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ABSTRACT 

With the decline in production from conventional hydrocarbon resources, new focus has 

been shifted to unconventional resources. However, oil and gas production from these types of 

hydrocarbon resources is not as easy as producing from the conventional resources because of the 

complex geological features and lack of new technologies. Soft computing techniques such as 

artificial neural networks provide new approach as that can be used in the characterization of the 

complex unconventional reservoirs. In this study, artificial expert systems were developed with 

the purpose of characterizing an unconventional oil reservoir located in West Texas. These expert 

systems are capable of generating synthetic well logs, completion parameters, production profiles 

and performing the task of payzone identification. This study focuses on the generation of 

synthetic well logs and the identification of payzones using artificial expert systems. Synthetic 

well log prediction module is divided into low-resolution and high-resolution categories where 

five different well logs are predicted at desired reservoir locations. While low-resolution well logs 

are predicted using the averaged seismic data, the high-resolution well logs are predicted using 

detailed 3D seismic data. Training of the networks to predict high-resolution well logs is found to 

be more successful than that of low-resolution well logs. Predicted synthetic well logs are then 

used to predict completion data, production profiles and payzone identification. 

The second module of this research involves payzone identification in which the gross 

thickness of the reservoir is ranked based on its productivity level. Payzone identification is 

achieved through the implementation of artificial expert systems developed to predict well 

performance (i.e. oil, water, and gas production profiles). Using a moving-window approach to 

sample seismic and well log data along the well depth and by feeding the sampled information to 

the well performance network, it is possible to predict the productivity of each sampled segment. 

Another outcome of the payzone identification study is the possibility of scrutinizing the 
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relationship between well log parameters and expected productions. A Fuzzy classification 

method is used to classify production data in terms of lithology logs. One of the outcomes of this 

classification is the realization that oil production is expected to be higher in shaly segments of 

the well than that of carbonate segments.     
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Chapter 1  
 

INTRODUCTION 

With the decline in production from conventional hydrocarbon resources, the new focus 

has been shifted to unconventional resources. Conventional reservoirs are characterized by a high 

to medium permeability formation and the ability to produce hydrocarbons profitably. 

Unconventional reservoirs however cannot be produced economically without assistance from 

special recovery process (Holditch, 2009). Examples of the unconventional resources are tight gas 

and oil reservoirs, coalbed methane, heavy oil, gas shales, and gas hydrates. The distribution of 

the unconventional resources is presented in Figure 1.1. Conventional reservoirs are located on 

the top of the resource triangle while unconventional reservoirs are located near the base of the 

triangle. The size of unconventional resources is much larger than conventional resources but 

they are more expensive to produce and require new technologies. Figure 1.2 shows natural gas 

production in United States. With the growing demand in energy in next decades, unconventional 

resources such as shale gas, tight gas, and coalbed methane are expected to play an increasingly 

crucial role in supplying world energy. 

 Hydrocarbon reservoirs also can be classified in terms of reservoir rock and fluid types 

as shown in Figure 1.3. If either the reservoir fluid or rock type is unconventional, the reservoir is 

classified as an unconventional reservoir. Examples of unconventional fluids are: heavy oil, 

bitumen, immature oil, and immature methane gas with high percentages of H2S, CO2, and carbon 

monoxide. Unconventional reservoir rock types are low permeability, coals, shale plays, and 

complex geological system.  Perhaps, the most challenging type of unconventional reservoirs is 

those with unconventional rock types located in complex geological systems which is the subject 

of this study. Also, considering the fact that majority of the unconventional reservoirs require 
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some type of costly well stimulation and special recovery process to increase the well 

productivity and to be able to develop the field under economic limits, development of the 

intelligent reservoir characterization tools for unconventional resources is necessary.  

 

 

 

 

 

 

 

 

 

Figure 1.1: The resource triangle for oil and gas reservoirs (Holditch, 2006).  

 

Figure 1.2: Total U.S. natural gas production in five cases, 1990-2035 (trillion cubic feet)(EIA, 2010). 
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Figure 1.3: Classification of unconventional hydrocarbon reservoirs(Russum, 2010). 

 

In order to maximize the value of a hydrocarbon asset, building a detailed reservoir 

model is necessary. The process of reservoir management is visualized in Figure 1.4. One of the 

key parts in this process is reservoir characterization and identifying important characteristics of 

the reservoir. Many decisions such as number and types of infill drilling wells, field development 

strategies, economic and risk evaluation, and forecasting future reservoir performance are made 

based on reservoir characterization studies. To characterize the reservoir accurately, integration of 

multi-disciplinary data such as seismic, well logs, production data, and completion data using an 

intelligent system is necessary. The final product is the reservoir model with a realistic tolerance 

for uncertainty (Tamhane et al., 2000). One class of solutions to the reservoir characterization 

problem is using soft computing techniques. Soft computing techniques have tolerance for 

imprecision and uncertainty and are efficient, low cost and robust (Nikravesh and Aminzadeh, 
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2001). The aforementioned properties of soft computing techniques can significantly assist 

reservoir characterization.  

  

 

 

 

 

 

 

 

Figure 1.4: Schematic of reservoir management and field development cycle 

 

 

Two important aspects of reservoir characterization include finding reservoir properties 

away from the wellbores and identifying the most productive zones of the reservoir both spatially 

and vertically. Well logs are obtained for the purpose of estimating recoverable hydrocarbon 

volumes, lithology identification, porosity estimation, and locating lithological boundaries. One 

of the most important reasons to perform well log analysis on a well is to estimate recoverable 

hydrocarbon volumes. Unfortunately, well logs can only estimate reservoir properties near 

wellbore region. Measurements of the reservoir properties across the entire reservoir are desirable 

to proper reservoir management and production optimization. Thus, remote geophysical 

measurements are required to find the reservoir properties between the wells (MacGregor et al., 

2008). Seismic data are the most commonly used geophysical measurements for this purpose. In 

general, data from the well logs and seismic attributes are often difficult to analyze because of 

their complexity and lack of knowledge how to use the information content of these data 
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(Nikravesh and Hassibi, 2003). Accordingly, it is necessary to develop an intelligent system to 

assist reservoir characterization and perform the suggested tasks. 

Another crucial aspect of reservoir characterization is addressing the identification of 

prolific zones along the cross section of the reservoir. Net pay is a key parameter in reservoir 

evaluation, completion and stimulation design. It identifies geologic sections that have sufficient 

reservoir quality and hydrocarbons to function as producing interval (Worthington, 2010). The 

most common method in the identification of the net pays is using geologic well logs and through 

the use of petrophysical cut offs applied to the well logs. This method is successfully used in 

conventional reservoirs; however in many unconventional reservoirs especially those with 

unconventional and complex reservoir rock, they are not successful and there exists the need for 

developing more sophisticated methods for such reservoirs. 

Therefore, this research aims to develop intelligent reservoir characterization tools for 

unconventional reservoir structures and address following critical factors for developing 

unconventional resources: 

1. Prediction of well performances 

2. Estimation of ultimate recovery 

3. Optimal development plans 

4. Reservoir properties estimation away from the wellbores 

5. Identification of prolific intervals of the reservoir 

Intelligent reservoir characterization tool is a complex system, inetgrating different 

sources of information. However, the available data for such a system are from different kinds: 

qualitative, quantitative, and related to different types of measurements. Thus, one essential 

challenge is to account for available data (Schatzinger and Jordan, 1999). In this study well logs, 

production data, seismic data (2D and 3D), completion, and coordinate data are available. So 

intelligent tools are developed in such a way to take advantage of the afroementioned data.  
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 The first objective of this research involves prediction of synthetic well logs. The 

importance of the synthetic well logs lies on the ability to estimate geological properties away 

from wellbore locations. In this study, two types of synthetic well logs are predicted: 

I. Low-resolution well logs: consists of 50 log values for the entire gross thickness 

of the reservoir. This type of well logs are used for predicting well performances 

(oil, water and gas cumulative productions). 

II. High-resolution well logs: consists of 350 log values for the entire gross 

thickness of the reservoir. This type of well logs are used to identify net pay and 

rank gross thickness of reservoir based on productivity. 

The second objective involves identification of prolific intersections of the reservoir, i.e. 

payzone identification. This is particularly important in completion and fracturing optimization in 

which net pay thickness is of crucial relevance. Volumetric calculation of reserves is also another 

important outcome of net pay identification as discussed in Chapter 2.     

Figure 1.5 presents a schematic of the proposed research workflow. In the first module 

using seismic data and coordinates information, two types of well logs are predicted namely low-

resolution well logs “ALR” and high-resolution well logs “AHR”. Then in module “B”, in addition 

to seismic and coordinates data, predicted low-resolution well logs are used to estimate 

completion data. Using predicted well logs, completion data and seismic data, in module “C”, oil, 

water and gas cumulative production profiles are predicted for two-year history of the well with 

the intervals of 3 month. Finally, using the networks developed in module “C”, gross thickness of 

the reservoir is ranked based on the productivity at any given location (module “D”). Modules B 

and C are developed in the work by Y. Bansal (Bansal, 2011) and modules A and D are 

developed in this study. All modules are integrated within a graphical user interface. 
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Figure 1.5: Schematic of the proposed research workflow 

 

This thesis consists of seven chapters. Chapter 1 addresses the urgency of developing 

intelligent reservoir characterization tools for oil industry, and discusses various sources of 

information that needs to be integrated in the tool. Different modules of the research are 

explained. Workflow of the research and relationships between different components are 

described. 

Chapter 2 involves a review of the literature on the research associated with the 

intelligent reservoir characterization. Background information about reservoir characterization 

techniques, soft computing methods, and artificial neural networks are provided in this chapter. 

Also, seismic and well log data are studied in more details.  
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Chapter 3 provides a general description of the problems to be solved and their impacts 

on the current industry solutions to mitigate these problems. 

Chapter 4 presents the proposed methodologies for developing intelligent reservoir 

characterization tools. These methodologies are strongly influenced by the availability of 

different sources of information and tailored for particular data set.  

Chapter 5 discusses the case study used to test the developed methodologies. Case study 

presented is an unconventional oil reservoir located in West Texas. Complex and discontinuous 

geology of this reservoir imposes several difficulties for deterministic modeling.  

Chapter 6 illustrates the results of synthetic well log generation and payzone 

identification modules. Also, it involves another outcome of this research that is predicting well 

log values for the missing parts of the actual well logs.  

Chapter 7 summarizes the work, the accomplishments, and major conclusions of this 

study. Recommendations for future research are given and possibility of the improvement of 

networks based on the availability of new pieces of information is explored.   
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Chapter 2  
 

BACKGROUND AND LITERATURE REVIEW 

Predicting geological properties such as porosity, permeability, water saturation, etc. are 

crucial in petroleum engineering. This is mainly because of their important effects in volumetric 

reserve calculations, wellbore completion and stimulation. One of the most commonly employed 

procedures worldwide is to use deterministic equations for calculating reserves. Equation (2-1) is 

a typical deterministic equation used for calculating original oil in place (Bassiouni et al., 1994; 

Helander, 1983): 

     
                 

   
  (2-1) 

Where: 

       Stock tank original oil in place, in Bbls 

    Reservoir closure area, in acres 

    Average reservoir (net) thickness, in feet 

    Average reservoir decimal porosity 

     Average reservoir decimal water saturation 

      Initial oil formation volume factor 

       Acre-ft to Bbls conversion factor 

 

  Areal extent of the reservoir is generally obtained from the seismic exploration analysis. 

Reservoir thickness, porosity, and water saturation are obtained from geophysical well log 

analysis. The scale and uncertainty of various sources of information such as core data, well log, 

and seismic data are presented in Figure 2.1. Core data are obtained by testing on the samples of 

formation rock. Data obtained from core analysis have high resolution however they suffer from 
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sampling bias and other problems such as damaged core plugs (Honarpour et al., 2003). Well log 

data are measured physical properties of rock at the well locations. Well log data have 

intermediate resolution and suffers from washouts, acquisition tool problems, and imprecision of 

the measurement system due to environmental conditions (Verga et al., 2002). The next important 

source of information is seismic data which is available over entire field. The uncertainty 

associated with seismic data is mainly related to the data acquisition tools and post-processing 

algorithms. In this study, well logs and seismic data are used extensively; therefore, in the next 

two chapters these sources of information are briefly discussed. Also, reservoir thickness (i.e. net 

pay) is discussed in more details. 

 

 

 

 

 

 

 

 

 

   

 

 

Figure 2.1: Scale and uncertainty of reservoir characterization (Nikravesh and Hassibi, 2003) 
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Seismic Exploration 

 Petroleum reservoir exploration consists of wide variety of methods such as seismic, 

gravity, magnetic, etc. The goal of each method is to measure a parameter that relates to a 

physical property of rock (Gadallah, 1994). Geophysical survey methods are listed in Table 2-1. 

