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Abstract

As the demand for computational resources and connectivity increases and con-
temporary computer network systems become more complex, the management of
cyber security is progressively becoming a serious issue.

Cyber situation recognition is a challenging problem, particularly when the
network size is large. The amount of data produced by existing intrusion detec-
tion tools and sensors usually significantly exceeds the cognition throughput of a
human analyst. In attempting to align a huge amount of information and the lim-
ited human cognitive load, a critical disconnection between human cognition and
cyber security tools has been identified. Although the problem of cyber intrusion
detection has been studied from several perspectives using various approaches, the
key component to bridging the gap between existing tools and human analysts’
experiences is missing. A method to capture and leverage cyber security exper-
tise for situation recognition from a high-level viewpoint on the entire network is
important, but it is rarely mentioned in the literature.

The goal of this research is to address the problem of cyber intrusion recognition
from the viewpoint of leveraging cyber experts’ experiences and reflections. We
developed a systematic approach to capture and utilize experiences and reflections
of security analysts to enhance cyber situation awareness.

The contributions of the research include: 1) proposing an approach to en-
able systematic capture of experience and reflection of cyber security analysts; 2)
enhancing the recognition of cyber situations using the captured experiences of
cyber security analysts; 3) providing a knowledge-based strategy for relaxing the
constraints of Horn logic-based experience patterns to enhance their utilization;
and 4) demonstrating the benefit of experience-based cyber situation recognition
through simulations.
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Chapter 1
Introduction

1.1 Research Motivation

As computer systems and networks have become more important within orga-

nizations and enterprises, side effects resulting from the growing scale of these

systems have become critical issues. Contemporary computer network systems in

mid-to-large size organizations tend to be very complex, consequently introducing

greater challenges in their management and security control. In addition, due to

the increasing demand for ubiquitous computing, more and more network-enabled

devices are being developed and used in daily life, evoking an awareness that the

issues we face today will likely grow more complicated in the foreseeable future.

Over time, intrusion activities affecting computer networks have occurred with

increasing frequency, posing serious threats to governments, corporations, and

other entities. Computer security has become a high priority, especially within

organizations which deal with sensitive information. If the networked entity un-

der attack is the military, its soldiers may be exposed to great danger. If an

intrusion is targeted at acquiring business secrets, a corporation might suffer huge

losses. Cyber intrusion could also introduce international tensions between coun-

tries, such that it would affect a large number of people and cause damage difficult

to estimate. Clearly, cyber security and its relevant issues have become critical

and are commanding increased attention. Efforts toward developing anti-intrusion

methods and enhancing the roles of cyber security analysts are needed more than

ever.
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In order to react promptly to potential threats, it is critical to monitor organi-

zation networks and identify intrusion activities. When an incident is detected, it

is highly desirable to know what kind of intrusion it is and exactly how it occurred.

Understanding the process through which an attack was prosecuted can help pre-

vent a future recurrence. For the purpose of security monitoring, several existing

tools and sensors can be deployed to support event monitoring and cyber situation

awareness (C-SA), a concept recently extended to the cyber security domain[1].

In addition to installing these sensors, there is a trend toward creating a cyber

security situation room dedicated solely to monitoring an entire network system

and to supporting an immediate response to an attack. In a cyber security situ-

ation room, however, the monitoring task usually involves a tremendous quantity

of information, such that the security analysts are likely to be flooded with data.

Even in network systems consisting of only a few hosts with a simple topology,

the analysts may easily become confused by familiar scenarios with subtle differ-

ences. Regardless of network size, it is a challenge to deal with and react to new

or unknown attack approaches. Security issues must be discovered and resolved

as quickly as possible, and it is often difficult for an analyst to develop a good

response under time pressure. Therefore, it is of no small importance to create

computer systems to support these cyber security analysts.

1.1.1 The Missing Piece of Cyber Security Analyses

The issue of cyber intrusion detection has been studied from several perspectives

[2][3]. One approach is to utilize rule-based systems to support localized intrusion

detection, such as a subsystem on a particular host. Another approach relies on

statistical methodologies that build a profile of normal behaviors and use it to

detect abnormal behaviors. A model-based approach is built on the knowledge of

how a particular attack is prosecuted. A neural network-based approach makes

no assumption involving specific models or parameters, but it fails to consider

an underlying causality relationship among the vulnerabilities. A common disad-

vantage of these approaches is that they can only deal with known incidents; for

unknown attacks, time is required to identify and investigate the situation before

constructing new rules or models to handle it.
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The above-noted approaches are primarily used for security management on a

single server. In order to obtain an overview of the vulnerabilities within an entire

network, attack graphs (or vulnerability graphs) [4][5][6] have been developed and

studied. An attack graph is constructed by delineating the dependencies among the

vulnerabilities of an entire system. Conceptually, it can be viewed as a vulnerability

roadmap toward compromising the system. An attack graph can serve as a guide

for system administrators to monitor and manage a network.

Many intrusion detection systems (IDS) have been developed for detecting cy-

ber incidents; these may be briefly categorized into host-based intrusion detection

systems (HIDS) and network intrusion detection systems (NIDS). These systems

can be deployed on computers or network devices to produce alerts or reports re-

garding known attacks based on predefined configurations. They can provide a

reasonable level of information for system administrators to monitor the health of

the hosts and the network.

Unfortunately, these approaches can only deal with known attacks. There-

fore, human analysts are vital in new or unknown attack situations. However, the

amount of data generated by these tools is usually much larger than the cognition

throughput of a human analyst. Due to the confluence of huge amounts of infor-

mation and the limited human cognitive load [7][8], it is challenging to ensure that

a cyber analyst can keep a consistent level of concentration and make reasonable

decisions under an unprecedented data supply. This challenge introduces a critical

disconnection between human cognition and cyber security tools. At present, there

is scant research addressing this problem, and few studies exist that show how to

capture and leverage expertise to support cyber situation awareness. As shown in

Figure 1.1, much research work has targeted the bottom layers of human-centric

cyber security research, but the layer linking human decision support to those lay-

ers has not yet been established. Thus, a solution that can bridge this gap would

make a significant contribution to the field of cyber security awareness.
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Figure 1.1. Human-centric cyber security research stack.

1.1.2 Leveraging Experts’ Experience in Cyber Security

Analyses

The goal of this research is to address the problem of cyber situation recognition

by leveraging cyber security analysts’ expertise, as a step toward developing a

methodology for handling unknown or new attack approaches. Experienced cy-

ber security experts may leverage their knowledge about attacking patterns to

recognize and identify potential incidents according to reported alerts. However,

intruders may act at any time from anywhere around the world, such that moni-

toring cyber events becomes a heavily loaded task. Without guidance from expert

experience and knowledge, there is potential for a combinatorial explosion in the

search space of identifying and analyzing undesirable incidents. Consequently, it

would be useful to develop a methodology for building systems with the capacity to

retain experts’ knowledge, to share their workload, and to cover their blind spots.

Humans are capable of learning from history, and experience can be accumu-

lated that enables us to prepare for similar situations in the future. Experience

plays an important role: what we learn from past incidents can help us focus on
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present important and specific conditions at times when it is difficult to investi-

gate and review all possible influencing factors. Research on leveraging human

experience had been studied for different purposes and across various domains [9].

Instance-based learning theory (IBLT) [10] was proposed to explain the process

of how a näıve becomes an expert through experience accumulation; this theory

has been proven through simulations using the ACT-R cognitive architecture [11].

Experience-based decision making has also been studied when overlaid on the R-

CAST agent architecture [12][13], a multi-agent framework featuring variations

of the recognition-primed decision (RPD) model [14][15]. In addition, experience

matching under a large feature space has been studied and addressed using geo-

metric diffusions [16]. For cyber situation awareness, experience-based approaches

are also emerging which have captured research attention [17].

Experience-based recognition and matching is a promising problem-solving ap-

proach, but the details of solutions can vary from one particular domain to another.

It requires the knowledge of a specific domain in order to decide how to capture a

current situation, how to represent experience and corresponding knowledge, and

how to match experience to that current situation. Therefore, in order to develop

an experience-based approach for bridging the gap between human cognition and

cyber security tools, the characteristics of a network system from cyber security’s

perspective should be well identified.

1.2 Problem Description

In order to apply experience-based cyber security analysis, it is fundamental to

capture the characteristics of a network system from the perspective of cyber in-

trusion detection.

First, a network system has vast quantities of information or events contin-

uously happening within it. Multitudes of network activities, either normal or

malicious, run throughout the entire system. A cyber security analyst needs to

identify potential attacks based on an enormous number of activities or events.

Second, there are causal relationships among a network’s events due to the

dependencies among the vulnerabilities, where one or more events serve as the

precondition for another event. For example, if a target host is protected behind



6

a server, the attacker needs to compromise this server before reaching the target.

The action of compromising the server is a precondition for attacking the target

host. Causal relationships can vary in different parts of the system according to

the vulnerabilities depicted in the attack graph [4][6][18]. Some events may have

only one precondition, while others may have multiple conjunctive preconditions.

Third, the event of interest or significant importance can be implicit or hidden.

Collecting information is critical to making a good decision. However, this is not

always a straightforward task because some information may exist implicitly or

be hidden behind other factors, and some information may be inaccessible or very

difficult to obtain. Therefore, additional sensors or probes may need to be allocated

in order to obtain the information. For instance, file integrity checking tools such

as Tripwire [19] may be used to check whether the file system on a specific host has

been modified, but additional time and cost are required to make the tool available

to the analyst.

Fourth, the task of an analyst is to continuously monitor a system and de-

termine whether there is any undesirable situation occurring in it. For example,

one duty of a corporate information technology service department is to monitor

abnormal events that may indicate potential attack activities against the corpo-

ration’s network. The task is to decide whether there is an attack, what type of

attack it is, and how the attack is being prosecuted.

These four characteristics are of significance when developing experience-based

cyber security analytics. They can be used to form the basis for building an

abstract model to guide the way in which an experience can be constructed and

refined.

In this research, we address the decision making problem under the cyber se-

curity problem domain, which consists of events that are difficult to observe by

analysts but may be detected indirectly by sensors. Specifically, our goal is to

identify potential incidents such that an undesirable incident can be controlled

before it develops into a catastrophic event. The characteristics of this problem

can be summarized as follows:

• Intrusion incidents are made by malicious entities, which tend to approach

or attack the system through an abnormal and unpredictable way. Each

intrusion incident may consist of several steps, where each step is a discrete
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attack against the system.

• In order to obtain an overview of all possible types of intrusions, all the known

vulnerabilities can be integrated into an attack graph with their dependency

relationships [20]. An attack graph captures the dependency relationships

among vulnerabilities but does not deal with concrete alert instances. It is

a roadmap showing all possible routes toward compromising a system.

• Given an attack graph, it is essential to identify important attack steps and

formulate them as types of events. Since the event types come from the

attack graph, there are known causality relationships among them. These

come from the dependencies among the vulnerabilities existing in the system.

An attack step cannot happen if its precedent attack step does not succeed.

• The events of interest cannot be directly observed, but they can be indirectly

monitored through alerts generated by sensors or detectors. These alerts form

a sequence and are sent to the decision maker. Each alert is associated with

a hidden event and thus contains the information about both the alert itself

and its associated hidden event.

• An event can trigger multiple alerts of different types, if more than one sensor

is installed and associated with this type of event.

• In an ideal case, every sensor is deployed for monitoring exactly one type of

event. However, due to budget constraints or other technical considerations,

a sensor may be installed for monitoring a group of hosts or more than one

type of event; therefore, it might sometimes be difficult to retrace an exact

type of event given an alert generated by this kind of sensor.

• An alert may be delayed.

• An alert may be missing.

• Multiple incidents could occur in an interleaved manner.

• There exist alert correlation engines that process alerts and generate corre-

lation reports. These reports indicate which alerts are correlated [21]. An
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alert correlation engine can indicate which alerts are correlated but cannot

guarantee which alerts are not correlated.

• In addition to the attack graph, an alert correlation report can also serve as

a clue to the causality relationship among the underlying events indicated in

the report.

• A cyber security analyst is asked to make decisions based on all observable

information from a system, including both run-time alert sequences and run-

time correlation information. In order to make a decision, the following

criteria are important and should be under the analysts’ consideration:

– Causal relationships among the hidden events

– Temporal order of the hidden events

– Temporal order of the observable alerts

– Correlation information

In this research, we will address and answer the following research questions:

• How can we reduce the cognitive load of a cyber security analyst?

• How can we formalize the structure of a network system from the viewpoint

of cyber intrusion detection?

• There is a combinatorial explosion in the search space of identifying and an-

alyzing undesirable incidents from the run-time information. Leveraging ex-

perts’ experience in cyber intrusion detection would reduce the search space.

How can we capture and leverage experts’ experience to make decisions?

1.3 Research Scope

The aim of this research is to address the problem of cyber situation recognition

from the viewpoint of leveraging cyber experts’ experiences and reflections. The

research scope covers both the field of cyber security and the field of decision

making. More specifically, naturalistic decision making based on human experience

[15] is a particular field that is relevant to our study.
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1.4 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 outlines the

relevant research background and related work. Chapter 3 gives the details of the

experience-based approach for cyber security analysis, including the specification of

the partially observable event-alert model and the concept of experience relaxation.

The engineering and implementation of a decision support system based on the

experience-based approach is described in Chapter 4, followed by simulations and

experiments in Chapter 5. Chapter 6 concludes the dissertation.



Chapter 2
Background and Related Work

This overview of the background and related work first addresses the literature

regarding network security, and then moves on to decision making and decision

analyses. Next we discuss the concepts of data fusion and situation awareness

as well as that of an information supply chain, since information is a key factor

to the success of situation awareness and decision making. Finally, because the

network vulnerabilities and their dependencies can be extracted as a graph model

featuring heterogeneous types of nodes and links, we end this chapter with a review

of network science literature.

2.1 Network Security

Computer network security has been studied from multiple perspectives using var-

ious approaches [2][3]. Over time, assorted types of intrusion detection systems

(IDS) have been developed. Some intrusion detection systems are designed to

identify incidents based on known attack patterns, while others function by mak-

ing profiles of normal behaviors and identifying anomalies based on them [21].

As noted in Chapter 1, intrusion detection systems can be categorized into

host-based intrusion detection systems (HIDS) and network intrusion detection

systems (NIDS). Both types can be deployed to generate an alert or an incident

report based on predefined configurations. An HIDS is an application deployed

on a host which detects intrusions based on logs, specific files, system invocations,

or other internal behaviors. OSSEC [22] is an example of a host-based IDS. A



11

NIDS does its work by monitoring network traffic and examining the content of

exchanged packets. Snort [23] is an example of a network IDS presently popular

in the industry. To augment these systems, applications can be developed and

overlaid to satisfy more specific detection requirements or goals. For example, the

work of [24] is based on the use of a nondeterministic automaton to analyze the

equivalence of rules on individual hosts, an idea evaluated using Snort.

In addition to intrusion detection systems, anti-malware applications also play

an important role in network security. These are designed to detect the installation

or execution of malicious software such as viruses, worms, or Trojan horses [25].

Another intrusion detection tool is a file integrity checker, designed to monitor

modification activities on a file system such as the creation or deletion of files. An

example of such type of system is Tripwire [19].

With assistance from these tools, intrusions and incidents occuring in local

portions of a network may potentially be detected. However, given the enormous

volume of data generated by these tools, it has become highly desirable to use an

alert correlation mechanism that can filter out noise and process scattered alerts

to generate more meaningful information.

Alert correlation is a key part of cyber security research. It has been studied

and addressed using various approaches and techniques [21][26]. Its fundamental

work is alert aggregation. To perform this, a prerequisite step is to convert alerts

having different layouts into a consistent format. The normalization of alerts can

be realized through the use of a common encoding language such as the Intrusion

Detection Message Exchange Format (IDMEF) [27], where the messages in IDMEF

can be exchanged with the Intrusion Detection Exchange Protocol (IDXP) [28][29].

The normalization of alerts can also be achieved by referring to public vulnerability

databases such as Common Vulnerabilities and Exposures (CVE) [30] or BugTraq

IDs [31].

Alert aggregation may be based on the similarity in attributes such as attacker’s

IP address, target’s IP address, port number, attacking time, or class of attack

[32][33]. An alternative approach to alert aggregation is clustering, which uses

dissimilarity in attributes as the metric for determining the distance between each

pair of alerts [34]. While addressing the alert correlation problem in a systematic

and flexible way, the clustering approach is less persuasive when the cluster size
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and the weight of each attribute are difficult to determine.

Other methodologies using machine learning techniques based on their simi-

larities have been developed [35][36]. The causality relationships among alerts are

also addressed in certain alert correlation research [21]. Scenario-based or state-

based correlation tests whether or not a set of alerts can be assembled as an attack

scenario [37][38]. This approach requires a preknowledge of possible attack sce-

narios, which can be described in formal specifications such as STALL [39] and

LAMBDA [40]. Rule-based correlation is performed by checking and matching

the preconditions and postconditions of the alerts [41][42][43][44][45][46]. As for

statistical correlation, the approaches in [47] and [48] leverage Bayesian networks

to statistically construct causal relationships among the alerts; however, obtaining

a precise conditional probability table (CPT) may be challenging work when using

the Bayesian approach.

As for causality relationships, it is feasible to obtain a comprehensive list of

known vulnerabilities and their dependencies from a given network system. These

vulnerabilities can then be integrated into a dependency graph, also called an

attack graph or a vulnerability graph [5][49]. An attack graph can serve as a fun-

damental guide for recognizing possible attacking steps under a particular network

system.

Given a network configuration including all networking devices, firewall rules,

operating systems and software running on the hosts, as well as other relevant

settings, an attack graph can be constructed to show all possible intrusion paths

towards compromising a given system [4][6][18][20]. The graph is a deterministic

diagram that can be automatically generated using software tools such as CAUL-

DRON [50].

