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Abstract

We consider estimating the variance of a general U-statistic when it is used as
an unbiased estimator of the parameter of interest θ = E(K) where K is the
kernel function. Long established results demonstrate the asymptotic normality of
U-statistics and their asymptotic variance under regularity conditions. However,
these asymptotic results are based on the assumption that the sample size n goes
to infinity; they are not so reliable when n is not large or the kernel size m is
not negligible compared with n. In addition, it can be seen that the asymptotic
variance is always optimistic. On the other hand, the exact finite sample variance
of a U-statistic is complicated in form when m is large. We consider an alternative
approach to estimate its variance which has a relatively simple form. This variance
estimator is the best unbiased estimator and therefore is applicable even for the
cases that m/n is a fixed fraction. We also consider methods to estimate the U-
statistic and its variance by “m out of n”resampling. Especially, two resampling
schemes have been developed, both of which provide an unbiased realization of the
unbiased variance estimator.

In order to further investigate the proposed method, we apply it in risk esti-
mation under the context of nonparametric density estimation. We constructed
U-statistic form risk estimators based on L2 loss and Kullback-Leibler loss respec-
tively, the former of which is comparable to the bagged CV score introduced in [19].
To evaluate the proposed variance estimator in risk estimation, we have carried
out a simulation comparison with some bootstrap variance estimators.
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Chapter 1
Motivation

Since Hoeffding (1948) [21] introduced the definition of U-statistics, this class of

statistics has been widely used in both theoretical and applied statistical problems.

Given any unbiased estimator θ̂ = K(X1, ..., Xm) for the parameter of interest θ,

a U-statistic can be represented as a conditional expectation of the unbiased es-

timator conditional on the order statistics X(1), ..., X(n). Notice that when we are

doing nonparametric inference, the set of order statistics is the complete sufficient

statistic if the underlying distribution family is large enough (see Fraser (1954)

[14]). Therefore, U-statistic is the best unbiased estimator based on Rao-Blackwell

Theorem. Long established results verify the asymptotic normality of U-statistics,

the formula for the asymptotic variance, and also provide exact finite sample re-

sults, such as the closed form variance under regularity conditions. However, the

asymptotic results are based on the assumption that the sample size n goes to

infinity with the kernel fixed; they are not so reliable when n is not large or the

kernel size m is not negligible compared with n. On the other hand, the exact finite

sample variance of a U-statistic is complicated in form and difficult to estimate

when the kernel size m is large. In order to create an asymptotic setting for these

problems, we will later suppose that m grows with n. Of course, this will mean

that the kernel K itself changes with sample size n.

The starting point of this study is to consider a general U-statistic with large

kernel size m. We will develop an alternative approach to estimate its variance

which has a relatively simple form. More specifically, the first primary goal of

this thesis is to describe and investigate the best unbiased estimator of the U-
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statistic variance which is applicable regardless of the magnitude of m relative

to n, except that m must be ≤ n/2. In addition, since the construction of the

unbiased variance estimator has a very general form, it can be applied to the cases

of degenerate U-statistics, where the standard asymptotic formula is invalid, and

multivariate k-sample U-statistics. As a further step toward making the unbiased

estimator more practical for large m, two resampling schemes have been developed,

both of which provide unbiased realizations of the U-statistic estimator and for the

unbiased estimator of its variance.

In this chapter, I will introduce the definition of a complete univariate / mul-

tivariate U-statistic and the generalized k-sample U-statistic. Then, some well-

known and long established results concerning their asymptotic behaviors and

exact closed form variance for finite samples will be discussed in the following.

1.1 Introduction to U-Statistics

1.1.1 One-Sample U-Statistics

Suppose F is a p-variate distribution function (p ∈ N+)i.e.F (x) = F (x(1), ..., x(p)),

and we are considering a parameter of interest θ which can be written as a func-

tional of the distribution function F . If furthermore, we assume that the functional

θ has the form of

θ(F ) =

∫
...

∫
K(x1, x2, ..., xm)dF (x1)dF (x2)...dF (xm) (1.1.1)

where x1, ..., xm are all p-variate and K is a kernel function of m symmetric argu-

ments (“symmetric arguments” means that the value of the kernel function does

not depend on the order of its arguments), then, it can be seen that given a sample

of size n (n ≥ m) i.e. X1, X2, ..., Xn i.i.d. from F , K(X1, ..., Xm) is an unbiased

estimate of the parameter θ. In other words, E[K(X1, ..., Xm)] = θ.

However, intuition reminds us that there should be some better estimators,

since K(X1, ..., Xm) does not use up the entire dataset. Based on Rao-Blackwell

Theorem, conditional on the order statistics (which is a set of sufficient statistics),

the conditional expectation of K(X1, ..., Xm) is the best unbiased estimator with
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the form:

E[K(X1, ..., Xm)|X(1), ..., X(n)] =
1(
n
m

) ∑
1≤i1<...<im≤n

K(Xi1 , ..., Xim).

Back to 1948, Hoeffding [21] defined a group of statistics with the form shown

above and named them as U-statistics.

Definition 1.1: Let X1, X2, ..., Xn be a sample of i.i.d. random variables

(vectors) and K(x1, ..., xm) be a symmetric real-valued function of m arguments,

then a U-statistic is defined as:

Un =
1(
n
m

) ∑
1≤i1<...<im≤n

K(Xi1 , ..., Xim) (1.1.2)

In fact, the requirement that the kernel function is symmetric in its m argu-

ments is not necessary. For instance, suppose K̃(x1, ..., xm) is an asymmetric kernel

function. Let

K(x1, ..., xm) =
1

m!

∑
(i1,...,im)∈Perm(1,...,m)

K̃(xi1 , ..., xim)

where the summation is taken over all the possible permutations of the m argu-

ments. Then, K is a symmetric kernel function, and the definition of U-statistics

in (1.1.2) is equivalent to the one mentioned in [21]:

Un =
1

n(n− 1)...(n−m+ 1)

∑
(i1,...,im)∈Perm(1,...,m)

K̃(xi1 , ..., xim) (1.1.3)

1.1.2 k-Sample U-Statistics

Now, let us consider k i.i.d. samples of random variables (vectors) from k inde-

pendent distribution functions F1, ..., Fk. Namely,

X1,1, ..., X1,n1i.i.d. ∼ F1;

X2,1, ..., X2,n2i.i.d. ∼ F2;

...

Xk,1, ..., Xk,nki.i.d. ∼ Fk.



4

In addition, assume K is a kernel function of m =
∑k

i=1mi arguments with mi

arguments from sample i and is symmetric in terms of each mi arguments (1 ≤
i ≤ k). Then, the generalized definition of a k-sample U-statistic is given by:

Un = [

(
n1

m1

)(
n2

m2

)
...

(
nk
mk

)
]−1
∑

...
∑

K(x1,i1 , ..., x1,im1
; ...;xk,i1 , ..., xk,imk )

(1.1.4)

1.1.3 Toy Examples

In the following, we are going to discuss two simple examples of U-statistics, one of

which is under the one-sample framework, and the other is within the two-sample

U-statistic framework.

Example 1.1 (sample variance) Let X1, ..., Xn be a i.i.d. sample from some

distribution with mean µ and variance σ2. Consider the symmetric kernel

function

K(x1, x2) =
1

2
(x1 − x2)2.

According to Definition 1.1, the corresponding U-statistic is:

Un =
1(
n
2

) ∑
1≤i<j≤n

1

2
(xi − xj)2

By elementary calculation, we can simplify it in the following way:

Un =
1(
n
2

)∑
i<j

1

2
(xi − xj)2 =

1

n(n− 1)
(
∑
i<j

x2
i − 2

∑
i<j

xixj +
∑
i<j

x2
j)

=
1

n(n− 1)
(
∑
j

∑
i

x2
i −

∑
j

∑
i

xixj)

=
1

n(n− 1)
(n
∑
i

x2
i − n2x̄2)

=
1

n− 1

n∑
i=1

(xi − x̄)2

which is actually equal to the sample variance S2
n.

Note:
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• The unbiased variance estimator, sample variance S2
n, has the form as a U-

statistic.

• Based on the defined U-statistic, the unbiasedness of S2
n can be shown in the

following way:

E(Un) = E[K(X1, X2)] =
1

2
E[(X1 −X2)2] = σ2

which seems more straightforward than the approach via using the form of

S2
n.

• The U-statistic expression of the sample variance considers S2
n as a func-

tion of between-subject variation instead of the deviations from the mean as

indicated in the traditional expression.

Example 1.2 (compare two sample variances) Let X1, ..., Xn1 ;Y1, ..., Yn2 be

two i.i.d. samples from two continuous distributions with mean µk and variance

σ2
k(k = 1, 2). Define a symmetric kernel function as follows

K(x1, x2; y1, y2) =
1

2
(x1 − x2)2 − 1

2
(y1 − y2)2.

Then, we have

θ = E[K(X1, X2;Y1, Y2)] = σ2
1 − σ2

2

Thus, the corresponding two-sample U-statistic is

U = [

(
n1

2

)(
n2

2

)
]−1

∑
1≤i<j≤n1

∑
1≤k<l≤n2

K(xi, xj; yk, yl)

If θ = 0 (namely, σ2
1 = σ2

2), then the two samples have the same variance.

Therefore, the defined 2-sample U-statistic can be used to conduct the hypothesis

testing with the null hypothesis H0 : σ2
1 = σ2

2.

More examples of k-sample U-statistics can be found in Kowalski and Tu

(2008)[23].
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1.2 Established Results for U-Statistics

Recall the example of sample variance introduced in Example 1.1. It is true that

under normality assumption i.e. X1, X2, ..., Xn are i.i.d. Normal(µ, σ2), the ex-

act distribution of (n − 1)S
2
n

σ2 is Chi-Square with degrees of freedom n − 1. Then,

the mean and variance of S2
n follow immediately from the Chi-Square distribution.

However, if we want to relax the restriction of normality and turn to an arbi-

trary distribution, it may become a lot more challenging to obtain or estimate the

variance of S2
n in a traditional way.

As a U-statistic is an unbiased estimator of the parameter of interest (in the

case of S2
n, the parameter of interest is the population variance), exploring its

variance to measure the parameter estimation is always crucial and of interest.

One of the desirable properties of U-statistics is its asymptotic normality which

will be stated shortly below.

Theorem 1.1: Suppose the square of the kernel function, K2, is integrable, and

let σ2
1 = V ar[E(K(X1, ..., Xm))|X1] with 0 < σ2

1 <∞, then

√
n(Un − θ)→ N(0,m2σ2

1) (1.2.1)

Besides, we also have the following results in Hoeffding (1948) [21] :

Theorem 1.2: Let φc(x1, ..., xc) = E[K(X1, ..., Xm)|X1 = x1, ..., Xc = xc], and

σ2
c = V ar[φc(X1, ..., Xc)];1 ≤ c ≤ m. Then, we have

V ar(Un) =
1(
n
m

) m∑
c=1

(
m

c

)(
n−m
m− c

)
σ2
c (1.2.2)

Actually, by decomposing Un into orthogonal terms, we can get

Un = θ +
m∑
c=1

[

(
m
c

)(
n
c

) ∑
(n,c)

h(c)(xi1 , ..., xic)] (1.2.3)

where

h(c)(x1, ..., xc) = φc(x1, ..., xc)−
c−1∑
j=1

∑
(c,j)

h(j)(xi1 , ..., xij)− θ; 1 ≤ c ≤ m. (1.2.4)
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It can be shown that h(c)(X1, ..., Xc)(1 ≤ c ≤ m) have mean zero and are un-

correlated with each other. The form in (1.2.3) is usually referred as Hoeffding-

decomposition, and the components defined in (1.2.4) are called the orthogonal

terms in Hoeffding-decomposition.

If furthermore, we assume V ar[h(c)(Xi1 , ..., Xic)] = δ2
c , then, V ar(Un) can be

written as

V ar(Un) =
m∑
c=1

(
m

c

)2(
n

c

)−1

δ2
c . (1.2.5)

This is an alternative closed form representation of V ar(Un) as compared with

(1.2.2).

Theorem 1.3: The quantities σ2
1, ..., σ

2
m as defined in Theorem 1.2 satisfy the

inequalities

0 ≤ σ2
c

c
≤ σ2

d

d
if 1 ≤ c < d ≤ m. (1.2.6)

Proof:

Let

γc = σ2
c −

(
c

1

)
σ2
c−1 +

(
c

2

)
σ2
c−2 + ...+ (−1)c−1

(
c

c− 1

)
σ2

1; 1 ≤ c ≤ m.

Then, we have

γc ≥ 0,

and

σ2
c = γc +

(
c

1

)
γc−1 + ...+

(
c

c− 1

)
γ1.

Based on above equation, we have for 1 ≤ c < d ≤ m

cσ2
d − dσ2

c = c

d∑
i=1

(
d

i

)
γi − d

c∑
i=1

(
c

i

)
γi

=
c∑
i=1

[c

(
d

i

)
− d
(
c

i

)
]γi + c

d∑
i=c+1

(
d

i

)
γi

Since γi ≥ 0, and c
(
d
i

)
− d
(
c
i

)
≥ 0 if 1 ≤ i ≤ c ≤ d, every term in the two sums
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of the above equation is nonnegative, which yields that

cσ2
d − dσ2

c ≥ 0.

�

Theorem 1.4: The variance V ar(Un) of a U-statistic Un = U(X1, ..., Xn) (1.1.2),

where X1, ..., Xn are independent and identically distributed, satisfies the

inequalities

m2

n
σ2

1 ≤ V ar(Un) ≤ m

n
σ2
m (1.2.7)

nV ar(Un) is a decreasing function of n,

(n+ 1)V ar(Un+1) ≤ nV ar(Un) (1.2.8)

which takes on its upper bound mσ2
m for n = m and tends to its lower bound m2σ2

1

as n increases:

V ar(Um) = σ2
m (1.2.9)

limn→∞nV ar(Un) = m2σ2
1 (1.2.10)

Although we have the asymptotic normality of U-statistics, the asymptotic

results are based on the assumption that the sample size n goes to infinity with m

fixed, or equivalently, the kernel size m is negligible compared with n. However,

we may encounter the cases that the kernel size m is not small compared with n.

One way to express this asymptotically is to say that m/n is a fixed fraction, say

γ, as n goes to infinity. Of course, in such cases, the kernel K(x1, ..., xm) must also

be modelled as a function of m increasing to infinity. Note that in this case, the

U-statistic could fail to be consistent. The lower bound on variance (1.2.7) can be

expressed as n ·γ2 ·σ2
1. Hence, second-moment inconsistency will occur unless σ2

1 ·n
goes to zero. Indeed, the usual convergence rate of 1/n cannot hold unless σ2

1 · n2

converges to a constant. On the other hand, the upper bound will be γ ·σ2
m. If the

kernels are bounded as m grows, then this gives a finite variance asymptotically.

Furthermore, (1.2.7) reveals that by using the asymptotic variance to estimate the

U-statistic variance, we are always optimistic.
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If m/n is a fixed fraction, the standard asymptotic results are no longer reli-

able, and the asymptotic variance in (1.2.10) may not be a good estimate of the

variance of a U-statistic. On the other hand, the exact form of the variance is

computationally intensive, especially when the kernel size m is large.



Chapter 2
Extensions of U-Statistics

2.1 Fixed m Incomplete U-Statistics

In practice, when the sample size n and the kernel size m are both large, it is not

efficient to compute the complete U-statistic (1.1.2), since the number of exhaustive

combinations of size-m samples out of n (i.e.
(
n
m

)
) is enormous. As a result,

researchers seek to use a subset of the size-m samples to compute a corresponding

statistic with a similar form to a U-statistic which also harbours good properties.

