow. It is to be noted that this definition is general and can be applied to 

both simulated and observed runoff. However, recent methods to obtain the value of elasticity 

focus on forcing a hydrologic model calibrated on historical regime with changed inputs as 

expected from climate change since it allows for an assessment of a wider climatic range. In 

this paper, we focus on the derivation of elasticity from simulated streamflow. 
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Approaches used until now and their drawbacks 

But also outside the goal of obtaining elasticity estimates, we ultimately depend on 

the use of watershed models to achieve continuous streamflow predictions since statistical 

approaches will not allow us to extrapolate under nonstationary conditions [Milly et al., 

2008]. Many studies have used watershed scale models for climate change impact assessment 

[Zheng et al., 2009; Jha et al., 2004; Legesse et al., 2010; Knowles, 2002, Chiew et al., 2009]. 

The general approach adopted in these studies is to force a watershed model with downscaled 

climate change projections of precipitation and temperature. Most do not yet include a 

feedback from the hydrological model to the atmosphere. Current limitations of this approach, 

among other things, include in many cases a lack of consideration of uncertainty and of the 

nonstationarity in the parameters of the hydrological model as well. This non stationarity has 

been observed in several studies and has been discussed in detail in the subsequent text.The 

need for the inclusion of uncertainties in these projections has been motivated elsewhere and 

will not be repeated here [e.g. Buytaert et al., 2009; Maurer et al., 2005; Ghosh et al., 2009]. 

These studies have focused on the impact of input data uncertainty arising from the use of 

different GCM models and downscaling techniques. However, uncertainties also stem from 

nonuniqueness of parameters and from errors in hydrologic model structures. The study by 

Wilby et al. [2006] attempted at incorporating hydrologic model uncertainty along with GCM 

uncertainties in a probabilistic framework. They found that uncertainty in the streamflow 

prediction due to uncertainty in hydrologic model parameters was significant and could not be 

neglected. However, they only attempt to quantify this uncertainty, we still need to find a 

method to assess the impact of changing climate on model parameters.  It is expected that 

climate change impact projections will be even more uncertain than simulations driven by 

historical observations which makes it unlikely that deterministic change impact projections 

will be very robust and a good basis for risk assessment or decision-making. Although 
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different sources of uncertainty will affect such impact projections; here we will focus on the 

uncertainty introduced through the model parameters under nonstationary conditions.  

Parameters in watershed models are generally derived via two strategies: calibration 

on historical observations or through a priori parameter estimation. 

o A priori estimates of parameters are derived by relating model parameters to 

physical characteristics of the watershed such as soil, vegetation etc. 

However, studies have shown that a priori parameter estimates have a high 

degree of uncertainty attached to them, lack robustness and can often produce 

low performance [Duan et.al, 2006; van Werkhoven et al. 2009; Hughes and 

Kapangaziwiri, 2009]. Hence, model calibration has generally been found to 

produce more reliable estimates of parameters. 

o During calibration, the parameter set that produces the best fit between 

simulated and observed streamflow is identified. Different strategies have 

been developed to consider the uncertainty in this identification process when 

historical observations are used or when the model is applied to ungauged 

watersheds [Clark and Vrugt, 2006; Khadam and Kaluarachchi, 2004].  

More recently it has been observed that the climatic regime of the time period in 

which the calibration data have been observed leaves an imprint in the parameter estimates 

[e.g. Van Werkhoven et al., 2008; Vaze et al., 2009]. A recent study by Merz et. al [2010] for 

example analyzes how calibrated parameters might change with  climate. They found that the 

parameters used for their model showed clear time trends when calibrated on different 

periods. In other words, parameters were found to be function climate regime of the period of 

calibration. They suggest that explicitly accounting for non-stationary model parameters is 

one of the potential solutions for assessing climate change impact on streamflows. This 

implies that the parameter set obtained by calibrating over a wet period can be different than 

what we obtain by calibrating over a dry period and vice versa. This has potential 

implications for climate change impact studies where the climate is by definition different 
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from historical observations.  Vaze et al. [2009] carried out a study to examine the validity of 

using historically calibrated rainfall runoff models for future climate change predictions. 

Their modeling study quantifies the departure from mean rainfall after which the applicability 

of historical model parameters becomes unsuitable for the new climate regime.  Again, they 

point out to the problem of nonstationarity of parameters but we still need to identify a 

methodology to deal with this. Van Werkhoven et al. [2008] also point out that calibrated 

parameters depend on the period of record used for calibration and that the sensitivity of the 

parameters varies with climate. Hence, the functional behavior of the model also varies. We 

therefore hypothesize that a nonstationary uncertainty framework is needed to account for the 

required change of watershed model parameters in a changing climate.  

The observed nonstationarity can be caused either by a change in the processes 

occurring in the watershed or by a change in the parameters of the model. In order to 

distinguish between the causes of nonstationarity either as a change in process or change in 

parameter or both, we need to compare across a wide range of models. However, in this study 

we focus on a single model to understand what the impacts are of changing the parameter sets 

according to the future climate regime.  

Objectives and scope of study 

 In this study we propose and evaluate a novel nonstationary uncertainty framework 

for obtaining streamflow projections under a changing climate. The hypothesis we put 

forward is twofold: 

• The parameters of a given model obtained through calibration on historical records 

will change in a changing climate and thus, new sets of parameters need to be 

obtained for simulating future climate scenarios instead of using the parameters 

obtained by calibration to historical data.  

o To address this issue we adopt the method of ‘trading-space-for-time’. It 

extends the use of regionalization for predicting flow in ungaged basins to 

predicting flow in a changing climatic scenario. Regionalization [Yadav et 
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al., 2007] involves development of a relationship between a watershed 

response characteristic and its climatic/physical characteristics.  

• The second part of our hypothesis is that, the parameter estimation process does not 

result in a unique parameter set, but has uncertainty attached to it and that it is 

important to quantify this uncertainty in order to make more robust decisions.  

o We demonstrate in this paper a way to do this by accepting an ensemble of 

parameter values satisfying our performance criteria instead of using just one 

best parameter set.  

We introduce this method and demonstrate its application on four watersheds located 

in climatically different parts of the United States.  As introduced earlier, the concept of 

climate elasticity can be used to quantify the sensitivity of streamflow to climate change. 

Here, the introduction of uncertainty and nonstationarity provides us with a tool to analyze 

the climate dependence of streamflow elasticity. We demonstrate how elasticity estimates will 

depend on how a watershed model is used and also allow for uncertainty in the same. Also, 

the estimates of elasticity derived from the approach developed in this paper and from the 

traditional approach are compared in order to reveal the difference in the results obtained. 