Although attack graphs appear in different forms in the literature, their concept

and purpose are the same. A graph consists of a number of vulnerabilities with

their preconditions and postconditions. Each node in an attack graph represents a

single step, which can be either the compromise of a service on a specific machine

or some form of state change on a host. The edges in an attack graph show the

causality relationships between the nodes, and the precedent node is always the

precondition of its subsequent node. A node becomes reachable only after all

its preconditions are satisfied. Based on the graph’s information, a cyber security
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expert can use it as guidance to identify potential attacks and to take corresponding

actions for handling the situation. Moreover, an attack graph can serve as the

basis for building other security analysis tools; for example, the Bayesian network

approach in [51] builds networks based on underlying attack graphs.

There is plenty of research addressing elements of network security. However,

little work exists connecting cyber security analyst expertise with cyber situation

recognition. The aim of this research is to bridge this gap from the perspective of

leveraging human cyber security experts’ experiences, which is directly related to

the area of decision making. Therefore, the following section provides an overview

of research on decision making and decision analysis.

2.2 Decision Making and Decision Analysis

Decision making is a long-standing challenge, ubiquitous across various domains

such as business strategizing, financial planning, situation awareness for battle-

fields, anti-terrorist agency policy making, and cyber situation awareness [1]. Al-

though these domains have different emphases and operate at different scales, they

share common properties; thus they should be able to be addressed in a general

way, allowing for specialized designs in the details.

In general, decision making is the process of situation evaluation involving

information collection and human cognitive activities in order to produce final

choices from among alternatives [52]. Decision making involves multiple cognitive

steps and activities. How humans make decisions has been studied for decades,

and relevant models exist in the literature, including the utility theory [53][54],

ideal rational decision-making [55], and naturalistic decision-making [14][15]. To

evaluate the situation for a complex problem domain, decision makers not only need

to process information but also to infer facts lying beneath the surface. In this

circumstance, decision makers may easily be distracted or overloaded by multiple,

simultaneous activities. Therefore, it may be beneficial to use a computer-based

decision support system to assist in analyzing those complex problem elements

which are difficult for humans to clarify but relatively easier for computers.

Historically, relevant decision-making research can be traced back as far as

the 18th century to Bernoulli’s measurement of risk (1738) and Bayes’ theorem
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(1763). More recently, brief history of decision analysis research across economics,

statistics, and psychology was provided [56] by Smith and von Winterfeldt. These

authors identified three different perspectives in decision-making research: 1)the

normative perspective, focusing on rationality and normative models as the guid-

ance for making a decision; 2) the descriptive perspective, focused on how humans

actually make decisions, and what they think and how they behave; and 3) the pre-

scriptive perspective, for improving decision making by “using normative models,

but with awareness of the limitations and descriptive realities of human judgment.”

(p.562) Smith and von Winterfeldt showed how prescriptive decision analysis re-

search is established on the basis of normative and descriptive decision making.

The challenge of decision making has been studied from multiple perspectives.

Significant research from the psychological perspective been conducted to analyze

how people make decisions. Studies have shown that the way humans actually

make decisions is quite different from the ideal “rational model.” According to

prescriptive models, a rational decision-making process consists of the following

steps: defining the problem, identifying criteria, weighing the criteria, generating

alternatives, assessing each alternative on each criterion, and accurately calculat-

ing and selecting the optimal decision [55]. However, studies from the descriptive

viewpoint have demonstrated that human rationality is bounded such that decision

making is usually performed according to specific heuristics (or selection strate-

gies) such as availability, representativeness, anchoring and adjustment, and other

strategies [57]. With bounded rationality, humans are also likely to be affected by

bias—another research element within the psychological realm.

In 1989, the recognition-primed decision (RPD) model [14][15] was proposed to

explain how humans make decisions under time-stressed situations. It was found

that rather than trying to choose the optimal option, human experts tend to react

quickly to limited information by iteratively evaluating available alternatives and

selecting the first satisficing one. A later study focused on instance-based learning

drew a consistent conclusion [10]. In it, an instance-based learning mechanism

was implemented on top of an ACT-R cognitive architecture [11], and the learn-

ing curves of both näıve and expert decision makers (produced by simulations)

confirmed the instance-based learning theory (IBLT) [10].

A common goal of decision-making research is to improve the quality—usually
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defined as the outcome—of the decision, which can be evaluated based on its

correctness. The correctness of decisions is also influenced by the biases introduced

as a result of human cognitive flaw or incomplete information [55].

In addition to individual decision making, human behavior in group decision

making has been well studied. In group decision making, the quality of decisions

is affected by a number of factors such as information sharing, group norms [58],

member familiarity and information distribution [59], and decision biases such as

groupthink [60]. Moreover, previous studies have shown that the decision-making

process itself is also an important factor relevant to the outcome of the decision

[61].

Research from the psychological perspective has provided insight as to what

decision-making is, thus forming the basis of the design of computational models

for decision entities. This is especially helpful for developing decision support

systems involving human-machine interactions.

From the artificial intelligence perspective, decision-making problems have been

studied in several ways. One approach has been to simulate individual human

decision-making activities using a computational model. Through observation and

analysis of how humans make decisions, a psychological decision model can be

transformed into a computational model with well-defined logic and algorithms.

Due to the restrictions of computer systems and the differences between humans

and machines, a psychological decision model can be realized in different ways.

For example, the RPD model [15] has been realized in the RPD-Enabled Collab-

orative Agents for Simulating Teamwork (R-CAST) multi-agent architecture in

three different ways [12][13], where each is based on experiences organized into a

tree-like structure. In contrast, the RPD model has another implementation using

experiences organized in a flat structure [62].

Using a computational model, knowledge engineers can work with domain ex-

perts to build an intelligent system. This in turn can be utilized to build decision

support systems.

Decision support systems have been studied and developed using various ap-

proaches. One of the traditional forms is the expert system [63], typically equipped

with a question-and-answer interface. The underlying implementation of a decision

support system can be a knowledge base with inference capabilities [64], informa-
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tion retrieval techniques, data mining methodologies, or other computationally

feasible approaches. One of its advantages is the ability to reduce the cognitive

load of human decision makers by providing more organized and better-grained

information, perhaps even with friendly human-computer interfaces.

If we consider a decision-making task that involves a group of people, not

only the cognitive status of each individual decision maker but also his or her

interactions with other group members will play important roles in the process.

Group decision-making is performed by collaborative entities. In this circumstance,

the group of entities can be regarded as a team in which all the individuals work

cooperatively to make decisions [65]. As with group decision making, a decision

support system can engage a group of people. Therefore, the focus of a group

decision support system is not limited to individual decision makers; instead, the

whole decision process is incorporated into the system to support the cooperative

style of group decision-making.

The Decision Process Model [66] is a concept capable of representing a spe-

cific decision-making process and its internal activities. It is a hierarchical model

consisting of multiple expandable sub-processes, all of which can be stated in pro-

cess definition languages such as Business Process Modeling Notation (BPMN)

[67]. Many decision-making activities are cooperatively made by a group of people

using a predefinable decision process in order to minimize the risk and pursue a

better outcome. For example, Figure 2.1 illustrates a military decision process

involving multiple decision steps for dealing with potential targets. The process is

predefined based on a standard operating procedure. Each rectangle in the figure

represents a single step in the decision process, and the sequential relationships

are indicated with arrows.

Asset 

Allocation 

Security 

Selection 

Execution 
Evaluate 

Strategy 

Analysis 

Prioritize 

Identify Monitor 

Avoid 
Evaluate 

Decide 

Prioritize Prosecute 

Figure 2.1. An example decision process from the military domain.
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Another tool related to the Decision Process Model is the influence diagram,

also known as a decision network [68], proposed by Howard and Matheson. In-

fluence diagrams have been adopted by the artificial intelligence community as

a method for modeling decision making under uncertainty [69]. An influence di-

agram contains three types of nodes: chance nodes represent random variables,

decision nodes represent the points where decision makers need to make a deci-

sion, and utility nodes are function locations for calculating final utility based on

the input from other nodes. Howard and Matheson also provided a method for

solving a decision network by deriving a decision tree from it, but this approach

can be computationally costly since the tree may be exponentially large. In order

to evaluate influence diagrams, Shachter provided a solution that directly solves a

decision network without an intermediate decision tree [70]. Later, Zhang et al.

provided additional insight into how to evaluate decision networks from a computa-

tional viewpoint [71]. They introduced the concept of decomposability to decision

networks and introduced stepwise-decomposable decision networks (SDDN). An

algorithm based on a divide-and-conquer strategy was also developed for evaluat-

ing an SDDN. Since their development in the mid-1970s, influence diagrams have

been used and applied in diverse areas [72][73], including the analysis and evalua-

tion of team-based decision making under uncertainty by Detwarasiti and Shachter

[74]. However, the use and application of influence diagrams in some fields such as

medical decision analysis still remains limited [75].

2.3 Data Fusion and Situation Awareness

As articulated by Hall and Llinas, the intent of data fusion is to combine and

integrate data from multiple sensors to achieve a higher level of understanding of

the entity of interest in the environment [76]. Data fusion can take place at differ-

ent levels. At the level of raw data fusion, raw observational data are combined.

At feature-level fusion, representative features are extracted from the data. At

decision-level fusion, sensor information is further processed using methods such

as weighted decision techniques, Bayesian inference, or the Dempster-Shafer theory.

To standardize communication among researchers and developers, the terminology

related to data fusion was defined by the Joint Directors of Laboratories (JDL)
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Data Fusion Working Group, and the JDL Data Fusion Process Model was devel-

oped. The JDL model is a framework for data fusion systems, linking information

sources and human-computer interactions through a meshing of processing at level

1 (object refinement), level 2 (situation refinement), level 3 (threat refinement),

and level 4 (process refinement), and database management systems.

Based on the JDL model, Steinberg et al. proposed revisions and expansions

to facilitate the development and operation of multi-sensor systems [77]. These

included broadening the model beyond its original military focus and refining its

taxonomy. Level 0 (sub-object assessment) was added to incorporate data associa-

tion and characterization at the pixel or signal level. Llinas et al. proposed another

expansion to the JDL model [78]. This work was focused on better understanding

the internal processing in a fusion node, and incorporated extensions to the model

such as quality control, reliability, and the consideration of distributed data fusion

(DDF). Later, Llinas et al. proposed another expansion to the JDL data fusion

model [78]. Their work was focused on better understanding of internal process-

ing in a fusion node and some extensions to the model such as quality control,

reliability, and the consideration of distributed data fusion (DDF).

Tangentially, information is a key factor to the success of decision-making.

Accurate information can lead to better evaluation of a situation. Information

may be collected from multiple sources and might need to be consolidated and/or

further processed. These procedures may be viewed as value-added activities,

where each single step provides an improvement to the quality of the information.

The concept of the value chain as proposed by Porter [79] is a linkage of value-

adding activities. A product passingthrough the chain can gain value from each

activity, such that the overall value produced by the chain is more than the sum of

the value added by each individual activity. This concept can be further applied

to the entire supply chain to include value added from other cooperative organi-

zations. The object of value-adding in the value chain is not limited to products;

information can be improved through a value chain as well.

The concept of an information supply chain (ISC) proposed by Sun and Yen

[80] was developed to address information sharing issues in a teamwork environ-

ment. To achieve efficient and effective teamwork, each team member is expected

to anticipate the information needs of other teammates and proactively provide
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information to satisfy those information requirements. Sun and Yen’s research

covers information anticipation using a cognitive decision model, information re-

quirement planning (including requirement consolidation), and the integration of

multiple information acquisition strategies.

Surana et al. suggested that rather than as a literal chain, the concept of a

supply chain should be considered a network [81]. Further, Choi et al. [82] and

Pathak et al. [83] brought the concept of complex system or complex network

into supply networks. They suggested that the idea of complex system or complex

network should be incorporated in the design of a supply chain.

As a network, additional supply channels can be established in a system such

that its robustness can be improved. Thadakamaila et al. pointed out that the

topology of a supply network can affect its fault tolerance capability [84]. On the

other hand, it was also noted in Rice Jr. and Caniato’s research [85] that in a

supply network, a small portion of failure would possibly crash the whole system.

2.4 Network Science

Since the vulnerabilities and their dependencies within a network can be extracted

as a graph model with heterogeneous types of nodes and links, it is desirable to

explore relevant research in network science.

Network science has emerged as a research area which draws attention and

interest from people across a wide range of backgrounds. In 1998, Watts and Stro-

gatz proposed the model of small-world networks [86] in which they demonstrated

that the distance between two arbitrarily selected nodes in a social network is

surprisingly short, in terms of number of edges. The model of scale-free networks

proposed by Barabási and Albert shows a similar property [87]. The network gen-

eration algorithms of both models are regarded as capable of creating networks

similar to those in the real world.

Barabási and Albert investigated network topologies and connectivities from

multiple domains and determined the properties of scale-free networks as well as

how they are constructed [87][88]. A scale-free network is one in which the con-

nectivities of the nodes follow a power law distribution. This type of network is

ubiquitous in many fields where networks exist such as physics, geography, biol-
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ogy, sociology, and computer science. Evidence shows that a scale-free network is

formed by the process of continuously adding a new node to an existing network,

preferably a higher degree node. This observation provides insight into complex

systems from a network’s point of view.

Newman reviewed the developments in the field of complex networks [89], in-

cluding random graphs, the small-world model by Watts and Strogatz [86], degree

distribution, network correlations, clustering, the models of network growth, and

the behavior of dynamic processes that take place in networks. Boccaletti et al.

published a survey on elements of complex networks such as network structure,

network robustness, and cellular automata on topologies [90]. They also addressed

algorithms for finding community structure, navigation and searching within a

network, and the modeling of adaptive networks. Costa et al. published a survey

specifically on the measurements of complex networks [91]. In it, main existing

measurements of networks were addressed; in addition to simple features such as

node degree, shortest path length, and the clustering coefficient, more powerful

measurements from a topological perspective (such as connectivity) were also ex-

plored.

As for the topic of network topologies and their robustness, Albert et al.’s

research revealed why many complex systems in the world have a strong error

tolerant capability [92]. They demonstrated that the scale-free network is signif-

icantly tolerant of random failures, thus explaining why many existing complex

systems having this scale-free property can continue to function when portions of

their components become unavailable or are in error. Logically, however, scale-

free networks are still subject to failure if their most highly connected nodes are

malfunctioning or under attack.

Holme et al. conducted a study on complex networks subjected to different

attack strategies on nodes and edges; their results provide a guideline for how

to protect a complex network according to a topological perspective [93]. After

implementing the attack strategies, they measured and compared the damage. The

attack strategies included the removal of the node/edge with 1) the highest initial

degree, 2) the highest initial betweeness, 3) the highest recalculated degree, and 4)

the highest recalculated betweeness. To measure the damage caused by the attacks,

two kinds of metrics were defined: the average inverse geodesic length and the size
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of the giant component. They applied the experiments to two real networks and

four theoretical networks: random, small-world, scale-free, and clustered scale-free.

The strategies based on recalculated information were shown to be more efficient

than those based on initial information, thus implying that it is important to

consider the change in a network structure during an attack process in order to

efficiently protect a network. Significantly, their results also indicated that none

of the four theoretical models resembled the two real networks, which means there

is ample room for improving the theoretical models. The results also showed that

the random graph model is more robust than the other subject networks, implying

that a serverless network would be more robust to attack.

According to Newman, the assortativity of a network can affect its robustness

[94]. Assortative mixing is a network property in which high-degree nodes tend

to attach to other high-degree nodes. Newman found that assortative networks

are more robust than disassortive networks to the removal of high-degree nodes.

His explanation is that these high-degree nodes tend to be clustered in the core

of the network, such that their roles in the network are somewhat redundant. In

this study, assortativity coefficient is defined for measuring the assortativity of a

network. The measurement was taken on social networks, technological networks,

biological networks, and three other specific kinds of networks including random

graphs [95], the growth graph model of Callaway et al. [96], and Barabási and

Albert’s growth model [87]. However, the result of Barabási and Albert’s growth

model is inconsistent with the expected outcome, thus indicating the incomplete-

ness of the metric.

In 2008, Grubesic et al. published a paper providing a review of the approaches

to assess network robustness and vulnerability to disruption or interdiction [97].

These approaches can be categorized into scenario-specific, strategy-specific, and

structured approaches. The article include an empirical study based on the Abilene

network. Both global metrics and local graph theoretic measures were taken from

the network and showed different results, leading the authors to conclude that the

analyses for both scales need to be considered together. In addition, connectivity

and network flow vulnerability were also assessed under seven cases, including the

best-case and the worst-case scenarios that form the upper and lower bounds for

disruption impacts.
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The percolation of networks is also of interest as it relates to cascading node

failures in networks. Callaway et al. present a solution for predicting the behav-

ior of networks under cascading breakdowns [98]. They used generating function

methods to study the behavior of various percolation models on random graphs

with different node degree distributions. The results show that networks following

a power-law node degree distribution are robust against the random removal of

nodes but fragile in response to the removal of highly connected nodes.

Kong and Yeh presented a study of the cascading node failure problem in

wireless networks from a percolation-based perspective [99]. Using simulation to

test their predictions, they found that cascading node failure in large-scale wireless

networks can be modeled as a degree-dependent site percolation process on random

graphs.

Network resilience and efficiency are two further dimensions for evaluating a

dynamic network, and there are trade-offs between the pursuit of either one. Gut-

fraind presented an approach to achieve an optimal network by striking the balance

between resilience and efficiency [100]. It involved formulating the constraints as

a multi-objective optimization problem based on the metrics defined for efficiency

and resilience.