 

Table 2-1: Geophysical surveying methods (Gadallah, 1994) 

Method Measured Parameter Physical Properties Derived 

Seismic Travel time and reflected 

seismic waves 

Density and elastic moduli which 

determine the propagation velocity of 

seismic data 

Gravity Variations in earth’s 

gravitational field 

Density 

Magnetic Variations in earth’s 

geomagnetic field 

Magnetic susceptibility and resonance 

Electrical density Earth’s resistance Electrical conductivity 

Induced 

polarization 

Frequency-dependent ground 

resistance 

Electrical capacitance  

Self-potential Electrical potential Electrical conductivity 

Electromagnetic Response to electromagnetic 

radiation 

Electrical conductivity and inductance  

 

 

 While all methods can be used for reservoir exploration, seismic method is the most 

commonly used method, which can deliver extensive and comprehensive image of the reservoir. 
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In this method, energy source located on the surface of the earth (or submerged in the water in 

case of offshore exploration) generates low frequency sound waves. Then, the sound waves 

reflect toward surface because of changes in rock properties where receivers record the signals, 

travel time, etc. Depending on the locations of geophones (receivers) and energy sources, seismic 

profiles can be recorded in 2D or 3D. A 2D seismic is recorded using straight lines of receivers 

and energy sources crossing the surface of the earth. The data is gathered over a horizontal 

distance and compiled to create cross section of the earth (Berger and Anderson, 1981). Although 

2D profiles are less expensive to obtain, they do not yield the correct image of subsurface when a 

complex subsurface structure exists. This is mainly because of acquisition geometry cannot 

distinguish reflections that originates from the outside of the vertical profile plane (Holstein, 

2007). The limitations of 2D seismic imaging are overcome by the advent of 3D seismic method. 

In this method, data is recorded from the numerous closely spaced seismic lines providing a high 

spatially sampled measure of subsurface reflectivity (Glossary, 2010). 3D seismic data provides 

continues 3D sampling of the sub-surface (i.e. 3D volume)(Bacon et al., 2003; James, 2009). 

Schematics of the 2D and 3D seismic surveys are demonstrated in Figure 2.2. 

 

 

 

 

 

 

 

Figure 2.2: Schematic of 2D and 3D seismic surveys, (a): 2D seismic, (b): 3D seismic 
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The main source of information for seismic reservoir exploration is the seismic attributes. 

Seismic attributes are the information obtained from the seismic data either by direct 

measurement or by logical or experience-based reasoning (Taner et al., 1979). Attributes are 

derived based on important seismic characteristics such as time, amplitude, frequency, and 

attenuation. Seismic attributes are divided into two categories (Chen and Sidney, 1997): 

- Horizon based: average properties are computed between two geologic boundaries. 

- Sample based (or windowed attributes): use the sample values such as 2 or 4 ms intervals 

to produce a new output trace with the same number of samples as input. 

 The process of adding seismic traces to improve data quality and reduce noise is called 

seismic data stacking. Seismic attributes are then can be computed using pre and post stacking 

procedure. Pre-stack attributes have azimuth and offset information. Post-stack attributes tend to 

lose offset and azimuth information because of the stacking procedure. However, they are 

preferable because the pre-stack seismic data are comprised of huge amount of data and they are 

not practical for initial studies (Taner et al., 2005). Classification of the seismic attributes is 

presented in Figure 2.3.  
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Figure 2.3: Seismic attributes classification (Brown, 2001) 
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Well Log Data 

Petrophysical well logs are continuous measurements of physical parameters in the 

wellbore. The measured physical properties reflect characteristics of the formations at the 

location of well. Well log information contributes to the evaluation of lithology, porosity, 

saturation, and reservoir thickness. One of the earliest and most important quantities measured by 

well logs is electrical resistivity. Hydrocarbons and reservoir rocks are insulators, whereas 

connate waters are saline and good conductors. Archie (Archie, 1942) developed the basic 

relationship of electrical resistivity and formation properties, [Equation (2-2)]. He observed that 

in the fully water saturated rocks, the rock resistivity    is proportional to the resistivity of brine 

   and formation factor  . Formation factor is determined by the porosity and the pore structure 

properties such as cementation factor   and the lithology dependent constant  . Finally water 

saturation is determined from the ratio of rock resistivity to that of brine.    

{
 
 

 
 
               

  
 

  

  
  

  

  

  (2-2) 

 

Archie’s model was developed for a clean formation rocks and adjustments should be 

made in case of presence of clay, shale, and heterogeneity (Luthi, 2001). To date, well logs 

remain the most important source information for the purpose of formation evaluation. A 

complete list of quantities derived from the well logs is presented in Table 2-2.  
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Table 2-2: Comparison of different derived from well logs (Serra and Abbott, 1982; Tittman, 1986) 

Primary Purpose Tool/Technique 

Lithology 

Spontaneous Potential (SP) 

Gamma Ray (GR)  

Side Wall Cores (SWC) 

Photo-Electric Factor (PEF) 

Tri-Mineral, MID, & MN Plots 

Porosity 

Density (RHOB) 

Nuclear Magnetic Resonance (NMR) 

Neutron (NPHI) 

Acoustic (T) 

Cross-Plots 

Salinity/Water Resistivity 

Spontaneous Polarization (SP) 

Rwa Analyses 

Hingle Plots 

Pickett Plots 

Saturation 

Resistivity (ES) 

Induction (IES, DIL) 

LateroLog (LL, LL3, DLL) 

Array Induction (AIT) 

Flushed Zone Saturation 

MicroSpherically Focused Log (MSFL) 

MicroLateroLog (MLL) 

Dielectric Constant (EPT, DPT) 

Nuclear Magnetic Resonance (MRL) 

Permeability 
Nuclear Magnetic Resonance (MRL) 

Formation Testers (FT, RFT, MDT) 

Fluid Identification 

Formation Testers 

Density/Neutron Overplot 

FID Plot 

Sw Tools 

Structural/Stratigraphic 

Information 

Dipmeter (HDT, SHDT) 

Borehole Televiewer (BHTV) 

Resistivity Microscaners (FMS/FMI) 

Nuclear Magnetic Imagers (NMI) 

Borehole Imaging 

Borehole Televiewer (BHTV) 

Resistivity Microscaners (FMS/FMI) 

Nuclear Magnetic Imagers (NMI) 

Borehole Temperature Temperature (TEMP) 

Formation Pressure Formation Testers (FT, RFT, MDT) 

Borehole Shape Caliper (CAL) 
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Net Pay 

Net pay is a thickness of the reservoir containing significant volume of potentially 

exploitable hydrocarbons (Worthington, 2010). The term derives from the fact that it is capable of 

"paying" an income and also sometimes called pay zone (Glossary, 2010). The significance of net 

pay lies in the original hydrocarbon place, calculations of ultimate recovery factors, well test 

interpretations, stimulation and completion designs (Egbele et al., 2005). Net pay identification is 

the process of pinpointing the prolific intervals of the formation. Figure 2.4 shows relationships 

between net thicknesses and their terminologies.  

The most common method to identify net pay is to select intervals based on their 

corresponding well log characteristics. This is achieved by the use of petrophysical cutoffs 

limiting values of formation parameters and removing the noncontributing intervals (Worthington 

and Cosentino, 2003). Snyder (Snyder, 1971) discusses the early methods to identify net pays 

using self-potential (SP), gamma ray (GR), porosity logs (NPHI) and core data. Cobb (Cobb and 

Marek, 1998) provides guidelines for selecting cut offs based on various reservoir properties.  

Although the early methods are to an extent effective, there exists the need to quantify the values 

of the cut offs. Worthington (Worthington and Cosentino, 2003) describes the primary method to 

discover net pay is to link a conventional core measurement to a refrence parameter that 

distinguishes between reservoir and non-reservoir rock. He proposes using the Leverett pore 

diameter expression as a referrence criteria for primary depletion. Others propose using different 

methods such as discriminnant analysis(Bouffin and Jensen, 2009), regression between log data 

and core paramaters (mainly permeability and porosity) (Egbele et al., 2005), and  integrated use 

of seismic and well data (Azalgara and Floricich, 2001).  

Although net pay identifcation is a complex procedure even for conventional reservoirs, 

it becomes increasingly complex for unconventional reservoirs. For example, in shale reservoirs, 
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the aforementioned method is not applicable because formation is mainly comprised of shales and 

relatively small porosity. Johnston (Johnston and Lee, 1992) provides guidelines for peaking the 

payzones in low permeability, multilayered gas reservoir using sensitivity analysis on the two-

layered simplified reservoir model. Several studies attempt to identify payzones in terms of 

hydraulic flow units (HFU) (Abbaszadeh et al., 1996; D'Windt, 2007; Guo et al., 2010). A flow 

unit is identified as volume of the rock where pore throat properties of the porous media that 

govern hydraulic characteristics of the rock are consistently predictable and significantly different 

from those of other rocks (Abbaszadeh et al., 1996). Many authors have developed methods to 

characterize hydrualic flow units based on the injection and production flow rates (Ershaghi et al., 

2008; Lee et al., 2011; Lee et al., 2009; Lin et al., 2010; Liu et al., 2009). These methods are 

developed for waterflooding processes and their main goal is to map the high permeability 

channel that affects water production rates. The HFU methods are more applicable for a field with 

wide range of permeability. For tight systems in which the permeability of the formation is low 

and high permeability channels are not  present, the HFU method is not applicable since other 

factors such as well stimulation properties have more significant role in production predictions.  

 

 

 

 

 

 

 

 

 Figure 2.4 Interrelationships of net thicknesses (Worthington, 2010) 
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Soft Computing 

Soft computing is the collection of techniques that uses the human mind as model aiming 

to formalize human cognitive processes (Cabrera et al., 2009). The main characteristics of this 

class of methods are their ability to handle uncertainty and imprecision.  The objective of the soft 

computing methods is to produce low cost, analytic and complete solutions for complex systems 

in which traditional computational methods have not yielded such solutions (Zadeh, 1994). Soft 

computing techniques are comprised of fuzzy logic, neuro-computing, evolutionary and genetic 

computing, and probabilistic computing. Artificial neural networks are one of the main branches 

of soft computing. They have been used in numerous applications such as signal processing, 

image processing, control, etc.  

In many aspects of reservoir engineering, artificial neural network have been used. 

Petrophysical properties estimation using artificial neural networks such as permeability 

estimation (Basbug and Karpyn, 2007; Elshafei and Hamada, 2009a; Malki et al., 1996; 

Mohaghegh et al., 1995; Shokir et al., 2006), hydrocarbon saturation estimation (Balch et al., 

1999; Elshafei and Hamada, 2009b), and relative permeability predictions (Guler et al., 2003; 

Silpngarmlers et al., 2001) have been widely studied for different scenarios. Neural network 

applications in reservoir engineering also include PVT and fluid analysis   (Elsharkawy, 1998; 

Hegeman et al., 2009; Panda et al., 1996), history matching (Ramgulam, 2006; Sampaio et al., 

2009; Silva et al., 2006), and field development strategies  (Ayala et al., 2007; Centilmen et al., 

1999; Doraisamy et al., 2000; Gorucu et al., 2005). Since in this study artificial expert systems 

are used to perform reservoir characterization tasks, in the upcoming sections artificial neural 

networks and reservoir characterization techniques are described in more details.  
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Artificial Neural Networks (ANN) 

Artificial neural networks were first introduced in late 1950s by McCulloch and Pitts 

(McCulloch and Pitts, 1943) and later with the invention of perceptrons by Hebb and Rosenblatt 

(Hebb, 1949; Hebb, 1961; Rosenblatt, 1957) . Minsky (Minsky and Seymour, 1969) showed the 

deficiencies of perceptron in representing linearly inseparable functions such as exclusive OR 

problem (XOR). However, for more than twenty years interests in artificial neural networks 

diminished before works by scholars such as Hopfield (Hopfield, 1982), (Kohonen, 1988), and 

(Hecht-Nielsen, 1990) reinvigorated the use of artificial neural networks. Since then, ANNs have 

been implemented to solve wide verity of problems such as:  

- Face Recognition (Lawrence et al., 1997) 

- Speech recognition (Sejnowski et al., 1990) 

- Textual characters recognition (Le Cun et al., 1990) 

- Control (Omatu et al., 1996) 

- Stock market performance prediction (Zirilli, 1997) 

- Economics and finance (Zhang and Hu, 1998) 

- Robotics and system dynamics (Lewis, 1996) 

 

Artificial neural networks offer a radically different approach in solving complicated 

problems by providing self-programming and self-learning tools. Comparisons of artificial neural 

networks and Von Neumann model of computation is given in Table 2-3. The Von Neumann 

computational design is a model for digital computers using central processing unit and separate 

storage structure.  ANNs are massively parallel computing systems consisting of large number of 

processors. In comparison to Von Neumann design, artificial neural networks are self-learning, 
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self-programmable computational methods with the ability to handle unconstrained, poorly 

defined operating environment with a high fault tolerance.  

 

Table 2-3: Comparisons of Von Neumann computers and artificial neural networks (Carpenter and 

Grossberg, 1991; Jain et al., 1996) 

Properties Von Neumann ANN 

Processors Complex high speed (VLSI) Artificial Neural Networks 

Memory Separate from processor 

Integrated, Distributed content 

addressable 

Computing Sequential 

Distributed parallel self-

learning 

Connections Externally programmable Dynamically self-learning 

Fault tolerance 

None without special 

processes 

Significant 

Operating environment Well-defined, well constrained Poorly defined, unconstrained 

Programming Rule based shell; complicated Self-programming 

 

Artificial neural networks are parallel computing algorithms that are designed to mimic 

the learning processes of human brain. Thus, in order to understand the artificial neural networks, 

it is recommended to study the structure of human brain.  The fundamental processing unit of 

human brain is called neuron. Typically human brain contains more than 10 billion neurons. Each 

neuron has approximately 10,000 connections to other neurons (Müller et al., 1995). Incoming 

signals are collected by neuron receivers, dendrites, and the outgoing signal transmitted through 

signal transmitters called axons. The joint between the end of axon branch and other neurons is 

called synapse. Incoming signals from adjacent neurons carried by dendrites are processed in the 
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cell body part of the neuron called soma. Then the processed response value is sent out to other 

neurons using axons and synapses. The inputs to the neuron cause chemical reactions. When the 

chemicals approach to a certain threshold level, neuron discharges the expected response.  

