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Abstract

If G is a connected Lie group, the Kasparov representation ring KKG(C,C) con-

tains a singularly important element—the γ-element—which is an idempotent relating

the Kasparov representation ring of G with the representation ring of its maximal com-

pact subgroup K. In the proofs of the Baum-Connes conjecture with coefficients for

the groups G = SO0(n, 1) ([Kas84]) and G = SU(n, 1) ([JK95]), a key component is an

explicit construction of the γ-element as an element of G-equivariant K-homology for

the space G/B, where B is the Borel subgroup of G.

In this thesis, we describe some analytical constructions which may be useful

for such a construction of γ in the case of the rank-two Lie group G = SL(3,C). The

inspiration is the Bernstein-Gel’fand-Gel’fand complex—a natural differential complex of

homogeneous bundles over G/B. The reasons for considering this complex are explained

in detail.

For G = SL(3,C), the space G/B admits two canonical fibrations, which play

a recurring role in the analysis to follow. The local geometry of G/B can be modeled

on the geometry of the three-dimensional complex Heisenberg group H in a very strong

way. Consequently, we study the algebra of differential operators on H. We define

a two-parameter family H(m,n)(H) of Sobolev-like spaces, using the two fibrations of

G/B.

We introduce fibrewise Laplacian operators ∆X and ∆Y on H. We show that these

operators satisfy a kind of directional ellipticity in terms of the spaces H (m,n)(H) for
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certain values of (m,n), but also provide a counterexample to this property for another

choice of (m,n). This counterexample is a significant obstacle to a pseudodifferential

approach to the γ-element for SL(3,C).

Instead we turn to the harmonic analysis of the compact subgroup K = SU(3).

Here, using the simultaneous spectral theory of the K-invariant fibrewise Laplacians on

G/B, we construct a C∗-category A and ideals KX and KY which are related to the

canonical fibrations. We explain why these are likely natural homes for the operators

which would appear in a construction of the γ-element.
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Chapter 1

Introduction

One of the fundamental examples of a C∗-algebra is the reduced C∗-algebra of

a discrete group. It is defined simply: if G is a discrete group then its reduced C ∗-

algebra C∗
r
G is the norm-closed algebra of operators on L2(G) generated by the regular

representation. In the last couple of decades it has been realized that several famous

problems in classical topology and geometry could be transformed into questions about

the K-theory of reduced C∗-algebras.

The limitation now is that, for a general discrete group G, the reduced C∗-algebra

can be very complicated. The holy grail is the Baum-Connes Conjecture [BCH94], which

relates the operator K-theory of C∗
r
G to a quantity from classical topology. But the

conjecture is only known for a relatively small class of discrete groups. For instance, it

is not known for the group SL(3,Z).

In this thesis, we introduce some new tools which are likely to be useful for future

work on the Baum-Connes Conjecture. The motivation is work of Kasparov. In [Kas84],

Kasparov proved for the semisimple Lie groups SO0(n, 1) a strong generalization of the

Baum-Connes conjecture which is hereditary, in that it passes to any closed subgroup.

With much work, the method was extended by Julg and Kasparov ([JK95]) to

the groups SU(n, 1). These groups, like SO0(n, 1), are rank-one simple Lie groups.
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Generalizing the method to higher-rank semisimple Lie groups, however, has been a

stumbling block.

In order to motivate the content of this thesis, it is necessary to understand the

idea of Kasparov’s proof. We will give a survey of that in Chapter 2. For the moment,

let us paraphrase the proof in one sentence by saying that one of the key steps is the

packaging of some classical homological data—in the case of SO0(2n+ 1, 1) it is the de

Rham complex for the homogeneous space S2n—into an analytical form—a Fredholm

operator, with some additional properties. It is the resulting analytical data which allows

us to compute the operator K-theory of the reduced C∗-algebra.

This package of analytical data is called the γ-element for G (it is an element of

equivariant K-homology, which we will introduce later). It is the construction of the

γ-element for SL(3,C) which motivates the present work. It is important to note that

the construction of γ is not the only part of Kasparov’s proof which presents problems

for higher-rank Lie groups. But it will be necessary for any future work along Kasparov’s

lines to have a model for γ similar to those already made in [Kas84] and [JK95]—we will

say more about the crucial features of these constructions later in this chapter. Such a

model has not been achieved for any higher-rank Lie groups.

The reasons for being optimistic about a possible construction of γ for higher-

rank Lie groups are as follows. Firstly, there is the existence of more refined homological

tools. Bernstein, Gel’fand and Gel’fand [BGG75] in the 1970s introduced a homological
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complex tailored to semisimple Lie groups. This will be the centrepiece of the homo-

logical side of this thesis. Secondly, there is the introduction of more refined analytical

structures. Bernstein, in his 1998 ICM address [Ber98], suggested a method for defining

a Sobolev theory tailored to semisimple Lie groups. Bernstein’s ideas served as inspi-

ration for the much of what follows, although the approach we take here will be fairly

different in character (see Chapters 5 and 6).

In this thesis, we explore the analysis of the differential operators which appear

in the Bernstein-Gel’fand-Gel’fand complex for SL(3,C).

The content of the thesis is as follows. We begin in Chapter 2 with a rapid survey

of the Baum-Connes Conjecture, and Kasparov’s approach to it. In particular, we define

the γ-element. We also describe explicit constructions of the γ-element for the groups

SL(2,C), SU(2, 1) and SL(2,C) × SL(2,C).

We note from the outset that the last of these examples is particularly relevant to

us. In that case, the γ-element is built from the Dolbeault complex of the homogeneous

space

X = CP1 × CP1.
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But it is crucial to the construction that we use an additional fact: the Dolbeault complex

in this case splits as a product of two copies of the Dolbeault complex for CP1,

Ω0,1
CP1 ⊗ Ω0,0

CP1

−1⊗∂

**TTTTTTTTTTTTTTTT

Ω0,0
CP1 ⊗ Ω0,0

CP1

∂⊗1
44jjjjjjjjjjjjjjjj

1⊗∂ **TTTTTTTTTTTTTTTT
Ω0,1

CP1 ⊗ Ω0,1
CP1

Ω0,0
CP1 ⊗ Ω0,1

CP1
∂⊗1

44jjjjjjjjjjjjjjjj

Stated differently, we have two marked “complex” directions on X along which to differ-

entiate, given by the fibres of the two coordinate projections,

CP1 × CP1

τX

yyssssssssss τY

%%LLLLLLLLLL

CP1
CP1.

This split Dolbeault complex is the Bernstein-Gel’fand-Gel’fand complex for the

group SL(2,C) × SL(2,C). In Chapter 3 we introduce the Bernstein-Gel’fand-Gel’fand

(BGG) complex in generality. The BGG complex is a differential complex which is

associated to a complex semisimple Lie group. It is believed that the BGG complex will

be useful for γ-element constructions for arbitrary complex semisimple Lie groups.

From Chapter 4 we specialize completely to the group G = SL(3,C). We will first

provide a concrete model of the BGG complex, including a formula in local coordinates.

This will begin with a discussion of the geometry of the underlying homogeneous space,

X = G/B, where B is the Borel subgroup of lower triangular matrices. This space comes
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equipped with two fibrations

X
τX

}}{{
{{

{{
{{ τY

""DD
DD

DD
DD

CP2
CP2.

The fibres of these foliations give us two marked directions along which we can differen-

tiate, analogous to those described in the case of SL(2,C) × SL(2,C) above.

In the final two chapters we will take two different approaches to studying the

BGG complex analytically, both of which are designed to take account of the marked

directions just mentioned. The first method, in Chapter 5, is to use a local picture.

The geometry of the space X is locally modelled on the three dimensional complex

Heisenberg group H. We will define a bifiltration, ie a two-parameter notion of “order”,

on differential operators on H, and a related family of Sobolev spaces. We will also prove

one negative result which shows that this two-parameter order can not be extended to

a larger class of operators that one might hope to call “directional pseudodifferential

operators.”

In Chapter 6 we describe the second approach, which is to use harmonic analysis

on the maximal compact subgroup K = SU(3). In this picture, differentiation along the

fibres of the foliations τX and τY is related to the action of the Lie subalgebras

sX =





0
su(2)C 0
0 0 1





and
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sY =





1 0 0
0
0

su(2)C





of su(3)C. We describe the inter-relation of the spectral theory of these two non-

commuting subalgebras.

Finally, we define a C∗-subalgebra A of the bounded operators on L2(X ), as well

as two ideals KX and KY in A. For future work on the group SL(3,C), these algebras

should play the roles which are fulfilled by the algebras

A = B(H)⊗ B(H),

KX = K(H)⊗ B(H)

and

KY = B(H)⊗K(H)

(with H = L2(CP1)) in the construction of the γ-element for SL(2,C) × SL(2,C). We

conclude by indicating why this is so.
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Chapter 2

The γ-Element

2.1 The Baum-Connes conjecture

Although we will not be attacking the Baum-Connes Conjecture itself in this

thesis, it is certainly the motivation for all of the present work. For this reason, we will

take the time to provide a quick introduction to the Baum-Connes Conjecture, and the

mathematics of Kasparov’s approach to the conjecture. This also serves as a convenient

narrative in which to introduce many of the basic concepts which will appear in the body

of the thesis.

Let us begin by clarifying the ideas of the previous chapter. The place to start—

the theory which is underpinning all of this—is Kasparov’s analytic development of

K-homology, and its generalization, KK-theory. Since the majority of the KK-theory

we use will be K-homology, let us begin with that.

In introducing analytic K-homology, it is common to begin with the non-equi-

variant theory, that is, without the presence of the action of a group G. However,

since the presence of the group is fundamental to the Baum-Connes conjecture, we will

go for the throat here and make the entire theory equivariant from the start. In the

classical topological situation, this would mean working with G-spaces, ie, topological

spaces equipped with a continuous action of G. Algebraically, this means equipping each
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algebra of functions with the pull-back action of G. From there it is a short step to

define the noncommutative topological analogue of a G-space.

Definition 2.1. A G-C∗-algebra is a C∗ algebra A with a continuous action of G upon

it by ∗-automorphisms. The continuity condition is that for each a ∈ A, the map

G → A

g 7→ g · a

is continuous.

A C∗-algebra A is Z/2Z-graded (often abbreviated to just graded) if it decomposes

as a direct sum A = A(0) ⊕A(1) of two closed *-invariant subspaces, such that

A(i).A(j) ⊆ A(i+j) (i, j ∈ Z/2Z).

A Hilbert space H is Z/2Z-graded if it decomposes as a direct sum H = H(0)⊕H(1). A

representation of A on H is called graded if it respects the gradings of A and H in the

following sense:

A(i).H(j) ⊆ H(i+j) (i, j ∈ Z/2Z).

An operator on H is degree 0 if it preserves the grading subspaces of H, and

degree 1 if it interchanges them. When we involve the group G, we will always require

that representations of G are representations by degree 0 operators,
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An automorphism of A is said to be graded if it preserves the subspaces A(0) and

A(1). For a graded G-C∗-algebra we require that the automorphisms of the action of G

are graded.

Remark 1. For the reader unfamiliar with this material, a grading should be viewed as

nothing more than a convenient organizational trick. A graded Hilbert space is really

just a pair of Hilbert spaces, H(0) and H(1). The C∗-algebras we encounter will almost

universally be given the trivial grading (ie, all elements have degree 0) which means that a

graded representation is just a separate representation on each of the two Hilbert spaces.

Likewise for representations of the group. The only elements we shall encounter which

are not of degree 0 will be certain self-adjoint operators of degree 1. Such an operator

decomposes as a pair of mutually adjoint operators interchanging the two Hilbert spaces,

which is to say that it could be adequately described as a single operator from H(0) to

H(1).

Definition 2.2. Let A be a G-C∗-algebra. A G-equivariant graded Fredholm module

over A is a collection of data (H, π, φ, F ) where:

• H is a graded Hilbert space,

• π is a representation of G on H,

• φ is a covariant representation of A on H, that is, φ satisfies

π(g)φ(a)π(g−1) = φ(g · a) (a ∈ A, g ∈ G),
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• F is a self-adjoint operator on H of degree 1 which is G-continuous, meaning that

the map

g 7→ π(g)Fπ(g−1) (g ∈ G)

is continuous in the operator norm,

and such that, for all a ∈ A and g ∈ G, the operators

(i) φ(a) (F 2 − 1),

(ii) [φ(a), F ], and

(iii) φ(a) (π(g)Fπ(g−1)− F )

are all compact.

Remark 2. It is common convention to omit mention of any member of the quadruple

(H, π, φ, F ) which is deemed “obvious”.

Note that if A is unital, then the factors φ(a) in (i) and (iii) above may be omitted.

Definition 2.3. The equivariant K-homology group K0
G

(A) is the set of G-equivariant

graded Fredholm modules over A modulo homotopy. We define an addition operation ⊕

on K0
G

(A) by direct sum. It is a theorem that this makes K0
G

(A) into a group (see, for

instance, [HR00, §8]).

If X is a locally compact Hausdorff G-space, and C(X) is the associated G-C∗-

algebra of functions on X, then we denote

KG
0

(X) = K0
G

(C(X)).



11

We have been deliberately vague here about the definition of homotopy of Fred-

holm modules. The most elegant definition is produced using Hilbert modules, which we

will introduce in the next section. Instead, let us just note that a common example1 of

a homotopy is a family of graded Fredholm modules ((H, πt, φt, Ft), for t ∈ [0, 1], all on

the same Hilbert space, with each of the maps

t 7→ πt(g), (g ∈ G)

t 7→ φt(a), (a ∈ A)

t 7→ Ft

being strongly continuous.

Let us illustrate Definition 2.2 with a few examples. Kasparov’s original mo-

tivation for making this definition was to formalize the properties of elliptic pseudo-

differential operators which arose in the proof of the Atiyah-Singer Index Theorem. In

that case, A = C(X) for some closed manifold X, with the trivial grading (ie, all ele-

ments declared to be degree 0). To begin with, let us suppose G is the trivial group,

which renders all appearances of G in the definition redundant. If D is a first-order el-

liptic differential operator between vector bundles E0 and E1 over X, then we can form

a graded Fredholm module over C(X) as follows. Let H = L2(X;E0) ⊕ L2(X;E1) be

the space of L2-sections of the bundles (graded according to that decomposition), with

1This example almost suffices to characterize the notion of homotopy in Definition 2.2. If one
adds a second equivalence relation by introducing the notion of degenerate Fredholm modules
then one recovers the correct definition of homotopy. See [HR00].
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the representation of A by multiplication operators. Put

D =

(

0 D∗

D 0

)

,

with respect to that decomposition. This is an unbounded, formally self-adjoint operator,

which we convert to a bounded operator in a standard way:

F =
D

√

1 + D2
.

We will refer to this procedure as “normalizing” the operator D. That this data defines

a Fredholm module is a consequence of the theory of elliptic pseudodifferential operators

(see, for instance, [HR00, §10]).

Note that associated to any Fredholm operator F on a Hilbert space H there is

an integer—the Fredholm index,

Index(F ) = dimkerF − dimcokerF,

which is dependent only on the homotopy class of F . In the present case, since F is

self-adjoint the index will be zero, but in the spirit of Remark 1, it has a nontrivial

integer invariant:

Index(F ) = dimkerF0 − dimcokerF0,

where F0 is the component of F mapping H(0) to H(1). In this way, we obtain a map

Index : K0(X)→ Z,
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for any space X admitting an action of the trivial group (!). If we identify Z with

K0(C) = K0(C∗
r
{1}) (which one would need to do in a natural way2), we are starting

to see the first hints of the Baum-Connes map.

Of course, this map will not be an isomorphism for arbitrary X. It will be an

isomorphism for X being a point, or for X being contractible if we enlarge the class of

manifolds considered. In order to make more interesting examples of isomorphisms we

need to generalize the above.

If G is a discrete group then often the Baum-Connes map for G can be roughly

phrased in the same language. Let us suppose that G is the fundamental group of

some closed manifold3 M , and let X be the universal cover of M . Let D be an elliptic

differential operator D between bundles E0 and E1 over M . We could, of course, take

the ordinary Fredholm index of this operator, but in this scenario an index for D can be

defined which has value in K(C∗
r
G), rather than Z. Here is a very quick description of

that procedure, following [Hig98].

Firstly, pull back the bundles to bundles Ẽ0 and Ẽ1 over X. The differential

operator D lifts to an operator D̃ between these bundles. Next, one expands the bundles

Ẽ0 and Ẽ1 by tensoring with the trivial bundle

C∗
r
G×X

2This glib statement is sweeping an enormous amount under the rug—the missing details
basically amount to the Atiyah-Singer Index Theorem itself.

3To make this construction work, it would suffice just to have a homomorphism of π1(M) into
G.
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over X. The operator D̃ acts naturally between these bundles (as D̃⊗ 1). The group G

acts “diagonally” on this enlarged bundle by

G× (Ẽ0 ⊗ C
∗
r
G) → (Ẽ1 ⊗ C

∗
r
G)

g · (v ⊗ x) 7→ g · v ⊗ λ(g)x.

If we quotient by this action, we end up with a differential operator on a bundle over M

whose fibres are finitely generated projective C∗
r
G-modules, and a differential operator

DG between them. The kernel and cokernel of this operator will also C∗
r
G-modules. If

we are lucky, they will be finitely generated and projective, and we can put

IndexG(D) = [kerDG]− [cokerDG] ∈ K(C∗
r
G).

If not, a perturbation of the kernel and cokernel will be finitely generated projective

modules, and we define the index using those instead.

The point is that, by generalizing the standard index construction for elliptic dif-

ferential operators to the equivariant situation, one can define a more refined index than

the standard integer invariant. To generalize further one needs to abstract the analysis

from this construction so that it can be applied directly to an equivariant Fredholm mod-

ule. The result of this abstraction, which was suggested by Baum, Connes and Higson

[BCH94], is that for any suitable G-space X there is an analytical index map

IndexG : KG
0

(X)→ K(C∗
r
G). (2.1.1)
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The essence of the Baum-Connes conjecture is that the collection of such indices com-

pletely determines K(C∗
r
G).

We should explain what is meant by a “suitable” G-space in the preceding re-

marks.

Definition 2.4. Let X be a Hausdorff G-space. The action of G on X is proper (and

X is called a proper G-space) if, for every x, y ∈ X, there exist neighbourhoods Ux of x

and Uy of y such that the set

{g ∈ G | g · Ux ∩ Uy 6= 0}

is compact.

Definition 2.5. A G-space X is called G-compact if the quotient space X/G is compact.

The G-index (2.1.1) can be defined whenever X is a proper G-compact G-space.

For any locally compact group G there is a universal proper G-space, in the

following sense: there exists a proper G-space, denoted EG, such that any proper G-

space X admits a continuous G-equivariant map

f : X → EG,

and any two such maps can be joined by a homotopy of G-equivariant maps. What is

more, the space EG is unique, up to G-equivariant homotopy.

If the universal properG-space EG is G-compact, then it follows that all G-indices

can be realized as images of equivariant Fredholm modules over EG. In this case, we
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define the Baum-Connes map (or analytic assembly map) to be the map

µ = IndexG : KG
0

(EG)→ K(C∗
r
G).

If EG is not G-compact, then we need to adjust the left-hand side, by defining

RKG
0

(EG) = lim
X⊆EG

G-compact

KG
0

(X),

a direct limit over the directed system of G-compact subsets of EG. One checks that

the G-index is natural with respect to the inclusion of G-invariant subsets, and hence

the direct limit of the index maps of all G-compact subspaces of EG yields a map

µ : RKG
0

(EG)→ K(C∗
r
G).

Conjecture 2.6 (The Baum-Connes Conjecture). The Baum-Connes assembly

map

µ : RKG
0

(EG)→ K(C∗
r
G)

is an isomorphism.

For a wealth of examples of the universal spaces EG, see [BCH94]. We will be

interested in one particular case: if G is a connected Lie group, and K is a maximal

compact subgroup of G (unique up to conjugacy) then EG = G/K.
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2.2 The Dirac-dual Dirac method

We now turn to Kasparov’s approach to the Baum-Connes conjecture. As men-

tioned earlier, one of the great advantages of Kasparov’s approach is that it actually

proves a stronger conjecture, in which the equivariant K-homology group KG
0

(EG) is

allowed to take “coefficients” in an arbitrary G-C∗-algebra.

The key idea to introducing K-homology “with coefficients” is to replace Hilbert

spaces, which are modules over C, with Hilbert modules, which are the analogous modules

for general C∗-algebras.

Definition 2.7. Let B be a C∗-algebra. Let E be a right-module over B, ie a vector

space equipped with an action of B on the right. A B-valued inner product on E is a

sesquilinear map

〈·, ·〉 : E × E → B

(conjugate-linear in the first variable) which satisfies the following analogues of the ax-

ioms for a C-valued inner product:

(i) 〈e, f.b〉 = 〈e, f〉b for b ∈ B, e, f ∈ E ,

(ii) 〈e, f〉 = 〈f, e〉∗, for e, f ∈ E ,

(iii) 〈e, e〉 is a positive element of B for all e ∈ E , and 〈e, e〉 = 0 implies e = 0.

A B-valued inner product induces a norm on E by

‖e‖ = ‖〈e, e〉‖
1
2
B .
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The module E is called a Hilbert B-module if it is complete with respect to this norm.

An operator T on a Hilbert B-module E is called adjointable if there exists an

operator T ∗, called its adjoint, such that

〈e, Tf〉 = 〈T ∗e, f〉

for all e, f ∈ E .

The idea of a Hilbert module is important even in the commutative case. If

B = C0(X) for some locally compact topological space X, then the space of continuous

sections, vanishing at infinity, of a vector bundle E over X is a module over C0(X), by

pointwise multiplication. A Hilbert module structure on this module is equivalent to

a Hermitian structure on the bundle: taking pointwise inner products of two sections

yields an inner product valued in C0(X).

Replacing Hilbert spaces by Hilbert modules in Definition 2.2 leads one to the

equivariant KK-theory group KKG(A,B). Since we will only need the full equivariant

KK-theory groups for the background material in this introduction, we will not give the

complete definition here. We refer the reader to [Hig90] or [Bla86].

With this in hand, we can now describe the left-hand side of the Baum-Connes

conjecture with coefficients. This is the group

RKKG(C(EG), A)
def
= lim

X⊆EG
G-compact

KKG(C0(X), A),
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where A is allowed to be any G-C∗-algebra.

For the right-hand side, we need to form a reduced group C∗-algebra with coeffi-

cients in A. This is the reduced crossed-product algebra.

Definition 2.8. Let G be a locally compact topological group, with Haar measure dg,

and let A be a G-C∗-algebra. The convolution algebra of G with coefficients in A is the

space Cc(G,A) of continuous compactly-supported A-valued functions on G, equipped

with the twisted convolution product

f1∗f2 (g) =

∫

G
f1(g′) g′·(f2(g′−1g)) dg′ (f1, f2 ∈ Cc(G,A)).

We make a Hilbert A-module L2(G;A) from Cc(G,A) by completing in the fol-

lowing way. Note that Cc(G,A) is a right A-module, by pointwise right-multiplication.

It has a twisted involution ∗ defined by

f∗(g) = δ(g)−1 g ·(f(g−1)∗), (f ∈ Cc(G,A))

where δ : G → R
+ is the modular function of G such that d(g−1) = δ(g)−1 dg. We

define an A-valued inner product by

〈f1, f2〉 =

∫

G
f∗
1
(g)f2(g) dg (f1, f2 ∈ Cc(G,A)).

Then L2(G;A) is the completion of Cc(G,A) with respect to the norm ‖f‖ = ‖〈f, f〉‖
1
2
A.
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Now define a representation of Cc(A,G) on L2(A;G) by

(f.ξ)(g) =

∫

G
(g−1 · (f(g′))) ξ(g′−1g) dg′ (f ∈ Cc(G,A), ξ ∈ L2(G;A) ).

This is a representation by adjointable operators, with the adjoint operation correspond-

ing to the involution on Cc(A,G). The reduced crossed-product algebra C∗
r
(G;A) is the

completion of Cc(G,A) in the operator-norm on L2(G;A).

Defining the Baum-Connes assembly map with coefficients means introducing

coefficients into arguments which we have already omitted for brevity. Therefore, the

reader is referred [BCH94] for the definition of the map. But assuming an appropriate

generalization of the previous G-index maps can be made, we now have:

Conjecture 2.9 (The Baum-Connes Conjecture with Coefficients). For any G-

C∗-algebra, the analytic assembly map

µ : RKKG(C0(EG), A)→ K(C∗
r
(G;A))

is an isomorphism.

The real power of KK-theory is not done justice by describing it as “K-homology

with coefficients”. The great virtue of the theory is the existence of a product4

KKG(A,B)×KKG(B,C)→ KKG(A,C),

4There are far more general product constructions than that mentioned here. See [Hig90] or
[Bla86].
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for G-C∗-algebras A, B and C. This product structure lies at the heart of most applica-

tions of KK-theory, not the least of which is Kasparov’s approach to the Baum-Connes

Conjecture.

The algebraic structure which this product endows upon KK-theory is that of a

category. More precisely, KKG is an additive category whose objects are G-C∗-algebras.

The KK-theory group KKG(A,B) is the additive group of morphisms between two

specified objects A and B in this category. To provide a different insight into this, let us

mention without details that there is a natural construction of an element of KKG(A,B)

from any G-equivariant ∗-homomorphism φ : A→ B. In this way, one can view KKG as

an enlargement of the category of G-C∗-algebras and G-equivariant ∗-homomorphisms

(considered modulo homotopy). The additional morphisms in the category KKG can

be explained by the fact that KK-elements are used not to carry C∗-algebra elements

from A to B, but to carry K-theory classes from K(A) to K(B). While this job can

certainly be done using a *-homomorphism, it can also be achieved with various other

constructions.

This is the perspective on KK-theory that we will take for the remainder of this

Chapter. It is worth remarking that, as every category should, each object A has an

associated identity element, which we denote by 1A (or if the C∗-algebra A is clear, just

1).

One consequence of this categorical viewpoint is that we have a new notion of

equivalence among G-C∗-algebras—one which is weaker than isomorphism. Two G-

C∗-algebras A and B are KKG-equivalent if there exists an invertible morphism in

KKG(A,B). In that case, A and B will have exactly the same equivariant K-theory
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andK-homology. For example, equivalence inKKG includes the notion of strong Morita

equivalence.

This new idea of equivalence explains the utility of considering the Baum-Connes

Conjecture with Coefficients. For if we use well-chosen coefficients, the conjecture can

actually become easier to prove. Specifically, if the coefficient algebra A is A = C0(X)

for some proper G-space X then Conjecture 2.9 is known to hold. But now, heuristically,

the conjecture should also hold true for coefficients in any G-C∗-algebra which is KKG-

equivalent to C0(X). In particular, if the algebra C (with the trivial G-action) is KKG-

equivalent to C0(X), then the original Baum-Connes Conjecture for G should hold. This

idea, when made rigorous, is Kasparov’s approach.

Kasparov also provided a candidate for such a KKG-equivalence when G is a

connected Lie group.

Theorem 2.10 (Kasparov). Let G be a connected Lie group, and K a maximal compact

subgroup of G. Then the tangent bundle X = T (G/K) of the symmetric space G/K, is

a proper G-space, and there exist elements

α ∈ KKG(C0(X),C) and β ∈ KKG(C, C0(X))

such that

αβ = 1 ∈ KKG(C0(X), C0(X)).

The elements α and β are the “Dirac” and “dual Dirac” elements after which

Kasparov’s method is named.
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At this point, it is clear that the element

γG = βα ∈ KKG(C,C)

is of crucial importance. The element γG turns out to be independent of the choice of

elements α and β and of the proper G-space X, as long as they satisfy the result of

Theorem 2.10. This is the γ-element for the group G, and it is the focus of everything

that follows.

We know that if γG = 1, then the Baum-Connes Conjecture holds for G. For

instance, γG = 1 for connected amenable Lie groups ([Kas88]). It is also known that

γG = 1 for the simple rank-one Lie groups SO0(n, 1) and SU(n, 1), and their products.

These latter results were proven in [Kas84], [JK95] by using explicit constructions of

the γ-elements as elements in the equivariant K-homology of the homogeneous space

G/B, where B is the Borel subgroup on B. We will explain this terminology in the next

section.

However, it is also known that γG 6= 1 for any group with property T, and in

particular for every higher-rank Lie group. Nevertheless, the γ-element is of fundamental

importance in understanding the equivariant KK-theory of Lie groups, as we shall see

in the next section, and it will almost certainly play a key role in any approach to the

Baum-Connes Conjecture for discrete subgroups of these groups.
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2.3 The γ-element of a semisimple Lie group

The goal of the present project, towards which this thesis is a first step, is to

provide an explicit model for the γ-element for the group G = SL(3,C), similar to those

already known for the above rank-one Lie groups. What we mean by this is that we wish

to provide an explicit SL(3,C)-invariant graded Fredholm module—ie, a graded Hilbert

space with a representation of SL(3,C) and a Fredholm operator upon it—whose class

in KKG(C,C) is γ. We desire that this model be of a particular form, which we will

describe shortly.

In this section we will describe a method, once again due to Kasparov, for recog-

nizing such a model in the case of a semisimple Lie group G. But before doing so, let us

first make a few comments about γ-elements in general.

In fact, let us start with some remarks about the home of the γ-element: the

group KKG(C,C). Because of the product in KK-theory, this KK-group is actually

a ring. This ring is of singular importance in equivariant KK-theory. It is often called

the Kasparov representation ring, for reasons which we will explain shortly, and it earns

a special notation: R(G).

To understand the name, we must flesh out the details of its definition. Unwinding

Definition 2.2 with the aid of Remark 1, an element of R(G) is given by a pair of unitary

representations of G,

π0 : G→H(0),

π1 : G→H(1),
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and a G-continuous operator

F : H(0) → H(1)
,

which is essentially unitary (ie, F ∗F − 1 and FF ∗− 1 are compact operators—in partic-

ular, F is Fredholm) and which almost intertwines the two representations, in the sense

that

π1(g)F − Fπ0(g)

is a compact operator for all g ∈ G.

Heuristically, we think of the operator F as instituting a “difference” of the two

representations. Consider the case of a compact group, which we now denote by K. In

this case, we can replace F by an averaged version,

F ′ =

∫

K
π1(k)Fπ0(k)−1 dk,

which is homotopic to F . But now π1(k)F ′π0(k)−1 = F ′ for all k ∈ K, so that F is a

genuine intertwiner. Being Fredholm, the kernel and cokernel of F ′ are finite dimensional

representations of K. The formal difference

(kerF ′)	 (cokerF ′)

is a virtual representation of K, that is, a direct sum of irreducible representations of

K whose multiplicities are permitted to be negative. Virtual representations themselves

form a ring under direct sum and tensor product. This is the classical representation
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ring of K, as known to representation theorists. With some small amount of extra

work, the above process shows that the classical representation ring and the Kasparov

representation ring are isomorphic for compact groups.

The special role of R(G) in KKG comes from the fact that, in addition to the

KK-product already mentioned, there is also an external product in KK-theory, which

is a map

KKG(A,B)×KKG(C,D)→ KKG(A⊗ C,B ⊗D),

for G-C∗-algebras A, B, C andD. Since A⊗C = A for any G-C∗-algebra A, the external

product makes every KKG-group into a module over the ring R(G). (A point needs to

be made about the module action of R(G) upon itself: it does indeed agree with the

product already mentioned, which means that we can take products in R(G) without

confusion.)

Within this singularly important KK-group R(G), γG is a singularly important

element. To understand its singular importance, note first that for any subgroup H of

G, there is an obvious restriction homomorphism

ResG
H

: KKG(A,B)→ KKH (A,B).

Theorem 2.11. Let G be a connected Lie group. The γ-element is an idempotent in

R(G). Moreover, if K is a maximal compact subgroup of G, then the restriction map

from R(G) to R(K) is split-surjective, with kernel (1−γ)R(G). Hence, R(K) ∼= γR(G).
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In other words, the γ-element marks out a part of R(G) isomorphic to the ring

R(K), which is a classical and well-understood object.

At this point, let us completely restrict our attention to semisimple Lie groups

G. Let B denote a Borel (ie, minimal parabolic) subgroup of G. In this work we will

be almost entirely concerned with the groups SL(n,C) and SL(n,R), so rather than give

general definitions, let us simply note for now that in these groups, B is the subgroup of

upper-triangular matrices. General definitions, will be given in Section 3.3.

If X is a proper G-space, then it is also a proper B-space. It follows that the same

elements α and β which define the γ-element for G, also serve to define the γ-element

for B. In other words,

ResG
B
γG = γB .

But the group B can be contracted onto its maximal compact subgroup T by a contin-

uous family of automorphisms. This allows any representation of B to be continuously

deformed to a representation which factors through T . As a consequence, the restriction

map from R(B) to R(T ) is an isomorphism. Since γT = 1 by compactness, this shows

that γB = 1.

The symmetric space G/B is compact. Because of this, there is a map of C∗-

algebras

ι : C→ C(G/B),

including C as multiples of the unit. With this, one can take any ξ ∈ KKG(C(G/B),C),

and forget its C(G/B)-representation to see it as an element ofKKG(C,C). This process
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is denoted by the map ι∗ : KG
0

(G/B)→ R(G). Coupling this with the observation that

γB = 1 will suggest that we may look for a model of γG as an elliptic differential operator

(or some variant thereof) over the space G/B.