On a final note, Carley et al. presented a dynamic network analysis tool kit

developed at Carnegie Mellon’s CASOS laboratory [101]. This tool kit is capable

of handling network data with a mixture of node types (multi-mode) or various

types of relations between any two nodes (multi-plex), as well as networks with

data changing over time. It also provides functionalities such as data extraction,

visualization, analysis, and simulation. For data persistence, this tool kit supports

the exchangeable data format DyNetML, which was proposed by Tsvetovat et al.

[102].



Chapter 3
Experience-Based Analytics for

Cyber Situation Recognition

In order to address the challenge of cyber situation recognition, we developed an

experience-based approach inspired by Klein’s recognition-primed decision model

[15]. We also constructed the framework for a partially observable event-alert

system to use as a ground model to support analysts’ decision-making. Then, in

order to analyze how human experts make decisions about similar situations based

on the experience of discrete past incidents, we introduce the concept of experience

relaxation, intended to utilize a limited number of experiences by extending their

applicability.

In this chapter, we first investigate the concept of experience and how it can

help in decision making. Second, we generate a formal specification of the par-

tially observable event-alert system, which serves as the basis for assisting decision

making and experience relaxation in cyber security analyses. Third, we discuss

how experience can be captured, represented, and used for supporting cyber sit-

uation recognition. Finally, the concept of experience relaxation with its logical

foundation is introduced.
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3.1 Experience-Based Situation Recognition and

Decision Making

According to psychological studies, experience plays a very important role in hu-

man decision making. The recognition-primed decision (RPD) model [15] reveals

how decision making under time stress is performed by cue matching against past

experiences. Coincidentally, a study from a different point of view, instance-based

learning theory [10], draws a consistent conclusion, proving that experience is ac-

cumulated through the learning process as one progresses from näıve to expert.

As mentioned in 2.2, one approach to studying decision making based on the

artificial intelligence perspective is to simulate human decision-making activities

with computational models. By applying this method, a psychological decision

model can be transformed into a computational model with well-defined logic and

algorithms. In it, experience and knowledge elicited from domain experts can be

used to build experience bases, which may then be used in corresponding computer

systems.

The idea of the experience-based approach is conceptually depicted in Figure

3.1. Experience accumulation and situation recognition are two major components

of this process. Past intrusion incidents, intrusion reports, and relevant analyses

can be processed and used as an experience base. When a new alert sequence takes

place, an analyst can match this sequence with data in the experience base to find

similar situations from the past, a process wherein each situation can be retrieved

and presented with its associated reports and/or reflection letters from previous

analyses. The recognition results can help the analyst to make decisions and take

corresponding actions. After the intrusion is properly handled, the new decision

and the analyst’s reflection can also be captured as new elements of the experience

base. These steps may recur in turns and form a continual process; in the mean-

time, the experience base continues to expand and contains more information for

supporting future recognition.

The experience-based approach is intended to solve the decision-making prob-

lem in a way that not only can incorporate domain experts’ experience for known

attacks but also can quickly capture new types of attacks in terms of their sig-

natures. Additionally, it is desirable to have the experience construction process
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Figure 3.1. Experience-based situation recognition.

automatically performed by the system. We believe that the creation and nurture

of a knowledge container of experiences is the key to building the bridge between

cyber security situation awareness and analysts’ knowledge.

Another benefit of leveraging experiences for decision making is that the search

space can be reduced by checking only the experience extracted from domain ex-

perts instead of reviewing all situations, many of which are not likely to happen.

Instead of assessing all possible combinations, attention is paid to what has been

captured in the experience base. In this way, the cognition overhead of decision

makers can be reduced.

3.2 Partially Observable Event-Alert System

In order to deal with the problem, we set out to develop a formal model to capture

the characteristics of a network system from the viewpoint of intrusion detection.

In this section, we identify some important system features using an example, and

then present a formal model specification of the partially observable event-alert
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system. This model provides an abstract view of a complex system in terms of the

events of interest, their causality relationships, and their corresponding observable

alerts. This model can serve as a basis for assisting decision making and experience

relaxation for cyber security analyses.

3.2.1 Important Features for Cyber Security Analysis

Given a network system, an attack graph can be constructed to show its vulnera-

bilities and their dependencies. For intrusion detection, particular types of events

of interest in the network can be identified based on the guidance from its corre-

sponding attack graph. Since electronic events in a computer system cannot be

seen by human beings, in order to monitor these events of interest, sensors such as

HIDS, NIDS, anti-malware, or other devices must be deployed by the administra-

tor. These sensors will generate alerts when the driving events occur.

For example, the scenario from [49] contains three hosts in a simple topology.

This configuration allows two possible ways of exploits as shown in Figure 3.2.
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Figure 3.2. Attack scenarios on the example network.



27

Based on the attack graph for this scenario from [51], six types of events and eight

corresponding types of alerts can be identified as shown in Figure 3.3, where each

dashed arrow indicates the triggering relationship from an event to an alert.

From the diagram in Figure 3.3, additional features can be extracted as follows.

First, there is a list of alert types as shown in Figure 3.4, which are observable

to the analyst. Second, each alert contains information about its triggering event.

This relationship is indicated by the dotted lines running left to right in Figure

3.5. The events are often hidden from the analyst (i.e., not directly shown to

the analyst), and the analyst often uses alert reports to identify interesting events

and then look into them. Third, according to the attack graph, events are actually

linked by their causal relationships as indicated by the solid straight lines in Figure

3.6. Fourth, these causal relationships imply a typical temporal order of alerts, as

Figure 3.3. An attack graph with events of interest.
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indicated by the solid curved lines on the right in Figure 3.7. These components

are the important features in our approach to dealing with experience capturing

and matching.

3.2.2 Model Specification

The formal specification of the partially observable event-alert system is presented

as two parts. The first part is the specification without hidden information, and

the second part extends the first part to define a system that contains unobservable

information.

3.2.2.1 Specification of the Event-Alert System

Definition An event-alert system S is formalized as a 4-tuple (E,A,C, T ), where

E = {E1, .., Em} is a finite set consisting of a number of Event Types, A =

{A1, .., An} is a finite set consisting of a number of Alert Types, C = {C1, .., Co} is

a set of hyperedges that describe the causality relationship between a set of Event

Types and another Event Type, and T = {T1, .., Tp} is a set of links that represents

which Event Type can trigger which Alert Type.

Definition An Event Type Ei ∈ E is a type of event such that a number of event

instances can be instantiated based on it. An event instance ej is an occurrence of

the happening of an Event Type.

Definition An Alert Type Ai ∈ A is a type of alert such that a number of alert

instances can be instantiated based on it. An alert instance aj is an occurrence of

an alert being generated.

Definition A causality relationship Ci = (P, q) ∈ C is a hyperedge with one or

more sources and a single target. A causality relationship Ci = (P, q) is composed

of one of more preconditions P = {p1, .., pn} and one postcondition q. The post-

condition q can be true only if all the preconditions P = {p1, .., pn} are all satisfied.

q → (p1 ∧ .. ∧ pn) Each of the conditions refers to an occurrence of a particular

Event Type. ∀d ∈ P ∩ q ∃Ed ((∃e of type Ed)⇔ d)
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Definition A triggering relation Ti = (Ej, Ak) ∈ T is based on a function σ : E →
A mapping one Event Type to an Alert Type, Ej ∈ E, Ak ∈ A. This function

σ : E → A specifies which Event Type can trigger which Alert Type. An alert can

be generated only when an event of its triggering Event Type occurs. (∃a of type

Ak)→ (∃e of type Ej))

Example Figure 3.8 is an Event-Alert System S = (E,A,C, T ), where

E = {E1, E2, E3, E4, E5, E6, E7},
A = {A1, A2, A3, A4, A5, A6, A7, A8},
C = {({E1}, E3), ({E1, E2}, E4), ({E3}, E5), ({E4}, E5), ({E5}, E6), ({E6}, E7)}, and

T = {(E1, A2), (E2, A1), (E3, A4), (E4, A3), (E5, A5), (E6, A6), (E7, A7), (E7, A8)}.
Note that instances of E4 would occur only when instances of both E1 and E2 had

already occurred. Instance of E5 would occur only when instances of either E3 or

E4 had occurred.
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Figure 3.8. An example event-alert system.

In addition to the structure, each event instance or alert instance has a time

stamp property that indicates the time of its occurrence. With these time stamps,

the time interval between each pair of event instances can be calculated, and the

delay between each alert and its triggering event can be determined as well.
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3.2.2.2 Partially Observable Event-Alert System

Based on the above definition, the partially observable event-alert system is defined

as follows.

Definition A partially observable event-alert system P is an event-alert system

where all alert instances are observable to the user, but all types of the events are

hidden from the user. Although the events are hidden, they can still be indirectly

observed through their corresponding alerts if the alerts are available.

Example An example of a partially observable event-alert system is the attack

detection framework in the domain of cyber-security. Given a network configura-

tion including all of the networking devices, firewall rules, software running on the

hosts, and other relevant settings, an attack graph can be depicted. An attack

graph consists of a number of Event Types with their preconditions and postcon-

ditions. The instances of these Event Types are typically not directly observable

to the user, requiring that we install sensors such as intrusion detectors or malware

scanners to generate observable alerts. Figure 3.9 illustrates a partially observable

event-alert system in which all Event Types are hidden.
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Figure 3.9. An example of the partially observable event-alert system.
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3.2.3 Run-Time Information from a Partially Observable

Event-Alert System

Given a partially observable event-alert system, the run-time information from the

system can be formalized as the following. Since what is observable to the analyst

are alerts but not events, the run-time information delivered to the analyst is an

alert sequence.

Definition Given a partially observable event-alert system S = (E,A,C, T ), there

is an alert sequence q =< a1, .., an > being generated at run-time. Each instance

of alert ai = {TA, tA, TE, tE} contains the following information:

TA: the type of this alert instance,

tA: the time stamp for when this alert becomes available to the user,

TE: the type of the event which triggers this alert instance, and

tE: the time stamp for when the hidden event occurs.

Example Below is an example of a run-time alert sequence from one of the attack

approaches on the partially observable event-alert system presented in 3.2.1. Each

time stamp is represented as a double point value.

q =<(A2, 100.954952318985, E1, 100.444106202458),

(A1, 102.008834601172, E1, 100.444106202458),

(A4, 102.206178481854, E3, 101.957002238603),

(A5, 102.568711110576, E4, 101.970140070745),

(A6, 104.333991432356, E5, 103.954473587865),

(A8, 104.450035476412, E6, 104.190414163726),

(A7, 104.961320179469, E6, 104.190414163726)>

3.3 Experience Capturing

Much like the process of training a näıve decision maker to become an expert, an

experience base is built through an increasing fashion. It is cumulative, expanding

as new incidents are learned. A more experienced expert will have a larger number

of past instances in his or her mind to retrieve while facing an on-going situation.

The process of experience capturing is illustrated in Figure 3.10. After an intrusion
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Figure 3.10. The process of experience capturing.

is identified, the run-time sequence will be captured and transformed into a pre-

defined knowledge representation that will form a pattern for future recognition.

For experience representation, two specific approaches—Horn rules and regular

expressions—will be addressed in this section.

3.3.1 Experience Patterns as Horn Rules

To address the problem of cyber situation recognition based on the partially observ-

able event-alert model, the following items are important and need to be included

in the pattern:

• Type declarations of alerts and triggering events

• Temporal relationships of the alerts

• Temporal relationships of the triggering events

• Alert correlation information
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The approach we propose is to use forward-chaining rules to represent experi-

ence patterns. Forward-chaining rule is based on Horn logic, which is flexible and

easy to understand. It not only has powerful expressiveness but also has a friendly

structure for knowledge engineers. In addition, existing rule processing algorithms

such as Rete [103] and LEAPS [104] have been proven very useful. Consequently,

Horn rule is an appropriate candidate for representing experience patterns.

In order to capture the signatures of an experience, we defined two separate

patterns for each experience. One is the “Event Pattern,” which captures hidden

events. The typical temporal order among hidden events is implied by their causal

relationships and is of great importance. The other is the “Alert Pattern,” which

captures observable alerts. Alerts are also important because they are the clues

seen by the analyst.

3.3.1.1 Predicates for Representing Experience Patterns

In order to capture event patterns into Horn rules, a list of predicates is defined

as follows. These are based on the scenario in 3.2.1, which contains six types of

events and eight types of alerts. We also assume that the time stamps of all events

in the distributed system are totally ordered according to logical clocks [105], such

that we can use a unique time stamp as the identifier of an event.

• A predicate E1T for declaring the event happened at time T is of the type

E1. Similarly, predicates E2T , .., E6T indicate events of types E2, .., E6.

• Comparison predicates <X,Y , >X,Y , etc. for describing temporal relation-

ships such as the “happen-before” relation between two events

• A predicate RecognitionExpName, PatternType, Status for making an assertion

about the status of a recognition

Based on these predicate definitions, we can create event patterns as shown in

the following example. Note that strings with a precedent question mark (?) are

variables.

• E1?e1 ∧ E3?e3 ∧ E4?e4 ∧ E5?e5 ∧ E6?e6

∧ <?e1,?e3 ∧ <?e3,?e4 ∧ <?e4,?e5 ∧ <?e5,?e6

=⇒ Recognitionexperience1, eventPattern, recognized
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For alert patterns, additional predicates are defined as follows:

• Predicates A1T , .., A8T for alerts of types A1, .., A8 happened at time T .

With these predicate definitions, an alert pattern can be represented as:

• A2?a2 ∧ A1?a1 ∧ A4?a4 ∧ A5?a5 ∧ A6?a6 ∧ A8?a8 ∧ A7?a7

∧ <?a2,?a1 ∧ <?a1,?a4 ∧ <?a4,?a5 ∧ <?a5,?a6 ∧ <?a6,?a8 ∧ <?a8,?a7

=⇒ Recognitionexperience1, alertPattern, recognized

3.3.1.2 Incorporating Alert Correlation Information

In addition to observable alerts themselves, alert correlation information generated

by alert correlation engines at run-time also plays an important role. It can indicate

which alerts are correlated, but it cannot guarantee which alerts are not correlated.

The reports from alert correlation engines are tuples that indicate which alerts are

correlated. The number of elements in each tuple typically varies from two to seven;

for example, the results of a 2-gram alert correlation engine can be presented as

pairs.

Alert correlation information is important because it can be viewed as meta

information about alerts and help reduce false recognition due to false positive

alerts. For simultaneously occuring attacks, correlation information can provide

important clues for distinguishing one attack from another.

Correlation reports are generated at run-times by alert correlation engines.

They form part of the run-time situation and should be taken into consideration

during the recognition process. Consequently, the correlation information should

also be incorporated into experience patterns. It is important to remember that

because there is no guarantee that a correlation engine can detect all correlations

in the alert sequence, an analyst must consider the possibility that some alerts

may triggered by the same attack but not reported by the engine.

In order to incorporate correlation information into the pattern, one more pred-

icate is defined as follows:

• Predicates CorrelationG,T for declaring a correlation group G and the alert

T is a member of it. For example, the following assertions are sufficient to

define the correlation group (a1, a3, a6):
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Correlationgroup1,a1

Correlationgroup1,a3

Correlationgroup1,a6

With additional correlation information (A2?a2, A1?a1), (A8?a8, A7?a7), the pre-

vious example alert pattern can be redefined as follows:

• A2?a2 ∧ A1?a1 ∧ A4?a4 ∧ A5?a5 ∧ A6?a6 ∧ A8?a8 ∧ A7?a7

∧ <?a2,?a1 ∧ <?a1,?a4 ∧ <?a4,?a5 ∧ <?a5,?a6 ∧ <?a6,?a8 ∧ <?a8,?a7

∧ Correlation?c0,?a2 ∧ Correlation?c0,?a1

∧ Correlation?c1,?a8 ∧ Correlation?c1,?a7

=⇒ Recognitionexperience1, alertPattern, recognized

3.3.1.3 Algorithms for Processing Forward Chaining Rules

One of the advantages of using forward chaining rules is the existence of plentiful

research on how to process the rules. The Rete algorithm [103] (and its successors)

has been recognized as an efficient way to deal with rules. It is a mechanism that

exchanges memory usage for run-time responsiveness. It introduces a network data

structure for pattern matching, consisting of α nodes, β nodes, and terminal nodes.

A rule can be compiled into a tree-like structure using these nodes, such that at

run-time the new information can be fed into it in appropriate α nodes which will

then trigger internal tokens passing through the β nodes. A rule will be fired if an

internal token reaches the terminal nodes.

We can leverage this approach to develop a system with reasonably good per-

formance. For example, if the Rete algorithm method is selected, a rule will be

transformed into a Rete tree. At run-time, when we receive an alert, we send it as

a token into each tree. If a rule is fired, we notify the user that there is an incident

being recognized. Moreover, when the Rete algorithm is adopted, we can carefully

arrange the antecedents of a rule to achieve better performance. An added benefit

for experiences with slightly different conditions is that the node sharing strategy

can be applied in order to further reduce computational load.
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3.3.2 Experience Patterns as Regular Expressions

An alternative way to applying rules is to use regular expression to represent expe-

rience patterns. The use of regular expression [106] provides a flexible and efficient

way to solicit experiences from domain experts. In addition, existing algorithms for

token matching with regular expressions can be adopted [107][108][109][110][111]

to support pattern matching.

Regular expression is a neat mechanism with concrete and easy-to-understand

standards. Its simplicity makes it easy to write. Regular expression was originally

designed for matching strings which consist of a list of tokens, but if we can ma-

nipulate the meaning of the tokens, it is possible to leverage this mechanism to

encode experience patterns and perform situation recognition.

Given an event or alert sequence from an experience instance, we can extract

the type of each event or alert and create a unique token or substring for it in

the regular expression. A specific set of alphabets is defined to represent event or

alert types, and the temporal relationships are implicitly encoded as their order in

the regular expression. For the run-time event or alert sequence, the same token

manipulation is applied on each event or alert. As an example, the following regular

expressions can serve as the patterns in an experience, capturing the signature of

that experience in terms of the types and their happening order. Here we leverage

the wild card character “.” along with the meta-character “*” for matching zero

or more occurrences of precedent tokens to allow other alerts to appear in the

sequence.

