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ABSTRACT

Semi-active concepts for helicopter vibration reduction are developed and evaluated in this
dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers,
are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and
the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active
controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-
based semi-active vibration reduction concept (using stiffness and damping variation) is
demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight.
The rotor blade is modeled as an elastic beam, which undergoes elastic flap-bending, lag-
bending, and torsional deformations, and is discretized using finite element analysis.
Aerodynamic loads on the blade are determined using blade element theory, with rotor inflow
calculated using linear inflow or free wake analysis. The stiffness variation is introduced by
modulating the stiffness of the root element or a discrete controllable stiffness device that
connects the rotor hub and the blade. The damping variation is achieved by adjusting the
damping coefficient of a controllable orifice damper, introduced in the blade root region.
Optimal multi-cyclic stiffness/damping variation inputs that can produce simultaneous reduction
in al components of hub vibrations are determined through an optima semi-active control
scheme using gradient and non-gradient based optimizations. A sensitivity study shows that the
stiffness variation of root element can reduce hub vibrations when proper amplitude and phase
areused. Furthermore, the optimal semi-active control scheme can determine the combination of
stiffness variations that produce significant vibration reduction in all components of vibratory
hub loads simultaneoudly. It is demonstrated that desired cyclic variations in properties of the
blade root region can be practically achieved using discrete controllable stiffness devices and
controllable dampers, especidly in the flap and lag directions. These discrete controllable
devices can produce 35-50% reduction in a composite vibration index representing al
components of vibratory hub loads. No detrimental increases are observed in the lower
harmonics of blade loads and blade response (which contribute to the dynamic stresses) and
controllable device interna loads, when the optima stiffness and damping variations are
introduced. The effectiveness of optimal stiffness and damping variations in reducing hub



vibration is retained over a range of cruise speeds and for variations in fundamental rotor
properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single
degree of freedom system representing the semi-active isolation system. The rotor, represented
by a lumped mass under harmonic force excitation, is supported by a spring and a parallel
damper on the fuselage (assumed to have infinite mass). Properties of the spring or damper can
then be controlled to reduce transmission of the force into the fuselage or the support structure.
This semi-active isolation concept can produce additional 30% vibration reduction beyond the
level achieved by a passive isolator. Different control schemes (i.e. open-loop, closed-loop, and
closed-loop adaptive schemes) are developed and evaluated to control transmission of vibratory
loads to the support structure (fuselage), and it is seen that a closed-loop adaptive controller is

required to retain vibration reduction effectiveness when there is a change in operating condition.
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Chapter 1

I ntroduction

1.1 Background and motivation

Helicopters play an essential role in today’s aviation with unique abilities to hover and take
off/land vertically. These capabilities enable helicopters to carry out many distinctive tasks in
civilian and military operations. Despite these attractive abilities, helicopter trips are usually
unpleasant for passengers and crew because of high vibration level in the cabin. This vibration is
also responsible for degradation in structural integrity as well as reduction in component fatigue
life. Furthermore, the high vibration environment may decrease the effectiveness of onboard
avionics or computer systems that are critical for aircraft primary control, navigation, and
weapon systems. Consequently, significant efforts have been devoted over the last several

decades for developing strategies to reduce helicopter vibration.

To develop a new helicopter vibration reduction method, it is essential to first understand the
origin and fundamental mechanics of helicopter vibration, which are summarized in Section 1.2.
A comprehensive review of previous helicopter vibration reduction schemes using both passive
and active strategies is also conducted and presented in Sections 1.3 and 1.4, respectively. This
suggests that passive vibration reduction concepts can produce modest performance (no power is
required), while incurring considerable weight penalty, and the designs are generally fixed with
no ability to adapt to any changes. Even though active vibration reduction methods can produce
relatively better performance and can adapt to changes in configuration or operating condition,
they usually require significant power to operate. This leads to an effort to combine the
advantages of passive and active vibration reduction strategies into a recently developed “semi-
active” approach, which is reviewed thoroughly in Section 1.5. Generally, the semi-active
method can produce better performance than purely passive approach, while using relatively
small power. However, most of the recent semi-active concepts are developed for broadband



vibration reduction applications, which are not directly applicable for helicopter use since
helicopter vibration is tonal or narrow-band in nature (helicopter vibration is concentrated at
some specific frequencies). This motivates the development of a new helicopter vibration

reduction scheme using the semi-active concept.

1.2 Overview of helicopter vibration

Helicopter vibration generally originates from many sources; for example, transmission, engine,
and tail rotor, but most of the vibration comes primarily from the main rotor system, even with a
perfectly tracked rotor. Figure 1.1, which shows a typical vibration profile of a helicopter, as a
function of cruise speeds, demonstrates that severe vibration usually occurs in two distinct flight
conditions; low speed transition flight and high-speed flight. In the low-speed transition flight
(generally during approach for landing), the severe vibration level is primarily due to impulsive
loads induced by interactions between rotor blades and strong tip vortices dominating the rotor
wake (see Fig. 1.2). This condition is usually referred to as Blade Vortex Interaction (BVI). In
moderate-to-high speed cruise, the BVI-induced vibration is reduced since vortices are washed
further downstream from the rotor blades, and the vibration is caused mainly by the unsteady
aerodynamic environment in which the rotor blades are operating. This highly periodic
aerodynamic environment creates large periodic variations in blade velocity and angle of attack,
and corresponding large periodic vibratory loads on the blades. Figure 1.3 shows, for example, a
typical variation in blade angle of attack around the azimuth for a high-speed forward flight. For
an extremely high-speed cruise, the vibration can be even more severe since the blades can
encounter shock on the advancing side (which generates large blade drag and pitching moment)
or stall on the retreating side (which results in sudden loss of lift) over every revolution. This
severe high vibration level and associated increases in rotor power generally limits the maximum

helicopter cruise speed.

Once the blade loads are generated, they are further transmitted into the non-rotating frame as
vibratory hub loads and then into the cabin as cabin vibration. Normally, sectiona blade loads
are comprised of both aerodynamic and inertial contributions at harmonics of the rotor speed, Q.
The aerodynamic component of blade loads is generated by periodic flow field around the
rotating blades, while the inertial component of blade loads is created by blade rotation



(gyroscopic effect) and blade motion in flap, lag and torsion directions. The sectional inertial
and aerodynamic blade loads can be integrated along the blade length to obtain the blade root
loads, also at harmonics of Q, as seen in Fig. 1.4a. These blade root loads from every blade are
summed at the rotor hub to yield hub loads. Since the rotor blades are assumed identical,
implying identical blade root loads with the phase shifted properly, most of the harmonics of hub
loads will be filtered (cancelled) out, except components at the frequencies of; 0, NQ, 2NQ,
3NQ, etc., where N is the number of blades, (see Fig. 1.4b). The most significant component of
the vibratory hub loads is the NQ or N/rev component, and the amplitudes of the higher
harmonic are progressively smaller. These hub loads are then transmitted through the helicopter
cabin via the transmission platform. The amount of vibration throughout the helicopter cabin
may vary, depending on the vibration characteristics of the fuselage itself.

1.3 Passive helicopter vibration reduction

Passive strategies have been employed extensively for reducing helicopter vibration. Most of the
passive strategies produce moderate vibration reduction in certain flight conditions, and only at
some locations in the fuselage (such as, pilot seats or avionics compartments). The major
advantage of the passive concepts is that they require no external power to operate. However,
they generally involve a significant weight penalty and are fixed in design, implying no ability to
adjust to any possible change in operating conditions (such as changes in rotor RPM or aircraft
forward speed). Examples of these passive vibration reduction strategies include tuned-mass
absorbers, isolators, and blade design optimizations.

Tuned-mass vibration absorbers can be employed for reducing helicopter vibration both in the
fuselage and on the rotor system. The absorbers are generally designed using classical spring-
mass systems tuned to absorb energy at a specific frequency [1], for example at N/rev, thus
reducing system response or vibration at the tuned frequency (see Fig. 1.5). In the fuselage, the
absorbers are usually employed to reduce vibration levels at pilot seats or at locations where
sensitive equipment is placed. Without adding mass, an aircraft battery may be used as the mass
in the absorber assembly [2]. Vibration absorbers can aso be integrated into the rotor hub system
(Fig. 1.6) or can be located on the blades themselves (Fig. 1.7). The absorbers are often designed
using a pendulum like configuration, with stiffness provided by centrifugal force. Various



configurations have been developed; for example blade-mounted vertical plane pendulum
absorbers [3], dual-frequency pendulum absorbers [4], hub-mounted inplane bifilar absorbers
[5], dua frequency monofilar inplane absorbers [6], and single-frequency inplane roller
absorbers [7]. Many design tradeoffs have to be considered when using these absorbers on
helicopters for vibration reduction. Generally a sizable absorber mass is required for a good
performance. Furthermore, the effectiveness of the absorbers is highly dependent on frequency,
thus changes in rotor RPM may even produce increases in the vibration levels. Also, some
power is lost due to the additional aerodynamic drag produced by the absorbers in the rotor
system.

Vibration isolators typically are used in helicopters for reducing transmission of vibration from
the rotor to the fuselage. Normally the isolator and load-carrying member are designed as an
integrated unit for mounting the rotor/transmission assembly to the fuselage, as seen in Fig. 1.8.
These isolators are designed specifically to reduce transmission of vibration at specific frequency
close to N/rev [8]. Isolator designs range from using simple elastomeric material [9] to using
more complicated strategies such as a nodal beam configuration [10]. Extensive usage of the
passive isolators in helicopters has been limited due to many concerns. The most important issue
Is the load-carrying capacity of the isolator unit, because the unit has to be able to withstand the
weight of the entire helicopter as well as its payload with some safety margin. For the nodal
beam concepts, the vibration reduction performance is restricted when allowable deflection of
theisolatorsis small [11].

Blade design optimization is another effective alternative for reducing helicopter vibration.
Rotor blade fundamental properties (such as structural and aerodynamic) are chosen optimally to
reduce overal vibration in the designing phase [12]-[16]. Examples of the design parameters
used are rotor tip sweep, taper, and anhedral, nonstructural mass distribution, structural stiffness,
elastic tailoring, and spar cross-sectional geometry. Other variations to classical structural
design optimization strategies include dynamically tuned pushrods [17] and dynamically tuned
swashplates [18]. An advantage of using structural design optimization (over other passive
methods) is that no significant added mass is necessary for the resulting vibration reduction.
However, the vibration characteristic of the rotor blade and airframe may change during
operation depending on; the amount of fuel left in the fuel tank, the weight and location of



payloads, rotor RPM, and aircraft speeds. Therefore, the optimized configuration in one
condition may not produce vibration reduction in other conditions. This problem, though, is

common to all passive vibration reduction strategies.

1.4 Active helicopter vibration reduction

Active vibration reduction concepts have been introduced with the potential to improve vibration
reduction capability and to overcome the fixed-design drawback of the passive designs. The
majority of the active vibration reduction concepts aim to reduce the vibration in the rotor
system, and some active methods intend to attenuate the vibration only in the fuselage. In
general, an active vibration reduction system consists of four main components, Sensors,
actuators, a power supply unit, and a controller. Based on the current vibration levels measured
by sensors, the controller calculates output action required to minimize the vibration. The output
action is carried out by actuators, with the power supplied by an external power supply unit.
Also, the controller can be configured to adjust itself for any possible change in operating

conditions using an adaptive control scheme.

In principle, this active strategy can be very effective in reducing helicopter vibration for most
operating conditions. However, many of the active vibration reduction techniques have never
been applied to production helicopters because of severa reasons. Safety is one of the main
concerns because some methods utilize the primary control system of the aircraft (pitch links or
swash plate) for vibration reduction purpose. Also, some active concepts require electrical or
hydraulic dip rings, which are relatively bulky and are susceptible to failure, to transfer
significant amount of power to actuators located on the rotor system. Additional drawbacks
include requirement of high force actuators and considerable amount of power, a significant
weight penalty, stability issues pertaining to the active control system, and the very high pitch
link loads in some approaches. The most commonly examined active vibration reduction
strategies include Higher Harmonic Control (HHC), Individual Blade Control (IBC), and Active
Control of Structural Response (ACSR).

1.4.1 Higher Harmonic Control (HHC)

The HHC concept has been explored extensively in many helicopter vibration reduction studies.

The main objective of this concept is to generate higher harmonic unsteady aerodynamic loads
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on the rotor blades that cancel the origina loads responsible for the vibration. The unsteady
aerodynamic loads are introduced by adding higher harmonic pitch input through actuation of the
swash plate at higher harmonics [19], [20]. Conventionally, the swash plate is used to provide
rotor blade collective and first harmonic cyclic pitch inputs (L/rev), which are controlled by the
pilot to operate the aircraft. In addition to the pilot pitch inputs, the HHC system provides higher
harmonic pitch inputs (for example; 3/rev, 4/rev, and 5/rev pitch inputs for a 4-bladed rotor)
through hydraulic or electromagnetic actuators, attached to the swash plate in the non-rotating
frame (see Fig. 1.9). The concept was examined extensively in many analytical studies (see
Refs. [21]-[28]). With promising results obtained from some analytical studies, the HHC
concept was then examined experimentally and its effectiveness demonstrated in both wind
tunnel scale [29]-[33] as well as full scale helicopters [34]-[36]. Some of the key studies are
described in greater detail below:

In Ref. [23], Nguyen used 3, 4, and 5/rev pitch inputs to successfully suppress vibratory hub
shears for a 4-bladed hingeless rotor helicopter. In this analysis, the rotor blade was discretized
using finite element method. The aerodynamic loads were calculated using a nonlinear unsteady
aerodynamic model. A free wake model was considered for rotor inflow calculation. The
vehicle orientations/controls and blade responses were solved iteratively in a coupled trim
procedure. The vibration control scheme was based on minimization of a quadratic performance
index in which hub loads were included. The controller was a fixed-gain frequency-domain
controller whose gain was calculated based on a transfer matrix, which related HHC inputs to
vibratory hub loads. The results showed that the HHC controller was effective in reducing the
vibratory hub shears for most operating conditions. However, Nguyen observed that the required
HHC actuator amplitudes and power increased significantly at high forward speeds (above 100
knots), and the blade torsional loads and control system loads were increased considerably.

A successful wind tunnel demonstration of the HHC system was conducted by Shaw et al. [30].
The experiment was conducted in the Boeing Helicopter Wind Tunnel using a 3-bladed
dynamically scaled model rotor of the CH-47D helicopter. The rotor was instrumented to
measure blade loads through blade-mounted strain gauges. 2, 3, and 4/rev pitch inputs were
applied to reduce the 3/rev vertical, and 2, 4/rev in-plane root shears. Open-loop tests were

performed at severa flight conditions to obtain the transfer matrices required for calculating



gains of a frequency-domain controller. Both fixed- and scheduled-gain controllers were
considered. Again, the control scheme was based on minimization of a quadratic vibration
index. Closed-loop test results showed that the HHC system produced more than 90% reduction
in the 3 measured vibrations. The vibration reduction was demonstrated over a range of flight
conditions, up to a forward speed of 188 knots. However, small-to-moderate increases in blade
and control system fatigue loads were observed. The HHC input requirement for the reduction
was relatively large, with 2 and 3 degree peak pitch input requirements for the forward speeds of
135 and 188 knots, respectively.

A full-scale flight demonstration of the HHC system was carried out on a modified Sikorsky S-
76A helicopter [36]. All passive vibration reduction devices, for example the bifilars and
fuselage absorbers, were removed for the flight tests. HHC inputs (3, 4, and 5/rev) were
employed to reduce the 4/rev-fuselage vibration. Electro-hydraulic actuators were used to
provide the HHC inputs. The vibration was measured using accelerometers located throughout
the aircraft. Open-loop test results showed significant reduction in fuselage vibration, while
moderate increases in blade and control system fatigue loads were observed. The vibration

reduction at forward speed above 100 knots was limited because of actuator constraints.

Even though HHC is shown to be highly effective in reducing helicopter vibration, there are
many associated drawbacks that have impeded the implementation of the HHC concept on
production helicopters. First of al, the HHC system uses the primary control system (swashplate
and pitch links) to transfer higher harmonic pitch inputs to the rotor blades. In the event of
failure of the HHC system, the pilot may not have full control of the aircraft. Also the HHC
system requires the use of hydraulic or electromagnetic actuators with sufficiently high force
output and high bandwidth to provide desired swashplate motion. Thus, considerable power is
required to operate the actuators. With the movement of the swash plate, causing the pitch link
to push or pull the blade to a desired pitch angle, it is easy to see that the pitch links are subjected
to large dynamic loadings that can be structurally detrimental.

1.4.2 Individual Blade Control (IBC)

IBC is another active strategy that has been widely explored for helicopter vibration reduction.
The main idea of IBC is similar to that of HHC (generating unsteady aerodynamic loads to



cancel the original vibration), but with a different implementation method. Instead of placing the
actuators in the non-rotating frame (HHC concept), the IBC approach uses actuators located in
the rotating frame to provide, for example, blade pitch, active flap, and blade twist inputs for

vibration reduction

IBC concept using the blade pitch control can be implemented using electromagnetic or
hydraulic actuators connecting blade pitch horn and swash plate, replacing conventional pitch
links (Fig. 1.10a). Severa studies on this approach were conducted at MIT, and are well
summarized in Ref. [37]. Full-scale wind tunnel tests of this system were conducted at the
NASA Ames Research Center [38]-[40]. Severa flight tests of the IBC system for vibration
reduction have been conducted successfully [41], [42]. Detailed reviews of some of the studies
are presented below:

Full-scale wind tunnel demonstrations of the IBC system using blade pitch control were
conducted by Jacklin et a. in the NASA Ames 40- by 80-Foot Wind Tunnel [38]-[40]. The
rotor system was a 4-bladed BO-105 hingeless rotor. The rotor was instrumented to measure
blade loads through strain gauges. The pitch links were replaced by servo-actuators to provide
IBC pitch inputs. Results obtained for the open-loop tests showed that the hub vibration was
sensitive to IBC inputs. However, the pitch link loads were aways higher than those without
IBC inputs, and increased with increasing IBC amplitude and frequency. Closed-loop test results
demonstrated that reductions in the dominant 4/rev hub vibration could be obtained

simultaneously using multi-harmonic IBC inputs.

Results of Full-scale flight tests of IBC system with blade pitch control for vibration reduction
were reported by Kube and Van Der Wall [41]. The tests were conducted with a modified
BO105 helicopter, using blade root pitch actuation system. The aircraft was instrumented
extensively with pressure gauges, accelerometers, and strain gauges to determine blade pressure
and displacement. The tests were carried out at various advance ratios. IBC pitch input was
limited to 0.5° and 1° for the 2/rev and 3/rev components, respectively. The resultsillustrated that
an appropriate 2/rev IBC input could produce 50% reduction in all fuselage vibrations, while the

3/rev IBC input could only produce 40% reduction in vertical vibration.



Despite the promising performance of the IBC concept using blade pitch control for vibration
reduction, many practical concerns have to be addressed before this IBC system can be used in a
production helicopter. First and foremost, the system must be again fail-safe, which implies
minimal effect on primary aircraft control system in the event of system failure. Secondly this
concept requires the use of electrical or hydraulic dlip rings to transfer a significant amount of
power to actuators in the rotating frame [43], and these have a high risk of failure if not properly

maintained

Another IBC concept using flap actuation is explored extensively for vibration reduction. This
concept uses a small flap on each blade to generate the desired unsteady aerodynamic loads for
vibration reduction (see Fig. 1.10b). This concept can be equally effective, but uses less power
than IBC system using blade pitch control [44],[45]. Also the location and size of the flaps can
be chosen optimally to increase efficiency of the flap system [46]. Another attractive feature of
the active flap is that the failure of the flap system does not compromise the aircraft primary
flight control system [45]. In general, deflection of the flaps can be provided by many types of
on-blade actuation using mechanical linkages [47], as well as modern smart materials actuators
(for example, Piezoelectric actuators [48]- [56] and Magnetostrictive actuators [57]-[59]). The
effectiveness of the Trailing Edge flaps for vibration reduction has been demonstrated both on a
hover stand [60] and in awind tunnel [61]-[63], and isin a development phase for a future flight
demonstration [64]. A brief description of some key studies on the use of active flaps for

vibration reduction is provided below:

Millott conducted a thorough analytical investigation of vibration reduction using Actively
Controlled trailing edge Flaps (ACF) [44]. The analysis was conducted for a 4-bladed
helicopter. Two blade models fitted with ACF were considered; (i) fully coupled flap-lag-torsion
rigid blade model, and (ii) fully flexible elastic blade model using three flap modes, two lead-lag
modes, and two torsional modes. The aerodynamic loads were calculated using a quasi-steady
aerodynamic model incorporating reverse flow effect. The coupled trim and blade responses
were solved using the Harmonic Balance method. Again, the control scheme was based on
minimization of a quadratic vibration index, and the controller was a frequency-domain
controller with gain calculated using a transfer matrix relating ACF inputs to vibratory hub loads.

The results showed substantial reduction in vibration using the ACF controller, and the power



requirement was between 4-16% of that required by a conventional IBC system. Some of the
results suggested that location of the flap had a strong influence on vibration reduction
effectiveness as well as power requirements. Also the flap size, span and chord length, showed
minor impact on effectiveness of ACF, but had a strong effect on power and input amplitude

requirements.