To see why this is so, we will need the induction map on equivariant KK-theory.

Let H be a subgroup of G. The induction map, in its most elementary form, is a

homomorphism

IndG
H

: R(H) = KKH(C,C)→ KKG(C0(G/H), C0(G/H)),

which is defined in strong analogy with induction for ordinary group representations (see,

for instance, [Bla86, §20.5]). Of course, it can also be generalized enormously. We will

need only a small generalization: if X is a G-space which admits a (fixed) G-equivariant

map to G/H, then the induction homomorphism can be extended to a map

IndG
H

: R(H) = KKH(C,C)→ KKG(C0(X), C0(X)).

The relationship between induction and restriction is as follows.

Lemma 2.12 (Kasparov). [Kas88] Let G, H and X be as above. The map

IndG
H

ResG
H

: R(G)→ KKG(C0(X), C0(X))

is given by

ξ 7→ ξ ⊗ 1C0(X).
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The map

Res
G
H
Ind

G
H

: R(H)→ KK
H

(C0(X), C0(X))

is given by

η 7→ η ⊗ 1C0(X).

The following theorem encapsulates the technique which we will use to construct

the γ-element for a semisimple group G. It is an observation first noted by Kasparov in

his work on Lorentz groups [Kas84].

Theorem 2.13. Suppose that θ ∈ KKG(C(G/B),C) is sent by the map

KKG(C(G/B),C)
ι∗ // R(G)

ResG
K // R(K)

to 1 ∈ R(K). Then ι∗θ is the γ-element in R(G).

Remark 3. The map KKG(C(G/B),C) → R(K) in the theorem is just a bunch of

forgetting. One starts with a G-equivariant Fredholm module over C(G/B), exactly as

laid out in Definition 2.2, and then one forgets first the action of C(G/B) and secondly

all of the representation of G except for the representation of K.

Proof. In a result such as this, the categorical interpretation of KKG becomes extremely

convenient. Firstly, the homomorphism

ι : C→ C(G/B)
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can be interpreted as a KKG-element in KKG(C, C(G/B)). From this viewpoint, the

map ι∗ is given by the product

ι∗ : ξ 7→ ιξ.

Let us put γ′ = ι∗(θ) = ιθ. We are to prove that γ ′ = γ.

We do this by computing the product γγ ′ in two ways. To start, we expand it as

an exterior product:

γγ
′
= γ ⊗ γ′ ∈ KKG

(C⊗ C,C⊗ C).

Now, if we expand γ′ as ιθ, then the above exterior product can be written as the

following composition of morphisms in KKG:

C⊗ C
1⊗ι

// C⊗ C(G/B)
γ⊗1

// C⊗ C(G/B)
1⊗θ

// C⊗ C .

By Lemma 2.12,

γ ⊗ 1C(G/B) = IndG
B

ResG
B
γ,

and since the restriction of γ to B is 1,

γ ⊗ 1C(G/B) = 1⊗ 1C(G/B).

Hence γγ′ = γ′.

On the other hand, if we expand γ as βα, then γγ ′ can be written as

C⊗ C
β⊗1

// C(X)⊗ C
1⊗γ′

// C(X)⊗ C
α⊗1

// C⊗ C ,
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where X = T (G/K) is the proper G-space in Theorem 2.10. Appealing to Lemma 2.12

once more,

1⊗ γ′ = IndG
K

ResG
K
γ′.

The restriction of γ′ to K is 1 by hypothesis. It follows that γγ ′ = γ, which completes

the proof.

2.4 Examples of γ-elements

2.4.1 The γ-element for SL(2,C)

The most elementary of all the complex simple Lie groups is SL(2,C). We are

going to be looking in KKG(C(G/B),C) for an equivariant graded Fredholm module

θ, as above. Here is a rough idea for a construction. Recall that the Borel subgroup

of SL(2, C) is the subgroup of upper triangular matrices. Let us put X = G/B, which

in this case is the complex projective line, CP1. Being a complex manifold, it has a

Dolbeault complex:

Ω0,0X
∂ //

Ω0,1X

The Dolbeault operator ∂ is an elliptic differential operator, and therefore can be nor-

malized as in Section 2.1 to give a bounded operator F between the spaces of L2-forms.

Moreover, thanks to Hodge theory (see, for instance, [Roe98]), the kernel and cokernel

of F are the Dolbeault cohomology groups of CP1:

H
0,q

∂
(CP1) =















C, q = 0

0, q = 1
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In particular, the kernel will be the space of constant functions, which is K-invariant. In

other words, forgetting all but the action of K on this data, the virtual representation of

K instituted by F will be the trivial representation. If the details of this rough argument

can be worked out then we have constructed the γ-element.

The details of this argument can indeed be worked out, although these details

are not completely trivial. The main problem is in defining the representation of the

group G. There is a natural representation of G on forms over X by pull-back. However,

this representation is not unitary, because the action of G on CP1 admits no invariant

probability measure.

The situation is saved by the fact that the action is conformal. Since the concept

of conformality is critical to later constructions as well, let us discuss it in generality.

Let X be a closed orientable Riemannian manifold of dimension n, with Rieman-

nian metric

〈 · , · 〉x : TxX × TxX → R (x ∈ X ).

Let G be a locally compact group which acts conformally on X , so that for each g ∈ G

there is a function hg ∈ C
∞(X ) such that

g∗〈 · , · 〉gx = (hg(x))
2〈 · , · 〉x.

Note that

(hg)
−1 = g∗h

g−1 .
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The Hermitian structure 〈 · , · 〉 on TX induces a Hermitian structure on the

dual bundle T ∗X , and its tensor powers, in the usual way. We thus obtain a Hermitian

structure on the full bundle of differential forms
∧

T ∗X (elements of different degree are

declared to be orthogonal). The relationship between this inner product structure and

the conformal action is as follows: given ω, η ∈
∧p T ∗

x
X and g ∈ G,

〈g∗ω, g∗η〉x = hg(x)
2p〈ω, η〉gx. (2.4.1)

The Hermitian structure on the bundle gives an inner product on the space of

sections by

〈ω, η〉 =

∫

X
〈ω, η〉x dVol(x),

for ω, η ∈ ΩX . Completing with respect to this inner product yields the space L2(ΩX )

of L2-integrable forms on X .

Lemma 2.14. The pull-back action

g · ω = (g−1)∗ω

of G on ΩX becomes a unitary action on L2(ΩX ) if we modify it by the introduction of

the conformal factor, according to the formula

π(g) : ω 7→ (h
g−1)

n
2−p . (g−1)∗ω (2.4.2)

for ω ∈ ΩpX , and extending linearly.
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Proof. Checking this is a computation, as follows. Firstly, the volume form induced

by the Riemannian metric (which we have denoted by dVol here) pulls back via the

action of g ∈ G to another volume form, which necessarily differs from the original by a

scalar-valued function. That function can be determined from Equation (2.4.1):

g∗ dVol = hg(x)
n dVol .

Using this we have, for ω, η ∈ ΩpX ,

〈π(g)ω, π(g)η〉 =

∫

X
〈(g−1)∗ω, (g−1)∗η〉x hg−1(x)n−2p dVol(x)

=

∫

X
〈ω, η〉

g−1x
h
g−1(x)2p h

g−1(x)n−2p h
g−1(x)−n (g−1)∗dVol(x)

=

∫

X
〈ω, η〉y dVol(y)

= 〈ω, η〉.

If X is a complex manifold of complex-dimension n (real-dimension 2n), and G

acts conformally by biholomorphic maps, then we work with the sub-bundle of (0, p)-

forms. Because of the doubled real-dimension, the formula (2.4.2) must be altered to

π(g) : ω 7→ (h
g−1)n−p.(g−1)∗ω (2.4.3)

for ω ∈ Ω0,pX .
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Consider the Dolbeault complex of X :

Ω0,0X
∂ //

Ω0,1X
∂ // · · · ∂ //

Ω0,nX

Let us put

H = L2(Ω0,•X ) =
n
⊕

p=0

L2(Ω0,pX ),

and grade it by the decomposition into even and odd forms.

Theorem 2.15. With notation as above, put D = ∂+∂∗. On H, the normalized operator

F =
D

√

1 +D2

combined with the unitary representation (2.4.3) of G and the pointwise multiplication

of C(X ) defines a graded G-equivariant Fredholm module over C(X ).

The complete proof is given in [Kas84]. Here we will only sketch the proof in

order to identify the crucial steps.

Sketch of proof. The key facts to be proven are the commutativity properties of F ,

namely

(i) that F commutes with the multiplication action of C(X ) modulo compacts, and

(ii) that π(g)Fπ(g)−1 − F is compact for all g ∈ G.

The first item is a standard fact from the theory of pseudodifferential operators.

The operator F is an order zero pseudodifferential operator over X , as are multiplication

operators. Their commutator is therefore an order −1 operator, which is compact.
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The second item uses the first as a component. But first, for ω ∈ Ω0,pX , we

compute

π(g)∂π(g)−1 : ω 7→ (h
g−1)n−(p+1) (g−1)∗ ∂

(

g∗(h
g−1)−(n−p)ω

)

= (h
g−1)−1∂ω + η ∧ ω,

where

η = (h
g−1)n−(p+1) ∂

(

(h
g−1)−(n−p)

)

∈ Ω0,1X .

The important point is that

π(g)∂π(g)−1 = f∂ +E,

for f = 1/h
g−1 and some order zero pseudodifferential operator E. Note that f is

independent of p, so that the same equation holds on the total space ΩX , with some E.

Consequently, the operator D = ∂ + ∂∗ also satisfies a similar identity:

π(g)Dπ(g)−1 = fD +E,

for some different order zero operator E.

Now we normalize D, by applying the function

χ(t) =
t

√

1 + t2
.
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Note that

π(g)Fπ(g)−1 = χ(π(g)Dπ(g)−1)

= χ(fD +E)

This last expression can be analyzed using the symbolic calculus. Working modulo

operators of order −1, we find

χ(fD +E) ∼
fD

√

f2D2

∼
D
√

D2

∼ χ(D),

which completes the proof.

As a consequence, we have:

Theorem 2.16 (Kasparov). The normalized Dolbeault operator on L2(Ω0,•
CP1), to-

gether with the unitarized pull-back representation of Equation (2.4.2), is the γ-element

for SL(2,C).
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2.4.2 The γ-element for SU(2, 1)

The problem which one immediately encounters in trying to generalize the above

argument is that most semisimple Lie groups G do not act conformally on their homo-

geneous spaces G/B. After the family of Lorentz groups SO0(n, 1), the next cases to

consider are the groups SU(n, 1). In this case the action on G/B is still somewhat close

to conformal, as we now describe.

Let G = SU(2, 1). Let K be its maximal compact subgroup and B its Borel

subgroup. The symmetric space G/K is the 2-dimensional complex hyperbolic space

HC
2. This is a complex manifold upon which G acts biholomorphically. The space G/B

is naturally identified with the boundary sphere S3 of HC
2 (for instance, after realizing

HC
2 as the unit ball D4 in C

2). Being the smooth boundary of a Kähler manifold, G/B

inherits a contact structure.

A contact structure on a (2n − 1)-dimensional manifold X is described by a 1-

form τ with the property that τ ∧ (dτ)n is a volume form. We do not intend to give a

complete introduction to contact manifolds here. Let us just remark that one of the key

consequences of a contact structure is the existence of the codimension-one sub-bundle

Q = ker τ of the tangent bundle which is totally non-integrable, in the sense that the

vector fields tangent to Q generate all sections of TX as a Lie algebra. The contact

structure on G/B—and in particular this bundle Q—is preserved by the action of G.

Let us equip G/B ∼= S3 with a K-invariant Riemannian metric. The action of

G on S3 is not conformal. This means that the de Rham complex for S3 can not be

converted into an element of KKG
0

(G/B) in the way of the previous section. However,
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the action on the sub-bundle Q is conformal. So an elliptic (or hypoellptic5) differential

operator on the bundle Λ•Q∗ will allow the construction to go through.

This gives a rough approximation to the construction which Julg and Kasparov

used to prove the Baum-Connes Conjecture for the groups SU(n, 1). What is needed is

a replacement for the de Rham complex which is tailored to the contact structure. This

crucial ingredient was available thanks to earlier work on contact manifolds by Rumin

([Rum94]), who defined a cohomological complex for contact manifolds which has the

same cohomology groups as the de Rham complex.

There are, of course, several significant analytical issues which arise in trying to

create the equivariant K-homology element from the Rumin complex. Let us mention

just one of them here: the Rumin complex is not elliptic. This means that the classi-

cal pseudo-differential operator theory which we used in the previous section does not

apply. Fortunately, there also exists a pseudodifferential calculus which is tailored to

contact manifolds. This is the Heisenberg calculus of Beals and Greiner [BG88]. In the

frame-work of the Heisenberg calculus, the complex is “maximally hypoelliptic”, which

is the appropriate analogue of ellipticity, and this suffices to show that the normalized

Rumin differential is Fredholm. The commutativity properties required of an equivariant

Fredholm module are also provable.

To summarize, the de Rham complex for G/B, with G = SU(n, 1), can be pared

down to guarantee conformality, although this comes at the cost of increased complexity

in the pseudodifferential calculus required. It might be hoped that the same situation

5Hypoellipticity is a weakening of ellipticity which still guarantees that the operators are
Fredholm. The operators in this example will be hypoelliptic. (See [BG88].)
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could also be arranged for higher rank Lie groups. Unfortunately this seems difficult at

best, and perhaps impossible, for the following reason.

Suppose there existed an operator

F : L2(G/B;E) −→ L2(G/B;E)

on a bundle E over G/B which, in some hypothetical pseudodifferential calculus, was a

pseudodifferential operator of order zero. Suppose, moreover, that the action of G on E

were conformal, so that we could define a unitarized action

π : G −→ U
(

L2(G/B;E)
)

as in Section 2.4.1. This would allow us to prove that

π(g)Fπ(g)−1 − F

was of some strictly negative order (and hence was compact), for each g ∈ G. But it is

a typical property of pseudodifferential calculi that operators of strictly negative order

are not just compact, but Schatten p-class, for some p <∞. The function

ξ : G −→ Lp

g 7→ π(g)Fπ(g)−1 − F
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would then be a 1-cocycle for the group G with coefficients in the Banach space Lp of

Schatten p-class operators.

Now, it is conjectured6 that all higher rank simple Lie groups, have trivial first

cohomology with coefficients in any uniformly convex Banach space. If true, this would

imply that ξ is in fact a coboundary. In other words, there is some K ∈ Lp such that

ξ(g) = π(g)Kπ(g)−1 −K

for all g ∈ G. But then

π(g)(F −K)π(g−1) = F −K

for all g ∈ G, so that F−K is an intertwiner for the representation π. The representations

we are considering—the so-called generalized prinicpal series representations—do not

have finite-dimensional direct summands, and this means that F −K would represent

the zero element in R(G). But F − K is a compact perturbation of F , and hence is

homotopic to F . Thus F cannot represent the γ-element.

This strongly suggests that we will have to relax our expectations of what the γ-

element will look like for SL(3,C). To understand what alternatives exist, it is edifying

to consider the example of SL(2,C)× SL(2,C).

6I believe this conjecture should be ascribed to Fisher and Margulis, although I have not
actually seen it written as such.



42

2.4.3 The γ-element for SL(2,C) × SL(2,C)

The action of the group G = SL(2,C) × SL(2,C) is also not conformal. It is,

however, a product of two conformal actions in an obvious way. For this group, it is true

that γG = 1. The construction of γG is a result of the external product in KK-theory.

This section is dedicated to an understanding of that product, which will serve as the

best inspiration for the results about SL(3,C) to follow.

Let us put G0 = SL(2,C) and let B0 be the Borel subgroup of upper triangular

matrices in G0. Then the Borel subgroup of G = G0 × G0 is B = B0 × B0. Let

X0 = G0/B0 = CP1 and X = G/B = CP1 × CP1.

We can form the Dolbeault complex for X as before:

Ω0,0 ∂
−→ Ω0,1X

∂
−→ Ω0,2X .

Note, however, that the bundle of (0, 1)-forms splits into two one-dimensional bundles.

Specifically, we have

Λ0,0T ∗X = Λ0,0T ∗X0 � Λ0,0T ∗X0

Λ0,1T ∗X = (Λ0,1T ∗X0 � Λ0,0T ∗X0)⊕ (Λ0,0T ∗X0 � Λ0,1T ∗X0)

Λ0,2T ∗X = Λ0,1T ∗X0 � Λ0,1T ∗X0.

For convenience, let us denote the bundle Λ0,iT ∗X0 �Λ0,jT ∗X0 over X by Ei,j , and the

space of L2-sections of it by Hi,j . (We use the Hermitian structure on each Ei,j induced

from the standard Hermitian structures on the bundles over X0.)
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The Dolbeault complex is now given by a system of differential operators

C∞(X ;E1,0)

''PPPPPPPPPPPP

C∞(X ;E0,0)

77nnnnnnnnnnnn

''PPPPPPPPPPPP
C∞(X ;E1,1)

C∞(X ;E0,1)

77nnnnnnnnnnnn

Each of the bundles is one-dimensional, and hence their Hermitian structures are trivially

conformal for the action of G. Therefore, we can define unitarized actions of G on each of

the Hilbert spaces Hi,j , as in Section 2.4.1. We can also normalize each of the differential

operators individually. Let us denote these normalized operators by

H1,0

c

""EE
EE

EE
EE

H0,0

a
<<yyyyyyyy

b ""EE
EE

EE
EE

H1,1

H0,1

d

<<yyyyyyyy

(2.4.4)

The question now is whether we can use these operators to construct a Fredholm

module. Let us consider the operator a. The differential operator from which a was

created is the operator

∂ ⊗ 1 : Ω0,0X0 ⊗ Ω0,0X0 −→ Ω0,1X0 ⊗ Ω0,0X0.
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Hence,

a = F ⊗ 1,

where F = ∂/
√

1 + ∂∗∂ is the normalized Dolbeault operator for X0. It follows that the

operators

a∗a− 1,

aa∗ − 1,

[f, a] , (f ∈ C(X ))

π(g)aπ(g)−1 − a, (g ∈ G)

are all in K(H̊)⊗ 1, where K(H̊) denotes the space of compact operators on the graded

Hilbert space

H̊ = L2(Ω0,0X0)⊕ L2(Ω0,1X0).

Analogous statements hold true for the operator d. For b and c, the similar quantities

belong to 1⊗K(H̊).

Let us define ideals

KX = K(H̊)⊗ B(H̊),

KY = B(H̊)⊗K(H̊)

in the algebra

A = B(H̊)⊗ B(H̊).
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Note that their intersection is

KX ∩ KY = K(H̊)⊗K(H̊) = K(H),

the ideal of compact operators on H = ⊕Hi,j . What we have produced, then, is data

similar to that of a graded G-equivariant Fredholm module, but with the ideals KX or

KY in place of the compact operators.

From this point there are several ways to proceed. The usual way would be to

invoke the Kasparov Technical Theorem (see Theorem 3.8.1 and Proposition 9.2.5 of

[HR00], for instance) which allows us to adjust the complex (2.4.4) to get a genuine

G-equivariant graded Fredholm module. This is the external product in Kasparov’s

K-homology. But there are also other approaches. For instance, there are alternative

bivariant theories to KK-theory, such as Higson’s E-theory [CH90] or Dumitraşcu’s KE-

theory [Dum], in which the external product is defined more simply. There is also the

possibility of using the data of the complex (2.4.4) directly in applications by providing

an explicit recipe for pairing it with K-theory. We will leave all these possibilities open

for the present.

Now, we will begin to study the case of SL(3,C) in earnest.
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Chapter 3

The Bernstein-Gel’fand-Gel’fand Complex

3.1 Introduction

Let G be the group SL(3,C), and let B be the subgroup of lower triangular ma-

trices. The Bernstein-Gel’fand-Gel’fand (BGG) complex for G is a differential complex

over the symmetric space G/B which is naturally associated to the algebraic structure

of the group G.

In this chapter we will introduce the BGG complex. Since the construction works

in great generality, we will introduce it in the case of an arbitrary complex semisimple

Lie group. It is believed that the applicability of the BGG complex to analytic index

theory will extend well beyond the case of SL(3,C).

Definition 3.1. Let G be any Lie group and let X be a homogeneous space for G. A

homogeneous vector bundle over X is a vector bundle p : E → X with an action of G by

smooth vector bundle maps, such that the following diagram commutes for each g ∈ G:

E
g

//

p
��

E

p
��

X
g

// X .
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The group G acts on the sections of a homogeneous bundle: if σ ∈ C∞(X ;E)

then we define

(g · σ)(x) = g(σ(g−1x)).

Example 3.2. The bundle of p-forms on a homogeneous G-manifold X is a homogeneous

bundle for any p ∈ N. The action of g ∈ G on sections is precisely the pull-back by g−1.

Definition 3.3. A differential operator D between two homogeneous vector bundles E

and F is G-equivariant if

D(gσ) = g(Dσ)

for all sections σ of E, and all g ∈ G.

The BGG complex will be a complex of G-equivariant differential operators be-

tween homogeneous bundles over G/B. Moreover, each of the homogeneous bundles will

decompose G-equivariantly into a direct sum of complex line bundles. From this point

of view the BGG-complex is very convenient.

The conception of the BGG complex came from Bernstein, Gel’fand and Gel’fand’s

work on g-modules. Their complex was an algebraic homology complex which resolves a

finite dimensional representation using Verma modules (which are the universal modules

in the category of highest weight modules for g). It was subsequently observed that the

complex also has a geometrical interpretation, which is what we will be using in this

thesis.

We begin now by describing this relationship between algebra and geometry.
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3.2 Homogeneous vector bundles

The results of this section are quite general. Let G be an arbitrary Lie group,

and B any closed subgroup. The quotient space G/B is a smooth manifold (see, eg,

[War83, Theorem 3.58]). To launch the discussion of homogeneous vector bundles, we

describe a particular construction of a homogeneous bundle over G/B. We will see that

this construction actually yields all homogeneous vector bundles over G/B.

Notation. For an element x of G, we will denote its image in the quotient G/B by x.

The identity element of G will be denoted by e.

Notation. Let λ : B → AutV be a finite-dimensional representation of B. We will use

the symbol λ to denote both the representation of B, and the infinitesimal representation

of the Lie algebra b it induces. This will be the case throughout this work.

Given such a λ, the bundle G ×
B
V over G/B will be the quotient of the trivial

bundle G× V over G by the following action of B:

b · (x, v) = (xb−1, ρ(b)v) (b ∈ B, x ∈ G, v ∈ V ).

In other words, we identify the two vectors (xb, v) and (x, ρ(b)v), which live in different

fibres over points in a common B-coset.

Notation. We use the notation (x, v) to denote the image of (x, v) ∈ G × V in this

quotient.
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We therefore have a projection map

π : G×
B
V → G/B

(x, v) 7→ x

which makes G ×
B
V into a vector bundle. The fibres of G ×

B
V are isomorphic to V as

vector spaces.

The action of G which makes G×
B
V into a homogeneous vector bundle is simply

g · (x, v) = (gx, v) (g, x ∈ G, v ∈ V ).

Note that the subgroup B maps the fibre over the identity coset e ∈ G/B to itself. With

the resulting action of B, this fibre is canonically isomorphic to the original space V , as

a representation.

This last observation indicates how to realize any homogeneous vector bundle

with the above construction.

Proposition 3.4. Let E be a homogeneous vector bundle over G/B. Then E is G-

equivariantly isomorphic to G ×
B
V , where V = Ee is the fibre of E over e, with its

induced B-representation.

Proof. The isomorphism is given by the map

G×
B
V → E

(x, v) 7→ x · v.
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The map is well-defined since

(xb, b−1 · v) 7→ x · v.

It is an isomorphism on the fibre over e by definition, and since it is clearly smooth and

G-equivariant, this suffices to prove it is an isomorphism everywhere.

Example 3.5. The trivial bundle G/B × C is a homogeneous bundle with G-action

g : G/B ×C → G/B × C

(x, v) 7→ (g · x, v)

for x ∈ G/B, v ∈ C, and g ∈ G. It is isomorphic to G ×
B
V0 where V0 is the one-

dimensional trivial representation of B.

Proposition 3.4 provides an algebraic viewpoint on homogeneous vector bundles.

We now want to do the same for G-invariant differential operators between them. Let

D : C∞(G/B;E)→ C∞(G/B;F )

be a G-invariant differential operator between two homogeneous vector bundles E =

G×
B
V and F = G×

B
W . It is generally convenient to lift sections of E to B-equivariant

sections of the trivial bundle G× V , as in the following proposition.
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Proposition 3.6. Smooth sections of the bundle G ×
B
V

π
→ G/B are in one-to-one

correspondence with smooth functions σ̃ : G→ V which satisfy

σ̃(xb−1) = ρ(b)σ̃(x). (3.2.1)

Proof. The section corresponding to such a function σ̃ is defined by

σ(x) = (x, σ̃(x)).

The equivariance condition 3.2.1 ensures that σ(xb) = σ(x) for all b ∈ B.

Conversely, if σ ∈ C∞(X ;G ×
B
V ), then at each point x ∈ G/B, we have

σ(x) = (y, v)

for some y ∈ xB and v ∈ V . Rewriting this as

σ(x) = (x, ρ(x−1y)v),

the second coordinate defines the value of the lifting σ̃(x).

That these two processes are mutually inverse is easily checked.

Remark 4. We have ignored issues of smoothness throughout this discussion. For more

details see, for instance, [War83].
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We will use this correspondence a lot in what follows. Frequently we will not

distinguish the notation for a section from that for its lift, omitting the decoration ˜ used

above.

A G-equivariant differential operator is completely determined by its action on

functions near e ∈ G/B, or more specifically, by its action on jets of sections at e. We

recall the definition of a jet.

Definition 3.7. Let E a smooth vector bundle over a manifold X . A smooth section

σ of E is said to vanish to order k at x if, in some (equivalently, in any) trivializing

coordinates for E around x, the degree k Taylor expansion of σ at x is zero.

The k-jets of E at x are the equivalence classes of sections, where two sections

are equivalent if their difference vanishes to order k.

The ∞-jets of E at x are equivalence classes of sections, where two sections are

equivalent if their difference vanishes to order k for all k ∈ N.

The equivalence class of a section σ in the space of k-jets at x is denoted J k
x
σ, for

k = 1, 2, · · · ,∞. The space of k-jets of E at x is denoted by J k
x
(E).

A differential operator D between two bundles E and F descends to act on jets,

although there is a loss of degree in the process. Specifically, if D : C∞(X ;E) →

C∞(X ;E) is a differential operator of order d, then passing to jets gives a map

D : Jk
x
(E)→ Jk−d

x
(F ),

for all k ≥ d. Note also that a differential operator of order d is determined completely

by its action on the space of d-jets at each point x ∈ X .
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If E is a homogeneous bundle over X , then the action of G on sections also passes

to an action of G on jets:

g : Jk
x
(E)→ Jk

gx
(E),

for all x ∈ X and g ∈ G. Since the action of G on X is transitive, we have the following.

Lemma 3.8. If D1 and D2 are G-equivariant differential operators of order d between

homogeneous vector bundles E and F , such that their corresponding maps

D1, D2 : Jd
e
(E)→ J0

e
(E),

on d-jets at e agree, then D1 = D2.

Notation. Given a vector space V , the space C∞(G,V ) of smooth V -valued functions

on G admits representations of G by left and right translations representation. These

are, respectively,

L(g)f(x) = f(g−1x)

and

R(g)f(x) = f(xg),

for f ∈ C∞(G,V ) and g, x ∈ G. These induce infinitesimal representations of the Lie

algebra g:

L(X)f(x) = −XRf(x)

and

R(X)f(x) = XLf(x),
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where XL and XR are, respectively, the left- and right-invariant vector fields on G

generated by X ∈ g. Note that, at the point e ∈ G, the fields XL and XR agree. We

denote the corresponding tangent vector at e by X.

Since B is a connected Lie group, jets of sections of the homogeneous bundle

G ×
B
V at e can be described by an infinitesimal version of Proposition 3.6: they lift to

jets of functions σ̃ : G→ V which satisfy the infinitesimal equivariance condition

R(X)σ̃(e) = −ρ(X)σ̃(e), (3.2.2)

for all X ∈ b. A fundamental point of this section is a surprisingly elegant description

of these jet spaces in terms of highest-weight modules for the Lie algebra g.

We start with jets of functions f : G→ V . Since the universal enveloping algebra

U(g) of g can be thought of as left-invariant differential operators on G, there is a pairing

J∞
e

(G;V )× (U(g)⊗ V ∗)→ C,

where V ∗ is the dual space of V . This pairing is given by

〈J∞
e
f, (A⊗ φ)〉 7→ φ(R(A)f(e)), (3.2.3)
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where R(A) denotes the extension of the infinitesimal right-translation representation to

A ∈ U(g). Now, restricting from jets of arbitrary functions to those jets J∞
e
σ̃ which sat-

isfy the infinitesimal B-equivariance condition (3.2.2), the pairing descends to a pairing

J∞
e

(E) × (U(g) ⊗
U(b)

V ∗)→ C.

Since the point e in X = G/B is fixed by B under the translation action, the

jet space J∞
e

(E) inherits a representation of B from the left-translation representation

of G on C∞(X , V ). This jet space is not preserved by all of G, but the derivative of

the left-translation representation induces an action of g, as right-invariant differential

operators on the lifted jets. Moreover, these two actions are compatible, in the sense

that

bXb−1J∞
e
σ = (Ad(b)X)J∞

e
σ,

for any b ∈ B, X ∈ g, and any section σ of E.

The second component U(g) ⊗
U(b)

V ∗ of the pairing also carries compatible actions

of B and g. The action of g on U(g) ⊗
U(b)

V ∗ is simply by composition on the left. The

action of B on U(g) ⊗
U(b)

V ∗ is also, ostensibly, the action of composition on the left,

although to make this meaningful, one must define

b · (A⊗ φ) = Ad(b)A⊗ b · φ.
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Lemma 3.9. The pairing

J∞
e

(E)× (U(g) ⊗
U(b)

V ∗)→ C

defined by (3.2.3) is invariant under the actions of B and g, in the sense that for any

J∞
e
σ ∈ J∞

e
(E) and A⊗ φ ∈ U(g) ⊗

U(b)
V ∗,

〈b · σ, b ·A⊗ φ〉 = 〈σ, (A ⊗ φ)〉

for b ∈ B, and

〈X · σ, (A⊗ φ)〉+ 〈σ,X · (A⊗ φ)〉 = 0

for X ∈ g.

Remark 5. The latter equation is a differential form of invariance.

Proof. This is straightforward, once the notation has been navigated. Let ρ denote

the representation of B on V . Consider the first equality. If A = X1 · · ·Xn, where

X1, . . . , Xn ∈ g, then

〈b · σ, b · (A⊗ φ)〉

= (b · φ) ((R(Ad(b)A) b · σ̃)(e))

= φ

(

ρ(b−1)
d

dt1
· · ·

d

dtn
L(b)σ̃(b exp(t1X1) · · · exp(tnXn)b−1)|t1,...,tn=0

)

= φ

(

ρ(b−1)
d

dt1
· · ·

d

dtn
σ̃(exp(t1X1) · · · exp(tnXn)b−1)|t1,...,tn=0

)
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= φ

(

d

dt1
· · ·

d

dtn
σ̃(exp(t1X1) · · · exp(tnXn))|t1,...,tn=0

)

= φ (R(A)σ̃(e))

= 〈σ, (A⊗ φ)〉.

For the second equality,

〈X · σ, (A⊗ φ)〉+ 〈σ,X · (A⊗ φ)〉

= φ(R(A)L(X)σ̃(e)) + φ(R(XA)σ̃(e))

= φ(L(X)R(A)σ̃(e)) + φ(R(XA)σ̃(e))

= 0,

since the left and right invariant vector fields on G agree at e, but the infinitesimal left

and right regular representations differ by a sign.

Of course, we are only ever interested in differential operators of some given finite

order. Let us define the subspace U (k)(g) of order-k elements of U(g):

U(k)(g) = span{X1X2 · · ·Xj | X1, . . . , Xj ∈ g and 0 ≤ j ≤ k}.

Note that we are including the empty product (where j = 0), which by convention

represents the identity element 1 ∈ U(g).
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Lemma 3.10. The pairing of Equation (3.2.3) restricts to a non-degenerate pairing

Jk
e
(E) × (U(k)(g) ⊗

U(b)
V ∗)→ C.

Proof. That the pairing restricts follows from the fact that if A ∈ U (k)(g), Equation

(3.2.3) only depends on the order k part of J∞
e
σ̃.

Suppose that some k-jet Jk
e
σ is annihilated by the pairing. Then its lift Jk

e
σ̃ ∈

J∞
e

(G;V ) is annihilated by all A ∈ U (k)(g). But it is an immediate consequence of the

definition of k-jets that Jk
e
σ is nonzero if and only if some differential operator of order

less than or equal to k does not annihilate it.

To complete the proof, note that both of the spaces in the above pairing are finite

dimensional, and so it suffices to show that they have the same dimension. Choose some

basis {B1, · · · , Bp, X1, · · · , Xq} for g such that the first p elements are a basis for b. By

the Poincaré-Birkhoff-Witt Theorem (see [Dix96, Theorem 2.1.11]) there is a basis for

U(k)(g) given by







X
n1
1 · · ·X

nq
q
B
nq+1
1 · · ·B

np+q
p

∣

∣

∣

∣

∣

∣

p+q
∑

i=1

ni ≤ k







.

