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Abstract

Highly flexible turbomachinery comprised of soft polymeric impellers, ex-

hibit large, time-dependent deformation when subjected to fluid stresses during

operation. The large deformations of the impeller blades and the close proximity

of the blades to the pump casing require simulations that consider the interaction

of the fluid flow and the structural deformations. This thesis explores the use of

fluid–structure interaction (FSI) modeling to perform time-accurate simulations of

flexible polymeric turbomachinery and also explores the use of an inverse structural

analysis to account for blade deformations over an initial startup period. The pur-

pose of the inverse analysis is to determine the shape of a blade that, when acted

on by fluid stresses, will deform into the design shape.

A partitioned FSI solver is developed, using the OpenFOAM software and

an author-developed finite element (FE) structural solver, to perform FSI simula-

tions of flexible turbomachinery. The flow and structural solvers are tightly coupled

using fixed-point iterations to ensure fully converged structural and flow solvers for

each solution time step. The solver interface supports disparate flow and structural

meshes through interpolation and load mapping algorithms. A water tunnel test

of a modified NACA 66 viscoelastic fin is performed at multiple angles of attack

to generate validation data for the FSI solver. The validated solver is applied to

an expandable impeller pump to simulate time-accurate performance changes that

result from impeller elastic and viscoelastic deformation under application of the

fluid stresses.

An inverse FE structural solver is developed and used to compute inverted

structural shapes that account for deformations due to fluid loads so that the struc-

tures deform into their design shapes after elastic and viscoelastic deformations
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occur. The inverse solver is validated for several cases based on numerical sim-

ulations. Time-accurate performance estimates of the expandable impeller pump

for the inverted impeller shape demonstrate the accuracy of the inverse procedure

when subjected to time-varying fluid forces. FSI simulation results for inverted

modified NACA 66 fins are also presented. The deformed inverse shapes show

good agreement with the intended (design) shapes, but slight discrepancies exist

between the prescribed and simulated time at which these shapes are achieved.

The slight discrepancies in the target times are attributed to inaccuracies in the

load histories assumed during the inverse analyses.
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Chapter 1

Introduction

Fluid–structure interaction (FSI) is the interaction of a moveable and/or

deformable structure that is immersed in a fluid and/or contains a fluid. Motion

of the structure causes a change in the fluid’s stresses that act on the structure’s

wetted surface, which in turn causes a change in the structure’s motion. A model

that captures such an interaction must use two-way coupling, where the fluid

motion affects the structure’s motion and the structure’s motion affects the fluid’s

motion. Moreover, FSI might involve oscillatory or non-oscillatory interactions.

Oscillatory interactions occur when the structure experiences strain due to fluid

forces, deforms toward its original configuration to reduce the strain, but is forced

back into the strained configuration once again by the fluid forces. This interaction

continues causing oscillatory motion of the structure. Non-oscillatory interactions

are those that cause a steady or quasi-steady strain in the structure due to fluid

forces.

Fluid–structure interaction modeling has been a very active area of research

in recent years as evidenced by numerous papers in the literature. Advances in

computer capacity concurrent with the maturation of flow and structural model-

ing have made feasible these coupled simulations. The long-term goal of research

in this area is to make FSI simulations commonplace in the design and analysis

environment for real-world applications. Such capability would be very benefi-

cial to many industries, including the biomedical industry for the understanding

and treatment of disease. Several examples of such have appeared in the recent

literature. For example, Vierendeels, DeHart, and others have investigated the
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ventricle filling process of the human heart [143] and the flow field and forces act-

ing on the heart valves with the aim of improving the design of prosthetic valves

[142, 26], Wolters et al. [149] simulated aortic wall stress with the intent of pre-

dicting rupture risk for abdominal aortic aneurysms (AAA), and Wall et al. [144]

have simulated airflow patterns in both diseased and healthy lungs to improve drug

delivery through improved understanding of particle and aerosol depositions.

1.1 Motivation

This thesis focuses on the challenging problem of FSI modeling for an ex-

pandable impeller pump that could be implanted in the human heart [96]. The

pump would collapse prior to insertion, be inserted through a small incision in the

skin, traverse the arteries until correctly positioned in the heart’s left ventricle,

and then be deployed for operation. The impeller for such a device is required to

undergo large elastic strains to enable the initial collapse and then expand under

stored strain energy. The requirement of a large elastic strain is satisfied through

the use of a soft polymeric material. The downside to a polymer for this applica-

tion, however, is that the impeller will exhibit time-dependent deformation during

operation as a result of the operating surface pressures acting on the blade surfaces

and the viscoelastic nature inherent to all polymeric materials.

Experience has shown that blade deformations for such a pump cause changes

to the impeller tip clearance (i.e., the clearance between the blade tips and the

pump housing), thereby impacting pump performance. Impeller tip clearance

changes, obtained using a one-way coupling (fluid stresses transferred to the struc-

ture, but no displacements transferred to the fluid, which differs from a two-way

coupling as described earlier) between a computational fluid dynamics (CFD)

model and a structural model with the fluid loads applied in the reverse direction,

are shown in Figure 1.1. The purpose of this figure is to provide the reader with
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a qualitative understanding of the problem at hand. The details of the analyses

used to create this figure are not further discussed.

t=0
t=7 min
t=3 hr

Fig. 1.1. Impeller tip clearance dependency on time; obtained from a one-way
fluid-solid coupling model with negative loads applied

Knowledge of impeller performance is imperative to the design cycle in order

to ensure the final pump design will meet the performance goals. For viscoelastic

pump impellers, initial performance change with time is significant and must be

considered and accounted for during the design phase. As described above, the

inverse impeller shape shown in Figure 1.1 was created with a one-way analysis.

Ideally, this shape would deform into the design shape at some time during op-

eration of the pump. The ability to assess the correctness of this inverted shape

and also to predict time-accurate pump performance requires two-way coupled FSI

modeling because the fluid stresses depend upon the structural geometry, which

in turn depends upon the fluid stresses and time for this viscoelastic material.

Fluid–structure interaction for the viscoelastic materials and flow condi-

tions considered here is of the non-oscillatory type. If the material did not exhibit
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viscoelastic effects, the fluid stresses would deform the structure into a static posi-

tion where the structure’s strains were sufficient to balance the steady fluid forces.

However, the presence of viscoelasticity results in structural strains that continue

to increase so that the structural stresses balance the fluid stresses, resulting in

a structure that continues to deform slowly over a long period of time and only

asymptotically approaches a steady state condition. The FSI simulations required

for this system are therefore quasi-steady.

It is the intent of this work to first develop and validate an FSI solver,

second develop an inverse modeling approach for the viscoelastic materials, and

third apply the FSI solver to the inverted system to assess the validity of the inverse

approach for the large-deformation, nonlinear, and time-dependent problem. In

the process of achieving these goals, a method inherently will be developed and

validated to simulate the time-accurate performance of a pump comprised of a

viscoelastic impeller. Before discussing the present work, however, a summary of

the work that has been done by others is provided below for some relevant topics.

1.2 Previous and Related Work

Fluid–structure interaction modeling is a field that has existed for some

time, but recently has been gaining substantial interest in the engineering com-

munity as the ability to accurately perform these very demanding simulations for

real-world systems is becoming feasible with current computer capacities. As de-

scribed in the current section, many researchers are investigating FSI for various

applications, but there have been very few validation studies, and to the author’s

knowledge nobody has performed FSI simulations of large-deformation viscoelastic

turbomachinery.

The calculation of inverse models is also a field that has existed for some

time, but has not been applied to systems comprised of viscoelastic materials. A

summary of the work done in this field of study is also provided below.
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1.2.1 Fluid–Structure Interaction

Fluid–structure interaction modeling has a long history dating back to the

late 1970’s. Research in this field emerged independently at three locations in

the United States [42]: Northwestern University (Belytschko and Mullen), Cal

Tech (Hughes and Liu), and Lockheed Palo Alto Research Laboratories (DeRuntz,

Felippa, Geers, and Park → later moved to the University of Colorado at Boulder as

the Center for Aerospace Structures, CAS). FSI was researched heavily for several

years for application to the aerospace field, wherein predictions of flutter and other

similar phenomena have been pursued. The general approach to FSI in this field of

research is to employ what is referred to as a loosely-coupled partitioned approach

(explained below). Researchers in the field are discovering that application of FSI

to some types of problems render this approach inadequate for various reasons,

and thus other approaches have come into play. A brief introduction to these

approaches is provided next.

The various modeling approaches used in the field of FSI can essentially be

grouped into two categories: monolithic and partitioned. The monolithic approach

casts the governing equations for both the fluid and solid domains in terms of the

same primitive variables (usually pressure and velocity [54, 61, 74]), and discretizes

the entire domain using the same scheme. The main advantage of a monolithic

approach is the seamless coupling of the fluid and structure domains, which can

lead to improved solution stability. The drawbacks to this approach are cited as:

1. specialized, highly complex software is required [39, 108],

2. the rigidities of the fluid and the structure can be vastly different (e.g.,

E/(ρfcf
2) ∼ 106 for a steel structure in air, where E is Young’s modulus

of steel and ρf and cf are the density and sound speed of air, respectively)

and therefore the solutions for such cases are dominated by structural at-

tributes rather than the combined interaction effects [103, 73]; in some cases,
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the system matrix can be ill-conditioned with zeros on the diagonal leading

to difficulties implementing a solver [61, 67],

3. the resulting set of equations might not be solvable due to prohibitively large

amount of required memory because of the need to simultaneously store the

unknown variables for both the fluid and structure domains, and therefore

may require the use of a matrix-free approach [55, 67],

4. a single time step is used for all domains, which can lead to inefficiencies if

disparate time scales are present [61], and

5. the use of a single mesh creates a challenge to generate meshes of suitably

high quality for both domains [115].

The partitioned approach is by far the most heavily used approach based

on the literature. This approach retains separate domains for the fluid (ΩF ) and

structure (ΩS) and separate solvers with independent discretizations are used in

the modeling of each domain. The extent of the domains generally varies during

an FSI simulation because of deformation of the structural domain in response

to unbalanced fluid stresses. The union of these two domains comprises the total

domain, Ω = ΩF ∪ΩS. There are three boundaries that must be considered for the

domain: fluid (ΓF ), solid (ΓS), and the fluid/solid interface (ΓF/S = ∂ΩF ∩ ∂ΩS).

These domains and boundaries are depicted in Figure 1.2. The most important

FΓ SΓ

/F SΓ

SΩ
FΩ

Fig. 1.2. Notional FSI problem domain showing the fluid, solid, and boundaries
for each
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advantages of the partitioned approach are the ability to separately maintain and

advance the flow modeling and structural modeling software [41, 93, 121, 153] and

to employ separate meshes for the structure and the fluid, which often require

different mesh resolutions. The drawbacks to this approach are cited as:

1. the need to accurately and efficiently couple the two domains on ΓF/S [121],

and the degradation of solution stability due to small errors in this coupling

[42], and

2. poor solution stability for loosely coupled schemes [97] (described in Sec-

tion 2.5.2), or costly sub-iterations of a tightly coupled scheme [97] (also

described in Section 2.5.2).

The partitioned approach has been chosen for the current application based

on a comparison of the benefits and drawbacks of each approach. While the mono-

lithic approach offers a seamless fluid/structure communication, the ill-conditioned

system of equations that sometimes arises due to disparate domain stiffnesses could

be a limiting factor. The partitioned approach will require some consideration of

the interface communication at ΓF/S to ensure an accurate and stable solution,

but the use of a tightly coupled algorithm will provide results that are equivalent

to those from a monolithic approach [93, 94, 140]. In addition, separate solvers

can be developed, maintained, and advanced independently.

Fluid–structure interaction simulations have been applied to a vast range

of applications in recent years. Applications have included parachutes [117, 132]

and other cloth dynamics [111, 129], singing hydrofoils [104], nuclear reactor steam

generator tube bundles [113], bridges [88], rotor dynamics [68], shape optimization

studies [90], and a vast number of biomedical applications including arterial blood

flow [43, 48, 60, 105, 128, 135, 136, 153], aortic heart valves [27, 25, 28, 26, 142],

heart and ventricle [64, 81, 84, 86], lung modeling [144], and aortic aneurysms [35,

83, 130, 149]. Surprisingly, very few of these investigations performed verification
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and validation studies of their FSI solvers. There has been a proposal by Turek

and Hron [138] for a numerical benchmark for FSI, but the proposal has not yet

gained any ground. The proposed benchmark problem is a cylinder with a trailing

elastic plate subject to incompressible, laminar channel flow. The flow over the

cylinder interacts with the trailing plate causing large oscillations of the plate. A

similar problem, but for a square body instead of a cylinder, was introduced by

Wall and Ramm [145] and has been used by others [33, 61, 95, 126, 150] to perform

numerical evaluations of their solver. Both of these problems are two-dimensional.

Experimental data are available for the Turek benchmark [51], but the author

is not aware of similar data for the Wall and Ramm problem. A review of FSI

modeling for turbomachinery is described separately in the following section.

1.2.1.1 Turbomachinery FSI Modeling

The body of literature related to FSI simulations and turbomachinery is

very limited.1 The FSI work that has been reported employs simplified flow mod-

els, simplified structural models, or is limited to steady-state conditions. A brief

summary of relevant publications is provided below.

Lin and Lin [87] performed one of the earliest FSI simulations of a marine

propeller using shell finite elements for the propeller and lifting surface theory

with the steady Bernoulli equation for the flow. Their use of lifting surface theory

does not include any effects of blade thickness on the flow field and the propeller

material was modeled as linear elastic.

Gnesin and Rz ↪adkowski [50] investigated the aeroelastic behavior of an os-

cillating blade row of a turbomachine using an inviscid flow model and a modal

1
Note that this review does not consider the large body of work related to small-deformation, dy-

namic aeroelastic/hydroelastic modeling of lifting surfaces (for such things as flutter), which represents
a specialized subset of FSI (see, for example, [21] for additional information).
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representation of the structure. Their approach employed a linear elastic mate-

rial model and varied the modal coefficients with time to compute the structure’s

response.

Benra [11] investigated flow-induced oscillations of a single-blade, single-

stage sewage water pump using commercial software and data exchange at the

interface via output files. A one-way coupling of fluid pressures to the structure

was employed for this work because of coupling difficulties resulting from disparate

meshes at the interface. Benra concludes that a two-way coupling is needed for

this model to improve agreement with experimental results.

Lastly, Young [152] employed a FSI model of a composite marine propeller

to investigate the hydroelastic behavior in subcavitating and cavitating flows.

The approach employs a low-order Boundary Element Model (BEM) with a non-

commercial solver for the fluid and employs the commercial software Abaqus for

the structure. Structural deformations are incorporated by updating the BEM

geometry and iterating between the structural and flow solvers until the system

converges. Comparisons for steady-state operation are made for computed and

measured thrust and cavitation patterns.

1.2.1.2 Commercial FSI Software

There has been some movement in the commercial sector to develop multi-

physics modeling capability, of which FSI represents a subset. The approach that

has garnered the most attention for FSI seems to be a partitioned approach with

coupling accomplished through the use of separate coupling software. The Mesh-

based parallel Code Coupling Interface (MpCCI) [99] is a commonly referenced

coupling software, which is supported by the finite element (FE) solver Abaqus

[57], and possibly others. A thorough evaluation of commercial software capability

has not been performed, but a limited investigation at the onset of this research has

found that the available software tends to only support loosely coupled simulations.
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The use of commercial software can have advantages over non-commercial

codes, but the ability to apply these codes to new applications often requires

several cycles of code releases, which can take years. The author performed some

preliminary work and found the use of Abaqus for the current problem to be

hindered by the need to communicate with the flow solver via output files, as

further described in Chapter 2.

The loosely coupled approach employed by the commercial sector has been

found by some researchers to be a limiting factor due to added-mass instability

effects (see Section 2.5.2 for an explanation of the added-mass instability). For

example, Timperi et al. [134] employed commercial coupling software to couple

Fluent and Abaqus using MpCCI, and Star-CD and Abaqus using ES-FSI (both

Star-CD and ES-FSI are products of the commercial company CD-adapco) to

model a transient event of a commercial nuclear reactor. In both cases, the loosely

coupled approaches failed to solve the problem and a one-way coupling (also loosely

coupled by definition) approach was used instead. The one-way coupling approach

caused high-frequency oscillations in the results and also contributed to large dif-

ferences between the simulation and empirical results.

The quasi-steady nature of the expandable impeller pump investigated here

should alleviate added-mass instabilities common to loosely-coupled solvers. How-

ever, reduced restrictions on time step size with a tightly coupled solver are at-

tractive for this application because of the anticipated long simulation times. A

tightly-coupled solver is therefore pursued for this work.

1.2.2 Inverse Structural Analysis

The discussion involving Figure 1.1 earlier in this chapter was meant to

introduce the reader to the idea of an inverse problem. The use of the word inverse

here is in contrast to the traditional ‘inverse problem’ used with measurements

to ascertain material property or load information (see for example [16]) or a



11

die shape for material processing (see [77]). The inverse problem described here

represents the inverse of the classical, or direct, problem of elasticity: determine

the deformed shape of an object subjected to known loads in its reference (i.e.,

unloaded) configuration. The objective of the inverse analysis is to determine the

reference configuration knowing its deformed shape. The focus here is on large-

deformation problems in finite elasticity because the solution for small-deformation

(i.e., linear) elasticity is trivial.

Shield [112] proposed the original formulation for inverse analysis in finite

elasticity. His method exploited the duality in the governing equations when the

role of the deformed and reference (or unloaded) configurations are interchanged.

Chadwick [20] later revisited this duality to formulate Shield’s equilibrium equa-

tions using Eshelby’s energy-momentum tensor.

Yamada [151], Govindjee and Mihalic [52, 53], and Fachinotti et al. [36]

separately developed inverse finite element formulations for finite deformations

of hyperelastic bodies. The work of Govindjee and Mihalic involved the Eule-

rian formulation, Yamada used an arbitrary Lagrangian-Eulerian approach, and

Fachinotti et al. used a Lagrangian formulation so that the derived approach could

be implemented into existing software without substantial modifications.

Govindjee and Mihalic applied their solver in [52] to determine an unde-

formed gasket profile and applied their solver of [53] to a deformed seal and a

rubber forming tool. In each of these cases, the finite element solver alone can be

used to evaluate the efficacy of the inverted model. Fachinotti et al. [36] applied

their inverse finite element solver to gas turbine blades to predict the inverted,

or manufactured, shape of the blades. This analysis, however, requires the blade

pressures in the design shape and do not account for load variations with blade

deformation. In the extreme case, it could be argued that the loading would be

insufficient for the blade to ever arrive at the design shape. One of the goals of
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this work is to evaluate such inverted models to ascertain their robustness. The

existence of a validated FSI solver is paramount to satisfying this goal.

1.3 Agenda

This thesis explores the use of inverse structure analysis for highly flexible

turbomachinery, including a viscoelastic expandable impeller pump, to determine

the manufactured shape required for the blades to deform into their design shape

while operating. Fluid–structure interaction simulations are required to evaluate

the inverted structural shapes and thus substantial effort is invested in developing

and validating an FSI solver. The solver validation is accomplished with water

tunnel testing of a simplified problem. An accurate viscoelastic material model is

necessary for the simulations and thus additional component testing and simulation

is performed with a focus on structural model validation. The large deformations

of the viscoelastic structures complicates the fluid mesh motion of the FSI solver

and therefore some effort is spent on the mesh motion solver development.

The specific contributions of this research to the field of computational

mechanics include:

1. demonstration of FSI simulations for a highly flexible viscoelastic hydrofoil,

with comparisons to experimental data,

2. acquisition of validation data for FSI simulations of a viscoelastic hydrofoil,

3. demonstration of FSI simulations for a highly-flexible turbomachine,

4. development of a novel approach for an inverse finite element solver, and

5. demonstration of the inverse finite element technique for a flexible, viscoelas-

tic turbomachine.
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1.4 Thesis Outline

Chapter 2 describes the implementation of the FSI solver used to achieve the

objectives outlined above. Specific information is provided about the individual

solvers that comprise the FSI solver and details of their interface communication.

Details of the inverse structural solver and parallel processing for the FSI solver

are also included in this chapter. Chapter 3 is dedicated to developing and vali-

dating a material model for the viscoelastomer used in this research. Beam and fin

specimens are tested and compared to FE models to evaluate and refine the vis-

coelastic material model. Chapter 4 describes a water tunnel test of a viscoelastic

fin. Data from this test are used to validate the FSI solver, which is the subject

of Chapter 5. Chapter 5 also describes the mesh generation for the water tunnel

FSI model, validation of the flow and structural solvers, and solver performance.

Chapter 6 focuses on inverse simulations of the fin to determine inverted structural

shapes for various angles of attack and describes FSI simulations of the inverted

shapes to evaluate the use of the inverse technique for the viscoelastic fin. This

chapter provides additional validation of the inverse structural solver. Chapter 7

applies the FSI solver and the inverse structural solver to the expandable impeller

pump. Details of the mesh generation and the efficacy of the inverse solver for the

pump are provided. The final chapter summarizes and provides conclusions of the

research, and recommends future work.
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Chapter 2

FSI Solver Implementation

The vast majority of the research reported in the introduction employed par-

titioned FSI solvers with the Arbitrary Lagrangian-Eulerian (ALE) formulation for

the flow solver [63].1 This formulation enables the fluid mesh to be deformed in

response to structural deformations. Alternatives to the ALE approach include

the immersed boundary method, fictitious domain method, and the mortar finite

element method, all of which involve to some degree the more general Lagrange

multiplier approach [4, 91, 79, 123, 124] and use fixed fluid meshes. Tezduyar et

al. [131] describe the advantage of the ALE approach over the fixed-mesh alterna-

tives is the ability to maintain high-quality meshes near the structure’s interface,

resulting in more accurate fluid mechanics in that region. For geometries of high

complexity, remeshing is often required in addition to mesh motion. Based on this

argument, and the availability of existing ALE flow solvers, the ALE formulation

has been chosen for this work.

It should be noted that prior to implementing the solver described below,

initial FSI simulations were performed using Fluent coupled to Abaqus [57] via

Fluent User-Defined Functions [45] and OpenFOAM [102, 146] coupled to Abaqus

using a custom OpenFOAM solver to facilitate the solver communication. These

solvers functioned well for simple test problems, but were very inefficient because

communication with the commercial structural solver took place with file input

1
Flow solvers typically employ an Eulerian formulation where the computational mesh is fixed in space

and the fluid particles move relative to the mesh. Structural solvers often use a Lagrangian formulation
where the computational mesh moves with the associated material particle during motion. An ALE
formulation allows an arbitrary motion of the computational mesh, allowing parts of the mesh to be
moved with the particles similar to the Lagrangian approach, other parts of the mesh can be stationary
like an Eulerian approach, or the mesh can be moved arbitrarily with no correlation to the particle
motion.
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and output, and the structural solver was restarted for every solve. Discussions

with Abaqus technical representatives about the solver’s FSI capability revealed

their intentions of providing an enhanced interface to improve its multi-physics ca-

pability, but at that time the capability did not exist. At that point it was decided

to move forward with all non-commercial software to implement a tightly-coupled

FSI solver. Because of the lack of an open-source, validated structural solver ca-

pable of modeling large deformation viscoelastic response, a structural solver was

created especially for this effort. Note that the creation of a structural solver has

facilitated the implementation of an inverse FE solver and a displacement interpo-

lation scheme for solver coupling. Both of these would have required substantial

more effort had a commercial structural solver been used. Details of the struc-

tural solver are provided below after a discussion of the governing equations and

a description of the OpenFOAM flow solvers.

