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ABSTRACT

The last a few decades have witnessed the rapid progress of ultrafast optics, which
has been driving the technology revolutions in scientific research and engineering
applications. For instance, several recent Nobel Prize winners have made their
discoveries using femtosecond optics applications in physics, chemistry and

biomedicine.

This dissertation covers three important applications of ultrafast femtosecond lasers.
First, we study the single particle scattering spectroscopy using supercontinuum
white light tweezers. We have developed supercontinuum white light optical
tweezers by using the ultrabroad band supercontinuum (SC) generated in highly
nonlinear photonic crystal fibers pumped by ultrafast laser pulses and for the first
time studied the scattering spectra in tightly focused supercontinuum. When the
scatterer is of spherical shape, we describe modeling based on Mie’s scattering
theory and angular spectrum decomposition. For the non-spherical-shaped
scatterers, when the size of the scatterer is small or the refractive index of the
scatterer is close to the surrounding medium, another modeling based on Born
approximation and Green’s function is derived. The calculation results are provided
as well. This work has built the foundation to understand optical scattering

spectroscopy of single particles in the supercontinuum white light optical tweezers



and further application to probe the single particle’s physical and chemical
properties via the linear and nonlinear optical scattering spectra, which can lead to
many important applications particularly in nanoparticle characterization and

sensing.

The second part of this dissertation is dedicated to the study of the femtosecond
pulse beam shaping. For femtosecond laser pulses, which cover bandwidths of tens
of nanometers, the performance of beam-shaping a Gaussian beam into a flat-toped
rectangular intensity profile is discussed for a practical realization. In the meantime,
the convergence of the improved Gerchberg—Saxton algorithm has been studied and
the number of iterations for phase element design is optimized. The temporal and
spatial properties of femtosecond laser pulses during beam shaping are studied. This
study is expected to benefit many industrial, medical and military applications where

specified beam shaping profiles are desirable.

The last part of this dissertation is terahertz (THz) generation by optical rectification
of femtosecond laser pulses. A method wusing optical rectification of
supercontinuum is proposed to improve the conversion efficiency over a broadband
range. Highly efficient broadband terahertz will accelerate the development of
terahertz technologies and their applications to areas such as biomedical imaging

and remote security screening.
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Chapter 1 Introduction

Ultrafast optics is a rapidly developing branch of optics in recent years, which deals
with the study and application of optical pulses and optical phenomena with ultrashort
laser pulses [1, 2]. Ultrashort laser pulses, which refers to the pulses with duration at
femtosecond (10™ s) level and even shorter, have the special properties, such as
ultrashort duration, high peak power, broad spectral bandwidth, short coherent length,
and structured spectral coherence [2], which make them especially useful for a
number of applications. The most obvious property of ultrashort pulses is short pulse
duration, which is critical for time-resolved study of fast processes. Majority of
applications use laser pulses with duration falling in the range of 100 fs to 1 ps, where
the ability for time-resolve fast process is far greater than anything that can be
achieved by means of conventional or state-of-the-art electronics. The extremely
short pulse duration also implies that very high peak power can be generated even at
moderate pulse energies. For example, a 100 fs pulse with energy of 1 nJ gives a peak
power level of ~10kW. When such a pulse is focused to a spot of 100 um?, the
intensity is on the order of ~10 GW/cm?, which is strong enough to observe many
nonlinear optical phenomena, while the average power is maintaining at hundreds of
milliwatts, which will not damage the sample. For ultrafast pulses with energy at
microjoule or millijoule levels, the intensity after focusing can be more than ~1000
TW/cm?, which can induce ionization in the materials. This process has been applied

to laser ablation and micromachining. Broad spectral bandwidth and short coherent



length is an essential property for ultrashort pulses as a result of the uncertainty
principle. When ultrafast lasers are applied to optical coherent tomography (OCT),
improvement in longitudinal resolution can be achieved. One other property of
ultrashort pulsed lasers is the structured spectral coherence. In 2005, the Nobel Prize
in physics was awarded to the research of frequency metrology, which processes the

comb structure of laser pulses in temporal and frequency domain.

In my dissertation, | present three applications of the ultrafast femtosecond lasers:
scattering spectroscopy of single micro/nano particle using supercontinuum white
light tweezers, tunable femtosecond laser beam shaping and terahertz (THz)

generation by optical rectification of femtosecond laser pulses.

The first part my dissertation is to study the single particle scattering spectroscopy
using supercontinuum white light tweezers [3]. Spectroscopy has a long history and it
has been widely used in research and industries. Since the ultrafast optical techniques
were launched and advanced quickly, the spectroscopy techniques have made a huge
revolution. Not only have many nonlinear optical spectroscopy techniques come to
this expanding world, such as fluorescence spectroscopy and coherent Raman
spectroscopy, but also the area linear optical spectroscopy has made a great
improvement. Examples include reports of applications using sources of ultrabroad
band supercontinuum (SC) [4-6] generated in highly nonlinear photonic crystal fibers
[7] pumped by ultrafast laser pulses. Supercontinuum white light covers more than

1000 nm from UV to near-IR, yet it still keeps high intensity and high degree of



spatial coherence. It is a major enhancement over traditional broad band optical
sources in linear optical spectroscopy. We developed the supercontinuum white light
optical tweezers to perform single particle spectroscopy [3]. Unlike conventional
spectroscopy, single particle spectroscopy can avoid ensemble averaging and it has
the capability to probe the properties of individual particles (e.g., size, shape,
refractive index, resonant absorption, chemical composition), which can lead to many
important applications particularly in nanoparticle characterization and sensing. The
supercontinuum white light optical tweezers system setup is described in Chapter 2.
The scattering spectroscopy of single particles trapped by supercontinuum white light
tweezers was firstly observed by our group. Scattering spectra of different particles
have been measured and are presented in this dissertation. The properties of trapping
forces in the supercontinuum white light optical tweezers are calibrated and results

are presented.

In order to understand the scattering spectrum in the supercontinuum white light
tweezers, Chapter 3 discusses theoretic models, which are constructed under various
approximation conditions. When the scatterer is of spherical shape, modeling based
on Mie’s scattering theory [8] and angular spectrum decomposition will be described.
In order to verify the model, a series of particularly designed experiments have been
performed and results showed consistent with our theory analysis. This modeling can
also be applied to nanoscaled metallic particle scatterer. The calculation results will
be presented and the results will be discussed in my dissertation. For the arbitrary-

shaped scatterers, when the size of the scatterer is small or the refractive index of the



scatterer is close to the surrounding medium, another modeling based on Born
approximation and Green’s function is derived. The comparisons of the results
between these two models show consistency and are presented, together with

calculation results.

Chapter 4 in my dissertation is dedicated to the study of the femtosecond beam
shaping [9]. Some specific beam shapes, such as flat top rectangular profiles, are
desirable in lithography, laser printing, optical data storage and many other
applications, but the basic mode coming out of laser cavity is often of Gaussian
profile. A flexible approach to producing relatively small flat-top profiles is to use a
shaping phase element followed by a focusing (Fourier transform) lens. Gerchberg—
Saxton (GS) [10] or improved GS algorithm [11] based on the desired wavelength is
often used to obtain the phase element design. For femtosecond laser pulses, which
cover bandwidth of tens of nanometers, the performance of beam-shaping a Gaussian
beam into a flat-toped rectangular profile will be studied and discussed for practical
realization. In the meantime, the convergence of the improved GS algorithm has been

studied and the number of iterations is optimized for phase element design.

The third part of my dissertation, Chapter 5, is about terahertz (THz) generation by
optical rectification of femtosecond laser pulses. THz radiation is an electromagnetic
wave that is in the range between FIR and microwaves [12]. THz radiation is not only
capable of penetrating tissues, fabrics, plastics and many other non-conducting

materials without damage, but also for spectral fingerprinting of many materials of



interest such as cancer cells. THz has a splendid application future in biomedical
imaging and security screening. Optical rectification of femtosecond pulse in second
order nonlinear materials is a simple and widely used method to generate broadband
THz radiation [13]. However the limitation is that the energy conversion efficiency
from femtosecond pumping lasers to THz radiation is very low, usually at 10° [14].
One important reason is the absorption of nonlinear materials and highly dispersion,
which breaks the phase matching condition and limits the interaction length. In my
dissertation, a method using optical rectification of supercontinuum pulses generated
in nonlinear photonic crystal fibers is proposed to improve the efficiency of THz
generation in the desired frequency region by tuning the supercontinuum spectrum.
Terahertz radiation generated with strategy is analyzed and simulated with numerical

calculations by using the split step method.

Chapter 6 presents conclusions and suggests future research directions.



Chapter 2 Supercontinuum White Light Optical Tweezers

2.1 Introduction to Optical Tweezers

A strongly focused light beam can exert force to trap and manipulate microscopic
objects [15-19]. This technology is named “optical tweezer”. Prior to the invention of
optical tweezers, optical pressure on micron-sized particles was observed and studied
in the early 1970s. In 1986, Arther Ashkin, Steven Chu and their colleagues at
AT&T Bell Lab introduced single-beam gradient force optical trap, which is known
as the first optical tweezer [15, 16]. Developed rapidly during the last two decades,
optical tweezers have found a wide range of applications in research fields of physics

[20-27] and biology [16, 28-40].

Current technologies of optical tweezers have demonstrated the capability of trapping
objects as small as tens of nanometers [41, 42] in size. The trapping forces, which
usually depend on power and wavefront structures of the light beam, are typically at
the pico-Newton level [43, 44]. Such a scale is ideal for manipulating
macromolecular systems, such as biological cells, and probing their responses. By
measuring mechanic force response of biopolymer, such as DNA and protein
molecules, and cell membranes using optical tweezers, it has been revealed that the
cell regulates gene transcription [45], inter- and intra-cellular signaling [46] and
respiration during reproductions [47]. Optical tweezers are useful not only for

selecting individual heterogeneous microbes, but also for applications in future



intracellular surgery [48]. More applications of optical tweezers in biological research
and medical applications have been reviewed in detail [16, 30, 31]. Optical tweezers
can also be used in studying interactions between colloidal particles [21] in the field

of physical and colloidal science.

Optical tweezer technology has experienced huge progress, and has become more and
more powerful and versatile. [17, 49-55] Meanwhile, efforts have been also made to
combine optical tweezers technology with spectroscopy techniques, such as Raman
spectroscopy [56, 57] and dark field spectroscopy [58], to probe properties of trapped

particle.

The basic principle behind optical tweezers is photon momentum transfer during the
light reflection and refraction. The momentum of photon is in the direction of light
propagation. When light is reflected or refracted on the surface of an object, the
direction of light propagation changes, which results in the photon momentum
changing. At the same time, the object undertakes an equal momentum change in the

opposite direction. This is how the force is exerted on the object by the light.

When the object size is larger than the trapping wavelength, the optical trapping
forces can be explained by the geometric optics model, as shown in Figure 2.1. When
the tightly focused laser beam hits a microsphere, the light rays are bent on the
surface of the microsphere according to the laws of reflection and refraction. The total
force on the microsphere can be decomposed into scattering force and gradient force.

The scattering force is always pointing in the direction of laser beam propagation to



push object along that direction, while the gradient force, which is proportional to the
gradient of the intensity, always pulls the object to the point of intensity peak if its
refractive index is larger than that of the surrounding medium. In typical optical
tweezers, the incoming lasers are working on TEMOO mode with a Gaussian intensity
profile. This means the center of the beam has stronger intensity than the edges.
When the axial gradient force is large enough to balance the scattering force, the
microsphere will be trapped. In order to obtain strongly focused field, high numerical
aperture objective lenses, where the gradient forces are overwhelming at focal spot,

are always desired.

I:scattering
1

Figure 2.1 The principle of optical trapping

The geometric optics model, discussed above, is in good agreement with measured
forces, if the diameter of the trapped object is well above the wavelength of the laser
light; whereas, electromagnetic theory can be used for particles that are small

compared with the wavelength. In the intermediate regime, where the particle sizes



are of the same order as the wavelength of the trapping laser, the electromagnetic

theory yields better results than the geometric optics model.

In the electromagnetic model, when the size of the particle is smaller than wavelength,

the external electric field of light will induce a dipole,
p = OZE ) (2-1)

where p is the induced dipole, E is the electric field of light, a is the polarizability of
particle. When this induced dipole moment interacts with electric field of light, the

total energy of this system, U, is
U=-p-E . (2-2)

Therefore the force, gradient force, is proportional to the gradient of the intensity of

the laser field,
F=-VU=aVE® (2-3)

The electromagnetic theory can not only explain the dielectric particle trapping, but
can be also apply to metallic particle trapping. Experiment has verified the metallic
nano particles can be trapped. Furthermore metallic nanoparticle trapping shows more
tightly than dielectric trapping, because the matellic particle is more easily polarized

and has larger polarizability.

A basic optical tweezer setup is simple: light source, beam expansion and steering

optics, high numerical aperture objective lens, sample cell holder, and imaging



equipment for observation. The trapping light sources are usually conventional
continuous wave lasers, because the laser power stability is an essential factor.
Optical tweezers using femtosecond pulsed laser have also been investigated recently.
We introduced the white light supercontinuum optical tweezers [3] for the first time
by using supercontinuum [5] generated from highly nonlinear photonic crystal fibers
[7]. Many interesting properties and applications of white light supercontinuum

optical tweezers are studied and discussed below.

2.2 Supercontinuum generation from photonic crystal fibers (PCF)

Supercontinuum generation is the process of the extremely broadening of spectrum
when high intensity lasers interact with materials. Supercontinuum generation has
been observed and studied in the bulk materials[59] and optical fibers[60, 61]. With
the development of the photonic crystal fibers (PCF), supercontinuum generation was
for the first time observed in highly nonlinear photonic crystal fiber pumped by

femtosecond laser pulses in 2000 [5].