It has been mentioned earlier that the source of nonstationarity can be both the model 

used and the parameters. One of the limitations of this study is that we use only one model 

and therefore focus only on the change of parameters with climate and not on the change of 

processes within the watershed as the climate changes. Another assumption of the study is 

that the regression relationships developed for using spatial gradients as a proxy for temporal 

gradients accurately define how watersheds will change with time.  
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           Chapter 2 

 Model 
 

It is important to stress that the method introduced here is fully independent of the 

model used. It can therefore be applied to conceptual or physically-based, lumped or 

distributed models.  The model chosen for this initial study is a typical parsimonious lumped 

conceptual model with eight parameters (Fig. 1) [Boyle et al., 2000; Wagener et al., 2001]. 

The model consists of a snow, a soil moisture accounting and a routing module (see Figure 4-

1).  The snow module accounts for the snow storage and melt.  If average temperature is less 

than a chosen threshold temperature, precipitation is converted to snow, otherwise it falls as 

rain and directly enters the soil moisture accounting module. Based on DeWalle and Rango 

[2008], the melt equation is given as,  

 

            �� � ��	 
 ��
� � ������������������������������������������������������3) 

 

where, M [mm/day] is the melt at the end of every time step, DDf [mm/day/°C] is the 

degree day factor, Tav[°C] is the average temperature for the day, and Tb[°C]  is the base 

temperature above which melting takes place.  The soil moisture accounting module consists 

of a Pareto distribution of stores that describes the available soil storage in the watershed [Fig. 

1; Moore, 2007]. Parameter b [-] defines the soil moisture distribution shape and Cmax [mm] is 

the maximum storage in the soil moisture zone. The maximum storage capacity of the 

watershed, Smax [mm], is related to parameters b and Cmax as 

     

                       ��
� �
����

�����
                                                          (4) 

  

ER1 [mm/d] and ER2 [mm/d] represent effective rainfall in excess of the storage 
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capacity that go to the routing module. Quick flow and slow flow are each routed through a 

single linear reservoir. The model calculates actual evapotranspiration, AE [mm/d], as a linear 

function of actual soil moisture storage content and of potential evapotranspiration. The 

model runs at daily time step to account for the variability in snow storage/melt during the 

month. 

 

 

Figure 2-1 The model used in the study combines a snow module with a probability 

distributed soil moisture accounting module. The model uses a parallel routing scheme for 

quick and slow flow contributions to streamflow. Qq, Qs and AE are model outputs. P and T 

are precipitation and average daily temperature inputs respectively. Tt
* ,Tb

*, D*, Cmax
* ,b*, α*, 

Kq
* and Ks

* are the model parameters.  



 

 

Chapter 3 
 
Methods 

A Nonstationary Uncertainty Framework for Environmental Change Impact 
Projections 

Watershed models and corresponding parameter sets are needed for hydrologic 

predictions of continuous streamflow in support of a wide range of applications. While most 

model structures are relatively flexible and can therefore represent a range of watersheds as 

long as dominant processes are represented by the model, we know that model parameters 

will change with changing soil types, geology, or land cover [Hundecha and Bardossy, 2004; 

Buytaert and Beven, 2009]. We also know that they will change with climatic characteristics 

[van Werkhoven et al., 2008; Rosero et al., 2010]. Hence for modeling change we need to 

allow the model parameters to change as a function of changing environmental characteristics 

[Wagener et al., 2007]. One strategy to do so is to use existing spatial gradients (identified 

through regionalization) as a proxy for temporal gradients [Hundecha and Bardossy, 2004].  

Here, we expand the use of the predictions in ungauged basins framework introduced by 

Yadav et al. [2007] to model change impacts, i.e. we move from predictions in ungauged 

basins (PUB) to predictions in ungauged times (PUT). Yadav et al. [2007] introduced a 

model-independent method to predict streamflow in ungauged basin by developing empirical 

relationships between the watershed’s climatic and physical characteristics and its hydrologic 

response behavior (i.e. streamflow signatures). These responses were then regionalized in an 

uncertainty framework to predict streamflow signatures (including uncertainty) of ungauged 

watersheds. These regionalized signatures contain the information needed to calibrate a 

hydrological model and therefore allow for a watershed model to be set-up for continuous 

streamflow simulations at ungauged locations. Including the estimation of the 95% prediction 
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limits in the regionalization means that acceptable ranges for streamflow signatures can be 

calculated for ungauged watersheds. Model simulations at the ungauged sites that fall within 

the limits are acceptable or behavioral, the rest is considered infeasible. The approach to 

predicting the behavior of a watershed for a future climate scenario is analogous to predicting 

the same for an ungauged watershed once a regionalized relationship is developed. The 

aspects of the response behavior that are dependent on climate are the ones for which the 

spatial gradients can be turned into temporal gradients for a changing climate.  

 

Instead of addressing the two issues of changes in parameter sets with climate and 

addition of uncertainty estimates separately, we provide a holistic approach to the entire 

problem by adopting the methodology outlined in this section.  First, instead of using 

calibration on historical records to obtain one ‘best’ performing parameter set, we define 

acceptable signature ranges such that every parameter set satisfying our criterion becomes a 

behavioral parameter set (see Figure 3-1). 

 

 

Figure 3-1 The process of constraining response to obtain an acceptable ensemble of 

parameters.  
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As signatures we tested different characteristics of the watershed response that 

explain some of the functional characteristics of a hydrological system [Wagener et al., 

2007]. For example runoff ratio (ratio of long-term average streamflow to precipitation) 

describes how the watershed separates precipitation into streamflow and evapotranspiration, 

baseflow index (the ratio of quickflow to slowflow) describes differences in flowpaths of 

water through the watershed, etc. Several such signatures were analyzed in terms of their 

efficiency in constraining the predicted flow and with respect to their ability for 

regionalization. Runoff ratio and baseflow index were chosen as the most effective 

combination for uncertainty reduction while allowing for their regionalization across the close 

to 400 watersheds included in this study. These response signatures were then regionalized 

relationships across the entire United States. Uncertainty bounds are applied to the resulting 

relationship based on the statistical confidence interval and prediction interval to obtain 

constraints on the expected watershed response for any new value(s) of the predictor(s) (i.e., 

the climatic/physical characteristics of an ungauged watershed) (see Fig 3-2).  For this study, 

we apply an uncertainty bound by defining 90% prediction limits for every regression model.  