It follows that

dim(U(k)(g) ⊗
U(b)

V ∗) = (dimV ∗)

k
∑

j=1

dimSymj(g/b)

= dimV.dim

k
⊕

j=1

Symj(g/b),



59

which is the dimension of the space of Taylor polynomials of degree k on g/b valued in

V , and hence of J∞
e

(E).

Combining this with Lemma 3.9, we see that the two spaces in the pairing of

Lemma 3.10 are dual B-modules. (Note, however, that they no longer carry g-actions.)

Therefore, we have the following situation. Any G-equivariant differential operator D

between E = G×
B
V and F = G×

B
W , is described by the B-equivariant map

De : Jk
e
(E)→ Fe = W.

Invoking the above duality, this corresponds to a B-equivariant map

W ∗ → (U(k)(g) ⊗
U(b)

V ∗).

As a final step, we observe an instance of Frobenius reciprocity.

Proposition 3.11 (Frobenius Reciprocity). There is a natural identification

HomB(W ∗, U(g) ⊗
U(b)

V ∗) = Hom(g,B) (U(g) ⊗
U(b)

W ∗, U(g) ⊗
U(b)

V ∗),

Proof. Essentially, the only difference between the two Hom-spaces is that the latter

carries with it a copy of U(g), in a U(g)-linear way.
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To produce the correspondence explicitly, given Ψ ∈ HomB(W ∗, U(g) ⊗
U(b)

V ∗),

we can define its corresponding map Ψ ∈ Hom(g,B) (U(g) ⊗
U(b)

W ∗, U(g) ⊗
U(b)

V ∗) by

Ψ(A⊗ φ)
def
= A ·Ψ(φ).

The inverse correspondence takes a map Ψ ∈ Hom(g,B)(U(g) ⊗
U(b)

W ∗, U(g) ⊗
U(b)

V ∗) and

restricts it to

Ψ(φ) = Ψ(1 ⊗ φ),

for φ ∈ V ∗.

Summarizing:

Theorem 3.12. Let V and W be finite-dimensional representations of B. There is a

one-to-one correspondence between the set of G-equivariant differential operators between

the homogeneous vector bundles G ×
B
V and G ×

B
W , and the set of g-equivariant maps

from U(g) ⊗
U(b)

W ∗ to U(g) ⊗
U(b)

V ∗.

3.3 Structure theory for complex semisimple groups

In the case where G is a complex semisimple Lie group, and B its Borel subgroup,

the correspondence of Theorem 3.12 can be elegantly realized as an equivalence of cate-

gories. In order to describe this we will need to appeal to the enormous machinery which

has been developed to study representations of complex semisimple groups. In this sec-

tion we will describe some of the key components of this machine, without proof. For
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complete details, the reader is referred to one of the many texts—for instance, Knapp

[Kna86] and Dixmier [Dix96] both cover the requisite material.

Let G be a complex semisimple group. For simplicity let us suppose that G is

a group of complex matrices which is closed under conjugate transpose. This certainly

includes the few examples we care about. In particular, it includes the groups SL(n,C),

which we will carry as key examples through this section.

The Cartan involution Θ on G is the group automorphism which sends each

element to its inverse conjugate transpose. The set of elements fixed by Θ is a compact

subgroup of G, denoted by K. The differential of Θ is an involution of the Lie algebra

g, denoted by θ. The invariant subspace of θ is the Lie algebra k of K.

Inside the Lie algebra g, we choose an abelian subalgebra which is maximal

amongst all abelian subalgebras preserved by θ. Such a Lie subalgebra is called a Cartan

subalgebra of g. We fix a Cartan subalgebra h once and for all. This chosen subalgebra

provides a reference datum upon which all the structure theory to follow is built. How-

ever, the particular choice of h does not matter, since the Cartan subalgebra is unique

up to conjugation in G.

We can decompose h into the +1 and −1 eigenspaces of the involution θ. These

are real Lie subalgebras of h. The former, denoted m, exponentiates to a compact abelian

subgroup, ie a torus, which we denote by M0. The latter, denoted a, exponentiates to a

group A which is isomorphic to R
k, for some k.

Example 3.13. For the group SL(n,C), the subgroup of diagonal matrices is a Cartan

subalgebra. Let this be h. Then a and m are the Lie subalgebras of diagonal matrices

with real and imaginary entries, respectively.
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Now let ρ : G → Γ be a finite-dimensional representation of G. We will de-

mand also that ρ be holomorphic, meaning that the infinitesimal representation of g be

complex linear. Since h is abelian, ρ decomposes into a direct sum of one-dimensional

representations for h. Each of these is given by a map

λ ∈ h
∗ = Hom(h,C),

called a weight of the representation ρ. We define the weight space of ρ with weight λ by

(Γ)λ = {v ∈ V | ρ(H)v = λ(H)v for all H ∈ h}.

Note that these need not be one-dimensional, since weights may occur with multiplicity.

Remark 6. Because the group M0 is compact, any one-dimensional representation of it

must be by scalars of modulus one. Therefore, the image of its Lie algebra k under a

weight λ must be purely imaginary. Conversely, giving the restriction of a weight to k

completely determines it, by complex-linearity. The implication of this is that weights

can be equivalently described as maps λ for λ ∈ ik†, where k† denotes the real dual of k,

that is Hom(k,R). Similarly, weights are also determined by their restriction to maps in

a† = Hom(a,R).

We will use whichever interpretation is convenient, the latter one being commonly

favoured. The advantage of using a† (or k†) is that, being a real vector space, it makes

for nice geometrical pictures.
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The structure of the Lie algebra g can be probed by studying the weight-decom-

position of the adjoint representation of g on itself:

ad(X) : g → g

Y 7→ [X,Y ]

First note that h is contained in the 0-weight space g0, and in fact h = g0 by the

maximality in the definition of h. The nonzero weights of the adjoint representation are

the roots of g. We will denote the set of roots by ∆.

Example 3.14. In SL(n,C), let Eij be the matrix with all entries zero except for the

(i, j)-entry, which is one. The weight spaces of SL(n,C) are all one-dimensional, spanned

by the matrices Eij with i 6= j. One can compute that

ad(H)Eij = (Hii −Hjj)Eij ,

where Hii denotes the (i, i)-entry of H ∈ h. We will denote by αij the root

αij(H) = Hii −Hjj .

We note now an important fact about root spaces. Let X ∈ g be an element of

the root space gα. For any representation g→ End(Γ), if v ∈ V is a vector of weight λ,



64

then

H(Xv) = [H,X]v +X(Hv)

= α(H)Xv + λ(H)Xv

for all H ∈ h, so that Xv is a vector of weight α+ λ. In other words,

gα · (Γ)λ ⊆ (Γ)λ+α. (3.3.1)

We will use this fact frequently.

In particular, applying this to the adjoint representation, we see that the root

spaces satisfy [gα, gβ ] ⊆ gα+β . In fact, the roots span an integer lattice in a†. This is

called the root lattice, and denoted by ΛR. The roots do not, however, form a linearly

independent generating set for ΛR. For instance, it is a consequence of semisimplicity

that if α is a root of g, then so is −α. But there are usually other linear dependencies

between the roots as well.

A linearly independent spanning set of roots S ⊆ ∆ is called a system of simple

roots if every root can be written as a linear combination of elements of S with either

all coefficients positive or all negative. It is a theorem that such a set always exists.

The choice of a system of simple roots is not unique. The variety of possible choices is

described by the Weyl group, which we will describe shortly.
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Example 3.15. The set

S = {αi,i+1 | i = 1, · · · , n− 1}

is a system of simple roots for SL(n,C).

Having fixed some system of positive roots, we can introduce an ordering on

the roots. We say that a root (or more generally, a weight) is positive if it is a linear

combination of simple roots with only positive coefficients. The set of positive roots will

be denoted by ∆+, and the set of positive weights by (h∗)+. This allows us to define a

partial ordering ≥ on ∆ by declaring that α ≥ β if α− β ∈ (h∗)+.

Example 3.16. With the above choice of simple roots, the positive roots of SL(n,C)

are those αij with i < j.

From the fact that the spaces gα satisfy [gα, gβ ] ⊆ gα+β , it is clear that the

direct sum of the positive root spaces is a nilpotent Lie subalgebra of g. We denote this

nilpotent Lie subalgebra by n+. Likewise, the negative root spaces span a nilpotent Lie

subalgebra n−.

The space b = h ⊕ n+ is a solvable Lie algebra, called the Borel subalgebra.

Exponentiating, we obtain the Borel subgroup B of G. It is a maximal connected

solvable subgroup of G, and has the property that the symmetric space G/B is compact.

Example 3.17. In SL(n,C), the nilpotent Lie subalgebra n+ is the set of strictly upper

triangular matrices, and the Borel subalgebra b is the set of traceless upper triangular

matrices. The Borel subgroup is the subgroup of upper triangular matrices in SL(n,C).
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The symmetric space G/B is the complete flag variety of C
n, that is,

G/B ∼= {(0) = V0 ≤ V1 ≤ · · · ≤ Vn = C
n | dimVi = i}.

This can be seen by observing that SL(n,C) acts transitively on the space of complete

flags, via the usual action of SL(n,C) on C
n, and that the stabilizer of the flag
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is B.

To be even more specific, consider the case of the group SL(3,C). Using the choice

of a simple root system above, we put S = {α12, α23}. For notational simplicity, let us

put

X1 =





0 1 0
0 0 0
0 0 0



 , Y1 =





0 0 0
0 0 1
0 0 0



 , Z1 =





0 0 1
0 0 0
0 0 0





We denote the corresponding roots by αX = α12, αY = α23 and αZ = α13 = αX +αY .

The six roots of SL(3,C) are depicted in Figure 3.1. The positive roots are those in the

upper-right half plane.

The high degree symmetry in the root system shown in Figure 3.1 is clear, and

it is a general phenomenon. As mentioned earlier, if α is a root of G, then so is −α.

Picking nonzero elements eα ∈ gα and fα ∈ g−α, one can show that their bracket

hα = [eα, fα] is nonzero in g0 = h. Therefore eα, fα and hα span a three-dimensional

Lie subalgebra of g. There is only one three-dimensional semisimple complex Lie algebra,
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0 αX

αY αZ

−αX

−αY
−αZ

Fig. 3.1. Root system for SL(3,C).

up to isomorphism, namely sl(2,C). Thus, after perhaps rescaling fα and hα, we have

the relations

[hα, eα] = 2eα, [hα, fα] = −2fα, [eα, fα] = hα. (3.3.2)

This hα ∈ h is called the co-root of α, often denoted α∨. Note that, by the first relation

of (3.3.2), α(α∨) = 2.

Corresponding to each co-root in h, there is an annihilating hyperplane in a†.

These hyperplanes are called walls. Reflection in the wall determined by α∨ is given by

the map

sα : a
∗ → a

∗

λ 7→ λ− λ(α∨)α.
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It is a theorem that these reflections preserve the set of roots ∆. The group of symmetries

of a† generated by these reflections is called the Weyl group of G, and denoted by W .

Example 3.18. The co-root hij = α∨
ij

for SL(n,C) is the diagonal matrix

hij = Eii −Ejj .

The reflection in the co-root hij permutes the root system as follows:

sαij
: αkl 7→ ασ(k)σ(l),

where σ is the transposition (i j) in Sn. This can be checked by direct computation with

the roots. Thus the Weyl group for SL(n,C) is isomorphic to the symmetric group Sn.

There is also an alternative characterization of the Weyl group. Recall that the

Lie subalgebra m exponentiates to an abelian subgroup M0 of the compact subgroup K.

Now, let us denote by M the centralizer of M0 in K, and by M ′ the normalizer of M0

in K. The Weyl group is equal to M ′/M . For a proof that these two definitions are

equivalent, see [Kna86, §IV].

Example 3.19. The subalgebra m of sl(n,C) is the set of traceless diagonal matrices

with purely imaginary entries. Its exponential is the group M0 of diagonal matrices

of determinant one whose diagonal entries are complex of modulus one. It is its own

centralizer, so M = M0. The normalizer of M0 in K is the set of unitary matrices with

exactly one nonzero entry in each row and each column. We again see that the Weyl

group is the symmetric group Sn.
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In this picture, the action of W on the roots is induced from the action of W on

the weight spaces, via the adjoint action.

The walls partition a† into regions, called chambers. The Weyl group permutes

the chambers. Moreover, this action is freely transitive. This allows us to set up a one-

to-one correspondence between elements of the Weyl group and Weyl chambers, once we

fix a distinguished chamber to correspond to the identity element in W . Such a chamber

is furnished by our previous choice of a simple root system: the fundamental chamber is

defined by the distinguishing property that every λ in its interior satisfies

λ(α) > 0 for each positive root α.

We will denote the fundamental chamber by W(S), or just W. Every chamber is the

fundamental chamber with respect to some unique choice of a system of simple roots,

and thus we see that the Weyl group precisely indexes the possible choices of such a

system.

Having fixed a system of real roots, we can endow the Weyl group with the

structure of a directed graph. The reflection sα ∈ W is called a simple reflection if α is

a simple root. Then the simple reflections generate the Weyl group.

Definition 3.20. The length function on W is the map

l : W → N
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W

0 αX

αY αZ

−αX

−αY
−αZ

Fig. 3.2. The six Weyl chambers of SL(3,C). The fundamental chamber W is shaded.

defined by letting l(w) be the length of the shortest product of simple reflections which

equals w.

The set of elements of length k in W is denoted by W (k).

The directed graph will be constructed as follows.

Definition 3.21. For w1, w2 ∈W , we will write w1 → w2 if

(i) l(w2) = l(w1) + 1, and

(ii) w2 = sαw1 for some reflection sα ∈W (not necessarily simple).

This yields a directed graph, whose vertices are elements of W and whose directed

edges are given by the arrows of Definition 3.21.

The directed graph in turn induces a partial ordering on the Weyl group. We

write w1 � w2 if there is a directed path (possibly trivial) from w1 to w2.
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Example 3.22. If we pick the simple roots of SL(n,C) to be αi,i+1 (i = 1, . . . , n− 1),

then the simple reflections in W = Sn are the transpositions (i i+1).

Figure 3.3 shows the directed graph structure on the roots of the case of SL(3,C).

1 •

(1 2)
•

(2 3)
•

(1 2 3)
•

(1 3 2)
•

(1 3)•
��������*

HHHHHHHHj

-

-

@
@

@
@

@
@

@@R�
�

�
�

�
�

���
HHHHHHHHj

��������*

Fig. 3.3. Directed graph structure for the Weyl group of SL(3,C).

For the remainder of this thesis we will assume that on any complex semisimple

group G a choice of a Cartan subalgebra and a system of simple roots has been fixed,

once and for all.

3.4 Highest-weight modules

Having dealt with the basic structure theory, let us turn to the representation

theory of the semisimple Lie algebra g.

The name Verma module is given to the g-modules of the form

Mλ = U(g) ⊗
U(b)

Vλ,
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where λ ∈ h∗ is any weight, and Vλ denotes the one-dimensional representation of b

upon which h acts with weight λ, and n+ acts trivially. That is a precise, but inelegant,

definition of Verma modules. Their real importance is due to their universality as highest-

weight modules.

Definition 3.23. A g-module M is called a highest-weight module with highest weight

λ ∈ h∗ if it is generated by a vector v of weight λ which is annihilated by n+.

Proposition 3.24 ([Dix96, Proposition 7.1.8]). The Verma moduleMλ is universal

amongst highest-weight modules of highest weight λ, ie, for any highest-weight module

M with highest weight λ, there is a surjective g-module homomorphism Mλ →M. This

map is unique up to a scalar multiple.

The most obvious examples of highest-weight modules are the finite-dimensional

irreducible representations of g. Why are these highest-weight modules? As remarked

earlier, any finite dimensional g-module Γ decomposes into weight spaces. From (3.3.1),

the action of the nilpotent subalgebra n+ maps each weight space into another, and

Engel’s theorem (see [FH91, Theorem 9.9]) tells us that one of these weight spaces must

be annihilated by n+. Let us denote the weight of this annihilated space by λ. Now

U(n−)v must be all of Γ, for otherwise it would be a proper g-invariant subspace. Hence

Γ is a highest weight module of highest weight λ.

What is more, the finite-dimensional g-modules are completely classified by their

highest-weights, as we will now explain.

Definition 3.25. A weight is dominant if it lies in the closure of the fundamental Weyl

chamber W.
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A weight of g is integral if its pairing with every coroot of g is an integer.

The set of integral weights forms a lattice in a†, which we denote by ΛW . (The

root lattice ΛR of the previous section is a sublattice of this.) The set of dominant

integral weights will be denoted by Λ
(Dom)
W .

Proposition 3.26. There exists a basis for a† comprised of integral weights ω1, . . . , ωn

with the property that

W =







n
∑

i=1

aiωi | ai ≥ 0 for all i







.

The weights ω1, . . . , ωn are called the fundamental weights of g.

Example 3.27. From our earlier description of the co-roots of SL(n,C), as

hij = Eii −Ejj ,

for i, j = 1, 2, . . . (i 6= j), it is seen that the integral weights are those weights of the form

λ : H =











H11 0 · · · 0
0 H22 · · · 0
...

...
. . .

...
0 0 · · · Hnn











7→
n
∑

i=1

λiHii,

where λ1, . . . , λn are integers.

Let ej denote the integral weight

ej : H 7→ Hjj ,
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where H is as above. Note that, since sl(n,C) consists of traceless matrices,

e1 + · · ·+ en = 0.

The fundamental weights of SL(n,C) are the weights

ωj = e1 + · · ·+ ej ,

for j = 1, . . . , n− 1.

In particular, for SL(3,C) the fundamental weights are e1 and −e3 = e1 + e2.

Theorem 3.28. The set of (equivalence classes) of representations of irreducible finite

dimensional g-modules is in one-to-one correspondence with the set of dominant integral

weights for g. In other words, for each dominant integral weight λ, there is a unique

irreducible quotient of the Verma module Mλ, which is a finite-dimensional g-module

with highest weight λ.

For a proof, see Theorem 4.28 and Proposition 5.7 of [Kna86].

Given λ ∈ Λ
(Dom)
W , we will write Γλ to denote the unique finite-dimensional

irreducible g-module with highest weight λ.

3.5 The Bernstein-Gel’fand-Gel’fand complex, algebraically

The work of Bernstein-Gel’fand-Gel’fand [BGG75] shows how any finite dimen-

sional g-module admits a resolution by direct-sums of Verma modules. The authors

were originally interested in this resolution from the point of view of algebra. But the
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correspondence of Theorem 3.12 allows one to reinterpret this algebraic resolution in

geometric terms. This geometric viewpoint will be the basis of the ensuing work, but let

us begin by motivating the algebraic complex.

For illustration, consider the trivial representation Γ0 = C of SL(3,C). Let us

change our notation from Section 3.3, putting

X = E12, Y = E23, Z = E13,

X̄ = −E21, Ȳ = −E32, Z̄ = −E31.

Thus, n+ is spanned by X, Y and Z, with [X,Y ] = Z, and similarly n− is spanned by

X̄ , Ȳ and Z̄, with [X̄, Ȳ ] = Z̄.

Being an sl(3,C)-module with highest weight 0, the trivial representation admits

a realization as a quotient of the Verma moduleM0, which we write as

0←− C←−M0.

Let v be a highest-weight vector inM0.

Now consider the kernel N of this quotient. SinceM0 is generated by the action

of n− on v, it is clear that N is generated by the vectors X̄v, Ȳ v and Z̄v. And since

Z̄v = X̄Ȳ v − Ȳ X̄v, it is generated by just X̄v and Ȳ v. These two vectors have weights

−αX and −αY , respectively, and both are annihilated by n+ in N . Therefore, we have

an exact sequence

0←− C←−M0 ←−

M−αX
⊕

M−αY

.
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The theorem of Bernstein, Gel’fand and Gel’fand says that this process can be continued,

resulting in a resolution of finite length in terms of direct sums of Verma modules.

To approach from a different direction, one can ask a more general question: for

which pairs of weights λ and µ does there exist a map of Verma modules Mλ →Mµ?

The answer comes from the order structure on the Weyl group, which was introduced in

Section 3.3.

For notation, we will need to define the weight

ρ =
1

2

∑

α∈∆+

α.

This weight is an “affine factor” that appears ubiquitously in studying submodules of

Verma modules. (A typical appearance is seen in Theorem 3.29 below.) Note that ρ is

a strictly dominant weight, in that it lies in the interior of the fundamental chamber.

Proposition 3.29. Let λ ∈ a† be a weight. There is an inclusion of Verma modules

Mµ ←↩Mλ if and only if

(i) λ is an integral weight,

(ii) λ+ ρ and µ+ ρ lie in the same orbit of the Weyl group, and

(iii) there are w1, w2 ∈ W with w1α = λ + ρ, w2α = µ + ρ and w1 � w2, where α is

the unique dominant weight in the orbit of λ+ ρ.

For a proof, see [Dix96, §7.8].

Therefore, there is a collection of g-module maps indexed by the directed graph

structure on the Weyl group. The amazing result of Bernstein-Gel’fand-Gel’fand is that
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when these modules are assembled according to the lengths of the corresponding Weyl

group elements, this system results in a resolution of a finite-dimensional representation,

as follows.

Theorem 3.30 (Bernstein-Gel’fand and Gel’fand [BGG75, Theorem 10.1]).

Let Γ be an irreducible finite-dimensional g-module with highest weight λ. There is an

exact sequence of g-modules

0← Γ← C0 ← C1 ← · · · ← Cs ← 0,

where

Ck =
⊕

w∈W (k)

Mw(λ+ρ)−ρ .

3.6 The Bernstein-Gel’fand-Gel’fand complex, geometrically

To complete this chapter, we wish to reinterpret the algebraic complex of Theorem

3.30 by means of the correspondence of Theorem 3.12. The results of Section 3.2 can be

packaged into the following statement.

Theorem 3.31. Let G be a complex semisimple Lie group, with Borel subgroup B.

There is a contravariant equivalence of categories between the category of G-equivariant

differential operators between homogeneous line bundles over G/B and the category of

homomorphisms between Verma modules for g.
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One can now apply this categorical equivalence to the algebraic BGG complex

above. One needs to ask what happens to the finite dimensional representation Γ which

is being resolved in Theorem 3.30.

Theorem 3.32 (Borel-Weil). Let K be a complex semisimple group and let λ be a

dominant integral weight for G. The irreducible finite-dimensional representation Γλ,

with highest weight λ, is isomorphic to the space of holomorphic sections of the bundle

G×
B
Vλ, with its natural action of G.

For a proof, see [Kna86, §7]. We will refer to the map

Γλ ↪→ C∞(G/B;G ×
B
Vλ)

as the Borel-Weil inclusion.

Theorem 3.33 (See [BE89, Theorem 8.3.1]). Let G be a complex semisimple group,

B its Borel subgroup, and let λ be a dominant integral weight for G. There is a resolution

of the Borel-Weil inclusion by G-equivariant differential operators,

0→ Γλ ↪→ C∞(G/B;F0)→ C∞(G/B;F1)→ . . .→ C∞(G/B;Fs),

where Fk is the direct sum of homogeneous complex line bundles

Fk =
⊕

w∈W (k)

G×
B
Vρ−w(λ+ρ).
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We will shortly describe the one key example of the BGG complex which will be

used in the remainder of this thesis. However, in order to make that example compatible

with the ensuing notation, we must digress briefly to make a small change of convention.

3.7 Using the conjugate Borel subgroup

In this chapter we have followed the standard convention for defining the Borel

subgroup B, namely that it is the subgroup with Lie algebra

b = h + n+.

However, it will be notationally convenient for the remainder of the work to use an

alternative choice:

b = h + n−.

In the example of the group SL(n,C), this has the effect of exchanging the upper trian-

gular subgroup for the lower triangular subgroup.

In order to translate between the two conventions, one can simply apply the

Cartan involution Θ throughout. We will now list the results of this change of convention.

The primary difference is the class of g-modules which must be considered in

Section 3.4.

Definition 3.34. A lowest-weight module is a g-module which is generated by a vector

v which is annihilated by n−.
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The highest-weight Verma modules must be replaced with lowest weight modules

throughout. We will denote these by

Mλ = U(g) ⊗
U(b)

Vλ.

Finite-dimensional g-modules are lowest-weight modules as well as highest weight

modules. A weight λ is called anti-dominant if −λ is dominant. Then the finite-

dimensional g-modules can be classified by their lowest weights, which are anti-dominant

integral weights.

One convenient observation simplifies this issue. Suppose Γ is a finite-dimensional

irreducible g-module, with highest weight λ. Then its dual space Γ∗ is also an irreducible

g-module with the contragredient representation, defined by

(Xφ)(v) = −φ(Xv).

for X ∈ g, φ ∈ Γ∗ and v ∈ Γ. If v1, . . . , vn is a basis of weight vectors for Γ, then its

dual basis v∗
1
, . . . , v∗

n
is a basis of weight vectors for Γ∗, and the weights of v∗

j
will be the

negative of that for vj . Thus, the finite-dimensional g-module with lowest weight −λ is

just the dual of the finite-dimensional g-module with highest weight λ.

The geometric BGG complex becomes as follows: for any dominant integral weight

λ, there is a differential resolution

0→ (Γλ)∗ ↪→ C∞(G/B;F0)→ C∞(G/B;F1)→ . . .→ C∞(G/B;Fs),
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where Fk is the direct sum of homogeneous complex line bundles

Fk =
⊕

w∈W (k)

G×
B
V−ρ+w(λ+ρ).

3.8 The BGG complex for SL(3, C)

We conclude this chapter with the most important example for the present work.

Let G = SL(3,C), with B the subgroup of lower triangular matrices, and let λ = 0. The

Weyl group is S3. The orbit of 0 under the affine Weyl action

w : µ→ −ρ+ w(µ+ ρ)

is

1 · 0 = 0, (1 2 3) · 0 = −2αX − αY ,

(1 2) · 0 = −αX , (1 3 2) · 0 = −αX − 2αY ,

(2 3) · 0 = −αY , (1 3) · 0 = −2αX − 2αY .

Therefore, appealing to the directed graph of Figure 3.3, the BGG complex described in

the previous section is

C∞(X ;E−αX
) //

##HHHHHHHHHHHHHHHHHHHHHHHH

⊕

C∞(X ;E−2αX−αY
)

##HH
HH

HH
HH

H

⊕

C // C∞(X ;E0)

;;vvvvvvvvv

##HHHHH
HHHH

C∞(X ;E−2αX−2αY
)

C∞(X ;E−αY
) //

;;vvvvvvvvvvvvvvvvvvvvvvvv

C∞(X ;E−αX−2αY
)

;;vvvvvvvvv

where X = G/B and Eλ denotes the homogeneous vector bundle G×
B
Vλ.
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Chapter 4

Homogeneous Bundles over SL(3, C)

4.1 The space G/B and its fibrations

Let G be the group SL(3,C), and B the subgroup of lower triangular matrices. We

are interested in the homogeneous space X = G/B. This is a closed complex manifold

of three complex dimensions. We will follow the notation for quotient spaces introduced

earlier, namely for a point x ∈ G, we will denote its image in G/B by x. We use e to

denote the identity element in G.

With our particular choice of G and B, the quotient space X has some additional

structure. Let us introduce the subgroups

PX =











∗ ∗ 0
∗ ∗ 0
∗ ∗ ∗



 ∈ SL(3,C)

∣

∣

∣

∣

∣

∣

each ∗ ∈ C







and

PY =











∗ 0 0
∗ ∗ ∗
∗ ∗ ∗



 ∈ SL(3,C)

∣

∣

∣

∣

∣

∣

each ∗ ∈ C







of G, both of which contain B. Corresponding to these two subgroups, there are two

maps

G/B
τX

{{vv
vv

vv
vv

v τY

##HH
HH

HH
HH

H

G/PX G/PY
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to the homogeneous spaces G/PX
∼= CP2 and G/PY

∼= CP2. These two maps are

fibrations, with fibres isomorphic to PX/B
∼= PY /B

∼= CP1.

Let us denote tangent distributions along the fibres of τX and τY by FX and FY ,

respectively, ie,

FX = ker dτX ⊂ TX ,

FY = ker dτY ⊂ TX .

Note that, since the fibration maps are G-equivariant, the line bundles FX and FY are

homogeneous subbundles of TX .

In order to get a geometric picture of these fibrations, it is illuminating to look

at them in local coordinates. Let N denote the group of upper-triangular matrices with

all diagonal entries equal to 1. The map

ϕe : N → X

x 7→ x (4.1.1)

is an inclusion, diffeomorphic onto a dense open subset of X . This sets up a coordinate

patch in X which is modelled on the three-dimensional complex Heisenberg group N .

One can cover the homogeneous space X with charts of this form by using the

translation action of G. Namely, for any point g ∈ X , we can define the coordinate
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system

ϕg : N → X

x 7→ gx. (4.1.2)

Remark 7. In fact, it suffices to use only six such coordinate charts, corresponding to

the six elements of the Weyl group. This follows from the PLU -decomposition, which

says that any g ∈ SL(3,C) can be decomposed (non-uniquely) as

g = w̃nb,

with b ∈ B, n ∈ N and w̃ being a permutation matrix (with signed entries so that its

determinant is one). The signs of the entries of w̃ (and even their magnitudes) can be

chosen arbitrarily, for if d is a diagonal matrix then

g = (w̃d)(d−1nd)(db)

is another decomposition of g of the same form.

The element w̃ belongs to the normalizer NK(m) in K of skew-adjoint part of the

Cartan subalgebra. By Example 3.19, it corresponds to an element of the Weyl group,

that element being given by the permutation represented by the matrix w̃. Therefore,

choosing one representative w̃ for each element of the Weyl group, the coordinate patches

φw̃(N) = w̃N
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cover X .

The coordinate patch (4.1.1) sets up an isomorphism between the complex Heisen-

berg Lie algebra

n =











0 a c
0 0 b
0 0 0





∣

∣

∣

∣

∣

∣

a, b, c ∈ C







and the tangent space g/b to X at e. The differential of the fibration map τX at e is the

quotient map

(dτX )e : g/b→ g/pX ,

where pX is the Lie algebra of PX . In local coordinates, the kernel of this map is the

subspace










0 a 0
0 0 0
0 0 0





∣

∣

∣

∣

∣

∣

a ∈ C







of n.

Let us define the elements X1 and X2 in n by

X1 =





0 1 0
0 0 0
0 0 0





and

X2 =





0 i 0
0 0 0
0 0 0





Then the tangent vectors dϕeX1 and dϕeX2 belong to FX at e. Because τX is a G-

equivariant map, it follows that in the coordinate chart ϕe, the bundle FX is spanned

by the left N -invariant vector fields generated by X1 and X2. Similarly, FY is tangent
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to the vector fields generated by

Y1 =





0 0 0
0 0 1
0 0 0





and

Y2 =





0 0 0
0 0 i
0 0 0



 .

An observation worth noting is that the fields tangent to FX and FY generate the entire

tangent bundle of X as a Lie algebra.

4.2 The BGG complex for SL(3, C), concretely

Consider the Dolbeault complex for X . Because of our choices elsewhere, we will

give our Dolbeault complex in terms of holomorphic differentials:

Ω0,0X
∂ //

Ω1,0X
∂ //

Ω2,0X
∂ //

Ω3,0X .

Underlying these spaces are the bundles
∧p,0 T ∗X , for p = 0, 1, 2, 3.

Let us define the smooth G-invariant sub-bundle of TX ,

Q = FX ⊕FY .

We use this to define decompositions of the above bundles.

Firstly, let I1 be the sub-bundle of
∧1,0 T ∗X which annihilates Q, and let I1 be

its space of sections. Thus,

I1 = {ω ∈ Ω1,0X | ω(V ) = 0 for any section V of Q}.
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If we denote the space of holomorphic sections of the pth exterior power of Q∗ by Ωp,0Q,

for p ∈ N, then Ω1,0Q = (Ω1,0T ∗X )/I1.

Secondly, let I2 be the sub-bundle of
∧2,0 T ∗X which annihilates

∧2Q, and let

I be its space of sections. Therefore,

I2 = {ω ∈ Ω2,0X | ω(V1, V2) = 0 for any sections V1, V2 of Q},

and Ω2,0Q = (Ω2,0T ∗X )/I2.

The ensuing definitions are complex variants of the operators defined by Rumin

in [Rum94].

Definition 4.1. Define a differential operator ∂R by the composition

∂R : Ω0,0X
∂ //

Ω1,0X // Ω1,0Q .

Define another differential operator by

∂R : I2 //
Ω2,0X

∂ //
Ω3,0X .

These operators will be referred to as Rumin-Dolbeault differentials.
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We have a diagram of G-equivariant maps

I1

��

I2

��

∂R

$$IIIIIIIIII

Ω0,0X
∂ //

∂R

$$IIIIIIIII Ω1,0X
∂ //

��

Ω2,0X
∂ //

��

Ω3,0X

Ω1,0Q Ω2,0Q

.

At this point, something surprising happens. The order one differential operator

∂ in the middle of the Dolbeault complex decomposes into an order zero operator and

an order two operator. This is explained by the following two lemmas.