Photonic crystal fiber is a kind of microstructured optical fiber, in which optical wave
can be confined by periodic air holes and propagates within core. The size of the core
can be as small as 1~2 microns. Figure 2.2(a) shows the cross section of a typical
photonic crystal fiber [62]. Thereby the nonlinearity of the fiber can be improved
about an order of magnitude compared to conventional single mode fibers. Another

advantage of photonic crystal fibers is that the group velocity dispersion (GVD)

10



property is adjustable by tuning the size and pitch of air holes in the cladding layers.
With special design, the zero group velocity dispersion wavelength can be shifted
from visible to near infrared region, which is a critical condition for supercontinuum

generation over extremely broadband spectrum range.

When ultrashort, femtosecond to picosecond, laser pulses are coupled into highly
nonlinear PCF, SC can be generated due to extremely intense nonlinear interaction
between optical field and PCF material. The mechanisms behind the SC generation
in highly linear PCF have been studied during the years since it was observed [6].
Supercontinuum generation in the highly nonlinear PCF can be categorized to two
cases: pumping in the normal GVD regime and in the anomalous regime. When
pumping laser pulses are located in the normal GVD regime of PCF, the physics of
SC generation is similar to that from conventional optical fiber, which has the typical
zero GVD wavelength in the near IR (about 1.3 pm). In this situation, self phase
modulation (SPM), Raman scattering, cross phase modulation (XPM) and four wave
mixing (FWM) are the major nonlinear optical process involved in SC generation
[63-65]. As mentioned above, one of important properties of PCF’s is that their GVD
can be tuned by adjusting the pitches and sizes of air holes in the cladding layers. A
specially designed PCF can shift the zero GVD wavelength to visible regime. As a
result, a general femtosecond oscillator or picoseconds laser source can pump PCF’s
in their anomalous GVD regime. In this case that the highly nonlinear PCF is pumped
at anomalous GVD regime, a broader SC spectrum can be obtained. That is because

in the anomalous GVD regime, high frequency components travel faster than the
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lower ones, while the SPM effect on the high intensity pulse will slow them down.
When the effect of SPM and anomalous group velocity dispersion are balanced each
other, an optical soliton can be formed. A series of soliton-related nonlinear processes
are involved in SC generation, such as soliton fission [66, 67], soliton self frequency
shift [68, 69], and dispersive wave generation [70]. Consequently, a broader SC
spectrum can be obtained. SC generation in the following experiment belongs to this
case. Figure 2.2(b) shows the far field image of a typical SC generated from PCF. The

theoretical simulation of SC generation in PCF will be described in section 5.2.

(@) (b)

Figure 2.2 (a) Typical cross section of nonlinear PCF [Source: Crystal-Fibre] and (b)
supercontinuum generation

Since the core of the photonic crystal fiber is very small, with a diameter usually of
less than 5 pm, the supercontinuum light source has an intrinsic character, a high
degree of spatial coherence, which is unique from other traditional white light sources,
such as the Xe arc lamp. Therefore supercontinuum can be collimated to a plane wave
and focused to a nearly diffraction limited spot. This makes the supercontinuum work
more like a traditional laser but with ultra broad bandwidth. The unique property of a

high degree of spatial coherence and extremely broadband spectrum of SC has made
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it attractive in the applications of optical frequency metrology [71], optical coherent
tomography [72], telecommunication [73], confocal imaging [74, 75] and

spectroscopy [3, 76, 77].

Two types of supercontinuum white light sources were used in the dissertation work.
In the first one, femtosecond laser pulses (average power ~ 400 mW, repetition rate ~
88 MHz, pulse width ~64 fs) from a mode-locked Ti: Sapphire laser (KM Labs) are
coupled into a short section (several centimeters long) of photonic crystal fiber (NL-
2.0-770, Crystal-Fibre). A typical supercontinuum spectrum measured by an Ando
optical spectrum analyzer is shown in Figure 2.3(a). In the second supercontinuum
white light source, sub-nanosecond laser pulses from a passively Q-switched
microchip laser (JDSU NP-10620-100, A=1064 nm, average power ~70 mW) are
coupled into a ~20 meter long photonic crystal fiber (BlazePhotonics SC-5.0-1064) to
generate supercontinuum white light. Compared with the first source, it has less

power but a much more uniform power spectrum as shown in Figure 2.3(b).
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Figure 2.3 Typical spectrum of supercontinuum generated in highly nonlinear photonic crystal
fibers (a) supercontinuum pumped by femtosecond laser pulses (b) supercontinuum pumped by
subnanosecond laser pulses.

2.3 Supercontinuum White Light Optical Tweezer

Since the supercontinuum white light generated from highly nonlinear photonic
crystal fibers has a high degree of spatial coherence, collimated supercontinuum
beams perform like lasers. We demonstrated that strongly focused the
supercontinuum white light is able to trap and manipulate mesoscopic scale

objectives.

First collimated supercontinuum white light from the first SC source was tightly
focused by an objective lens (Newport 60X/0.85 NA) into a sample cell filled with
microspheres in solution. A non-inverted optical tweezer setup was used in our
experiment. In Fig. 2.4, a silica microsphere of 4.82-um-diameter (Bangs Laboratory)
is trapped in 2D and manipulated in the lateral direction. In order to show the trapped
microsphere, we blocked the supercontinuum white light intermittently during the

experiments.
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Figure 2.4 A 4.82-um silica microsphere was 2D trapped by the white light tweezer.

To demonstrate 3D trapping by using supercontinuum, we constructed a downward
optical tweezer (non-inverted) using the second supercontinuum source. The
collimated white light was tightly focused by a Zeiss Plan-Neofluar oil immersion
objective lens (63x/1.25 NA) into a sample cell filled with polymer microspheres
suspended in water. A sequence of frames was captured, and these are shown in
Figure 2.5 to demonstrate the 3D trapping of a 2-um diameter microsphere. The first
frame shows the initial positions of several microspheres before one of them was to
be trapped. We mechanically translated the sample cell and moved one sphere
(pointed by the arrow) toward where the white light was focused (frame 2). The
sphere was then trapped and as a result the white light was strongly scattered (frame
3). Once it was trapped, it stayed there when we continued to move the sample cell
with the other spheres in the lateral directions (frames 4, 5, and 6). In order to
demonstrate the trapping along the axial direction, we moved the sample cell

downwards (frames 7 and 8), and as expected all the other microspheres were
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defocused. Finally, in the last frame we blocked the white light to show the trapped
sphere and it is evident that it remained in the same place all the time. This clearly

demonstrates the 3D trapping capability of the white light tweezers.

Figure 2.5 A 2-pm polymer microsphere was 3D trapped by the white light tweezer, and these
particles are identified, A, B, andC, in the frame sequence. First three frames show the process of
a sphere being trapped by the tightly focused supercontinuum white light, frames 4-6 show the
trapping in the lateral plane, and the last three frames demonstrate the trapping in the axial
direction.

Compared to conventional optical tweezers, the white light tweezer has a broader
versatility in controlling the properties of an optical trap, especially in the axial
direction, due to the extra degree of freedom - wavelength. To illustrate this idea,
following our work on chromatic confocal microscopy [75], we insert a pair of singlet
lenses, which form a telescope system, in order to purposely introduce chromatic

aberration. As the result, different wavelengths are focused at slightly different axial
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positions and therefore an extended depth of focus (EDOF) is obtained. The length of
the EDOF depends on the amount of material dispersion and the bandwidth of the
white light. Longer EDOF can be achieved by using a diffractive optical element such
as a Fresnel lens. We used an inverted setup with chromatic aberration to lift and
move multiple silica microspheres and to align micro- rods. The experimental results
are given in Fig. 2.6 (a) and (b). In Fig. 2.6 (a) we temporally blocked the
supercontinuum white light after 8 microspheres were lifted. The three frames show
the falling of the spheres due to gravity. In Fig 2.6 (b) an initially aligned micro-rod
fell down after the white light was temporally blocked. Stacking multiple
microspheres and aligning micro-rods have previously reported using Gaussian [78]
and Bessel beams [79]. Although the achievable depth of focus is shorter than that of
a Bessel beam [55], it does not have the ring structure. In addition, the intensity
distribution along the axial direction can be controlled by spectrally filtering the white
light beam using a pulse shaper like setup. Furthermore, since different spectral
components of the white light are focused at different axial positions, the relative
position information of the lifted microspheres could be potentially retrieved by

examining the back scattered light spectrum as in a chromatic confocal microscope.
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(b)

Figure 2.6 Trapping and manipulation of microspheres and micro-rod using supercontinuum
white light (a) the collapse of eight 5-um microspheres lifted by the inverted chromatic white
light tweezer after blocking the white light. (b) the falling down of a micro-rod initially lifted and
aligned by the inverted chromatic white light tweezer after blocking the white light.

It is interesting to perform spectroscopic measurements, particularly the optical
scattering measurement, while the particle is being trapped and manipulated. As
shown in Fig. 2.7, when we use the supercontinuum white light generated from the
first SC source to 3D trap a 2-um-diameter polystyrene sphere with a high numerical
aperture objective lens (Zeiss Plan-Neofluar 63x/1.25 N.A.), a colored scattering
pattern was observed and captured by color CCD camera. Fig. 2.7 (a) is the
background when no sphere was trapped and (b) is the scattering pattern of a 3D
trapped latex sphere. Clearly, the presence of a three-dimensionally trapped sphere

modified the spectrum dramatically.

18



Lens

Multimode ;
Mirror
Optical fibey_
Optical / ==
Iris
spectrum
analyzer A 3D trapped
microsphere \
/
Cell with microspheres
/
Objective lens
e T
Laser pulse O) o
£

Photonic crystal fiber

Figure 2.7 Schematic diagram of the experimental setup. The inserted pictures are (a) the
background when no microsphere was trapped and (b) scattering pattern when a 2pm latex
microsphere was three dimensionally trapped by an inverted white light tweezer using the
femtosecond supercontinuum source.

To measure the optical scattering spectrum, we constructed an inverted tweezer with
the second sub-nanosecond supercontinuum white light source because of its relative
flat spectrum. An objective lens (Newport 10x/0.25 N.A.) is placed on the top to
collect the transmitted light in the nearly forward direction. The numerical aperture of
the collection system is limited to about 0.13 by the iris. Finally the spectrum of the

transmitted light is measured by an optical spectrum analyzer (Ando 6315E).

During the experiments, we first measured the signal spectrum of the transmitted light
with a three dimensionally trapped microsphere. Next we measure the reference

spectrum when no microsphere was trapped. We define the ratio between the signal
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and reference as the scattering efficiency, which serves as a metric to describe how
strongly the light is scattered at a certain wavelength. The scattering efficiency curves
of microspheres with three different diameters are plotted in Fig. 2.8(a)-(c),

respectively.

The jagged structure of the plot is primarily due to the oscillatory movement of the
trapped microsphere. Each curve is the average of several traces which were obtained
by repeated measurements of the same trapped microsphere. As the microsphere
diameter increases from 1.5 um to 2.5 um, the peak is shifted to longer wavelength,
i.e. 580 nm, 820 m, and 900 nm respectively and the peak value of the scattering

efficiency increases (from 1.8 to 4) as well.
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Figure 2.8 Scattering efficiency curves. (a) — (c) are the scattering efficiency of three
dimensionally trapped microspheres of diameter 1.5 pm, 2 pm and 2.5 pm respectively.
Refractive index is 1.59 at 2=589 nm. The wavelength resolution is 10 nm.
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2.4 Optical Tweezer Trapping Force Calibration- Stiffness
Determination

Trapping force is one of the important properties of optical tweezers [80, 81]. The
tightly focused optical field forms a three dimensional potential well. The trapping
force always pulls the particles being captured toward the nadir of the potential well.

The potential can be written in the forms of series expansion as,

1 2
U(x)=U(x0)+§K(x—x0) +oe (2-4)

where Xp is the equilibrium position and « is the trap stiffness or spring constant in

Hook’s law F=-«x(x—x,) . Since the forces come from the photon momentum

transfer, the force is proportional to the power of trapping laser, and so is the stiffness.

A number of methods have been developed to measure the stiffness of the optical
trapping, such as power spectrum measurement [82, 83], equipartition [18, 84],
optical potential analysis [18], and drag force method [80]. Setups of first three
measurements are similar. The trapped particle is imaged on a quadrant photodiode
(QPD) in the forward direction. The photodiode quadrants are then summed pairwise,
and differential signals are derived from the pairs for both x and y directions. When
the size of probing bead is known and the trace of Brownian motion in a harmonic
potential is recorded, the stiffness of the trapping can be calculated through one-sided

power spectrum [82],
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k,T
miy(f2+ %)

Su(f)= (2-5)

where kg is Boltzmann’s constant, T is the absolute temperature, y is the
hydrodynamic drag coefficient, and fy is the rolloff frequency. The rolloff frequency

fo depends on the trap stiffness k by f, =«/27y. The drag y is given by the usual
Stokes relation y =6mma, where 1) is the viscosity of the medium and a is the radius of

the bead. The stiffness of trap can be also obtained thermal fluctuations of the

particle through the equipartition theorem [84],
1 1,
EkBT =§K<X ) (2-6)

The position variance, <x*>, connects to the stiffness, «, directly. An extension of the
equipartition method is to analyze the complete distribution of the particle position in
the potential well due to thermal motion. The probability of the displacement in the

potential well is given by the Boltzmann distribution [18],

e

P(Xx) oc ex
(%) o< exp( KT ok T

). (2-7)

For all of these three methods, the bandwidths of position detection systems are
required to record the power spectrum well beyond the rolloff frequency (in general,
more than one order of magnitude). Since all of these three methods are based on the
thermal dynamics of the particle, the temperature monitoring at focal point is very

important during the measurement.
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The drag force method directly measures the force balanced by viscous forces
produced by the medium at the largest displacement from the equilibrium position.
The sample cell is translated at known velocity perpendicular to the laser beam until

the bead is left behind. The calibration force is [80]
Fla = 67[77&Vk y (2'8)

where v denotes the velocity of the microscope stage during escape, and k is a factor
that takes into account the finite distance from the upper and lower boundaries of the

sample cell.