Another comprehensive vibration reduction study using trailing edge flaps was conducted by
Milgram [46]. This investigation considered a 4-bladed Sikorsky S-76 main rotor. The analysis
used a nonlinear aeroelastic rotor model, and unsteady compressible aerodynamic model. Blade
response was calculated using finite element method, with coupled wind tunnel trim. Once
again, a quadratic vibration index was minimized to yield the optimal flap control inputs, and a
frequency-domain controller was considered. The controller gain was calculated using a transfer
matrix relating multi-cyclic flap inputs to hub vibrations. The flap inputs consisted of
components at 3, 4 and 5/rev. The results showed that either vibratory hub shears or hub
moments could be reduced using the active flap concept. The vibration reduction effectiveness,
which was dependent on flap parameters such as; flap length, flap location, and chord length,
could be compensated by appropriately adjusting flap inputs, provided that the flap had sufficient
deflection authority.

A wind tunnel demonstration of an active flap system was conducted by Dawson et al. [61]. An
active flap model rotor, used by McDonnell Douglas Helicopter Systems, was tested in the
NASA Langley 14- by 22-foot Subsonic Wind Tunnel open jet test section. The main objectives
were to examine the reduction of BVI noise and vibration. The flap actuation mechanism was
operated by a pretension cable attached between the hub and the active flap assembly. The
blades were instrumented with strain gauges to measure blade loads. The active flap inputs
included components at 3, 4, and 5/rev. Open-loop test results showed that the 5/rev flap input
produced significant reduction in vibratory pitch moment.

Although the flap actuation approach offers an excellent potential for vibration reduction, many
practical issues have to be addressed before the system can be used commercialy. Power
transfer to the rotating blade is still an unavoidable challenge for the flap system. Also the
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actuation mechanism has to be sufficiently powerful to provide the required authority, yet small
enough to fit within blade the cavity, and strong enough to withstand immense centrifugal force.

Another IBC concept [65], similar to trailing edge flaps, is an actively controlled blade tip. By
varying the pitch of the blade tip at higher harmonics, unsteady aerodynamic loads that cancel
vibrations can again be generated. In Ref. [65], actuation of the blade tip was provided by a
piezoelectric beam that utilized bending-torsion coupling effect to generate pure torsion
deflection at the blade tip. A Froude-scaled blade model was fabricated and tested on a hover
stand. The results demonstrated that the blade tip could undergo pitch rotations of 2° in the
range of 2/rev to 5/rev (for 100 Volts actuation), and could provide corresponding vibratory blade
shear (vertical) of 10-20% of the nominal lift. This vibratory blade shear could then be used for
hub vibration reduction if the blade tip deflection was phased properly.

IBC concept using blade twist for vibration reduction has also been investigated recently. The
idea is to actively introduce elastic blade twist to generate unsteady aerodynamic loads for
vibration reduction. The entire blade can be twisted actively using smart materials embedded in
the rotor blades (Fig. 1.10c). There are many studies on the active blade twist concept conducted
jointly between NASA/ARMY/MIT [66]-[69]. An active-twist prototype blade was tested
recently on a hover stand at the NASA Langley Research Center by Wilbur et al. [68]. The
Active Twist Rotor (ATR) was an aeroelastically-scaled model rotor that was designed and
fabricated to incorporate piezoelectric Active Fiber Composites (AFC) into the blade composite
structure for providing active twist deformation. The hover tests showed good performance and
endurance characteristics of the ATR prototype. An analysis conducted using CAMRAD |1
successfully predicted general trends of the ATR prototype. The active twist response of the
ATR prototype was estimated, using CAMRAD |1, to be 0.75°-1.5° (depending on frequency)
when applying 1000-Volt sinusoidal input. The ATR blades have been tested recently at the
NASA Langley Transonic Dynamics Tunnel [69]. It was demonstrated that active twist control
could produce 60% to 95% reductions in fixed-frame vibration (using 1.1° to 1.4° active twist),
depending on flight conditions. Similar efforts to elastically twist the blade were conducted at
the University of Maryland [70]-[ 71] using embedded piezoceramic elements.
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While the active twist rotor technology can produce significant reduction in vibration, as in the
case of all IBC concepts it is impossible to avoid transfer of power to the rotor system through
dip ring. Power requirements are expected to be higher than those for active pitch links or
trailing edge flaps. An additional concern includes shielding of all electronic parts from
moisture, to which the blades are exposed in normal operation.

1.4.3 Active Control of Structural Response (ACSR)

Unlike the HHC and IBC techniques that are intended to reduce the vibration in the rotor system,
ACSR approach is designed to attenuate the N/rev vibration in the fuselage, and is one of the
most successful helicopter vibration reduction methods at the present time. Vibration sensors are
placed at key locations in the fuselage, where minimal vibration is desired (for example, pilot
and passenger seats or avionic compartments). Depending on the vibration levels from the
sensors, an ACSR controller will calculate proper actions for actuators to reduce the vibration.
The calculated outputs will be fed to appropriate actuators, located throughout the airframe, to
produce the desired active forces (see Fig. 1.11). Commonly used force actuators include
electro-hydraulic, Piezoelectric, and inertial force actuators. Extensive studies on ACSR system
have been conducted analytically [72]-[74] and experimentally [75]-[78]. Successful flight tests
demonstrating the effectiveness of the ACSR concept have been conducted on a Westland 30
helicopter [79] and an UH-60 Black Hawk helicopter [80]. Recently, the ACSR technology has
been incorporated in modern production helicopters such as the Westland EH101 [81] and the
Sikorsky S92 Helibus [82]. Some of the key studies on the ACSR approach for vibration
reduction are described briefly below:

Chui and Friedmann conducted an analytical investigation of helicopter vibration reduction using
the ACSR technique [74]. A coupled rotor/flexible fuselage model was devel oped to represent a
helicopter with a 4-bladed hingeless rotor. An ACSR platform, equipped with 4 force actuators,
was used to mount the rotor assembly into the fuselage. The elastic fusel age was represented by
a three-dimensional finite element model. The rotor blades were assumed to be fully flexible,
with coupled flap-lag-torsion dynamics. The aerodynamic loads were calculated using a quasi-
steady aerodynamic model, with inclusion of the reverse flow effect. Blade response and vehicle

trim solutions were obtained using Harmonic Balance method. The control scheme was based
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on a time-domain controller designed to reject disturbance. The vibration was modeled as a
single frequency disturbance to be reected by the controller. The incoming disturbance
(vibration) was estimated, and the controller calculated an appropriate action to cancel it. The
results showed substantial reduction in the fuselage vibration. In particular, fuselage
accelerations were reduced to the vibration level below 0.05g. However, substantial amounts of

control force were required to achieve the reduction.

An experimental investigation of ACSR system was conducted by Welsh et a. on a modified
Sikorsky S-76B helicopter [77]. The ACSR system accommodated up to 10 accelerometers,
monitoring airframe vibrations, and up to 4 servo force actuators. An adaptive controller was
used to calculate the ACSR actuator force outputs that minimized a quadratic vibration index. A
controller gain was calculated based on a transfer matrix (obtained off-line) relating ACSR
outputs to the sensed vibrations. The results demonstrated that the ACSR system was effective
in reducing airframe vibration, even with variations in the rotor RPM. Also, power consumption

of the system was significantly lower than that of HHC systems.

A flight test of an ACSR system was carried out on a Sikorsky S-92 helicopter [82]. The system
used 10 vibration sensors to measure vibrations throughout the fuselage, and severa inertial
force generating devices provided active forces to the airframe. The force generating devices
were designed to operate using difference in centrifugal force of two counter-rotating wheels
with eccentric masses. The controller was an adaptive optimal controller, whose gain was
calculated based on a transfer matrix relating ACSR outputs to the sensed vibrations. The
transfer matrix was estimated on-line using a modified Kalman filter. Flight test results showed
that the ACSR system was effective in reducing fuselage vibration over ranges of forward speed
up to 150 knots.

While the ACSR approach offers significant vibration reduction performance for modern
helicopters, some concerns still exist. In order to reach satisfactory vibration reduction results,
ACSR system hasto exert large forces (at frequency of N/rev) on the fuselage. The combination
of the large force with high frequency poses a threatening issue of local structura failure, near
the actuation points. Thus, the actuation locations have to be designed specially to accommodate

the large force without compromising structural integrity. Further, they also have to be chosen
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appropriately for maximum overall vibration reduction in the fuselage. This increases system
weight penalty (due to weight of the sensors, actuators, control system, and structural re-
enforcements). Also the ACSR system may require a large amount of power to operate its
actuators. In addition, the vibration reductions obtained may be localized at the sensor locations,
regardless of vibration levels elsewhere in the airframe, and the vibration levels in the rotor
system are left unaltered.

1.5 Semi-active vibration reduction technology

Semi-active vibration reduction concepts are developed to combine the advantages of both

purely active as well as purely passive concepts. Like purely active concepts, semi-active
concepts have the ability to adapt to changing conditions, avoiding performance losses seen in

passive systems in “off-design” conditions. In addition, like passive systems, semi-active
systems are considered relatively reliable and fail-safe, and require only very small power
(compared to active systems). Semi-active vibration reduction concepts have already been
investigated in several engineering applications but only very recently has there been any focus
on using them to reduce helicopter vibration. In the following sections, a brief description of the
semi-active vibration reduction concept is first provided (Section 1.5.1), followed by comparison
between semi-active and purely active systems (Section 1.5.2) and examples of semi-active
vibration reduction in other engineering applications (Section 1.5.3). Finally, application of

semi-active concepts to the helicopter vibration reduction problem is addressed (Section 1.5.4).

1.5.1 Overview of semi-active vibration reduction concept

Semi-active strategies achieve vibration reduction by modifying structural properties, stiffness or
damping, of semi-active actuators. Examples of these semi-active actuators include controllable
orifice dampers, controllable magneto-rheological (MR) or electro-rheological (ER) devices, and
friction controllable bearings [83]-[84]. Power required to change properties of these devices is
usually very small, since the property modification process incurs very little or no mechanical
resistance. By modulating properties of such devices, “semi-active forces” can be generated
across the semi-active actuators. These semi-active forces are generally proportional to a
product between the change in structural properties and system responses; for éw&xmrgobel,

ACx for stiffness and damping variation respectively, and are sometimes called bilinear forces.
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With a proper controller to calculate the semi-active inputs (AK or AC), the semi-active force can
be exploited for vibration reduction. However, the semi-active control algorithms tend to be
more complex, since the semi-active control system is now non-linear because of the controllable

bilinear forces.

1.5.2 Comparison between active and semi-active concepts

Both active and semi-active vibration reduction systems are comprised of similar basic
components; sensors, actuators, and a controller. The fundamental concept of active and semi-
active approaches is virtually identical. The controller calculates required action for minimizing
the vibration measured by sensors. The corresponding action is then carried out by actuators.
Major differences between active and semi-active concepts are their actuators and associated
controllers. Active actuators generally provide direct active force, while semi-active actuators
generate indirect semi-active force through property modification. Correspondingly, the
controllers for both active and semi-active systems have to be different, because of the
differences in the required output actions. The semi-active controller is definitely more complex,

since it has to cope with the bilinear semi-active forces.

There are several advantages for using the semi-active concepts over the active concepts. First
of all, power requirement of the semi-active approaches is typically smaller than that of the
active methods. This is because active actuators generate direct force to overcome the external
loads acting on the system, while semi-active actuators only modify the structural properties of
the system. Secondly, control system stability is almost guaranteed for the semi-active concepts,
since virtually no external power is introduced into the semi-active control system. Lastly, there
may be less concern for actuator saturation in semi-active systems than the active systems, when
the vibration level increases. Thisis due to corresponding increases in system response and thus

the bilinear semi-active forces, without increasing the semi-active inputs.

1.5.3 Semi-active vibration reduction applications

With the advantages of the semi-active concepts, there has been much interest in using the semi-
active approach for vibration reduction in recent years, especially in automobile suspensions and
earthquake protection applications. This section describes some of the studies on these subjects.
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In the automobile industry, the semi-active suspension system has been developed for enhancing
suspension performance to reduce effect of road vibration on the passengers [85]. The system
usually employs controllable damper devices in the suspension system for generating semi-active
force. Several anaytical studies on this subject have been conducted with satisfactory results
[86]-[92]. There are aso numerous experimenta studies on the semi-active suspension system
[93]-[97]. In addition, many automobile companies such as Ford Motor Co. [98], Toyota Motor
Co. [99], and Nissan Motor Co. [100] are interested in semi-active suspension systems.

One successful study of the semi-active suspension system was conducted by Yi, Wargelin, and
Hedrick [88]. A quarter car semi-active suspension model was considered (see Fig. 1.12). The
semi-active suspension was modeled as a controllable damper that can produce a bilinear semi-
active force dependent on the product of the suspension velocity, x, and control input, v. Using a
transformation, u = vx (such that the semi-active force is now proportional to the new control
variable, u), the system equations of motion were now linear. For this resulting linear system,
the controller gain, G, was caculated by solving a conventional optima control problem.
Having found the controller gain, the temporary control variable, u, was computed by
multiplying the gain and the system state vector (u = GIX). Then the actual semi-active control

input was calculated as;

v=ux = GX/x (1.0

However, this optimal semi-active control action required very large control inputs when the
suspension velocity was close to zero. For practical purposes, control input limitations were
imposed by clipping at prescribed upper and lower limits. This control algorithm was often
referred to as a clip-optimal controller. The controller was then extended to incorporate an
observer, since al system states could not be measured. The numerical and experimental results
suggested that the semi-active suspension system showed good performance in reducing

dynamic tire force.

In earthquake protection applications, the semi-active system has been designed to reduce the
effect of huge seismic energy induced by ground movement on a civil structure. Generaly the
system uses controllable orifice and MR devices for absorbing significant amount of energy that

otherwise would have destroyed the structure. Another concept includes the use of specia
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variable stiffness members, which can be engaged or disengaged depending on a control signal
[101]. Since power failure is likely to occur during a seismic event, many of the earthquake
protection systems are purposely designed to operate on battery power. Many studies on this
subject have been conducted analytically [102]-[106] as well as experimentally [107]-[110].

One of the experimental investigations of semi-active seismic protection systems was conducted
by Symans and Constantinou [109]. The experiment used semi-active controllable orifice fluid
dampers to control seismic response of a three-storey scale-model building. Shaking table tests
were performed to simulate seismic excitations. The structure model building was modified to
add semi-active dampers in the lateral bracing located in the first storey (Fig. 1.13a). The semi-
active fluid damper was a modified conventional monotube damper with accumulator (Fig.
1.13b). The piston head orifices were designed specially to yield force output that was
proportiona to the relative velocity of the piston head and the damper casing. An external
control valve was added for adjusting the damping characteristic of the semi-active damper.
This semi-active damper was tested experimentally to yield linear damping behavior with an
adjustable damping coefficient. The highest damping was associated with a fully closed external
valve position, while the lowest damping was related to a fully opened external valve position.
The intermediate valve positions were tested to yield a calibration curve that linearly related the
valve position (semi-active command input) to damping coefficient (Fig. 1.13c). Two controller
algorithms were examined; (i) optimal control agorithm, and (ii) nonlinear sliding mode control
algorithm. The optima control approach followed the clipped-optimal approach described
earlier in the study of semi-active suspension system by Yi et a [88]. The results obtained from
this study showed that the semi-active damper control system improved structural response of
the building dramatically. The reduction in response obtained using this semi-active system was
similar to that achieved by a well-designed passive damping system. An improvement could be
made if the semi-active control algorithm were designed to incorporate control action limitations
at the outset, rather than clipping the optimal control inputs that did not consider actuator

limitations.

Another experimental study on seismic protection using semi-active approach was conducted by
Dyke et a. [110]. The experiment was set up to demonstrate the effectiveness of MR dampers

for semi-active structural response control of athree-storey model building. In the experiment, a
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MR damper was installed between the ground and first floor (see Fig. 1.14a and Fig. 1.14b).
Many sensors were used to measure necessary variables for the system. Accelerometers were
located on all floors to provide response measurements, a linear variable differential transformer
(LVDT) was used to measure displacement of the MR damper, and a force transducer was
employed to determine the control force applied to the structure. Again, the clipped-optimal
control algorithm based on H,/LQG strategy was considered to obtain desired output force from
the MR damper. Using the force transducer, another subsystem would control the MR damper
force to match the desired output force. To control the damper force, the subsystem used an
electrical signal to increase or decrease the magnetic field applied to the damper so that the
output damper force would increase or decrease, respectively (see also Fig. 1.14c). The results
showed that the MR damper effectively reduced both the peak as well as the RMS response of
the structure due to seismic excitations. In all cases, the semi-active system outperformed

passive systems in reducing the structural response.

The above discussions clearly demonstrate the success of semi-active vibration reduction
strategies in several practical applications. In addition, several semi-active controllers for
vibration reduction were developed, but only for broadband applications. Detailed analyses of
various semi-active actuators (including MR fluid devices and variable orifice dampers) were
also conducted. These analyses are essential in applying the semi-active technology to helicopter

application.

1.5.4 Helicopter vibration reduction using semi-active approach

There have been only a few studies focused on semi-active vibration reduction of helicopters.
The approach can be implemented by using semi-active actuator to modifying structural
properties of the rotor blade. Such an approach was first examined using variation in effective
root torsion stiffness of the rotor blade to reduce the N/rev blade root vertical shear force [111]-
[113].

First, Nitzsche introduced the concept of stiffness variation by analytically modifying blade root
boundary condition from hinged (zero stiffness) to flexible (finite stiffness) to cantilever (infinite
stiffness) in flap and torsion directions [111]. Inthisanalysis, a BO-105 type dynamically scaled

model rotor was considered and the rotor properties were experimentally obtained at the
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German-Dutch Wind Tunnel (DNW). The rotor blade was assumed to undergo flap-bending and
elastic torsion deformation, without any coupling between the flap and torsion modes. Blade
aerodynamic loads were calculated using blade element theory, and the effect of compressibility
and Blade Vortex Interaction was neglected. Based on a parametric study, the 1, 3, and 5/rev
variations in blade torsion stiffness were effective in reducing the 4/rev blade torsion response.

In Ref. [112], Nitzsche analytically applied 3/rev variation in blade effective torsion stiffness to
reduce the 4/rev blade flapwise bending and torsional responses of a 4-bladed rotor. The rotor
was similar to that considered in Ref. [111]. A low speed descent flight condition was
considered. The rotor pitch input was obtained from the wind tunnel tests. Elastic flap bending
and torsion deformations of the blade were considered. Blade aerodynamic loads were
calculated from two sources; (i) motion-dependent loads, and (ii) loads that were not motion
dependent. The motion-dependent aerodynamic loads were calculated using quasi-steady blade
element theory. The aerodynamic loads that were not dependent on blade motion, including
BVI, dynamic stall, and compressibility effects, were calculated using rigid blade assumption.
The steady state blade responses were obtained using numerical integration. The open loop
results showed that the 3/rev torsion stiffness variation produced significant reduction in the

4/rev blade flap bending and torsional responses.

Subsequently, Nitzsche conducted another study to develop a frequency domain controller for
vibration reduction using variations in flap and torsion stiffness [113]. The rotor model
considered was similar to that in his previous study [112]. However, an improved aerodynamic
model was considered. Blade aerodynamic loads were obtained again from motion and non-
motion dependent contributions. The motion-dependent aerodynamic loads were calculated
using a modified unsteady aerodynamic theory that accounted for reverse flow, compressibility,
and finite span effects. The aerodynamic loads that were not dependent on blade motion,
including BVI and dynamic stall effects, were calculated using a rigid blade assumption, as
before. The steady state blade responses were computed using harmonic balance method. A
frequency domain controller was set up for the disturbance (vibration) rejection problem.
However, no detailed information about controller design or its effectiveness in reducing
vibration was presented.
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1.6 Focus of the present resear ch

The focus of this dissertation is to develop, and evaluate the effectiveness of, semi-active
approaches (through the use of controllable stiffness and controllable damping devices) in
reducing helicopter vibration in moderate- to high-speed flight. To achieve this, several specific
tasks are conducted,

The first task involves evaluating sensitivity of hub vibration to cyclic changes in stiffness of the
blade root region. The rotor blades are spatially discretized using Finite Element Method.
Stiffness variation input is introduced by analytically modifying the effective flap/lag/torsion
stiffness of the entire root element of the blade. The influence of single harmonic stiffness
variation (flap, lag, and torsion) on hub vibrations is examined extensively. The effect of phase
and amplitude of the stiffness variation on hub vibration are also investigated. In addition,
several issues are also considered; such as, identifying vibration reduction mechanism, changes

in blade root loads, and changes in vibration reduction effectiveness with forward speed.

The second task focuses on the development and evaluation of a semi-active controller (open-
loop) for helicopter vibration reduction using multi-cyclic stiffness or damping variations. The
semi-active control scheme is formulated using optimal control theory in the frequency domain.
Both gradient- and non-gradient-based optimizations are applied to determine optimal semi-
active inputs that minimize all components of hub vibration simultaneously. The effectiveness
of the semi-active controller is also evauated when rotor fundamental properties and forward

Speeds are varied.

The third task takes a step toward practical implementation of this concept with introduction of

discrete controllable stiffness as well as damping devices into the root region of the rotor blades.