Lemma 4.3 is a complex analogue of a result of Rumin ([Rum94]), although the

approach we are taking follows [Eas99].

Lemma 4.2. The composition of maps

I1 //
Ω1,0X

∂ //
Ω2,0X // Ω2,0Q

is a C∞(X )-linear isomorphism.

Proof. Let ω ∈ I1 and f ∈ C∞(X ). Then,

∂(fω) = ∂f ∧ ω + f∂ω.

The first term, ∂f ∧ ω, is in I2, and so is killed in passing to the quotient space Ω2,0Q.

This proves C∞(X )-linearity.
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We need to check that it is an isomorphism. Since the bundles underlying the

domain and range of this map are both one-dimensional, we need only check that the

underlying bundle map is nonzero at every point. Since the map is G-equivariant, it

suffices to check it is nonzero at any point. We therefore work in the coordinate chart

ϕe described in the previous section. We will suppress mention of the map ϕe, working

directly on N .

Let

X =
1

2
(X1 − iX2),

Y =
1

2
(Y1 − iY2),

Z =
1

2
(Z1 − iZ2),

where X1, X2, Y1 and Y2 are as in the previous section, and

Z1 =





0 0 1
0 0 0
0 0 0



 ,

Z2 =





0 0 i
0 0 0
0 0 0



 .

Let ξ, η and ζ be the holomorphic forms dual to the holomorphic frame X, Y , Z. Then

ζ annihilates X and Y , which span the holomorphic part of Q. Hence ζ spans the

restriction of Ω1,0Q to this chart, as a C∞(N)-module.
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We compute ∂ζ using Cartan’s formula, and the fact that ∂ζ = 0. We have

iX∂ζ = LXζ − ∂iXζ = LXζ,

and hence

∂ζ(X,Y ) = −ζ([X,Y ]) = −1.

This shows that

∂ζ = −ξ ∧ η.

Since this does not belong to I2, its image is nonzero in the quotient.

Lemma 4.3. Let θ ∈ Q∗. There exists a unique lift θ̃ ∈ Ω1,0X of θ such that ∂θ̃ ∈ I2.

Proof. Let θ̊ be any lift of θ. By the preceding lemma, there is a unique ω ∈ I1 such

that

∂ω = ∂θ̊ modulo I2.

Then the desired lift is

θ̃ = θ̊ − ω.

Uniqueness follows from the uniqueness of ω.

Definition 4.4. Define a Rumin-Dolbeault differential

DR : Ω1,0Q → J2
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by setting

DRθ = ∂θ̃,

with notation as in the previous lemma.

Note that DR is a second order differential operator: one must first differentiate

θ̊ to determine θ̃, and then one applies ∂ to the result.

We also note that DR is a G-equivariant operator, as follows. Let g ∈ G. Follow-

ing the notation of the proof of Lemma 4.3, if θ̊ is a lift of θ, then g · θ̊ is a lift of g · θ.

Therefore,

DR(g · θ) = ∂(g · θ̊ − g · ω) = g · ∂(θ̊ − ω) = g ·DRθ.

Let us compute the Rumin-Dolbeault differentials in local “Heisenberg” coordi-

nates. We will work in the coordinate chart given by ϕe of Equation (4.1.1), once again

suppressing mention of the map ϕe itself. Let X, Y and Z be the holomorphic vector

fields as in the proof of Lemma 4.3, and let ξ, η and ζ be the corresponding holomorphic

dual forms.

These form a frame field for the cotangent bundle of this chart. Restricted to

this chart, the bundle I1 is spanned pointwise by ζ, and that I2 is spanned pointwise

by ξ ∧ ζ and η ∧ ζ. We use this frame to furnish splittings of the quotient map, namely,

we identify the space Ω1,0Q with the space of 1-forms spanned by ξ and η, and identify

the space Ω2,0Q with the space of 2-forms spanned by ξ ∧ η.

We computed previously that

∂ζ = −ξ ∧ η.
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We now show that

∂ξ = ∂η = 0.

This can again be either using Cartan’s formula, as before, or by direct computation in

Euclidean coordinates. Let us do the latter.

Put coordinates on the complex Heisenberg group by

(x, y, z) 7→





1 x z
0 1 y
0 0 1



 .

The group multiplication in these coordinates is given by

(x, y, z) · (t1, t2, t3) = (x+ t1, y + t2, z + t3 + xt2).

Differentiating this with respect to the complex coordinates t1, t2 and t3 in turn gives

the left-invariant vector fields:

X =
∂

∂x
,

Y =
∂

∂y
+ x

∂

∂z
,

Z =
∂

∂z
.

The dual forms are

ξ = ∂x,

η = ∂y,

ζ = ∂z − x ∂y.
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Applying ∂ to these 1-forms gives the result.

Now we begin to compute the Rumin-Dolbeault operators. The Dolbeault differ-

ential on 0-forms is given by

∂ : a 7→ (Xa) ξ + (Y a) η + (Za) ζ,

for a ∈ C∞(X ). When we pass to the quotient by I1 we get

∂Ra = (Xa) ξ + (Y a) η.

Next consider DR. We begin with the form

θ = a ξ + b η, (a, b ∈ C∞(X ))

lifted from the quotient Ω1,0Q by the local splitting mentioned above. Then,

∂θ = (−Y a+Xb) ξ ∧ η − (Za) ξ ∧ ζ − (Zb) η ∧ ζ.

Following the algorithm described in the proof of Lemma 4.3, we take

ω = (−Y a+Xb)ζ.
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Hence,

DRθ = ∂(θ − ω)

= −(Za) ξ ∧ ζ − (Zb) η ∧ ζ +X(−Y a+Xb) ξ ∧ ζ + Y (−Y a+Xb) η ∧ ζ

= (−(XY + Z)a+X2b) ξ ∧ ζ + (−Y 2a+ (Y X − Z)b) η ∧ ζ.

Finally, if we start with the 2-form

θ = a ξ ∧ ζ + b η ∧ ζ ∈ I2,

then

∂Rθ = ∂θ = (−Y a+Xb) ξ ∧ η ∧ ζ.

Therefore, the Rumin-Dolbeault complex in these local coordinates is as follows:

〈ξ〉
−(XY+Z)

//

−Y 2

%%KKKKKKKKKKKKKKKKKKKKKKKKKK

⊕

〈ξ ∧ ζ〉
−Y

%%KKKKKKKKKK

⊕

〈1〉

X
99ssssssssssss

Y
%%KKKKKKKKKKK 〈ξ ∧ η ∧ ζ〉

〈η〉

X2

99ssssssssssssssssssssssssss

Y X−Z
// 〈η ∧ ζ〉

X

99ssssssssss

(4.2.1)

Theorem 4.5. The Rumin-Dolbeault complex for X is a complex.

Proof. Since the complex is G-equivariant, it suffices to prove that the compositions of

successive operators are zero at a single point in X . We will take advantage of the above

coordinate computations. Checking that the collection of maps (4.2.1) is a complex
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amounts to checking that each of the four diamonds in that diagram anticommute. This

is straightforward:

(i) −(XY + Z)X +X2Y = X[X,Y ]− ZX = 0,

(ii) −Y 2X + (Y X − Z)Y = Y [X,Y ]− ZY = 0,

(iii) Y (XY + Z)−XY 2 = [Y,X]Y + Y Z = 0,

(iv) −Y X2 +X(Y X − Z) = [X,Y ]X −XZ = 0.

Theorem 4.6. The Rumin-Dolbeault complex for X is G-equivariantly isomorphic to

the BGG complex of Section 3.8.

Proof. We have observed that the Rumin-Dolbeault complex is a complex of G-equi-

variant differential operators between homogeneous line bundles over X . All of the

operators are of degree at least one, and in particular are not scalar. Proposition 3.12

and Proposition 3.29 completely constrain the possibilities for the system of operators,

up to scalar multiples. The fact that both the Rumin-Dolbeault complex and the BGG-

complex are complexes shows that the scalar multiples are consistent.

4.3 Compact and nilpotent pictures

Recall from Section 3.2 that the homogeneous vector bundles over G/B are all of

the form

E = G×
B
V
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where V is equipped with some representation

µ : B −→ End(V )

of B. In what follows, we will only need to consider one dimensional bundles, so the

representation µ will be a character of B.

Again, we denote by (g; v) the element in E = G ×
B
V which is the image of

(g, v) ∈ G×B under the usual quotient map. Recall that sections of E can be described

by their lifts to B-equivariant sections of the trivial bundleG×V over G, as in Proposition

3.6:

C∞(X ;E) ∼= {σ̃ : G→ V | σ̃(gb) = µ(b−1)σ̃(g) for g ∈ G, b ∈ B}.

Under this correspondence, the action of G on sections of E is given simply by

g1 · σ̃(g) = σ̃(g−1
1
g).

This description of E gives a picture which is very convenient for doing global

computations. We will also need two other well-known descriptions each of which has

its merits.

The first is the so-called “compact picture”, which is convenient for global analysis.

The Iwasawa decomposition of G allows us to write

G = KAN−
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where K = SU(3) is the maximal compact subgroup of G, A is the group of determinant

one diagonal matrices with positive entries, and N− is the group of lower triangular

unipotent matrices. Since AN− ⊆ B, we see that

X = G/B ∼= K/M

where M = K ∩B is the subgroup of diagonal matrices with entries of modulus one:

M =











w1 0 0
0 w2 0
0 0 w3





∣

∣

∣

∣

∣

∣

|w1| = |w2| = |w3| = 1 and w1w2w3 = 1







.

We get

E ∼= K ×
M
V.

It is this picture which most easily allows us to define an inner product on the

sections of E. First, fix an inner product on V . In what follows we will have V = C,

in which case we use the standard inner product on C. We define the inner products of

σ1, σ2 ∈ C
∞(X ;E) by using the inner product of their lifts to K:

〈σ1, σ2〉 =

∫

K
σ̃1(k)σ̃2(k)dk, (4.3.1)

where dk denotes Haar measure on K. The resulting Hilbert space will be denoted by

L2(X ;E).

Remark 8. The following remarks are not essential for what follows, but might provide

some context for the definition of inner product (4.3.1).
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Firstly, as has been remarked previously, the space X does not admit a G-invariant

metric. But it does of course admit a K-invariant metric, and an accompanying K-

invariant volume form. Integration of a function against that volume form is given by

∫

X
f(x)dVol =

∫

K
f̃(k)dk

(up to a normalizing constant), where

f̃(k) = f(k).

Secondly, the choice of an inner product on V , which is canonically isomorphic to

the fibre at e of E, extends to a K-invariant Hermitian structure on all of E = K ×
M
V

by translating by elements of K. The only thing that needs to be checked here is that

the inner product on V is respected by the action of the stabilizer of e in K, namely

M . But since M is compact, µ(M) ⊆ S1. Once again, it is not possible to make this

Hermitian structure G-invariant.

Thus, the above inner product is the usual inner product for a Hermitian bundle

over a Riemannian metric, using the natural K-invariant structures.

The other picture, which we will use is commonly called the “noncompact picture”

or “nilpotent picture”. This is the local picture of G/B based upon the chart ϕe of

Section 4.1. Recall that the basic version of such a chart was the inclusion of the



99

nilpotent subgroup

N = N+ =











1 a c
0 1 b
0 0 1





∣

∣

∣

∣

∣

∣

a, b, c ∈ C







in G. The LU -decomposition for three-by-three matrices gives a decomposition

G = NB

which holds almost everywhere—that is, except for a set of Haar measure zero, every

g ∈ G can be written uniquely as

g = xb

for some x ∈ N , b ∈ B. This shows what we have previously claimed—that the chart ϕe

includes N into G as an open dense subset.

The fact that we are omitting only a set of measure zero in restricting to this

chart implies that we lose nothing of the measure theory of E. In other words, we can

compute the inner product of two sections as described in Equation (4.3.1) by working

only on this chart. The transferral of the inner product from the compact to the nilpotent

picture is a well-known procedure (see, for instance, Knapp [Kna86]). However, the key

idea will be useful to us again in the future, so we will conclude this section by recalling

the argument.

The key idea is to stop by an intermediate description of the inner product, which

is obtained by distributing the formula (4.3.1) along B-cosets. We will need the following
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properties of the Haar measures for the groups G, B, N = N+ and K, which can be

found in [Kna86, §V.6].

The groups G, N and K are unimodular, and we will denote their Haar measures

by dg, dn and dk, respectively. Let drb and d`b denote the right- and left-invariant

measures on B, respectively. The modular function for B is |ρ|4, ie,

d`b = |ρ(b)|−4drb,

where ρ is the character of B defined by

ρ(expH) = exp(αX + αY )(H), (H ∈ h),

ρ(n) = 0, (n ∈ N−)

The products

G = KB

and

G = NB (almost everywhere)

give rise to formulae

dg = dkdrb

and

dg = dxdrb

for the Haar measure dg on G.
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To describe the formula for the inner product (4.3.1) in the nilpotent picture, we

need some notation. Given g ∈ G, let its KAN−-decomposition be

g = kan.

We then define

βK (g) = an

to be the “AN−”-component of g.

Proposition 4.7. The K-invariant inner product of two sections σ1, σ2 ∈ C
∞(X ;E) is

given by

〈σ1, σ2〉 =

∫

N
σ̃1(x)σ̃2(x)|µρ−2(βK (v))|2dx,

where dx is Haar measure on N . The product µρ−2 refers to the product of characters,

µρ−2(b) = µ(b)ρ(b)−2. (b ∈ B)

Proof. We start with a pair of sections σ1, σ2 ∈ C
∞(X ;E), which we lift to functions σ̃1

and σ̃2 on K. We extend these to functions F1 and F2 on G, not by µ(B)-equivariance,

but by the formula

Fi(kb) = ρ(b)−2σ̃i(k)

= µρ−2(b)σ̃i(kb),
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for k ∈ K, b ∈ B and i = 1, 2. The inner product will be realized on G by integration of

F1 and F2 against a weight function of mass one on each B-coset. To this end, choose

some φ ∈ Cc(B) with φ ≥ 0 and
∫

B
φ d`b = 1.

By averaging we may assume that φ(mb) = φ(b) for all m ∈ M = B ∩K and b ∈ B.

Now extend φ to all of G by defining

φ(kb) = φ(b) (k ∈ K, b ∈ B).

Then
∫

B
φ(gb)d`b = 1

for any g ∈ G.

We get

〈σ1, σ2〉 =

∫

K
σ̃1(k)σ2(k)

(
∫

B
φ(b)d`b

)

dk

=

∫

K

∫

B
F1(kb)F2(kb)|ρ(b)|4φ(b) d`b dk

=

∫

G
F1(g)F2(g)φ(βK (g)) dg

=

∫

N

∫

B
F1(xb)F2(xb)|ρ(b)|4φ(b) d`b dx

=

∫

N
F1(x)F2(x)

(∫

B
φ(b) d`b

)

dx

=

∫

N
σ̃1(x)σ̃2(x)|µρ−2(βK(x))|2 dx,

as claimed.
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4.4 The group action

The contents of this section and the next will not actually be needed for the

subsequent material in this thesis. However, they will certainly be important for con-

tinuing the work which is begun here. The γ-element for G = SL(3,C) is, of course, a

G-equivariant K-homology class. We will eventually need to show that the repackaging

of the BGG-complex in this form retains the G-equivariance of the complex.

The disadvantage of working in the compact and nilpotent pictures is that the

description of the group action becomes complicated. Nevertheless, we will need to work

in these pictures. We include this section and the next to explain the situation.

As before, let V be a one-dimensional representation of B, given by the character

µ, and let E = G ×
B
V . Firstly, working in the compact picture, if σ is a section of E

then, for k ∈ K,

g · σ̃(k) = σ̃(g−1k)

= µ(an)−1σ̃(k′) (4.4.1)

where

g−1k = k′an

is theKAN−-decomposition of g−1k. TheKAN−-decomposition lets us define an action

of G onK: for g ∈ G, k ∈ K we let g ·k be the compact part of theKAN−-decomposition

of gk. Recalling the notation of the previous section, the “AN−-component” of gk will
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be denoted by βK(gk), so that

gk = (g · k) βK(gk).

Then Equation (4.4.1) becomes

g · σ̃(k) = µ(βK(g−1k))−1σ̃(g−1 · k). (4.4.2)

There is a similar formula for the group action the nilpotent picture. Using LU -

decomposition we have an (almost everywhere defined) action

G×N → N

(g, x) 7→ g · x,

characterized by

gx = (g · x) βN (gx)

for some g · x ∈ N and βN (gx) ∈ B. Then

g · σ̃(x) = µ(βN (g−1x))−1σ̃(g−1 · x). (4.4.3)

4.5 Unitary representations

The inner product (4.3.1) on sections of the bundle Eµ = G×
B
Vµ is K-invariant,

but not G-invariant. This means that the group action on sections is not a unitary
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representation on L2(X ;Eµ). However, since Eµ is a line bundle, any two Hermitian

structures on it must only differ by a scalar factor on each fibre, that is, by multiplication

by a smooth function. Therefore, for each g ∈ G, there is a function

c(µ)
g
∈ C∞(X ),

such that for any sections σ1 and σ2 of Eµ,

〈σ1, σ2〉 = 〈 c
(µ)
g

g · σ1, c
(µ)
g

g · σ2 〉.

The “conformality factor” c(µ)
g

can be explicitly computed using the trick from

the end of Section 4.3. Let σ1, σ2 be sections of E, and as before put

Fi(kb) = µρ−2(b)σ̃i(kb) (i = 1, 2).

Continuing to use the notation of the previous section, we have, for g ∈ G,

〈σ1, σ2〉 =

∫

G
F1(g′) F2(g′)φ(βK (g′)) dg′

=

∫

G
F1(g−1g′) F2(g−1g′)φ(βK (g−1

1
g′)) dg′.

Writing g′ = kan for the KAN−-decomposition of g′, we have

g−1g′ = (g−1 · k) βK(g−1g′)

= (g−1 · k) βK(g−1k) ∈ KB
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Hence,

〈σ1, σ2〉 =

∫

K

∫

B
F1(g−1 · k) F2(g−1 · k) |ρ(βK (g−1

1
g))|−4 φ(βK(g−1

1
g)) drb dk

=

∫

K
F1(g−1 · k) F2(g−1 · k)

(
∫

B
φ(βK (g−1g)) d`b

)

dk

=

∫

K
σ̃1(g−1 · k) σ2(g−1

1
· k) |µρ−2(βK (g−1k))|2 dk

=

∫

K
(g · σ̃1)(k) (g · σ̃2)(k) |µ2ρ−2(βK(g−1k))|2 dk,

where the last equality uses (4.4.2). Therefore, if we put

c(µ)
g

(k) = |µρ−1(βK(g−1k))|2

for k ∈ K, then the map

π(g) : σ 7→ c(µ)
g

g · σ

defines a unitary representation of G on L2(X ;E).
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Chapter 5

Differential Operators

on the Complex Heisenberg Group

5.1 Introduction

We now commence the analytical study of the differential operators in the BGG

resolution associated to SL(3,C). This will centre on studying the differential operators

tangent to the two fibrations FX and FY of Section 4.1. In this chapter, we begin by

looking at the local structure of G/B, that is, by working in the nilpotent picture of

Section 4.3. This means working on the group N+, which is isomorphic to the complex

Heisenberg group.

5.2 The Heisenberg Lie algebra

Let H be the three-dimensional complex Heisenberg group, realized as the group

of unipotent upper triangular complex matrices

H =











1 a c
0 1 b
0 0 1





∣

∣

∣

∣

∣

∣

a, b, c ∈ C







. (5.2.1)

The Lie algebra of this group is the set of strictly upper triangular matrices

h =











0 x z
0 0 y
0 0 0





∣

∣

∣

∣

∣

∣

x, y, z ∈ C







, (5.2.2)
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with the usual commutator bracket

[A,B] = AB −BA.

Thus h is a six-dimensional real Lie algebra.

Remark 9. Because we will not be dealing with the full group SL(3,C) in this chapter,

there should be no confusion in using h as the Heisenberg Lie algebra here, and the

Cartan Lie subalgebra of g elsewhere.

Let us fix the basis

X1 =





0 1 0
0 0 0
0 0 0



 X2 =





0 i 0
0 0 0
0 0 0





Y1 =





0 0 0
0 0 1
0 0 0



 Y2 =





0 0 0
0 0 i
0 0 0





Z1 =





0 0 1
0 0 0
0 0 0



 Z2 =





0 0 i
0 0 0
0 0 0





These basis elements satisfy the commutation relations

[X1, Y1] = − [X2, Y2] = Z1

[X1, Y2] = [X2, Y1] = Z2

(5.2.3)

and all other commutators are zero. In particular, the elements Z1 and Z2 are central

in h. We will also use the same six symbols to denote the left invariant vector fields on

H which are generated by these Lie algebra elements.
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As is usual in complex manifold theory, we now have a confusion of maps which

might be considered as “multiplication by i”. Firstly, the real Lie algebra h has a complex

structure, and hence multiplication by i gives an automorphism of h as a vector space,

which we denote by J . Explicitly,

J : X1 7−→ X2

X2 7−→ −X1, etc.

By left translation, this induces an automorphism of the tangent bundle TH,

which we also denote by J . This special notation is crucial, because the map J on TH

should not be confused with the notion of “multiplication by i” on the complex-valued

vector fields on H. The former is a rotation of tangent vectors of the manifold H, while

the latter is simply a scalar multiplication. In fact, given f ∈ C∞(H), one has

(JV )f = iV f,

for any vector field V on H, if and only if f is a holomorphic function on H with respect

to the complex coordinates (a, b, c).

One formally defines the complex tangent vectors on H as follows. We can firstly

form the complexified Lie algebra

hC = h⊗R C.
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Thus, hC = h⊕ih. The operation of h by differentiation on smooth functions is extended

by letting i act as multiplication by i. In the analogous way, we form the complexified

tangent bundle

TCH = TH⊗R C.

The structural automorphism J on h extends to a complex linear map on hC.

Since J2 = −1, hC decomposes into a +i eigenspace and a −i eigenspace for J .

Definition 5.1. The +i eigenspace of J is the space of holomorphic vectors, denoted

by h′. The −i eigenspace is the space of antiholomorphic vectors, denoted by h′′.

These eigenspaces are Lie subalgebras, isomorphic to the real Lie algebra h.

The complexified Lie algebra hC is a six complex-dimensional space. The basis

vectors X1, X2, Y1, Y2, Z1, Z2 of the real Lie algebra become complex-basis vectors

for hC, satisfying the same commutation relations of Equation (5.2.3).

An alternative choice of basis is given by the three holomorphic elements

X = 1
2(X1 − iX2)

Y = 1
2(Y1 − iY2)

Z = 1
2(Z1 − iZ2)

(5.2.4)

and the three antiholomorphic elements

X̄ = 1
2(X1 + iX2)

Ȳ = 1
2(Y1 + iY2)

Z̄ = 1
2(Z1 + iZ2).

(5.2.5)
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These basis vectors satisfy the commutation relations

[X,Y ] = Z and [X̄, Ȳ ] = Z̄, (5.2.6)

and all other commutators are zero. In particular, holomorphic vectors commute with

antiholomorphic vectors.

Again, these six symbols will also denote the left-invariant complex fields on H

generated by them. From earlier comments, or direct computation, one can check that a

function on H is holomorphic with respect to the coordinates (a, b, c) of Equation (5.2.1)

if and only if V f = 0 for every antiholomorphic V ∈ h′′.

5.3 Automorphisms of the Heisenberg group

The Heisenberg group comes equipped with a natural family of endomorphisms,

indexed by R
2. Having fixed our realization of the group as lower triangular matrices,

these endomorphisms are parameterized as follows:

θs,t :





1 a c
0 1 b
0 0 1



 7−→





1 sa stc
0 1 tb
0 0 1



 (5.3.1)

for s, t ∈ R. The endomorphism θs,t is an automorphism if and only if s and t are both

nonzero. All of the maps θs,t descend to endomorphisms of the Lie algebra:

θs,t :





0 x z
0 0 y
0 0 0



 7−→





0 sx stz
0 0 ty
0 0 0



 . (5.3.2)

Additionally, there is an automorphism of the group defined by





1 a c
0 1 b
0 0 1



 7−→





1 −b c− ab
0 1 a
0 0 1



 .
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This exhibits an extra symmetry of the group which is occasionally useful in simplifying

proofs. It shows that any fact about vector fields on H remains true if X and Y are

replaced throughout by Y and −X, respectively.

5.4 The Algebra of differential operators on H

Differential operators on the Heisenberg group, and more generally on manifolds

with a local Heisenberg structure, have been studied in great detail. One of the no-

table contributions was the pseudodifferential calculus introduced by Beals and Greiner

[BG88]. A crucial concept there is the introduction of a non-standard filtration on the

algebra of differential operators on H.

In the standard pseudodifferential calculus on Euclidean space, the filtration on

the algebra of differential operators is defined to be the weakest filtration such that vector

fields have order one. Since a filtered algebra must have the property that

Order(AB) ≤ Order(A) + Order(B),

this suffices to define orders of all differential operators.

In the Heisenberg calculus, one starts with differential operators on the Heisenberg

group. Let us use the real Heisenberg group here, for notational simplicity. We can take

advantage of the totally non-integrable subbundle Q of TH which is spanned pointwise

by the left-invariant vector fields generated by

X =





0 1 0
0 0 0
0 0 0
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and

Y =





0 0 0
0 0 1
0 0 0



 .

In the definition of the order, we declare only that vector fields tangent to Q have order

one. This suffices to define a filtration on all differential operators since

Z = XY − Y X.

Note that the vector field Z is now an order two operator.

Many of the fundamental results from the classical pseudodifferential calculus re-

main. In this picture, one ends up with an analogue of an ellipticity, called sub-ellipticity.

The prototypical example of a sub-elliptic operator is the Heisenberg Laplacian,

∆H = −X2 − Y 2.

It is known that sub-elliptic operators, like elliptic operators, are Fredholm as operators

on spaces of L2-sections.

In the context of the local Heisenberg structure we described in Chapter 4, we

have even more structure to take advantage of. The subbundle Q splits canonically into

two line bundles, thanks to the fibrations described in Section 4.1. Therefore, we might

introduce a bi-filtration on the algebra of differential operators which treats these two

directions separately.

The starting point for this is to consider the left-invariant differential operators,

acting on the space C∞(H) of smooth complex-valued functions on H. These are in
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one-to-one correspondence with the elements of the universal enveloping algebra U(hC)

of hC. The universal enveloping algebra U(hC) is spanned, as a vector space, by products

of the four elements X, X̄, Y, Ȳ (including the “empty” product 1). There is a great deal

of redundancy in using the set of all such products to span U(hC), but this will not

concern us here. For ease of discussion we introduce the following terminology.

Definition 5.2. An element of U(hC) which is a product (perhaps trivial) in the elements

X, X̄, Y and Ȳ is called an elementary monomial.

In what follows, we will use the partial ordering on N× N given by

(m,n) ≤ (m′, n′) if and only if m ≤ m′ and n ≤ n′.

Definition 5.3. A bifiltration of an algebra A is a collection of linear subspacesA(m,n) ⊆

A, parameterized by (m,n) ∈ N× N, with the following properties:

(i)
⋃

N×N
A(m,n) = A,

(ii) A(m1,n1).A(m2,n2) ⊆ A(m1+m2,n1+n2) for all (m1, n1) and (m2, n2) in N× N.

Definition 5.4. Define a bifiltration on the algebra A = U(hC) as the weakest bifiltra-

tion which satisfies

• A(0,0) = span{1},

• A(1,0) = span{1, X, X̄},

• A(0,1) = span{1, Y, Ȳ }.

We say that D ∈ U(hC) has order at most (m,n) if D ∈ A(m,n).
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Note that

Z = XY − Y X

and

Z̄ = X̄Ȳ − Ȳ X̄,

so that Z and Z̄ have order (1, 1).

If D is a monomial in X, X̄, Y, Ȳ , Z, Z̄ , then it is clear that

Order(D) ≤ (a+ c, b+ c),

where

a = total exponent of X and X̄ in D,

b = total exponent of Y and Ȳ in D,

c = total exponent of Z and Z̄ in D.

Moreover, if D can be written as

D =
n
∑

j=1

Dj ,

for any collection of elementary monomials, then at least one of these must have

Order(Dj) ≥ (a+ c, b+ c),
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as a consequence of the Poincaré-Birkhoff-Witt Theorem. It follows that every such

monomial has a well-defined two-parameter order. Specifically,

Order(Xa1X̄a2Y b1 Ȳ b2Zc1Z̄c2) = (a1 + a2 + c1 + c2, b1 + b2 + c1 + c2).

An element of U(hC) will be called homogeneous of order (m,n) if it is a linear combi-

nation of elementary monomials, each of which has order exactly (m,n).

Remark 10. In order to distinguish this two-parameter order from the one-parameter

order of the standard Heisenberg calculus, we might have called ours the “bi-order” and

referred to “bihomogeneous elements”. However, this terminology seems cumbersome.

We will make it clear whenever we use “order” and “homogeneous” in anything other

than this two-parameter sense.

The order of a homogeneous element is determinable from its behavior under the

morphisms θs,t of Section 5.3. Those Lie algebra endomorphisms extend naturally to

the universal enveloping algebra U(h), and we have the following lemma.

Lemma 5.5. A left-invariant differential operator A on H is homogeneous of order

(m,n) if and only if

θs,t(A) = smtnA (5.4.1)

for all s, t ∈ R.

Proof. It is immediate from the definition of θs,t that (5.4.1) holds for A = X, X̄, Y or

Ȳ . The fact that θs,t is an algebra homomorphism on U(h), allows this to be extended

to all monomials in X, X̄, Y, Ȳ , and hence all homogeneous elements.



117

Conversely, suppose A satisfies (5.4.1) with m = m0, n = n0. One can use the

Poincaré-Birkhoff-Witt Theorem to write A as a sum of linearly independent monomials

in X, X̄, Y, Ȳ , Z, Z̄. Each of these summands satisfies (5.4.1) for some order (m,n).

But since A satisfies (5.4.1) for (m,n) = (m0, n0), all of the orders of the summands

must equal (m0, n0).

We can easily extend the notion of order to differential operators which are not

left-invariant.

Definition 5.6. A differential operator A on H is said to be of order at most (m,n) if

A =
∑

k

fkAk

where each fk ∈ C
∞(H) and each Ak is a homogeneous left-invariant differential operator

of order at most (m,n).

Occasionally it will be useful to have a more general notion of order than the

bifiltration of Definition 5.4. Recall the notion of an order ideal : a subset I is an order

ideal of a partially ordered set (P,≤) if

x ∈ I and y ≤ x ⇒ y ∈ I

for any x, y ∈ P.
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Definition 5.7. Let I be an order ideal of (N× N,≤). A differential operator A on H

is said to be of order I if

A =
∑

k

fkAk

where fk ∈ C
∞(H) and each Ak is a homogeneous left-invariant differential operator of

order (mk, nk) ∈ I.

In the case where I = 〈(m,n)〉 is the order ideal of all (m′, n′) less than or equal

to (m,n), we recover our earlier notion of order.

More generally, we will denote by 〈(m1, n1), . . . , (mp, np)〉 the order ideal gener-

ated by the elements (m1, n1), . . . , (mp, np) ∈ N× N. That is,

〈

(m1, n1), . . . , (mp, np)
〉

=
{

(m,n) ∈ N× N | (m,n) ≤ (mj , nj) for some j = 1, . . . , p
}

.

Example 5.8. For N ∈ N, let

[N ] = { (m,n) ∈ N× N | m+ n ≤ N } .

Then [N ] is an order ideal, and the differential operators of order [N ] are precisely those

which have order at most N in the sense of the ordinary Heisenberg calculus.

5.5 Harmonic analysis of the complex Heisenberg group

At several points in this chapter we will need to appeal to the harmonic analysis

of H, the complex Heisenberg group. This is very similar to the harmonic analysis of the
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real Heisenberg group, and the reader familiar with the latter will recognize the strong

resemblance. However, since harmonic analysis on the complex Heisenberg group is not a

standard fact, we will provide the details here. This material is a special case of Chapter

6 of [Tay86].

We will start with a description of the unitary representations of H. These are

most easily described by the corresponding Lie algebra representations of h.

Theorem 5.9. The irreducible unitary representations of H fall into two classes, as

follows.

(i) One-dimensional representations π(ξ,η) for ξ, η ∈ C, defined by

π(ξ,η) : X 7→ iξ̄ ; X̄ 7→ iξ

Y 7→ iη̄ ; Ȳ 7→ iη

Z 7→ 0 ; Z̄ 7→ 0.

(ii) Infinite-dimensional representations πw for w ∈ C
×, defined on L2(C) by

πw : X 7→ ∂
∂ζ ; X̄ 7→ ∂

∂ζ̄

Y 7→ iwζ ; Ȳ 7→ iw̄ζ̄

Z 7→ iw ; Z̄ 7→ iw̄

where ζ is the complex coordinate function on C.
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Proof. Let π be a unitary representation of H. By Schur’s Lemma π acts by scalars

on the centre z of h. If π(z) = {0} then π factors through the quotient h/z ∼= C
2, and

classical harmonic analysis yields case (i).