2.1.1 General Fixed m Incomplete U-Statistics

Blom (1976) [1] pointed out that due to the strong dependency of many of the

size-m samples used to construct Un (1.1.2), it seems reasonable to consider less

than N =
(
n
m

)
terms without losing too much information. Furthermore, he de-

fined a general class of surrogates of complete U-statistics, called “incomplete

U-statistics”.

Uinc =
1

B

B∑
i=1

K(Xi1 , ..., Xim) (2.1.1)

In this definition, B can be any positive integer less than or equal to N , and it is

also allowed to take repetitions of size-m samples out of n.

Now, suppose n = m · k. If we randomly divide the n observations into k non-

overlapped samples of size m, the k subsamples are independent. Accordingly, we

can define an incomplete U-statistic of k independent terms.With this construction,
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we have

V ar(Uinc) =
1

k
V ar[K(X1, ..., Xm)] =

1

k
σ2
m where k = n/m.

Recall that for the complete U-statistic, we have m2

n
σ2

1 ≤ V ar(Un) ≤ m
n
σ2
m

(1.2.7). Therefore, an incomplete U-statistic may be as competitive as its complete

counterpart, as is seen by comparing their variances. Furthermore, the asymptotic

efficiency of Uinc compared with Un is mσ2
1/σ

2
m. This ratio may be close to 1 and

will be exactly equal to 1 if the kernel function K is an arithmetic mean of a size-1

kernel i.e. K(x1, ..., xm) = 1
m

∑m
i=1 φ(xi), in which case Un and Uinc are identical

for each n.

2.1.2 A Special Case–Reduced U-Statistics

Brown and Kildea (1978) [3] put forward a definition of a reduced U-statistic

which averages the symmetric kernel functions K under certain restrictions. Ac-

tually, a reduced U-statistic is just a special case of Blom’s incomplete U-statistic

which was referred as a balanced U-statistic in [1]. As a general result for balanced

U-statistics, Blom [1] showed that the upper and lower bounds for variance of Un

(1.2.7) also hold for the balanced U-statistics. In addition, a reduced U-statistic

is asymptotically normally distributed as its complete counterpart.

2.1.2.1 Reduced U-Statistics of Order 2

For a simple illustration, let us first consider the case that the kernel size m equals

to 2.

Let Ct be a set of pairs (i, j) with 1 ≤ i < j ≤ n such that each positive integer

less than or equal to n appears in exactly 2t pairs in Ct, and let

Pt = {(Xi, Xj) : (i, j) ∈ Ct}.

Then, a reduced U-statistic for m = 2 case is defined as

Ureduced =
1

nt

∑
Pt

K(Xi, Xj). (2.1.2)
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It is easily seen that Pt only contains nt size-2 samples in total (because each

integer ≤ n appears 2t times, then there are 2t · n integers in total which is

equivalent to nt pairs). Therefore, as n → ∞, the computational effort required

to calculate Ureduced is negligible compared with that needed to compute Un, the

complete U-statistic. Furthermore, notice that each pair in Pt can be seen as a

size-2 sample drawn from X1, ..., Xn independently from others. Therefore, Ureduced

is also an unbiased estimator of the parameter of interest θ.

In their paper, they also showed that for fixed m, the reduced U-statistics have

asymptotic efficiency compared with the corresponding U-statistics under certain

conditions. In addition, the reduced U-statistics are also asymptotically normal.

On this point, the reduced U-statistics shed some light on computational efficiency

by preserving the property of asymptotic normality.

The following notations and results are based on Brown and Kildea (1978) [3].

Notation:

In some applications, the kernel function K(·) may depend on sample size n.

In order to include this case, we use Kn(·) to represent the kernel function which

is possibly depending on n, and let

Wn =
∑
Ct

Kn(Xi, Xj) (2.1.3)

θn = E[Kn(X1, X2)] (2.1.4)

σ2
n = V ar[Kn(X1, X2)] (2.1.5)

and ρnσ
2
n = Cov[Kn(X1, X2), Kn(X1, X3)] (2.1.6)

It can be shown that

V ar(Wn) = ntσ2
n[1 + 2(2t− 1)ρn]

Theorem 2.1 If the finite limits σ2 = limn→∞σ
2
n and ρσ2 = limn→∞ ρnσ

2
n both

exist, if σ2 > 0, and if

{Kn(X1, X2)− θn, n ≥ 1}is uniformly square integrable

then (nt)−
1
2 (Wn − ntθn) converges in distribution as n→∞ to a normal law with

mean zero and variance σ2[1 + 2(2t− 1)ρ].
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Corollary 2.1: When ρσ2 > 0, the estimator {(nt)−1Wn, n ≥ 1} of {θn, n ≥ 1}
has asymptotic efficiency 2tρ{1

2
+ (2t− 1)ρ}−1, relative to the corresponding

complete U-statistic estimators, as n→∞.

It can be seen from Corollary 2.1 that for large enough t the asymptotic ef-

ficiency of the reduced U-statistic may be arbitrarily close to 1. From another

aspect, the best case for the reduced U statistics is when ρ is large enough. We

will later show that ρ is no greater than 1/2 (2.1.8), but the efficiency is one at this

value; the worst case may happen when ρ = 0, which results in a zero asymptotic

efficiency.

Theorem 2.2: Under the conditions and notation of Theorem 2.1, now let

W
(1)
n , · · · ,W (p)

n be reduced U-statistics corresponding to the sets of pairs

Ct1
(1), · · · , Ctp (p). Then {W (1)

n , · · · ,W (p)
n }, when suitably normalized, converges in

distribution as n→∞ to a multivariate normal distribution.

Corollary 2.2: Let {Ctα (α), 1 ≤ α ≤ p} be disjoint. Then, for α 6= β,

Cov(W (α)
n ,W (β)

n ) = 4ntαtβρnσ
2
n

and the covariance structure of the limit distribution in Theorem 2.1 is determined.

2.1.2.2 Representation of E[Kn(S1)Kn(S2)|# overlaps ]

In fact, based on Hoeffding-decomposition technique, we can express

E[Kn(S1)Kn(S2)|# overlaps between S1 and S2]

in terms of the variances of the orthogonal terms in Hoeffding-decomposition

through the following way.

Denote

φc(x1, ..., xc) = E[Kn(X1, ..., Xm)|X1 = x1, ..., Xc = xc]

where 1 ≤ c ≤ m.
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Let

h(1)(x1) = φ1(x1)

h(2)(x1, x2) = φ2(x1, x2)− φ1(x1)− φ1(x2)− θn
...

h(c)(x1, ..., xc) = φc(x1, ..., xc)−
c−1∑
j=1

∑
(c,j)

h(j)(xi1 , ..., xij)− θn

Therefore, we have

φc(x1, ..., xc) =
c∑
j=1

∑
(c,j)

h(j)(xi1 , ..., xij) + θn; 1 ≤ c ≤ m

And it can be shown that (Lee (1990) [24])

E[h(j)(Xi1 , ..., Xij)] = 0

Cov[h(j)(Xi1 , ..., Xij), h
(j′)(Xi1 , ..., Xij′)] = 0 if j 6= j′

Cov[h(j)(Xi1 , ..., Xij), h
(j)(Xl1 , ..., Xlj)] = 0 if (Xi1 , ..., Xij) ∩ (Xl1 , ..., Xlj) 6= ∅

That is, h(j)(xi1 , ..., xij); 1 ≤ j ≤ m have mean zero and are uncorrelated with

each other. Here we call them the orthogonal terms in Hoeffding-decomposition

as mentioned earlier.

Lemma 2.1: If we denote V ar[h(j)(Xi1 , ..., Xij)] = δ2
j where 1 ≤ j ≤ k ≤ m, k is

the number of overlaps between two size-m samples (S1, S2), then we have

E[Kn(S1)Kn(S2)|# overlaps = k] =
k∑
j=1

(
k

j

)
δ2
j + θ2

n (2.1.7)
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Proof:

E[Kn(S1)Kn(S2)|# overlaps between S1 and S2 = k]

= E{E[Kn(S1)Kn(S2)|overlaps = (X1, ..., Xk)]}

= E{E[Kn(S1)|X1, ..., Xk]E[Kn(S2)|X1, ..., Xk]}

= E[φk(X1, ..., Xk)φk(X1, ..., Xk)]

= E[(
k∑
j=1

∑
(k,j)

h(j)(xi1 , ..., xik) + θn)(
k∑
l=1

∑
(k,l)

h(l)(xi1 , ..., xil) + θn)]

=
k∑
j=1

k∑
l=1

∑
(k,j)

∑
(k,l)

E[h(j)(xi1 , ..., xij)h
(l)(xi1 , ..., xil)]

+ 2θn

k∑
j=1

k∑
l=1

E[h(j)(xi1 , ..., xij)] + θ2
n

=
k∑
j=1

∑
(k,j)

E[(h(j)(xi1 , ..., xij))
2] + θ2

n

=
k∑
j=1

∑
(k,j)

V ar[h(j)(xi1 , ..., xij)] + θ2
n

=
k∑
j=1

(
k

j

)
δ2
j + θ2

n

�

For the case of m = 2,

Cov[Kn(X1, X2), Kn(X1, X3)]

= E[Kn(X1, X2)Kn(X1, X3)]− {E[Kn(X1, X2)]}2

= δ2
1 + θ2

n − θ2
n

= δ2
1

since the number of overlaps between the two size-2 samples equals to 1 in this

case.
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Besides, based on the result of A.J. Lee (1990) [24], we also have

σ2
c =

c∑
j=1

(
c

j

)
δ2
j ; 1 ≤ c ≤ m

where σ2
c is defined to be V ar[φc(X1, ..., Xc)], and φc(x1, ..., xc) is defined at the

beginning of Section 2.1.2.2 (pp. 13).

Therefore, for m = 2, σ2
2 = 2δ2

1 + δ2
2. In addition, formula (2.1.6) yields that

0 ≤ ρn =
δ2

1

2δ2
1 + δ2

2

≤ 1

2
(2.1.8)

The upper bound occurs when δ2 = 0 while δ2
1 is any positive value.

2.1.2.3 Reduced U-Statistics of Order m > 2

We next generalize the idea of reduced U-statistics of order 2 to higher order case.

Consider a symmetric kernel function K with m arguments. Define

Ct = {(i1, ..., im) : each integer ≤ n appears in exactly mt pairs in Ct}

And, let Pt be the number of size-m samples in Ct. Since there are nt size-m

samples in Pt, the generalized reduced U-statistic can be defined as

Ureduced =
1

nt

∑
Pt

Kn(Xi1 , ..., Xim) (2.1.9)

Definition (2.1.2) can be generalized to m = M ;M ∈ N+ case naturally, and

the results stated in Theorem 2.1, 2.2 also hold for reduced U-statistics with orders

m > 2.

2.2 Random Subsampling and Incomplete

U-Statistics

Although a reduced U-statistic is less computational expensive and also has desir-

able properties, its construction is still under the restriction of fixed-m framework,
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while our goal is to deal with problems with fixed m/n in practice. When m/n is

a fixed fraction,
(
n
m

)
will become even more sizeable for large n case. So, finding

efficient alternatives to complete U-statistics turns out to be a practical issue under

this scenario.

A simple idea is to construct an incomplete U-statistic by random resampling:

ŨB =
1

B

B∑
b=1

K(S̃b) (2.2.1)

where S̃1, ..., S̃B are drawn randomly and independently from S = {(Xi1 , ..., Xim) :

1 ≤ i1 < ... < im ≤ n}. This methodology is often called “subsampling”.(See the

book by Politis et al. (1999) [29].)

If we consider S to be the set of all possible samples of size m with 1 ≤ i1 <

... < im ≤ n, then, S̃1, ..., S̃B is just a subsample of size B from S. It is obvious that

for i.i.d. case, ŨB is a subsampling unbiased estimator of the complete U statistic,

and so also an unbiased estimator of θ. And the computation of ŨB is negligible

compared with the number of steps needed to compute Un. Therefore, ŨB could

be a good alternative estimator of θ for the case that m/n is a fixed fraction.

Recall the closed form variance for U-statistic in (1.2.2), i.e.

V ar(Un) =
m∑
c=1

(
m
c

)(
n−m
m−c

)(
n
m

) σ2
c

where σ2
c = V ar{E[K(X1, ..., Xm)|X1, ..., Xc]},1 ≤ c ≤ m.

Define the overlap variable X = O(S1, X2), the number of overlaps between two

size-m samples. It follows a hypergeometric distribution with probability mass

P (X = k) =

(
m
c

)(
n−m
m−c

)(
n
m

)
which is just the weight of σ2

c in the closed form variance.
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Based on hypergeometric(n;m,m) distribution, we have

E(X) =
m2

n
,

V ar(X) =
m2(n−m)2

n2(n− 1)
.

Now, consider X
m

, we have

V ar(
X

m
) =

1

m2

m2(n−m)2

n2(n− 1)

=
(n−m)2

n2(n− 1)

=
(1−m/n)2

n− 1
→ 0

E(
X

m
) =

1

m

m2

n

=
m

n
= γ

Therefore, by V ar(X
m

) → 0, E(X
m

) = γ, we have X
m
→ γ in probability. In

other words, as m,n go to infinity with m/n = γ, the overlap distribution tends

to be degenerate at the “mean overlap” i.e. mγ.

As a result, the weight of σ2
mγ goes to 1 asymptotically, meaning that when

m/n = γ is a fixed fraction, the asymptotic variance of the U-statistic is going to

σ2
mγ/n.

Recall (1.2.6) that σ2
a

a
≤ σ2

b

b
, 1 ≤ a < b ≤ m, we have σ2

a ≤ σ2
b , 1 ≤ a < b ≤ m.

This has implications on sampling: in terms of incomplete U-statistics, we may

seek to construct designed samples with the smallest possible overlaps in order to

achieve asymptotic efficiency.

So far, we have found surrogates for U-statistics for both fixed m and fixed

m/n cases. However, as mentioned above, we are also aiming to find a reliable

variance estimator when the variance calculation works poorly. Ideally, we would

be able to construct a variance estimator which is applicable even for the case that

m/n is a fixed fraction.



Chapter 3
The Unbiased Variance Estimator

3.1 Construction of the Unbiased Variance Esti-

mator

We now demonstrate how one can construct an unbiased estimator of the variance

of an arbitrary U-statistic, assuming that m ≤ n/2.

Consider a U-statistic defined as

Un =
1(
n
m

)∑
i

K(Si), where Si is a size−m sample out of i.i.d. X1, ..., Xn

(3.1.1)

Define the sample overlap

O(S1, S2) = number of elements in common between S1 and S2 (3.1.2)

Let

Pk = {(S1, S2) : O(S1, S2) ≤ k} (3.1.3)

Nk = number of pairs in Pk (3.1.4)

Let

Q(k) =
1

Nk

∑
Pk

K(S1)K(S2) (3.1.5)
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Note that

E(Q(0)) = E(Un)2, Q(m) = U2
n.

Therefore,

E[Q(m)−Q(0)] = E(U2
n)− E(Un)2 = V ar(Un).

That is, Q(m)-Q(0) is an unbiased estimate of V ar(Un).

Theorem 3.1: Suppose Un is a U-statistic with a kernel K of size m, m ≤ n/2.

Denote

V̂u = Q(m)−Q(0) (3.1.6)

where Q(m) and Q(0) are defined in (3.1.5). Then, V̂u is an unbiased estimator

of V ar(Un). Furthermore, it is a function of the order statistics and so is the best

unbiased estimator of V ar(Un).

