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Abstract

In this thesis methods to exploit “purposeful” mobility to improve the efficiency
and performance of a sensor network are presented. For example a mobile node
experiencing local deep fades and shadowing can move to a different location for
better channel conditions. Transmission power required to transmit over a distance
d is here on assumed to be given by Kdα where K is a constant and α ≥ 2
is the transmission attenuation factor. Mobility can reduce transmission power
by reducing the transmission distance d. The thesis presents an algorithm to
move sensor nodes to reduce transmission distance and hence transmission energy,
spending less energy for motion compared to the energy saved in transmission over
time.

In our sensor network, data generated by sensor nodes is aggregated at local
sinks and forwarded to a central node. “Capacity” is defined as the number of
sensor nodes that a sink can support. The number of data flows (each emanating
from a sensor node) that a sensor node can relay is limited by a variety of factors
such as channel conditions (including interference, attenuation, fading and ambient
noise) and internal hardware and energy resources of the node. Assuming that the
one-hop neighbors of a sink form the most significant communication relaying
bottleneck, an analytical result for the fraction of sensor nodes that are unable to
connect to their sink, i.e., the outage probability is presented.
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Chapter 1
Introduction

An ad hoc network is a collection of autonomous and independent devices that

can communicate with one another over a wireless channel. Ad hoc networks have

become pervasive due to the availability of cheap wireless devices. They offer a

convenient alternative to wired networks. Typical uses for ad hoc networks can be

found in sensor networks, where devices may be rapidly deployed in a, possibly,

hostile environment, disaster relief operation where existing infrastructure is no

longer available, and general temporary networks where the short lifetime of a

wired network does not justify the cost and time for setting it up. Due to the

untethered nature of these devices, referred here on as nodes, they can be mobile

and in communication as long as they are in radio range of each other. The current

focus in this thesis is on sensor networks rather than mobile ad hoc networks

(MANETs).

A sensor network is a collection of wireless devices, henceforth referred to as

sensor nodes, that are deployed (possibly densely) in a geographic area to interact

with or observe their environment. Typically, compared to an ad hoc network,

a sensor network has a larger number of nodes that are more densely deployed.

Sensor nodes are usually small, low-powered, inexpensive devices. The range of

communication of a sensor node is typically limited compared to a node in an

ad hoc network. As they are low-powered devices they cannot perform computa-

tionally intensive tasks. However it is not uncommon to have a fewer number of

expensive sensor nodes deployed together with large number of inexpensive sensor

nodes.
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Some of the application areas of sensor networks are military, health, indus-

trial sensing, and habitat and environmental monitoring [3] [17]. In all the above

applications, data accumulation is the primary task of the sensor network. Sensor

nodes are equipped with transducers to convert external stimuli to sensor data.

Data generated by source sensor nodes, is forwarded by relay sensor nodes to sink

sensor nodes. The source sensor nodes, relay sensor nodes and sink sensor nodes

are henceforth simply referred as sources, relays and sinks, respectively.

Data dissemination methods vary in sensor networks, from the direct routing of

data to the final destination to the publish-subscribe (or push-pull) methodology

[34]. Three methods based on the location of the sensed data are considered.

In the first method, data gathered by sources is stored locally and queried

through the sinks when required. Sinks query data by flooding the network [34] or

query sources in return to the advertisement flooded by sources on availability of

data [50]. This method is optimal if only a small fraction of sensed data is needed.

In the second method, data is stored at specific sensor nodes that act as lo-

cal repositories. The data from co-located sources are aggregated, compressed

and stored for future queries. Sinks query the local repositories for the required

information. Unlike the first method where sinks can query co-located sensor

nodes for redundant data, the local repository reduces querying for redundant

data by aggregating and compressing data gathered from co-located sensor nodes.

Data compression also helps in reduction of bandwidth required for communica-

tion with sinks. Locations of the local repositories can affect energy consumption

of sensor network. Local repositories located closer to sources reduce the energy

consumption due to data transfer from sources to local repositories, but increases

the querying distance from sinks [63]. Local repositories can be uniquely assigned

for specific data types. For example, data related to tank activity can be stored

in one repository while data related to troop location in another.

In the first two methods, the sources and sinks discover one another either with

advertisement or through flooding. Alternately the authors in [78] have proposed

an index based search method. The sensed data is stored at the sources or in a

local repository and the location information of the sources are stored in index

sensor nodes. The queries are routed to the index nodes. This is particularly

suited for a large sensor network with low data request.
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In the third type, data sensed by the sources are forwarded to the nearest

sink. This is ideal when all the data sensed by the sensor network is necessary

for processing. The sensed data can be processed and located at sinks for future

queries or forwarded to a central base station after some processing. This is the

sensor network architecture considered in the current thesis. It is assumed that

the sinks are more expensive hardware compared to relays or sources as they have

the additional task of pre-processing and/or temporary storage of data. Figure 1.1

shows an example of sensor network.

Figure 1.1. A typical sensor network

Data generated by sources can be separated into latency critical and latency

non-critical data. Latency critical data, like real-time video feed are constrained
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by timely delivery to the central base station. Delay guarantees are limited by the

amount of traffic a sensor network can handle. The relation between capacity and

delay is examined in [29, 27, 8, 19].

The node capacity of a static ad hoc network, consisting of n nodes, increases

as O( 1√
n
) [31]. This is applicable to a random source-destination pair of nodes

in a static ad hoc network. As the number of nodes, n, increases in a static ad

hoc network, the number of concurrent one-hop transmission increases as O(n),

assuming a constant node density and communication radius. If communication

is between a random source-destination pair of nodes, the mean linear distance

between them increases as O(
√

n): the spatial diameter of the sensor network.

The capacity of the end-to-end communication link increases approximately as

O(n/
√

n) = O(
√

n) and capacity of each node increases as O(1/
√

n) [47]. For a

mobile ad hoc network, where the nodes move independently, and the maximum

number of relays for a source-destination pair communication is limited to 1, the

capacity increases as O(1) [29]. The source forwards data to all its neighboring

nodes and the data is relayed to the destination when one of the neighbors or the

source moves in communication range of the destination. The delay experienced

by a source-destination pair is large, that is, of the order of time taken for node

contact by mobility.

A compromise between capacity and delay can be achieved by considering lim-

ited mobility such that there is acceptable delay bounds [19] or by considering

geographic based routing algorithms in mobile ad hoc network that forward pack-

ets to nodes that are closer to the destination and in turn reduce delay [8].

Mobility, thus far, has been considered as an uncontrollable event, that the

sensor network is designed to deal with. For example the sensor nodes in smart

dust [39] do not have control over their motion. However, if mobility of sensor

nodes can be controlled, mobility can be considered as a design parameter.

The current thesis examines methods to leverage “purposeful” mobility to im-

prove the efficiency and performance of a sensor network. For example a mobile

sensor node experiencing local deep fades and shadowing can move to a different

location for better channel conditions. Another benefit from mobility can be re-

duced energy consumption for transmission. The transmission power required to

transmit over a distance d is here on assumed to be given by Kdα where K is a
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constant and α ≥ 2 is the transmission attenuation factor. Mobility can reduce

transmission power by reducing the transmission distance d.

The cost of mobility is, typically, expensive compared to communication or

computation cost. To justify mobility, there may need to be a significant result-

ing savings in communication cost over time. That is, the cost to move could be

amortized against the savings in communication energy. Another motivation to

move is significant improvement in channel conditions which reduces communica-

tion delays, network bottlenecks and improves the overall network condition.

Mobility might be required in some situations regardless of the energy cost. For

example, consider a sensor network which has to perform surveillance over a given

region. If the sensor node density is low (this can happen when sensor nodes die

over time), the only way sensor nodes can cover the entire region would be by being

mobile. Another example is when a sensor node tracking a target begins following

it: the supporting relays that forward traffic from the target tracking sensor nodes

may also need to move to ensure that information from target tracking sensor node

is forwarded to the sinks.

Due to the distributed nature of sensor networks, the purposeful mobility algo-

rithms are developed in the context of a distributed system. Sensor nodes use only

local information to execute the algorithm thereby allowing the algorithm to scale

to large networks. The algorithm is not computationally intensive which works

well for sensor nodes with limited computation capacity.

In the current thesis, the Distributed Simulated Annealing algorithm based on

the Simulated Annealing paradigm is presented. Relays implementing the DSA

algorithm consider moves that reduce the total transmission power in its neigh-

borhood. The DSA algorithm considers the transmission power of the relay and

the neighboring sensor nodes transmitting to the relay when deciding on a move.

An annealing based algorithm is considered to overcome local optima and find the

global optima. Since there are mutliple sinks in the sensor network, an extension

of DSA algorithm to include the anycasting routing paradigm is also considered

[54, 52, 69, 74]. A unicast based extension to create an anycast routing algorithm

that routes data from the sources to the “nearest” sink is considered.

Mobility affects the different layers of the network stack starting from the phys-

ical layer up to the application layer. For example, as discussed above, mobility
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can make or break communication links. Mobility can affect the quality of a link by

moving sensor nodes out of shadow regions and/or change channel characteristics.

From a network layer perspective, mobility can affect the stability of a route. If

a sensor node moves very often, then routes that depend on it tend to break. This

leads to the routing algorithm frequently learning paths between sensor nodes.

The routing algorithm can factor in mobility if a mobility metric is available,

while forming routes, i.e., the routing algorithm can ignore nodes that have higher

mobility metric. For purposeful mobility, the mobility metric can simply be the

probability of motion in the next time slot and for uncontrolled mobility it can be

an estimate of the probability of motion in the next time slot based on the previous

N time slots.

The application layer can also affect or be affected by mobility. For example,

surveillance application of sensor network would require mobility to monitor re-

gions that are not covered by the initial deployment of sensor nodes and require

mobility to visit the regions periodically. Target tracking requires mobility if the

tracked target is mobile and moving out of sensing range of all sensor nodes.

Figure 1.2 summarizes the interaction of mobility with the different layers of

networking stack.

Figure 1.2. Influence of mobility on wireless stack

As discussed previously, mobility affects the capacity of a sensor network. Ca-

pacity of a mobile sensor network scales better compared to a static sensor network,

but at the expense of delay. In this thesis capacity issues related to static sensor

networks are studied. Unlike the network in [31], where the authors study the
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network capacity for random source-destination pair, this thesis considers a sensor

network architecture where data from the sources are forwarded to the nearest sink

by relays and from the sinks to a central base station. The capacity of a sensor

network is quantified by the number of sources a sink can support. Since the relays

forward the data from the sources to the sink, the relays closest to the sink forward

maximum amount of data, thus creating a “funnel effect” near the sink. Now, the

capacity of the sensor network is limited by:

• The forwarding capacity of a sensor node. Since the relays closest to the sink

forward maximum amount of data, they are likely to reach saturation first

and limit capacity increase.

• The sensor node density or communication radius. The number of sensor

nodes contending for the channel, which influences the capacity of a sensor

network, depends on the sensor node density and the communication radius

of each sensor node.

• Capacity of the sink. Greater capacity of the sink means that a greater

number of sources can be supported by it.

• Capacity of the link connecting the sink to the central base station.

The outage probability, i.e., fraction of sensor nodes unable to communicate

with the sink, is presented and its relation to sensor node density, sink density

and communication radius of sensor nodes is studied. The detail are presented in

chapter 7.

1.1 Thesis Outline

The remainder of this thesis is divided as follows. Chapter 2 is the literature survey.

Chapter 3 presents the tactical sensor network considered for the thesis and the

theoretical framework for purposeful mobility. The affect of mobility strategies on

surveillance in a tactical sensor networks is studied in chapter 4. The simulation

setup and results for purposeful mobility are presented in chapter 5. Chapter 6

presents the extension of the DSA algorithm for the case of multiple sinks. In
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chapter 7, an analytical framework to measure “outages” due to relay-capacity

constraints are developed. The simulation setup and results for measuring outages

are presented in chapter 8. Finally, the conclusions and future work are discussed

in 9.



Chapter 2
Literature Survey

This chapter reviews some of the previous work in sensor networks related to

mobility and the interplay between mobility capacity and delay.

Sensor network are, typically, deployed for observation and/or interacting with

their environment [3, 17, 4]. A typical sensor network consist of sensing nodes that

collect sensing data and either store it temporarily or forward it to a central sink.

Data is forwarded to the sink through sensor nodes that act as relays.

Data is temporarily stored in sinks or pre-processed and forwarded to central

base station [3]. Alternately data can be stored at sinks and read from the sinks by

mobile agents that periodically visit each sink [36]. An example of such a network

can be a sensor network deployed in a remote region and an aerial vehicle flying

over the region and collecting data from the sinks. The mobile agent can also be a

person periodically visiting the sinks or even sensor node to collect data. In [36] the

authors consider an automated mobile agent and develop algorithms to optimize

the path taken by the mobile agent with respect to delay in gathering data (similar

to the traveling salesman problem). The advantage of this architecture is that

energy expenditure on mobility is restricted to few mobile agents, possibly even

one mobile agent. Also energy reserves of mobile agents can be easily replenished

since mobile agents collect data and return to “base”. But due to the time scale

involved, such an architecture is not suitable for real-time latency critical data.

Applications like surveillance, infrastructure monitoring and health care require

real-time data transfer. Data can be forwarded, for e.g., in a battlefield from sinks

to a central base station through a satellite link [3] or in case of video surveillance
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through wired connection to a central security office [14]. Note, a sensor network

can carry both latency critical and latency non-critical data at the same time

[77, 15]. To increase the lifetime of the sensor network, routing algorithm try to

find optimal routes in term of energy and delay constraints [21]. Latency critical

traffic are routed on least delay routes, while latency non-critical traffic are routed

on energy rich routes. The authors in [37] use pheromones to build multipath

routes with acceptable delay and energy constraints. The current thesis considers

the Distributed Bellman Ford with transmission power as route metric.