To calibrate the stiffness of the white light supercontinuum optical tweezers, we used
the method invented by Nemet and Cronin-Golomb [85, 86], which is actually an
extension of the drag force method. The trapped object scatters the trapping light and
is confocally detected through a pinhole or an optical fiber placed in the imaging
plane. When the optical trap is moved back and forth at small amplitude, the trapped
particle is driven to move at the same frequency but with a phase lag due to the
viscous drag of media. By measuring the phase lag, the stiffness of optical trapping

can be determined.
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Figure 2.9 Schematic diagram of SC white light optical tweezer force measurement setup. PCF,
photonic crystal fiber; OBJ, objective lens; MR, mirror; BS, beam splitter; SMF, single mode
fiber; PD, photodiode detector; SM, scanning mirrors.

In December 2007, | went to Tufts University to calibrate the trapping stiffness of
supercontinuum optical tweezers in Prof. Mark Cronin-Golomb and Prof. Fiorenzo
Omenetto’s lab. The experiment is performed on a modified trapping stiffness
measurement system, which was used to calibrate the trapping stiffness of optical
tweezer using a narrow band laser. Figure 2.9 shows the schematic diagram of
experiment setup. A collimated supercontinuum beam generated from PCF (high
delta PCF, silica, 2.6 micron core, zero GVD at 780nm) pumped by femtosecond
laser pulses from a Ti:Sapphire mode locked laser is focused by Zeiss Plan-Neofluar
oil immersion objective lens (63x/1.25 NA) into polystyrene microsphere solution. A
pair of scanning mirrors (Cambridge Technologies) are used to steer the beam and

move the trapping spot. Back scattered light from the trapped particle is confocally
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measured by a photodiode detector through a single mode fiber placed at the imaging
plane. A CCD camera monitors the motion of trapping spot and trapped particle.
When the scanning mirrors are driven by computer signals and oscillate periodically
at a given frequency, the confocal signal peak appears twice for each cycle, which
corresponds to the second harmonic signal. A digital lock-in amplifier (Stanford
Research System SR850) measures and records the phase difference between back

scattering confocal signals and second harmonic of scanning mirrors driving signals.

In the following, the physics behind such a confocal system to measure the stiffness
of optical trapping is described. One dimension (1-D) motion equation of a particle in
a viscous fluid undertaking Brownian motion in an oscillating harmonic potential is

given by [85, 86],
7S klx—pOI=LE) | (2-9)

where X is the particle’s position, p(t) is the position of trapping at time t, and L(t) is
the Langevin force function related to Brownian motion. v is the hydrodynamic drag

given by Stokes relation y = 67z7a [87] The mass times acceleration term is ignored
since Reynolds number is very small for micron-sized particles where viscous drag

dominates. Let u=x— p(t) denote the relative position of particle to the center of
trapping. If the optical trapping oscillates as sine wave, p(t) = Asin(a,t), Eq. (2-9)

becomes
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;/(;—Ltj + kU =—yAw, cosw,t + L(t), (2-10)

where A and o are the amplitude and frequency of oscillation, respectively. When
the oscillation amplitude is small, the confocal signal is proportional to 1—au?,
where a is an expansion coefficient. When the time constant of lock-in amplifier is
set large enough, for example 10 s, the contribution from Brownian motion in the
signal band where trapping oscillation dominates is very small and can be considered

as noise. Therefore, the solution of Eq. (2-10) can be expressed as
u(t) =-u, sin(m,t + ¢,) , (2-11)

1/2

where ¢, =cot™ w,r andu, = Aw,z [[L+ (w,7)?]"'?, and z =/ k is the relaxation

time. The phase of the confocal detection signal of second harmonic appears as
¢, =2¢, =2cot™ w,7 . (2-12)

We first measured the stiffness of white light supercontinuum optical tweezers with
two different spectra, and the 2.9-micron-diameter polystyrene bead used as the
probing particle. In order to reduce the media boundary effect on the viscosity, the
microbead is 3D trapped far away from the water and glass interface. The time
constant of digital lock-in amplifier is set to 10 s. The oscillation frequency is varied
from 3.7 Hz to 303 Hz. First the coupling of femtosecond laser into a ~15 cm length
of PCF (high delta, 2.6 micron core) is optimized to provide the highest output power.

The power measured before the trapping objective lens is 16.5 mW and spectrum is
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shown as blue line in Fig 2.10. The experiment results are plot as circles on the phase-
vs-1/f coordinate in Fig. 2.11(a). We use Matlab and OriginPro to look for the best
fitting curve and the result are also plotted in the same figure as solid line. The
stiffness, the calculated mean value of k is 3.816 pN/pm. After measurement, the PCF
was tweaked at the input coupling end slightly to reduce the output power while SC
spectrum changed. The power measured before the trapping objective lens is 15.5
mW and spectrum is shown as red line in Fig. 2.10. The experiment results and fitting
curve are plotted in Fig. 2.11(b). The calculated mean value of stiffness of trapping, ,
is 4.804 pN/pm. The results show the stiffness of low power white light
supercontinuum is even stronger than that of high power. That is because optical field
distribution of SC at the focal point is more complicated than that of a single
wavelength trapping due to chromatic aberration of the optical system. The focal
point of SC is the superposition of all the spectrum components. The chromatic
aberration of optics is inevitable for such extremely broadband supercontinuum. The
different wavelengths components are focused at different axial positions. The light
beam of each wavelength component diverges away from its focal point, especially
for tightly focused light beams using high NA objective lenses. That results in the
effective focal point of SC being not as tight as that of single wavelength.
Considering the fact that the spectrum of first SC is broader, this chromatic aberration
effect is more obvious. Meanwhile, given same SC spectrum, the trap stiffness will

still be proportional to the power.

28



-55

-60 -

-65 1

<70+

-75

Power (dB)

-80

-85

-90

.95 1 1 1 1 1
400 500 600 700 800 900 1000

wavelength (nm)

Il
1100 1200

Figure 2.10 Spectra of supercontinuum pumped by femtosecond laser pulses
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Figure 2.11 Second harmonic phase delay measurement results

To prove this point, we built another trapping stiffness calibration system at
PennState, and setup is modified as shown in Fig. 2.12. Sub-nanosecond SC source is
used in the experiment. Sub-nanosecond pulsed lasers from a passively Q-switched
microchip laser (JDSU NP-10620-100, A=1064 nm, average power ~70mW) is
reflected by a narrow band mirror for 1064 nm wavelength (CASIX) and then
coupled into a ~16 meter long photonic crystal fiber (BlazePhotonics SC-5.0-1064) to
generate supercontinuum white light. The output end of PCF is fixed to a piezo-
electric actuator (AE0505D18, Thorlabs). Collimated SC white light is steered up and
focused by Zeiss Plan-Neofluar oil immersion objective lens (63x/1.25 NA) to trap
particles. The highly nonlinear PCF is used to also confocally detect backward

scattering SC light. The backward scattering SC goes though 1064nm narrow band
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mirror and is detected by a photodiode detector. When computer sends sinusoidal
signal to drive piezo-electric actuator to vibrate, the optical trap oscillates as a result.
Confocally detected signals are sent to a digital lock-in amplifier to measure the
phase at the second harmonic. A CCD camera is used to monitor the trapping. 4.82
pm diameter microbeads (Bangs Laboratories) are trapped right above surface of the
glass slide. Therefore the boundary effect on the hydrodynamic drag y must be taken

into account. Faxen’s law gives the proximate drag on a sphere near a surface [33]:

6
= T - (2-13)
1_9[aj+1[aj _45(61) _1@
16\ h 8\ h 256\ h 16\ h

where h is distance of sphere center above the surface.
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Figure 2.12 Schematic diagram of modified white light SC trapping force measurement setup.
MR, mirror; OBJ, objective lens; BS, beam splitter; PZ, piezoelectric actuator; PD, photodiode
detector.
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The experimental procedure is described below: first we optimize the coupling into
the PCF to obtain highest SC output power. The power of SC for trapping is 16 mW
and spectrum is plotted as blue line in Fig. 2.13. The trapping oscillation frequency is
varied from 30 Hz to 300 Hz. The experimental results are plotted as circles on the
phase-vs-1/f coordinate in Fig. 2.14(a). After curve fitting, the mean value of trapping
stiffness, «, is calculated as 32.76 pN/pm. An ODO0.08 neutral density filter (83.2%
Transmission) is inserted before high-NA trapping objective lens. The power of SC
for trapping is reduced to 13.5 mW and its spectrum is plotted as green line in Fig.
2.13. The experiment and fitting results are plotted in Fig. 2.14(b). The mean value of
trapping stiffness, «, is calculated as 25.11 pN/pm.  Then the neutral density filter is
inserted before the PCF. Consequently the SC spectrum changed, shown as red curve
in Fig. 2.13, and total power changed to 12 mW. The experiment and fitting results
are plotted in Fig. 2.14(c). The mean value trapping stiffness, k, is calculated as 27.14
pN/pm. The first two SC spectra are uniformly attenuated for all the wavelengths,
therefore the trapping stiffness is still proportional to the total power, which is similar
to the single wavelength optical trapping. For the third SC, the power becomes lower,
however, spectrum is narrower. The experiment results show, as we expected, that
the trapping stiffness is even higher than that of the second trapping. The trapping

stiffness of white light SC is strongly dependent on the spectrum of SC.
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SC white light optical tweezers have also been demonstrated to have the capability of
trapping metallic nano-sized particles in lateral directions. Same strategy has been
used to measure the trapping stiffness when a 100 nm diameter gold particle is
trapped by SC white light tweezers. The experiment setup is similar to that shown in
Fig. 2.12. Femtosecond laser pulses (average power ~ 550 mW, repetition rate ~ 88
MHz, pulse width ~64 fs) from a mode-locked Ti: Sapphire laser (KM Labs) are
reflected by a 808 nm long pass filter (Semrock LP02-808RU), instead of 1064 nm
mirror in Fig. 2.12, and coupled into a ~40 cm long PCF (NL-2.0-770, Crystal-Fibre).
Since the wavelength components shorter than the localized plasmon resonance
frequency of the particle will repel the particle away, only the long wavelength
components can be used to trap nanosized metal particles [58]. As a consequence, a
long pass filter (HQ810LP Chroma) is used to remove the short wavelength
components. SC spectrum after filter is shown in Fig. 2.15(a) with total power ~31
mW. SC is focused by a Zeiss apochromat objective lens (100x/1.32NA) into 100-
nm-sized gold nanoparticle solution. Gold nanoparticles are pushed to top surface of
sample cell and trapped in the lateral directions. The trapping stiffness measurement
results and fitting curve are shown in Fig. 2.15(b). The mean value of trapping
stiffness, «, is calculated as 2.38 pN/pm, where the approximate drag near a surface is

given by Eq. (2-13).
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Figure 2.15 Trapping stiffness measurement of a 100-nm-sized gold particle trapped by SC
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2.5 Summary

In this chapter, the optical tweezers and supercontinuum generation technologies are
first reviewed. It is demonstrated that white light supercontinuum optical tweezers are
able to trap and manipulate mesoscopic objects by taking advantage of the high
degree of spatial coherence and high power of supercontinuum generated from highly

nonlinear photonic crystal fibers pumped by ultrashort laser pulses.

Since supercontinuum covers extremely broadband spectrum (over 1000 nm),
spectroscopy techniques are easily combined with white light supercontinuum optical
tweezers. Linear scattering spectra of trapped particles are measured and presented.
This shows the potentials of probing characteristics, such as size, shape, refractive
index, and chemical components, of an individual particle by linear and nonlinear

spectroscopy techniques in the future.

Trapping stiffness of white light supercontinuum optical tweezers has also been
calibrated for both dielectric and metallic bead. The measurement results show the
stiffness of white light supercontinuum optical tweezers not only depends on the total
power but also the spectrum. Broader spectra may reduce the stiffness due to the

effect of chromatic aberration of optics.
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Chapter 3 Single-particle optical scattering spectroscopy in
white light supercontinuum optical tweezers

3.1 Background

As demonstrated in Chapter 2, tightly focused supercontinuum can trap a particle, and
at the same time to obtain scattering spectrum of the particle. In contrast to some
conventional spectroscopy techniques, single particle spectroscopy using white light
superctonintinuum optical tweezers avoids ensemble averaging and has the capability
to probe the properties of individual particles (e.g., size, shape, refractive index,
resonant absorption, chemical composition). This obviously leads to many important
applications, particularly in nanoparticle characterization and sensing. To further
explore the potential of single particle spectroscopy with focused supercontinuum

illumination, theoretical modeling tools need to be developed.

Optical scattering by a spherical scatterer in a focused narrow-band laser beam has
been studied for many years [88-96]. For instance, generalized Lorentz-Mie theory
(GLMT) can be used to study the scattering of a single spherical scatterer in a focused
Gaussian beam [90-96]. We have recently developed a theoretical model to study
scattering by a uniform spherical scatterer in a supercontinuum optical trap based on
Mie’s scattering theory and Fourier angular spectrum representation [97]. Fourier
angular spectrum representation can be used to describe strongly focused beam, and

has been applied to investigate scattering in optical tweezers [98], reflection at media
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interface [99], and confocal imaging [100]. In this chapter, we apply the angular
spectrum analysis and the Mie scattering theory to investigate optical scattering
spectroscopy of a single spherical scatterer illuminated with tightly focused
supercontinuum source. The scattered field is obtained by the linear superposition of
the scattered fields produced by each of the Fourier angular component of the tightly
focused incident field. The theory is compared with experiment. The effect of
chromatic aberration is also considered. Numerical calculations of both polymer
microspheres and metallic nanoparticles are presented. Next, we show that Born
approximation method [101] can be used to calculate the scattered field produced by
a non-spherical-shaped weak scatterer (e.g., when the refractive index of the scatterer
is close to that of the surrounding medium, or the size of the scatterer is much smaller
than the wavelength).