The controllable dampers are introduced because of several reggoestensive availability of

the controllable dampers and) large controllable damping authority. There is additional
appeal for using controllable dampers since almost all helicopters already have passive lag
dampers installed for aeromechanical stability augmentation, and replacing them with semi-
active controllable dampers may be a relatively simple proposition. It should be noted that the
introduction of these discrete devices in the blade root region creates multiple load paths for

transfers of loads to the rotor hub. The effectiveness of multi-cyclic variation in stiffness and
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damping of these discrete semi-active devices on hub vibration reduction is determined. The
corresponding changes in blade root loads, damper loads, and blade responses are also examined.
The effectiveness of the discrete semi-active devices is aso evaluated when rotor fundamental

properties, device attachment geometry and sizing, and forward speeds are varied.

The fina task in this present research involves the development and evaluation of another
possible application using semi-active devices for helicopter vibration reduction by introducing
the devices asisolators to reduce transmission of vibratory loads to the fuselage. A single degree
of freedom system is used to represent the semi-active isolation system, which consists of a
lumped mass (representing the rotor), under harmonic excitation, supported by a spring and a
parallel damper on fixed support (representing the fuselage). Properties of the spring or damper
can be varied to reduce transmission of the harmonic force into the support structure. The proper
variation in the properties (stiffness or damping) is determined using; (i) open loop, (ii) closed-
loop, and (iii) closed-loop adaptive control schemes. Effectiveness of the semi-active isolation

system is examined even when there is change in the phase of excitation force.

1.7 Overview of dissertation

The remainder of this dissertation is organized into four parts. The first portion describes the

analysis methods used to simulate helicopter vibration and development of an open-loop semi-

active vibration controller. Chapter 2 outlines basic formulation of blade and helicopter
equations in the presence of stiffness and damping variation devices, and procedure for solving

the equations. The development of an optimal semi-active controller is provided in Chapter 3.

The second part presents the vibration reduction results achieved ysirngade root stiffness
variation, with preliminary study presented in Chapter 4 and optimal control study presented in
Chapter 5(ii) discrete controllable stiffness devices (Chapter 6-7),(@ndiscrete controllable
dampers (Chapter 8). The third part presents development and results of semi-active isolation
system (Chapter 9). In the final chapter, conclusions and recommendations for future work are
discussed.
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Figure 1.6: Hub mounted in-plane bifilar absorber (from Ref. [5])

Figure 1.7: Blade mounted mass pendulum absorber (from Ref. [3])
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Figure 1.8: Helicopter vibration isolators; (a) Isolation platform with elastomeric pads
and (b) Nodal beam (from Ref. [10])
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Figure 1.9: Schematic of a Higher Harmonic Control (HHC) system
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Figure 1.10: Schemetics of Individual Blade Control (IBC) systems using
(a) blade pitch, (b) active flap, and (c) blade twist controls
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Figure 1.11: Schematics of Active Control of Structural Response (ACSR) systems using
force actuators located in (&) engine platform and (b) cabin (from Ref. [82])
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Figure 1.12: Schematics of (a) a semi-active suspension model and (b) a semi-active
controllable damper (from Ref. [88])
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Chapter 2

Analysis

This chapter describes mathematical models used in this dissertation to represent a 4-bladed rotor
helicopter with controllable stiffness and damping devices. Fundamental helicopter and rotor
equations (without any controllable semi-active devices) and associated solution procedure are
discussed in Section 2.1. Modifications of the basic rotor equations and blade root load
calculation with the introduction of stiffness and damping variations are presented in Section 2.2
and Section 2.3, respectively. Section 2.4 explains the underlying influence of the semi-active
stiffness and damping variation on blade response, blade root loads, and hub vibration.

2.1 Helicopter/Rotor modeling and response calculation

The analytical model used in this dissertation is based on the University of Maryland Advanced
Rotorcraft Code (UMARC) formulation [114]. A four-bladed helicopter is simulated, with the
blades assumed to undergo elastic flap, lag bending and elastic torsion deformations. The
following sections explain briefly the basic formulation of helicopter and blade equations and the

corresponding methods for solving the equations.
2.1.1 Helicopter model

In this dissertation, a four-bladed BO-105 type hingeless rotor helicopter model is used. The
fuselage is modeled as arigid body in aleve flight with associated |oads from the rotor system,
horizontal tail, tail rotor, and the fuselage itself (see Figure 2.1). Hub loads from the rotor
system are discussed in greater detail in Section 2.1.4. The other loads on the fuselage are
presented in Appendix A for completeness. In aleve flight, it can be deduced that all forces and
moments exerted on the helicopter are in equilibrium. Helicopter equilibrium equations at the

rotor hub are presented in Eq. 2.1.
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This set of equationsis then solved for equilibrium state (all forces and moments at the rotor hub

are zero), with the solution procedure presented in Section 2.1.3.

2.1.2 Rotor blade mode

All four blades are assumed to be identical with uniform properties along the blade length, and
are assumed to undergo elastic flap-bending, lag-bending, and torsional deformations. Each
blade is spatially discretized using Finite Element Method, and the blade equations are
transformed into modal space using modal reduction method. A brief description of the

derivation of the blade equationsis given below:

The blade governing equations are derived using the Hamilton’s principle in conjunction with

Finite Element Method. The formulation starts with generalized Hamilton’s principle (Eg. 2.2);
t,
3I :I(esu -3T-3W)dt =0 (2.2)
t

wheredU is the variation of strain energdT is the variation of kinetic energy, adlV is the

virtual work done by external forces. A complete detail derivation of the strain energy, kinetic
energy, and virtual work can be found in Ref. [114]. In this study, the blade elastic extension is
neglected, since the blade extension stiffness is extremely high.

Using the Finite Element Method, the blade is discretized into a number of beam elements (see
Fig. 2.2). Each beam element has eleven Degree of Freedoms (DoF’s); 4 flap, 4 lag, and 3
torsional DoF’s. These elements assure physical continuity of blade displacement and slope for
flap and lag bending, and continuity of blade elastic twist. Within the element, bending moments
and torsional moment are assumed to vary linearly. The displacement field within the element
can be obtained through interpolations using FEM modeshapes and the nodal DoF’s. Using this
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in Eq. 2.2, the variations in kinetic and strain energy of an i element can be written in a matrix

form as

(38U - 8T), =3q] (Mg +Cq + Kq—F) (2.3)

where M;, C;, Ki, and F; are structural mass, damping, stiffness matrices, and load vector of the i™
element, respectively, and g’ :{vl,v;,vz,v'z,wl,w’l,Wz,w'z,fpl,fpz,fpg} is the elemental DoF vector

for the i element. These elemental structural matrices and load vector are summarized in

Appendix B.

To calculate the virtual work of the i element, aerodynamic forces and moments on the blade
element are determined using a quasi-steady aerodynamic model. In this model the airloads are
functions of the instantaneous angle of attack of the blade section. The sectional angle of attack
is determined based on the local blade pitch angle, the blade and wind velocities, which includes
rotor inflow calculated using either a linear inflow model [115] or a Free Wake analysis [116].
A brief description of both inflow models is presented in Appendix C. The effect of fluid
compressibility is accounted for by using the Prandl-Glauert factor. In reverse flow region, the
aerodynamic center of the airfoil is shifted from the quarter chord to three-quarter chord. Using

this method the variation in virtual work of the i element can be written as
(~aw), =37 (-F*) (24)
where F* is the aerodynamic load vector, and it is summarized in Appendix D.

After obtaining the elemental matrices and load vectors for every element on the blade, using the

Gaussian numerical integration method, the global non-linear equations of motion are assembled

asfollows:
tZ
6I'I=J'6qT(M‘q+Cq+Kq—F—FA)dt:O (2.5)
t
N N
where q = Zq,,M ZMI,C >Ci, K=3K;, F= ZFI,and FA = ZFA In the

=1 =1 =1

assembling process, compatibility of the global DoF, g, between adjacent elements must be
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insured, and the geometric constraints are enforced. The procedure is shown graphically in Fig.
2.3 for the global mass matrix.

In Eq. 2.5, since the virtua displacements, &g, are arbitrary, the integrand must be zero. This

gives the blade governing equations of motion as follows:

Mg +Cq+Kg=F+F* (2.6)
In general, this set of equations involves many DoFs (30 DoFs to represent a rotor with 5 beam
elements). To reduce computationa time, the blade equations are transformed into modal space
using the eigenvectors of Eq. 2.7.

M{+Kg=0 (2.7
A number of fundamental flap, lag, and torsional modes (with the total number of 6 or 10 modes)
are chosen to represent the rotor blade. Using the eigenvectors associated with the selected

modes, ®, the blade equations of motion in modal space can be written as

Mp+Cp+Kp=F (2.8)

where q=®p, M =®"Md, C=0"Cd, K =0 K®,and F=®T (F+F*).

2.1.3 Coupled rotor response/trim calculation

Rotor response and vehicle trim (vehicle orientation and controls) are obtained in an iterative
process. First, with an initial guess value of vehicle trim, the rotor response is calculated. From
this initial response, steady rotor forces and moments can be obtained (see Section 2.1.4 for
detail). These rotor loads are used in vehicle equilibrium equations (Eg. 2.1) to determine
whether the helicopter is in an equilibrium state or not. If not, the vehicle trim will be updated
accordingly, and the rotor response will be calculated again with the updated trim. The whole
process repeats until vehicle equilibrium is satisfied. The procedure for evaluation of the

coupled trim—rotor response problem is summarized in a flowchart presented in Fig. 2.5.

Rotor blade response is calculated using Finite Element in time method based on the Hamilton’s
principle, and the detailed procedure of blade response calculation is summarized in Appendix E.

Blade equations are transformed into first order form and discretized using Finite Element in
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time method (see Fig. 2.4). The blade response is solved using the Newton’s method for solving

non-linear equations.

Vehicle trim is obtained using again the Newton’s method, which is outlined in detail in
Appendix F. Rotor responses, hub loads, and equilibrium equations (Eq. 2.1) are first evaluated
for an initial guess value of vehicle trim. If the vehicle is not in equilibrium state, the vehicle
trim will be updated based on the residual of the equilibrium equations. The new responses and
hub loads are again calculated using the updated trim. This process is repeated until a vehicle

trim that satisfies the equilibrium equations is determined.

2.1.4 Bladeroot loads and hub loads calculation

Once the blade responses are known, the blade root loads can be determined using a force
summation method. Then rotor hub loads are obtained by summing blade root loads from every

blade in the rotor system.

Blade root shear forces and moments can be obtained by integrating blade aerodynamic and
inertial loads along the length of the blade. Most of the blade aerodynamic and inertial loads are
already calculated for the blade equations (Eq. 2.6). In fact, Eq. 2.6 may be used to calculate
blade root loads with some adjustment, since it includes terms related to elastic strain energy, as
well. After removing the elastic strain energy related terms, all remaining terms (which are

related to only aerodynamic or inertial loads), are combined to yield the blade nodal load vector

g g
S=Mg+Cg+Kqg-F-FA (2.9)

g g
where K and F are the modified stiffness matrix and structural load vector, respectively (with
all elastic strain energy related terms removed). This nodal blade load vector contains integrated
aerodynamic and inertial loads for all degree of freedomaw(,v,Vv', and fp) at every finite

element node. Examples of these nodal force and moment are shown in Figure 2.6 and Figure
2.7, respectively. The blade root loads can be calculated by summing contributions from the

blade nodal forces and moments along the blade span as
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S = fk
X X
k=1
# of nodes
— k
S, = z fZ
k=1
# of nodes
k
M = m 2.10a
b= 2 ™ (2.108)
k=1
# of nodes # of nodes

k-1
- k k n
Mp= 3 mg+ Y (31N
k=1 n=1
# of nodes # of nodes

- k f k k_ll n
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The blade root radial shear, S, is calculated separately by integrating aerodynamic and inertial
radial forces along the blade as

l .
S :J'{—n'{u -2V- x+e, (V' =V')cosd, te, (W =W +26)sng ]+L }dx  (2.10b)
(o]

where the aerodynamic radial force, Ly, is defined in Eg. D.2a. All components of the blade root

loads are shown graphically in Figure 2.8.

Once blade root loads are calculated, hub forces and moments can be obtained (using a proper

transformation shown in Fig. 2.9) by summing the root |oads from every blade as follows;
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where N is the number of blades. Using Fourier transformation, these hub loads are then
expressed as steady hub loads (which are required in vehicle trim calculation) and vibratory hub
loads.

2.2 Rotor blade stiffness variations

In this dissertation, harmonic variations in effective flap/lag/torsion stiffness of rotor blade are
introduced for hub vibration reduction. The variations in the effective stiffness are examined in
two different ways; (i) varying the stiffness of the entire root element of the blade and (ii)

varying stiffness of discrete controllable stiffness devices attached near the blade root.
2.2.1 Root element stiffnessvariations

The effective stiffness of the entire root element is assumed to vary cyclically (see Fig. 2.10),

about their baseline values, as follows:

Root _—Root N o ]
El ; (W)=Elg +nZlAEIﬁ sn(ny +g¢)
—Root N

El Ww)=E1c +Y |pE Psn(ng + (pn)] (2.12)

n=1

GI™ () =53~ + %[AGJ "Psin(ny + (ﬂn)]
n=1

In the above relationsn® represents the frequency of the cyclic variations in stiffness 1
implies Yrev variations in stiffnessn = 2 implies 2rev variations, etc); andp, represents the
phase angle of the cyclic variations in stiffnessn@ev. The amplitudes of the stiffness

variations, 4E1,™®, AEI™, and AGJ™, are expressed in percentage of their baseline values

—— Root

(Bl Bl andGI™", respectively).

These root stiffness variations are then incorporated into the blade equations (Eq. 2.6), which are
solved for the corresponding blade responses. In the response calculation process, it is seen that

the blade equations (Eqg. 2.6) are evaluated at various azimuthal positions. At any azimuthal
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position, ¢, the stiffness of the root element of the blade is calculated using Eq. 2.12. With these

stiffness variations, the elemental stiffness matrix (Eq. B.2) of the root element is modified as

[K (t//)] Root = [RJ Root + [AK (l/J)] Root (2- 13)

where lR]Root is the baseline elemental stiffness matrix of the root element and [AK((//)]ROOt is the

stiffness matrix of the root element associated with the stiffness variation. This modified root
element stiffness matrix is assembled to yield modified blade equations, Eq. 2.14.

Mg+ Ca+{K +AK @)}a = F + F A (2.14)

where AK () represents the component of the stiffness matrix with periodically varying terms

due to the root element stiffness variation. The modified blade equations are then solved to yield
the corresponding blade response using the procedure described in Appendix E.

Blade root loads and hub loads are calculated correspondingly from the modified blade response.
The procedure outlined in Section 2.1.4 is directly applicable, since blade stiffness is not
required in calculating blade root |oads and hub loads.

2.2.2 Stiffness variations of discrete devices

In practice, variations in the effective stiffness of the blade root region can be achieved through
discrete controllable stiffness devices introduced near the root region of the blade (see schematic
sketch, Fig. 2.11). Examples of these discrete devices are controllable orifice devices and

controllable frictional bearing. The stiffness of these devicesis assumed to vary as follows:
N n n i W
K=K, +5 [aK ™ sin(ng + )]
1=

K,W)=K, + i[AK\:‘p sin(n¢+ga:)] (2.15)
1=1

K,@)=K + zl [AK;P sin(ng + (pr‘f)].

Again, ‘n” represents the frequency of the stiffness variations, ggdrépresents the phase

angle of the stiffness variation afrev. The amplitudes of flap, lag, and torsion spring stiffness
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variations, 4Ky, 4K, and 4K, are expressed as percentages of their baseline values (K, K

\Y b
and K 0 respectively). It can be deduced from Fig. 2.11 that the flap controllable stiffness

device contributes significantly to both translational and rotational stiffness of the blade in the
vertical direction (due to device attachment geometry). Similarly, both blade chordwise
trandational and rotational stiffnesses are affected by the lag device, while the controllable
torsion stiffness device only influence the blade torsional stiffness. The discrete devices are
mathematically modeled using trandational and rotational springs. Two separate models are
used: (i) dual spring model and (ii) single spring model.

2.2.2.1 Dual spring model

The controllable flap and lag stiffness devices can be modeled using a dual spring model to
reflect the dependency of trandlational and rotational stiffness of the blade incurred by the
configuration geometry of the devices. The flap device can be mathematically represented by

two simultaneous controllable transiational and rotational springs: K and K, respectively (as

shown in Fig. 2.12a), since the stiffnesses are derived from a single flap device. Similarly, the

lag device can be modeled by simultaneous controllable springs K , and K, (see Fig. 2.12b).

The relationship between the trandational and rotational springs is summarized as:

Ky@)=u K, @) (2.16)

K,@)=uv,K, @)
where v and v, are constants that depend on device configuration.

These simultaneous controllable springs are integrated into the blade equations (Eg. 2.6), and the
corresponding blade response is calculated. The instantaneous stiffnesses of the controllable
springs are calculated using Eg. 2.15 and Eq. 2.16. Using these instantaneously varying
stiffnesses, the elemental stiffness matrix for flap and lag DoFs (Eq. B.2) of the root element is
modified as follows:
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K o @) o = K . * 1K @) (2.17)

|-KW(t'[/)J Root = |-KWjRoot + |-KW(t'[/)]

Device

Device

where [K | and [K | _are defined in Eq. B2, and |K,, @)| . and [K @) . ae

Device Device

defined in Eq. 2.18.

) 0 0 0
0 0 0
[wa(w)]Device:% 0 Rt B (@) , L (2189
D 0 0 v {Ku+ 0K @)
0 0 0 0 a
0 0 0
[Kw(w)]m:?; 0 RutaK @) » 0 (2.180)
D 0 0 v K+ W)lE

These modified elemental stiffness matrices are assembled, and the modified blade equations
again can be represented using Eq. 2.14, without loss of generality. Then these blade equations
are solved to obtain blade response through the procedure outlined in Appendix E.

2.2.2.2 Single spring model

The flap, lag and torsion controllable stiffness devices can also be modeled as single controllable
springs attached on the blade (see Fig. 2.13). For the flap and lag controllable stiffness devices,
configuration and attachment geometry is shown in Fig. 2.14. While one end of the device is
attached to the rotor hub the other end is attached to the rotor blade at a finite element node so
that the motion of that point (required to determine the device forces) is directly available, and
semi-active forces and moments exerted on the blade are easily accounted for. The semi-active
force generated depends on both the instantaneous stiffness of the devices as well as the blade
motion at the attachment point, which governs the relative displacement of the controllable
springs. Figure 2.15a shows the deformation of the flap device due to flap bending motion of the
blade. From the geometry and kinematics it can be shown that the flap spring deformation due to

flap displacement, w, and slope, w’, at the attachment point is given by:
AL =-wsna —e Wcosa (2.19)
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Similarly, if vand v’ are the lag bending displacement and slope at the point the controllable lag
spring is attached to the blade, the deformation of the lag spring can be shown to be:

AL, =-vsina, -e V' cosa, (2.20)

In Egs. 219 and 2.20, o, and o are the attachment angles of the flap and lag devices, and e
and e, are the attachment offsets (as seen in Figs. 2.14). The semi-active flap device force, F_,

and lag deviceforce, F, , are then expressed as:
F =-K AL (2.22)
w w w
F =-K AL
\" \" \'
with K and K representing the instantaneous stiffness of the controllable flap and lag devices,

respectively. The devices exert both forces and bending moments on the blade at the point of
attachment, in the flap and lag directions (see Fig. 2.15b for the force and moment on the blade
due to the flap device). The resulting loads at the blade finite element nodes (flap bending shear

force, F), and moment, M, lag bending shear force, F/, and moment, M) can be

represented as:

FXEB 0 sn?a e sina cosa [hw

Fu Bk g M w SN, 00X, WL (2.223)

1 oo
s Fe, Sina, cosa, e, cosa, | AW

FKH 0 sn?a e sina cosa

ngKi -K, O . Y oo ZV%VE (2.22b)
“E Fe, Sina, cosa, (ev cosav) Y O

Further, the torsion moment acting on the blade at the attachment point of the torsion stiffness

deviceis expressed as:

K i
M(p = K(pqa (2.22¢)

Since the blade loads in Egs. 2.22 are dependent on the blade response at the attachment point
(w, w’, v, v, and ¢, they will result in a modification of the blade elementa stiffness matrices

of theroot e ement as:
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lKW\N(l/I)JRoot = I-KW\N]Root + |-KV\I\N(l’l/)JDe'\/ice

Ko, @), =K e * 1K, @)

Device

|-K¢1’ﬂ(¢/)JRoot - |-K(ﬂ’ﬂ]Root * |-KWP("U)JD(&'\/ice

where I-KW\NJRoot’ le]Root’ and [KWJRootare defined in Eq. B.2, and [wa(t,l/)]

(2.23)

Device’

[K oy @) ee @ [K, @)]_ aredefined in Eq. 2.24.
0 0 0 0
[k w] =« o ? ° : 2.24
v Ploaice =KW sna,, e, sina  cosa, O (2:243)
: , 0
% 0 eWSII’lO’WCOSO’W (eWcosaW) |
M 0 0 0 0
Ky @)]ree =K %) ’ ’ ° B 2.24b
wWloeice =KW g sn®a, e, sina, cosa,U (2.240)
g) 0 eVSII']O'vCOSO'V (evcosav) D
o0 0
[Kw(w)]wce:@ 0 0 O (2.240)
0
P 0 Kwg

The instantaneous stiffness of the discrete devices (Kw(¢), Ku(¢), and K/ ¢)) are defined earlier
in Eg. 2.15. With these modified elemental stiffness matrices, the blade equations are obtained
by assembling matrices from other beam elements. The modified blade equations can also be
represented by Eq. 2.14, and can be solved to yield blade response via the method presented in
Appendix E.