Figure 2.5 demonstrates the typical structure of a neuron in human brain. It should be 

noted that there are different types of neurons exist in human brain with large variations in neuron 

types and connections. These complexities are abstracted in brain theory to better understand the 

learning behavior of human brain (Arbib, 2003). Alternatively, mathematical representation of 

neuron is demonstrated in Figure 2.6. Inputs “    ” are fed to neuron with respective connection 

weight “    ”.  In addition to the inputs to each neuron, bias connections “    ” are also added 

to the neuron. Bias or threshold connections are equivalent to an intercept in a regression model. 

This helps the learning of the data and ultimately improves representation of the data by neural 

network. Each neuron contains a threshold function or activation function; responsible to control 

the amplitude of the neuron output and ultimately helps stabilizing the network. The typical 

ranges of activation functions are between 0 and 1 or -1 and 1, depending on the activation 

function type. Introduction of activation functions to the neural networks improve nonlinear 

mapping of complex problems. The mathematical equation of each neuron can be summarized by 

the following equation: 

 

   (∑     

 

   

  )  (2-3) 
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Figure 2.5: A schematic of basic neuron structure in human brain 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Mathematical representation of neuron; inputs denoted by “x” with weights “w” and 

biases “b”, outputs denoted by “y” 
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Network Topology 

Collection of multiple interconnected neurons is called neural networks. The topology of 

the neural network is governed by the way neurons are connected. Two main categories of 

network structure are: feed-forward networks and feedback networks. In feed-forward network 

structure information is processed in one direction only and there is no feedback or directed cycle 

or loop connections. On the other hand, feedback/recurrent networks can contain feedback or 

directed circle connections. These features can help neural networks to process sequences of 

inputs with internal memory of the network. Recurrent networks are mostly used to model 

dynamical systems (Narendra and Parthasarathy, 1990) and time series data (Giles et al., 2001).   

Taxonomy of the neural network topologies is demonstrated in Figure 2.7. Perceptron is 

the simplest type of feed-forward neural network because it consists of a single-neuron with 

adjustable synaptic weights and threshold function. Perceptron is linear classifier and this makes 

its applicability of solving practical problems limited. However, it remains as a fast and reliable 

solution for simple problems. Also, analyzing the operations of perceptron provides fundamental 

understanding of more complex networks. Limitations of perceptron led to the invention of 

multilayer perceptron (MLP). MLPs are feed-forward neural networks with minimum of one 

hidden layer. Similar to perceptron, each processing unit has adjustable weights and nonlinear 

activation function. Adding nonlinear transfer functions to MLPs helps solving complex 

nonlinear problems. MLPs are the most popular neural network topology, used in huge number of 

applications. Their strength lies in robustness in modeling noisy data and ease of use. Another 

example of feed-forward networks is radial basis function (RBF) networks. RBF network consists 

of one hidden layer in which the activation of hidden layer is determined by radial basis 

functions. The mathematical equation of radial basis function is presented in Equation (2-4). 
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   (2-4) 

In Equation (2-4),   is the number of sampling points,   is the vector of input variables, 

   is the center of basis function  , and ‖ ‖ is    norm of vector        (usually Euclidean 

distance is used) and    is the weight coefficients. RBF networks are capable of universal 

function approximation with only mild restriction on the form of the basis function (Ma et al., 

2008).  

 The recurrent/feedback networks have wide variety of network topologies. Competitive 

network is one example of the recurrent neural networks comprising of two-layer network with 

inter-layer connections. Competitive networks’ advantage lies in their ability of performing data 

clustering (Chartier et al., 2009). Self-Organizing Map (SOM) networks are used to classify 

complex data into the low-dimensional input space of data. SOM networks present a simplified 

relational view of a highly complex, high dimensional data. The mapping is simply done by 

comparing the neighborhood relationships and transforming it in the topological map. The main 

advantage of Hopfield network is an associative memory. In the Hopfield networks, each 

processing unit behaves as an elementary system in complex interaction with the rest of 

ensemble. They are classified as constant addressable memory systems with binary threshold 

units (Rojas, 1996). The adaptive resonance theory (ART) neural networks are developed based 

on the information process of human brain. The ART networks are defined algorithmically in 

terms of detailed differential equations intended as plausible models of biological neurons 

(Grossberg, 1987). Furthermore, the ART networks incorporate long-term and short-term 

memory to classify the data and gain more knowledge about data.      
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Figure 2.7: Classification of neural network topologies (Jain et al., 1996) 
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Learning Paradigms 

One of the most important aspects of neural networks is the ability to learn complexities 

of the data. Learning is achieved by adjusting weight factors of neuron connections of neural 

network by using mathematical algorithms that depend on the network structure. Generally, there 

are three types of learning paradigms: supervised, unsupervised and hybrid learning. In 

supervised learning (often resembled as learning with a teacher), inputs and desired outputs of 

networks are supplied to the network in the learning stage. Then, by calculating the network error, 

the weights of neurons are adjusted in such a way to reduce the network error. Thus, the network 

learning is reduced to a minimization problem and any method such as gradient descent methods 

can be used to solve the problem. The aforementioned learning scheme is called error correction 

learning or corrective learning criteria. Another class of supervised learning is called 

reinforcement learning (RL). Reinforcement learning is often called learning with a critic because 

network learning is achieved by feedback from the given environment. Weights are reinforced for 

properly performed actions and punished for poorly performed actions (Simpson, 1989). The 

advantage of reinforcement learning is ability to learn the limited data sets (e.g. missing data).  

Unsupervised learning is another type of learning paradigm in which the desired network 

outputs (i.e. training targets) are unavailable. To achieve learning, using unsupervised learning 

approach network discovers patterns, relationships or separating properties within the input data 

by the processes called self-organization. Unsupervised learning is mainly used to perform 

pattern recognition and identifying clusters (Hebb, 1949). Majority of unsupervised learning 

methods consists of maximum likelihood density estimation.  

Hybrid learning paradigms are the combination of supervised and unsupervised learning 

criteria. The essence of hybrid learning is to accelerate learning process and achieve global 

minima. Hybrid learning is consists of network weights adjustment by error-correction and some 
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by automatic adjustment using patterns within the input data. Summary of learning algorithms is 

enlisted in Table 2-4. Since in this study backpropagation training algorithm is used, in next 

section backpropagation algorithm is further studied.      

 

Table 2-4: List of famous learning paradigms algorithms (Jain et al., 1996) 

Paradigm Criteria Architecture Algorithm 

Supervised 

Error-Correction Perceptrons & MLP Perceptron learning, 

backpropagation  

Boltzman Recurrent Boltzman 

Hebbian Multilayer, Feed-forward Linear discriminant analysis 

Competitive Competitive Learning vector quantization 

Unsupervised 

Error-Correction Multilayer, Feed-forward Sammon’s projection 

Hebbian Feed-forward, 

Competitive 

PCA 

Hebbian Hopfield Associative memory 

Competitive Competitive Learning vector quantization 

 SOM Kohonen’s SOM 

Hybrid Error-Correction ART, RBF ART1, ART2, RBF learning  
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Activation Functions 

 Activation functions for the hidden layers of multilayer neural networks are necessary to 

introduce nonlinearity into the network. Without activation functions networks are unable to map 

nonlinear functions such as mapping the exclusive OR problem (XOR) using perceptrons. There 

are many activation functions proposed such as threshold function, symmetric saturating linear 

transfer function, etc.; however some learning algorithms such as backpropagation algorithm 

require the activation function to be differentiable. One of the most popular activation functions is 

the sigmoid function. The mathematical equation of sigmoid function is represented in Equation 

(2-5) and plotted in Figure 2.8.     

     
 

         
  (2-5) 

 

Figure 2.8: Sigmoid activation functions 
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Backpropagation 

Backpropagation is error-correction learning type used to train multilayer neural 

networks. The goal of the backpropagation is to minimize the error between the output of the 

neural network and the actual desired output values.  

 The backpropagation process is explained in the following steps: 

(1) Initially, connection weights are randomly populated and the output of the network is 

calculated.  

(2) Then, mean squared error of network is calculated using Equation (2-6): 

  
 

 
∑       

   (2-6) 

   where    are the network outputs and    are the actual desired values. 

(3) Sensitivity of the error function with respect to each input is calculated using: 

    
   

  
        (2-7) 

 

(4) Sensitivity of the error function with respect to input parameters are then calculated: 

    
  

  
    

  

  
  (2-8) 

 In Equation (2-8), considering the term 
  

  
 it is evident that transfer functions should be 

differentiable since the output of the network “ ” is determined by the activation function. Using 

sigmoid activation function, Equation (2-8) then becomes: 
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              (2-9) 

      

(5) The next step is to calculate the sensitivity of error function with respect to connection 

weights using: 

     
  

    
         (2-10) 

 

(6) Weights are then updated by: 

   
       

             (2-11) 

where   is called learning rate  

(7) Repeat the process until the minimization is converged. 

 

Backpropagation process is visualized in Figure 2.9. The problem of minimizing the error 

function can be solved with many mathematical algorithms such as gradient descent method. 

After the network is successfully trained, by presenting new data set to the network, network 

compares the patterns within the data and those in training data sets to produce outputs. This 

process is called neural network testing or prediction.  
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Figure 2.9: Artificial neural network training using backpropagation learning 
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Reservoir Characterization 

The challenge in understanding and predicting reservoir behavior is in describing the 

reservoir geology realistically and modeling the reservoir behavior accurately and efficiently 

(Lake et al., 1991). However, this process can become complicated because oilfield data such as 

seismic, well logs, core data, etc. provide limited view of the reservoir. Therefore, the problem of 

identifying reservoir properties from the field data, so called reservoir characterization, boils 

down to an inverse problem in which given the field data, properties of the reservoir are to be 

estimated. Deterministic data derived from the actual measurement on reservoir properties at 

certain locations can come from different scales and sources. However, uncertainties are 

associated with the data because of the resolving power of the tool used and the inability of many 

tools to measure desired properties directly. Different approaches are made to characterize 

reservoir based on the available field data. Approaches based on the seismic data perhaps have 

the greatest potential to provide reliable information on reservoir property variations in the inter- 

well region (Schatzinger and Jordan, 1999).  

Seismic reservoir characterization aims providing reservoir description using seismic 

information. Properties such as porosity, permeability, lithology, fluid type, etc. can be obtained 

using seismic reservoir characterization methods. Applications of 3D seismic data in reservoir 

characterization and reservoir management are shown in Figure 2.10. Since well logs measure the 

rock properties at well locations, it is desired to correlate seismic to well log data in order to 

obtain reservoir properties across the entire reservoir. Therefore, in next section the process of 

predicting synthetic well logs is discussed.     
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Figure 2.10: Applications of 3D seismic data to reservoir characterization and management (Sheriff 

and Brown, 1992) 

Synthetic Well Logs 

The process of transforming seismic data into essential rock properties such as porosity, 

lithology, and fluid types is called seismic inversion process. Apart from seismic data, which is 

the main source of inversion process, well logs and cores are typically the most critical part of the 

inversion process. The inverse modeling of the well logs has been widely studied by numerous 

authors (Anguiano-Rojas et al., 2003; Artun et al., 2005; Cooke and Schneider, 1983; Oldenburg 

et al., 1983; Yao and Journel, 2000). Pre-stack or post-stack attributes are both used for well log 

prediction. Mainly core data is used as the key source of information for calibration of the 

predictions.    



35 

 

 The methods used to predict well logs from seismic data can be classified into 

deterministic, stochastic, geostatistical and soft computing techniques. Deterministic methods 

take advantage of the rock physics and known relationships between the seismic reflections and 

well log responses. The limitation of such methods is the uncertainty and imprecision of the 

seismic data. Also, relationships between the seismic data and well logs are functions of the 

geology and in complex geological settings such relationships are hard to identify. Geostatistical 

methods are used to interpolate and/or extrapolate spatially distributed properties such as well 

logs, core data, etc. However, the main assumption behind the geostatistical methods is that the 

distribution of the model parameters can be known a priori (e.g., Kriging methods assume 

stationary stochastic processes with constant mean). Probabilistic and stochastic methods are also 

used to address the uncertainty quantification of the inversion process. However, mainly they 

require a priori information about the problem setting. Prior distribution in many cases is derived 

either from theoretical considerations or field observations (Gouveia and Scales, 1998).  

Soft computing methods can handle large number of unknowns and allow for fault 

tolerance impression. However, they require relatively large amount of data for analysis. Neural 

networks are the main soft computing method used in the seismic inversion. Nonlinear pattern 

recognition aspect of neural networks made them preferable choice over geostatistical methods. 

In comparison to the probabilistic methods, neural networks do not require prior information 

about the data; however, they require large data sets to train the networks.  

Different methods have been used in incorporating seismic data and well logs into the 

artificial expert systems depending on the available data. Artun  (Artun et al., 2005) used vertical 

seismic profiles (VSP) as intermediate step between the well logs and surface seismic data. They 

used synthetic seismic model to develop the general correlation between the seismic, VSP and 

well logs. Then, they incorporated estimated correlations into the real field well log predictions. 