 
Figure 3-2. Regionalization: Trading-space-for-time. The figure depicts the change of 

constraints as a watershed moves from climatic region A to climatic region B. This change in 
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constraints will affect the output flow ensemble predictions. This position is different for 

historical and prediction periods. Therefore, we can have two types of constraints, one based 

on the historical relationship between Runoff Ratio and Aridity index which we term as Type 

A constraint and another based on the changed relationship which we term as Type B 

constraint. Following this procedure, we derive an acceptable range of signatures for a given 

climate scenario and each parameter set that produces a value within this range is considered 

a possible representation of the system.  
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Chapter 4 
 
   Data 

Data from 394 watersheds across the United States was used here both for 

regionalization purposes and for testing of the framework in different climatic regions of the 

US. Watersheds ranged in size between 66.5 km2 and 10425 km2. Time series of hydrologic 

variables were provided by the MOPEX project at a daily time step [Duan et al., 2006], while 

physical and average climatic characteristics for all watersheds were obtained from the 

database provided by Falcone et al. [2010].  Potential evapotranspiration was calculated from 

available temperature data using the Hargreaves equation [Maidment, 1993], 

PE = 0.0023 So (T + 17.8) √δt                                                                 (5) 

Where T is temperature [° C], δT is the difference between mean monthly maximum 

temperature and mean monthly minimum temperature [° C] (i.e. the difference between the 

maximum and minimum temperature for the given month, averaged over several years) and 

So is the water equivalent of extraterrestrial radiation [mm d-1] for the location.  

Selection of Watersheds for Case Study 

The goal of the study is to investigate the impact of changing parameters on the 

output of future simulations. To demonstrate that the strategy impacts any kind of watershed, 

we choose watersheds from three different regions of the Budyko curve defined by the aridity 

index (see Figure 4-1). The aridity index is the ratio of long-term average annual values of 

potential evapotranspiration to precipitation.  
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Figure 4-1. Location of the 394 watersheds used for regionalization along with the 6 chosen 

case study watersheds. 

 

Figure 4-2. Location of selected watersheds on the Budyko curve  
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The watersheds are categorized: 

• Type I Watersheds from the energy limited zone: It is defined as the region in which 

aridity index <0.8. Two watersheds are selected from this zone: The Lower 

Androscoggin in Maine/ Newhampshire  and the Lochsa watershed. in Idaho/ Montanna 

• Type II Watersheds from the region on the division between these 2 zones: The 

watersheds chosen are the Escambia watershed in Alabama/Florida  and the Meramec 

watershed in Missouri. 

• Type III Watersheds from the water limited zone: It is defined as the region in which 

aridity index >1.2. Two watersheds are selected from this zone: The Peace watershed in 

Florida and the Yampa watershed in Colorado. 

Table 4-1. List of watersheds chosen for the study along with their location, size and mean 

basin elevation.  

 

 

 

 

Watershed 
ID Climatic Regime Name of Watershed State 

Size 
[km2]  

Mean Basin 
Elevation 

[m]{Average  
(range)}  

1055500 Energy Limited Lower Androscoggin 
Maine/ 

Newhampshire 438 190  (84-651) 

13337000 Energy Limited          Lochsa Idaho/ Montanna 3051 1584 (446-2672) 

2375500 Even          Escambia Alabama/ Florida 9886 95  (10-204) 

7019000 Slightly Water Limited          Meramec Missouri 9811 279 (119-528) 

2296750 Water Limited           Peace          Florida 3540 32 (2-89) 

9251000 Water Limited           Yampa         Colorado 8832 2364  (1798-3766) 
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Name of 

Watershed 

Aridity Index  

(PE/P) 

% 

Precipitation  

as Snow 

Mean Annual 

Precipitation 

[mm/yr]  

Mean 

Annual 

Runoff 

[mm/yr]  

Mean  

Annual PE  

[mm/yr]  

Lower 

Androscoggin 0.756 35.7 1149 669 868 

Lochsa 0.628 55.2 1330 932 836 

Escambia  1.010 0.1 1472 577 1486 

Meramec  1.166 10.5 1034 315 1205 

Peace  1.331 0 1215 234 1617 

Yampa 1.705 47.2 572 159 975 

Table 4-2. List of climatic characteristics of the chosen watersheds along with their mean 

annual runoff. 



 

 

 Chapter 5 
 
Results and Discussion  

   Testing the value of signatures as constraints 

 Every response characteristic has an impact on one or more parameters of the model used to 

represent the watershed. For example, the runoff ratio represents the watershed’s annual water budget 

and therefore impacts the parameters Cmax and b since it is these two parameters that determine the 

water budget [Zhang et al., 2008].  The watershed response variables (signatures) considered in this 

study were: base flow index, recession coefficient, runoff ratio and slope of the flow duration curve.  

These were used individually and in their combinations with the runoff ratio to analyze the efficiency 

of constraining which was determined by using two indicators: sharpness and reliability [Yadav et al., 

2007; Zhang et al., 2008].  The response criterion, which performed best for both sharpness and 

reliability was a combination of RR and BFI. See Appendix B for detailed results.  

 

    Regionalization of signatures 

Once signatures have been chosen, they were regionalized to formalize spatial variability. 

• Regionalization of Runoff Ratio: 

Previous studies have indicated that the runoff ratio has a strong relationship with the aridity 

index [Dooge et. al, 1992]. Different equations by Turc-Pike, Ol’dekop and Schreiber were used to 

regress runoff ratio with aridity index for the 394 watersheds across US [for equations see Dooge et 

al., 1992]. The Schreiber relationship provided the best fit for the watersheds under study and was 

subsequently used. Appendix C lists the results using the other two equations. The Schreiber 

relationship is: 

��
�
� �� !"# � ��$ !% 
 &'(��� ��

�
�                  (6) 
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Figure 5-1. Regionalized Schreiber relationship between AE/P (1-Q/P) and aridity index PE/P. Here 

Q is the mean annual flow, P is the mean annual precipitation, AE is the mean annual actual 

evapotranspiration and PE is the mean annual potential evapotranspiration for the period 1 October 

1065 to 30 September 1975. 

 

• Regionalization of baseflow index:  

 Using data from 394 watersheds across the United States, the dependence of base flow index 

on various physical and climatic characteristics of the watershed was quantified. The correlation 

between baseflow index and a multitude of watershed characteristics was evaluated using the 

spearman coefficient. The results indicate that baseflow index is highly correlated (Spearman 

coefficient >0.5) with percentage of soils in the variable drainage characteristics, average 

permeability, average value of sand content (percentage), average K-factor value for the uppermost 

soil horizon in each soil component, riparian 100m buffer percent perennial ice/snow and watershed 

percent perennial ice/snow. The value of spearman coefficient for precipitation and potential 

evapotranspiration are 0.03 and 0.25 respectively. Based on these values, it was assumed in this study 

that base flow index does not change with climate and historical behavior of the watershed can be 

retained when modeling future scenarios.  
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Application of methodology for assessing climatic scenarios 

IPCC summary results provide estimates of expected change in precipitation and temperature 

for the United States [Christensen et al., 2007]. For precipitation the maximum expected change 

ranges between -30 % to +40 % whereas a rise of about 8 °C is the maximum expected temperature 

change during the 21st century. No decline in temperature was considered as a feasible scenario. 