2.1 Mobility, Connectivity and Coverage in Sen-

sor MANETs

The current thesis focuses on tactical sensor networks deployed for surveillance and

target tracking. Issues of surveillance, coverage and communication connectivity

for random static sensors are explored in [30] and [62]. In [30] the authors look at

the minimum transmission power required to create a connected network (i.e. no

isolated node) when nodes are deployed randomly. The authors have derived results

for the minimum power needed to keep the network connected. In [62], the nodes

are active with certain probability with a given sensing and communication radius.

The authors derive results to prove connectivity and coverage is maintained even if

the probability of a node being active and communication radius are low. This may

give the communication radius necessary for coverage and connectivity but only for

a static network. It is not possible to extend this framework to include mobility as

the nodes are assumed to be uniformly arranged. In [30] and [62] the authors do not

consider mobility for coverage and connectivity. Mobility can be used to assist the

sensor nodes during deployment to maintain connectivity and coverage. Mobility

for deployment is explored in [72], [79] and [33]. In [72], the authors consider a

scenario where mobility assists the sensor nodes in deployment. The goal is to

maximize coverage while not compromising connectivity by intuitively enacting

local repulsion of nodes (to minimize redundancy of coverage) along with long-

range attraction of nodes so as not to compromise network connectivity. Authors in

[79] and [33] also considered virtual forces between the nodes for sensor deployment.
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Again, the mobility assists only in the deployment of a static network. A variant

to the deployment of static network is considered in [73], where the authors look

at sensor node redeployment. Here the mobility algorithm is executed whenever

the network topology changes significantly due to sensor node loss from battery

failure or external events. The mobility algorithm “reconfigures” the topology to

find optimal position for coverage and connectivity.

Clearly, a basic motivation of node mobility is that the nodes are not deployed

with sufficient density in the region under surveillance to make mobility of the

nodes unnecessary. Such a situation can arise when a large population of sensor

nodes die over time, reducing the density of deployment and thus making it nec-

essary to move. Here, unlike [73], its is necessary to consider continuous mobility

for periodic monitoring of all regions.

In [41], the authors evaluate the distribution of the time until detection of a

point-target under purely random (diffusion) mobility per node. Given an asso-

ciated Bessel process describing the distance between any two given nodes, there

also exist expressions for the distribution of the time between successive contact

of any two nodes assuming each of their communication ranges is bounded, see

p. 297 of [11]. Dynamic surveillance with mobility is also explored in [45] where

sensor nodes are continually moving. Similar to [41] the authors discuss and de-

rive results for distribution of the detection time of a randomly placed target. The

authors in [45] also consider a game theoretic approach to study best and worst

case scenario for target detection time. In [61] the authors look at limited mobility

to assist in coverage improvement. Here the mobility is motivated by dead nodes

that create coverage holes and are filled by limited mobility of neighboring nodes

with minimum energy expenditure for mobility.

A contemporary attempt at applying controlled mobility for energy conserva-

tion due to communication is considered in [28]. Here the authors look at moving

sensor nodes to reduce communication distance and hence communication energy.

Similar to the work in this thesis, the authors look at a distributed algorithm where

sensor nodes move with only local information, i.e., information from their imme-

diate neighbors. However, unlike the current thesis, the authors do not consider

the role of routing. The authors consider a location based routing algorithm and

execute the controlled mobility algorithm. Though the mobility algorithm gives an
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optimal position of nodes for that route, it does not consider moves that could cre-

ate alternate routes which offers a lesser communication energy expenditure than

the current route. Unlike the DSA algorithm they do not consider the tradeoff of

expenditure due to mobility against savings for communication. Also they look

at variants of their mobility algorithm for different traffic patterns, for e.g. sink

unicast flow, multiple unicast flows and concast flows (flows from multiple sources

to a sink).

In [49], the effect of mobility on a position detection algorithm was considered.

The authors suggest the use of hop-counts from reference nodes to find relative

positions of all nodes. Reference nodes are moved to neighborhoods where ac-

curate information is not available. Here mobility helps to increase accuracy of

information regarding node positions but does not help to find best position for

coverage or connectivity.

Flocking properties of platoons of UAVs were studied in [67, 35]. Specifically,

they explore local mobility laws that keep formation (velocity and heading).

In [48], the authors look at navigating a vehicle across a sensor grid. The sensor

nodes interact with the vehicle giving it local information about the terrain and

helping it decide where to move next. Similarly in [60] the authors look an inter-

action of static and mobile sensor nodes to achieve a common goal. Static nodes

assist in location determination while the mobile nodes with controlled mobility fill

gaps in communication. The goal of mobile nodes is to assist in communication,

and not to find optimal position for energy efficient communication.

An interesting idea of separating mobility from sensing is discussed in [44]. Here

the authors look at sensor nodes attaching on to mobile agents that transport the

sensor nodes. In such a system, practically all sensor nodes can be moved and the

impact of mobility cost can be significantly reduced, since the mobile agent can be

built specifically for mobility with enhanced and even renewable energy source.

In [40] the authors discuss applications of controlled mobility to improve a

number of issues, including topology adaptivity, capacity, energy capacity and

data fidelity.

Finally, simulated annealing mechanisms have been proposed in the past for

other networking purposes. For example, in [70], a (centralized) simulated an-

nealing algorithm is used for clusterhead selection based on weights assigned to
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nodes.

2.2 Capacity in Sensor MANETs

Kumar and Gupta [31] show that the capacity of static ad hoc network scales as

O( 1√
n
) where n is the number of nodes. This capacity is computed for communi-

cation between random pairs of nodes. The current thesis, however, considers a

sensor network wherein sensor nodes communicate only with their local sink.

In [38], the authors consider the funnel effect in a mesh network and its impact

on capacity. They simplify the network to a single dimensional chain of nodes and

consider interference caused by member nodes of the chain. Instead the current

thesis considers a two dimensional distribution of sensor nodes. Li et al. [47]

consider the capacity of a wireless ad hoc network and the impact of IEEE 802.11

MAC layer on it. The authors study the dependence of capacity on the average

communication distance, and conclude that as it increases, the capacity of the

network decreases. One way to decrease the communication distance is to break

up the network into clusters where communication is limited to the cluster-head.

Liu et al. [20] compare the performance of a flat network with a hierarchical network

and prove that a hierarchical network scales better. There have been attempts to

improve the capacity of an ad hoc network by modifying the MAC or PHY layers.

In [68], the authors analyze and suggest changes to the MAC layer to increase

capacity of WLAN networks. In [1], modifications to the MAC layer are proposed

to increase number of simultaneous transmissions in a WLAN network. Similar

modifications are discussed in [46, 75, 7].

The affect of mobility on capacity is studied in [29]. Unlike static ad hoc

networks, capacity in mobile ad hoc network scales as O(1). Capacity increase is

at the cost of transmission delay, that is, in the worst case, on the order of the

time required for sensor node contact by mobility. The authors in [19] consider

limited mobility for a static network to increase capacity with acceptable delay

bounds. Authors in [8] study application of a routing algorithm for mobile sensor

nodes to achieve capacity increases with acceptable delay bounds. The authors in

[27] examine delay capacity relation in [31] and [29] and propose scheme to achieve

optimal order of delays for given mobility with changes to number of hops for
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communication, transmission range and degree of mobility of a sensor node.

In [26, 6], the authors consider hierarchical networks of wireless nodes and have

developed models for the same. The authors consider each hierarchy of nodes as

a spatial Poisson deployment connecting to a single node (sink) and the sinks in

turn forming a spatial Poisson process that connect to a base station.

The sensor node and sink distribution are modeled as a two-dimensional spatial

Poisson process [26, 65]. The node density of sensor nodes is assumed to be much

greater than that of sinks. In [5], the authors study a “radial spanning tree” by

which all nodes communicate to a single sink at the origin. Asymptotic limits of

various performance metrics of the radial spanning tree are derived. The authors

do not, however, consider constraints on the number of flows a sensor node can

support/relay or on the communication range of a sensor node.



Chapter 3
Purposeful mobility

This chapter details the sensor network architecture and applications considered

for the thesis. Also the network model and mathematical formulation for the

purposeful mobility algorithm are presented.

3.1 Purposeful mobility in sensor networks

The current thesis examines the application of purposeful mobility to tactical sen-

sor networks. Sensor networks are deployed randomly over a geographic area and

typically left unattended. Due to this sensor network algorithms and protocols are

robust to change and possess self-organizing capabilities. The current thesis looks

at the application of tactical sensor network in a military scenario. More specif-

ically, a tactical sensor network that is deployed behind enemy lines to monitor

enemy activities is considered.

The sensor network considered consists of fewer number of expensive, mobile,

GPS-enabled sensor nodes with larger number of inexpensive, passive, immobile

sensor node deployed in the battlefield. To motivate mobility, it is assumed that

the inexpensive sensor nodes have died over time (due to limited battery capacity)

and the remaining mobile sensor nodes are performing the given tasks.

The goal of a tactical sensor network is to monitor military activities on the

field and track enemy targets. Tactical sensor networks must have a long lifetime

as there cannot be any maintenance for sensor nodes deployed behind enemy lines

and frequent redeployment might not be possible due to risk factors.
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Purposeful mobility can be used for deployment, surveillance, target tracking

and transmission power conservation.

3.1.1 Objectives of tactical sensor network

The objective of a tactical sensor network is to collect and transfer information

from the battlefield to a command-and-control center. The command-and-control

center can process the information and further instruct the sensor network on

future actions.

The tasks performed by a tactical sensor network are:

1. Surveillance: Performing surveillance of the local environment to scan for

enemy activities and transmit this information to a command-and-control

center. The surveillance task generates low volume data that is low priority

and non-latency critical.

2. Target Tracking: Actively track targets that have been identified as hostile

and send real-time information to the command-and-control center. The

tracking task generates high volume real-time data (e.g. a video feed) that

is of high priority and latency critical.

3. Logistical Support: Sources must be able to convey the information they

gather from their environment to a command-and-control center. Some of

the sensor nodes act as relays to forward information from sources to the

command-and-control center.

3.1.2 Surveillance task

Sensor network deployment in unfriendly regions could lead to methods for deploy-

ment where there is no control over the final placement of sensor nodes. The initial

deployment could be suboptimal for the surveillance task. There could be unequal

sensor node density through the field, leaving some areas better monitored than

others. Limited purposeful mobility can move sensor nodes to better positions for

improved performance of surveillance task. If the number of nodes are sufficient

then no more mobility is required for surveillance. However it is possible that the
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coverage area of all the sensor nodes is less than the area that needs to be observed.

This could happen over time as sensor nodes die out. In such situation, mobility

is the only way to ensure that the entire area is under observation periodically.

3.1.3 Tracking task

A sensor node assigned the task of tracking a target monitors the activities of the

target and sends this information to the command-and-control center in real-time.

Sensor nodes involved in tracking tasks can be static or mobile. A target is usually

tracked by multiple sources in the same neighborhood to increase accuracy.

Sensor nodes performing tracking tasks are equipped with special sensors to

monitor target activities. Note, mobility for tracking task is not considered in this

thesis. It is assumed that sensor nodes perform tracking and generate information

that needs to be transferred to the command-and-control center.

3.1.4 Relaying task

Data is transferred from the sources to the sink by relays. A routing algorithm (for

example distributed Bellman Ford [18]) determines the routes from the sources to

the sink. The relays forward data to the next relay in the route to the sink.

There is a communication cost to forward data from a source to a sink. It

is possible to reduce the cost if the communication distance between the relay

nodes are reduced. Purposeful mobility is used to move relay nodes such that

communication distances are reduced.

The formulation of a cost function to keep track of communication and mobility

cost and application of a “greedy” and distributed annealing algorithm is explained

in sections 3.3 and 3.4.

For the tactical sensor network considered, it is assumed that the volume of data

generated by surveillance tasks is negligible compared to the volume generated by

tracking tasks. Further the data from tracking task is of higher priority compared

to the data from surveillance, as the target is tracked in real-time.
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3.2 Mobility for relay networking

In this section it is assumed that the relays can perform only one task, i.e. just

relaying. For example, in response to target detection, certain sensor nodes (prox-

imal to the target) are assigned logistical target-tracking tasks while others are

assigned relaying tasks. The focus herein is on mobility for the latter category

of sensor nodes and, for those sensor nodes, the goal is mobility to maximize the

lifetime of the sensor network and, at the same time, perform the required relaying

tasks satisfactorily. Specifically, the objective is to incrementally find the node po-

sitions that minimize the total required transmission power for all the active flows

in the sensor network while suitably “penalizing” for the energy cost of motion in

order to find these positions.

For a sensor node to move from one position to another, there must be a signifi-

cant resulting reduction in communication power compared to the power consumed

for motion. This would vary significantly depending on the environment in which

the moving vehicle operates. For example, the relative cost for UAVs (Unmanned

Air Vehicles) will be significantly less than UUVs (Unmanned Underwater Vehi-

cles) which will be significantly less that terrestrial vehicles. In the following, it

is assumed that sensor nodes make such decisions based only on local information

(traffic and neighbor positions) as appropriate for a highly decentralized and dis-

tributed sensor network. A distributed mobility strategy based on the simulated

annealing algorithm is devised, see, e.g., [42] [25]. The randomness introduced in

the strategy allows the sensor network to avoid positions that are suboptimal local

minima of its objective.

