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Abstract

Questionnaires used in survey-based research are often arranged in multiple sec-
tions. Each section contains items that are closely interrelated, serving one or more
themes. Even with a modest number of sections, the resulting dataset may have
a large number of variables, which poses special analytic challenges for dealing
with missing values. Current procedures for multiple imputation may fail be-
cause the underlying models do not take into account the thematic nature of the
questionnaire and are over-parameterized. Attempts to simplify the model—for
example, by assuming that the items within a theme are conditionally indepen-
dent given a small number of latent factors—may fail to capture special features
of the data if the specified model does not fit. In this dissertation, I develop
new multiple-imputation procedures for multi-themed questionnaire data based
on a flexible class of confirmatory factor models. I present PX-EM algorithms for
maximum-likelihood estimation in exploratory and confirmatory factor analysis
with incomplete data. The factor model is then relaxed by adding an additional
random component which allows the covariance structure to deviate from the as-
sumed model. I present an MCMC algorithm for generating Bayesian multiple
imputations under this extended model. These techniques are illustrated using
data on emotional distress from a large adolescent health survey.
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Chapter 1
Introduction

1.1 Missing data in multi-themed questionnaires

Questionnaires are used in business, economics, psychology, public opinion research

and many other areas to collect data from human respondents. Until recently, the

term questionnaire almost invariably referred to a paper form. But many surveys

are now administered by telephone, computer assisted personal interview devices

or web-based electronic forms (Groves et al., 2004), and my use of this term is

intended to cover all of these data-collection modes.

Many survey questionnaire items have a limited number of possible responses,

and the resulting analytic variables are typically binary or ordinal. But occasion-

ally the measures are nominal, as in categories of race or ethnicity, or continuous,

as in body weight. And it is not uncommon to find measures that are a mixture of

discrete values and continuously distributed responses. An example of the latter is

dollars spent by members of a household in a given year on a category of consumer

goods (e.g., refrigerators) that are not frequently purchased.

Whether a survey question is intended to produce a categorical or numeric mea-
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sure, the resulting data often contain codes for non-responses that are treated as

missing values. Sometimes these codes are for missing values, such as “don’t know”

or “refused.” Sometimes these missing values arise by design, when questions are

omitted for random subsets of the sample to keep the questionnaire short. Datasets

may also include codes for items that are legitimately skipped because they are

not applicable to certain participants. For example, a respondent who indicates

that he or she has never used marijuana may be instructed to skip items pertaining

to frequency and amount of marijuana use. In those cases, the “missing” values

are not really missing, because a negative response to the initial question logically

implies values of zero for all frequencies and amounts.

Survey methodologists use the term item nonresponse to refer to genuinely

missing values that occur on individual items during the process of data collection

and capture. This is distinguished from unit nonresponse which results from failure

of the whole interview process, e.g. when a sampled individual fails to show up or

refuses to participate. Item nonresponse and unit nonresponse are handled in

different ways. Item nonresponse is often addressed by imputation, whereas unit

nonresponse is typically handled by weighting adjustments (Little & Rubin, 2002).

This dissertation is concerned with statistical methods for item nonresponse in

multi-theme questionnaires. In a multi-themed questionnaire, the items may be

grouped according to the subject matter areas being addressed. Items within a

theme are often analyzed together, and responses to multiple items are often aggre-

gated into summary measures or scores. For example, one theme of a health survey

may be nutrition. Participants may be asked about the frequency of consumption

of different types of foods. The questions may include, “How many glasses of milk

do you drink each day?” Followup questions may be asked about whether the

milk is whole, reduced-fat or skim, and additional questions may be asked about
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other types of dairy products (cheese, ice cream). Depending on the purpose of the

analysis, responses to these items may be combined in different ways to produce

measures of fat intake, calcium intake, and so on. Milk consumption may also be

compared or contrasted with items with other types of liquids (water, 100% juice,

soft drinks, etc.) to produce variables that may appear as responses or predictors

in regression models or other types of analyses.

In the previous example, questionnaires items pertaining to nutrition may be

grouped together in the data-collection process, so that these items may appear in

a nutrition section that is distinct from sections containing non-nutritional items.

Some multi-themed surveys do have sections that are thematically distinct. In

other surveys, however, a lengthy questionnaire may be divided into sections that

are not thematic but simply patition the workload of data collection into subunits.

If that is the case, then a data analyst may need to cull the items pretaining to a

theme from multiple sections of the questionnaire. The themes described in this

dissertation are groupings by subject matter, not necessarily by physical position

in the questionnaire or by temporal ordering within the interview.

Analyses of data from multi-theme questionnaires are typically multivariate,

and the items used in a given analysis may be drawn from a single theme or from

multiple themes. As the number of items appearing in the analysis increases, the

nuisance created by missing values can accumulate very rapidly, even when the

percentage of missing values on any single item is small. For illustration, consider

a scenario in which each variable in a set of variables is missing with a fixed

probability independently of the other variables. The percentages of complete

cases (the participants who have observed values for every variable in the set) for

various missingness rates and numbers of items are shown in Table 1.1. In an

analysis of 100 variables, a missingness rate of 1% per item will result in complete
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% missing per variable

# of variables 1% 3% 5%
10 90 74 60
25 78 47 28
50 61 22 8

100 37 5 1

Table 1.1. Percentage of complete cases

data for only 37% of the cases.

The assumption of independent missingness may be unrealistic, because miss-

ing items tend to occur together; individuals’ propensities to respond often vary.

But anecdotal evidence suggests that this does sometimes happen. (One member

of my dissertation committee, Dr. Osgood, noted that he has encountered near-

independent missingness on items from one large survey, Monitoring the Future,

which has been extensively analyzed by him and his colleagues.) This artificial

example well illustrates the drawbacks of one simple but widespread statistical

method for handling missing values: listwise deletion, also known as complete-case

analysis (Little & Rubin, 2002; Schafer & Graham, 2002). Listwise deletion causes

large proportions of cases to be discarded, making the resulting estimates ineffi-

cient. Case-deletion procedures may also introduce bias if the cases that remain are

not representative of the population. Based on a meta-analytic study of published

results from regression analyses in political science, King et. al. (2001) concluded

that listwise deletion of incomplete cases often produced results that were worse

than if the incomplete variables had been removed from the regression model.
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1.2 Multiple imputation: a general framework

1.2.1 Statistical modeling with missing values

Although missing values are ubiquitous, statistical methods and software for data

analysis are often not designed to handle them. Data analysts are tempted to

edit their datasets to make them appear complete, either by removing incomplete

cases or by performing simple imputation procedures, replacing the missing values

with means or other values obtained in an ad hoc fashion (Little & Rubin, 2002).

The shortcomings of these widely used missing-data adjustments have been well

documented (Schafer & Graham, 2002). In more specialized approaches (e.g.,

censoring or truncation models), the nonresponse is stochastically modeled as part

of the data-generating process. Although many examples of these models have

appeared in recent years, analysts without special expertise still tend to avoid

them because the models are finely tuned to specific applications, and software for

fitting these models may be unfamiliar or unavailable (King et al., 2001).

Increasingly, software for multivariate statistical modeling is being extended to

accommodate missing values without modeling the processes that lead to nonre-

sponse. For nearly a decade, the program Mplus (Muthén & Muthén, 1998–2007)

has been able to fit many types of continuous and discrete-data models with in-

complete data under an assumption that the missing values are missing at random

(MAR), to be defined later. Multivariate modeling procedures that accommo-

date missing values are also found in Amos (Arbuckle, 2006), PROC LCA/LTA

(Lanza et al., 2008). In these procedures, inferences about model parameters are

based on a likelihood function which is maximized by an EM algorithm or some

other method, or a posterior distribution, which is usually simulated using Markov

chain Monte Carlo (MCMC). Thus the missing values are removed from likelihood
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function or posterior distribution by marginalizing the joint distribution of the

multivariate data over the unseen values (Schafer & Olsen, 1998). An advantage

of these procedures is that is highly efficient, making use of all the observed data,

and essentially unbiased if the modeling assumptions are true. A limitation is

that these methods provide inferences about the parameters for only one model.

Researchers who wish to perform a variety of analyses, or who wish to venture

outside of the family of models provided by the software, are likely to pursue other

missing-data options.

1.2.2 Imputation

Another approach is to fill in the missing values in a reasonable fashion, taking care

to use a method that leads to reliable estimates and measures of uncertainty when

the completed data are subsequently analyzed. Imputation is a general term for

any method that fills in or replaces missing items. Imputation is not an end in itself;

rather, it is a preliminary or intermediate step employed to make a later analysis

easier. Imputation allows an analyst to explore the data in a straightforward way,

to use statistical methods and software that were designed for complete data, and

to focus attention on the scientific questions of substantive interest rather than on

the missing-data aspect which is usually a nuisance.

Some of the earliest imputation methods applied to questionnaire data were

whole-case substitution, cold-deck and hot-deck imputation (Little & Rubin, 1987).

Case substitution and cold-deck imputation replace the missing values with his-

torical data obtained from donor cases from a previous survey or census. Hot-

deck imputation proceeds in a similar fashion but uses donor cases from the same

dataset. The donors may be complete cases chosen by a matching process that
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requires agreement on a set of variables found in the incomplete record. Variants

of hot-deck imputation are still being used today by data collectors in govern-

ment and the private sector. The rules for choosing donors, which may be quite

elaborate, are designed to preserve inter-variable relationships. A much simpler

technique used by many analysts is mean substitution, where the missing values

are replaced by the average of the observed values on a variable-by-variable basis.

Mean substitution is sometimes benign, especially if the percentage of missing val-

ues for the item is very low. As rates of missingness increase, however, it adversely

affects quantities related to variability (variances) and relationships among vari-

ables (correlations), distorting inferences in a variety of ways (Schafer & Graham,

2002).

Researchers in diverse fields have become increasingly aware that, if imputation

is to be used, it should be done carefully to preserve the integrity of post-imputation

analyses. Many now realize that, especially for multivariate analyses, relationships

among variables need to be maintained, and the natural variability among obser-

vations should also be maintained. For example, Roth and Switzer (1999) replaced

missing values by predictions from a regression equation estimated from cases with

complete data. Variants of this approach—formerly known as Buck’s method—

have been used for nearly a century (Little & Rubin, 1987). It is not difficult

to see that this method will tend to overstate correlations. The method can be

greatly improved by one simple step: adding random residuals to the regression

predictions with variance estimated under the model. For more discussion of these

imputation methods, refer to Rubin (1987a), Rubin (1987b) and Harel and Zhou

(2007).

Regression imputation methods are straightforward to implement when missing

values occur on only one variable. They may also be applied in special cases where
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the missing values fall into a special (e.g., monotone) pattern (Little & Rubin,

2002). For multivariate data with arbitrary patterns of missingness, principled

techniques for imputation become more computationally elaborate (Schafer, 1997).

1.2.3 Multiple imputation

After missing values have been filled in, the procedures and software applied to

the completed data are typically “unaware” that some of the data were imputed.

That is, the imputed values are treated as if they had actually been observed. If an

inferential procedure does not distinguish observed data from imputed data, the

procedure will tend to understate the true levels of uncertainty, because imputed

values are less reliable than those that were actually seen.

Rubin (1987a; 1996) addressed this issue by the method of multiple imputation

(MI). In MI, each missing value is replaced by a modest number of simulated values,

producing multiple versions of the completed data. The variability of the results

across these multiple versions produces a between-imputation variance component

that is necessary to compute intervals and tests with desirable repeated-sampling

properties.

The general framework of MI, and actual implementations of MI, are often

motivated by Bayesian arguments. The imputations are simulated repeated draws

from the posterior joint predictive distribution of the missing values given the

observed values. The multivariate model for the complete data that generates

this predictive distribution is often called the imputation model. A distinctive

feature of MI or any imputation procedure is that the imputation model may or

may not be compatible with the analysis model that is applied later. Implications

of discrepancies between these models were investigated by Meng (1994) and by
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Collins, Schafer and Kam (2001).

In this dissertation, I derive and implement new methods for multiple imputa-

tion for missing items in multi-themed questionnaires. These methods are based

on refinements of the multivariate normal model previously explored by Schafer

(1997) and others.

1.3 Example: Add Health

One illustrative example of a multi-themed questionnaire comes from the National

Longitudinal Study of Adolescent Health (Add Health) (Udry et. al. 2003). Add

Health began with a nationally representative sample of students enrolled in grades

7-12 in the United States during the 1994-95 school year. The students were in-

terviewed in that first year (Wave I) and on three subsequent occasions, most

recently in 2008 (Wave IV). Add Health researchers also conducted interviews

with siblings, friends, romantic partners, parents and school administrators. For

purposes of illustration, we will work with a set of variables from the student inter-

view questionnaire at Wave II (1995–96). The Wave II in-home student interview

questionnaire had 39 sections, and we will focus our attention on two of these:

Feelings Scale (Section 10) and Tobacco, Alcohol and Drugs (Section 27).

The Feelings Scale section contains 19 items designed to measure the partici-

pants’ levels of emotional well being or psychological distress. Students were asked,

“How often was each of the following things true during the past seven days?” and

were then presented with 19 statements about their emotional states. For each

item, the possible responses fell on a four-point integer scale ranging from 0 (never

or rarely) to 3 (most of the time or all of the time). Tabulated responses for two

of these items from the Add Health codebook are shown in Figure 1.1. For 15 of
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Figure 1.1. Two Items in Feelings Scale (2 of 19 items) (Udry et al. 2003)

the 19 items, a higher numerical value is associated with increased distress; for

the remaining 4 items, greater distress is indicated by a lower value. A standard

practice for analyzing these data is to invert the responses for the items that were

reverse-coded and then sum or average the items into a composite measure of emo-

tional distress (McNeely et al., 2001; Woods, 2006). Reducing the 19 items to one

average score is consistent with the notion that all of these items are measuring a

single latent factor. In later chapters, we will see that the relationships among the

19 items cannot be fully explained by one latent factor. A single-factor model can

be formally rejected, but one factor does account for a large part of the observed

relationships, and the use of a single composite score has great theoretical and

practical appeal.

As Figure 1.1 shows, most participants responded to these items in the Feelings

Scale, but a few refused to answer or said, “I don’t know.” In this particular



11

example, the rates of missing values are so low that the effects of a poor missing-

data procedure (e.g., mean substitution) may be negligible. But this will not always

be the case. Higher rates of missing values will prompt a researcher to apply a more

sophisticated procedure such as multiple imputation under a multivariate normal

model (Schafer, 1997). One question that is often asked by researchers is this:

“Given that we are going to average these items anyway, do we need to impute all

of these items and then average them, or can we average the items first and just

impute the composite score?” If missingness on these items is highly correlated—

i.e., if the missing values arise primarily from a single group of individuals who

fail to respond to many of the items—then the two approaches will yield similar

results. In that case, averaging prior to imputation will reduce the dimension of

the imputation model, streamlining the computations and allowing the researchers

to bring a greater number variables from other sections of the questionnaire into

the model, which is generally desirable. But if missingness on these items is not

highly correlated, then a multivariate procedure that jointly imputes the items has

greater appeal (Schafer & Graham, 2002). Another procedure that seems common

in these settings is to compute the composite score by averaging the observed items

for each individual. Limited experience suggests that this method may perform

well when the inter-variable relationships are consistent with a single-factor model

(Schafer & Graham, 2002).

A more challenging situation arises in Section 27, Tobacco, Alcohol and Drugs.

This section contains a much larger set of items (68) and measures multiple di-

mensions of substance-use behavior. Tabulated responses to two items (#19 and

#20) pertaining to alcohol use in the previous 12 months are shown in Figure

1.2. Many legitimate skips occur because these items were preceded by another

question (#15) that asked, “Since [month of last interview], have you had a drink
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of beer, wine, or liquor—not just a sip or a taste of someone elses drink—more

than two or three times?” If the response to #15 was negative, the interviewer

was instructed to skip ahead to item #41, resulting in values of “legitimate skip”

for items #16 through #40. But missing values due to refusal and “don’t know”

also occur. A total of 18 alcohol-related items appear in this section pertaining to

frequency and amount of drinking, types of beverages consumed, and frequency of

risky or antisocial drinking-related behaviors.

Given the complexity and variety of these alcohol measures, it is not intuitively

obvious that the relationships among them could be approximated by a model as

simple as one that could describe the Feelings Scale, a model that assumes one or

several continuous latent factors. Patterns of substance use have been described by

latent-class analyses that treat the population as a discrete mixture with a small

number of homogeneous types or classes. This approach was pioneered by Collins

and Wugalter (1992) and can now be found in dozens of published articles and

book chapters. From that perspective, one could envision an imputation procedure

based on a latent-class model.

Interestingly, Loken and Molenaar (2008) have demonstrated connections be-

tween multivariate models that assume discrete latent classes and models that

assume continuous latent traits. In particular, they show that a model with K− 1

latent traits may be approximated by a model with K latent classes, at least up to

the first and second moments. For a heuristic explanation of this near-equivalence,

imagine an r-dimensional random vector Y = (Y1, . . . , Yr)
T of zero-centered vari-

ables distributed as a K-component mixture of multivariate normal distributions

with mixing probabilities π1, π2, . . . , πK , where the kth component is N(µk,Σ),

where µk = (µ1k, µ2k, . . . , µrk)
T and Σ = Diag(σ2

1k, σ
2
2k, . . . , σ

2
rk). The marginal

mean of Y is E(Y ) =
∑

k πkµk = 0, because the variables have been centered. The
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variances and covariances of the variables are given by

E(Y 2
i ) =

∑
k

(
πkµik + πkσ

2
ik

)
,

E(YiYi′) =
∑
k

πkµikµi′k.