• Event pattern:

.∗ E1 .∗ E3 .∗ E4 .∗ E5 .∗ E6 .∗

• Alert pattern:

.∗ A2 .∗ A1 .∗ A4 .∗ A5 .∗ A6 .∗ A8 .∗ A7 .∗

Regular expression is a powerful tool. Patterns based on regular expression

are neat and easy to maintain. However, it is doubtful that its expressive power

is strong enough to solve problems with interleaved incidents, as addressed in the

next section.
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3.3.2.1 Limitations of the Regular Expression Approach

Regular expression has the advantage of being able to encode structural strings into

a relatively simple sentence; however, some default limitations make it inapplicable

to more complicated problem domains. In the realm of cyber security, for instance,

multiple attacks may occur in an interleaved manner. In order to distinguish one

attack from another, alert correlation is critical and should be incorporated into

experience as part of the alert pattern. For a run-time alert sequence, the extra

correlation information can be viewed as a property of an alert. Therefore, each

instance of alert has three main properties: type, time stamp, and correlation

assignment. The correlation assignment can be as simple as a number representing

the group. It is practical to use alphabets to represent types, and the order of the

alphabets can be used to implicitly encode the temporal order. However, since

regular expression is a specification of string patterns consisting of alphabets but

is not designed to handle meta-information or properties of individual tokens, it is

not expressive enough to capture additional properties beyond these.

On the other hand, although meta-information is not supported in the current

regular expression or its extensions, alternative ways exist to deal with meta-

information and with the properties of individual tokens of a run-time alert se-

quence: 1) check the correlation constraints after getting a match; and 2) incor-

porate it into the matching automaton, a common implementation for matching

regular expressions. However, both approaches introduce severe computational

overhead.

Using the first approach (checking the correlation constraints after getting a

match) requires the matcher—usually a deterministic finite automaton (DFA) or

a nondeterministic finite automaton (NFA)—to report which specific tokens (i.e.,

the sub-sequence) in the sequence contribute to the acceptance of the automaton.

Many combinations may exist that satisfy for the objective. For example, if we use

a regular expression r =“.∗ A .∗ B .∗ C .∗ D .∗” to match against the run-time

sequence s =“ACBCCCDCD”, all of the sub-sequences sufficient to contribute

to the acceptance are as follows:

ACBCCCDCD

ACBCCCDCD

ACBCCCDCD
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ACBCCCDCD

ACBCCCDCD

ACBCCCDCD

ACBCCCDCD

However, existing algorithms will only report a result saying it is matched by

running through the first sub-sequence “ACBCCCDCD”. The purpose of regular

expression matching is to decide whether a pattern exists in the sequence but not

to report all possible combinations. Therefore, the result does not actually contain

useful information for further processing of the correlation information.

Using the second approach (incorporating correlation information into the au-

tomaton), the automaton must still record every possible matching path, either by

branching or by backtracking, which obviously introduces a lot of run-time over-

head. In addition, a correlation report only becomes available after all its alerts

have occurred; thus it is difficult to decide which outgoing transition to select when

the automaton receives an alert.

Regular expression is useful for dealing with pure strings with neither meta-

information nor properties in individual tokens. If all of the alerts in a run-time

sequence are from the same attack, or if an alert correlation engine can do a perfect

job, regular expression should be workable, since it does not need to incorporate

meta-information to distinguish interleaved attacks. However, if the complexity of

a problem domain is beyond the capability of regular expression, it is necessary

to adopt another approach to directly capture all characteristics of the problem.

For systems having interleaved incidents such as the cyber security problem, the

rule-based approach is more preferable.

3.3.3 An Example Experience Pattern

An example of a run-time alert sequence with correlation information is shown in

Figure 3.11. This table shows a sequence of alerts and two correlation reports.

To better illustrate the relationships among these alerts, their hidden events, and

correlation information, we arranged the information into a graphical presentation

based on the partially observable event-alert model. As shown in Figure 3.12, these

observable alerts are arranged on the right according to their order of occurrence

from top to bottom; correlated alerts are linked with dashed lines. The hidden
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Figure 3.11. An example alert and correlation sequence.
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Figure 3.12. An example alert and correlation sequence presented as a graph.
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events are presented on the left with their causal relationships.

To structure alert sequences with correlation information into rule patterns, an

algorithm as outlined in Figure 3.13 was developed to automatically construct the

patterns given a run-time sequence. Accordingly, the example alert sequence can

be converted into both an event pattern and an alert pattern, as shown in Figure

3.14. Variables are denoted as a string with a precedent question mark “?”. For

better readability, predicates for describing temporal relationships were elaborated

using “happen-before” predicates.
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Figure 3.13. An algorithm for automatic rule pattern construction.
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Figure 3.14. An example experience in Horn rules.
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3.4 Situation Recognition

Through experience capturing, more and more experiences are integrated into the

experience base. This base can be leveraged to support situation recognition of

on-going activities. By comparing a current situation to data within the experience

base, similar situations from the past can be retrieved and reported to the analyst.

!"#$%&'()*+,'-("&'()

Experience Base 

Current 
Situation 

*+,'-(".+)

Recommendations 

Analyst 

/0)

Figure 3.15. The process of situation recognition.

The process of situation recognition is illustrated in Figure 3.15. This is a

high-level view of the situation recognition process. The details in design and

implementation may vary according to the underlying knowledge representation

approach, but the common goal is the same: to make recommendations based on

the finding of past experiences which are close to those of the current situation.

3.5 Experience Relaxation

As additional experiences are captured, we may leverage the experience base to

identify and analyze future intrusions. However, the size of the experience base

may be small, especially in its beginning stage. Therefore, we must address this
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issue: How can we make a limited number of experiences useful for helping to

detect similar situations? To answer this question, we propose the concept of

experience relaxation.

Strictly speaking, experience is an occurrence of a past incident. It includes

every specific detail at a specific moment, such as the exact time and geographical

location of the incident; consequently, an experience is unlikely to repeat itself

with every single detail remaining the same. Without abstracting these particular

details, an experience would become much less useful since its coverage would be

restricted to a particular situation. In order to increase the range of applicability,

it is desirable to retrieve the important parts of an experience and to relax the

experience by trimming those portions which are too specific, such that situation

recognition can become more feasible. The higher the degree to which an experi-

ence can be relaxed, the higher the possibility exists that it can be matched against

a new situation. The concept of experience relaxation is illustrated in Figure 3.16.

With appropriate guidance, experiences generated by relaxation form a hierar-

chy with the most specific experiences on the top and the most relaxed ones on the

bottom. Figure 3.17 shows the concept of level of relaxation. The Level 0 experi-

ences on the top are experience instances with exact information, which are precise

but have the narrowest applicability due to their specific descriptions. The Level

!"#$%&'(#$%)$*+$"'$#

,+(-#$.$*/#0$(&+1#

2%)$*+$"'$3#,+(-##

.$*/#*$1&%$0#)&4$*"3#
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#8
9#
#

&
)
)
1+
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:
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/
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2%)$*+$"'$3#,+(-#

1$33#3)$'+5'#)&4$*"3#

!#;&('-$0#3+(<&=8"#

:/#&#*$1&%$0#$%)$*+$"'$#

Figure 3.16. Level of experience relaxation.
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1 experiences are generated by relaxing less important constraints from the Level

0 experience, which have better applicabilities but are less precise in describing

the situation. Experiences at upper levels have better precision, whereas experi-

ences at lower levels provide broader coverage. The entire experience hierarchy

is formed through a consistent process, where each level of relaxation is defined

with a specification guiding how a higher level experience should be relaxed into

lower-level ones. The way in which relaxation is performed should be based on

a fundamental model and applied in a systematical way, such that all experience

instances on the same level will have a consistent specificity. The model is re-

quired to capture important characteristics of the problem domain, such that the

relaxation specifications and their priorities can be rationally determined.

The theoretical foundation of experience relaxation is the concept of the relax-

able Horn clause [112], which was introduced with the Horn preferential theories

in support of constraint logical programming [113][114]. A relaxable Horn clause

consists of a head, a body that contains a set of atoms, and a partial ordering

among the atoms in the body. This partial ordering represents the priority of the

conditions in the body. Conditions with lower priorities may be relaxed if not

!"#$%&$'($")$#

*$+,%,-."#
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:$;$+#A#$%&$'($")$4#

='$+,%$6#BC#03$#:A#
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H.'?("I#,#J($',')3(),+#K%&$'($")$#/$0>.'L#

03'.8I3#:.I(),+#K%&$'($")$#*$+,%,-."#
M.'$#&'$)(4$#

N'.,6$'#).;$',I$#

999#999#

Figure 3.17. A hierarchical experience network.
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every condition can be satisfied.

The process of relaxing multiple experience instances allows the construction of

a hierarchical experience network, where the experience instances residing in the

network coherently form an experience base to facilitate situation recognition. As

illustrated in Figure 3.17, one experience may be relaxed into multiple experiences

with different coverages, where each one is generated with partial condition relax-

ation from the original experience. On the other hand, several experiences may be

relaxed into identical forms during the relaxation process. This could happen if

the relaxation was performed by removing the conditions which serve as the sig-

nature of the experience. Figure 3.18 illustrates the process of how a hierarchical

experience network is constructed through experience relaxation.

Based on a hierarchical experience network, matching is performed on each

experience instance of the network. If multiple experience instances can be re-

trieved at run-time, the most specific one among all matched instances will be

recommended by the system because more constraints will be satisfied, such that

the match has a stronger basis. Figure 3.19 demonstrates the flow of situation

recognition using a hierarchical experience network.
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Figure 3.18. The construction of a hierarchical experience network.
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A Hierarchical Experience Network 
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Figure 3.19. Situation recognition using a hierarchical experience network.

3.5.1 Experience Relaxation on Rule Pattern-Based Expe-

riences

In 3.3.1, we showed how experiences can be represented as Horn rules. Here we

present how experience relaxation can be applied to experiences in rule patterns.

A rule pattern is composed of a list of conditions in the antecedent. When per-

forming situation recognition using rule pattern-based experiences, each condition

in the rule set will be matched against the given situation. If it is not feasible to

satisfy all conditions in a rule pattern, we may still obtain a partial matching by

relaxing less important conditions.

For rule pattern-based experiences, one way to relax the constraints is to re-

move one or more conditions from the antecedents of the rule. A relaxed condition

set is a logical consequence (`) of the condition set it is derived from. The higher

the number of conditions that are removed, the wider applicability can be achieved.

However, during the process of experience relaxation, a relaxed condition set may

lose some degree of the characteristics inherited from its original pattern; in the



48

meantime, we still want to keep the key signature of each experience. There-

fore, the importance and priority of each type of condition needs to be carefully

determined according to its representativeness and its criticality to the original

pattern. Figure 3.20 illustrates an example in which the importance and priority

of each characteristic is determined; then, based on those priorities, the relaxation

specification can be properly defined.
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Figure 3.20. An example specification for experience relaxation.

According to the relaxation specifications in Figure 3.20, the definition for each

level of experience can be organized as follows:

• Level 0 experiences: The original experience instances with specific time

stamps.

• Level 1 experiences: Experiences in rules consisting of events and their

“happen-before” relationships.

• Level 2 experiences: Based on a Level 1 experience, remove all “happen-

before” predicates on the events/alerts whose temporal order does not matter

according to their causality relationships. The rationale behind this relax-

ation is that when temporal order of events is not determined by the causality

graph, the order of their alerts is not constrained either. Taking the experi-

ence pattern in 3.3.3 as an example, since both alerts A1 and A2 are triggered
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by the same event E1, the “happen-before” relationship between A1 and A2

can be removed in order to generate a relaxed experience.

• Level 3 experiences: With one group of correlation constraints removed from

a Level 2 experience. Note that there can be multiple Level 3 experiences

derived from one Level 2 experience.

• Level 4 experiences: With two groups of correlation constraints removed from

a Level 3 experience.

• (Additional levels continue in the same fashion.)

In order to demonstrate the idea of experience relaxation on rule patterns, a

series of examples is provided next to show how the experience instance in Section

3.3.3 can be relaxed according to this specification. In addition to the logical form,

Figures 3.21 – 3.25 present the same series of experience patterns in the 3.3.3

format, where the predicates for describing temporal relationships are elaborated

by using “happen-before” predicates.

• An experience pattern obtained through the Level 1 experience relaxation:

Event pattern: (Figure 3.21)

E1?e1 ∧ E3?e3 ∧ E4?e4 ∧ E5?e5 ∧ E6?e6

∧ <?e1,?e3 ∧ <?e3,?e4 ∧ <?e4,?e5 ∧ <?e5,?e6

=⇒ Recognitionexperience1, eventPattern, recognized

Alert pattern:

A2?a2 ∧ A1?a1 ∧ A4?a4 ∧ A5?a5 ∧ A6?a6 ∧ A8?a8 ∧ A7?a7

∧ <?a2,?a1 ∧ <?a1,?a4 ∧ <?a4,?a5 ∧ <?a5,?a6 ∧ <?a6,?a8 ∧ <?a8,?a7

∧ Correlation?c0,?a2 ∧ Correlation?c0,?a1

∧ Correlation?c1,?a8 ∧ Correlation?c1,?a7

=⇒ Recognitionexperience1, alertPattern, recognized

• A Level 2 experience pattern obtained by removing the temporal order of

alerts from the same event:

Event pattern: (Figure 3.22)

E1?e1 ∧ E3?e3 ∧ E4?e4 ∧ E5?e5 ∧ E6?e6
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∧ <?e1,?e3 ∧ <?e3,?e4 ∧ <?e4,?e5 ∧ <?e5,?e6

=⇒ Recognitionexperience1, eventPattern, recognized

Alert pattern:

A2?a2 ∧ A1?a1 ∧ A4?a4 ∧ A5?a5 ∧ A6?a6 ∧ A8?a8 ∧ A7?a7

∧ <?a2,?a1 ∧ <?a1,?a4 ∧ <?a4,?a5 ∧ <?a5,?a6 ∧ <?a6,?a8 ∧ <?a8,?a7

∧ Correlation?c0,?a2 ∧ Correlation?c0,?a1

∧ Correlation?c1,?a8 ∧ Correlation?c1,?a7

=⇒ Recognitionexperience1, alertPattern, recognized

• A Level 3 experience pattern obtained by removing one correlation condition:

Event pattern: (Figure 3.23)

E1?e1 ∧ E3?e3 ∧ E4?e4 ∧ E5?e5 ∧ E6?e6

∧ <?e1,?e3 ∧ <?e3,?e4 ∧ <?e4,?e5 ∧ <?e5,?e6

=⇒ Recognitionexperience1, eventPattern, recognized

Alert pattern:

A2?a2 ∧ A1?a1 ∧ A4?a4 ∧ A5?a5 ∧ A6?a6 ∧ A8?a8 ∧ A7?a7

∧ <?a2,?a1 ∧ <?a1,?a4 ∧ <?a4,?a5 ∧ <?a5,?a6 ∧ <?a6,?a8 ∧ <?a8,?a7

∧Correlation?c0,?a2 ∧ Correlation?c0,?a1

∧ Correlation?c1,?a8 ∧ Correlation?c1,?a7

=⇒ Recognitionexperience1, alertPattern, recognized

• A Level 3 experience pattern obtained by removing another correlation con-

dition:

Event pattern: (Figure 3.24)

E1?e1 ∧ E3?e3 ∧ E4?e4 ∧ E5?e5 ∧ E6?e6

∧ <?e1,?e3 ∧ <?e3,?e4 ∧ <?e4,?e5 ∧ <?e5,?e6

=⇒ Recognitionexperience1, eventPattern, recognized

Alert pattern:

A2?a2 ∧ A1?a1 ∧ A4?a4 ∧ A5?a5 ∧ A6?a6 ∧ A8?a8 ∧ A7?a7

∧ <?a2,?a1 ∧ <?a1,?a4 ∧ <?a4,?a5 ∧ <?a5,?a6 ∧ <?a6,?a8 ∧ <?a8,?a7

∧ Correlation?c0,?a2 ∧ Correlation?c0,?a1

∧Correlation?c1,?a8 ∧ Correlation?c1,?a7

=⇒ Recognitionexperience1, alertPattern, recognized
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• A Level 4 experience pattern obtained by removing two correlation condi-

tions:

Event pattern: (Figure 3.25)

E1?e1 ∧ E3?e3 ∧ E4?e4 ∧ E5?e5 ∧ E6?e6

∧ <?e1,?e3 ∧ <?e3,?e4 ∧ <?e4,?e5 ∧ <?e5,?e6

=⇒ Recognitionexperience1, eventPattern, recognized

Alert pattern:

A2?a2 ∧ A1?a1 ∧ A4?a4 ∧ A5?a5 ∧ A6?a6 ∧ A8?a8 ∧ A7?a7

∧ <?a2,?a1 ∧ <?a1,?a4 ∧ <?a4,?a5 ∧ <?a5,?a6 ∧ <?a6,?a8 ∧ <?a8,?a7

∧Correlation?c0,?a2 ∧ Correlation?c0,?a1

∧Correlation?c1,?a8 ∧ Correlation?c1,?a7

=⇒ Recognitionexperience1, alertPattern, recognized
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Figure 3.21. An experience pattern obtained through the Level 1 experience relaxation.
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Figure 3.23. A Level 3 experience pattern obtained by removing one correlation con-
dition.