Soto (Soto B and Holditch, 1999) developed intelligent reservoir characterization using core data, 
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well logs, and seismic information. They used 3D seismic data, horizon depths, and location of 

the wells to predict gamma ray logs. Only the information of limited number of wells (8 wells) is 

used for training and testing their developed networks. However, they achieved the predictions 

with more than 86% correlation coefficient. Barhen  (Barhen et al., 1999) used the so-called 

DeepNet neural networks for well log predictions. DeepNet is modified feed-forward neural 

network with additional layer (a.k.a virtual input layer) between input layer and hidden layers. 

They predicted sampled well logs from five seismic variables with good accuracy.       

In another study, three component 3D seismic data is used to predict well logs (Todorov 

et al., 1998). Seismic attributes are selected based on the smallest RMS error between the known 

log and the predicted logs using multi-regression analysis. Then, neural networks are used to 

predict well logs using the selected seismic data. Bhatt (Bhatt, 2002) developed multiple neural 

networks based on one data set. Based on the performance of the networks (those with minimum 

bias and variance on the validation data sets) 9 networks are selected to predict porosity well logs. 

The predictions are made using the outputs of 9 networks with ensemble averaging and optimum 

linear combination (OLC) method.   
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Chapter 3  
 

PROBLEM STATEMENT 

Identifying the reservoir properties with an accurate predictive capability is at the heart of 

reservoir management. Geological descriptions are estimated due to the lack of information 

underground. To develop a reliable predictive reservoir property model, the static, dynamic, and 

measured data required to be integrated in the model. Static data may include information from 

conventional wire-line logs, core data, and seismic data. On the other hand, dynamic data may 

include information from well tests, tracer tests, and flow rate data. Therefore, the challenge is to 

combine different sources of information in order to understand reservoir properties. Simple 

mathematical models may become inaccurate because several assumptions are made to simplify 

the problem, while complex models may become inaccurate if additional equations involving 

approximate description of phenomena are included (Nikravesh and Aminzadeh, 2001). The 

reservoir characterization problem is further intensified in unconventional reservoirs because of 

complex geology, insufficient of technologies to develop these types of reservoirs and existence 

of hydraulic fractures in the wellbore. 

Two challenging aspects of reservoir characterization are finding the reservoir properties 

away from the wellbores and identifying reservoir net pays. In this study, the first problem is 

addressed by predicting well log data from seismic data. Then well log data are predicted for 

entire reservoir using the trained neural networks. In the next stage, payzone identification 

problem is addressed. The main challenge in identifying pay zones is the lack of production 

versus depth data. Therefore, training of the new neural networks to predict pay zones is not 

directly possible. Additional considerations should be made to devise new approaches to solve net 

pay identification problems.  
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 This study aims targeting the aforementioned challenging reservoir characterization 

problems using artificial expert systems. Neural network methods offer alternative solutions to 

the reservoir characterization problem. They are nonlinear pattern recognition tools applied to 

complex, multi-dimensional data. However, in order to take advantage of capabilities of neural 

networks, data selection, screening, and sampling are required. 

Incorporating different types of data into the neural networks is another challenging 

aspect of this work. Data screening involves selecting different data types to feed neural 

networks. Then ate the next stage, selected data is processed in order to be used in networks. In 

this research data processing method is developed for particular data set comprising of well logs, 

seismic data, completion/stimulation data, and production data. This process is illustrated in 

Figure 3.1. 

 

Figure 3.1: Neural network training procedure 
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Chapter 4  
 

METHODOLOGY 

As described earlier, this research aims predicting the reservoir properties away from the 

wellbore and identifies pay zones. The process is divided into three steps: 

I. Data preparation 

II. Neural network training 

III. Prediction 

Data preparation stage involves selection, screening, and sampling of oilfield data. 

Generally, oilfield data involves information such as: production, petrophysics, drilling, 

geophysics, and completion/stimulation. The first stage of data processing is to select data types 

for neural network training. This stage involves elimination of irrelevant data types and coming 

up with a list of data types to be used in further stages of data processing. It is beneficial to 

incorporate knowledge of people who have great knowledge about data such as geologist, 

petroleum engineers, completion engineer, etc. For example, in order to decide which completion 

parameter is more relevant in predicting data, completion engineer can help identifying most 

important parameters.  

In the second stage, data is screened based on seismic data to create consistent data 

based. This is primarily important because neural networks require consistent data base. Seismic 

data is primary input data used in many neural networks to predict lithological properties. 

Therefore, in order to use seismic data, wells found within the seismic boundaries should be used. 

As a result, those wells located outside seismic domain are eliminated from the database. 

Screening the well logs involves elimination of:  

 Irrelevant well logs (e.g. drilling collar locator log as network input and porosity 

log as networks output)   
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 Well logs with limited availability both in large number of wells 

 The final stage of data processing is to sample data and if necessary pre-process the data 

(e.g. averaging, denoising, removing outliers). Sampling is very important because it helps to 

reduce the complexities of the data and provide a unified data set for training and testing the 

networks. Well log data are generally lengthy measurements recorded at every few inches of 

formation. To sample well logs, first top and bottom depth of formation is determined at every 

location. Then, formation thickness is divided into several equal length segments. At each 

segment, weighted average value of the logs is calculated as a representative log value of the 

corresponding segment. Clearly, by increasing number of sampled log segments, sampling 

resolution increases and by decreasing it sampling resolution decreases. 3D seismic data sampling 

is performed by selecting seismic attributes locating at the same depth as the well log data. To 

perform seismic data sampling, time to depth conversion is required since seismic data is 

recorded on time scale and well logs are recorded on depth scale. In this study, time to depth 

conversion charts is available. As a result, seismic responses at the same depth can be correlated 

to the well log responses. Since production rates are often noisy and contain outliers, cumulative 

production data is selected for neural network analysis. Depending on the frequency and 

availability, production data is selected over finite intervals (e.g. three month intervals). 

Completion and stimulation data screenings greatly depends on the nature of the data. For 

example, corresponding hydraulic fracturing data of different stages can be lumped together to 

form a massive single-stage fracture data. 

Once the data is collected and sampled, neural networks can be trained and tested to 

predict reservoir properties. In order to estimate reservoir properties, well logs should be 

predicted. Using averaged seismic data (low-resolution seismic attributes) low-resolution well 

logs are predicted. Analyzing the trained networks revealed the inability of networks to capture 

sharp transitions of the log features. By incorporating the error adjustment networks, the log 
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predictions are improved. The predicted well logs are comprised of 50 values at every seismic 

location. The significance of low-resolution well logs is their ability to approximate reservoir 

properties. Thus, they are used to predict cumulative productions (oil, water, and gas) of the 

wells. However, the disadvantage of low-resolution logs is their lack of details and their inability 

to capture sharp changes in well logs. Therefore, problems such as pay zone identification in 

which well log details are required should not use low-resolution well logs. To alleviate this 

issue, high-resolution well logs are predicted using 3D seismic attributes. Formation is divided 

into several seismic horizons in which separate different rock layers in depositional environments 

characterized by different reflection properties. Therefore, for each seismic interval that confined 

by two seismic horizons, one neural network per each log is trained to capture details of the well 

log. Combining the outputs of different networks results the high-resolution well log.  

Having the petrophysical prediction tools, it is possible to predict production data at 

every location in which seismic data is available. Production prediction tools attempt to establish 

the relationship between the averaged seismic attributes, low-resolution well logs, completion, 

and production data. Three networks are trained to predict oil, water, and gas productions. 

Outputs of each of the networks are four numbers; production data sampled every three-month for 

the entire two year production history.   

Completion data is only available in the well locations. However, in order to predict 

production rates way from the wells an auxiliary network is required. This network is trained to 

predict the completion parameters based on the current practices employed on the field. Inputs of 

the completion network are seismic and log data. It is important to note that the completion 

network does not attempt to optimize the completion parameters.  

The final stage of reservoir characterization is to identify prolific intervals of the 

reservoir. As described in the previous chapter, lack of production data versus depth is the 

primary challenge in pay zone identification. In the first approach, production prediction 
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networks are used. Corresponding 3D seismic data and high-resolution well logs of each seismic 

interval is fed to the networks to predict productions. The most prolific segments are identified by 

ranking of gross thickness of reservoir. In the second approach, attempts have been made to 

construct the production logs. This achieved by sliding the moving window over the gross 

thickness of the reservoir and resampling well log and seismic data. The size of moving window 

is fixed and depending to the thickness of the formation several production values are predicted.  

Production logs are important because they can be further studied in order to determine 

their relationship versus different lithologies. Fuzzy logic is used to classify production logs 

versus different lithology logs obtained from mud logging analysis. The outcome of such analysis 

can potentially results in identification of prolific lithology.          
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Chapter 5  
 

CASE STUDY: WOLFCAMP RESERVOIR 

This research is focused on the characterization of the ATM region of the Wolfcamp 

field. The Wolfcamp is a tight-rock play covering 5700 square miles in the Delaware basin. The 

locations of Wolfcamp field and Delaware basin can be seen in Figure 5.1. Because of the down-

dip position, Wolfcamp reservoir was not explored until 1960s and later on the expansion of the 

play was unsuccessful because of complex structural pattern of the reservoir (Montgomery, 

1996). 3-D seismic surveys and advances in technology helped more successful development of 

this field. Currently, the field is operated by the Wolfcamp Joint Venture between Chevron, 

Henry Petroleum and Summit Petroleum. 

The Wolfcamp Formation is subdivided into seven units based on regionally mapped 

shale markers. These horizons were mapped throughout the area utilizing 3D seismic data and 

well logs. The lithology of the Wolfcamp formation consists of carbonates, black shales and 

siltstones. However, the geological system is greatly dominated by shales and limestones. 

Limestones represent shelf to proximal basin deposits while shales represent a more basinal 

setting. Limestones in the Wolfcamp Formation can be categorized into four facies groups: 

lithoclastic facies, grain-supported facies, matrix-supported facies, and boundstone facies. Shales 

within the basin are predominantly black, suggesting a biogenic origin (Flamm, 2008; Merriam, 

1999).   

The formation contains pockets of oil distributed along the entire field. The Wolfcamp 

play produces oil with API gravity 40-43. The gross thickness of formation is 600 to 1500 feet. 

The formation has very low permeability (average permeability: 0.013 mD) and relatively low 

porosity (less than 11%). ATM section of the Wolfcamp field has 341 wells that have been used 

in this study. Production in Wolfcamp field is achieved by hydraulic fracturing of the wells and 
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producing the oil until the economic limits has reached. Re-fracturing of the subsequent intervals 

is performed to increase the production from the wells.  

Because of complex nature of the Wolfcamp formation, pattern-drilling strategy is 

employed to drill new wells in the field. Moreover, pay zones are identified by the regions with 

gamma ray less than 75 API. Thus, considering the complexity of the formation and current 

strategies used to drill new wells, development of the new intelligent characterization tools is 

necessary.   

 

 

Figure 5.1: Left: Wolfcamp play location in Texas (Brown, 2008) Right: Delaware basin location          

(Dutton et al., 2000) 
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Data Availability 

As described earlier, in order to take advantage of capabilities of neural networks, a 

complete and consistent database is required. Various types of data are supplied to this research 

by the Chevron Corporation. Geophysical data includes low-resolution seismic attributes 

calculated over each seismic interval (seismic interval is located between two subsequent 

horizons) and 3D seismic attributes. The 3D seismic attributes are recorded in the ASCII files 

with the SEG-Y format. The data is sampled over 2 millisecond window in time domain. Figure 

5.2 demonstrates the plot of RMS amplitude versus time. List of seismic attributes used in this is 

presented in Table 5-1. Seismic data availability is limited to ATM region of the Wolfcamp field. 

The ATM region is comprised of 341 stimulated wells (hydraulically fractured). Well information 

consists of well logs, production data, artificial lift, completion, and stimulation data. 

More than 1000 well log files were received in the form of LAS format. Screening the 

log files revealed that all of the wells in ATM region possess well logs. However, availability of 

specific log types varies in each well. Two types of production data are available: allocated 

monthly production rates, and daily well test rates. Since allocated production data is calculated 

from the combined flowrates of all wells in the field (back allocated based on well test 

information), the characteristic of data is masked and may not be useful for neural network 

training. On the other hand, daily well test data reveal more details of reservoir characteristics and 

used for network training. 