3.2 Theoretical Model Based on Mie Theory and Angular Spectrum
Decomposition

Figure 3.1 Schematic diagram of optical scattering by using tightly focused supercontinuum. A
linearly-polarized incoming supercontinuum is tightly focused by objective lens L;. The scattered
light produced by a spherical scatterer is collected by objective lens L, and analyzed by a
spectrometer.
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Figure 3.1 shows a schematic diagram of a typical forward optical scattering
measurement system using a tightly focused supercontinuum source. An incoming
supercontinuum beam, which is linearly polarized along the x-direction and
propagates in the z direction, is strongly focused by a high-numerical-aperture
objective lens Ly (NA = nsinéy), with focal length f. We first consider a single
wavelength component (Ao in vacuum) of the white light supercontinuum. Let us
choose the geometrical focal point as the origin of our coordinate system. At the same
time a spherical coordinate is constructed. The tightly focused electric field in the

vicinity of focal point can then be expressed in terms of its Fourier angular spectrum,
E(r) = [[Edk;)e ™" dk, dk,, = IOZ” [ " E(k.)e k2 sin Gcos ARl (3-1)

where k = 24/4 is the wave number, 4= A¢/n is wavelength in the medium with
refractive index n. k, =k(sin@cosgx +sin@singy +coséz) is the incident wave
vector and 6, gare the polar and azimuthal angles, respectively. E(k;) is the spatial

spectrum of the electrical field, which can be expressed in terms of the far field E-¢(6,

@) on the reference sphere -f [102].

V(L e (0.9) . (3-2)

Elki) =~ (27)% "cos 6

Here we assume the incoming beam is a plane wave with a uniform electric field

distributionE,,. = E X. E-(6, ¢) can be obtained by taking account of the refraction

of objective lens
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E ;(0,¢)=+cos@xRL-E,.(6,9) (3-3),
where +/cosé is introduced due to energy conservation for an aplanatic lens [103].
[Ee (0, 9)” T sin digxd(f sin 0) =[E_, (0.4)|" f sin adgxd(F0) (3-4)

RL is the matrix to calculate the refraction of lens L; in the form of

cos@cos’ g+sin? ¢ (cosd —1)cosgsin g sin Ocosg
RL=| (cos@—1)cos¢@sin ¢ cos@sin? ¢ +cos’ ¢ sin Osin ¢ |. (3-5)
—sin @cos¢ —sin gsin ¢ cosé

Substituting Eq. (3-5) into Eq. (3-3), we can obtain
E_; (0,4) = E,+/cos O[(cos @ cos® ¢ + sin 2 )X + (cos & —1) cos ¢sin ¢y —sin Ocos ¢2] . (3-6)

Let us now first consider optical scattering caused by the presence of a spherical
object located at the focal point of the objective lens L;. Since the field near the focal
point can be thought of as the superposition of many plane wave components, E(ki),
like Eq. (3-1), the scattered field can be obtained by coherently superimposing the
scattered fields produced by each plane wave component, and can be calculated by
using Mie theory. For each plane wave component, we define a rotated coordinate
system (denoted with a prime) such that the plane wavelet is polarized along the x'
direction and travels along the z' direction in the new coordinate system (the standard
configuration used in Mie theory). So the unit vectors %', y',andz' can be presented in

the general fixed coordinate as
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X' = (cos O cos? ¢+sin? p)X + (cos O —1) cos ¢sin @y —sin &sin ¢2 |, (3-7a)

2:

sin @cos¢gX +sin Osin ¢y +cosez (3-7b)

Ay an

XK' = (Cos 6 —1) cos ¢ sin ¢k + (cos &sin % ¢ +cos® ¢)y —sin Gsin ¢2 (3-7¢)

Any vector Vv in the stationary coordinate system can be expressed in the terms of

projections in the directions of %x',y*,and 2’

V=(V-X)KHV- Y)Y V22", (3-8)
or written in the matrix form as

vi=M-v , (3'9),
where M is the transformation matrix given by

cos@cos® gp+sin’ ¢ (cosd—1)cosgsing —sin Ocosg
M =| (cos@—1)cosgsin ¢ cos@sin? ¢+cos’ ¢ —sinOsing |. (3-10)
sin @cos ¢ sin gsin ¢ cosé
The scattered field decays with propagation distance. For each Fourier angular
spectrum componentE(ki) , the scattered wavelet along at the measurement position
R, R(sin @cos®X+sin @sin @y +cos®@2) along the direction (®,@)is named as
E.(R;k;) , which can be calculated using the Mie Theory. First we use Eq. (3-10) to
represent R in the rotating system as
R'=R'(sin @ cos®'X'+sin @'sin @'y'+cos@2')=M-R, where @' and @& are the polar

and azimuthal angles, respectively, in the rotated coordinate system.
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From Mie’s theory, in the rotated coordinate system the scattered field is given by

sin? @'S,(0") +cosO'cos’ @'S, (O")
fel E;/cos@] —cos®'sin @'S,(O') +cos @' cosd'sin P'S, (O")
—-sin ©'cosP'S, (')

. kR .
N T
kR' (27r)? cosé

(3-11)

where S; and S, are the scattering functions for the out-of-plane and in-plane

components respectively[8], and are defined as

2 2n+1
S, (@)= a cos®')+b cos®'
1( ) ;n(n_i_l)[ nﬂ-n( S )+ nTn( ) )]
= 2n+1
S, (@)= b cos®')+a cos®'
2( ) nZ:;nn-i-l)[ nﬂ-n( )+ nTn( )]
1 1 1 1
7, (cos®") = —P” (_COS® ) 7,(c0s@®") = —d Ry (c0s©)
sSin®' do'

a0 =W (mka)y, (ka)—my/, (mka)y", (ka) — _ my', (mka)y, (ka) —y, (mka)y", (Ka)

"y, (mka)g, (ka) —my, (mka)”, (ka) " my, (mka)¢, (ka) -y, (mka)¢", (ka)
(3-12)

where P," is the associated Legendre function, v, and &, are Riccati-Bessel function

which are defined as wn(0)=pin(0), En(p)=phWn(p), where ju(p) and h®,(p) are the
spherical Bessel and Hankel functions of first kind respectively, a is the radius of the
sphere, and m is the ratio between refractive index of the sphere to that of the
surrounding medium. Transformed back to the fixed coordinate system, the scattered

field is given by

E,(Rik,)=E(0,8,0,4))=M"-E[(M-R). (3-13)

43



The total scattered field is then the coherent superposition of the scattered field

produced by each plane wave component,

2760,

E<(6,d) = ”ES(@,qs;e,@kzsin Ocosedads . (3-14)
00

We also need to consider the incident field propagating in the detection region when

@ is less than maximum incident angle 6y,

E, (6,8) = E(©,) (ZZ)Z cos@e::R . (3-15).

So the total optical intensity to be detected in this direction is the coherent sum of

scattered field and incident field

2
nce,

2

1(©,®;2,) = . (3-16)

270
{jIES(@,®;0,¢)kzsin 90056d6d¢}+ E, (0,9)
00

If an objective lens L, with numerical aperture NA=nsin @, is used to collect the

forward scattered light (as shown in Figure 1), the detected power is given by

276y

P(4,) =R’ j jl(@,d);ﬂo)sin OdEdP. (3-17)

When the detection angle © is larger than the maximum incident angle 6, the

incident field is not present. For example, in backward scattering measurement,

44



where the maximum collecting aperture angle is also @,, , the detected power is given
by,

2

27 4 270n
P(4,) < R? quﬁ .f sin @d@“ IES(@,®;9, #)k?sin Gcosdg| . (3-18)
0 -6, 00

When the spherical scatterer is centered at ro, rather than at the origin, the phase term
el for each Fourier component E(ki) should be considered for the scattered field

and the incident field in the far field region. In this case, Eq. (3-14) and Eqg. (3-15)

become, respectively,

276n

E.(0,®)= j j E. (0, ;0,$)e @)k sin gcos g, (3-19)
00

and

E, (0, ) =—E(©, D) (27)°

plR
cos® —e i@ (3-20)

Since the power of linear scattered field depends on the incident power of each
wavelength, as described in Chapter 2, we introduce a dimensionless scattering
efficiency, g, which is defined as the ratio of the detected scattering power to the total
power, when there is no scatterer,

ﬂ 1(®, ®) sin @dOQ

Qq

q= ) (3-21)
H 1, (0, ®)sin ©dOdQ

Qq
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where Qg is the is the measurement solid angle. Scattering efficiency, q, in the
forward direction is easy to be measured in the experiment. However, when detection
direction is not within the incident angle, for example in the backward direction, the
scattering field cannot be normalized to the field, which is zero when there is no
scatterer. Furthermore, the scattering efficiency, g, depends on the detection angle.
Here we introduce the intensity angular distribution function of scattered field for
each wavelength F(®,d;X) that is the intensity in every direction normalized to the

far field intensity of incident wave in the forward direction [8],

1(0,0) _[Es(©,)+E, (©,9)
1,(0,0) IE, (0,0) '

F(®,®;1,) = (3-22)

Therefore the scattering efficiency q can be expressed in the form of intensity angular

distribution function as

j j F(©, ®)sin ©ded

q=—7¢ : (3-23)
j j F, (®, ®)sin ©dedQ
Qq

where Fo(®,d;%) is the intensity angular distribution function of the initial incident
field. For Eq. (3-4),we can easily get Fo(®,D;%) as

cos® 0O<46,

: 3-24
0 >0, (3-24)

Fo(0,D; 1) ={

46



From Eg. (3-10) to (3-24), we can calculate any single wavelength scattered field
produced by a uniform spherical scatterer in the tightly focused field. When trying to
calculate the scattering spectrum in the supercontinuum tweezer in practice,
aberration should also be incorporated in the theoretical model. Chromatic aberrations
due to the focal length differences for different wavelengths require a change of

coordinate origins, which can be written as

F(A) = F(Ae)+AF,  Fo(1) =ry(Ay)—Af 2. (3-25)

Af is the chromatic aberration of the system which can be calibrated experimentally.
We use Eq. (3-25) together with Eq. (3-10)-(3-24) to analyze the optical scattering
spectrum of a uniform spherical scatterer in a supercontinuum trap. Another
aberration produced by a tightly focused beam occurs due to refraction at the
interface of cover glass and solution, and it can be calculated using Fresnel’s

equations.

3.3 Experiment Verification

To verify the theoretical analysis, we have also investigated scattering of tightly
focused supercontinuum experimentally. Since the scattering spectrum depends on
the position of the scatterer, in order to quantitatively compare theory and experiment
we immobilized microspheres (Duke Scientific, 4000 series, n= 1.59 @ 589 nm) on
the bottom of the sample cell (made from standard glass coverslip) so that we can

precisely control and determine the position of microspheres. Immobilization was
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achieved by air-drying microsphere solution in a sample cell for a few days. The
sample cell was then filled with immersion oil whose refractive index (np = 1.5150)
matches that of the sample cell (np = 1.523). As a result, the microsphere is
surrounded by a uniform medium with slightly different refractive index. The
experimental setup is shown in Fig. 3.2. White light supercontinuum, which was
generated by coupling sub-nanosecond laser pulses (JDS Uniphase NP-10620-100)
into a nonlinear photonic crystal fiber (BlazePhotonics SC-5.0-1040), was collimated
and then tightly focused onto a single microsphere by an apochromatic objective lens
L1 (100x /1.4 N.A.). The full aperture of the objective lens was uniformly illuminated.
Another objective lens L2 (10x /0.25 N.A.) was used to collect the forward scattered
light. In addition, an iris was used to further limit the effective numerical aperture of
the collection system (effective N.A.~ 0.08). Finally, the spectrum of the forward-
scattered light was measured by an optical spectrum analyzer. A CCD camera was

used to monitor the position of the microsphere.

Iris .
filled with / 3 0 llmode
index matched Iber
immersion Qil ﬂ L2 Spectomersr

I X ] glass
immobilized L1 COVeISP ppotonic

microsphere \| = I crystal fiber| |aser
= pulses
<

AVA supercontinuum

Figure 3.2 Schematic diagram of experiment setup to verify the modeling of focus beam
scattering by a spherical particle.
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We normalized the forward scattering spectrum to the reference spectrum which was
measured when no microsphere was present. This ratio is defined as scattering
efficiency (denoted by g in Fig. 3.3 and Fig. 3.5). By mechanically translating the
sample cell, normalized scattering spectra (i.e., scattering efficiency) at different
positions can be obtained. The results are plotted in Fig. 3.3. Fig. 3.3(a) and (b) show
the scattering efficiencies of two microspheres (diameter 1.5 um and 2 pm
respectively) at g = 600 nm as a function of their axial position. The blue dots
correspond to experimental data while the red lines represent calculation results.
Intuitively, since the refractive index of the microsphere is larger than that of the
surrounding medium it works like a positive lens approximately. A strong peak can
be observed in the scattering efficiency curve if the sphere is moved away from the
lens and collimates the incident beam. On the other hand, a minimum occurs if the
sphere is moved closer to the lens and focuses/defocuses the incident beam more
strongly. Finally, when the sphere is very far away from the focal region the
scattering effect is weakened and the scattering efficiency approaches to unity as
expected. Compared with that of the 1.5 um diameter microsphere, the maximum
scattering efficiency of the 2 um diameter microsphere is slightly higher and the

positions of its maximum and minimum are further away from the focal point.
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Figure 3.3 Dependence of scattering efficiency on axial position (a) and (b) are the scattering
efficiencies of the 1.5 and 2 pm diameter microspheres respectively at L,= 600 nm as a function
of axial position. Red lines are theoretical calculation results. Blue dots are experiment results.