Example 3.1: Consider a data set x1, ..., xn from some distribution with mean µ

and variance σ2. Assume the parameter of interest is θ = µ. Let K(x) = x be the

kernel function, which results in a U-statistic

Un =
1

n

n∑
i=1

Xi = X̄

Based on the defined unbiased variance estimate (3.1.6), we have

Q(m) = U2
n = X̄2

Q(0) =
1(
n
2

)∑
i<j

XiXj

It can be shown that

V̂u = Q(m)−Q(0) =
1

n(n− 1)

n∑
i=1

(Xi − X̄)2 =
1

n
S2
n,

and,

E(V̂u) =
1

n
E(S2

n) =
σ2

n
.



21

Note:

• To our knowledge, the proposed unbiased variance estimator (3.1.6) is a

new method for variance estimation. The thesis of Folsom (1986) [13] from

University of North Carolina at Chapel Hill had this result in a more complex

form, but further results seem to be absent.

• Because the construction of the unbiased variance estimate is only based on

sample overlaps, its validity does not depend on whether the U-statistic is

degenerate or not. Therefore, the form of the unbiased variance estimator

V̂u can be applied to both degenerate and non-degenerate cases.

Proposition 3.1: The unbiased variance estimator defined in (3.1.6) can be

generalized to the k-sample U-statistic case (1.1.4).

First of all, let us consider a 2-sample U-statistic based on two independent

populations with distribution functions F and G. Denote the two samples as

X1, ..., Xn1 ;Y1, ..., Yn2 where X1, ..., Xn1 i.i.d. ∼ F and Y1, ..., Yn2 i.i.d. ∼ G. The

2-sample U-statistics defined by the kernel function K has the form:

U =
1(
n1

m1

) 1(
n2

m2

) ∑
1≤i1<...<im1≤n1

∑
1≤j1<...<jm2≤n2

K(Xi1 , ..., Xim1
;Yj1 , ..., Yjm2

)

Assume m = m1+m2, and S1, S2 are two samples of size m with m1 components

from distribution F and m2 components from distribution G. Then, in this case

the sample overlap can be defined in a similar fashion such that {O(S1, S2) ≤ k}
contains all pairs of size-m samples (S1, S2) where the number of common elements

between S1 and S2 is at most k. Compared with the one-sample case, the only

difference here is that the overlaps can result from two groups of components

corresponding to the two distributions. In addition, denote Pk as the set containing

all the pairs of size-m samples with overlaps at most k; N(k) is the number of pairs

in Pk.

Q(0) =
1

N0

∑
P0

K(S1)K(S2) (3.1.7)

Q(m) =
1

Nm

∑
Pm

K(S1)K(S2) (3.1.8)
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Similar to the one-sample U-statistics case, we have

E[Q(0)] = E[K(S1)K(S2)] = E[K(S1)]E[K(S2)] = U2, Q(m) = U2.

Therefore, V̂ u = Q(m)−Q(0) is an unbiased estimator of V ar(Un) for the 2-sample

U-statistic case.

The generalization to 2-sample case can also be extended to k-sample U-

statistics (k ≥ 2) in the same fashion.

3.2 The U-Statistic Form of V̂u and Its Asymp-

totic Behavior

In fact, the unbiased variance estimate, V̂u = Q(m)−Q(0), can be re-expressed as

a complete U-statistic with a kernel KVu of size 2m.

Proposition 3.2: Consider samples of size 2m, S2m. Let Sa, Sb be two

subsamples of size m out of S2m. Define

KVu(S2m) = KVu
m (S2m)−KVu

0 (S2m) (3.2.1)

where

KVu
0 (S2m) =

(
n

2m

)(
n
m

)(
n−m
m

) ∑
Sa,Sb⊂S2m

K(Sa)K(Sb)I{Sa ∩ Sb = ∅}, (3.2.2)

KVu
m (S2m) =

(
n

2m

)(
n
m

)2

∑
Sa,Sb⊂S2m

K(Sa)K(Sb)ω(a, b), (3.2.3)

ω(a, b) = 1/n(a, b), and n(a, b) =
(
n−(2m−k)

k

)
where k = O(Sa, Sb) i.e. n(a, b) is the

number of different size-2m samples S2m in which Sa, Sb are subsets. Then,

V̂u = Q(m)−Q(0) =
1(
n

2m

)∑
S2m

KVu(S2m) (3.2.4)

Proof:
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Firstly, we are going to write Q(m) as a U-statistic with kernel size 2m. In

other words, we want to find the weights, ω(a, b), such that the following formula(
n

2m

)−1∑
S2m

[
∑

Sa,Sb⊂S2m

K(Sa)K(Sb)w(a, b)]

is proportional to
1(
n
m

)2 [
∑

Sa,Sb⊂Sn

K(Sa)K(Sb)].

In the second formula, each pair of Sa, Sb appears once inside the bracketed

sum. In the first formula, each pair of Sa, Sb appears once or zero times inside

the bracket and will appear once in the outer sum for each size-2m sample that

contains that pair. Now, denote n(a, b) as the number of different size-2m samples

S2m in which Sa, Sb are subsets. Then, we can set ω(a, b) = 1/n(a, b), and then,

with adjusting the initial constants, the two formulas will be equal. That is, let

KVu
m (S2m) =

(
n

2m

)(
n
m

)2

∑
Sa,Sb⊂S2m

K(Sa)K(Sb)ω(a, b)

we have

Q(m) =
1(
n

2m

)∑
S2m

KVu
m (S2m)

When it comes to Q(0) i.e. 1∑
I{Sa∩Sb=∅}

∑
Sa,Sb⊂S2m

K(Sa)K(Sb)I{Sa∩Sb = ∅},
for each non-overlapped pair Sa, Sb there is only one S2m that contains them. So,

n(a, b) = 1. Similarly, we can define

KVu
0 (S2m) =

(
n

2m

)∑
I{Sa ∩ Sb = ∅}

∑
Sa,Sb⊂S2m

K(Sa)K(Sb)I{Sa ∩ Sb = ∅},

where
∑
I{Sa ∩ Sb = ∅} =

(
n
m

)(
n−m
m

)
.

Then, we have

Q(0) =
1(
n

2m

)∑
S2m

KVu
0 (S2m)
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If we denote KVu(S2m) = KVu
m (S2m) − KVu

0 (S2m), then the unbiased variance

estimate V̂u has the form as a U-statistic:

V̂u = Q(m)−Q(0) =
1(
n

2m

)∑
S2m

KVu(S2m)

�

Example 3.2: In the previous example (Example 3.1), we have that n(a, b) = 1,

if a 6= b; n(a, b) = n− 1, if a = b. Therefore,

KVu
m (x1, x2) =

(
n
2

)
n2

(
x2

1 + x2
2

n− 1
+ 2x1x2),

KVu
0 (x1, x2) =

(
n
2

)
n(n− 1)

2x1x2,

and

KVu(x1, x2) = KVu
m (x1, x2)−KVu

0 (x1, x2),

=

(
n

2

)
[

1

n2
(
x2

1 + x2
2

n− 1
+ 2x1x2)− 1

n(n− 1)
2x1x2]

=

(
n

2

)
1

n2(n− 1)
(x1 − x2)2

=
1

n

(x1 − x2)2

2
.

As a result,

Q(m)−Q(0) =
1(
n
2

)∑
i<j

KVu(Xi, Xj)

=
1

n
· 1(

n
2

)∑
i<j

(Xi −Xj)
2

2

=
1

n

1

n− 1

n∑
i=1

(Xi − X̄)2

=
1

n
S2
n

which is the same as the result in Example 3.1 based on formula (3.1.6).
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As a U-statistic, V̂u has asymptotic normality under certain regularity condi-

tions in the fixed m case (Theorem 1.1). When m/n is a fixed fraction, lower and

upper bounds of V ar(V̂u) can be obtained based on (1.2.7) accordingly.

3.3 Negative Values of V̂u and Proposed Fix-ups

It can be seen that although E(Q(k)−Q(0)) ≥ 0 (because the fact that pairs with

some overlaps should be more positively correlated than pairs with no overlaps), it

is numerically possible that Q(k)−Q(0) ≤ 0,k > 1. A simple example illustrating

this phenomenon will be shown below.

Example 3.3: Consider m = 2 and n = 4, i.e. the original data set is x1, ..., x4,

and K is a kernel function of order 2. Suppose that K(x1, x2) = K(x3, x4) = 1,

K(x1, x3) = K(x1, x4) = K(x2, x3) = K(x2, x4) = 0. Then,

V̂u = Q(m)−Q(0) = U2
n −Q(0) = (

1

3
)2 − 1

3
= −2

9
.

The potential negative problem results from larger Q(0) value compared with

Q(m). That is, it is possible to obtain negative estimate of V ar(Un) by V̂u, which is

unreasonable. Therefore, some adjustments to Q(m)−Q(0) should be considered.

The following two lemmas lead to a natural adjustment to the unbiased variance

estimate.

3.3.1 The First Proposal

Lemma 3.1:

E[Q(m)−Q(k)] ≤ E[Q(m)−Q(k − 1)] ≤ V ar(Un) for all k (3.3.1)

Proof:

Let Ak denote the set of all pairs of size-m samples with overlaps exactly equal

to k, and let nk be the number of pairs in Ak, 0 ≤ k ≤ m. It is easily seen that

Pk = ∪kl=0Ak, and Nk =
∑k

l=0 nk, where Pk, Nk are defined in (3.1.3), (3.1.4).
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Given 1 ≤ k ≤ m, let’s first consider Q(k)−Q(k− 1). By definition in (3.1.5),

we have

Q(k)−Q(k − 1) =
1

Nk

[
∑
A0

K(Si)K(Sj) + ...+
∑
Ak

K(Si)K(Sj)]

− 1

Nk−1

[
∑
A0

K(Si)K(Sj) + ...+
∑
Ak−1

K(Si)K(Sj)]

=
−nk

Nk ·Nk−1

[
∑
A0

K(Si)K(Sj) + ...+
∑
Ak−1

K(Si)K(Sj)]

+
1

Nk

∑
Ak

K(Si)K(Sj)

Recall the conclusion in Lemma 2.1, that is,

E[K(Si)K(Sj)|# overlaps = k] =
k∑
j=1

(
k

j

)
δ2
j + θ2

where δ2
j = V ar[h(j)(Xi1 , ..., Xij)].

We have

E[Q(k)−Q(k − 1)] =
−nk

NkNk−1

[n0θ
2 + n1(δ2

1 + θ2) + ...+ nk−1(
k−1∑
j=1

(
k − 1

j

)
δ2
j + θ2)]

+
nk
Nk

(
k∑
j=1

(
k

j

)
δ2
j + θ2)

=
nk
Nk

∑k−1
l=1 nl
Nk−1

k∑
j=1

(
k

j

)
δ2
j −

nk
NkNk−1

k−1∑
l=1

[nl

l∑
j=1

(
l

j

)
δ2
j ]

+
−nk

NkNk−1

k−1∑
j=1

nj · θ2 +
nk
Nk

θ2

=
nk

NkNk−1

k−1∑
l=1

nl[
k∑
j=1

(
k

j

)
δ2
j −

l∑
j=1

(
l

j

)
δ2
j ]

Notice that each term
∑k

j=1

(
k
j

)
δ2
j−
∑l

j=1

(
l
j

)
δ2
j ≥ 0 for 1 ≤ l ≤ k−1; 1 ≤ k ≤ m.

Therefore, we have

E[Q(k)−Q(k − 1)] ≥ 0
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The fact that

E[Q(m)−Q(k − 1)]− E[Q(m)−Q(k)] = E[Q(k)−Q(k − 1)],

yields the result in Lemma 3.1 immediately.

�

Lemma 3.2:

Q(m)−Q(m− 1) =
1

N(N − 1)

∑
[K(S)− Un]2 := S2

U (3.3.2)

where N =
(
n
m

)
.

Proof:

Since

Q(m− 1) =
Nm

Nm−1

[Q(m)− 1

Nm

∑
Am

K(Si)(Sj)]

= Q(m) +
Nm −Nm−1

Nm−1

Q(m)− 1

Nm−1

N∑
i=1

K2(Si),

we have

Q(m)−Q(m− 1) =
1

Nm−1

N∑
i=1

K2(Si)−
Nm −Nm−1

Nm−1

Q(m)

=
1

Nm−1

N∑
i=1

K2(Si)−
nm
Nm−1

Q(m)

=
1

Nm−1

[
N∑
i=1

K2(Si)− nmU2
n].

Notice that nm =
(
n
m

)
= N , Nm−1 = N(N − 1), and Un = 1

N

∑N
i=1K(Si).

Therefore,

Q(m)−Q(m− 1) =
1

N(N − 1)

N∑
i=1

(K(Si)− Un)2.

�
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It is interesting to notice that S2
U , as an estimator of V ar(Un), is biased down-

wards from the first lemma and is nonnegative from the second lemma. (Re-

member that Q(m) − Q(0) as an unbiased estimator may result in negative esti-

mate.) Moreover, it is strictly positive unless all K(S) are degenerate at Un, i.e.

K(S) = Un for any S. This suggests a simple fix-up to the unbiased estimator V̂u:

V̂u1 = max{S2
U , V̂u} (3.3.3)

It is true that V̂u1 is nonnegative and must have positive bias, since V̂u1 ≥ V̂u

and V̂u is unbiased. Furthermore, V̂u1 is forced to be larger than the estimator one

would use in the case when the K(S) values are highly independent. (When the

K(S)’s are highly independent, V ar(Un) ≈ 1

(nm)
V ar[K(S)] ≤ S2

U ≤ V̂u1.)

Example 3.4: In the previous example (Example 3.3), we find that

V̂u1 = max{ 1

6× 5
[2× (1− 1

3
)2 + 4× (0− 1

3
)2],−2

9
} =

2

45

which is nonnegative.

3.3.2 The Second Proposal

One might reasonably argue that V̂u1 is not subtle enough. Consider that pairs of

samples with relatively small overlap could be used together with no overlap cases

in order to create a better estimator than S2
U . One possibility is to use:

V̂u2 = maxk{Q(m)−Q(k) : 0 ≤ k ≤ m} (3.3.4)

It is clear that V̂u2 ≥ V̂u1 ≥ V̂u. That is, by preserving nonnegativity, we

potentially increase the positive bias. Notice that each of the terms Q(m)−Q(k)

(k = 1, ...,m) has a negative bias (Lemma 3.2). So, we might expect that V̂u2 does

not overall have a large positive bias.

3.3.3 The Third Proposal

Stepping forward, after realizing that V̂u2 could bring a rather substantial com-

putational burden, we are hoping to consider further strategies that will not only

save computation but also strengthen the V̂u estimator.
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Now, consider the distribution of the sample overlap, denoted as X = O(S1, S2)

(3.1.2). It can be seen that X has the probability mass:

Prob(X = k) =

(
m
k

)(
n−m
m−k

)(
n
m

) ; k = 0, 1, ...,m (3.3.5)

⇒ Hypergeometric(n;m,m).

We might pick a value k? such that the fractional overlap among its samples is

relatively low among all overlaps, but do so that we still have enough pairs (S1, S2)

to be averaged over. In other words, we could choose k? as the αth percentile of

the overlap distribution, i.e. Hypergeometric(n;m,m). And then, one could use

V̂u3 = max{S2
U , Q(m)−Q(k?), V̂u}. (3.3.6)

Recall that the mean and variance of hypergeometric distribution with param-

eters (n,m,m) are m2

n
and m2(n−m)2

n2(n−1)
respectively, and hypergeometric distribution

can be approximated by binomial distribution, Binomial(n, p), with p = m
n

un-

der certain conditions. Given the relationship between binomial distribution and

normal distribution, it is reasonable to connect hypergeometric distribution with

normal distribution. As a result, the specification of the k? value can be obtained

based on normal approximation to hypergeometric distribution (Feller’s Lemma).