2.1 Governing Equations

The governing equations for both the fluid and solid domains differ only in

their constitutive relationships and therefore the general equations for continuum

mechanics are first introduced, followed by the specifics for each domain. The

equations are cast in an ALE form, which provides a very general framework that

captures the Eulerian, Lagrangian, or an arbitrary frame of reference. The first

equation to consider is the continuity equation:

∂ρ

∂t
+ ∇ · [ρ (

v − v
m)]

= 0, (2.1)

where ρ is mass density, v is the (fluid or solid) particle velocity, and v
m

is the

grid point velocity (which is required in this work to deform the fluid mesh to

accommodate structural deformation). For a Lagrangian implementation, v
m

= v,



16

and for an Eulerian implementation, v
m

= 0. Performing a force balance and

making use of the continuity equation leads to the following momentum equation:

ρ
∂v

∂t
+ ρ

[(
v − v

m) · ∇]
v = ∇ · σ + ρb, (2.2)

where σ is the Cauchy stress tensor and b is the body force.

An additional constraint for the ALE approach is that the mesh velocity

satisfy the Geometric Conservation Law (GCL) [73, 114, 133]:

∂V
ce

∂t
+ ∇ · vm

= 0, (2.3)

where V
ce

is the volume of a control element. The GCL requires the change in

volume of each control volume between two adjacent time steps equal the volume

swept by the cell boundary during the time step.

The two predominant solution techniques are the finite-element method

(FEM) in which the functional form of the solution to these equations is expanded

in terms of a predetermined basis set and its residual minimized, and the finite-

volume method (FVM). The structural solver in this work uses the FEM, while

the flow solver uses the FVM. In the FVM, the computational domain is divided

into a set of discrete volumes δV
i
which fill the computational domain D without

overlap. The fluid-flow equations are then volume integrated over each individual

finite volume δV
i
. Gauss’s theorem is used to convert the divergence terms in

Equations 2.1 and 2.2 into surface-integrated flux terms, reducing the problem of

discretizing these terms to one of finding difference approximations for the fluxes

at the surface of the control volume based on the known cell-center values.

Application of the constitutive relationships then provides the necessary

closure of the governing equations. The constitutive relationships and resulting

equations for the fluid and solid domains and details of the equation solvers are
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provided next, followed by the procedure used to couple these domains at the

interface Γ
F/S

and details of the implementation.

2.2 Flow Solver

Models for Newtonian fluids undergoing incompressible flow often make use

of the following approximation to the stress tensor:

σ = −pI + 2μS, (2.4)

where p is the thermodynamic pressure, μ is the absolute viscosity, and S is the

strain-rate tensor. Substitution of Equation 2.4 into the momentum equation

(Equation 2.2) and using 2∇ · S = ∇2
v, yields the Navier-Stokes equations:

∂v

∂t
+

[(
v − v

m) · ∇]
v = −1

ρ
∇p + ν∇2

v, (2.5)

where ν is the kinematic viscosity.

The motion of the fluid mesh is often considered a third field of the otherwise

two-field fluid–structure problem because its solution is not trivial. Generally the

mesh motion is computed using one of three approaches: 1) use a spring analogy

where all point-to-point mesh connections are replaced with springs, 2) cast the

mesh as a pseudo solid, or 3) model the mesh motion with the Laplace operator

as described by Jasak and Tuković [70]. Jasak and Tuković have implemented

their Laplacian approach to mesh motion in OpenFOAM. The approach involves

first a decomposition of OpenFOAM’s arbitrary polyhedral mesh into tetrahedral

elements that are then moved according to the Laplace equation:

∇ · (γ∇v
m)

= 0, (2.6)



18

where γ is the diffusion coefficient that can be constant or variable throughout the

fluid domain. Within OpenFOAM, the standard options for a variable diffusion

coefficient are 1) inversely proportional to the distance from the moving boundary,

or 2) proportional to the density of the deformation energy. Further discussion of

mesh motion is provided below in Section 2.4.

OpenFOAM is the flow solver of choice for this effort because it facilitates

custom integration with third-party solvers, has a pre-existing, robust mesh motion

capability that satisfies the GCL, and its source code is freely available through

the GNU General Public License. OpenFOAM is an object-oriented library for

numerical simulations in continuum mechanics, written in the C++ language.

OpenFOAM does have some finite element capability, but it is best known for

its cell-centered finite volume solvers. OpenFOAM versions 1.4.1-dev and 1.5-dev

have been used for this research. However, all FSI and other flow simulation results

reported in this thesis are from version 1.5-dev.

2.2.1 SimpleFoam

The flow problems to be modeled in this work are treated as incompress-

ible and steady (the FSI problem is quasi-steady, as described below, but the flow

field is treated as steady), and therefore OpenFOAM’s simpleFoam solver provides

a good starting point for the solver development. Because OpenFOAM employs

a segregated approach to solve the coupled continuity and momentum equations

(Equations 2.1 and 2.2), which requires equations to be formulated for each de-

pendent variable and solved sequentially, an iterative scheme is required to solve

the systems of equations. The simpleFoam solver uses the SIMPLE (Semi Implicit

Method for Pressure Linked Equation) algorithm to solve for the pressure and ve-

locity fields. The basic idea of the SIMPLE algorithm is to compute a pressure

derivative ∂p/∂x
i
such that the flow field is divergence-free. The procedure is:
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1. compute velocity field from momentum equations (Equations 2.2) using an

assumed pressure field,

2. compute pressure from the Poisson equation (Equation 2.7) using the previ-

ously computed velocity field,

3. correct the velocity field using the new pressure field, and

4. repeat steps 2 and 3 until the velocity field is divergence free.

The Poisson equation is derived by first applying the divergence to the

momentum equation and then making use of continuity to eliminate terms to

arrive at the final Poisson equation:

∇2
p = ρ

∂

∂x
j

⎡
⎣∂

(
u

i
u

j

)
∂x

i

⎤
⎦ = f

(
u

i

)
. (2.7)

2.2.2 MRFSimpleFoam

MRFSimpleFoam is an extension of simpleFoam such that it enables rotating

frames of reference by including centrifugal and Coriolis body-force components in

Equations 2.2. This capability is important for the rotating impeller simulations.

The body-force contribution to Equations 2.2 is

b = ω × (ω × r) + 2ω × v, (2.8)

where ω is the rotation rate and r is the radial distance measured from the axis of

rotation. The first term on the right-hand side is the centrifugal acceleration and

the second term is the Coriolis acceleration.
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2.3 Structural Solver

Traditionally, the finite element approach is employed for structural model-

ing while the finite volume (FV) approach is used for flow modeling. Development

of the FE approach for structural modeling was underway in the early 1960’s [8].

The ability to employ simple linear constitutive relationships for solids with wide

applicability to real-world problems made feasible the early development of the

structural FE approach. Fluid models, however, require the solution of non-linear

equations and a much more complicated constitutive relationship to model turbu-

lent flow and thus lagged the FE structural solver development because of computer

speed and memory capacity limitations [30]. The FV approach for fluids evolved

from the finite difference approach in the early 1970’s, with the FV approach cited

to offer some advantages over the FE method for convective-dominant equations

and the FE approach offers some advantages over the FV approach for diffusion-

dominant equations [65]. However, Idelsohn and Oñate [65] have shown that the

FV and FE approaches have many commonalities and for some cases they are

completely equivalent. Recently, there has been interest in FV structural model-

ing [30, 37, 71, 91, 125, 137, 147] because it would enable both flow and structural

modelling to occur with a single discretization scheme [37]. Such an approach is

not necessary for the partitioned approach to FSI, and many researchers still rely

on FV fluid solvers and FE structural solvers. The author has chosen to implement

a FE solver for the structural modeling in this work, based solely on individual

preference.

The structural FE solver developed for this research uses the h-method

(in contrast to the p-method or more recently the h/p-method) of finite element

modeling, which means the element interpolations are of fixed polynomial order

and only through mesh refinement can the solution accuracy be improved [8, 23].

This is the traditional approach to FE structural modeling and provides the most

straight-forward implementation. The solver is implemented with a Lagrangian
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frame-of-reference, which means the mesh velocity is equivalent to the material

velocity, v
m

= v and hence the momentum equation (Equation 2.2) becomes:

ρ
∂

2
u

∂t2
= ∇ · σ + ρb, (2.9)

where u are the material displacements (∂u/∂t = v). As is described later in

Section 4.3, the structural response can be treated as quasi-steady due to the long

time scale associated with material stress relaxation and negligible inertial terms

of Equation 2.9. Therefore, the momentum equation for the solid reduces to

∇ · σ + ρb = 0, (2.10)

with the boundary conditions:

u(x, t) = u
p
(x, t) on surfaceA

u
(2.11)

σ(x, t) · n(x, t) = t
p
(x, t) on surfaceA

t
(2.12)

where A
u

is the constrained portion of the boundary surface, A
t
is the portion of

the boundary surface subject to an external traction, t
p

is the applied traction,

and n is the unit boundary surface normal.

The finite element procedure for structural mechanics is well-documented

in a number of texts [8, 23, 24, 62], and is therefore only summarized herein. The

basic approach is to rewrite the strong form of the stress equilibrium equation

(Equation 2.10) in its weak form,
2

apply integration by parts, use the divergence

2
Governing differential equations and boundary conditions represent the strong form of a problem,

whereas the weak form is an integral expression of the problem that implicitly contains the differential
equations.
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theorem, and then incorporate the Bubnov-Galerkin (most often referred to as

simply the Galerkin) method which implies the weak form’s weighting function

has the same form as the nodal interpolation scheme for the trial solution. The

process is summarized in Figure 2.1, which shows the equivalence of the weak and

strong forms, the use of approximation between the weak and Galerkin form, and

the equivalence in the Galerkin and matrix forms.

Strong
Form

Weak
Form

Galerkin
Approximation

Matrix
Form

Fig. 2.1. Finite element approach sequence

2.3.1 Small-Deformation Formulation

The resulting matrix equation for a single finite element of the small-

deformation formulation is [8]:

R(u) =
∑
VGP

[
B

T
σ̄ − N

T
b
]
wJ −

∑
AGP

N
T
t
p
wj, (2.13)

where R is the element force residual that is non-zero when the trial solution

u differs from the exact solution (this represents the imbalance between the ex-

ternally applied loads and the internal element reaction forces), B is the strain-

displacement matrix, σ̄ is the stress tensor in vector form, w is the Gauss-point

weight for the Gaussian quadrature, J is the volume-to-volume Jacobian relating

reference and physical element volumes, and j is the face-to-face Jacobian. The

strain-displacement matrix is determined by differentiation of the shape function
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matrix (N) and relates strains (ε) to nodal displacements (u):

ε̄ = Bu (2.14)

where ε̄ is the engineering strain:

ε̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
11

ε
22

ε
33

γ
12

γ
23

γ
31

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.15)

The strain-displacement matrix is computed by differentiating the shape

function matrix. The shape functions enable interpolation of nodal values (e.g.,

u
k
) to a location within the element:

u =
∑

k

N
k
u

k
, (2.16)

where N
k

is a function of the element reference coordinates N
k
(ξ, η, ζ) shown in

Figure 2.2 for a hexahedral element, and k is a counter over all nodes of the element.

The present work uses only isoparametric elements, which means the same shape

functions interpolate the solution variables and the element geometry. The shape
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functions used for the eight-node hexahedron are:

N
1

= − (ξ − 1)(η − 1)(ζ − 1)/8

N
2

= (ξ + 1)(η − 1)(ζ − 1)/8

N
3

= − (ξ + 1)(η + 1)(ζ − 1)/8

N
4

= (ξ − 1)(η + 1)(ζ − 1)/8

N
5

= (ξ − 1)(η − 1)(ζ + 1)/8

N
6

= − (ξ + 1)(η − 1)(ζ + 1)/8

N
7

= (ξ + 1)(η + 1)(ζ + 1)/8

N
8

= − (ξ − 1)(η + 1)(ζ + 1)/8

(2.17)

Fig. 2.2. Reference element for the eight node hexahedron

The stress tensor is computed from the material constitutive relationship

using the fourth-order material stiffness tensor, C, as follows:

σ = C : ε. (2.18)
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The stress tensor in engineering format (using Voight notation) is

σ̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ
11

σ
22

σ
33

σ
12

σ
23

σ
31

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.19)

which is related to the engineering strain for linear elastic materials using σ̄ = Cε̄,

where C is the material stiffness matrix.

C =
E

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − ν) ν ν 0 0 0

ν (1 − ν) ν 0 0 0

ν ν (1 − ν) 0 0 0

0 0 0 1
2
− ν 0 0

0 0 0 0 1
2
− ν 0

0 0 0 0 0 1
2
− ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.20)

where E is the Young’s modulus and ν is Poisson’s ratio.

The Jacobian, J , is the determinant of the Jacobian matrix, J , and repre-

sents a scale factor relating physical dimensions to reference-element (Figure 2.2)

dimensions:

J =

⎡
⎢⎢⎢⎣

x
,ξ

y
,ξ

z
,ξ

x
,η

y
,η

z
,η

x
,ζ

y
,ζ

z
,ζ

⎤
⎥⎥⎥⎦ , (2.21)

where the subscript following the comma implies differentiation with respect to

that variable.
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The global residual, R, is determined by summing the force residual for all

elements (the direct stiffness method [8]):

R(U) =
∑

elements

R(u), (2.22)

where U is the global displacement vector.

A Newton-Raphson approach is employed to solve the system of equations,

which requires an initial guess of the global solution vector, U i
for i = 0, and a

tangent to compute the next guess of the solution vector:

δU = −
[

dR
dU

∣∣∣∣
Ui

]−1

R(U i
), (2.23)

and then the next guess of the solution is:

U i+1
= U i

+ δU . (2.24)

Typically the first guess of the global solution vector is zero displacement for all

degrees of freedom.

The tangent stiffness is derived by differentiating Equation 2.22 by U or

equivalently for all elements Equation 2.13 with respect to the solution vector u:

dR

du
=

∑
VGP

[
B

T dσ̄

dε̄
B − N

T db

du

]
wJ −

∑
AGP

N
T dt

p

du
wj, (2.25)

The iterative procedure described by Equations 2.23 and 2.24 continues until

the global residual is sufficiently small. The convergence criterion implemented for

the present work is that the solution is considered converged when the Euclidean
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norm of R is less than 0.001 times the net applied load magnitude. Linear analyses

require a single solution step to satisfy this criterion.

The numerical integration over the element volumes in Equations 2.13 and

2.25 employ Gauss quadrature, which uses sampling points with assigned weights

chosen to minimize integration error when the integrand is a general polyno-

mial. By default, the hexahedron element used in this work employs points and

weights such that the integration is considered full. Full integration, as defined

by Cook [23], is a quadrature rule of sufficient accuracy to exactly integrate the

stiffness coefficients of an undistorted, i.e., rectangular, element. For a distorted

element the quadrature is not exact. The sampling points for the hexahedral ele-

ment are ξ, η, ζ = ±1/
√

3 for a total of eight points. The corresponding weights w

are all unity.

Unfortunately, for the standard shape functions of Equations 2.17, full ele-

ment integration, and a nearly incompressible material, the elements have a ten-

dency to lock during a bending deformation causing them to appear overly stiff.

This phenomenon is a result of spurious strains in the element that require much

greater energy input than do the physically correct strains (see Cook [23] for addi-

tional information). Two approaches are available to address this issue. The first

is to decompose the stress tensor into volumetric and deviatoric components and

solve for the displacements (from the deviatoric stress) and the pressure (volumetric

stress) separately (see [8]). This approach is referred to as a mixed formulation [62]

or equivalently a pressure/displacement formulation [8]. An alternative approach

is to employ selectively-reduced integration, where the volumetric and deviatoric

stress components are integrated differently. Applying reduced integration, using

a single quadrature point at parameterized location (0,0,0) and weight of 2 to the

volumetric terms, and full integration to the deviatoric terms, the equivalence of

the reduced integration and hybrid techniques can be shown [62]. The reduced
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integration hexahedral elements are implemented in the FE solver and their per-

formance is demonstrated during the solver validation study described later.

Note that the reduced-integration elements were pursued subsequent to ini-

tial FSI simulations using highly refined structural meshes. The dense meshes

were required to reduce the locking effects caused by the nearly-incompressible

material. After pursuing quadratic elements and a parallelized FE solver using

the PetSc solver libraries [5, 6] as alternative avenues to reduce the structural

solve times, the reduced order elements were implemented and enabled dramatic

increases in mesh coarseness while still maintaining accurate structural response.

The equations for the small-deformation finite element formulation were

implemented first into a solver with the intent to expand to a large-deformation

formulation if later required. The need for a large-deformation formulation became

apparent during the Hapflex beam and fin testing that is described later in Sec-

tion 3.5.1. A large-deformation formulation is required when the deformation is

large enough to alter the applied loads or the internal resisting forces and moments

[23]. In practice, the solution is computed using both approaches to determine if

the more costly large-deformation formulation is required. The large-deformation

formulation implemented here follows the approach described by Bath [8] and Hi-

bbett et al. [58]. The formulation is briefly summarized next.

2.3.2 Large-Deformation Formulation

The large-deformation FE formulation differs primarily from the small-

deformation formulation due to geometric nonlinearity that arises from large defor-

mations. The geometric nonlinearity must be accounted for when the deformations

become large enough that the equilibrium equations must be written for the de-

formed configuration. Also, loads that follow the geometry will change direction

as the structure deforms. With this formulation, the geometry for which the equi-

librium equations are formed is not known a-priori and thus an incremental type
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solution is used where the nonlinear solution is built up as a series of linear incre-

ments [58]. As described by Bathe [8], an effective incremental solution approach

requires appropriate stress and strain measures. It is the purpose of this section

to present the definitions of these measures. Note that for the present application

as is shown later, the strain levels are small enough to use a linear constitutive

relationship, thereby allowing the use here of the material model described for the

small-deformation formulation.

The Total Lagrangian (TL) formulation is implemented for this work, which

means all variables are referred to the initial configuration (occurring at time 0).

In contrast to the TL formulation is the Updated Lagrangian (UL) formulation,

wherein all variables are referred to the last-calculated configuration. The differ-

ence between the two methods lies only in their relative numerical efficiency [8].

The TL method generally requires more memory but less computation than the

UL method because spatial derivatives are with respect to a fixed reference frame

for TL and thus only need to be computed one time. The UL method requires up-

dated derivatives each iteration because the reference configuration changes. Note

that nearly all commercial solvers employ the UL method, but mostly because of

historical reasons. When originally developed, memory was scarce and expensive

and thus computational speed was sacrificed in favor of reduced memory require-

ments [98].

A notional schematic of the reference and current configurations is shown

in Figure 2.3. This figure shows a general body undergoing a large deformation

from a base configuration B
0

to a deformed configuration B. A position X in B
0

changes to the position x in B leading to the following relationship:

x = X + u (2.26)
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Fig. 2.3. Motion of a general solid body

The key difference in the large-deformation formulation over the linear finite

element approach is the need for a strain measure that is invariant to rigid body

rotations. One such strain measure is the Green-Lagrange strain, ε. The definition

of ε is usually stated in terms of the deformation gradient F :

F =
∂x

∂X
=

⎡
⎢⎢⎢⎣

∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x2

∂X3

∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

⎤
⎥⎥⎥⎦ (2.27)

The Green-Lagrange strain, usually referred to as the Green strain, is de-

fined as:

ε =
(
F

T
F − I

)
, (2.28)

where I is the second rank unity tensor. Alternatively, the Green strain can be

written

ε =
1

2

[
∇u + (∇u)

T
+ ∇u · (∇u)

T
]
, (2.29)
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to highlight its nonlinearity when compared to the small-strain relation used in

linear analyses

ε ≈ 1

2

[
∇u + (∇u)

T
]
. (2.30)

Another important variable is the displacement gradient, D

D =
∂u

∂X
=

⎡
⎢⎢⎢⎣

∂u1

∂X1

∂u1

∂X2

∂u1

∂X3

∂u2

∂X1

∂u2

∂X2

∂u2

∂X3

∂u3

∂X1

∂u3

∂X2

∂u3

∂X3

⎤
⎥⎥⎥⎦ (2.31)

which can also be related to F as follows

F = I + D.

A suitable stress measure must also be used for the large-deformation for-

mulation. The requirement is that the stress measure must be a work conjugate of

the strain measure. For the Green strain, the work-conjugate stress is the second

Piola-Kirchhoff stress, S. While this stress measure is used in the finite element

equations below, it has little physical meaning [8] and must be transformed to the

Cauchy stress σ when interpreting computed stresses:

σ = J
F
FSF

T
, (2.32)

where J
F

is the Jacobian of the deformation gradient:

J
F

= det (F ) . (2.33)



32

The element residual equation for the large-deformation formulation is sim-

ilar to that for the small-deformation formulation (Equation 2.13), but uses a

nonlinear strain-displacement matrix B
nl

and the second-Piola-Kirchhoff stress S

as follows

R(u) =
∑
VGP

[
B

nl

T
S̄ − N

T
b
]
wJ −

∑
AGP

N
T
t
p
wj, (2.34)

where S̄ is the second-Piola-Kirchhoff stress written in vector form.

The non-linear strain-displacement is composed of linear and nonlinear com-

ponents

B
nl

= B
l
+ B

n

such that the Green strain (in engineering form) is computed as

ε̄ = B
l
u +

1

2
B

n
u.

The large-deformation formulation follows the same solution procedure as

defined above for the small-deformation formulation (see Equations 2.23 and 2.24)

and thus a tangent stiffness matrix is required. This is computed as follows:

dR

du
=

∑
VGP

[
B

nl

T dS̄

dε̄
B

nl
+ G

T
S̃G − N

T db

du

]
wJ −

∑
AGP

N
T dt

p

du
wj, (2.35)

where G computes the displacement gradient D in vector form

D̄ = Gu
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and S̃ is a reorganized form of the second-Piola-Kirchhoff stress

S̃ =

⎡
⎢⎢⎢⎣

S 0 0

0 S 0

0 0 S

⎤
⎥⎥⎥⎦ ,

where

0 =

⎡
⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦ .

2.3.3 Solver Implementation

The finite element formulation described above has been implemented us-

ing the C++ object-oriented programming language. While the primary classes

created were not meant to use all aspects of the language, such as inheritance and

polymorphism, the ability to create objects with custom methods (i.e., member

functions) in a highly modular fashion provided a user-friendly development envi-

ronment. Moreover, the use of a programming language consistent with that of the

flow-solver simplifies the FSI solver integration. The current section describes some

of the class’s member functions and provides a general overview of the stand-alone

structural solver called feanl for finite element analysis, non-linear. Later while

describing the FSI solver implementation, the member functions described here

will be referenced. The implementation of the class Structure required slightly

over 18,000 lines of source code with over 3,000 lines of comments.

The member functions required for the FSI solver are listed below with a

brief description. Additional information is subsequently provided where deemed

necessary.
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loadModel loads the finite element model from a file on disk. The file format

mimics that of the Abaqus input file format for ease of communicating with

existing pre- and post-processors. See Appendix A for a sample input file.

init initialize the solver to allocate all memory and perform node and element

mappings for the element definitions, loads, and constraints. This is sepa-

rated from the loadModel member function so not all compute nodes in a

parallel processing paradigm need to allocate memory (this point is further

discussed in Section 2.5.4).

loadedFaceInformation provides face location and face normal for all faces sub-

ject to a distributed load (e.g., the wetted faces of an FSI simulation). This

allows the user to specify which faces reside on the fluid/structure interface,

Γ
F/S

, to facilitate the interface mapping algorithm discussed in Section 2.5.3.

deleteCurrentLoad deletes all existing externally applied concentrated forces and

distributed (traction) loads. This is necessary to remove the distributed loads

referenced by loadedFaceInformation when identifying Γ
F/S

.

createConcentratedLoad creates a nodal force load set. All nodes comprising the

faces on Γ
F/S

are assigned one or more force vectors that are later modified

during the FSI simulation.

setConcentratedLoadComponent sets the force vectors (magnitude and direction)

of a concentrated load set created using createConcentratedLoad.

setEndTime sets the simulation end time. This enables the flow solver to control

the FSI simulation, with the ability to perform sub-iterations for tightly-

coupled FSI simulations.

solve solves the structure from the previously solved state to the current end time

as specified by setEndTime.
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elementParameterizedLocation finds the location in the reference element space

corresponding to physical space. This is necessary to interpolate displace-

ment results to physical locations for the flow field’s mesh motion solver.

elementInterpolateDisplacement interpolates displacement vectors to a physi-

cal location characterized by reference-element coordinates. Later it will be

shown that the physical coordinates of interest here are those corresponding

to the flow solver’s vertices that reside on Γ
F/S

.

saveCurrentState saves the current state of the structure (displacements, stresses,

strains, output stream pointers, etc.). This is required for sub-iterations for

a tightly-coupled FSI solver.

resetState resets the state of the structure (displacements, stresses, strains, out-

put streams, etc.) to the state corresponding to the saveCurrentState

function call. This is required for sub-iterations for a tightly-coupled FSI

solver.

setNodeDisplacements sets the global displacement vector using values from a

file. This is useful for the inverse analysis (described later) to move the fluid

mesh to avoid manual mesh generation for the flow domain.