3.3 Basic network model assumptions and a “greedy”

mobility strategy

Definition of the following terms is necessary for the problem formulation:

• N is the number of intermediate relays;

• F is the number of flows each of constant rate λ packets/s (fixed length

packets assumed herein);
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• X is a vector of the positions of the intermediate relay nodes (so, in 3-

dimensions, X is actually an N × 3 matrix);

• r is the set of F routes (each assigned to one flow) where a route through the

network is determined by a series of sensor nodes beginning with a source

and ending with a sink;

• V (X, r) is the total power required from the network to transmit the F flows

using routes r when the relays are in positions X; the optimal choice of routes

at position X is

R(X) ≡ arg min
r∈R(X)

V (X, r)

where R(X) is the set of feasible routes connecting those nodes when in

positions X. Note, it is assumed that sources and sinks are in communication

distance of each other, i.e. a source can transmit directly to sink by increasing

its transmission energy. However the routing algorithm selects multihop

routes due to the reduced commuication cost.

The quantity R(X) is the objective of a distributed routing algorithm (like

Bellman-Ford distance vector approach [18]) and its determination is assumed to

occur on a much faster time-scale than that of the mobility of the nodes. Further

assume that all nodes have an associated clock cycling every T seconds (clocks are

not necessarily synchronized). Once every cycle, a node decides with probability

p whether it should attempt to move. Under a deterministic “greedy” mobility

strategy, node k at position xk will move to position z that minimizes

V ((x−k; z), R(X)) − V (X, R(X)) + c|z − xk|/T (3.1)

≡ ∆kV (x, z) + c|z − xk|/T

where (x−k; z) represents the vector X with xk replaced by z, and c|z − xk| repre-

sents the amount of energy required for the move that has been amortized over a

clock cycle-time (c is a fixed parameter of the assumed “constant” terrain). In equa-

tion (3.1), V (x−k; z, R(X)) is the transmission power consumption at the “new”

position and V (X, R(X)) is the transmission power consumption at the “old”
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position. The new position is favourable if V (X, R(X)) − V (x−k; z, R(X)) > 0,

i.e., transmission power consumption is reduced at the new position. The objec-

tive of the move is to maximize the reduction. The move must also minimize

the cost of motion, i.e. minimize c|z − xk|/T . Combining the two, i.e., maxi-

mize V (X, R(X))−V (x−k; z, R(X)) and minimize c|z−xk|/T , results in minimize

V (x−k; z, R(X)) − V (X, R(X)) + c|z − xk|/T . Note the movement according to

equation (3.1) may be velocity v constrained, i.e.,

|z − xk| ≤ vT.

For a simple illustrative example, consider a relay k that forwards two flows

from its tributary nodes i and j to node l as shown in Figure 3.1. The power

required to transmit over distance d (again, at rate λ packets/s) is given by Kdα

Watts where K is a constant and α ≥ 2 is a transmission attenuation factor [29]

[31] [58]. So, for this example,

∆kV (x, z) = K[|z − xi|α + |z − xj |α + 2|z − xl|α

−|xk − xi|α − |xk − xj |α − 2|xk − xl|α]. (3.2)

Figure 3.1. Greedy move to reduce power consumption
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A basic assumption herein is that the quantity in (3.1) is computable by sensor

node k requiring, in particular, knowledge of the location of its neighbors [51]. Note

that what makes this “distributed” computation of ∆kV (x, z) is the fact that V

is an additive function of the transmission power required at each sensor node.

The existing routes (at X) are used in the term V ((x−k; z), R(X)) because, in this

distributed setting, the sensor node k does not know the consequences its move will

have on the routes. The uncertainty is due to simultaneous motion of neighboring

relays. A relay decides to move based on the assumption that its neighbors are

static. When multiple sensor nodes can move simultaneously, the uncertainty in

the benefit of a move is significantly larger; to reduce the likelihood of this, one

may set p = 1/N for this case of static sources and sinks.

3.3.1 Jointly optimizing over routes and position

The greedy algorithm optimizes over existing routes, i.e., the relays move to reduce

transmission power of current routes. In this sense, the greedy algorithm converges

to a “suboptimal” solution because it ignores moves that can alter routes to lower

total transmission power, i.e.,

min
z

∆kV (x, z) + c|z − xk|/T ≥ (3.3)

min
z

V ((x−k; z), R((x−k; z)))

− V (X, R(X)) + c|z − xk|/T.

Equation (3.3) states that the greedy move with current routes can potentially be

worse than a move jointly optimizing position and routes.

For example, consider two target positions z1 and z2 for relay k. Assuming

relay k is equi-distant from z1 and z2, it will move to the position that minimizes

V (xk; z, R(X))−V (X, R(X)). Assume z1 is the better choice with current routes,

i.e.,

V (x−k; z1, R(X)) − V (X, R(X)) < V (x−k; z2, R(X)) − V (X, R(X)).

Note that relay k assumes current routes at new position, but the routing algorithm

can find better routes. Also it is possible for z2 to be a better position with updated
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routes than z1, i.e.,

V (x−k; z1, R(x−k; z1)) − V (X, R(X)) > V (x−k; z2, R(x−k; z2)) − V (X, R(X)).

Figure 3.2. Sensor nodes after routing algorithm

An example of a “suboptimal” convergence of the greedy algorithm is explained

next. Consider the network shown in figure 3.2. The routing algorithm selects a

path from source node A to destination node B through, say, node C. For the

greedy algorithm implementation, the optimal position achieved will be as shown

in figure 3.3(a). But the optimal position for network is as shown in figure 3.3(b).

Since the greedy algorithm optimizes on the current route, it fails to explore moves

that could (predictably) alter routes and find better positions for the relays.

To overcome the limitations of greedy algorithm, a joint optimization over po-

sition X and routes R(X) is considered. Unlike the greedy algorithm that chooses

the next position to minimize V (Y, R(X))−V (X, R(X))+ c||Y −X||/T , the joint

optimization chooses the next position to minimize V (Y, R(Y )) − V (X, R(X)) +

c||Y −X||/T . Note, it is assumed that the relay has apriori knowledge of the routes

R(Y ) at new position Y .

The motion is restricted to a lattice grid and a relay k (currently at xk) se-

lects the optimal neighboring position from one of the eight neighboring grid points,

assuming the neighboring lattice points are unoccupied. A relay chooses the neigh-

boring lattice point that minimizes V ((x−k; z), R(x−k; z)) − V (X, R(X)) + c||z −
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(a) Suboptimal position - Greedy Algorithm

(b) Optimal position

Figure 3.3. Sensor node position after move

xk||/T where (x−k; z) is the position vector X where the xk is replaced by z. Note

this is also a greedy algorithm that jointly optimizes over both position X and

routes R(X). Now, consider a global cost function given by equation (3.4)

U(X) ≡ V (X, R(X)) + cT−1

N
∑

k=1

|Xk|

≡ V (X, R(X)) + cT−1||X||. (3.4)

where U(X) is the cost function that represents the total transmission power with

the sensor nodes at position X and the amortized cost of mobility from origin to

the position X over a constant terrain.

The greedy algorithm attempts to minimizes U(X), but U(X) is not a uni-

modal function. That is, the greedy algorithm jointly optimizing routes and po-

sition may converge to a local minima. Therefore consider a randomized search

based algorithm on the simulated annealing paradigm. The cost function for the

simulated annealing framework is given by equation (3.4). Again, the motion of

relays are restricted to lattice points, i.e., X ∈ D where D is the lattice. The
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neighbor selection probability is given by Qxy, i.e., the probability of selecting po-

sition y as the next position from current position x. Note Qxy > 0 implies x and

y are neighboring lattice points. The discrete-time Markov chain represented by

transition-probability matrix (TPM) Qxy is assumed time-reversible with station-

ary distribution given by µ, i.e., the detailed balance holds: µxQx,y = µyQy,x. Pxy

is the heat bath acceptance probability given by

Px,y ≡ Qx,y min{1, exp(−β(U(Y ) − U(X)))}

where β > 0 is interpreted as inverse temperature and a constant. The TPM P

inherits aperiodicity and irreducibility from Q. The TPM P is also time-reversible

with Gibbs stationary distribution:

πx =
µxe

−βU(X)

Zβ

where Zβ is the normalizing constant (partition function). Detailed balance:

πxPxy = πyPyx holds true and is proved in Appendix A.1.2.

Since πx is Gibbs

lim
β→∞

πx =







1

|Ω| ∀x ∈ Ω

0 ∀x /∈ Ω
(3.5)

where the global minimizing set

Ω ≡ argmin
x∈D

U(x)

Proof of equation (3.5) is presented in Appendix A.1.2

Now define a TPM for the annealing process:

P̄x,y ≡ Qx,y min{1, (3.6)

exp(−β[V (Y, R(Y )) − V (X, R(X)) + c||Y − X||/T ])}

The TPM P̄ continues to be irreducible and aperiodic, thereby yielding a unique

stationary distribution π̄ [23], but is no longer time-reversible. It can be shown

that the simulated annealing chain P̄ also has a stationary distribution with a
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Gibbs-like property (eq. 3.5).

Lemma 1. Px,y ≥ P̄xy for all x 6= y, and Px,x ≤ P̄x,x for all x.

Proof: By the triangle inequality,

V (Y, R(Y )) − V (X, R(X)) + c||Y − X||/T
≥ V (Y, R(Y )) + c||Y ||/T − [V (X, R(X)) + c||X||/T ]

= U(Y ) − U(X).

The first statement of the lemma directly follows from the definitions of P and

P̄xy. The second statement is an immediate corollary of the first because P and

P̄xy are row-stochastic matrices.

From Lemma 1 and theorem 1 in section 3.4 it is shown that the simulated

annealing algorithm given by TPM P̄ converges to the global minima of U(x).

The heat bath acceptance probability given by equation 3.6 assumes knowledge

of routes R(Y ) at new position Y . However, predicting the impact of mobility on

routes is a non-trivial task. It might be possible to implement the joint optimiza-

tion as a centralized algorithm with global knowledge of the sensor network, but a

distributed implementation is not possible since the impact of mobility on routes

cannot be precisely ascertained locally. Since the sensor network requires a dis-

tributed implementation, a modification to the simulated annealing algorithm is

considered.

3.4 Mobility by distributed simulated annealing

Since a distributed implementation of the joint optimization is not possible, a

simulated annealing framework where existing routes are assumed for mobility

is considered. More precisely a kind of Distributed Simulated Annealing (DSA)

algorithm is considered where the routes are assumed constant for the move. After

each move, the routing algorithm is executed to check for better routes. The DSA

and routing algorithms attempt to replicate the joint optimization by alternating

between the mobility and the routing algorithms.
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Similar to the simulated annealing algorithm in section 3.3.1, the DSA algo-

rithm also considers motion on a lattice. Also, the neighbor selection probability

is given by Qxy. Now the TPM for the distributed annealing process is given by

equation (3.7)

P̂x,y ≡ Qx,y min{1, (3.7)

exp(−β[V (Y, R(X)) − V (X, R(X)) + c||Y − X||/T ])}

P̂xy is irreducible and aperiodic, with stationary distribution given by π̂x, but not

time-reversible. It is shown below that the stationary distribution π̂x, similar to

π̄x, has a Gibbs-like property (eq. 3.5).

Lemma 2. Px,y ≥ P̂x,y for all x 6= y, and Px,x ≤ P̂x,x for all x.

Proof: By the definition of R and the triangle inequality,

V (Y, R(X)) − V (X, R(X)) + c||Y − X||/T
≥ V (Y, R(Y )) + c||Y ||/T − [V (X, R(X)) + c||X||/T ]

= U(Y ) − U(X).

The first statement of the lemma directly follows from the definitions of P and P̂ .

The second statement is an immediate corollary of the first because both P and

P̂ are row-stochastic matrices.

Theorem 1. If Ω is a singleton set, i.e., Ω ≡ {x∗}, then

lim
β→∞

π̂(β) = 1x∗

where 1x∗

y = 0 if y 6= x∗ and 1x∗

x∗ = 1.

Proof: First note that

[(1x∗

)′P̂ (β)]y = P̂x∗,y(β).

If y 6= x∗ then by Lemma 2,

P̂x∗,y(β) ≤ Px∗,y(β) → 0 as β → ∞.
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Otherwise, if y = x∗ then again by Lemma 2,

P̂x∗,x∗(β) ≥ Px∗,x∗(β) → 1 as β → ∞.

Therefore,

lim
β→∞

(1x∗

)′P̂ (β) = (1x∗

)′. (3.8)

Now recall that π̂(β) is the unique solution to

π̂(β)′(I − P̂ (β)) = 0

and π̂(β)′1D = 1

where 1D is a vector all of whose entries are 1. Let V̂ (β) be the matrix obtained

by replacing a column of I − P̂ (β), say column n, by 1D. Thus π̂(β) is the unique

solution to

π̂(β)′V̂ (β) = (1n)′.

Uniqueness implies that the null space of V̂ (β) must be just the zero vector; this,

in turn, implies that V̂ (β) is nonsingular giving, for all β > 0:

π̂(β)′ = (1n)′[V̂ (β)]−1.

Beginning with (3.8) and using the same argument,

lim
β→∞

(1n)′[V̂ (β)]−1 = (1x∗

)′.

The theorem statement follows from the last two equations.

A straight-forward extension to this theorem (using condition (3.5)) follows for

optimal set Ω in which no two states are directly connected by the TPM Q.

In summary, its has been shown that randomized annealing motion of the sensor

nodes, distributed in the sense that only local information is used, nevertheless

retains a Gibbs-like property, i.e., a natural composite utility of communication
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and mobility costs (3.4) is minimized as the temperature β−1 cools.

Also applying Lemma 1 in theorem 1, it can be shown that the stationary

distribution, π̄(β), has a Gibbs-like property and the “joint” simulated annealing

algorithm converges to the global minima for U(X) = V (X, R(X)) + c|X|/T , i.e.

lim
β→∞

π̄(β) = 1x∗

(3.9)

where 1x∗

y = 0 if y 6= x∗ and 1x∗

x∗ = 1. This shows that the alternating execution of

the DSA and routing algorithms converges to the same global optima of U(X) as

the joint optimization.