This implied covariance structure can thus be written in matrix form as

Σ = ΓTΩΓ + ∆,

where Γ is a K × r, Ω is K ×K, and ∆ is diagonal. This resembles a traditional

factor analysis with K latent factors, with Γ corresponding to factor loadings and

∆ corresponding to uniquenesses. Unlike the traditional factor model, however,

the K latent factors are indicator variables from a multinomial experiment with

probabilities π1, . . . , πK . Because these indicators are constrained to sum to one,

their covariance matrix has rank K − 1 rather than K, so in reality this is a

(K − 1)-dimensional factor representation. This near equivalence of discrete and

continuous latent-variable models suggests that a factor-analytic approach may

be broadly useful for imputation modeling even when intuition suggests that the

response patterns may follow classes rather than continua.

1.4 Goal and scope

Multiple imputation of incomplete multivariate data has often been carried out

using methods described by Schafer (1997) which assume a multivariate normal

population model with an unstructured covariance matrix. Normal models are

frequently applied to binary and ordinal items, with rounding or truncation ap-
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Figure 1.2. Two Items in Alcohol Use (Udry et al. 2003)

plied to the imputed values. Procedures associated with this unstructured normal

model tend to work well when the number of variables p is not excessively large.

Applications with 100 variables or more are fairly common, but p > 200 will strain

the computational resources that are presently available to most data analysts.

Use of this model also generally requires that the number of sampled cases or ob-

servational units n be substantially larger than p; if it is not, then the model tends

to be overparameterized, leading to computational and inferential problems.

It is my goal in this dissertation to extend the normal-based methods of Schafer

(1997) and others to accommodate larger numbers of items and, in doing so, to

create imputation procedures suitable for multi-themed questionnaires. We will do
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so by imposing structure on the covariance matrix to reduce the overall complexity

of the model. That is, we will first suppose that the relationships among items

measuring a single theme can be attributed to a small number of continuous latent

factors. Recognizing that such a simple model might not hold, we will formally

accommodate lack of fit by allowing the actual covariance matrix to depart from

the factor structure by random amounts. In effect, we will impose soft constraints

upon the normal model that are consistent with the notion that items measuring

a single theme are related, but the pattern of relationships may deviate from the

a priori assumptions.

With these new imputation procedures, we will be able to handle questionnaire

sections like the Add Health Feelings Scale, where the items measure only a few

dimensions. We are not yet able to impute all of the items in a complicated sec-

tion like Tobacco, Alcohol and Drugs with multiple constructs, complicated skip

patterns and nonstandard (e.g., nominal) items. However, the computational pro-

cedures developed here represent an important starting point for future extensions

to these more complex situations.

The computational methods we describe will include new EM-type algorithms

for parameter estimation and new MCMC procedures for multiple imputation. The

EM-type algorithms are not always necessary for MI, but having mode-finding pro-

cedures will be helpful as we investigate the relationships among items measuring

a single theme, which will help us to select appropriate models. Results from EM

will also be used to tune the parameters of the MCMC procedures and to create

proposal distributions for Metropolis-Hastings algorithms.
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1.5 Assumptions

1.5.1 The imputation model

Missing-data methods inevitably make assumptions about the manner in which

data values became missing. Responsible use of MI also requires a judicious choice

for the imputation model. In this section, we describe our key assumptions and

some tolerable violations.

Let Y denote a set of data. In the present context, it will refer to a data matrix

with rows corresponding to sampled cases and columns corresponding to variables

(items) that are subject to missing values and may require imputation. We will

partition Y into its observed part and its missing part, denoted by Y = (YO, YM).

We will suppose that the rows of Y are randomly sampled from a population that

follows a parametric model.

In addition to the variables in Y that may require imputation, we allow there

to be other variables that are observed for all cases and do not need to be im-

puted. These variables will be called covariates, and the matrix of covariates will

be denoted by X. Note that our assignment of variables to Y or X is only for

the purpose imputation modeling and is not intended to describe what the analyst

may do after the missing values have been imputed. In post-imputation analy-

ses, variables in Y may appear as predictors, and variables in X may appear as

outcomes. Our use of Y and X is for merely for convenience and computational

efficiency, because variables that are completely observed may be conditioned upon

and treated as fixed in a multivariate imputation model (Schafer, 1997). In Add

Health, for example, sex and age are missing so rarely that we don’t need to impute

them, so sex and age would be assigned to X.

The imputation model, which describes the conditional distribution of Y given
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X in the population, will be written as P (Y |X; θ), where θ is a set of unknown

parameters. To simplify the notation, the covariates X will sometimes be omitted

from our expressions, but conditioning on them will always be assumed. The

absence of X from an expression does not mean that we have averaged over it;

rather, we will drop X from our formulas when its presence would make expressions

tedious.

1.5.2 The mechanism of missingness

Define M as the missing-data indicator set for Y . M is a matrix with the same

dimensions as Y , with an element of M equal to 1 if the corresponding element of

Y is missing and 0 if the corresponding element of Y is observed. It is customary

to treat M as a set of random variables and to factor the joint distribution of Y

and M as

P (Y,M |X; θ, ξ) = P (Y |X; θ)P (M |Y,X; ξ),

where P (Y |X; θ) denotes the imputation model, P (M |Y,X; ξ) describes the mech-

anism of missingness, and ξ is a set of parameters that governs the mechanism of

missingness. Mechanisms of missingness are commonly classified into four types.

• Missing completely at random (MCAR): Missingness does not depend on

covariates or outcomes. Probabilities of response are unrelated to observed

or unobserved measurements,

P (M |Y,X; ξ) = P (M |ξ).

• Covariate-dependent (CD) missingness: Missingness may possibly depend on
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covariates but not on outcomes. Probabilities of response are unrelated to

outcomes but may be related to covariates which are fully observed,

P (M |Y,X; ξ) = P (M |X; ξ).

Note that MCAR is a special case of CD.

• Missing at random (MAR): Missingness may possibly depend on covariates

and observed outcomes but not on missing outcomes,

P (M |Y,X; ξ) = P (M |YO, X; ξ).

Note that CD is a special case of MAR.

• Missing not at random (MNAR): Missingness depends on missing outcomes,

P (M |Y,X; ξ) 6= P (M |YO, X; ξ).

Any violation of MAR is MNAR.

1.5.3 Ignorability

Missing at random is often described along with the concept of distinctness. From

a frequentist perspective, two sets of parameters are said to be distinct if their

joint parameter space is the Cartesian cross-product of the individual parameter

spaces. From a Bayesian perspective, distinct means that any joint prior distribu-

tion applied to the two parameter sets can be factored into independent marginal

priors distributions.

Rubin (1974) showed that under an assumption of MAR, and when θ and ξ are
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distinct, the joint probability distribution of the observed data YO and the miss-

ingness indicators M can be factored into two pieces, one regarding the parameter

of interest θ and the other regarding the nuisance parameter ξ,

P (M,YO|θ, ξ) =

∫
P (M,Y |θ, ξ) dYM

=

∫
P (M |Y ; ξ)P (Y ; θ) dYM

= P (M |YO; ξ)

∫
P (Y ; θ) dYM ,

= P (M |YO; ξ)P (YO; θ),

where the integral changes to summation if Y is discrete. The factor pertaining

to θ is the relevant part for likelihood-based inferences about θ. We define the

observed-data likelihood function, which we denote by L(θ|YO), to be

L(θ|YO) = c P (YO; θ),

where c is an arbitrary constant of proportionality that does not depend on θ.

In particular, any part of P (M |YO; ξ) that depends on ξ may be incorporated

into c with no effect on likelihood-based inferential procedures for θ. Therefore,

under the assumptions of MAR and distinctness—a combination that is known as

ignorability (Little & Rubin, 2002)—all information about the parameters θ of the

imputation model is carried by the observed-data likelihood function defined by

the distribution of YO (which, in reality, is the conditional distribution of Yo given

X, because in our notation we have suppressed X).

An assumption of ignorability is a crucial part of most parametric missing-data

procedures because it allows us to make direct likelihood or Bayesian inference
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about θ without assuming anything more about the model that may have produced

M . If we want to find the maximum-likelihood (ML) estimate for θ, we need only

maximize the function L(θ|YO) with respect to θ. If we want to conduct Bayesian

analysis of θ, we need only impose a prior distribution on θ.

Although we will proceed under this assumption of ignorability, we recognize

that in real applications where missing data are happening for uncontrolled rea-

sons, MAR is never going to be precisely true. Statisticians tend to justify the

assumption of MAR on the following grounds. First, MAR tends to greatly sim-

plify the analysis. Second, in highly multivariate applications where Y and X

contain many variables, departures from MAR may not be too serious (Little &

Rubin, 1987; Rubin, 1987a; Schafer, 1997). The key assumption in MAR is that

relationships between YM and M are completely mediated by (X, YO). If X con-

tains a rich set of covariates, or if YO is highly predictive of YM , then we may

expect that the residual dependence of M upon YM after controlling for YO and X

will be relatively minor. In a few specialized examples where the missing values

later became known, it has been found that an assumption of MAR, even when it

is demonstrably false, performed better than alternatives that were designed to for

MNAR (David et al., 1986; Rubin, Stern & Vehovar, 1995). In situations where

ignorable procedures do not perform well, they still provide important baseline

analyses for comparing and assessing MNAR-based alternatives (Schafer, 1997). If

we dispense with an assumption of MAR, other unverifiable assumptions must be

made, and the results from MNAR analyses are often highly sensitive to departures

from these assumptions (Little & Rubin, 2002).
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1.5.4 Choosing the imputation model

When applying multiple imputation to multivariate data, the imputation model

P (Y |X, θ) should be chosen with an eye toward future analyses. In particular, the

imputation model should capture important features of the data that are relevant

for post-imputation analyses. For example, if the data are multilevel and will be

subject to multilevel modeling, then the imputation model should also be multi-

level (Schafer & Olsen, 1998; Carpenter & Goldstein, 2004). For a dataset that

represents a multi-themed questionnaire, the model should have a covariance struc-

ture that accurately describes the relationships among items within the theme. If

the items were designed to measure a single underlying trait, as in the Add Health

Feelings Scale, the assumed form of the covariance matrix should allow the items to

be closely related and, if possible, pool the information from these relationships to

strengthen measurement of that trait. If the imputation model does not preserve

marginal or and conditional associations among variables that will be investigated

in a subsequent analysis, results from that analysis may be biased.

Researchers have often been advised to build imputation models that are in-

clusive in the sense that a rich set of variables has been incorporated into Y and

X (Schafer, 1997; Collins et al., 2001). Certainly, all of the variables that will be

used in post-imputation analyses should be present. Extra variables that will not

be used in the analysis may also be included, and these have been called auxil-

iary variables (Collins et al., 2001; Allison, 2002). Good candidates for auxiliary

variables are those that are thought to be predictive of the variables requiring

imputation, and those that are thought to be related to reasons for missingness.

Auxiliary variables of the former type may increase the precision of the imputed

values, strengthening the analysis through a phenomenon that has been called
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superefficiency (Meng, 1994). Auxiliary variables of the latter type will tend to

make the ignorability assumption more plausible, reducing biases that arise when

missing values are not missing completely at random.

If auxiliary variables are not strongly related to missingness indicators or to

variables being imputed, it is not necessary to include them, but often there is little

harm in doing so. Simulations by Collins at al. (2001) have shown that adding

unnecessary variables to an imputation model does not appreciably impair post-

imputation analyses, so researchers have been told to build imputation models

that are as large as possible. But this advice has theoretical and practical limits.

Beyond a certain point, the computer software and hardware will be unable to

perform the required computations within a reasonable amount of time. And as

more variables are introduced in a sample of a given size, the imputation model

will eventually become overparameterized, causing post-imputation analyses to

become unstable. Beyond a certain point, it will no longer be beneficial to use an

imputation model that allows an unstructured covariance matrix, and additional

information will need to be introduced by imposing constraints on the parameter

space, by applying informative prior distributions, or both.

1.5.5 Multivariate normality: limitations and possibilities

Multiple imputation techniques for normal imputation models have gradually made

their way into the statistical mainstream, but the methods for categorical and

mixed-data models (Schafer, 1997, Chap. 7–9) have not. The latter require for-

mation of a contingency table that cross-classifies the sampled units by all of the

categorical variables in the model. Allocation and manipulation of these arrays

becomes computationally very demanding as the number of variables increases,
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and the methods become impractical when the number of categorical variables

exceeds 20 or 25. By comparison, algorithms and software based on the normal

model with an unstructured covariance matrix can routinely handle 100 variables

or more. For this reason, MI is most often carried out under an assumption of

multivariate normality, even when the variables to be imputed are discrete. When

the normal model is applied to binary and ordinal variables, the imputed values

are typically rounded off to the nearest category. Bernaards, Belin and Schafer

(2007) and Demirtas (2008) explored different rounding rules for binary variables

and demonstrated that these methods perform reasonably well. Others have ar-

gued that leaving the imputed values alone (i.e. not rounding them) is often better

than rounding (Allison, 2005; Horton et al., 2003).

More recently, Boscardin et al. (2006, 2008) have developed a unified approach

to joint imputation of continuous, ordinal and nominal data under a multivariate

probit model. That model describes categorical variables as coarsened versions

of latent normal scores, and relationships among variables are characterized by

correlations among these scores. For subject i, suppose the data vector Yi consists

of a continuous portion Ci with length rc, an ordinal portion Oi with length ro and

a nominal portion Ni with length rn,

Ci
T = (Ci1, . . . , Cijrc),

Oi
T = (Oi1, . . . , Oijro),

Ni
T = (Ni1, . . . , Nijrn).

A joint distribution for these three vectors is constructed as follows.

• For each ordinal variable Oij (i = 1, . . . , n, j = 1, . . . , ro), define a normal
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latent variable OL
ij. The element Oij takes values within the discrete set

0, 1, . . . , Jj−1, andOij = l if and only ifOL
ij lies within the interval (ζj,l−1, ζj,l],

where the ζj,ls’ are cut points (ζj,0 = −∞ and ζj,Jj−1 = +∞). This is a

standard multivariate probit model.

• For each nominal variable Nij (i = 1, . . . , n,, j = 1, . . . , rn), which is as-

sumed to have pj possible outcomes, define a normally distributed (pj − 1)-

dimensional latent utility vector NL
ij whose maximum determines the out-

come of Nij, i.e.

Nij =

 0 if maxl=1,...,pj−1N
L
ijl < NL

ijk,

k if maxl=1,...,pj−1N
L
ijl = NL

ijk.

This is known as a multivariate multinomial probit (MVMNP) model.

The continuous observed variables Ci, and the latent variables OL
i and NL

i , are

concatenated into a single vector that is modeled as a multivariate normal dis-

tribution. For purposes of identifiability, the mean and variance of each latent

variable is fixed at zero and one, respectively.

This model developed by Boscardin et al. (2006, 2008) will not be considered

further in this dissertation. However, we have included this explanation to show

how assumptions of normality are not as limiting as they may first seem, and

the methods we develop here can in in the future be extended to handle discrete

variables as well.
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1.6 EM-type algorithms for ML estimation

This section provides a review of EM-type algorithms for maximum-likelihood

estimation of parameters in parametric models. The algorithms are described in

very generic terms; specific applications of EM and its extensions will appear in

later chapters.

1.6.1 Standard EM

Under an assumption of ignorability, the maximum-likelihood (ML) estimates for

the parameters of an imputation model are found by maximizing the observed-

data likelihood, L(θ|YO), or the observed-data log-likelihood, l(θ|YO) = logL(θ|YO).

Closed-form expressions for these estimators usually do not exist, and they must

be found by iterative procedures. An EM algorithm (Dempster, Laird & Rubin,

1977) maximizes l(θ|YO) by repeatedly solving an easier complete-data problem

that resembles a maximization of l(θ|Y ) = logP (YO, YM ; θ).

EM is defined as follows. Given a provisional estimate θ(t) of the unknown

parameter, let

Q(θ|θ(t)) =

∫
l(θ|Y )P (YM |YO, θ(t))dYM (1.1)

denote the average of l(θ|Y ) over the predictive distribution P (YM |YO, θ(t)). EM

maximizes L(YO|θ) by iteratively maximizing Q(θ). At iteration t+ 1, we perform

two steps:

E-step: C ompute Q(θ|θ(t)) by averaging the complete-data log-likelihood,

l(θ|Y ), over P (YM |YO, θ(t)).

M-step: Update θ with θ(t+1) by maximizing Q(θ|θ(t)) over the parameter

space Θ.
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Under regularity conditions clarified by Wu (1983), EM will converge reliably

to a stationary point of the observed-data log-likelihood. If this function is well-

behaved, the resulting stationary point of the EM algorithm is the unique global

ML estimate of θ.