The member functions solve and elementParameterizedLocation war-

rant additional discussion. The solve member function performs the matrix and

vector assembly for each iteration of the Newton-Raphson scheme (Equation 2.23).

In general, the system matrix is very sparse and non-symmetric (but it is struc-

turally symmetric). To facilitate the matrix assembly, a sparse matrix class was

implemented that provides member functions for constructing and accessing the

matrix elements by specifying either the row and column index or the sparse in-

dex location to enable fast matrix assembly. The reason for using a separate

sparse matrix object was to simplify parallelization in the future, with for example
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PetSc [7, 5, 6]. Once the tangent stiffness matrix and the global residual vector

are assembled, a linear solver is called to compute the increment in the global dis-

placements, δU . The primary solver used for this work is the Intel R©Math Kernel

Library (MKL) Direct Sparse Solver (DSS) [66]. Validation of feanl is provided

later in Section 5.2.

2.3.4 Inverse Formulation

The purpose of the inverse finite element analysis is to solve for the refer-

ence configuration (unknown) that would be required by the current configuration

(known) to support prescribed load conditions (see Figure 2.3). Previous work,

most recently by Fachinotti et al. [36], involved re-casting the finite element for-

mulations in terms of the unknown configuration X instead of x (Figure 2.3). A

similar approach was followed by other researchers but for different materials than

required here [52, 53].

While starting to implement an extension of the work by Fachinotti et al. for

hyper-elastic materials to perform the inverse analysis for a viscoelastic material,

it was realized that the incremental formulation employed for large-deformation

finite element analysis is based on a series of linear increments (see Section 2.3.2).

Given the use of linear increments, it makes no difference whether the current con-

figuration is changed during a conventional forward analysis or if the ‘reference’

configuration is changed by application of the displacements in the opposite sense.

The only requirement is that the derivatives of the TL method be updated each

increment. It turns out that this approach works very well for the problems con-

sidered here (see Section 5.3), and should be general for all such inverse problems.

The inverse technique as described here was implemented into a second solver

called ifeanl for inverse finite element analysis, non-linear. The inverse solver

has all of the elements of the forward solver, but instead of only incrementing the

displacement vector for the next guess at a solution (Equation 2.24), the reference
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configuration is modified:

X
i+1

= X
0
− U i+1

, (2.36)

where X
0

is the original reference configuration, and all derivatives are updated

each solution increment.

The limitations of this solver with respect to the approach employed by

others should be evaluated in the future. For the present application, the inverse

solver is shown to replicate well the inverse configuration. Validation of the inverse

solver is provided later in Section 5.3.

2.3.5 Constitutive Relationships

A variety of constitutive relationships are commonly used for structural

mechanics problems, especially when the models involve elastomeric materials. A

linear-elastic material model with a large-deformation formulation was employed

for this research. While both the small- and large-deformation formulations were

implemented, only the large deformation formulation is described here in detail.

The constitutive model used is linear-viscoelastic, and is implemented as a modifi-

cation to a linear-elastic model. The Cauchy stress tensor for a linear-elastic solid

is defined as follows:

σ = 2με + λ∇ · uI, (2.37)

where μ = E/2(1 + ν) and λ = νE/(1 + ν)(1 − 2ν) are Lamé’s constants, I is

the second rank unity tensor, and ε is the Green-Lagrange strain tensor (Equa-

tions 2.28 and 2.29).

The introduction of material viscoelasticity to the linear material model

requires a nonlinear solution approach, as described below. The material vis-

coelasticity is modeled using a time-domain approach, similar to that used by the

commercial software Abaqus (see the Abaqus User’s Manual [57]) and derived in

a similar manner by Kaliske and Rothert [72]. This model is for linear viscoelastic
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materials, which does not mean the time response of the material is linear, but

rather the stress is proportional to strain at any given time ε [cσ(t)] = cε [σ(t)],

where c is a constant [44], and uses the approximation that shear and volumetric

behavior are independent. Furthermore, the viscoelastic behavior is dominated

by the deviatoric part of the material’s deformation and therefore the shear and

volumetric terms must be isolated [57, 72].

The underlying material model for this approach is the Generalized Maxwell

Element, which consists of Maxwell elements (i.e., a spring and dashpot in series)

in parallel with a Hooke element (i.e., a spring) as shown in Figure 2.4. The spring

μ0

μ1 μ2 μN

η1 η2 ηN

Fig. 2.4. Generalized Maxwell Element with N components

stiffness μ
0

shown in this figure represents the material stiffness at infinite time

(i.e., after all of the viscoelastic forces have diminished to zero). Each Maxwell

element, defined by a stiffness μ
i

and a viscosity η
i
, represents a different time

scale of the material’s response and comprises a term in a Prony series (a series of

the form
∑N

i=1
α

i
e
−t/τi) representation of the material.

Decomposition of the Cauchy stress is required for the viscoelastic model to

effect only the shear component. The stress can be decomposed into hydrostatic

and deviatoric components as follows:

σ
n+1

= κ tr ε
n+1

I + dev σ
n+1

, (2.38)
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where κ is the bulk modulus (κ = λ + 2μ/3 for linear elastic materials). The

deviatoric part of the material stress tensor for the current (n + 1) time step then

takes on the following form:

dev σ
n+1

= dev σ
0

n+1
+

N∑
i=1

h
i

n+1
, (2.39)

where h
i

are the internal stress variables that come from the so called heredity

integral [72]:

h
i
(t) =

∫
t

o

γ
i
e
− t−s

τi
∂σ

0
(s)

∂s
ds, (2.40)

where γ
i
are the normalized relaxation constants, τ

i
are the relaxation times, and

σ
0

is the stress associated with the Hooke element of the Generalized Maxwell

Element (Figure 2.4). The relaxation constants and times are defined by fitting

a Prony series constructed with these parameters to empirical data, often using

a least-square error approach. Splitting this integral into parts that are known

(i.e., time period [0, t
n
]) and unknown (i.e., time period (t

n
, t

n+1
]), and using the

approximation ∂σ0(t)

∂t
≈ σ0

n+1−σ0
n

Δt
, the internal stress variables at the next time

step are approximated as follows:

h
i

n+1 ≈ e
−Δt

τi h
i

n
+ γ

i

1 − e
−Δt
τi

Δt
τi

[
dev σ

0

n+1 − dev σ
0

n
]
, (2.41)

where Δt = t
n+1 − t

n
is the time step.

The Prony series parameters required to implement this model are the focus

of Chapter 3.



40

2.3.6 Structural Body Force

The body force vector that appears in the element residual equations (Equa-

tions 2.13 and 2.34) is only required in this work for two purposes: gravity and

centrifugal force (no Coriolis force is required because the fin velocities are negli-

gible for these quasi-steady analyses). Support for both of these body force loads

is included in the structural solver. Gravity loads are most important for the ma-

terial model and structural solver validation studies, while the centrifugal force is

important for the rotating impeller simulations.

2.4 Fluid Mesh Motion

The partitioned approach to FSI has been described by several researchers

as a three-field problem [10, 39, 82, 109, 114, 115, 116, 117] because it requires the

solution of the flow, structure, and fluid mesh motion, none of which is trivial. The

flow solver and the structural solver are described above with a brief introduction

to the mesh motion for the ALE flow solver. Additional information for the mesh

motion solver is provided in the current section.

The sole purpose of the mesh motion is to enable the flexible structure to

deform in response to the fluid stresses acting on its wetted surface. The fluid mesh

must track the motion of the structure and should deform such that it maintains

the mesh quality near the fluid/structure interface. Such an approach is referred

to as interface tracking [120, 119] because the interface between the flow and

structural domains must be tracked as the structure deforms. The main objective

with any mesh motion approach is to accommodate the structure’s deformation

while maintaining a quality mesh.

The mesh motion strategy can be as simple as prescribing a functional

relationship between a boundary displacement at the fluid/solid interface and the

fluid vertices [120, 127]. This approach can work for simple problems but becomes

cumbersome, if not impossible, for complicated flow geometries. For complex flow
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geometries, a more general approach that represents the fluid mesh as an artificial

elastic continuum has been employed by several researchers [12, 61, 114, 117]. This

approach is often referred to as the pseudo-solid method, with a stiffness matrix

that can be derived by treating each cell edge as a spring with the spring stiffness

based on the relative edge lengths [40]. Even more demanding geometries and

deformation magnitudes might require re-meshing of the flow domain [119].

Unfortunately, the spring analogy approach to moving the fluid mesh has

been shown to be non-robust for various problems and modifications to the basic

approach have been made to improve the performance while adding complexity

and computational cost to the approach [29, 38, 70].

In an effort to improve upon the mesh motion techniques for FV codes, Jasak

and Tuković [70] introduced a vertex-based, unstructured mesh motion solver (op-

erates on the cell vertices to avoid interpolation, which can lead to cell flipping and

degeneration). The approach solves the Laplace equation with variable diffusion,

as shown above in Equation 2.6. The OpenFOAM development versions (including

versions 1.4.1-dev and 1.5-dev) features this mesh motion solver.

While the OpenFOAM Laplace face decomposition solver performs very well

for many problems and is easy to implement because only motion on the tracked

interface is required, it does have limits. In particular, the author has found that

in its current form it does not function properly for parallel solutions, does not

support cyclic boundaries, and does not support non-Cartesian boundary surfaces

(e.g., for slip along a cylindrical surface).

While the use of a parallel solver is desired to improve turn-around time

of the many simulations required for this research, it is not absolutely necessary.

What is necessary, however, is to be able to perform mesh motion inside cylindrical

tubes. A simple test case involving a deforming stator inside a tube is shown in

Figure 2.5. The tube is specified as a slip boundary condition for the mesh motion

solver. The large motion, coupled with the inability to constrain the boundary
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mesh to a constant radius surface, causes the unwanted radial motion of the tube

boundary shown in this figure. As such, other mesh motion techniques have been

explored. These are summarized next.

The Radial Basis Function (RBF) mesh motion solver, implemented in

OpenFOAM by Bos [14] has been explored for this research. This solver does

support parallel execution and works well for large motion, as described by Bos.

However, the author is unaware of a method to use this solver for motion near a

boundary with a slip constraint, similar to that required in Figure 2.5.

Faced with limited alternatives, a custom mesh motion approach was imple-

mented using a simpler approach of specifying field motion based on the boundary

motion and weighting function (e.g., a half-wave sinusoid, Figure 2.6) to non-

uniformly displace the fluid vertices. The function specifies a value of unity when

the field point is located on Γ
F/S

and a value of zero when the field point is at a

maximum distance from Γ
F/S

as prescribed by an input parameter to the solver.

The advantage of this approach is that it is easily implemented for parallel solu-

tions (a global listing of the boundary displacements are sent to each compute node

and each processor moves the nodes in its domain). Processor boundary errors are

avoided by first creating a global listing of all fluid vertices, each global vertex is

mapped to a boundary point from which its motion is derived, and the mapping

array is sent to all processors. This way, all global points are moved based on the

same boundary point and the same motion function. This results in a computa-

tionally cheap motion solver because no matrix solution is required. While this

approach works well for simple geometries, complex geometries and large struc-

tural deflections yield poor-quality cells thus violating one of the requirements of

the motion solver. This motion solver is used for the FSI simulations described

later and is referred to in this thesis as the Radial Motion Function (RMF) solver.

An alternative mesh motion solver was developed that makes use of the

finite element solver feanl and its ability to interpolate displacements to arbitrary
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Undeformed Deformed

Unwanted Radial 
Deformation of 
Outer Boundary

Fig. 2.5. Mesh motion for a cylindrical surface using the face decomposition
solver; the initially cylindrical surface does not remain cylindrical
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45

spatial locations. The approach is similar to the pseudo-solid technique described

above, except that it uses an auxiliary mesh that intersects the flow mesh. Only

the fluid vertices that fall within the intersected space are moved, which offers

excellent control of the mesh motion. Moreover, the ability to vary element stiffness

throughout the overlayed mesh allows the mesh quality near the moving surface

to be maintained by causing the deformation to occur farther from the surface.

Figure 2.7 shows an example fluid mesh overlayed by a coarser motion mesh.

Figure 2.8 shows the same motion mesh, with the stiffened inner region colored

differently than the softer outer region. This minimizes deformation of the fluid

cells near the structure and forces most of the deformation to occur elsewhere. This

is especially useful for rigid body rotations of the fin to change its angle of attack

because the mesh quality near the fin does not change. Only when the fin deforms

will the near-field mesh quality change. This is demonstrated by strain contours

for the pitching fin in Figure 2.9. This mesh motion solver was implemented near

the completion of this research and has been used only for large angle-of-attack fin

simulations described later.

2.5 FSI Solver

As described above, the coupled problems to be solved for this research are

being treated as incompressible, laminar, and steady. Typically for flow problems

of this type an OpenFOAM user would employ the simpleFoam solver. There-

fore, this solver is extended for the present work to include a dynamic mesh (i.e.,

the ALE formulation), the structure class Structure, and a method to interface

the fluid and solid domains. To accomplish this task while maintaining a user-

friendly program interface and reusable software that facilitates updates to the

separate, stand-alone structural solver feanl, a separate C++ class has been cre-

ated. The class is called fsiInterface and consists of header and source files
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Fig. 2.7. Example of FE motion mesh (black element edges) overlaying a fluid
mesh (gray element edges)
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Fig. 2.8. Example motion mesh showing different regions of element stiffness to
control deformation of the underlying fluid mesh elements

named fsiInterface.h and fsiInterface.cpp, respectively. The class is com-

prised of just under 5,000 lines of source code and about 1, 500 comment lines.

The use of classes for both the FSI interface (fsiInterface) and the struc-

ture (Structure) enables updates to both without changes to the actual FSI solver

as long as the member function prototypes do not change. However, because the

programming requires both the Standard Template Library (STL) [122] contain-

ers (Structure uses the STL) and OpenFOAM’s custom containers, there is some

redundancy in the data structures used to interface the OpenFOAM library with

Structure which can be confusing and requires some additional memory. This

situation could be avoided with some data type redefinitions, but it is not neces-

sary for the present effort. The following sections provide an overview of the class,

including a summary of the class member functions, and details on the fluid/solid

interface communication and parallelization approach.
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Very low strain in region 
surrounding fin

Fig. 2.9. Strain contours corresponding to the auxiliary mesh of Figure 2.8,
showing very small strains and hence small mesh distortion near the fin for a
rigid-body rotation of the fin

2.5.1 FSI Solver Overview

As described above, fsiInterface provides the interface between Open-

FOAM and the structural solver but also handles the mesh motion for the ALE flow

domain. Additionally, the class must support sub-iterations for fully-coupled sim-

ulations. Several of the necessary features to support these requirements, such as

the sub-iterations, have been implemented in the structural solver class Structure

and require only an interface to the correct member functions of Structure. Such

cases are identified in the member functions listing of fsiInterface provided next.

initialize creates the fluid/structure interface mappings (further described in

Section 2.5.3), creates interface-related output files, loads the finite element

model of the structure, creates a generic load case that is modified during

the simulation, and for parallel solutions assembles the interface mapping

containers on the master node (further described in Section 2.5.4). This
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step occurs automatically if the user instantiates the fsiInterface object

by including the mesh object, the pressure field variable, and OpenFOAM’s

time object.

saveStructureState saves the current state of the structure and interface objects

for use in sub-iterations for a tightly coupled solution.

resetStructureState resets the current state of the structure and interface ob-

jects to a previously saved state; required for sub-iterations.

transferBoundaryStressToStructure transfers the fluid stresses at Γ
F/S

to the

structure (further described in Section 2.5.3).

solveStructure solves the structure for the current boundary conditions from

the structure’s current time to the prescribed end time (in an incremental

fashion).

moveFluidMesh moves the fluid mesh (further described in Section 2.4).

applyFluidAOA rotates the structure about the z-axis to impart an angle-of-attack

(AOA) change on the fin structure for the water tunnel/fin validation simu-

lations described later. This reads a time-dependent listing of AOA’s from a

text file and uses the mesh motion solver to impart a rigid-body rotation of

the structure on the fluid mesh. Note that the AOA time-dependency was

implemented for general use because only fixed AOA’s are required for the

validation simulations.

writeVTK writes the structure results to a VTK file for post-processing. The file

is only written if the current simulation time is one of the requested output

times by the user in OpenFOAM’s system/controlDict file.

A flowchart showing the flow of the simpleFsiFoam solver is provided in Fig-

ure 2.10. This high-level flowchart shows how the FSI solver begins by initializing
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each of the three solvers (fluid, mesh motion, and structure) and their interfacing

variables. After initialization the FSI solver begins a process of incrementing over

all solution times, with each increment involving a fixed-point iteration to ensure

the interaction of the fluid and solid domains is converged to within a specified

tolerance (further described in Section 2.5.2). Prior to entering the fixed-point

iteration, the current state of the structure is saved. This is necessary to correctly

model time-dependent constitutive relationships, such as the viscoelastic material

of concern here. Within each fixed-point iteration, the structure state is reset to

this saved state, allowing the material to relax under the applied fluid stresses.

Once converged, the fixed-point iteration is exited, the results are written to disk

(if requested at this solution time), and the solution time is incremented. Iteration

for the next solution time then begins. Details of the solver coupling by way of

fixed-point iterations are provided next.

2.5.2 FSI Solver Coupling

As described earlier, the partitioned approach is being implemented for this

work. This approach employs a staggered
3
solution procedure wherein each domain

is solved sequentially and results are transferred between solvers. The most basic

procedure, referred to as the Conventional Serial Staggered (CSS) approach by

Piperno et al. [108], involves first a prediction of the structure’s motion (
p
u

n+1
),

solution of the fluid to get the stress acting on the structure (σ
s

n+1
), and then

solution of the structure (u
n+1

), see Figure 2.11. It is evident from this figure that

the CSS approach does not guarantee convergence of the fluid–structure interac-

tion during a solution step because there is no check that the predicted structural

displacements match the displacements computed at the end of the step. This

3
Also known as a segregated or time-lagged approach.
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Fig. 2.10. FSI solver flow chart
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Fig. 2.11. Conventional Serial Staggered solution approach
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algorithm is therefore said to provide a loose (or weak)
4

coupling [75]. The “tight-

ness” (or “strength”) of the coupling refers to the degree of convergence of the fluid

and solid domains at any time during the solution. A loose coupling is akin to an

explicit time integration even though the integration of the individual components

may be implicit [95]. Similarly, a tight (or strong) coupling is akin to an implicit

time integration. It is for this reason that “loose” and “explicit” are used synony-

mously and “tight” and “implicit” are used synonymously both in this work and

in the literature [92, 93, 94].

A loosely coupled algorithm is converted to tightly coupled with the intro-

duction of a corrector step that requires iteration to convergence at each solution

step [93]. This modification ensures the computed structural displacements match

the predicted displacements in the CSS algorithm at each step of the solution. The

required iteration for a tightly coupled approach is generally either a fixed-point it-

eration [31, 93] or a block-Newton root finding formulation [34]. The most popular

approach seems to be the fixed-point iteration because of the compatibility with

black-box solvers (it does not require the calculation of a tangent, which is prob-

lematic for closed solvers). However, the fixed-point iterations tend to converge

slowly unless certain improvements (e.g., the Aitken extrapolation as described

later, Equation 2.49) are employed [56, 33, 141]. The solution procedure for a

tightly coupled approach using a fixed-point is shown in Figure 2.10, and is re-

peated here in Figure 2.12 in a slightly different form having more details within

the fixed-point iteration loop (see [2, 89] for additional information).

The details of how and when information is transfered across the fluid/struc-

ture interface for a loosely coupled segregated approach has received much atten-

tion over the last decade because of solution instabilities inherent to the staggered

solution approach. The issue is related to energy conservation at the interface and

4
The term “weak coupling” is also heavily used instead of “loose coupling”. The terms “loose” and

“tight” are used herein because they are antonyms.
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Fig. 2.12. Partitioned approach to FSI showing a fixed-point iteration with under-
relaxation for tightly coupled solutions

is referred to as the “added-mass effect” [19, 47, 48]. The effect is most pronounced

when the fluid and solid have similar densities [19, 101]. Several researchers have,

with limited success, devised improvements to the loosely coupled schemes, such as

the use of non-collocated time stations, to address the added-mass effect [108]. For-

tunately, a tightly coupled approach does not suffer from the added-mass effects,

as shown by Abouri et al. [2], Deparis et al. [32], and others.

Regardless of the tightness of the coupling, fluid stress information must

be transferred from the flow solver to the structural solver and displacement in-

formation transferred from the structural solver to the flow solver.
5

In terms of

equations, the requirements for compatibility and the no-slip condition require the

following

v
m

= du
dt

σ
S · n = σ

F · n
on Γ

F/S
, (2.42)

5
As described by Bathe and Zhang [9], for stiff structures it is important for stability to impose

the fluid stresses on the structure and the structure’s displacements on the fluid. Reversing this (i.e.,
imposing a stress boundary condition on the fluid and a velocity on the solid) might lead to instability
because small errors in displacements imposed on the structure would lead to large errors in tractions
imposed on the fluid because of the sensitivity of structural stresses to displacements.
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where n is the unit normal on the interface and the superscripts on σ denote stress

for either the fluid or solid domain.

Note that the FSI implementation developed here is for the permanent type,

which implies there is no fluid detachment (i.e., the fluid stays in contact with

the structure) [17, 18]. This restriction helps simplify the problem allowing the

software to be more general because the interface information need not be updated

during the simulation. The fluid points will then always be in the same relative

position with respect to the structural nodes and vice versa.

The flowchart defining the solution procedure in Figures 2.10 and 2.12 in-

clude a fixed-point iteration that is performed to ensure the fluid pressures and

solid displacements are tightly converged before moving on to the next time step.

The use of under-relaxation in this iteration (ω in Figure 2.12) controls the amount

of the structure’s displacement that is imparted on the flow domain and is solely

used to improve convergence. The relaxation coefficient can be constant, or, for

improved convergence characteristics a dynamic coefficient is often used. One op-

tion for dynamically changing the coefficient is the Aitken Δ
2

method [76]. This

method employs a recursion formula that originates with the secant root finding

method:

x
n+1

= x
n
− x

n
− x

n−1

f(x
n
) − f(x

n−1
)
f(x

n
), (2.43)

where x
n

in this case is the applied interface structural displacement, represented

by the variable d, at the current time step d
i
. (The derivation is provided for

one-dimension and then is later expanded to three dimensions.) Here, the function

being ciphered is the difference between the computed displacement d̂ to be used in

the next iteration of the loop i + 1 and the applied displacement d for the current

iteration i with the goal of finding the applied displacement for the next iteration

d
i+1

:

f
(
d

i

)
= d̂

i+1
− d

i
. (2.44)
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Rewriting Equation 2.43 in terms of d
i+1

and substituting for the function

with Equation 2.44 gives the applied displacement for the next iteration

d
i+1

=
d

i−1
d̂

i+1
− d̂

i
d

i(
d̂

i+1
− d

i

)
−

(
d̂

i
− d

i−1

) . (2.45)

A relaxation factor ω
i
is sought such that

d
i+1

= d
i
+ ω

i

(
d̂

i+1
− d

i

)
. (2.46)

Combining Equations 2.45 and 2.46 and factoring the numerator yields

ω
i
= −ω

i−1

d̂
i
− u

i−1(
d̂

i+1
− d

i

)
−

(
d̂

i
− d

i−1

) . (2.47)

or

ω
i
= −ω

i−1

r
i−1

r
i
− r

i−1

. (2.48)

where r
i
= d̂

i+1
− d

i
. This is the same formula presented by Küttler and Wall [76].