Due to chromatic aberration, different wavelengths focus at different axial positions.

As a result, the z-dependence scattering efficiency curve for different wavelengths
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will center at different positions (their actual focal points). We correlated the
experimentally measured scattering efficiency z-dependence curves with the
corresponding theoretical curves (assuming no chromatic aberration) for each
wavelength. The positions of correlation peaks indicate chromatic aberration for
different wavelengths. We used both the 1.5- and 2.0-um-diameter microspheres to

calibrate the chromatic aberration of the whole system. The result T f = f(A)-

f(Xo=600nm) is shown in Fig.3.4.
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Figure 3.4 Measured chromatic aberration of the experimental system. Circles and pluses
represent the results using 1.5 and 2.0-pm-diameter microspheres respectively. The blue line is
the fitted curve.

Fig. 3.5 shows the measured and calculated scattering efficiencies of the 1.5 um
diameter microsphere as a function of wavelength at two different axial positions.

Chromatic aberration was included in the calculation. The theory (dotted red line) in
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general agrees with the experimental results (solid blue line). However, there exists
quite considerable discrepancy between the theory and experiment when the focused
spot is moved near the interface of microsphere/coverslip. Several factors may have
contributed to it: (1) although the refractive index of the immersion oil (1.515) is very
close to that of the glass coverslip (1.523), they are not identical. As a matter of fact,
the difference is about 10% of the refractive index difference between the
microsphere (1.59) and the immersion oil. Boundary effects (e.g., multiple reflections
and scatterings between the coverslip and the microsphere) may not be ignored; (2)
dispersion of the microsphere, glass, and immersion oil was not considered in the
theoretical calculation; (3) possible lateral displacement of the microsphere from the
center of the beam; (4) noise in the supercontinuum. Since the polymer sphere is quite
inert in the measurement wavelength range, the measured scattering spectrum does
not show any pronounced features. We should point out that the method outlined here
can also be used to model optical scattering of other types of particles including
metallic particles. Since the scattering spectrum depends on particle size, shape,
refractive index, and resonant absorption (if exists), optical spectroscopy with focused
supercontinuum is a promising technique to non-invasively probe the properties of

individual particles.
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Figure 3.5 Scattering spectra of a 1.5 pm diameter microsphere at two different positions. Dotted
red lines are theoretical calculation results while solid blue lines are experiment data.
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3.4 Further discussion about scattering model based Mie’s Theory

In the forward (® = 0) and backward (® = x) directions, due to the axial symmetry of
incident beam, the formalisms can be further simplified when scatterer sphere is also
on the axis. For ® = 0 (forward direction), it can be shown that the scattered field

produced by one plane wave component of the incident field is given by

1 sin? ¢ cos’ ¢
E.(00;0,9)=L— 12 fel[| —sin gcosg S, (0) +| sin gcosg |S,(0)]E,vcosge ™
kr (2r)° cos@ 0 0

(3-26).

If r, =2z,2 (i.e., the sphere is displaced only along the z axis), the total scattered field

can be calculated as follows.

E;(0,0)
276

_ jjEs(o,o;9,¢)kzsin9cosedad¢

L oo, [ SIN* cos’ ¢
:——e"k(”R’EOJ‘j[ —cos¢sing [S,(6) +| cosgsing |S,(0)]e"**? sinf/cosfdbd ¢
00 0 O

1
gl RIE J‘ejkzo cosg /C089[51 (0)+S,(68)]d cosd

cos 6,

1
%e KORE S nz(: +i) (a, +b,) Ie Jeocs? Jcos@[r, (cosb) + 7, (cosd)]d cosd
+

n

oS &,

(3-27).

The incident field in the far field region is given by
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E, (0,0)= —%eik(f*R)ej"z° E,X. (3-28)

We can obtain the normalized angular intensity function in the forward direction and,

F (0, 0), as

F(0,0) =

n(n+1)

cos 6,

2
2n+1 ¢ jkzo cos @ eijkzo
> (a, +b,) J.e 030 Jcos O, (cos B) + , (cos H)]d cos & o

n

(3-29)

Similarly, in the backward direction (® = x) the scattered field produced by one plane

wave component can be written as

JkR
R

E (7,0,0,¢)=
(70:0,9) kR (27)* cosé *
sin® ¢ cos’ ¢ :
[ —singcosg [S,(x —0) —| singcosg |S, (z — B)]E,~cosPe ™
0 0

(3-30)
The total backward scattered field at distance r, =z,2 is

R B
Es(ﬂ,O):XEEeJk(f R)EOX

2 f& j) (3, ~b,) [ Jcos8Lx, (costr - 6)) =, (cos(z — 6))]d cosd

cos 6y,

(3-31)
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Similarly, we also obtain the normalized angular intensity function in the backward

direction, F(x, 0) as

F(z,0)=

~n(n+1) 036

(3-32).

All the calculation codes are programmed in Matlab 7.0.4. First, we calculate the
single wavelength intensity angular distribution of different sized spherical scatterers
located at focal point of high numerical aperture objective lens. Fig. 3.6 (a)-(d) show
the normalized intensity of 800 nm wavelength optical wave scattered by uniform
polystyrene spheres with refractive index 1.59 in the water solution( refractive index
is 1.33). Different colored curves are the results of observation azimuthal angles at 0<
30< 60°and 90< respectively. Fig. 3.6 (a) plots the results of 2-micron-diameter
sphere trapped by using a 1.25 numerical aperture objective lens; Fig. 3.6 (b) plots the
results of 2 micron diameter sphere trapped by using a 0.85 numerical aperture
objective lens; Fig. 3.6 (c) is the result of 1 micron diameter sphere trapped by using a
1.25 numerical aperture objective lens; and Fig. 3.6 (d) is the result of 1-micron-
diameter sphere trapped by using a 0.85 numerical aperture objective lens. The
scattered field angular distributions change significantly for different sizes and

numerical apertures of objective lens.
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Figure 3.6 Normalized intensity angular distributions of focused beams scattered by spherical
particles by a 800 nm source. The refractive indices of spherical scatterer and surrounding media
are taken to be 1.59 and 1.33, respectively, and different color curves represent azimuthal angles
at 0< 30< 60=and 90< respectively. (a) 2 micron diameter sphere, NA = 1.25; (b) 2 micron
diameter sphere, NA = 0.85; (c) 1 micron diameter sphere, NA=1.25; (d) 1 micron diameter
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sphere, NA=0.85.

Figure 3.7 shows the calculated normalized scattering spectra in the forward direction
using Eqg. (3-29). The scatterers and surrounding media are still selected as
polystyrene spheres and water, respectively, and the wavelength dependence of the
refractive indices and absorption are ignored. The scattering spectra from 400 nm to
1500 nm in forward direction using 1.25 numerical aperture and 0.85 numerical
apertures are, respectively, plot in Fig. 3.7 (a) and (b). Blue curves are the results of 1
micron diameter and red curves are of 2 micron diameter. Similarly, we use Eq. (3-32)
to obtain the normalized scattering spectra in the backward direction, and calculations
are plotted in Fig. 3.8 (a) and (b). The spectra structure features show obvious
dependence on the size of the scatterer. For example, in the spectra of Fig. 3.7 (a), a
dip appears at around 650 nm for 1 micron diameter sphere, while for the 2 micron
diameter sphere the corresponding dip shifts to about 1300 nm. This analysis is

consistent with Mie’s theory’s results.

When the center of spherical scatterer is not located at the focal point, the scattering
spectra change due to phase factor. Figure 3.9 shows the calculated the scattering
spectra when 1 micron diameter spherical particle is centered at different position
along the z axis. Fig. 3.9 (a) displays the results for an objective lens (NA = 1.25)
and Fig. 3.9 (b) displays the results of another (NA = 0.85). Since the refractive index
of scatterer sphere is higher than that of surrounding media, water, the scatterer

behaves like a positive lens. When scatterer is centered behind the focal point, the
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light is collimated into the forward direction. Therefore, the scattered intensity is

higher than when the particle is located on other positions.
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Figure 3.7 Normalized scattering spectrum in the forward direction. The refractive indices of
spherical scatterer and surrounding media are assumed to be 1.59 and 1.33, respectively. (a) NA
= 1.25; (b) NA = 0.85. Blue curves are the results of 1-micron-diameter sphere, and red curves
are of 2 micron diameter sphere.
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Figure 3.8 Normalized scattering spectrum in the backward direction. The refractive indices of
spherical scatterer and surrounding media are assumed to be 1.59 and 1.33, respectively. (a) NA
= 1.25; (b) NA = 0.85. Blue curves are the results of 1 micron diameter sphere, and red curves are
of 2 micron diameter sphere.
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Figure 3.9 Normalized scattering spectrum in the forward direction at different axial positions
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In the calculation above, the scatterer is assumed to be inert, i.e., there are no
resonance features in the refractive index, and the effects of dispersion and absorption
are ignored. The formulas derived above do not rely on the refractive index properties;
thus they can also be used to model optical scattering by other types of uniform
spherical particles including metallic particles. Figure 3.10 shows the calculated
forward direction scattering spectra of gold spheres of different sizes in water using
Eq. (3-29). A numerical aperture of 1.25 for the focusing objective lens was used in
the calculation. The nanoparticle is assumed to be suspended in the water, and the
refractive index data of gold are obtain from Palik [104] . We assume that the
refractive index of the gold nanoparticle is the same as that of bulk material. As
shown in Figure 3.10, there are characteristic dips in the forward scattering spectrum,
which are caused by localized surface plasmon resonance (LSPR) [58, 105]. This is
because the scattering at LSPR frequency is stronger than non-resonance frequency,
and less energy will be less received. These position of the dips shift as the size of the

nanoparticles changes.
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Figure 3.10 Normalized scattering spectrum of gold nanoparticles of various sizes in the water
solution. NA = 1.25. Solid, dashed and dotted lines are the results of 80 nm, 90 nm and 100 nm
gold particles, respectively.

3.5 Modeling Non-spherical-shaped Weak Scatterers Based On Born
Approximation

The discussions and calculations above are based on Mie’s scattering theory, for
which the scatterer is assumed as a sphere. In the more general case, when scatterer is
of non-spherical shape, other than sphere, there is no general analytical formula to
calculate the scattered field. But when the scattered field is weak and able to be
treated as a perturbation, for example, under the condition that the refractive index of
the scatterer is very close to that of the surrounding medium (i.e., m = 1) or the size of
the scatterer is much smaller than the wavelength, Born approximation [101, 106, 107]

can be applied to obtain the scattered field.
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The derivation starts with Maxwell’s equations in charge-free space, and also time-
dependency e * is assumed throughout. The incident field propagating in the

uniform medium without scatterer satisfies the wave equation
VxVxE, —o’uskE; =0, (3-33)

where &= g& = n’g is the permittivity of the medium With the presence of a weak

scatterer, the total field E=E;+Es, where E; is the scattered field, satisfies wave

equation
VxVx(E; +E,) -0’ u(s +Ae)(E; +E;)=0. (3-34)
where
Ao {(m2 ~1)n’¢, insidethe scatterer (3-35)
0 else

is the permittivity difference between scatterer and medium. Subtracting Eq. (3-33)

from Eqg. (3-34), we have

VxVxE, -0’ uk = o’ ure(E, +E,) (3-35).

For weak scatterer, Es << E;, we can solve the scattering field by using Born
approximation method, in which Es term in the right side of Eq. (3-35) is ignored.
The incident field takes place of total field as the driving field, thus the wave equation

for scattering wave changes to

VxVXE, —0° usE, = o° uAeE, . (3-36)
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Eq. (3-36) can be solved by using method of Green’s function. The solution can be

written in the form of
E.(R)=o?ulf] G(R:F)AE,dr’ (3-37)

where R(Rsin ® cos @, Rsin ®sin @, cos ©) is the position where the signal is detected,

and r' (r'sin @'cos ¢', r'sin 9'sin ¢',cos 8') is the spatial volume the of the scatterer. Gis

the Green’s function of equation

VxVxG-k?G=ns(r-r) (3-38)

where n is the unit vector of driving field. The analytical solution of Gis given

as[108]

—)Go (3-39)

where 1is a 3>3 unit matrix, G, (R, r') = exp( jKR—r)) /(4z|R—r]) is the scalar Green’s

function. For far-field radiation R>>r’,

R - r] in the phase term can be approximated
as |R|-R-r'/|R|. The scattering field can be reformatted into spherical coordinate

components
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exp(jKR]) A% R-r
E.(R)=w’u R ﬂ 1+ ~2)eR -k R |)A5E dr'
) 0 0 0 TE,]R
= w?uhe exp(] R)J:Udr exp(—jkgy -r') cos®@cos® cosOsin® —sin O | E; 2)
—sin @ cos® 0 E- @

1z

(3-40)
where R, ®, and & are the unit vector in the spherical coordinate.

Since the scatterer is in the vicinity of the focal point, the electric field of incident
wave at point r’> can be still described as Eqg. (3-1). When Eq. (3-6) is substituted in

Eqg. (3-1), the incident field can be written as

cos@cos® ¢ +sin® ¢
E(r')= _[ .[ J fe”‘fE Jeosge* i "ksin 6| (cos® —1) cosgsing |[dds .

—sindcosg
(3-412).