3.4.1 Heuristics in DSA

Although the simulated annealing algorithm achieves global optima, it requires

infinite time to reach it. The homogeneous Markov model require infinite time to

achieve stationary distribution. Also, achieving global optima requires generation

of descending values of temperature of infinitely long homogeneous Markov chains.

This is clearly impractical. Inhomogeneous Markov models show logrithmic cooling

schedule achieve global optima [71, 22], but still requires infinite time to reach it.

A discussion on homogeneous and inhomogeneous modeling of simulated annealing

is presented in the appendix A.

Since the time taken for convergence with logarithmic cooling schedule is infi-

nite and thus impractical, heuristics to achieve the best possible result in a limited

number of iterations N < ∞ is considered. Some of the techniques proposed

include random restart and tracking the best achieved value.

Due to the distributed nature of the algorithm and the lack of synchronization

among the sensor nodes, random restart and tracking best global transmission

power is not practical. Random restart requires redeploying the sensor nodes to

random positions. Implementation of such a system in a distributed fashion is non-

trivial. Even if a distributed algorithm that generates a new position for sensor

node redeployment were developed, the energy consumed in moving to the new

position could be large.

Alternately keeping track of the best value is also impractical. As the algorithm

is distributed, the notion of a best global values is meaningless. This would entail
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a global entity keeping track of the total energy consumption which ignores the

design constraints of a distributed algorithm. Even if the the global state could

be maintained and the global minima positions tracked, again, moving to such a

position could be expensive.

For the sensor network, consider the following method. The temperature is

kept constant at a suitable value to allow sensor nodes to “explore” with “bad

moves” for better optima. If the lifetime of the sensor network is sufficiently high,

in terms of months, cooling the temperature over time could be considered. But a

more aggressive cooling schedule would be impractical to maintain, since the sensor

nodes move independently of each other and do not coordinate their temperature

values. Instead, consider a batch-based cooling schedule where the temperature is

kept constant for M iterations and decreased by a constant value δT .

3.4.2 Link breakage during moves

Note the DSA does not consider link breakage during moves. For the sensor net-

work considered in the thesis it is assumed that any two sensor nodes can commu-

nicate with one another, i.e. the communication radius of a sensor node is greater

than the geometric diameter of the sensor network. Thus a source can directly

communicate with a sink, but the routing algorithm selects multi-hop routes due

to lower transmission power consumption. However, if there were restrictions on

communication range, the transmission power needed by sensor nodes to communi-

cate with out-of-range sensor nodes is quantified as infinite. Therefore transmission

power, Td for distance d is defined by

Td =

{

Kdα for d ≤ RT

∞ for d > RT

(3.10)

where RT is the communication radius of a sensor node. The DSA algorithm

implicitly ignores moves that break link since transmission power required to com-

municate beyond range is infinite, i.e. transmission power needed after moving to

new position Y from current position X, where the move breaks an existing com-

munication link, is V (Y, R(X)) = ∞. The DSA algorithm ignores moves where
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V (Y, R(X)) = ∞ as the acceptance probability is zero, i.e.

min{1, exp(−β[V (Y, R(X)) − V (X, R(X)) + c||Y − X||/T ])} = exp(−∞) = 0

3.4.3 Modifications to DSA

The DSA algorithm compares the amortized mobility cost with the savings in

transmission energy. However the cost of mobility is higher than communication

cost by a few order of magnitude. For a relay to consider any moves, the cost

of mobility would be amortized over a long time interval. The mobility cost is

tied to the environment of the mobile relay. For example, if an Unmanned Air

Vehicle (UAV) is considered, there is a fixed base cost to stay aloft, and mobility

cost here is the cost to navigate the vehicle in air. In this case the mobility

cost is not significant compared to the communication cost. Conversely, a robotic

vehicle on land expends significant amount of energy for motion compared to the

communication cost.

Now in certain sensor networks, DSA can be employed by mobile relays, that

are equipped with large battery reserve to extend the lifetime of energy poor static

sensor nodes. Note, the mobile relays with large, potentially, unlimited energy

source (for e.g. solar panels), consider mobility to reduce the transmission power

of its neighbor and ignores the mobility cost. The mobile relays extend the lifetime

of energy poor static sensor nodes by reducing their communication cost. This

could also help in maintaining equitable dissipation of communication energy over

the sensor network by moving relays closer to regions that have energy poor sensor

nodes relaying data. Note, mobility cost could still be included to choose moves

with least amount of mobility cost.

If the energy source for a mobile relay is limited, the DSA algorithm can con-

sider modulating the mobility cost with the residual battery energy. A modified

DSA can consider mobility cost as c||y−x||/(TB) where B is the residual battery

energy. Now a relay with low residual battery energy is more likely to accept a

move only if the transmission energy saving is significant. Again relays with large

battery reserve can ignore mobility cost when deciding on moves. Also, the battery

reserve could be dependent on T . For a relay with low battery reserve, it would be

better to increase T and compare mobility costs amortized over longer duration of
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time.

3.5 Dual tasking: surveillance and relaying

This section examines the combination of the two tasks of surveillance and relaying

for the relays. The goal of the surveillance task is to move to a location in the

surveillance area not visited before or not visited by a surveillance node in a long

time. To quantify this a lattice is laid over the surveillance area and the number

of lattice points visited is tracked. A node selects a “surveillance move” with

probability ps and “relaying move” with probability pr = p−ps where 0 < ps, pr <

p.

A simple method of surveillance involves maintenance of a “taboo list” of, say,

the last 10 lattice points visited by the node. When considering a surveillance

move, points on the taboo list are excluded and the remaining choices are chosen

uniformly at random. Alternatively, the taboo list can also maintain the time of

the last visit to implement the list as a sliding time-window.

For both of the approaches above, the taboo lists or lists of time-stamps can

be exchanged by neighboring sensor nodes and merged to create a more up-to-

date table (at each sensor node), where the latter will require some kind of time

time-synchronization among the sensor nodes.

In another proposed method for surveillance, sensor nodes place marker tags

(for e.g. RFID tags with additional radio interface) and mark regions that have

been surveyed. The marker tag can periodically broadcast the timestamp it was

last visited. Based on the timestamps received, sensor nodes can be “attracted”

or “repelled” by marker tags. When a sensor node is proximal to the marker tag,

it can rewrite the timestamp of the last visit. This gives the sensor network an

option to interact with the environment to determine the areas covered.

The dual tasks can also be achieved by considering alternating time durations,

where for time Tdsa seconds the sensor nodes perform the simulated annealing

moves to conserve energy with increasing β and for time Ts seconds the sensor

nodes perform surveillance moves. At the start of every Tdsa epoch, the sensor

nodes can reset β to a low value and start the DSA algorithm, gradually increasing

β.
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Figure 3.4. Wireless network stack and mobility interaction

3.6 Mobility and QoS issues in tactical sensor

network

In the tactical sensor network considered there exists two types of traffic: a latency

critical real-time video feed and a non-latency critical surveillance data. Each

traffic type has specific QoS requirements and the affect of mobility, purposeful or

otherwise, on the QoS is considered.

As mentioned in the introduction, mobility affects all the layers in the network-

ing stack, starting from Application to the PHY layer. Figure 3.4 summarizes the

effect of mobility on the network stack.

Here, consider the effect of mobility on the network layer, especially on routing

algorithm. Since highly mobile sensor nodes disrupt the route they support, it is

desirable to avoid such sensor nodes. Mobility can be included as a route metric

along with metrics like, say, delay or residual energy or transmission power. Dual

metric based routing algorithms are presented in [24, 16, 37]. In the current tactical

sensor network transmission power and mobility metric can be considered. The

mobility metric could indicates how much a node is likely to move over the next T

seconds. Given such a metric that can “predict” mobility, the routing algorithm

can consider the mobility metric along with the transmission power to create stable

low powered routes.

For a very dynamic network, traditional routing algorithm are not favorable

due to their overheads in creating routes. If the sensor network changes often



33

enough, the routing overhead will be a large fraction of resource consumption.

Alternate routing paradigm like pheromone based routing are considered. In a

pheromone based routing algorithm, the sensor nodes flood the network and learn

of all possible routes to sinks. The sensor nodes allocate pheromones for each

available route to a sink and reinforces the route when it receives data on that

route. Pheromone routing algorithms are explained in greater detail in [59, 66].

Mobility can be quantified as a binary metric, m, that indicates, if the sensor

node will move in the next T seconds. This can be known for purposeful mobility

or estimated from last T seconds for uncontrolled mobility. A mobility pheromone

can be built for routes based on the mobility metric, for e.g.

QR
M =

∑

i∈R

mi (3.11)

where R is the route to destination sink. The application of mobility pheromone

is more relevant to uncontrolled mobility, since purposeful mobility tries to avoid

moves that can break current communication links.

3.7 Discussion on implementing DSA in realistic

sensor network

The problem formulation is for an ideal situation where the cost of mobility and

communication is constant throughout the region of surveillance. This is not a

realistic assumption. For a more realistic experiment, maps of the region can

be developed, documenting mobility costs and communication cost for different

locations of the surveillance region. Instead of a fixed Kdα, consider K(x1,x2)d
α(x1,x2)

for communication between sensor nodes at positions x1 and x2 and cy1,y2||y1−y2||
for mobility cost between positions y1 and y2. If the terrain characteristics are fairly

constant within communication range, the communication cost becomes Krd
αr and

mobility cost becomes cs||x−y|| where s ∈ SR represents a part of the surveillance

region SR where cost of communication and mobility is constant. For example, α

can be large for a region with high building density (e.g. downtown Manhattan)

compared to regions with more open spaces.
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The values for communication and mobility can be learnt apriori and uploaded

into each sensor nodes. Thus a sensor node based on its position would estimate

the cost of mobility and communication to decide on a move. If such information

is not available apriori, it can be learnt after deployment.



Chapter 4
Mobility strategy for surveillance

4.1 Introduction

In this chapter different mobility strategies for performing surveillance are pre-

sented. Also the different mobility strategies are compared with respect to their

target detection time.

Consider a tactical sensor network deployed in region A to perform surveillance.

The goal of the sensor network is to perform surveillance and report any target

detection to the command-and-control center.

It is assumed that the cumulative coverage area of sensor nodes is significantly

less than area of region A, i.e. if rs is the sensing radius of a sensor node and there

are N sensor nodes, then Nπr2
s � |A|. The sensor nodes need to be mobile to

cover the entire region A.

4.2 Relating results between surveillance domains

The purpose of this section is to relate target detection results for unbounded

domains, wherein performance claims for random mobility strategies are typically

more analytically tractable (e.g., [41],[45]), to those of more realistic bounded

domains A with finite numbers of sensor nodes. It is assumed that the situation

in the latter case is a single target located at the origin that is assumed to be in

region A, i.e., the original “tile”.
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In this section, it is assumed that all sensor nodes move independently. A very

simplified special case of a random mobility strategy is what is subsequently called

as random initial direction wherein each sensor node selects an initial direction uni-

formly at random and subsequently moves in a deterministic manner at a velocity

that is common to all sensors. Another is a “hybrid” mobility strategy where each

sensor node selects a new direction uniformly at random after a uniformly random

number of moves, a derivative of random waypoint mobility model [13, 12]. If the

sensor node is moving in the bounded domain under consideration, it will “reflect”

off the domain’s boundaries.

The region A is assumed to be such that it can tessellate (tile) the unbounded

domain (R2 or R
3) to which it belongs. The “center” of each tile is defined to be

a point within it at the same relative position with respect to its boundaries that

0 is with respect to those of the original tile A, so that 0 is the center of A in

particular. Motion of sensors between adjacently tiles in the unbounded domain

(i.e., direction changes at tile boundaries) is such that the reflected motion defined

the bounded region A, i.e., the relative position of the reflected sensor with respect

to the center 0 ∈ A, is the same as that of the “refracted” sensor with respect to

the center of the tile in which it has moved, see Figure 4.1 for the example of a

rectangular A under random initial direction motion.

4.3 Problem formulation

It is usually simpler to develop mobility models for sensor nodes in unbounded

domains of infinite area [41],[45]. Sensor nodes are deployed according to a Spa-

tial Poisson Process with density λ. However in practical cases, the region of

surveillance is bounded. In a bounded region, again, consider N nodes deployed

according to a Spatial Poisson Process with node density λ = N/|A| where |A|
is the area of region. Simulations are performed to compare the target detection

time distribution in a bounded and unbounded domain without tiled target.

“Tiled targets” refers to an unbounded domain wherein there is a target at

the center of every tile. The following theorem immediately follows from a simple

argument involving coupling of the motion of the finite number N of sensor nodes

in the bounded and unbounded domain cases.
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Figure 4.1. Coupling between bounded and unbounded target-tiled domains

Theorem 2. Under any random mobility strategy, the target detection time distri-

bution for a bounded domain is equal to the first target detection time distribution

of an unbounded domain with

• tiled targets, and

• the same finite number N of sensor nodes all initially located in the original

tile A and moving according to the same distributions.

Proof: From geometry (figure 4.1).

Hypothesis 1. Under any random mobility strategy, the target detection time

distribution for a bounded domain is similar to the target detection time distribution

of an unbounded domain with

• a single target at the origin (not tiled targets),

• the initial mean sensor density N/|A| throughout the unbounded domain (i.e.,

infinitely many sensors), and
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• the same mobility distribution for all sensors,

as in the finite domain case.

The intuition behind the hypothesis is that, through mobility, the mean number

of sensors in A will always be the same (N) and, therefore, the target detection

times will be similarly distributed. Figure 4.2 shows a representation of the as-

Figure 4.2. Coupling between bounded and unbounded with non-tiled target

sumptions made. The mean number of nodes in the bounded domain is constant

as the number of nodes leaving and entering the bounded domain are equal in

mean.