Comparing Eg. 2.24 to Eg. 2.18 suggests that the single spring model is representing the
controllable stiffness devices more accurately than the dua spring model. The single spring
model includes translation and rotational coupling effect (seen as off-diagonal termsin Eq. 2.24),

while the dual spring model does not account for the coupling effect.
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2.3 Rotor blade damping variations

Due to limited availability of controllable stiffness devices and extensive work with controllable
dampers, it is natural to consider whether controllable dampers could be used in practice to
achieve helicopter vibration reduction, through cyclic variations of their properties. In addition,
al helicopters already employ passive lag dampers for aeromechanical stability augmentation,
and replacing them with semi-active controllable dampers may be relatively ssmple. The
controllable damper considered is a controllable orifice damper whose damping coefficient can
be modified by ssmply opening or closing an orifice valve. The following sections explain
damper modeling, incorporation of the controllable damper model, and blade root load

calculation.

2.3.1 Controllable orifice damper model

This section presents the development and verification of a mathematical model representing a
semi-active controllable orifice damper. A schematic sketch of the damper considered is shown
in Fig. 2.16. It comprises of a standard linear viscous damper augmented with a bypass, which
has a controllable valve. By varying the area of the controllable orifice through the application
of a voltage, the damper force or the equivalent damping coefficient can be controlled. The
change in damper characteristics with variation in orifice setting was experimentally
demonstrated in Ref. [107], and a fluid dynamics based model for the damper behavior was aso
developed and validated in that study. The fluid dynamics based model involves computing the
instantaneous pressures developed in each chamber of the damper due to fluid flow through the
primary and bypass valves (see Fig. 2.16). The damper force can then be calculated from
pressure difference between the two chambers as follows:

F, =PA —P(A —A)+F syn(u) (2.25)

where Ap is the piston area, A istherod area, F, is the static frictional force between the

piston and the damper casing, and u is the piston velocity. Although Eq. 2.25 looks simple, the
fluid dynamics based model requires the solution of coupled differential equations governing the
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pressures developed in each chamber. These equations (from Ref. [107]) are provided in

Appendix G for completeness. The controllable orifice area, A_ , as a function of applied

voltage, V , was reported to vary in the following manner:

A_(\V)=A_[L-exp(-We)| (2.26)

where A is the maximum orifice area, and y and ¢ are parameters obtained through

calibration of the valve. Varying the area of the controllable orifice changes the pressures
developed in the chambers (see Egs. G.1 and G.2), and consequently, changes the damper
behavior. From Eq. 2.26 it is seen that for zero voltage the controllable orifice is completely shut
(A

con

= 0), and for increasing values of voltage the orifice starts to open.

Figure 2.17 shows the force versus displacement damper hysteresis curves for various values of
orifice voltage (or orifice area). It is observed that the fluid dynamics model matches the
experimental data very well. Maximum damping is available for zero voltage when the bypass
valve is completely shut, and the available damping progressively reduces (hysteresis loop area
decreases) as the bypass valve opens with the application of a voltage. It is also seen that for a

specified orifice voltage, or orifice area, A_ , the hysteresis loop closely resembles that of a

linear viscous damper. Thus, in principle, an equivalent viscous damping coefficient,

_ Energy Dissipated (area under hysteresiscycle)
QX2

C (2.27)

can be assigned to each hysteresis cycle, corresponding to a specified applied voltage. Figure
2.18 shows that the damper hysteresis cycle obtained using the full fluid dynamics based model
compares very well with that generated assuming a linear viscous damper with equivalent
damping coefficient from Eq. 2.27. This process can be repeated for different orifice voltages,
and a viscous damping coefficient determined for each case. A calibration curve of equivalent
damping coefficient as afunction of bypass orifice voltage (or orifice area) can then be obtained,
as shown in Fig. 2.19. From the figure it is encouraging to note {athe range of damping

variation available is very large, providing up to almt89% change from the mean damping



coefficient, and (ii) the calibration curve has a large linear range, which is beneficial from a

controller design standpoint.

Based on Fig. 2.19, the damping coefficient in the present study is assumed to vary linearly as:

—~ dC _ -C d_C =C
C(\/)—C+d—v(\/ V) or C(\/)—C+dVAV C +AC(V) (2.28)

which provides an accurate description of the damping behavior over a large range of variation

in input voltage. In Eq. 2.28, C is the nominal damping, V, isthe nomina voltage, and AC is

the variation in damping due to the voltage change AV . Such a reduced order controllable
damper model (Eg. 2.28) avoids the complexity of the full fluid dynamic based model, and can
be easily introduced in the rotor blade finite element equations.

However, before using the reduced order model in Eq. 2.28, additional verification is necessary.
In developing the reduced order model based on the calibration curve in Fig. 2.19, hysteresis
cycles for a series of different orifice settings were considered (Fig. 2.17); but the orifice area
(voltage) was never varied cyclically. In the present study, cyclic variations in the orifice voltage
are to be introduced at harmonics of the rotor frequency. It is necessary to verify that the
reduced order model is valid (produces damper force predictions, or hysteresis cycles, very
similar to those obtained using the full fluid dynamics based model) even when the orifice is
controlled cyclically, at harmonics of the damper motion frequency.

Figures 2.20a and 2.20b, respectively, show the hysteresis cycles predicted when cyclic variation
in the orifice voltage is introduced at the damper motion frequency and at twice the motion
frequency. In both figures, the results from the reduced order model (Eg. 2.28) are practicaly
identical to those from the full fluid dynamics model (Egs. G.1, G.2 and 2.25), thus establishing
the validity of the reduced order model, even for cyclically varying orifice voltages. It should be

noted that a cyclic variation in orifice voltage, of amplitude AV about a mean voltage of V_,

produces a change in the shape of the hysteresis cycle but no change in the area enclosed (which

remains the same as that when a constant voltage V_ is applied) — cycles in Figs. 2.18, 2.20a, and



2.20b all have the same enclosed area. This suggests that while cyclic variation in voltage will
produce higher harmonic forces that could be exploited to reduce hub vibrations, it is unlikely to

compromise the energy dissipation characteristics of the damper (which are determined only by
the mean orifice voltage, V_, or, in effect, the mean damping coefficient, C). In addition, a

change in the phase of the cyclic voltage input would result in the hysteresis curves shown in

Figs. 2.20 undergoing a corresponding rotation, but again, the area enclosed is unchanged.

In the present study controllable orifice dampers are introduced in the rotor blade root region,

and the voltage varied cyclically with time, or with azimuthal position, ¢ (since the system is

periodic). Thus the reduced order model in Eq. 2.28 can be represented in the following form

C(p) =C +AC(y) (2.29)

where the variation in damping, AC, about the mean value, C, is expressed in terms of the
independent variable, ¢, rather than the dependent variable, V (¢) .

2.3.2 Inclusion of controllable dampersinto blade equations

Controllable dampers are introduced in the blade root region in the flap and lag directions (see
schematic in Fig. 2.21) to produce semi-active forces that modify the blade response and reduce
hub vibrations. Flap and lag controllable dampers are introduced because preliminary studies
(presented later in Chapters 6 and 7) showed that semi-active stiffness variations particularly
with the flap and lag devices are effective in reducing hub vibrations. Using the reduced order
damper model (Eg. 2.29), cyclic variations in the flap and lag damping coefficients are
represented, without loss of generality, in the following form:

C,)=Cu+AC, () =Cu+ % [Acv'; sin(ny + ganW)] (2.30)
n=1

C,®)=Cy +AC, @) =Cy + 5 [sC" sin(ny + )]
n=1

Again, “n” represents the frequency of the cyclic damping variations eidrépresents the

phase angle corresponding to damping variatiom/dv. The amplitudes of flap and lag
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damping variations, AC  and AC, are expressed as percentages of their baseline values (EW

and Cy, respectively). It should be noted that from a practical standpoint there is a limit to the

maximum variations in damping coefficient achievable with the controllable orifice dampers,

and this was taken to be + 80% of the baseline damping coefficients (Cw, or Cv), based on Fig.

2.19. Equations 2.30 can be written in a compact form as:

C,(@)=C, +AC_ () =C, + %[ACB sin(ny +¢.) (2.31)
n=1

The damper configuration and attachment geometries are similar to that shown in Fig. 2.14,
except that the controllable stiffness devices are replaced with controllable dampers. Again, the
flap and lag dampers are attached to the rotor blade at a finite element node so that the semi-
active forces and moments exerted on the blade are easily accounted for, since blade velocity at
the node is readily available. The semi-active damper force generated depends on the
Instantaneous damping coefficient of the controllable dampers as well as the blade flap and lag
velocities at the attachment point, which determines the piston velocities of the controllable
dampers. Figure 2.22a shows the change in the flap damper length due to flap bending
deformations of the blade. From the geometry and kinematics it can be shown that the flap
damper deformation due to flap displacement, w, and slope, w’, at the attachment point is given

by Eq. 2.19, and the piston velocity of the flap damper can be written as:
AL =-wsina, —e Wcosa, (2.32a)

Similarly, if vand v’ are the lag bending displacement and slope at the point of attachment of the
lag damper to the blade, the piston velocity of the lag damper can be shown to be:

AL =-vsina -e\V cosa, (2.32b)
Again, a  and a arethe attachment angles of the flap and lag dampers, and e and e, are the

attachment offsets (as seen in Figs. 2.14). The semi-active flap damper force, F , and lag

damper force, F, , are then expressed as:
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F
w

F
\"

=-C AL
w w

=-C AL
\" A\

(2.33)

with C_and C, representing the instantaneous damping coefficients of the controllable flap and

lag dampers, respectively. The dampers exert forces and bending moments on the blade at the

point of attachment in both the flap and lag directions (see Fig. 2.22b for the force and moment

due to the flap damper). The resulting loads at the blade finite element nodes (flap bending

shear, FWD , and moment, M V?, and lag bending shear, FVD , and moment, MVD) can be expressed

as:
OFP B 0 sina
W /= _ w
%\/IDf_ whe sina cosa
w @W w w
OFP B 0 sin’a
v H=_ v
Df \2 .
ﬁ\/lv ] @Vsnav Cosav

e, sna, cosa U

Twe e (2.34)
(ewcosaw) W0
e sina, cosa vEﬂ]vD
(e cosa ) E%/E

Since the blade loads contain velocity-dependent terms, they will result in a modification of the

blade elemental damping matrices of the root element as follows.

[Con @i = Conilioe +Con @ (2.35)
|-CW (w)JRoot = |-CwlRoot + |-CW (w)]Damper
where [C, | and [C, | aredefinedinEq. B3, and [C, @), . and[C, @), . ae
defined in Eq. 2.36.
0 0 0 0 0
00 0 o £
_ O
[C (w)]Dampef =CWr o sin®a e sna_cosqg 0 2303
% ] w w w ) w |:|
0 eW sn O'W COSCJ'W (eW COSO'W) g
0 0 0 0 0
c wl - 0 0 0 o E
CoWloame =C W o sin‘a, e, sina, cosa, U (2-36b)
% . > 'O
0 ev Sn O’V COSO’V (ev COSO'V) =

a7



The instantaneous damping coefficient of the flap and lag dampers, C,(¢) and C(¢), are given
in Eq. 2.30. Then the modified blade equations are obtained by assembling all the other matrices
with the modified elemental damping matrix. The modified blade equations can be represented
by Eq. 2.37.

Mg +{C+AC@)fa+Kg=F +F* (2.37)

where AC(¢) represents the component of the damping matrix with periodically varying terms

due to the controllable orifice dampers. The blade responses are obtained by solving these blade
equations using the method described in Appendix E.

2.3.3 Bladeroot loads and hub loads calculation

It should be noted that introduction of the controllable flap and lag dampers, as shown in Figs.

2.21, creates multiple paths for transfer of loads to the rotor hub. Blade root loads calculation

outlined in Section 2.1.4 can still be used, but the semi-active forces generated by the
controllable dampers have to be considered. The shear forces and moments at the root of the

flexoeam are denoted with the superscript “flex”. In addition, the superscript “damper” is used

to denote the shear forces and moments appearing at the root of the damper. See Figures 2.23a
and 2.23Db, respectively, for the root vertical shear and the drag shear forces due to the flexbeam

and the damper. The “total” blade root shear for&sand S, in Figs. 2.23a and 2.23b), then,
are summations of the flexoeam and damper contributiSns=(S'* + S*™ and S = S
+ S)‘(jamper ). Itis these “total” shear forces that are considered when calculating the vibratory hub

forces. Thus, the vertical shear for&)*, and the drag shear forcg,'™, at the root of the

flexbeam can be expressed as,

fl — k .
S, = kzl f*-F, sina (2.38)
#of nodes K
s = Sy fS-F sina,
k=1
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The vertical shear force, Sga’“pe' , and the drag shear force, Sja’me' , a the root of the flap and lag

dampers are simply

S =F sina,, (2.39)

slamwe — £ gng
X \" \"

Thus, from Egs. 2.38 and 2.39, the total blade root shear forces (S and S ) are obtained as,

flex damper #of nodes K
S, = S/ + slme = kZl f (2.40)
#of nodes
SX — S):‘Iex + S)((jamper: Z f
k=1

X

It is interesting to note that the total blade root shears (S, and S,) used in the calculation of the
hub forces have only aerodynamic and inertial contributions (contained in the fzk 's and ka 'S),

and the damper loads cancel out (see Eq. 2.40). These equations for blade root shears are the
same as the equations presented in Eq. 2.10a. In a similar manner it could be shown that any
direct damper contributions to the root radial shear force, and the blade root moments, cancel out
as well. The damper, however, has modified the blade response, and the inertial and
aerodynamic loads (which are dependent on the blade response). Further, the loads at the
flexbeam root are modified due to the presence of the controllable damper (see Eq. 2.38). After

blade root loads are obtained, hub loads can be calculated using the method in Section 2.1.4.
2.4 Influence of semi-active stiffness and damping variation

From previous sections, it is seen that the blade equations are modified when semi-active

stiffness or damping variations are introduced as presented in Eq. 2.14 and 2.37, respectively.

Mg+Ca+Kg=F +F* -AK()q (2.144)
Mg+Cg+Kg=F +FA-AC(yp)q (2.37a)

where AK () represents the stiffness variations ax@(y) represents the damping variations.
Clearly, the AK(¢)q (due to cyclic stiffness variations) an®C(¢/)g(due to cyclic damping

variations) terms can be regarded as unsteady semi-active loads that can be used to modify the
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blade response as desired. Traditionally for a 4-bladed rotor helicopter, HHC or IBC uses higher
harmonic pitch input at 3/rev, 4/rev, and 5/rev to produce higher harmonic unsteady aerodynamic
forces of those frequencies, and change blade response and reduce vibration. With the present

semi-active approach, even lower harmonic variations in stiffness, AK (¢), or damping, AC(¢) ,
at 2/rev and 3/rev, are able to generate the desired higher harmonic semi-active loads, AK (¢/)q
or AC(¢)q, at 3/rev, 4/rev, and 5/rev, for vibration reduction, since the blade response and
velocity, g and ¢, themselves already contain harmonics of rotor frequency (Lrev, 2/rev, 3/rev,

etc.). Thiswill be demonstrated in the result sections that 2/rev and 3/rev stiffness or damping

variations are particularly effective in reducing 4/rev hub vibrations.

Calculation of blade root loads and hub loads are unchanged with the introduction of stiffness
and damping variations, since all direct contributions of the semi-active loads (from the stiffness
and damping variations) to blade root loads are canceled out. In other words, influence of the
stiffness and damping variations has to be taken into account in the calculation of the blade
response, but its effect on the blade root loads is only to the extent that the changed response of
the blade affects the aerodynamic and inertial loading. This suggests that the stiffness and
damping variations generate semi-active loads that change blade response, and indirectly

influence the blade root loads, which in turn can be used to reduce the hub vibrations.
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Figure 2.1: Forces and moments exert on a helicopter in alevel forward flight
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Figure 2.3: Global mass matrix of arotor blade with 5 spatial elements
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Figure 2.4: Discretization of azimuthal position for blade response calculation using Finite
Element in time method
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Figure 2.5: Flowchart of coupled rotor/trim response cal culation procedure
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Figure 2.6: Nodal blade shear forcesin vertical and chordwise directions

Figure 2.7: Nodal blade momentsin flapwise direction
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Figure 2.8: Blade root shear forces and moments
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Figure 2.10: Stiffness variation of the root element
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Figure 2.11: Schematic sketch of discrete controllable stiffness devices
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Figure 2.12: Mathematical idealization of discrete controllable stiffness devices using dua spring
model in (a) flap and (b) lead-1ag directions.
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Figure 2.13: Mathematical idealization of discrete controllable stiffness devices using single
spring model in (a) flap, (b) lead-lag, and (c) torsional directions.
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Figure 2.14: Configuration and attachment geometry of controllable stiffness devices,
(@) flap device and (b) lag device
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Figure 2.15: (a) Deformation of the flap device due to blade bending, and
(b) Loads exerted on the blade at attachment point by the flap device
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Figure 2.16: Schematic of a semi-active controllable damper
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Figure 2.17: Force/Displacement hysteresis loops for different bypass orifice settings (valve
voltages); (a) experiment, (b) fluid dynamic model simulations (from Ref. 103)
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Figure 2.18: Force/Displacement hysteresis cycles produced by the fluid dynamics based damper
model and an equivalent damping coefficient model (at a specified orifice command voltage V)
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Figure 2.19: Calibration curve for equivalent viscous damping coefficient as afunction of orifice
voltage
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Figure 2.20: Damper hysteresis loops for prescribed damper motion at frequency Q and
cyclically varying orifice voltage (a) V=V +AVsin(Qt) and (b) V=V ,+AVsin(2Qt)
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Figure 2.21: Schematic of rotor blade with controllable flap and lag dampers

59



~
~
\\/\\
< ~
~ 7
\\/\\\

Mﬁﬁ\
+ ]
(b) T Foy

Figure 2.22: (a) Deformation of the flap damper due to blade bending, and (b) loads exerted on
the blade at attachment point by the flap damper

Figure 2.23a: Blade root vertical shear, S, with contributions from the flexbeam, S,"* (obtained
by summing vertical shear forces, f,, along bl gde Finite Element DOF’s), and the flap damper,
SZ amper
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Figure 2.23b: Blade root drag sheay, With contributions from the flexbeam," (obtained by
summing drag shear forceg, filong blade Finite Element DOF’s), and the lag damp&¥*$
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Chapter 3

Optimal Semi-Active Control Scheme

3.1 Calculation of optimal semi-active inputs

A frequency-domain approach is considered in determining optimal semi-active input, AU,
(which can represent either stiffness variation, AK(¢), or damping variation, AC(¢)). This
frequency domain method is similar to that developed in Ref. 117 and widely employed in
previous active vibration reduction studies. The semi-active input, AU, is expressed in
frequency-domain and comprises of amplitudes of sine and cosine components of stiffness or
damping variations (at harmonics of rotational speed). Examples of the semi-active inputs are

shown in Eq. 3.1aand 3.1b for stiffness and damping variations, respectively.

AU =[AK* AKZ2 AK>* AK3®  AKZ AKZ AK¥ AK*]T  (3.1a)
w w w w \' \' \% \'

2,3/ rev stiffness variations 2,3/ rev dtiffness variations
of the flap device of thelag device

AU =[ACZ® ACZ ACX* AC® ACX* AC»® AC¥ ACP®]"  (31b)

2,3/ revdamping variations 2,3/ revdamping variations
of the flap damper of thelag damper

where superscriptrit” represents the cosine component/aév and superscriptrs’ represents
sine component at/rev. The rotor hub vibration is expressed in frequency domain adjich
consists of sine and cosine components of all vibratory hub loads, and is defined in Eq. 3.2.

.
— 4c 4s 4c 4s 4c 4s 4c 4s 4c 4s 4c 4s
z=|FX B OF OFS Ff OFS ME ME ME MP ME ME] (32

where superscriptsAt’and “4s’ denote cosine and sine components ofdhiev vibratory hub
loads, respectively. It is assumed that the semi-active inpltand hub vibratiorg, are related

through a transfer matriX, as follows:
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Z=7+TAU (3.3

where ‘z,” is the baseline 4év hub vibration (without any semi-active input). The transfer
matrix, T, is numerically calculated by perturbation of individual semi-active input components,

about the baseline configuration.

The control algorithm, adapted from Ref. 117, is based on the minimization of a composite

guadratic objective functiod, defined as:

J= 3+ J = Z'Wz +AU'W AU (3.4)
J J
z u

-1
where ‘W,” represents the weighting on hub vibratiowz(z%ﬁozlﬂ ), and W,"

represents the penalty weighting on semi-active inpiyti¢ usually set to an identity matrix,
unless otherwise stated). In the result Chapiersz' W, z (which is a measure of the vibration
level) is used as a performance index; with smaller valued, aidicating more vibration
reduction due to semi-active inputs. The semi-active input idgecan represent the amount of
semi-active input required for vibration reduction. The optimal semi-active input (stiffness or

damping variations) can be determined using both gradient and non-gradient based methods.