For the case of vectors instead of scalars, the quotient of Equation 2.48

cannot be evaluated and thus the following approximation is used [76]

ω
i
= −ω

i−1

r
i

T
(r

i+1
− r

i
)

|r
i+1

− r
i
|2 , (2.49)

As described by Küttler and Wall [76], this is a projection of the participating

vectors in the r
i
− r

i−1
direction. The relaxation equation, Equation 2.46, is

shown in the coupling algorithm of Figure 2.12. Convergence of the system is
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based on the residual norm as follows:

|r
i
|√
n

< ε, (2.50)

where n is the length of r
i

and ε is the error tolerance that can be set based on

an allowable error in the displacements, which is interpreted as a small fraction of

the size of the structure’s domain. The FSI solver allows the user to set this error

tolerance via OpenFOAM’s system/controlDict file.

It should be noted that the relaxation parameter for the current iteration

depends upon information from two previous iterations. Therefore, FSI simulations

using dynamic under-relaxation as defined here require at least two fixed-point

iterations and require a prescribed relaxation parameter for the first two iterations.

The choice of this parameter for the first two iterations is found to be problem-

dependent and in general should not be set from previous time increments [76].

The intent of the present research is to first employ a constant relaxation

coefficient and proceed to a dynamic coefficient only if required. The details of

the information communication between the solvers appearing in Figure 2.12 is

described next.

2.5.3 FSI Interface Communication

The communication of stress and displacement information between the flow

and structural solvers is a subject that has recently attracted several researchers

(see for example [40, 49, 124]) and has warranted at least one focused PhD disserta-

tion [123]. The difficulty in the coupling involves the use of non-conforming meshes

at the fluid/solid interface Γ
F/S

and how to transfer fluid stresses to the structure

and structural displacements to the fluid in an energy-conserving manner. The

simplest coupling scheme is to have matching interfaces and exchange fluid stress

and displacements in a one-to-one fashion. However, it is generally advantageous
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to employ different mesh resolutions for the fluid and solid domains because the

fluid domain often requires much more refinement to accurately model the flow

field and using an over-refined structural mesh can lead to excessive computation

times. Moreover, the use of non-conforming meshes at the interface simplifies mesh

generation, allowing the fluid and solid domains to be independently discretized.

The techniques applied to couple the fluid and solid at the interface for

non-conforming meshes range from simply interpolating the fluid stresses onto the

structure’s element faces and integrating by the structural solver to get force [9], to

a fully implicit approach using Lagrange multipliers wherein the interface traction

and displacements are solved simultaneously [123, 124] (but currently only demon-

strated for one- or two-dimensional problems using finite element formulations for

both the fluid and solid domains). In any case, the objective of the coupling scheme

is to satisfy the requirements of Equations 2.42.

The present application employs a consistent approach similar to that de-

scribed by Farhat et al. [40] and used by others [49, 118] (including the MpCCI

commercial coupling software [49, 99]). The consistent approach, as introduced

by Farhat et al., states that the solver that owns the information to be exchanged

interpolates that information to the necessary location required by the receiving

solver, thereby using an interpolation scheme that is consistent with the scheme

used to compute the information. For the case of pressure or viscous stress trans-

fer from the fluid to the structural solver, the approach of Farhat et al. calls for

the stress to be interpolated to the Gauss points of an appropriate structural face

and the structural solver then integrates the stress to compute a force. This ap-

proach, however, does not guarantee the same discrete loads as computed by the

flow and structure solvers because in general they will employ different interpo-

lation schemes and have different discretizations, resulting in a non-conservative

coupling (force times displacement on the fluid side does not equal force times

displacement on the structural side). Note that Farhat et al. [40] show that even
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though the coupling is strictly non-conservative, numerically conservative results

can be achieved even for highly disparate meshes.

The approach employed here uses a consistent approach in that the solver

that owns the variable interpolates that variable, but with the modification to the

method in [40] that the same solver also integrates the field if an integration is

required. This means that the flow solver integrates over all cell faces on Γ
F/S

to compute a resultant fluid force centered on the cell face. This force is then

applied to the structural solver by weighting the force magnitude based on distance

to the structural nodes to approximately preserve the moment. This approach,

which is similar to the approach used by the MpCCI software as described by

Glück et al. [49], guarantees the resultant force on the fluid and structural solvers

are identical. However, as stated in [49], the disadvantage is that for a coarse

source grid and a fine receiving grid the forces are distributed in a non-physical

way. Fortunately, the fluid domain usually requires a much finer mesh than the

structural mesh thereby alleviating this issue.

Transfer of displacement information from the structure to the fluid does

not require integration, and thus only interpolation is required by the structural

solver to approximate the computed nodal displacements at prescribed locations

on the fluid/structure interface Γ
F/S

.

The process of coupling the solvers begins by identifying for each fluid face

center
6

on Γ
F/S

an owner structural element. The structural element must have a

face with an outward facing normal that is nearly opposed to the outward facing

normal assigned to the fluid face. The face normals, in general, will not be of

exact opposite sense because of the disparate discretization of non-planar surfaces,

as demonstrated by the two-dimensional example in Figure 2.13. The location of

the fluid vertex must also fall within the bounds of the structural face. This is

achieved for each fluid vertex by searching all structural faces until the best match

6
OpenFOAM is a cell-centered solver, so the integrated fluid forces reside at the face centers
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is found, with the match criteria weighted heavily on proximity and a go/no-go

criterion on face normal directions to be greater than 135
◦

of each other.

 

 

Fluid
Structure

Fig. 2.13. Example of disparate fluid and structure meshes at the interface Γ
F/S

;

the fluid vertices do not lie on the structural element faces and the surface normal
directions between the fluid and structure are not exactly opposite

Because the structural solver requires forces be applied to the structural

nodes, the fluid force vector computed at the face centers is applied to the struc-

tural nodes by a load-weighting factor that depends on the distance from the fluid

face location projected onto the structure’s face to each node of that structural

element’s face. This scheme results in a unity scale factor if the fluid location

coincides with a structural node and yields a scale factor that equally divides the

force if the fluid location is centered on the structural face. An example showing

the load scaling factors for a fluid face location that is not quite centered on a

structural face is provided in Figure 2.14. During each loop of the fixed-point

iteration, the fluid force vector is computed by the flow solver using its inherent
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Structure Normal

Fluid Normal

Structure face contoured by weighting

Fig. 2.14. Example of interface force mapping showing the load scaling factors
used to apply the fluid load to the structural nodes

interpolation scheme and applied to the structural nodes according to the scaling

defined at the start of the analysis. (The fluid and solid move together during the

analysis such that the parameterized location of any given fluid face on a structural

element remains constant for the duration of the simulation.)

All structural nodes that are subject to fluid loading are identified in the

structural model with a distributed load boundary condition, i.e., using the *dload

keyword to be consistent with the Abaqus input file format [57]. This load is

subsequently removed from the structure’s load set.

Communication requirements of the structural displacements to the fluid

mesh varies depending on the mesh motion scheme as defined in Section 2.4. Re-

gardless of the scheme, the computed structural displacement field must be inter-

polated to a prescribed location on the interface Γ
F/S

(e.g., a fluid vertex for the

Laplace face decomposition and RMF mesh motion, or an enforced displacement

location for an overlayed finite element mesh). The prescribed spatial location on

Γ
F/S

changes during the simulation, but its location relative to the finite element
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reference coordinates does not change if the point resides on Γ
F/S

(because the fluid

and solid move in unity on Γ
F/S

). The process involves first locating the owner

structural element for each mesh motion vertex, and then finding the location on

the owner element in terms of the element’s parameterized coordinates using the

feanl member function elementParameterizedLocation. This member function

uses a three dimensional Newton-Raphson iteration scheme with a numerical Ja-

cobian to iterate within the reference element to find the prescribed location to

within a specified tolerance of 1.0x10
−10

(the iteration stops when the Euclidean

norm of the point location difference is less than this tolerance). In practice, the

point locations are generally found to within machine tolerance. An example ref-

erence element showing a point inside the element for which the parameterized

location is sought is shown in Figure 2.15.

Fig. 2.15. Example of a finite element reference element, its reference coordinates,
and a point within the element for which the parameterized location (ξ

i
, η

i
, ζ

i
) is

sought

2.5.4 FSI Parallel Processing

Parallel processing is important for this research to provide reasonably short

simulation (wall-clock) times for the numerous required simulations. The approach
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taken here is to maintain OpenFOAM’s existing parallelized flow solver
7

and im-

plement parallel support for the FSI interface class fsiInterface, which involves

parallel mesh motion as described previously for the RMF solver and communi-

cation with the structure solver. The structural solver operates in serial model

for all FSI simulations and is always solved on the master node. Interface dis-

placements computed and interpolated by the structural solver are then sent to

each computed node based on interface mapping containers created at the start

of the simulation. Likewise, fluid forces computed by each processor are sent to

the master node for inclusion in the structural solver’s solution. Solution times for

this scheme of parallel processing are still dominated by the flow solver as shown

later in Section 5.6.1.

7
OpenFOAM uses a domain decomposition approach for parallel solves. This approach sub-divides

the domain and assigns each division to a single processor.
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Chapter 3

Structural Material Model

The target application for this research is an expandable impeller pump

that is fabricated from a polymeric material to satisfy large strain requirements

of the device. The downside to using a polymeric material for the pump is that

the material exhibits stress relaxation, which is time-dependent deformation that

occurs even for a constant load. Aside from the material’s viscoelasticity, the

need to collapse the impeller during implantation [96] requires the material to be

relatively soft. As a result, large deformations of the impeller blades occur in

response to the fluid stresses imparted on the impeller blades. An accurate model

of the impeller material is paramount to an accurate FSI simulation of this device.

As such, an entire chapter is devoted to the characterization of the material.

The impeller material is an industrial-grade polymer called Hapflex 598,

purchased from Hapco, Incorporated of Hanover, Massachusetts, USA. The Hapflex

598 material exhibits a stress-strain relationship depicted by the tensile test results

shown in Figure 3.1. These results are generated by the cyclic loading of a tensile

specimen from no load to a strain of approximately 5% for several cycles and then

followed by cyclic loading to approximately 10% for several cycles. The load rate

for all cases is 1% strain per second. It is evident from this figure that the material

does not instantaneously return to zero strain upon load removal. The non-zero

strain is comprised of nonrecoverable and recoverable strains. The recoverable

strain comes from the material’s viscoelasticity. The fraction of recoverable to

nonrecoverable strain could be determined, for instance, by subjecting the tensile

test specimen of Figure 3.1 to one cycle of loading and then monitor the speci-

men’s strain at zero load until a steady state condition is achieved. Experience
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Fig. 3.1. Hapflex 598 tensile test results with a load rate of 1% strain per second

with this material (for strain levels of � 5%) has shown that nearly all of the strain

is recovered after several hours in a relaxed state.

The current application requires only the loading portion of the first cycle

of the curve in Figure 3.1 and does not require any unloading or cyclic behavior.

Therefore, the material model is comprised of two components. The first is a

constitutive representation of the material that is independent from effects of stress

relaxation. This is accomplished by loading the material either over a very short

duration where there is negligible time for the material to relax or over a very

long duration to provide sufficient time for the material to fully relax. A second

component is necessary to model the stress relaxation. This is accomplished by

treating the material as viscoelastic. The constitutive models employed for this

material are described in Section 2.3.5. The material parameters required for these

constitutive relationships are defined in this section.

It is shown in this section that the Hapflex material exhibits different de-

formation response based on lot-to-lot variations. Material lot-to-lot variation is

known to cause significant property variation as described in [57]. The approach
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employed here is to evaluate an initial material model, derived from material char-

acterization tests performed on samples of the material in 2007, by comparing FE

simulations to experimental results. The material model is then tuned such that

the FE model simulations match closely the empirical results. The initial material

model is derived from material testing performed by Axel Products, Incorporated

(API).
1

It has been found that modifications to only the viscoelastic properties are

necessary to get good agreement between the simulations and experiments. Also,

the use of a linear elastic material model is found to be sufficient and the elastic

modulus and Poisson’s ratio are determined from the test results of API. The final

viscoelastic property parameters are determined through a trial-and-error process

and confirmed by beam and fin material testing as described below.

3.1 Elastomer Elastic Modulus

The underlying model used to represent the elastomeric material (in one di-

mension) is the Generalized Maxwell Element, which consists of Maxwell elements

(i.e., a spring and dashpot in series) in parallel with a Hooke element (i.e., a spring)

as shown in Figure 2.4. The spring stiffness μ
0

shown in this figure represents the

material stiffness at infinite time (i.e., after all of the viscoelastic forces have dimin-

ished to zero). The Maxwell elements capture the stress relaxation characteristics

of the material through their dashpots. Each of the Maxwell elements constitute

a term in a Prony series (a series of the form
∑N

i=1
α

i
e
−t/τi) representation of the

material, which is further described below.

The spring with stiffness μ
0

of Figure 2.4 (which is observed at infinite time

after all of the dashpots have relaxed) corresponds to the long term modulus for

a three-dimensional, linear-elastic material model. The instantaneous modulus is

obtained through the step application of a load to avoid any viscoelastic effects

1
Testing performed in October 2007 by Axel Products, Incorporated of Ann Arbor, Michigan

http://www.axelproducts.com/.

http://www.axelproducts.com/
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because the dashpots have no time to react. The long term and instantaneous

moduli are related through the viscoelastic Prony parameters, γ
i
, as follows [57]:

E
inst

= E∞ +
∑

E
i
⇒ E∞ = E

inst
−

∑
E

i
= E

inst

(
1 −

∑
γ

i

)
, (3.1)

where E∞ is the long term modulus (E∞ = μ
0

of Figure 2.4), and E
inst

is the

instantaneous elastic modulus. Ideally, the instantaneous modulus is obtained em-

pirically by a step application of a load, but limitations of test equipment preclude

a truly instantaneous load application. Instead, the approach recommended for

determining the instantaneous modulus is to measure the initial elastic response

under several increasingly high strain rates, until the measured modulus converges

on a value [57].

Tensile test results for Hapflex 598 specimens are provided in Figures 3.2

and 3.3, which were acquired from simple tension tests employing “dog-bone”

specimens (shown in the inset of Figure 3.3). The objective of the simple tension

test is to achieve a state of pure tensile strain, and thus the specimen must be much

longer in the direction of stretching than in the width and thickness dimensions.

Ideally, there will be no lateral constraint to specimen thinning.

The data of Figure 3.2 do not indicate a substantial change in tensile perfor-

mance of the material for the evaluated strain rates, and thus this test approximates

the idealized stepped load test described above. Therefore, API employed a strain

rate of 1 mm/mm/s for the tensile tests of Figure 3.3 and for all of their subsequent

testing. The Young’s modulus for the material is approximately 60. MPa as esti-

mated from the simple tension data and is shown by the solid curve in Figure 3.3,

which considers strains up to 1.2%. Later it will be shown that the computed

material strain levels for the FSI simulations are less than this maximum value.
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Fig. 3.2. Simple tension results for Hapflex 598 at 23
◦
C and three strain rates
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Fig. 3.3. Simple tension results for Hapflex 598 at two temperatures and curve
showing stress-strain values for a Young’s modulus of 60 MPa
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3.2 Viscoelastic Material Definition

As previously described in Section 2.3.5, the material viscoelasticity is mod-

eled using a time-domain approach for linear viscoelastic materials (ε [cσ(t)] =

cε [σ(t)], where c is a constant) and uses the approximations that shear and vol-

umetric behavior are independent and the viscoelastic behavior is dominated by

the deviatoric part of the material’s deformation.

Viscoelasticity is often characterized by stress relaxation data. These data

are generated by straining a uni-axial tensile stress specimen to a prescribed strain

level and then measuring the stress as it relaxes with time while holding the strain

constant. The stress relaxation data measured by API is provided in Figure 3.4.

These data were collected for a strain of 5%.

The curve fit shown in Figure 3.4 is obtained by fitting a Prony series using a

least-square error approach to the 23
◦
C Test 1 data. Three components of a Prony

series are required to obtain a fit with a root-mean-square error of 0.49%, which

are provided in Table 3.1. These parameters are then used by the finite element

Table 3.1. Prony series stress relaxation parameters

Component, i γ
i

τ
i

1 0.1484 4.130

2 0.2115 8.195x10
1

3 0.1993 1.610x10
3

material model to represent the material’s viscoelasticity. This viscoelastic model

provides a starting point for the material model and is updated below based on

beam simulation and test results.
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3.3 Poisson’s Ratio and Nearly Incompressible Effects

The current material exhibits what is considered “nearly incompressible ef-

fects” because the bulk modulus is much larger than the shear modulus, yielding

near zero volumetric strains when deformed. Because strains are determined via

derivatives of displacements in the displacement-based finite element approach,

errors in predicting the near zero volumetric strains yield large variations in the

computed stresses, which in turn affect the computed displacements when trying

to balance element forces with externally applied loads [8]. This behavior can be

addressed by decomposing the stress into deviatoric and volumetric components

and then solving for the volumetric component separately using a displacement/

pressure approach instead of the more common displacement-based finite element

approach. The Abaqus software has implemented the displacement/pressure ap-

proach via their “hybrid” elements. The benefit of using a hybrid approach over

a pure displacement approach with and without reduced integration elements is

evaluated using Abaqus. But first, an estimate of Poisson’s ratio is required.

Poisson’s ratio for a linear elastic material can be determined from the

Young’s and the bulk moduli as follows:

ν =
3κ − E

6κ
, (3.2)

where κ is the bulk modulus. The bulk modulus is estimated from volumetric

compression data acquired by API for the Hapflex 598 material. The volumetric

compression results provided in Figure 3.5 show a bulk modulus of 2.3 GPa is a

good approximation for the material.

The Young’s modulus for the material is estimated as 60. MPa from the

simple tension data. Substituting these values into Equation 3.2 yields a Poisson’s

ratio of ν = 0.496.
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Fig. 3.5. Volumetric compression results for Hapflex 598 samples at two temper-
atures and a curve showing stress-strain values for a bulk modulus of 2.3 GPa
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To evaluate the effects of this nearly incompressible material on the use of

pure displacement-based finite elements, two finite element models are evaluated

both with and without hybrid elements. The first FE model is of a Hapflex 598

beam undergoing a bending load (Figure 3.6) and the second is a fin structure also

undergoing a similar bending load (Figure 3.7). Bending deformations are consid-

ered here because they are the most representative of the load types pertinent to

this research (impeller blade bending) and this mode of deformation is much more

susceptible to the shear locking effects of the nearly-incompressible material [22].

Both models employ fixed-free boundary conditions and details of the models are

provided in the following sections of this chapter. The bending load for both cases

is achieved by a concentrated force near the tip of the free end. The concentrated

force in the FE simulations is linearly increased from zero load to its maximum

value in one second (the step application of this load for the quasi-static analysis

is acceptable, but is difficult to achieve with the large displacement, non-linear

analysis because the deformations are large and the FE solvers are based on an

incremental formulation).

Comparisons of tip deflections for the cases with full integration displace-

ment elements, selectively reduced integration displacement elements, and hybrid

elements for both models are provided in Figure 3.8 for the beam and Figure 3.9

for the fin. The results in these figures suggest there is no need to employ pres-

sure/displacement finite elements for these models, because selectively reduced-

order integration elements provide equivalent results as expected from Hughes [62]

and Bathe [8]. Note that these models employ the final material model described

in Section 3.5.1.

3.4 Temperature Effects

Two temperatures were used in the material evaluations performed by API

to ascertain the impact of temperature on the material stiffness and relaxation. The
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Fig. 3.6. Finite element model of Hapflex 598 beam test; two models used, coarser
model shown here

Root Constraints

Tip Force

Fig. 3.7. Fin bending model for evaluation of incompressible effects
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placement elements
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temperatures were chosen as 23
◦
C and 37

◦
C to correspond to room temperature

and body temperature, respectively, thereby bounding the anticipated temperature

variation for use in the expandable impeller pump.

The data shown above in Figures 3.3–3.5 do not indicate a significant im-

pact of this temperature variation on the material characteristics of interest. The

material model developed here is used to model a fin subjected to quasi-steady

flow with a nearly constant fluid temperature of 22
◦
C and also to a pump im-

peller subject to fluid at 37
◦
C. Therefore, temperature effects are not included in

the present material model.

3.5 Parameter Estimation

3.5.1 Beam Model

The material model is evaluated against large-displacement
2
, time-dependent

bending tests of sample beams made of Hapflex 598. The beams are intended to

have rectangular cross sections of 3.5 mm thick, 6.5 mm wide, and the tested

length (from edge of constraint to tip) is 125 mm (see Figure 3.10). Three beams

have been tested. The beam width and length are consistent between the samples,

but the beam thickness ranges from 3.41 mm to 3.62 mm along the length of the

beams. This causes scatter in the empirical results presented below and is a source

of discrepancy between the predicted and empirical results.

The test conditions for the beams consist of fixed-free constraints and a

constant load applied to the beam tip, Figure 3.11. The beams are clamped by a

mounting bracket such that the active length of the beams from the edge of the

clamp to the tip is 125 mm. The beam deformation is quantified through pattern

2
“Large-displacements” as described herein imply displacements large enough to violate the assump-

tion of infinitesimal displacements as used in the derivation of the linear finite element approach. This
means, for a linear-elastic material, the displacement response of an object is not a linear function of an
applied load.



78

Fig. 3.10. Dimensions of Hapflex 598 beams tested for material model validation
(dimensions in mm); Note that 125 mm is the active length of the beams during
testing, the actual beam length is 150 mm

recognition of the beam edges using a video camera setup as shown in Figure 3.12.

The procedure for testing the beams is as follows:

1. clamp beam into fixture ensuring the active length is 125 mm,

2. start the data acquisition,

3. apply known weight to tip of beam, and

4. acquire images for one hour.

An edge detection routine with pixel scaling to scale the imaged displacements was

implemented in Matlab to post-process the videos. A listing of the source code,

called imageEdges, for this software is provided in Appendix B. Sample output

from the program is shown in Figure 3.13. From results similar to these for all
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Mounting Bracket

Test Specimen

Tip Force

Fig. 3.11. Boundary conditions of the Hapflex 598 beam tests showing the fixed-
free constraints and the tip load
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Video Camera
Test Specimen

Data 
Acquisition 
Computer

Fig. 3.12. Test setup for beam and fin bending tests; a video camera is used to
capture images of the deformed specimen; the setup is shown here with a Hapflex
598 fin (described below), but the same setup is also employed for the Hapflex
beams
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Fig. 3.13. Sample image of edge detection for the Hapflex 598 beam test; the top
and bottom edges are identified separately and shown here with different colors

acquired frames, the beam tip deflection is quantified and plotted versus time in

Figure 3.14. Note that the resolution of the results in this figure is limited by

the pixel size of the processed images. In all cases, the load application began at

approximately 5 seconds and was completed by approximately 10 seconds. How-

ever, the effect of gravity on the beam (which is significant as shown below) began

during setup of the beam. The effect of gravity on the beam deformation between

when the beam is exposed to gravity and when the video recording began has been

estimated by measurements from a stationary ruler near the beam tip (not shown

in Figure 3.11 or 3.12). The magnitude of this deflection is evident in the non-zero

deflection at time = 1 second in Figure 3.14.

The validity of the material model is then determined by comparing finite

element model results of the beam model to the empirical results shown in Fig-

ure 3.14 and by comparison of deformation shapes. The beam deformation shapes

are compared after about one hour of relaxation under the applied load.