Lemma 3.3 (Feller’s Lemma [10])

If n → ∞,m → ∞ so that m/n → t ∈ (0, 1) and xk := (k − mp)/√mpq → x,

then:

P (k;m,n) ∼ e−ax
2/2√

2πmpq(1− t)
; a :=

1

1− t
(3.3.7)

where P (k;m,n) is the point mass of Hypergeometric(n;m,m) at k, and p = m/n

in our case.

Proof:
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Denote:

P (k;m,n) = pkqm−k
(
m

k

)
·R(k;m,n), where

R(k;m,n) =
Πk−1
j=1(1− j

m
)Πm−k−1

j=1 (1− j
n−m)

Πm−1
j=1 (1− j

n
)

, and

q = 1− p.

By Stirling’s formula, i.e.

n! =
√

2πn(
n

e
)n,

together with the assumptions that m
n
→ t and

k/m ∼ t+ x
√
qt/m,

k/(n−m) ∼ t+ x
√
pt/(n−m),

we have:

Πm−1
j=1 (1− j

n
) ∼ e−nt

(1− t)n(1−t)+1/2
(1 +O(

1

n
))

Πk−1
j=1(1− j

m
) ∼ enp(t+x

√
qt/m)

(1− t− x
√
qt/m)m(1−t−x

√
qt/m)

(1 +O(
1

n
))

Πm−k−1
j=1 (1− j

n−m
) ∼ e−(n−m)(t−x

√
pt/(n−m))

(1− t+ x
√
pt/(n−m))(n−m)(1−t+x

√
pt/(n−m))

(1 +O(
1

n
))

Then, we have:

R(k;m,n) ≈ (1− t)n(1−t)+1/2

e−nt

· e−m(t+x
√
qt/m)

(1− t− x
√
qt/m)m(1−t−x

√
qt/m)+1/2

· e
−(n−m)(t−x

√
pt

n−m )

(1− t+ x
√

pt
n−m)

(n−m)(1−t+x
√

pt
n−m )+1/2
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Hence, we have:

logR(k;m,n) ≈ [n(1− t) +
1

2
]log(1− t)−m(t+ x

√
qt/m)

− (n−m)(t− x
√

pt

n−m
+ nt)

− [m(1− t− x
√
qt/m+

1

2
]log(1− t− x

√
qt/m)

− [(n−m)(1− t+ x

√
pt

n−m
) +

1

2
]log(1− t+ x

√
pt

n−m
)

which can be simplified as

logR(k;m,n) ≈ I + A+B + C

where

I = −mt− (n−m)t+ nt−mx
√
qt

m
+ (n−m)x

√
pt

n−m

= −mx
√
qt

m
+ (n−m)x

√
pt

n−m
→ x

√
(1− c)cnt− x

√
(1− c)cnt

= 0 as n→∞;

and

A = n(1− t)log(1− t)−m(1− t)log(1− t− x
√
qt

m
)

− (n−m)(1− t)log(1− t+ x

√
pt

n−m
)

B =
1

2
log(1− t)− 1

2
log(1− t− x

√
qt

m
)− 1

2
log(1− t+ x

√
pt

n−m
)

C = mx

√
qt

m
[log(1− t)− x

√
qt

m

1

1− t
+ o(

1√
m

)]

− (n−m)x

√
pt

n
−m[log(1− t) + x

√
pt

n−m
1

1− t
+ o(

1√
n−m

)]
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Furthermore,

A = (n−m)(1− t)log(1− t)−m(1− t)[−x
√
qt

m

1

1− t
− x2qt

2m

1

(1− t)2
+ o(

1

m
)]

− (n−m)(1− t)[log(1− t) + x
pt

n−m
− x2pt

2(n−m)

1

(1− t)2
+ o(

1

n−m
)]

= n(1− t)log(1− t)−m(1− t)log(1− t) + (m− n)(1− t)log(1− t)

+ x
√
mqt+

x2qt

2(1− t)
+ o(1)− x

√
(n−m)pt+

x2pt

2(1− t)
+ o(1)

= x
√
mqt− x

√
(n−m)pt+

tx2

2(1− t)
+ o(1)

→ tx2

2(1− t)

B =
1

2
log(1− t)− 1

2
log(1− t− x

√
qt

m
)− 1

2
log(1− t+ x

√
pt

n−m
)

→ −1

2
log(1− t)

C = x
√
mqtlog(1− t)− x

√
(n−m)ptlog(1− t)− qtx2

1− t
− ptx2

1− t
+ o(1)

= x
√
nc(1− c)tlog(1− t)− x

√
nc(1− c)tlog(1− t)− tx2

1− t
+ o(1)

→ − tx2

1− t

as n→∞ and m
n

= γ = t.

Therefore, we have

• A→ tx2

2(1−t) as n→∞(m→∞)

• B → −1
2
log(1− t) as n→∞(m→∞)

• C → − tx2

1−t as n→∞(m→∞)

In sum,

R(k;m,n) ∼ 1√
1− t

e−
tx2

2(1−t) .

That is,

P (k;m,n) ∼ e−x
2/2

√
2πmpq

1√
1− t

e−
tx2

2(1−t) .
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Therefore, we have

P (k;m,n) ∼ 1√
2πmpq(1− t)

· e−ax2/2; a :=
1

1− t
.

�

According to Feller’s Lemma, we could obtain the αth percentile of the overlap

distribution based on normal approximation to hypergeometric distribution. One

possible choice would be to use the 25th percentile of the overlap distribution.

In our example, we can easily verify the conditions in Lemma 3.3:

• n→∞,m→∞ such that m
n
→ t

In our case, m
n

= γ fixed. Take t = γ, the first condition is satisfied.

• xk = k−mp√
mpq
→ x

Based on the assumption that k
m
∼ t + x

√
qt
m
⇔ k ∼ mt + x

√
mqt and

p = t = γ, q = 1− γ, we have

k −mp
√
mpq

∼ mp+ x
√
mqt−mp

√
mpq

= x.

That is, the second condition is also satisfied.

If we want to get the αth percentile of the distribution of O(S1, S2), denoted

as k?, then the normal approximated value can be solved via:√
1/(1− γ) k?−mγ√

mγ(1−γ)√
mγ(1− γ)2

≈ zα,

where zα is the αth percentile of standard normal distribution.

That is,

k? ≈ zαmγ(1− γ)2 +mγ = mγ[1 + zα(1− γ)2].
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3.4 Comparison with Some Bootstrap Variance

Estimators

In the following, I will compare the unbiased variance estimator (i.e.V̂u) with some

bootstrap variance estimators. I am going to use the kernel function in Example

1.1 which corresponds to a U-statistic equivalent to the sample variance S2
n, i.e.

K(x1, x2) =
1

2
(x1 − x2)2.

Furthermore, suppose X1, ..., Xni.i.d. ∼ Normal(0, 1).

Under standard normal assumption,

(n− 1)S2
n ∼ X2(n− 1).

Therefore, the true variance of the U-statistic (which is S2
n) is just 2

n−1
.I will mea-

sure the estimation accuracy of the unbiased formula method and several bootstrap

approaches (nonparametric, balanced, smooth, and parametric bootstrap meth-

ods). In addition, I am also going to report the computation time required for

each method to obtain the same number of estimations.

Our goal is to estimate θ = V ar(Un) which can be written as a functional of a

population distribution function F (where F is the standard normal distribution

in this case), denoted as θ(F ). The basic principal of bootstrap is to use the

same functional of a estimated distribution function F̂ to estimate V ar(Un). In

the sense of nonparametric bootstrap, F̂ is commonly chosen to be the empirical

distribution; while in the sense of parametric bootstrap, F̂ is usually chosen to be a

normal distribution with mean equal to the sample mean and variance equal to the

sample variance, if the original distribution F is assumed to be normal. Balanced

and smooth bootstrap methods add further restriction or modifications on how to

draw the bootstrap samples.

By resamplingB = 1000 size-n samples conditional on each sample ofX1, ..., Xn

i.i.d. ∼ N(0, 1), there is one estimate of θ(F ) = V ar(Un) by the unbiased variance

formula (3.1.6) and each of the bootstrap methods. In order to evaluate each

method and measure the accuracy of these several different variance estimators, I
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chose R = 1000 size-n samples drawn from N(0, 1) and resampled B = 1000 times

for the bootstrap procedure given each of the size-n samples.

The average of mean estimations (i.e. Ave{ ˆE(Un)}), the average of variance

estimations (i.e. Ave{ ˆV ar(Un)}), standard deviation of variance estimations (i.e.

SD{ ˆV ar(Un)}), and computing time for calculating R = 1000 estimates are sum-

marized in the following three tables.

Table 3.1. Comparison with Bootstrap Variance Estimators (n = 6,m = 2)

n = 6 True Formula Nonpar. Balanced Smooth Par.

Ave{ ˆE(Un)} 1 0.9897 0.8244 0.8251 0.9887 0.9909

Ave{ ˆV ar(Un)} 0.4 0.3780 0.2403 0.2401 0.4065 0.5490

SD{ ˆV ar(Un)} 0.6051 0.3208 0.3180 0.5180 0.6993

Time 0.02sec 1.74sec 1.66sec 5.60sec 5.57sec

Table 3.2. Comparison with Bootstrap Variance Estimators (n = 8,m = 2)

n = 8 True Formula Nonpar. Balanced Smooth Par.

Ave{ ˆE(Un)} 1 0.9972 0.8729 0.8726 0.9963 0.9961

Ave{ ˆV ar(Un)} 0.2857 0.2834 0.1978 0.1980 0.2833 0.3643

SD{ ˆV ar(Un)} 0.4285 0.2561 0.2575 0.3373 0.4065

Time 0.14sec 2.77sec 3.02sec 8.40sec 7.46sec

Table 3.3. Comparison with Bootstrap Variance Estimators (n = 25,m = 2)

n = 25 True Formula Nonpar. Balanced Smooth Par.

Ave{ ˆE(Un)} 1 0.9940 0.9539 0.9544 0.9940 0.9936

Ave{ ˆV ar(Un)} 0.0833 0.0836 0.0743 0.0741 0.0815 0.0892

SD{ ˆV ar(Un)} 0.0617 0.0535 0.0530 0.0571 0.0536

Time 10.62sec 24.75sec 25.88sec 42.28sec 38.32sec

Conclusion:

Within our expectation, compared with other bootstrap counterparts, V̂u pro-

vided us with the least-bias estimates for both the mean and variance of the U-

statistic. In terms of computing time, the unbiased formula approach was about

100 times more efficient for small n cases and was about 3 times more efficient for

the n = 25 case.
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However, for this specific example, nonparametric bootstrap methods tended to

result in estimators with much less standard deviation than the unbiased formula

approach.

From another point of view, the comparison between unbiased variance esti-

mator with bootstrap variance estimators is actually equivalent to the comparison

between subsampling and bootstrapping. The subsampling approach is superior

in terms of unbiasedness and computation efficiency. The standard deviation of

subsampling becomes closer to that of bootstrapping as sample size n gets larger.

We will investigate these relationships further later in the thesis.



Chapter 4
Two Unbiased Resampling Schemes,

Their Comparisons and Properties

4.1 Two Resampling Schemes

For problems with large n andm values, it is computationally expensive to compute

U-statistics and the corresponding Q(m), Q(0) values. In Chapter 2, we have

discussed some approaches to realize efficient unbiased estimation by reduced U-

statistics or general incomplete U-statistics. In this chapter, I will introduce two

resampling schemes to realize our unbiased variance estimator V̂u efficiently.

To reduce computing time and alleviate the calculation complexity, I consider

estimating Q(m) and Q(0) based on B bootstrapped size-m samples. It can be

shown that the way I define Q̂(m)
(k)

and Q̂(0)
(k)

(k=1,2) will result in resampling

unbiased estimates of Q(m) and Q(0) given the number of non-overlapping pairs

of size-m samples. Here, resampling unbiasedness will mean that for a fixed data

set, the mean over repeated resampling equals Q(m) and Q(0) respectively.

4.1.1 Type 1 Resampling Scheme

Let x1, ..., xn be the original data from a distribution F . If we randomly draw

B data subsets of size m with replacement, we get B elements of {Sr : r =

1, ..., N ;N =
(
n
m

)
} where we use Sr to represent data subsets of size m and use r

to represent the labels on the possible data subsets. Equivalently, we are drawing
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labels L1 = r1, L2 = r2, ..., LB = rB from {1 ≤ i1 < ... < im ≤ n}.
Let the set-label space be all vectors of length B with coordinates from set

{{1, ..., n}− choose m}. Denote this label space as LSS. This is, in a basic sense,

the sample space for the subsampling experiment, and we will say that we are

drawing a set of B “set labels” with replacement.

By drawing B set labels r1, ..., rB, we use Sr1 , ..., SrB to estimate the complete

U-statistic Un by

ŨB =
1

B

B∑
i=1

K(Sri)

which is actually equivalent to the incomplete U-statistic defined in (2.2.1).

Since the set labels were drawn with replacement from LSS, we have

E[
1

B

B∑
i=1

K(Sri)] = E[K(Sr1)]

=
1

N

N∑
r=1

K(Sr)

= Un

That is, ŨB is a subsampling unbiased estimate of the corresponding complete

U-statistic.

Then, a natural extension is whether we could use the same subsampling ex-

periment to construct a subsampling unbiased realization of the unbiased variance

estimate of the complete U-statistic.

First consider

Q̂(m)
(1)

=
1

B(B − 1)

∑
i 6=j

K(Sri)K(Srj) (4.1.1)

=
1

B(B − 1)
[(K(Sr1) + ...+K(SrB))2 −

B∑
i=1

K2(Sri)] (4.1.2)

Notice that the term on the first line (4.1.1) involves
(
B
2

)
calculations, but the

second line (4.1.2) is much shorter to calculate. Recall the incomplete U-statistic

defined in (2.2.1), in fact, K(Sr1) + ... + K(SrB) = BŨB. So, the formula can be
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further simplified as:

Q̂(m)
(1)

=
1

B(B − 1)
[B2Ũ2

B −
B∑
i=1

K2(Sri)] (4.1.3)

Proposition 3.1: Q̂(m)(1) is subsampling unbiased.

Proof:

Since Q̂(m)
(1)

only counts for distinct pairs of (Sri , Srj) based on resampling

WITH replacement, we have

E[K(Sri)K(Srj)] =
1

N2

N∑
l=1

N∑
k=1

K(Sl)K(Sk)

= U2
n

= Q(m),

where N =
(
n
m

)
, and i 6= j.

That is, Q̂(m)
(1)

is an unbiased realization of Q(m) over the resampling distri-

bution, given the size-n data set x1, ..., xn.

�

Denote

Ĩ(i, j) = I{Si ∩ Sj = ∅, {i, j} ⊆ {L1, ..., LB}} (4.1.4)

Q̂(0)(1) =
1∑

i 6=j;i,j=1,...,N Ĩ(i, j)

∑
i 6=j;i,j=1,...,N

K(Si)K(Sj)Ĩ(i, j) (4.1.5)

Notice that in (4.1.5) the resampling randomness is only in Ĩ(i, j).

Proposition 3.2: Denote ∑
i 6=j;i,j=1,...,N

Ĩ(i, j) = C > 0,

Q̂(0)(1) is a conditional subsampling unbiased realization of Q(0) given the value

of C.
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Namely, we have

E[Q̂(0)(1)|
∑

i 6=j;i,j=1,...,N

Ĩ(i, j) = C] = Q(0) (4.1.6)

where C > 0.

Proof:

Let the constrained set-label space be the subset of set-label space LSS

such that the number of non-overlapped pairs generated by the set-label sample

is exactly C. Denote the constrained set label space as LSSC = {(L1, ..., LB) ∈
LSS|

∑
i 6=j;i,j=1,...,N Ĩ(i, j) = C}.