The EM algorithm has been extended in various ways. These extensions include

ECM (Meng & Rubin, 1993), ECME (Liu & Rubin, 1994), AECM (Meng & van

Dyk, 1997) and PX-EM (Liu, Rubin & Wu, 1998, Little & Rubin, 2002). Some

of these extensions will be used in this dissertation, and we briefly review those

extensions here,

1.6.2 The ECM algorithm

In some applications, the complete-data maximum likelihood estimation required

for the M-step is not analytically tractable and would itself require iteration, mak-

ing EM less attractive. The Expectation-Conditional Maximization (ECM) algo-

rithm (Meng & Rubin, 1993) uses the same E-step as EM, but replaces a compli-

cated M-step with a sequence of conditional maximization (CM) steps. Each CM

step consists of S substeps. For s = 1, . . . , S, the sth substep in the tth iteration

of the ECM maximizes Q(θ|θ(t)) as defined in (1.1) not over the whole parameter

space Θ but subject to some constraint gs(θ) = gs(θ
{t+(s−1)/S}). After doing this

for s = 1, . . . , S, the output from the tth iteration, θ(t+S/S) = θ(t+1), becomes the

starting value for the (t+ 1)th iteration.

The set of ECM constraint functions G = {gs(θ); s = 1, . . . , S} must be pre-

selected and must be fulfill certain conditions to guarantee that the ECM algorithm

appropriately converges to the maximizer of L(YO|θ). These conditions require G

to be “space filling” in a sense defined by Meng and Rubin (1993). One special
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example of G that usually satisfies these conditions is G = (θ1, . . . , θS), where

θ1, . . . , θS is a partition of the parameter vector θ into subvectors. In this case, the

sth substep in the CM-step maximizes the Q function with respect to θs, holding

the remaining parameters fixed at their current values.

1.6.3 The ECME algorithm

Despite its stability and reliable convergence behavior, EM may converge slowly

in some applications. The Expectation-Conditional Maximization Either (ECME)

algorithm replaces one or more CM substeps in with steps that maximizes the

corresponding observed-data loglikelihood l(θ|YO) (Liu & Rubin, 1994). ECME

tends to converge more rapidly than EM or ECME because it operates on the

actual loglikelihood in these substeps rather than an approximation to it. The

constraint functions G = {gs(θ); s = 1, . . . , S} used in ECME need to satisfy the

same space-filling conditions defined by Meng and Rubin (1993).

1.6.4 The PX-EM algorithm

Another method for accelerating EM is the Parameter-Expanded EM (PX-EM)

algorithm (Liu et al., 1998). PX-EM is an EM algorithm applied to an enlarged

complete-data model which appends an additional parameter α to θ, written as

PX(Y |Θ = (θ?, α)), where θ? is to the enlarged model what θ is to the original

model. Liu et al. (1998) prove that PX-EM dominates EM in global rate of

convergence because it scales down the rate of missing information. The more

the complete-data model is expanded, the faster the resulting PX-EM algorithm

becomes, as long as the extra computational cost is negligible.

The expanded parameter set Θ = (θ?, α) must meet two conditions. First,
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the original observed-data model parameters must be preserved via a many-to-one

known transformation T on the expanded parameter set, θ = T (θ?, α). Second,

the original complete-data model parameters must be obtainable by setting α to

a null value α0,

PX(Y |Θ = (θ?, α = α0)) = P (Y |θ).

Some examples of EM, ECME and PX-EM algorithms will be applied to factor

analysis models in Chapter 3 and Chapter 4.

1.7 Basics of multiple imputation

1.7.1 Step 1: Creating the imputations

Multiple imputation (Rubin, 1987; 1996) involves three distinct steps: (1) M sets

of ‘complete’ data are formed by simulating the missing data M times. (2) Each of

these M sets of ‘complete’ data is analyzed by standard complete-data methods.

(3) The results are combined using simple rules developed by Rubin (1987) and

others.

In step 1, we create M independent draws from the distribution of P (YM |YO),

which is a Bayesian posterior predictive distribution for the missing data given the

observed data. This distribution can be written as

P (YM |YO) =

∫
P (YM |YO, θ)P (θ|YO) dθ. (1.2)

The distribution P (θ|YO), which is the observed-data posterior density for θ, is

proportional to the product of a prior density of θ, say π(θ), and the observed-
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data likelihood function,

P (θ|YO) ∝ π(θ)L(θ|YO).

In multivariate missing-data problems, directly simulating YM from P (YM |YO)

tends to be difficult, and these imputations are usually generated by Markov chain

Monte Carlo (MCMC).

One of the most commonly used MCMC procedures for multiple imputation

is known as data augmentation (DA) (Tanner & Wong, 1987; Schafer, 1997). DA

is an iterative two-step method that bears a superficial resemblance to EM but

whose purpose is very different. EM is a deterministic algorithm that converges to

a (possibly local) maximizer of L(θ|Yo), whereas DA is a simulation method which,

after it has achieved stationarity, produces (usually dependent) draws of (θ, YM)

from P (θ, YM |YO). Each cycle of DA consists of an Imputation or I-step followed

by a Posterior or P-step. In the I-step, we update the missing values by drawing

them from their predictive distribution given the observed data and current values

for the parameters θ(t),

Y
(t+1)
M from P (yM |YO, θ(t)).

In the P-step, we update the parameters by drawing them from their posterior

distribution given the observed and simulated missing data,

θ(t+1) from P (θ|YO, Y (t+1)
M ).

After repeating the procedure many times, the simulated value of YM eventu-

ally becomes a draw from P (YM |YO), the posterior predictive distribution from
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which multiple imputations are generated. Sucessive values Y
(t)
M and Y

(t+1)
M are

usually correlated, but MI requires M independent draws from P (YM |YO). These

draws are usually obtained by subsampling the chain, retaining every kth draw,

Y
(k)
M , Y

(2k)
M , Y

(3k)
M , . . ., where k is large enough to achieve approximate independence

(Schafer, 1997). The simulated values of θ, which cane be regarded as dependent

draws from P (θ|YO), are not of primary interest when DA is intended for imputa-

tion. These draws, however, may be useful for simulation-based Bayesian inference

regarding parameters of the imputation model, and they are also typically exam-

ined to monitor the convergence behavior of the algorithm.

If the rates of missing information are modest, only a small number of impu-

tations M may be adequate for post-imputation analyses. These rates of missing

information, which are defined by Rubin (1987) and Schafer (1997), are determined

by the information (second derivatives) of l(θ|Yo) and the expected second deriva-

tives of l(θ|YO, YM) with respect to P (YM |YO, θ). It has frequently been suggested

that M = 5 will be sufficient for typical applications. Choosing a larger value

for M will reduce the degree of Monte Carlo error, but this error often accounts

for only a relative small portion of the overall inferential uncertainty associated

with the final estimands. The rules for computing standard errors from a multiply

imputed analysis—which will be given below—explicitly account for random error

due to a finite number of imputations. In situations where of missing information

are thought to be large, a more generous number of imputations is recommended

(say, M = 30, Meng, 1994). The rules for combining results will yield an estimate

of the rate of missing information for any estimand, but this estimate rate can be

noisy for small values of M . For this reason, many researchers who use MI are

now routinely using M = 25 or more.
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1.7.2 Step 2: Analyzing the imputed data

Many different analysis models may be applied to imputed datasets for addressing

different scientific questions. MI was first proposed by Rubin (1987) for com-

plex surveys in which public-use data sets are shared by many users. Statistical

proficiency, objectives and research questions vary across users. Database con-

structors may have extra information about why values are missing, but sharing

this information with users may be infeasible or undesirable. MI techniques were

originally designed for situations where imputation and analysis are carried out

by different persons or organizations. If the imputer possesses more information

than the analyst (e.g., variables that are not released to maintain confidentiality)

and incorporates this information into the imputation model, it creates a form of

discrepancy between the imputation and analysis models that is statistically ad-

vantageous (Meng, 1994). Results from this analysis may have greater efficiency

than estimates based on the analysis variables alone. Detailed discussion on prop-

erties of MI when the imputation and analysis models differ is given by Meng

(1994), Rubin (1996), and Collins et al. (2001).

1.7.3 Step 3: Consolidating the results

The most common way to consolidate results from post-imputation analyses is to

combine the M sets of estimates and standard errors using the rules presented by

Rubin (1987). For a scalar estimand Q, the multiple-imputation estimate is

Q̂ =
1

M

M∑
i=1

Q(i),
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and the variance estimate is

Var(Q̂) =
1

M

M∑
i=1

σ2
(i) + (1 +

1

M
)(

1

M − 1
)
M∑
i=1

(Q(i) − Q̂)
2
,

where Q(i) and V̂(i) denote the estimate and variance estimate for Q, respectively,

from the ith imputed data set, i = 1, . . . ,M . If M is sufficiently large, then the

overall estimate Q̂ will be approximately normally distributed about Q, so normal-

theory confidence intervals and tests may be used. More accurate approximations

based on a Student’s t-distribution are also available, but the degrees of freedom

grow quickly as M increases unless the rate of missing information is unusually

high.

1.8 Looking ahead

The focus of this dissertation is to develop multiple-imputation procedures that

are better suited than existing methods to data from multi-themed survey ques-

tionnaires.

In Chapter 2, we first review algorithms for ML estimation and multiple im-

putation under a general multivariate normal model assuming an unstructured co-

variance matrix. We then discuss why we often cannot rely on these unstructured-

covariance procedures to handle data from multi-themed questionnaires. We also

review some alternatives that have been proposed in the literature, including the

use of exploratory factor models to address problems of overparameterization.

In Chapter 3, we develop the idea of imputation under factor-analytic covari-

ance structures. We begin with techniques for exploratory factor models proposed

by Song and Belin (2004) and extend them to confirmatory models which are bet-
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ter suited to a priori notions of how the items in a multi-themed questionnaire are

interrelated. We present a new MCMC algorithm for generating multiple imputa-

tions under a confirmatory factor model. We also present a new PX-EM algorithm

to compute maxima of the likelihood function that will help us to explore alterna-

tive models and provide reasonable starting values for MCMC sampling.

In Chapter 4, we acknowledge that, however appealing a confirmatory factor

model may seem, the relationships among variables from an actual questionnaire

might depart substantially from the assumptions of that model. Instead of as-

suming that the factor model is precisely correct, we relax the model by allowing

“soft constraints.” That is, we allow the actual covariance matrix to deviate from

the factor model by random amounts described by an inverse-Wishart distribu-

tion with unknown degrees of freedom. This idea, which was first suggested by

Boscardin and Zhang (2004), is developed and implemented in the context of a

confirmatory factor analysis. The technique can be regarded as a kind of Bayesian

smoothing that pulls the covariances toward a parsimonious structure.

In Chapter 5, we present results from a series of simulations to compare the

new procedures with existing approaches.

Extensions of these methods and future directions for this research are discussed

in Chapter 6.



Chapter 2
Overview of Current Methods for

Multiple Imputation of

High-dimensional Data

2.1 The multivariate normal model with

unstructured covariance matrix

2.1.1 The model

The imputation model most commonly used in practice is the multivariate nor-

mal model with an unstructured covariance matrix. An advantage of this model

is its flexibility; the resulting imputed datasets will be compatible with many

kinds of post-imputation analyses. The per-iteration cost of the basic EM and DA

algorithms—both in terms of memory and floating-point operations—is low. The

generality of this model becomes a drawback as the number of variables increases,

however, and applications to multi-theme questionnaires may lead to overparam-
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eterization.

The model that we describe here is a slight generalization of the model de-

scribed by Schafer (1997), Little and Rubin (2002) and others that conditions

upon covariates that are completely observed. It extends the generic multivariate

normal distribution to a multivariate normal linear regression.

We assume that observational units are independent. Incomplete variables will

be put into the columns of a response matrix,

Y =



y1
T

y2
T

...

yn
T


=



y11 y12 . . . y1r

y21 y22 . . . y2r

...
...

. . .
...

yn1 yn2 . . . ynr


,

and completely observed variables (which we call covariates) are placed in the

columns of another matrix,

X =



x1
T

x2
T

...

xn
T


=



x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

. . .
...

xn1 xn2 . . . xnp


.

In most applications of this model, the first column of X will be a constant, xi1 ≡ 1.

Because X is fully observed, it will not be explicitly modeled. We assume that

each row of Y given the covariates in X is independently normally distributed as

yi ∼ N(βTxi,Σ),

where Σ is a (r× r) positive definite covariance matrix, and β (p× r) denotes the
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matrix of regression coefficients of Y on X. Another way to write this model is

Y = Xβ + ε, (2.1)

where the error term ε is an (n × r) matrix of residuals distributed as vec(ε) ∼

N(0,Σ⊗In), and In denotes the n×n identity matrix. Without further restrictions

on the parameter space, the free parameters in this model are the p× r elements

of β and the r(r + 1)/2 elements in the upper triangle of Σ.

2.1.2 Complete-data log-likelihood

Aggregating over the independent units i = 1, . . . , n, the complete-data loglikeli-

hood function can be written as

l(β,Σ|Y ) = −n
2

log|Σ| − 1

2
tr Σ−1(Y −Xβ)T (Y −Xβ). (2.2)

This is a regular exponential family, and the loglikelihood is a linear function of the

sufficient statistics T1 = XTY and T2 = Y TY . With complete data, ML estimates

for β and Σ are obtained by solving the moment equations in which the realized

values of T1 and T2 are set equal to their expectations (Cox & Hinkley, 1974). The

complete-data ML estimates are

β̂ = (XTX)
−1
T1, (2.3)

Σ̂ =
1

n
(T2 − T1

T (XTX)
−1
T1). (2.4)
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2.1.3 ML estimation with incomplete data

If elements of the Y matrix are ignorably missing, ML estimates for β and Σ may

be computed by an EM algorithm. For the E-step of EM, we must calculate the

expectations of the sufficient statistics T1 =
∑n

i=1 xiy
T
i and T2 =

∑n
i=1 yiy

T
i with

respect to the predictive distribution P (YM |YO, β,Σ) under assumed values for β

and Σ. (Again, in this notation, conditioning on X has been assumed.) Given β

and Σ, the missing elements in any row yi have a multivariate normal regression

on the observed elements of that row and all of the elements of xi.

For the ith row, denote the observed and missing parts of yi by yiO and yiM , re-

spectively. Let βiO and βiM denote the submatrices of β consisting of the columns

that correspond to yiO and yiM . Similarly, suppose we partition Σ into four subma-

trices that correspond to yiO and yiM in the obvious way, and call these submatrices

ΣiOO, ΣiOM , ΣiMO, and ΣiMM . The expectations needed for the E-step of EM are

E(yiO|yiO, β,Σ) = yiO,

E(yiM |yiO, β,Σ) = βTiMxi + ΣiMOΣ−1
iOO(yiO − βTiOxi),

E(yiOy
T
iO|yiO, β,Σ) = yiOy

T
iO,

E(yiOy
T
iM |yiO, β,Σ) = yiOE(yiM |yiO, β,Σ),

E(yiMy
T
iM |yiO, β,Σ) = E(yiM |yiO, β,Σ)E(yiM |yiM , β,Σ)T

+ ΣiMM − ΣiMOΣ−1
iOOOΣiOM .

The E-step accumulates these expectations over the units i = 1, . . . , n, producing

the expected values for T1 and T2. The matrices Σ−1
iOO and ΣiMM−ΣiMOΣ−1

iOOΣiOM

may be calculated by a SWEEP operator as described by Little and Rubin (2002)

and Schafer (1997), by sweeping Σ on the positions corresponding to the observed
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variables.

Notice that the parameters of the multivariate regression of yiM on yiO—the

vector of intercepts, matrix of slopes and matrix of residual covariances—are the

same for all observational units i having the same missingness pattern. Therefore,

it is often helpful to organize the E-step computations by grouping the observa-

tional units i = 1, . . . , n according to the patterns of missingness found in Y , so

that the total number of sweeps may be reduced. The rows associated with any

missingness pattern have the same subset of variables observed. For example, sup-

pose that n = 5 and the data matrix Y has three variables (r = 3) which we denote

by Y1, Y2, and Y3. And suppose that the matrix of missingness indicators is

M =



0 0 0

0 0 0

0 0 1

1 1 1

0 1 1


.

In this example, only three missingness patterns are relevant: (1) no missing values

for any variable, (2) only Y3 missing, and (3) Y2 and Y3 both missing. The fourth

row, which has all three variables missing, does not need to be taken into con-

sideration when computing ML estimates because this row contributes nothing to

the observed-data likelihood. Including this row would merely increase the rates

of missing information, causing EM to converge more slowly. This row may be

included in an MI procedure, however, because the analyst might possibly need

imputed values for this row.

For the M-step of EM, we simply update the estimated values for β and Σ
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according to (2.3) and (2.4) with T1 and T2 replaced by their expectations from

the E-step. Because the complete-data loglikelihood is a linear function of these

sufficient statistics, the expected value of the loglikelihood function is obtained by

replacing T1 and T2 by their expected values.

2.1.4 Multiple imputations for missing values

Multiple imputations for the missing data YM under this unstructured normal

model can be simulated by a straightforward application of the data augmentation

(DA) method described in Chapter 1. Given the current simulated versions of the

unknown parameters θ(t) = (β(t),Σ(t)) and missing data Y
(t+1)
M , one iteration of

DA consists of an Imputation or I-step followed by a Posterior or P-step. In the

I-step, we draw

y
(t+1)
iM from P (yiM |YO, θ(t)) (2.5)

independently for i = 1, . . . , n, and in the P-step, we draw

Σ(t+1) from P (Σ|YO, Y (t+1)
M ), (2.6)

followed by

β(t+1) from P (θ|YO, Y (t+1)
M ,Σ(t+1)). (2.7)

Starting with initial values (β(0), Σ(0), Y
(0)
M ) and executing (2.5)-(2.7) repeatedly

creates a sequence {(Y (t)
? , β(t),Σ(t)), t = 1, 2, 3, . . .}, whose limiting distribution is

P (YM , β,Σ|YO).