3.1.1 Gradient-based optimization

The optimal semi-active input can be obtained using a gradient-based optimization approach. An
optimal input is obtained by substituting Eq. 3.3 into Eq. 3.4 and setting the derivative of the
objective function with respect to semi-active inputs to z&s@QU = 0). The resulting optimal

semi-active input is presented in Eg. 3.5.

AU = (T'W,T + W, ) T'W, 2, (3.5)

Equation 3.5 suggests that the calculation of semi-active input requires prior knowledge of the
baseline hub vibratiorg, (measured or calculated), and transfer matFix, This semi-active
control scheme is equivalent to an open-loop scheme, which might produce non-optimal inputs

when there is a change in operating condition or rotor configuration. If the change occurs, the
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semi-active input would have to be re-evaluated since the baseline hub vibration and/or transfer

matrix may change.

3.1.2 Non-Gradient-based optimization

The optimal semi-active input can also be determined using a non-gradient-based optimization

method. The optimization method considered is based on Genetic Algorithm (GA) approach

[118]. An optimal input is determined through an evolutionary process replicating natural
selection. Any possible semi-active input, AU, is coded into a binary string called an individual.

Initially, severa individuals are generated randomly to make up the first generation. For every
individual in the generation, a “fitness function” is evaluated based on the same objective
function defined in Eq. 3.4. The “most fit” individuals in that generation, or the ones that
produce the minimum objective function, will be chosen to produce individuals in the next
generation through a mating and mutation process. After repeating this process for several
generations, the procedure will produce the individual with the highest fithess, which can be
decoded back to yield optimal semi-active input that minimizes the objective function. For the
genetic algorithm simulations conducted in the present study, the number of individuals in each
generation is 20, and the number of generations is 50-200. In general, the amount of time
involved in calculating an optimal input using this GA approach is a lot longer than that used by

the gradient based approach.
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Chapter 4

Sengitivity Study

This Chapter presents preliminary vibration reduction results using root element stiffness
variations, described in Section 2.2.1. The effectiveness of root element stiffness variations on
reducing hub vibration is examined at a nominal advance ratio of 0.3, using Drees inflow mode.
The helicopter considered is a 4-bladed hingeless rotor helicopter whose rotor-fuselage
properties are given in Appendix H (Table H.1). Stiffnesses of the root elements of the blades
are varied cyclically to produce hub vibration reduction (see Eq. 2.12 and Fig. 2.10). Five beam
elements are used to model the rotor blade, and 6 modes (2 flap, 2 lag, and 2 torsion modes) are
used in modal transformation. The baseline hub vibrations and blade root loads, without any
root element stiffness variations, are given in Table 4.1a and Table 4.1b, respectively. Section
4.1 shows sensitivity of vibratory hub loads to root element flap, lag, and torsion stiffness
variations at various frequencies, amplitudes, and phases. Underlying mechanism of hub
vibration reduction is presented in Section 4.2. Influence of the root element stiffness variations
on blade root loads is shown in Section 4.3. Further, Section 4.4 illustrates effectiveness of the
root stiffness variation in reducing hub vibration at different advance ratios. A brief summary of
the resultsin this chapter is presented in Section 4.5.

4.1 Influence of root element stiffness variations on vibratory hub loads

The Influence of individual variations in root element flap, lag, and torsion stiffness on hub
vibration is examined. The influence of different harmonics (Lrev, 2/rev, 3/rev, 4/rev, and
5/rev) of the stiffness variations is also considered. For each harmonic of the stiffness variations,
the associated phase angle (see Eq. 2.12) is varied to demonstrate sensitivity of vibratory hub

|oads to the stiffness variation.

4.1.1 Cyclicvariation in flap stiffness

The effects of cyclic variations in flapwise stiffness of the root element (flap stiffness) are

examined in this section. For a 1/rev variation in flap stiffness, Figs. 4.1a and 4.1b show the
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vibratory hub forces and moments, respectively, as a function of phase angle, @ of the flap
stiffness variation. The amplitude of the stiffness variation considered is 15% of the baseline flap
stiffness (AEI j» = 0.1555). The vibratory forces and moments are non-dimensionalized by

their respective baseline values (denoted as 100%). From Fig. 4.1a it can be seen that while the

hub in-plane shear forces, F,* and F,*, are virtually insensitive to 1/rev flap stiffness variations,

the hub vertical shear force, F,”, can be reduced by roughly 20% at an “optimal” phase angle of
about 225 Figure 4.1b indicates that the hub moments are mildly sensitiveraw fldp
stiffness variations. At the phase angbe; 2253, small reductions in hub moments (of no more

than 10%) can be obtained in addition to the reductiéij‘in

Figure 4.2 shows the influence ofr&/ variations in flap stiffness on the vibratory hub loads.
The amplitude of the variatiodEl », is 15% of the baseline flap stiffnessl, 4. It is seen from

Fig. 4.2a that at an “optimal” phase angle of around,24@0% reduction in hub vertical shear
force,F,®, can be achieved. The hub in-plane shégfsandF,*, show very little sensitivity to

a 2fev variation in flap stiffness. Figure 4.2b indicates that the hub moments are moderately
sensitive to 2kv flap stiffness variations, with a 15-20% increase in the hub in-plane moments,

M, andM,*, observed ap= 240.

Figure 4.3 shows the influence ofr@/ variations in flap stiffness on the vibratory hub loads.
The amplitude of the variatiodEl *, is 15% of the baseline flap stiffnesdl 5. All vibratory
hub forces and moments show large sensitivity tev3/ariations in flap stiffness. Figure 4.3a

4

indicates that a substantial 70% reduction in the hub in-plane shear fgftes)dF,*, and a

40% reduction in the hub vertical shelf?, can be achieved at a phase angle of arotind\D

this phase angle, the hub torqi”, is unchanged and the pitching momewif?, is decreased

by 15%, but the rolling moment),”, is increased by 20% (Fig. 4.3b). Alternatively, if a phase
angle of around 45s selected, 60% and 85% reductions in hub in-plane mon\fftandM,®,

and an approximately 30% reduction in all hub forces can be achieved. This phase angle,

though, produces a 25% increase in the vibratory hub tokgtte,
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A 4/rev flap stiffness variation with an amplitude as low as 5% of the baseline flap stiffness
(AEl » = 0.0SE;;) produced a more than 200% increase in vibratory hub vertical shear, F,”,

over the entire range of phase angles. The system appears to be “overdriven” with the stiffness
variations actually producing significant vibrations rather than merely canceling the original
vibrations. Conceivably, the amplitude of stiffness variation could be further reduced, but
smaller amplitudes would require high precision in stiffness variation. rev 8ap stiffness
variation had the greatest influence on the in-plane vibratory hub moments. For an amplitude of
variation of 5% of the baseline flap stiffnedd=(» = 0.05El 4), up to 60% reductions in the in-

plane hub moments were possible. However, the phase angles that produced a decrease in the
rolling moment,M,”, increased the pitching momeM,”®, by a comparable amount, and vice-
versa. Thus, 4¢v and 5fev variations in flap stiffness are not considered as candidates for

reduction of vibratory hub loads.

4.1.2 Cyclicvariation in lag stiffness
The effects of cyclic variations in chordwise stiffness of the root element (lag stiffness) are
examined in this section. Ar#&{ variation in lag stiffness, of amplitude 15% of the baseline lag

stiffness QEI » = 0.15El ), was first considered. The vibratory hub forces and moments were

found to be relatively insensitive tor# lag stiffness variations, with reductions in vibratory

hub loads of no more than 5-7%, relative to the baseline values.

The influence of 2kv lag stiffness variations on the vibratory hub loads is shown in Fig. 4.4.
The amplitude of variatiol)El », is 15% of the baseline lag stiffnedsl ;. The vibratory in-

plane hub forces and the hub torque are most sensitive torévday stiffness variations. From
Fig. 4.4a it is seen that at an “optimal” phase angle of abduti#in-plane shear forces,”
andF,®, are reduced by about 20% and 30%, respectively. At the same phase angle, the hub

torque,M,”, is simultaneously reduced by about 20%.

Figure 4.5 shows the influence ofr&/ variations in lag stiffness on the vibratory hub loads.
The amplitude of the variatioAEl #, is 5% of the baseline lag stiffnessl ;. In Fig. 4.5a it is

seen that at a phase angle of 28 hub vertical sheaF,”, can be reduced by 40% without
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adversely affecting any of the other hub forces or moments. Alternatively, Fig. 4.5b indicates
that a phase angle of 135° produces an 85% reduction in hub torque, M,”, without adversely
affecting any other hub forces or moments. Any phase angle between 135° and 225° produces
simultaneous reductions in F,* and M,*. The in-plane hub forces and moments are relatively
insensitive to 3/rev lag stiffness variations. At a phase of 135°, if larger amplitudes of stiffness
variation are considered, the vibratory hub torque starts to increase since the system is
“overdriven” and the stiffness variations are producing the vibrations rather than merely

cancelling them. Figure 4.6a clearly illustrates this principle. It is seen in the figure that as

AEl » increases from 0.02! ; to 0.05El ¢, larger reductions iM,” can be achieved. However,

an increase IAEl * to 0.10El ¢ produces smaller reductions i, and forAEl » =0.15El ¢,

the vibrations actually increase, at any phase angle. Figure 4.6b shows the maximum reduction
in M,® versus magnitude of stiffness variation (at the optimal phase angleydorag/well as

3lrev lag stiffness variations. It is seen from the figure that foeva/ariations, more vibration
reduction is achieved @El, increases. However, the hub vibrations are more sensitivesto 3/

lag stiffness variations, so small amplitudes are able to produce large reductions. If the
amplitude is further increased, the system is “overdriven” and the stiffness variations produce the

vibrations.

A 4/rev lag stiffness variation (of amplitudeEl *» = O.OSEZ) produced about 40% variations in

all the vibratory hub forces and the hub torque. However, the phase angles that produced a
decrease in the vibratory hub dr&g?, produced a corresponding increase in the side-fBi¢e,

and vice-versa. Thus, ré/ variations in lag stiffness are not considered as a candidate for

reduction of vibratory hub loads.

Figure 4.7 shows the influence ofr&/ variations in lag stiffness on the vibratory hub loads.

The amplitude of the variatiodEl =, is 5% of the baseline lag stiffne€sl, ;. From Fig. 4.7b it

is seen that the hub torqud,”, is virtually eliminated at a phase of about 18t components

of hub forces are simultaneously increased by 10-20% (Fig. 4.7a). However, a phase angle of
about 200 can reduce the hub torqud,”, by over 85% without adversely affecting the hub

forces. The in-plane momenhd,” andM,®, are insensitive to B#v lag stiffness variations.
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4.1.3 Cyclicvariation in torsion stiffness

The effects of cyclic variations in torsiona stiffness of the root element are examined in this
section. Urev and 2/rev variations in torsion stiffness, of amplitude 15% of the baseline torsion
stiffness, were found to have relatively little influence on the vibratory hub forces and moments
(with hub vibration reductions of no more than 5-7% of the baseline values). Hence 1/rev and

2/rev variationsin torsion stiffness are not considered for reduction of vibratory hub loads.

The effect of 3/rev torsion stiffness variation on the vibratory hub loads is shown in Fig. 4.8.
The amplitude of variation, AGJ®, is 15% of the baseline torsion stiffness, GJ. Figure 4.8a
indicates that while the vibratory in-plane hub forces are insensitive to 3/rev torsion stiffness
variations, a 15% reduction in hub vertical shear, F,”, can be achieved if a phase angle of 315° -
360° is selected. For these values of phase angle, the vibratory hub moments show no significant
change (Fig. 4.8b).

Figure 4.9 shows the influence of 4/rev variations in torsion stiffness on the vibratory hub loads.

The amplitude of variation, AGJ», is again 15% of the baseline torsion stiffness, GJ. Figure

4.9a indicates that while the in-plane vibrations, F,* and F,*, are insensitive to the stiffness

variations, a 20% reduction in vertical shear, F,”®, can be achieved for an “optimal” phase angle

of around 90 - 135. The influence of 4év torsion stiffness variations on vibratory hub

moments is fairly insignificant (Fig 4.9b).

5/rev variations in torsion stiffness (withGJs» = 0.15GJ ) were able to produce reductions in

F,* of no more than 8%. Other vibratory hub loads showed even lower sensitivity. Hexce 5/

torsion stiffness variations are not considered for reduction of hub vibrations.

4.1.4 Summary of beneficial root element stiffness variations

Harmonic variations in flap, lag, and torsion stiffness of the root element that produced

significant reductions in vibratory hub loads are summarized in Table 4.2. Listed in the table are

the amplitudes of stiffness variation required (as a percentage of the baseline stiffness), the

“optimal” phase, and the corresponding changes in the components of vibratory hub loads. A
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LUrev flap stiffness variation is not considered, since significantly larger reductions in the hub
vertical force, F,”, can be achieved using 2/rev variations in flap stiffness. Although torsion
stiffness variations produce reductions in F,* that are comparable to those achieved using a 1/rev
flap stiffness variation, these are retained to assess comparison between the flap stiffness versus
torsion stiffness variations. In general, it can be observed from Table 4.2 that torsion stiffness
variations produce only moderate reductions in F,*. Lag tiffness variations can produce
reductions in all hub forces and the hub torque. Flap stiffness variations are probably the most
versatile, and have the potential to reduce all hub forces and the in-plane hub moments.

4.2 Mechanism for reduction of vibratory hub loads

In the previous section, stiffness variations that produced reductions in vibratory hub loads were
identified (Table 4.2). For these stiffness variations, the present section examines the mechanism
by which the vibration reduction is achieved. Specificaly, since inertial and aerodynamic
components of the various blade root loads contribute significantly to the hub loads, this section
seeks to understand the individual change or the combination of changes, in these components
that leads to the reduction of the vibratory hub loads.

The following comments can be made about all the reductions in vibratory hub moments. The
hub roll and pitch moments, M,* and M,*, have contributions from the blade root flapping
moment, M,, and the blade root pitching moment, M, However, for the symmetric airfoil
considered in the present study, the root pitching moments in the absence of stall are
considerably smaller than the blade root flapping moment. Further, the blade root flapping
moment contribution to M,* and M, is dominated by the inertial component and it is reductions
in the inertial component of M, (due to stiffness variations) that produce reductions in M,* and
M,*. The blade root lag moment contributes to the vibratory hub yaw moment, M,®. The blade
root lag moment is also dominated by the inertial contribution, and reduction in M,* is achieved
when stiffness variation reduces this component. The mechanisms for reduction of the vibratory

hub forces are more varied, and are discussed below.
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For the 2/rev flap stiffness variation, Fig. 4.10 depicts, vectorialy, the inertial and aerodynamic
components of F,*. Compared to the baseline rotor (no stiffness variations) the aerodynamic
component increases slightly. The inertial component decreases somewhat in magnitude (by no
more than 20%) but undergoes a phase change. This phase change in the inertial component
results in a significantly reduced vectorial sum (of the inertial and aerodynamic components), so
that thereis a 70% net reduction in thetotal F,* load.

For the 3/rev flap stiffness variation, a phase angle of 45° produced 30% reductions in vibratory
hub forces, and 60% and 85% reductions, respectively, in the hub roll and pitch moments, M,*
and M,®. The blade root radial shear force, S, and drag shear force, S, contribute to the in-plane
hub forces. Figure 4.11 shows the contributions of S and S, to F,*, vectorialy. It clearly
indicates that although the individual contributions of § and S, to F,* have not changed in
magnitude, an increase in the relative phase angle results in a smaller net F,”. The reduction in
F,® occurs in a similar manner. Figure 4.12 depicts, vectorially, the inertial and aerodynamic
components of F,”. Compared to the baseline rotor, the agrodynamic component decreases
dightly and the inertial component decreases to a larger extent (by about 40%). While both
components individually undergo a change in phase, there is little change in the relative phase
angle. Thus it can be concluded that the 30% reduction in the total F,” load is due to the

decrease in the magnitude of the contributing aerodynamic and inertial components.

The 2/rev lag stiffness variation produced 20%-30% reductions in the hub in-plane forces, which
was due to decreases in both the blade root radial shear and drag shear contributions to F,** and
F,®. These decreases, specifically, occurred due to reductions in the magnitude of the inertial

components of the loads. The magnitude of the aerodynamic components and the phase of both

components was unchanged.

For a 3/rev lag stiffness variation, a phase angle of 135° produced an 85% reduction in vibratory
hub yaw moment. This was again due to a corresponding reduction in the blade root 1ag moment
(inertial component). Alternatively, a phase angle of 225° produced a 40% reduction in F,”.
Figure 4.13 depicts, vectorialy, the inertial and aerodynamic components of F,*. Compared to

the baseline rotor both the aerodynamic and inertial components show fairly significant
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increases. However, the change in phase angles of both these components results in an increase

in the relative phase and produces a significantly reduced vectorial sum of the total F,* load.

3/rev and 4/rev torsion stiffness variations reduced F,” by approximately 15%-20%. Figure 4.14
depicts, vectorially, the inertial and aerodynamic components of F,”, for 4/rev torsion stiffness
variations. Both aerodynamic and inertial components increase in magnitude, compared to the
baseline rotor. However, both components undergo changes in phase, so that the resultant F,*”
load (vectorial sum of inertial and aerodynamic components) is reduced. When 3/rev torsion

stiffness variations are used, reductions in F,* are obtained in asimilar manner.

4.3 Influence of root element stiffness variation on blade r oot loads

For the stiffness variations identified in Table 4.2 (that produced reductions in vibratory hub
loads), the present section examines the corresponding blade root loads in the rotating system.
For a reduction in the hub in-plane vibratory forces or moments, reductions are generally
expected in the 3/rev components of blade root radial shear, drag shear, flapping moment, and
pitching moment. Similarly, for a reduction in the hub vibratory vertical shear force and torque,
corresponding reductions are expected in the 4/rev components of blade root vertical shear and
lag moment. However, it is important to ascertain that a stiffness variation that produces a
reduction in a particular vibratory hub force or moment does not simultaneously produce
excessive increases in other harmonics of blade root loads (that do not contribute to the fixed-
system hub loads). This is an important consideration since increased blade root dynamic
stresses could result in premature fatigue. As a benchmark, the harmonics of blade root |oads for
the baseline configuration (without stiffness variations) are presented in Table 4.1b. It should be
noted that the fifth harmonics are generally one-to-two orders of magnitude lower than the third
and fourth harmonics. Thus, increases in fifth harmonics (even by factors of 2-5) are generally
of lesser concern than increases in third, fourth, and lower harmonics. Additionally, for the
symmetric airfoil considered in the present study, harmonics of blade root torsson moment are
generaly 1-2 orders of magnitude lower than those of the blade root flap or lag moments. Thus,

increases in blade root torsion moment (even by factors of 2-3) are also of relatively lower
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importance, athough it is recognized that such increases would lead to an increase in vibratory
pitch-link loads.

4.3.1 Cyclicvariation in flap stiffness

This section examines the blade root loads in the presence of flap stiffness variations that
resulted in reductions in hub vibrations (Table 4.2). Shown in Table 4.3a are changes in
harmonics of blade root loads due to a 2/rev variation in flap stiffness (AEI » = 0.15El 4, Q=
240°). The shaded areas in Table 4.3a denote harmonics of blade root loads contributing to hub
vibrations. A 73% reduction is observed in the 4/rev component of blade root vertical shear, S,
consistent with the approximately 70% reduction in F,” achieved with 2/rev flap stiffness
variation (see Table 4.2). An 18% increase in M,* contributes to the increases in vibratory hub
rolling moment, M,* and pitching moment, M,*. The most significant increase in blade root

loads is a 42% increase in the 2/rev component of blade root flapping moment, M.

Shown in Table 4.3b are changes in harmonics of blade root loads due to a 3/rev variation in flap
stiffness (AEI » = 0.15El 4, @= 45°). Although only very modest 9% and 6.5% reductions are
observed in the 3/rev components of § and S, changes in relative phase are responsible for the
net reduction in hub loads (as discussed in Section 4.2, see Fig. 4.11). The reduction observed in
the 4/rev component of S, is consistent with the reduction in hub vertical shear, F,*. The
significant 73% reduction in the 3/rev component of M, contributes to the large reductions in hub
rolling and pitching moments, M,* and M,*, respectively. Theincreasein M,* is consistent with
the corresponding increase in the vibratory hub yaw moment indicated in Table 4.2. There are
no significant increases in 1/rev, 2/rev, and 3/rev components of blade root loads. Of some
concern are increases of 88% in S* and 36% in S*. Although large percentage increases are

also observed in the 5/rev components of S, and M, their baseline values are very small.

4.3.2 Cyclicvariation in lag stiffness

This section examines the blade root loads in the presence of lag stiffness variations that resulted

in reductions in hub vibrations (Table 4.2). Shown in Table 4.4a are changes in harmonics of

blade root loads due to a 2/rev variation in lag stiffness (AEI » = 0.15El;, p=90°). Reductions

72



of 15% in S* and 44% in S* contribute to the reductions in the in-plane hub shears, F,*”and F,*,
indicated in Table 4.2. A nearly 20% reduction is observed in the 4/rev component of blade root
lag moment, M,, consistent with the corresponding reduction in hub torque, M,” (see Table 4.2).
Although a 200% increase in the 3/rev component of M, is of concern, it should be noted that the

baseline value of M,* was very low (about 25% of the magnitude of M,*, as seen in Table 4.1b).