Claims:

1. Every set-label sample of size B is equally likely. That is, every (L1, ..., LB) ∈
LSS is equally likely.

Proof:

P{(L1, ..., LB) = (l1, ..., lB)} = (
1

N
)B

for any B subset labels of size m, by the property of resampling with replace-

ment.

2. With the constrained label space (i.e. given the constant C), every set-label

sample is equally likely. Therefore, the conditional distribution of set-label

samples given the constraint is uniform.

3. Fix C, assume there is at least one non-overlapping pair of subsets, say

Sr1 and Sr2 , with labels {r1, r2}. Now consider any other pair that is non-

overlapped, say Sri and Srj , with labels {ri, rj}. We claim that the labels

{r1, r2} are found in exactly the same number of constrained label sets as

are {ri, rj}, and so all such non-overlapping pairs are equally likely. (This is

intuitive, as the process should not favour any one pair over another.)

4. Also notice that a permutation of indices does not affect the overlap counts.

Proof:
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Let (r1, r2) and (ri, rj) be two pairs of non-overlapped indices.

Without loss of generality, assume the indices for r1 are (1, 2, ...,m); indices for

r2 are (m + 1, ..., 2m). Similarly, assume the indices for ri are (a1, ..., am); indices

for rj are (am+1, ..., a2m). And neither ri nor rj has indices among a2m+1 < ... < an.

Construct a permutation map by setting perm(i) = ai. That is, we now have a

mapping of indices: 1, 2, ..., n→? a1, ..., am, am+1, ..., a2m, ..., an. This is invertible.

Now apply this transformation, ?, to all the possible sets r in LSS or LSSC .

Each r generates a new set r? containing the transformed labels. This induces a

mapping on the set of labels, so that r gets mapped into r?, the label for Sr? . A

little thought tells us that this mapping is also 1 − 1 and onto, from the integers

{{1, ..., n} − choose m} onto the same integers. (Given any set-label sample t ∈
{{1, ..., n} − choose m}, we need to find an r such that r? = t. We can do so by

applying the inverse permutation to the indices in t to generate r.)

Now this mapping takes an element L1, ..., LB of LSS, and maps into another

element of LSS, denoted as L?1, ..., L
?
B. This mapping is also 1− 1 and onto.

Note that a permutation map on the indices cannot change the overlap counts,

so ? is also a map from LSSC into LSSC . It is also 1−1 and onto LSSC because of

this. (Let M be the number of elements of LSSC . Since the ? map is one-to-one,

the image set must have M elements. But the image set is contained in LSSC , of

size M , so the image set must equal LSSC).

Finally, since all the non-overlapping pairs are equally likely to appear, the

expectation of Q̂(0)(1) given the constraint is just the average value times the

constant C, as needed.

That is,

E(Q̂(0)
(1)
|
∑
i 6=j

Ĩ(i, j) = C) = E[
1

C

∑
a6=b

K(SLa)K(SLb)Ĩ(La, Lb)|
∑
i 6=j

Ĩ(i, j) = C]

=
1

C
E[
∑
a6=b

K(SLa)K(SLb)I(La, Lb)|
∑
i 6=j

Ĩ(i, j) = C]

=
1

C
C

∑
r 6=tK(Sr)K(St)I{Sr ∩ St = ∅}∑

r 6=t I{Sr ∩ St = ∅}
= Q(0)

Thus, we have proved the unbiasedness of Q̂(0)
(1)

given the number of non-
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overlapping pairs C when C > 0.

�

As a result, the Type 1 resampling realization of the unbiased variance estima-

tor, V̂u, can be defined as

V̂ (1)
u = Q̂(m)(1) − Q̂(0)(1) (4.1.7)

One concern we might have for the Type 1 resampling scheme is that for fixed

B, the number of sampled pairs without common elements might be rare or even

non-existent, especially when B is small. As a result, the estimate of Q(0) using

Q̂(0)
(1)

may not be good. In order to overcome this drawback of Type 1 resampling

scheme, we consider another approach–the Type 2 resampling scheme.

4.1.2 Type 2 Resampling Scheme

Let S1,2m, S2,2m, ..., SM,2m,M =
(
n

2m

)
be an enumeration of all possible size-2m

samples drawn from the original data x1, ..., xn.

Now, consider randomly selecting B/2 samples with replacement out of the full

set with probability 1
M

for each of the Si,2m, 1 ≤ i ≤M in the full set. Equivalently,

we are drawing B/2 labels of size 2m from {{1, ..., n} − choose 2m}, denoted as

L1,2m = r1,2m, L2,2m = r2,2m, ..., LB/2,2m = rB/2,2m. The subscripts m and 2m rep-

resent the number of elements in the set-label sample. (Without loss of generality,

here we assume B/2 is an integer.)

Then, we randomly split each size-2m set-label sample into two size-m labels.

That is, we have r1,2m = r1,m ∪ r̄1,m, ..., rB/2,2m = rB/2,m ∪ r̄B/2,m. Namely,

Sri,2m = (Sri,m , Sr̄i,m); 1 ≤ i ≤ B/2. (4.1.8)

Therefore, in Type 2 resampling scheme, we have at least B/2 pairs of size-m data

subsets (Sri,m, Sr̄i,m) without common elements.

Similarly as discussed in Section 4.1.1, here we can use the B split size-m

data subsets, Sr1,m , ..., SrB/2,m , ..., Sr̄B/2,m , to estimate the corresponding complete
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U-statistic, i.e.

ŨB =
1

B

B/2∑
i=1

[K(Sri,m) +K(Sr̄i,m)] (4.1.9)

which is an unbiased estimate of Un. (Note, we could split the size-2m sample

up into all its possible pairs of nonoverlapping size-m samples. But this might be

a huge number–it seems that it is likely to be more statistically efficient to just

generate a new size-2m sample and split it randomly.)

Similarly, define

Q̂(m)
(2)

=

∑
i 6=j[K(Sri,m)K(Srj ,m) +K(Sr̄i,m)K(Sr̄j ,m) +K(Sri,m)K(Sr̄j ,m)]

4 · (B/2) · (B/2− 1)

=
1

2B(B/2− 1)
{[K(Sr1,m) + ...+K(SrB/2,m) + ...+K(Sr̄B/2,m)]2

−
B/2∑
i=1

[K2(Sri,m) +K2(Sr̄i,m)]− 2

B/2∑
i=1

K(Sri,m)K(Sr̄i,m)}

Again, denote

Ĩ(i, j) = I{Si ∩ Sj = ∅, {i, j} ⊆ {r1,m, ..., rB/2,m, r̄1,m, ..., r̄B/2,m}}

Q̂(0)
(2)

=
1∑

i 6=j Ĩ(i, j)

∑
i 6=j

K(Si)K(Sj)Ĩ(i, j)

The variance estimation by Type 2 resampling scheme is

V̂ (2)
u = Q̂(m)

(2)
− Q̂(0)

(2)
(4.1.10)

The unbiasedness of Q̂(m)
(2)

and Q̂(0)
(2)

can be shown in a similar fashion as

discussed in section 4.1.1.

4.2 Properties of the Two Resampling Schemes

In this section we will study how the two sampling schemes affect the number of

non-overlapping pairs available to estimate Q(0).
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Type 1 Scheme:

X1, ..., Xn,
(
n
m

)
size-m samples. Draw B size-m samples out of

(
n
m

)
with

replacement.

P (non− overlaps) =

(
n−m
m

)(
n
m

) (4.2.1)

E1(non− overlaps) =

(
n−m
n

)(
B
2

)(
n
m

) (4.2.2)

Type 2 Scheme:

X1, ..., Xn,
(
n

2m

)
size-2m samples. Draw B/2 size-2m samples out of

(
n

2m

)
with

replacement and split each one into two size-m samples.

E2(non− overlaps) =
B

2
+

(
n−m
n

)
(
(

2·B
2

2

)
− B

2
)(

n
m

) =
B

2
+

(
n−m
m

)
(B(B−2)

2
)(

n
m

) (4.2.3)

E2 − E1 =
B

2
+

(
n−m
m

)(
n
m

) [
B(B − 2)

2
− B(B − 1)

2
] =

B

2
[1−

(
n−m
m

)(
n
m

) ] (4.2.4)

Relative improvement:

E2 − E1

E1

=

B
2

[1− (n−mm )
(nm)

](
B
2

)(n−mm )
(nm)

=
1−

(
n−m
m

)
/
(
n
m

)
(B − 1)

(
n−m
m

)
/
(
n
m

) (4.2.5)

Denote p(n,m) =
(n−mm )
(nm)

,then

relative improvement =
1− p(n,m)

(B − 1)p(n,m)
(4.2.6)

It can be seen that when either B or p(m,n) =
(n−mm )
(nm)

is large enough, the

relative improvement will become slight or negligible.

The gain of Type 2 resampling of having more non-overlapped pairs is a dou-

bling or better if 1−p(n,m)
(B−1)p(n,m)

≥ 1. Namely,

1− p(n,m)

p(n,m)
≥ B − 1 (4.2.7)
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From another aspect, by elementary calculation we have:

E1(non− overlaps) =

(
n−m
m

)
2
(
n
m

) B(B − 2) +

(
n−m
m

)(
n
m

) B

2

E2(non− overlaps) =

(
n−m
m

)
2
(
n
m

) B(B − 2) +
B

2

The difference of non-overlaps between the two resampling schemes is B
2

(1 −
(n−mm )
(nm)

). Notice that

(
n−m
m

)(
n
m

) =
n−m
n

n− 1−m
n− 1

n− 2−m
n− 2

...
n−m+ 1−m
n−m+ 1

,

then, we can conclude that:

• When m is close to 1(i.e. the kernel size m is small compared with sample

size n), the gain of Type 2 resampling scheme is slight.

• When m is close to n(i.e. the kernel size m is relatively large compared with

sample size n), the gain of Type 2 resampling scheme is substantial.

Let’s revisit the kernel function used in Example 1.1, and we will continue with

the assumption that n = 8,m = 2 and X1, ..., X8i.i.d. ∼ Normal(0, 1). Based on

the simulation result in Table 3.2, we can also count the average of non-overlapping

pairs in each of the resampling schemes.

Table 4.1. Non-overlapping Pairs of the Two Resampling Schemes

Non-overlaps B = 8 B = 12 B = 16 B = 20 B = 24 B = 28

Type 1 Scheme 15.12 35.39 64.07 102.07 147.99 202.35

Type 2 Scheme 17.02 38.56 68.50 107.07 154.71 210.87

Rel.Improvement 0.1421 0.0806 0.0662 0.05436 0.0460 0.0383

The exact expected non-overlaps for the two resampling schemes can be cal-

culated based on formulas (4.2.2) and (4.2.3). For instance, when B = 8, the

theoretical values are E1 = 15 and E2 = 16.86, very close to our simulation re-

sults. For other B values, the expected non-overlaps based on the simulation can

also be shown to be close to the theoretical values.
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Moreover, the simulation result also confirmed that the relative improvement

became smaller as resample size B increased, which can be visually seen from the

following plot.

Figure 4.1. Relative Improvement



Chapter 5
Nonparametric Density Estimation

In this chapter, we will be discussing a practical implementation of the unbiased

variance estimator of a U-statistic in the context of nonparametric kernel density

estimation. First of all, let us have a brief review of the existing approaches to

accomplish probability density estimation.

5.1 Introduction

The probability density function of a continuous random variable X, say f(·),
is usually defined to be a nonnegative real-valued function with property∫ ∞

−∞
f(x)dx = 1.

In statistical practice, we sometimes know little about the underlying proba-

bility density of the random variable. Therefore, in order to understand how the

random variable is distributed or to compute the probability of the random vari-

able taking values in a certain interval, we need to construct an estimate of the

true probability density in some fashion based on a data set. The idea of non-

parametric density estimation was first proposed by Fix and Hodges (1951) [12]

with applications in discriminant analysis. It has since been widely used in many

other areas in statistics. The importance of density estimation in exploring and

presenting data can be found in Silverman (1986) [33].

There are two basic approaches to estimating a probability density function,
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parametric or nonparametric. The parametric approach assumes that the under-

lying density f comes from a known parametric family of density functions. In

this case, our main task is to estimate the unknown, fixed parameters in the para-

metric form based on the data set and replace the unknown true parameters by

their estimates in order to obtain a density estimator. For instance, suppose that

the probability density belongs to a normal family with mean µ and variance σ2.

Then, we can simply use the sample mean and sample variance to estimate µ and

σ2 respectively, denoted as (µ̂, σ̂2), and consider the density of Normal(µ̂, σ̂2) as

the estimator. In contrast, nonparametric approach frees one from the restriction

of the fixed parametric form of the underlying density so that the data can speak

for themselves in the estimation of f .

Throughout this chapter, we will mainly discuss nonparametric density esti-

mation methods. In the following, I will introduce several existing nonparametric

density estimation tools but will focus on kernel density estimator. Later on, the

unbiased U-statistic risk estimators based on L2 distance and Kullback-Leibler

distance will be proposed. A simulation study will be conducted to demonstrate

how to select the optimal bandwidth in kernel estimation based on U-statistic risk

estimators, followed by the implementation of the unbiased variance estimator for

these U-statistic risk estimators.

5.2 Histogram

The histogram is the oldest and most easily interpreted tool for density estimation.

For simplicity, we will only consider the univariate case throughout this chapter,

i.e. the continuous random variable X ∈ R.

Given a origin x0 and a bin width h, we can partition the support of the

underlying density f , say [a, b), by a grid of bins with the form

[x0 + (k − 1) · h, x0 + k · h)

with positive values of k. Without losing generality, assume 1 ≤ k ≤ L, k ∈ Z,

and a = x0 + 0 · h < x0 + 1 · h < ... < x0 + L · h = b.

Suppose the size of the observed data is n. That is, we denote the data set as
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X1, X2, ..., Xn. Then, the density estimation at point x can be expressed as

f̂(x) =
1

nh
(number of observations in the same bin as x) (5.2.1)

If we let nk be the number of observed data in the kth bin, then we have

f̂(x) =
nk
nh
, x ∈ [x0 + (k − 1) · h, x0 + k · h), (5.2.2)

where k = 1, ..., L.

As seen in formula (5.2.2), the bin width h is directly related to the density

estimation at each point. A simple illustration of the effect of bin width can be

seen from the following figure, where Sepal.Length in the iris data of Fisher [11]

was used to construct the histograms. The left panel used bin width h = 0.5, while

the right panel used bin width h = 0.2. It can be clearly seen that the histogram

tends to be smoother with larger bin width. Especially in this example, the spiky

features in the right panel do not appear with bin width h = 0.5.

Histogram of iris data
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Figure 5.1. Histogram of iris data (Sepal.Length) with bin width h = 0.5 (left panel)

and h = 0.2 (right panel)

Actually, the bin width can be changed from cell to cell. In other words, we

can use distinct bin widths for different bins in constructing the histogram, say

that hk is the bin width for the kth bin (k = 1, ..., L). Then, the bins partitioning
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the support of f becomes

[x0 + (k − 1) · hk, x0 + k · hk); k = 1, 2, ..., L.

The density estimation at point x can be written as

f̂(x) =
nk
nhk

, x ∈ [x0 + (k − 1) · hk, x0 + k · hk)

where nk is the number of observations in the kth bin, and k = 1, 2, ..., L.

Although the histogram gives us a representation of the empirical distribution

that is easy to construct and visualize, it is far from satisfactory. Some of its

defects include the discontinuities at the bin boundaries, zero value outside the

range of the grid of bins, and the major effect of bin width choice, as was shown

in Figure 5.1. Moreover, if we alter the origin of the histogram, the shape of the

histogram may also change dramatically, which leads to inconsistent performance

by using different origins.