The above hypothesis is explored by simulation for the case of initial placement

of sensor nodes according to a spatial Poisson process with density N/|A|. More
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Figure 4.3. Comparison of finite domain and infinite domain mean target detection
time under random initial direction

specifically, consider a 100m x 100m area for the bounded domain A and rectangle

of 1000m x 1000m area for an unbounded domain without tiled-target, both liter-

ally centered at the origin. The target detection radius of a sensor node is 10m.

The vertical line across the top of each bar in the graph indicates a confidence

interval of 95% from 10 trials.

Figure 4.3 shows the comparison of the mean target detection time under ini-

tial random direction mobility strategy with velocity v = 1m/s in the bounded

and unbounded domains without tiled-targets. The x-axis represents the average

number of nodes in a 100m x 100m area. The results for the case of hybrid mo-

bility strategy with parameters n ∼ U(2,10), shown in figure 4.4, are similarly

consistent with the statement of the Hypothesis 1.
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Mobility with random directions after n moves
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Figure 4.4. Comparison of finite domain and infinite domain mean target detection
time for hybrid motion



Chapter 5
Simulation Study of Purposeful

Mobility in Sensor Networks

In this chapter the simulation study of the DSA and the greedy algorithms is

presented. The simulation consists of three parts: the first set of simulations

compare the performance of DSA and the greedy algorithms, the second set of

simulations compares the performance of DSA for different values of β and the

last set of simulations examine the performance of the DSA algorithm when the

relays also consider mobility for surveillance in addition to mobility for transmission

energy conservation.

For all the simulations the sensor network consists of static sources and sinks

with mobile relays. It is assumed that the intermediate relays do not generate any

data of their own, i.e. data generated for surveillance task is ignored because of

its low volume.

5.1 Comparison of DSA and greedy algorithm

In this section a comparison of DSA and greedy algorithm is presented. For this set

of simulation, a specific sensor network layout, shown in figure 5.1(a) is considered.

The sensor network consists of a source, a sink and two relays.

For the current simulation, the mobility constant, c, from the global utility

function (3.4), is 5mJ/m, i.e., a relay weighing 1kg requires 5mJ to move a distance

of 1m. The parameter K from equation (3.2), determines the communication power
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required to transmit packets over a distance of 1m, is assumed to be 1mW . Note

K also factors in the data transmission rate. Since, the data stream from sources

is assumed to be live real-time video feeds, the data rate is of the order of Mbits/s.

Also for this equation, the communication attenuation parameter is assumed to be

α = 2.5. The greedy and the DSA algorithms make a decision of mobility every

T = 10s.

The values of c, K and T are conveniently chosen for the simulations. Note the

value of c is choosen to make mobility cost more comparable to communication

cost for T = 10s. For alternate values of c and k, the value of T can be changed

to make the communication and mobility cost comparable. Say, if the cost of

communication is significantly less, i.e., K is very low compared to c, the value of

T can be increased to compare the transmission energy against the mobility cost

amortized over larger period of time.

(a) DSA and greedy algorithm comparison

(b) Relay position after greedy algorithm (c) Relay position after DSA

Figure 5.1. Sensor network for comparison of DSA and greedy algorithms
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Consider the sensor network shown in figure 5.1(a) for the comparison of per-

formance of DSA and greedy algorithm. The network layout demonstrates that the

greedy algorithm converges to a “suboptimal” result (figure 5.1(b), while the DSA

algorithm performs better on average and converges to the optimal position 5.1(c).

The sensor network consists of a source, a sink and two relays. For the routing

algorithm, a modified version of the distributed Bellman Ford routing algorithm

is used with Kdα as the metric.

Since the greedy algorithm execution depends on the initial node position, it

converges to a deterministic result for a given initial set of sensor node position.

Therefore the greedy algorithm is executed once. Conversely, the DSA algorithm

may produce different result for each simulation run. Therefore the ensemble

average of the total transmission power from ten simulation runs is considered. The

vertical bar across the mean value in both the graphs represents a 95% confidence

interval.

The results of the comparison of greedy algorithm and DSA algorithm are

presented in figure 5.2. The graphs compares the total tranmission power of the

greedy and DSA algorithm over time. The DSA algorithm is plotted for two

values of β (0.5 and 5). Note, since a cooling schedule for the DSA algorithm is

not possible (section 3.4.1), a constant β is considered. For lower values of β = 0.5

(i.e., higher temperature), the DSA algorithm performs worse than the greedy

algorithm. The relays do not move to improve the total transmission power and

continue to move to positions worse than the initial position. The bad performance

of the DSA algorithm is due to the higher probability of accepting a “bad move”

(for β = 0.5). A bad move is defined as a move where the amortized mobility cost

is greater than the savings in transmission energy, i.e., a relay spends more energy

is motion compared to the amortized savings in transmission energy. For lower

values of β, a relay chooses a position at random and with very high probability

moves to the position, irrespective of the affect on the total transmission power,

i.e., in effect the DSA reduces to a random mobility algorithm. For β = 5 (i.e.,

lower temperature), the DSA algorithm performs better on average compared to

the greedy algorithm. Note, after about 650s, the DSA algorithm converges to

the optimal relay position (figure 5.1(c)). The relays have a lower probability of

accepting a bad move, but accept bad moves to climb out of the local minima to
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Figure 5.2. Comparison of total transmission power of DSA and greedy algorithm for
different fixed β

reach the global optima. For higher values of β (= 50), the DSA algorithm, on

average, continues to perform better than the greedy algorithm, but it does not

reach the globally optimal positions for all sample runs. For some sample runs

the performance of the DSA algorithm is similar to the greedy algorithm. Note,

the fraction of sample runs performing similar to the greedy algorithm increases

for higher values of β. For even higher values of β (= 500), the DSA algorithm

performs similar to the greedy algorithm, i.e., relays only accept moves that reduce

their total transmission power.

The DSA algorithm performs worse than the greedy algorithm for β = 0.5,

better than the greedy algorithm for β = 5 and for higher values (β = 50) it

performs, at worst, similar to the greedy algorithm for a fraction of the sample
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Figure 5.3. Comparison of total transmission power of DSA and greedy algorithm for
higher β

runs. Note for very low values of β = 0.5, the DSA algorithm acts like a random

mobility algorithm, where the impact of mobility on total transmission power is

ignored and for very high values of β = 500, the DSA algorithm performs similar

to the greedy algorithm.

Since the DSA algorithm performs worse than the greedy algorithm for β = 0.5,

better than greedy algorithm for β = 5 and, at worst, similar to greedy algorithm

for β = 50, it is necessary to select a convenient β such that a relay explores

its immediate neighborhood for alternate routes and improves (if possible) on its

current position. The DSA algorithm might not converge to the global optima,

but converge to a local optima and in the current sensor network context, where

sensor nodes may also be performing other tasks like surveillance, a local optima
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might be even desirable compared to a global optima. This is explained in greater

detail in section 5.2.2.

5.2 Simulation for single and dual tasking relays

The next set of simulations examine the performance of the DSA algorithm for

various values of β and the impact of surveillance mobility on DSA. The sensor

network considered for the simulations, consists of seven sensor nodes, made up

of two stationary (immobile) sources, a stationary sink and four mobile relays,

operating within a 40m×40m square area (for the following simulations, the units

of distance can be scaled-up by suitable modification of the following mobility and

communication parameters). Also the sources generate data at a constant bit rate.

The communication radius is 50m, i.e., all sensor nodes can talk to one another.

Initially, the positions X(0) of the relays are chosen independently and uni-

formly at random in the area under consideration. Also, it is assumed that the

active relays move at all times, i.e., p = 1 instead of p = 1/N as advised at the end

of section 3.3. Note the term active relay refers to the relay actively involved in

forwarding data to a sink. Relays not involved in data forwarding do not consider

mobility. Due to the constraints of the simulation setup, only one relay can move

at a time. Though all nodes decide to move with p = 1, each move is consid-

ered separately. Again, the communication and mobility parameters, c and K are

5mJ/m and 1mW per meter respectively. The value of α is 2.5 and relays decide on

a move every T = 10 seconds. A transmission power-based (distributed Bellman-

Ford with dα as metric) routing algorithm is assumed to be in effect determining

the routes R(X) at node-positions X (again, assumed to operate at a time-scale

much faster than that of node movement, T ). Finally, from 10 simulation runs,

an empirical mean and a 95% confidence interval is determined. The vertical bars

across the mean values represent the 95% confidence interval.

5.2.1 Results for single task per node

Figure 5.4 shows a plot of the total transmission power of the network over time for

different values of β (inverse temperature). Note β is constant for each simulation
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Figure 5.4. Total transmission power over time for different fixed β

run. Figure 5.4 plots the total transmission power for β = 10 and β = 500.

Both the plots show an improvement in the total transmission power. The total

transmission power are averaged over different initial positions from 10 sample

runs. The plots in figure 5.4 indicate that β = 500 performs better than β = 10.

However, this does not imply that the relays find better positions for β = 500

compared to β = 10. For β = 10, the relays find the best possible positions (locally

or globally optimal positions), but continue to move, due to higher probability of

accepting a bad move. That is, the relays continue to move in the neighborhood

of their best position and this is reflected in the temporal variance of the total

transmission power for β = 10. Conversely, the relays with β = 500 reach their

best possible position and remain stationary, since the probability of accepting a

bad move is low. Thus, on average, a relay with β = 500 is more likely to be at its
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best possible position (a globally or locally optimal position) compared to a relay

with β = 10.

Also the relays converge to their best possible positions faster for β = 500 than

β = 10. In figure 5.4, for β = 10 the relays reach their best possible position

around 610 seconds compared to 370 seconds for β = 500. A relay with β = 500

makes lesser number of bad moves compared to a relay with β = 10. This is due

to the lower probability of DSA with β = 500 to accept a bad move compared to

DSA with β = 10. Thus a relay with β = 500 is more likely to make moves that

reduce its total transmission power and reach its best possible position faster than

a relay with β = 10.

Figure 5.5. Initial and final node positions

Figure 5.5 shows the position of the sensor nodes before and after DSA algo-

rithm for a sample run. The figure illustrates how the relays create a near-linear
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path between the sources and sink to reduce total transmission distance.

Figure 5.6. Total transmission power for different β with same intial relay position

Note the plots in figure 5.4 compares the mean total transmission power plot

averaged over different initial positions. The next set of simulations, compares the

total transmission power for different β with the same initial relay positions. For

the following simulation, intial positions of relays are randomly generated, and the

DSA algorithm is executed for different values of β. The simulation is repeated 10

times to get 10 sample runs for different β with same set of intial relay positions.

Figure 5.6 plots the mean total transmission power for β = 10, 50, 500 with same

inital positions. The results are similar to the plots in figure 5.4. For higher β,

the total transmission power is lower and relays reach their best possible positions

faster than for lower β.

5.2.1.1 Convergence time

Figure 5.7(b) shows a plot of the convergence time for different values of β. Figure

5.7(a) illustrates the definition of convergence time. The convergence time is the

time taken by the relays to reach their best possible positions. Since the relays

continue to make bad moves for lower values of β, they do not settle on a single

position, but occupy a region around their best possible position. This is reflected

in the temporal variations of the mean total transmission power (figure 5.4). To

define convergence time, a curve-fit on the total transmission power, i.e., a simple

moving average (SMA), is considered. The SMA plot smoothens the total trans-

mission power plot to better determine the final total transmission power of the
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(a) Definition of convergence time

(b) Convergence time for different β

Figure 5.7. Convergence time

sensor network, especially for lower values of β. Now, the convergence time is de-

fined as the time at which the SMA plot of total transmission power has reduced

by 90% of the difference between the inital and final total transmission power.

This is better illustrated in figure 5.7(a)

The convergence time is determined for each sample run from the SMA plot

of the total transmission power. Note, the moving average is considered over the

last 100 seconds, or the last 10 readings of the total transmission power. Figure
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5.7(b) plots the average convergence time for difference values of β. The vertical

bar across the top of the bar plot is the 95% confidence interval from the 10 sample

runs. The convergence time decreases on average with increase in β.

Figure 5.8. Temporal variations in total transmission power value for different β

Figure 5.8 plots the temporal variance seen in the plots of the total transmission

power for different β. The total transmission power is considered as a time series

and the variance over the last M seconds measures the temporal variance. The

temporal variance after convergence time gives a measure of how much the relays

move about the best possible position. The temporal variance can be measured

from the variance of the moving average model for the last M seconds. For the

current plot of the total transmission power, we consider a simple moving average

model over the last 100 seconds (10 readings) to measure the temporal variance.

The temporal variance is measured by (Wma(t) − W (t))2 where W (t) is the total

transmission power at time t and Wma(t) represents the simple moving average

over the last 100 seconds (or 10 reading) of W (t). Figure 5.8 plots the temporal

variance for the total transmission power of the sensor network. The plot indicates

that the temporal variance is higher for β = 10 and comparable for β = 50 and

β = 500.

5.2.1.2 Energy consumption and savings

So far, the plots for the total transmission power do not indicate the mobility

cost involved in moving the relays or the savings in the total transmission power.

Figure 5.9 plots the mobility cost and the energy savings in transmission energy.
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(a) Mobility cost for different β

(b) Total transmission energy saved

Figure 5.9. Mobility cost comparison for different values of β

The energy saved is defined as

(W (t − T ) − W (t)) ∗ T

where W (t) represents the total transmission power at time t and T is the dura-

tion of the time interval between each move. It is assumed that the relays make

their move during the start of every T interval and the saved transmission energy

represents the difference in transmission energy between the two positions. Note,

when a relay makes a bad move, the savings in transmission energy is negative.

Figure 5.9(a) shows that the mobility cost decreases with increase in β, but figure



53

5.9(b) shows that the total transmission energy saved is similar for all value of β.