Completion data is comprised of wellbore tubular information, perforation, artificial lift, 

and well information such as API name, coordinates, and well elevation. Stimulation data 

includes hydraulic fracturing information such as proppant volume, slurry rate, packer set depths, 

and pressure information of each fracture stages. Each well has minimum of five stages of 

hydraulic fracturing jobs. List of available data for this research is given in Figure 5.3.   
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Figure 5.2: Sample of available 3D seismic attributes (RMS amplitude) 

 

Figure 5.3: List of available data and their respective formats 
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Table 5-1: List of seismic attributes used in this study 

No. Attribute No. Attribute No. Attribute 

1 RMS Amplitude  

(sliding time window 50 

ms) 

11 Amplitude Change  

(average over 100 ms) 

21 Amplitude Change  

(average over 200 

ms) 

2 Amplitude Acceleration 12 Energy Half-Time  

(average over 100 ms) 

22 RMS Amplitude  

(100 ms sliding 

window) 

3 Dominant Frequency 

 (average over 100 ms) 

13 Energy Half-Time  

(average over 50 ms) 

23 Cosine of Phase 

4 Instantaneous Frequency 

 (average over 100 ms) 

14 Thin Bed Indicator  

(50 ms window length) 

24 Bandwidth  

(average over 100 

ms window) 

5 Reflection Strength 15 Differentiation 25 Instantaneous Q 

Factor  

(average over 100 

ms window) 

6 Quadrature Trace 16 Integration 26 Dominant 

Frequency 

 (average over 50 

ms window) 

7 Thin Bed Indicator 

 (window length 100 ms) 

17 RMS Amplitude  

(25 ms sliding window) 

27 Arc Length  

(50 ms sliding 

window) 

8 Bandwidth  

(average in a 200 ms 

window) 

18 Reflection Curvature 28 Arc Length  

(100 ms sliding 

window) 

9 Response Frequency 19 Absolute Amplitude 29 Amplitude 

Variance 

 (3 traces, 3 lines, 5 

samples) 

10 Instantaneous Q Factor 

 (average over 200 ms 

window) 

20 Amplitude Change 

 (average over 50 ms) 

30 Amplitude 

Variance  

(7 traces, 7 lines, 5 

samples) 
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Synthetic Well Log Prediction 

Synthetic well logs have been developed as a tool for reducing costs or whenever logging 

proves to be insufficient and/or difficult to obtain (Rolon, 2004). Furthermore, correlating well 

logs against production data can potentially help engineers to handpick the locations of infill 

drilling wells and ultimately increase the recovery from the reservoir. To develop the synthetic 

well logs, we propose using artificial neural networks in conjunction with conventional wireline 

well logs. The development strategy of the synthetic well logs prediction neural networks is 

demonstrated in Figure 5.4. Since two types of seismic data, coarse resolution seismic data 

(averaged attributes over 10 intervals) and high-resolution seismic data (time-volume seismic 

data sampled every 2 milliseconds) are available, we generated two families of synthetic well 

logs. The first is called low resolution well logs in which 50 average well log values are predicted 

for the entire well depth. The other family of well logs is called high-resolution well log 

predictions, using time-volume seismic data for each seismic interval, 50 average well log values 

are to be predicted (total of 350 values for seven seismic intervals).  

 

 

 

Figure 5.4: Reservoir characterization development algorithm 
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Data Screening 

 Data screening involves scanning the database based on consistency of the data sets and 

on their respective relevancies for predicting synthetic well logs. The first step of data screening 

involves scanning based on the well locations corresponding to seismic survey area. After 

screening based on seismic data, number of wells reduced from 651 to 221 wells. The next step in 

data screening is screening based on well log availability.  

 The well log availability for the existing wells in the ATM region is presented in Table 

5-2. As it can be seen from Table 5-2, more than 90% of the wells have normalized gamma ray 

(GKUT_NRM), neutron porosity (PHIN), and raw gamma ray (GR) well logs. These well logs in 

conjunction with long space neutron count rate (LONG) and short space neutron count rate 

(SHORT) were selected for neural network developments. The rest of the well logs were ignored 

because of two reasons. First, some of the well logs such as WCJV_PAY, PAY_FLAG, 

PERFFLAG, etc. are the pay identifiers used by Chevron and in order not to bias the network 

outcomes; they have been omitted from the neural network training data sets. Second, some well 

logs have low availability and they have been omitted (e.g. LPOR, CNPOR, etc.). After well 

screening based on well logs, 144 wells are passed to the final stage of data screening. In the final 

stage of data screening, wells with two years of production history are selected. A total of 87 

wells are selected for neural network developments. Figure 5.5 shows the complete well 

screening procedure.    
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Table 5-2: Well log availability for ATM region 
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Figure 5.5: Schematic of well screening procedure 
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Data Preparation 

Seismic data locations do not exactly match the well locations and surface interpolation 

technique was used to find seismic attributes at well locations. At any given well location, the 

four closest points were identified based on their coordinates. Then, utilizing an inverse distance 

interpolation, seismic attributes for well locations were obtained. The same procedure was also 

applied to find the respective seismic horizon depths at any given location. The depths of 

shallowest seismic layer (top depth) and the deepest seismic interval (bottom depth) were used to 

calibrate the well logs in the next step. Moreover, top and bottom seismic depths were checked 

against the perforation interval depths for consistency purposes. For example, if the bottom 

seismic depth were shallower than the maximum perforation interval depth, bottom depth would 

be adjusted to the maximum perforation interval depth. For the high-resolution well log 

prediction approach, the same methodology is applied. However, seismic data within each 

seismic interval is further subdivided into 10 sub-intervals and the respective seismic data is 

calculated based on root mean square average technique.  This results into a matrix of 7 

(intervals) by 30 (attributes) by 10 (sub-layer) for each location. A comparison of the time-

volume seismic data and sampled seismic data is illustrated in Figure 5.6. 

 Once the top and bottom depths are obtained, well logs are scaled to the 

respective seismic depths (the rest of the well log data is ignored) and average well log responses 

of the corresponding well are calculated. For the case of low-resolution well log generations, the 

entire thickness of the well log (bottom seismic depth minus top seismic depth) was divided into 

50 intervals and the average well log responses for each interval was calculated. The sample 

averaged well logs are demonstrated in Figure 5.7. The same methodology is also applied in 

preparation of high resolution well log generation data sets, however instead of dividing the entire 
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well log thickness into 50 intervals; each seismic interval is divided into 50 intervals. So, since 

seven seismic intervals are identified from the seismic data, the total number of logs data points 

for each well is increased to 350 points. Figure 5.8 demonstrates the comparison between 

sampled well logs and actual well logs in high-resolution approach. Comparing the two figures, it 

is evident that high-resolution approach captures the overall well log signatures more effectively.  
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Figure 5.6: Comparison of the time-volume seismic data and sampled seismic data 
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Figure 5.7: Sample low-resolution well log response comparing to actual well logs 

 

Figure 5.8: Sample high-resolution well log response as compared to actual well logs  
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Neural network Development Strategies 

A. Low-resolution well log generation 

 Initially seismic attributes (low resolution seismic data) and well coordinates were used to predict 

the well logs.  However, after analyzing the prediction performance of neural networks, it became clear 

that networks were able to only predict the overall trend but failed to predict sharp variations of well logs. 

To confirm this hypothesis, 10 numerical experiments were designed in which 77 wells were used for 

training, 5 wells for validation and 5 well for testing. In each experiment, one specific well (overlap well) 

remained in the testing set while the other four shuffled with training wells randomly. The results of this 

overlapping exercise can be seen in Figure 5.9. The results confirm that regardless of network structure 

and training/testing data sets, the networks are unable to capture the entire behavior of the well logs 

including well log overall trend and well log sharp jumps and variations. Also by analyzing Figure 5.9, it 

is clear that the maximum errors are related to the sharp jumps of the well logs (e.g. interval 30 of well A 

and intervals 12 and 40 of well B). The error values of 10 different experiments create a band (black 

curves in Figure 5.9) implying that the predicted well log values with different network structures and 

testing data sets are approximately the same. 

These comparisons demonstrated the inability of the neural networks to completely characterize 

well logs using low-resolution seismic data. At this point, the use of two types of neural networks for 

predicting low-resolution well log data was attempted. The first family of networks, the so-called trend 

networks, requires seismic data (300 values) and coordinates data (5 values) as input and predicts the 

overall trend of well logs (50 values). A total of five networks were used to predict the well log trends 

(one network for each well log). The trend networks generally have three hidden layers. The hidden layers 

transfer functions
1
 are all ‘logsig’, while output layer transfer function is ‘tansig’. Once the trend of the 

                                                      
1
 Definitions of transfer functions are given in Appendix B 
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well log is obtained, prediction errors can then be calculated from the actual well logs. Then, a second 

family of networks, error-adjustment networks, was used to adjust the predictions of trend networks. The 

inputs of error adjustment networks are seismic attributes (300 values) and the outputs are predicted error 

values (50 values) calculated from the outputs of trend networks. Five networks were then used to 

estimate the prediction error of each well log. Error adjustment networks have three hidden layers with 

the transfer functions of ‘tansig’, ‘softmax’, ‘radbas’, and ‘stalins’ (output layer). Once prediction error is 

estimated, well log trends are adjusted accordingly. Figure 5.10 summarizes the workflow of low-

resolution well log predictions. Total of 10 neural networks are used to predict well logs including 5 trend 

networks and 5 error adjustments networks. The details of each network are documented in the results 

section. 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 5.9: Typical results of overlap exercises for two wells 
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Figure 5.10: Schematic of low-resolution well log generation neural networks 

B. High-resolution well log generation 

The initial approach of training the high-resolution well logs was using raw time-volume seismic 

data (30 attributes × 401 values =12030 values) to train the well logs (350 values). However, the networks 

required large number of neurons and hidden layers with time consuming neural network training (more 

than 6 hours). Moreover, the network training and testing performances were very poor with an average 

80% testing error. The second approach was training 7 neural networks (one network per seismic interval) 

for each well log (totally 35 neural networks). The inputs of the neural networks are sampled time-volume 

seismic data (10 sub-layer × 30 attributes) and outputs are well logs (50 values) for each seismic interval 

per well log. High-resolution well log networks have two hidden layers with “tansig” transfer functions 

both in hidden layers and output layers. The training performances with this approach were much better 

than the previous approach. Moreover, simplifying the network structure helped increasing the 
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performance of the networks and reducing the network error. Also, in comparison to the low resolution 

well log prediction networks, no error adjustment networks were required and networks were able to 

capture the structure of well logs. Schematic of the high-resolution well log generations are demonstrated 

in Figure 5.11. 

 

 

Figure 5.11: Schematic of high-resolution well log generation neural networks 

Payzone Identification  

Net pay is a key parameter in reservoir characterization and in many other contexts such as 

reserves evaluations, identification of intervals for perforation and stimulation, and prediction of 

permeability from well tests (Jensen and Menke, 2006). The main challenge in payzone identification is 

the lack of field data to train neural networks and validate prediction results. Also, existence of hydraulic 

fractures at the well locations adds more complexity to the problem. In this analysis, we propose to use 

the neural networks developed in the earlier section to predict oil, gas, and water performances in payzone 

identification. These networks are expert systems that integrate seismic data, well logs, and completion 

data to predict the production characteristics of the wells. Using a sliding window along the well depth, it 

is possible to predict the production of the well from different zones. Schematic of payzone identification 

methodology is presented in Figure 5.12. Gross pay thickness is divided into multiple segments (e.g. four 

Seismic Data
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Coordinates 
(2 Values)

Well Log Trends
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1 Network for each horizon per well log
Totally: 7 networks for each well log
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segments are demonstrated in Figure 5.12) and the representative sampled well logs are fed to neural 

networks to predict production profiles. The outcome of payzone identification is the ranking of different 

pay intervals with respect to oil, gas and water productions. 

Three approaches were tested in this study to identify pay zones. In the first approach, the        

gross pay thickness (identified by the depth of shallowest and deepest seismic horizons) is divided into 

four intervals of equal thickness. Within each interval, well logs are sampled into 50 values and fed to the 

neural network along with the completion data (same completion data for all four intervals) and seismic 

data and the respective production profiles are calculated. This approach is called coarse resolution 

approach since entire gross thickness is divided into four large intervals. In the second approach, the size 

of sliding window is reduced to 50 feet. In this approach, actual well logs are used instead of average well 

logs. Actual well logs are sampled every one-foot and predictions (oil, water, and gas) are made at every 

50 feet interval. This approach is called high-resolution approach because in this approach details of 

actual well logs are exposed to neural networks. One advantage of high-resolution approach is by using 

the classification methods it is possible to obtain new trends and correlations between production data and 

well logs. This can potentially help engineers and geologists to gain more understanding about the 

relationships between common wireline well logs and production profiles in Wolfcamp/ATM region. This 

method however, cannot be used throughout the entire seismic survey area because actual well logs are 

required and they are available only at the locations of the wells. Accordingly, it is proposed a third 

method to be used for the entire seismic survey area in which production profiles are predicted for each 

seismic interval using the sampled well logs (50 values) and seismic data (300 values). In this method, at 

the location of the wells for each interval sampled well logs are used. However, in other locations a new 

well is yet to be drilled, the predicted well logs by high-resolution well log prediction approach are used 

as input for the neural network. The results of this approach are seven production profiles for each phase 

(oil, water, and gas).   
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Figure 5.12: Schematic of payzone identification methodology 
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Chapter 6  
 

RESULTS AND DISCUSSIONS 

This study aims at solving the reservoir characterization problem for an unconventional reservoir 

system. The first module of the research involves prediction of well logs in the inter-well regions. As 

discussed in Chapters 4 and 5, the well logs are predicted using the seismic data. In the first section of this 

chapter, the results of synthetic well log generation tools are presented. In the second part of this chapter, 

pay zone identification results are discussed.  