The following two histograms are still based on the data set of Sepal.Length

from the iris data. In the left panel, the origin x0 = 3.5; in the right panel, the

origin x0 = 4. One of the major differences between these two graphs is that the

left panel is visually right skewed while the right one is roughly symmetric.
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Figure 5.2. Histogram of iris data (Sepal.Length) with origin x0 = 3.5 (left panel) and

x0 = 4 (right panel)



51

In sum, the histogram method suffers from several major drawbacks. It usually

cannot be used as more than an exploratory tool for the underlying empirical

distribution.

5.3 Orthogonal Series Estimation

The orthogonal series estimator is based upon Fourier expansion and aims to esti-

mate the coefficients in the Fourier series for the probability density function.

Define the basis of the Fourier expansion as:

φ0(x) = 1 (5.3.1)

φ2k−1(x) = cos(kx) (5.3.2)

φ2k(x) = sin(kx) (5.3.3)

where k = 1, 2, ....

The probability function, f , can be represented as

f(x) =
∞∑
t=0

ctφt(x), (5.3.4)

where ct’s are the coefficients.

Recall the property of orthogonality between sine and cosine functions, i.e.∫ π

−π
sin(mx)cos(nx)dx = 0,∫ π

−π
sin(mx)sin(nx)dx = πδ(m− n),∫ π

−π
cos(mx)cos(nx)dx = πδ(m− n),

where δ(·) is the Dirac delta function, i.e. δ(m− n) = 1 if and only if m = n and

0 otherwise.

Therefore, by simple mathematical calculation, we have

ct =
1

π

∫ π

−π
f(x)φt(x)dx, t ≥ 0.
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It is easily seen that ct = 1
π
Ef [φt(x)] and therefore ĉt = 1

nπ

∑n
i=1 φt(xi) is an

unbiased estimate of ct (t ≥ 0). However, Silverman [33] has pointed out that∑∞
t=0 ĉtφt(x) is not a good estimate of f because the series converge to a linear

form of Dirac delta functions, i.e.

ω(x) =
1

n

n∑
i=1

δ(x−Xi).

Notice that

ĉt =
1

π

∫ π

−π
ω(x)φt(x)dx, t ≥ 0.

Therefore, ĉt are the exact Fourier coefficients for the function ω but not for f .

Because ω is the discrete, empirical density, in order to obtain a useful estimate

for the continuous density f , a simple solution introduced in [33] is to smooth ω

by truncating the expansion
∑∞

t=0 ĉtφt(x) at a certain point. That is, consider

f̂(x) =
T∑
t=0

ĉtφt(x)

as the estimate for f . The choice of T determines the amount of smoothing.

What is more, Silverman [33] also suggested another approach by imposing

weights to the Fourier series. That is, consider the weighted Fourier series

f̂(x) =
∞∑
t=0

λtĉtφt(x),

where the weights λt satisfy λt → 0 as t → ∞. In this case, the convergence rate

of λt to zero determines the amount of smoothing.

Besides of the two nonparametric density estimators introduced in Section

5.2 and 5.3, other density estimation approaches include the nearest neighbour

method, the variable kernel method, the general weighted function estimator, the

maximum penalized likelihood estimator, the pseudo-likelihood estimator, the ker-

nel density estimator, and more. In the following, we will focus on the kernel

density estimator, which is the most visible and used density estimation method.

Details of other methods can be found in [33] and [34].
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5.4 Kernel Density Estimator

5.4.1 Introduction

Nowadays, the most popular density estimation method is the kernel density esti-

mator. Suppose X1, X2, ..., Xn is an i.i.d. sample from some probability density f .

Then, the kernel density estimator at point x is defined for a kernel K as

f̂h(x) =
1

nh

n∑
i=1

K(
x−Xi

h
), x ∈ R, h > 0. (5.4.1)

If we denoteKh(x) = 1
h
K(x

h
), then the kernel density estimator can be rewritten

as

f̂h(x) =
1

n

n∑
i=1

Kh(x−Xi) (5.4.2)

The function K is called the kernel. It is a kernel of order k if it satisfies the

following assumptions (Turlach (1993) [34]):

1. K is symmetric, i.e. K(u) = K(−u).

2.
∫
R
K(u)du = 1.

3.
∫
R
ujK(u)du = 0 for j = 1, ..., k − 1.

4.
∫
R
ukK(u)du 6= 0.

It can be seen that the symmetry of K implies that k must be an even number.

For k = 2, K is non-negative and is itself a probability density. For the order

k to be 4 or larger, it is necessary for K to take negative values and thus may

result in negative density estimations. Although K with higher order (k ≥ 4)

harbours better smoothness properties, negative values for density estimates are

not desirable in practice. Furthermore, the simulation study in Marron and Wand

(1992) [27] revealed that for some difficult-to-estimate underlying densities the

sample size n needs to be in millions in order for higher order kernel functions to

predominate over kernel functions of order 2. Consequently, kernels of order 2 are

generally preferable and will be considered as the conventional choice throughout

this section.
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Some examples of univariate kernel functions are listed below:

Table 5.1. Examples of Univariate Kernel Functions

Kernel Function K(x)

Rectangular 1
2
I{|x|≤1}

Triangular (1− |x|)I{|x|≤1}

Bartlett-Epanechnikov 3
4
(1− x2)I{|x|≤1}

Biweight 15
16

(1− x2)2I{|x|≤1}

Triweight 35
32

(1− x2)3I{|x|≤1}

cos π
4
cos(π

2
x)I{|x|≤1}

Gaussian 1√
2π
e−x

2/2

A graphical demonstration of the compact support kernel functions are dis-

played in Figure 5.3:

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

K
(X

)

Rectangular
Triangular

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

K
(X

)

Bartlett−Epanechnikov
Biweight
Triweight

Figure 5.3. Compact Support Kernel Functions. Left panel: Rectangular and Trian-

gular kernels. Right panel: Bartlett-Epanechnikov, Biweight, and Triweight kernels.

Although the choice of kernel function more or less affects the accuracy of

density estimation, the bandwidth choice h in kernel density estimation is much

more crucial (Hardle et. al. (1994) pp.57-61 [15]). In short, bandwidth h controls

the roughness of the fitted density curve and plays a similar role as bin width does in

the histogram and smoothing parameter does in the smoothing spline method. As

a result, two important practical issues that address many researchers’ attention
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are how to select the optimal bandwidth given the data set and what criterion

should be used in bandwidth selection.

5.4.2 Assessing the Kernel Density Estimator

In this subsection, we will review several measurements that are currently used to

evaluate the bandwidth-dependent kernel density estimator.

5.4.2.1 L2 Distance-based Assessment

One of the most popular measurements to evaluate how closely f̂ approximates f

for a given data set is the integrated squared error (also called L2 loss), which

is defined as

ISE(h) =

∫
(f̂h(x)− f(x))2dx, (5.4.3)

where f̂h(·) is the kernel density estimator defined in formula (5.4.1).

If furthermore, we are interested in the performance of f̂ averaging over all

possible data sets, then we can take expectation of ISE(h) over the data set

which yields another measurement, the mean integrated squared error (also

called L2 risk).

MISE(h) = IMSE(h) = E{
∫

(f̂h(x)− f(x))2dx} (5.4.4)

One thing to notice here is that by Fubini’s Theorem, we have

MISE(h) = E{
∫

(f̂h(x)− f(x))2dx}

=

∫
E{f̂h(x)− f(x)}2dx

In other words, the integrated mean-squared error (IMSE) is equal to the mean

integrated squared error (MISE).
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In addition, MISE(h) has the following presentation ([34]):

MISE(h) =

∫
Ef{f̂h(x)− f(x)}2dx

=

∫
E{f̂h(x)− E[f̂h(x)] + E[f̂h(x)]− f(x)}2dx

=

∫
E{f̂h(x)− E[f̂h(x)]}2 + {E[f̂h(x)]− f(x)}2dx

=

∫
V ar[f̂h(x)]dx+

∫
bias2[f̂h(x)]dx

If we denote the integrated variance of f̂h(x) as

IV (h) =

∫
V ar[f̂h(x)]dx,

and denote the integrated squared bias of f̂h(x) as

IB(h) =

∫
bias2[f̂h(x)]dx.

Then,

MISE(h) = IV (h) + IB(h).

It can be shown that:

IV (h) =
R(K)

nh
− 1

n

∫
(Kh ∗ f)2(x)dx

IB(h) =

∫
(Kh ∗ f − f)2(x)dx

=

∫
(Kh ∗ f)2(x)dx− 2

∫
(Kh ∗ f)(x)f(x)dx+

∫
f 2(x)dx

where R(K) =
∫
K2(x)dx, and ∗ denotes the convolution of two functions with

K ∗ L(x) =
∫
K(x− u)L(u)du =

∫
K(u)L(x− u)du.

With the assumptions that f has at least k + 2 derivatives and K is a kernel
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function of order k, IV (h) and IB(h) can be simplified asymptotically to

IV (h) =
R(K)

nh
+

1

n
R(f) +O(n−1hk)

IB(h) =
h2k

(k!)2
µ2
k(K)R(f (k)) +O(h2k+4)

where µk(K) =
∫
xkK(x)dx, and f (k) is the kth derivative of f .

Now, if we assume h → 0 such that n · h → ∞ as n → ∞, then it follows the

asymptotic mean integrated squared error (AMISE):

AMISE(h) = (nh)−1R(K) + h2k(µk(K)/k!)2R(f (k)) (5.4.5)

Adapting the notations used in [34], denote

ĥ0 = argminhISE(h) (5.4.6)

h0 = argminhMISE(h) (5.4.7)

h∞ = argminhAMISE(h) (5.4.8)

Note that ĥ0 depends on the dataset because ISE(h) does.

Based on (5.4.5), h∞ has the following closed form:

h∞ = (
R(K)(k!)2

2kµ2
k(K)R(f (k))

)
1

2k+1 · n−
1

2k+1 . (5.4.9)

For the case of k = 2, we have

h∞ = (
R(K)

µ2
2(K)R(f (2))

)1/5 · n−1/5 (5.4.10)

Turlach (1993) [34] stated that h∞ is usually a poor approximation to h0 unless

the sample size n is in the millions. In other words, h∞ is rarely considered as a

satisfying practical surrogate to h0.

One thing to notice is that all of the above criteria (formulas (5.4.3), (5.4.4),

(5.4.5)) involve the unknown underlying density f . In other words, it is not feasible

to compute their minimizers. As a result, we need to estimate the measure of fit

based on observations somehow in order to select the “optimal” bandwidth ĥ. Hall
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and Marron (1991) [16] showed that for any data-driven bandwidth selector ĥ, in

the best case its relative rate of convergence to ĥ0 is n−1/10, while its relative rate

of convergence to h0 is n−1/2.

ĥ

ĥ0

= 1 +Op(n
−1/10) (5.4.11)

ĥ

h0

= 1 +Op(n
−1/2) (5.4.12)

This shows that a bandwidth selection method ĥ that aims to target ĥ0 is likely

to be highly variable, just as ĥ0 itself is. In comparison, the ĥ targeting h0 may

adapt less well to the sample at hand.

5.4.2.2 Kullback-Leibler Distance-based Assessment

We can also evaluate the kernel density estimator based on Kullback-Leibler loss.

Kullback-Leibler distance (loss) for measuring the closeness between two den-

sity functions is defined as

d(f, f̂h) =

∫
log

f(x)

f̂h(x,Xn)
f(x)dx (5.4.13)

where f(x) is the true underlying density, and Xn is the data set of size n.

Then, the corresponding risk dependent on h is

Risk = EXn [d(f, f̂h(Xn))] (5.4.14)

More investigation for risk based on Kullback-Leibler distance will be discussed in

a later subsection.
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5.5 Applications of U-Statistics in Risk Estima-

tion

5.5.1 Established Results

In order to obtain the minimizer over h of the L2 distance-based criteria in Section

5.4.2.1, the terms involving f need to be estimated, or we need to otherwise ap-

proximate the measure of fit based on the data set. Several well-known approaches

have been developed and thoroughly studied, some of which will be summarized

briefly in the following.

1. The “Quick and Dirty” Method:

Here, consider the AMISE criterion. As shown in formula (5.4.5),

AMISE(h) = (nh)−1R(K) + h2k(µk(K)/k!)2R(f (k)).

Since R(f (k)) is unknown, the exact minimizer of (5.4.5) is unattainable.

One possible solution is to choose a “reference density” for f and calculate

R(f (k)) by substituting f with its reference. For instance, if we assume f is

a normal density with mean 0 and variance σ2 and K is a Gaussian kernel,

then we can work out the exact form of R(f (k)) with k = 2 easily. In this

case, the optimal bandwidth, usually called rule-of-thumb bandwidth, is

hrot = 1.06σ̂n−1/5 (5.5.1)

where σ̂ is an estimate of σ, such as the sample standard deviation.

A more robust version is to consider interquartile range R̂ instead of σ̂.

As an alternative to σ̂, we can take the minimum between σ̂ and R̂/1.34.

Silverman (1986) [33] showed that for Gaussian kernel, R̂ ≈ 1.34σ̂. If we use

the more robust estimator of σ, we have

ĥrot = 1.06min{σ̂, R̂

1.34
}n−1/5. (5.5.2)

Another possibility is to use the lower bound for R(f (2)) (k = 2) as a substi-
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tute. This is called the “minimal smoothing principle”. By plugging in the

lower bound of R(f (2)) into AMISE(h), the minimizer becomes

ĥMSP = 3 · (35)−1/5 · σ̂ · (R(K)/µ2
2(K))1/5 · n−1/5. (5.5.3)

Note: Turlach [34] stated that ĥrot and ĥMSP usually perform pretty well

when f is a uni-modal probability density. However, for multi-modal case,

the selected bandwidth tends to oversmooth the data and conceals the

detailed features of the underlying density.

2. Cross-Validation Methods

• Leave-One-Out Cross-Validation (Unbiased CV):

Define the cross-validation objective function to be

UCV (h) = R(f̂h)− 2
n∑
i=1

f̂h,−i(X<−i>)

where X<−i> is the set of data except the ith observation.

It can be easily shown that

E[UCV (h)] = MISE(h)−R(f).

That is, UCV (h) is an unbiased estimator of MISE(h) ignoring the

term R(f) which is independent of h. Moreover, UCV (h) can also be

seen as an estimate of ISE(h) except for a constant term.

Therefore, UCV (h) can be viewed as either anMISE-based criterion

or an ISE-based criterion. Rudemo (1982) [31] first proposed UCV (h)

with the aim of seeking the minimizer of an estimate of MISE(h), while

Bowman (1984) [2] independently found the same bandwidth selector

by trying to approximate ISE(h).

Note:

– The convergence rate of ĥUCV to both h0 and ĥ0 is n−1/10. Based

on formula (5.4.12) and (5.4.12), it does not accomplish the best
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convergence rate as a bandwidth selector in aim of reaching h0 but

is optimal in approximating ĥ0. Since the convergence rate of ĥUCV

is very slow, it suffers from the problem of sample variation.

– Another practical problem for unbiased CV is that UCV (h) often

has more than one local minima. It is recommended that we choose

the rightmost value of h where a local minima occurs (see [34]).

– Although strong criticisms of unbiased CV can be found in many

articles, Loader (1999) [26] was in favour of this classical approach.

She also verified its soundness via some simulation studies and real

data examples.

• Biased Cross-Validation:

Biased cross-validation was first appeared in Scott and Terrell (1987)

[32]. Recall formula (5.4.5), i.e.

AMISE(h) = (nh)−1R(K) + h2k(µk(K)/k!)2R(f (k)); k = 2.

The “Quick-and-Dirty” method is based on a “reference density” of f

and to minimize the resulting score function. Instead, [32] estimated

R(f (2)) by R(f̂
(2)
h ) to obtain a objective function BCV (h) based on

which minimization is realized with respect to h.