Guided by these ranges, we developed a matrix of temperature and precipitation change, with the 

precipitation change of 10% per step and a temperature rise of 1°C for each step, according to the 

ranges identified above. New time-series of changed climate are obtained by changing the mean 

precipitation and mean temperature for a ten-year historical period, and by using this changed time-

series as model forcing. Hence we only change the mean and assume that the remaining 

characteristics of precipitation and temperature remain the same. This assumption is similar to many 

studies including Nash and Gleick [1991], Jones et al. [2006] and Jiang et al. [2006]. More 

sophisticated scenarios will be tested at a later stage. 

 

   Change in constraints with changing climate 

Once the climatic scenarios are defined, we obtain constraints related to each scenario for 

each watershed. We define the constraints in the following manner: 

§ Type constraints A: Those that are derived from historical observations. 

§ Type constraints B: Those that are derived from the changing climatic conditions.  

(Behavioral) Population size after constraints: A Monte Carlo analysis was used to generate 

10,000 sets of model parameters in which we assumed uniform distributions for all parameters and no 

interactions (a typical approach). The required response signatures (RR and BFI) were calculated for 

each parameter set.  The generated simulations were ‘filtered’ using the two types of constraints, thus 

two types of accepted model ensembles were arrived.  Remember that only runoff ratio will change 

with a changing climate, therefore, only this constraint on the water balance was changed. Note that 

there is only one type A ensemble but there are multiple type B ensembles (equal in number to the 



 

number of climatic scenarios considered)

ensemble predictions of streamflow which are analyzed in the results section. 

 

  Matrix of 

A matrix of ensemble streamflow predictions was developed in order to compare the two 

types of constraints. Figure 5-2 depicts how the constraints were derived. 

Figure 5-2. Derivation of Type A and Type B constraints from the Budyko curve. 

For every climatic scenario considered, we can derive a constraint based upon the position of 

the watershed on the Budyko curve. 

of the watershed on the curve. This constraint give us the Type A constraint which ca

generate the historical ensemble of parameter sets. Now for every new climatic scenario, we have two 

options: 

o Use parameters derived from Type A constraints: This is the historical parameter set and 

the output from using this parameter set is given by yellow and red 

prediction interval and red for confidence interval.

o Use the parameters deri

new climate scenario and the output from this parameter set is given by green and blue 

rectangles, green for prediction interval and blue for confidence interval. 

number of climatic scenarios considered). Finally, using this approach, we arrive at different 

ensemble predictions of streamflow which are analyzed in the results section.  

Matrix of ensemble streamflow predictions 

ensemble streamflow predictions was developed in order to compare the two 

2 depicts how the constraints were derived.  

2. Derivation of Type A and Type B constraints from the Budyko curve. 

rio considered, we can derive a constraint based upon the position of 

the watershed on the Budyko curve. There is one constraint which is based on the historical position 

of the watershed on the curve. This constraint give us the Type A constraint which ca

generate the historical ensemble of parameter sets. Now for every new climatic scenario, we have two 

Use parameters derived from Type A constraints: This is the historical parameter set and 

the output from using this parameter set is given by yellow and red rectangles

prediction interval and red for confidence interval. 

Use the parameters derived from Type B constraints: This is the new parameter set for the 

new climate scenario and the output from this parameter set is given by green and blue 

, green for prediction interval and blue for confidence interval. 
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2. Derivation of Type A and Type B constraints from the Budyko curve.  

rio considered, we can derive a constraint based upon the position of 

There is one constraint which is based on the historical position 

of the watershed on the curve. This constraint give us the Type A constraint which can be used to 

generate the historical ensemble of parameter sets. Now for every new climatic scenario, we have two 

Use parameters derived from Type A constraints: This is the historical parameter set and 
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For both the Type A and T

predicted flow and the lower edge of the rectangle gives the minimum predicted flow. 

Therefore, the rectangle represents the ensemble of flows that are expected in the given 

climatic scenario.  

Figure 5-3 describes how the results are plotted upon the output matrix of precipitation and 

temperature. The x-axis represents the increase in temperature and the y

changes in precipitation. Each grid box, therefore, represents a co

precipitation with temperature. The two types of constraints derived from the Budyko curve 

can then be plotted side by side as shown in the figure 5

constraints are plotted for a no

same. Every horizontal line in the matrix is the historical mean annual flow and therefore the 

position of the rectangle with respect to the horizontal line gives us an idea of the change in 

the mean flow for that climate scenario with respect to the historical mean flow. The length of 

the rectangle gives an assessment of uncertainty associated with the prediction. 

Figure 5-3. Explanation of the output flow matrix. 

estimate of the scale of the plot. 

For both the Type A and Type B outputs, the upper edge of the rectangle gives the maximum 

predicted flow and the lower edge of the rectangle gives the minimum predicted flow. 

Therefore, the rectangle represents the ensemble of flows that are expected in the given 

3 describes how the results are plotted upon the output matrix of precipitation and 

axis represents the increase in temperature and the y-axis represents the 

changes in precipitation. Each grid box, therefore, represents a combination of change in 

precipitation with temperature. The two types of constraints derived from the Budyko curve 

can then be plotted side by side as shown in the figure 5-3. In this particular figure, the 

constraints are plotted for a no-change scenario, therefore both the results are exactly the 

Every horizontal line in the matrix is the historical mean annual flow and therefore the 

position of the rectangle with respect to the horizontal line gives us an idea of the change in 

climate scenario with respect to the historical mean flow. The length of 

the rectangle gives an assessment of uncertainty associated with the prediction. 

3. Explanation of the output flow matrix. The red box in the lower right gives an 

e of the scale of the plot.  
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climate scenario with respect to the historical mean flow. The length of 

the rectangle gives an assessment of uncertainty associated with the prediction.  

 

The red box in the lower right gives an 
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The matrix in Figure 5-4 (a-f) shows that as we move away from the historical climate, the 

difference between the predictions of Type A and Type B ensembles increases for the following 

cases: 

o Increase in temperature only (and precipitation range smaller than historical to slightly 

greater than historical): The Type B ensemble predicts increasingly smaller values of 

flow and the predictions become increasingly more constraint.  

o Decrease in precipitation only:  Shows the same trend as with the historical constraints. 

o Increase in temperature, decrease in precipitation: show the same trend as before. 