This indicates that it is better to chose higher values of β where the mobility cost

is the least, but transmission energy saved in similar to lower values of β.

Note, the mobility and communication costs are controlled by the c and K

parameter chosen conveniently for the simulation. A more realistic sensor network

could have mobility cost higher than the communication cost by couple of order

of magnitude. The mobility cost is dictated by the environment of mobile relay.

However, as mentioned in section 3.4.3, few energy rich relays could consider mo-

bility to reduce the transmission power of neighboring energy poor static sensor

nodes.

In comparing the total transmission power, the convergence time, mobility cost

and energy saved higher value of β produce better results. However, in section 5.1

it is observed that β must be low enough to allow the relays to explore their

neighborhood for alternate routes to reduce total transmission power. For the

simulation setup considered, a good value of β is about 500.

5.2.1.3 Revisiting the motivation for DSA

The motivation for using DSA is that the cost function V (X, R(X)) could be

multimodal and the greedy algorithm could be trapped in a local minima. However,

the details of the cost surface are unclear and if there are not many local minimas,

the benefits of the DSA algorithm will be limited. In such cases, the greedy

algorithm would suffice. The next set of simulations are considered to determine

the total number of minima present. The sensor network setup is similar to the

previous simulations (figure 5.10), i.e., the position of the sources and the sink

are same while the relays are randomly deployed in the region (rectangular box in

figure 5.10) between the sources and the sink. To determine the local minimas, an

initial random positions for relays is considered and the greedy algorithm executed.

The greedy algorithm converges to a local minima. The relays converge to their

final position and the total transmission power value is dependent on the relay

positions and the route selection. The simulation is executed multiple times for

different initial random placement of relays. Each local minima represents a unique

position vector X
′

and route R(X
′

) giving a unique value for the total transmission

power V (X
′

, R(X
′

)). Figure 5.11 gives and example of six positions and the
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Figure 5.10. Sensor network layout to find number of local minima

total transmission power. The simulation resulted in 16 unique values of total

transmission power (figure 5.12) indicating that there are atleast 16 minimas for

the given sensor network setup. This is a significant number for a sensor network

with two sources, a sink and four relays and is ample justification to consider the

DSA algorithm.

5.2.2 Dual tasking per node

In this set of simulations, it is assumed that the relays have both, a surveillance

and relaying function, as described in section 3.5. A simple method involving a

taboo list ([76]) of the last 10 points visited by the node is simulated. Neighboring

nodes do not exchange taboo lists. Finally, it is assumed that the transmission

energy for surveillance (passive surveillance) traffic is negligible compared to that

of the tracking traffic and the former is not accounted for.

For two values of the surveillance-decision probability parameter, ps ∈ {0.4, 0.6},
the communication energy is plotted in figure 5.13. One can also compare with

the second graph of figure 5.4 in which ps = 0. Note that the effect of increasing ps

(i.e., a greater propensity for surveillance moves) has an effect on communication
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Figure 5.11. Example network positions with different local minimas

Figure 5.12. Total transmission power for different local minimas

energy similar to that of increasing temperature for singly tasked (relay) nodes as

indicated in Figure 5.4. For ps = 0.4, there is a better performance in terms of total

transmission power compared to ps = 0.6. A surveillance move can be considered

similar to the bad move in the DSA algorithm, in that, the move may not help in

reducing total transmisssion power. Of course, the advantage of increasing ps is

that the nodes cover (scan) more of the area under surveillance. Defining coverage

as the total number of different points visited by all of the scan-relay nodes over

a sliding time-window of twenty seconds, the ps = 0.6 trials depicted in Figure
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Figure 5.13. Total transmission power over time

5.13 achieved 25% more coverage on average than the trials using ps = 0.4. Indeed

both ps and the temperature β−1 affect coverage which significantly increased with

decreasing β for the trials of Figure 5.4.

Note, in a sensor network where sensor nodes perform the dual task of relaying

and surveillance, it is desirable that the DSA algorithm converge to local optima

and not to global optima. Global optimal would require the relays to occupy the

region between the sources and sink and could lead to sensing holes in rest of

the region. For example, consider the sensor network shown in figure 5.14 that

illustrates this point better. The original position of sensor nodes is shown in

figure 5.14(a), with the sink and source indicated by the darker circles and the

relays represented by lighter circles. The globally optimal position for the relays is

shown in figure 5.14(b). However this is not possible with a constant β considered

for the DSA algorithm and a sufficienlty high β is necessary for a relay to explore its

immediate neighborhood for better routes and converge to a local optima as shown

in figure 5.14(c). The advantage in limiting the mobility of relays, is the prevention

of sensing holes in the region. Note, since a global optima could lead to sensing

holes (figure 5.14(b)) and the sensor network is also tasked with surveillance, a

global optimal is not a desirable outcome. Therefore limitation on relay mobility

prevents creation of such sensing holes.

Note the figures in 5.14 are example sensor network to illustrated the influence

of β and not simulation results.
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(a) Original position of relays

(b) Optimal positions for relays

(c) Non-optimal, but acceptable positions for relays

Figure 5.14. Influence of β on optimal relay positions



Chapter 6
Anycast Routing

6.1 Introduction

The simulation results in the previous chapter only consider a single sink as target

and all the sensor nodes route to this sink. However in a tactical sensor network

there are multiple sinks and sensor nodes can route data to any of the sinks. The

routing algorithm applied here follow the anycasting paradigm. In this section

the application of DSA to tactical sensor networks with anycasting is considered.

Although anycasting does not affect the mobility of the relay, in that, the decision

of a relay to move is unmodified, but due to its affect on routing, it is necessary

to consider affect of anycasting on DSA.

In the internet context anycasting is applied to “server farms” where a group of

servers offers the same service. An anycast address represents the group of servers.

A client requests service by querying the anycast address. The request is forwarded

to any one of the servers by anycast-aware routers [55]. The anycasting here is done

at the networking layer. An alternate implementation of anycasting is through the

application layer [9], where a request for service is received at a anycast domain

name resolver. The anycast domain name resolver directs the request to one of the

servers based on some criterion, for e.g. distance from client to server or current

load experienced at servers.

In the sensor network context, anycasting is applied to communicate with

groups of sensor nodes or sinks that can perform a particular task. For exam-

ple, sensor nodes co-located in a region are grouped into an anycast group and are
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responsible for providing data for that region. Anycasting can be implemented by

extending unicast based routing algorithm [54].

In the current simulation anycasting is implemented to forward data from

sources to the nearest sinks. The Distributed Bellman Ford algorithm is applied

to find routes to all the available sinks. A source selects the nearest sink from

the list in its routing table based on route costs. In the current simulation setup

only transmission power cost is considered, but this can be easily extended, with

some feedback from sinks, to include other metrics, e.g., energy richness of path

to sinks, delays to sinks and load handled at each sink. In particular anycasting

in conjunction with pheromone based routing is particularly suited for scenarios

where the sink and sensor network characteristics are dynamic.

Note, the destination address of the anycast group (i.e. sinks) is resolved at

the source. Alternately a sensor node can be assigned to act as an anycast address

resolvers that monitor the status of the sinks to determine the best sink for a source

node. Instead of the sinks flooding changes in their status, e.g. load handled,

residual energy, they can forward their status to anycast address resolver nodes.

Sources forward their request to access an anycast group member to the anycast

address resolver node. The anycast address resolver node determines the best sink

for the source based on certain criterion.

6.2 Extending DSA to Anycasting

In the current simulation setup consider “nearest” sink as the sink closest to the

source in terms of routing metric, i.e.
∑

Kdα, the total transmission power cost.

Again, a distributed Bellman Ford routing algorithm is considered with the trans-

mission energy, Kdα, as the route metric. The sensor nodes maintain routes to all

the sinks and choose the route with the best metric. Note that during moves made

by DSA, the sources could find an alternate sink closer than its initial target sink.

However this does not affect the effectiveness of DSA since the assumption that

a DSA move will not create a higher cost route still holds true. If a sensor node

switches sinks after a DSA move, it will only do so if the route to the alternate

sinks is more cost effective.

For the simulation setup consider a tactical sensor network with multiple sinks,
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(a) Before move

(b) After move

Figure 6.1. Anycasting in sensor network with multiple sources and sinks

sources and relays. Figure 6.1 shows an application of DSA to a sensor network

with multiple sources and sinks. Figure 6.1(a) shows the sensor nodes before the

DSA algorithm is run and figure 6.1(b) shows the sensor nodes after the DSA

algorithm is run.



Chapter 7
Capacity of Sensor Network

7.1 Introduction

In this chapter, an analytical model is developed to determine the capacity of a

sensor network in terms of outage probability.

7.2 Capacity of sensor network

In the previous chapter an extension of the DSA algorithm for multiple sinks

was presented. The extension considers sources routing data to the nearest sinks.

The relation between a sink and the number of sensor nodes it can support is

presented in this section. As the number of sensor nodes increases, the capacity

of the sensor network is limited by the number of sinks present to handle the

traffic generated by the sensor nodes. In particular the capacity is limited by

the funnel effect of the sensor network. It is assumed that the links between the

sinks and central base station have high capacity and do not saturate when the

network scales. It is also assumed that a sink is an expensive hardware that is

capable of communicating with greater number of sensor nodes compared to a

sensor node. For example a sink equipped with directional antennas can handle

more traffic than sensor nodes equipped with omni-directional antenna [57, 75].

The amount of traffic that can be transferred to a sink from and by its local

sensor nodes may be significantly limited by a number of factors. Particularly, the

focus is on the funnel effect experienced by the one-hop neighboring sensor nodes
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(henceforth called “the one-hop sensor nodes”) of the sink, which experience the

greatest relaying burden in the region served by the sink. Again, sensor nodes are

assumed to have limited hardware and energy resources. This and channel and

medium access conditions (spanning factors such as ambient noise power, fading,

shadowing, and interference) collectively limit the number of data flows that a

sensor node can relay and its transmission radius. In this section, the physical

and data-link/MAC layers are simply parameterized with an upper bound on the

number of flows that can be handled by a sensor node, i.e., its relaying capacity,

and on its transmission range. The outage probability, i.e., the fraction of sensor

nodes that cannot connect to the sink is calculated from the limit on the number

of flows one-hop sensor nodes can handle, the sensor node and sink density and

the communication radius of a sensor node.

7.3 Problem formulation

The deployment of sensor nodes is modeled as a spatial Poisson process with den-

sity λ nodes per unit area. The sink nodes are assumed to be similarly distributed

but with a node density of σ < λ sinks per unit area. The area over which the sinks

are distributed can be tessellated to form Poisson Voronoi cells [53] that contain a

single sink and the sensor nodes it serves.

Consider a tile A that contains a sink and sensor nodes connecting to the sink.

The area of the tile is |A| and the mean number of sensor nodes in the tile is

EN = λ|A|. The one-hop sensor nodes are assumed resident in a region S, a

circular disk of radius D, centered at the sink with S ⊂ A. That is, D is the

communication radius of a sensor node and note that the assumption S ⊂ A is

reasonable when D or σ are small. Since the one-hop sensor nodes are proposed

to be the primary relaying bottlenecks, the mean number of bottleneck nodes is

given by:

EN1 = λπD2. (7.1)

Figure 7.1 depicts such a region A with S and a sink.

The mean number of nodes served by the N1 one-hop nodes, i.e. the number of

nodes in region A \ S, that forward traffic to the sink through one of the one-hop
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Figure 7.1. A Poisson Voronoi Cell with regions A and S

nodes is given by

EN2 = E(N − N1)

= λ|A| − λπD2

= λ(|A| − πD2) (7.2)

Now let F be the number of external flows that a sensor node can support (i.e.,

not including its own). Recall that F depends on D: a larger D increases the

contention region of the one-hop sensor nodes and thereby reduces F . Here it is

implicitly assumed that the one-hop sensor nodes support equal amounts (F ) of

sensor nodes in region A \ S, i.e., each one-hop node supports N2/N1 other sensor

nodes. Again, N1 is the number of one-hop sensor nodes and N2 is the number

of non one-hop sensor nodes. This assumption is equivalent to assuming that the

routing algorithm balances the flows equally between all one-hop sensor node. Such
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a routing algorithm becomes a necessity if a comparable energy consumption rate

is to be maintained among the one-hop sensor nodes. Note, since the death of

a one-hope sensor nodes can cause network breakage, any premature demise of a

one-hope sensor node breaks the network. To ensure longer lifetime of the network,

it is necessary that all one-hop sensor nodes expend energy at comparable rates.

Let Ω be the outage defined as the fraction of the sensor nodes in the tile that

cannot connect to the sink. The outage is approximated by

Ω ≡ N − N1F − N1

N
(7.3)

where N1F represents the maximum number of sensor nodes in region A \ S that

are supported by the one-hop sensor nodes. The additional N1 term denotes the

flows represented by the one-hop sensor nodes themselves.

The outage in equation (7.3) does not include the outage due to relaying limits

of sensor nodes that are non one-hop neighbors of the sink nor of isolated sensor

nodes that cannot reach any the sink. The latter is determined by the connectivity

of the sensor network, which depends on the sensor node density λ and commu-

nication radius (transmission range) D. If a constant mean sensor node density

λ is assumed, the number of isolated sensor nodes will obviously be reduced as

D increases. If πD2 ≈ 1/σ then the entire tile is covered by the sink, i.e., all

the sensor nodes are the one-hop neighbors of the sink, but this increases channel

contention. Therefore,

1

λ
� πD2 � 1

σ
(7.4)

so as to be able to reasonably assume a largely connected sensor network with

manageable channel contention. Note that for large λ sensor nodes in region A\S

can reach the flow limit and cause outage, a scenario that is, again, not considered

in equation (7.3).