53

!"#$%&'()#*$& +,#*%&'()#*$&

!"#$%&'%()*+,,+-./*/0*/12*2*%3%45'&

&&&&!67&8%79&

&&&&!6:&8%:9&

&&&&!;<))%4=>%?@A%&8%7&8%:9&

&&&&!6B&8%B9&

&&&&!;<))%4=>%?@A%&8%:&8%B9&

&&&&!60&8%09&

&&&&!;<))%4=>%?@A%&8%B&8%09&

&&&&!6C&8%C9&

&&&&!;<))%4=>%?@A%&8%0&8%C9&

&&&&=D&

&&&&!"%E@F4GH@4&%()*+,,+-./*/0*/12*2&%3%45&A%E@F4GI%J9&

9&

!"#$%&'%()*+,,+-./*/0*/12*2*<$%A5'&

&&&&!+/&8</9&

&&&&!+7&8<79&

&&&&!;<))%4=>%?@A%&8</&8<79&

&&&&!+B&8<B9&

&&&&!;<))%4=>%?@A%&8<7&8<B9&

&&&&!+0&8<09&

&&&&!;<))%4=>%?@A%&8<B&8<09&

&&&&!+C&8<C9&

&&&&!;<))%4=>%?@A%&8<0&8<C9&

&&&&!+K&8<K9&

&&&&!;<))%4=>%?@A%&8<C&8<K9&

&&&&!+L&8<L9&

&&&&!;<))%4=>%?@A%&8<K&8<L9&

&&&&!-@AA%$<H@4&8E2&8</9&

&&&&!-@AA%$<H@4&8E2&8<79&

&&&&!-@AA%$<H@4&8E7&8<K9&

&&&&!-@AA%$<H@4&8E7&8<L9&

&&&&=D&

&&&&!"%E@F4GH@4&%()*+,,+-./*/0*/12*2&<$%A5&A%E@F4GI%J9&

9&

,;%&M%3%$=:&6()%AG%4E%&"%$<(<H@4N&&
"%O@3%&+4@5;%A&-@AA%$<H@4&-@4JGH@4&

Figure 3.24. A Level 3 experience pattern obtained by removing another correlation
condition.
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Figure 3.25. A Level 4 experience pattern obtained by removing two correlation con-
ditions.
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3.6 Summary

In this chapter, we discussed the model of partially observable event-alert systems,

the process of experience capturing, knowledge representation for experience pat-

terns, the process of situation recognition, and the concept of experience relaxation.

These elements are chained together as a complete flow.

As depicted in Figure 3.26, experiences are obtained from identified intrusions

and captured as patterns according to a specific knowledge representation. These

captured patterns are then processed by experience relaxation and integrated into

a hierarchical experience network. This hierarchical experience network can be

leveraged during the process of situation recognition. Based on the matching

results between the current situation and past experiences, recommendations can

be generated and delivered to the analyst. After the analyst makes a decision, the

decision made by the analyst can be retained and treated as a new experience for

future use, thus forming a complete cycle of the experience-based approach.
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Figure 3.26. The entire process including experience capturing, situation recognition,
and experience retainment.



Chapter 4
Implementation of an Agent-Based

Cyber Security Decision Support

System

In order to realize the decision support mechanism, we implemented a prototype

system on top of the R-CAST (RPD-Enabled Collaborative Agents for Simulat-

ing Teamwork) multi-agent system [13][12][115]. This chapter reviews the design

of this agent-based decision support system and analyzes different parts of the

implementation.

4.1 Overview

In our implementation, the experience-based approach was realized on top of R-

CAST, a multi-agent system developed using the Java programming language. Its

component-based architecture allows a developer to compose an agent according

to the specific requirements of a domain problem. Within each agent, different

components can communicate with each other through a request whiteboard, which

provides a set of interfaces to facilitate intra-agent communications. R-CAST

agents can exchange messages with each other via heterogeneous communication

protocols such as Web service, Java RMI (Remote Method Invocation), JMS (Java

Message Service), and other protocols. Multiple R-CAST agents can team up
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and share information to perform complicated tasks [116][117]. On top of its

architecture, various applications can be developed and overlaid that will solve

problems or simulate systems of distributed nature.

In order to realize the experience-based approach, we developed an agent-based

system called ER-CAST (Experience-based R-CAST). Figure 4.1 shows the key

components of an ER-CAST agent. The large rectangle indicates the boundary of

the agent. The Cyber Security Adapter is the interface between external environ-

ment and the other internal components. It is responsible for receiving real-time

alert and correlation sequences from external information sources. After receiving

a piece of information, the Cyber Security Adapter interprets it and transforms it

into an internal data structure. This reorganized information will be delivered to

the Recognizer. Then the Recognizer will perform cyber situation recognition by

consulting the Knowledge Base, which is composed of an experience base and a

rule processing system. Finally, after an intrusion is identified, recommendations

will be sent to the users.

!"#$%&'"#()&!#&*"+

Recommendations 

Run-Time Alert or 

Correlation 

Information 
Recognizer 

Cyber 

Security 

Adapter 

Experience 

Base 

Forward-

Chaining Rule 

System 

,-./'01+'2!3&+

Knowledge Base 

Figure 4.1. An ER-CAST agent.

In the following sections, we cover more details about experience representation,

the Recognizer, and the rule processing system. In addition, we also introduce

two additional decision modules that can be added to provide more advanced

functionalities. The supporting services that facilitate agent management will be

presented at the end of the chapter.
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4.2 Representation of Experiences

According to the discussion in Chapter 3, an experience can be described as a

combination of an event pattern, an alert pattern, a class label representing the

type of intrusion, and meta information regarding the level of relaxation of this

experience. The definition of an experience is given as the following:

Definition An experience based on our model is defined as e = (EP,AP,L,G),

where EP is the event pattern for describing the occurrence of the hidden events,

AP is the alert pattern for those observable alerts we received, L is the class label

of this intrusion, and G is the level of relaxation of this particular experience.

The event pattern should capture not only what types of events occurred in

this experience but also the order of their occurrence. In addition, the causal

relationships among the event types defined in the partially observable event-alert

system should also be considered while we relax the experience. Similarly, the alert

pattern should follow the constraints imposed by the causal relationships among

their triggering events.

The class label of an intrusion is used to denote what was actually happening

behind the signature captured in the event pattern and the alert pattern. It is

also the answer we expect to get from the decision support system if the given

situation is matched with this experience. At run-time, when feeding the decision

support system with a sequence of alerts, we expect the system to recognize the

current situation according to the experience base and then to advise the user of

this particular information.

The property of level of relaxation indicates what degree the experience was

relaxed according to the relaxation specification. It is critical to define a reason-

able specification for experience relaxation, which includes identifying appropriate

importance for each feature and specifying its corresponding priorities.

In our implementation, we used Horn rules to represent experiences. For ex-

perience relaxation, the specification we employed is the one presented in Figure

3.20.
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4.3 The Recognizer

The Recognizer is the component which coordinates the work of experience-based

situation recognition. It not only controls the recognition process but also visual-

izes the current situation for the users.

In the initialization stage, the Recognizer reads the experience base to collect

all previous experiences; each experience contains one reference to its event pattern

in the rule system and another reference to its alert pattern. During the run time,

the incoming alerts and correlation information are sent to the forward-chaining

rule system. In the meantime, the Recognizer keeps checking the status of each

referred rule in the rule system. For each experience, if both its event rule and its

alert rule are fired, the Recognizer will set a flag to indicate that the experience is

recognized by the system.

Figure 4.2 is a screenshot of the Recognizer component. There are three panels

on its graphical user interface. The top panel lists the alerts and events according to

their occurrence, sorted and displayed in terms of their types. The middle panel

is a visualization of the event sequence, the alert sequence, and the correlation

information, allocated on a two-dimensional plane according to their temporal

order. The table on the bottom shows all experience instances in the experience

base. Each row is an outline of a specific experience instance, which includes an

Figure 4.2. A screenshot of the Recognizer component.
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identifier, a name, the label showing the type of attack, the recognition status,

the event pattern and the alert pattern, the level of relaxation, and a hyperlink

to relevant reflection letters. The “Active” status indicates that the recognition

procedure is in progress, whereas the status “Recognized” means that the current

situation can be recognized based on this particular experience. For each level of

relaxation, a lower number means that level is closer to the original experience and

has more constraints. The rows in the table are sorted by their recognition status

and relaxation level, such that the user can easily identify which experiences are

recognized and how close they are to the current situation.

Through the hyperlinks on the far right column, the user can open relevant

reflection letters in a Web browser to get more information about past experi-

ence. A reflection letter is a documented experience that shows how a past sit-

uation was handled. Each reflection letter contains the experience pattern and

the groundtruth at that moment, along with the first impression and reflection

notes. If reflecting an experience of false recognition, the letter may include notes

regarding why recognition failed and how to avoid reiterating the mistake. Figure

4.3 is an example of a reflection letter indicating correct recognition, and Figure

4.4 is an example based on a false recognition.

In sum, the Recognizer controls the recognition process and provides integrated

!"#$%&'()"*)+),-./"0)1)2"
3.22),4"*),.5/6-./"

Figure 4.3. An example reflection letter of a correct recognition.
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Figure 4.4. An example reflection letter of a false recognition.

information through an intuitive interface, allowing it to assist cyber security an-

alysts to make better decisions.

4.4 Implementation of a Rule Processing System

In our implementation, rule experiences are represented and processed in the

knowledge base, which is capable of processing forward-chaining rules. In ad-

dition, the knowledge base can be regarded as the “brain” of an agent not only for

storing and retrieving knowledge but also for providing inference capabilities. The

intuitive way of firing forward-chaining rules can be very costly, and algorithms

have been developed to address the performance issue; the Rete algorithm [103]

significantly improves response time by maintaining a specific tree data structure

in memory, whereas LEAPS [104] is based on the concept of relational database

systems.

In order to derive a full control of the inference behavior, rather than us-

ing existing rule-based systems such as Jess [118], Pellet[119], or Drools [120], a

knowledge base was developed to fit into the R-CAST agent architecture. In this

section, we start with the basic design of this knowledge base system, followed by

descriptions of its other features.
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4.4.1 Knowledge Base Design

The R-CAST knowledge base is a forward-chaining rule-based system, which con-

sists of FactTypes, Facts, and Rules. FactType is a declaration of the type of

predicate. Given a FactType definition, a number of instances called Facts can be

instantiated based on it. From the perspective of a relational database, a FactType

is similar to a table definition with its properties as the column names and each

Fact of the FactType as a row.

Definition A FactType Pa1,..,an is an n-ary predicate definition having a1, .., an

as its arguments.

Definition A Fact is an instantiation of a FactType Pa1,..,an with a particular

assignment Σ = {a1 = v1, .., an = vn}, where each of v1, .., vn is a constant value.

Below is an example FactType for the predicate Person?name,?age,?gender, which

is defined with three arguments—name, age, and gender—where each argument

is denoted by a prefix question mark “?” Two example Facts instantiated ac-

cording to the “Person” FactType definition are listed as well. Their correspond-

ing assignments are Σa = {?name = Alice, ?age = 30, ?gender = female} and

Σb = {?name = Bob, ?age = 25, ?gender = male} respectively.

(FactType Person (?name ?age ?gender))

(Fact Person (Alice 30 female ))

(Fact Person (Bob 25 male ))

A Rule is based on Horn logic and is composed of a number of antecedents and

a consequent. If all of the antecedents are satisfied under some variable assignment,

the rule will be fired to instantiate the consequence as an ImpliedFact using the

values from this variable assignment. The definitions of a rule and ImpliedFacts

are given as follows:

Definition A Rule R = {P,Q,X} is composed of one or more ordered antecedents

P = {P1, .., Pn}, a consequence Q, and a set of shared variable X = {x1, .., xo}
among P1, .., Pn, and Q. Each of P1, .., Pn, and Q is a predicate with a particular

assignment that contains only constant values or shared variables from X. All
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variables that appear in the consequence should be bounded by being used in the

antecedents. ∀xi ∈ X, (xi is used in Q) ⇒ (xi is used in P ). A rule is said to be

“fired” where there is an assignment Σ′ on X that satisfies P1 ∩ .. ∩ Pn, and then

a Fact of Q will be instantiated based on this assignment Σ′.

Definition An ImpliedFact is a Fact that is instantiated due to firing a rule.

The example shown in the following is a forward-chaining rule R = {P,Q,X},
where P = {Person?var−name,?var−age,male, <?var−age,12}, Q = Boy?var−name, X =

{?var-name, ?var-age}.
If there is a Person whose gender is male and his age is less than 12, the rule

will be fired to create an instance (Fact) of Boy using the name from the bounded

variable ?var-name.

(Rule (Person (?var-name ?var-age male))

(< (?var-age 12))

->

(Boy (?var-name)))

The syntactic specification of the knowledge base in Extended Backus-Naur

Form (EBNF) is outlined in Figure 4.5.

!"#$%&'(&)*+,&)-./01)

KBCONTENT ::= ( FACTTYPE | FACT | RULE )+!

FACTTYPE  ::= “(FactType ” TYPENAME ” (” PROPERTYNAME+ “) )”!
FACT      ::= “(Fact “     TYPENAME ” (” VALUE+ “) )”!
RULE      ::= “(Rule “     ANTECEDENTS ”->” CONSEQUENCE “)”!

TYPENAME     ::= ( character | digit )+!
PROPERTYNAME ::= “?”( character | digit )+!
VALUE        ::= ( character | digit )+!
ANTECEDENT   ::= CONDITION+!
CONDITION    ::= “(“ TYPENAME ( PROPERTYNAME | VALUE )+ “)” | !
! ! ! !    “(“ FUN_PRED ( PROPERTYNAME | VALUE )+ “)” !

CONSEQUENCE  ::= “(“ TYPENAME ( PROPERTYNAME | VALUE )+ “)”!
FUN_PRED     ::= ”+” | ”-” | ”*” | ”/” | ”mod” | ”pow” |!
! ! ! ! !”=” | ”eq” | ”<” | ”<=” | ”>” | ”>=”!

Note: (...)+  Appear once or more!
!   (...)?  Optional element!

Figure 4.5. Syntactic specification of the knowledge base in EBNF.
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4.4.2 The Underlying Inference Algorithm

In order to ensure the performance of the forward-chaining rule-based system, the

Rete algorithm [103] was implemented to support rule firing. We defined classes

of Alpha node, Join node, and Terminal node for the fundamental tree structure

as illustrated in Figure 4.6.

Each Alpha node has an associated predicate, which can be viewed as an in-

stantiation of a FactType with unbounded variables. When a fact is asserted, the

Alpha node of the same FactType will be the retrieved, and then its associated

predicate will be unified with the asserted fact, thus resulting in a set of variable

bindings called Contexts. Each Context will then be wrapped as a token to be

passed to the outgoing node. A Join node has two queues to accept incoming

tokens for matching and then passing merged Context as a token to its outgoing

node. Once a Terminal node receives a token, it will create a new ImpliedFact

using the bindings retrieved from this token. During retraction, the Rete trees

will be traversed in a similar way, but tokens having the same bindings as the

retraction sentence will be removed.

Implementing the Rete algorithm ensures the performance of rule firing, but it

also introduces some constraints. For example, all assertions/retractions should be

initiated only through the designated functions that trigger Rete graph updates,

and all the operations should be manipulated in the order consistent with their
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Figure 4.6. An implementation of Rete graphs.
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occurring sequence, such that the Rete graph can correctly reflect the current

situation. This constraint introduces a drawback: we cannot simply and freely

add or delete facts as we wish. Additionally, the design of other features should

be handled carefully in order not to break the operations of the Rete algorithm.

Every modification to the working memory should be consistent with the Rete

graph such that the correctness can be guaranteed.

4.4.3 Truth Maintenance

Firing a rule will create a new ImpliedFact, which in turn may trigger additional

rules to create another ImpliedFact and so on. It is critical to manage these depen-

dencies carefully such that while an antecedent becomes invalid, all its dependents

will be retracted as well. The cascading retraction is necessary to maintain the

validity of the knowledge base.

In order to enable the mechanism of truth maintenance, cross-references are

implemented in ImpliedFacts and their supporting facts. As illustrated in Figure

4.7, references of the ImpliedFact are added to the antecedents’ dependent lists,

and both of the antecedents are together recorded as a SupporterSet of the Im-

pliedFact. The formal definitions of SupporterSet and DependentSet are as follows.

Definition In a knowledge base, the set of all facts F = Fconstant ∩Fimplied, where

Fconstant contains facts that are naturally asserted, and Fimplied contains facts cre-

ated due to firing a rule. ∀fi ∈ Fimplied, ∃Si = {Si,1, .., Si,n|n ≥ 1} that contains

one or more sets of supporting facts (SupporterSet) of fi, where each SupporterSet

contains a set of facts which collectively trigger the firing of a rule. ∀fi ∈ Fimplied,

∀Si,j ∈ Si, Si,j = {fk|(fk ∈ F ) ∧ (fk ∈ antecedents of a rule that created fi)}.

Definition In a knowledge base, the set of all facts F = Fconstant∩Fimplied. ∀fk ∈

!"#$%&'()*$+*(*,+&)*&-*./0+12+&3(4+&

Asset List 

Control 

Calculate COA 

values 

DependentSet:{C} 

IAS 
Prioritize 

Agent 

Priority 

C 

A 

B 

Rule 

SupporterSet:{{A,B}} 

DependentSet:{C} 

Figure 4.7. Cross-references for supporters-dependent relationships.
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F , ∃Dk = {fi|(fi ∈ Fimplied) ∧ (fk ∈ antecedents of a rule that created fi)} as the

DependentSet of fk.

The truth maintenance mechanism is realized by the recursive function in Algo-

rithm 1. After invoking the retraction function in the Rete engine, we check each of

its dependent facts and remove the corresponding SupporterSet. The ImpliedFact

will need to be retracted as well if it no longer has any SupporterSet.

Algorithm 1 Fact retraction for truth maintenance.