Otherwise,

π : z→ iR,

nontrivially. Let w1, w2 ∈ R be such that

π(Z1) = 2iw1

π(Z2) = −2iw2,

and let w = w1 + iw2. Note that

π(Z) =
1

2
π(Z1)−

1

2
iπ(Z2) = iw

π(Z̄) =
1

2
π(Z1) +

1

2
iπ(Z2) = iw̄.

Next, put

Ẏ1 =
w1
|w|

Y1 −
w2
|w|

Y2

Ẏ2 =
w2
|w|

Y1 +
w1
|w|

Y2

Ż1 =
w1
|w|

Z1 −
w2
|w|

Z2

Ż2 =
w2
|w|

Z1 +
w1
|w|

Z2
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With these definitions, the six elements Ẋ1, Ẋ2, Ẏ1, Ẏ2, Ż1, Ż2 satisfy the same relations

as X1, X2, Y1, Y2, Z1, Z2. But note that

π(Ż2) = 0.

Therefore, π factors through the Lie algebra h/v where v = 〈Ż2〉. This quotient Lie

algebra is isomorphic to the five dimensional real Heisenberg Lie algebra, for which the

representation theory is well-known (see [Tay86, Ch.2]). Using that theory, and the fact

that

π(Ż1) = 2i|w|,

we see that π is isomorphic to the representation on L2(R2) defined by

π : X1 7→
∂

∂s

X2 7→
∂

∂t

Ẏ1 7→ 2i|w|s

Ẏ2 7→ −2i|w|t

Ż1 7→ 2i|w|

Ż2 7→ 0
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where s and t are the coordinate functions on R
2. Putting ζ = s+ it gives the represen-

tation of case (ii), as we now check:

π : Y1 =
w1
|w|

Ẏ1 +
w2
|w|

Ẏ2 7→ 2i(w1s−w2t)

Y2 = −
w2
|w|

Ẏ1 +
w1
|w|

Ẏ2 7→ −2i(w2s+ w1t)

and hence

π(Y ) = i(w1s− w2t)− (w2s+ w1t) = iwζ

π(Ȳ ) = i(w1s− w2t) + (w2s+ w1t) = iw̄ζ̄.

We refer to the representations πw of case (ii) in the theorem as the Schrödinger

representations of H.

Theorem 5.10. (Plancherel Theorem) Let u ∈ L2(H). If π is an irreducible represen-

tation of H then the operator π(u) defined by

π(u) =

∫

H

u(n)π(n)dn

is Hilbert-Schmidt. There exists a measure µ on C
× such that for any u ∈ L2(H),

‖u‖2 =

∫

C×
‖πw(u)‖2

HS
dµ(w),

where ‖ · ‖HS denotes the Hilbert-Schmidt norm.
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For a proof, see [Tay86].

The Plancherel Theorem allows one to reduce from analysis on L2(H) to analysis

in the representations of H. Suppose A is an element of the universal enveloping algebra

U(h), which is acting as a differential operator on L2(H). Or more generally, suppose

that A is built from such an element by using functional calculus. The Plancherel formula

tells us that, for any u in the domain of A,

‖Au‖2 =

∫

C×
‖πw(Au)‖2

HS
dµ

=

∫

C×
‖πw(A)πw(u)‖2

HS
dµ.

It follows that the operator A on L2(H) will be bounded if the operators πw(A) on L2(C)

are uniformly bounded in (operator) norm.

We would also like to be able to prove inequalities of the form

‖Au‖ ≤ ‖Bu‖ (5.5.1)

(for all u ∈ C∞(H)) by proving the corresponding inequality on each Schrödinger rep-

resentation:

‖πw(A)f‖ ≤ ‖πw(B)f‖ (5.5.2)

(for all f ∈ C∞(C)). This is possible, but in order to make this rigorous, some remarks

are in order.

LetH be a Hilbert space, andH the conjugate Hilbert space. There is an isometric

isomorphism of Hilbert spaces between the Hilbert-Schmidt operators on H and H⊗ H̄.
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Under this isomorphism an elementary tensor v1 ⊗ v̄2 ∈ H ⊗ H̄ corresponds to the

rank-one operator 〈v̄2, • 〉v1. If T is an operator on H, then

T (〈v̄2, • 〉v1) = 〈v̄2, • 〉Tv1,

which is to say that left multiplication by T on the Hilbert-Schmidt operators corresponds

to T ⊗1 on H⊗H. For this reason, it suffices to consider the action of πw(A) and πw(B)

on L2(C) rather than on the Hilbert-Schmidt operators.

A more subtle problem is the issue of domains. If u ∈ L2(H) is of Schwartz class,

then the operators π(u) ∈ L2(L2(C)) have Schwartz class integral kernels. Therefore,

if the graphs of the operators A and B restricted to the Schwartz class functions on H

are dense in their original graphs, then it will suffice to consider the operators πw(A)

and πw(B) with domain the Schwartz class elements of L2(C). Such is the case when A

and B are differential operators, for instance, or for the images of differential operators

under the functional calculus. This then allows us to infer (5.5.1) from (5.5.2).

If A and B are homogeneous elements of U(h), both of the same order (m,n), then

this method of argument becomes even simpler. In that case, the formulas of Theorem

5.9 show that

‖πw(A)f‖ = |w|n‖π1(A)f‖

and likewise for B. Therefore, (5.5.1) will follow if we can prove (5.5.1) with w = 1, ie,

if

‖π1(A)f‖ ≤ ‖π1(B)f‖
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for all functions f of Schwartz class on C. We will use this observation several times in

what follows.

5.6 Sobolev spaces

Now that we have a two-parameter notion of order for differential operators on

H, it is very natural to want an accompanying family of Sobolev spaces H (m,n)(H). As

usual, the Sobolev spaces will be defined by putting a specific inner product on the space

of smooth compactly-supported functions on H. Of course, we will only care about this

inner product up to equivalence. Let us recall the definition of equivalence.

Definition 5.11. Two norms ‖·‖1 and ‖·‖2 on a vector space V are said to be equivalent

if there is some constant C > 1 such that

C−1‖v‖1 ≤ ‖v‖2 ≤ C‖v‖1

for all v ∈ V .

Two inner products 〈·, ·〉1 and 〈·, ·〉2 are equivalent if the norms they induce on V

are equivalent.

In the course of this work, we will introduce a slew of equivalent inner products on

C∞
c

(H) which define the Sobolev spaces H (m,n)(H). The first, and most heavy-handed,

uses every elementary monomial in U(hC) of order at most (m,n).

Let dx denote the Haar measure on H. With respect to the coordinates of (5.2.1),

this is just Lebesgue measure on C
3. We use this measure to define the L2-inner product
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on H:

〈u, v〉
L2(H)

=

∫

H

u(x)v(x) dx.

This is the fundamental inner product for all the ensuing analysis, and as such we will

often refer to it as 〈 · , · 〉 with no subscript.

Definition 5.12. For each (m,n) ∈ N×N, define the inner product 〈·, ·〉(m,n) on C∞
c

(H)

by

〈u, v〉(m,n) =
∑

order(A)≤(m,n)

〈Au,Av〉
L2(H)

(5.6.1)

where A varies over all elementary monomials of order less than or equal to (m,n).

The corresponding norm will be denoted by ‖ · ‖(m,n).

The completion of C∞
c

(H) with respect to this norm is denoted H (m,n)(H).

It is clear that whenever (m′, n′) ≤ (m,n) we have

〈u, v〉(m′,n′) ≤ 〈u, v〉(m,n)

for all u, v ∈ C∞
c

(H). Hence the Sobolev spaces are nested according to the ordering on

their indices:

H(m′,n′)(H) ⊇ H(m,n)(H)

if (m′, n′) ≤ (m,n). These inclusions are continuous, and have dense range, since all the

Sobolev spaces contain the dense subspace of smooth functions.

The first key property that a Sobolev theory should satisfy is the following lemma.
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Lemma 5.13. If D is a differential operator on H of order (a, b) which vanishes out-

side some compact set, then D extends to a bounded operator from H (m+a,n+b)(H) to

H(m,n)(H) for any (m,n) ∈ N× N.

We separate out an important special case of this result.

Lemma 5.14. Multiplication by f ∈ C∞
c

(H) is a continuous linear operator on each

H(m,n)(H).

Proof. The key fact is that for any vector field V on H,

[V, f ] = V f

where f and V f are interpreted as multiplication operators. Thus, if A is any of the

elementary monomials appearing in the definition of 〈 · , · 〉(m,n), we have

[A, f ] =
∑

j

fjAj

for some functions fj ∈ C
∞
c

(H), and some elementary monomials Aj with

order(Aj) < order(A).
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So for u ∈ H(m,n)(H),

‖Afu‖
L2 ≤ ‖fAu‖

L2 +
∑

j

‖fjAju‖L2

≤ ‖f‖∞‖Au‖L2 +
∑

j

‖fj‖∞‖Aju‖L2

≤ C‖u‖(m,n),

for some constant C. The result follows.

Proof of Lemma 5.13. Using Lemma 5.14, it suffices to prove the result in the case where

D is an elementary monomial. If A is one of the elementary monomials appearing in the

definition of 〈·, ·〉(m,n) then AD has order less than or equal to (m + a, n + b). We see

that

‖Du‖2
(m,n)

=
∑

order(A)≤(m,n)

‖ADu‖2
L2(H)

≤ ‖u‖2
(m+a,n+b)

.

More generally, we can make a Sobolev space for any finite order ideal of N× N.

Definition 5.15. Given a finite order ideal I of N× N, define

〈u, v〉I =
∑

order(A)∈I

〈Au,Av〉
L2(H)

where A varies over elementary monomials with order in I. The induced norm is denoted

by ‖ · ‖I , and the completion of C∞
c

(H) with respect to this norm is denoted HI (H).
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These Sobolev spaces are again nested. Specifically, if I and J are finite order

ideals, then

I ⊆ J ⇒ HI (H) ⊇ HJ (H).

In fact, there is an even stronger relationship. Let I1 and I2 be finite order ideals in

N×N. The above fact shows that HI1∪I2 ⊆ HI1∩HI2 . But also, all of the monomials

A in the definition of 〈·, ·〉I1∪I2
appear in the definition of either 〈·, ·〉I1

or 〈·, ·〉I2
. Thus

HI1∪I2 = HI1 ∩HI2 .

This generalizes to any finite collection of order ideals I1, . . . , Ip. In particular,

H
〈(m1,n1),...,(mp,np)〉

=

p
⋂

j=1

H
(mj ,nj).

Example 5.16. With the notation of Example 5.8, H [N ](H) is the standard (one-

parameter) Sobolev space for the Heisenberg calculus, that is, the space of distributions

u on H for which

Du ∈ L2(H)

for every D ∈ U(hC) of order at most N in the sense of the ordinary Heisenberg calculus.

We also have a Sobolev Embedding theorem for these spaces. In order to state

this precisely, it is convenient to introduce local Sobolev spaces on H. A distribution u

on H is in H
(m,n)
loc (H) if ϕu ∈ H

(m,n)
loc (H) for any ϕ ∈ C∞

c
(H).
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Theorem 5.17 (Sobolev Embedding). If m,n ≥ 3 + p, then H
(m,n)
loc (H) embeds

continuously into Cp(H). In particular,

⋂

(m,n)∈N×N

H
(m,n)
loc (H) = C∞(H).

Proof. The vector fields X1, X2, Y1, Y2, Z1, Z2, which span TH at each point, all have

order at most (1, 1). Thus, any compactly supported differential operator on H of order

d in the ordinary Euclidean sense has order at most (d, d) in the new two-parameter

sense. The result then follows from the standard Sobolev Embedding Theorem (see, eg,

[Tay96]).

5.7 Alternative descriptions of the Sobolev spaces

Now we will begin to economize in the definition of the Sobolev spaces H (m,n)(H).

The first step will be to observe the redundancy of using every single elementary mono-

mial of each order in defining the inner product (5.6.1). Lemma 5.18 will show that it

suffices to use a smaller class of each order.

In Section 5.2, we introduced the holomorphic and antiholomorphic Lie algebras,

h′ and h′′. These each generate a subalgebra of the universal enveloping algebra U(hC),

which we will denote by U(h′) and U(h′′), respectively. The notation is reasonable since,

for instance, the subalgebra U(h′) ⊆ U(hC) is canonically isomorphic to the universal

enveloping algebra of h′ (see [Dix96, Section 2.2]). An element of U(h′) ⊆ U(hC)

will be called totally holomorphic, or just holomorphic. Elements of U(h′′) will be called

(totally) antiholomorphic.
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Since h′ and h′′ commute in hC, it follows that U(h′) and U(h′′) commute. There-

fore, any elementary monomial A in U(hC) can be separated into a product of holomor-

phic and antiholomorphic parts. That is,

A = A1A2,

with A1 ∈ U(h′) and A2 ∈ U(h′′).

All of the differential operators we are now dealing with will be considered as

unbounded operators on L2(H). They are defined on the common invariant domain of

C∞
c

(H). The operators X, Y and Z have formal adjoints −X̄, −Ȳ and−Z̄, respectively.

This follows from the formulae (5.2.4) and (5.2.5), and the fact that the left-invariant

vector fields X1, X2, Y1, Y2 are images of the infinitesimal left-regular representation,

and so are formally skew-adjoint.

Lemma 5.18. Let A be any monomial in X1, X2, Y1, Y2, Z1, Z2 with order (m,n). Then

for some constant C ≥ 0, we have

‖Au‖ ≤ C
∑

m1+m2=m
n1+n2=n

‖X
m1
1 X

m2
2 Y

n1
1 Y

n2
2 u‖ (5.7.1)

for all u ∈ Cc
∞(H).

One of the key steps in the proof is the following observation.
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Lemma 5.19. For any k ∈ Z, we have

‖Z1u‖ ≤ 2‖(X1Y1 + kZ1)u‖,

‖Z1u‖ ≤ 2‖(X2Y2 + kZ1)u‖,

‖Z2u‖ ≤ 2‖(X1Y2 + kZ2)u‖,

‖Z2u‖ ≤ 2‖(X2Y1 + kZ2)u‖,

for all u ∈ Cc
∞(H).

Proof. We will prove the first of these inequalities. The others are all similar.

The operators X1 and Y1, defined on the invariant domain of Cc
∞(H), are for-

mally skew-adjoint. Therefore, writing the operator X1Y1 + kZ1 as the sum of its

symmetric and antisymmetric parts, we have

X1Y1 + kZ1 = (k +
1

2
)Z1 +

1

2
(X1Y1 + Y1X1).

Since the symmetric part and the antisymmetric part commute,

‖X1Y1u‖
2 = ‖(k +

1

2
)Z1u‖

2 + ‖
1

2
(X1Y1 + Y1X1)u‖2

≥

(

1

2
‖Z1u‖

)2
.

This proves the lemma.
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Proof of Lemma 5.18. By the Poincaré-Birkhoff-Witt Theorem [Dix96, Theorem 2.1.11],

it suffices to consider the case

A = X
a1
1 X

a2
2 Y

b1
1 Y

b2
2 Z

c1
1 Z

c2
2 , (5.7.2)

where

m = a1 + a2 + c1 + c2,

n = b1 + b2 + c1 + c2.

The key computations in this proof are the following two applications of Lemma 5.19.

For clarity, we will carry them out in the case b1 = b2 = 0. Firstly, if c1 6= 0.

‖X
a1
1 X

a2
2 Z

c1
1 Z

c2
2 u‖

= ‖Z1X
a1
1 X

a2
2 Z

c1−1
1 Z

c2
2 u‖

≤ 2‖(X1Y1 + a1Z1)X
a1
1 X

a2
2 Z

c1−1
1 Z

c2
2 u‖

= 2
∥

∥

∥X1

(

Y1X
a1
1 + [X

a1
1 , Y1]

)

X
a2
2 Z

c1−1
1 Z

c2
2 u
∥

∥

∥

= 2‖X
a1+1
1 Y1X

a2
2 Z

c1−1
1 Z

c2
2 u‖

≤ 2‖X
a1+1
1 X

a2
2 Y1Z

c1−1
1 Z

c2
2 u‖+ 2‖X

a1+1
1 a2X

a2−1
2 Z

c1−1
1 Z

c2+1
2 u‖.
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Secondly, in the case c1 = 0,

‖X
a1
1 X

a2
2 Z

c2
2 u‖ = ‖Z2X

a1
1 X

a2
2 Z

c2−1
2 u‖

≤ 2‖(X1Y2 + a1Z2)X
a1
1 X

a2
2 Z

c2−1
2 u‖

= 2‖X
a1+1
1 Y2X

a2
2 Z

c2−1
2 u‖

≤ 2‖X
a1+1
1 X

a2
2 Y2Z

c2−1
2 u‖+ 2‖X

a1+1
1 a2X

a2−1
2 Z1Z

c2−1
2 u‖.

The general situation is obtained by replacing u by Y
b1
1 Y

b2
2 u, whereby the above two

inequalities yield

‖X
a1
1 X

a2
2 Y

b1
1 Y

b2
2 Z

c1
1 Z

c2
2 u‖

≤ 2‖X
a1+1
1 X

a2
2 Y

b1+1
1 Y

b2
2 Z

c1−1
1 Z

c2
2 u‖

+2a2‖X
a1+1
1 X

a2−1
2 Y

b1
1 Y

b2
2 Z

c1−1
1 Z

c2+1
2 u‖

(5.7.3)

for c1 6= 0, and

‖X
a1
1 X

a2
2 Y

b1
1 Y

b2
2 Z

c2
2 u‖

≤ 2‖X
a1+1
1 X

a2
2 Y

b1
1 Y

b2+1
2 Z

c2−1
2 u‖

+2a2‖X
a1+1
1 X

a2−1
2 Y

b1
1 Y

b2
2 Z1Z

c2−1
2 u‖

(5.7.4)

for c1 = 0.

The two inequalities (5.7.3) and (5.7.4) set up a triple induction in the variables

a1, c1 and c2. Firstly, notice that the inequality (5.7.1) is trivial when c1 = c2 = 0.

Next notice that when a2 = 0, the second term on the right-hand side of both (5.7.3)

and (5.7.4) are zero. In that case, therefore, these two inequalities allow us to reduce

the value of c1 + c2. By induction, this proves the result whenever a2 = 0.
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Finally, fix a2 6= 0, and suppose (5.7.1) holds for monomials

X
a′
1

1 X
a2−1
2 Y

b′
1

1 Y
b′
2

2 Z
c′
1

1 Z
c′
2

2

with arbitrary values of the indices a′
1
, b′

1
, b′

2
, c′

1
, c′

2
. Consider the case of

A = X
a′
1

1 X
a2
2 Y

b′
1

1 Y
b′
2

2 Z
c′
1

1 Z
c′
2

2 .

We already saw that (5.7.1) is trivial for c′
1

= c′
2

= 0. If (5.7.1) holds for the monomials

A = X
a′
1

1 X
a2
2 Y

b′
1

1 Y
b′
2

2 Zk
2

with a′
1
, b′

1
, b′

2
arbitrary and k ≤ c′

2
− 1, then by (5.7.4) it is also true for

A = X
a′
1

1 X
a2
2 Y

b′
1

1 Y
b′
2

2 Z
c′
2

2 .

Likewise, if it holds for all the monomials

A = X
a′
1

1 X
a2
2 Y

b′
1

1 Y
b′
2

2 Zk
1
Z
c′
2

2

with a′
1
, b′

1
, b′

2
, c′

2
arbitrary and k ≤ c′

1
− 1, then (5.7.3) shows it is also true for

A = X
a′
1

1 X
a2
2 Y

b′
1

1 Y
b′
2

2 Z
c′
1

1 Z
c′
2

2 ,

and this completes the proof.
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Corollary 5.20. The Sobolev norm ‖ · ‖(m,n) is equivalent to the norm defined by

‖|u‖|2
(m,n)

=
∑

m1+m2≤m
n1+n2≤n

‖X
m1
1 X

m2
2 Y

n1
1 Y

n2
2 u‖2

L2(H)
. (5.7.5)

Corollary 5.21. The Sobolev norm ‖ · ‖(m,n) is equivalent to the norm defined by

‖|u‖|2
(m,n)

=
∑

a1+a2≤m
b1+b2≤n

‖Xa1X̄a2Y b1 Ȳ b2u‖2
L2(H)

. (5.7.6)

Proof. The change of basis

X1 = X + X̄

X2 = i(X − X̄)

allows us to write

X
m1
1 X

m2
2 Y

n1
1 Y

n2
2 =

∑

a1+a2=m1+m2
b1+b2=n1+n2

Ca1,a2,b1,b2
Xa1X̄a2Y b1 Ȳ b2

for some constants Ca1,a2,b1,b2
. Therefore,

∑

m1+m2≤m
n1+n2≤n

‖X
m1
1 X

m2
2 Y

n1
1 Y

n2
2 u‖2 ≤ C

∑

a1+a2≤m
b1+b2≤n

‖Xa1X̄a2Y b1 Ȳ b2u‖2 (5.7.7)

for some constant C. A reverse inequality can be produced similarly.
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Since it is extremely cumbersome to maintain separate notations for all of the

equivalent norms on H(m,n)(H), from now we will use ‖ · ‖(m,n) to denote any of these

equivalent norms. The exact definition will be specified only when it is critical to a

computation.

Similarly, we will use the notation

∑

order(A)≤(m,n)

to denote any (finite) sum in which A ranges over at least one elementary monomial of

each order less than or equal to (m,n).

5.8 Directional Laplacians

We now have a coherent notion of positive, integral Sobolev spaces to accompany

our notion of two-parameter order for differential operators on the Heisenberg group. It is

tempting to try to extend this to some kind of pseudodifferential calculus. Unfortunately,

this does not seem to be possible. The purpose of this chapter is to describe what can

and cannot be achieved.

The prototypical example of a pseudodifferential operator is the inverse of an

invertible elliptic differential operator. For instance, if

∆
Tk = −

∂2

∂x1
2
− · · · −

∂2

∂xk
2
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is the Laplacian on the torus T
k = R

k/Zk, then the operator

(1 + ∆
Tk )−1

is a pseudodifferential operator of order−2, and maps the classical Sobolev spaceHn(Tk)

isometrically into Hn+2(Tk).

In our two-parameter situation, we will introduce two “directional Laplacians”

corresponding to the vector fields X and Y on H. Geometrically these operators will

be assembled from the families of Laplacians along each of the fibres of the fibrations

described in Section 4.1. Our definition here, however, will be restricted to the local

coordinate space H.

We define

∆X = −X2
1
−X2

2

and

∆Y = −Y 2
1
− Y 2

2
.

At first we can define these as differential operators acting on the domain Cc
∞(H). From

well-known results of representations of Lie groups (see, for instance, Taylor [Tay86]), the

operators X1, X2, Y1 and Y2 are all essentially skew-adjoint as unbounded operators on

L2(H). Thus, the operators (−X2
1
−X2

2
) and (−Y 2

1
−Y 2

2
) are essentially self-adjoint and

positive. We will use ∆X and ∆Y , respectively, to denote their positive closures. Note

also that the complex vector fields X, X̄, Y and Ȳ define essentially normal operators
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on L2(H), and we have

∆X = −X̄X

∆Y = −Ȳ Y.

Proposition 5.22. The operator (1 + ∆X)−
1
2 is an isomorphism from H(m,n)(H) to

H(m+1,n)(H) for every (m,n) ∈ N × N with m ≥ n. Similarly, (1 + ∆Y )−
1
2 is an

isomorphism from H(m,n)(H) to H(m,n+1)(H) for each (m,n) ∈ N× N with n ≥ m.

Proof. We will prove that, for any (m,n) ∈ N× N, there is C > 0 such that

∥

∥

∥

∥

Xm+1Y n(1 + ∆X )−
1
2u

∥

∥

∥

∥

L2(H)
≤ C

∥

∥XmY nu
∥

∥

L2(H)
(5.8.1)

and
∥

∥

∥

∥

XmY n+1(1 + ∆Y )−
1
2u

∥

∥

∥

∥

L2(H)
≤ C

∥

∥XmY nu
∥

∥

L2(H)
(5.8.2)

for all u ∈ Cc
∞(H).

Firstly we prove the following commutation relation. Let F (x) be any smooth

function on the real line, with growth at infinity bounded by some polynomial. Then

F (∆X ) is defined on Cc
∞(H), since it is dominated as a positive operator by some power

of ∆X . We claim that

[Y, F (∆X )] = X̄ZF ′(∆X ) (5.8.3)

and

[X,F (∆Y )] = −Ȳ ZF ′(∆Y ). (5.8.4)
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as operators on Cc
∞(H).

Following the observations of Section 5.5, it suffices to check the veracity of (5.8.3)

and (5.8.4) on each irreducible representation πw of H, for w ∈ C
×. Let us demonstrate

(5.8.4), and then (5.8.3) will follow by symmetry in X and Y . After applying πw, (5.8.4)

becomes
[

∂

∂ζ
, F (|w|2|ζ|2)

]

= −|w|2ζ F ′(|w|2|ζ|2).

This is just the chain rule.

We will want to make use of a combinatorial formula for commutators of powers.

Given two elements V and W of some algebra,

V nW =

n
∑

k=0

(

n

k

)

((ad V )kW )V n−k, (5.8.5)

where (adV )W = [V,W ]. This is readily proven by induction.

Now put V = Y and W = F (∆X ) with F (x) = (1 + x)
1
2 . The above formula,

combined with (5.8.3), gives, for u ∈ Cc
∞(H),

∥

∥

∥X
m+1Y nF (∆X )u

∥

∥

∥

L2(H)

≤
n
∑

k=0

(

n

k

)

∥

∥

∥
Xm+1(X̄Z)kF (k)(∆X )Y n−ku

∥

∥

∥

L2(H)

=

n
∑

k=0

(

n

k

)

∥

∥

∥
Xk+1X̄kF (k)(∆X)ZkX̄m−kY n−ku

∥

∥

∥

L2(H)
.
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Note that this last expression makes sense only as long as m ≥ n. Using the fact that

∥

∥X̄v
∥

∥

L2(H)
= ‖Xv‖

L2(H)
= ‖∆

1
2
Xv‖L2(H)

for any v ∈ Cc
∞(H), we see that

∥

∥

∥
Xm+1Y nF (∆X )u

∥

∥

∥

L2(H)

≤
n
∑

k=0

(

n

k

)

∥

∥

∥

∥

∥

∆
k+1

2
X F (k)(∆X )ZkXm−kY n−ku

∥

∥

∥

∥

∥

L2(H)

.

Therefore we will be done if we can show that

∥

∥

∥

∥

∥

∆
k+1

2
X F (k)(∆X )Zkv

∥

∥

∥

∥

∥

L2(H)

≤ C
∥

∥

∥
XkY kv

∥

∥

∥

L2(H)

for some C > 0 and all v ∈ Cc
∞(H).

But xk+
1
2F (k)(x) is a bounded function of x ∈ R, so ∆

k+1
2

X F (k)(∆X ) is a

bounded operator. Hence it suffices to show that

∥

∥

∥
Zkv

∥

∥

∥

L2(H)
≤ C

∥

∥

∥
XkY kv

∥

∥

∥

L2(H)

for all v ∈ Cc
∞(H), which is a consequence of Lemma 5.18.

Proposition 5.22 is not true for any order (m,n). The next proposition gives a

strong counterexample using what one might hope was a “pseudodifferential operator of

order (0,−∞)”.

Recall that, with respect to the coordinates

(x, y, z) 7→





1 x z
0 1 y
0 0 1







142

on H, the left-invariant differential operators X,Y and Z are

X =
∂

∂x

Y =
∂

∂y
+ x

∂

∂z

Z =
∂

∂z
.

(See page 92.) The complex submanifold through the point (x, y, z) ∈ H which is tangent

to Y1 and Y2 is

FY (x, y, z) = { (x, t, xt+ (z − xy)) | t ∈ C }.

In what follows, if t = t1 + it2 is a complex variable, then we will use |dt|2 to denote the

volume element dt1dt2 on C.

Proposition 5.23. Let ψ ∈ C∞
c

(C) such that ψ ≡ 1 on the closed unit disk

D = { y ∈ C | |y| ≤ 1}.

The operator S : Cc
∞(H) −→ Cc

∞(H) defined by

Su(x, y, z) =

(
∫

C

u(x, t, xt+ (z − xy)) dt

)

ψ(y)

does not extend to a bounded operator from H (2,0)(H) to H(2,2)(H).

The same is true even if we restrict the domain of S to smooth functions supported

in a fixed compact subset of H (with nonempty interior).
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Remark 11. The value of Su at (x, y, z) depends only on the values of u along the fibre

FY (x, y, z). Restricted to each such fibre, S is a smoothing operator—in fact, a rank-one

operator.

Proof. Let us consider smooth functions u supported on the unit polydisk,

D
3 = { (x, y, z) | |x|, |y|, |z| < 1}

in H. The proof generalizes to the case of arbitrary polydisks by rescaling, and this

implies the result on any subset with nonempty interior.

Note that X is given by an elliptic differential operator along each of the fibres

FX (x, y, z) = {(t, y, z) | t ∈ C},

namely X = ∂
∂t . By standard theory of elliptic boundary value problems, there is a

constant C ′ > 0 such that

‖u0(t)‖ ≤ C ′ ‖
∂

∂t
u0(t)‖,

for any smooth u0 supported on the unit disk D ⊂ C. Applying this to a function

u ∈ C∞
c

(D3) restricted to each fibre FX (x, y, z), we have that

‖u‖2
(2,0)

= ‖u‖2 + ‖Xu‖2 + ‖X2u‖2

≤ (1 + C ′2 + C ′4)‖X2u‖2.
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Therefore, in order to prove the Proposition, it will suffice to show that there is no

constant C ∈ R such that

‖Z2Su‖
L2(H)

≤ C‖X2u‖
L2(H)

(5.8.6)

for all u ∈ Cc
∞(D3).

Consider functions of the form

u(x, y, z) = a(x) b(y) c(z)

for a, b, c ∈ Cc
∞(D). Let us fix a once and for all. We choose it such that a(x) = 1 for

all |x| ≤ 1
2 . Then

‖X2u‖2 = ‖
∂2a

∂x2
(x) b(y) c(z)‖2

= C1 ‖b(y)c(z)‖
2

for C1 = ‖∂
2a
∂x2 ‖

2.

For the left-hand side of (5.8.6),

Z2Su(x, y, z) =
∂2

∂z2

∫

C

a(x)b(t)c(xt + z − xy)|dt|2ψ(y)

=

(

∫

C

b(t)
∂2c

∂z2
(xt+ z − xy)|dt|2

)

a(x)ψ(y).

Let us suppose temporarily that b(y) is the characteristic function of the disk D. (This

is not smooth, so we will have to amend this choice later.) Let us also choose c(z) such
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that it is smooth, supported on D, |c| ≤ 1 and

c(z) = eiαRe(z),

for all |z| ≤ 1
2 , where α is some large positive constant. Note that for |z| ≤ 1

2 ,

∂c

∂z
=

∂

∂z

(

e
1
2 iα(z+z̄)

)

=
1

2
iαeiαRe(z).

If x, y, z all have modulus less than 1
8 , then

|xt+ z − xy| ≤
1

2
,

for all t ∈ D. In this case,

∂2c

∂z2
(xt+ z − xy) = −

1

4
α2eiαRe(xt)eiαRe(z−xy),

and hence

∣

∣

∣

∣

∣

(

∫

C

b(t)
∂2c

∂z2
(xt+ z − xy)|dt|2

)

a(x)ψ(y)

∣

∣

∣

∣

∣

=
1

4
α2
∣

∣

∣

∣

∫

D

eiαRe(xt)|dt|2
∣

∣

∣

∣

=
1

4
α2
∣

∣

∣

∣

∫

D

eiα|x|Re(t)|dt|2
∣

∣

∣

∣

, (5.8.7)
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where the latter follows from the change of variables t 7→ x
|x|
t. For any smooth function

on C, a corollary of Green’s Theorem says that

∫

D

∂f

∂t
|dt|2 =

−1

2πi

∮

∂D

fdt.

With this, (5.8.7) becomes

α

2|x|

∣

∣

∣

∣

∫

D

∂

∂t̄

(

eiα|x|Re(t)
)

|dt|2
∣

∣

∣

∣

=
α

4π|x|

∣

∣

∣

∣

∮

∂D

eiα|x|Re(t)dt

∣

∣

∣

∣

.

Using the change of variables t 7→ t−1, and the fact that on the circle ∂D, Re(t) =

Re(t−1), this equals

α

4π|x|

∣

∣

∣

∣

∮

∂D

eiα|x|Re(t)t−2dt

∣

∣

∣

∣

=
α

2|x|
|J1(α|x|) | ,

where J1 is the Bessel function of the first kind.

Returning to the choice of the function b(y), suppose we instead choose b ∈

C0
∞(D), with 0 ≤ b ≤ 1, which approximates the characteristic function of D in L1-

norm—say,
∫

D

|1− b(t)||dt|2 <
1

10
.
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Then we would have

∣

∣

∣

∣

∣

∫

D

∂2c

∂z2
(xt+ z − xy)|dt|2

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∫

C

b(t)
∂2c

∂z2
(xt+ z − xy)|dt|2

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫

D

(1− b(t))
∂2c

∂z2
(xt+ z − xy)|dt|2

∣

∣

∣

∣

∣

≤

∫

D

|1− b(t)|
1

4
α2|dt|2

<
α2

40
.