The finite element model is constructed in the commercial software Femap

[139] using hexahedral elements, constrained at the root, and loaded with a con-

centrated load of 0.0785 N (corresponding to the 66.5 g mass shown in Figure 3.11
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at the free end) and a body force due to gravitational effects (the beam defor-

mation due to gravity only is shown in Figure 3.15, which uses the final material

model described below and corresponds to time of 1 hour). The concentrated load

is linearly increased from zero magnitude to its maximum value in one second

(the load application for the experiments is somewhat longer than this, but the

numerical results are shifted in time such that the time at which the load is fully

applied agrees between all results). A quasi-static analysis is used for the simu-

lations because time only affects the viscoelastic behavior. The inertial terms are

negligible in the experiment because the load was applied nearly uniformly over

several seconds, which is much lower in frequency than the first flexural mode of

the beam, approximately 3.5 Hz as estimated experimentally with the tip mass

attached.

Undeformed Shape

Fig. 3.15. Beam deformation after subjected to gravity for 1 hr; the final mate-
rial model is used for this simulation; deformed beam contoured by displacement
magnitude in meters

Two finite element models with varying mesh resolution (Figure 3.6 shows

the coarse-mesh model) are constructed to ensure mesh convergence. The results

of the convergence study are provided in Figure 3.16, which shows less than a 2%

difference in the displacement results between the coarse and refined mesh.
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Fig. 3.16. Beam tip deflection for coarse and refined finite element meshes
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Finite element model results are compared to the empirical results in Fig-

ure 3.17 using the API-derived material model and for a revised material model.

As indicated by the steeper slope of the simulated response for the original API

model in this figure, the material model exhibits too much stress relaxation (i.e.,

the beam deflection is larger than the measured deflection after viscoelastic effects

have diminished), but the response to the initial “instantaneous” loading repre-

sents well the material. The initial modulus obtained via the tensile testing is

accurate, and only the viscoelastic parameters require tuning (recall, the infinite

modulus depends on the instantaneous modulus and the viscoelastic relaxation

parameters, Equation 3.1).

The final material model compares well with the empirical results, as shown

in Figure 3.17. The revised viscoelastic Prony series parameters are shown in

Table 3.2. The revised parameters yield a material model that exhibits much less

relaxation, as indicated by the synthesized stress relaxation data of Figure 3.18.

Table 3.2. Revised Prony series stress relaxation parameters based on beam
bending test results

Component, i γ
i

τ
i

1 0.05 4.130

2 0.1 8.195x10
1

3 0.1 1.610x10
3

The measured and computed (using the revised material model) beam de-

formations in Figure 3.19 show the computed deformations to be within the scatter

of the empirically-derived shapes. It is therefore concluded that the viscoelastic

material model with an underlying linear-elastic constitutive relationship is satis-

factory for these Hapflex beams undergoing large deformations.
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The maximum computed strain levels from the numerical model are less

than 1.2% as shown in Figure 3.20. The maximum strains considered when deriving

the elastic modulus and Poisson’s ratio in Figures 3.3 and 3.5 was 1.2%, which is

in good agreement. Had the computed strain levels been much larger and the

results disagreed, then the API data would need to be revisited. Note that the

equivalent strain metric used in Figure 3.20 is similar to von Mises stress in that

it enables a single strain level to be computed for a complex stress state within

a structure [22, 59]. Note also that the material test results from API were used

Fig. 3.20. Deformed beam after 1 hr of relaxation, contoured by equivalent strain

as the starting point for the development of the material model. It is shown

herein that the material parameter estimates from these data do not represent

well the Hapflex beams tested and reported herein. The underlying reason for

this is unknown, but it is most likely due to lot-to-lot variations in the material.

Material lot-to-lot variation is known to cause significant property variation [57].

In summary, the material modeling results have thus far shown the follow-

ing:
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1. A linear-elastic constitutive relationship is sufficient to model this material

given a uni-directional loading and strains of less than approximately 1.2%.

2. The material is nearly incompressible with a Poisson’s ratio of 0.496, but a

displacement-based finite element approach with selectively reduced integra-

tion provides nearly identical results to a pressure/displacement formulation.

3. Temperature effects are not significant over the temperature range of 23
◦
C

to 37
◦
C which is comparable to the desired operating range of this material

for the cases to be considered during this research, 22
◦
C and 37

◦
C.

The final step in the material model development is to evaluate an FE

model of the single fin that will be modeled and tested. The results of this study

are provided next.

3.5.2 Modified NACA 66 Fin Model

Ultimately, the finite element solver and material model must represent well

the structure to be used in the FSI simulations. Therefore, feanl is evaluated here

against quasi-static load tests for the modified NACA 66 fin made of Hapflex 598

(the modified NACA 66 fin is described in Chapter 4). An experimental char-

acterization of the fin deformation has been performed using a similar approach

to the characterization of the Hapflex beams in the preceding section. The FE

model results are compared to the empirical results below. First, however, similar

to the mesh development for the Hapflex beam tests a mesh resolution study was

performed to ensure the FE model is converged. Three mesh refinements were con-

sidered: coarse (4, 692 elements), refined x 1.5 (15, 300 elements), and refined x 2

(37976 elements). The refined x 1.5 model is shown in Figure 3.7. (The blade

models were created automatically from the blade section data using the custom

bladeGen software described in Section 5.1.2.)
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The results of the convergence study, Figure 3.21, show a change in tip

deflection at 3600 s between the coarse and first refinement is approximately 4%,

whereas the change between the first and second refined meshes is approximately

2%.

Comparisons between the FE results and the experimental results using the

previously tuned material model are shown in Figure 3.22 for the tip deflection

and in Figure 3.23 the foil deformation shape after 1 hour of relaxation. The FE

results in Figure 3.22 were shifted in time so that the starting time corresponds

to the beginning of load application in the experiments. Note that the effect of

gravity is included in the FE simulations, similar to the approach used for the

beam models. Gravity alone accounts for the deformation shown in Figure 3.24.

Note that the fin tests in these figures used the same fins multiple times

with a minimum of three hours between tests. The objective of this evaluation

was to show the material response is not significantly influenced by multiple tests.

This observation enables multiple water tunnel tests to occur with the fin, thereby

eliminating the need to reinstall a new fin for each tunnel test.

Note also that Fin 08 was fabricated from a different lot of material than

that used by the other fins. It was observed that the original material was becoming

difficult to degas, resulting in unwanted voids in the cast parts, so a second batch

was purchased from Hapco. After characterizing the fins during bending testing,

and observing the substantial change in character, it was decided to return to the

original material for sake of consistency. After discussing the degassing and air

entrainment issue with material experts at ARL/Penn State, the original material

batch (part A of the two-part material) was exposed to an elevated temperature of

66
◦
C for 24 hours to remove the unwanted polymer chain linking that was causing

issues degassing the material (the chain linking occurs in the material over time

due to exposure to humid air). The ability to degas the material enabled all fin

specimens created beyond Fin 08 to use the original material.
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formed using feanl



93

10
1

10
2

10
3

−0.025

−0.02

−0.015

−0.01

−0.005

0

Time, s

T
ip

 D
ef

le
ct

io
n

, m

 

 

Fin 02 Test 1
Fin 02 Test 2
Fin 08
Fin 10 Test 1
Fin 10 Test 2
Fin 10 Test 3
FE (37,976 Elements)

Fig. 3.22. Comparison of finite element fin model (using beam-tuned material
model) to fin test results



94

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

V
er

ti
ca

l D
ir

ec
ti

o
n

, m

Horizontal Direction, m

Deformed Shape at 1 Hour

 

 

Fin 02 Test 1
Fin 02 Test 2
Fin 08
Fin 10 Test 1
Fin 10 Test 2
Fin 10 Test 3
FE (37,976 Elements)
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Fig. 3.24. Fin deformation after subjected to gravity for 1 hr; the final ma-
terial model is used for this simulation; deformed fin contoured by displacement
magnitude in meters
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Chapter 4

Water Tunnel Test

A water tunnel test of a single hydrodynamic fin (Figure 4.1) is used to

verify and validate the FSI solver. The fin is a modified NACA 66 with a = 0.8
1

camber as described by Brockett [15] and summarized in Section 4.2. This chapter

first describes the experimental facility, followed by details of the foil fabrication,

and concludes with results from the water tunnel tests.

4.1 Experimental Facility

The 0.3048 m (12 in.) test section diameter water tunnel at ARL/Penn

State was used to create validation data for the FSI solver. The tunnel is a closed-

circuit, closed-jet system with test section maximum speed of 20 m/s and absolute

pressure range of 20.7 kPa to 413.7 kPa. The velocity is controlled by a mixed-flow

peerless pump that is powered by a 111.8 kW (150 hp) electric motor. The water’s

air content is regulated by a 0.2 m
3
/s bypass system. Free air in the tunnel can be

observed through two transparent domes at the tunnel high points, and excess air

can be vented through these domes by solenoid-operated valves. These vents must

also be used during the fill and drain process of the tunnel. The water tunnel free

stream turbulence level is controlled using a 0.152 m deep section of honeycomb

with a 0.025 m core size positioned in the plenum upstream of the nozzle and

an 11.3:1 contraction ratio through the inlet nozzle. The free stream turbulence

intensity is roughly 0.3% to 0.5% over the tunnel’s velocity range. [106]

1
The parameter a represents the fraction of the chord from the leading edge over which the loading

is uniform at the ideal angle of attack [1].
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Fig. 4.1. Modified NACA 66 fin for water tunnel testing
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While there exist two test sections for the tunnel, one circular and the other

rectangular, only the rectangular section was used for this research. The test

section measures 0.508 m wide by 0.114 m high by 0.762 m long. A schematic of

the water tunnel is provided in Figure 4.2 and photographs of the tunnel (from the

opposite side and with markings to identify key features) are provided in Figures 4.3

and 4.4. The water tunnel test section with the Hapflex fin in place is shown in

Figure 4.5. Additional information about the water tunnel facility can be found

in the lecture notes by Lauchle et al. [78].
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The angle of attack is estimated by matching an alignment mark on the

fin with an alignment mark in the tunnel test section, Figure 4.6. This provides

an approximate setting for zero AOA. The actual angle of attack is not known.

Instead, this orientation is considered a baseline AOA and the fin is rotated a known

amount to give baseline plus or minus a change in the AOA. The FSI simulations

will first determine what simulation AOA corresponds to the baseline AOA and

then also simulate changes in AOA about the baseline for model validation.

The mechanism that enables a change of the fin’s angle of attack without

disassembling the water tunnel is shown in Figure 4.7. This was augmented with

an extension arm and a grounding bracket to accurately and quantitatively control

changes in the fin AOA. The modified mechanism is shown in Figure 4.8, which

is a view from below the water tunnel test section. As shown in this figure, an

extension arm is affixed to the lever arm of the rotator mechanism (Figure 4.7)

and constrained to a grounding bracket. The distance from the fin’s rotation axis

to the grounding point is 266.3 mm. By the addition of standard machinist’s shim

stock at this point, the angle of attack can be changed very accurately. A bar

clamp is used to constrain the extended lever arm to the grounding bracket. Three

different AOA variations were used during the experiments: −0.25
◦
, −0.375

◦
, and

−0.5
◦
. The required shim thickness for each of these AOA variations, computed

using the lever arm length and the AOA change (shimThickness = radius x angle),

is shown in Table 4.1.

Table 4.1. Angle of attack and required shim thickness

AOA, degrees Shim Thickness, inches
-0.25 0.046
-0.375 0.069
-0.5 0.091
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Video Camera Light

Fig. 4.4. Water tunnel test section showing video camera and light
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Direction of Flow

Fig. 4.5. Water tunnel test section and the Hapflex fin prior to a test
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Zero AOA
Alignment Marks

Fig. 4.6. Setting the fin angle of attack; view is from above test section beside
video camera shown in Figure 4.4
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Lever Arm

Bearing Housing

Load Cell 
Leads

Fig. 4.7. Mechanism to rotate fin to change its angle of attack
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Extension Arm

Grounding 
Bracket

Shims Added 
Here

Fig. 4.8. Augmented rotator mechanism to accurately and quantitatively control
changes in the fin’s angle of attack; the view is looking up from beneath the test
section with the rotator mechanism fully installed



106

The AOA settings and the tunnel speed were chosen to provide a sufficiently

large fin deflection while maintaining a Reynolds number low enough to avoid

transition to turbulent flow (described below). The speed chosen for the tunnel

was 1.2 m/s.

The water tunnel mean water temperature ranged from 21.4
◦
C to 22.1

◦
C

for the three tests reported here. The temperature, measured in the same plane

as the Kiel probe, but near the tunnel wall (Figure 4.9) varied the most during

startup of the tunnel due to stratification of the stagnant water, but tended toward

a steady temperature as the water was mixed inside the tunnel, see Figure 4.10

and Table 4.2. These results give an average temperature for all three tests of

approximately 21.7
◦
C. The water static pressure in the test section is maintained

at approximately 1.25 bar (18.1 lbf/in
2
) by the tunnel’s pressure control system.

This pressure was chosen primarily because it simplifies the tunnel operation (for

bleeding pressure transducers and draining). Cavitation was not a concern for

these tests. The water density and viscosity at these conditions is approximately

998 kg/m
3

and 1.003x10
−3

Pa · s, respectively [148]. The Reynolds number based

on chord length (0.05 m, described below) is therefore

Re
c
=

ρvc

μ
≈ 60x10

3
.

The critical Reynolds number for transition to turbulence is approximately 2x10
5
,

and therefore the flow can be treated as laminar in the FSI simulations [1].

Table 4.2. Water tunnel water temperatures

Test Number Mean Temperature,
◦
C Standard Deviation, C

◦

47 21.4 0.15
48 21.7 0.23
44 22.1 0.16
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Test Section 
Static Pressure

Axial Location 
of Kiel and 

Temperature 
Probes

Differential Pressure 
Transducer

Load Cell Power 
Supply

Fig. 4.9. Photograph of water tunnel annotated with pressure transducer loca-
tions; the Kiel probe is located in the central plane of the tunnel at the same
elevation as the static probe
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Fig. 4.10. Water tunnel water temperature during three tests; statistics of these
temperatures are provided in Table 4.2
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A stagnation pressure of the flow is measured just upstream of the test

section nozzle using a Kiel probe (Figure 4.9). A static pressure measurement oc-

curred just inside the test section (Figure 4.9). With the approximation of steady,

incompressible, and frictionless flow along a stream line, Bernoulli’s equation is

applied to estimate the tunnel flow speed in the test section as follows:

p
k

+ ρ
v

k

2

2
+ ρgz

k
= p

t
+ ρ

v
t

2

2
+ ρgz

t
,

where the subscripts k and t represent the axial location of the Kiel probe and the

test section, respectively, z is the elevation at which the pressure measurement is

made, p is the static pressure, v the flow velocity, and g is the acceleration due to

gravity. Because the Kiel probe is at the same elevation as the test section’s static

probe, the elevation effects are removed and the relation becomes:

p
k
+ ρ

v
k

2

2
= p

sk
= p

t
+ ρ

v
t

2

2
.

With the stagnation pressure at the Kiel probe location, p
sk

, measured

directly with the Kiel probe and the static pressure in the test section measured

by the static probe, the flow velocity is estimated as follows:

v
t
=

√(
p

sk
− p

t

) 2

ρ

Note that the pressure differential for a flow speed of 1.2 m/s is approxi-

mately 720 Pa (0.10 psi). The magnitude of this differential is too small to sep-

arately measure the stagnation and static pressures with the standard 100 psi

transducers used for the tunnel. Instead, a Honeywell model FDW 2 psid differ-

ential pressure transducer was used to measure the pressure difference directly.
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4.2 Fin Fabrication

The objective of the fin testing is to provide validation data for the FSI

solver, which is to ultimately be applied to the expandable impeller pump. The

fins are therefore fabricated from the same material as the pump impeller, namely

Hapflex 598. A casting process is employed to fabricate the fins, which requires a

mold master from which a mold can be made.

The fin considered here is constructed from blade section geometry that is

commonly used for propeller design. These sections are similar to the NACA 66-006

with a=0.8 camber, but thickened near the trailing edge for ease of manufacture as

described by Brockett [15]. A plot of the profile geometry is provided in Figure 4.11.

The profile geometry was used to loft a blade with a chord length of 0.05 m and

a span of 0.10 m. A fillet was then added to the root of the blade solid model to

provide additional structural stability (see root fillet in Figures 4.12 and 4.13).

The mold master is fabricated using a rapid prototype manufacturing tech-

nique called stereolithograpy (SLA). Protogenic, a division of Spectrum Plastics

Group of Westminster, CO, fabricated the part using their Accura 60 resin. The

part, shown in Figure 4.12 is hand-polished to provide smooth outer surfaces.

Alignment holes and a leading edge indicator have been added to the mold master

for registration of the parts during the casting process and alignment of the part

in the water tunnel test section, respectively. These features are identifed in the

figure.

The material used in the SLA process is advertised as being similar to the

more commonly known polycarbonate. It has a tensile modulus of about 3 GPa,
2

which is sufficiently stiff to use in the mold-making process described herein. Pro-

togenic advertises dimensional tolerance of ± 0.005 in. (± 0.13 mm). The actual

2
Information obtained from http://www.icm-mouldmakers.co.uk on 18 November 2009.

http://www.icm-mouldmakers.co.uk
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part dimensions have been measured using calipers and are summarized in Ta-

ble 4.3 with percent changes relative to the design dimensions shown in Table 4.4.

The results in these tables indicate excellent agreement between the SLA master

and the design intent and also indicate the presence of some shrinkage of the of the

cast parts relative to the mold master. Finite element models of the fin account

for this shrinkage.

Table 4.3. Fin dimensions as measured with calipers for mold master and cast
parts versus fin design dimensions where T is the thickness, C is the chord, and S
is the span dimension (see Figure 4.13); the mean and standard deviation results
are for the cast parts only

Measured Dimensions, mm
Design Master Fin 1 Fin 2 Fin 3 Fin 4 Fin 5 Mean Std. Dev.

T 4.37 4.37 4.27 4.29 4.22 4.34 4.29 4.28 0.0461
C 48.4 48.5 48.3 48.2 48.2 48.4 48.3 48.3 0.0585
S 100 100 100 99.5 99.6 99.5 99.6 99.6 0.216

The mold is fabricated by placing the fin master into a cavity and pouring

the cavity full of mold making silicone rubber (Rhodorsil V-3040, purchased from

Freeman Manufacturing & Supply Company of Avon, OH) as shown in Figure 4.14.

The alignment plate and pins shown in this figure are used to register the mold

to the fin master. The outer alignment pins produce a cavity in the mold for

use in aligning and centering the fin base plate when casting the fins. It should

be noted that the alignment plate and pins were necessary only to orient the

base plate (described below) so that it provided part-to-part consistency within

approximately 15 degrees so the rotary fixture of the tunnel did not need to be

adjusted when changing fins. The more important alignment mark for zero AOA

shown in Figure 4.12 does not require special fixturing because it is transferred to

the mold and each cast part.
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Alignment Hole

Zero AOA

Fig. 4.12. Fin master for fin casting; fabricated from stereolithography process;
surface markings added to identify the zero angle-of-attack location when mounted
in water tunnel
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Fig. 4.13. Fin model dimensions with values provided in Table 4.3; S - span, C -
chord, and T - thickness
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Table 4.4. Fin dimensions as measured with calipers for mold master and cast
parts versus fin design dimensions where T is the thickness, C is the chord, and S
is the span dimension (see Figure 4.13); the mean and standard deviation results
are for the cast parts only

Percentage Change from Design Dimensions Std.
Design Master Fin 1 Fin 2 Fin 3 Fin 4 Fin 5 Mean Dev.

T 0.00 0.00 -2.33 -1.74 -3.49 -0.58 -1.74 -1.98 1.06
C 0.00 0.21 -0.26 -0.42 -0.42 -0.16 -0.21 -0.29 0.12
S 0.00 0.00 0.00 -0.51 -0.43 -0.53 -0.38 -0.37 0.22

Mold pullers are added to the mold for use when removing the cast parts.

These allow the mold to be pulled radially to separate the bond between the silicone

rubber and the cast part.

Figure 4.15 shows a mold and the necessary hardware for casting a fin.

The aluminum base plate is fully encapsulated in the cast part to provide a rigid

base for mounting of the fin in the water tunnel test section via metal cap screws

and threaded holes in the base plate. Details of the base plate geometry are

provided in Figure 4.16. The various through-holes are used to allow the material

to flow through and provide a mechanical bond. Multiple copies of this insert were

fabricated on a computer-numeric controlled (CNC) milling machine to enable

multiple cast parts at any given time.

The fin insert is affixed to the silicone mold using the alignment plate and

pins and the Hapflex 598 is poured into the mold cavity to form the fin. The final

poured mold is shown in Figure 4.17. Prior to pouring the Hapflex material into

the mold cavity, the material is subjected to vacuum for approximately five minutes

to remove entrained air to minimize air pockets in the cast parts. The assembly

as shown in Figure 4.17 is also subjected to a vacuum immediately after pouring

the Hapflex to again remove entrained air to ensure there are no air pockets in the

final part. This time, the vacuum is maintained for up to 15 minutes (prior to the

material “curing” too much to freely flow), but no longer or any air remaining in
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Mold Pullers

Fin SLA Master

Alignment Plate

Alignment Pins

Silicone

Fig. 4.14. Fin mold fabrication with alignment fixtures in place; the mold silicone
is visible in this photograph

Silicone Mold

Fin Base Plate

Alignment Plate

Fixture Hardware

Fig. 4.15. Fin mold and casting hardware; the base plate provides threaded holes
to mount the fin in the water tunnel test section
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Fig. 4.16. Relevant dimensions of fin insert; through-holes added to allow material
to form a mechanical lock to the insert; fabricated from aluminum
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the material will produce a much larger void than if left at atmospheric pressure.

The vacuum chamber and vacuum pump are shown in Figure 4.18.

Silicone Mold

Fin Base Plate

Alignment Plate

Mold Puller

Fig. 4.17. Hapflex 598 is poured into mold cavity to for a fin for testing; screws
are placed into tapped holes of fin insert to keep material from filling the holes

The cast part remains in the mold for at least 24 hours to allow the Hapflex

time to cure. The part is then extracted from the mold by first removing the

alignment plate, submerging the mold assembly in water, pulling on the mold

puller pins (see Figures 4.14 and 4.17) to de-bond the fin from the mold, and then

pulling the fin out of the mold (see Figure 4.19). Submerging the assembly in

water lubricates the interface between the fin and the mold and keeps the fin from

re-bonding to the mold once the bond is broken.

Several fins have been cast and measured for dimensional stability. Results

are provided in Tables 4.3 and 4.4. A total of three molds and ten fins were cast

using Hapflex material from two different lots.
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Vacuum 
Pump

Vacuum 
Chamber

Cast Part

Fig. 4.18. Mold assembly shown inside a vacuum chamber to remove entrained
air from the Hapflex 598 while still in the liquid state
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Flash

Cast Fin

Fig. 4.19. The cast fin is removed from the mold by submerging in water (see
water droplets on outer surface of mold and fin); some flash exists on cast part
which is removed using a sharp knife

4.3 Test Results

The results of the water tunnel test for the modified NACA 66 fin are

provided next. These data consist of flow speed and blade deformation. Note

that a force cell was installed to measure fin lift force (Figure 4.7), but it proved

too noisy to obtain useful information. The cell is designed for maximum lift of

50 lbf and the current application has a maximum lift of approximately 0.1 lbf.

The low signal level did not provide sufficient signal-to-noise to reliably extract lift

force during the testing. However, because the fin material model and structural

solver are validated separately, the only need for a measured force cell would be to

identify the source of error if large discrepancies exist between the predicted and

measured results.
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The blade deflections are quantified from the video data recorded from a

location above the test section as shown in Figure 4.4. For quantitative compar-

isons to the simulation results, tip deflections at the leading and trailing edges are

required. Because of the poor contrast between the fin tips and the background

(i.e., the bottom of the tunnel test section), the video frames were processed man-

ually. A sample frame from one test video is shown in Figure 4.20, which shows a

line connecting the LE and TE tip points that are manually selected.