Now, calculation of P (Ω > ε) determines the probability that the outage ex-

ceeds a lower bound (an outage tolerance) ε.

P (Ω > ε) = P

(

N − N1(F + 1)

N
> ε

)
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= P

(

N1 + N2 − N1F − N1

N1 + N2
> ε

)

= P

(

N2 >
N1(F + ε)

1 − ε

)

= P (N2 > αN1) (7.5)

where α ≡ F+ε
1−ε

. Given |A|, note that N2 and N1 are Poisson distributed with mean

λ(|A| − πD2) and λ|A| respectively. Conditioning on the cell’s area

|A| ≡ A > πD2,

equation becomes

P (Ω > ε) =

∫ ∞

πD2

P (N2 > αN1|A = a) fA(a)da (7.6)

where fA(a) is the distribution of the area of a Poisson Voronoi cell. Now,

P (N2 > αN1|A = a) =
∞

∑

n1=0

P (N2 > αN1|N1 = n1,A = a)

× e−λπD2
(λπD2)n1

n1!

=

∞
∑

n1=0

∞
∑

n2=αn1

e−λ(a−πD2) (λ(a − πD2))n2

n2!

× e−λπD2
(λπD2)n1

n1!
(7.7)

Thus,

P (Ω > ε) =

∫ ∞

πD2

∞
∑

n1=0

∞
∑

n2=αn1

e−λa(λπD2)n1

n1!

× (λ(a − πD2))n2

n2!
fA(a) da. (7.8)
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An approximate distribution for area fA, given in [53], is

fA(a) =
bqaq−1e−ba

Γ(q)
(7.9)

where b = 5.38σ and q = 5.38. Equation 7.9 is used to numerically compute

the outage probability given by equation (7.8). Figures 8.1-8.3 depict the outage

probability comparison with simulation results for different values of F , D and λ,

as described in the section 8.2.

7.4 Capacity with mobile relocated sinks

In the previous section it is assumed that the sensor nodes and sinks are static

and distributed according to a spatial Poisson process. Here it is assumed that the

sinks are mobile ([2, 64]) and equipped with location information (GPS systems).

Note, this is not completely unreasonable since the sinks are limited in number and

as mentioned before more expensive hardware. Given that the sinks are mobile,

it is desirable to relocate them after their initial deployment to increase sensor

network capacity and reduce outage.

Primary motivation for sink relocation is management of equal number of sensor

nodes. Since the initial deployment could lead to sinks managing different number

of sensor nodes leading to under utilized resources in certain sinks and higher

outage probability in other cells.

However equal distribution of sensor nodes is not a trivial task and requires

knowledge of location of sensor nodes. One possible solution is to move the sinks

towards the relay node with the maximum number of flows. This could potentially

increase the number of one-hop nodes and increase the capacity of the one-hop

nodes to handle more flows in the directoin that has the maximum number of

flows. It is assumed that the one-hop node with the maximum number of flows is

more likely to have additional flows it could not accomodate. If there are multiple

one-hop nodes relaying the maximum number of flows, a target one-hop sensor

node is chosen at random. One of the disadvantage with this method is that the

determination of the direction of the relay with maximum number of flows might

not be trivial. Another disadvantage is that the sink could disconnect from one-
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hop nodes in the opposite direction of the move and potentially, break the network.

Also it is not certain that the move would reduce the outage probability in the

direction of move.

An alternate mobility strategy considered in this thesis is relocation of sinks to

manage equal area of the sensing region instead of equal number of sensor nodes.

Although this does not guarantee equal distribution of sensor nodes among the

sinks, it achieves better sensor nodes distribution than the original deployment,

which is modeled as a spatial Poisson process. The implementation of the mobility

strategy is simpler compared to the previous mobility strategy since the sinks are

aware of their location and the central base station can coordinate their moves to

distributed the sinks equally over the sensing region.

It is assumed that the central base station coordinates the relocation of the

sinks and the sensing region is tesselated into squares with a sink at the center of

a square.

Now, the affect of relocation of the sinks on the outage probability (equation

7.3) is examined. The modified analytical model assumes that the region A is a

square of area |A| instead of a Poisson Voronoi cell. Note the calculations would

also hold for other shapes (e.g. hexagon or circles). As in section 7.3 the following

are assumed:

• The sensor nodes are distributed according to a spatial poisson process with

density λ.

• The one-hop sensor nodes are the bottleneck

• Each sensor node can forward upto F flows

• The one-hop sensor nodes forward equal number of flows from the non one-

hop sensor nodes

• Communication radius of a sensor node is given by D.

From the assumptions, the mean number of sensor nodes in region A is given

by EN = λ|A|. The mean number of one-hop sensor nodes, in region S, is given

by EN1 = λπD2 and the mean number of non one-hop sensor nodes, in region

A \ S, is given by EN2 = λ(|A| − πD2). Figure 7.2 shows an example of region A
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Figure 7.2. Deterministic region of support created by mobile sink

with one-hop sensor node region, S, and the sink at the center. Outage is defined

as the number of sensor nodes unable to communicate with the sink due to the

flow limit and outage probability is defined by equation 7.5.

To ensure S ⊂ A, and the sensor network is connected, it is assumed that the

communication radius satisfies condition

1

λ
� πD2 � |A| (7.10)

If S ≈ |A|, then all sensor nodes are one-hop sensor nodes that can increase channel

contention and if πD2 ≈ 1/λ, then the sensor network is disconnected.

From equation 7.5

P (Ω > ε) = P (N2 > αN1)

=
∞

∑

n1=0

P (N2 > αN1|N1 = n1)e
λπD2

(λπD2)n1

n1!
(7.11)
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and

P (N2 > αN1 | N2 = n2, N1 = n1) =

=

n2=∞
∑

n2=αn1

eλ(|A|−πD2) (λ(|A| − πD2))n2

n2!
(7.12)

Thus,

P (Ω > ε) =
∞

∑

n1=0

∞
∑

n2=αn1

eλπD2
(λπD2)n1

n1!

eλ(|A|−πD2) (λ(|A| − πD2))n2

n2!
(7.13)

The numerical computation and comparison with simulation results are pre-

sented in figures 8.4 - 8.6.



Chapter 8
Simulation for Capacity problem

8.1 Simulation Setup

A customized program written in Java and available upon request is developed to

perform the simulation. Data structures presented in [53] were used to generate

instances of Poisson Voronoi cells (PVC) via the method in [26]. Having created a

random PVC, with the sink at the origin, a sensor network is generated consisting

of sensor nodes located inside the PVC. A routing algorithm is executed to connect

all sensor nodes to the sink. In deriving (7.8), it is assumed that the one-hop sensor

nodes serve equal numbers of non one-hop sensor nodes. To approximate this

assumption, the sensor nodes use a customized distributed Bellman Ford routing

algorithm [18], where the metric for computing routes is the number of sensor nodes

supported by the upstream one-hop sensor node. If a sensor node has a choice

between two neighbors for the best route, the sensor node chooses the neighbor

whose upstream, one-hop sensor node currently relays the minimum number of

flows. This can be implemented in an ad hoc network using an AODV [56] based

routing algorithm. Route request packets are forwarded all the way to the sink.

The sink receives the route request from the one-hop sensor nodes and replies to

the route request such that there are an equal number of sensor nodes (surveillance

data flows) supported by the one-hop sensor nodes. Since sensor nodes are assumed

static, it is also assumed that route discovery does not occur very often. Thus, the

overhead for the customized routing algorithm would not be severe. The routing

algorithm attempts to balance flow among the one-hop sensor nodes, but there are
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instances of sensor node deployment where, e.g., it is just not possible for nodes to

connect to more than one one-hop node. Such cases result in a skewed distribution

of flows among the one-hop nodes.

In the preliminary simulations, two potential outage phenomena were evaluated

that could be experienced by a sensor node. One wherein the sensor node is not

connected to the network (i.e., it is isolated by communication range limitation)

and the other where the upstream one-hop node reaches its maximum number of

flow limit. The simulation is repeated of a single PVC instance with 25 instances of

randomly generated sensor network to estimate P (Ω > ε) for that PVC instance.

This is repeated for 10 instances of randomly generated PVCs to estimate P (Ω >

ε). Vertical bars on P (Ω > ε) estimates depicted in figures 8.1-8.3 represent

confidence intervals of 95%.

8.2 Simulation Results without sink mobility

Figure 8.1. Comparison of P (Ω > ε) for different λ

Figure 8.1 compares P (Ω > ε) for different values of λ for the simulation results
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and numerical evaluation of equation (7.8). The figure also plots the fraction of

nodes that are disconnected. This plot is necessary to determine the accuracy of

the outage probability. For a sensor network that is largely disconnected, i.e., has

a large fraction of nodes unable to connect to the sink, the P (Ω > ε) estimate

is not accurate. In figure 8.1, P (Ω > ε) for λ = 20 is an inaccurate estimate,

as the fraction of disconnected nodes is high (about 20%). For values of λ > 30,

the fraction of disconnected nodes is negligible and the P (Ω > ε) estimate is more

accurate. Due to the assumption of equal distribution of flows among the one-

hop nodes in (7.8), simulation results do not match the numerical computation of

(7.8). However, note the lower range of confidence interval of P (Ω > ε) is closer

to numerical evaluation of (7.8) indicating instances of the sensor network where

equal distribution of flows among the one-hop nodes is possible. The numerical

evaluation of equation (7.8) is a lower bound of the outage probability. Also the

simulation calculates the average outage probability and the confidence interval for

multiple PVC instances. However, the confidence interval includes the average over

multiple sensor node deployment for a single PVC instance and does not capture

the variance of the outage probability from multiple sensor network instances.

Figure 8.2. Comparison of P (Ω > ε) for different F
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Figure 8.2 compares P (Ω > ε) for different values of F . Note that the fraction

of disconnected nodes are negligible for all values of F . Recall the connectivity of

the sensor network depends on λ and D and they are suitable choosen to ensure

network connectivity. Again due to the assumption of equal flows among the one-

hop sensor nodes in (7.8), the simulation result and numerical evaluation of (7.8)

do not match, but this difference naturally reduces as the flow limit F increases

allowing greater balance.

Figure 8.3. Comparison of P (Ω > ε) for different D

Figure 8.3 compares P (Ω > ε) for different values of D. For D = 0.2, the

fraction of disconnected nodes is high (about 35%), but for larger values of D this

fraction reduces. Note again there is a difference between the simulation estimate

and numerical evaluation of P (Ω > ε) and this difference reduces significantly for

larger values of D (≥ 0.3). This is because for larger values of D, the connectivity

of network increases, thus creating routes to alternate one-hop nodes to better

balance the flows among the one-hop nodes.
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8.3 Simulation results with sink mobility

Figure 8.4. Comparison of P (Ω > ε) for different λ with deterministic sink placement

The simulation results with relocated sink is different from the random place-

ment of sink, in that, the outage probability are better for both simulation and

numerical calculations. Although the simulations results are “closer” to the nu-

merical results for deterministic sink placement than for random sink placement,

the results are still not close for numerical calculations to substitute simulation

results.

Figure 8.4 shows the comparison of P (Ω > ε) from simulation and numerical

computation using equation 7.13 for different values of λ. The graph also plots the

fraction of disconnected node to ensure a valid comparison between the simulation

and numerical results. The two plots show a significant difference between the

simulated results and the numerical computation. The difference is mainly due

to the assumption of equal distribution of sensor flows among the one-hop sensor

nodes. However as the sensor node density increases, there is a decrease in the

difference. Though the numerical computation is an inaccurate estimation for the

simulation results, it serves as a lower bound on the outage achievable with given

number of sensor nodes and one-hop sensor nodes.
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Figure 8.5. Comparison of P (Ω > ε) for different F with deterministic sink placement

Figure 8.5 compares the outage probability for different values of maximum

flow limit F . The number of disconnected sensor nodes are negligible, as the sensor

node density and communication radius ensure a connected sensor network. Again

for lower values of F , the simulation results and numerical results are not similar.

However as F increases the simulation results and numerical results converge.

Figure 8.6 shows the comparison of outage probability for different D. As the

D value increases, the network connectivity increases. Again for lower values of D

the simulated and numerical results are not similar, but as D increases, the two

results converge.

The graphs in figures 8.1-8.6 (both simulation and numerical computation)

show that the outage probability depends more strongly on communication radius

D and flow limit F than on the sensor node density λ. This suggests that the

communication radius has a greater influence on outage probability.
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Figure 8.6. Comparison of P (Ω > ε) for different D with deterministic sink placement



Chapter 9
Conclusions and Future Work

In this chapter the conclusions and future work are presented

9.1 Summary and future work for Purposeful Mo-

bility

In the thesis the effect of purposeful mobility and capacity issues on sensor net-

works were studies. The effect of mobility on a sensor network was studied and

purposeful mobility was presented as a design paradigm. Particularly a Distributed

Simulated Annealing (DSA) algorithm to move sensor nodes acting as relays to

optimal position for transmission energy conservation was presented. The DSA al-

gorithm measures the tradeoff of mobility with amortized savings in transmission

energy before deciding on any moves. Analytical proof were developed that showed

the DSA algorithm converged to global optima and the results were validated with

simulations. Also the affect of anycast based routing algorithm on performance of

DSA was studied.

The simulataneous task of a relay to move for transmission power conservation

and surveillance was also examined. Also a metric to quantify surveillance was de-

veloped and the affect the affect of mobility on both surveillance and transmission

power conservation was studied.

Simulation results to validate the hypothesis that target detection time in a

bounded domain can be replicated by target detection time in an unbounded do-
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main with tiled target placement was also presented.

Future work plans include a more comprehensive mobility strategy for sensor

network that spans all the layers of the wireless network stack. Current mobility

strategy only considered network layer benefits but ignored its affect on Applica-

tion, MAC and PHY layers. The future work would include a study of the effect

of purposeful mobility on all layers and develop metrics such that mobility does

not adversely affect any particular layer.