For 0 ≤ r ≤ 1, the Bessel function J1 satisfies J1(r)/r > 1
4 , so

∣

∣

∣

∣

∣

∫

C

b(t)
∂2c

∂z2
(xt+ z − xy)|dt|2

∣

∣

∣

∣

∣

>
α

2|x|
|J1(α|x|)| −

α2

40

>
α2

8
−
α2

40

=
α2

10

when |x| < 1
α and |x|, |y|, |z| < 1

8 . We will assume from now on that our choice of large

α satisfies α > 8.

These computations give us a lower bound on the L2-norm on Z2Su. For we have

‖ZSu‖2 ≥

∫

|x|< 1
α

∫

|y|,|z|<1
8

∣

∣

∣

∣

∣

∫

C

b(t)
∂2c

∂z2
(xt+ z − xy)|dt|2a(x)ψ(y)

∣

∣

∣

∣

∣

2

|dx|2|dy|2|dz|2

≥

∫

|x|<α

α4

100
|dx|2

=
πα2

100
.
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On the other hand,

‖X2u‖2 = ‖
∂2a

∂x2
‖2‖b‖2‖c‖2

≤ π2‖
∂2a

∂x2
‖2,

which is independent of α. Since α could be chosen arbitrarily large, this completes the

proof.

Corollary 5.24. The operator (1 + ∆Y )−1 does not extend to a bounded operator from

H(2,0)(H) to H(2,2)(H).

The same is true even if we restrict the domain of (1 + ∆Y )−1 to compactly

supported functions on some bounded subset of H, as in the previous proposition.

Proof. It is convenient to take advantage of the automorphism of H, given in coordinates

as

φ : (x, y, z) 7→ (−y, x, z − xy),

which interchanges the role of X and Y . Under this transformation, the operator S of

the previous Proposition becomes Sφ = φ∗S(φ−1)∗, which is given by

Sφu(x, y, z) =

(
∫

C

u(t, y, z)dt

)

ψ(x).

Proposition 5.23 says that Sφ does not define a bounded operator from H (0,2)(H) to

H(2,2)(H). In fact the proof shows more: the operator Z2Sφ does not extend to a
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bounded operator from H(0,2)(H) to L2(H), even when restricted to functions supported

on a polydisk in H.

We claim that there exists some constant C ∈ R such that, for any u ∈ C∞
c

(D3),

‖Sφu‖
L2(H)

≤ C‖(1 + ∆X)−1u‖
L2(H)

. (5.8.8)

This will prove the corollary, since then

‖Z2(1 + ∆X )−1u‖ = ‖(1 + ∆X)−1Z2u‖

≥
1

C
‖SφZ2u‖

=
1

C
‖Z2Sφu‖,

and this is not bounded as a map to L2(H), as observed above.

Let u ∈ C∞
c

(D3), and put

v = (1 + ∆X)−1u.

Then the inequality (5.8.8) becomes

‖Sφ(1 + ∆X)v‖
L2(H)

≤ C‖v‖
L2(H)

. (5.8.9)
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Let χ be any smooth, compactly supported function on H, which is equal to one every-

where in D
3. Since u = (1 + ∆X)v is supported in D

3,

Sφ(1 + ∆X )v = Sφ χ (1 + ∆X)v.

The operator Sφ χ (1 + ∆X) decomposes as a family of compactly supported smoothing

operators (with uniformly bounded supports) on the fibres FX (x, y, z) introduced earlier.

As such, it is defines a bounded operator on L2(H). Letting C be the norm of this

operator, the inequality (5.8.9) follows.

This counterexample is a serious impediment to hopes for a “two-parameter pseu-

dodifferential calculus” on the Heisenberg group.

Various weakenings of these hopes might also be sufficient for the purposes of

index theory of the BGG complex for SL(3,C). For instance, if we denote the left-most

differential in the BGG complex by

∂1 =

(

X
Y

)

: L2(X ;E0) −→

L2(X ;EαX
)

⊕

L2(X ;EαY
)

with X = G/B, then the associated Laplacian ∂1
∗∂1 is locally modelled by the Heisen-

berg sub-Laplacian:

∆H = −X̄X − Ȳ Y

= ∆X + ∆Y .
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This operator dominates both ∆X and ∆Y , in the sense of positive unbounded operators,

and so it might be hoped that it yields a bounded map

(1 + ∆H)−1 : H(m,n)(H) −→ H(m+2,n)(H) ∩H(m,n+2)(H),

for any (m,n) ∈ N× N.

This weaker property also seems likely to fail, based on computational evidence.

Providing a counterexample is more difficult. Instead of pursuing this, we will now

change our viewpoint to that of global harmonic analysis of differential operators on

X = G/B.
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Chapter 6

Harmonic Analysis on G/B

6.1 Introduction

As we have seen, one of the key components of each of the constructions of the

γ-elements in Sections 2.4.1, 2.4.2 and 2.4.3 is some form of pseudodifferential calculus.

We have also remarked at two points so far that creating something as powerful as a

pseudodifferential calculus in our present situation seems to be problematic at best. In

order to understand what we might replace this component with, let us consider the most

elementary example of a pseudodifferential calculus — the pseudodifferential calculus on

the circle.

Pseudodifferential calculus was invented to solve problems in partial differential

equations, particularly elliptic differential equations. The standard approach to the

pseudodifferential calculus, as one would find in an introductory text on pseudodiffer-

ential operators, is to come through general manifolds. For the circle, this would mean

first introducing a pseudodifferential calculus on the real line. The definitions there are

grounded in the Fourier transform on the line, and hence use integral operators for the

constructions. Having done this, one uses an atlas of coordinate charts (two charts will

suffice, of course) to graft that linear calculus onto the circle.

One of the great advantages of this approach is its enormous generality—it can

be used to define a pseudodifferential calculus on any smooth manifold. But it has some
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notable disadvantages as well. Firstly, because R is non-compact, there are technicalities

in the foundational material—local Sobolev spaces, properly supported operators, and

so on—which completely disappear once one has finally transferred the calculus to the

circle. Secondly, it ignores the global symmetry in the circle, utilizing only the “local

symmetry” inherent in the local Euclidean structure of a manifold.

On the other hand, if we are interested in rotationally invariant differential op-

erators on the circle, such as the de Rham operator or the Laplacian, then one could

approach directly from harmonic analysis on the circle itself—that is, from Fourier se-

ries. This has the advantage of exploiting the symmetry. It also has the advantage of

simplifying the analysis enormously. For instance, considering the Laplacian on the cir-

cle from the point of view of classical pseudodifferential theory, all that is immediately

apparent is that it is a Fredholm operator, ie, that it has finite dimensional kernel and

cokernel. But using Fourier analysis, one easily computes that kernel (and identifies it

as a representation of SO(2)).

Consider a mildly more complicated situation: the Laplace operator ∆ on the

space CP1 ∼= S2. This space admits an isometric action of SU(2) under which ∆ is

invariant. Consequently, L2(CP1) decomposes into finite-dimensional representations

of SU(2), and these representations are eigenspaces of the operator ∆. This is the

decomposition into spherical harmonics. In particular, the kernel of ∆ is the trivial

representation of SU(2).

Let us follow this train of thought one step further. Consider the space X =

CP1 × CP1, which is the symmetric space G/B for the group G = SL(2,C) × SL(2,C).
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In this case, one can define a pair of “directional Laplacians”

∆X = ∆⊗ 1

and

∆Y = 1⊗∆

on L2(X ) ∼= L2(CP1)⊗L2(CP1). These two differential operators are not elliptic on X ,

but are elliptic along the fibres

CP1 × {y} ( y ∈ CP1 )

and

{x} × CP1, ( x ∈ CP1 )

respectively, of the product fibrations of X . They can each be analyzed just as before,

this time using harmonic analysis of the compact subgroup K = SU(2) × SU(2). One

easily obtains a decomposition of L2(X ) into eigenspaces for each of the two directional

Laplacians. The eigenspaces for each of these operators are infinite dimensional, but

the two operators commute, so we may consider simultaneous eigenspaces for the oper-

ator pair. Doing so yields a decomposition of L2(X ) into finite dimensional pieces. In

particular, the mutual kernel of the two operators is the trivial representation of G.

One could phrase the construction of the γ-element for SL(2,C)×SL(2,C) entirely

in this language. In particular, the decomposition of L2(CP1) ⊗ L2(CP1) into mutual
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eigenspaces for ∆X and ∆Y can be seen at the heart of the Kasparov product. In this

chapter we provide the foundational material for carrying the idea one step further again,

to the case of SL(3,C).

We will begin by describing the generalities of the harmonic analysis for SU(3). As

in the case of SL(2,C)×SL(2,C), we will introduce a pair of “directional Laplacians”, ∆X

and ∆Y . However, in this case, the two Laplacians will not commute. Nevertheless, we

will prove some geometric facts about the spectral decompositions of the two operators

which are almost as powerful as those above. We will finish by introducing ideals of

operators analogous to the two ideals

KX = K(L2(CP1))⊗ B(L2(CP1))

and

KY = B(L2(CP1))⊗K(L2(CP1))

which appeared in the construction of γ for SL(2, C)× SL(2,C) in Section 2.4.3.

6.2 Decomposition into SU(3)-types

Let G = SL(3,C), and let

Eλ = G×
B
Vλ

be a homogeneous complex line bundle over X = G/B as described in Section 3.2.

Here, Vλ is a one-dimensional representation of B. Specifically, let λ be a character

of the Cartan subgroup H ⊆ G, and extend it to a representation of B = HN− by
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declaring that λ(N−) = {1}. As previously we will use the same symbol λ to denote the

infinitesimal representation of the Lie algebra b that λ induces.

Recall that sections of Eλ are identified with functions on G satisfying the B-

equivariance condition

u(xb) = λ(b)−1u(x) (x ∈ G, b ∈ B).

As described in Section 4.3, such a function is determined by its values on K = SU(3).

Thus we have the “compact picture”: if M is the subgroup of diagonal matrices with

diagonal entries of modulus one, then sections of Eλ are identified with functions on K

which are M -equivariant, in the sense that

u(km) = λ(m)−1u(k) (k ∈ Km ∈M). (6.2.1)

Recall that the representation of G on L2(X ;Eλ) is given by

(g · u)(x) = u(g−1x). (6.2.2)

Therefore, in passing to the compact picture, the action of G is obfuscated, although the

action of the subgroup K is still clear.

One big advantage of working in the compact picture, however, is that the space

of sections of Eλ depends only on the restriction of λ to M ⊆ H. Recall, from Remark 6

on page 62, that holomorphic representations of H are characterized by their restriction

to either the compact subgroup M , or the complementary subgroup A. The general
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(non-holomorphic) characters λ of H are parameterized by writing

λ = (µ, ν)

where µ ∈ ΛW ⊆ h∗ is a weight (acting on m) and ν ∈ h∗ is arbitrary (acting on a). For

more details, see, for instance, [Duf79]. In the compact picture the vector bundle E, as

well as the representation of K, is seen to depend only on the discrete parameter µ. For

this reason, we will write Eµ for Eλ, when working in the compact picture.

From the compact picture, we can determine the decomposition of the representa-

tion space L2(X ;Eµ) into K-isotypical pieces. To do so, note that by Equations (6.2.1)

and (6.2.2), L2(X ;Eµ) is a subspace of the regular representation L2(K) of K. We can

decompose L2(K) by the Peter-Weyl Theorem. We let K̂ denote the set of (isomor-

phism classes of) irreducible unitary representations of K. For π ∈ K̂, let Vπ denote its

representation space.

Theorem 6.1 (Peter-Weyl). For any compact group K, the map

⊕

π∈K̂

Vπ
∗ ⊗ Vπ −→ L2(K)

defined by

ξπ
∗ ⊗ ξπ 7−→

1

(dimΓπ)
1
2

(ξπ
∗, π( • )ξπ)
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for ξπ ∈ Vπ , ξπ
∗ ∈ Vπ

∗, and extending linearly, is an isomorphism of unitary K ×K-

representations. Here the representation on the left-hand side is

k1 × k2 7−→
⊕

π

π∗(k1)⊗ π(k2)

(where π∗ is the dual representation to π), while on the right-hand side it is given by the

left and right regular representations

k1 × k2 7→ L(k1)R(k2)

The functions (ξπ
∗, π( • )ξπ) which appear in the theorem are called matrix coef-

ficients.

In the case of K = SU(3), the irreducible representations of K are classified

by their highest weights (see Section 3.4). This sets up a one-to-one correspondence

between the irreducible representations and the dominant weights of SU(3). Recall that

the dominant weights are those in ΛW ∩W, where W is the closure of the fundamental

Weyl chamber in h∗. We will write ΛW
(Dom) for the set of dominant weights.

We will denote the representation with highest weight β by πβ , and its represen-

tation space by Γβ . Then Peter-Weyl becomes

L2(K) ∼=
⊕

β∈Λ
(Dom)
W

Γβ∗ ⊗ Γβ .
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Considering the space L2(X ;E−µ), the M -equivariance condition (6.2.1) tells us that

L2(X ;E−µ) = {u ∈ L2(K) | R(T )u = µ(T )u for all T ∈ m}

∼=
⊕

β∈Λ
(Dom)
W

Γβ
∗
⊗ (Γβ)µ , (6.2.3)

where (Γβ)µ is the µ-weight space in the representation Γβ . This is the decomposition

of L2(X ;E−µ) into K-isotypical pieces. The isomorphism is implemented using matrix

coefficients, just as in the Peter-Weyl Theorem.

Remark 12. The µ-weight space of Γβ is trivial if µ and β are not congruent modulo

the root lattice. It will also be trivial if µ lies outside the convex hull of the orbit of β

under the Weyl group. We may choose to restrict the direct sum in Equation (6.2.3)

accordingly.

6.3 K-equivariant differential operators

The differential operators appearing in the Bernstein-Gel’fand-Gel’fand complex

(see Chapter 4) are examples of the extremely small class of G-equivariant differential

operators over X = G/B (cf. Theorems 3.29 and 3.31). Now that we are passing to the

“compact picture”, we will want a good understanding of these operators as members of

the much larger class of K-equivariant differential operators.

As preliminary observation, let V ∈ n′ be a holomorphic element of the complex-

ification of n = n+ with weight α. Viewed as a left-invariant differential operator on G,
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we can let it act on a section

u ∈ C∞(X ;E−µ)

in a manner which we now describe. Firstly, we identify u with a smooth function on G

satisfying the B-equivariance property

Hu = −µ(H)u (H ∈ h)

Nu = 0 (N ∈ n−)

(6.3.1)

Here H and N are acting on u ∈ C∞(G) via the right regular representation, which we

will suppress in the notation for clarity. The image of u under V ,

v = V u,

automatically has an H-equivariance property:

Hv = HV u

= V (Hu) + [H,V ]u

= µ(H)V u+ α(H)V u

= (µ+ α)(H)v.

Since M ⊆ H, restricting v to K yields a section of the bundle E−(µ+α), in the compact

picture. In other words, any element of n of weight α defines a K-invariant differential
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operator

V : C
∞

(X ;E−µ) −→ C
∞

(X ;E−(µ+α))

for each µ ∈ ΛW .

By generalizing this idea, one might hope to create K-invariant differential oper-

ators of higher order by starting with homogeneous elements of U(n′). This is certainly

possible. If D ∈ U(n′) is homogeneous of weight α, then following through the above

construction defines a K-invariant differential operator

D : C∞(X ;E−µ) −→ C∞(X ;E−(µ+α))

for each µ ∈ ΛW .

However, there is an important nuance here when it comes to composition of

such operators. The definition of these K-invariant differential operators involves the

restriction of the function Du, which is typically not G-equivariant, to an M -equivariant

function on the compact subgroup K. If we were to apply the process a second time, we

would need to begin by extending this function on K, in a G-equivariant way, to all of G.

Therefore there is no a priori guarantee that composition of theK-equivariant differential

operators induced from two homogeneous holomorphic elements D1, D2 ∈ U(n′) will

agree with that K-equivariant differential operator induced from their product D1D2.

It turns out, however, that the two operators do agree, at least if we restrict our

attention to holomorphic elements of U(n′). To understand this, we need a description of

the above differential operators in a way which is more intrinsic to the compact picture.



162

Let

θ : g −→ g

be the Cartan involution on g, which for the group SL(3,C) is just the operation of

negative conjugate transpose. Extend θ by complex-linearity to gC. If V ∈ nC = (n+)C

then θV ∈ (n−)C. Consequently, θV acts trivially on sections of the bundle E−µ.

Therefore, if u is a function satisfying the properties (6.3.1), then

(V + θV )u = V u.

But V + θV ∈ kC.

Definition 6.2. Define the “compact realization” map

κ : nC → kC

V 7→ V + θV.

Homogeneous elements of kC have a completely obvious interpretation as left K-

invariant differential operators on C∞(X ;E−µ). Working in the standard picture or the

compact picture yields the same operator and hence these operators make sense also for

homogeneous elements of U(kC).

There is a natural identification of kC with g, given by the map

K1 + iK2 7→ K1 + JK2,
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where J is the map of multiplication by i on g. Moreover, this is an isomorphism

of Lie algebras. Using this identification, we have the following extremely convenient

observation.

Lemma 6.3. The map κ sends n′ to n+ ⊆ g and n′′ to n− ⊆ g.

Moreover, on holomorphic vectors, the map κ : n′ → n is exactly the inverse of

the natural identification of the complex Lie algebra n with the holomorphic part of its

complexification, as given by

V 7→
1

2
(V − iJV ),

and hence κ|
n′

is a Lie algebra homomorphism.

Also, the map κ : n′′ → n− is given by the inverse of the identification of n with

the antiholomorphic vectors of nC, as given by

V 7→
1

2
(V + iJV ),

followed by Cartan involution θ : n 7→ n−. Thus, κ|
n′′

is also a Lie algebra homomor-

phism.

Proof. Note that θJ = −Jθ. So for V ∈ n−,

κ :
1

2
(V − iJV ) 7→

1

2
(V + θV − iJV + iJθV ) ∈ kC,

which identifies with

1

2
(V + θV + V − θV ) = V ∈ g.
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Similarly,

κ :
1

2
(V + iJV ) 7→

1

2
(V + θV + iJV − iJθV ) ∈ kC,

which identifies with

1

2
(V + θV − V + θV ) = θV ∈ g.

It follows that the “compact realization” map

V 7→ VK = V + θV

can be extended to higher order holomorphic operators D ∈ U(n′). Because of the

naturality of this map, we will generally suppress mention of κ in the notation. This

should not cause confusion, since the K-invariant differential operators induced from D

and κ(D) are identical.

6.4 K-finite sections

The “compact realization” map also allows us to determine the action of the above

differential operators on K-isotypical subspaces of C∞(X ;E−µ). Since the operators are

K-invariant, Schur’s Lemma tells us that they must respect K-types. By the Peter-Weyl

decomposition, an isotypical subspace of L2(X ;E−µ) is isomorphic to

Γβ
∗
⊗ (Γβ)−µ,
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for some dominant weight β. The action by a homogeneous element D ∈ U(n′) of weight

ν on this K-type is therefore given by

1⊗ πβ(κ(D)) : Γβ
∗
⊗ (Γβ)µ −→ Γβ

∗
⊗ (Γβ)µ+ν .

By Lemma 6.3,

πβ(κD) = πβ(D),

where the right-hand side implicitly uses the well-known correspondence between finite-

dimensional unitary representations of K, and finite-dimensional holomorphic represen-

tations of G ([Kna86, Proposition 5.7]).

In other words, the essential analytic information in the BGG-complex is carried

by the maps

πβ(D) : (Γβ)µ −→ (Γβ)µ+ν

between weight-spaces in finite dimensional representations of g. Thus, the BGG-

complex has been reduced to a family of complexes of finite-dimensional spaces. This is

analogous to analyzing differential operators on the circle with Fourier series, or differ-

ential operators on the 2-sphere with spherical harmonics. Figure 6.1 gives a pictorial

indication of the BGG-complex in a typical K-type. (Compare the diagram (4.2.1) on

page 94.)

Definition 6.4. Let π be a representation of G on a Hilbert space H. A vector v ∈ H

is K-finite if the orbit of v under π(K) spans a finite-dimensional subspace of H.
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β W

X

Y

X
2

−Y
2 −Y

X

−(XY+Z)

Y X−Z

Fig. 6.1. Pictorial description of the BGG-complex in the K-type with highest weight
β = 2αX + 3αY . Dots represent weight spaces, and arrows maps between them.

The space of K-finite vectors in the representation L2(X ;E−µ) will be denoted

by

Cf (X ;E−µ),

and its elements will be called K-finite sections of E−µ. TheK-finite sections correspond

to the members of the algebraic direct sum

⊕

β∈Λ
(Dom)
W

Γβ∗ ⊗ (Γβ)µ,

in the Peter-Weyl decomposition.

This space Cf (X ;E−µ), forms a convenient restricted domain for the K-invariant

differential operators we have been considering, for the following reason.
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Definition 6.5. For any V ∈ kC
∼= g, we will write V ′ = −θV .

Lemma 6.6. Let V be an element of n ⊂ kC with weight α. For any µ, the K-invariant

differential operators

V : Cf (X ;E−µ) −→ Cf (X ;E−(µ+α))

and V ′ : Cf (X ;E−(µ+α)) −→ Cf (X ;E−µ),

are formally adjoint as unbounded operators between the corresponding spaces of L2-

sections, and their products V ′V and V V ′ are essentially positive.

Proof. In any finite-dimensional holomorphic representation π of kC
∼= g, the operators

π(V ) and π(V ′) are adjoint, which proves the first claim. Any direct sum of finite-

dimensional positive operators has an orthonormal eigenbasis, and hence is essentially

positive.

We could extend the map

V 7→ V ′

on kC to a conjugate-linear anti-automorphism of U(kC). Then Lemma 6.6 holds for an

operator D ∈ U(n) ⊂ U(kC) (homogeneous of weight α) in place of V , with the same

proof.
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6.5 Directional Laplacians on G/B

In what follows, X, Y , Z will denote the elements

X =





0 1 0
0 0 0
0 0 0



 , Y =





0 0 0
0 0 1
0 0 0



 , Z =





0 0 1
0 0 0
0 0 0



 ,

in n. Following the observations of the Section 6.3, it will be convenient to identify X,Y

and Z with their holomorphic counterparts

1

2
(X − iJX),

1

2
(Y − iJY ),

1

2
(Z − iJZ) ∈ n

′.

Their antiholomorphic counterparts

1

2
(X + iJX),

1

2
(Y + iJY ),

1

2
(Z + iJZ) ∈ n

′′

will be denoted X̄, Ȳ and Z̄.

Now let these holomorphic and antiholomorphic vectors act on the sections of

some homogeneous vector bundle E−µ. Because we will be working only in the compact

picture for the remainder of this chapter, we will follow Lemma 6.3 and identify X,Y

and Z with their “compact realizations” X,Y,Z ∈ n ⊆ kC. We will likewise identify

X̄, Ȳ and Z̄ with θX = −X ′, θY = −Y ′, and θZ = −Z ′ ∈ n− ⊆ kC.

Let αX , αY and αZ = αX +αY ∈ h∗ be the roots corresponding to the elements

X,Y and Z in g, respectively. Fix a weight µ ∈ ΛW . As remarked after Lemma 6.6, the
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differential operators

X : C∞(X ;E−µ) −→ C∞(X ;E−(µ+αX ))

and X ′ = −X̄ : C∞(X ;E−(µ+αX )) −→ C∞(X ;E−µ)

are formally adjoint operators between L2(X ;E−µ) and L2(X ;E−(µ+αX )). We define

the positive unbounded operator ∆X to be the self-adjoint extension of the essentially

positive operator X ′X on L2(X ;E−µ).

The purpose of the next few sections will be to explain some important features

of the spectral theory of ∆X , and the similarly defined operator

∆Y = Y ′Y,

on the spaces L2(X ;E−µ).

Remark 13. Although X and X ′ do not commute as operators on L2(K), we do have

[X,X ′] = HX

where

HX =





1 0 0
0 −1 0
0 0 0



 ∈ kC.

This operator HX acts as a scalar on each L2(X ;E−µ)—specifically,

HX · u = µ(HX) u, (u ∈ L2(X ;E−µ)).
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Therefore, the spectral measures of the operators X ′X and XX ′ are basically the same,

differing only by a scalar shift, with that scalar being µ(HX).

Thanks to the observations of the previous section, understanding the spectral

theory of ∆X and ∆Y reduces to an infinite family of finite-dimensional problems, pa-

rameterized by the dominant weights of SL(3,C). In fact since the action of these

operators on K-types is given by

1⊗ πβ(∆X ) : Γβ
∗
⊗ (Γβ)µ −→ Γβ

∗
⊗ (Γβ)µ

and

1⊗ πβ(∆Y ) : Γβ
∗
⊗ (Γβ)µ −→ Γβ

∗
⊗ (Γβ)µ,

it is clear that we are chiefly interested in the operators πβ(∆X ) and πβ(∆Y ).

For notational simplicity, we will reuse the symbols X, Y , Z, X ′, Y ′, Z ′, ∆X ,

and ∆Y to denote the corresponding finite dimensional operators πβ(X), πβ(Y ), πβ(Z),

πβ(X ′), πβ(Y ′), πβ(Z ′), πβ(∆X), and πβ(∆Y ) in End(Γβ), when β is assumed given.

When working in particular weight spaces of Γβ , we will also use the same notation to

refer to their restrictions to maps between the appropriate weight spaces.

6.6 The centre of the enveloping algebra of su(3).

In the analysis that follows, we will make frequent use of elements in the center of

the enveloping algebras of su(2) and su(3). Central elements in the enveloping algebra

play an important role in the representation theory of semisimple Lie groups. Their

importance derives from the fact — a consequence of Schur’s Lemma — that on any
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irreducible representation of a Lie group G, with Lie algebra g, the central elements

of U(g) act as scalars. In this section we will collect several identities concerning the

explicit form of these central elements.

We will begin with the case of su(2). We will put s = su(2) for brevity. Let us

briefly recall the basic facts about the finite dimensional irreducible representations of

s. All of this can be found, for instance, in [FH91].

The Cartan subalgebra of sC = sl(2,C) is one-dimensional, spanned by

H =

(

1 0
0 −1

)

.

The weight lattice Λ
sl(2,C)
W is isomorphic to Z, generated by the fundamental weight

(

t 0
0 −t

)

7→ t.

The isomorphism with Z can be given explicitly by the map

Λ
sl(2,C)
W → Z

ν 7→ ν(H).

Dominant weights correspond to non-negative integers.

We will follow the usual convention of actually identifying weights for sl(2,C)

with their corresponding integers under the above map. The irreducible representation

of sl(2,C) with highest weight b ∈ N will be denoted by Γb. This representation has

one-dimensional weight spaces, with weights

−b, −b+ 2, . . . , b− 2, b.
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The centre of U(sC) is a polynomial algebra in one variable, generated by the

Casimir element Ωs. If

E =

(

0 1
0 0

)

and E′ =

(

0 0
1 0

)

,

then the Casimir element of s is

Ωs = E′E +EE′ +
1

2
H2.

Equivalently,

Ωs = 2E′E +
1

2
H2 +H.

By definition, elements of the Cartan algebra act as scalars on each weight space

in a representation of s. Namely, for a vector v of weight a ∈ Z,

Hv = av.

Therefore, when restricted to the a-weight space,

Ωs = 2E
′
E +

1

2
a
2

+ a. (6.6.1)

The scalar value of Ωs on an irreducible representation of highest weight b can be deter-

mined from this. Since E annihilates any highest weight vector, we get

Ωs =
1

2
b2 + b, (6.6.2)
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on the highest weight space, and hence on all of Γb. Rewriting Equation (6.6.1), we see

that on the weight space (Γb)a,

E′E =
1

4
((b2 + 2b)− (a2 + 2a))

=
1

4
(b(b+ 2)− a(a+ 2)). (6.6.3)

Now we move to the case of k = su(3). The centre of U(kC) is generated by

two elements: the Casimir element Ω and an element of degree three, which we will

denote by Ξ. There is a convenient description of both of these elements as follows. For

i, j ∈ {1, 2, 3}, let Eij denote the 3× 3-matrix all of whose entries are zero except for a

1 in the (i, j)-position. Next, put

Aij =















Eij if i 6= j,

Eii −
1
3I if i = j.

Thus each Aij is in su(3). Then the generating central elements are given by

Ω =
3
∑

i,j=1

AijAji

and

Ξ =

3
∑

i,j,k=1

AijAjkAki.
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We want to re-express these in terms of the elements X, Y , Z and so on. Let us

put

HX = [X,X ′] =





1 0 0
0 −1 0
0 0 0



 ,

HY = [Y, Y ′] =





0 0 0
0 1 0
0 0 −1



 ,

HZ = [Z,Z ′] =





1 0 0
0 0 0
0 0 −1



 .

Then

A11 =
1

3
(HX +HZ),

A22 =
1

3
(−HX +HY ),

A33 =
1

3
(−HY −HZ).

From this we get

3
∑

i=1

A2
ii

=
2

9
(H2

X
+H2

Y
+H2

Z
) +

2

9
(−HXHY +HYHZ +HXHZ)

=
4

9
(H2

X
+H2

Y
+H2

Z
)−

1

9
(HX +HY )2 −

1

9
(HY −HZ)2 −

1

9
(HX −HZ)2

=
1

3
(H

2
X

+H
2
Y

+H
2
Z

),
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where the last line follows from HZ = HX +HY . Therefore,

Ω = X ′X +XX ′ + Y ′Y + Y Y ′ + Z ′Z + ZZ ′ +
1

3
(H2

X
+H2

Y
+H2

Z
)

= 2(X ′X + Y ′Y + Z ′Z) +
1

3
(H2

X
+H2

Y
+H2

Z
) +HX +HY +HZ .

(6.6.4)

Consider Γβ , the irreducible representation of su(3) with highest weight β. Ap-

plying (6.6.4) to a highest weight vector in Γβ , we get

Ω =
1

3
(β(HX )2 + β(HY )2 + β(HZ)2) + 2β(HZ ).

Recall that the fundamental weights of su(3) are

e1 :





t1 0 0
0 t2 0
0 0 t3



 7→ t1

and

−e3 :





t1 0 0
0 t2 0
0 0 t3



 7→ −t3.

Thus, β can be written as a linear combination

β = me1 + n(−e3)
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with m,n ∈ N. With this notation, the scalar value of the Casimir operator on the

irreducible representation Γβ is

Ω =
1

3
(m2 + n2 + (m+ n)2) + 2(m+ n)

=
2

3
(m2 +mn+ n2 + 3m+ 3n). (6.6.5)

We can put this back into Equation (6.6.4) to produce an identity which is valid

on any particular weight space of Γβ . If β is as above and µ = ae1 + b(−e3), then on

the weight space (Γβ)µ we have

X ′X + Y ′Y + Z ′Z

=
1

3
(m2 +mn+ n2 + 3m+ 3n− a2 − ab− b2 − 3a− 3b). (6.6.6)

Finally, we carry out similar computations for Ξ. Some rearrangement gives

Ξ = 3(Z ′XY + Y ′X ′Z)− 3(A33 − 2)X ′X − 3A11Y
′Y − 3A22Z

′Z

+A3
11

+A3
22

+A3
33

+ 6A2
11
− 3A22A33 − 3A2

33
+ 6A11.
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On a particular weight space, with weight µ = ae1 + b(−e3), the elements A11, A22 and

A33 act as scalars—specifically

µ(A11) =
1

3
(2a+ b),

µ(A22) =
1

3
(−a+ b),

µ(A33) =
1

3
(−a− 2b).

Therefore, on this weight space,

Ξ = 3(Z ′XY + Y ′X ′Z)

+ (a+ 2b+ 6)X ′X − (2a+ b)Y ′Y + (a− b)Z ′Z

+
1

9
(a− b)(2a2 + 5ab+ 2b2) + (a+ 2)(2a + b). (6.6.7)

In particular, on the representation Γβ , with β = me1 +n(−e3), the scalar value of Ξ is

Ξ =
1

9
(m− n)(2m

2
+ 5mn+ 2n

2
) + (m+ 2)(2m + n). (6.6.8)

This yields the identity

3(Z ′XY + Y ′X ′Z) + (a+ 2b+ 6)X ′X − (2a+ b)Y ′Y + (a− b)Z ′Z

=
1

9
(m− n)(2m2 + 5mn+ 2n2) + (m+ 2)(2m+ n)

−
1

9
(a− b)(2a2 + 5ab+ 2b2)− (a+ 2)(2a + b) (6.6.9)
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on the weight space (Γβ)µ.

6.7 Decomposition into sX- and sY -types

The operator ∆X lies not just in the enveloping algebra of kC, but in the envelop-

ing algebra of the smaller Lie algebra.

sX =











A
0
0

0 0 0





∣

∣

∣

∣

∣

∣

A ∈ su(2)C







∼= sl(2,C).

Let β be a given dominant weight for K = SU(3). The sX -representation generated by a

particular weight space (Γβ)µ will be referred to as the sX -string through µ. Pictorially,

in the weight-space diagram for Γβ the sX -strings appear as in Figure 6.2.

Remark 14. This is an abuse of terminology. In the general literature, the term sX -

string would be used to refer to the collection of sl(3,C)-weights of the corresponding

sX -representations.

To understand the structure of the sX -strings, we will need to apply the general

theory of finite-dimensional representations of sl(2,C) to the subgroup sX of sl(3,C).