As derived by Richard and Wolf in ref. [109], the integration with respect to¢ can be

carried out with Bessel function of first kind. The electric field at a point r’ is

expressed as

. j(ly+1,cos2¢")
jkf
E(r') = —fke—zEO jl, sin 2¢4' (3-42)
21, cos¢'

where
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o, N |
I, = jcosi @sin O(1+cos)J, (kr'sin @sin §')e 0 qg
0

Iy

o, N |

jcosf Osin? 63, (kr'sin @sin 6")e 0«7 qg ) (3-43)
0

6m

I, J.cos% sin O(1—cos0)J, (kr'sin Gsin ') 77 dg
0

Substituting Eq. (3-42) and (3-43) into Eg. (3-40), we get the three spherical

coordinate components of scattered field in the form of

E.x(R)=0
exp(jkR) fke E, y
R 2
J.J. driexp(—jky -r')[jcos®cosd(l, + 1, cos2¢')+ jcos®Osin @I, sin 2¢'-sin @21, cos¢']

Eo(R)= —0? uAe

- jkf
. exp(jkR) fkel™ E, y
R 2
'm driexp(—jky -r')[-jsin ®(l, +1, cos2¢')+ jcosdl, sin 2¢']

E.s(R)= —w? uA

(3-44)

The integration in the Eq. (3-44) clearly indicates the scatterer-shape-dependence of

scattered field.

When the term V(V-E) in the Eq. (3-36) can be ignored, we use a scalar formalism

instead of vectorial field ones to describe scattered field. The wave equation of

scattered field becomes
VZE, + 0° 1y,E, = —0° 11y AE; . (3-45)

The solution of Eq. (3-45) is given by

68



E, :H —a)zyoAs(r')Ei{412 .U expliky .(r—r')]dkdxdkdy}dsr.
T

2K (3-46)
jkg-r ' —jkgr' 43
= —a)z/,lo .U dkdxdkdy e4jﬂ_2 J-J.J. Ag(r )Eie J ar

2jJk*—k2 —kdzy
The curled bracket term in Eq. (3-46) is the scalar Green’s function Gy.

To compare with the results obtained by using Mie’s theory, we used Eq. (3-29) to
calculate the normalized scattered intensity in the forward direction, F(0,0), produced
by a spherical scatterer illuminated by tightly focused beam at different positions
along the z axis. The results are in Fig. 3.11(a)-(d) as solid blue curves. The results
calculated by Born approximation method using vectorial formulas, Eq. (3-44), and
scalar formulas, Eq. (3-46), are also plot in the same figures as red curves with circles
and green curves with stars, respectively. The wavelength is chosen to be 800nm, and
the numerical aperture of the focusing objective is assumed to be 1.25, and refractive
index is 1.59. Fig. 3.11(a) shows the results 100 nm sphere immersed in the oil
(refractive index 1.51); Fig. 3.11(b) shows the results of 1 micron sphere immersed in
the oil; Fig. 3.11 (c) shows the results of 100 nm sphere immersed in the water
(refractive index 1.33); Fig. 3.11(d) shows the results of 1 micron sphere immersed in
the water. Fig. 3.11 clearly shows that when refractive index of sphere is close to that
of media, (a) and (b), or the size of scatterer is very small (a) and (c), the Born
approximation methods are consistent with those calculated by using Mie’s theory
method. As expected, the results using vectorial formulism are much closer to Mie’s

theory results than those by using scalar formulism. When weak scatterer conditions
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are not satisfied, Fig. 3.11 (d), there is much larger discrepancy exiting between
calculations from Born approximation and Mie’s theory. But Born approximation

methods can still represent the basic features in the scattered intensity.

The normalized scattering spectra produced by non-spherical scatterer in the tightly
focused supercontinuum beam are calculated by using vectorial formulism, Eq. (3-44),
of Born approximation method. Fig. 3.12 displays the results of normalized
scattering spectra of cubic scatter and spherical scatterers measured along the forward
direction and the direction of polar angle at 30< The refractive indices of scatterer
and medium are 1.59 and 1.33, respectively. Fig. 3.12 (a) shows the scattering
spectrum of scatterer size at 100 nm, and Fig. 3.13 (b) shows the results of scatterer
size at 1 micron. The scattering spectra show dependence on the size and shape of the

scatterer.
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Figure 3.11 Normalized scattered intensity in forward direction of spherical scatterer located at
different positions along z axis. Blue curves are calculated by using Mie’s Theory. Red curves
with circles and green curves with stars are calculated by using Born approximation method
with vectorial and scalar formula, respectively. NA is1.25, wavelength is 800nm, and refractive
index of scatter is 1.59. (a) 100 nm sphere in oil; (b)1 micron sphere in oil; (c) 100 nm sphere in
water;(d)1 micron sphere in water.
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3.6 Summary

In this chapter, we present theoretical models to analyze optical scattering by a single
particle being trapped in white light supercontinuum optical tweezers. Mie’s theory
and angular spectrum decomposition method can be used to study the optical
scattering spectra of a single uniform spherical scatterer. Analytical formulas for
scattered waves in the forward and backward directions are derived when a spherical
scatterer is placed on the z axis. The theory has also been used to calculate the
scattering spectra of a single gold nanoparticle illuminated by tightly focused white
light supercontinuum. Born approximation can be applied to analyze scattering by
weak scatterers (e.g., the refractive index of the scatterer is close to surrounding
medium or its size is small compared with wavelength) of non-spherical shape. The
calculation results shows optical scattering spectrum depends on particle size, shape,
refractive index, and resonant absorption. Single particle scattering spectroscopy in a
supercontinuum trap can be a promising technique to non-invasively probe the

properties of individual particles.
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Chapter 4 Femtosecond Laser Beam Shaping

4.1 Introduction to beam shaping

Beam shaping is generally defined as a process to rearrange the intensity and phase of
an optical light beam [9]. One of the simplest examples of beam shaping is probably
that a plane wave is focused into a spot by a convex lens. The term “beam shape”
stands for the intensity profile. The phase profile determines how the intensity profile
evolves during propagation. A general beam shaping problem is to find an optical
system that operates the incident beam to generate a desired intensity distribution,
such as a uniform distribution at certain area on the target plane. The beam shaping

technique has been investigated for both coherent and incoherent light beams.

Current beam shaping techniques can be categorized into two basic types: field
mappers and beam integrators. Field mappers are designed for the incident beams
with a known intensity profile; whereas integrators are designed for the relatively
incoherent incident beams with less intensity information. The integrators are not so
sensitive to beam alignment and beam size as field mappers; however, they are more
easily affected by interference of coherent beam especially. Diffraction theory and
geometric optics have been widely used in beam shaper design for different cases of

application.

Since the first journal publication that introducing basic ideas of beam shaping by

Roy Frieden in 1965 [110], the field of laser beam shaping has witnessed a steady
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increase in research interests and practical applications. Today many important laser
technologies have already made use of beam shaping, while some could potentially
take advantages of the techniques in their applications, these include lithography,
drilling in integrated circuit, packages and wiring boards, circuit component trimming,
laser printing; material processing and formation, optical data storage, isotope
separation, fiber injection; optical metrology, optical data/image processing, medical

applications, as well as laboratory research [111-115].

Ultrafast lasers, as the name implies, have extremely high peak power in short time
duration, and are very attractive in material processing, because they have been
shown to increase efficiency and accuracy of material ablation, etching and cutting
with less influence on the physical properties of the bulk material [116-119]. The
current designs of beam shaping systems usually involve using monochromatic
continuous wave (CW) laser. The aim of this chapter is to simulate and analyze the

performance of ultrafast laser in the beaming shaping system.

4.2 Lossless beam shaping phase mask design

Figure 4.1 illustrates the typical beam shaping system. A laser beam with a initial
intensity profile enters an aperture, where a diffractive optical element (DOE) is
placed. The phase of incident beam will be modulated by the DOE. The desired
intensity distribution will be obtained at the focal plane. If we assume the beam
shaping lens is lossless, which means no energy absorption and blocking out exist in

the system, i.e., the total energy of incoming and outgoing beams are the same.
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Figure 4.1 Schematic diagram of typical beam shaping system

The field on the incoming aperture together with that on the target plane is a Fourier
transform pair. The uncertainty principle, which constrains the lower limit for the
product of the root-mean-square (rms) width of a function and its rms bandwidth,
must be taken into account. A dimensionless parameter 3 is used to evaluate the

diffraction problem [9].

R-D
ﬂZZﬂT, (4'1)

where R is the characteristic length of incoming beam, D is the characteristic length
of output beam, A is the wavelength, and f is the focal length. How to convert a
Gaussian intensity profile, the fundamental mode of laser, into a flat-top rectangular
intensity profile, a favored beam profile by many applications, is a typical problem in
the beam shaping studies. The 2-D Gaussian and 2-D rectangular functions can be

decomposed into the products of two independent 1-D Gaussian functions and
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rectangular functions, respectively. The 1-D functions are used in the following

discussions without losing generality.

The one dimensional intensity profile of the unshaped laser is a Gaussian beam, given

X212

byl .=e

input = , Where rq is the Gaussian radius at 1/e intensity. The desired output
intensity is flat-top rectangular with the width at 2r;. The dimensionless parameter f3

can be expressed as

2N 27 - 1,1
p=—.

FA (4-2)

The efficiency of the field mapping problem of converting a Gaussian beam into a
flat-top beam can be described in terms of the ranges of 3 as follows: for > 32 one
can obtain very good solutions and geometrical optics is applicable; for 4 < p < 32
useful results may be obtained but they are not ideal; and for f <4 one cannot achieve
very good shaping of the beam [9]. Larger values of  make it possible to get steeper
skirts and lower bumps on the output intensity profile. The factor £ can be improved
by increasing the input beam radius, expanding output spot size, decreasing

wavelength, or reducing focal length.

To study the ultrafast laser beam shaping, we first designed the phase mask for a Ti:
Sapphire femtosecond laser with center wavelength of 800 nm. The beam parameters
are chosen as the following: ro = 2 mm and rs = 30 um. The focal length of Fourier
transform lens is assumed to be 50 mm. The calculated f is equal to 7.5199, phase

mask designing can be achieved based on diffraction theoretic methods.
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Figure 4.2 Diagram of Gerchberg-Saxton Iteration

Gerchberg-Saxton (GS) [10] and modified GS algorithms [11] have been thoroughly
discussed and used to efficiently solve the phase-retrieval problems. A diagram of the

iteration process is shown in Fig. 4.2. The term |, (x) is the intensity profile on the

front focal plane of Fourier transform lens, and 1, (u) is the desired intensity profile

out
on the target plane. The kth iteration start from the electric field on the input plane,

g, (x), of which amplitude is the square root of the intensity. The phase information
of the electric field profile on the target plane G, (u) is extracted. In the meantime,
the amplitude is replaced by the square root of the desired intensity I, (u). After

performing inverse Fourier transform, the phase information is extracted for the (k+1)

th iteration.

The modified GS algorithm, which was proposed by Liu and Taghizadeh[11], starts

from G, (u) that is the result after the Kth GS iteration. This modified constraint
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functions can be defined based on the difference between the desired and actual

output profiles making it look like an ‘overcorrected’ version of the desired output,

M‘C |u| < rf

Frea (U) = ) (4-3)

G (u)
[low@]2  |u|>rf

where c is a constant that can be manipulated. The iteration is usually evaluated by

the normalized the mean square error (MSE) of the intensity at the target plane,

Z“Gk (U)|2 - Iout (u)‘z
MSE = - . (4-4)

Z| | out (U)|2

The simulation is implemented in the Matlab 7.0.4. The spatial size is chosen as 200
mm. Thus the resolution on the target plane will be Af/D = 0.2 um for a grid of 2048
points. Figure 4.3 (a) shows the normalized intensity distribution of the output beam
after 5000 GS iterations. We find that ~98.78% energy is constrained within the
region, |u| < rs. The corresponding MSE converges during the iterations as shown in

Fig. 4.3(b).
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Figure 4.3(a) Normalized intensity distribution of designed flat-top beam after 5000 GS
iterations. (b) Calculated MSE during the GS iterations
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The convergence of the modified GS algorithm strongly depends on the selection of
constant c¢. In our mask design process, the constant ¢ and iteration numbers are
optimized to find the minimum MSE during the first 200 modified GS iterations. The
intensity profile after modified GS iterations with optimized constant ¢ and iteration
number is plot in Fig. 4.4(a). Approximately 99.68% of energy is constrained in the
target region., but the intensity profile is still far away from the flap-top profile. That
IS because optimization of MSE of the intensity profile does not help to improve the

flatness of the intensity profile. Therefore a new evaluation criterion is introduced,

2

6. @ -[e. O
T =

FLA G (0)|2 |u| <r, -6, (4-5)
k

where u = 0 is the center of the target plane, and the subset 0 is introduce to reduce
the weight of boundary in the evaluation criterion. The smaller FLAT number is, the
flatter intensity profile is in center part on the target plane. After similar optimization
process for constant ¢ and iteration number, the intensity profile is plot in Fig. 4.4(b).
A flatter top intensity profile is achieved. In the meantime, the ratio of energy

constrained in the target region improves to 99.83%.
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Figure 4.4 Normalized intensity distribution of designed flat-top beam after modified GS

iteration (a) optimized for minimum intensity MSE (b) optimized for flatness in the center part
of intensity profile.
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4.3 Beam Shaping with Femtosecond Laser

The use of femtosecond lasers for microprocessing applications has been widely
studied in recent years as reduced thermally affected zones have been put in evidence
around the irradiated area, unlike for nanosecond laser processing. How the distortion
affects an ultrafast pulsed laser, which covers a wide frequency bandwidth, passing
through the beam shaping system designed for a monochromatic laser, has not been
fully investigated. In this section, femtosecond laser beam shaping is studied by

simulation.