The changes in blade root load harmonics due to the 3/rev variation in lag stiffness (AEI » =

0.05El ¢, = 135°) are presented in Table 4.4b. An approximately 86% reduction is observed in
the 4/rev component of blade root lag moment, M,*, consistent with the reduction obtained in the
vibratory hub torque seen in Table 4.2. Additional large decreases in 4/rev components of in-
plane blade root shears are obtained. Although large increases in the 4/rev and 5/rev component
of blade root pitching moment, M,, are obtained, the baseline values for blade root pitching
moment harmonics were very small. Table 4.4c shows the resulting changes in harmonics of

blade root loads when a phase angle of @ = 225° is considered (with the amplitude, AEI >,

retained at 5% El ;). A 40% reduction is observed in the 4/rev component of blade root vertical
shear, S, consistent with the 40% decrease in hub vertical shear, F,*. The most significant
increase in blade root loads is a 57% increase in S*. The 75% increase in M,® is of less
significance due to the baseline value being very small. Similarly, increases in fifth harmonics
are of less significance.

A Sirev variation in lag stiffness (AEI » = 0.05El ¢, @= 200°) produced a 75% reduction in the
4/rev component of blade root lag moment, M, (Table 4.4d), consistent with the reduction in
vibratory hub yaw moment obtained (see Table 4.2) due to this stiffness variation. No increases
were obtained in the first, second, and third harmonics of the blade root loads. In addition to the
reduction in M,®, reductions of 23% in S*, and 60% in S*, are also obtained. However, very
large percentage increases are obtained in the 5/rev components of S, and S, (500-600%), M,,
(800%), and M,, (300%).
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4.3.3 Cyclicvariation in torsion stiffness

This section examines the blade root loads in the presence of torsion stiffness variations that
resulted in reductions in hub vibrations (Table 4.2). Shown in Table 4.5a are changes in
harmonics of blade root loads due to 3/rev variation in torsion stiffness (AGJ» = 0.15GJ, Q=
320°). The 15% reduction observed in the 4/rev component of blade root vertical shear, S, is
consistent with the corresponding reduction in vibratory hub vertical force, F,”, seen in Table
4.2. Shown in Table 4.5b are the changes in harmonics of blade root loads due to 4/rev variation
in torsion stiffness (AGJ» = 0.15GJ, @=100°). Again, the 20% reduction observed in the 4/rev
component of blade root vertical shear, S*, is consistent with the corresponding decrease in
vibratory hub vertical shear, F,”, seen Table 4.2. For both 3/rev as well as 4/rev torsion stiffness
variations, very large percentage increases are obtained in the 4/rev and 5/rev components of
pitching moment, M, These may not be insignificant even though the baseline values of these

components were very small. No increases of any significance are observed in any of the other

harmonics of blade root loads.

4.4 Vibration reduction at different advanceratio

In Section 4.1.2 it was shown that 3/rev lag stiffness variations (AEl » = 0.05El ¢, @ = 135"
produced about 85% reductions in M,” at 1= 0.3. Figure 4.15 shows reductions in M,* (due to
3lrev lag stiffness variations) at three different advance ratios. At y = 0.35, only a 66%
reduction could be achieved in M,*, since the baseline vibrations are higher. Larger amplitudes

of stiffness variation (AEI 2 >0.05§z) would be required to produce additional vibration

reductions. At u = 0.25, the vibration reduction achieved using AEI » = 0.05El ., @=135°, was
negligible. However, further investigation revealed that the optimal phase angle at 1= 0.25 was

100° (and not 135°). A phase of 100° did produce dlightly larger reductions in M,*, but the

system was “overdriven” gt = 0.25 since the baseline vibrations were lower. Smaller stiffness
variation amplitudes could be used at lower advance ratios, or alternatively, no stiffness variation
may be used at moderate advance ratios, and stiffness variations could be introduced when the

advance ratio increases beyond a prescribed valug;,s&y3.

74



The above observations were found to be equally true for other stiffness variations and
components of vibratory hub loads, and may be generalized as follows. The amplitude of
stiffness variation required for vibration reduction increases with advance ratio. If moderate
vibration reduction is achieved at ¢ = 0.3, the same amplitude of stiffness variation is likely to
produce larger reductions at lower advance ratios. However, if substantial vibration reduction is
achieved at u = 0.3, the same amplitude of stiffness variation is likely to produce smaller
reductions (or even increases) at lower advance ratios, since the system will be “overdriven”. At
u = 0.35, the amplitudes of stiffness variation required would always be greater (for a similar

reduction in vibration). The optimal phase angle may change with advance ratio.

4.5 Summary on sensitivity of root element stiffness variation

From the results presented in this chapter, it is clearly shown that components of vibratory hub
loads could be modified using specific harmonic variations in root element flap, lag, and torsion
stiffness. With a proper amplitude and phase angle, harmonic stiffness variation can be employed
to reduce some components of hub vibration. In particular, lag stiffness variations can produce
substantial reductions in all vibratory hub forces and hub yaw moment, while flap stiffness
variations have the potential to significantly reduce all hub forces and the hub roll and pitch
moments. Torsion stiffness variations, on the other hand, produce only moderate reductions in
only 4kev vertical hub forces. The reduction in vibrations are obtained by one of two
mechanisms (i) reduction in magnitude of the inertial component of the blade root loads that
contribute to hub vibrationgji) change in relative phase of the contributing components. The
cyclic stiffness variations that produce reductions in vibratory hub loads may produce increases

in certain blade root load harmonics.
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Figure 4.10: Changein 4/rev hub loads, F,**, dueto 2/rev variation in flap stiffness
El, = El, + AEI2PSin(2 + ¢), AEIZ =0.1581,, p=240]

90
0012 - 120 60
0.01 F
0.008 F
- O
0.006 _
B [J S contribution of F,*®
g 0004 A Sccontribution of F,*
9 0.002 I —— \\ith Stiffness Variation
{g I S Y 2 NV U U R [ papeeeen Basdline
I \v}
&
Q

240 300

270

Figure 4.11: Change in contributions of hub load, F*, due to 3/rev variation in flap stiffness
El , =El; +AEI ;P sin(3y +¢), AEI}® =0.15El ,, ¢= 45°}
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Figure 4.12: Change in 4/rev hub loads, F,*, due to due to 3/rev variation in flap stiffness
{ B, =81, +DE1 P sin@y +¢), AEIP = 01581 ,, @=45)
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Figure 4.13: Changein 4/rev hub loads, F,*, due to 3/rev variation in lag stiffness
{ El, = El, +AEI P sin(3y +¢), AEI® =0.05El,, ¢= 225°}
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Figure 4.14: Changein 4/rev hub loads, F,*, due to 4/rev variation in torsion stiffness
{ GJ =GI +AGIsin(y +¢), AGI* =0.15G] , ¢=100}
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Figure 4.15: Reduction in M, at different advance ratios, due to 3/rev lag stiffness variation
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Vibratory Hub Loads
P 1.0937
F,* 1.0910
P 0.7258
P 8.3085
M, P 8.6632
M, 6.5129

Table 4.1a 4/rev vibratory hub loads for baseline rotor, no root element stiffness variation

Blade Root Harmonics™
Loads Urev 2lrev 3lrev 4frev 5/rev
S 0.085114 | 0.008036 | 0.003606 | 0.001891 | 0.000092
S 0.072238 | 0.003599 | 0.001990 | 0.004815 | 0.000240
S 0.053513 | 0.039237 | 0.015058 | 0.001815 | 0.000483
My 0.012710 | 0.004204 | 0.000335 | 0.000176 | 0.000029
Mg 0.192777 | 0.124387 | 0.042688 | 0.004195 | 0.001321
M, 0.384243 | 0.018488 | 0.004317 | 0.016282 | 0.000898

Table 4.1b: Harmonics of blade root loads for baseline rotor, no root element stiffness variation

Actuation | Optima | Significant Changesin Vibratory hub loads
Frequency Phase
(Magnitude) | Angle,@ Decreases Increases
4p 0
2Irev (15%) | 2407 F." (70%) Nt ((21%//))
y
H FP, Fy P (60%
Stiff?lpess 0° XFZ4py(4O(%) 0 M, P (20%)
Variation | 3/rev (15%) My (60%), M, (80%)
45° Fx4p’ Fy4p (30%) Mz4p (25%)
F.* (30%)
ap ap _200,
2/rev (15%) 90° Fx ¥ Fylp (2202/30 Q)
Lag z4 ( 0)
Stiffness | gyre (506) 135° M " (80%)
Variation 225° F,* (40%)
5/rev (5%) 200° 2 (80%)
Torsion 3rev (15%) 320° Fz4p (15%) kk
Stiffness
Variation | 4rev(15%) | 100° F.* (20%)

Table 4.2: Summary of beneficial effects of stiffness variations on vibratory hub loads

" All vibratory hub forces arein % of F,° (5940 Ibs.), all vibratory hub moments are in % of M,° (5244 ft-Ibs.)
:*Blade root shears are non-dimensionalized by m,Q?R?, blade root moments are non-dimensionalized by m,Q°R®
Up to 10% increases in vibratory hub loads.
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Blade Change in Harmonics (% Baseline)

LR;c;c()jtS lrev 2rev 3lrev 4frev 5/rev
S -0.28 -3.63 -1.52 -4.84 12.45
S -0.24 8.86 -16.20 0.89 -11.67
S 1.44 8.31 12.69 -73.49 -63.48
My 0.67 0.55 3.26 11.25 -22.11
Mg -0.41 42.26 17.86 -34.22 -39.83
M, -0.26 -11.42 14.33 1.69 -5.75

Table 4.3ac Change in harmonics of blade root loads due to 2/rev variation in flap stiffness

{ Elﬁ :E+AEI;P sin(2y + @), AE|§P :0_15Fﬁ’ (0:2400}

Blade Change in Harmonics (% Baseline)

LF\;(;%tS Urev 2/rev 3lrev 4frev 5/rev
S 0.14 -5.52 -9.02 87.89 -64.65
S 0.00 -6.96 -6.46 36.37 30.09
S 1.29 -3.26 -23.66 -31.33 133.68
My 0.14 -0.94 -20.60 22.62 18.05
Mg -0.23 -6.25 -72.72 -2.86 367.45
M, 0.00 7.33 18.65 24.02 64.89

Table 4.3b: Change in harmonics of blade root loads due to 3/rev variation in flap stiffness

{ B, =81, +0E1% sin@y +¢), DEI =015 ,, ¢=45)

Blade Change in Harmonics (% Baseline)

L%c;%ts lrev 2rev 3lrev 4irev 5/rev
S 4.48 -1.26 -15.31 -20.98 95.95
S 531 -0.36 -43.88 -21.13 98.19
S -1.16 0.21 -3.13 -3.31 -0.87
My -0.09 0.13 -59.47 -60.93 5.01
M; 0.23 015 -7.07 0.95 4.49
M, 6.49 13.21 207.14 -19.34 164.77

Table 4.4ac Change in harmonics of blade root loads due to 2/rev variation in lag stiffness

{ El, =El, +AEI 2’ sin(2y + ¢), AEIZ® =0.15El,, (/):90"}




Change in Harmonics (% Baseline)

Root

L oads Urev 2/rev 3lrev 4frev 5/rev
S -0.13 241 2.25 -38.37 40.71
S -0.14 5.96 6.66 -72.63 -23.89
S -0.06 -0.17 -0.04 6.03 -37.89
My -0.03 -0.04 -18.84 99.69 276.22
Mg 0.04 -0.58 0.27 11.96 -41.53
M, -0.18 9.96 -12.53 -86.70 -13.28

Table 4.4b: Change in harmonics of blade root |oads due to 3/rev variation in lag stiffness

{ B1, =81, +ABIsin(@y +¢), DEIP = 0,058, p=135]

Blade Change in Harmonics (% Baseline)

L%c;%ts Urev 2rev 3lrev Adfrev 5/rev
S 0.13 2.74 0.21 57.10 90.58
S 0.16 8.64 -4.31 25.05 45.32
S -0.09 0.38 -1.83 -39.29 -26.80
M, 10,01 0.50 321 7573 64.85
Mg 0.05 0.66 -1.50 -42.49 -26.06
M, 0.20 31.78 33.99 7.66 80.77

Table 4.4c. Change in harmonics of blade root loads due to 3/rev variation in lag stiffness

{ BI, =EI, +AE1 sin@y +¢), AEIZP =0.05EI,, =225

Blade Change in Harmonics (% Baseline)

L%c;%ts lrev 2rev 3lrev 4irev 5/rev
S -0.01 0.14 0.20 -22.76 563.21
S 0.00 0.27 -0.50 -60.42 579.04
S 0.03 0.14 -0.96 5.56 -73.41
My 0.00 0.10 -25.93 111.85 304.38
Mg 0.02 0.12 -1.08 16.78 -86.93
M, -0.01 -0.11 4.27 -75.04 784.53

Table 4.4d: Change in harmonics of blade root |oads due to 5/rev variation in lag stiffness

{ B, =B, + MBI sin(5p + @), AEIS® = 0.05E1,, @=200]




Blade Change in Harmonics of Blade Root Loads (% Baseline)

Root

L oads Urev 2rev 3lrev Adfrev 5/rev
S 0.00 0.26 -0.80 -1.84 32.47
S 0.00 0.57 -2.53 -2.88 -6.29
S -0.05 0.19 -2.40 -15.83 6.78
My 0.03 -0.54 -22.91 258.13 586.79
Mg -0.05 0.14 -2.48 -18.77 9.80
M, 0.00 0.27 -5.48 -2.97 -8.70

Table 4.5a: Change in harmonics of blade root loads due to 3/rev variation in torsion stiffness

{GJ =GJ +AGI™sin(3y +¢), AGI™ =0.15G] , =320}

Blade Change in Harmonics of Blade Root Loads (% Baseline)

Root

L oads lrev 2/rev 3/rev 4frev S/rev
S 0.04 0.18 -0.53 -0.14 -37.26
S 0.01 0.18 -0.64 -1.24 -11.76
S 0.08 0.20 -0.45 -20.88 -2.47
My 0.17 0.41 -32.68 295.43 1958.34
Mg 0.07 0.35 -0.56 -25.26 -1.28
M, 0.04 0.72 -4.02 -1.44 -12.35

Table 4.5b: Change in harmonics of blade root loads due to 4/rev variation in torsion stiffness

{GI =GJ +AGI*sin(4y +¢), AGI* =015G) , =100}
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Chapter 5

Optimal Control Study

The results presented in Chapter 4 clearly demonstrated that harmonic variations in root element
stiffness could affect hub vibration levels. However, while a certain stiffness variation was most
effective in reducing a particular component of hub load it often left other components
unaffected, or even increased them. The present chapter applies the optimal semi-active control
scheme developed in Chapter 3 to determine the amplitude and phase of multi-harmonic
variation in flap, lag, and torsion stiffness for ssmultaneously reducing all components of hub
vibration.  Again, the effectiveness of optimal cyclic variations in blade root stiffness on hub
vibration reduction is first examined at an advance ratio of 0.3, using Drees inflow model.
Helicopter and rotor configurations are similar to that used in Chapter 4, with properties
presented in Appendix H (Table H.1) and stiffness variations are achieved by varying root
element stiffness cyclically (see Fig. 2.10 and Eq. 2.12). Five beam elements are used to model
the rotor blade, and 6 modes (2 flap, 2 lag, and 2 torson modes) are included in modal
transformation.  The baseline vibratory hub loads and blade root loads were aready presented
in Table 4.1a and 4.1b, respectively. The performance of the optimal control scheme is
presented for; (i) a single harmonic case using 3/rev flap stiffness variation in Section 5.1, (ii)
multi-harmonic cases using 2-3/rev flap and 3/rev lag stiffness variations in Section 5.2, and 2-
3/rev variations of both flap and lag stiffness in Section 5.3. Both gradient and non-gradient
based optimization methods are employed and the effect of penalty on semi-active inputs are
examined as well. The effectiveness of the multi-harmonic stiffness variations is aso evaluated
for various rotor configurations (Section 5.4) and cruise speeds (Section 5.5). Section 5.6
summarizes the results presented in this chapter.

5.1 Optimal 3/rev flap stiffness variation

Using the gradient-based optimization method (presented in Section 3.1.1), optimal 3/rev flap
stiffness variation is determined for maximum vibration reduction without any penalty on the

semi-active input (J = J,, W, = 0). The amplitude of the optimal 3/rev flap stiffness variation is
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determined to be AEI ,33p = 10.75% of the baseline flap stiffness, Eﬂ , and the phase, ¢=22.5°.
Fig. 5.1 shows contours corresponding to constant values of the vibration index, J,, versus cosine
and sine components of the 3/rev flap stiffness variations. It is seen that the optimal solution
yields a 65% reduction in vibration index, and the corresponding reductions in individual
components of vibratory hub loads are shown in Fig. 5.2. From the figure it is seen that 40-60%
reductions in the in-plane hub forces and moments, and 25-30% reductions in the vertical shear
and hub torque are simultaneously achieved. Corresponding to the optimal 3/rev flap stiffness
variation, the harmonics of blade root loads are calculated and summarized in Table 5.1. Small
percentage increases in S™ and M;®, and larger percentage increases in S and M* are
observed. However, it should be noted that the baseline values for the 5™ harmonic of all
components of blade root loads are extremely small (see Table 4.1b).

5.2 Optimal 2,3/rev flap & 3/revlag stiffness variations

Next, 2/rev and 3/rev flap stiffness variation and 3/rev lag stiffness variation is simultaneously
considered for vibration reduction. Using the gradient-based minimization (described in Section
3.1.1) for maximum vibration reduction (J = J,, W, = 0), the optima stiffness variations are
presented in Table 5.2. For these optimal tiffness variations, the performance index, J,, is
reduced by a significant 91% (compared to the baseline). The reductions in individual
components of vibratory hub loads are shown in Fig. 5.3 (55-65% reductions in F** and F,*, a
70% reduction in F,*, 75-80% reductions in M,® and M,*, and a 90% reduction in M,” are
observed). As expected, these reductions are significantly larger than those obtained using
optimal 3/rev flap stiffness variations alone. However a large 2/rev flap stiffness variation was
required (Table5.2).

5.3 Optimal 2,3/rev Flap & Lag Stiffness Variations

Vibration reductions achieved using optimal flap (2/rev and 3/rev), and lag (2/rev and 3/rev)
stiffness variations are presented in Fig. 5.4, now using both gradient (see Section 3.1.1) and
non-gradient (see Section 3.1.2) based optimization methods. The objective function to be
minimized, again, consists of only the components of vibratory hub loads, without any penalty
on semi-active inputs (J = J;, W, = 0). The corresponding optimal stiffness variations are shown
in Table 5.3a and Table 5.3b using gradient and non-gradient based optimizations, respectively.

93



Overal, the vibration reductions obtained are slightly larger than the corresponding reductionsin
the previous section without 2/rev lag stiffness variations (compare Fig. 5.3 to the results in Fig.
5.4 corresponding to gradient based optimization; and note also that J, is reduced further from
8.92% to 7.34%). It is observed that the optimal stiffness variations obtained using non-gradient
based optimization (Table 5.3b) are different from those determined through gradient-based
optimization (Table 5.3a), and the optimal stiffness variations (from non-gradient based
optimization) produces larger overall vibration reduction (evident from the lower vaue of
performance index, J;). This suggests that the gradient-based optimization located a local-
minimum (as opposed to the global-minimum located using the non-gradient based approach).
However, due to the nature of the non-gradient based optimization, the calculation time used is
much longer than that of the gradient-based optimization. This would make it virtually
unpractical to use the non-gradient based approach in an actual closed-loop adaptive controller.
Both gradient as well as non-gradient based solutions yield large 2/rev flap stiffness variation,
and the gradient-based approach further requires large 2/rev lag stiffness variation.

Due to large 2/rev stiffness variations requirement, the objective function is extended to include

a penalty weighting on the semi-active inputs (W, = 1) in order to reduce the required semi-active

inputs. As a result, the optimal stiffness variations are reduced significantly (Table 5.3c),

without much of a penalty on the vibration reduction performance (see Fig. 5.5). Introduction of

an input penalty reduces the optimal AEI” from 31% to 15% of the baseline lag stiffness (the
vibration performance index is virtualy unchanged). For many other cases similar results were
obtained — significant reductions in required stiffness variations for relatively small reductions in
performance, due to introduction of a penalty on control inpks< 1). For the optimal
stiffness variations of Table 5.3c with penalty on the input controls, the changes in harmonics of
blade root loads (compared to the baseline) are summarized in Table 5.4. Although large
percentage increases are seeij’P, and most of the B#&v components of blade root loads, the
baseline values for harmonics of the blade root pitching moment, and éhe&hponents of all

root loads are very small (Table 4.1b).

5.4 Influence of Basdline Stiffness on Effectiveness of Vibration Control

Sections 5.1-5.3 established the effectiveness of multi-cyclic variations in flap and lag stiffness
for reduction of vibrations of the baseline configuration whose properties are given in Table H.1.
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The present section examines the effectiveness of optima 2, 3/rev flap and lag stiffness
variations (determined using gradient based optimization with input penaty, W, = 1) for
different rotor configurations. Specifically, the rotor flap, lag, and torsion stiffness (and
correspondingly, the flap, lag, and torsion frequencies) are individualy varied, and the
effectiveness of cyclic stiffness variations to reduce vibration are re-examined.