The simulation of yiM in (2.5) is closely related to the E-step computation that
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was just described. Under that notation,

 yTiO

yTiM

 ∼ N

[βiO, βiM ]Txi,

 ΣiOO ΣiOM

ΣiMO ΣiMM


 .

It follow that the conditional distribution of yiM given yiO and the parameters

(β,Σ) is multivariate normal with mean vector

βTiMxi + ΣiMOΣ−1
iOO(yiO − βTiOxi)

and covariance matrix

ΣiMM − ΣiMOΣ−1
iOOΣiOM .

Simulating the missing values in each row i = 1, . . . , n completes the I-step. As

before, it may be computationally advantageous to apply the SWEEP operator

and to group the rows by their missingness patterns so that the number of sweeps

may be reduced.

To implement the P-step defined by (2.6) and (2.7), we need a joint prior dis-

tribution for β and Σ. For β, it is customary to apply uniform “density” over the

(r × p)-dimensional real space. This is not a proper density function, because its

integral is not finite. Nevertheless, it leads to a proper posterior distribution under

most circumstances of interest to us. A natural conjugate class of prior distribu-

tions for Σ is the inverted-Wishart family. Suppose we apply the prior distribution

Σ−1 ∼ W (ξ,Λ), where Λ > 0 and ξ ≥ r are user-specified hyperparameters. If Y

were fully observed, this would leads to a complete-data posterior distribution

Σ−1 | Y ∼ W (ξ′,Λ′),
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vec(β) | Y,Σ ∼ N(vec(β̂),Σ⊗ (XTX)
−1

),

where ξ′ = ξ + n− p and Λ′ = [Λ−1 + (Y −Xβ̂)
T

(Y −Xβ̂)]
−1

.

2.1.5 Prior distributions

When prior information about Σ is scarce, it is traditional to apply an improper

Jeffrey’s prior whose density can be regarded as the limit of the inverted Wishart

density as ξ → 0 and Λ−1 → 0. Assuming that the necessary inverses exist, this

leads to the complete-data posterior

Σ−1 | Y ∼ W (n− p, [(Y −Xβ̂)
T

(Y −Xβ̂)]
−1

),

vec(β) | Y,Σ ∼ N(vec(β̂),Σ⊗ (XTX)
−1

).

Drawing Σ from this distribution is straightforward. For simulating β, we can

apply the Cholesky factorizations Σ = GTG and (XTX)
−1

= HTH, where G and

H are a lower-triangular square roots of GTG and (XTX)
−1

, respectively. It is

easy to show that G⊗H is then a lower-triangular square root of Σ⊗ (XTX)
−1

.

A random draw of vec(β) can thus be obtained as vec(β̂) + (G⊗H)z, where z is

a vector of independent standard normal variates of length p× r.

Alternative choices for the prior distribution may help to stabilize inferences

when rates of missing information are high (Schafer, 1997, 2008) has described four

different versions of the prior distribution for Σ: (a) a uniform prior, which can

be viewed as a limiting case of the inverted-Wishart density as ξ → −(r + 1) and

Λ−1 → 0; (b) the Jeffreys prior, ξ → 0 and Λ−1 → 0; (c) a data-dependent ‘ridge’

prior with a user-specified smoothing parameter, which smooths the estimated

correlations toward zero; and (d) an inverted Wishart prior with user-specified ξ
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and Λ. These four choices can handle many situations encountered in practice.

For certain types of applications, however, the normal model with an unstruc-

tured covariance matrix is overparameterized. Overparameterization may occur

when the number of variables is very large, or when the number of cases is not

substantially higher than the number of variables. For example, with r = 100

response variables and p = 50 covariates, the unstructured-covariance model has

10,050 free parameters — 5,000 regression coefficient parameters and 5,050 covari-

ances — and the the inference becomes ill-conditioned. To overcome difficulties

caused by overparameterization, Schafer (1994) suggests two possible solutions.

One is to trim the model by omitting less important variables; the other is to

apply the mildly informative ridge prior. Neither of these proposed remedies is

particularly attractive for applications to multi-themed questionnaires, for reasons

to be described later.

2.1.6 Software

Routines for ML estimation and multiple imputation for the normal model with

unstructured covariance matrix have been available for some time. Some of these

packages do not allow covariates, which is tantamount to setting X = (1, 1, . . . , 1)T ,

as in earlier versions of the NORM program (Schafer, 1997). This is not necessarily

a limitation, however, because if completely observed covariates are present, they

may also be placed into the columns of Y .

The most version of NORM, which is a library for R, implements the EM and

DA algorithms described above (Schafer, 2008). Other procedures that have similar

capabilities include the SAS macro MISS and COMBINE (Allison, 1999), the SAS

procedure PROC MI and PROC MIANALYZE (Yuan, 2000), the missing-data



43

library in S-Plus (Schimert et al., 2001), LISREL (Jöreskog, et al., 2001), the Stata

module INORM (StataCorp, 2007), and the multiple imputation features in the

latest version of SPSS. Amelia (Kind et al., 2007) employs the EM algorithm but

uses a different computational technique for MI based on importance resampling.

EMCOV (Graham & Hofer, 1993) implements an EM algorithm for ML under the

normal model. HLM (Raudenbush, 2004) and Mplus (Muthén & Muthén, 1998)

do not generate imputations, but they do support the analysis of multiply-imputed

datasets.

2.2 Multiple imputation by chained equations

An frequently cited limitation of the multivariate normal imputation model is that

each variable is assumed to be continuously distributed, and its relationships to all

other variables are assumed to be additive and linear. This simply does not corre-

spond to the variables typically obtained from survey questionnaires which may be

binary, ordinal, or nominal, and which may be related to other variables in com-

plicated ways. Creating a model that can plausibly describe the joint distribution

of variables like these can be daunting, especially when the number of variables is

large. To circumvent the difficulty of specifying one joint model for all of the items,

some have proposed to build an implicit ‘model’ by specifying a regression for each

variable on a subset of the others. Procedures for multiple imputation based on a

sequence of univariate-response regression models is called chained equations (Van

Buuren & Oudshoorn, 1999; Raghunathan et al., 2000). Each regression in the

chain may take a different form depending on the type of variable being modeled:

logistic regression for a binary variable, polytomous regression for an ordinal or

nominal variable, log-linear regression for a count variable, and so on. These mod-
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els are intended to reflect relationships actually seen in the data, and may include

nonlinear effects and interactions.

The chained equation method for multiple imputation is an iterative simula-

tion procedure that resembles a Gibbs sampler, but is usually not a true MCMC

procedure because the stationary distribution is nonexistent. The missing values

are first initialized by an ad hoc imputation method. For each regression model in

the chain, the parameters are estimated from the outcomes (observed values only)

and the predictor variables (observed and imputed values). New values for the

regression parameters are sampled from their approximate posterior distribution,

and the model with simulated parameters is then used to randomly impute the

missing responses. The tth iteration of the algorithm can be expressed as

θ
(t)
1 ∼ P (θ1|Y O

1 , Y
(t−1)
2 , . . . , Y M(t−1)

r )

Y
M(t)
1 ∼ P (Y M

1 |Y O
1 , Y

(t−1)
2 , . . . , Y M(t−1)

r )

...

θ(t)
r ∼ P (θr|Y O

r , Y
M(t)
2 , . . . , Y

M(t)
r−1 )

Y M(t)
r ∼ P (Y M

r |Y O
r , Y

M(t)
2 , . . . , Y

M(t)
r−1 ),

where θ1, θ2, . . ., θr, denote the parameters of the respective regression models

(Van Buuren & Oudshoorn, 1999; Jacobusse, 2005). The process is repeated until

dependence on the starting values is thought to have died down.

Chained equations methods are not mathematically rigorous for the follow-

ing reason: the conditional distributions specified by the sequence of regression

models may not define a joint distribution. In many applications, there will be

no joint probability distribution that has the specified regression models as its
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full conditionals. Proponents of chained-equation methods freely acknowledge this

incoherent aspect and do not think it is usually problematic, but the practical

implications of inconsistent conditional distributions are not well understood.

Despite this theoretical problem, chained equations are becoming increasingly

popular. Imputation by chained equations is seen to be an attractive alternative

to more rigorous methods based on joint modeling, because it can accommodate

large numbers of variables at once. Software for chained equations can be found

in WinMICE and an R package called MICE (Van Buuren & Oudshoorn 1999;

Jacobusse, 2005), IVEWARE (Raghunathan et al., 2000), and routines for Stata

(StataCorp, 2003).

2.3 Multivariate linear mixed models

A more rigorous way to address overparameterization with large numbers of vari-

ables is to construct a joint model for all variables in question but impose con-

straints on the covariances to reflect a priori notions about how the variables may

be related. Although this has not yet been described for classes of applications

involving multi-themed questionnaires, it has been tried for longitudinal surveys

(panel studies) in which a common set of items is repeated in multiple waves of

data collection. Schafer and Yucel (2002) present methods for multiple imputation

under a multivariate linear mixed model that is formally equivalent to the nor-

mal regression model in Section 2.1, except that the covariance matrix is assumed

to have a Kronecker-product form that is consistent with the notion of repeated

measurements over time.

To describe the model of Schafer and Yucel (2002), we will use a slightly differ-

ent notation from that in Section 2.1. Let yi denote an ni × r matrix of response
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matrix for sampled unit i, i = 1, 2, ...m. The rows of yi represent occasions, and

the columns of yi represent variables measured at these occasions. Suppose that

portions of the response matrices y1,y2,...,ym are ignorably missing in the sense

described in Chapter 1. Schafer and Yucel (2002) suppose that

yi = Xiβ + Zibi + εi, (2.8)

for i = 1, . . . ,m, where Xi(ni × p) and Zi(ni × r) are matrices of fully observed

covariates, β (p × r) is a matrix of regression coefficients common to all units,

and bi is a (q × r) matrix of random regression coefficients specific to unit i. The

matrix bi is assumed to be distributed as vec(bi) ∼ Nq (0,Ψ), and each row of εi is

assumed to be independently normally distributed with mean zero and covariance

matrix Σ. The covariance matrices Ψ and Σ are unknown, and the bi’s and εi are

assumed to independent of one another. The unknown parameters of the model are

θ = (β,Σ,Ψ). Covariates describing the ith unit that do not change over time may

be included in Xi, and time-varying covariates may be placed into the columns of

Xi and also in Zi.

Schafer and Yucel (2002) implemented a Gibbs sampling procedure for multiple

imputation of missing values in the yi matrices under model (2.8). At iteration t,

the parameters θ(t) = (β(t),Σ(t),Ψ(t)) and missing data Y
(t)
M are updated in three

steps. First, draw random effects

bi
(t+1) ∼ P (bi|θ(t), YO, Y

(t)
M ) (2.9)
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independently for i = 1, 2, ...m; second, update the parameters,

θ(t+1) ∼ P (θ|YO, Y (t)
M , B(t+1)); (2.10)

and finally, impute the missing values,

y
(t+1)
iM ∼ P (yiM |YO, B(t+1), θ(t+1)), (2.11)

for i = 1, . . . ,m. Given starting values θ(0) and Y
(0)
M , repeating the cycle (2.9)-

(2.11) yields sequences {θ(t), t = 1, 2, 3, . . .} and {Y (t)
M , t = 1, 2, 3, ...} whose limiting

(stationary) distributions are P (θ|YO) and P (YM |YO), respectively.

In addition to this Gibbs sampling procedure for creating multiple imputations,

Schafer and Yucel (2002) also describe EM-type algorithms for ML estimation of

the model parameters. Procedures for MI under this multivariate linear mixed

model have been made available in a library called PAN (Schafer & Yucel, 2001)

which has been converted to an R package (Junhua Zhao, 2009).

2.4 Factor models

2.4.1 Exploratory and confirmatory factor analysis

Under the multivariate linear mixed model just described, the covariance matrix

of the responses is assumed to be

V (vec(yi)) = (Ir ⊗ Zi)Ψ(Ir ⊗ Zi)T + (Σ⊗ Ini).
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This covariance structure may be appropriate for a set of questionnaire items that

is repeated over time, but it is not well suited to handle items from multi-theme

questionnaires. A more reasonable way to begin to construct models for multi-

theme questionnaires is to suppose that the items for each theme are conditionally

independent given a small number of latent factors.

Let us now return to the notation of Section 2.1 where Y denotes a data matrix

with rows corresponding to independent sampled units and columns corresponding

to variables. One simple form for a factor model would assume that rows i =

1, . . . , n of Y are independently distributed as

yi | zi ∼ Nr(β
Txi + γT zi, τ

2),

where zi (k×1) denotes a vector of unseen factor scores that is normally distributed

with mean zero, variances constrained to be equal to one, and correlation matrix

R (k × k). This generalizes the classical common-factors model of Thurstone

(1947) to include regressors xi in the mean structure. Note that this is not the

usual way that covariates are incorporated into a factor model. In structural-

equations modeling, it is the latent variables zi, not the manifest variables yi, that

are typically regressed on the exogeneous covariates xi, and that is done for reasons

that are theoretical and substantive. Our version of the model is akin to regressing

yi on xi and fitting a common-factors model to the residuals. We have chosen to

arrange the model in this fashion because the implied unconditional distribution

for yi becomes Nr(β
Txi,Σ) with Σ = γTRγ + τ 2, which is a special case of the

model presented in Section 2.1 and facilitates comparisons between these models.

This model is designed not for scientific description but for imputation.

The assumption of unit variances for zi, or some other set of restrictions, for
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Figure 2.1. EFA and CFA (Joreskog, 2007)

identification. The elements of the matrix γ (k× r) are called the factor loadings,

and τ 2 = diag (τ 2
1 , . . . , τ

2
r ) is the matrix with elements τ 2

1 , . . . , τ
2
r on the diagonal

which are called the uniquenesses. In a common-factors model, the items may be

allowed to have factor loadings on the entire set of factors, or some of the loadings

may be fixed at zero. Three special cases are defined by restrictions on R and γ

(Rubin & Thayer, 1982).

Case 1: R = Ik and no restrictions on γ;

Case 2: R = Ik and a priori zeroes in γ;

Case 3: a priori zeroes in γ but no extra restrictions on R.

Case 1 is usually called an exploratory factor analysis (EFA) model. In exploratory

factor analysis (EFA), all of the factor loadings are free to vary. An example of
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EFA is depicted by the path diagram on the left-hand side of Figure (2.1); all

variables load on both factors, and the factors are assumed to be uncorrelated.

Cases 2 and 3 are usually referred to as confirmatory factor analysis (CFA)

models. With CFA, the researcher is seeking to fit a model where certain elements

in γ are assumed to be zero, usually after they were seen to be small when the

results from an EFA were examined. CFA represents a refinement of EFA based

on empirical findings and theory. In CFA, the factors are usually allowed to be

correlated. An example of CFA is shown on the right-hand side of Figure (2.1). In

that model, factor ξ1 does not affect variables x1, x2 or x3, whereas factor ξ2 does

not affect variables x4, x5, or x6. The factor loadings of x1, x2, and x3 on ξ1, and

the factor loadings of x4, x5, and x6 on ξ2, are assumed to be zero, and the two

factors are allowed to be correlated.

2.4.2 Previous work on EFA

Algorithms for multiple imputation under the EFA model were originally developed

by Song and Belin (2004). They proposed their method for imputing missing

values in high-dimensional multivariate datasets where the number of variables is

comparable to the number of sampled cases. Their prototypical example was a

psychological test with 100 items administered to 100 subjects. They assumed no

prior knowledge about how the underlying factors were related to the items. In

their model, they allowed elements of Y to be ignorably missing, but they did

not allow covariates, i.e. they assumed that X = (1, 1, . . . , 1)T . Compared to the

model with unstructured covariance matrix described in Section 2.1, the number

of covariance parameters has been reduced from r(r + 1)/2 to rk + r.

The methods of Song and Belin (2004) require that the number of factors
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be pre-specified. Because this is an exploratory analysis, the number of factors

can be chosen empirically based on quality of fit. Using a maximum likelihood

approach, they tested the null hypothesis that k = k0 versus the unstructured

alternative for various values of k0. The number of factors can also be chosen by

ad hoc rules based on eigenvalues of the correlation matrix. In that approach,

one would apply principle components analysis (PCA) to the correlation matrix

estimated under the unrestricted model of Section 2.1. The eigenvalues represent

the variance explained by each underlying factor. The well known Kaiser-Guttman

rule suggests the number of factors should be equal to the number of eigenvalues

exceeding 1. The scree-plot rule is based on a plot of eigenvalues ordered by

diminishing size; the analyst examines the plot and looks for a notable drop in the

size of the eigenvalues. Song and Belin (2008) also discussed the use of penalized

likelihood criteria AIC and BIC, suggesting rules for interpreting these criteria

with incomplete data.

2.4.3 Multiple imputation under the EFA model

The algorithm of Song and Belin (2004) for creating multiple imputations is a

combination of Gibbs sampling and data augmentation. The algorithm proceeds

as follows. At the (t + 1)th iteration, given the parameters at the tth step

(β(t), γ(t), τ 2(t)), draw

• missing items from yiM | yiO, β(t), γ(t), τ 2(t),

• factor scores from zi | yiO, y(t)
iM , β

(t), γ(t), τ 2(t) independently for i = 1, . . . , n,

• uniquenesses from τ 2
j | YO, Y

(t)
M , Z(t), β(t), γ(t),

• mean parameters from βj | YO, Y (t)
M , Z(t), γ(t), τ 2(t), and
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• factor loadings from γj | YO, Y (t)
M , Z(t), β(t), τ 2(t), independently for j =

1, . . . , r.