The amount of phase modulation by DOE is inversely proportional to wavelength as

given by,
() =2"A (4-5)

where n(}) is the refractive index, and | is the thickness of DOE phase mask. When
the dispersion of the material is small enough to be ignored, the amount of phase
modulation can be expressed in the terms of o, which is phase modulation for the

design wavelength Ao,

A
Q= 70(00- (4-6)

When a wrapped phase mask is employed in the real applications due to various

reasons, such as the limit of thickness or inadequate dynamic range of the DOE, an
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additional phase shift will be introduced by a N-folds wrapping phase mask, which

can be expressed as,

Ag, =27N % : 4-7)

A
The phase mask designed for intensity profile Fig. 4.4 (b) is used in the following
simulation. The size of the phase mask is assumed to be 20 mm. Fig. 4.5(a) plots the
amount of phase modulation for the center wavelength 800 nm. The DOE with

wrapped phase design is also taken into consideration, shown in Fig. 4.5(b).
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Shorter pulses result in a wider spectrum. We consider a 20-fs laser pulse with a
Gaussian intensity profile with spectrum bandwidth of about 50 nm, is used in our
simulation. First, the intensity profiles of different wavelengths are investigated. Fig.
4.6 (a) and (b) display the normalized intensity profiles for different wavelengths by
using phase-unwrapped and phase-wrapped masks, respectively. It is observed, in our
beam shaping simulation using unwrapped phase mask, at longer wavelengths (where
the phase shift will be less than ideal) that the edges of the spatial profile are
significantly lowered while the center is raised. For shorter wavelengths, the reverse
is true with a dip appearing in the center of the profile and the edges becoming over-
emphasized. The amount of deformation increases with difference between the
applied wavelength and the center wavelength. In the simulation using wrapped
phase masks, the distortion of intensity profiles become more obvious, as more
ripples come into the plateau. But, in the case of both wrapped and unwrapped phase

masks, the shirts of plateau are still steep, and changes of sizes are very small.

The intensity profiles of a 20 fs laser pulse with Gaussian profile passing through
beam shaping system with unwrapped and wrapped phase mask are plotted in Fig. 4.7
(@) and (b), respectively. It can be observed that the pulse is delayed when using
unwrapped phase mask more than that when wrapped phase mask is used, which is
because the total amount of phase modulation of unwrapped phase mask is larger.
However the relative phase shift to the designing wavelength of wrapped phase mask

is larger, which results in a larger distortion. Fig. 4.8 shows the full-width-half-
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maximum (FWHM) pulse widths on the target plane. The changes of pulse widths are

less than 5% in the center plateau area.
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Figure 4.6 Normalized intensity profile of (a) unwrapped phase mask (b)
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Figure 4.7 Pulse profiles of a 20 fs pulse passing through beam shaping system. (a) using
unwrapped phase mask; (b) using wrapped phase mask
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Figure 4.8 FWHM Pulse width of a 20 fs pulse passing through beam shaping system. (a) using
unwrapped phase mask; (b) using wrapped phase mask
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The total energy distributions of laser pulses on the target plane are calculated and
plotted in Fig 4.9. Total energy distributions of femtosecond lasers passing through
wrapped and unwrapped phase masks basically keep approximately the same shape as
the intensity distribution of design wavelength. A small fluctuation appears on the
plateau part of wrapped phase mask. The pulse energies restrained in the center part
are, 98.34% and 98.36% of total energy for unwrapped and wrapped phase masks,

respectively, which are slightly less than that of the design wavelength.

From the simulations above, we can find that although intensity profiles of
wavelengths shifted from the system design suffer a distortion when passing through
beam shaping system, pulse energy profiles change little for femtosecond pulses. The
reason behind can be explained as following. The electric field on the target plane,
G(u; M), is the Fourier transform of input field, g(x), with the phase modulation ¢(x)

from the mask,

% . —i27rﬁ
Gu;A) = Ig(x)e"/’(x)e F dx
i (@-8)
) W0, w
= Ig(x)e e Adx
-2

The center part of the phase modulation @o(x) is flat and close to zero, @o(|X|< 0.28r0)

< 0.05, where most of energy are located. Another reason is the relative amplitude of

g(x) decays at the order of e where Aw is the frequency shift. In other words, the

92



frequency components with larger distortion have less weight in the pulse energy, and

the performance of center frequency components dominate.

4.4 Summary

Specially shaped laser intensity profiles are desired both by basic science research
and practical industry applications. Triggered by such demands, beam shaping
technology has boomed. Beam shaped femtosecond pulsed lasers have found many

opportunities for applications in various fields such as material microprocessing.

In this chapter, beam shaping technologies are briefly reviewed. A beam shaping
system is designed for shaping a Gaussian Ti:Sapphire femtosecond laser beam into
flattop profile by using modified Gerchberg-Saxton (GS) algorithm. A new criterion
for the optimization process used in the beam shaping process is described.
Comparing with the results from optimizing the intensity profile mean square error
(MSE), total intensity falling in the center target region has increased from 99.68% to

99.83%, and in the meantime, better intensity profile is obtained.

The properties of an ultrashort (20 fs) pulsed laser are investigated by numerical
simulations after passing through beam shaping system. Both phase-wrapped and
phase-unwrapped modulations are considered in the calculations. The simulation
results show that the intensity profile suffers distortion when working wavelength is
different from the design wavelength, especially for using wrapped phase mask.
However the distortions for the femtosecond laser pulses are much less, though still

observable. The FWHM pulse widths changes less than 5% in the center region,
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because the larger distortion components have much smaller intensity, and the

performance of center frequency dominates.
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Chapter 5 Terahertz generation

5.1 Background

The term terahertz (THz) radiation refers to the electromagnetic wave with
wavelength between 1000 and 100 microns (corresponding to 0.3THz and 3 THz).
THz waves fill the intermediate region between millimeter-wave band and far

infrared (FIR).

Electromagnetic waves in the THz region can penetrate a wide variety of non-
conducting materials: clothing, paper, cardboard, wood, masonry, plastic ceramic and
so forth. THz radiations of certain frequencies can even penetrate tissues of several-
centimeter-thickness and then scatter back [120]. Many materials of interest, such as
plastic explosives, display characteristic spectral fingerprints in the THz region.
Besides these factors, THz radiation is non-ionizing, since the photon energy is four
orders of magnitude less than that of X-rays. This means that investigations with
biological materials, such as living organisms or cells, do not result in harmful effects

to the DNA [120].

Because of these unique properties, THz radiation has very attractive potential applications in
many fields of scientific research and engineering, examples include biomedical imaging,
security screening, remote sensing, and spectroscopy. However, extensive investigations with

THz radiation and development of applications have been impeded for several

reasons. One is the lack of THz generating sources.
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As mentioned above, the wavelengths of THz radiation are distributed between those
of millimeter wave and FIR. Therefore, current approaches of generating THz come
from technologies of both areas. Many traditional methods for generating radio-
frequency waves and microwaves have been extended to the THz range. Examples
include backward wave oscillator (BWO) [121], and directly multiplied sources.
Frequencies of THz radiation generated by these electronic methods are, not
surprisingly, limited to the low frequency end, usually less than 1.5 THz. On the other
hand, it is difficult to find a blackbody emitter for a terahertz light source. Rapid
advances of current laser technologies have promoted the development of THz lasers.
THz lasers typically involve using four laser techniques: different frequency mixing
[122], terahertz parametric oscillators [123], molecular gas lasers [124] and quantum
cascade lasers [125]. So far the highest output power of THz lasers can be even
greater than 100 mW. However its intrinsic property of narrow specific wavelength
bands makes it have limitation for spectroscopy application. The prominent method is
optical rectification of ultrafast laser pulses using biased semiconductor switches [126]
or 2nd order nonlinear crystal [13]. When ultrafast laser pulses illuminate switches or
crystals, electromagnetic wave will be emitted. If the pulses are of a few picoseconds
or hundreds of femtoseconds, the frequencies of generated electromagnetic wave can
fall into the terahertz region. Combined with the THz time-domain spectroscopy
systems (THz-TDS) [127], optical rectification systems are easy to be realized, and

have been widely used to generate broadband terahertz radiation. So far,
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photoconductive switches produce THz pulses with higher energy and higher average

power, but maximum frequency of these pulses is below 1 THz [128].

Balanced Detector

A4
WP
ZnTe
A2

Si Wafer Lock -in Amplifier

Choppér

Figure 5.1 A schematic diagram of experimental setup of THz generation and THz-TDS detection.

Fig. 5.1 is the schematic diagram of experiment setup to generate THz radiation, and
to detect it with THz-TDS system. The incoming femtosecond laser pulses are
generated from Quantronix PM30 (pulse energy ~1.3 mJ per pulse, repetition rate 1
kHz). The laser beam is split into two beams, pumping and probing, by an uncoated
pellicle beam splitter (Thorlabs). About 92% of the energy coming into the pump
beam illuminates a 1-mm-thickness ZnTe <110> crystal. The THz radiation is
collected by a pair of 90 degree off axis parabolic mirrors, which have the focal
lengths of 4 inches. A high resistance silicon wafer was used to block the pump beam.

The probe beam was weakly focused by a lens after the computer controlled delay
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line. The probing beam and terahertz beam are recombined by a 50%/50% pellicle
beam splitter. A 1-mm-thickness <110> ZnTe crystal is placed at the focal point of
the terahertz beam. The collected probe beam first passes through a quarter wave
plate, where it is circularly polarized, then through the Wollaston prism, where it is
split into two linearly polarized beams, which are coupled into a balanced detector.
When measuring the terahertz signals, a chopper is inserted into the pump beam
before the focal lens to modulate the pump. The signal comes from the balanced
detector is amplified by a lock-in amplifier. A terahertz waveform is obtained by
sweeping the delay between the pump and probe laser pulses. Fig. 5.2 shows the
typical THz time domain pulse profile and frequency domain spectrum measured by

the setup in Fig 5.1.
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Figure 5.2 the typical THz time domain pulse profile and frequency domain spectrum generated
by 1 mm thickness ZnTe

99



The physics of THz generation of optical rectification in the second order nonlinear
optical crystal can be mathematically described as follows. Consider a train of sub-
picosecond laser pulses propagating in a second order nonlinear material. Assuming
the propagation direction is along the z direction, the electric field of the pump laser

can be written as
E,(z.1) =%§(z,t)exp(a)pt—kp -Z)+cc. (5-1),

where m, and K,=2m/A, are the carrier frequency and wave vector, £(z,t) is the pulse

envelope, which is slowly varying in t and z, and c.c means the term of complex

conjugate. The THz radiation is guided by the Maxwell’s equations

oH
Vx By, ==t %
2 NL ’ (5-2)
(&Nt Eryyy +P )
VxHypy, = ot

where nr is the refractive index. The nonlinear polarization PN" arises from the

second order nonlinearity of the medium,

PNL :godefprEP , (5_3)

where dgss IS the nonlinear coefficient. In the frequency domain the electromagnetic
wave equation of THz wave (denoted by overbar in the following discussion) can be

expressed as
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where Q denotes the frequency at THz region. If we substitute Eq.(5-1) into Eq.(5-4)
and only consider the low frequency terms, the wave equation for the THz wave is

given by

2 . de QZ —
{Vz +?—nT2(Q)}ETHz =- 22 Hi (5-5)

where THz radiation is related to the pulse envelopes of the pump pulses. As we
discussed above, the power of THz wave is a few orders of magnitude smaller than
that of the pump laser, so the effect of the polarization induced by the THz wave can

be ignored. If we ignore diffraction, the wave equations can be further simplified to

2

52 Qz — deQ ~
{_+C_2ns(g)}emzz- S (5-6)

oz°

The pulse envelopes evolve in the crystal due to dispersion,
Z(z,1) = Zi [Z@= 0,.Q)expfilat—(k—k, i (5-7)
T

where k is the wave vector at frequency Q+op. £(z =0,Q) is the Fourier transform of

the profile of the complex electric field in the temporal domain at the input

facet, £(z=0,t), and,
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£(z=0,Q) = TE(Z =0,t)exp(-iQt)dt . (5-8)

—00

Finally, Eq. (5-6) together with Eq.(5-7) can be used to analyze the THz wave
generation in the second order nonlinear optical crystal initiated by optical

rectification ultrashort pulses.

High Power broadband terahertz (THz) radiation sources are always desirable.
However, THz radiation generated by optical rectification of ultrafast pulsed lasers in
nonlinear crystals is usually at the level of nanowatts. The energy conversion
efficiencies form pump lasers to THz frequencies are usually less than 10®°. Three
key factors limit the energy conversion efficiency: Manley-Rowe photon conversion
limit [129]; absorption and dispersion; and short interaction length. Manley-Rowe
relations claim that from quantum view, the number of the THz photons cannot
exceed the number of the optical pumping photons. We can roughly estimate the
upper limit of energy conversion efficiency to generate a 1 THz frequency from a

typical Ti:Sapphire laser,

hvig,  Agr _800nm

=R = =2.6x10"°
hvig  Ary,  3004m

The nonlinear crystals usually have strong absorption in the terahertz region. So
cooling the crystals to low temperature can increase the conversion efficiency [14].
Longer interaction lengths are desirable, necessitating appropriate consideration of

phase matching constraints. The phase matching condition for the optical rectification

102



process (collinear  difference  frequency  mixing) IS given by

AK =K (@ +@r1,) =K (@) —K(0r,) =0, Where wopt and oty are the optical and THz

frequencies, respectively, and wgp and (oept +®TH,) lie within the spectrum of the

optical pulse. We can express the coherence length L. = (n/Ak) as [130]

L=t (5-9)

2‘ngp — Ny,

where A is the wavelength at terahertz signal, ng, is the group index of pump laser,

and nty; is the refractive index of THz.

Due to the dispersion of nonlinear crystals, usually only a narrow-band THz
frequency can satisfy the phase matching condition, which depends on the carrier
frequency of the pump beam. For example, ZnTe is one of most popularly used

optical rectification crystals. The refractive index of ZnTe crystal in the optical region

is given as n=,/4.27+3.0L2 /(1> —0.142) [131], is where A is the wavelength in

microns. The refractive index of ZnTe crystal at THz frequencies can be found from

nN=4289.27-612/(29.16— f2) [132], where f is the frequency in the unit of THz. Fig.