 These three trends are observed quite similarly in all the watersheds. The aforementioned 

trends are explainable if we consider how the watershed is moving along the Budyko curve for each 

case. For an increase in temperature only, or for a decrease in precipitation or a combination of both, 

the ratio PE/P increases and deviates from historical ratio. As we start from PE/P=0, width of the 

intervals slightly decrease as the curve reaches the information dense area between PE/P=1 and 

PE/P=1.5, after this it the width starts to increase as we move towards the information sparse region. 

But at PE/P=1.71, the curve reaches AE/P=1 which is the physical maximum for AE/P. Therefore, 

after this point, the upper bound remains the same and the lower bound continues to rise, leading to a 

further decrease in width. For watersheds in energy limited zones or medium zones (low values of 

PE/P), an increase in PE/P is required so that the watershed climate reaches a value of 1.71. 

Therefore, for an increase in temperature, a decrease in precipitation or a combination of both will 

eventually lead to thinning of the ensemble predicted from Type B, this thinning will be most 

pronounced for a combination of the two scenarios.   

 For water limited zones, we start off very near to PE/P=1.71, therefore the state of AE/P=1 is 

quickly reached, the band thins down and then remains constant for most parts of the temperature-

precipitation-change matrix.  For the case of an increase in precipitation, we are decreasing PE/P, 

hence moving towards the left in the Budyko curve. This means the width of the band will first 

increase after it crosses the PE/P=1.71 and then more or less remain the same.  
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Figure 5-4 (a-f). Matrix of ensemble flow predictions for Type A and Type B ensembles for 

study watersheds. The yellow and red boxes depict the prediction limits and confidence limit 

respectively for Type A ensemble. The green and blue boxes depict the prediction and confidence 

limits respectively for Type B ensemble. The figures are ordered as: (a) Lower Androscoggin, (b) 

Lochsa, (c) Escambia, (d) Meramec, (e) Peace and (f) Yampa watersheds.          
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 The plots show that for a temperature change of upto 2 °C and  for  precipitation changes of -

10% to +10%, the two approaches produce more or less equal ensembles. Also, as we increase both 

temperature and precipitation, the change between the ensembles decreases. For example for the 

Lower Androscoggin  watershed, if we increase the precipitation by 20% the two ensembles the 

predictions become similar for the temperature rise of 5°C to 8°C. For an increase of 30% in 

precipitation, the two ensembles become similar for a temperature increase of 6°C to 8°C.  For an 

increase of 40% in precipitation, the two ensembles become equal at the temperature rise of 8°C. This 

trend is seen in all the watershed but the ranges for different watersheds are different. For example, 

the Lochsa watershed behaves similar to Lower Androscoggin. The Escambia , Meramec and Peace 

watersheds show a similar trend. The Type A and Type B ensembles become equal for a high 

temperature rise of the order of 7-8°C and a precipitation increase of 20-30%, but after the 

precipitation increases beyond 30%, the ensembles are different no matter what the temperature rise. 

For a decrease in precipitation, the two ensembles always produce different results. The difference is 

more pronounced when the precipitation decrease beyond 10% and the temperature rises.   

 These observations are similar to those obtained by Vaze et al. [2009] for a study in Australia 

to quantify the effects of changing climate on the model predictions. They concluded that : 

 “lumped conceptual rainfall-runoff models calibrated over an average or wet climatic 
period are not suitable for simulating runoff over short dry periods, for which the difference in mean 
annual rainfall is greater than 15 percent. The results also show that rainfall-runoff  models calibrated 
over an average or wet climatic period are suitable for simulating runoff over short wet periods 
provided the difference in mean annual rainfall is less than 20 percent.”  

 

There is a similarity between their results and those obtained from this study, where we find 

that dry periods always produce different ensembles for the two approaches than wet periods. For wet 

periods, we find that the two ensembles may/may not be different given the combination of 

precipitation increase and temperature increase. 
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Comparison of Matrix for different watersheds 

 

Snow versus No Snow 

One striking feature of the plots is that the difference between Type A and Type B ensembles 

becomes negligible in the extreme scenario of high precipitation and high temperature. Moreover, the 

difference almost completely vanishes for snow-dominated watersheds. This is related to the 

calculation of potential evapotranspiration for snow watersheds. Because of a significant number of 

days with negative temperatures, snow watersheds, have many days with zero values of PE during 

historical climate. But in the future, as temperatures rise and most of the temperature becomes 

positive, the watershed reaches a state where PE becomes positive for almost all days. This means, 

that the increase in PE for a watershed with snow is more than that for one with no snow in which it 

was simply a function of how much temperature increased. This implies that change in the ratio PE/P 

is different for snow and no snow watersheds, for a watershed with historical snow, the increase in PE 

is larger and matches the increase in P, reaching a state where the ratio remains similar to the 

historical one. In watersheds without significant snow, the relative increase in PE is not able to 

compensate the increase in P; therefore, the ratio of PE/P is smaller, resulting in smaller values of 

AE/P and therefore higher runoff ratios. A higher runoff ratio means that the Type B ensemble will 

predict a higher value of flow than type A, which is consistent with the observation.  

 

 

Dry versus Wet 

The dry climates with high PE/P ratio reach the stage PE/P > 1.71 very quickly or even start 

off from that stage. Therefore, with changes in P and PE that would increase PE/P, the width of 

predictions for these watersheds reaches a small constant value very quickly. Not only the width 

becomes constant, the predictions of low flows also become more or less constant across increase in 

temperatures or decrease in precipitation. This simply means that the watershed reaches a point where 

the available moisture is evaporated and there can be no further evaporation increase. Therefore a 
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further rise in temperature or decline in precipitation will not affect the minimum flows anymore. 

These effects become less and less prominent as the watersheds become wetter.  

 

   Elasticity of streamflow 

 To evaluate the above-define streamflow elasticity, we consider two ways of looking at 

changes in streamflow to changes in P and T. In the first approach we look at the surface of Q/Qhist, 

i.e., ratio between the mean prediction of Q for a given climate scenario and the historical value of 

predicted Q. This historical mean value is not the observed historical mean, but it is the model 

predicted historical mean, since we want to analyze the impact of using different constraints 

specifically and not the impact of using the same model for different watersheds. The plots show a 

general trend that the Type B ensemble surface displays a greater slope than the Type A ensembles. 