Require: A set of Facts F = Fconstant ∩ Fimplied

∀fi ∈ Fimplied, ∃Si = {Si,1, .., Si,n|n ≥ 1}
∀fi ∈ Fimplied, ∀Si,j ∈ Si, Si,j = {fk|(fk ∈ F )∧ (fk ∈ antecedents of a rule that
created fi)}.
∀fk ∈ F , ∃Dk = {fi|(fi ∈ Fimplied) ∧ (fk ∈ antecedents of a rule that created
fi)}.

1: function RetractFact (fk: Fact)
2: ReteEngine.Retract(fk)
3: Get the DependentSet Dk of fk

4: for all fi ∈ Dk do
5: Get the SupporterSet Si of fi

6: for all Si,j ∈ Si do
7: if fk ∈ Si,j then
8: Remove Si,j from Si

9: end if
10: end for
11: if Si = {} then
12: RetractFact (fi)
13: end if
14: end for
15: end function

4.4.4 Key and Instance Singleton Maintenance

The concept of “key” has been developed and widely used in relational database

systems but has not as often appeared in the context of rule-based systems. For

some FactTypes in the knowledge base, maintaining Facts with non-duplicated

keys is fundamental to the correctness of a system. For example, assuming a

person is identified by his/her first name and last name, and each person can be

at only one location, the Location FactType can be defined as follows.
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(FactType Location (?firstName, ?lastName, ?latitude, ?longitude)

(key (?firstName, ?lastName))

)

We declare the combination of ?firstName and ?lastName as the key of the

Location FactType, such that for each distinct pair of (?firstName, ?lastName)

there can exist only one instance of Location. When the person moves, the old

Location should be retracted before the new one is asserted. We call this type of

instance an “update-style” predicate.

The implementation is shown in the pseudo-code below. Whenever asserting

a fact, we first check whether there is already a fact with the same key. If such a

fact exists, it should be removed before the new assertion is made.

Function: void handleUpdateStyleFact(Fact F):

Identify the FactType of F as T;

Retrieve the key values K from F according to T’s definition;

Make a query for T with key arguments filled with K;

For each query result R {

If (R is different from F) {

Invoke retractFact(R);

}

}

ReteEngine.Assert(F);

4.4.5 Processing Streaming Data

Before introducing update-style predicates into the system, assertions will only

trigger assertions, and retractions will only trigger retractions; these can easily

handled by immediately applying the appropriate following assertions or retrac-

tions. However, with update-style predicates, an assertion may trigger a retrac-

tion, and this retraction may lead to other cascading retractions; moreover, the

assertion itself may also initiate other cascading assertions, which can also cause

further retractions. The situation becomes much more complicated due to these

mixed assertions and retractions.
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Figure 4.8. The double-ended queue for assertion/retraction management.

To address this issue, a double-ended queue (illustrated in Figure 4.8) was

designed to manage complicated assertion-retraction combinations. For a new

assertion or retraction, the external function at the top left is invoked, and the

operation is added to the end of the queue. If cascading operations are needed, the

handleUpdateStyleFact function appends them to the end of the queue in the ap-

propriate order. For those pending operations already in the queue, the knowledge

base kernel keeps pulling out them and initiates cascading assertions/retractions

as needed. In this case, all the following assertions/retractions, as well as those

triggered by the handleUpdateStyleFact function, will be added to the front of the

queue in the appropriate order.

In a distributed and shared environment, assertions and retractions to the

knowledge base may be invoked by multiple threads (each of which can be an

agent component or other agents), and they are likely to be interlaced due to the

truth maintenance mechanism or other potential cascading assertions. Under the

multi-thread environment, the double-ended queue can be leveraged to manage

these kinds of situations. In order to prevent deadlocks and race conditions under

multiple invocations, a dedicated thread in the knowledge base kernel was created

for processing the queue of pending operations.

4.4.6 Supporting the Semantic Web

For better interoperability and future extensibility, the knowledge base was ex-

tended with a mapping mechanism to support semantic Web standard languages.
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Specifically, a mapping specification between OWL-Lite [121] and FactType def-

inition of the knowledge base was developed. In addition, a series of translation

algorithms for converting rules to SWRL [122][123] and vice versa was also imple-

mented. Using standard languages can enhance the exchangeability and mobility

of agent knowledge. Therefore, virtually any editing tools can be chosen and used

by knowledge engineers so long as the standard languages can be appropriately

supported.

Figure 4.9 illustrates the framework for how the knowledge base can be ex-

tended with semantic Web compatibility [124]. In order to be exchangeable with

other semantic Web-compatible systems such as third party-editing tools, the

knowledge in legacy formats needs to be translated into representations accom-

modating semantic Web standards. The two core components in this framework

are 1) a translator for converting knowledge in legacy formats into semantic Web

standards such as OWL and SWRL; and 2) a translator that converts knowledge in

the reverse direction. The two translators bridge the knowledge representation gap

between the knowledge base and the semantic Web standards. The detailed design

and implementation of these two translators are assumed to be system-specific and

depend on which semantic Web languages are to be used.
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Figure 4.9. The framework for enabling semantic Web compatibility.



69

4.4.6.1 Preliminaries

The goal of the semantic Web is to enable the contents on the Web to be machine-

readable and machine-processable. To reach the goal, XML (Extensible Markup

Language)-based knowledge representation languages have been developed for this

purpose. The semantic Web layered architecture contains language specifications

of increasing expressive power layered on top of lower ones. XML provides the

basic syntactical specification regarding how to organize information. On top of

XML, RDF (Resource Description Framework) is designed to provide further ex-

pressiveness such as subject-predicate-object triples and other complicated data

structures using vocabulary for describing classes and concept hierarchies as well

as for the concepts of domain and range.

Web Ontology Language (OWL) [121] and its succeeder OWL 2 [125][126]

emerged as the standard, derived from previous works such as DAML+OIL rooted

in description logics. An OWL-based ontology consists of three major elements:

Classes, Properties, and Individuals. A Class is a type definition regarding a

concept, which can be organized in a hierarchical structure to represent inheri-

tance relationships. A Property is a binary relationship defined with domains and

ranges, usually being used to construct a slot of a class. Two types of properties

supported by OWL: a DatatypeProperty with a primitive data type as its range

such as string or integer defined in XML Schema and 2) an ObjectProperty with

a class as its range. An Individual is an instantiation of a class based on the class

definition and its associated properties.

OWL has three sublanguages with different expressive powers. OWL-Lite

supports primary description functions and has some restrictions to ensure com-

putability, such as constraining cardinality to be either 0 or 1. OWL-DL is for

situations that need maximum expressiveness without losing computational com-

pleteness. OWL-Full is the sublanguage with the maximum expressiveness but

without computational guarantees. In this research, we focus on the sublanguage

of OWL-Lite, and we leave OWL-DL as the next step in future research.

Due to the restrictions of description logics, some types of knowledge are too

complicated to be represented in description logic and are only feasible to be repre-

sented in first order logic. These knowledge types are usually represented in rules

and being executed in rule-based systems. Semantic Web Rule Language (SWRL)
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[122] is one of the standards for rule representation, built on top of RuleML and

the OWL language. SWRL enables the representation of knowledge in Horn logic,

such that inference knowledge can be realized in rules with antecedents and con-

sequences. RIF (Rule Interchange Format) [127] has also emerged as a standard

for representing rule knowledge.

In order to process knowledge encoded in the semantic Web languages, efforts

have been made to implement those semantics in rule-based systems [128]. In

addition, the interoperability between SWRL and other rule-based systems has also

been explored in [129]. However, the issue of bridging and migrating existing rule-

based systems to semantic Web standards was not addressed in either work. For

other rule languages, SweetJess [130] provides a bi-directional translator between

DamlRuleML and Jess [118] rules. However, the research related to this work did

not significantly address the details of the algorithms nor the issue of migrating

existing rule sets.

In addition to inference, tools for creating and editing knowledge represented

in semantic Web standards are also important. A SWRL editor with graphical

user interfaces has been developed under the Protégé framework [131]. This editor

is integrated with an OWL library and can be utilized to verify the structure and

correctness of SWRL rules against the underlying ontology.

4.4.6.2 OWL Elements and FactType/Fact

As noted previously, the three fundamental elements in an OWL ontology are

Classes, Properties, and Individuals. A Property can be either a DatatypeProp-

erty or an ObjectProperty associated with a Class, whereas Individuals are the

instantiations of a Class. Based on this concept, our approach is to translate a

Class along with its Properties into a FactType in the knowledge base, and then

translate Individuals of this Class into Facts of this FactType.

Due to the performance consideration and inherited restrictions of the R-CAST

knowledge base, the current design is focused on supporting knowledge represented

in OWL-Lite and SWRL rules with axioms based on OWL-Lite.

The procedure for translating an OWL-Lite ontology into a knowledge base

representation is shown in Algorithm 2. In each resulting FactType, we created an

additional property named “InternalID” for storing internally-generated identifiers
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of individuals instantiated based on its corresponding Class. The InternalID is used

as an internal reference in the knowledge base for a Fact to refer to itself.

Algorithm 2 shows the main function of the translation. Lines 2–4 ensure ev-

ery Class axiom will certainly be translated into a FactType. Since every Class

name in an OWL ontology is unique, each Class will be translated into exactly

one FactType. Similarly, every Property name is unique, so each Property will

be converted into exactly one Property in a FactType. Lines 6–9 and 10–13 deal

with DatatypeProperty and ObjectProperty axioms, respectively. The restrictions

in lines 6 and 10 ensure only Property axioms having a domain to the current

Class will be converted. For Property axioms that have no domain, since there is

no associated Class, there will be no Individual using these Properties; therefore

it is safe to ignore them. If a Property axiom has a domain, there must exist a

corresponding Class axiom; otherwise the OWL document is invalid. Since each

Class will be translated into a unique FactType along with its associated Proper-

ties, the concepts in the OWL ontology will be preserved in the knowledge base

representation.

The procedure for translating FactTypes to an OWL-Lite ontology is illustrated

in Algorithm 3. Since the R-CAST knowledge base system does not support cross

Algorithm 2 From Class/Property definitions to FactTypes.

Require: A set of Class axioms C = {c1, .., cm}, a set of DatatypeProperty axioms
DP = {dp1, .., dpn}, and a set of ObjectProperty axioms OP = {op1, .., opo}.

1: function OWLtoFactTypes (C, DP , OP )
2: for all ci ∈ C do
3: factTypeName← the name of ci
4: Create a FactType ft named factTypeName
5: AddPropertyToFactType (ft, “InternalID”)
6: for all {dpj|dpj ∈ DP ∩ opj.domain = ci} do
7: propertyName← the name of dpj

8: AddPropertyToFactType (ft, propertyName)
9: end for

10: for all {opj|opj ∈ OP ∩ opj.domain = ci} do
11: propertyName← the name of opj

12: AddPropertyToFactType (ft, propertyName)
13: end for
14: end for
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Algorithm 3 From FactTypes to Class/Property definitions.

Require: A set of FactType FT = {ft1, .., ftm}
1: function FactTypesToOWL (FT )
2: for all fti ∈ FT do
3: className← the name of fti
4: Create an OWL Class ci named className
5: Get the property list pi =< pi,1, .., pi,n > from fti
6: for all pi,k ∈ pi do
7: propertyName← the name of pi,k

8: uniquePN ← className.“ ”.propertyName
9: Make a DatatypeProperty dpi,k named uniquePN

10: (dpi,k.domain)← ci
11: (dpi,k.range)← String
12: end for
13: end for

reference from one FactType to another, every property of a FactType is translated

into a DatatypeProperty.

In Algorithm 3, lines 2–4 ensure every FactType will be translated into a Class

axiom. Since every FactType name in the knowledge base is non-duplicated, each

FactType will be translated into exact one Class with a unique name. Line 6

ensures all Properties in the FactType will be handled. Line 8 generates a unique

name for each OWL Property by appending the Property name to its Class name.

Since the Class name is unique, and the Property names under the same FactType

are non-duplicated, the name of the OWL Property is unique. Lines 9–11 create a

DatatypeProperty for each property of the FactType. Line 10 defines the domain

to be its associated Class, and line 11 sets the range to a String. Since each

FactType will be translated into a unique Class along with its associated Property

definitions, FactType definitions from the knowledge base can be represented in

the OWL ontology.

For Individuals and Facts, Algorithm 4 shows the translation algorithm that

converts OWL-Lite Individuals into Facts in the knowledge base. Some of the

implementation can be realized with hash tables such that the complexity can

be reduced. When creating a Fact, the URI (Uniform Resource Identifier) of the

Individual will be used as its InternalID since each URI is unique in an OWL

ontology. If there is no URI designated to an Individual, a unique identifier will
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be generated by invoking the function createAGlobalUniqueID(). This function

is designed for generating a non-duplicated string in the system. To illustrate the

usage of InternalIDs, Figure 4.10 shows an example with two classes, where one

is referred by the other through an ObjectProperty. The two FactTypes “Build-

Algorithm 4 From OWL-Lite individuals to Facts.

Require: A set of FactType FT = {ft1, ..., ftm}
A set of Individual D = {d1, ..., dn}, where each of di is created according to a
class definition and its associated property definitions.

1: function IndividualtoFacts (FT , D)
2: for all di ∈ D do
3: c← the class of di

4: ft← the corresponding FactType of c
5: Create a Fact f
6: id← the URI of di

7: if id = null then
8: id← createAGlobalUniqueID()
9: end if

10: SetPropertyV alueToFact (f , “InternalID”, uri)
11: for all di’s property of pi,j do
12: pName← the name of pi,j

13: value← the value of pi,j

14: SetPropertyV alueInFact (f , pName, value)
15: end for
16: end for
17: end function
18:
19: function SetPropertyV alueInFact

(f : Fact, propertyName : String, value : String)
20: ft← the FactType of f
21: Retrieve the property list p =< p1, ..., pn > from ft
22: Retrieve the value list v =< v1, ..., vn > from f
23: for all pi ∈ p do
24: if pi = propertyName then
25: vi ← value
26: update the value list v in f
27: return
28: end if
29: end for
30: end function
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Figure 4.10. An example ontology in OWL-Lite.

ing” and “Location” listed below are generated by the translation algorithm. The

last property “hasLocation” of the Building FactType is from the ObjectProp-

erty “hasLocation.” In the Building Fact, its “hasLocation” property is set to the

reference (i.e., the InternalID) of the Location Fact.

For the translation from Facts to OWL-Lite Individuals, as shown in Algo-

rithm 5, it is straightforward to create an OWL Individual and then assign all the

property values by using its associated OWL Property definitions.

(FactType Building (?IID ?hasName ?hasLocation))

(FactType Location (?IID ?latitude ?longitude))

(Fact Building (id0001 BuildingA id0002))

(Fact Location (id0002 45 135))

4.4.6.3 Rules

A SWRL rule is encoded in the Imp data structure, which is composed of a body

element for the antecedents and a head element for the consequence. The content

of a head or a body is an AtomList, which is composed of a number of Atoms.

There are four primary types of Atoms in SWRL: ClassAtom, DatavaluedProperty-

Atom, IndividualPropertyAtom, and BuiltinAtom. ClassAtom is a unary predicate
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Algorithm 5 From Facts to OWL-Lite individuals.

Require: A set of Facts F = {f1, ..., fm}
1: function FactsToOWL (F )
2: for all fi ∈ F do
3: fti ← the FactType of fi

4: Get fti’s corresponding OWL Class ci
5: iName← the ID of fi

6: Make an OWL Individual di of class ci, named iName
7: Get the property list pi =< pi,1, ..., pi,n > from fti
8: Get the value list vi =< vi,1, ..., vi,n > from fi

9: for all pi,k ∈ pi do
10: Get pi,k’s corresponding OWL Property PRi,k

11: di.PRi,k ← vi,k

12: end for
13: end for
14: end function

for declaring the class of an object, where the object can be either an identifier

or a variable. DatavaluedPropertyAtom and IndividualPropertyAtom are binary

predicates that are used to associate an object with a value or another object. A

BuiltinAtom is an element embedded with a functional predicate that supports

a predefined operation. There are a number of built-in operations defined in the

SWRL ontology, and users are also allowed to create custom operations.

According to the SWRL definition, there are only minimum restrictions on

how a rule should be defined in SWRL; hence rules in SWRL can be encoded in

a very flexible way, but challenges are introduced when mapping them to rules

of existing forward-chaining rule-based systems with inherited restrictions. In the

current implementation of our system, we support a complete mapping from the

R-CAST rule-based system to SWRL, but only a partial mapping from SWRL to

the system of R-CAST.

Referring to Figure 4.5 that shows the syntax of rules of the R-CAST knowledge

base, an antecedent can be either a predicate based on a FactType definition or a

functional predicate which implements an operation. The procedure for translating

a R-CAST rule set to SWRL rules is outlined in Algorithm 6. This algorithm

consists of three major parts. The first part (lines 7–13) translates antecedent

predicates based on FactType definitions, or non-functional predicates, into SWRL
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ClassAtoms and PropertyAtoms. For example, the first antecedent of the example

rule in 4.4.1 “(Person (?name ?age male))” will be translated into four Atoms as

follows. (Note: The “#” sign is for indicating that it is an URI that can be looked

up in the ontology, where the namespace is ignored.)

ClassAtom(#C1, #Person)

DatavaluedPropertyAtom(#C1, #name)

DatavaluedPropertyAtom(#C1, #age)

DatavaluedPropertyAtom(#C1, "male")

The second part (lines 14–20) translates functional predicates in the antecedent

such as arithmetic and comparison operators. It creates a BuiltinAtom with its

built-in element referring to the URI of the corresponding SWRL built-in ontology.