Synthetic Well Log Generation Tools 

A. Low-resolution well log generation  

The first sets of results are related to the low-resolution well logs. A total of 87 wells used in 

training (77 wells), testing (5 wells) and validation (5 wells) data sets. The wells in each data set are 

selected randomly. Figures 6.1 to 6.10 show the result of low-resolution well log predictions for a testing 

well A1 (randomly selected for testing), in the testing data set. Raw gamma ray (GR) prediction results 

are shown in Figure 6.1. As it can be seen, the trend network captured overall trend of the well log with a 

correlation coefficient of 0.374. Using the error adjustment network, the correlation coefficient improved 

to 0.896. It is evident that error adjustment network helped in improving the predictions and capture the 

behavior of the well logs. The GR trend network has four hidden layers with 15, 25, 14, and 23 neurons, 

respectively. The hidden layers transfer functions are all ‘logsig’ while the output layer transfer function 

is ‘tansig’. The GR error adjustment network has three hidden layers with 25, 40, and 30 neurons with 

transfer functions of ‘tansig’, ‘softmax’, ‘radbas’, and ‘stalins’ (output layer), respectively. Figure 6.2 

demonstrates the correlation coefficient (between prediction well logs and actual well logs) histograms of 
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the prediction before and after error adjustments. It is clear that the use of error adjustment network 

shifted correlation coefficients more toward one and thus improved the overall quality of the predictions. 

None of the trend prediction correlation coefficients are higher than 0.8 while with error adjustment, more 

than 70 well logs have correlation coefficients more than 0.8. 

Normalized gamma ray (GKUT) predictions are demonstrated in Figure 6.3 and Figure 6.4. The 

trend correlation coefficient for the testing well is 0.366 and it is improved by using error adjustment to 

0.916. The histograms of correlation coefficients demonstrate significant improvement by using the error 

adjustment networks. Only two wells have correlation coefficients less than 0.5 while more than half of 

the predicted trends have correlation coefficients less than 0.5. Neutron porosity (PHIN) results are 

demonstrated in Figure 6.5 and Figure 6.6. As it can be seen from Figure 6.5, after corrections, the 

correlation coefficient is improved from 0.55 to 0.929. With this significant improvement, details of the 

well logs are captured accurately (for example, note intervals 35, 40, and 46). Analyzing the trend well 

logs histogram reveals most of the prediction correlation coefficients are within 0.5 and 0.8. Trend 

predictions of neutron porosity well logs have overall better correlation coefficients than raw gamma ray 

and normalized gamma ray well logs. By using error adjustment networks, correlation coefficients of 

most of the well logs are improved. The next sets of results are related to the long space neutron count 

rate (LONG) and short space neutron count rate (SHORT). As it can be seen from the results of both well 

logs (Figure 6.7 to Figure 6.10), the predicted well logs are in good agreement with the actual well logs. 

Also, in case of SHORT well logs, minimum correlation coefficient after error adjustment is 0.7. The 

LONG well log predictions also have high correlation coefficients; only one well has correlation 

coefficient less than 0.7.  

One of the main advantages of neural networks is their power to perform pattern recognition and 

to be able to find correlations within a given data set. This can be done by analyzing input weights of 

neural networks in the form of relevancy plots and locating the input parameters with highest impact on 

the neural network outputs. Relevancy of each input parameter is defined by the individual neuron weight 



64 

 

of input parameter divided by summation of weights for all input parameters. The relevancies of input 

parameters are demonstrated in Figure 6.11. As it can be seen, "cosine of phase" has the highest impact 

among thirty seismic attributes. Other important attributes are amplitude change (averaged over 100 and 

200 ms) and instantaneous Q factor (averaged over 100 and 200 ms) and thin bed indicator. On the other 

hand, differentiation, integration, reflection strength, amplitude acceleration and absolute amplitude have 

the least impact on the well log predictions. The definitions of all 30 seismic attributes used in this study 

are given in Appendix B.    
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Figure 6.1: Low resolution well log generation: GR; Trend well log correlation coefficient: 0.374; Error 

adjusted well log correlation coefficient: 0.896 

 

Figure 6.2: Low resolution well log generation: GR; Correlation coefficients of predictions 
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Figure 6.3: Low resolution well log generation: GKUT; Trend well log correlation coefficient: 0.366; Error 

adjusted well log correlation coefficient: 0.916 

 

Figure 6.4: Low resolution well log generation: GKUT; Correlation coefficients of predictions 
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Figure 6.5: Low resolution well log generation: PHIN; Trend well log correlation coefficient: 0.550; Error 

adjusted well log correlation coefficient: 0.929 

 

Figure 6.6: Low resolution well log generation: PHIN; Correlation coefficients of predictions 
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Figure 6.7: Low resolution well log generation: LONG; Trend well log correlation coefficient: 0.685; Error 

adjusted well log correlation coefficient: 0.908 

 

Figure 6.8: Low resolution well log generation: LONG; Correlation coefficients of predictions 
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Figure 6.9: Low resolution well log generation: SHORT; Trend well log correlation coefficient: 0.577; Error 

adjusted well log correlation coefficient: 0.898 

    

Figure 6.10: Low resolution well log generation: SHORT; Correlation coefficients of predictions 
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Figure 6.11: Relevancy of seismic attributes in low resolution well log prediction 
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B. High-resolution well log generation  

High-resolution well logs were predicted using time-volume seismic data. For each seismic layer, 

five neural networks were trained to predict the five well logs. A total of 35 neural networks were trained 

to predict high-resolution well logs. Initially, 87 wells were used for high resolution well log generations. 

However, some particular wells resulted in high prediction errors. Analysis of these wells demonstrated 

that unrealistic flat well log profiles were the cause of high prediction error. Therefore, to improve the 

performance of the network, flat well log profiles were omitted from the neural network data sets. As a 

result, total number of wells in training the expert system was reduced. However, the performance of the 

network did not change significantly, suggesting that the omitted wells were not helping in training the 

network. The same heuristic procedure was adopted to train the expert system with reduced number of 

wells. The performance of the network did not change significantly. Therefore, it became clear that more 

wells should be added to training data sets. The new well log pool for high-resolution well log prediction 

consists of 230 GR, 231 GKUT, 231 PHIN, 146 LONG, and 175 SHORT logs. 80% of the wells were 

used for training, 10% for validation and 10% for testing. Wells were selected randomly for each datasets.  

The inputs of the high-resolution prediction networks were the sampled time-volume seismic data 

(300 values) and coordinates (2 values), and the outputs are sampled well logs (50 values). The results of 

the high-resolution well log networks are demonstrated in Figure 6.12 to Figure 6.16. The first sets of 

results were related to predictions of raw gamma ray logs (GR). The GR networks are two hidden layer 

cascade neural networks with 120 and 60 neurons, respectively. Results of GR networks are illustrated in 

Figure 6.12. More than 70% (160 wells) of the well logs show good correlation with actual well logs 

(correlation coefficient higher than 0.8). 5 wells consistently have low correlation coefficients and at this 

point in time this may be attributed to the seismic data and well log data quality. Normalized gamma ray 

networks are cascade networks with three different networks structures: 120 and 60 neurons (intervals 1 

and 2), 110 and 60 neurons (intervals 3 and 4), 90 and 60 neurons (intervals 5 to 7). Normalized gamma 
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ray predictions also have high correlation coefficients. Prediction correlation coefficients for intervals 1 to 

4 are higher than intervals 5 to 6 (refer to Figure 6.13).  

Neutron porosity logs (PHIN) results are demonstrated in Figure 6.14. As it can be seen, results 

are not as good as gamma ray predictions. This may be attributed to the scale of the well logs. Neutron 

porosity log scale varies between 0 and 1 however; gamma ray logs scale is between 0 and 500 API 

(maximum observed in the field). Small variations in the neutron porosity logs can reduce the correlation 

coefficients significantly. Prediction results of long space neutron count rate and short space neutron 

count rate well logs are presented in Figures 6.15 and 6.16. LONG well log networks are cascade 

networks with 120 and 60 neurons. Similarly, SHORT networks are also cascade networks with 100 and 

40 neurons, respectively. Once the networks are successfully trained and tested, it is possible to predict 

well logs for entire seismic survey area. The typical well log predictions are demonstrated in Figures 6.17 

and 6.18. These well logs will be used in payzone identification when production profiles are predicted 

for each seismic interval using the high-resolution well logs. 

 Table 6-1 summarizes the networks structures of all high-resolution well log generation networks. 

All 35 networks have ‘tansig” transfer functions in hidden layers and ‘satlins” transfer functions on the 

output layer. Individual predictions of each network are presented in Appendix D. Because of large 

number of wells in testing pools for predicting high-resolution well logs (more than 10 wells), only five 

wells are randomly selected for demonstration. Figure 6.19 demonstrates the predicted well logs for two 

locations overlay on the different seismic attributes. Around 900 to 1000 milliseconds, amplitude seismic 

data have higher values and predicted well logs demonstrate sharp jumps. This relationship is less visible 

with instantaneous frequency at the intervals 1250 to 1400 milliseconds.     
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Figure 6.12: High-resolution well log predictions: GR correlation coefficients 
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Figure 6.13: High-resolution well log predictions: GKUT correlation coefficients 
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Figure 6.14: High-resolution well log predictions: PHIN correlation coefficients 
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Figure 6.15: High-resolution well log predictions: LONG correlation coefficients 
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Figure 6.16: High-resolution well log predictions: SHORT correlation coefficients 
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Figure 6.17: Predicted high resolution well logs: testing well A1 
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Figure 6.18: Predicted high resolution well logs: testing well A2 
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Table 6-1: High-resolution well log networks: number of neurons 

 

 

 

 

 

 

 

 

 

 

 

 GR GKUT PHIN LONG SHORT 

Interval 1 120, 60 120, 60 110,60 120, 60 100,40 

Interval 2 120, 60 120, 60 110,60 120, 60 100,40 

Interval 3 120, 60 110,60 110,60 120, 60 100,40 

Interval 4 120, 60 110,60 110,60 120, 60 100,40 

Interval 5 120, 60 90,60 130,80 120, 60 100,40 

Interval 6 120, 60 90,60 130,80 120, 60 100,40 

Interval 7 120, 60 90,60 130,80 120, 60 100,40 
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Well log repair  

Many well logs require editing and correcting for further analysis. The main reasons can be 

attributed to (Walls et al., 2004): 

- Wellbore washouts 

- Mud filtrate invasion 

- Gaps and missing data 

Typical approach to resolve the aforementioned problems is to use combination of theoretical, 

empirical and heuristic methods. Missing data in the well log suites are usually denoted with null value (-

999.2500). The most common practice to find the well log values at the null locations is to use 

interpolation techniques. Interpolation is good only for the small sections of the well logs and in case of 

large segments it is not accurate since well logs are nonlinear curves. One of the outcomes of this study is 

to use developed neural networks to predict well log responses for the missing segments. Figure 6.20 

demonstrates the well log predictions for the null segments for two wells. Null segment for the first well 

is located from 1250 to 1305 milliseconds. It is evident that interpolation technique cannot match the 

predictions of neural network because network predictions are made based on the discovered pattern 

within the seismic data. The null segment of second well is starting from 1100 to 1190 milliseconds. 

Analyzing the trend of the predictions with the rest of the well log segments, it is evident that predictions 

more or less follow the general trend of the well logs. However, for the second well, in some parts (e.g., at 

time 1180 of the second well) predicted well logs demonstrate very low value. This can be fixed by using 

the user specified threshold values (e.g. PHIN logs thresholds are 0 and 1).  
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Figure 6.20: Well log predictions for the null segments (predictions are demonstrated in red color); Top: null 

segments starting from1250 to 1305 milliseconds, Bottom: null segments starting from1100 to 1190 

milliseconds 
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Payzone Identification  

In this section, the results of payzone identification methodologies are discussed. Figure 6.21 

displays typical results of the coarse resolution payzone identification approach. Comparing all three 

cases, the deepest layer (layer 4) is consistently found to be among the top oil producing intervals and 

similarly, layer 1 is observed to be among the lower producing intervals. The summation of oil production 

from different intervals is approximately the same as the actual total well production in case A (best case). 

For the cases B and C, total oil productions from four intervals are different than the actual values. Most 

of the predicted oil production profiles are in good agreement with actual oil production of the wells (57 

wells out of 87 wells).  

Figure 6.22 to Figure 6.24 demonstrate the results of the high-resolution approach. In the high-

resolution approach, actual well logs were used and every 50-feet interval predictions were made by 

testing the oil performance neural network. The best-case results are shown in Figure 6.22. The top figure 

demonstrates 24-month cumulative oil production along the depth of the well versus common well logs 

and mineralogy logs. As it can be seen, a high oil production zone is located 7000 to 7200 feet deep and 

low producing zones predicted to be located at 8500 feet deep. The summation of oil productions from 

different zones is in good agreement with the actual production values of the well. Typical results are 

demonstrated in Figure 6.23 and worst-case result is shown in Figure 6.24. In general, most of the 

predictions can be classified as average accuracy predictions (62 wells out of 87 wells).  

 The advantage of high-resolution approach over low-resolution approach is clear by analyzing 

productions and well logs along the well depth new relationships and correlations can be understood. In 

this study, two types of classifications have been made based on wireline well logs and mineralogy logs 

obtained from mud logging. In this study, Neuro-fuzzy classification (ANFIS) method was used to 

develop fuzzy relationships. ANFIS method is like a fuzzy inference system with this different that here 
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by using a backpropagation tries to minimize the error. Advantage of incorporating neural network in 

fuzzy inference system is neural network learning algorithm which helps finding optimal solution. 

 First step of using ANFIS in this study is to extract initial guesses for fuzzy rules using 

multidimensional regression analysis of input/output data. These initial fuzzy rules are used as initial 

guess for the ANFIS classifier. In the next step, fuzzy rules are trained in such a way to reduce the error 

between fuzzy output and actual targets. Outputs of regression analysis are demonstrated in Figure 6.25. 