Type B ensembles therefore produce more extreme results than Type A ensembles do. This is clear a 

direct consequence of accounting for the change in watershed response behavior with changing 

climate by changing the constraints.  Another significant observation is that the difference between 

the two predictions is far greater for the drier climates than for the wet climates. This has been already 

explained in terms of the shift of the watershed along the Budyko curve.  

 

Figures 5-3 (a-f) are variations of Q/Qhist with ∆T and ∆P. The value of Q is taken as the 

mean of the predicted ensemble.  The prediction of ratio of mean Q/Qhist is compared for Type A 

(unchanged) and Type B (changed) parameters. For simplicity, no other detail is added to the plot. 
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Figure 5-5 (a-f). Surface plot of deviation of mean of ensemble flow predictions for a given 

climate scenario from mean of the historical ensemble predictions Q/Qhist (Qhist is the mean of 

the ensemble for no change in temperature or precipitation scenario). The semi transparent 
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surface plot is of Type A parameter ensemble and the opaque surface plot is of Type B parameter 

ensemble. The figures are ordered as: (a)  Lower Androscoggin, (b) Lochsa, (c) Escambia, (d) 

Meramec, (e) Peace and (f) Yampa watersheds.                  

 

 The Yampa watershed produces a surface, which displays a different trend from all other 

watersheds (Fig. 5-3, f). It shows similar amount of change in the ratio for both an increase and 

decrease of temperature, though in opposite directions. This happens because it is a dry watershed 

with a very high percentage of snow (47.2%). The mean annual Precipitation 572 mm, mean annual 

runoff is 159 and mean annual PE is 975 mm. The high percentage of snow implies that around 270 

mm of precipitation falls as snow that is stored in snowpack and released during the melt season. The 

mean annual runoff is even lower than the total expected melt. The high value of PE indicates losses 

due to evaporation during the summer season are very significant. An increase in temperature leads to 

conversion of all snow events to rainfall events, which changes the timing of runoff. The runoff, 

which previously occurred during spring after snowmelt will now occur during the winter itself, 

which reduces the loss due to evapotranspiration. So the increase in runoff is more pronounced than in 

other watersheds.  

 

   Contours of Change in Streamflow 

The contour plots are plotted using the same concept as the surface plots: they are contours of 

Q/Qhist  with ∆T and ∆P. On the background in these plots we have contours of width of band = 

Qmax-Qmin for the given scenario. This gives a sense of uncertainty along with the general trend of 

change in flow for the two types. The background contours are normalized with respect to the width 

of the band for the historical ensemble.  This allows for ease in comparison across catchments.  
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Figure 5-6 (a-f). Contour plots of Q/Qhist  for mean of ensemble flow predictions for a given 

climate . Qhist is the mean of the ensemble for no change in temperature or precipitation scenario). 

Q is the mean of the ensemble for the given climatic scenario. The background contours are 

normalized width of the band (Qmax-Qmin) for a given climate scenario normalized with respect to 

the width in the historical period (No change in temperature or precipitation scenario). The figures 

are ordered as: (a) Lower Androscoggin, (b) Lochsa, (c) Escambia, (d) Meramec, (e) Peace and 

(f) Yampa watersheds.                        

 

There are several key features of the contour plots in general, which we discuss before 

comparing them with respect to the Type A and Type B ensembles or across watersheds: 

• The slope of the Q/Qhist contours display the sensitivity to temperature/precipitation, the steeper 

the slope the lesser the sensitivity to temperature/precipitation and vice versa.  

• The spacing between the contours also determines how extreme the change is. If the contours are 

spaced close together, it depicts that the change from one climatic regime to another is steeper, or 

in other words the sensitivity is more.  

 

Observations and inferences 

The slope of the contours is greater than 45° indicating that the stremflow predictions are 

more sensitive to precipitation changes than they are to temperature changes. However, the sensitivity 

to temperature is not negligible. The fact that the slope of the lines remains more or less the same 

except for Yampa watershed, implies that relative dependence of streamflow on temperature and 

precipitation does not change with climate. One of the possible reasons for a low temperature 

sensitivity can be that we are using a temperature change scale in °C and precipitation change scale in 

(%). If we use a similar percentage change in PE approach, the results might be different.  

• The spacing between the contours is lesser for Type B ensembles, this implies that Type B 

constraints produce streamflow values that are more sensitive to temperature and precipitation 

than Type A constraints. This implies that Type B predictions display more sensitivity to 
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climate change than Type B predictions. This is due to the incorporation of Budyko curve to 

include the impact of climate on parameters. 

• The width of the band for Type B constraints is always smaller in the drier period, than the 

Type A constraint. This is inferred from the extent of intrusion of black surface in the 

background for Type B constraints. This implies that the predicted range gets smaller for drier 

periods for Type B constraints, or the uncertainty in prediction decreases.  

• The spacing for both Type A and Type B ensembles decreases as we move from watersheds 

with low aridity index to ones with a high aridity index. This implies that both Type A and 

Type B constraints produce streamflows which become increasingly sensitive to precipitation 

as we move to water limited watersheds.  

• For Type A predictions, all the basins show equal sensitivity to dry and wet climates except 

Yampa which shows greater sensitivity to wet regimes.  

• For Type B predictions, Lochsa, Escambia, Meramec, Peace and Yampa watersheds show 

more sensitivity to dry climates. The Lower Androscoggin watershed shows equal sensitivity 

to both dry and wet climates, and Yampa watershed displays more sensitivity to wet climates.  

• From these observations, we conclude that Type B projections show more sensitivity to dry 

climates in general. Schaake and Nemek (1982) also predicted that arid climates have  greater 

sensitivity to changing climate than humid ones. This is true for non snow catchments.  

• The trend is different for snow catchments where the projections depend on the percentage of 

snow present in the catchment. If the snow percentage is small, the catchment is more 

sensitive in dry regimes, if the snow percentage is more, it is more sensitive in wet regimes.  

• The contours suggest that for a precipitation increase from 0% to 15% the predicted flow is  

equal to the historical flow with increasing temperature (Note the contour of value 1). 

However, for precipitation changes on the drier side, the predicted flow is always low.  

This has already been discussed previously. 

• The Yampa watershed is different from other watersheds as it shows greater sensitivity in 

wetter regimes than in drier regimes even though it has a high aridity index. The skewness in 
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sensitivity is more pronounced for Type B ensembles but it is also evident for Type A 

ensemble prediction. This is attributed to the high percentage of snow in this catchment, 

which makes its behavior unlike the other catchments (as discussed previously). Weiss and 

Alcamo [2010]  found that the snow dominated basins in Europe show a high sensitivity to 

climate change due to changes in the snowmelt. This is similar to observations of high 

sensitivity of Yampa watershed. However, the Lower Androscoggin and Lochsa watersheds 

do not show such a high sensitivity. This can be due to the facts that they lie in the energy 

limited region (low aridity index) and their snow percentage is smaller than that of the Yampa 

watershed. 