The arguments in a BuiltinAtom comprise an RDF List, and the sequence of the

arguments should be carefully organized if the parameters are defined differently

between the functional predicate and the SWRL built-in. For example, the second

antecedent of the example rule in 4.4.1 “(< (?age12))” will be translated into a

BuiltinAtom as follows:

BuiltinAtom(builtin=swrlb:lessThan,

arguments=(#age, 12))

The last part (lines 21–31) of the algorithm translates the consequence into

a SWRL ClassAtom and several PropertyAtoms. For the consequence, two op-

tions must be considered. It is necessary to identify whether a rule is designed

1) to update existing individuals or 2) to create new ones. If the rule is designed

to create new individuals, we need to prepare a new SWRL variable in the con-

sequence. However, SWRL was originally designed to support updating existing

individuals by asserting new relationships or properties; thus there is no standard

syntax for creating new variables representing newly-created individuals in the con-

sequence. In addition, SWRL disallows unbound variables in the consequence, and

all variables should be declared in the antecedents. Therefore, in order to support

creating a new individual, the SWRL built-in extension CreateOWLThing [132]

provided by the Protégé group was adopted for our approach. CreateOWLThing

is a built-in to be used in the antecedent for declaring a variable to represent the
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Algorithm 6 From R-CAST rules to SWRL rules.
Require: A set of Rules R = {r1, ..., rm}, where each ri = {Pi, qi, Xi} is composed of one or more ordered

antecedents Pi = {pi,1, ..., pi,n}, a consequence qi, and a set of shared variable Xi = {xi,1, ..., xi,o} among
pi,1, ..., pi,n, and qi.

1: function RulesToSWRL (R)
2: for all ri ∈ R do
3: Create a SWRL Imp object impi

4: for all xi,j ∈ Xi do
5: Create a SWRL Variable named xi,j

6: end for
7: //Non-functional predicates in the antecedent:
8: for all pi,k ∈ Pi ∧ ¬(pi,k is a functional predicate) do
9: Get pi,k’s corresponding OWL Class C

10: Create a SWRL Variable named ck

11: Make a SWRL ClassAtom(C, ck) in impi.body
12: CreatePropertyAtoms(pi,k, ck, Xi) in impi.body
13: end for
14: //Functional predicates in the antecedent:
15: for all pi,k ∈ Pi ∧ (pi,k is a functional predicate) do
16: Create a RDF List args
17: op← operator of pi,k

18: args← arguments of pi,k

19: Create a BuiltinAtom(op, args) in impi.body
20: end for
21: //The consequence:
22: if ri is designed to create new facts then
23: Create a SWRL Variable named cnew

24: Create a BuiltinAtom(“CreateOWLThing”, cnew) in impi.body
25: chead ← cnew

26: else
27: chead ← the SWRL Variable that represents the individual to update
28: end if
29: Get qi’s corresponding OWL Class C
30: Create a SWRL ClassAtom(C, chead) in impi.head
31: CreatePropertyAtoms (qi, chead, Xi) in impi.head
32: end for
33: end function
34:
35: function CreatePropertyAtoms

(p : predicate, c : a SWRL Variable designated for this predicate, X : the variable set of the rule)
36: for all arguments ai of p do
37: Get ai’s corresponding OWL Property PR
38: arg1← c
39: if ai ∈ X then
40: arg2← URI of corresponding SWRL Variable
41: else
42: arg2← value of ai

43: end if
44: if PR is a DatatypeProperty then
45: Create a DatavaluedPropertyAtom(PR, arg1, arg2)
46: else
47: Create a IndividualPropertyAtom(PR, arg1, arg2)
48: end if

49: end for
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Algorithm 7 From SWRL rules to R-CAST rules.
Require: A set of SWRL Rules SR = {sr1, ..., srm}, where each sri = {Headi, Bodyi, Vi} is composed of

a body Bodyi = {CAi, PAi, BIi} consisting of ClassAtoms, PropertyAtoms, and BuiltinAtoms; a head
Headi = {ca′

i, PA′
i} consisting of only a ClassAtoms and some PropertyAtoms; and a set of Variables vi.

1: function SWRLToRules (SR)
2: for all sri ∈ SR do
3: Create a rule ri

4: //Non-functional predicates in the antecedent:
5: for all cai,j ∈ CAi of Bodyi do
6: Ci,j ← the OWL Class enclosed in cai,j

7: fti,j ← the corresponding FactType of Ci,j

8: ci,j ← cai,j .argument1
9: Create a Predicate pri,j based on fti,j ’s definition

10: for all pai,k ∈ PAi of Bodyi do
11: arg1← pai,k.argument1
12: if arg1 = ci,j then
13: pName← the Property name enclosed pai,k

14: arg2← pai,k.argument2
15: SetPropertyV alueInPredicate(pri,j ,pName,arg2)
16: end if
17: end for
18: ri.antecedent = ri.antecedent + pri,j

19: end for
20: //Functional predicates in the antecedent:
21: for all bii,l ∈ BIi do
22: op← the operator enclosed in bii,l
23: args← arguments of bii,l
24: Create a Functional Predicate fpri,l = (op, args)
25: ri.antecedent = ri.antecedent + fpri,l

26: end for
27: //The consequence:
28: C′

i ← the OWL Class enclosed in ca′
i

29: ft′i ← the corresponding FactType of C′
i

30: c′
i ← ca′

i.argument1
31: Create a Predicate pr′

i based on ft′i’s definition
32: for all pa′

i,k ∈ PA′
i of Headi do

33: arg1← pa′
i,k.argument1

34: if arg1 = c′
i then

35: pName← the Property name enclosed pa′
i,k

36: arg2← pa′
i,k.argument2

37: SetPropertyV alueInPredicate(pr′
i, pName, arg2)

38: end if
39: end for
40: ri.consequence = pr′

i,j

41: end for
42: end function
43:
44: function SetPropertyV alueInPredicate

(pr : Predicate, propertyName : String, value : String)
45: ft← the FactType of pr
46: Retrieve the property list p =< p1, ..., pn > from ft
47: Retrieve the value list v =< v1, ..., vn > from pr
48: for all pi ∈ p do
49: if pi = propertyName then
50: vi ← value
51: update the value list v in pr
52: return
53: end if
54: end for

55: end function
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newly created individual, such that in the consequence we can refer to the new

individual using this variable.

With a similar structure, the translation algorithm from SWRL to R-CAST

rules is shown in Algorithm 7. It is a straightforward to reverse the way of map-

ping in each of these steps. However, it is worth mentioning that not all SWRL

rules can be translated into R-CAST rules. Since we have the assumption that

the ontology is in OWL-Lite, the SWRL rules are also supposed to only reason

about OWL-Lite individuals. Due to this restriction, each object declared with

ClassAtom should have only non-duplicated property atoms (DatavaluedProperty-

Atom or IndividualPropertyAtom) in order to satisfy the cardinality requirement

of OWL-Lite.

4.5 Other Decision Modules

To enhance cyber situation recognition, we also incorporated two other decision

modules into our implementation. These can handle more complicated decision

requirements and provide alternative ways to support decision making. The first

module is inspired by the recognition-primed decision (RPD) model, which is a nat-

uralistic decision model developed by Klein [14][15] and has been widely adopted

in military and firefighter training. A cognitive model, it explains how a human ex-

pert makes decisions under time-stress—by matching the current situation against

one’s experiences, followed by mental simulation and evaluation. The second mod-

ule is based on evaluating and ranking a set of options based on a weighted-sum

approach.

4.5.1 A Computational RPD Module

In the RPD model, recognition is based on cues associated with experiences. The

recognition procedure is similar to case matching in case-based reasoning [133]. In

our implementation, cues are a list of conditions represented as predicates in the

knowledge base. Cue matching is implemented as a query to the knowledge base

to check whether the cue is true in the current situation. The cues of an experience

can be defined as the primary decision factors elicited from the domain experts.
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In the RPD model, the behavior of humans making decisions under emergent

situations is rational but not optimal. Instead of thoroughly retrieving all previous

experiences and considering all possible solutions, human experts tend to make a

satisficing decision—that is, one which is good enough but not necessarily the

best one. This is a basic assumption in the RPD model. Since a computer-based

agent does not have this limitation, we can leverage the computational resources to

enhance our work. Instead of finding only the first-matched experience, the decision

module is designed to take advantage of the computational power to consider as

many as experiences as possible (ideally the entire set of experiences in the system)

to boost the quality of decision.

Inspired by the RPD model, the decision module was designed and imple-

mented as follows. For a given domain, we constructed an experience base which

contained experience knowledge elicited from the domain experts. A set of ex-

perience instances comprised the experience base. Each experience instance had

several cues for matching the current situation. A cue could be either optional

or required. Each experience was also associated with an action, which was the

default action if there was a match. The action was treated as a decision option

for the decision module.

In an experience base, the common features of a subset of experience instances

can be abstracted to form experience spaces. Therefore, we can organize the expe-

rience base in a tree structure. An experience space can have multiple experience

instances which inherit some cues from it. Using the tree structure, the domain

experience knowledge can be well organized.

The decision module generates recommendations by matching experience base

against the current situation. In the computational environment, the original RPD

model is modified to consider all experience instances in the experience base. At

run-time, the experience base is traversed by the decision module. All the cues,

including both required and optional, are consolidated into information require-

ments for obtaining the information. The decision module ranks all the experiences

according to their similarities, and the one with the highest similarity is reported

as the recommendation. The similarity scores and the ranks are being updated

whenever there comes new information, such that the user can be up to date with

the latest situation and available recommendations.
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4.5.2 A Utility-Based Decision Module

The other type of decision module is based on the utility theory [53][54] and a

utility-based approach [134]. This module is based on the cost-benefit analysis of

a list of options and generates recommendations according to their scores.

For each option, the decision module keeps a list of criteria with their cor-

responding weights. Each of the criteria is evaluated and assigned with a score,

where the higher score is better. These scores will be normalized to a number

between 0 and 1, and then ,summed up according to their weights to generate an

overall score. This decision module compares the overall scores of all options and

displays a ranked list to the user.

This utility-based decision module is implemented in a flexible way such that

a criteria value can be either numeric or qualitative. A numeric criteria value can

be directly used as the evaluation score or be converted into a different value if the

mapping is non-linear or with some constraints such as a cap. Qualitative criteria

values need to be converted to a numeric value to fit the weighted-sum evaluation

scheme (e.g., mapping qualitative values “Low”, “Medium” or “High” into specific

numeric values). This kind of conversion definition is domain-specific and depends

on how the users interpret it.

We found that this approach is useful for decision problems where the criteria

present a clear view regarding what is good and what is bad. If it is good, a

higher score that implies a better utility shall be assigned. Since there is a norm

and a clear definition for measuring utility, the utility-based decision module is

preferable for dealing with problems that require normalized evaluation such as

asset allocation.

4.6 Agent Management Services

The readiness and accessibility of a decision support system is very important.

The R-CAST multi-agent architecture was originally designed as a Java applica-

tion running on a local machine. To improve its readiness and make the system

accessible to multiple users from virtually anywhere, we also developed a frame-

work that can encapsulate a group of agents as a service.
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Service-oriented computing is a trend in enterprise information infrastructure.

Multi-agent systems have the flexibility of information fusion and reasoning capa-

bility. Within the scope of a specifically designed agent program, an agent system

can behave as configured by the developer and knowledge engineer. However, it

is challenging to put a dynamic agent system under the conditions of a service-

oriented environment. This section describes a framework which can be used to

encapsulate a multi-agent system as a Web service, so that teams of agents can be

dynamically configured and instantiated based on users’ requests.

With service-based multi-agent systems, cloud computing supported by a team

of user-configurable agents becomes feasible. Customers could be enabled to con-

struct agent teams that reside on the server and then assign tasks to these agents.

These agents can also be pre-configured by experts to provide specific functionali-

ties such as knowledge inference, decision making, etc. They can also be retrieved

and instantiated to perform their designated tasks. In sum, the vision of the

agent management services is to enable users to dynamically create and configure

a desired group of agents for problem solving.

There has been some research conducted on the relationship between multi-

agent systems and service-oriented computing. In [135], the authors pointed out

potential research directions for service-oriented multi-agent systems. The catego-

rization of integration approaches between these two areas has also been discussed

in [136]. Among those categories, our approach is closest to the one which views
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Figure 4.11. The architecture of the agent management services.
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Web services are provided by agents. As for the dynamic nature of user-defined

agent configuration, the concept of dynamic service generation (DSG) mentioned

in [136] can be used to support the idea, with the difference that our work is

focused on providing multi-agent systems as services.

Figure 4.11 is an overview of the agent management services. There are three

major facilitating services supporting this system. The Configuration Management

Service is responsible for managing agent configurations. It is linked with the Agent

Configuration Repository and provides interfaces for knowledge engineers to store

and retrieve agent configurations/knowledge.

The Agent Lifecycle Management Service (ALMS) is responsible for tailoring

and instantiating a team of agents based on users’ requests. Figure 4.12 is a

sequence diagram showing the steps of how a team of agents is created and ter-

minated. To create a team of agents, the user first invokes the createAgentTeam

operation and specifies which set of agent configurations/knowledge to use (event 1
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Figure 4.12. Sequence diagram of the agent lifecycle management service.
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in Figure 4.12). Second, the ALMS retrieves the agent configurations and then tai-

lors the configurations according to the current context (events 2-4). Third, based

on these tailored configurations, the ALMS instantiates a team of the agents, keeps

their references, and assigns a unique ID to each of the agents (events 5-6). Fourth,

the ALMS invokes the tailorAgentTeam operation to perform further tailoring

needed at run-time (events 7-10). This dynamic tailoring can also be invoked by

the user at any time (events 12-15). Last, information about the team of agents

is returned to the user (event 11). After the agents finish their tasks, the user

can invoke the terminateAgentTeam operation, such that the ALMS will destroy

these agent instances and release resources (events 16-21).

The Agent Communication Service facilitates agent-to-agent communications

by providing a central storage for agents to exchange their messages. As illustrated

in Figure 4.13, every registered agent has its own mailbox. Since each agent has

a unique ID assigned by the ALMS, there is no confusion about the owner of the

each mailbox. While sending a message, the sender first encodes its own ID and

the recipient’s ID in the header of the message and then invokes the sendMessage

operation. Each agent should regularly invoke the retrieveMessage operation to

check whether it has incoming messages. In addition, the end user can also directly

communicate with the agents through the Agent Communication Service.

These three facilitating services work together to support agent management

operations. As illustrated with the numbers in Figure 4.11, the Configuration

Management Service takes agent configurations and then stores them in the Agent

Configuration Repository. At run-time, the Agent Lifecycle Management Service
!"#$%&'())*$+,-.($&/#01+,#&
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accepts users’ requests and instantiates agent instances. These agent instances

work together as a team to perform their designated tasks and communicate with

each other or the end users through the Agent Communication Service.



Chapter 5
Simulations and Experiments

In order to validate the idea of experience-based cyber situation recognition, we

performed an experiment using the agent-based system described in Chapter 4,

incorporating the element of experience relaxation. We developed case studies to

demonstrate the strengths and limitations of our approach.

5.1 Experiments on Experience Relaxation

The validation of experience relaxation is based on a simulation model which can

produce a large amount of run-time intrusion sequences to cover as many potential

cases as possible. We present the simulation models and the results in the following

sub-sections.

5.1.1 The Alert Sequence Simulator

Figure 5.1 is an illustration of the simulation model used to produce alert sequences.

An alert sequence is generated as follows.

• First, the simulator reads a predefined attack scenario which is represented

as an ordered list of attacking steps.

• Second, beginning at the first attacking step, the simulator generates a time

stamp for an event and then randomly produces a time interval based on
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a statistical distribution to determine the time stamp for the subsequent

attacking step.

• Third, the simulator generates all the alerts for a given event as well as the

delay periods for the alerts. The time stamp for each alert is calculated by

adding the delay to the time stamp of its triggering event. When producing

each alert, a random number generator is consulted to decide whether or not

it should be marked as a missing alert. A missing alert will not be made

available to the user.

• In the meantime, an alert correlation engine works simultaneously to produce

correlation information.

• Finally, the alerts and their correlation sequences will be sent to the receiver

(e.g., the experience generator or the Recognizer) according to their time

stamps in ascending order. It is worth mentioning that the information about

the triggering event becomes a part of the alert it triggers. Since events are

hidden from the user, an event will not be noticed by the user until one of

its associated alerts is successfully delivered to the user.
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Figure 5.1. The simulation model.
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5.1.2 Experimental Settings

Based on the simulation model, we used the technique of discrete-event system

simulation [137] to perform a series of simulated experiments. The emphases of

our experiments are listed as follows:

• to simulate the experience capturing and accumulation using a systematic

approach;

• to perform automatic experience relaxation and see how experience relax-

ation improves situation recognition;

• to check the usefulness of the experience-based approach using these captured

and relaxed experiences.

Figure 5.2 outlines the key actions, the components, and the flow of the ex-

periment, which is designed as a two-phase process. The first phase is to capture
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experiences, relax experiences, and integrate newly captured and relaxed experi-

ences into the hierarchical experience network. The second phase is to perform

situation recognition by feeding simulated testing alert and correlation sequences

into the agent; the recommendation generated by the agent will be compared

against the ground truth in order to determine whether the recognition is correct

or not.

The experiments were performed using the scenario from [49], involving three

hosts as shown in Figure 5.3 and two similar attacking approaches as illustrated

in Figure 5.4. We assumed the rate of missing alert to be 10%, such that approx-

imately 10% of the alerts will not be delivered. We also assumed that the alert

correlation engine could successfully report 50% of the correlated alerts.
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Figure 5.3. An example network consisting of three hosts.

Based on the experimental setting, we repeated the experiment 100 times.