According to regression analysis, LONG well log is the key factor in classifying oil production data. 

Figure 6.26 displays the fuzzy surfaces of oil production data versus LONG and GR. As it can be seen, 

production declines rapidly around LONG values of 1000 cps. High oil production was correlated to the 

gamma ray log values of higher than 80 API. Mineralogy based classification results are demonstrated in 

Figure 6.27 to Figure 6.31. The fuzzy surfaces are demonstrated in Figure 6.28. Pick of oil production is 

related to the shaly segments of the formation with more than 50% shale. In Figure 6.29 and Figure 6.30 

the cross-section of the fuzzy surface of mineralogy logs are presented. At zero percent limestone 

segments of the formation, high oil production zones are correlated to 40% to 70% shale. Similarly, at 

zero percent shale intervals, high oil production zones are correlated to the formations with limestone less 

than 20%. Since formations typically consist of multiple minerals, it is necessary to expand the 

classifications to all minerals present in the formation. We propose using ternary classification of the 

minerals. The three groups of the minerals are limestone, shale, and other mineral (combination of 15 

minerals such as chalk, bentonite, chert, etc.). Using the ternary classification, two regions of high 

producing oil are identified from Figure 6.31 with 50% and 85% limestone. 

The third approach of the payzone identification is to predict the oil production profiles for each 

seismic interval. In the ATM region of the Wolfcamp field, seven seismic intervals were identified. In this 

approach for each seismic interval, production profiles were predicted using well logs (high resolution 

well logs), seismic data (sampled time-volume seismic data) and completion data. Production predictions 

are presented in the form of production potentials. Production potentials describe the potential of each 
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interval to produce oil, gas and water. For example, for a given location in the ATM region, total oil, gas 

and water productions are predicted using information of all seven intervals (results are given in Figure 

6.32). Then, by analyzing production potentials (results are given in Figure 6.33 to Figure 6.35) it is 

possible to rank gross thickness of the reservoir. Analysis of oil production potential of all seven intervals 

reveals that for the selected location, interval 6 outperforms other intervals. Interval 6 is also among the 

top gas and low water producers. Thus, Interval 6 at this location is a good candidate for completion. 

Intervals 1, 4, and 5 are observed to be among the top water producing intervals. 

It is necessary to dig dipper in the payzone identification and one possible way might lie in 

understanding of the predicted production logs. Essential information for predicting the production logs 

are well logs. Trained networks establish relationships between well logs and production data. Therefore, 

attempts are made in this section to expose the hidden relationships in the trained network and increase 

understanding of the pay identification. Production logs are predicted at the seismic locations scatter over 

the entire field (schematic is illustrated in Figure 6.36). Histogram of the predicted production values are 

demonstrated in Figure 6.37. As it can be seen, histogram demonstrates the log normal type behavior with 

two distinct classes: low and high production points. Well log data of each corresponding class is 

compared on the histogram of well logs and the results are presented in Figure 6.38. Histogram of well 

logs (blue lines) is obtained using the entire well logs of the field. As it can be seen, the lowest production 

points are corresponding to gamma ray of more than 60 while highest production zones corresponds to 

gamma ray of less than 60. This result may be contradictory to the previous results, especially those 

obtained using fuzzy classification method (refer to Figure 6.28). It should be noted that fuzzy 

classification results are obtained considering the entire production logs while the earlier approach is 

based on then point by point correspondence. A typical well can have a high production zone while the 

rest of the zones are average or low producers.  

  Parallel to the earlier argument, mud logs of the wells are analyzed. Figure 6.40 demonstrates 

the mud logs results of two typical wells along with the gamma ray log. It is evident that most of the 
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intervals are dominated by the shales and clean sand intervals are non-existent. This trend can be seen in 

all the wells with mud logs (25 wells). Therefore, it can be concluded the amount of shale percentages in 

each intervals plays the crucial rule in the production data. This leads to the connection with the fuzzy 

classification results in which it is determined that 40 to 60 shale percentages result higher oil production 

values.     
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Figure 6.21: Typical results of coarse resolution approach: a) best result, b) average result, c) worst result 
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Figure 6.22: Typical results of high resolution approach, top figure: production versus depth versus well 

logs, bottom figure: total cumulative production profiles; best result 
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Well A2 

Well A2 

Figure 6.23: Typical results of high resolution approach, top figure: production versus depth 

versus well logs, bottom figure: total cumulative production profiles; average result 
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Well A3 

Well A3 

Figure 6.24: Typical results of high resolution approach, top figure: production versus depth 

versus well logs, bottom figure: total cumulative production profiles; worst result 
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Figure 6.25: Regression tree analysis of production data and well logs (x1: GR, x2: LONG, x3: PHIN) 

Figure 6.26: Fuzzy surfaces of oil production data and mineralogy logs 
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Figure 6.27: Regression tree analysis of production data and mineralogy well log (x1: Shale, x2: Lime) 

 

Figure 6.28: Fuzzy surfaces of production data and mineralogy logs 
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Figure 6.29: Cross-section of fuzzy surface @ Lime = 0% 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.30: Cross-section of fuzzy surface @ Shale = 0% 
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Figure 6.31: Ternary classification of oil production data and mineralogy logs 
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Figure 6.32: Cumulative oil, gas, and water production profiles 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.33: Oil production potentials for a selected location 
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Figure 6.34: Gas production potentials for a selected location 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.35: Water production potentials for a selected location 
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Figure 6.36: Schematic of seismic locations and production logs 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.37: Histogram of predicted production logs 
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Figure 6.38: Comparison of well log points corresponding to production data: Left: lowest producing point, 

Right: highest producing points (blue lines: fitted well log histogram, red dots: well log points corresponding 

to production data) 

Figure 6.39: Comparison of mud log lithologies and gamma ray log for two typical wells 
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Comparison with Field Data 

Comparison of the outcome of the artificial expert systems with field data is very important. 

During the development of neural networks, predicted results were compared against actual data in order 

to assess the performance of each network. The final stage of the comparison is done by comparing the 

surface map of predicted oil productions and that of actual production map. Actual map of production 

data is supplied at the end of this research to validate the networks. This map is constructed by 

interpolation of production rates of more than 340 wells. Predicted and actual surface maps are 

demonstrated in Figure 6.40. As it can be seen from this figure, the locations of hot spots in two maps are 

comparable suggesting that networks successfully captured the high production zones of the field. On the 

other hand, in terms of cold spots (demonstrated with blue color in predicted map, and by bright green in 

actual map), there is a good correlation between two maps. This is particularly important because the cold 

spot locations are low production zones and are recommended not to drill.  

One of the most important outcomes of this study is the ability to suggest new locations for infill 

drilling wells. Infill drilling well locations is obtained by picking the points with highest predicted 

production rates. At any location where seismic data is available, well log and completion information is 

predicted and fed to well performance networks which predict production data (oil, water, and gas). Then, 

by studying the variation of the production rates spatially, one can pick best locations to drill. Map of 

suggested infill drilling wells is presented in Figure 6.41. These points are selected based on one year 

cumulative oil production. As it can be seen, most of the infill drilling wells are located in the center of 

the field which corresponds to high production rates at these location. 
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Figure 6.40: Comparison of predicted (left image) and actual (right image) surface maps 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.41: Map of predicted infill drilling locations (locations are demonstrated by red circles) 
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Chapter 7  
 

CONCLUSIONS AND RECOMMENDATIONS 

The focus of this research is to study and to characterize tight oil reservoir. This research is 

carried out in two modules. The first module is to generate synthetic well logs using seismic data, and the 

second module is to identify prolific reservoir segments (i.e. payzone identification). Two types of 

synthetic well logs are generated using different seismic data. Low-resolution well logs are predicted 

using averaged seismic attribute, whereas high-resolution well logs are generated using 3D seismic data.  

The major issue in predicting low-resolution well logs is the inability of networks to capture the 

sharp variations of the well logs. This issue tested using over exercises and they confirmed that 1) 

predicted error behavior for different network structures and different training/testing datasets are 

approximately the same 2) the highest error values are related to the peaks of the well logs.  Therefore, 

the use of two types of neural networks is proposed: trend networks and error adjustment networks. Trend 

networks predict the overall behavior of the well logs and error adjustment networks adjust improve the 

predictions of the trend networks. Using error adjustment networks significantly improved the well log 

predictions and correlation coefficients between network outputs and actual well logs  

The second family of synthetic well logs is called as high resolution well logs. Using the sampled 

time-volume seismic data, well logs are predicted for each seismic interval (seven intervals are identified 

in ATM area). Contrary to the low resolution well log prediction, using time-volume seismic data, neural 

network predictions have high correlation coefficient with actual well logs and error adjustment networks 

are not required in this case. However, the number of neural networks is increased from 10 networks (two 

networks for each well log; trend and error networks) to 35 networks (seven networks for each well log 

corresponding to seven seismic intervals).  

The main challenge in payzone identification is the lack of field data to train neural networks. 

Three approaches are proposed to perform payzone identification: low resolution, high resolution, and 
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intervals approaches. In the low-resolution approach, gross pay thickness is divided into four intervals and 

using the trained well performance networks (oil, water and gas) and sampled well logs of each layer, 

respective productions are predicted. Low-resolution approach provided the foundation for next approach, 

high-resolution approach. In this method, one-foot sampled actual well logs are used for performance 

predictions. This results productivity estimates (synthetic production logs) for every 50 feet gross 

thickness of reservoir. High-resolution approach is only applicable for the existing wells however 

classification of production logs and well logs can potentially add more insights about the reservoir.  

Fuzzy logic is used to study the correlation between oil production and well logs (wireline well 

logs and mineralogy well logs). High oil production segments are correlated to GR values higher than 80 

and LONG values less than 1000. Based on mineralogy analysis, high oil production segments are 

correlated to 40% to 70% shale (low lime) and 20% limestone (low shale). Also, studying on the 

histograms of well logs and production logs resulted that high production points are correlated to the 

gamma ray values of 60 or more. Formation in the ATM region is mainly dominated by shales; this is 

confirmed by careful analysis of lithology logs obtained from mud logging.  

High-resolution approach has more accuracy than low resolution approach but it cannot be used 

in the locations with no wells. Therefore, the third approach is devised such that production profiles are 

estimated for the entire field. Using seismic and high resolution well logs of each interval, production 

profiles are predicted. With this approach it is possible to rank all intervals based on their productivity and 

identify the more prolific intervals. Predicted oil productions of third and fifth seismic intervals are 

consistently higher than other intervals.  

Incorporating well logs, seismic, and completion data to the performance networks, it is possible 

to predict oil, water, and gas productions for entire field. Then, locations of infill drilling wells are 

identified by comparing the production at each point. In this study, 100 infill drilling wells are identified 

based on their respective one year cumulative oil productions.    
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This study has shown the applications of neural networks in the reservoir characterization of 

unconventional reservoirs. The recommendations for further studies and analysis are summarized below: 

 The developed methodologies are greatly affected by the data availability and quality. 

Therefore, based on availability of different types of data, one can expand the developed 

algorithms. Using 3D seismic information resulted networks with higher accuracy than 

averaged seismic attributes. Therefore, it is recommended to use 3D seismic information 

because 3D seismic data has higher quality and captures more details of formation than 

that of averaged seismic attributes. In case of pay zone identification, if the data of 

production rates versus formation depth exists, it is possible to train the network to 

identify pay zones. On the other hand, if the core analysis data is available (only 1 core 

data is available in the supplied data set); it is possible to test the conventional pay zone 

identification methods and to identify new cut off values to pick the pay zones (the only 

marker that is currently used is gamma ray values less than 75 API representing clean 

sand segments).  

 Expanding the methodologies to different parts of the Wolfcamp field is another potential 

extension for this work. First, performance of the network at different location should be 

evaluated. Then, depending on the prediction error at new locations, re-training of the 

networks may be required in order to increase the expertise of the networks at new 

locations. However, the methodologies and training procedures remain the same.   

 Extension of the developed methodologies to other unconventional resources such as 

shale gas is recommended for further studies. Shale gas plays crucial rule in supplying 

world energy and production from shale gas field such as Marcellus, Bakken, and Barnett 

are increasing. The proposed workflow is applicable on the shale gas fields however, 

depending on the field properties; different types of data may be required for network 

training procedure. For example, because of existence of natural fractures in many shale 
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gas reservoirs, the use of NMR (nuclear magnetic resonance) well logs are suggested to 

characterize the natural fracture networks.    

 Finally, prediction of infill drilling wells for the newly discovered fields is another 

potential of this study. New fields have seismic data; thus, it is possible to predict the 

well logs. Then, by using the most common completion data (e.g. well properties such 

tubing, pump, and completion parameters); it is possible to predict the production 

surfaces. Then by comparing spatial variations of productions, one can pick infill drilling 

locations for new field. However, the production surface should be updated once new 

wells are drilled and more data becomes available. 
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Appendix A 

 

GRAPHICAL USER INTERFACE  

In order for field engineers to efficiently take advantage of the developed methodologies, 

it is essential to integrate the networks in one user friendly graphical user interface (GUI). The 

interface has the capabilities of providing valuable information for asset managers, geologist, 

production and completion engineers. Schematic of the developed GUI is illustrated in the Figure 

A.0.1. ATM characterization toolbox consists of four panels: 

1. Workspace panel: workspace panel consists of main controls of the software. It is also 

used to demonstrate the outputs and results. 