To avoid large perspective distortion as the blade deforms and changes its

distance from the camera, the flow speed and fin’s AOA were limited to control

the blade tip deflection to less than about 20% of the blade chord, which results

in a blade tip elevation decrease of approximately less than 0.5 mm based on the

solver simulation results presented below. The measured fin deflections are scaled

based on the known chord length of approximately 0.05 m at the fin tip. Results

for three test cases are shown in Figure 4.21 for the leading edge tip deflection and

in Figure 4.22 for the trailing edge tip deflection. The results are also plotted in

terms of pitch and heave in Figures 4.23 and 4.24, respectively. A plot of the flow

speed for each test is shown in Figure 4.25. The tip deflection excursions shown

in the figures are a direct consequence of water tunnel flow rate excursions. This

is demonstrated by the plots in Figure 4.26.

One approximation that is made in the FSI modeling for this effort is that

the system is quasi-steady. Ignoring the small-amplitude deflections of the fin

attributed to large-scale flow structures that are visible in the recorded videos, the

response of the fin observed here is quasi-steady and can be quantified using the

reduced frequency parameter as follows. The reduced frequency, k, is often used

to characterize the degree of unsteadiness for a system and is defined based on the

hydrofoil semi-chord:

k =
ωc

2U
, (4.1)
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Fig. 4.20. Sample video frame from water tunnel testing; red line connects the
manually picked points at the tips of the leading and trailing edges
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Fig. 4.21. Hydrofoil leading edge tip deflection
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Fig. 4.22. Hydrofoil trailing edge tip deflection



125

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Time, s

P
it

ch
 C

h
an

g
e,

 D
eg

re
es

Pitch Change at Fin Tip

 

 
Test 47, BaselineAOA
Test 48, BaselineAOA
Test 44, −0.25º

Fig. 4.23. Hydrofoil pitch angle change at the fin tip
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Fig. 4.24. Hydrofoil heave at the fin tip, normalized by the fin span
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Fig. 4.25. Water tunnel flow speed in test section, corresponding to fin tip deflec-
tions in Figures 4.21 through 4.24
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where ω is the oscillating angular frequency, c is the chord length, and U is the

flow speed. For k less than 0.05, the flow can be considered quasi-steady [80]. This

yields a maximum frequency of approximately 0.4 Hz for the current system to

be considered quasi-steady. Note that k is meant for periodic unsteadiness but

is used here to qualitatively demonstrate the quasi-steady nature of these water

tunnel tests. The time-averaged response (obtained by fitting a smooth curve,

similar to the smoothed curve in Figure 4.26, through the data to ignore the flow-

rate induced unsteadiness that is not part of the simulations) of the fin shown in

Figures 4.21 and 4.22 has a frequency character several orders of magnitude less

than the limit. Therefore, the FSI simulations of this system can be treated as

quasi-steady.

The water tunnel test results presented here provide a validation data set

for the FSI solver. Multiple angle of attacks were tested to address uncertainty in

the actual angle of attack. The approach to validating the FSI solver is to infer the

baseline angle of attack by simulating various attack angles until the simulation

and water tunnel test results are in agreement. Comparisons of simulated and

experimental results at multiple angles of attack are then used to assess the validity

of the simulation results.
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Chapter 5

FSI Solver Validation

The use of an elastomeric material for a turbomachine results in time-

dependent performance characteristics because of the material’s viscoelastic re-

sponse to applied loads. The impeller’s response to fluid loads can be non-linear

due to not only viscoelasticity, but also due to large displacements. The FSI solver

developed herein is used to evaluate the structural inverse method for viscoelastic

materials. In preparation for this, the solver is validated and verified through ex-

periments of a modified NACA 66 fin fabricated of the same Hapflex material as

the expandable impeller pump. Similar to other elastomeric materials, Hapflex 598

exhibits a non-linear response when deformed to sufficiently high strains and the

displacements are time dependent due to stress relaxation. However, the strains

for this research are small enough to employ a linear-elastic modulus for the in-

stantaneous part of the material model. The development and validation of the

material model are described in Chapter 3. The structural solver validation is de-

scribed here followed by validation of the FSI solver. First, however, a description

of the mesh generation used for both the fluid and structural domains is provided.

5.1 Mesh Generation

5.1.1 Flow Domain

The flow domain is meshed with GridGen [110], which supports the creation

of either structured or unstructured meshes. The flow model of the water tunnel

test configuration uses a structured mesh with 256,000 hexahedral cells. The mesh
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resolution was evaluated using a coarsened mesh having 45,200 hexahedral cells

and a refined mesh having 664,000 hexahedral cells.

The mesh was created by first constructing a boundary mesh on the fin’s

surface, extruding the surface mesh to create an “o-grid” (the “peanut-shaped”

mesh around the fin in Figure 5.1), and then the outer volume between the o-grid

and the boundary surfaces was meshed, as shown in Figure 5.2. A top view of the

entire mesh is shown in Figure 5.3.

While the cells are uniformly spaced in the vertical direction on the domain

outer boundaries (Figure 5.4) they are concentrated in the tip region between the

fin and upper wall of the test section, as shown in Figure 5.5. The cells are also

concentrated in the flow-direction near the leading and trailing edges of the foil,

as shown by these figures. The cells are concentrated near the leading and trailing

edges because the flow field experiences large spatial gradients in these locations.

Fig. 5.1. Top view of “o-grid” during mesh construction for simulation of water
tunnel test
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Fig. 5.2. Top view of water tunnel meshed flow domain, zoomed to show close-up
of foil region

Fig. 5.3. Top view of water tunnel meshed flow domain
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Fig. 5.4. Front view of water tunnel meshed flow domain

Tip Concentration

Fig. 5.5. Slice through mesh showing concentration of cells near foil tip
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5.1.2 Solid Domain

Two techniques are used to generate structural meshes for this work. The

first technique is applicable to simple models, like the beams described previously

and in the next section, that can be extruded from planar elements. These meshes

are created manually in the commercial software Femap [139]. The second tech-

nique, used for more complicated models of the fin and impeller, is a Matlab

application written by the author called bladeGen. This application first uses

Non-Uniform, Rational B-Splines (NURBS) [107] to parameterize a surface, and

then applies a smooth mesh on the pressure and suction surfaces based on the

NURBS, and finally extrudes elements through the thickness. The user is given

two options for meshing at the leading and trailing edges; one option uses wedge

elements and the second uses rotated hexahedral elements to produce a mesh con-

sisting of only hexahedral elements. The latter approach, which is used for this

work, results in an element cross-section distribution as shown in Figure 5.6. The

program features a GUI (Graphical User Interface) front end, shown in Figure 5.7.

As indicated by the GUI, the software allows the user to specify the number of el-

ements in all three local directions (chord-wise, span-wise, and through-thickness)

and allows biasing in the chord-wise and span-wise directions. Once satisfactory

mesh distributions are achieved, the mesh resolution is changed by modifying the

number of elements in any of the three dimensions. The user’s previous settings

are saved in the computer’s registry (for the Microsoft Windows operation system)

and become the software’s default settings for ease in changing mesh resolution or

other settings at a different time without needing to re-enter the values.

The software requires input of blade section information in the form of point

locations sequentially ordered from the trailing edge along the suction surface to

the leading edge and then back the pressure surface to the trailing edge for all

sections (or slices of the fin), starting at the blade root and extending to the blade

tip. A plot of the points required for the modified NACA 66 fin, obtained by slicing
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Fig. 5.6. Element through-thickness distribution for mesh with only hexahedral
elements; pressure surface is on the top side of the mesh, suction surface is on the
bottom side

the solid model at several span locations, is provided in Figure 5.8. Multiple fillet

sections are used to ensure the mesh accurately represents the solid model in this

region of high-curvature. Note that these sections are scaled based on the measured

fin shrinkage described in Section 4.2. An example mesh of the fin, created using

the bladeGen software, is shown in Figure 3.7.

5.2 Structural Solver

The objective of the structural solver is to accurately translate fluid forces

acting on a structure to displacements of the structure. The ability of the structural

solver developed for this effort to accomplish this objective is demonstrated in

this section. Because the primary mode of deformation in the models studied

here is bending, and because this usually causes the most difficulty due to locking

effects for nearly-incompressible materials [23], comparisons are focused on bending

loads. The first set of evaluations are for a slender beam model, followed by the

simulations of the modified NACA 66 fin.
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Fig. 5.7. Graphical user interface for bladeGen software
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Fig. 5.8. Modified NACA 66 fin showing locations of section points for the FE
mesh creation
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5.2.1 Beam Bending Comparisons

The structural solver is validated by comparing simulation results from

feanl to either analytical results for linear, small-deformation problems or sim-

ulation results from the commercial software Abaqus [57] for nonlinear, large-

deformation problems. Feanl is validated first for small deformations and then for

large deformations. While the solver does support load types other than concen-

trated forces (e.g., tractions and enforced displacements), comparisons are provided

only for cases relevant to the modeling required herein.

The FE solver is first validated for the linear response of a fixed-free beam

with a single, concentrated tip load. The analytical solution is derived by integrat-

ing over the beam length the beam bending moment relation (d
2
y/dx

2
= M/EI)

with the boundary conditions of y(0) = 0, dy/dx|
x=0

= 0, and a tip load P at

x = L:

y =
Px

2

6EI
(3L − x) ,

where x is the distance along the beam, y is the beam deflection, E is Young’s

modulus, I is the bending moment of inertia (I = bh
3
/12 for the rectangular

cross section used here), and L is the beam length. The beam dimensions are

b = 6.5 mm, h = 3.5 mm, and L = 125 mm (Figure 3.10). A Young’s modulus

of 60 MPa is employed and for the finite element model a Poisson’s ratio of 0.33

is applied. The applied load acts in the negative y-direction with a magnitude of

0.001 N. Three finite element models have been developed, each of different mesh

resolutions. The coarsest mesh is shown in Figure 5.9. Comparisons of the FE-

simulated beam deformations to the analytical results are provided in Figure 5.10.

The results in this figure show that the FE model converges to the analytical

solution with a maximum difference at the beam tip of 28% for the coarse mesh

(100 elements), 4.6% for the medium mesh (1,600 elements), and 1.5% for the

refined mesh (12,800 elements). These results are similar to those obtained from
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Constraints

Tip Force

Fig. 5.9. Cantilevered beam coarse finite element mesh (100 elements) for valida-
tion

Abaqus: 26%, 3.9%, and 1.3%, respectively for the coarse, medium, and refined

mesh models.

The structural solver is also validated against Abaqus for a cantilevered

beam undergoing a large deformation. For this case, only a single mesh resolution

is employed because two finite element models are being compared. This model

uses the same dimensions used for the linear beam model, but the material prop-

erties are slightly different: a Young’s modulus of 69. MPa and a Poisson’s ratio of

0.49. Furthermore, the load magnitude has increased substantially to 2.2 N. The

beam deformation as computed by feanl is shown in Figure 5.11 and a compar-

ison between feanl and Abaqus of the beam shape along the beam centerline is

shown in Figure 5.12. Feanl computes a beam tip displacement magnitude that

is 0.31% less than the value computed by Abaqus, which is well within antici-

pated specimen-to-specimen variations of the hardware (see the beam deflection

variations in Figure 3.14).

The saveCurrentState and resetState member functions described in

Section 2.3.3 are required for tightly coupled solutions requiring sub-iterations.
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Fig. 5.11. Cantilevered beam nonlinear (large deformation) model deformation
computed by feanl; the light blue elements represent the undeformed shape; the
deformed shape is contoured by displacement magnitude in mm
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These functions were validated using the fixed-free beam of Figure 5.9 comprised

of a viscoelastic material and a concentrated load near the beam’s tip. The beam

deformation was simulated to 2 seconds, the current state was saved, the simulation

continued to 5 seconds where resetState was executed to reset the solver to the

state at 2 s and then the simulation continued until the end time of 100 s. A

plot of the tip deflection versus time, provided in Figure 5.13, demonstrates that

the continuous and restarted results are identical, establishing the validity of this

solver operation.

5.2.2 Modified NACA 66 Fin

The ability of feanl to accurately model the modified NACA 66 fin has

been demonstrated previously in Section 3.5.2, where a mesh convergence study

was reported and comparisons made to empirical results. The purpose of the

present section is to describe additional modeling capability of feanl.

FSI simulations were originally performed using the refined x 2 mesh of

the modified NACA 66 fin described above in Section 3.5.2. However, the struc-

tural solution times were prohibitive and thus two alternative approaches were

pursued. The first was a parallelized solver using PetSc. While this solver showed

improvement in system matrix assembly times because each processor creates ma-

trix entries for its assigned elements, the default iterative solver converged very

slowly if at all for these problems. Alternative sparse, distributed memory direct

solvers, MUMPS [3] and SuperLU [85], were tried but without substantial solution

time improvements.

In parallel with this development, a second approach was explored that

involved alternative element formulations. Considered in this approach were pres-

sure/displacement (i.e., hybrid) elements, selectively reduced-order elements, and
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quadratic elements. Hybrid elements are designed specifically for nearly-incompres-

sible materials and thus perform well. However, they require a substantial reformu-

lation of the structural solver. It was then discovered that selectively reduced-order

integration elements, as described by Hughes [62], perform equivalently to the hy-

brid elements. Quadratic elements were also evaluated because, relative to linear

elements, they are not as susceptible to shear locking.

A comparison of the solution convergence of the coarse mesh model using

selectively reduced integration elements and the highly-refined (refined x 2) mesh

model of the fin is shown in Figure 5.14. The agreement is excellent with only a

0.06% difference between the tip displacement of the Hapflex 598 fin at 3600 s.

Also shown in this figure is the tip-displacement for the quadratic-element model,

which is within 0.7% of the refined x 2 mesh results. Given the good agreement

between the models and having already implemented the FSI interface coupling

algorithm for linear elements, the selectively reduced-order elements were chosen

for all subsequent models over the quadratic elements.

The motivation for this investigation was to replace the somewhat large

finite element model with a model that can be solved quickly based on long simu-

lation times that occurred during the initial FSI simulations The original compar-

isons reported here were completed prior to implementing the reduced integration

and quadratic element support in feanl, and therefore the comparisons to exper-

imental results presented previously employ the refined x 2 mesh.

It should be noted also that similar results to the Hapflex beam models were

obtained when comparing pressure/displacement hybrid and reduced-integration

elements using Abaqus.

The difference between fin deformations for the large- and small-deformation

FE formulation is shown for the fin subjected to the test tip load in Figure 5.15.

It is apparent from the results in this figure that a large-deformation formulation

is required for these analyses.
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The maximum equivalent strain computed for the fin is approximately

1.47% as shown in Figure 5.16. This is slightly larger than the maximum strain

observed for the Hapflex beams, but not substantially larger to invalidate the use

of a linear material constitutive relationship based on the good agreement between

the numerical and experimental results presented previously.

Fig. 5.16. Deformed fin after 1 hr of relaxation, contoured by equivalent strain

5.2.3 Solver Performance

The performance of the structural solver is compared to that of the commer-

cial software Abaqus [57]. Two aspects are important in this comparison, which is

focused on the large-deformation formulation. The first is the number of Newton-

Raphson iterations required for a given solution increment. This evaluates the

accuracy and completeness of the stiffness tangent of Equation 2.25. The second is

the time required per Newton-Raphson iteration. This comparison contrasts time

required to assemble the system matrix and residual vector and solve for the next

solution guess.
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The test problem used to compare the solvers is the refined x 2 hydrofoil

model (see Section 3.5.2). This is the most germaine to the present work because it

features large deformations and viscoelasticity. Both solvers were executed using an

Intel dual quad core 2.39 GHz CPU having 8 GB RAM and running the Windows

XP operating system. Feanl used approximately 160 MB RAM while Abaqus

used approximately 130 MB, which is most likely due to different formulations

of the problem (Total versus Updated Lagrangian). Feanl required 82 solution

increments while Abaqus required 67 increments. This difference is due to the use

of different time step sizes, which are determined by an automatic time stepping

algorithm in each solver. For instance, feanl doubles the time-step size if three

or less Newton-Raphson iterations are required for a solution step. Abaqus uses a

more complex rule, which is not described here.

The number of Newton-Raphson iterations per solution increment are plot-

ted in Figure 5.17 versus the solution increment. This figure shows that Abaqus

generally requires far fewer time steps than feanl for a given solution increment.

This is due to different convergence constraints, different residual tangents, or a

combination of these. Feanl should be further evaluated in the future to improve

the convergence characteristics. Comparisons of wall-clock times on a per-iteration

basis, shows the solvers to be comparable. Abaqus requires approximately 2.93 s

per iteration and feanl requires approximately 1.55 s. However, feanl automati-

cally uses multiple processor threads when available for the linear equation solves

and Abaqus does not. For this test case, feanl used two threads and Abaqus

used only one. The two largest consumers of clock time for feanl are the ma-

trix assembly and linear equation solution. For this test problem, feanl spent

approximately 54% of the time assembling the system matrix and 42% of the time

solving the system of equations. Similar information is not available for Abaqus.

The results indicate feanl provides reasonable performance with respect to similar

commercial software.
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5.3 Structural Inverse Solver

The inverse structural solver is initially validated using a test case similar

to that employed by Fachinotti et al. [36]. Validation of the solver is also shown

for each inverse analysis employed in this work within the relevant sections of this

thesis. The test case of [36] is a two-dimensional cantilevered beam subjected

to a tip force as shown in Figure 5.18. The case used here differs from that in

[36] in that a linear-elastic material is employed here whereas their material was

orthotropic. The inverted structural shape is shown in Figure 5.19. Application

of the tip force to the inverted shape should cause the inverted shape to deform

into the original shape if the inverse solver is functioning properly. Figure 5.20

shows the final shape of the inverted structure deformed by the tip force, colored

by the displacement error in meters. The maximum node location error is 0.09%,

thereby validating the inverse finite element solver for this large-deformation, linear

elastic case. Note that the inverse solver implementation makes no distinction

between constitutive materials and thus the solver should also function properly

for the viscoelastic materials considered here. However, comparisons are performed

elsewhere to ensure proper inverse shapes are used in the FSI simulations.

5.4 Flow Solver

The OpenFOAM simpleFoam flow solver is verified against the commercial

software Fluent [46]. The test case for this comparison is the modified NACA 66

fin in the water tunnel. The model consists of uniform axial velocity of magnitude

1.2 m/s at the inlet, fixed pressure at the outlet, incompressible, laminar flow,

and the rigid fin was set at zero angle of attack. Figure 5.21 shows the boundary

conditions for this model. Contours of static pressure are compared in Figures 5.22

and 5.23 and the integrated stresses on the structure’s surfaces are provided in
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0.48 m

0.16 m

Constrained

Tip Force
= 120 N

E=7.5 MPa, ν=0.3

Fig. 5.18. Test case for structural inverse solver showing constraints, tip force,
and the structure’s dimensions

Table 5.1. These comparisons provide confirmation that the OpenFOAM solver is

functioning properly.

A mesh resolution study for the flow solver has also been conducted. Three

meshes have been used, a coarse mesh with 45,200 cells, a medium mesh with

256,000 cells (see Figures 5.1 through 5.5), and a refined mesh with 664,000 cells.

The static pressure contours on the fin surface for the refined mesh are shown in

Figure 5.24 and the net fin forces are compared to the medium-mesh fin forces

in Table 5.2. With the exception of the force component in the z-direction, the

medium mesh agrees within 1% of the refined mesh. Because of the minor effect

the z-direction loads have on this application, and the computational cost of the

refined mesh over the medium mesh, the medium mesh is used throughout the

work reported here. The ultimate confirmation of model accuracy comes from

comparisons of the FSI solver with experimental results, which is described below

after a brief discussion of the mesh motion solver.
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Fig. 5.19. Structural inverse solver test case showing the inverted shape (shaded
elements) and the original shape (transparent elements)

Table 5.1. Structural forces (pressure + viscous) for solver validation study

Solver F
x

F
y

F
z

Fluent 0.0927 N -0.305 N 0.0321 N
OpenFOAM 0.0915 N -0.309 N 0.0317 N
Difference -1.27% 1.14% -1.26%
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Fig. 5.20. Inverted model deformed into the original shape from application of
the tip force; contoured by location error in meters with respect to the original
shape

Table 5.2. Structural forces (pressure + viscous) for solver validation study

Number of Cells F
x

F
y

F
z

|F | Difference

45,200 0.108 N -0.337 N 0.0361 N 0.356 N 10.1%
250,000 0.0915 N -0.309 N 0.0317 N 0.323 N

0.771%
664,000 0.0908 N -0.306 N 0.0298 N 0.321 N
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Velocity Inlet

Pressure Outlet

All other walls:
no-slip, impermeable
⇒velocity = wall velocity
⇒pressure is zero gradient

Fig. 5.21. Boundary conditions for the water tunnel simulations; all walls are
stationary except the fin surfaces

5.5 Fluid Mesh Motion Solver

The purpose of the mesh motion solver is to track the fluid/solid interface

and deform the fluid mesh to accommodate structure deformations while main-

taining sufficient mesh quality. The validity of the mesh motion solver is therefore

evaluated by ensuring that 1) the fluid/solid boundary from the perspective of the

fluid mesh matches the fluid/solid boundary from the perspective of the structural

mesh, and 2) the fluid mesh has acceptable quality. All mesh motion schemes

employed in this work rely on a motion specification of Γ
F/S

, which occurs by

displacement interpolations within the structural solver to reference element loca-

tions corresponding to each fluid boundary vertex. Run-time checks are performed

during each simulation to ensure all fluid motion vertices are correctly mapped to

the structural elements and that the structure solver accurately locates each fluid

motion vertex in its owner structural element, both of which were previously de-

scribed. A failure in either regard is considered a fatal error.
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Fig. 5.22. Contours of static pressure (Pa) on fin surface as computed by Fluent
at inlet flow speed of 1.2 m/s
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Fig. 5.23. Contours of static pressure (Pa) on fin surface as computed by Open-
FOAM at inlet flow speed of 1.2 m/s using the medium-refinement mesh



158

Fig. 5.24. Contours of static pressure (Pa) on fin surface as computed by Open-
FOAM at inlet flow speed of 1.2 m/s using the refined mesh
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The second criterion for the mesh motion solver is mesh quality, which

not only concerns cell quality but loosely includes boundary conformity. The

mesh’s cell quality is checked after completion of each simulation using Open-

FOAM’s checkMesh utility, which checks things such as aspect ratios, volumes,

non-orthogonality, and skewness [69]. The approach employed in this work is to

ensure the mesh quality does not substantially degrade from the undeformed mesh

quality. The boundaries are also reviewed to ensure the solver functions as planned

and that gross errors like that shown in Figure 2.5 have not occurred.

In general, the mesh motion solvers employed here, with the exception of

the Laplace tetrahedral decomposition solver, cause fatal run-time errors if they

are not working properly. However, motion of the fluid mesh remains the most

non-robust aspect of the three-field FSI solver implemented in this work. Further

work is required in this area for future endeavors.

5.6 Fluid–Structure Interaction Solver

This section discusses the validation of the FSI solver for quasi-steady prob-

lems using the viscoelastic, modified NACA 66 fin subject to incompressible, lami-

nar flow. The approach is to simulate the water tunnel test described in Chapter 4

and compare results for time-dependent fin deformation. The measured fin deflec-

tions have been quantified at the fin tips, and video images looking down from

above the test section are available for qualitative comparisons. The simulations

employ the structured mesh of the flow field described in Section 5.1.1 and the

coarse structural mesh of Section 5.1.2 with selectively-reduced integration linear

hexahedral elements. Motion of the flow mesh was accomplished initially using

OpenFOAM’s Laplace face decomposition solver and later transitioned to the cus-

tom RMF to enable the problem to be solved in parallel (to dramatically reduce

the solution wall-clock times).
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Simulations for multiple angles of attack were required because of the inabil-

ity to accurately quantify the AOA during the water tunnel testing. Simulations

for AOA’s ranging from +0.5 to −2.5
◦

were performed and then compared against

the baseline AOA test results. Satisfactory agreement between the simulation and

test results for the single AOA is sufficient to confirm validation of the solver be-

cause the temporal degree of freedom must also match. However, for additional

confirmation comparisons are made for a second AOA. Recall, the absolute AOA

for the water tunnel tests could not be defined, but changes in the AOA were

very accurately and precisely controlled using a long lever arm and shim stock as

previously described. Comparisons are reported here for the baseline AOA and

the baseline AOA −0.25
◦
. (The method used to modify the fin AOA for the FSI

simulations is discussed in Section 2.5.1.)