Figure 5.6 shows the hub vibration index, J,, for variation in fundamental flap stiffness (lag

frequency). As the blade baseline flap stiffness, El 4, (and flap frequency) decreases, the
vibration index (without cyclic stiffness variation) initialy increases by 30% but then decreases
once the first flap frequency is reduced below 1.125/rev. This peak vibration coincides with the
second natural flap frequency passing through 3/rev. With optimal 2/rev and 3/rev flap and lag
stiffness variations (determined using gradient based optimization, with input constraint)
vibration levels are reduced significantly over the entire range of flap frequency variation
(vibration index, J;, seen to be less than 8% in Fig. 5.6). The stiffness variation (input effort)
required does not show great sensitivity to flap frequency variation (as seen by the fact that J,

remains relatively unchanged).

For variation in blade lag stiffness (lag frequency), Figure 5.7 shows the effectiveness of the

stiffness variations in reducing hub vibration. As the blade baseline lag stiffness, El., (and lag
frequency) decreases, the vibration index (with no cyclic stiffness variation) increases sharply
when the first natural lag frequency is around 0.7/rev. This sharp vibration peak occurs due to the
second natural lag frequency passing through 4/rev, and is exacerbated by the low damping in
the lag mode. With optimal 2/rev and 3/rev flap and lag stiffness variations, it is seenin Fig. 5.7
that vibration levels are reduced significantly over the entire range of lag frequency (even around
the aforementioned resonance). Furthermore, the stiffness variation (input effort) required does

not show great sensitivity to lag frequency variation (J, remains relatively uniform).

Figure 5.8 indicates that variation in the blade torsion stiffness, GJ, (corresponding to a torsion
frequency variation between 3/rev and 5/rev) does not produce any significant changes in
baseline vibration index (in the absence of stiffness variations). With optimal 2/rev and 3/rev flap

and lag stiffness variations, vibration levels are reduced by over 90%, over the entire range, with
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the stiffness variation (input effort) required, once again showing little sensitivity to torsion

frequency variation (J, relatively uniform).

5.5 Effectiveness of Vibration Controller at Different Forward Speed

This section examines the effectiveness of optimal 2, 3/rev flap and lag stiffness variations,
determined by gradient based optimization method with input penalty, on reducing vibration at
different forward speeds. Figure 5.9 shows the hub vibration index, J,, over forward speeds
ranging from advance ratio 0.25 to 0.35. It is seen that as the advance ratio increases, the
baseline vibrations (without cyclic stiffness variation) increase dramatically; with the index J,
increasing from 30% to 275% of the value at advance ratio 0.3. However, with optimal 2/rev
and 3/rev flap and lag stiffness variations, the vibration index, J,, is much smaller (well below
20%) and shows a much milder increase with advance ratio. It should be noted that in Fig. 5.9,
the optimal stiffness variations are recomputed at different forward speeds. The input effort
index, J,, shows only a mild increase with advance ratio suggesting that there should be no

actuator saturation problem at higher speeds.

5.6 Summary on optimal control of root element stiffnessvariation

The semi-active optimal control scheme (using gradient and non-gradient based optimization) is
successful in producing optimal root element stiffness variation that significantly reduces all
components of hub vibrations. The required stiffness variations can be reduced (without
significantly compromising performance) by introducing a penalty on the semi-active input in
the objective function. Reductionsin the vibration performance index of over 90% are seen with
optimal multi-cyclic 2/rev and 3/rev combined flap and lag stiffness variations.  Multi-cyclic
flap and lag stiffness variations are seen to be effective in reducing hub vibration even when the
fundamental rotor properties (such as fundamenta flap, lag, and torsion frequencies) are
changed. Additionally, the multi-cyclic flap and lag stiffness variations are effective in reducing

vibration at various forward speeds, without significant increase in the stiffness variation inputs.

However, it should be noted that while root element stiffness variation would be effective in
reducing vibration , the only way to practically realize it would be through the introduction of

discrete controllabl e stiffness devices in the blade root region.
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Figure 5.1: Contour plot of performance index, J, (% Baseline)
due to 3/rev flap stiffness variation
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Figure 5.2: Hub vibration reduction due to optimal 3/rev flap stiffness variation
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Figure 5.3: Hub vibration reduction due to optimal 2,3/rev flap and 3/rev |ag stiffness variations
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Figure 5.4: Hub vibration reduction due to optimal 2,3/rev flap and lag stiffness variations with
gradient based (G) and non-gradient based (NG) optimizations
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Figure 5.5: Hub vibration reduction due to optimal 2,3/rev flap and lag stiffness variations with
(W, = 1) and without (W, = 0) input penalty
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Blade Root Change in Harmonics (% Baseline)
Loads Urev 2lrev 3lrev 4frev Sirev
S -0.03 -3.35 -19.73 24.45 -38.55
S -0.12 -2.13 -62.01 -17.08 -33.41
S 0.70 -1.94 -61.32 -30.92 590.58
Mgy 0.09 -1.20 -12.75 -27.71 -14.74
Mg -0.02 -3.83 -50.76 11.19 231.91
M, -0.11 472 -55.01 -26.62 -3.01

Table 5.1: Change in harmonics of blade root |oads due to optimal 3/rev flap stiffness variation

Input Amplitude Phase
Flap siiffness | 2" | AEl,=23%El 11
variation Srev | AEL, = 15%E, ”
Lag stiffness _ _ )
variation 3rev | AEl, =8%El, 42

Table 5.2: Optimal 2, 3/rev flap and 3/rev lag stiffness variations (J, = 8.92)

Input Amplitude Phase

Flap tiffness | 2T&V | AEI,=22%El, -102°
vandion | grey | AEI, =14%El, | 48°
Lagstiffness | 2rev | AEI, =31 %El, 45°
vanation | gfrev | AEl, =8%El. a7°

without input penalty (Wk = 0), (J,=7.34)
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Table 5.3a: Optimal 2, 3/rev flap and lag stiffness variations using gradient based optimization,



Input Amplitude Phase

Flap siffness | 2T® | AFl,=23%FE » -125°
variation 3rev | AEI, = 14%El 27°
Lag stiffness | 2'&V | AEl, =9%El, 66°
variation rev | AEI, =7%El; 41°

Input Amplitude Phase

Flap stiffness | 2'& | AEl,=18%El -108°
variation arev | AEI, = 139%E1, -
Lag stiffness | 2'& | AEl, =15%El, 59°
variation Srev | AEL 6%l "

Table 5.3b: Optimal 2, 3/rev flap and lag stiffness variations using non-gradient based
optimization, without input penalty (W = 0), (J, = 3.55)

Table 5.3c: Optimal 2, 3/rev flap and lag stiffness variations using gradient based optimization
with input penalty (Wk =1)

Blade Root Change in Harmonics (% Baseline)
Loads Urev 2lrev 3lrev 4frev 5irev
S 1.62 -11.57 -34.60 -65.57 160.51
S 2.04 0.77 -22.39 -86.37 194.45
S 1.75 5.60 -26.26 -60.63 77.53
My 0.58 -2.06 -50.34 112.65 66.93
Mg -0.28 43.44 -83.15 25.06 167.71
M, 2.12 -18.61 40.85 -76.33 254.16

Table 5.4: Change in harmonic of blade root loads due to the optimal 2,3/rev flap and lag
stiffness variations (Wk = 1)
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Chapter 6

Discrete Controllable Stiffness Devices

The results in Chapters 4 and 5 illustrated that if the stiffness of the blade root region is
cyclically varied, it will be effective in reducing helicopter hub vibration. The current chapter
takes a step toward practical implementation of the concept by introducing discrete controllable
stiffness devices (see Fig. 2.11) to control the effective stiffness of the blade root region. The
rotor blade is modeled using five beam elements, with 6 modes (2 flap, 2 lag, and 2 torsion
modes) included in modal transformation. Optimal device stiffness variations are calculated
using the optimal semi-active control scheme developed in Chapter 3 through gradient based
optimization method. The effectiveness of discrete controllable stiffness devices in reducing hub
vibration is investigated first at a moderate advance ratio of 0.3, using Drees inflow model. The
flap and lag controllable stiffness devices are modeled using the dual spring model (see Section
2.2.2.1, and Figs. 2.12a-2.12b), and the torsion discrete controllable stiffness device is modeled
using the single spring model (see Section 2.2.2.2 and Fig. 2.13c). The stiffness variations are
achieved by varying the stiffness of discrete devices cyclicaly (Eg. 2.15 and Eqg. 2.16). Basdline
configuration is presented in Section 6.1. The performance of optimal stiffness variation using
flap, lag, and torsion controllable stiffness devices is examined individually in Sections 6.2, 6.3,
and 6.4, respectively. Based on the performance of each individual device, Section 6.5 evaluates
performance of optimal vibration control using combined controllable stiffness devices. Sections
6.6 and 6.7, respectively, demonstrate the effectiveness of the vibration control system for
variations in baseline configuration and cruise speed. Summary of the results is presented in
Section 6.8.

6.1 Baseline configuration

Helicopter and rotor configurations are similar to that used in Chapters 4 and 5, with properties
presented in Appendix H (Table H.1). The only exception is that the stiffness of the flexure are
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reduced to compensate for the stiffness provided by the discrete controllable stiffness devices
(see Table 6.1 for properties of flexure and the controllable stiffness devices). For this
configuration, the baseline vibratory hub loads and blade root loads are given in Tables 6.2 (for
advance ratios of 0.3 and 0.35). The baseline vibratory hub loads, shown in Table 6.2a,
corresponds to the baseline vibration performance index, J, = 100, to which all results in this

chapter are compared.

6.2 Optimal 2,3/rev flap stiffnessvariations

Using only the controllable flap stiffness device (see Fig. 2.12a), 2/rev and 3/rev variations in

trandational flap spring stiffness, K, is considered through Eg. 2.15 (corresponding change in
rotational flap spring stiffness, K, are obtained through Eqg. 2.16). The optimal amplitudes and

phases of the 2,3/rev flap spring stiffness variations, calculated using the gradient based
optimization procedure in Chapter 3, are summarized in Table 6.3. For these optimal stiffness
variations, the output vibration index, J,, is reduced by 76% as compared to its baseline value.
The corresponding reductions in individual components of hub loads are shown in Fig. 6.1 (55-
60% reduction in F,*® and F,*, 75% reduction in F,*, 45-50% reduction in My*® and M,®, and a

30% reduction in M,* are observed).

6.3 Optimal 2,3/rev lag stiffness variations

Next, the controllable lag stiffness device is used (see Fig. 2.12b), and the 2/rev and 3/rev
variations in translational and rotationa lag spring stiffness, K, and K, are introduced using
Eqg. 2.15 and 2.16, respectively. The optimal lag spring stiffness variation inputs are shown in
Table 6.4. For these spring stiffness variations, the vibration reduction achieved are presented in
Fig. 6.2. 30% reductions in vibratory hub forces as well as a 40% reduction in M, are
observed. The output vibration index, J,, is decreased by 40%, however alarge 2/rev lag stiffness

variation is required.

6.4 Optimal 3,4/rev torsion stiffnessvariations

Optimal 3/rev and 4/rev variations in torsion spring stiffness are examined, using a controllable

torsion stiffness device (Fig. 2.13c). Optimal torsion stiffness variation is presented in Table 6.5.
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These stiffness variations produce only a 9% reduction in vibration index, J,, which corresponds
to individua reduction in components of hub loads shown in Fig. 6.3. Figure 6.3 shows that
only F, is affected by the torsion stiffness variations and is reduced by 16%. This corroborates
the observations in the sensitivity studiesin Section 4.1.3. Due to the relative ineffectiveness of
the torsion stiffness variation, it is not pursued further.

6.5 Optimal 2,3/rev flap and lag stiffness variations

Based on the promising performance of the flap and lag spring stiffness variations (presented in
Sec. 6.2 - 6.3), they are examined in further vibration reduction studies. Hub vibration reduction
achieved with optimal 2/rev and 3/rev flap, and 2/rev and 3/rev lag spring stiffness variations are
presented in Fig. 6.4 and the corresponding optimal inputs are shown in Table 6.6. These
optimal stiffness variations produce an 85% reduction in vibration index, which corresponds to
55-75% reductions in individual components of the vibratory hub loads. Corresponding changes
in blade root loads are calculated and summarized in Table 6.7. A moderate percentage increase
in Mz, and large percentage increases in M,*, S, and M are observed. However, it should
be noted that the baseline values for M, and the 5™ harmonic of all components of blade root

loads are extremely small (see Table 6.2b).

6.6 I nfluence of flexure stiffness on effectiveness of vibration control

The effectiveness of the combined flap and lag spring stiffness variations for vibration reduction
was demonstrated in Section 6.5 for the baseline configuration (properties are given in Table
6.1). The present section examines the effectiveness of the combined flap and lag spring
stiffness variation in reducing vibration when blade structural properties change, especially the
flexure stiffness.  Without modifying the controllable device, the flap, lag, and torsion flexure
stiffness are individually varied by + 25% of their baseline values, and the effectiveness of the

2,3/rev flap and lag spring stiffness variations are re-examined.

Figures 6.5, 6.6, and 6.7 show effectiveness of the 2,3/rev flap and lag spring stiffness variations
and uncontrolled vibration index when the flap, lag, and torsional flexure stiffness are varied,
respectively. Overal, the multi-cyclic semi-active controller retains its effectiveness (producing
over 80% reduction in vibration index, J,) over the ranges of variations in root flap, lag, and

106



torsion stiffness. Additionally, the control effort index, J,, shows little sensitivity to the changes

in the flexure stiffnesses.

6.7 Effectiveness of vibration controller at different forward speed

This section examines the effectiveness of the 2/rev and 3/rev flap and lag spring stiffness
variation for vibration reduction at different forward speeds. Figure 6.8 shows the hub vibration
index, J;, over forward speed ranging from advance ratio of 0.25 to 0.35, with the optimal
stiffness variations re-cal cul ated based on operating condition. It is seen that as the advance ratio
increases, the baseline vibration index (without device stiffness variation) increases dramaticaly;
with the vibration index increasing from 30% to 275% of the nominal value at advance ratio 0.3.
However, with optima 2/rev and 3/rev flap and lag spring stiffness variations, the vibration
index shows a much milder increase from 6% to 40% (of the value at advance ratio of 0.3) over
the range of advance ratios considered. The control effort index, J,, also increases moderately in

the range of advance ratio.

6.8 Summary on discrete controllable stiffness device

It is demonstrated that discrete controllable stiffness devices could produce simultaneous
reductions in all components of vibratory hub loads, using the gradient-based optimization. An
85% reduction in the vibration performance index was observed when optimal 2/rev and 3/rev
flap and lag stiffness variation inputs were simultaneously employed. Cyclic torsion stiffness
variations were much less effective (only influenced the vertical vibratory force). Multi-cyclic
flap and lag stiffness variations were seen to be effective in reducing hub vibration even when
the fundamental rotor properties (root element flexural flap, lag, and torsion stiffness) and the

operating condition (forward speed) were changed.

In this chapter, however, the controllable stiffness devices were modeled using only the simple
dual spring model, and rotor inflow was calculated by linear inflow model (which is an
approximated version of the complicated rotor inflow). To increase the fidelity of vibration
reduction prediction, more complicated device model and rotor inflow model are used in the

following chapter.
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Figure 6.2: Hub vibration reduction due to optimal 2,3/rev discrete lag stiffness variations
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Figure 6.3: Hub vibration reduction due to the optimal 3,4/rev discrete torsion stiffness variations
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Figure 6.4: Hub vibration reduction due to the optimal 2,3/rev discrete flap and lag spring
stiffness variations
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1 1 root
Flexure (Root Element) Flap bend_l ng st_lffness Elg t/ Els 0.70
Properties Lag bending stiffness EI /*/ El, 0.60
Torsional stiffness GJ*/GJ 0.70
Kw/( El/R) 0.2
Ky/(El IR 0.1
Controllable Stiffness K o/( GIIRP) 0.2
Device Properties = =
5V\/ Uw EW
K Vv U\/ K Vv
Uw, Uy (0.2R)%/3
Flap 1.199, 3.593, 7.825/rev
BF'f‘deugnaf:‘iJg' Lag 0.802, 4.503, 11.174/rev
™ Torsion 4.833, 13.742/rev

Table 6.1: Discrete controllable stiffness device and blade flexure properties

Vibratory Hub Loads
F P 0.8519
F,P 0.8774
P 0.7428
P 0.9448
M,*P 10.1842
M, 3.6279

Table 6.2a 4/rev vibratory hub loads for baseline rotor - no stiffness variation
(Dreesinflow, p=0.3)

Blade Root Harmonics
L oads Urev 2lrev 3lrev 4frev 5/rev
S 0.09395 0.00770 0.00293 0.00077 0.00012
S 0.08132 0.00412 0.00144 0.00241 0.00024
S 0.04448 0.04007 0.01432 0.00186 0.00035
My -0.01259 | -0.00406 | -0.00038 | -0.00012 | -0.00005
Mg -0.20101 | -0.16374 | -0.05066 | -0.00582 | -0.00096
M, -0.44682 | -0.01932 | -0.00419| -0.00907 | -0.00091

Table 6.2b: Harmonics of blade root loads for baseline rotor - no stiffness variation
(Dreesinflow, p=0.3)

" All vibratory hub forces arein % F,° (5943 Ibs.), all vibratory hub moments are in % M,° (5222 ft-Ibs.)
" Blade root shears are non-dimensionalized by m,Q?R?, blade root moments are non-dimensionalized by m,Q°R?
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Vibratory Hub Loads
P 1.6477
F,* 1.7219
P 1.2152
M,*P 12.8669
M,* 13.1485
M, 6.0201

Table 6.2c: 4/rev vibratory hub loads for baseline rotor - no stiffness variation
(Dreesinflow, = 0.35)

Blade Root Harmonics -
L oads Urev 2lrev 3lrev 4frev 5/rev
S 0.11461 0.01138 0.00565 0.00156 0.00027
S 0.09883 0.00555 0.00286 0.00484 0.00054
S 0.07277 0.05577 0.02254 0.00304 0.00060
My -0.01283 | -0.00490 | -0.00055| -0.00020| -0.00009
Mg -0.26453 | -0.18860 | -0.06550| -0.00770| -0.00139
M,/ -0.44750 | -0.02161| -0.00719| -0.01505| -0.00167

Table 6.2d: Harmonics of blade root loads for baseline rotor - no stiffness variation

(Dreesinflow, = 0.35)

Amplitude
I nput — Ph
Py (DKo Kw) o
Flap device 2/rev 19% -101.3°
stiffness
variation 3lrev 17 % 23.6°

Table 6.3: Optimal 2, 3/rev flap device stiffness variations (J, = 24.2)

Amplitude
Input — Phase
P (BKJK )
Lag device 2rev 34 % 141.4°
stiffness
variation 3/rev 6% -135.5°

Table 6.4: Optimal 2, 3/rev lag device stiffness variations (J, = 60.8)

" All vibratory hub forces arein % of F,° (5943 Ibs.), all vibratory hub moments are in % of M,° (5222 ft-lbs.)
" Blade root shears are non-dimensionalized by m,Q?R?, blade root moments are non-dimensionalized by m,Q°R?
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oLt Amplitude Ph
A (AKy/ K p) =
Torsion device | 3/rev 15 % -21.8°
stiffness
variation 4frev 19 % 102.5°

Table 6.5: Optimal 2, 3/rev torsion device stiffness variations (J, = 91.3)

Input Amplitude Phase
Flapdevice | 2frev | AK,=23%Kw | -103.6°
stiffness —
variation rev | AK,=20%K w 26.1°
Lag device 2tev | AK,=11%K.y 101.6°
stiffness —
variation 3lrev AK,=7 %Ky 42.8°

Table 6.6: Optimal 2, 3/rev flap and lag device stiffness variations (J, = 14.28)

Blade Root Change in Harmonics (% Baseline)
Loads Urev 2lrev 3lrev 4lrev 5irev
S 1.57 -14.95 -28.37 -0.03 -62.85
S 1.90 -3.57 -12.35 -75.73 -5.86
S 2.11 6.96 -43.96 -67.15 155.78
M, 0.38 -2.49 -0.21 209.88 21.26
Mg -0.31 34.41 -56.79 6.37 360.60
M, 2.67 -8.44 -38.54 -59.47 -6.03

Table 6.7: Change in harmonics of blade root loads due to the optimal 2,3/rev flap and lag spring
stiffness variations
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Chapter 7

Discrete Controllable Stiffness Device Results - Modd Refinements

The results presented in Chapter 6 demonstrated that discrete controllable stiffness devices could
produce significant hub vibration reduction. However, the simple rotor inflow model (Drees
inflow) and controllable stiffness device model (dua spring model) were considered. This
chapter evaluates vibration reductions achievable when a sophisticated rotor wake model (free
wake model) along with more physical representations of discrete controllable stiffness devices
(see Fig. 2.11 and description presented in Section 2.2.2.2) are considered. The stiffness of those
discrete devices is varied cyclically (see Eg. 2.15) to reduce hub vibration at moderate flight
speeds. Based on the convergence study presented in Appendix I, five finite elements and 10
modes (4 flap, 4 lag, and 2 torsion modes) are used to represent the rotor blade. The baseline
configuration is summarized in Section 7.1. The effectiveness of individual discrete controllable
stiffness devices (flap, lag, and torsion devices) is examined in Sections 7.2, 7.3, and 7.4,
respectively. Section 7.5 examines the effectiveness of optimal vibration control using combined
controllable stiffness devices (devices are chosen based on their individual performance).
Sections 7.6 and 7.7 demonstrate the performance of the discrete controllable stiffness devicesin
reducing hub vibration for variations in configuration properties and cruise speed, respectively.
Based on these results, Section 7.8 summarizes the effectiveness of the discrete controllable

stiffness device on hub vibration reduction.