Consider a finite-dimensional irreducible representation Γβ for sl(3,C), where β is a

dominant weight for sl(3,C). A weight µ for sl(3,C) restricts to a weight µX for sX ,

namely

µX = µ|hX
,

where

hX =











t 0 0
0 −t 0
0 0 0





∣

∣

∣

∣

∣

∣

t ∈ C







.
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e3

e1e2

β

Fig. 6.2. Decomposition of the representation Γβ into sX -strings.

Under the identification of the weight lattice for sX with Z, this weight is

µX = µ(HX),

where

HX =





1 0 0
0 −1 0
0 0 0



 .

The sX -strings in Γβ are typically not irreducible as su(2)-representations. Our

next task will be to describe the decomposition of a particular sX -string into irreducibles

for sX . To do this, we will need to use some geometry of the weight space h∗ of sl(3,C).

Let us begin, though, with some further remarks about finite dimensional rep-

resentations of sl(2,C). As in the previous section, let Γb denote the irreducible finite

dimensional representation of sl(2,C) with highest weight b ∈ N. As mentioned earlier,
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the nontrivial weight spaces of Γb are all one-dimensional, with weights

−b, −b+ 2, . . . , b− 2, b.

Because of this, it is possible to determine the decomposition of an arbitrary finite dimen-

sional sl(2,C)-representation V from the dimensions of its weight spaces. Specifically, if

we denote the k-weight space of V by Vk, and put

Nk = dimVk − dimVk+2

for each k ∈ N, then V contains Γk with multiplicity Nk, for each k. That is,

V ∼=

∞
⊕

k=0

(

Γk
)⊕Nk .

To compute the dimensions of the weight spaces of the sX -strings in the irreducible

representation Γβ of sl(3,C), we use the Kostant Multiplicity Formula. To state this

formula, let G be an arbitrary complex semisimple group, g its Lie algebra, ∆+ its set

of positive roots and W its Weyl group. One defines a combinatorial function p on the

weights of G by defining p(µ) to be the number of ways of writing the weight µ as a

non-negative integral linear combination of the positive roots,

µ =
∑

α∈∆+

cα α (cα ∈ N).

Recall also that W acts on the space of weights of G (see Section 3.3).
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Theorem 6.7. (Kostant Multiplicity Formula) With the above notation,

dim(Γβ)µ =
∑

w∈W

(−1)wp (w · (β + ρ)− (µ+ ρ))

where ρ = 1
2

∑

α∈∆+ α is half the sum of the positive roots of g, and (−1)w is the

determinant of w as a transformation of the weight space of g.

This is a variant of the Weyl character formula. For a proof, see [FH91, §25].

In the case at hand, the group G is SL(3,C) and the set of positive roots is

∆+ = {αX , αY , αZ}. The only dependency in this set is αZ = αX +αY . It follows that

if µ = aαX + bαY (a, b ∈ Z), then we can write

µ = (a− j)αX + (b− j)αY + jαZ ,

for j = 0, . . . ,min(a, b), as long as both a and b are non-negative. Hence,

p(µ) =















0 if a < 0 or b < 0,

min(a, b) + 1 otherwise.

It will be convenient to extend the function p on ΛR to a continuous function on

all of the real part of h∗, namely on

h
∗
R

= {aαX + bαY | a, b ∈ R}.
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Therefore, let us define

q(aαX + bαY ) =















0 if a ≤ 0 or b ≤ 0

min(a, b) otherwise

(6.7.1)

so that p(µ) = q(µ+ ρ) for µ ∈ ΛR.

To state the next lemma, we introduce a certain linear function on h∗. Define φX

on h∗ by

φX(ie1 + j(−e3)) =
1

3
(i+ 2j)

where e1 and −e3 are the fundamental weights,

e1 :





t1 0 0
0 t2 0
0 0 t3



 7→ t1

−e3 :





t1 0 0
0 t2 0
0 0 t3



 7→ −t3

in h∗, and i, j ∈ R. The importance of this functional is that

φX (αX ) = φX (2e1 − (−e3)) = 0

and

φX(αY ) = φX(−e1 + 2(−e3)) = 1,

φX(αZ) = φX(αX + αY ) = 1.



183

The first of these identities shows that φX is constant along each sX -string. The other

two show that on adjacent sX -strings, which differ by a displacement of αY or αZ , the

values of φX differ by one. These values will belong to Z, Z + 1
3 or Z − 1

3 , depending

upon the coset of ΛR in ΛW which is determined by β. It will be useful to think of φX

as an enumeration of the sX -strings.

Lemma 6.8. Let β = me1 + n(−e3) be a dominant weight for SL(3,C), and let µ be

any weight which occurs non-trivially in Γβ. The sX -string through µ in Γβ decomposes

into irreducible representations for sX as

Γb0 ⊕ Γb0+2 ⊕ · · · ⊕ Γb1−2 ⊕ Γb1 ,

where

b0 = |φX (µ− (m− n)e3)| ,

b1 = (m+ n)−

∣

∣

∣

∣

φX (µ+
1

2
(m− n)e3)

∣

∣

∣

∣

.

Proof. Fix β as in the statement. Let us define functions

b0(t) = |
2

3
(m− n) + t |,

b1(t) = (m+ n)− |
1

3
(m− n)− t |,

so that in the statement of the lemma, b0 = b0(φX (µ)) and b1 = b1(φX (µ)).
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Next put µ0 = −φX(µ)(e3). Thus µ0 lies on the line in h∗ corresponding to the

sX -string through µ, but has µ0(HX) = 0. The weights of this sX -string in Γβ are all

of the form

µ+ xαX ,

with x an integer. Equivalently, they are of the form

µ0 + xαX ,

where either x ∈ Z or x ∈ Z + 1
2 , according as whether µ(HX) is even or odd.

From the preceding remarks about the structure of sl(2,C) representations, it

suffices to prove that the dimensions of these weight spaces (Γβ)µ0+xαX
satisfy:

dim(Γβ)µ0+xαX
− dim(Γβ)µ0+(x−1)αX

=































































0, x ≤ −1
2 (b1(φX (µ)) + 1) ,

1, −1
2 (b1(φX (µ)) + 1) < x ≤ −1

2b0(φX (µ)),

0, −1
2b0(φX (µ)) < x ≤ 1

2b0(φX (µ)),

−1, 1
2b0(φX (µ)) < x ≤ 1

2 (b1(φX (µ)) + 1) ,

0, 1
2 (b1(φX (µ)) + 1) < x,

(6.7.2)

with x ∈ Z or Z + 1
2 , as above. The Kostant Multiplicity Formula tells us that

dim(Γβ)µ0+xαX
=
∑

w∈W

(−1)wq (−xαX − µ0 + w · (β + ρ)) ,
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where q is the piecewise linear function of Equation (6.7.1). We can prove the lemma by

computing the derivative of this expression, as a function of x.

From the definition of q, it is easy to check that

∂

∂x
q(xαX + yαY ) =















1 if 0 ≤ x ≤ y,

0 otherwise.

Let us change coordinates slightly in this expression. Put

δX = αY +
1

2
αX

=
1

2
(αY + αZ)

so that φX(δX ) = φX (αY ) = 1, but δX is orthogonal to αX . Then

∂

∂x
q(xαX + yδX ) =















1 if − 1
2y ≤ x ≤

1
2y

0 otherwise

In other words, as a function of (x, y) ∈ R
2, ∂

∂xq(xαX + yδX) is the characteristic

function of the cone

{ (x, y) | −
1

2
y ≤ x ≤

1

2
y (and y ≥ 0) }.
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With this description, we see that the function

F (x, y) =
∂

∂x

∑

w∈W

(−1)wq (−(xαX + yδX ) + w · (β + ρ))

is an alternating sum of characteristic functions of six cones in R
2. These cones are

shown in Figure 6.3.

e3

e1e2

β

β+ρ
−

+

−

+

−

+

Fig. 6.3. The six cones appearing in the partial derivative of the Kostant multiplicity
formula, and their associated signs.

From the diagram, it is clear that the signed sum of the characteristic functions

totals zero everywhere except for the two quadrilaterals marked in Figure 6.4, where the

total is constant +1 and −1 as indicated. The boundaries of the quadrilateral of positive
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e3

e1e2

β

β+ρ

+1-1

Fig. 6.4. Support of the signed characteristic functions.

sign are the parameterized lines

β + ρ+ tαY (t ∈ R)

w(2,3) · (β + ρ) + tαZ (t ∈ R)

β + ρ+ tαZ (t ∈ R)

w(1,2) · (β + ρ) + tαY (t ∈ R).

The notation for the Weyl group elements here is that, for σ ∈ S3, wσ denotes the

element which acts on h∗ by

wσ : ej 7→ eσ(j)

for j = 1, 2, 3. Specifically, w(2,3) is the reflection in the line through e1, and w(1,2) is

the reflection in the line through e3.
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Putting everything into the coordinate system given by (x, y) 7→ xαX + yδY , we

get

e1 = (1
2 ,

1
3), e2 = (−1

2 ,
1
3), e3 = (0,−2

3 ),

αX = (1, 0), αY = (−1
2 , 1), αZ = (1

2 , 1),

so

β + ρ = (m+ 1)e1 + (n+ 1)(−e3)

=

(

1

2
(m+ 1),

1

3
(m+ 2n+ 3)

)

,

w(2,3) · (β + ρ) = (m+ 1)e1 − (n+ 1)e2

=

(

1

2
(m+ n+ 2),

1

3
(m− n)

)

,

w(1,2) · (β + ρ) = (m+ 1)e2 + (n+ 1)(−e3)

=

(

−
1

2
(m+ 1),

1

3
(m+ 2n+ 3)

)

.

The four bounding lines of the quadrilateral become

2x+ y = (m+ 1) +
1

3
(m+ 2n+ 3) =

4

3
m+

2

3
n+ 2

and

2x− y = (m+ n+ 2)−
1

3
(m− n) =

2

3
m+

4

3
n+ 2

as an upper bound on x, and

2x− y = (m+ 1)−
1

3
(m+ 2n+ 3) =

2

3
m−

2

3
n
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and

2x+ y = −(m+ 1) +
1

3
(m+ 2n+ 3) = −

2

3
m+

2

3
n

as a lower bound. In other words, the upper bound on x is

x =
1

2
min{

4

3
m+

2

3
n+ 2− y,

2

3
m+

4

3
n+ 2 + y}

=
1

2
b1(y) + 1

and the lower bound is

x =
1

2
max{

2

3
m−

2

3
n+ y, −

2

3
m+

2

3
n− y}

=
1

2
b0(y).

By reflection using w(1,2) we see that the boundaries of the other quadrilateral in Figure

6.4 are

x = −
1

2
b0(y)

and x = −
1

2
b1(y)− 1.

Comparing these with the desired values in Equation (6.7.2), we have proven the lemma.



190

There is, of course, an analogous theory for sY -strings, which we define now in

the obvious way. Let sY be the Lie subalgebra of su(3)

sY =











0 0 0
0
0

A





∣

∣

∣

∣

∣

∣

A ∈ su(2)C







∼= sl(2,C).

In an irreducible su(3)-representation Γβ , the sY -string through µ for a given weight µ

of su(3) will be the representation of sY generated by (Γβ)µ.

Define a linear functional φY on h∗ by

φY (ie1 + j(−e3)) =
1

3
(2i + j),

so that

φY (αY ) = 0

φY (αX ) = φY (αZ) = 1.

The next lemma is proven in the same way as Lemma 6.8.

Lemma 6.9. With β and µ as in the preceding lemma, the decomposition of the sY -string

through µ into irreducible representations for sY is

Γb0 ⊕ Γb0+2 ⊕ · · · ⊕ Γb1−2 ⊕ Γb1
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where

b0 = |φY (µ− (m− n)e1)|,

b1 = (m+ n)− |φY (µ+
1

2
(m− n)e1)|.

Definition 6.10. Let Γβ be an irreducible su(3)-representation, and µ a weight of su(3).

(i) We say a vector ξ ∈ (Γβ)µ is of sX -type k (respectively, of sY -type k) for k ∈ N,

if the representation of sX (respectively, sY ) generated by ξ is irreducible with

highest weight k.

(ii) The minimal sX -type (respectively, minimal sY -type) of (Γβ)µ is the smallest

integer k for which there exist vectors of sX -type (respectively, sY -type) k in

(Γβ)µ.

Remark 15. From time to time, for the ease of stating certain results, we may think of the

zero vector as having sX -type k for every k ∈ N. Note, however, that we will certainly

ignore the zero vector in the definition of minimal sX -type, and also when claiming that

a certain space contains no vectors of some given sX -type. The same convention shall

also be adopted for sY -types.

Lemma 6.8 gives us a formula for the minimal sX -type in an entire sX -string,

but we would also like to have a formula for the minimal sX -type in a given weight

space (Γβ)µ. If µ and β are as in the two preceding lemmas, then we are looking for the

minimal sX -type in the µ(HX)-weight space of the sX -representation

Γb0 ⊕ Γb0+2 ⊕ · · · ⊕ Γb1 ,
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with b0 and b1 as in Lemma 6.8. This is seen to be

max{ b0, |µ(HX )| }.

An extremely convenient formula for this quantity can be given if we introduce

some new notation.

Definition 6.11. Let

δX =
1

2
(αY + αZ) =

3

2
(−e3)

as in the proof of Lemma 6.8, and define an `∞-type norm | · |X on h∗ by

|xαX + yδX |X = max{|2x|, |y|}

for any x, y ∈ R. Similarly, put

δY =
1

2
(αX + αZ) =

3

2
e1

and define | · |Y on h∗ by

|xαY + yδY |Y = max{|2x|, |y|}.

Lemma 6.12. Let β = me1 +n(−e3) and µ be as in the previous lemma. The minimal

sX -type of (Γβ)µ is

|µ− (m− n)e3|X .
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The minimal sY -type of (Γβ)µ is

|µ− (m− n)e1|Y .

Proof. If µ = xαX + yδX then

µ− (m− n)e3 = xαX + (y +
2

3
(m− n))δX .

On the other hand,

|µ(HX )| = |2x|,

and in the notation of Lemma 6.8,

b0 = |φX (µ− (m− n)e3)|

= |y +
2

3
(m− n)|.

This proves the formula for minimal sX -types. The formula for minimal sY -types is

proven similarly.

Remark 16. Note that if we fix µ and let β = me1 +n(−e3) vary, the minimal sX -types

and sY -types of (Γβ)µ depend only on the value of (m−n). Moreover, both the minimal

sX -types and the minimal sY -types tend to infinity as |m− n| goes to infinity. In other

words, vectors of a given sX -type k occur only in the spaces (Γβ)µ where β lies within
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some bounded neighbourhood of the centre line

{t(e1 − e3) | t ∈ R}

in the fundamental Weyl chamber W.

We also provide an alternative definition of the norms | · |X and | · |Y . Recall that

we have defined functionals φX and φY on h∗. We define a similar functional φZ by

φZ(ie1 + j(−e3)) = i− j,

so that

φZ(αZ ) = 0

and

φZ(αX ) = −φZ(αY ) = 1.

Lemma 6.13. For any µ ∈ h∗,

|µ|X = |φY (µ)|+ |φZ(µ)|

and

|µ|Y = |φX (µ)|+ |φZ(µ)|.
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Proof. The proof amounts to the following relation between the `1-norm and the `∞-

norm on the plane:

max{a, b} =
1

2
(|a+ b|+ |a− b|) (a, b ∈ R).

For µ = xαX + yδY , we get

|µ|X =
1

2
(|2x + y|+ |2x− y|).

On the other hand,

φY (µ) = φY (xαX +
1

2
yαY +

1

2
yαZ) = x+

1

2
y

and

φZ(µ) = φZ(xαX +
1

2
yαY +

1

2
yαZ) = x−

1

2
y,

which proves the first of the equalities. The second is proven similarly.

6.8 Spectral theory of the directional Laplacians

Every weight space in Γβ has an orthogonal decomposition into sX -types, and

also an orthogonal decomposition into sY -types. These two decompositions will not be

the same, except in trivial cases, and much of what follows is aimed at comparing the

two decompositions.
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Note that the decomposition of a weight space (Γβ)µ into sX -types is exactly the

same as the spectral decomposition of the operator

∆X ∈ End((Γβ)µ).

This is because the operator ∆X is in U(sX ), and hence preserves the irreducible com-

ponents of the sX -string through µ. The action of ∆X on the vectors of sX -type k in

(Γβ)µ can be explicitly determined using the results of Section 6.6. Such vectors have

sX -weight µX = µ(HX), and hence Equation (6.6.3) shows that ∆X acts on them as

the scalar

1

4
(k(k + 2)− µX(µX + 2)) .

Remark 17. Because of this correspondence between vectors of a given sX -type and

eigenvectors for ∆X with a particular eigenvalue, and the similar correspondence for sY

and ∆Y , all the results of this section could be phrased in terms of spectral theory for

∆X and ∆Y . Of course, understanding this spectral theory is the aim of this section.

However, we will continue to use the terminology of sX -types and sY -types, since it is

more succinct and makes the proofs of certain results more intuitive.

Considering all the K-types in L2(X ;E−µ) together, we have now proven that

the differential operator ∆X on L2(X ;E−µ) has discrete spectrum contained in the set

{

1

4
(k(k + 2)− µX (µX + 2))

∣

∣

∣

∣

k ∈ N

}

.
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Similarly, the spectrum of ∆Y on L2(X ;E−µ) is a subset of

{

1

4
(k(k + 2)− µY (µY + 2))

∣

∣

∣

∣

k ∈ N

}

,

where

µY = µ(HY ) = µ









0 0 0
0 1 0
0 0 −1







 .

In both cases, the multiplicities of all spectral values will be infinite.

A crucial question, though, is how the spectral decompositions of the two oper-

ators are related. It is clear that ∆X and ∆Y do not commute, so we cannot expect

simultaneous diagonalizations of the two operators. Nevertheless, we will eventually

prove a result—Proposition 6.18—whose consequences are almost as powerful.

The decomposition of vectors into sX -types is clearly respected by the maps

X : (Γβ)µ −→ (Γβ)µ−αX

and

X ′ : (Γβ)µ −→ (Γβ)µ+αX
.

This decomposition is not respected by the map

Y : (Γβ)µ −→ (Γβ)µ−αY
,
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nor by the corresponding maps for Y ′, Z and Z ′. However, the “lack of respect” is not

too bad. Note that

αY (HX) = −1,

αZ(HX) = 1,

which shows that if the sX -types appearing in (Γβ)µ are all even, then those appearing

in (Γβ)µ±αY
and (Γβ)µ±αZ

are all odd, and vice versa . With this in mind, we have

the following.

Lemma 6.14. With β and µ as above, let ξ ∈ (Γβ)µ be a vector of sX -type k. The

decompositions of Y ξ, Y ′ξ, Zξ and Z ′ξ into sX -types contain only vectors of sX -type

(k − 1) and (k + 1).

Likewise, if η ∈ (Γβ)µ has sY -type l, then the only sY -types occurring in the

decompositions of Xη,X ′η, Zη and Z ′η with respect to sY are (l − 1) and (l + 1).

Proof. We will prove the result for Y ξ only. The other seven cases are similar.

The key fact that is needed is the following well-known property of representations

of sl(2,C). (See [FH91, §11].) Let V be a finite dimensional representation of sl(2,C),

and let v ∈ V be a vector of weight a ∈ Z. Let

E =

(

0 1
0 0

)

, E′ =

(

0 0
1 0

)

.

Then,
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(i) v lies in a direct sum of irreducible subrepresentations with highest weights no

more than b if and only if

(E′)
1
2 (a+b)+1v = 0.

(ii) v lies in a direct sum of irreducible subrepresentations with highest weights no less

than b if and only if

v = E
1
2 (a+b)v0,

for some v0 ∈ V .

With sX
∼= sl(2,C), we first apply these observations to the vector ξ, which has

weight µX = µ(HX ) with respect to sX . Being of sX -type k, we have that

X
1
2 (µX+k)+1ξ = 0,

and that there is ξ0 ∈ Γβ such that

ξ = (X ′)
1
2 (µX+k)ξ0.

From the first of these properties, we see that

X
1
2 (µX+k)+2

(Y ξ)

= Y

(

X
1
2 (µX+k)+2

)

ξ +

(

1

2
(µX + k) + 2

)

ZX
1
2 (µX+k)+1ξ

= 0.
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Since Y ξ is a vector of weight

(µ− αY )(HX) = µX + 1,

with respect to sX , we have shown that Y ξ contains no sX -types greater than (k + 1).

From the second property, and the fact that Y commutes with X ′, we have

Y ξ = (X ′)
1
2 (µX+k)(Y ξ0),

which shows that Y ξ contains no sX -types less than (k − 1).

Let us return, briefly, to consider the K-invariant differential operators which

are motivating this discussion. For instance, consider the operators ∆X and ∆Y on

C∞(X ;E−µ). In order to understand the interrelation of their spectral theory, we need

to understand the finite-dimensional operators

∆X , ∆Y : (Γβ)−µ −→ (Γβ)−µ

for each β ∈ Λ
(Dom)
W . It is possible, although painful, to explicitly compute the finite

dimensional operators for each ∆Y with respect to an eigenbasis for ∆X — that is, in

terms of sX -types. Fortunately, we will not need that level of detail. Since much of

Kasparov’s KK-theory works modulo compact operators, we will only need to make

calculations on the complement of arbitrarily large finite dimensional subspaces. That

is, we will need to consider the operators on Γβ as the dominant weight β goes to infinity.
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Fix a weight µ ∈ ΛW and an sX -type k. Remark 16 suggests that we parameterize

the dominant weights of su(3) by

β = βs,t =















se1 + t(e1 − e3) for s ≥ 0

se3 + t(e1 − e3) for s < 0

with (s, t) ∈ Z × N. This organizes the representations Γβ into infinite sequences, one

for each fixed value of s, along which the minimal sX -types and sY -types of (Γβ)µ are

constant. Moreover, Remark 16 tells us that if we are interested in vectors of a given

sX -type k in (Γβ)µ, as β varies, then we need only consider a finite number of values of

the parameter s, which we can then deal with one at a time. This explains the sequence

of dominant weights which is considered in the following technical lemma.

Lemma 6.15. Fix k ∈ N and µ ∈ ΛW . Fix s ∈ Z such that the weight spaces (Γ
βs,t)µ

contain vectors of sX -type k for all sufficiently large t. For each such t, let ξt be a unit

vector of sX -type k in (Γ
βs,t)µ. Then

lim
t→∞

1

t
‖Y ξt‖ = c, (6.8.1)

where c = c(µ, k, s) is some nonzero constant.

Moreover, if we use Lemma 6.14 to write

Y ξt = ξ′
t
+ ξ′′

t
,
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where ξ′
t

and ξ′′
t

are vectors of sX -type (k − 1) and (k + 1), respectively, then

limt→∞
1
t ‖ξ
′
t
‖ = c1

limt→∞
1
t ‖ξ
′′
t
‖ = c2

(6.8.2)

for some constants c1 = c1(µ, k, s) and c2 = c2(µ, k, s). The constant c2 is always

nonzero, and c1 is nonzero unless the minimal sX -type of (Γ
βs,t)µ+αY

is (k + 1), in

which case ξ′
t
= 0 for all t.

The above statements remain true if the operator Y is replaced throughout by

Y ′, Z or Z ′. It also remains true if sX -types are replaced throughout by sY -types, and

the operator Y is replaced by X,X ′, Z or Z ′.

Proof. We will prove the result for sX -types, working with Y, Y ′, Z and Z ′ more or less

concurrently. The proof for sY -types is entirely analogous.

We begin with the special cases of µ = a(−e3), for a ∈ Z. For these weight spaces,

we can appeal to a certain Weyl group symmetry. Let w ∈W be the Weyl group element

with representative

w̃ =





0 −1 0
1 0 0
0 0 1



 ∈ K.

Note that w is also the non-trivial Weyl group element for sX , and hence it preserves

sX -types. Furthermore, it preserves the space (Γβ)µ, which has weight

−ae3(HX ) = 0
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for sX ; and it interchanges the spaces (Γβ)µ+αY
and (Γβ)µ+αZ

, which lie in the same

sX -string and have weights 1 and −1 for sX , respectively.

Conjugation by w̃ interchanges Y and Z, up to sign:

Y w̃ = −Z

Zw̃ = Y

Xw̃ = −X ′.

Therefore, we see that for a vector ξ of sX -type k in (Γβ)µ,

‖Zξ‖ = ‖Y w̃ξ‖ = ‖w̃Y ξ‖ = ‖Y ξ‖.

To prove (6.8.1), we consider the action of the Casimir element Ω for sl(3,C).

The pertinent fact about the Casimir element is the identity (6.6.6), which tells us that

on the a(−e3)-weight space in Γ
βs,t,

X ′X + Y ′Y + Z ′Z =















t2 + (s+ 2)t+ (1
3s

2 + s− 1
3a

2 − a), s ≥ 0

t2 + (−s+ 2)t+ (1
3s

2 − s− 1
3a

2 + a), s < 0

= t2 +O(t).

Note that, by Equation (6.6.3),

〈X ′Xξt, ξt〉 = ‖Xξt‖
2 =

1

4
k(k + 2),
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which is constant, independent of t. Hence,

‖Y ξt‖
2 + ‖Zξt‖

2 = t2 +O(t). (6.8.3)

Since ‖Y ξt‖ = ‖Zξt‖, this proves (6.8.1), as well as (6.8.1) with Y replaced by Z. The

constant c is in both cases equal to 1
2 .

The proof of (6.8.2) for the weight µ = a(−e3) is an elaboration of the above

argument. We will firstly need to spell out some parity issues regarding the action of

w̃ on the weight spaces mentioned earlier. On the space (Γβ)µ, w̃ acts as +1 on the

vectors of sX -type 2j with j even, and −1 on the vectors of sX -type 2j with j odd. This

can be confirmed by direct computation in a model for the finite-dimensional irreducible

representations of sl(2,C).

The similar parity issue for the spaces (Γβ)µ+αY
and (Γβ)µ+αZ

, is as follows.

If η ∈ (Γβ)µ+αY
is a vector of sX -type 2j − 1, then Xη and w̃η are both vectors of the

same sX -type in (Γβ)µ+αZ
, and hence are scalar multiples of one another. Specifically,

Xη = ±jw̃η,

where the sign is + if j is even, and − if j is odd.

Let ξt have sX -type k = 2j. Note that, if we write

Y ξt = ξ′
t
+ ξ′′

t
(6.8.4)
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as in the statement of the lemma, then the sX -type decomposition of Zξt is

Zξt = −Y w̃ξt

= w̃
(

−Y w̃−1ξt

)

= (−1)j+1
(

w̃ξ′
t
+ w̃ξ′′

t

)

.

(6.8.5)

The sX -type decomposition of XY ξt is

XY ξt = Xξ′
t
+Xξ′′

t

= (−1)j j w̃ξ′
t
+ (−1)j+1(j + 1)w̃ξ′′

t
.

(6.8.6)

Now we consider the order three element Ξ of center of the enveloping algebra of

sl(3,C), as described in Section 6.6. Equation (6.6.9) gives

3(Z ′XY + Y ′X ′Z) + (2a+ 6)X ′X − aY ′Y − aZ ′Z

=















(s+ 3)t2 + (s2 + 5s+ 6)t+ (2
9s

3 + 2s2 + 4s+ 2
9a

3 − 2a), s ≥ 0

(s+ 3)t2 + (−s2 − s+ 6)t+ (2
9s

3 − 2s+ 2
9a

3 − 2a), s < 0

= (s+ 3)t2 +O(t).

Once again, using the fact that X ′X acts as a fixed scalar on vectors of sX -type k in

(Γ
βs,t)µ, we get that

6Re〈XY ξt, Zξt〉 − a‖Y ξt‖
2 − a‖Zξt‖

2 = (s+ 3)t2 +O(t).
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Using (6.8.4), (6.8.5) and (6.8.6), and the fact that the Weyl group element w̃ acts

unitarily, we get

−6j‖ξ′
t
‖2 + 6(j + 1)‖ξ′′

t
‖2 − 2a(‖ξ′

t
‖2 + ‖ξ′′

t
‖2) = (s+ 3)t2 +O(t).

Thus,

(−6j − 2a)‖ξ′
t
‖2 + (6j − 2a+ 6)‖ξ′′

t
‖2 = (s+ 3)t2 +O(t). (6.8.7)

Also, Equation (6.8.3) implies that

‖ξ′
t
‖2 + ‖ξ′′

t
‖2 =

1

2
t2 +O(t), (6.8.8)

since the left-hand side of this is ‖Y ξt‖
2. We now have a pair of linear equations in ‖ξ ′

t
‖2

and ‖ξ′′
t
‖2. In matrix form,

(

1 1
−6j − 2a 6j − 2a+ 6

)

(

‖ξ′
t
‖2

‖ξ′′
t
‖2

)

=

(

1
2 t

2

(s+ 3)t2

)

+O(t).

The matrix on the left is singular only if j = − 1
2 . But j is an integer, and hence the pair

of equations can be solved to give (6.8.2).

It remains to check whether the coefficients c1 and c2 of t2 in the solution are

nonzero. Inverting the two-by-two matrix above, we see that the constant c1 is zero only

if

1

2
(6j − 2a+ 6)− (s+ 3) = 0,

that is, if

k = 2j =
2

3
(a+ s).
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If this occurs then, by Lemma 6.8, the minimal sX -type for (Γ
βs,t)µ+αY

is

|
2

3
s+ φX(a(−e3) + αY )| = |

2

3
(a+ s) + 1| = k + 1,

as claimed. On the other hand, the constant c2 is zero only if

1

2
(6j + 2a) + (s+ 3) = 0,

so that

k = 2j = −
2

3
(a+ s)− 2.

But then the minimal sX -type for (Γ
βs,t)µ is

|
2

3
s+ φX(a(−e3))| =

2

3
|a+ s|,

and this is strictly greater than k, giving a contradiction.

This proves the result for Y and Z, with µ = a(−e3). The result for Y ′ and Z ′

follows from a symmetry argument. If we identify Γβ
∗

with Γβ using the inner product,

then the identity map on Γβ is a conjugate-linear map between Γβ and (Γβ)∗. The

contragredient representation π∗
β

on (Γβ)∗ is defined by

πβ
∗(V ) = −πβ(V )∗, (V ∈ kC).
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The identity map sends the µ-weight space for Γβ to the (−µ)-weight space for the

contragredient representation, and preserves sX -types. Since

πβ
∗(Y ) = −πβ(Y ′)

and πβ
∗(Z) = −πβ(Z ′),

this gives the desired result, with µ = ae3 (a ∈ Z), for the operators

Y ′ : (Γβ)µ −→ (Γβ)µ−αY
,

Z ′ : (Γβ)µ −→ (Γβ)µ−αZ
.

It is also easy to extend to the adjoints of any of the four operators considered so

far, namely to

Y ′ : (Γβ)µ+αY
−→ (Γβ)µ,

Z ′ : (Γβ)µ+αZ
−→ (Γβ)µ,

Y : (Γβ)µ−αY
−→ (Γβ)µ,

Z : (Γβ)µ−αZ
−→ (Γβ)µ,

with µ = a(−e3) (a ∈ Z). For suppose ξt ∈ (Γβ)µ−αY
is a unit vector of sX -type k,

and let ηt be a unit vector in (Γβ)µ of sX -type (k − 1). (If (Γβ)µ has minimal sX -type
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(k + 1), put ηt = 0.) Then, with

Y ξt = ξ′
t
+ ξ′′

t

as usual, we have

‖ξ′
t
‖ = |〈Y ξt, ηt〉|

= |〈ξt, Y
′ηt〉|

= ‖η′′
t
‖,

where we are writing

Y ′ηt = η′
t
+ η′′

t
,

with η′
t

and η′′
t

being vectors of sX -type (k− 2) and k, respectively. The asymptotics of

‖ξ′
t
‖ therefore follow from the earlier results, applied to ηt. A similar argument works

for ‖ξ′′
t
‖, and also for the other three operators, Z, Y ′ and Z ′, listed above.

By now we have proven the lemma for each of the four operators Y , Z, Y ′ and

Z ′ on exactly one weight space in each sX -string. Specifically, we have proven it in

the unique weight-space in that sX -string for which either the domain or target weight

space has weight µ = a(−e3) for some a ∈ Z. The domains and targets, therefore, have

sX -weights either 0 or ±1, which means that they contain vectors of every sX -type that

occurs in that sX -string.
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The final step is to extend away from these central weight spaces. If µ is arbitrary,

and ξt ∈ (Γβ)µ has sX -type k, then either

ξt = Xnζt (6.8.9)

or

ξt = X ′
n
ζt, (6.8.10)

for some n ∈ N, and some ζt of sX -type k which belongs to one of the weight spaces where

the lemma is already proven. Let us suppose (6.8.9)—the case of (6.8.10) is essentially

the same.

The norm of ζt is independent of t—it depends only on n and the sX -type k. If

Zζt = ζ ′
t
+ ζ ′′

t

where ζ ′
t

and ζ ′′
t

are of sX -type (k − 1) and (k + 1), respectively, then the expression

Zξt = XnZζt = Xnζ ′
t
+Xnζ ′′

t

is a similar decomposition for Zξt. The norm ‖Xnζ ′
t
‖ is a multiple of ‖ζ ′

t
‖, depending

on (k − 1) and n, but independent of t, and likewise for ‖Xnζ ′′
t
‖ and ‖ζ ′′

t
‖. This proves

the result.