The boundary conditions for the water tunnel test simulations include a

prescribed velocity inlet, prescribed pressure at the outlet, and no-slip conditions

at all surfaces as shown in Figure 5.21.

The inlet velocity profile is prescribed to be uniform and solely in the x-

direction, with a time-varying magnitude. The water tunnel’s test section velocity

varied with time during startup from 0 to nominally 1.22 m/s in about 100 s.

This temporal variation of U
x

was quantified during some early tests and is used

throughout all tunnel simulations reported here. A plot of the flow speed versus

time is shown in Figure 5.25. This closely represents the experimental flow speeds

as shown in Figure 5.26.

Comparisons of the leading and trailing edge tip deflections are provided

next for the baseline AOA and baseline AOA −0.25
◦

in Figures 5.27 and 5.28,

respectively. These figures show good agreement between the measured and sim-

ulated blade tip deflections. Note that the ordinate scaling between these plots is

consistent to facilitate amplitude comparisons between the different AOA’s. The

slope of the curves, caused by changes in load magnitude and fin stiffness as the
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fin relaxes and changes the span-wise AOA, match well, as do the curve ampli-

tudes. The fin deflection results are also presented in terms of pitch and heave in

Figures 5.29 and 5.30, respectively. These figures show the same information as in

Figures 5.27 and 5.28 but facilitate the interpretation of the results. As reported

previously, noise in the load cell measurements precluded their use here. However,

it is instructive to plot the fin lift (i.e., y-direction force) for the simulated results.

These results, shown in Figure 5.31 for both AOA’s, indicate the fin lift decreases

with time as the fin deforms.

Images of the deforming fin from Test 44 at various times during the exper-

iment and the corresponding FSI simulated results are shown in Figures 5.32 and

5.33. These images correspond to the tip deflection plots for the simulated −0.375
◦

AOA in Figures 5.27 and 5.28. The images show good qualitative agreement of

the simulation to the measured response.

The maximum strain levels in the simulated fin results are less than 0.7%

as shown in Figure 5.34. These results are for the −1.375
◦

AOA case, which has

larger deformations than the −1.125
◦

AOA case and therefore higher strain. The

use of the linear-elastic material model as derived herein is therefore acceptable

for these simulations.

5.6.1 Solver Performance

The performance of the FSI solver is characterized based on time required to

solve each of the three fields: fluid, solid, and mesh motion. Relative comparisons

of the different mesh motion techniques are then made. The modified NACA 66 fin

having a −1.125
◦

AOA and the medium-density fluid mesh is used for the timing

study presented here. Figures 5.35 and 5.36 show the elapsed wall-clock times

per solution time increment for the Laplace face decomposition and the custom

RMF mesh motion solvers, respectively. Results were generated on a Linux cluster

having 256 2.8 GHz 64-bit Intel processors with 2 GB RAM per processor. It is
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Fig. 5.28. Simulated and measured trailing edge tip deflection
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Fig. 5.29. Simulated and measured pitch angle change at the fin tip
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Fig. 5.32. Fin deformation comparisons between experiment and simulation for
time 10 s to 600 s (window surface bubbles present in top left image)
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Fig. 5.33. Fin deformation comparisons between experiment and simulation for
time 1050 s to 1500 s
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Fig. 5.34. Fin strain contour for the −1.375
◦

AOA FSI simulations at t = 1500 s
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evident from these figures that the flow solver requires the most time, followed by

either the structural solver if the custom RMF mesh motion solver is used, or by

the mesh motion solver if the Laplace face decomposition solver is used. Similar

results are obtained for parallel execution of the solver using 16 processors, as

shown by the results in Figure 5.37 for the RMF mesh motion solver. A summary

of these results, in terms of the solution time percentages for each of the three

fields per simulation, is provided in Table 5.3.

Table 5.3. Comparison of solver elapsed wall-clock times

Case Flow Structure Mesh Motion
1 Processor, Laplace Face Decomposition 74.8% 4.1% 21.1%

1 Processor, RMF 93.2% 5.9% 0.9%
16 Processors, RMF 81.0% 18.5% 0.5%

It should be noted that the initial solves of the structure require the most

time because it is during this time that the largest change in structure shape occurs.

Several solution increments are required to simulate this time period. Later in the

simulation, the structure’s time step size is increased and requires less time per

FSI time increment.

Memory requirements were characterized using the fin model for the Lapla-

cian face decomposition and the custom RMF mesh motion solvers. The former

requires approximately 1.9 GB, while the latter approach requires approximately

1.2 GB. Using the domain decomposition approach for parallel processing, the

per-processor memory requirement decreases from these values.

5.6.2 Solver Subiterations

A study was conducted to determine the number of subiterations required

to tightly couple the flow and structure solvers. The study was conducted using a
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fixed relaxation parameter, ω
i
, for the fixed-point relaxation shown in Figure 2.12.

The medium-refined mesh with an AOA of −1.125
◦
and inlet flow speed of 1.22 m/s

was employed for this study. The leading and trailing edge points at 100% span

and lift force versus time are compared in Figures 5.38, 5.39, and 5.40, respectively.

The simulation results are reported to 700 s in these figures. The results show good

agreement between each of the different degrees of coupling. However, if the results

are plotted on a logarithmic scale for the abscissa, Figures 5.41, 5.42, and 5.43, it is

evident that differences are largest during the first 100 seconds of the simulations.

During this period, the inlet flow speed changes and the fin deformations are due

to elastic relaxation, which has a short time scale. After 100 seconds, the inlet

flow speed is constant and only the viscoelastic material relaxes. The results for

coupling with less than ten sub-iterations are compared against the results using

ten sub-iterations for the leading edge and lift force in Figures 5.44 and 5.45. A

similar plot for the trailing edge deflection is not shown because the trailing edge

deflection passes through zero causing the %-error results to be misleading (i.e.,

a division by zero). These results demonstrate that the use of 10 fixed relaxation

sub-iterations provides results that are tightly coupled to within a few percent error

during tunnel startup (i.e., t ≤ 100 s) and much more accurate for t > 100 s. Note

that these results employed a simulation time step size of 5 s. Decreasing the time

step size would reduce the number of required sub-iterations for the same coupling

accuracy or alternatively improve the coupling accuracy while maintaining the

same number of sub-iterations. Based on these results, all simulations reported

here employ a constant relaxation factor with ten sub-iterations and the dynamic

relaxation factor of Equation 2.49 is not used.
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sub-iterations with constant under-relaxation; plotted on logarithmic scale
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Chapter 6

Modified NACA 66 Fin Inverse Model Simulations

The validated FSI and inverse finite element solvers are applied to the mod-

ified NACA 66 fin to assess the validity of using the inverse approach for the time-

dependent, viscoelastic response. The objective of the inverse model is to define an

inverted shape that deforms into the desired (design) shape due to fluid loading.
1

The inverse simulations are evaluated for several fin AOA’s. FSI simulations are

used for each case to evaluate the validity of the inverted shapes.

6.1 Approach

Simulations of an inverted model require the following steps. First, the loads

acting on a fin in its design shape are determined. This is accomplished by running

a modified version of simpleFsiFoam, called simpleFsiFoamRigidStructure. This

solver treats the structure as a rigid entity but still calculates the fluid loading

on the structure based on the interface coupling scheme for the disparate meshes.

These forces are applied to the structural model and the inverse FE solver, ifeanl,

is used to determine node locations for the corresponding inverted model.

Barring the use of the flow solver’s mesh motion capability, the next step

would involve the creation of a new fluid mesh. Rather than performing this

labor-intensive task, the mesh motion solver is used, along with the structural

solver’s member function setNodeDisplacements, to deform the fluid mesh. The

simpleFsiFoam solver is once-again modified to accomplish this task, and the

new solver is called fsiInverseFoam. This solver reads a text file containing the

1
If the material exhibited purely elastic deformation, then the inverse shape would deform “into” the

design shape. Viscoelasticity introduces a temporal component to the material’s response and thus the
shape will only correspond to the design shape for an instant as it “passes through” the shape.
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structural nodal displacements from the design shape to the inverted shape, and

moves the fluid mesh accordingly. The moved mesh then becomes the starting

mesh for the inverse FSI analysis. The inverted structural model created from

ifeanl is also used in the inverted FSI analysis.

The use of a stress-relaxing material requires the inverse evaluation to occur

over a specified amount of time, and ideally the forward FSI analysis will show the

inverted model deforming into the design shape after being exposed to the flow

field for that same amount of time. Some error is anticipated because of the

nonlinearity of the history-dependent, viscoelastic material. As such, load ramps

are used when appropriate to approximate the anticipated load history of the fluid

on the structure during deformation from the inverted shape to the design shape.

6.2 Results

The inverse analysis of the modified NACA 66 fin employs the same fluid and

structural meshes described previously. The flow conditions are similar to those de-

scribed elsewhere: laminar, incompressible, the same fluid and viscoelastic material

properties used previously, and a uniform inlet velocity of (1.2̂i, 0ĵ, 0k̂) m/s that is

gradually applied with the temporal variation similar to that shown in Figure 5.25

but scaled by the factor 1.2/1.22 to yield a maximum velocity of 1.2 m/s.
2

The

inverse structural analysis is used to determine the inverted shape corresponding to

1, 000 s of relaxation for the design-shape fluid loading at AOA’s −1.5
◦
, −2

◦
, and

−3
◦
. Comparisons of the design- and inverse-shapes are provided in Figure 6.1 for

an AOA of −3
◦

showing a three-dimensional view of the fin outline and top view of

all three AOA’s in Figures 6.2 to 6.4. As evident from these figures, the difference

between the inverse and design shape increases with increasing magnitude of the

AOA, as expected. To ensure the inverted shape is accurate, the fluid design-shape

2
The flow speed objective of the water tunnel tests was 1.2 m/s, but was closer to 1.22 m/s. Therefore,

many of the FSI simulations were performed at 1.2 m/s and additional FSI simulations at 1.22 m/s were
performed for the validation study.
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loads are applied to the inverted models and comparisons are made between the

deformed inverted shape at 1, 000 s and the design shape. The difference between

each node of the design geometry and the deformed inverse geometry is shown in

Figures 6.5 to 6.7 for the three AOA’s. The maximum error for all cases is less

than 6.5x10
−7

m, which is about 5 orders of magnitude less than the chord length,

thereby validating the inverse shapes.

Ideally, the FSI solver would show the inverted shape deforming into the

design shape at 1000 s. Plots of fin tip location at the leading and trailing edges

versus time are used to quantify the results. The results are provided in Figures 6.8

to 6.10. In each of these figures, it is evident that time at which the fin shape

coincides with the design shape occurs later than the target time of 1000 s, between

40 and 80 s late for the cases shown here. The reason for this discrepancy is related

to the material time-dependency and discrepancy between actual and simulated

load history. The inverse shapes are determined assuming a linear load application

from 0 to the maximum at the design conditions over a period of 100 s. In reality,

the load time-dependency is unknown but could be estimated by iteration of the

inverse problem stated here. Plots of load magnitude versus time for the inverse FE

analysis and the FSI simulation of the inverted shape are shown in Figures 6.11 to

6.13, corresponding to the results in Figures 6.8 to 6.10, respectively. Each of these

load plots shows the inverse FE analysis applied loads that are generally of larger

magnitude than the load resulting from the FSI simulations. This discrepancy is

the underlying cause of each of the FSI simulations missing the target times in

Figures 6.8 to 6.10.

It is expected that increases in the AOA beyond a certain value will cause the

forward FSI simulation to diverge from the design shape, but this is not explored

here. Rather, it is observed that the inverse analysis technique can produce an

inverted shape that deforms into the design shape. However, to arrive at the

design shape at a specific time requires additional knowledge of the load, a priori.
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Design Shape

Inverse Shape

Fig. 6.1. Inverted fin shape corresponding to 1000 s of relaxation under the fluid
loads for a fin with an AOA of −3

◦
compared to design shape fin
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Design Shape
Inverted Shape

Fig. 6.2. Top view of inverted fin shape corresponding to 1000 s of relaxation
under the fluid loads for a fin with an AOA of −1.5

◦

Design Shape
Inverted Shape

Fig. 6.3. Top view of inverted fin shape corresponding to 1000 s of relaxation
under the fluid loads for a fin with an AOA of −2.

◦

Design Shape
Inverted Shape

Fig. 6.4. Top view of inverted fin shape corresponding to 1000 s of relaxation
under the fluid loads for a fin with an AOA of −3.

◦
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Such a requirement can be met with an iterative approach, but this is not explored

here but instead recommended for future work in this area.
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Fig. 6.8. FSI simulation of inverted fin for −1.5
◦

AOA; deviation of leading and
trailing edge points from the design shape location

6.3 Conclusions

The inverse structural FE solver accurately defines inverse shapes for the

modified NACA 66 fin for the given load history. These inverse shapes do deform

into the design shapes when subjected to flow stresses. However, slight discrepan-

cies exist in meeting the target times at which the shape should conform to the

design shape. This is attributed to inaccurate load histories used in the inverse

FE analysis. For cases where the time at which the design shape is achieved is of
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utmost importance, an iterative approach will be required to refine the load his-

tory used in the inverse structural analysis. It is also speculated that some inverse

shapes can lead to a diverging system that requires a system modification, such as

a time-varying AOA, to achieve the design shape. The next chapter demonstrates

the inverse approach for the viscoelastic expandable impeller pump.
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Chapter 7

Expandable Impeller Pump Simulations

One of the objectives of this thesis is to determine if an inverse technique

can be used to derive a manufacture shape for a viscoelastic expandable impeller

pump. The goal of the manufacture, or inverse, shape is to accommodate impeller

deformations that will occur due to elastic and viscoelastic response of the impeller

material to fluid stress at operating conditions. Ideally, the inverse shape will

“pass through” the design shape at a prescribed time as described previously for

the modified NACA 66 simulations. The FSI solver and the inverse technique

have been demonstrated in previous chapters of this dissertation for a single fin

subjected to quasi-steady flow. This chapter discusses the application of the FSI

solver and the inverse technique to a rotating viscoelastic impeller comprised of

two blades. The impeller is prescribed to rotate at 500 rev/s and the flow is treated

as incompressible and laminar with a flow rate of 5 L/min. The impeller has an

outside diameter of 5.9 mm, and operates in a 6.0 mm-diameter pipe, yielding a

radial tip clearance of 0.05 mm. The fluid (blood) is approximated as Newtonian

(see [35] for discussion of why a Newtonian model is acceptable for blood) with a

kinematic viscosity ν = 3.302x
−6

m
2
/s and density ρ = 1060 kg/m

3
. The Reynolds

number based on chord and tip relative velocity is approximately 14, 700, which

is far less than the critical Reynolds number of 200, 000. Therefore, the flow is

modeled as laminar.

The purpose of this analysis is to demonstrate the FSI solver and the inverse

analysis approach for the rotating impeller and thus a mesh convergence study is

not performed. The creation of the fluid and structural meshes is described next,

followed by the simulation results. Note that the pump impeller described in
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Chapter 1 consists of two blade rows with two blades per row. The impeller used

in this analysis consists only of the upstream blade row which exhibits the largest

blade deformation.

7.1 Mesh Generation

Mesh creation for both the flow and structure domains follows a similar

procedure to that used for the single fin model described in Section 5.1. Details

of the mesh creation for the flow domain of the impeller model are provided next,

followed by mesh creation for the impeller structure.

7.1.1 Flow Domain

The complexity of the impeller geometry, shown in Figure 7.1, made difficult

the use of a structured fluid mesh having acceptable cell quality. An unstructured

mesh was therefore created in GridGen. The mesh was created as a cyclic symmet-

ric mesh with two-times symmetry (Figure 7.2) and consists of 500,178 tetrahedral

cells. The mesh was then rotated about the symmetry axis to create a full mesh.

The use of a full mesh eliminated the need for multi-point constraints and cylin-

drical coordinate systems in the structural solver.

7.1.2 Structural Domain

The impeller mesh is created using the bladeGen Matlab application de-

scribed previously in Section 5.1.2. The blade sections used by bladeGen are shown

plotted on the impeller geometry (note the use of symmetry requires the creation

of only a single blade model) in Figure 7.3. The coarse section points shown in

this figure are sufficient to create a fairly accurate representation of the blade.

However, to ensure the blade surface nodes are correctly placed, each is projected

onto the blade solid body’s surface using the commercial software Femap[139].
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Fig. 7.1. Solid model of viscoelastic impeller

Fig. 7.2. Unstructured cyclic-symmetric fluid mesh for expandable impeller pump
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Fig. 7.3. Impeller blade section points plotted with the impeller solid model;
these points are used by bladeGen to create the impeller FE mesh

The resulting finite element mesh of the impeller is shown in Figure 7.4.

Note that the mesh was created solely by bladeGen, except for some hand-work to

fix a few distorted elements in the hub and also to create the nose and downstream

ends of the hub. The mesh shown in this figure consists of 9,676 hexahedral

elements and 13,404 nodes.

The hub is comprised of an embedded tube that is much stiffer than the

impeller material, which results in negligible rotation of the hub due to fluid loading

on the blade surfaces. This fact enables the hub region to be eliminated from

the structural model during the FSI simulations, which reduces the number of

wetted surfaces that must be searched and interpolated for mesh motion. The

final impeller model consists of two blades, each constrained at their roots as

shown by Figure 7.5. This model is comprised of 4,896 elements and 7,696 nodes.

Note that the blade deformation due to centrifugal force is accounted for in

the analyses. The deformations resulting from the force are very small as shown
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Fig. 7.4. Impeller finite element mesh showing the blade and hub section elements
by distinct colors; the model is constrained at the downstream end of the hub
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Fig. 7.5. The final impeller finite element mesh showing the blades constrained
at the roots
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by the displacement contours in Figure 7.6. These displacements are a result of

only the centrifugal body force application to the impeller for a period of 1, 000 s.

Fig. 7.6. Impeller deformations (contoured by displacement magnitude as a per-
centage of the impeller diameter) due solely to centrifugal force when rotating at
30, 000 rpm

7.2 Results

7.2.1 Rigid Impeller Simulation

Prior to showing blade deformation results, rigid-impeller results are pre-

sented in order to provide a qualitative check that the flow solver is functioning

properly and to describe the flow boundary conditions. The prescribed flow rate

of 5 L/min is introduced to the system as a uniform x-direction flow at 2.947 m/s.

The velocity inlet and the stationary pipe wall velocities (in the absolute reference

frame) are shown in Figure 7.7. The impeller (blades and hub) are prescribed to
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rotate about the x-axis at 500 rev/s. Figure 7.8 shows the boundary velocity mag-

nitude in the absolute frame of reference. The resulting pressure distribution over

the pipe wall and impeller surfaces is shown in Figures 7.9 and 7.10, respectively.

The net head rise across the impeller is 43.4 mmHg based on the impeller thrust.

Non-Rotating Wall

Prescribed Uniform 
Inlet Velocity

Fig. 7.7. Inlet and pipe wall velocity magnitude in the absolute reference frame
for the impeller simulations

7.2.2 FSI Simulation

With a rigid-impeller flow solution that provides qualitatively correct re-

sults, a flexible impeller is introduced using the same viscoelastic material used pre-

viously. A tightly coupled FSI simulation is employed using the MRFSimpleFsiFoam

described previously using ten coupling subiterations. The mesh motion solver

employed for this analysis is the custom RMF technique described in Section 2.4.

This mesh motion solver enables the simulations to take place in parallel. Sixteen
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Rotating Surfaces

Fig. 7.8. Impeller and hub velocity magnitude in the absolute reference frame for
the impeller simulations
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Fig. 7.9. Inlet and pipe wall pressure magnitude for the prescribed boundary
conditions and a rigid impeller
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Outlet – Prescribed 
Pressure

Fig. 7.10. Pressure contours on the impeller and hub for the prescribed boundary
conditions and a rigid impeller
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processors were used to solve the problem on the ARL/Penn State 256 processor

computer previously described. The simulations take place over 1, 450 s. There is

no significance to the simulation time other than it provides sufficient information

to show trends in the results.

Figure 7.11 shows pressure contours on the flow boundaries and some stream-

lines contoured by flow speed for various times during the simulation. The t = 0 s

results occur just prior to the impeller deforming and the largest impeller deforma-

tion per solution time step occurs during the initial deformation (the elastic part of

the deformation). Except for changes during the initial elastic deformation, there

is little change in the flow character during the viscoelastic relaxation.

The impeller deformation at 1450 s is shown in Figure 7.12 contoured by

total displacement magnitude and in Figure 7.13 showing contours of radial defor-

mation. The maximum radial deformation occurs at the blade tip and represents

an increase in the tip clearance by approximately 78.4%. A plot of the impeller

minimum tip clearance, normalized by the design tip clearance, versus time is pro-

vided in Figure 7.14. The pump head rise follows a trend similar to that of the tip

clearance and is shown in Figure 7.15.

The decrease in pump performance can be offset by accounting for the

impeller deformations during the design phase. This is demonstrated in the next

section.

7.2.3 Inverse Simulation

The inverse analysis for the expandable impeller pump employs the same

procedure used previously for the modified NACA 66 fin. The first step in the

procedure is to compute the impeller loads for a rigid impeller in the desired

design configuration. These loads are then applied to the impeller for the inverse

structural analysis. Unlike the fin analysis where the flow speed is increased linearly

from zero to the maximum value, the fluid load is applied instantaneously in the
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0 s

250 s

1250 s

Fig. 7.11. Impeller pressure contours on the flow boundaries for select simulation
times from 0 s (just prior to the impeller deformation) to 1250 s; streamlines are
shown colored by velocity magnitude
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Fig. 7.12. Impeller deformation at 1450 s contoured by displacement magnitude
as a percentage of the impeller diameter

Fig. 7.13. Impeller deformation at 1450 s contoured by radial displacement as a
percentage of the impeller diameter
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Fig. 7.14. Impeller tip clearance change with time
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impeller FSI simulations. The inverted structural shape is shown in Figure 7.16

color-contoured by displacement magnitude. This shape corresponds to application

of the design loads for a time period of 100 s. There is no significance to the use of

100 s here, other than it allows the initial elastic deformation and some viscoelastic

relaxation and does not require substantial computer time to solve. Figure 7.17

shows the same inverted shape, but color-contoured by radial displacement. The

maximum radial deformation shown in this figure occurs at the blade tips and

represents a reduction of the design-shape tip clearance by approximately 57%.

The error in the inverted shape shown in Figure 7.18 indicates the inverted

shape computed by ifeanl results in a design shape that differs from the intent

with an error approximately four orders of magnitude less than the maximum

inverse deflection amplitude. The error of the inverted shape is about three orders

of magnitude lower than the manufacturing tolerance for such an impeller.

Fig. 7.16. Pump impeller inverted shape, color contoured by displacement mag-
nitude as a percentage of the impeller diameter
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Fig. 7.17. Pump impeller inverted shape, color contoured by radial displacement
as a percentage of the impeller diameter

Fig. 7.18. Distance, as a percentage of the impeller diameter, from the design
shape to inverted shape deformed by the design loads; the displacements shown
here indicate an inverse error approximately three orders of magnitude smaller
than the maximum inverse deformation shown in Figure 7.16
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Next, the inverted shape is subjected to fluid loads using the FSI solver and

simulated for 150 s, which is long enough to determine if the inverse shape deforms

into the desired design shape at 100 s and shows how the impeller deforms shortly

after this time. Comparisons are made between nodes of the inverse model and the

design shape model at 100 s. The maximum distance between all nodes is shown

in Figure 7.19 for various number of FSI subiterations. As shown by this figure,

three or more sub-iterations provide nearly indistinguishable results. However, ten

sub-iterations are used for all results reported in this chapter. Location errors

are reported for the LE and TE points at 100% span in Figures 7.20 and 7.21,

respectively. The net blade force for a single blade (summing over both blades

would cancel all loads but the axial load because of the 2 x cyclic symmetry) is

shown in Figure 7.22.