In this notation, βj, γj and τ 2
j represent the jth element of β, the j column of γ

and the j column of τ 2, respectively.

To avoid degenerate variance estimates, Song and Belin (2004) applied weakly

informative prior distributions to the uniquenesses in τ 2. They also applied nonin-

formative or weakly informative prior distributions to β and γ. In some cases, the

algorithm was seen to converge slowly due to high correlations between elements

of β and elements of γ, and a transformation of these parameters was suggested

to speed convergence. Because multiple local modes are not uncommon in these

exploratory factor models (Rubin & Thayer, 1982), they suggested running the

MCMC procedure in multiple chains from overdispersed starting values, and they

monitored convergence using diagnostic methods suggested by Gelman and Rubin

(1992).

2.4.4 EM-type algorithms for the EFA model

The imputation procedure of Song and Belin (2004) is closly related to earlier

published work on ML estimation for factor models. Rubin and Thayer (1982)

developed an EM algorithm for the model

yi | zi ∼ Nr(β
Txi + γT zi, τ

2),

where zi (k × 1) denotes a latent factor score vector normally distributed with

mean zero and covariance matrix Ik, the k× k identity matrix. The algorithms of

Rubin and Thayer (1982) included procedures for handling missing values in yi.

The slow convergence of these EM algorithms prompted additional work to speed
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convergence. Liu and Rubin (1998) discussed the use of ECME, and Liu, Rubin

and Wu (1998) proposed PX-EM algorithms.

The complete-data log-likelihood function for this model, which is based on the

complete data (YO, YM , Z), can be written as

lA(θ|YO, YM , Z)

∝− 1

2

n∑
i=1

zizi
T − n

2

r∑
j=1

log(τ 2
j )

− 1

2

r∑
j=1

τ−2
j

n∑
i=1

(yij − βTj xi − γTj zi)
2
,

and the actual log-likelihood based on YO can be written as

l0(θ) = −1

2

n∑
i=1

log|ΦiO| −
1

2

n∑
i=1

(yiO − βiO)T (ΦiO)−1(yiO − βiO),

where Z = {zi, i = 1, . . . , n}, where βiO, γiO and τ 2
iO denote the corresponding

elements of β, the submatrix of γ and τ 2, respectively, for predicting yiO, and

where ΦiO = γTiOγiO + τ 2
iO.

An EM algorithm adapted from Liu and Rubin (1998) can be described as

follows.

• E-step: Calculate the expected values of the sufficient statistics

Syy =
∑
i=1

yi
Tyi,

SZ?y =
n∑
i=1

 1

zi

 yi,
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SZ?Z? =
n∑
i=1

 1

zi

( 1 zTi

)
.

• M-step: Given the current estimate of θ, replace the complete-data sufficient

statistics with their expected values, and update the parameters with the

complete-data maximum likelihood estimates. The computations required

for the M-step are a straightforward application of ordinary least-squares

regression, akin to regressing each items on the latent factors.

Liu, Rubin and Wu (1998) created a PX-EM algorithm for the exploratory

factor model only. They embedded the EFA model into a larger model with an

additional parameter Γ,

yi | θ? ∼ Nr(β?, γ
T
? Γγ? + τ 2

? ), (2.12)

where θ? = (β?, γ?, τ
2
? , Γ). The expanded model reduces to the desired model

when Γ is the identity. The additional parameter Γ is not identifiable from the

observed data; including this parameter is merely a computational device to speed

convergence. Setting θ = (β, γ, τ 2) = (β?, γ?Chol(Γ), τ 2
? ) recovers the original

parameters, where Chol(Γ) denotes the Cholesky factor of Γ. Define lA(Y, Z|θ?)

to be the complete-data log-likelihood of θ? under model (2.12) based on (YO, YM ,

Z) and let E(lA(Y, Z|θ?)) be the expected value of lA(Y, Z|θ?) with respect to the

distributions of YM |YO, θ and Z|YO, θ. One iteration of the PX-EM algorithm can

be described as follows.

Step 1. Update θ? by applying the EM algorithm to the expanded model:

PX-E step: Compute E(lA(Y, Z|θ(t)
? )).
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PX-M step: Update θ? with θ
(t+1)
? = arg maxθ? E(lA(Y |θ(t)

? )).

Step 2. Reduce θ? to the original parameter θ by the reduction formulas

β(t+1) = β
(t+1)
? ,

γ(t+1) = γ
(t+1)
? Chol(Γ(t+1)),

τ 2(t+1) = τ
2(t+1)
? .

2.4.5 Limitations of existing work

The literature that we have cited is the starting point for our research. To our

knowledge, no software package has yet been made available for multiple imputa-

tion under EFA models; analysts have no way to apply them, and their properties

are not well understood. And to our knowledge, no methods have yet been pub-

lished on the related problem of multiple imputation under CFA models. The

restrictions that are introduced when moving from EFA to CFA are a necessary

step in creating procedures appropriate for multi-themed questionnaires. Models

for multi-theme questionnaires should to reflect the fact that items within different

themes are measuring different sets of underlying characteristics. It is reasonable

to think that relationships between items addressing different themes are partially

or fully explainable by relationships among the latent characteristics they are mea-

suring. In the chapters ahead, we extend these methods to CFA models in a variety

of ways.



Chapter 3
Parameter Estimation and

Imputation of Missing Values under

Confirmatory Factor Models

3.1 Initial exploration

In the previous chapter, we reviewed missing-data methods for multivariate data

under various assumptions about covariances among items. We now return to one

of our motivating examples—the Feelings Scale from Add Health—to gather em-

pirical evidence on how the items within this questionnaire theme are interrelated.

Figure 3.1 shows a scree plot for these 19 items. A scree plot displays the eigen-

values of the correlation matrix arranged in descending order. These correlations

were estimated by applying the EM algorithm for the unstructured normal model

described in Section 2.1. The scree plot shows a steep drop between the first and

second eigenvalues, indicating that a large portion of the relationships is accounted

for by one factor. This finding is consistent with the purpose of the Feelings Scale,
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Figure 3.1. Scree plot of Σ̂, the MLE of Σ

which was designed to measure a single construct (psychological distress). This

finding is also consistent with how the data are commonly used; analysts often ag-

gregate the items by summing or averaging them into a composite score. But this

scree plot also suggests that a one factor model may not exactly fit the data. The

well known Kaiser rule suggests that a four-factor model ought to be considered,

because four of the eigenvalues are greater than one.

Applying the EM algorithm for the EFA models described in the previous

chapter (Rubin & Thayer, 1982), we examined results from models with varying

numbers of factors. An EFA model is identified only up to an arbitrary rotation

of the factors. Using varimax rotations, we observed that the four items that were

reverse-coded (lower values indicate higher distress) have large loadings for the

second factor. Loadings for the third and fourth factors were difficult to interpret.

Because each of these models is a special case of the unstructured normal model,

we may compare the fit of each model to the unstructured one by a standard like-

lihood ratio test. In this example, due to the large sample size, the one, two, three
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and four-factor models can all be rejected in favor of the unstructured alternative.

However, the one-factor model and perhaps the two-factor model have consider-

able intuitive appeal. This finding is not atypical for data from a multi-themed

questionnaires. Items from one thematic section are usually intended to measure

a small number of constructs, but the correspondence between observed data and

a low-dimensional factor structure may be imperfect. In this chapter, we will pro-

ceed as if the relationships among items can indeed be described by factor model

with a known number of items; in the next chapter, we will introduce methods

that formally account for this lack of fit.

If we were to build an imputation model that integrates items from the Feel-

ings Scale with items for additional themes, it is reasonable to think that the

relationships between the Feelings Scale items and items for other themes would

be mediated by the factors describing the Feelings Scale, especially the first one.

This would be consistent with post-imputation analyses in which an aggregate

measure of psychological distress is related to measures for other themes by a cor-

relation analysis or a regression model. For an imputation procedure whose items

span multiple themes, this notion could be formalized by moving from an EFA to

a CFA model that assumed certain factor loadings are zero. Consider a one-factor

per theme model in which any one theme of a questionnaire could be well described

by one underlying factor.

• Any item for theme j will have a nonzero factor loading on the factor de-

scribing theme j.

• Any item for theme j will have a zero loading on the factor describing theme

k when j 6= k.

In the notation for CFA models used in the last chapter, each column of the factor
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loading matrix γ in a one-factor per theme model will have only one nonzero

element, and the only nonzero element of column j of γ will occur in row cj which

is known in advance. With this model, it makes sense to allow the factors to

be non-orthogonal (R 6= I), because post-imputation analyses will often involve

hypothesized relationships between aggregate measures from different themes.

In the remaining sections of this chapter, we present new algorithms for param-

eter estimation and imputation for CFA models with missing items. For simplicity,

we describe the methods for the one-factor per theme model, but the extension to

models where some themes have two or more factors will be immediate.

3.2 A new PX-EM algorithm for the CFA model

EM algorithms for parameter estimation in factor models were previously described

by Rubin and Thayer (1982). In that article, they considered a variety of EFA

and CFA models with and without missing items. When reproducing their algo-

rithms and results, we stumbled across an apparently little known fact about the

multivariate normal distribution. Suppose that the rows of a data matrix are in-

dependently sampled from a multivariate normal distribution with means fixed at

zero and variances fixed at one. The ML estimate of the covariance (and correla-

tion) matrix is not the sample correlation matrix. With two variables, this model

has only a single parameter, the correlation between the two items. In that bivari-

ate case, the sample correlation coefficient does not maximize the one-parameter

loglikelihood function. In retrospect, this result is not surprising; the multivari-

ate normal model with constrained variances is not a regular exponential family,

so the ML estimates should not correspond to the sample correlations. Closed-

form expressions for the ML estimators are not easily found even in the bivariate



60

case, but numerical estimates can be calculated by iterative procedures such as

Newton-Raphson and Fisher scoring.

When Rubin and Thayer (1982) described EM algorithms for CFA models

with non-orthogonal factors (R 6= I), they erroneously assumed that the part

of the Q-function (the expected complete-data loglikelihood) corresponding to R

would be maximized by a sample correlation matrix. As a result, the algorithm

they described for models with R 6= I does not yield a true ML estimate. Results

for the data examples presented in that article were not affected by this mistake,

because all of the models applied in the examples assumed that R = I. A later

article by Liu and Rubin (1998) about EM-type algorithms for estimation in factor

models was not affected by this issue either, because throughout that article they

assumed that R = I. Because non-orthogonal factors are a crucial part of our CFA

modeling, we needed to develop a reliable procedure for computing ML estimates

when R 6= I. Moreover, we did not want to use a conventional EM algorithm that

treats the vector of factor scores zi as missing data, because the part of the M-step

pertaining to R would itself require an iterative solution.

This issue can be sidestepped by the principle of parameter extension used in

PX-EM. We may enlarge the parameter space by supposing that the factor scores

are distributed as zi ∼ N(0, R?) with R? = D
1/2
? RD

1/2
? , where D? is a diago-

nal matrix of variances. The extra parameters in D? are not estimable from the

observed items. But expanding the model for the complete data in this manner—

and here, the term “complete data” includes the latent variables zi—simplifies the

maximization of the Q-function, because the ML estimate for the newly unstruc-

tured covariance matrix R? may be calculated in the usual way. Another benefit

of this parameter extension is that the resulting PX-EM algorithm will converge

faster than conventional EM. We have not quantified or illustrated the improve-
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ment in the rate of convergence, because we have not implemented a conventional

EM algorithm for this problem. But theoretical results regarding the convergence

of PX-EM, and the empirical demonstrations by Liu and Rubin (1998) in related

parameter-expansion problems, suggest that the computational savings over EM

are substantial.

The expanded CFA model for the new PX-EM algorithm is

yi | zi, θ? ∼ Nr(β
T
? xi + γT? zi, τ

2
? ), (3.1)

zi ∼ Nk(0, R?),

where R? = D
1/2
? RD

1/2
? is unstructured. Integrating out the latent variable zi

yields

yi | θ? ∼ Nr(β
T
? xi, γ

T
? R?γ? + τ 2

? ), (3.2)

and the parameters of the expanded model are θ? = (β?, γ?, R?, τ
2
? ).

This expanded model satisfies two conditions necessary for PX-EM described

by Liu et al. (1998). First, the parameters of original model can be obtained from

the expanded parameters by the following reduction function,

θ = (β, γ, R, τ 2) = (β?, D
1
2
? γ?, D

− 1
2

? R?D
− 1

2
? , τ 2

? ).

Second, θ? reduces to θ when D? is equal to the identity matrix.

When a factor model is applied to incomplete multivariate data, it is not neces-

sary to treat the missing items as “missing data” when formulating the Q-function.

The reason for this is quite intuitive: if the factor scores zi were actually observed,

the measurement parameters (i.e., the factor loadings and uniquenesses) could be

estimated by a sequence of independent univariate linear regression models. Miss-
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ing items in the data matrix would become missing responses in these univariate

regression models, and ML estimates for any one of these regressions could be

computed by eliminating the cases with missing values for that response (Little &

Rubin, 2002). In the E-step of our PX-EM algorithm, we treat the factor scores zi

as missing, but the missing items YM are analytically removed from the likelihood

by integration. (In that respect, this PX-EM algorithm could also by regarded as

PX-ECME, a parameter-extended version of the ECME algorithm.) Integrating

YM out of the likelihood should also increase the rate of convergence (Liu & Ru-

bin, 1994), although we have not attempted to quantify this increase, because we

believe that iin most cases it will be slight.

Let yij denote the jth element of yi. Let βiO, γiO and τ 2
iO denote the columns

of β, the columns of γ and the elements of τ 2 for predicting the observed elements,

respectively. Define γ?j and β?j as the jth columns of γ? and β? respectively, and

let 1ij equal to one if yij is observed and zero otherwise. The “complete-data”

loglikelihood based on YO and Z = (z1, . . . , zn) becomes

lA(θ?|YO, Z) ∝ −1

2

n∑
i=1

r∑
j=1

log τ 2
?j1ij

− 1

2

n∑
i=1

r∑
j=1

1

τ 2
?j

(yij − βT?jxi − γT?jzi)
2
1ij

− n

2
log |R?| −

1

2

n∑
i=1

zTi R
−1
? zi.

Our PX-EM algorithm can be described as follows. Given the estimated parame-

ters at iteration t, the estimates at iteration t+ 1 are computed by these steps.

• E-step: Compute the expectation of lA with respect to the distribution

zi|yiO, θ(t)
? ∼ N(µ

(t)
i ,Σ

(t)
i )



63

for i = 1, . . . , n, where

µ
(t)
i = R(t)

? γ
(t)
?iO

(γ(t)T

?iO
R(t)
? γ

(t)
?iO

+ τ 2(t)

?iO )
−1

(yiO − β(t)T

iO xi),

Σ
(t)
i = R(t)

? −R(t)
? γ

(t)
?iO

(γ(t)T

?iO
R(t)
? γ

(t)
?iO

+ τ 2(t)

?iO )
−1
γ(t)T

?iO
R(t)
? ,

and where γ?iO and τ 2
?iO denote the columns of γ? and the elements of τ 2

? for

predicting yiO, respectively. For notational simplicity, define

E
(t)
ZZ,i = E(zizi

T |yiO, θ(t)
? ) = µ

(t)
i µ

(t)T

i + Σ
(t)
i .

• M-step: Compute the ML estimate of θ? by maximizing the expanded log-

likelihood ElA found in the E-step. The maximization is accomplished by

R(t+1)
? =

1

n

n∑
i=1

E
(t)
ZZ,i,

τ 2(t+1)

?j =

∑n
i=1A

(t)
ij 1ij∑n

i=1 1ij
, β

(t+1)
?j

γ
(t+1)
?cj ,j

 = [
n∑
i=1

E(x?,i,jx
T
?,i,j)1ij]

−1

× [
n∑
i=1

E(x?,i,j)yij1ij],

A
(t)
ij = E

yij −
 β

(t+1)
?j

γ
(t+1)
?cj ,j


T

x?,i,j | YO, θ(t)
?


2

,

x?,i,j =

 xi

zi,cj

 ,E(x?,i,j) =

 xi

µi,cj

 ,

E(x?,ix
T
?,i,j) =

 xix
T
i xiµ

(t)
i,cj

µ
(t)
i,cj
xTi E

(t)
ZZ,i,cj ,cj

 ,
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where zi,cj and µi,cj denote the cjth elements of zi and µi, respectively, and

EZZ,i,cj ,cj denotes the element of EZZ,i in the cjth row and cjth column.

• Parameter reduction: Reduce the expanded parameters to the original pa-

rameters,

β(t+1) = β(t+1)
? ,

γcj ,j = D
1
2
(t+1)

?,cj ,cj γ?cj ,j,

R(t+1) = D
− 1

2
(t+1)

? R(t+1)
? D

− 1
2
(t+1)

? ,

τ 2(t+1) = τ 2(t+1)
? .