2. Navigation panel: consisting of 8 tabs, each tab represents a page of the workspace panel 

in which the results and command are available. 

3. Menu panel: General controls such as zooming and panning the graphs, selecting data 

points from a plot and help files are all located on menu panel. 

4. Status panel: status of the program when either neuro-simulation is in progress or 

generating the reports for the user is demonstrated in this panel.    

The toolbox also consists of 8 tabbed pages containing the input controls and outputs of 

the program. In order to run the neuro-simulator, first it is required to select one set of coordinates 

from the Main page of toolbox. Coordinates can be selected either by manual input or by 

selecting any point from the map of available data points. Location summery button provides the 

four closest wells to the selected point with their respective information such as production, API 

number, etc. Depending on the availability of well logs ate the selected, user can import well log 

to the program or let the program to predict the logs. Completion tab enables user to override the 

prediction of any parameter by inputting the respective value of that parameter. Layout of 

completion tab is presented in Figure A.0.2. After providing the necessary information, by 
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clicking on the Run button, neuo-simulators prediction for the selected point starts. On average 

depending on the PC computational power, neu-simulation procedure takes less than 30 seconds. 

Reading seismic data and extracting information from binary seismic files corresponds to two 

third of the CPU time. Well logs are the first outputs of the neuro-simulation, present in tabs 

number 3 and 4, namely Low Res. Logs and High Res. Logs (refer to Figure A.0.3). Production 

data page contains the cumulative and flowrates of oil, water, and gas production at the selected 

location. Payzone tab contains the production potentials of seven seismic intervals.  

It is possible to create report files of all the predicted parameters using Report page. 

Reports are divided into two categories: 

1. Well scale: report of predicted parameters for the selected point. 

2. 2. Field scale: report of all parameters for entire field. 

 The names of the report files are the same as the user supplied name, however depending 

on the requested data type, suffixes added to the end of file name. For example, if user requested 

low resolution log and entered ‘Check’ as the file name and LAS as file format, generated file 

name will be “Check_LR.SGY”. Table A-1 contains definition of file name extensions and 

formats. The last tab of the navigation panel is Surface Maps tab containing the predicted maps. 

Many information are available in this section including the payzone maps (please refer to Figure 

A.0.7).  
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Figure A.0.1: Schematic of GUI’s main page 

 

 

 

 

 

 

 

 

 

 

 

Figure A.0.2: Completion parameters options 
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Figure A.0.3: Prediction results: High-resolution logs 

 

Figure A.0.4: Prediction results: Production data 
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Figure A.0.5: Prediction results: Payzone data 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.0.6: Report tab provides  
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Table A-1: Report files definitions and formst  

Well Scale 

Suffix  Definition Report Formats 

_LR Low resolution log Ascii, xlsx, LAS, SGY 

_HR High resolution log Ascii, xlsx, LAS, SGY 

_completion Completion data  Ascii, xlsx 

_prod Production data Ascii, xlsx, doc 

_payzone Payzone potentials Ascii, xlsx, doc 

Field Scale 

Suffix  Definition Report Formats 

_LR_field Low resolution log xlsx, SGY 

_HR_field High resolution log xlsx, SGY 

_completion_field Completion data  xlsx 

_Production_field Production data xlsx 

_payzone_field Payzone potentials xlsx 

 

 

 

 

 

 

 

 

 

 

 

Figure A.0.7: Surface maps page 
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Appendix B 

 

SEISMIC ATTRIBUTES DEFINITIONS  

Attribute 1: RMS Amplitude (sliding time window 50 ms) 

RMS amplitude provides a scaled estimate of the time envelope. Like energy half 

time and arc length, it is computed in a specific time window. RMS is calculated with the 

following equation: 

     √
 

 
∑  

 

 

   

  
(B-1) 

Attribute 2: Amplitude Acceleration 

Instantaneous amplitude acceleration (t) is defined as the second derivative of the 

logarithm of the reflection strength. It is scaled to have units of     . Like all second-

order attributes, it is widely variable and hence should be interpreted qualitatively and not 

quantitatively. In particular it can have huge values and tends to spike at the same places 

where instantaneous frequency spikes. As a result, scaling this attribute can be difficult.  

Attribute 3: Dominant Frequency (average over 100 ms) 

Instantaneous dominant frequency    𝑡  is defined as the square root of the sum 

of the squares of the instantaneous frequency  𝑡   and the instantaneous bandwidth  

  𝑡 : 
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   𝑡  √   𝑡     𝑡   (B-2) 

 Dominant frequency has units of Hertz values that range from 0 to Nyquist 

frequency and occasionally larger. It is always positive and at least as large as 

instantaneous frequency.  

Attribute 4: Instantaneous Frequency (average over 100 ms) 

 Frequency represents the rate of change of instantaneous phase as a function of 

time. It is a measure of the slope of the phase trace and is obtained by taking the derivate 

of the phase. Instantaneous frequency ranges from –Nyquist to + Nyquist frequency.   

 

Attribute 5: Reflection Strength 

 Reflection strength is the square root of the total energy of the seismic at an 

instant of time. For each time sample, reflection strength is calculated as follows: 

  √𝑡            𝑡      (B-3) 

Attribute 6: Quadrature Trace 

 Quadrature component of the trace is obtained by performing Hilbert transform 

on the recorded trace: 

  𝑡  
 
 𝑡

    𝑡   (B-4) 

  𝑡  is obtained by convolution of recorded trace   𝑡  and phase. 

Attribute 7: Thin Bed Indicator (window length 100 ms) 
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 Thin bed indicator is a hybrid complex attributes obtained by the difference 

between the instantaneous frequency and weighted average instantaneous frequency.  

Attribute 8: Bandwidth (average in a 200 ms window) 

 Instantaneous bandwidth   𝑡  is defined as absolute value of the time rate of 

change of the natural logarithm of the instantaneous amplitude   𝑡  divided by   : 

  𝑡  
 
 𝑡

 |
 
 𝑡

     𝑡  |  (B-5) 

Attribute 9: Response Frequency 

 Response frequency attempts to extract physical meaningful frequency 

information about the localized seismic wavelet. Response frequency is defined by the 

instantaneous frequency calculated at the peak of amplitude envelope.  

Attribute 10: Instantaneous Q Factor (average over 200 ms window) 

 Generally Q is determined in term of the ratio of energy stored in the resonator to 

that of the energy being lost in one cycle: 

  𝑡    
 
 

  
  (B-6) 

Where 
  

  
 denotes the ratio of resonant frequency to its bandwidth.  

Attribute 11: Amplitude Change (average over 100 ms) 

 Amplitude change employs the same computation as instantaneous bandwidth but 

presents it as a signed measure.  

 

Attribute 12: Energy Half-Time (average over 100 ms) 
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 Energy half tie is he relative measure of where seismic energy is concentrated 

within a time window. In any given window, the average time of the trace power can 

computed by: 

𝑡  
∑ 𝑡   

  
   

∑   
  

   

  (B-7) 

Where   are the windowed trace samples. Letting 𝑡  as the time at the window 

center and 𝑡  as the total window length, energy half time becomes: 

        
𝑡  𝑡 

𝑡 
  (B-8) 

Attribute 13: Energy Half-Time (average over 50 ms) 

Please refer to attribute 12 for attribute definition. 

Attribute 14: Thin Bed Indicator (50 ms window length) 

Please refer to attribute 7 for attribute definition. 

Attribute 15: Differentiation 

This attribute is defined by differentiating the trace using Fourier transform.  

Attribute 16: Integration 

This attribute is defined by integrating the trace using Fourier transform.  

Attribute 17: RMS Amplitude (25 ms sliding window) 

Please refer to attribute 1 for attribute definition. 

Attribute 18: Reflection Curvature 

 Reflective curvature is obtained using instantaneous mean curvature.  

 



120 

 

Attribute 19: Absolute Amplitude 

 Calculated simply using the absolute value of the amplitude of original sample.  

Attribute 20: Amplitude Change (average over 50 ms) 

Please refer to attribute 11 for attribute definition. 

Attribute 21: Amplitude Change (average over 200 ms) 

Please refer to attribute 11 for attribute definition. 

Attribute 22: RMS Amplitude (100 ms sliding window) 

Please refer to attribute 1 for attribute definition. 

Attribute 23: Cosine of Phase 

 The recorded trace is the product of amplitude and phase: 

  𝑡    𝑡      𝑡   (B-9) 

Thus, cosine of phase can be described as: 

     𝑡  
  𝑡 

  𝑡 
  (B-10) 

In other words, the cosine of phase is described by the ratio of the recorded trace   𝑡  to 

the reflection strength   𝑡 .  

Attribute 24: Bandwidth (average over 100 ms window) 

Please refer to attribute 8 for attribute definition. 

Attribute 25: Instantaneous Q Factor (average over 100 ms window) 

Please refer to attribute 10 for attribute definition. 

Attribute 26: Dominant Frequency (average over 50 ms window) 

Please refer to attribute 3 for attribute definition. 
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Attribute 27: Arc Length (50 ms sliding window) 

 

 Arc length is a scaled measure of total excursion of a seismic trace in a window. It 

only measures the distance from sample to trace using the following formula: 

  
 

  
∑ √|  𝑖       𝑖 |    

 

   
  (B-11) 

Attribute 28: Arc Length (100 ms sliding window) 

Please refer to attribute 27 for attribute definition. 

Attribute 29: Amplitude Variance (3 traces, 3 lines, 5 samples) 

 Amplitude variance is how much seismic amplitude varies from average 

amplitude within an analysis window. 

Attribute 30: Amplitude Variance (7 traces, 7 lines, 5 samples) 

Please refer to attribute 29 for attribute definition. 
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Appendix C 

 

TRANSFER FUNCTIONS  

Transfer functions are mathematical relationships between input and output. They help mapping 

non-linear problem and stabilize the network during the training process. Many types of transfer 

functions are available depending on the nature of problem. In this study the following transfer 

functions are used:   

Tansig: Hyperbolic tangent sigmoid transfer function 

     
 

           
    (C-1) 

 

Softmax: Softmax transfer function 

 

     
       

           
  

(C-2) 

Radbas: Radial basis transfer function 

                (C-3) 

Stalins: Symmetric saturating linear transfer function 

     {
                 
          
                   

  (C-4) 
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Appendix D 

 

HIGH RESOLUTION NETWORKS PREDICTION RESULTS 

Gamma Ray Logs (GR) 
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Actual ANN Predicted

Well Log GR Layer: 1
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Actual ANN Predicted

Well Log GR Layer: 2
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Actual ANN Predicted

Well Log GR Layer: 4
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Actual ANN Predicted

Well Log GR Layer: 3
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Actual ANN Predicted

Well Log GR Layer: 5
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Actual ANN Predicted

Well Log GR Layer: 6
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Normalized Gamma Ray Logs (GKUT_NRM) 
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Actual ANN Predicted

Well Log GR Layer: 7
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Actual ANN Predicted

Well Log GKUT Layer: 1
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Actual ANN Predicted

Well Log GKUT Layer: 2
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Actual ANN Predicted

Well Log GKUT Layer: 3
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Actual ANN Predicted

Well Log GKUT Layer: 4
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Actual ANN Predicted

Well Log GKUT Layer: 5
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Actual ANN Predicted

Well Log GKUT Layer: 6
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Actual ANN Predicted

Well Log GKUT Layer: 7



130 

 

Neutron Porosity Logs (PHIN) 
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Actual ANN Predicted

Well Log PHIN Layer: 1
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Actual ANN Predicted

Well Log PHIN Layer: 2
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Actual ANN Predicted

Well Log PHIN Layer: 3
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Actual ANN Predicted

Well Log PHIN Layer: 4
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Actual ANN Predicted

Well Log PHIN Layer: 5
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Actual ANN Predicted

Well Log PHIN Layer: 6
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Long Space Neutron Count Rate Logs (LONG) 
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Actual ANN Predicted

Well Log LONG Layer: 1
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Actual ANN Predicted

Well Log PHIN Layer: 7



134 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 1000 2000
0

5

10

15

20

25

30

35

40

45

50

LONG

In
te

rv
a
l

4246134429

0 500 1000
0

5

10

15

20

25

30

35

40

45

50

LONG

4246134777

0 1000
0

5

10

15

20

25

30

35

40

45

50

LONG

4246134594

0 1000
0

5

10

15

20

25

30

35

40

45

50

LONG

4246134640

0 1000
0

5

10

15

20

25

30

35

40

45

50

LONG

4246134505

 

 

Actual ANN Predicted

Well Log LONG Layer: 2
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Actual ANN Predicted

Well Log LONG Layer: 3
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Actual ANN Predicted

Well Log LONG Layer: 4
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Actual ANN Predicted

Well Log LONG Layer: 5
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Actual ANN Predicted

Well Log LONG Layer: 6
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Actual ANN Predicted

Well Log LONG Layer: 7
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Short Space Neutron Count Rate Logs (SHORT) 
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Actual ANN Predicted

Well Log SHORT Layer: 1
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Actual ANN Predicted

Well Log SHORT Layer: 2
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Actual ANN Predicted

Well Log SHORT Layer: 7
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Actual ANN Predicted

Well Log SHORT Layer: 3
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Actual ANN Predicted

Well Log SHORT Layer: 4
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Actual ANN Predicted

Well Log SHORT Layer: 5
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Actual ANN Predicted

Well Log SHORT Layer: 6
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Actual ANN Predicted

Well Log SHORT Layer: 7
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