It can be shown that (see [32]):

R(f̂
(2)
h ) =

1

n
K

(2)
h ∗K

(2)
h (0) +

1

n2

∑
i 6=j

K
(2)
h ∗K

(2)
h (Xi −Xj)

=
1

nh5
K(2) ∗K(2)

h (0) +
1

n2h5

∑
i 6=j

K(2) ∗K(2)(Xi −Xj)

=
1

nh5
R(K(2)) +

1

n2h5
K(2) ∗K(2)(Xi −Xj)

Then, the biased cross-validation criterion can be expressed as

BCV (h) =
1

nh
R(K) + h4µ

2
2(K)

4n2

∑
i 6=j

K
(2)
h ∗K

(2)
h (Xi −Xj). (5.5.4)

Note:
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– The minimizer of BCV (h), denoted as ĥBCV , is the optimal band-

width proposed by [32]. Although ĥBCV has the same relative con-

vergence rate as ĥUCV , the difference compared with ĥ0 or h0 was

shown to be always smaller for ĥBCV .

– In the case of more than one minimizer of the BCV (h) function, it

was shown that the best performance is often obtained by picking

the smallest value of h for which a local minimum occurs.

• Smoothed Cross-Validation

(Hall, Marron, and Park (1992) [17])

Recall the representation

MISE(h) = IV (h) + IB(h)

where IV (h) and IB(h) are defined in section 5.4.2.

In Marron and Wand (1992) [27] it was shown that 1
nh
R(K) is a

good estimator of IV (h). When it comes to the second term IB(h),

[17] suggested to use f̂g, where f̂g is another kernel density estimator

with a possibly different bandwidth g and kernel function L. After

simplification, it can be shown that

ˆIB(h) =
1

n2

n∑
i=1

n∑
j=1

(Kh ∗Kh − 2Kh +K0) ∗ Lg ∗ Lg(Xi −Xj)

where K0 denotes the Dirac delta function.

Furthermore, by using the approximation n ≈ n− 1, we have

SCV (h) =
R(K)

nh
+

1

n(n− 1)

∑
i 6=j

(Kh∗Kh−2Kh+K0)∗Lg∗Lg(Xi−X−j)

(5.5.5)

Note:

– The name “Smoothed Cross-Validation” comes from the fact that
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by using n ≈ n− 1, UCV (h) can be written as

UCV (h) =
1

nh
R(K)+

1

n(n− 1)

∑
i 6=j

(Kh ∗Kh−2Kh+K0)(Xi−Xj),

assuming there are no duplicates in the data set. That is, SCV (h)

can be viewed as a representation of UCV (h) where the differences

Xi −Xj are pre-smoothed in some fashion.

– Hall et. al. [17] proposed to use the minimizer of SCV (h) as the

suggested bandwidth, called ĥSCV . They showed that g and L can

be properly chosen such that the convergence rate of ĥSCV to h0

can reach the best case, i.e.Op(n
−1/2). However, in order to achieve

this best convergence rate, the kernel function L has to be at least

of order 6.

• Bandwidth Factorized Smoothed Cross-Validation

(Jones, Marron, and Park (1991) [22])

Using the same score function as SCV (h) but allowing g to be related

to h, Jones et. al [22] modified the Smooth Cross-Validation approach

and denoted the target function as JMP (h).

JMP (h) =
R(K)

nh
+

1

n2

n∑
i=1

n∑
j=1

(Kh×Kh−2Kh+K0)×Lg×Lg(Xi−Xj)

(5.5.6)

One important result for JMP (h) is that by choosing g ∼ n−23/45h−2,

the minimizer of JMP (h), called ĥJMP , can achieve root-n convergence

rate even if K and L are both of order 2.

5.5.2 Unbiased Estimate for L2 Risk

In this subsection, we will propose an unbiased estimator of L2 risk with the form

of a U-statistic.

Define

RiskL2,n(h) = EXn [

∫
(f(x)− f̂h(x))2dx]

where f(x) is the true underlying density, Xn is the set of data/observations of size
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n based on which the nonparametric kernel estimation at x is taken, and

f̂h(x) =
1

n

n∑
i=1

Kh(xi, x).

It can be seen that the defined RiskL2,n(h) is actually MISE (mean-integrated

squared error). By Fubini’s theorem, MISE = IMSE. Then, we can decompose

the risk function in the following way:

RiskL2,n(h) =

∫
EXn [f(x)2 − 2f(x)f̂h(x) + f̂h(x)

2
]dx.

Notice that EXn [f(x)2] is not related to h. So, we only need to focus on

RiskL2,n(h) ∝ −2

∫
EXn [f(x)f̂h(x)]dx+

∫
EXn [f̂h(x)2]dx

= −2EXn [

∫
f(x)f̂h(x)dx] + EXn [

∫
f̂h(x)2dx]

Denote

Term1 = EXn [

∫
f(x)f̂h(x)dx]

= EXn [

∫
f(x)

1

n

n∑
i=1

Kh(Xi, x)dx]

= EX2 [Kh(X1, X2)]

Moreover, let

Term2 = EXn [

∫
f̂h(x)

2
dx]

= EXn [
1

n2

∫ ∑
i

∑
j

Kh(Xi, x)Kh(Xj, x)dx]

= EXn [
1

n2

∑
i

∑
j

K√2h(Xi, Xj)]

=
1

n2
{nEX2 [K

√
2h(X1, X1)] + n(n− 1)EX2 [K

√
2h(X1, X2)]}

= E[K√2h(X1, X2)] +
1

n
E[K√2h(X1, X1)−K√2h(X1, X2)]
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where Kh(·) stands for a Gaussian kernel with mean 0 and variance h2; K√2h is a

Gaussian kernel with mean 0 and variance 2 · h2. The third equality in the above

derivation is based on the fact that for Gaussian kernels, we have∫
Kh(Xi, x)Kh(Xj, x)dx = K√2h(Xi, Xj).

In sum,

RiskL2,n(h) ∝ E[K√2h(X1, X2)]− 2E[Kh(X1, X2)]

+
1

n
E[K√2h(X1, X1)−K√2h(X1, X2)].

Following the footsteps of Ray and Lindsay (2008) [30] and Lindsay and Liu

(2009) [25], we propose to estimate the risk RiskL2,m(h) at sample sizes m that

are not equal to n. There are several reasons that one might wish to consider such

an approach. One particular motivation here is that Lindsay and Liu found in

their problem (not density estimation) that the risk at m = n was very difficult to

estimate. There is some reason to believe this holds for density estimation as well.

Moreover, as Ray and Lindsay pointed out, the well known BIC model selection

criterion corresponds to using minimum risk estimation with m = n/{log(n)− 1}.
(Note: Throughout this Chapter, we use m to represent the subsample size.)

We also know that the cross-validation criterion for bandwidth selection tends

to overfit the density (Loader (1999)[26]). So, we consider RiskL2,m(h), i.e. using 1
m

to replace 1
n

in the second line above with m < n, as an alternative measurement to

assess the density estimation. Later in Figure 5.4 it will be seen that the minimizer

hL2 of RiskL2,m(h) is decreasing in m. That is, by taking m < n in RiskL2,m(h), the

optimal bandwidth selected based on minimization of RiskL2,m(h) is larger than

the one obtained in minimizing RiskL2,n(h). This therefore potentially adjusts the

undersmoothing problem of cross-validation algorithm.

In other words, instead of using RiskL2,n(h) we can refer to

RiskL2,m(h) ∝ E[K√2h(X1, X2)]− 2E[Kh(X1, X2)]

+
1

m
E[K√2h(X1, X1)−K√2h(X1, X2)]
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as the measurement to evalulate the density estimation. The suggested bandwidth

is the one that minimizes RiskL2,m(h).

When K is a Gaussian kernel, by taking derivative of RiskL2,m(h) with respect

to h and setting it equal to zero, we can solve for the value of m for which a

particular h would be optimal:

mh =

1
2h2

+ (1+2h2)2−4h2(1+2h2)−1

[(1+2h2)2−1]3/2

(1+2h2)2−4h2(1+2h2)−1

[(1+2h2)2−1]3/2
−
√

2[(1+h2)2−2h2(1+h2)−1]

[(1+h2)2−1]3/2

. (5.5.7)

Inverting this formula gives us the exact formula to calculate hL2 given a value of

m.

A figure illustrating the relationship between mh and hL2 together with a com-

parison with hrot (5.5.1) under the assumption of the Gaussian kernel is shown

below:
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Figure 5.4. Relationship between m and h, shown at two different scales

Figure 5.4 indicates that for a given value of subsample size m, the optimal

bandwidth selected by (5.5.7) is slightly larger than the rule of thumb hrot for the

case that K is a Gaussian kernel.
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As mentioned earlier, instead of using the exact form of RiskL2,m(h), we can

construct an unbiased estimator of RiskL2,m(h) based on a U-statistic and select

the optimal bandwidth for kernel density estimation by minimizing the estimated

risk, denoted as UL2 :

UL2 := ˆRiskL2,m(h) =
1(
n
2

)∑
i<j

K?
h(xi, xj) (5.5.8)

where

K?
h(x1, x2) = K√2h(x1, x2)− 2Kh(x1, x2) +

1

m
[

1

2h
√
π
−K√2h(x1, x2)]. (5.5.9)

Note that UL2 is equivalent to the unbiased cross-validation formula (also called

leave-one-out cross-validation) when m = n−1. That is, both of them are unbiased

estimates for relative MISE and functions of the order statistics (modulo terms

that do not depend on h). In addition, the bagged bandwidth selector (bagging on

CV ) proposed by Hall and Robinson (2009) [19] is actually nothing more than the

bandwidth selector based on ˆRiskm(h) if one makes m equal to their bootstrap

size.

If we minimize (5.5.8) over h, we have the inverse relationship

m̂h =

1

(n2)

∑
i<j[

1
2h2
√
π
− 1

2h2
√
π
e−(xi−xj)2/(4h2) +

(xi−xj)2
4h4
√
π
e−(xi−xj)2/(4h2)]

1

(n2)

∑
i<j[−

e
−

(xi−xj)2

4h2

2h2
√
π

+
(xi−xj)2
4h4
√
π
e−

(xi−xj)2

4h2 + 2·e−
(xi−xj)2

2h2√
2πh2

− 2(xi−xj)2√
2πh4

e−
(xi−xj)2

2h2 ]

.

(5.5.10)

This function describes the dependence structure between m and h in determining

the least estimated L2 risk.
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5.5.2.1 A Simulation Study

Consider the objective function

fL2,m(h) =
1(
n
2

)∑
i<j

[
1

2h2
√
π
− 1

2h2
√
π
e−(xi−xj)2/(4h2) +

(xi − xj)2

4h4
√
π

e−(xi−xj)2/(4h2)]

− m · 1(
n
2

)∑
i<j

[− 1

2h2
√
π
e−

(xi−xj)
2

4h2 +
(xi − xj)2

4h4
√
π

e−
(xi−xj)

2

4h2 +
2√

2πh2
e−

(xi−xj)
2

2h2

− 2(xi − xj)2

√
2πh4

e−
(xi−xj)

2

2h2 ],

which can be obtained based on rearranging (5.5.10) and setting one side to zero.

For a fixed value of m, the bandwidth selector can be obtained by seeking the

root(s) of fL2,m(h). If fL2,m(h) has a unique solution, the optimal bandwidth can

be easily attained via bisection algorithm; otherwise, we need to take the rightmost

root of fL2,m(h) as suggested in [31].

In the following simulation study, I drew R = 1000 samples of size 100 in-

dependently from Normal(0, 1) and considered m = 30, 40, ..., 100. The average

minimizer of ˆRiskL2,m(h) and the standard deviation of the R = 1000 bandwidth

selectors for each m value can be found in the following table.

Table 5.2. Relationship between m and ĥL2 by Minimizing UL2

m 30 40 50 60 70 80 90 100

E[ĥL2 ] 0.5902 0.5508 0.5221 0.4994 0.4809 0.4663 0.4544 0.4426

SD[ĥL2 ] 0.0890 0.0958 0.1019 0.1081 0.1125 0.1160 0.1183 0.1222

Furthermore, we can compute the simulation mean of exact ISE for the density

estimator f̂ĥL2
(x) based on formula (5.4.3).
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Table 5.3. ISE(ĥL2)

m 30 40 50 60

E[ISEĥL2
] 0.0078 0.0075 0.0075 0.0076

Relative Improvement over m = n 8.2% 11.8% 11.8% 10.6%

SD[ISEĥL2
] 0.0054 0.0056 0.0056 0.0065

m 70 80 90 100

E[ISEĥL2
] 0.0078 0.0080 0.0082 0.0085

Relative Improvement over m = n 8.2% 5.9% 3.5% 0%

SD[ISEĥL2
] 0.0070 0.0077 0.0082 0.0087

Figure 5.5. Density Estimates for ĥL2
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Figure 5.6. Mean ISE(ĥL2) over the Samples

Conclusion:

Table 5.2 indicates that as m decreased the “optimal” bandwidth selected be-

came larger. The ratio of means was about 1.20 when one took m as half of n.

Furthermore, the average ISE was always smaller when one used the bandwidth

selector ĥL2 based on minimizing ˆRiskm(h),m < n. What is more, by taking

m = n/2, the average ISE was the smallest in the simulation study. From this

aspect, the bandwidth selector based on the estimated L2 risk with m < n not

only gave us a larger bandwidth that helps to alleviate undersmoothing problem

of the kernel density estimator, improving the accuracy of the bandwidth selector,

it also yielded smaller average integrated squared errors. Moreover, the variation

in ISE was considerably reduced when m < n.

Figure 5.5 displays density estimates for distribution of ĥL2 given different val-

ues of m. It indicates that the mean of ĥL2 shifted to the right (i.e. becomes larger)

as m got smaller. In addition, the density curve narrowed for smaller value of m.

The differences in left-hand tails were striking: there were rare probabilities to
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obtain “optimal” bandwidth less than 0.3 by minimizing RiskL2,m(h) with respect

to h when m ≤ n/2, and this range of bandwidth choices usually result in the

overfitting problem.

Figure 5.6 illustrates comparison of the mean ISE(ĥL2) over samples given

different values of m. It is clearly seen that when m = n/2 we had the smallest

integrated squared errors in average over samples, with an improvement of about

11.8% over m = n. This discovery may lead us to an interesting investigation

for future work which is to compare this approach with Hall’s rescaled bagging

methods introduced in [19].

5.5.3 Unbiased Estimate for Kullback-Leibler Risk

In this subsection, we are going to propose a U-statistic for the unbiased estimation

for the risk based on Kullback-Leibler distance.

Recall the formulas in (5.4.13) and (5.4.14):

d(f, f̂h) =

∫
log

f(x)

f̂h(x,Xn)
f(x)dx

where f(x) is the true underlying density, and Xn is a data set of size n.

Also, remember that

RiskKL,n(h) = EXn [d(f, f̂h(Xn))]

= EXn{
∫

[logf(x)]f(x)dx} − EXn{
∫

[logf̂h(x,Xn)]f(x)dx}.

Notice that minimizing the risk is equivalent to maximizing

Negative Relative RiskKL,n(h) =

∫
EXn [logf̂h(x,Xn)]f(x)dx

= EXn+1 [logf̂h(X,Xn)]

Actually, instead of using the full data set Xn, we can define a corresponding

negative relative risk based on a subsample of size m, Xm. That is, define

Negative Relative RiskKL,m(h) = EXm+1 [logf̂h(X,Xm)] (5.5.11)
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Now, consider a symmetric kernel function of order m+ 1,m ≤ n− 1

K??
h (Xm+1) =

1

m+ 1

m+1∑
i=1

logf̂h(Xi,X<−i>), (5.5.12)

where Xm+1 is a subset of size m + 1 out of Xn = (X1, ..., Xn), Xi is the ith

observation in Xm+1, and X<−i> is the m observations in Xm+1 except Xi.