Also, there are plans to look at mobility for other tasks, such as equal energy

distribution in the sensing region. If energy depletion is occurring more rapidly in

certain regions, movement of sensor nodes to that region would help in reducing

the energy depletion rate.

9.2 Conclusions and future work for capacity is-

sues in sensor network

The thesis also looked at capacity related issues in sensor network and in particular

determined capacity in terms of the number of sensor nodes a given sink can

support with acceptable outages. It was assumed that the immediate neighbors

of the sinks, the one-hop sensor nodes, handle the maximum amount of traffic.

Outage was defined as the fraction of sensor nodes that cannot connect to the sink

due to the capacity limit reached by the one-hop sensor nodes.

The sensor nodes and sink were modeled as Spatial Poisson process and ana-

lytical results that estimated the outage probability exceeding certain limit were

developed. Analytical model for outage calculation for relocated sinks to the cen-

ter of square region was also presented. And in both cases the outage calculations

from the analytical results were compared to outage calculations from simulation

results.

Although the comparisons did not yield a close match, it helped us develop a

lower bound on the best outage possible. The graphs also showed the affect of

individual parameters on outage performance and it was concluded that increases

in communication radius and flow limit improved the outage probability more than

increases in sensor node density.



79

Note that outage probability can be improved with increasing the communi-

cation radius, D, of the sensor nodes, however it fails to show that F is also

dependent on D. Note, an increase in communication radius increases the neigh-

bors of a sensor node and hence increases the channel contention. The future work

plans to include a study that replaces the simplistic limit F with a more represen-

tative model of the MAC layer ([10]) to determine forwarding limits in terms of

contentions at MAC layer.

Lastly a study of the effect of purposeful mobility on capacity of sensor network

is planned in the future work. DSA algorithm moved relays to create a more

“linear” route between the sources and sinks, thus reducing the channel contention.

The future work plans to look at ways to use purposeful mobility to increase

capacity in more direct ways.



Appendix A
Simulated Annealing: A brief

introduction

We present a brief introduction to simulated annealing.

A.1 Introduction

Simulated Annealing is a non-linear optimization technique. It is considered

as a meta-heuristic optimization technique. The simulated annealing algorithm

“searches” the solution space, S for the global optima. Given a starting point in

the solution space S, the simulated annealing algorithm selects the next solution

based on certain criterion. The algorithm progresses by moving from one point in

S to another till it converges to the global optima.

A.1.1 Next Neighbor Selection Criterion

Let C(x) represent the cost function we are trying to minimize over x ∈ S. Cur-

rently let us assume that x = xi. The simulated annealing algorithm chooses a

point xj ∈ S from a neighborhood set N ⊂ S and decides to move to xj with

probability given by equation A.1.

AT (xj |xi) =

{

1 if C(xj) < C(xi)

exp(
C(xi)−C(xj)

T
) if C(xj) ≥ C(xi)

(A.1)
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This can also be written as

AT (xj |xi) = min

{

1, exp

(−(C(xj) − C(xi))

T

)}

(A.2)

Equation A.1 is the Metropolis criterion and the algorithm based on this crite-

rion is called the Metropolis algorithm. According to the Metropolis criterion, the

Simulated Annealing algorithm moves from state xi to state xj if it is a “good”

move, i.e. if C(xj) < C(xi). If the move is a “bad” move, i.e. C(xj) ≥ C(xi)

the Simulated Algorithm moves to xj with probability exp((C(xi) − C(xj)/T ).

The probability of accepting a “bad” move is controlled by the parameter T , the

temperature. Higher the temperature, greater the probability of accepting a “bad”

move and greater the probability of “climbing out” of local optima. The Sim-

ulated Annealing algorithm starts with a high T and reduces T , i.e., cools the

temperature, very slowly, as the algorithm proceeds to achieve global optima.

A.1.2 Markov Chain model and Gibbs Distribution

The neighbor selection is modeled as a Markov chain according to the transition

probability matrix given by Q(Xi, Xj). The TPM is assumed aperiodic, irreducible,

time-reversible with stationary distribution µ. Since Q(Xi, Xj) is time-reversible,

detailed balance equation holds, i.e. µ(xi)Q(xi, xj) = µ(xj)Q(xj , xi).

The transition probability matrix for the Simulated Annealing algorithm is

given by

PT (xi, xj) = AT (xj |xi)Q(xi, xj) ∀xi, xj ∈ S (A.3)

PT (Xi, Xj) inherits aperiodicity and irreducibility and is time-reversible with Gibbs

stationary distribution give by equation (A.4).

πT (xi) =
µ(xi)e

−C(xi)/T

Z
(A.4)

where Z =
∑

∀xk∈S µ(xi)e
C(xk)/T . Note the T subscript denotes that the TPM is

valid only for a particular value of T .

To prove that equation (A.4) is the stationary distribution for Markov chain
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P (Xi, Xj), simply note that equation (A.4) satisfies the detailed balance equations:

π(xi)PT (xi, xj) = π(xj)PT (xj , xj) ∀xi, xj ∈ S.

π(xi)AT (xi, xj)Q(xi, xj) = π(xj)AT (xj , xi)Q(xj , xi) (A.5)

To this end, note

π(xi)AT (xi, xj) =
µ(xi)exp(−C(xi)/T )

Z
min

{

1, exp

(−(C(xj) − C(xi))

T

)}

=
µ(xi)exp(−C(xi)/T )

Z
min

{

1,
exp(−C(xj)/T )

exp(−C(xi)/T )

}

=
µ(xi)

Z
min {exp(−C(xj)/T ), exp(−C(xi)/T )} (A.6)

Similarly

π(xj)AT (xj , xi) =
µ(xj)

Z
min {exp(−C(xi)/T ), exp(−C(xj)/T )} (A.7)

Applying equation (A.6) and (A.7) in equation (A.5) we get,

µ(xi)

Z
min {exp(−C(xj)/T ), exp(−C(xi)/T )}Q(xi, xj)

=
µ(xj)

Z
min {exp(−C(xi)/T ), exp(−C(xj)/T )}Q(xj , xi) (A.8)

Equation (A.8) simplifies to

µT (xi)Q(xi, xj) = µ(xj)Q(xj , xi) (A.9)

which is true since Q(Xi, Xj) is a time-reversible Markov chain.

The stationary distribution of Markov chain represented by TPM P T (Xi, Xj)

is given by equation A.4 for a given temperature T . As the temperature cools, i.e.

T → 0, the steady state converges to the global optima.

Let Xopt ⊂ S be the set of global optimal solutions. We have
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lim
T→0

πT (xi) = lim
T→0

µ(xi)e
−C(xi)/T

Z

= lim
T→0

µ(xi)e
(C(xopt)−C(xi))/T

∑

∀xk∈S
µ(xi)e(C(xopt)−C(xk))/T

where xopt ∈ Xopt

For xi ∈ Xopt we get

π(xi) =
µ(xi)

∑

∀xk∈Xopt

µ(xk)
(A.10)

and for xi /∈ Xopt we get

π(xi) = 0 (A.11)

which satisfies the proof that πT (xi) converges to the optimal solution as T → 0.

A.1.3 Inhomogeneous Markov Chain model

The homogenous Markov chain model requires infinite time to reach the Gibbs

stationary distribution. The algorithm could require implementing infinitely long

sequences of Markov chains with descending values of temperature. Clearly this is

not practical. Alternately the algorithm can be modeled as a series of finite length

Markov chains, each generated by reducing values of temperature. This leads

to a time-inhomogeneous Markov chain which is strongly ergodic and converges

in distribution if the cooling schedule is given by T (k) = c
log(1+k)

where T (k)

is the temperature at time instance k and c is sufficiently large (to overcome the

deepest local minima not the global minima) [32]. That is, the time-inhomogeneous

Markov chain is slowly cooled or “annealed” so that its distribution tracks the

Gibbs distribution at temperature T (k).



Appendix B
Simulation outline

In this chapter we present a brief outline of the simulation and the data structures

used in simulation.

B.1 Simulation outline for Purposeful Mobility

We implement the simulations for DSA algorithm in C++ and ported it later to

Java. The simulation has three components:

• Placement of sources, sinks and relays

• Routing algorithm (Distributed Bellman Ford)

• Distributed Simulated Annealing Algorithm

B.1.1 Node placement

The simulation is generated in a square region of area 40m x 40m. The sources

and sink are deterministically placed and the relays are randomly placed between

the sources and sink.

B.1.2 Routing Algorithm

We then execute the Distributed Bellman Ford routing algorithm to find routes

from source nodes to the sink. The routing algorithm consists of three main meth-

ods:
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• Create routes: In this method the program loops through all the nodes (ex-

cept the sinks) and identifies the nodes that are neighbors to the sink. The

immediate neighbors of the sink update their routing table and generate a

message for their neighbor. The message is pushed into a queue.

• Update route: In this method the message queue is popped and the neighbors

check if the message update generates an alternate minimum path. If the

message shows an alternate minimum path, the neighbor nodes updates its

routing table and generates a new message for its neighbor and pushes it

into the message queue. After a message is processed, the next message is

popped from the queue till the queue is emptied.

• Update flow: This propagates from the source to the sink and populates the

data structure representing the neighbors from which a node receives flow.

For the DSA algorithm, both the transmission and reception flow information

are required.

B.1.3 Distributed Simulated Annealing

The DSA algorithm is implemented as one method. The node executing the DSA

algorithm finds the current power consumption in its neighborhood. It generates

an array of positions where it can move, assuming that no node exist there. The

node randomly chooses a position and with that as its new position calculates the

power consumption in its neighborhood. If the new power consumption is better,

the node accepts the move. If the new power consumption is worse, the node

accepts the new position according the Metropolis Criterion. If the new position

if rejected, the node updates the position with the old values.

A brief outline of the class structure with the major attributes and methods is

presented in tables [B.1 - B.3]

B.2 Simulation outline for Capacity Results

We have divided our capacity simulation into three major components:
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Table B.1. Class structure of MobileNode
MobileNode
Attributes

double x X value in position (x,y)
double y Y value in position (x,y)

int nodeAddress int value to uniquely
identify node

int nodeType int identifying if node is
Source,Sink or Relay

Vector upstreamNode List of nodes transmit-
ting to it

RoutingTable routingTable Routing table for mobile
node

Methods
double getLocalTxPower(NodeList) Gets the transmission

power in neighborhood
double getTxPower(NodeList) Power spent in transmis-

sion
double getRxPower(NodeList) Power spent in receveing

from neighboring nodes
NodeList getMyNeighbor(NodeList) Returns a vector con-

taining the neighboring
nodes

Getter/Setter The Get and Set meth-
ods for all attributes

• Generating the Poisson Voronoi Cell. This step is skipped for the second

simulation

• Generating the sensor nodes inside the cell according to a Spatial Poisson

Process

• Distributed Bellman Ford routing algorithm

B.2.1 Generating the Poisson Voronoi Cell

We start with an initial point at the origin and generate a Poisson Voronoi Cell

around it. We generate the neighboring points according to Spatial Poisson process

of density σ and create the Poisson Voronoi Cell from the perpendicular bisectors

of the line joining the origin to the neighboring points. We start with two random
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Table B.2. Class structure of RoutingTable
RoutingTable
Attributes

double routeEntryList List of RouteEntry val-
ues in routing table

Methods
double getBestRouteToSink() Returns the RouteEntry

with lowest route cost to
a sink

RouteEntry getEntryForNodeID(int) Returns the routeEn-
try for Destination node
given by int

double clearAllRoutes() Deletes all route entry in
routing table

NodeList addRouteEntry(RouteEntry) Adds a new RouteEntry
to routing table

boolean isRoutingEntryPresent(int) Checks if a RouteEntry
is present for destination
node given by int

Getter/Setter The Get and Set meth-
ods for all attributes

variables, Qi an exponentially distributed random variable of density 1 and θi

a random variable uniformly distributed in range (0, 2π). R = Q0 + Q1 + .. +

Qi−1 + Qi represents the radial distance of the neighboring point generated after

ith interation. θi represents the angle of the neighboring point generated after ith

iteration. We get the Spatial Poisson Process of density σ multiplying the radial

distance of the unit density Spatial Poisson Process by a factor of
√

Qi/πσ. The

neighboring points are represented by (X, Y ) = (
√

Qi/πσ cosθ,
√

Qi/πσ sinθ).

We generate the Poisson Voronoi Cell by drawing the perpendicular bisectors of

the line joining the origin and the neighboring points. We stop the simulation when

the new neighboring point does not alter the dimension of the Poisson Voronoi Cell,

i.e., the perpendicular bisector from the new Poisson point is beyond the farthest

vertex of the Poisson Voronoi cell.
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Table B.3. Class structure of RouteEntry
RouteEntry
Attributes

int destinationID Node ID of the destina-
tion node

int nextHopID Node ID of the next hop
node

int numberOfFlows Number of flows in cur-
rent routeEntry

int numberOfHops Number of hops to
destination in current
routeEntry

int routeCost Route cost to destination
node

Methods
Getter/Setter The Get and Set meth-

ods for all attributes

B.2.2 Generating the sensor nodes

To generate the sensor nodes position, we generate a poisson random variable

according to density λ|A| that represents the number of sensor nodes in area |A|.
The region considered is much larger that the Poisson Voronoi Cell. The locations

of the sensor nodes are generated by generation uniformly distributed random

variables for their X and Y coordinates. Sensor nodes that are not inside the

Poisson Voronoi Cell are discarded.

B.2.3 Distributed Bellman Ford

The routing algorithm is similar to the one implemented for DSA simulations. The

only change is that the route metric used is the number of flows managed by the

upstream one-hop sensor nodes.
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