• The contour maps developed by Risbey and Entekhabi (1996) for the Sacremento river basin 

and found out that the temperature dependence of streamflow was very weak. The contour 

plots developed here also show that the temperature dependence of streamflow is less than its 

precipitation dependence. However, the dependence on temperature is greater than what was 

found in their study.  

 

Change of  Model Parameters with Climate 

 It was found that several parameters of the model were impacted by the changes in 

constraints. The most significant impact was observed on the storage of the model which is given by 

equation 3. The storage was calculated for each climatic scenario from each set of accepted 

parameter. Therefore a group of storage value was arrived at. For comparing the change in storage, 

the median of every ensemble was taken. Then the deviation in storage was calculated as the 

difference between the median of the climate change ensemble to the median of the historical 

ensemble. The results are plotted in figure 5-7 (a-f). These results show that the storage increases as 

the climate becomes drier and warmer and vice versa. This is consistent with the study by Merz et al. 

[2010] where they also find an increase in storage parameter with increasing temperatures. They 

attribute this increase to an increasing amount of evaporation from the basin which allows the soil 

storage to go high. In this study, we attribute this increase to both increases of temperature and 



 

decreases of precipitation, the evaporation going high in either case. 

is greater in dry climates than in wet climates. 

manner and it was found that the parameter Ks was the next parameter which showed a trend with 

climate. The  two parameters of the snow module showed 

base temperature for melting. These trends 

temperature for ice formation remained insensitive to climate change for this particular model. 

 

decreases of precipitation, the evaporation going high in either case. However, the intensity of change 

is greater in dry climates than in wet climates. The other parameters were also evaluated in a similar 

manner and it was found that the parameter Ks was the next parameter which showed a trend with 

climate. The  two parameters of the snow module showed small trends were : degree day factor and 

base temperature for melting. These trends are observed only in snow watersheds. 

temperature for ice formation remained insensitive to climate change for this particular model. 
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manner and it was found that the parameter Ks was the next parameter which showed a trend with 

: degree day factor and 

are observed only in snow watersheds. α, Kq and threshold 

temperature for ice formation remained insensitive to climate change for this particular model.  
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Figure 5-7 (a-f). Matrix of 

values for study watersheds. The 

storage. The figures are ordered as: (a) Lower Androscoggin, (b) Lochsa, (c) Escambia, (d) Meram

(e) Peace and (f) Yampa watersheds.         

. Matrix of deviation from median of storage (calculated from cmax and b) 

for study watersheds. The red boxes depict the deviation from the historical median of the 

. The figures are ordered as: (a) Lower Androscoggin, (b) Lochsa, (c) Escambia, (d) Meram

(e) Peace and (f) Yampa watersheds.          
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Chapter 6 

Conclusions 

We provided a novel modeling framework for evaluating the impact of climate 

change on streamflow under the assumptions of nonstationarity of the climate and inclusive 

of uncertainty. The changes in behavioral model parameter ensembles expected to occur in a 

changing climate have been explicitly accounted for and the resultant matrices clearly show 

that under dry climates, the difference between the two approaches becomes significant. This 

is due to the manner in which watersheds shift along the Budyko curve. In dry climates, the 

PE/P is already high; a further increase in temperature increases the intensity of the impact.  

Also, noticeable was the behavior of watersheds in high temperature and high precipitation 

regimes. The similarity in model predictions that emerged from the similarity of constraints 

indicate that our assumptions of stationarity does not impact the predictions in such climates.  

Contour plots of elasticity provide useful information regarding the the differences and 

similarities between the two methodologies. Again, the position of the watershed on the 

Budyko curve along with its snow characteristics become the determining factors in the 

output. The analysis reinforces the fact that drier regimes are more sensitive to changes in 

temperature, an observation which is consistent with the analytical derivation in Dooge 

(1992) where he shows that the sensitivity factor approaches infinity as the aridity index 

approaches infinity. Similar observations are reported in Vaze et. al (2009) who state that 

prediction of runoff over dry periods by models calibrated on wet periods is worse than the 

prediction of runoff over wet periods by models calibrated over dry periods. The authors also 

discuss that after a certain change in mean precipitation, the performance of models with 

historical parameters break down. The study conducted here clearly shows why such a result 

should be expected.  
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We do not consider the change of other response characteristics with climate in this 

study, the main limitation being the regionalization of these characteristics. The outcome of 

the study depends on the model used as an increasingly complex model can model all 

processes and for an ideal model, the parameters will not change with time. There are other 

areas to explore in this study. One important aspect is the relationship between parameters 

and catchment characteristics. It can also be investigated whether the parameters filtered for 

the constraints used work well for other constraints that which were used for the process of 

filtereing. The most important question however is how different models, from conceptual to 

physical, behave in different climatic regime. All these issues will be taken up in the further 

research on this topic.  

Nevertheless, for lumped conceptual models such as HyMod, we have developed a 

strategy to allow for such changes in the parameters. As was discussed, the impact of snow 

and position of the watershed on the budyko curve successfully explain most of the trend in 

the results. The change of storage in the watershed observed as a function of climate is 

another interesting result which bears implications for conceptual models being used for 

climate change studies.  An important point is that this framework is applicable to both 

gauged and ungauged basins. We can either derive constraints from historical variability or 

through regionalization. It can therefore be applied to look at climate change impacts in less 

developed, and therefore usually less monitored, parts of the world. It also enables the testing 

of model behavior outside the range of historical variability, since the spatial gradients 

available can be much larger. We can now go beyond our historical observations and predict 

streamflow for climates that the watershed did not experience before. It also eliminates the 

need to correlate the parameter with catchment characteristics. Considering that we identified 

that increases in temperature combined with decreases in precipitation cause the most severe 

differences between traditional and our approach, it seems that current strategies 

underestimate the negative impact of climate change especially in warm/dry countries (many 
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of which are less developed). This suggests that the results of this study are most important 

for the most vulnerable parts of the world. 
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    Appendix A 

Parameter  Lower Limit Upper Limit 

Cmax * - maximum height of soil 

moisture store [mm]  0 800 

b*- probability distribution factor [-]  0 5 

α* - distribution factor for slow and 

quick flow  [-] 0 1 

Kq*  - time constant for quick flow 

[day]  1 14 

Ks* - time constant for slow flow         

[day]  14 300 

D* - degree day factor [mm/day/°C]  0 20 

Tb* - base temperature for melting 

[°C]  -5 5 

Tt*  - threshold temperature for 

snow formation [°C] -5 5 

  Table A-1 Description and ranges of model parameters. 
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Name of Watershed Daily NSE Monthly NSE 