We implemented this PX-EM algorithm and applied it to real and simulated

data examples. We have verified that it converges to a local maximum by nu-

merically perturbing each free parameter from the solution and have seen in each

case that the observed-data loglikelihood drops. EM-type algorithms for EFA and

CFA models are known to be very stable, but they may converge to local max-

ima of the observed-data loglikelihood. As noted by Rubin and Thayer (1982),

multiple random starting values may be necessary to give us confidence that we

have indeed found an ML estimate. Convergence to a stationary value does not

imply that the solution is locally identified. To check for local identification, we

compute the Hessian (second derivative) matrix for the loglikelihood at the sta-

tionary value to verify that it is nonsingular. (Expressions for these derivatives

are given in Appendix A). If the starting values are poor, iterations of PX-EM

may progress toward a boundary (e.g., a solution where some uniquenesses are

zero) where the loglikelihood is not concave. If the second derivative matrix is not

negative definite, we rerun the PX-EM algorithm from alternative starting values
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until it arrives at a reasonable solution.

3.3 A PX-DA algorithm for multiple imputation

3.3.1 Prior distributions

For multiple imputation under the CFA model, we will again work with an ex-

panded parameter set. We now denote the covariance matrix for zi by W =

D
1
2RD

1
2 , where R is a correlation matrix and D is a diagonal matrix containing

variances. The same parameter extension for multiple imputation was used by

Boscardin and Zhang (2004), but in a different modeling context. This extension

is helpful for the following reason: Specifying a sensible prior distribution for a

correlation matrix can be difficult (Barnard et al., 2000), but convenient priors for

a covariance matrix are readily available. The Jacobian of the transformation from

W to (R, D) is

JW→R,D = (|D|)
k−1
2 . (3.3)

To create an algorithm for multiple imputation, we apply the following prior

distributions to the model parameters θ = (β, γ, R, τ 2).

• For the regression coefficients β, we use an improper uniform density over

Rpr.

• For the factor loadings in γ, we apply improper independent uniform densities

to all the nonzero factor loadings.

• For the factor correlation matrix R and the extra variance parameters D, we

apply a standard noninformative prior to W , p(W ) ∝ |W |−
k+1
2 , which leads
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to

p(R, D) ∝ p(W )JW→R,D

∝ |D|−1|R|−
k+1
2 .

• For the uniquenesses in τ 2, we use diffuse conjugate inverse-gamma priors,

τ 2
j ∼ Inv-Gamma(ατ2 , βτ2) for j = 1, . . . , r, where ατ2 and βτ2 are both small

values, e.g., 0.002.

3.3.2 Proposal densities

Our algorithm for multiple imputation can be viewed as a parameter-extended

version of data augmentation (PX-DA) (Liu & Wu, 1999; Meng & van Dyk, 1999).

It can also be viewed as a Gibbs sampler that partitions the unknown quantities

(parameters and latent factors) into convenient groups and draws each group from

its conditional posterior distribution given the other groups. Drawing from some of

these conditional distributions is not tractable, so we replace them with Metropolis-

Hastings steps. We will draw the uniquenesses from a proposal density, and then

accept the drawn value with a probability derived from a Metropolis-Hastings

density ratio. A similar technique is applied to the correlation matrix R. We draw

a covariance matrix W from its inverse Wishart posterior distribution, translate it

back to a correlation matrix through a reduction function, and accept the simulated

correlation matrix based on a Metropolis-Hastings ratio.

First, we apply the following notation.

• Let l0 denote the actual observed-data loglikelihood function of the CFA

model.
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• Let (β0, γ0, R0, τ
2
0 ) denote the local maximizer of l0 derived from the PX-EM

algorithm previously discussed.

Our proposal distribution for τ 2 is a multivariate t distribution with α degrees

of freedom for log(τ 2),

qτ2(τ 2?|τ 2) = qmvt(log τ 2?|log τ 2)× 1∏r
j=1 τ

2?
j

.

We center this proposal density at the current value of log(τ 2), choose α = 4 to

make it a heavy-tailed distribution (Gelman et.al., 1997) and set the scale matrix

to be Slogτ2 = c× α+2r
α
× (− ∂2l0

∂logτ2∂logτ2T
)
−1
|τ2=τ2

0
, where c is a constant and

∂2l0
∂logτ 2∂logτ 2T

= diag(τ 2)
∂2l0

∂τ 2∂τ 2T
+ diag(

∂l0
∂τ 2

).

The proposal density for (R, D) is a jumping kernel qR(R?, D?|R,D),

qR(R?, D?|R,D) ∝Wishart(W ?|dw,
W (t)

dw
)× JW ?→R?,D? .

where Wishart(W ?|dw, Wdw ) denotes a Wishart distribution with degrees of freedom

parameter dw and scale matrix equal to 1
dw
W , centered at the current value of W .

Boscardin and Zhang (2004) chose the scale matrix to be the current value of W ,

i.e., W ? is drawn from a Wishart distribution centered at dwW , which according

to our simulation, may lead to very slow convergence rates even with a small value

of dw.
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3.3.3 The PX-DA algorithm for CFA

The posterior density of the expanded parameters given the complete data Y and

factor scores Z is

P (β, γ, R,D, τ 2|Y, Z)

∝ (
r∏
j=1

τ 2
j )−

n
2 exp(−

r∑
j=1

n∑
i=1

(yij − βTj xi − γTj zi)
2

2τ 2
j

)

× |R|−
n
2 exp(−1

2

n∑
i=1

zTi R
−1zi) p(β) p(γ) p(R,D) p(τ 2).

Simulating draws from this posterior distribution forms the posterior or P-step

of our data augmentation procedure. Because this joint distribution is difficult to

handle, we partition the parameters and simulate their conditional distributions

directly or indirectly by Metropolis-Hastings steps. The P-step is accompanied by

a imputation or I-steps which simulate the missing elements of the Y matrix and

the unknown factor scores Z given assumed values for the parameters. Each cycle

of the algorithm proceeds as follows.

• Draw the missing elements of Y . For this step, we group the rows of Y

according to their missingness patterns as described in Section 2.1. For

missingness pattern s, we partition Σ into submatrices ΣsOO,ΣsMO,ΣsOM

and ΣsOO corresponding to the observed and missing variables. We then

simulate the missing elements for the rows within each missingness pattern

from yiM | yiO,Σ, γ, R,D, τ 2 ∼ N(µi, Σi) independently for i = 1,. . ., n,

where

µi = βTiMxi + ΣsMOΣ−1
sOO(yiO − βTiOxi),
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Σi = ΣsMM − ΣsMOΣ−1
sOOΣsOM .

• Draw the regression coefficients and factor loadings. These are distributed

as  βj

γcj ,j

 | YM , YO, Z,Σ, γ, R,D, τ 2 ∼ N(µβ?j ,Σβ?j)

independently for j = 1, . . . , r, where

µβ?j = (
n∑
i=1

x?,i,jx
T
?,i,j)

−1

(
n∑
i=1

yijx?,i,j),

Σβ?j = τ 2
j (

n∑
i=1

x?,i,jx
T
?,i,j)

−1

.

• Draw the factor scores. These are distributed as

zi | YM , YO, β, γ, R,D, τ 2 ∼ N(µzi ,Σzi)

for i = 1, . . . , n, where

µzi = (
r∑
j=1

γjτ
−2
j γTj +R)

−1 r∑
j=1

τ−2
j γj(yij − βTj xi),

Σzi = (
r∑
j=1

γjτ
−2
j γTj +R)

−1

.

• Draw the uniquenesses P (τ 2
j | YM , YO, β, γ), which are distributed as

Inv-Gamma(0.5n+ ατ2 , [0.5
n∑
i=1

(yij − βTj xi − γTj zi)
2
] + βτ2)

independently for j = 1, . . . , r.



70

• Draw the factor correlation matrix and the extra variance parameters. Be-

cause direct simulation of (R,D) from P (R,D | YM , YO, Z, β, γ, τ 2) is not

straightforward, we generate a candidate (R?, D?) from the inverse Wishart

proposal qR(R?, D?|R,D). We take (R,D) = (R?,D?) with probability min(1,

αR), where

αR =
p(R?, D?)qR(R, D|R?, D?)

p(R, D)qR(R?, D?|R, D)
× GR(R?, D?)

GR(R,D)
,

and where

GR(R,D) = |D|−1|R|−
n+k+1

2 exp(−1

2

n∑
i=1

zTi R
−1zi).

3.3.4 The PX-DA algorithm for EFA

In addition to the PX-DA algorithm just described, we desire a method for creating

multiple imputations under an EFA model, so that we can contrast our results with

those from EFA. The algorithm of Song and Belin (2004) was designed for a CFA

model without covariates. Here we extend their method to EFA with covariates.

In exploratory factor modeling, it is customary to assume that the latent factors

are uncorrelated (R = I). In EFA, the factor loadings are identified only up to an

orthogonal rotation. For the applications that we envision, the loadings themselves

are not of interest; this model is being used only as a device to impute the missing

questionnaire items. Setting R = I, and eliminating a priori zeros from the factor

loadings, the posterior density of the parameters given the complete data and

factor scores is

P (β, γ, τ 2|Y, Z)
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∝ (
r∏
j=1

τ 2
j )−

n
2 exp(−

r∑
j=1

n∑
i=1

(yij − βTj xi − γTj zi)
2

2τ 2
j

)

× exp(−1

2

n∑
i=1

zTi zi) p(β) p(γ) p(τ 2).

For the model parameters θ = (β, γ, τ 2), we specify the same priors as those

described in Section 3.3.1. The algorithm is implemented as follows.

• Group the rows of Y according to their missingness patterns. For missingness

pattern s, partition Σ into submatrices ΣsOO,ΣsMO,ΣsOM and ΣsOO corre-

sponding to the observed and missing variables, and simulate the missing

elements for the rows within each missingness pattern from yiM | yiO,Σ, γ, τ 2

∼ N(µi, Σi) independently for i = 1, . . . , n, where

µi = βTiMxi + ΣsMOΣ−1
sOO(yiO − βTiOxi),

Σi = ΣsMM − ΣsMOΣ−1
sOOΣsOM .

(2) Draw the factor loadings and regression coefficients from

 βj

γj

 | YM , YO, Z,Σ, γ, τ 2 ∼ N(µβ?j ,Σβ?j)

independently for j = 1, . . . , r, where

µβ?j = (
n∑
i=1

x?,ix
T
?,i)

−1

(
n∑
i=1

yijx?,i),

Σβ?j = τ 2
j (

n∑
i=1

x?,ix
T
?,i)

−1

,
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and where

x?,i =

 xi

zi

 .
• Draw the factor scores from

zi | YM , YO, β, γ, τ 2 ∼ N(µzi ,Σzi)

for i = 1, . . . , n, where

µzi = (
r∑
j=1

γjτ
−2
j γTj + Ik)

−1 r∑
j=1

τ−2
j γj(yij − βTj xi),

Σzi = (
r∑
j=1

γjτ
−2
j γTj + Ik)

−1

.

• Draw the uniquenesses P (τ 2
j |YM , YO, β, γ) from

Inv-Gamma(0.5n+ ατ2 , [0.5
n∑
i=1

(yij − βTj xi − γTj zi)
2
] + βτ2)

independently for j = 1, . . . , r.

As noted by Song and Belin (2004), if we apply familiar MCMC convergence

diagnostics to the elements of the factor loadings matrix γ — time-series plots,

autocorrelation functions, etc. — the procedure will appear to never converge

because the elements of γ are not identified. But the elements of γTγ are identified,

so in practice we apply convergence diagnostics to the upper triangle of γTγ.



Chapter 4
A Softly Constrained CFA Model

4.1 Formulating the model

In the previous chapter, we constrained the multivariate normal imputation model

for a multi-themed questionnnaire by supposing that the items within each theme

were conditionally independent given a small number of latent factors. Items from

different themes were assumed to be related only through their respective factors.

Although those models are intuitive appealing, real questionnaire data are likely

to depart from these assumptions. In our example from Add Health, items in the

Feelings Scale were designed to measure a single construct (emotional distress), and

and one would hope that a single factor could describe these items well. However,

the one factor-model was strongly rejected by a goodness-of-fit test. Two- and

three-factor models were not adequate, and even a four-factor solution did not

fit. Belin and Song (2004) have demonstrated that understating the number of

factors in an imputation model may lead to bias in post-imputation analyses. But

in this example, additional factors beyond the first (or perhaps the second) have

no theoretical justification. When extra factors are applied solely to accommodate
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lack of fit, the intuitive appeal of the model and its original rationale are lost.

In this chapter, we develop strategies for imputation under a CFA models with

small numbers of factors when the posited factor structure does not fit. Using

an idea presented by Boscardin and Zhang (2004), we relax the constraints on

the covariances by introducing an additional random component that allows the

covariance matrix to deviate from the ideal form. That is, we apply an informative

prior distribution to the the actual covariance matrix for the questionnaire items

that is centered at a CFA structure, and we introduce a dispersion parameter ν

that governs the lack of fit. The model is

yi | xi ∼ N(βTxi,Σ) for i = 1, . . . , n

Σ−1 | θ ∼Wishart(ν, ν Ω(γ,R, τ 2)−1), (4.1)

where Ω(γ,R, τ 2) = γTRγ+ τ 2 denotes the covariance matrix under a CFA model.

In one-factor per theme model, any column j of γ has only one nonzero element

in row cj, and

γij = 0 if i 6= cj, for j = 1, . . . , r.

The number of degrees of freedom, ν, describes the fidelity of our model (4.1) to

the one-factor per theme model. As ν → ∞ it reduces to CFA, and as ν → 0 it

becomes an unstructured covariance model.

4.2 Prior distributions

The prior distributions imposed on (β, γ, R, τ 2) are identical to those we de-

scribed in Section (3.3.1). We apply an improper uniform density on the matrix of

regression coefficients β and improper uniform densities on the nonzero loadings
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in γ. To avoid placing an awkward prior on the correlation matrix R, we expand

it to a covariance matrix W = D
1
2RD1/2 and apply a standard Jeffreys prior to

W . The uniquenesses in τ 2 are described by diffuse inverse-gamma distributions.

The important but difficult question now is how to handle the lack-of-fit pa-

rameter ν. Boscardin and Zhang (2004) suggested two different approaches. First,

we may fix this parameter at a value that is chosen a priori or estimated from the

data. Second, we may treat ν in a fully Bayesian fashion, apply a prior distribu-

tion, and sample values of ν from its posterior distribution. For this dissertation,

we use the second approach. We apply a lognormal prior, assuming that log ν

is normally distributed with mean µν and variance σ2
ν . In the simulations to be

presented in Chapter 5, we select different values for the hyperparameters µν and

σ2
ν to assess the sensitivity of our results to changes in the prior. Opting to regard

ν as random rather than fixed does increase the complexity of the imputation al-

gorithm, and the practical implications of this choice on the computational and

inferential performance of these procedures is still largely unknown. Gaining a

better understanding of strategies for handling ν is one important topic of ongoing

research which we discuss in Chapter 6.

4.3 Proposal densities

Our algorithm for multiple imputation is an expanded version of the Gibbs sampler

with embedded Metropolis-Hastings steps that we described in the last chapter. As

before, we will need proposal densities for the Metropolis-Hastings steps that mimic

the shape of the posterior distributions for (R,D), τ 2 and γ in local areas of the

parameter space. For (R,D) and τ 2, we apply the same proposal densities as those

described in Section 3.3.2, a Wishart kernel for W = D
1
2RD

1
2 and a multivariate t-
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distribution for log τ 2. For γ, we apply multivariate t distribution with parameters

based on the results from our PX-EM procedure defined in Chapter 3. That is, we

center our proposal density at the current value of γ, and we find a scale matrix

by equating the final value of ∂2l0
∂γ∂γT

from scoring to the second derivative of the

logarithm of the t density. The scale matrix is Sγ = c × α+2r
α

(− ∂2l0
∂γ∂γT

)
−1
| γ=γ0 ,

where γ0 denotes the local maximizer of l0, the observed-data loglikelihood of

the one-factor per theme model derived from the PX-EM algorithm as described

in Section 3.3.2, and c is a tuning parameter. When ν is treated as a random

parameter, we use a log-normal proposal density to ν centered at the current value

with variance σ2
p,ν which is selected and tuned by trial and error to achieve a

reasonable acceptance rate.

4.4 PX-DA procedure for multiple imputation

The complete-data posterior density of (Σ, β, γ, R,D, τ 2, ν) is equal to the product

of the likelihood in equation (4.1) and the prior densities given in equation (4.1)

and Section (4.2),

P (Σ, β, γ, R,D, τ 2, ν | Y ) (4.2)

∝ (2νr/2 Γr(
ν

2
))
−1

|Σ| −n/2exp(−1

2

n∑
i=1

(yi − βTxi)Σ−1(yi − βTxi)
T

)

× | νΩ(γ,R, τ 2) | ν/2 |Σ| −(ν+r+1)/2 exp(tr((−1

2
Σ−1νΩ(γ,R, τ 2)))

× p(R,D) p(γ) p(τ 2) p(ν) p(β).

The actual covariance matrix Σ plays a similar role to that of a random ef-
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fect in a mixed-effects regression model. Because the inverted Wishart density is

conjugate to a multivariate normal likelihood, we can analytically integrate Σ out

from this expression, which gives

P (β, γ,R,D, τ 2, ν | Y ) (4.3)

∝ ν
ν
2 (2

νr
2 Γr(

ν

2
))
−1

2
(n+ν)r

2 Γr(
n+ ν

2
)

× |Ω(γ,R, τ 2)| ν/2 |
n∑
i=1

(yi − xiβ)(yi − xiβ)T + νΩ(γ,R, τ 2) | −
n+ν

2

× p(R,D) p(γ) p(τ 2) p(ν) p(β).