In each session we ran the agent using different quantities of experiences in an

accumulating fashion. We started with an agent having five Level 0 experiences and

their relaxed versions. Then, we began integrating five more Level 0 experiences

and their relaxed versions into the same experience base through the cumulative

process illustrated in Figure 3.18. Each time, we performed situation recognition

on the same set of testing alert and correlation sequences. For each session, we

collected the percentage of correct recognitions based on the verification between

agent recommendations and the ground truths. Note that the simulation was
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Figure 5.4. Attack scenarios on the example network.

designed in a way making parallel computing applicable, so that the experiments

could be performed on compatible platforms.

5.1.3 Results and Discussions

Figure 5.5 shows the recognition results performed by agents with only experiences

of Level 1 relaxation. The rate of correct recognitions increases as the number of

experiences is accumulated. However, even with 100 sets of Level 1 experiences, the

rate of correct recognition is only 48% in average. Analysis suggests this occurred

because the experience base failed to recognize situations with limited coverage,

which will be further examined in a following section. As discussed in Chapter 3,

coverage will be extended if the process of experience relaxation can be applied.

In order to test whether experience relaxation can make a difference, additional

experiments using additional Level 2 and Level 3 experiences were performed given

the same set of testing situations (i.e., the same set of testing alert and correlation

sequences).

Figure 5.6 shows the recognition results made by agents with experiences from

Level 1 and Level 2 relaxation, and Figure 5.7 shows the results by agents with
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Figure 5.5. Situation recognition using Level 1 experiences.
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Figure 5.6. Situation recognition using Level 1 and Level 2 experiences.
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Figure 5.7. Situation recognition using Level 1, Level 2, and Level 3 experiences.
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Table 5.1. p-values from the Student’s t-tests on the rates of correct recognitions using
different levels of experience relaxation.

Between L1 experiences Between L1+L2 experiences

and L1+L2 experiences  and L1+L2+L3 experiences

5 8.22E-09 1.69E-22

10 1.15E-13 3.15E-40

15 1.78E-19 2.15E-48

20 5.28E-25 6.68E-50

25 5.71E-27 3.87E-49

30 2.73E-30 7.57E-48

35 2.08E-32 2.89E-47

40 1.30E-32 1.52E-45

45 1.28E-34 2.21E-43

50 5.65E-37 1.74E-42

55 2.03E-38 2.21E-40

60 9.29E-41 7.27E-41

65 1.12E-39 6.61E-38

70 1.12E-39 2.71E-36

75 2.32E-40 2.55E-35

80 1.37E-40 2.58E-33

85 1.06E-43 8.83E-33

90 8.56E-43 3.62E-31

95 7.12E-41 1.65E-28

100 9.50E-41 5.40E-28
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experiences from Level 1, Level 2, and Level 3 relaxation. Figure 5.8 integrates

the mean rate of correct recognition from each experiment into one diagram. The

rates of correct recognition by agents with Level 1 and Level 2 experiences are

consistently higher than those performed by agents with only Level 1 experiences.

The rates of correct recognition by agents with Level 1, Level 2, and Level 3

experiences are also consistently higher than those with only Level 1 and Level

2 experiences. The p-values from the two-tailed Student’s t-tests on the rates of

correct recognitions using different levels of experience relaxation are shown in

Table 5.1. The null hypotheses are that the rates of correct recognitions are equal.

Given a significance level α = 0.05 (since all of the p-values are less than 0.05),

these null hypotheses are rejected, leading to the conclusion that the differences

are statistically significant. Experience relaxation does improve the rate of correct

recognitions, regardless of how many experiences are in the experience base.

In order to investigate why experience relaxation helps improve situation recog-

nition, we examined other aspects of the results. Figure 5.9 shows the rates of

incorrect recognitions, and Figure 5.10 shows the rates of failing to recognize (i.e.,
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Figure 5.9. Rate of incorrect situation recognitions.
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Figure 5.10. Rate of failing to recognize.



95

Table 5.2. p-values from the Student’s t-tests on the rates of incorrect recognitions
using different levels of experience relaxation.

Between L1 experiences Between L1+L2 experiences

and L1+L2 experiences  and L1+L2+L3 experiences

5 0.010052 0.005086

10 0.003878 0.000311

15 0.001583 0.000426

20 0.000455 0.000691

25 0.000317 0.000705

30 0.000129 0.000765

35 3.83E-05 0.000896

40 6.67E-05 0.003217

45 4.23E-05 0.003847

50 3.52E-05 0.006089

55 5.76E-06 0.003367

60 1.94E-06 0.002960

65 5.24E-06 0.006964

70 5.10E-06 0.005482

75 3.79E-06 0.009385

80 4.90E-06 0.013975

85 3.41E-06 0.014744

90 2.75E-06 0.015904

95 1.00E-06 0.013065

100 1.39E-06 0.018779
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Table 5.3. p-values from the Student’s t-tests on the rates of failing to recognize using
different levels of experience relaxation.

Between L1 experiences Between L1+L2 experiences

and L1+L2 experiences  and L1+L2+L3 experiences

5 1.84E-06 2.85E-15

10 3.28E-10 2.26E-30

15 5.80E-16 1.12E-40

20 6.25E-21 2.72E-42

25 4.05E-23 1.54E-41

30 1.29E-26 5.57E-42

35 3.16E-30 7.24E-43

40 5.62E-29 1.01E-39

45 1.12E-31 1.57E-39

50 2.08E-34 6.48E-39

55 5.21E-37 9.93E-39

60 1.09E-40 3.10E-40

65 1.15E-40 1.75E-38

70 1.15E-42 4.95E-39

75 1.15E-42 3.37E-38

80 1.64E-44 5.80E-38

85 2.81E-48 1.21E-38

90 1.23E-47 3.86E-37

95 1.04E-47 5.85E-36

100 1.50E-48 3.47E-36

p-values
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the rates suggesting that no recommendation can be generated by the agent).

The p-values from the two-tailed Student’s t-tests with similar null hypotheses

are shown in Table 5.2 and Table 5.3. Given a significance level α = 0.05, these

null hypotheses are rejected, indicating there are significant differences between

them. According to Figure 5.10, it is clear that when the number of experiences

was small, a large percentage of the testing situations were not recognized by the

agent. This explains the performance gaps mentioned in the previous paragraphs.

The differences in the rates of failing to recognize provide an insight into why the

recognition by only Level 1 experiences did not perform well compared to those

experiments using all the Level 1, Level 2, and Level 3 experiences.

Ignoring the cases of failing to recognize and calculating the rate of correct

recognition only from successful tests, we generated the results shown in Figure

5.11 and integrated in Figure 5.12. The average rates of correct recognition were

maintained at a reasonable level regardless of the size of the experience base, al-

though the deviations were higher when the size of experience base was small.

Table 5.4 shows the p-values from the Student’s t-tests to indicate whether there

were significant differences in the rates of successful tests among experiments using

different levels of experience relaxation; the results show that there were no sig-

nificant differences. Consequently, it can be concluded that experience relaxation

does not directly improve the rate of correct recognition among situations that can

be processed by the agent, but it can significantly help reduce the rate of unrec-

ognizable situations (rate of failing to recognize) due to the increased coverage.

It is also important to observe how the size of the experience base affects the
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Figure 5.12. Rate of correct recognitions among successful tests.

Table 5.4. p-values from the Student’s t-tests on the rates of correct recognitions among
successful tests using different levels of experience relaxation.

Between L1 experiences Between L1+L2 experiences Between L1 experiences

and L1+L2 experiences  and L1+L2+L3 experiences  and L1+L2+L3 experiences

5 0.634962 0.242552 0.570820

10 0.982659 0.440409 0.450193

15 0.749078 0.587964 0.375142

20 0.772260 0.731902 0.509148

25 0.693850 0.704144 0.412997

30 0.572085 0.758653 0.350373

35 0.522315 0.848556 0.370629

40 0.354480 0.982769 0.292168

45 0.336976 0.997943 0.295612

50 0.407874 0.976272 0.387365

55 0.224555 0.922703 0.156061

60 0.221559 0.949522 0.161525

65 0.307108 0.945022 0.240485

70 0.319445 0.863320 0.209877

75 0.304150 0.925442 0.231199

80 0.314417 0.925947 0.241241

85 0.307698 0.895745 0.220530

90 0.284479 0.919234 0.211174

95 0.243776 0.884187 0.164737

100 0.256913 0.936110 0.198377
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rate of correct recognition. According to Figure 5.7 (which shows the rate of correct

recognition using Level 1, Level 2, and Level 3 experiences), the rate of correct

recognition increases as the size of the experience base increases. With an agent

containing 100 sets of Level 1 experiences with their relaxed versions, an average

of 83.50% of the situations were correctly recognized.

Additionally, it is desirable to investigate what would be a sufficiently sized ex-

perience base for making reasonably good recognitions. The p-values we obtained

by performing Student’s t-tests on the rates of correct recognitions given different

sizes of the experience base are outlined in Table 5.5. From this table, we can see

that there are significant differences when the size of experience base is less than

35, although the difference between those of size 25 and 30 is slight. When the

size of the experience base is 35, the rate of correct recognition is 72.75%.

In sum, according to these experimental results, recognition using experiences

with relaxation can contribute to better rates of correct recognition. This evidence

and these observations confirm the usefulness of our approach in experience-based

situation recognition.

Table 5.5. p-values from the Student’s t-tests on the rates of correct recognitions given
different numbers of Level 1 experiences they are generated from.

p-values

5 10 2.75E-15

10 15 4.71E-12

15 20 9.66E-06

20 25 0.00043

25 30 0.09634

30 35 0.03224

35 40 0.25042

40 45 0.16264

45 50 0.26501

50 55 0.61283

55 60 0.07226

60 65 0.70622

65 70 0.61003

70 75 0.86766

75 80 0.48836

80 85 0.35934

85 90 0.58541

90 95 0.89030

95 100 0.27865
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5.2 Case Studies

In order to demonstrate the strengths and limitations of the experience-based ap-

proach, six cases based on the same scenario with different situations and emphases

are shown in this section.

5.2.1 Case 1 – A Perfect Run-Time Sequence

In the first case, all alerts were generated and delivered to the analyst in the same

order as the triggering events. No alerts were missing, and no false positive alerts

were observed. The ground truth and the alert sequence were given as follows:

• The ground truth: E1 → E2 → E4 → E5 → E6

• Alert sequence: A1(triggered by E1)→ A2(by E1)→ A3(by E2)→ A5(by E4)

→ A6(by E5)→ A8(by E6)

The relationship among these observed alerts and their hidden events are out-

lined in Figure 5.13. This sequence can be easily matched by patterns created from

experiences with no missing alerts or those relaxed from these experiences.

!"##$%&'($%)*&+'($%)&,-.$*/& 01*$2(314$&54$2)*&+54$2)&,-.$*/&

63*$&7&

8
9
$
&

Figure 5.13. Case 1: a perfect run-time sequence.
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5.2.2 Case 2 – A Sequence with a False Negative Alert

The second case (Figure 5.14) was similar to Case 1 except that it included one

missing alert.

• The ground truth: E1 → E2 → E4 → E5 → E6

• Alert sequence: A1(triggered by E1)→ A3(by E2)→ A5(by E4)→ A6(by E5)

→ A8(by E6)

Although alert A2 was missing, the existence of E1 was already supported by

A1 and hence the impact was not significant. This sequence could still be detected

by experiences containing A1 in their alert patterns. It could also be matched by

experiences relaxed from those containing both A1 and A2.

!"##$%&'($%)*&+'($%)&,-.$*/& 01*$2(314$&54$2)*&+54$2)&,-.$*/&
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Figure 5.14. Case 2: a sequence with a false negative alert.

5.2.3 Case 3 – A Sequence with another False Negative

Alert

The third case (Figure 5.15) contained a missing alert, but it was the only alert

of its triggering event. In addition, there was another event type which depended

on the same precondition and had the same postcondition. Therefore, it became
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Figure 5.15. Case 3: a sequence with another false negative alert.

difficult to decide whether this attack was through the triggering event or the other

event.

• The ground truth: E1 → E2 → E4 → E5 → E6

• Alert sequence: A1(triggered by E1)→ A2(by E1)→ A5(by E4)→ A6(by E5)

→ A8(by E6)

In this case, the experience base may have contained the appropriate experience

to isolate and identify the situation; however, based solely on the available infor-

mation, it was very challenging to distinguish which type of attack was happening

due to the false negative alert.

5.2.4 Case 4 – A Sequence with a Delayed Alert

The fourth case (Figure 5.16) differed from the third in that the missing alert

eventually appeared with a significant delay.

• The ground truth: E1 → E2 → E4 → E5 → E6

• Alert sequence: A1(triggered by E1)→ A2(by E1)→ A5(by E4)→ A6(by E5)

→ A3(by E2)→ A8(by E6)
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When applying the experience-based recognition approach, the results may

have been unreliable before this delayed alert appeared, as was the situation in

Case 3. After this alert was delivered, the Recognizer changed its recommendation

to report a correct result, since the information provided by the delayed alert

disambiguated the entire situation.

!"##$%&'($%)*&+'($%)&,-.$*/& 01*$2(314$&54$2)*&+54$2)&,-.$*/&

63*$&7&
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Figure 5.16. Case 4: a sequence with a delayed alert.

5.2.5 Case 5 – A Sequence with a False Positive Alert

The fifth case would confuse the analyst.

• The ground truth: E1 → E3 → E4 → E5 → E6

• Alert sequence: A1(triggered by E1)→ A2(by E1)→ A4(by E3)→ A3(by E2)

→ A5(by E4)→ A6(by E5)→ A8(by E6)

As shown in Figure 5.17, the existence of alert A3 implied that there was an

event E2, but it was actually a false positive. In this case, it was very difficult

to identify whether the attack was through E2 or E3. Experience of either attack

type may have been retrieved.
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Figure 5.17. Case 5: a sequence with a false positive alert.
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Figure 5.18. Case 6: a sequence with a false positive alert and correlation information.

5.2.6 Case 6 – A Sequence with a False Positive Alert and

Correlation Information

Case 6 contained a false positive alert which could introduce confusion, but there

was also an alert correlation report available.



104

• The ground truth: E1 → E3 → E4 → E5 → E6

• Alert sequence: A1(triggered by E1)→ A2(by E1)→ A4(by E3)→ A3(by E2)

→ A5(by E4)→ A6(by E5)→ A8(by E6); Correlated: (A4, A5)

This case (Figure 5.18) had additional correlation information regarding A4

and A5, such that the analyst could infer the intrusion was through E3 to E4.

The confusion caused by this false positive could be resolved by alert correlation.

If a similar situation had occurred before, experiences with sufficient correlation

information would have helped generate correct recognition.

5.3 Remarks

From these simulations and case studies, we can see the experience-based approach

provides promising results. The greater the number of situations captured by the

system, the better the rate of correct recognition that can be achieved. Experience

can be incrementally expanded to cover more and more cases. This coverage can

be further improved if experience relaxation is applied.

As for the limitations of the experience-based approach, accurate cyber attack

recognition is still a challenging issue when dealing with false negative alerts under

certain confusing situations; but for false positive alerts, if alert correlation is used

to help identify the relationships among different alerts, the system can provide a

certain degree of correct results.



Chapter 6
Conclusions and Future Work

6.1 Main Contributions

In this dissertation, we addressed the problem of cyber situation recognition by

leveraging the experience and reflection of cyber security analysts. An experience-

based recognition mechanism and the idea of experience relaxation were proposed

and implemented, and the experimental results demonstrated the validity of our

approaches.

Going back to the research questions outlined in 1.2, our answers are listed

below.

• How can we reduce the cognitive load of a cyber security analyst?

Answer: For reducing the cognitive load of cyber security analysts, we pro-

posed a decision support system to cover their “blind spots.”

• How can we formalize the structure of a network system from the viewpoint

of cyber intrusion detection?

Answer: For the formalization of network systems, the partially observable

event-alert model was proposed to capture important features from the per-

spective of cyber intrusion detection.

• How can we capture and leverage experts’ experience to make decisions?

Answer: To capture and leverage experts’ experience to make decisions, we

developed the experienced-based approach with experience relaxation.



106

In sum, the main contributions of this work can be summarized as follows:

• proposed an approach to enable systematic capture of experience and reflec-

tion of cyber security analysts;

• enhanced the recognition of cyber situations using the captured experiences

of cyber security analysts;

• provided a knowledge-based strategy for relaxing the constraints of Horn

logic-based experience patterns to enhance their utilization;

• demonstrated the benefit of experience-based cyber situation recognition

through simulations.

6.2 Potentially Applicable Domains

In this dissertation, the ideas of experience-based situation recognition and expe-

rience relaxation were developed with the intent to aim at the problem domain of

cyber security. These ideas can be adapted to solve other compatible problems if

they share certain common features. Further research on other applicable domains

can also be explored. Therefore, not only the problem of cyber security but also

other applicable domains would benefit from this research.

For instance, situation awareness, not only in the virtual world but also in the

real world, is an important problem [138]. Taking it in regard to military scenarios

as an example, a battlefield usually involves a huge amount of dynamic information,

and the participants need to make decisions based on it. Due to the information

volume and other possibly unobservable but relevant events, commanders or sol-

diers are also subjected to their blind spots or cognitive load limitations. It would

be very helpful if critical information could be consolidated through automatic

mechanisms, and hidden events could be diagnosed using fast and sophisticated

models. In such a dynamically changing environment, a decision support system

could provide significant help and potentially save lives.
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6.3 Future Work

We hope our work will be beneficial to the research community and people who

are interested in related fields. To conclude the dissertation, we highlight a list of

future work for the next stage of this research.

• The simulated experiments were based on identified intrusion sequences; the

next step is to extend simulations with broader varieties and experiences.

• Develop further interactive learning capabilities to improve the elicitation

and capture of experts’ experiences and reflections.

• Extend experience-based analytics with hypothesis-based reasoning, such as

doubts about the recognition and hypotheses on missing alerts.

• Investigate collaborative multi-agent systems for supporting a team of ana-

lysts.
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