     Lower Androscoggin 0.7079 0.8685 

Lochsa 0.8703 0.9285 

Escambia  0.7252 0.8508 

Meramec  0.5365 0.8086 

Yampa 0.7063 0.8003 

Peace  0.7051 0.8279 

  

Table A-2. Best NSE (Nash-Sutcliffe) performance of case study watersheds (optimal value 

is 1). The NSE is the best among the set of 10000 NSEs calculated from the 10000-parameter 

sets considered in this study.  
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     Appendix B 

Selection of Constraints 

For each constraint considered, 10,000 parameter sets were generated and a 

separation into behavioral and non-behavioral was performed in the following 

manner: 

– The upper and lower limits of new constraints were evaluated by adding and 

subtracting a certain percentage of the historical average value of the 

constraint. These limits were then used for filtering behavioral parameter sets 

from the        generated 10,000 parameter sets.  

– Both reliability and sharpness are defined according to Yadav et al., [2007]. 

Reliability is defined as the measure of the fraction of time the observed 

streamflw ois within the prediction band of the model. The greater the 

reliability the better the performance of the constraint. Sharpness is a  

measure of the ensemble spread, a single line having a sharpness of 100% 

and the original ensemble having a sharpness of 0%. The higher the 

sharpness the better the constraining capacity. 

–  The first year of simulation was removed while calculating reliability and 

sharpness to account for warm up period. 

– From the filtered parameter sets, the upper bound and lower streamflow 

values corresponding to each percentage were plotted. 
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Figure B-1. Description of methodology adopted for evaluating the effectiveness of 

constraint. The deviation is from the historical value of given constraint and the limits 

are ±5%,±10%, ±20%, ±30% and ±40 % of the historical value. These limits are used 

for  the filtering acceptable parameter sets from the ensemble of  10000 parameter 

sets.   
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Performance of ROC-BFI as constraint 
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Figure B-2.  Performance of combination of runoff ratio and Baseflow index for 

watersheds, in order: (a)  Lower Androscoggin, (b) Lochsa, (c) Escambia, (d) Meramec, (e) 

Peace and (f) Yampa watersheds. 
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ROC-

BFI #1 #2 #3 #4 #5 #6 

Total 1.00 1.00 1.00 1.00 1.00 1.00 

5% 0.78 0.97 0.43 0.94 0.73 0.86 

10% 0.84 1.00 0.63 1.00 0.85 0.92 

20% 1.00 1.00 0.97 1.00 0.98 0.98 

30% 1.00 1.00 1.00 1.00 0.99 1.00 

40% 1.00 1.00 1.00 1.00 1.00 1.00 

Table B-1. Reliability Estimates of the 6 Watersheds under the ROC-BFI constraint in order: 

(1) Lower Androscoggin, (2) Lochsa, (3) Escambia, (4) Meramec, (5) Peace and (6) Yampa 

watersheds. 

 

 

ROC-

BFI #1 #2 #3 #4 #5 #6 

Total 0.00 0.00 0.00 0.00 0.00 0.00 

5% 48.48 33.73 79.18 63.59 70.67 81.17 

10% 37.00 26.05 73.31 55.60 65.39 77.41 

20% 23.30 15.85 59.19 45.27 55.89 72.70 

30% 15.49 9.45 50.68 37.18 48.53 67.34 

40% 10.22 5.25 44.15 31.93 40.63 62.12 

Table B-2. Sharpness Estimates of the 6 Watersheds under the ROC-BFI constraint 

in order: (1)  Lower Androscoggin, (2) Lochsa, (3) Escambia, (4) Meramec, (5) Peace and (6) 

Yampa watersheds 
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ROC-

BFI #1 #2 #3 #4 #5 #6 

Total 0.00 0.00 0.00 0.00 0.00 0.00 

5% 53.71 34.15 79.20 61.73 69.79 71.03 

10% 42.36 26.30 73.14 53.10 63.15 67.05 

20% 28.79 11.68 55.65 39.10 49.57 61.46 

30% 22.04 7.45 44.43 32.28 42.45 55.00 

40% 9.91 4.00 36.75 29.80 34.54 51.42 

Table B-3. Sharpness Estimates of the 6 Watersheds for log transformed flow values 

under the ROC-BFI constraint in order: (1) Lower Androscoggin, (2) Lochsa, (3) Escambia, 

(4) Meramec, (5) Peace and (6) Yampa watersheds 
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Appendix C 

Regionalization of Runoff Ratio 

394 Watersheds were finally chosen to regionalize runoff ratio. Three equations were 

used to regress the aridity index with the runoff ratio (Dooge, 1992): 

– Schreiber 

– Ol’dekop  

– Turc-Pike 

The Schreiber fit was found to be the best since it remained below the AE=PE line all 

the time unlike others in which the confidence or prediction intervals crossed the AE=PE line. 

The resulting plots show 90% confidence and prediction limits as well as the fitted curve. The 

plot for Schreiber is shown in the main text of the thesis. 

 

Figure C-1. Regionalized relationship for Oldekop Equation across 394 watersheds 

for the period 1 October 1065 to 30  September 1975 
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Figure C-2. Regionalized relationship for Turc-Pike Equation across 394 watersheds 

for the period 1 October 1065 to 30  September 1975 
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     Appendix D 

Regionalization of Baseflow Index: 

 Determination of Range for the baseflow index 

The base flow index used throughout the study is a 3 pass filter base flow index value 

as suggested by by Santhi et a. (2008). In the following figure, we plot the histogram of the 

base flow index of 6 watersheds, with a fitted normal distribution.  The ±1, ±2 and ±3 

standard deviations are also plotted.  Finally the standard deviation that covers the base flow 

index best is ±2 Std. for all watersheds and it is this value that was chosen as a constraint 

based on the historical data. It is to be noted that the assumption is that the BFI does not 

change with climate, since climate does not appear in the range of variables used for 

regionalization of BFI within our dataset.  
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 Figure D-1. Estimation of the range of base flow index to be used as constraints. The plots 

depict the histogram of base flow index calculated for each year for the period 1 October 

1065 to 30  September 1975. The blue, red and green lines depict the ±1, ±2 and ±3 standard 

deviation limits. From the plot it is inferred that ±2 standard deviation covers the range of 

base flow index reasonably well. The watersheds are in order: (a) Lower Androscoggin, (b) 

Lochsa, (c) Escambia, (d) Meramec, (e) Peace and (f) Yampa. 
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