For certain parameters, this marginalized density is more difficult to handle than

(4.2), but for others the marginalization does not increase the complexity. In each

cycle of our algorithm, we condition on a simulated value of Σ draw from its full

conditional posterior distribution given the other parameters, so this integration

is performed stochastically rather than analytically.

For notational convenience, we define G(β, γ, R,D, τ 2, ν) as the function

|γTRγ + τ 2|
ν
2 × |ν(γTRγ + τ 2) +

n∑
i=1

(yi − βTxi)(yi − βTxi)
T |
−n+ν

2

.

One cycle of our MCMC procedure, which can be viewed as an PX-DA algorithm

with embedded Metropolis-Hastings steps, can be described as follows.

(1) Conditioning on YO, β and Σ, impute the missing elements of Y in the same

way as under the normal model with unstructured covariance matrix de-

scribed in Section 2.1. First, group the rows of Y according to their missing-

ness patterns. If yi bears missingness pattern s, we partition Σ into subma-

trices ΣsOO,ΣsMO,ΣsOM and ΣsOO corresponding to the observed and missing
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variables. We then simulate the missing elements in yi given the observed

elements, drawing yiM | yiO, β,Σ, γ, R,D, τ 2, ν ∼ N(µi, Σi) independently

for i=1,. . ., n, where

µi = βTiMxi + ΣsMOΣ−1
sOO(yiO − βTiOxi),

Σi = ΣsMM − ΣsMOΣ−1
sOOΣsOM .

(2) Draw β | YM , YO,Σ, γ, R, τ 2, ν from a multivariate normal distribution,

vec(β|YM , YO,Σ) ∼ N(vec(β̂), Σ⊗ (XTX)
−1

),

where β̂ = (XTX)
−1
XTY .

(3) Simulate (Σ, θ) from P(Σ, θ|YM , YO, β, ν) using the following four steps.

(a) Generate Σ | YO, YM , β, θ, ν from

W−1(ν + n,
n∑
i=1

(yi − βTxi)(yi − βTxi)
T

+ νΩ(γ,R, τ 2)).

(b) To simulate γ | YO, YM , β, τ 2, R,D, ν, generate a candidate γ? from the

jumping kernel q1(γ
? | γ) which was described earlier. Accept γ? as γ

with probability min(1, α1), where

α1 =
p1(γ

?)q1(γ | γ?)
p1(γ)q1(γ? | γ)

× G(β, γ?, R, D, τ 2, ν)

G(β, γ, R, D, τ 2, ν)
,

where p1(·) denotes the prior density for γ.

(c) To simulate τ 2 | YM , YO, β, γ, R,D, ν, generate a candidate τ 2? according

to a jumping kernel q2(τ
2? | τ 2) described earlier. Accept τ 2? as τ 2 with
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probability min(1, α2), where

α2 =
p2(τ

2?)q2(τ
2(t) | τ 2?)

p2(τ 2(t))q2(τ 2(?) | τ 2)
× G(β, γ, R, D, τ 2?, ν)

G(β, γ, R, D, τ 2, ν)
,

and where p2(·) is the prior density for τ 2.

(d) To simulate R,D | YM , YO, β, γ, τ 2, ν, generate a candidate (R?, D?) ac-

cording to q3(R
?,D? | R,D). Accept (R?,D?) as (R,D) with probability

min(1, α3),

α3 =
p3(R

?, D?)q3(R, D | R?, D?)

p3(R, D)q3(R?, D? | R, D)
× G(β, γ, R?, D?, τ 2, ν)

G(β, γ, R, D, τ 2, ν)
,

where denotes the prior density of (R,D).

(4) If the parameter ν is treated as random, simulate ν | YM , YO, β, γ, R,D, τ 2,Σ

by generating a candidate ν? from the lognormal jumping kernel, and accept

ν? with probability min(1, α4), where

αν =
p4(ν

?)q4(ν | ν?)
p4(ν)q4(ν(?) | ν)

×
2
νr
2 Γr(

ν
2
)

2
ν?r
2 Γr(

ν?

2
)
×

etr(−1
2
ν?Ω(γ,R, τ 2)Σ−1)

etr(−1
2
νΩ(γ,R, τ 2)Σ−1)

× | ν?Ω(γ,R, τ 2)Σ−1 | ν
?/2

| νΩ(γ,R, τ 2)Σ(t+1)−1 | ν/2
,

where p4(·) and q4(·) denote the prior and jumping kernel, respectively.

The performance of this imputation procedure will be evaluated in the next

chapter when we apply it to simulated data.



Chapter 5
A Simulated Application

5.1 Purpose of the simulation study

The 19-item Feelings Scale section from Add Health has a simple yet realistic struc-

ture that makes it an appealing prototype application for these new procedures.

As with any real dataset, however, values of the true population parameters are

unknown, and a single sample from that population does not allow us to assess

repeated-sampling properties.

The purpose of this simulation experiment is to evaluate the performance of

the new softly constrained CFA imputation model and compare it to available and

proposed alternatives. With respect to this new model, we have two main concerns.

The first concern is bias. If a CFA model does not describe the population well,

then how harmful can it be to apply this incorrect model? If the CFA model does

not fit, does the inclusion of the random component in Σ to account for lack of

fit effectively mitigate that bias? The second main concern is efficiency. If the

CFA model does indeed describe the population well, then does the inclusion of

the random component in Σ add unnecessary noise to the imputed values and
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decrease efficiency of the resulting inferences?

5.2 Data generation

For this simulation, we created independent samples from a multivariate normal

population whose means and covariances were estimated from the actual items in

the Feelings Scale. We began with data from the Add Health Wave II student

interview public use dataset, which is essentially a random half-sample of the per-

ticipants made available by the Add Health investigators with minimal restrictions

on its use. This sample yielded 4,595 observations on 19 items describing the par-

ticipants’ emotional states. We also included a single covariate, sex, which is mildly

predictive of the Feelings Scale items. From these data, we estimated regression

coefficients and covariances under the unstructured multivariate normal model de-

scribed in Chapter 2, using the maximum-likelihood procedures in Schafer’s (2008)

NORM library for R. Regarding these parameters as population values, we then

drew two hundred independent samples of n = 300 observations each and imposed

missing values on the samples in various ways.

The sample size of n = 300 can be justified as follows. Based on personal expe-

rience, we know that it is not uncommon for a researcher with access to thousands

of cases to attempt analyses involving hundreds of items. The largest applica-

tions of the unstructured normal model to date have involved approximately 150

variables; beyond that, the current procedures tend to break down or become com-

putationally infeasible. Significant advantages would be realized if the maximum

number of variables could be doubled to about 300, which is approximately 7% of

the number of cases in our Add Health sample. Applying a 7% item-to-case ratio

to the 20 items in question (19 Feelings Scale items plus sex), we obtained a target
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sample size of roughly n = 300.

5.3 Missing data mechanisms

After drawing 200 random samples from the population of n = 300 cases each,

we imposed patterns of missing values on each sample by two different random

procedures.

The first procedure is a missing completely at random (MCAR) mechanism in

which item nonresponse is clustered within individuals. With probability 0.7, an

individual provided complete responses to all 19 items, and with probability 0.3,

the individual answered each item with probability 0.9. This mechanism produces

a low missingness rate per item of 3% and a 74% average rate of complete cases,

which seems realistic for a survey like Add Health.

The second procedure is missing at random (MAR) in which missingness varies

by covariates. For each of the 19 items, we set the logit-probability of missingness

equal to |δ0| + |δ1|Xi,1 + |δ2|Xi,2, where Xi1 and Xi2 are the regressors in the

X matrix (a constant and sex), and δl ∼ N(0.0.5) independently for i = 0, 1, 2.

The regression coefficients were forced to be positive because, as pointed out by

Song and Belin (2004), coefficients symmetrically distributed about zero may lead

to prediction errors in both directions that tend to cancel each other out. Under

those conditions, even naive procedures such as case deletion will have very little

discernible bias.
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5.4 Imputation models

Each incomplete data set was imputed using the following eight models: the normal

model with unstructured covariance matrix, the normal model with a ridge prior

with ε = 0.02, a 1-factor EFA model, a 2-factor EFA model, a 3-factor EFA model,

a 2-factor CFA model, and our new softly constrained 1-factor CFA models with

prior distributions for log ν centered at log 30 and log 20. Those two prior guesses

were thought to be reasonable intermediate points between extremely small values

of ν, which would approximate the unstructured normal model, and extremely

high values for ν, which would approximate the 1-factor EFA solution.

Our 2-factor CFA model was motivated by the the exploratory factor analysis

on the actual data (Section 3.1) which revealed that the 15 positively-worded items

heavily loaded on the first factor and the 4 negatively-worded items mainly loaded

on the second factor. Therefore, we assumed that the factor loadings γ have the

following form, where ‘1’ denotes a parameter that is freely estimated, and ‘0’

denotes a parameter that is constrained to zero:

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1


In the 1-factor CFA model with soft contraints, all items are assumed to load on

the single factor.

The population covariance matrix for this example, which was empirically de-

termined from Add Health, does not precisely follow a k-factor structure for k=1,

2, 3 or 4. Much of the inter-item correlations can be explained by the first principal

component, but additional components beyond the first are not negligible. The

unstructured covariance model with a ridge prior, and the EFA models with 1-3
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latent factors, are conditions similar to those investigated by Song and Belin (2004)

in their simulation work. The CFA model with 2 factors and the softly constrained

CFA models are new conditions that have not yet been tried. Comparing 2-factor

CFA with softly constrained 1-factor CFA is especially interesting, because these

represent alternative strategies for accommodating lack of fit. One strategy, which

was suggested by Song and Belin (2004), is to increase the number of components;

the other strategy, which motivates our work, is to smoothly mix the inadequate

factor model with an unstructured model.

5.5 Estimands

Following Song and Belin (2004), we selected several mean and correlation param-

eters that we believed would characterize the typical behavior and performance of

our methods over repeated samples. We randomly chose three marginal means,

µ1, µ7 and µ19. We also chose pairs of items exhibiting some of the strongest and

weakest correlations in the population, including items that were positively worded

and negatively worded. The correlations we selected were ρ2,11, ρ11,17, and ρ16,18.

5.6 Evaluation criteria

For each sample and each imputation model, we generated M = 25 imputations

for the missing items by the algorithms described in Chapters 2–4. We computed

complete-data estimates and standard errors for each target estimand Q and com-

bined them using the well known rules developed by Rubin (1987). After obtaining

the point estimate and confidence interval for Q from each sample and method,

we computed four performance statistics suggested by Collins, Schafer and Kam
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(2001): standardized bias, root-mean-square error (RMSE), average 95% width of

confidence interval, and actual 95% coverage rate. Standardized bias is defined

to be 100 × (average estimate minus true value)/SE, where SE is the standard

deviation of Q. Standardized bias may be considered practically significant if its

absolute value is greater than 50%, because that is the approximate point at which

the actual coverage of a nominal 95% confidence interval drops below 90%, dou-

bling the rate of Type 1 errors. RMSE is the average squared difference between

the estimate and the true value. If two interval estimates have similar rates of

coverage, the one that yields narrower confidence intervals should be preferred.

Because of the extensive computations required by these imputation proce-

dures, we were able to perform only 200 replications for this dissertation. That

number is not sufficient to accurately measure the coverage rates of nominal 95%

intervals; ideally we would have liked to perform 1,000 or even 5,000 runs. The

simulated coverage rates reported in the following tables have a margin of error

of roughly ±2
√
.95× .05/200 = 3%. Despite that inaccuracy, comparisons among

the coverage rates within each table may still be meaningful. Note that this is

a blocked experiment; the same 200 samples were treated by all eight imputation

methods. Moreover, the rates of missing information here are modest; with no

missing values at all, the results from any method applied to the same sample

would be identical. Under these conditions, a small difference in simulated cover-

age rates — say, 2.5%, which means that one method captured the true parameter

in 5 samples when the other method did not — does provide some evidence that

the actual coverage rates are different.
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5.7 Simulation results

The performance of the eight methods for the six parameters is summarized in

Tables 5.1–5.6. The results for µ1 (Table 5.1) show that all imputation methods

performed well for this parameter. Biases are neglible, and there is little variation

in bias, RMSE or interval width among any of the methods. Estimates are less

precise and intervals are wider for MAR than for MCAR, because this particular

MAR mechanism produces slightly higher rates of missingness.

For the mean parameters µ7 and µ19 (Tables 5.2–5.3), all methods performed

well except the 2-factor CFA model, which seriously underestimated these means.

At this moment, we are not entirely sure if those results are trustworthy. Although

we have repeatedly checked our the imputation routines for CFA, a discrepancy

of this size leads us to suspect that the program may still contain a bug. If this

result is not due to a programming error, then it serves as a stark warning about

the dangers of applying inappropriate constraints to an imputation model. And if

the result is trustworthy, it bodes well for our strategy of applying soft constraints,

because both versions of the softly constrained model perform much better than

the inappropriate hard constraints of CFA.

Examining the results for ρ2,11, ρ11,17 and ρ16,18 (Tables 5.4–5.6), we see some

meaningful differences among the methods. Practically significant biases appear

in the EFA methods for the MAR condition. These biases are especially pro-

nounced for ρ16,18. Interestingly, the softly constrained models, which represent a

compromise between one-factor EFA and the unstructured model, show none of

this tendency for bias. The allowance for lack of fit does appears to correct this

difficulty in the EFA models without any noticeable inflation of variance.

Another encouraging sign is the nearly equivalent good performance of the
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softly constrained model and the unstructured model in each of the Tables 5.1–

5.6. With n = 300 cases and 20 variables, all parameters of the unstructured

model are well estimated, and that model should perform well. The model with

soft constraints is more parsimonious and makes more assumptions, but those as-

sumptions do not seem to bias the results in any noticeable way. The generality

of the unstructured model is an asset in this example, but in situations with many

more variables and/or higher variable-to-case ratios, the unstructured model be-

comes unstable or unusable. As variables are added to the softly constrained CFA

model, it too grows in complexity, but much more slowly than the unstructured

model. As more questionnaire items and themes are included in an imputation

procedure, we must eventually reach a tipping point where the generality of the

unstructured model becomes a liability, and every additional variable will cause

the performance to deteriorate relative to CFA with soft constraints.
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Table 5.1. Simulation results of the unstructured normal model, the normal model with
a ridge prior, the 1-factor EFA model, the 2-factor EFA model, the 3-factor EFA model,
the ordinary 2-factor CFA model, and the “soft” constraint model, Q = µ1

Missingness Models Standardized RMSE Actual Average
Bias 95% Interval

Coverage Width
MCAR normal(unstructured) -0.0606 0.0017 0.95 0.1608

normal(ridge) -0.0652 0.0017 0.94 0.1606
1-factor EFA -0.0631 0.0017 0.945 0.1612
2-factor EFA -0.0706 0.0017 0.95 0.1611
3-factor EFA -0.0628 0.0018 0.94 0.1611
2-factor CFA -0.0776 0.0017 0.95 0.1606
normal(soft)1 -0.0622 0.0017 0.94 0.1606
normal(soft)2 -0.0594 0.0018 0.945 0.1606

MAR normal(unstructured) -0.0223 0.0024 0.925 0.1858
normal(ridge) -0.0215 0.0024 0.92 0.1818
1-factor EFA -0.032 0.0025 0.935 0.1893
2-factor EFA -0.0135 0.0026 0.915 0.188
3-factor EFA -0.0287 0.0026 0.915 0.1891
2-factor CFA -0.0519 0.0024 0.92 0.181
normal(soft)1 -0.0247 0.0024 0.93 0.1833
normal(soft)2 -0.039 0.0024 0.92 0.1828
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Table 5.2. Simulation results of the unstructured normal model, the normal model with
ridge prior, the 1-factor EFA model, the 2-factor EFA model, the 3-factor EFA model,
the ordinary 2-factor CFA model, and the “soft” constraint model, Q = µ7

Missingness Models Standardized RMSE Actual Average
Bias 95% Interval

Coverage Width
MCAR normal(unstructured) -0.1364 0.0009 0.955 0.1177

normal(ridge) -0.1357 0.0009 0.955 0.1175
1-factor EFA -0.1461 0.0009 0.955 0.1181
2-factor EFA -0.1503 0.0009 0.945 0.118
3-factor EFA -0.1506 0.0009 0.95 0.1181
2-factor CFA -1.4138 0.0025 0.73 0.1176
normal(soft)1 -0.1342 0.0009 0.95 0.1175
normal(soft)2 -0.1363 0.0009 0.955 0.1175

MAR normal(unstructured) -0.1316 0.001 0.96 0.13505
normal(ridge) -0.1273 0.001 0.96 0.1327
1-factor EFA -0.1429 0.0012 0.97 0.1386
2-factor EFA -0.1598 0.0011 0.975 0.1389
3-factor EFA -0.1509 0.0012 0.955 0.1387
2-factor CFA -1.3053 0.0027 0.775 0.1328
normal(soft)1 -0.141 0.001 0.96 0.1326
normal(soft)2 -0.1354 0.001 0.965 0.1326
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Table 5.3. Simulation results of the unstructured normal model, the normal model with
ridge prior, the 1-factor EFA model, the 2-factor EFA model, the 3-factor EFA model,
the ordinary 2-factor CFA model, and the “soft” constraint model, Q = µ19