Based on the above kernel function (5.5.12), we can construct a U-statistic

which is an unbiased estimate of the “Negative Relative RiskKL,m(h)”, denoted as

UKL.

UKL := Negative Relative ˆRiskKL,m(h) =
1(
n

m+1

) ∑
(n,m+1)

K??
h (Xi1 , ..., Xim+1)

(5.5.13)

In practice, due to the enormous number of possible subsamples of size m + 1

when n is large, i.e.
(

n
m+1

)
, we can use an incomplete U-statistic to estimate the

Negative Relative RiskKL,m(h). That is,

ŨKL,B =
1

B

B∑
b=1

K??
h (Sb), (5.5.14)

where Kh is the kernel function defined in (5.5.12), and Sb is a sample of size

m+ 1 out of Xn.

By maximizing ŨKL,B (5.5.14), we can obtain the optimal bandwidth ĥKL(m)

which minimizes the estimated KL risk.

The full expression for ŨKL,B is:

ŨKL,B =
1

B

B∑
b=1

K??
h (Sb) =

1

B

B∑
b=1

(
1

m+ 1

m+1∑
i=1

logf̂h(Sb(i), Sb(−i)))

=
1

B(m+ 1)

B∑
b=1

m+1∑
i=1

log(
1√

2πmh

∑
j 6=i

e−
(Sb(i)−Sb(j))

2

2h2 )

=
1

B(m+ 1)

B∑
b=1

m+1∑
i=1

log(e−
(Sb(i)−Sb(j))

2

2h2 )− log(
√

2πmh)

where Sb(i) represents the ith component of the size-m + 1 sample Sb, and Sb(−i)
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represents the components in Sb except the ith one.

By taking the derivatives of ŨKL,B with respect to h and setting it to be 0, we

have:

0 =
d

dh
ŨKL,B

=
1

h3

1

B(m+ 1)

B∑
b=1

m+1∑
i=1

∑
j 6=i(Sb(i) − Sb(j))2e−

(Sb(i)−Sb(j))
2

2h2∑
j 6=i e

−
(Sb(i)−Sb(j))

2

2h2

− 1

h

⇒

1

h
=

1

h3

1

B(m+ 1)

B∑
b=1

m+1∑
i=1

∑
j 6=i(Sb(i) − Sb(j))2e−

(Sb(i)−Sb(j))
2

2h2∑
j 6=i e

−
(Sb(i)−Sb(j))

2

2h2

h2 =
1

B(m+ 1)

B∑
b=1

m+1∑
i=1

∑
j 6=i(Sb(i) − Sb(j))2e−

(Sb(i)−Sb(j))
2

2h2∑
j 6=i e

−
(Sb(i)−Sb(j))

2

2h2

Notice that this is not an explicit representation of h. Consider the following

target function/objective function

fKL,m(h) =
1

B(m+ 1)

B∑
b=1

m+1∑
i=1

∑
j 6=i(Sb(i) − Sb(j))2e−

(Sb(i)−Sb(j))
2

2h2∑
j 6=i e

−
(Sb(i)−Sb(j))

2

2h2

− h2 (5.5.15)

Given a value of m, the optimal bandwidth ĥKL can be obtained by seeking the

positive root of the above objective function (5.5.15).

5.5.3.1 A Simulation Study

In the following simulation study, I considered R = 100 samples of size 100 from

Normal(0, 1) and took B = 1000 in the target function fKL,m. (i.e. I used 1000

i.i.d. samples of sizem+1 (m+1 ≤ n = 100) to construct the incomplete U-statistic

(formula (5.5.14)) which is an unbiased estimator of the negative relative KL risk.)

Furthermore, I considered m = 30, 40, 50, ..., 100. Given each m value, the root of

the target function fKL,m(h) gave us the optimal bandwidth with respect to the

m that minimizes the estimated KL risk.
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Table 5.4. Relationship between m and ĥKL by Minimizing Est KL Risk

m+ 1 30 40 50 60 70 80 90 100

E[ĥKL] 0.5658 0.5247 0.4951 0.4713 0.4502 0.4336 0.4169 0.4027

SD[ĥKL] 0.0656 0.0723 0.0775 0.0816 0.0883 0.0913 0.0950 0.0983

Figure 5.7. Density Estimates for ĥKL

Analogous to Table 5.3, here we can also compute the simulated mean Kullback-

Leibler loss by using bandwidth ĥKL,m dependent on the value of m. Recall the

definition of Kullback-Leibler distance (5.4.13):

d(f, f̂h) =

∫
log

f(x)

f̂h(x,Xn)
f(x)dx

=

∫
log[f(x)]f(x)dx−

∫
log[f̂h(x,Xn)]f(x)dx.

Notice that with normal assumption for f , the first term in the above expres-

sion can be solved explicitly and is about -1.419. Therefore, the Kullback-Leibler
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distance between f̂h and f then equals to

−1.419−
∫
log[f̂h(x,Xn)]f(x)dx.

By substituting h with the m-dependent bandwidth choice ĥKL,m into the

above expression, we can evaluate the performance of the kernel density estimator

f̂ĥKL,m(x,Xn) at a given data set Xn. In other words, we are interested in the

measurement

−1.419−
∫
log[f̂ĥKL,m(x,Xn)]f(x)dx,

where the integral can be estimated by Monte Carlo Method. That is, we can draw

independent samples X1, X2, ..., XB from the true underlying distribution F with

density f and use

−1.419− 1

B

B∑
i=1

log[f̂ĥKL,m(Xi,Xn)]

to approximate d(f̂ĥKL,m , f).

Furthermore, by averaging over different samples, we can obtain the simulated

mean Kullback-Leibler loss and compare the kernel density estimators that use

different m-dependent bandwidths. Table 5.5 and Figure 5.8 below display the

relative results.

Table 5.5. Relative Kullback-Leibler Loss (ĥKL)

m+ 1 30 40 50 60

E[Relative Loss(ĥKL)] 0.0383 0.0354 0.0339 0.0330

Relative Improvement over m + 1 = n −12.9% −4.4% 0.0% 2.7%

SD[Relative Loss(ĥKL)] 0.0059 0.0050 0.0042 0.0038

m+ 1 70 80 90 100

E[Relative Loss(ĥKL)] 0.0330 0.0330 0.0332 0.0339

Relative Improvement over m + 1 = n 2.7% 2.7% 2.1% 0.0%

SD[Relative Loss(ĥKL)] 0.0043 0.0050 0.0060 0.0081
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Figure 5.8. Mean Relative Kullback-Leibler Loss over the Samples

Conclusions:

The results are in Table 5.4, 5.5 and Figure 5.7, 5.8.

As m became smaller, the selected bandwidth increased with its standard devi-

ation decreasing. That is, by using m < n samples rather than the full data set to

construct the unbiased KL risk estimator, we potentially ameliorate the problems

of both sample fluctuation and density overfitting. Table 5.5 revealed that we can

always improve the mean KL loss by using kernel size m+ 1 bigger than n/2 and

less than n. Especially, when m + 1 = (3/5) · n, the simulated mean KL loss was

the smallest, although its superiority compared with the case that m + 1 = n/2

was not dramatic. What is more, compared with the case discussed in Section

5.5.2, the gain of reducing mean loss by using subsample size m < n to estimate

the risk was not as very obvious here when use Kullback-Leibler distance.

Figure 5.7 displays the density estimates for ĥKL. The mean of ĥKL shifted to

the right as m became smaller. Meanwhile, the variance of ĥKL reduced as m got

larger. Most importantly, we can see the differences in the left tails. For m ≤ n/2
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there were rare probabilities to select bandwidths less than 0.3, and this range of

values usually cause the undersmoothing problem.

When it comes to the comparison with the bandwidth selector based on L2

loss, in general ĥKL yields slightly smaller optimal bandwidths than the L2 loss

approach. Moreover, the former method also gives us bandwidth selector with

slightly smaller standard deviation given the same value of m.

5.5.4 Implementing the Unbiased Variance Estimator

In order to investigate the performance of our proposed unbiased variance estimator

under the context of risk estimation, we carried out simulation study by comparing

it with some bootstrap variance estimators.

5.5.4.1 Variance of UL2

For the unbiased risk estimator dependent on L2 loss, the U-statistic is constructed

based on kernel K?
h(x1, x2) (5.5.9). Because the kernel size is small, it is feasible to

calculate the complete U-statistic and accomplish the unbiased variance estimation

by (3.16). The simulation results are shown in Table 5.6.

True Unbiased Nonparametric Balanced Smoothed Parametric

(simulated)

Ê(U
L2 ) -0.272916 -0.273623 -0.281437 -0.28136 -0.27955 -0.27552

ˆV ar(U
L2 ) 0.000464 0.000467 0.000499 0.000502 0.000493 0.000478

SD{ ˆV ar(U
L2 )} 1.525e-4 1.417e-4 1.416e-4 1.307e-4 5.850e-5

CompTime 40.76 hr 2.88 hr 3.02 hr 4.47 hr 2.33 hr

Table 5.6. Risk Based on L2 Distance: R = 200 size-n samples (n = 100) are drawn

independently from standard normal distribution. For each bootstrap algorithm, 1,000

resamples of size-n are considered. The simulated true values are based on 5,000 random

samples on the basis of (5.5.15). The standard deviation for the Gaussian kernel (h) is

taken to be the selected bandwidth by minimizing UL2 when m = n/2.

As seen in Table 5.6, when kernel size is relative small compared with sam-

ple size n, the complete unbiased variance estimator does not have much gain in
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terms of computation. However, its unbiasedness is obvious while compared with

bootstrap variance estimators.

What is more, by referring to Hoeffding-decomposition, the variance of UL2 has

the following closed form

V ar(UL2) =
4(
n
1

)δ2
1 +

1(
n
2

)δ2
2, (5.5.16)

where δ2
j = V ar[hj(X1, ..., Xj)](j = 1, 2), and h(j)(x1, ..., xj) = φj(x1, ..., xj) −∑j−1

c=1

∑
(j,c) h

(c)(xν1 , ..., xνc)− θ are the orthogonal terms in H-decomposition .

In particular, with the form of K?
h(x1, x2) in (5.5.9) determined by a Gaussian

kernel, we have

φ1(x) =
1

2hm
√
π

+
m− 1

m

1√
2π(2h2 + 1)

e−x
2/(2(2h2+1))

−

√
2

π(h2 + 1)
e−x

2/(2(h2+1)

in this case.

Since here the kernel size is negligible compared with the sample size n, using

the asymptotic variance as an estimate seems justifiable. The asymptotic variance

for UL2 is the first term in (5.5.16) and is about 0.000447 by simulation. As stated

in Chapter 1, the asymptotic variance is always biased downwards, even though it

is a reasonable alternative when the fraction of kernel size over sample size is 1/50.

In addition, the asymptotic variance estimator is also smaller than the unbiased

variance estimator on average.

5.5.4.2 Variance of UKL

For the U-statistic risk estimator based on Kullback-Leibler loss, the kernel func-

tion is of order n/2. In this case, using the asymptotic variance estimator is clearly

inappropriate. In addition, when sample size n is large, computing the closed form

variance also becomes impractical. Therefore, it is reasonable for us to consider

alternative methods, such as the proposed unbiased variance estimator.

However, one problem here is that the number of possible subsamples of size

n/2 is truly huge for large n. Consequently, we will use the incomplete U-statistic
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and apply the Type 2 resampling scheme (4.1.10) to realize the unbiased variance

estimator. In Table 5.7, two different numbers of subsamples used to construct the

incomplete U-statistic are considered and compared.

B = True Unbiased Nonparametric Balanced Smoothed Parametric

1000 subsamples (simulated)

Ê(UKL) -1.44660 -1.44654 -1.42464 -1.42458 -1.43036 -1.46915

ˆV ar(UKL) 0.005114 0.004919 0.004306 0.004327 0.004364 0.005336

SD{ ˆV ar(UKL)} 0.002258 0.001105 0.001126 0.001104 0.000249

CompTime 0.018 hr 8.40 hr 8.39 hr 8.58 hr 8.52 hr

B = True Unbiased Nonparametric Balanced Smoothed Parametric

5000 subsamples (simulated)

Ê(UKL) -1.44660 -1.44661 -1.42463 -1.42599 -1.43023 -1.44853

ˆV ar(UKL) 0.005114 0.004885 0.004317 0.004327 0.004330 0.005182

SD{ ˆV ar(UKL)} 0.002176 0.001086 0.001093 0.001080 0.000311

CompTime 0.089 hr 42.58 hr 42.33 hr 42.21 hr 42.69 hr

Table 5.7. Risk Based on Kullback-Leibler Distance: R = 200 size-n samples (n = 100)

are drawn independently from standard normal distribution for each method. For each

bootstrap algorithm, I resampled 1,000 times for each size-n sample. The standard

deviation for the Gaussian kernel (h) is taken to be the selected bandwidth by minimizing

UKL when m = n/2.

When m/n is a relatively large fraction, the unbiased variance estimator is

much less computationally intensive compared with bootstrap methods. Moreover,

it provides us with an estimate with the highest accuracy, although bootstrap

variance estimators tend to be more precise. Besides, we can also notice that the

number of subsamples B used to construct the incomplete U-statistic does not

seem to be crucial in improving the estimation.



Chapter 6
Future Work

6.1 Comparing Bootstrapping and Subsampling

First of all, notice that the unbiased variance estimator based on formula (3.1.6) can

be considered as a subsampling estimation. Therefore, the comparison between the

unbiased variance estimator and bootstrap variance estimators is then equivalent

to the comparison between subsampling and bootstrapping. According to Table 3.1

to 3.3 (and also Table 5.6 and 5.7), it can be seen that subsampling estimate (i.e.

the unbiased variance estimate) can have smaller bias but larger standard deviation

compared with its bootstrap counterpart. A similar conclusion can be made from

Table 4 in Lindsay and Liu (2009) [25]. The difference between these two estimates

become negligible as the effective sample size (i.e. n/m, where n is the sample size,

and m represents the subsample size) gets large enough. We are expecting that

there should exist a variance estimator in between bootstrap and subsampling that

has smaller variation but has some small bias. Such an estimator should be a good

trade-off solution for the subsampling and bootstrapping algorithms. In order to

further understand the merits of these two approaches, we plan to compare their

forms on the basis of Hoeffding-decomposition structure and investigate whether

we can modify the dominating bootstrap-version decomposed variance term(s)

somehow in order to attain an improved variance estimator.
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6.2 Estimating Variance with V̂u

When it comes to the two resampling schemes, both of them are aimed to provide

an unbiased realization of the unbiased variance estimator, V̂u. In this aspect, they

should result in non-significantly different realizations. However, from another

aspect, Type 2 resampling scheme tends to use more nonoverlapping pairs of size-

m samples to estimate Q(0). Especially when the resample size B is not large, the

difference of the number of nonoverlapping pairs used in Type 2 scheme should

be substantially larger than that used in Type 1 resampling scheme. The gain of

Type 2 resampling scheme in terms of realizing V̂u and estimating the variance of a

U-statistic need to be thoroughly studied and stated via some simulation examples.

6.3 Forcing Positive Variance Estimations

The possible negative estimations based on the unbiased variance estimate for-

mula (3.1.6) leads to three potential adjustments proposed in Chapter 3. How-

ever, there remains a question about how to realize these adjustments efficiently

in practice. One natural thought is whether we could involve resampling idea into

the realization of the proposed adjustments. Moreover, comparing the proposed

improvements on V̂u also deserves more efforts. For instance, some simulation ex-

amples should be developed to compare the performance of the complete unbiased

variance estimator V̂u with these adjusted non-negative variance estimators.
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