This method also works to prove the desired asymptotics for Y ′ξt, since Y ′ also

commutes with Xn. To prove the result for Y ξt, we note once again that the map Y is
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the adjoint of a map Y ′ for which we have already proven the result. We can therefore

follow an earlier argument to obtain the result for Y . The same trick works for Z ′,

completing the proof.

Lemma 6.16. Fix µ ∈ ΛW . Let s ∈ Z be such that (Γ
βs,t)µ is nonzero for all t � 0.

For each t � 0, let ξt and ηt be unit vectors in (Γ
βs,t)µ of sX -type k and sY -type l,

respectively, for some fixed k and l. Then

lim
t→∞

〈ξt, ηt〉 = 0.

Proof. Actually, we will prove a more specific result: that for some constant C =

C(µ, k, l, s)

|〈ξt, ηt〉| ≤ C t
−|φZ (µ−se3)|+1 (6.8.11)

where φZ is the functional introduced prior to Lemma 6.13.

As in the proof of the previous lemma, we will begin by proving the result for a

special case of µ—this time we work with the weights

µ = βs,τ

for τ ∈ Z. For convenience, let us write µ(τ) = βs,τ . We will only give the proof for

s ≥ 0. The case of s < 0 can be proven similarly, or deduced by using the contragredient

representation

(Γ
βs,t)∗ ∼= Γ

β−s,t .
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Therefore, let us consider the weight µ(τ) in the representation Γ
βs,t . We begin

by considering a unit vector ξ
(τ)
t of minimal sX -type in (Γ

βs,t)
µ(τ ) . Note that

φX(µ(τ)) = φX (se1 + ταZ) =
1

3
s+ τ

and hence, according to Lemma 6.8, the minimal sX -type in the sX -string through µ(τ)

is

|
2

3
s+ φX (µ(τ))| = s+ τ.

The sX -weight of (Γ
βs,t)

µ(τ ) is

µ(τ)(HX ) = s+ τ.

Hence, ξ
(τ)
t is a highest weight vector of the smallest irreducible sX -representation in its

sX -string.

An immediate consequence of this is that

Xξ(τ)
t

= 0.

Also, one can compute that

XX ′ξ(τ)
t

= X ′Xξ(τ)
t

+HXξ
(τ)
t

= (s+ τ)ξ(τ)
t

.
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Next, consider the vector Zξ
(τ)
t . This lives in the weight space

(Γ
βs,t)

µ(τ )+αZ
= (Γ

βs,t)
µ(τ+1) .

Since the minimal sX -type of this space is (s + τ + 1), Lemma 6.14 shows that Zξ
(τ)
t

is actually a scalar multiple of ξ
(τ+1)
t . We should like to compute this scalar multiple,

or rather its modulus (which is all that is well-defined because of the possible choices of

the unit vectors ξ
(τ)
t ). Since Xξ

(τ)
t = 0,

Zξ(τ)
t

= X(Y ξ(τ)
t

).

Now, Y ξ
(τ)
t is also a vector of sX -type (s+ τ + 1) since this is the minimal sX -type in

the entire sX -string through µ(τ+1). Therefore,

‖Zξ(τ)
t
‖2 = 〈X ′X(Y ξ(τ)

t
), Y ξ(τ)

t
〉

= (s+ τ + 1)‖Y ξ(τ)
t
‖2.

Now we use the Casimir operator for su(3). By Equation 6.6.4,

Ω = 2(X ′X + Y ′Y + Z ′Z) + H,

where

H =
1

3
(H2

X
+H2

Y
+H2

Z
) +HX +HY +HZ ∈ U(h).
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Let us denote the scalar value of H on the weight space (Γ
βs,t)

µ(τ ) by µ(τ)(H). If we

identify Ω with its scalar value on Γ
βs,t , we get

Ω = 〈Ωξ(τ)
t

, ξ(τ)
t
〉

= 2‖Y ξt‖
2 + 2‖Zξt‖

2 + 〈Hξ(τ)
t

, ξ(τ)
t
〉

= 2(s+ τ + 2)‖Y ξ‖2 + µ(τ)(H).

Therefore,

‖Y ξt‖
2 =

1

2(s+ τ + 2)

(

Ω− µ(τ)(H)
)

,

and hence

‖Zξt‖
2 =

(s+ τ + 1)

2(s+ τ + 2)

(

Ω− µ(τ)(H)
)

.

Next, a similar calculation must be carried out for vectors η
(τ)
t of minimal sY -

type in (Γ
βs,t)

µ(τ ) . Once again η
(τ)
t is a highest weight vector for the minimal sY -type

in its sY -string with that sY -type being τ . It follows that Zη
(τ)
t is a scalar multiple of

η
(τ+1)
t . That scalar multiple can be similarly computed, with the result that

‖Zη(τ)
t
‖2 =

(τ + 1)

2(τ + 2)

(

Ω− µ(τ)(H)
)

.
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Now, since Xξ
(τ)
t = 0 and Y η

(τ)
t = 0, we can compute

〈Zξ(τ)
t

, Zη(τ)
t
〉 = 〈(X ′X + Y ′Y + Z ′Z)ξ(τ)

t
, η(τ)
t
〉

=
1

2

〈

(Ω−H)ξ(τ)
t

, η(τ)
t

〉

=
1

2

(

Ω− µ(τ)(H)
)

〈ξ(τ)
t

, η(τ)
t
〉

and hence

∣

∣

∣

〈

ξ(τ)
t

, η(τ)
t

〉∣

∣

∣ =

√

(s+ τ + 1)(τ + 1)

(s+ τ + 2)(τ + 2)

∣

∣

∣

〈

ξ(τ+1)
t

, η(τ+1)
t

〉∣

∣

∣ .

To complete this case of the result, notice that ξ
(t)
t and η

(t)
t are both highest weight

vectors with norm one in the SL(3,C)-representation Γ
βs,t . Therefore,

|〈ξ(t)
t
, η(t)
t
〉| = 1.

Hence,

|〈ξ(0)
t
, η(0)
t
〉| =

t
∏

τ=1

√

(s+ τ)τ

(s+ τ + 1)(τ + 1)

=

√

(s+ 1)

(s+ t+ 1)(t+ 1)
,

which decays like t−1 as t tends to infinity. This proves (6.8.11) for µ = µ(0), and k and

l minimal.

The remainder of this proof consists of generalizing from this basic case by using

a series of inductive arguments. Firstly, suppose µ is any weight, such as µ(0) above,



216

for which (6.8.11) is known when the sX -type k of ξt ∈ (Γ
βs,t)µ and the sY -type l of

ηt ∈ (Γ
βs,t)µ are both minimal. We will generalize to arbitrary sX -types and sY -types

in (Γ
βs,t)µ.

Fix k and l, with k greater than the minimal sX -type in (Γ
βs,t)µ. Suppose we

know (6.8.11) for unit vectors ηt of sY -type l and unit vectors ξt of sX -type k′, for any

k′ < k. Choose unit vectors ηt of sY -type l and ξt of sX -type (k − 2) in (Γ
βs,t)µ. Note

that

∆Y ηt = aηt

for some constant a ∈ R (independent of t). By applying Lemma 6.15 twice, we also

have

∆Y ξt = Y ′Y ξt = p(t)ξ−
t

+ q(t)ξt + r(t)ξ+
t
,

where ξ−
t

and ξ+
t

are unit vectors in (Γ
βs,t)µ of sX -type (k− 4) and k, respectively, and

p, q and r are scalar functions of t with

lim
t→∞

1

t2
p(t) = p0,

lim
t→∞

1

t2
q(t) = q0,

lim
t→∞

1

t2
r(t) = r0,

for some nonzero constants p0, q0, r0 ∈ R. An exception needs to be made here if (k− 2)

is the minimal sX -type in (Γ
βs,t)µ, in which case we have ξ−

t
= 0 for all t, and p(t)
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becomes redundant. Now, we have

a〈ξt, ηt〉 = 〈∆Y ξt, ηt〉

= p(t)〈ξ−
t
, ηt〉+ q(t)〈ξt, ηt〉+ r(t)〈ξ+

t
, ηt〉,

and hence

〈ξ+
t
, ηt〉 =

−p(t)

r(t)
〈ξ−
t
, ηt〉+

a− q(t)

r(t)
〈ξt, ηt〉.

Since p(t)/r(t) and (a−q(t))/r(t) are bounded as t→∞, this proves (6.8.11) for vectors

of sX -type k and sY -type l. A similar argument allows an induction in the sY -type l of

ηt.

Now it only remains to prove (6.8.11) for the minimal sX -type and sY -type in

each weight space of (Γ
βs,t)µ. This is done by a very similar inductive argument to

that just used. However, a little bit of careful bookkeeping needs to be done in order to

translate it from a heuristic idea to a precise proof.

Let k be the minimal sX -type and l the minimal sY -type in (Γ
βs,t)µ. Suppose

(6.8.11) is known for the weight µ+αY in place of µ. Note that there are two possibilities

for the minimal sX -type k′ of (Γ
βs,t)µ+αY

: either k′ = k − 1 or k′ = k + 1. We will

have to deal with each case separately. But first let us understand when each of the two

cases occurs.

By Lemma 6.12,

k = |µ− se3|X



218

and

k
′
= |µ+ αY − se3|X .

Using Lemma 6.13,

k − k′ = |φZ(µ− se3)| − |φZ(µ+ αY − se3)|,

since φY (αY ) = 0. In other words, the difference between the minimal sX -types of

the weights µ and µ + α is exactly the same as the difference between the exponents

appearing in Equation (6.8.11).

We will need to make an assumption about the minimal sY -types in the argument

to follow.

Assumption 6.17. The minimal sY -type of (Γ
βs,t)µ is not smaller than the minimal

sY -type of (Γ
βs,t)µ+αY

.

Now we begin the induction.

Case I : k = k′ + 1.

Let ηt ∈ (Γ
βs,t)µ be unit vectors of sY -type l. Because of Assumption 6.17, we

can write

Y ′ηt = aη′
t

(6.8.12)

for some unit vector η′
t
∈ (Γ

βs,t)µ+αY
of the same sY -type, and some fixed constant a.
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Let ξ′
t

be a unit vector of minimal sX -type k′ in (Γ
βs,t)µ+αY

for each t. Using

the fact that k > k′, Lemma 6.15 shows that

Y ξ′
t
= p(t)ξt

where the ξt are unit vectors of type k = k′ + 1 in (Γ
βs,t)µ, and p(t) ∈ R with

lim
t→∞

1

t
p(t) = p0

for some p0 6= 0. In particular, |p(t)−1| ≤ C1t
−1 for some C1 ∈ R and all t� 0. We get

〈ξt, ηt〉 =
1

p(t)
〈Y ξ′

t
, ηt〉

=
a

p(t)
〈ξ′
t
, η′
t
〉.

Now we can apply the inductive hypothesis to get

|〈ξt, ηt〉| ≤ aC1t
−1Ct−|φZ(µ+αY −se3)|−1

≤ C ′t−|φZ(µ−se3)|−1

for some C ′ ∈ R, by using the remarks preceding Assumption 6.17.

Case II : k = k′ − 1.

Again, let ηt ∈ (Γ
βs,t)µ be a unit vector of sY -type l, for each t � 0. The

implication of Assumption 6.17 is that (Γ
βs,t)µ also contains unit vectors η′

t
of sY -type l.
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They satisfy

Y η
′
t
= aηt

for some nonzero constant a ∈ R, at least after adjusting each η ′
t

by a complex multiple

of modulus one.

Now we let ξt ∈ (Γ
βs,t)µ be unit vectors of sX -type k. Lemma 6.15 shows that

Y ′ξt = p(t)ξ′
t
,

where ξ′
t
∈ (Γ

βs,t)µ+αY
are unit vectors of sX -type k′ = k + 1, and p(t) ∈ R with

lim
t→∞

1

t
p(t) = p0

for some p0 ∈ R. Hence,

|p(t)| ≤ C1t

for some constant C1 ∈ R and all t. Then

〈ξt, ηt〉 =
1

a
〈ξt, Y η

′
t
〉

=
p(t)

a
〈ξ′
t
, η
′
t
〉.

By the inductive hypothesis, we see that

|〈ξt, ηt〉| ≤ C1t Ct
−|φZ(µ+αY −se3)|−1

≤ C ′t−|φZ (µ−se3)|−1,
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for some new constant C ′, by again using the remarks preceding Assumption 6.17.

That concludes the inductive argument for the operator Y , which allows us to

transfer the result (6.8.11) from (Γ
βs,t)µ+αY

to (Γ
βs,t)µ as long as the minimal sY -type

does not decrease in the transition (Assumption 6.17). By the same methods, we can

prove an inductive step for Y ′ which allows us to transfer (6.8.11) from (Γ
βs,t)µ−αY

to

(Γ
βs,t)µ, as long as the minimal sY -type does not decrease in the transition. Likewise we

can induce the result (6.8.11) from (Γ
βs,t)µ±αX

to (Γ
βs,t)µ, as long as the minimal sX -

type does not decrease when we move to (Γ
βs,t)µ. What remains to be done, therefore,

is some combinatorics in the weight lattice to check that every weight space (Γ
βs,t)µ can

be reached by steps of these kinds, starting from the weight µ(0) = se1, for which we

have proven (6.8.11).

We have already remarked that the minimal sX -type of (Γ
βs,t)

µ(0) is the minimal

sX -type of the entire sX -string passing through µ(0). Thus, inducing the result from the

weight µ(0) to the weights µ(0) +mαX with m ∈ Z presents no problem. The minimal

sY -type of (Γ
βs,t)

µ(0)+mαX
is

|µ(0) +mαX − se1|Y = |mαX |Y = |m|,
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by Lemma 6.13. Moving from these weight spaces with a displacement of nαY (n ∈ Z),

we find that the minimal sY -type of the new weight space is

|mαX + nαY |Y = |(m− n)αX − nαZ |Y

= |m− n|+ |n|

≥ |m|.

That is, the minimal sY -type of (Γ
βs,t)

µ(0)+mαX
is the minimal sY -type for its entire

sY -string. Therefore we can prove (6.8.11) for any weight

µ = µ(0) +mαX + nαY (m,n ∈ Z),

completing the proof.

Proposition 6.18. Fix µ ∈ ΛW and k, l ∈ N. For any ε > 0, there are only finitely

many dominant weights β for SU(3) for which there exist unit vectors ξ, η ∈ (Γβ)−µ of

sX -type k and sY -type l, respectively, such that

|〈ξ, η〉| ≥ ε.

Proof. In the remarks preceding Lemma 6.15, we observed that we only need consider

βs,t for finitely many values of s, and then we can appeal to Lemma 6.16
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Since sX -types correspond to eigenvalues of ∆X , and sY -types correspond to

eigenvalues of ∆Y , Proposition 6.18 says that the eigenspaces for ∆X and ∆Y on

L2(X ;E−µ) are almost orthogonal on the complement of a finite dimensional subspace.

6.9 Properly supported operators

We now define some operator algebraic structures related to the directional Lapla-

cians ∆X and ∆Y . We begin by setting notation for the spectral projections of ∆X and

∆Y . As in the previous section, we will phrase everything in the language of sX–

types and sY -types. We extend the definitions of sX -type and sY -type to the spaces

L2(X ;E−µ) in the following natural way.

Definition 6.19. Let µ ∈ ΛW . Embed L2(X ;E−µ) into L2(K) as a subspace of M -

equivariant functions, as in Equation (6.2.1), and let sX and sY act on L2(K) by the

restriction of the right-regular representation of kC. A section u ∈ L2(X ;E−µ) is said to

be of sX -type k (respectively, sY -type k) if the representation of sX (respectively, sY )

it generates in L2(K) is irreducible with highest weight k.

Remark 18. A section u ∈ L2(X ;E−µ) has sX -type k if and only if u has a Peter-Weyl

decomposition

u =
⊕

β

∑

j

(ξβ,j
∗ ⊗ ξβ,j) ∈

⊕

β∈Λ
(Dom)
W

Γβ
∗
⊗ (Γβ)µ

where each ξβ,j ∈ (Γβ)µ is a vector of sX -type k in the sense of Definition 6.10.
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The space of vectors of any given sX -type k in L2(X ;E−µ) is infinite dimensional,

if nonempty. Vectors of different sX -types are orthogonal.

Definition 6.20. Fix µ ∈ ΛW . For k ∈ N, we define

P
(µ)
k ∈ B(L2(X ;Eµ))

to be the orthogonal projection onto the space of sections of sX -type k in Eµ. Similarly,

we define

Q
(µ)
k ∈ B(L2(X ;Eµ))

to be the orthogonal projection onto the space of sections of sY -type k in Eµ.

More generally, if A ⊆ N is any set of positive integers, we let

P
(µ)
A =

∑

k∈A

P
(µ)
k

and

Q
(µ)
A =

∑

k∈A

Q
(µ)
k .

The sum makes sense in the strong operator topology, since all of the projections being

summed are orthogonal. We will also write

P
(µ)
[k]

= P
(µ)
{0,...,k}

,

Q
(µ)
[k]

= Q
(µ)
{0,...,k}

for k ∈ N.
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If the weight µ is understood as given, we will just write PA and QA for P
(µ)
A

and Q
(µ)
A , and so on.

These are, of course, the spectral projections for ∆X and ∆Y on L2(X ;Eµ).

Lemma 6.21. Fix µ ∈ ΛW . For any finite sets A,B ⊆ N, PAQB and QBPA are

compact operators.

Proof. Since

PA =
∑

k∈A

Pk

and similarly for QB , it suffices to prove that PkQl and QlPk are compact for k, l ∈ N.

Let ε > 0. Let V0 be the finite dimensional subspace

V0 =
⊕

β∈Σ

Γβ
∗
⊗ (Γβ)−µ ⊆ L2(X ;Eµ),

where Σ is the finite set of dominant weights for k which satisfies the conditions of

Proposition 6.18. Let S be the orthogonal projection onto V0. Note that both Pk and

Ql commute with S, since they both respect the Peter-Weyl decomposition of L2(X ;Eµ).

Now,

‖PkQl(1− S)‖ = sup
‖u‖=‖v‖=1

|〈Ql(1− S)u, Pk(1− S)v〉|

< ε,
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by the definition of V0. Therefore, writing

PkQl = PkQlS + PkQl(1− S)

exhibits PkQl as the sum of a finite rank operator and an operator of norm less than ε.

Since ε was arbitrary, PkQl is compact. Taking adjoints proves that QlPk is compact.

Corollary 6.22. If F1, F2 ∈ C0([0,∞)), then F1(∆X)F2(∆Y ) and F2(∆Y )F1(∆X) are

compact operators.

Proof. Lemma 6.21 implies the result if F1 and F2 are characteristic functions of bounded

sets in R. Since these span a dense subspace in C0([0,∞)), the result follows by an

approximation argument.

The following definition is inspired by Roe’s theory of C∗-algebras for coarse

spaces (see [Roe03]).

Definition 6.23. Let µ1, µ2 be weights for k = su(3). A bounded linear operator

T : L2(X ;Eµ1
) −→ L2(X ;Eµ2

) is called properly supported for X if, for every k ∈ N,

there exists k′ ∈ N such that

(

1− P
(µ2)

[k′]

)

TP
(µ1)
[k]

= 0

and

P
(µ2)
[k]

T

(

1− P
(µ1)

[k′]

)

= 0.
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It is properly supported for Y if, for every k ∈ N there exists k ′ ∈ N such that

(

1−Q
(µ2)

[k′]

)

TQ
(µ1)
[k]

= 0

and

Q
(µ2)
[k]

T

(

1−Q
(µ1)

[k′]

)

= 0.

For the next definition, we put H1 = L2(X ;Eµ1
) and H2 = L2(X ;Eµ2

).

Definition 6.24. (i) The norm-closure in B(H1,H2) of the set of operators that are

properly supported for X (respectively, Y ) will be denoted by AX(H1,H2) (re-

spectively, AY (H1,H2)).

(ii) We define

A(H1,H2) = AX(H1,H2) ∩AY (H1,H2).

(iii) Denote by KX (H1,H2) the norm-closure in B(H1,H2) of the set

∞
⋃

k=0

P
(µ2)
[k]
B(H1,H2)P

(µ1)
[k]

,

and by KY (H1,H2) the norm-closure of

∞
⋃

k=0

Q
(µ2)
[k]
B(H1,H2)Q

(µ1)
[k]

.

(iv) When µ1 = µ2 we will denote the above operator spaces by AX(H), AY (H), A(H),

KX (H) and KY (H), where H = H1 = H2.
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We will also sometimes write AX(µ1, µ2) for A
(

L2(X ;Eµ1
), L2(X ;Eµ2

)
)

, and

so on.

Remark 19. (For the reader familiar with Roe algebras). The C∗-algebra which AX(H)

most closely resembles is the Roe algebra of the space N (or actually, of the space of

sX -types of H = L2(X ;Eµ)) endowed with the indiscrete coarse structure. A subset C

of N×N is controlled for the indiscrete coarse structure if it is proper, that is if for each

k ∈ N, the sets

{ k′ | (k, k′) ∈ C }

and { k′ | (k′, k) ∈ C }

are finite. Note, however, that we do not impose the condition of local compactness on

elements of AX(H). The set KX(H) is analogous to the ideal in C∗(N) of norm limits

of operators supported close to 0 ∈ N, as defined in [HRY93].

For organizational reasons, it is useful to think of the set of operators

⋃

µ1, µ2∈ΛW

B
(

L
2
(X ;Eµ1

), L
2
(X ;Eµ2

)
)

as a C∗-category, over the set of objects ΛW . We will denote this C∗-category simply

by B. In the same vein, we will put

AX =
⋃

µ1, µ2∈ΛW

AX

(

L2(X ;Eµ1
), L2(X ;Eµ2

)
)
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and similarly for AY ,A,KX and KY . For more on C∗-categories, see [Mit02].

Lemma 6.25. An operator T ∈ B belongs to KX if and only if P[k]TP[k] → T as

k →∞. Similarly, T ∈ KY if and only if Q[k]TQ[k] → T as k →∞.

Proof. Suppose T ∈ KX . For any ε > 0, there exists k ∈ N and S ∈ P[k]BP[k] such that

‖S − T‖ < ε. Then, for all l > k,

‖T − P[l]TP[l]‖ ≤ ‖T − S‖+ ‖P[l](S − T )P[l]‖

≤ 2ε.

Therefore P[k]TP[k] → T . The converse is obvious.

The same kind of argument proves the statement for KY .

Theorem 6.26. AX ,AY ,A,KX and KY are C∗-subcategories of B. The intersection

of KX and KY is the C∗-category K of compact operators in B.

Furthermore, KX is an ideal in AX , KY is an ideal in AY , and both KX and KY

are ideals in A.

Proof. Since KX is the norm-closure of a nested union of C∗-subcategories of B, it is

clearly a C∗-category. Similarly for KY .

Lemma 6.21 shows that, for any S and T in B, and any k, l ∈ N,

(P[k]SP[k])(Q[l]TQ[l]) ∈ K.
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Such operators are norm-dense in KXKY , and hence

KX ∩KY = KXKY ⊆ K.

For the reverse inclusion, note that the projections P[k] converge to the identity in the

strong operator topology as k →∞, and similarly for Q[l] as l →∞. It follows that, for

any rank-one operator T ∈ B,

P[k]TP[k] → T

and

Q[l]TQ[l] → T

in the norm topology. Therefore all rank-one operators belong to the C∗-category

KX ∩ KY , and hence so do all compact operators.

Next we will show that AX is the C∗-category of multipliers of KX in B, ie,

AX = { T ∈ B | TKX , KXT ⊆ KX }.

This will imply both that AX is a C∗-category, and that KX is an ideal in AX .

Suppose T is properly supported for X. Given k ∈ N, let k ′ be as in Definition

6.23. We may take k′ ≥ k. Then, for any K ∈ P[k]BP[k],

TK = P[k′]TKP[k′]
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and

KT = P[k′]KTP[k′].

Thus left and right multiplication by T preserve
⋃∞
k=0

P[k]BP[k], and hence its norm

closure KX also. By continuity, every T ∈ AX is a multiplier of KX .

For the reverse inclusion, suppose that T ∈ B multiplies KX . We will inductively

define multipliers Tn of KX , close to T in norm, which are increasingly close to being

properly supported for X in the following sense: there is a sequence of positive integers,

{j(k)}k∈N such that,

k < n ⇒















P[j(k)]
⊥TnP[k] = 0

P[k]TnP[j(k)]
⊥ = 0.

(6.9.1)

Fix ε > 0. Put T0 = T . Now suppose multipliers T0, . . . , Tn of KX and integers

j(0), . . . , j(n− 1) have been defined, satisfying property (6.9.1). Since Tn multiples KX ,

TnP[n] and P[n]Tn are in KX . By Lemma 6.25, this means that there exists an integer

j(n) ∈ N such that

‖P[j(n)](TnP[n])P[j(n)] − (TnP[n])‖ < 2−n−1ε

‖P[j(n)](P[n]Tn)P[j(n)] − (P[n]Tn)‖ < 2
−n−1

ε.
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We may assume j(n) ≥ n, in which case the above gives

‖P[j(n)]
⊥TnP[n]‖ < 2−n−2ε

‖P[n]TnP[j(n)]
⊥‖ < 2−n−2ε.

(6.9.2)

We define

Tn+1 = Tn − P[j(n)]
⊥TnP[n] − P[n]TnP[j(n)]

⊥.

We see immediately that

‖Tn+1 − Tn‖ ≤ 2−n−1ε (6.9.3)

and hence each Tn defined this way is within distance ε of T = T0.

Next we show that Tn+1 multiplies KX . By the definition of Tn+1, it suffices to

show that P[j(n)]
⊥TnP[n] and P[n]TnP[j(n)]

⊥ multiply KX . Let l ∈ N andK ∈ P[l]BP[l].

Considering P[j(n)]
⊥TnP[n] first, we have

KP[j(n)]
⊥TnP[n] ∈ P[l]BP[n] ⊆ KX .

Also, since Tn multiplies KX , for any δ > 0 there exists m ∈ N (we may assume m ≥ l)

such that

‖P[m]TnKP[m] − TnK‖ < δ

and hence

‖P[m]
⊥TnKP[m]‖ < δ.
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Therefore,

∥

∥

∥
P[m]

(

P[j(n)]
⊥TnP[n]K

)

P[m] −
(

P[j(n)]
⊥TnP[n]K

)∥

∥

∥

=
∥

∥

∥P[j(n)]
⊥
(

P[m]
⊥TnP[n]KP[m]

)∥

∥

∥ < δ.

Since δ was arbitrary, this shows

P[j(n)]
⊥TnP[n]K ∈ KX .

Hence, P[j(n)]
⊥TnP[n] multiplies KX . A similar argument shows that the operator

P[n]TnP[j(n)]
⊥ also multiplies KX .

Finally, we show that Tn+1 satisfies property (6.9.1). Since the projections P[k]

all commute, (6.9.1) is satisfied (with Tn+1 in place of Tn) for all k < n, by using the

same property for Tn. For k = n,

P[j(n)]
⊥Tn+1P[n] = −P[j(n)]

⊥P[n]TnP[j(n)]
⊥P[n]

and

P[n]Tn+1P[j(n)]
⊥ = −P[n]P[j(n)]

⊥TnP[n]P[j(n)]
⊥,

and both of these are zero, since we chose j(n) ≥ n. This proves the claim about the

operators Tn.

Now put

T∞ = lim
n→∞

Tn.
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The limit exists by Equation (6.9.3), and moreover

‖T − T∞‖ < ε.

For each k ∈ N,

P[j(k)]
⊥T∞P[k] = lim

n→∞
P[j(k)]

⊥TnP[k] = 0

and similarly

P[k]T∞P[j(k)]
⊥ = lim

n→∞
P[k]TnP[j(k)]

⊥ = 0,

so T is properly supported for X. Since ε can be chosen arbitrarily small, T ∈ AX .

Finally, consider A. Being the intersection of AX and AY , it is clearly a C∗-

category. If we can show that KX is a subset of A, then we will know it is an ideal, since

it is an ideal of AX . But

KXKY = K ⊆ KY ,

which is to say that KX multiplies KY . Therefore, KX ⊆ AY , and hence KX ⊆ A.

Proving that KY ⊆ A is similar.

To understand why Definition 6.24 should be interesting, let us return briefly to

the case of the group G = SL(2,C) × SL(2,C). For this group, we take X = G/B =

CP1 × CP1. Let ∆ denote the Laplacian on CP1, and define the operators

∆X = ∆⊗ 1
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and

∆Y = 1⊗∆

on L2(X ) = L2(CP1)⊗ L2(CP1).

The maximal compact subgroup of G is K = SU(2)× SU(2). Define Lie subalge-

bras sX and sY of kC by

sX = su(2)C ⊕ {0}

and

sY = {0} ⊕ su(2)C,

both of which are isomorphic to sl(2,C). We can decompose the space H = L2(X )

according to its sX and sY -types, and again these will correspond to the eigenspace

decompositions for the directional Laplacians ∆X and ∆Y . In this case, though, the two

decompositions can be made simultaneously, since ∆X and ∆Y commute.

With this set-up, we can define the projections P[k] and Q[k], and the algebras

AX(H), AY (H), A(H), KX (H) and KY (H) in exact analogy with Definitions 6.20, 6.23

and 6.24 above.

For any k, the algebra P[k]B(H)P[k] is the algebra of bounded operators on the

Hilbert space P[k]H. Let P̊[k] denote the projection onto functions of sX -types 0, . . . , k

in H̊ = L2(CP1). Then

P[k]H = (P̊[k]H̊)⊗ H̊.
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Since P̊[k]H̊ is a finite-dimensional space, it follows that

P[k]B(H)P[k] = B(P[k]H) = B(P̊[k]H̊)⊗ B(H̊).

Hence

KX =
⋃

k∈N

P[k]B(H)P[k] = K(H̊)⊗ B(H̊).

Similarly,

KY =
⋃

k∈N

Q[k]B(H)Q[k] = B(H̊)⊗K(H̊).

These algebras are the ideals of B(H̊) ⊗ B(H̊) which one encounters when forming the

Kasparov product in the standard construction of the γ-element for SL(2,C)×SL(2,C),

as in Section 2.4.3. The algebra AX is the multiplier of K(H̊)⊗B(H̊), which is somewhat

larger than the algebra B(H̊)⊗ B(H̊). Similarly for AY .

Returning now to the group G = SL(3,C), we will conclude with a simple appli-

cation which indicates the prospective role of the C∗-categories above.

Proposition 6.27. Let µ be an integral weight for SL(3,C), and let H = L2(X , E−µ).

If f is a continuous function on X , viewed as a multiplication operator on H, then

f ∈ A(H).

If χ : [0,∞)→ R is a continuous function which tends to one at infinity, then

[χ(∆X ), f ] ∈ KX
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and

[χ(∆Y ), f ] ∈ KY .

Proof. To begin with, suppose that f is a function corresponding to an elementary tensor

in the Peter-Weyl decomposition (6.2.3). Namely, suppose that we have vectors

ξ ∈ (Γβ)0,

and

ξ∗ ∈ Γβ
∗
,

for some dominant integral weight β, and that f is defined by

f(k) = (ξ∗, πβ(k)ξ).

Consider a section u of E−µ, defined in a similar way:

ũ(k) = (η∗, πω(k)η),

for some

η ∈ (Γω)µ

and

η∗ ∈ Γω∗,
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where πω is the finite-dimensional irreducible representation of G with highest weight ω,

on the space Γω. Then,

f̃ ũ(k) = (ξ∗ ⊗ η∗, πβ ⊗ πω(k)(ξ ⊗ η)).

Suppose further that ξ has sX -type k and η has sX -type l. Then ξ ⊗ η lies in an

sX -subrepresentation of Γβ ⊗ Γω which is isomorphic to the sX -representation

Γk ⊗ Γl.

If l ≥ k, then

Γk ⊗ Γl ∼= Γk−l ⊗ Γk−l+2 ⊗ · · · ⊗ Γk+l,

while if l ≤ k,

Γk ⊗ Γl ∼= Γl−k ⊗ Γl−k+2 ⊗ · · · ⊗ Γl+k

(see [FH91]). Either way, the decomposition of ξ ⊗ η into sX -types will contain only

vectors with sX -types in {l − k, . . . , l + k}.

It follows that, for any l,

P⊥
[l+k]

fP[l] = 0

and

P[l]fP
⊥
[l+k]

= 0.

Hence f is properly supported for X. By taking finite sums of such functions f , it follows

that multiplication by any K-finite function f is properly supported for X. Since the



239

K-finite functions are dense in C(X ), all multiplication operators f ∈ C(X ) belong to

AX . A similar argument shows that every f ∈ C(X ) also belongs to AY , and hence all

multiplication operators belong to A.

For the second result, we show that

ψ(∆X ) ∈ KX ,

for any ψ ∈ C0(R). This will prove the result because

[χ(∆X ), f ] = −[1− χ(∆X), f ],

where 1− χ ∈ C0(R), and since f multiplies KX we will be done.

Recall that ∆X and ∆Y have discrete spectra (see p. 196). If φ restricts to the

characteristic function of a point on the spectrum of ∆X , then φ(∆X ) = Pk ∈ KX , for

some k ∈ N. Since these functions span a dense subspace of C0(R), the result follows.

A similar argument works for KY .
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