The minimum nodal location error of Figure 7.19 represents the time at

which the inverted geometry best matches the design geometry. The minimum

in this plot occurs at 95 s which differs slightly from the intended target time

of 100 s. The location error has a maximum value for all nodes at this time of

6.823x10
−7

m, which is 0.01% of the impeller design diameter and is more than an

order of magnitude less than typical manufacturing tolerances for this type of part.

However, the LE tip location error reaches a minimum at approximately 55 s while

the TE tip reaches a minimum location error at 125 s. These discrepancies are

attributed to differences between the blade loads used in the inverse FE analysis

to the blade loads that actually occur during the simulation of the inverted shape,

which is shown in Figure 7.22 for all load components and again in Figure 7.23 for

the load magnitude and the load magnitude used during the inverse analysis. It is

evident from this later plot that the net blade load during the inverse FE analysis

differs from the blade load during the inverse FSI simulation. The slight geometry

differences do impact the pump head rise, but not substantially. Figure 7.24 shows
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a plot of the pump head rise versus time for the inverted impeller. The head rise

in this figure at 95 s is only about 0.3% lower than the design shape head rise.

7.3 Conclusions

The FSI simulation tools developed and validated here are applied to the

expandable impeller pump to compute the blade deformations and pump perfor-

mance versus time. The performance decreases as the blade deformation increases

the tip clearance and changes the blade incidence angle. To account for this de-

formation, the inverse analysis technique developed and implemented here for vis-

coelastic materials is applied to calculate an inverted shape of the impeller. Recall,

the purpose of the inverse shape is to account for elastic and viscoelastic blade de-

formations due to the applied fluid stresses at operating conditions. The inverse

shape corresponds to the manufactured shape of the impeller such that it will “pass

through” the impeller design shape at a prescribed time. The FSI simulations of

the inverted shape demonstrate the utility of the technique and show the pump

performance and impeller shape closely match that of the design configuration,

but slightly before the target time. Some shape discrepancies do occur, but it is

speculated that these could be minimized by iterating on the load history employed

by the inverse FE analysis.
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Fig. 7.19. Location error for the inverted impeller shape after being subjected
to fluid loads for 100 s; all nodes of the impeller FE model are considered; results
reported for various number of FSI subiterations
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Fig. 7.20. Location error for the inverted impeller shape after being subjected to
fluid loads for 100 s; leading edge tip nodes of the impeller FE model are considered
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Fig. 7.21. Location error for the inverted impeller shape after being subjected to
fluid loads for 100 s; trailing edge tip nodes of the impeller FE model are considered
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Fig. 7.22. Net blade loads for a single blade of the inverted impeller shape
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Chapter 8

Summary, Conclusions, and Future Work

8.1 Summary

The objective of this research was to explore the use of FSI for analyzing

highly flexible turbomachinery, including a simple fin and an expandable impeller

pump, and to evaluate the use of an inverse structural analysis approach to ac-

count for blade deformations during the design process. A partitioned FSI solver

with capability for tightly coupled simulations was developed using OpenFOAM

and author-developed mesh motion and structural solvers. Two FSI solvers were

developed, simpleFsiFoam and MRFSimpleFsiFoam, for simulating fixed-reference

frame FSI simulations and rotating-frame FSI simulations, respectively. The later

solver differs from the former only in the inclusion of body force terms for the

rotating frame of reference. SimpleFsiFoam was validated against water tunnel

test results for a modified NACA 66 fin fabricated from Hapflex 598, which is the

same viscoelastic material used by the expandable impeller pump. The validated

FSI solvers were used to evaluate the inverse blade geometries for the viscoelastic

material used in this research.

Substantial effort has been invested in this research to validate the FSI

solver developed herein. The validation study used a modified NACA 66 fin sub-

jected to quasi-steady flow in a water tunnel test facility. Comparisons between

simulated and measured blade deformations were performed for multiple fin angle

of attacks. The FSI solver simulations show good agreement with the experimental

results. The viscoelastic material model used in the FSI simulations was validated
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separately using existing material test data and refined with beam and fin bending

tests.

A partitioned FSI solver was implemented, which means the flow and struc-

tural solvers can be maintained and advanced separately. OpenFOAM was used

for the flow solver because it is freely available and has existing mesh motion ca-

pability. A structural FE solver was developed specifically for this research and

integrated with OpenFOAM to create a single executable for the FSI solver. An

interface class was implemented to perform the information exchange between the

solvers while enabling independent solver updates so long as the class member func-

tion definitions of each solver do not change. This enables efficient exchange of

interface information, something that is not currently possible with existing com-

mercial software. The interface coupling between the flow and structural solvers to

communicate stress and displacement supports disparate meshes at the interface.

Fluid forces are computed by the flow solver and applied to structures to ensure

consistent forces exist on both sides of fluid/structure interfaces. Displacement

communication from structures to fluids occurs by interpolation of structural dis-

placements by the structural solver to interface vertex locations. Development of

interface coupling in this manner was facilitated greatly by having source code for

each solver.

Motion of fluid meshes represents an integral part of the partitioned ap-

proach to FSI modeling. OpenFOAM’s Laplace face decomposition solver was used

initially for this research, but was later replaced by a custom mesh motion solver

called the Radial Motion Function solver. The custom solver supports parallel exe-

cution of the solver and enables sliding constraints on cylindrical boundaries, both

of which are not currently supported by the Laplace face decomposition solver.

Additionally, the RMF solver computational requirements are far less than those

of the Laplace face decomposition solver because there is no need to perform a

matrix solution for each mesh motion. A second custom mesh motion solver was
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implemented for large deformations in the fin simulations. This solver uses an aux-

iliary finite element mesh that deforms based on interface motion and interpolates

displacements to compute motion of the underlying fluid mesh. This solver has

not been fully evaluated and therefore should be further investigated for future

endeavors.

An inverse finite element structural solver was implemented to enable the

calculation of inverse shapes for viscoelastic components. Other researchers have

implemented inverse FE solvers, but their work is not applicable to viscoelastic

materials where response is dependent upon load history. Rather than implement-

ing a solver specific to viscoelastic materials, a general solver was implemented

that makes use of the underlying linear incremental formulation of the large de-

formation FE solver. The objective of this solver is to determine an undeformed

(unknown) shape such that prescribed loads cause the unknown shape to deform

into the existing (known/design) shape. The approach taken here to solve this

problem uses a formulation that incrementally changes the reference configuration

until the current (design) configuration can fully support the specified load. The

solver is validated for all inverse simulations performed in this research and has

demonstrated its accuracy for all models analyzed here.

Inverse analyses for the modified NACA 66 fin are performed for three

angles of attack. The results show the inverted shapes deform into the design

shape, but the time at which this occurs is not accurately predictable using only

an estimate of the load-history during the model inversion. It is recommended

that an iterative approach be employed to accurately define a load history for the

inverse FE analysis.

Finally, simulations are performed for an expandable impeller pump to

demonstrate the time-accurate pump performance changes caused by the impeller

deformations. Plots of tip clearance and pump performance versus time are pre-

sented. The inverse analysis technique is applied to the pump and demonstrates
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the ability to recover much of the lost performance due to impeller blade deforma-

tions. The resulting blade shapes and pump performance match well the design

intent, but it is speculated that improvements are possible through an iterative

approach similar to that recommended for the fin inverse simulations.

8.2 Conclusions

This research has demonstrated the following:

1. the time-accurate response of viscoelastic fins and turbomachinery subject

to fluid flow forces can be accurately modeled using a partitioned FSI solver

with subiterations to tightly couple the flow and structural response,

2. with the addition of body force terms for centrifugal and Coriolis acceleration,

the same FSI solver can simulate the time-accurate performance of a pump

comprised of a flexible, rotating impeller

3. inverse finite element analysis is possible for viscoelastic materials using the

incremental formulation for large deformations, and

4. the inverse shapes obtained from the FE analysis technique deform into the

design shape but the time at which this occurs deviates slightly from the

prescribed time.

8.3 Future Work

While the FSI solver developed here was intended for quasi-steady simula-

tions, it was implemented with the intent of applying it to unsteady simulations in

the future. For instance, the solver’s interface coupling scheme was developed to

provide an energy-conserving exchange of forces and displacements between two

disparate meshes with the intent of using the coupling scheme for fully unsteady

simulations without the burden of the added-mass instability that is described in
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the literature. Also, dynamic modeling capability has been implemented in the

structural solver. A natural extension of the present work is therefore to vali-

date the FSI solver for unsteady simulations. Included in this work should be a

characterization of the interface coupling scheme developed here. The effects of dis-

cretization between donor and receiver solvers should be evaluated for accuracy and

energy conservation. Effects of interpolation order of the structural solver should

also be considered in this study. Different interpolation order elements would result

in different interpolated displacement values at the same physical location on the

interface. This should be quantified. Also, higher-order surface definition with, for

example, a NURBS object could provide additional functionality at the interface,

especially if the fluid mesh were to be remeshed to accommodate large deforma-

tions of the structure. Lastly, the structural solver would require validation for

dynamic response simulations.

Motion of the fluid mesh has proved to be an area requiring additional devel-

opment. Future work should formally compare existing mesh motion approaches

and should further evaluate the overlayed mesh motion approach implemented

here. The utility of the overlayed mesh motion is that it can range from a very

coarse mesh that overlays only a small portion of the total flow domain with the cost

of poor resolution, or it can coincide identically with the fluid mesh but at great

computational expense. Alternatively, an overset mesh CFD solution [13, 100]

could be used wherein the fluid mesh motion would occur only on the overset

mesh without modification of the background mesh. Future work should extend

the current FSI solver with the development by Boger et al. [13] to evaluate the

use of overset meshes for FSI simulations.

Finally, the inverse finite element solver implemented for this research rep-

resents a far simpler approach relative to that used by other researchers. While

the inverse solver performed well for all cases evaluated here, a more formal in-

vestigation of the solver is warranted. For example, convergence characteristics of
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the solver relative to the rigorous inverse formulations used by others should be

characterized.
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Appendix A

Sample Structure Input File

** Comments identified by **

** Keywords identified by *

** Case insensitive, comma-separated entries

** Everything above *step keyword is model data section (defines nodes,

** elements, materials, etc.)

** Step and beyond is considered history data

*NODE

1, 0.050315, -0.00289, 0.

3, 0.049251, -5.6E-5, 0.

58, 0.024818, -0.000783, 0.

...

6344, 0.000654, 0.00023, 0.0996

*ELEMENT, TYPE=C3D8r, ELSET=P1

5, 6, 7, 12, 11, 126, 127, 132, 131

6, 7, 8, 13, 12, 127, 128, 133, 132

7, 8, 9, 14, 13, 128, 129, 134, 133

...

5100, 6114, 6115, 6120, 6118, 6234, 6235, 6240, 6238

** Map the elements to the material

*SOLID SECTION, ELSET=P1,

MATERIAL=M1

** Isotropic, linear-viscoelastic material

*MATERIAL, NAME=M1
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*ELASTIC, TYPE=ISOTROPIC, MODULI=INSTANTANEOUS

66.E6, 0.496, 0.

*DENSITY

1020.

*VISCOELASTIC, TIME=PRONY

0.06, 0., 4.13

0.20, 0., 81.95

0.18, 0., 1610.

** Define a load ramp amplitude function

*amplitude,name=ramp2

0,0,100,1,10000,1

** History data section starts here (defines analysis type, output, and

** boundary conditions)

*STEP, INC=400000, AMPLITUDE=STEP, NLGEOM

Force

*static

1.0, 1000., 0., 1000.0

** Request output

*NODE FILE, FREQUENCY=100

U, CF, RF

*El File, Frequency=100,position=averaged at nodes

E

** Specify boundary conditions

*BOUNDARY, OP=NEW

1, 1

1, 3

3, 2

...
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6293, 3

*cload, op=new, amplitude=ramp2

226, 1, 4.86589e-07

226, 2, 1.58708e-06

226, 3, -2.25339e-05

...

6121, 3, -1.59597e-16

*END STEP
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Appendix B

Matlab Edge Finding Routine

The following MATLAB program was used to automatically find test specimen

edges during the material model validation testing.

f unc t i on imageEdges ( inFileName , timeFileName , dispFileName )

i f ( narg in < 1)

inFileName = [ ] ;

end

i f ( isempty ( inFileName ) )

e r r o r ( ’ Requires at l e a s t one input argument ’ ) ;

end

i f ( narg in < 2)

timeFileName = [ ] ;

end

i f ( isempty ( timeFileName ) )

timeFileName = sp r i n t f ( ’%s . time ’ , inFileName ) ;

end

i f ( narg in < 3)

dispFileName = [ ] ;

end

i f ( isempty ( dispFileName ) )

dispFileName = sp r i n t f ( ’%s . d i sp ’ , inFileName ) ;

end

obj = mmreader ( inFileName ) ;

numFrames = get ( obj , ’ numberOfFrames ’ ) ;

frameRate = get ( obj , ’ frameRate ’ ) ;

%videoFrames = read ( obj ) ;

% Get the r e f e r e n c e l ength
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h_image = imshow ( read ( obj , 1 ) ) ;

h_axes = get ( h_image , ’ parent ’ ) ;

s e t ( h_axes , ’ nextPlot ’ , ’ add ’ ) ;

waitfor ( msgbox ( ’ Pick two s e t s o f two po in t s f o r r e f e r e n c e l ength ( a l s o ←↩

r o t a t i on ang le ) ’ , . . .

’ Re ference Length ’ ) ) ;

[ x , y , bttn ] = ginput (1 ) ;

ptCnt = 0 ;

whi l e ( bttn ˜= 3)

i f (˜ ptCnt ) ;

h = t i t l e ( ’ Le f t to pick , middle to remove , r i g h t to stop ’ ) ;

end

i f ( bttn==1)

ptCnt = ptCnt + 1 ;

refPt_x ( ptCnt ) = x ;

refPt_y ( ptCnt ) = y ;

h ( ptCnt ) = p lo t ( h_axes , x , y , ’ . r ’ ) ;

e l s e i f ( bttn==2)

i f ( ptCnt )

refPt_x ( ptCnt ) = [ ] ;

refPt_y ( ptCnt ) = [ ] ;

d e l e t e (h ( ptCnt ) ) ;

ptCnt = ptCnt − 1 ;

end

end

[ x , y , bttn ] = ginput (1 ) ;

end

% Get the l ength and i t s s t a t i s t i c s

i f ( mod ( ptCnt , 2 ) )

e r r o r ( ’Must have an even number o f po in t s f o r the r e f e r e n c e l ength ’ ) ;

end

ind = [ 1 : 2 : ptCnt ] ;

f o r ( ii=1: l ength ( ind ) )

refLength ( ii ) = norm ( . . .

[ refPt_x ( ind ( ii )+1) − refPt_x ( ind ( ii ) ) , . . .

refPt_y ( ind ( ii )+1) − refPt_y ( ind ( ii ) ) ] ) ;

end

ans = inputdlg ( ’ Enter r e f e r e n c e l ength in m’ , ’ Re ference Length ’ ) ;

refLength_m = str2num ( ans { :} ) ;

scaleFactor = refLength_m/mean( refLength ) ;

meanRefLen = mean( refLength ) ∗scaleFactor ;

stdRefLen = std ( refLength ) ∗scaleFactor ;
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f p r i n t f ( ’Mean r e f e r e n c e l ength i s %g m with standard dev i a t i on o f %g m\n ’←↩

, . . .

meanRefLen , stdRefLen ) ;

% Estimate the r o t a t i on ang le

f o r ( ii=2: l ength ( ind ) )

alpha_bttm (ii−1) = atan2 ( . . .

refPt_y ( ind ( ii ) )−refPt_y ( ind (ii−1) ) , . . .

refPt_x ( ind ( ii ) )−refPt_x ( ind (ii−1) ) ) ;

alpha_top (ii−1) = atan2 ( . . .

refPt_y ( ind ( ii )+1)−refPt_y ( ind (ii−1)+1) , . . .

refPt_x ( ind ( ii )+1)−refPt_x ( ind (ii−1)+1) ) ;

end

rotAngle = cat (1 , alpha_bttm ( : ) , alpha_top ( : ) ) ;

meanRotAngle = mean( rotAngle ) ;

stdRotAngle = std ( rotAngle ) ;

f p r i n t f ( ’Mean r o t a t i on ang le i s %g with standard dev i a t i on o f %g \n ’ , . . .

meanRotAngle ∗180/ pi , stdRotAngle ∗180/ p i ) ;

% Pick the box to use f o r the edge de t e c t i on

waitfor ( msgbox ( ’ Pick the upper boundary f o r the edge de t e c t i on ’ , . . .

’ Upper Boundary ’ ) ) ;

[ xUpper , yUpper ] = ginput (2 ) ;

waitfor ( msgbox ( ’ Pick the lower boundary f o r the edge de t e c t i on ’ , . . .

’ Lower Boundary ’ ) ) ;

[ xLower , yLower ] = ginput (2 ) ;

edgeBox = round ( [ min ( cat (1 , xLower ( : ) , xUpper ( : ) ) ) , . . .

max( cat (1 , xLower ( : ) , xUpper ( : ) ) ) , . . .

min ( cat (1 , yLower ( : ) , yUpper ( : ) ) ) , . . .

max( cat (1 , yLower ( : ) , yUpper ( : ) ) ) ] ) ;

cols = [ edgeBox (1 ) : edgeBox (2 ) ] ;

rows = [ edgeBox (3 ) : edgeBox (4 ) ] ;

s e t ( h_axes , ’ nextPlot ’ , ’ r e p l a c e ’ ) ;

fidTime = fopen ( timeFileName , ’wt ’ ) ;

i f ( fidTime == −1)

e r r o r ( ’ Fa i l ed to open %s ’ , timeFileName ) ;

end

fidDisp = fopen ( dispFileName , ’wt ’ ) ;
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i f ( fidDisp == −1)

e r r o r ( ’ Fa i l ed to open %s ’ , dispFileName ) ;

end

contSw = 1 ;

bwCutoff = 150 ;

whi l e ( contSw )

videoFrame = read ( obj , 3 80 ) ;

grayFrame = rgb2gray ( videoFrame ( rows , cols , : ) ) ;

ind = f ind ( grayFrame<bwCutoff ) ;

grayFrame ( ind ) = 0 ;

ind = f ind ( grayFrame>=bwCutoff ) ;

grayFrame ( ind ) = 255 ;

h_image = imshow ( grayFrame ) ;

bwCutoff_ = questdlg ( ’BW Separat ion Acceptable ? ’ , . . .

’BW Separat ion ’ , . . .

’ Yes ’ , ’No ’ , ’ Yes ’ ) ;

i f ( strcmpi ( bwCutoff_ , ’No ’ ) )

bwCutoff_ = inputdlg ( ’ Enter new bwCutoff va lue ’ , . . .

’ bwCutoff ’ , 1 ,{ s p r i n t f ( ’%d ’ , bwCutoff ) }) ;

try

bwCutoff_ = str2num ( bwCutoff_ { :} ) ;

catch

bwCutoff_ = bwCutoff ;

end

bwCutoff = bwCutoff_ ;

e l s e

contSw = 0 ;

end

end

f o r ii = 1 : numFrames

videoFrame = read ( obj , ii ) ;

grayFrame = rgb2gray ( videoFrame ( rows , cols , : ) ) ;

ind = f ind ( grayFrame<bwCutoff ) ;

grayFrame ( ind ) = 0 ;

ind = f ind ( grayFrame>=bwCutoff ) ;

grayFrame ( ind ) = 255 ;

h_image = imshow ( grayFrame ) ;

h_axes = get ( h_image , ’ parent ’ ) ;

s e t ( h_axes , ’ nextPlot ’ , ’ add ’ ) ;
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i f ( ii==1)

% Choose the beam o r i g i n

waitfor ( msgbox ( ’ Pick the beam o r i g i n ( c en te r and l e f tmos t po int ) ←↩

f o r image de t e c t i on and ro t a t i on ’ , . . .

’Beam Orig in ’ ) ) ;

[ xOrigin , yOrigin ] = ginput (1 ) ;

end

[ boundaryPts , bottomPts , topPts ] = findBoundaryPoints ( . . .

grayFrame , round ( [ xOrigin , yOrigin ] ) ) ;

%p lo t ( h axes , boundaryPts ( : , 1 ) , boundaryPts ( : , 2 ) , ’ . r ’ ) ;

p l o t ( h_axes , bottomPts ( : , 1 ) , bottomPts ( : , 2 ) , ’ . r ’ , . . .

topPts ( : , 1 ) , topPts ( : , 2 ) , ’ .m’ ) ;

s e t ( h_axes , ’ nextp lo t ’ , ’ r e p l a c e ’ ) ;

t i t l e ( s p r i n t f ( ’%d , %#0.4g ’ ,ii , ii/frameRate ) ) ;

pause ( 0 . 0 01 ) ;

% Sca l e and ro t a t e the po in t s and wr i t e to an output f i l e

boundaryPts = bottomPts∗scaleFactor ;

% bottomPts = bottomPts∗ s c a l eFac to r

% Move the o r i g i n

boundaryPts ( : , 1 ) = boundaryPts ( : , 1 ) − boundaryPts ( 1 , 1 ) ;

boundaryPts ( : , 2 ) = boundaryPts ( : , 2 ) − boundaryPts ( 1 , 2 ) ;

% Rotate the po in t s

f p r i n t f ( fidDisp , ’%g %g ’ , boundaryPts ( 1 , : ) ) ;

f o r iP = 2 : s i z e ( boundaryPts , 1 )

v = boundaryPts (iP , : ) ;

r = norm(v ) ;

alpha0 = atan2 (v (2 ) ,v (1 ) ) ;

alpha1 = alpha0 − meanRotAngle ;

% Compute the new point l o c a t i o n

v (1 ) = r∗ cos ( alpha1 ) ;

v (2 ) = r∗ s i n ( alpha1 ) ;

% Write t h i s to the output f i l e

f p r i n t f ( fidDisp , ’%g %g ’ , v ) ;

end

f p r i n t f ( fidDisp , ’ \n ’ ) ;

f p r i n t f ( fidTime , ’%g\n ’ , ii/frameRate ) ;
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end

f c l o s e ( fidTime ) ;

f c l o s e ( fidDisp ) ;

Listing B.1. MATLAB edge detection program
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[8] K. Bathe. Finite element procedures. Englewood Cliffs, New Jersey, 1996.



242

[9] K. Bathe and H. Zhang. Finite element developments for general fluid flows

with structural interactions. International Journal for Numerical Methods

in Engineering, 60(1):213–232, 2004.

[10] A. Beckert and H. Wendland. Multivariate interpolation for fluid-structure-

interaction problems using radial basis functions. Aerospace Science and

Technology, 5(2):125–134, 2001.

[11] F. Benra. Numerical and experimental investigation on the flow induced

oscillations of a single-blade pump impeller. Journal of Fluids Engineering,

128:783, 2006.

[12] F. Blom. Considerations on the spring analogy. International Journal for

Numerical Methods in Fluids, 32(6):647–668, 2000.

[13] D. Boger, R. Noack, and E. Paterson. Dynamic overset grid implementa-

tion in OpenFOAM. In 5th OpenFOAM Workshop, Chalmers, Gothenburg,

Sweden, June 21-24 2010.

[14] F. Bos. Numerical Simulations of flapping foil and wing aerodynamics mesh

deformation using radial basis functions. PhD thesis, Delft University of

Technology, 2010.

[15] T. Brockett. Minimum pressure envelopes for modified NACA-66 sections

with NACA a= 0.8 camber and BuShips type I and type II sections. Technical

Report 1780, David Taylor Model Basin, U.S. Navy, 1966.

[16] H. Bui, M. Tanaka, M. Bonnet, H. Maigre, E. Luzzato, and M. Reynier,

editors. Inverse problems in engineering mechanics. Balkema Rotterdam,

1994.



243

[17] F. Casadei and J. Halleux. An algorithm for permanent fluid-structure in-

teraction in explicit transient dynamics. Computer Methods in Applied Me-

chanics and Engineering, 128(3-4):231–289, 1995.

[18] F. Casadei, J. Halleux, A. Sala, and F. Chillè. Transient fluid–structure
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