5.3 shows the group indexes in the optical region and refractive index in the terahertz
region. Coherence lengths for pumping pulse with different central frequencies are
plotted in Fig. 5.4(a). The corresponding calculated terahertz spectra generated in a 1-
mm-thick ZnTe crystal, where absorptions are ignored in calculation, are plotted in

Fig. 2(b), respectively.
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Figure 5.3 Group index in visible region(a) and refractive index in FIR(b) of ZnTe
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Figure 5.4 Coherence lengths in ZnTe and terahertz spectrum. Coherence lengths (a) for three

different pump laser wavelengths (830, 800, and 770 nm) are shown to compare with the
terahertz spectra (b).
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A number of methods have been developed to improve the phase matching condition.
For instance, periodic poled structures make it possible to satisfy quasi phase
matching conditions [133-135]. Cherenkov cone [136] and tilt wave front [128, 137-
139] properties can make phase matching condition fulfilled at a certain angle. A
method using supercontinuum as pump source to improve the THz generation

efficiency will be discussed in this chapter.

5.2 Terahertz generation by optical rectification of supercontinuum

As discussed above, optical rectification of ultrashort laser pulses is a widely used
schemes of broadband THz generation for laboratory research. However, the strong
dispersion of nonlinear crystals in the optical and near-infrared regions usually limits
the phase-matching condition between pump pulses and THz pulses, while it limits
the conversion efficiency and bandwidth of the THz pulses. For instance, ZnTe is a
popular nonlinear crystal used in the lab for optical rectification terahertz generation.
For the typical pumping laser, a mode-locking Ti: sapphire femtosecond laser
working at 800nm, phase matching condition is satisfied for the frequency of about 2
THz [130]. It has been demonstrated that the phase matching condition can be
modulated at the desired terahertz frequency by using a femtosecond pulse shaping
technique [140, 141]. However most of the energy of pumping laser pulses is lost

during the pulse shaping process.
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Recently it has been reported that when ultrashort laser pulses are coupled into highly
nonlinear photonic crystal fibers [7], supercontinuum is generated during the intense
nonlinear process [5]. The physics behind SC generation in PCF is addressed in
Chapter 2. When nonlinear PCF is pumped at anomalous GVD regions, the soliton-
related nonlinear effects will involve in the SC generation. Even if the PCF is only a
few millimeter long, the supercontinuum spectrum can be broadened to a few
hundred nanometers. At the same time, the time domain pulse duration is still kept
within the range of subpicoseconds. In this case supercontinuum can be considered as
the superposition of a series of pulses with different central frequencies. Therefore if
supercontinuum was used as the pump source, phase matching condition can be

satisfied in a broad region.

The evolution of the pulse propagating in the fiber can be mathematically described

by generalized nonlinear Sch&lingder equations (NLSE) [142]

OE(z,1)
oz

i 0"E(z,t) . i 0 ¢
+%E(z,t)—2'wk( )$:|y(1+ wLa)E(z,t)_LR(mE(z,t—r)|2dr

n>1 0

(5-10)
where E(z,t) is the complex electric field profile of pulse in the coordinate traveling at

the speed of group velocity of carrier, v, = z—f , and o is the angular frequency of

carrier. The left side of Eq. (5-10) describes linear propagation of pulse in the fibers.

The second term is the loss. And the third term presents the dispersions in the fiber.
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The right side of Eq. (5-10) is the nonlinear effects involved in the SC generation.
The self-steepening effects are represented by time derivative. The nonlinear response
of the fiber, such as Raman scattering and Kerr effect, are expressed as a convolution

with a response function R(t), which is given by [142, 143],

R(z) = (1- fo)8() + fh(r) (5-11)

where fg is the ratio of the contribution from Raman scatting in the fiber, which is
taken as 0.18 in the calculation[142]. The term hg(t) is the Raman response which

can be modeled as a single Lorentzian line[143]

2 2
e () = 222 exp(~ ) sin( 2 (5-12).
7,7, 7, 7

The inverse time scale 1/t1 gives the phonon frequency and 1/1, determines the

bandwidth of the Lorentzian line. We choose the values 11=0.0122 ps and 1,=0.032 ps.

Another important parameter is the dispersion in highly nonlinear PCF. The
simulation is based on photonic crystal fiber NL-770-2.0 (Crystal-fiber). Since the
dispersion data provided by manufacturer are limited, | calculated the values based on
bi-orthogonal vector method [144] to analyze the modes and calculate the dispersion
relationship. Fig. 5.5(a) shows the fundamental mode in the PCF NL-770-2.0, and Fig.
5.5(b) displays the dispersion curves (red circles are the measured results provided by

the manufacturer). The calculation shows a very good agreement with the experiment.
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Figure 5.5 Typical transverse mode (a) and dispersion(b) of nonlinear PCF NL-770-2.0
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The generalized nonlinear Schaldingder equations (NLSE) can be numerically solved
through split-step Fourier method. The operators on pulse envelope can be
categorized into linear operators, terms in the left side of the Eq. (5-10), and nonlinear
operators, terms in the right side of Eqg. (5-10). The linear operators account for the
dispersions and loss, while the nonlinear operators represent power-related nonlinear
process. The total propagation distance is divided into many small segments with the
length of dz. Within each segment, linear propagation of pulse is first calculated over
the distance from 0 to dz/2. And nonlinear operation is only taken into account at the
middle plane of the segment, and then linear operation is again performed over the
next half distance from dz/2 to dz. The linear part can be solved in frequency domain.
But the nonlinear operation is realized in the temporal domain. More detailed
description and discussion is available [143, 145]. Fig. 5.6 shows the simulation
results of evolution of a transform limited pulses with Gaussian profile propagating in
the nonlinear PCF (NL-770-2.0). We assume the average power of Ti: Sapphire
femtosecond laser working at 800 nm wavelength is 100 mW with the typical
repetition rate 80 MHz. The pulse width is 100 fs. The propagation distance increases
5 mm each time. We can find that within the initial short propagation distance, about
15 mm, the spectral broadening exhibits symmetric property while the pulse is
compressed in time domain. After that, initial pulse breaks into several soliton-like
pulses, the result of soliton fission effect [6], as shown in Fig. 5.6(a). At the same
time, figure 5.6 (b) shows spectrum of pulse undertakes red-shifts in the frequency

domain due to Raman scattering [6]. Newly generated long-wavelength components
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get involved into FWM, dispersive wave generation and other complex nonlinear
processes, resulting in spectrum broadening on the short-wavelength side. Finally an
extremely broad band supercontinuum spectrum is generated. SC generation within
the first 15 mm, where laser pulse is compressed in time domain but spectrum is

broadened, is more of interest for THz as we discussed earlier in this section.

The wave equation for THz wave, Eg. (5-6), is also a nonlinear equation, which can
be again numerically solved by the split-step Fourier method. Given that the envelope
of THz is slowly varying during generation, the solution of Eq. (5-6) can be written as

[146, 147]

. 0 - A Q® =7 i
['E_k(g)]ETHZ_—k(Q)c l]” (5-13).

The left side of Eq. (5-13) is the linear operator and the right side is nonlinear term.
The total propagation distance is also divided into many small segments with length
of dz. Within each segment, over the distance from 0 to dz/2 linear propagations of
pump pulse, using Eq. (5-8), and THz wave, left side of Eqg. (5-13), are first
calculated. At the middle plane of the segment, the two waves are connected through
the nonlinear operation, right side of the Eqg. (5-13), and then linear propagation of
pump wave and THz wave are again calculated over the next half distance from dz/2

to dz.

Assuming the 100 fs laser pulses with Gaussian profile centered at 800 nm (100

mW/80 MHz), we first calculated SC generation with a 3 mm increment each time.
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Fig. 5.7(a) shows spectrum expanding in frequency domain. The output SC was then
used as input pump source and coupled into a 1 mm thick ZnTe crystal to calculate
the THz spectrum. The results are shown in Fig. 5.7 (b).As we expected, the THz
spectrum changes with different pump SC sources. As the SC spectrum broadening,
phase matching condition is satisfied in a larger range, especially for the higher and
lower ends. For example, the intensity of the frequency component at 1 THz pumped
by SC generated from a 9 mm length PCF is almost 3 times as large as that pumped
by a femtosecond laser directly. The simulation results show that the desired THz
spectrum in longer or shorter wavelength can be obtained by adjusting the spectrum
of SC via changing the length of PCF or tuning power of the femtosecond pumping

laser.
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Figure 5.6 Temporal evolution of laser pulse (a) and spectrum broadening (b) in SC generation

113



Supercontinuum Spectrum

3000 T T T T T T
0 mm
3mm
2500 6 mm |
9 mm
12 mm
- 2000 15 mm | -
'
=}
>
o
§ 1500 *
8
g
o
2 1000 - *
500
0 . . .
0.5 1.2 1.3 1.4 1.5
(a)
Terahertz Spectrum
25 T . . .
0 mm
3 mm
6 mm
207 9 mm
12 mm
15 mm
. 15¢
S
8
N
I
=
w

0 0.5 1 15 2 2.5 3 3.5 4 45 5
frequency (THz)

(b)
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5.3 Summary

Terahertz technologies and their applications are promising in the near future. Optical
rectification of ultrashort laser pulses in the second order nonlinear crystals is one of
the most widely used methods of generating THz radiation. However, energy transfer
efficiencies of it are low. In this chapter, a method using supercontinuum can improve

the THz generation technique are proposed.

When a highly nonlinear PCF is pumped in the anomalous dispersion region, an
optical soliton is formed in the fiber. Even if the propagation distance in the PCF is
only a few millimeter long the supercontinuum spectrum can be broadened to a few
hundred nanometers. At the same time, the pulse duration is kept within the range of
sub-picosecond. In this case, the supercontinuum can be considered the superposition
of a series of pulses with different central frequencies. Therefore, if supercontinuum
was used as the pump source in optical rectification, phase matching condition can be
satisfied in a broad region. The numerical simulation is realized by using split-step
Fourier method. The calculation results show the spectrum changing with various
pumping SC. This is an easy method to realize spectrum tuning and power

enhancement for THz generation.
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Chapter 6 Conclusions and Future Work

6.1 Conclusions

In this dissertation, three applications of ultrafast femtosecond lasers are presented.
First, we study the single particle scattering spectroscopy using supercontinuum white
light tweezers. Supercontinuum white light optical tweezers are demonstrated by
using the ultra broad band supercontinuum (SC) generated in highly nonlinear
photonic crystal fibers pumped by ultrafast laser pulses. The scattering spectroscopy
of single particle trapped by supercontinuum white light tweezers was observed.
Scattering spectra of different particles have been measured and presented. Trapping
stiffness in the supercontinuum white light optical tweezers has been calibrated and
results show that the trapping stiffness depends strongly on the supercontinuum

spectrum.

The scattering spectra in tightly focused supercontinuum are also studied. When the
scatterer is of spherical shape, modeling based on Mie’s scattering theory and angular
spectrum decomposition, are described. In the case of non-spherical-shaped scatterers,
when the size of the scatterer is small or the refractive index of the scatterer is close
to the surrounding medium, another model based on the Born approximation and
Green’s function is derived. The calculations are presented and discussed as well.
This work has built a foundation for understanding optical scattering spectroscopy of
single particle in the supercontinuum white light optical tweezers and points the

directions to further applications to probe the single particle’s physical and chemical
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properties via the linear and nonlinear optical scattering spectra. These approaches
can lead to many important applications particularly in nanoparticle characterization

and sensing.

The second part of this dissertation is dedicated to the study of the femtosecond beam
shaping. The performances of beam-shaping in the case of using femtosecond lasers
with Gaussian beam profile into a flat-toped rectangular profile are studied and
discussed for practical realization. A new criterion in the optimization process for
beam shaping profile is described. Comparing with the result by optimizing the
intensity profile mean square error (MSE), total intensity falling in the center target
region has increased from 99.68% to 99.83%. At the meantime, better intensity
profile is obtained. The temporal and spatial properties of femtosecond laser pulses
during beam shaping are studied. The simulation results show that the intensity
profile suffer distortion when working wavelength is off from the design wavelength,
especially for using wrapped phase mask. However the distortions for the
femtosecond laser pulses are much less, though the distortions are still observable.
The FWHM pulse widths changes less than 5% in the center region. The reason is
that the larger distortion components have much smaller intensity; as a result, the

performance of center frequency dominates.

The last part of this dissertation is terahertz (THz) generation by optical rectification
of femtosecond laser pulses. A method by using optical rectification of

supercontinuum is proposed to improve the conversion efficiency over a broadband
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range. Highly efficient broadband terahertz will accelerate the development of
terahertz technologies and its applications such as biomedical imaging and remote

security screening.

6.2 Future Work

Single particle spectroscopy technique by using supercontinuum white light optical
tweezers has demonstrated the potential capabilities to probe the properties of
scatterer being trapped, which will be useful in the research of biomedical science and
material science. Future work will study the properties of biological cells and monitor

the changes in real time.

Scattering spectra of noble metallic nanoparticles are more sensitive to its shape and
surrounding media than those of dielectric particles due to the localized surface
plasmon effects. So it is interesting to investigate the scattering spectroscopy of a
single nano-sized metal particle trapped by supercontinuum white light optical
tweezers, which can be potentially a new approach for real time monitoring the

environment change in the microscopic world.

The simulation program developed for femtosecond beam shaping has been utilized
for fabrication of EO-crystal-based phase modulators. A study will undertake to exam
the performances of beam shaper in the real experiments. The phase modulators are
assumed to be ideal, i.e., the diffraction effects and boundary effects are ignored

when beam passes through phase modulation, which will result in discrepancy
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between experiment results and simulations. Future work will expand the algorithm

by taking into account of those factors.

Simulation of terahertz generation by optical rectification of supercontinuum pulses
has demonstrated the possibility of improving the performance of THz generation by
tuning the lengths of the highly nonlinear PCF. A preliminary concept-proof

experiment should be performed in the near future.
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