Missingness Models Standardized RMSE Actual Average
Bias 95% Interval

Coverage Width
MCAR normal(unstructured) -0.1234 0.0023 0.95 0.1932

normal(ridge) -0.1227 0.0023 0.95 0.1931
1-factor EFA -0.1327 0.0023 0.95 0.194
2-factor EFA -0.1244 0.0024 0.95 0.1939
3-factor EFA -0.1225 0.0024 0.95 0.1939
2-factor CFA -2.0013 0.0115 0.51 0.1933
normal(soft)1 -0.1277 0.0023 0.955 0.193
normal(soft)2 -0.1256 0.0023 0.955 0.193

MAR normal(unstructured) -0.0712 0.003 0.95 0.2209
normal(ridge) -0.0731 0.003 0.95 0.2172
1-factor EFA -0.0228 0.0032 0.945 0.2273
2-factor EFA -0.0434 0.0032 0.945 0.2288
3-factor EFA -0.0206 0.0033 0.95 0.2269
2-factor CFA -1.6661 0.0116 0.62 0.2204
normal(soft)1 -0.0762 0.0029 0.945 0.2177
normal(soft)2 -0.0785 0.0029 0.95 0.218
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Table 5.4. Simulation results of the unstructured normal model, the normal model with
ridge prior, the 1-factor EFA model, the 2-factor EFA model, the 3-factor EFA model,
the ordinary 2-factor CFA model, and the “soft” constraint model, Q = ρ2,11

Models Standardized RMSE Actual Average
Bias 95% Interval

Coverage Width
MCAR normal(unstructured) -0.0595 0.0036 0.96 0.2335

normal(ridge) -0.0571 0.0036 0.96 0.2331
1-factor EFA -0.199 0.0035 0.97 0.2344
2-factor EFA -0.1997 0.0035 0.965 0.2345
3-factor EFA -0.1982 0.0035 0.965 0.2344
2-factor CFA -0.0204 0.0034 0.97 0.2334
normal(soft)1 -0.0514 0.0036 0.97 0.233
normal(soft)2 -0.0548 0.0036 0.97 0.2332

MAR normal(unstructured) -0.1899 0.0056 0.94 0.2996
normal(ridge) -0.1824 0.0061 0.925 0.295
1-factor EFA -1.7293 0.0069 0.94 0.2785
2-factor EFA -1.7212 0.0069 0.95 0.2801
3-factor EFA -1.6959 0.007 0.93 0.2801
2-factor CFA 0.1107 0.0031 0.975 0.2772
normal(soft)1 -0.1343 0.0056 0.92 0.2939
normal(soft)2 -0.1303 0.0057 0.945 0.2962
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Table 5.5. Simulation results of the unstructured normal model, the normal model with
ridge prior, the 1-factor EFA model, the 2-factor EFA model, the 3-factor EFA model,
the ordinary 2-factor CFA model, and the “soft” constraint model, Q = ρ11,17

Models Standardized RMSE Actual Average
Bias 95% Interval

Coverage Width
MCAR normal(unstructured) -0.0361 0.0033 0.95 0.2328

normal(ridge) -0.0342 0.0033 0.95 0.2325
1-factor EFA -0.134 0.003 0.965 0.2342
2-factor EFA -0.1257 0.003 0.97 0.2341
3-factor EFA -0.1285 0.003 0.97 0.2339
2-factor CFA -0.0072 0.0031 0.965 0.2326
normal(soft)1 -0.0281 0.0033 0.95 0.2326
normal(soft)2 -0.0291 0.0033 0.95 0.2327

MAR normal(unstructured) -0.1311 0.0047 0.965 0.3036
normal(ridge) -0.1032 0.0048 0.96 0.2972
1-factor EFA -1.1675 0.0038 0.99 0.2794
2-factor EFA -1.1399 0.0038 0.99 0.2804
3-factor EFA -1.0975 0.0038 0.995 0.2802
2-factor CFA -0.1822 0.0022 1 0.2741
normal(soft)1 -0.0764 0.0045 0.965 0.2945
normal(soft)2 -0.074 0.0045 0.97 0.2971
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Table 5.6. Simulation results of the unstructured normal model, the normal model with
ridge prior, the 1-factor EFA model, the 2-factor EFA model, the 3-factor EFA model,
the ordinary 2-factor CFA model, and the “soft” constraint model, Q = ρ16,18

Missingness Models Standardized RMSE Actual Average
Bias 95% Interval

Coverage Width
MCAR normal(unstructured) 0.1679 0.004 0.935 0.2335

normal(ridge) 0.1744 0.0041 0.935 0.2329
1-factor EFA -0.1852 0.0037 0.945 0.2363
2-factor EFA -0.1765 0.0037 0.95 0.2363
3-factor EFA -0.1763 0.0037 0.945 0.2361
2-factor CFA 0.2305 0.0041 0.945 0.2329
normal(soft)1 0.1714 0.0041 0.93 0.2328
normal(soft)2 0.1771 0.0041 0.925 0.233

MAR normal(unstructured) -0.0203 0.0068 0.955 0.3022
normal(ridge) 0.0851 0.0072 0.93 0.2957
1-factor EFA -3.668 0.0311 0.28 0.2841
2-factor EFA -3.7099 0.0311 0.29 0.2851
3-factor EFA -3.5736 0.0307 0.3 0.2843
2-factor CFA -0.5682 0.008 0.905 0.3014
normal(soft)1 0.0516 0.0062 0.94 0.2967
normal(soft)2 0.0725 0.0065 0.94 0.2974



Chapter 6
Discussion

6.1 What has been accomplished

Despite two decades of rapid growth in multiple imputation methods, data analysts

who work with large, multi-themed questionnaires still face daunting challenges.

The imputation models and software that are currently available, most of which

are based on an unstructured normal model, still cannot handle the large numbers

of variables necessary for many research projects.

Building upon the exploratory factor imputation model of Song and Belin

(2004), we proposed a confirmatory version specifically designed for multi-themed

questionnaires. We developed algorithms for parameter estimation and multiple

imputation under this confirmatory model, and then we extended the model to

accommodate lack of fit by allowing the population covariance matrix to randomly

deviate from the posited factor structure.

Missing data are usually a nuisance, not the main focus of scientific inquiry,

and many researchers cannot afford to spend a great deal of effort and resources

to develop and fine-tune an imputation model for any specific application. Ideally,
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we would like to have a flexible class of procedures that would enable the imputer

quickly specify and build a model that may not be perfect, but is good enough for

the task at hand, so that he or she may impute the missing values quickly and move

on. If the number of variables is large, the procedure may require the imputer to

make intelligent decisions about which relationships are of primary importance and

need to be preserved, and which ones are less crucial and may be omitted. Decisions

made during the imputation-modeling phase will inform data users regarding the

possible impact of the imputation on subsequent analyses. An ideal imputation

procedure would also be self-correcting in the sense that if some relationships

posited by the imputer are strongly contradicted by the data, the model would

automatically relax those assumptions to accommodate the data. The methods

that we have proposed and developed in this dissertation are a meaningful step

toward this goal, but much work remains to be done before these procedures are

ready for routine use.

6.2 Work that remains

The simulation study presented in Chapter 5 involved 20 variables in samples of

300 cases, a situation where the unstructured covariance model works well and

specialized techniques are not really needed. That simulation was primarily a test

to see whether this proposed imputation scheme is feasible and well behaved. Ad-

ditional simulations are needed see how the new method works when the unstruc-

tured model performs poorly (e.g., 400 cases and 100 variables) or fails without

significant prior input (e.g., 100 cases and 100 variables).

More investigations are needed to understand and fine-tune the soft constraints

that allow Σ to randomly deviate from the factor model. Is it better to treat the
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degrees of freedom ν as an unknown parameter and impose a prior distribution on

it, as we have done, or to fix it at a point estimate? To do the latter, we would

need a reliable method to estimate ν. It may be possible to expand the PX-EM

procedure developed in Chapter 4 to estimate this parameter along with the others.

Researchers who use factor analysis and structural-equations models are familiar

with the concept of a fit index. A fit index is essentially a goodness-of-fit statistic

that compares the given model to the unstructured alternative, but the statistic is

scaled by the sample size so that the fit does not appear to worsen merely because

n has increased. The parameter ν is obviously related to a fit index, but the

nature of that relationship has not yet been described. If rules of thumb could be

developed that show correspondence between ν and the popular fit indices, then

researchers would be able to guess a reasonable value for ν and either fix ν at that

guess or propose a prior distribution for ν centered at that guess.

By using an inverted-Wishart distribution to characterize the discrepancy be-

tween Σ and the proposed factor structure, we have described the discrepancy by a

single parameter ν. Yet we can imagine a situation where a factor model describes

the relationships among items well, except that one pair of items has a much higher

correlation than the model predicts. An experienced data analyst could introduce a

residual covariance between those two items, effectively allowing an off-diagonal el-

ement of the uniqueness matrix τ 2 to be nonzero. Our inverted-Wishart approach

might not react well to that situation; it may smooth the aberrant correlation

coefficient too little or too much. It is worthwhile to investigate alternatives to

the inverted Wishart that could apply different degrees of smoothing to different

portions of Σ if warranted by the data.
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6.3 Extensions to discrete items

Our assumption of normality is not well suited to survey items that are binary,

ordinal or nominal. Aside from computational convenience, the main reason why

we chose to work within the multivariate normal framework is that it is feasible to

extend this model to accommodate discrete variables. A multivariate probit model

describes binary items as coarsened versions of correlated latent normal variates.

Chib and Greenberg (1998) presented MCMC methods for Bayesian posterior sim-

ulation in multivariate probit models. The main difficulty in these methods, as

Chib and Greenberg (1998) noted, is that the variances of the latent normal vari-

ates must be fixed to identify the model parameters. These variances are usually

fixed at one, so that the covariance matrix decribing these relationships becomes

a correlation matrix. Bayesian inference for correlation matrices is awkward be-

cause, as we noted in Chapter 3, convenient prior distributions are not available

and posterior distributions are difficult to simulate. However, the parameter ex-

tension method that we applied in Chapters 3–4, which augments the correlations

by a vector of inestimable variances, has been demonstrated to be effective in

simplifying the computations for multivariate probit models (Liu, 2000).

Boscardin et al. (2006, 2008) applied this parameter-extension method to an

extended class of multivariate probit models that describe binary, ordinal and

nominal items, and this extension can be incorporated into our framework without

much difficulty. The extension would add two steps to the MCMC procedures

described in Chapters 3 and 4. One step would simulate posterior draws of the

unknown threshold values that relate the latent normal variates to the observed

items. Drawing these thresholds can be done one variable at a time using straight-

forward procedures described by Boscardin et al. (2008). The second additional
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step requires conditional simulation of the latent normal variates given their corre-

lation matrix and the observed discrete items. With r binary responses, this could

be done by simulating an r-dimensional normal candidate with given correlations

and accepting the candidate if it falls within the correct orthant. That procedure

is very inefficient for large values of r, and it may be replaced by a Gibbs sampler

that cycles through the r variates and simulates each one given the others from

a truncated normal distribution (Chib & Greenberg, 1998). The extension of this

procedure to items with three or more levels is immediate (Boscardin et. al, 2008).

6.4 Extensions to multilevel data

In the Add Health study, participants were selected by a two-stage sampling proce-

dure in which the participating schools were sampled from a master list of schools,

and then students were selected within the schools. The clustering of students

within the schools is a crucial element of multilevel regression analyses which seek

to explain inter- and intra-school variability. Even when the clustering is a nui-

sance, e.g., when the data are analyzed by conventional regression methods, ac-

knowledging the two-stage sampling procedure can be crucial for computing correct

standard errors, and the clustering ought to be reflected in the imputation model

as well.

The imputation models that we have developed can be expanded to account

for clustering in the following way. Let yic denote the vector of variables to be

imputed for participant i nested within cluster c. A multilevel factor model can

be formulated as

yic | δc ∼ N( βTxic + δTc wic, γ
TRγ + τ 2),
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where xic and wic are vector of covariates, and δc is a matrix of random coefficients

distributed as vec(δ) ∼ N(0,∆). The vector wic will usually include a constant

and possibly additional variables from xic, and ∆ may be assumed to have a

block-diagonal structure with r independent blocks corresponding to the variables

in yic. This model combines factor analysis with the multilevel features of the

imputation models described by Schafer and Yucel (2002). If the cluster-level

random effects δc were known, then the model for yic − δTicwic would reduce to

EFA or CFA. Therefore, we can accommodate this extension by adding two more

steps to the MCMC procedures previously described. One step would sample

the random effects δc for each cluster from their posterior distribution given the

parameters and complete data. The other step would sample ∆ from its posterior

distribution given the random effects. The block-diagonal structure of ∆ could be

accommodated by applying independent prior distributions to each block.



Appendix A
The Gradient and the Hessian

Matrix under the One-factor Per

Section Model

A.1 The actual log-likelihood

Let ΦiO = γTiORγiO + τ 2
iO. The actual log-likelihood based on YO is

l0(θ) =
n∑
i=1

l0,i(θ)

∝ − 1

2

n∑
i=1

log|ΦiO| −
1

2

n∑
i=1

(yiO − βTiOxi)
T

(ΦiO)−1(yiO − βTiOxi)

∝ − 1

2

n∑
i=1

log|ΦiO| −
1

2

n∑
i=1

yTiO(ΦiO)−1yiO

− 1

2

n∑
i=1

xTi βiO(ΦiO)−1βTiOxi +
n∑
i=1

yTiO(ΦiO)−1βTiOxi.

Let ri denote the total number of the observed variables for the ith unit, βiO,l?

denote the l?th column of βiO which is indexed as the lth column in βi and (Ω−1
iO ),u?
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denote the u?th column of Ω−1
iO which is indexed as the uth column in Ω−1

i .

A.2 The first derivative vector

For i = 1, . . . , n, j = 1, . . . , r, l = 2, . . . , k, and m = 1, . . . , l − 1,

∂l0
∂βj
∝

n∑
i=1

xi(yiO − βTiOxi)
T

(Ω−1
iO ),j?1ij

∂l0
∂τ 2

j

∝ − 1

2

n∑
i=1

(Ω−1
iO )j?,j?1ij +

1

2

n∑
i=1

[((yiO − βTiOxi)
T

(Ω−1
iO ),j?)

2
1ij]

∂l0
∂γcj ,j

∝ −
n∑
i=1

ri∑
u?=1

(Ω−1
iO )j?,u?Rcj ,cuγiO,cu,u?1ij

+
n∑
i=1

ri∑
u?=1

(Ω−1
iO )j?,(yiO − βTiOxi)(Ω−1

iO )u?,(yiO − βTiOxi)Rcj ,cuγiO,cu,u?1ij

∂l0
∂Rl,m

∝ −
n∑
i=1

∑
1≤v?<u?≤ri

∂ΩiO,u?,v?

∂Rlm

(Ω−1
iO )u?,v?

+
n∑
i=1

∑
1≤v?<u?≤ri

[
∂ΩiO,u?,v?

∂Rlm

(Ω−1
iO )u?,(yiO − βiOxi)(Ω−1

iO )v?,(yiO − βiOxi)],

where

∂ΩiO,u?,v?

∂Rl,m

=

 γiO,l,u?γiO,m,v? if cu = l, cv = m

0 otherwise.

A.3 The second derivative matrix

For i = 1, . . . , n, j = 1, . . . , r, q = 1, . . . , r, l, l2 = 2, . . . , k, m = 1, . . . , l− 1 and
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m2 = 1, . . . , l2 − 1,

∂2l0
∂βTj ∂βq

∝ −
n∑
i=1

xix
T
i (Ω−1

iO )j?,q?1ij1iq

∂2l0
∂βj∂a1
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T
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T ∂(Ω−1
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∂a2

1ij1iq

where a1, a2 could be γcq ,q or τ 2
q ;

∂2l0
∂βj∂Rl,m

∝
n∑
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xi(yiO − βTiOxi)
T ∂(Ω−1
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+
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(Ω−1
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T
(Ω−1
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×Rcj ,cq1ij1iq]

∂2l0
∂γcj ,j∂Rl2,m2

∝ −
n∑
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n∑
i=1

ri∑
u?=1

[(yiO − βiOxi)T (Ω−1
iO ),j?

(yiO − βiOxi)T
∂(Ω−1

iO ),u?

∂Rl2,m2

×Rcj ,cuγiO,cu,u?1ij]

+
n∑
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where the derivatives of (Ω−1
iO )j?,u? can be derived using the formula

∂(ΩiO)−1

∂θ
= −(ΩiO)−1(

∂ΩiO

∂θ
)(ΩiO)−1,
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and the derivatives of ΩiO w.r.t the parameters are

∂ΩiO,j?,u?

∂τ 2
q

∝1ij1iq1j?=u?=q?

∂ΩiO,j?,u?

∂γcq ,q
∝ 1ij1iq[1j?=q?Rcq ,cuγiO,cu,u? + 1u?=q?Rcq ,cjγiO,cj ,j? ]

∂ΩiO,j?,u?

∂Rl2,m2

∝ 1ijγiO,l2,j?γiO,m2,u?1cj=l2,cu=m2 ,

for 1 ≤ j? ≤ u? ≤ ri. The other elements of the derivative matrix of ΩiO and the

Hessian matrix can be derived by symmetry.
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