7.1 Baseline configuration

The baseline configuration is similar to that already presented in Chapter 6, except that the
flexure stiffnesses are dlightly modified, to compensate for the changed stiffness contributions
from the single spring model of the discrete controllable stiffness devices (Section 2.2.2.2).
Properties of blade flexure and discrete controllable stiffness devices are provided in Table 7.1.
For this configuration, the baseline vibratory hub loads and blade root loads are given in Tables
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7.2 (at an advance ratio of 0.30, using free wake anaysis to obtain rotor inflow). The hub
vibration levels in Table 7.2a corresponds to a vibration performance index J, = 100, and are
used as a point of reference to which vibration levels are compared when optimal stiffness

variations are introduced.

7.2 Optimal 2,3/rev flap device stiffness variations

Multi-cyclic variations in the stiffness of only the flap device (see Fig. 2.13a) are considered
first. The optimal 2/rev and 3/rev flap stiffness variations (amplitude and phase values) are
determined using the approach described in Chapter 3, and are presented in Table 7.3. For these
optimal stiffness variations, the output vibration index, J,, is reduced by 31%, compared to the

baseline value. The corresponding reductions in individual components of vibratory hub loads
are shown in Fig. 7.1. An 80% reduction in in-plane hub drag force, Fx4p , and a 45% reduction
in in-plane hub side force, F;‘p, are observed. Changes in the other components of vibratory

hub loads are less than 10%. The variation in device stiffness over a single rotor revolution is

shown in Fig. 7.2 and is bounded between 35% and 160% of the baseline value, IZW.

7.3 Optimal 2,3/rev lag device stiffness variations

Next, variations in the stiffness of the lag device (see Fig. 2.13b) are examined. The optimal
2/rev and 3/rev stiffness variations of the lag device are presented in Table 7.4. These optimal
lag device stiffness variations result in a 16% reduction in the vibration index, J,, relative to the

baseline, with changes in the individual components of vibratory hub loads shown in Fig. 7.3.

From the figure, a 45% reduction in in-plane hub drag force, FX“p, and a 25% reduction in in-
plane hub side force, F ;‘ P, are observed; with the other components not showing any significant

changes. The combination of the 2/rev and 3/rev inputs (amplitude and phase) implies that the

lag device stiffness varies between 53% and 150% of the baseline value, IZV, over a single rotor

revolution (stiffness variation not shown).
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7.4 Optimal 3,4/rev torsion device stiffness variations

Multi-cyclic variations in the spring coefficient of the controllable torsion stiffness device are
considered next (see Fig. 2.13c). Optima 3/rev and 4/rev torsion stiffness variations are
presented in Table 7.5a and the corresponding reductions in individual components of vibratory

hub loads are shown in Fig. 7.4. Only a very modest reduction (under 5%) in the vibratory
vertical hub force, FZ“p, is observed; and other components of hub vibratory loads have even
lower sensitivity. These observations are qualitatively similar to those previously reported in the
sensitivity study (Chapter 4), but the percentage reduction in FZ“p is even smaller due to the

higher baseline vibration levels associated with the inclusion of the free-wake in the present
analysis. For the results in Table 7.5a and Fig. 7.4, a penalty weighting on the input of W, =
0.02[1] was used, as the default value of W, = | (for results in Sections 7.2 and 7.3) produced
torsion stiffness variations that were very small, and resulted in a negligible change in vibratory
hub loads.

To examine whether any further reductions in hub vibration are possible using cyclic torsion
stiffness variations, two additional cases are considered. In the first case, the penalty weighting
W, is reduced (from 0.02[1] to 0.015[1]), allowing for larger percentage variations in spring
stiffness. In the second case, recognizing that the arbitrarily large percentage changes in spring

coefficient are not permissible and yet it is the actual physical values of the stiffness changes that
matter; an is itself increased to twice the baseline value. In this case, larger torsion stiffness
variation can be introduced even while the change in spring coefficient, as a percentage of the
baseline, is kept bounded (of course, the baseline rotor frequencies and vibration characteristics
themselves undergo some change). The reductions in the vibratory vertical hub force, FZ“p , for
these two cases, shown in Fig. 7.5, suggest that only small improvements are possible. The
corresponding optimal stiffness variations are given in Tables 7.5b and 7.5c. As seen in previous

chapters, multi-cyclic torsion stiffness variations are again much less influential than flap and lag

stiffness variations, and are not further considered for semi-active helicopter vibration reduction.
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7.5 Optimal 2,3/rev flap and lag device stiffness variations

From the results in Sections 7.2-7.4, it is clearly established that multi-cyclic variations in either
flap or lag device stiffness can significantly reduce some components of hub vibration, but
variation in torsion stiffness is relatively ineffective. The present section examines the possible
reductions in vibratory hub loads when optimale2/and 3fev flap, and 2/ev and 3fev lag
stiffness variations are simultaneously considered (these results are presented in &hig. th,

corresponding optimal inputs are shown in Table 7.6). The optimal stiffness variations produce a

33% reduction in the vibration index. It is seen that vibratory in-plane hub drag R;j‘&e,is
virtually eliminated, and the hub side fordé;p, is reduced by 55%. Only minor changes in

other components of hub loads are observed.

For the optimal flap and lag stiffness variations, Table 7.7 shows the percentage changes in the
1% through %' harmonics of the various components of blade root loads (with reference to the
baseline values given in Table 7.2b). None of the components of blade root loads show any
significant increases. The%Zhrough &' harmonics of the blade root radial she@r, show
increases between 5-10%, th8 Marmonic of the blade root drag sheS, shows an 8%
increase, the"3through %' harmonics of the blade root pitching momeM}, show between 7-

12% increases, and th& éarmonic of the blade root lag momekt;, shows a 5% increase.
Significant reductions seen were in tH&l&armonic ofS, (40%), 2* harmonic oM, (30%), ¥
harmonic of the blade root vertical she®r,(23%), and 8 harmonic of the blade root flapping
momentM, (40%).

7.6 Influence of flexure stiffness on effectiveness of vibration reduction

In section 7.5, simultaneous multi-cyclic variations in spring stiffness of both the flap and lag
devices were seen to significantly reduce the hub vibration levels for the baseline configuration
whose properties are given in Table 7.1. The present section verifies that the concept of using
multi-cyclic variations in spring coefficients of discrete controllable stiffness devices would be
effective even if the baseline configuration changes. Keeping the discrete controllable devices
unchanged from the baseline, the flap, lag, and torsion stiffness of the flexure (blade root

element) is individually varied by upt25% of its nominal value. The optimal 2&/flap and
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lag device stiffness variations are re-evaluated, and their influence examined on the vibratory
hub loads. Figures 7.7, 7.8, and 7.9 show reductions in vibration index, J,, for variations in flap,
lag, and torsion stiffness, of the flexure, respectively. Overall, the multi-cyclic controller retains
its effectiveness (producing a 25%-35% reduction in vibration index, J,, compared to the
uncontrolled case) over the range of variations considered in the flap, lag, and torsion stiffness of
the flexural element. The control effort index, Jy, shows a dight increase when the flap stiffness

or lag stiffness of the flexural element is reduced.

7.7 Effectivenessof vibration controller at different forward speeds

This section examines the effectiveness of 2/rev and 3/rev flap and lag stiffness variations for
vibration reduction at different cruise speeds. Figure 7.10 shows the vibration performance
index, J;, with and without the multi-cyclic stiffness variations, over forward speeds ranging
from advance ratio of 0.25 to 0.35 (the optimal stiffness variations are re-calculated at different
flight speeds). The vibration performance index is normalized with respect to the baseline
(uncontrolled) vibrations at an advance ratio of 0.30 given in Table 7.2a, (corresponding to J, =
100). It is seen that as the advance ratio increases from 0.30 to 0.35, the uncontrolled vibration
index increases from 100 to 320. As the advance ratio decreases from 0.30 to 0.25, the
uncontrolled vibration index again increases from 100 to 400, due to the dominant effect of the
rotor wake at the lower advance ratio. With optimal 2/rev and 3/rev stiffness variations of the
flap and lag devices, the vibration index shows reductions across the advance ratio range. The
reductions in J,, relative to the uncontrolled case, vary from 55% at an advance ratio of 0.25 to
around 33% at advance ratios between 0.3 and 0.35. The control effort index, J,, shows only
mild variations over the range of forward speeds considered, despite the large differences in the

uncontrolled vibration levels.

7.8 Summary on effectiveness of discrete controllable stiffness device

With more sophisticated rotor inflow and device modeling, the results in this chapter
demonstrated that optima multi-cyclic stiffness variations of discrete controllable stiffness
devices could reduce the vibratory hub loads. Multi-cyclic stiffness variations of the flap and lag

devices were most influential, and when optimal 2/rev and 3/rev stiffness variations of these
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devices were used in combination, the vibratory hub drag force was practically eliminated and
the vibratory hub side force was reduced by 55%. No significant detrimental effects were
observed on harmonics of the vibratory blade root loads. Multi-cyclic (3/rev and 4/rev) stiffness
variations of the torsion device produced only small reductions in the 4/rev hub vertical force.
Multi-cyclic stiffness variations of the flap and lag devices were seen to be effective in reducing
hub vibration even when there were changes in fundamental rotor properties such as the flap, lag,

and torsion stiffness of the root (flexure) element, and the cruise speed.
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Figure 7.1: Hub vibration reduction due to optimal 2,3/rev flap device stiffness variations
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Figure 7.2: Optimal flap device stiffness variation over one rotor revolution,
(with 2, 3/rev inputs from Table 7.3)
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Figure 7.3: Hub vibration reduction due to optimal 2,3/rev lag device stiffness variations
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Figure 7.4: Hub vibration reduction due to optimal 3,4/rev torsion device stiffness variations (W,
= 0.02[1], baseline torsion device stiffness= K )
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Figure 7.5: Hub vibration reduction due to the optimal 3,4/rev torsion device stiffness variations,
with varying input weights (W,) and baseline torsion spring stiffness (K 4,2 K ¢)
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H 1 root
Flexure (Root Flap bend_l ng st_lffness El /,;mt/ El, 0.70
Element) Properties Lag bending stiffness EI /*/ El, 0.70
Torsiona stiffness GJ*/GJ 0.70
Kw/( Elz/R) 0.12231
Controllable Stiffness Ku/(El/R) 0.11996
Device Properties Ko/(GIIR) 0.00716
Qy,, Qy 15°
e, & 0.5¢c
Flap 1.147, 3.399, 7.447, 13.342/rev
B;fggugnaé?g Lag 0.750, 4.364, 10.963, 20.653/rev
Torsion 4.590, 13.595/rev

Table 7.1: Discrete controllable stiffness device and blade flexure properties

Vibratory Hub Loads*
F,P 1.1719
F,*° 2.2419
b 2.6352
P 37.7587
M, P 40.2514
M, 54.8682

Table 7.2a 4/rev vibratory hub loads for baseline rotor — no cyclic stiffness variation
(Free-wakep = 0.3)

Blade Root Harmonics
Loads 1lrev 2lrev 3lrev 4frev 5/rev
S 0.165412 0.01793 0.00348 0.015112 0.002833
S 0.135271] 0.008518 0.009605 0.034555 0.005395
S 0.043921) 0.013569 0.059717 0.006584 0.004924
My -0.01624 -0.0053 -0.00175 -0.002b6 -0.00031
Mg -0.20017| -0.04484 -0.19397 -0.01991 -0.01421
M, -0.77574| -0.03881 -0.03617 -0.13745 -0.0196

Table 7.2b: Harmonics of blade root loads for baseline rotor — no cyclic stiffness variation
(Free-wakep = 0.3)

" All vibratory hub forces arein % of F,° (5914 Ibs.), all vibratory hub moments arein % of M,° (4878 ft-lbs.)
" Blade root shears are non-dimensionalized by m,Q?R?, blade root moments are non-dimensionalized by m,Q°R?
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Amplitude
[nput — Phase
P (DKo Kw)
Flap device 2lrev 18.4 % 44.4°
stiffness
variation 3lrev 47.1% 140.8°

Table 7.3: Optimal 2,3/rev flap device stiffness variations (J; = 69.25)

Inout Amplitude Phase
P (BKJ K )
Lag device 2rev 36.8 % 33.4°
stiffness
variation 3lrev 14.3% -160.3°

Table 7.4: Optimal 2,3/rev lag device stiffness variations (J, = 84.23)

ot Amplitude Bh
P (AKy/ K p) >
Torsiondevice | 3/rev 18.7 % -176.1°
stiffness
variation 4frev 46.8 % 151.9°

(a) W, = 0.020[1], baseline torsion device stiffness= K

Amplitude

Input (OK, IKy) Phase

Torsiondevice | 3/rev 251 % -179.3°
stiffness

variation 4frev 60.8 % 152.5°

(b) W, = 0.015[1], basdline torsion device stiffness = K,

ot Amplitude Ph
npd (BK /2K ) e
Torsion device | 3/rev 25.2% -175.5°
stiffness
variation 4frev 59.7 % 166.4°

(c) W, = 0.015[1], baseline torsion device stiffness = 2K ,

Table 7.5: Optimal 3,4/rev torsion spring stiffness variations, with varying input weights (W,)

and baseline torsion spring stiffness (K yand 2K ;)
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Input Amplitude Phase

Flap device 2rev | AKy=55%Kw 30.1°
stiffness variation Arev | AK, =435 %K 139.7°
Lag device 2rev | AK,=322%K., 59.7°
stiffness variation 3rev AK, =89 %K, 100.4°

Table 7.6: Optimal 2,3/rev flap and lag devices stiffness variations (J, = 67.23)

Change in Harmonics (% Baseline)

Blade Root
Loads Urev 2/rev 3lrev 4lrev 5/rev
S -0.34 -4.20 9.46 10.27 5.03
S -0.47 -8.23 -40.02 8.23 -0.14
S -0.61 3.32 -23.42 -4.79 -10.87
My -0.36 -1.26 7.10 12.03 9.61
Mg -0.32 0.67 -4.53 -14.70 -23.13
M, -0.83 -28.53 -11.18 5.60 0.30

stiffness variations
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Chapter 8

Discrete Controllable Orifice Dampers

It is demonstrated in previous chapters that the semi-active stiffness variation concept is aviable
method for helicopter vibration reduction. However, availability of the controllable stiffness
devices is limited, and the amount of stiffness variation authority may not be sufficient to
produce satisfactory results. Thus, another alternative for vibration reduction is considered using
controllable dampers, which are widely available as well as able to change damping coefficient
by up to 80% (see Section 2.3.1). This present chapter examines the effectiveness of controllable
orifice dampers on reducing vibratory hub loads in high-speed flight (advance ratio of 0.35),
using rotor inflow calculated by free wake analysis. Damping variation is described in detail in
Section 2.3 (see also Eq. 2.30). The rotor blade is modeled using five finite elements and 10
modes (4 flap, 4 lag, and 2 torsion modes) based on convergence study presented in Appendix I.
The baseline configuration is described in Section 8.1. The effectiveness of using only the
controllable lag damper is presented in Section 8.2. In addition to evaluating the reductions in
hub vibration, the effects of changes in damper size and mounting configuration are also
examined. In Section 8.3, a controllable flap damper is introduced in addition to the
controllable lag damper to obtain further reductions in hub vibration. The ability of optimal
semi-active cyclic damping variations in reducing the hub vibrations over a range of flight
speeds is also demonstrated. A summary of the results in this chapter is presented in Section
8.4.

8.1 Baseline configuration

The baseline configuration consists of uniform blades (properties are given in Table H.1) with
lag and flap dampers attached near the root (see Fig. 2.21). No modification on blade flexure is
required since the introduction of the controllable dampers has insignificant effect on blade

natural frequencies, unlike introduction of the discrete controllable stiffness devices (presented in
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Chapters 6 and 7) which significantly influences blade natural frequencies. The dampers are

selected so as to provide 11% and 8% critical damping in the fundamental lag and flap modes,
respectively. Properties of the controllable dampers and damper attachment configuration are

presented in Table 8.1. Without any cyclic variations in damping, the baseline vibratory hub

loads, blade root |oads, flexbeam root loads, damper loads, and blade tip responses, are presented

in Tables 8.1a — 8.1e, respectively. The vibratory hub loads in Table 8.1a are used as a reference
vibration level (corresponding to vibration ind&x= 100), against which all vibration reduction

studies in this chapter are compared.

8.2 Lag Damping Variation

First, controllable lag damper is considered for hub vibration redudticaldition to evaluating
the reductions in hub vibration, changes in blade root loads, flexbeam root loads, damper loads,
and blade response are also presented in Section 8.2.1. The effects of damper size and mounting

configuration are also examined in Section 8.2.2.

8.2.1 Influence of optimal 2,3/revlag damping variations

Multi-cyclic variations in the damping coefficient of only the lag damper are considered first.
The optimal 2/ev and 3fev lag damping variations (both cosine and sine components, or
amplitude and phase values) are determined using the approach described in Chapter 3, and are
presented in Table 8.3. The time history of the resulting damping variation, over a single rotor

revolution, is shown in Fig. 8.1; and it is observed that the damping level varies between 20%

and 175% of the baseline valug, . For this optimal damping variation, the vibration indé&x,

Is reduced by 35% as compared to its baseline value. The corresponding reductions in individual
components of vibratory hub loads are shown in Fig. 8.2. It is observed that vibratory hub drag
force, F,®, and vibratory hub yawing momert,”, can be virtually eliminated, while the
vibratory hub side forcel,:y4p, is reduced by 15%. All other vibratory hub loads are almost

unaffected.

Figure 8.3 shows the lag damper force over a rotor revolution, when the optimal multi-cyclic lag
damping variations in Table 8.3 are used. Also shown in the figure is the reference damper force
when no semi-active damping variations are introduced. With tlee &4d 3fev semi-active
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lag damping variations the peak damper force increases somewhat (from 700 |bs to 800 Ibs), but
more notably, there is a significant increase in the higher harmonic content of the damper force.
While the baseline damper force had a predominant 1/rev component (also seen from Table
8.2d), the optimal semi-active input results in increases of 140%, 193%, 86%, and 57%,
respectively, in the 2" through 5™ harmonics of the lag damper load (see Table 8.4). It is these
higher harmonic loads, introduced by the controllable lag damper, that modify the blade response
so as to reduce some of the hub vibrations. No significant change in harmonics of flap damper

forcesis observed (see Table 8.4), since the flap damper is not controlled in this case.

Table 8.5 shows variation in harmonics of blade root loads when the optimal 2/rev and 3/rev lag
damping variations are used. It can be deduced from Section 2.3.2 that the semi-active control of
the lag damper primarily influences the blade root drag shear, S;, and the blade root lag moment,
M., with a smaller effect on the blade root radial shear, S (due to coriolis effects, etc). It is
interesting to note that there are large percentage increases in the 3/frev and 5/rev components of
blade root drag shear, S.. Intuitively, decreases in the 3" and 5" harmonics of S, and § would
have been expected since the vibratory hub drag force, F,*, has been eliminated. However, it
should be recalled that

F P =2(S* -S*) cosdy +2(S* +S*)sindy
5 5 5 5 :
+2(S> +S>°) cosdy +2(S>° - S°) sin 4y (8.1

From Table 8.2b it is seen that for the baseline configuration the 3" harmonic of § is an order of
magnitude larger than that of S, and the 5™ harmonic is twice aslarge. In essence, the blade root
radial shear, S, is the dominant contributor to the in-plane vibratory hub drag force, F,*®, for the
baseline rotor. The optimal lag damping variations appear to be increasing the 3 and 5"
harmonics of S, such that (along with some modest reductions in the 3 and 5™ harmonics of S)

the factors (S -S*), (S*+S¥*), (S* +S*) and (S>-S>), in Eq. 8.1 are reduced,
thereby reducing the vibratory hub drag force. In other words, increases in harmonics of blade
root drag shear using cyclic variations in lag damping are producing the reductions in in-plane
vibratory hub forces. Table 8.5 also indicates a 98% reduction in the 4™ harmonic of the blade
root lag moment, M;, which is consistent with the reduction in the vibratory hub yawing

moment seen in Fig. 8.2. Figures 8.4a and 8.4b show the variation in blade root drag shear, S,
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and radial shear, S, respectively, over one rotor revolution. It is seen that while the cyclic lag
damping variation introduced small high-frequency oscillations in the blade root drag shear,
relative to the baseline rotor, the overall changes are very small. Influence of the cyclic lag
damping variation on the blade root radial shear is even less perceptible. Changes in other blade
root loads are caused by secondary effects, and considered negligible.

Table 8.6 shows changes in the harmonics of flexbeam root loads using the optimal lag damping
variations. Again, components of flexbeam loads that are directly effected by the semi-active lag

damping variation are S!'*,S"*, and M Zﬂe‘. A reduction of around 50% is seen in the 2™

harmonic of S"*, but the 3, 4" and 5" harmonics are seen to increase by around 350%, 200%
and 100%, respectively. However, it should be noted that percentage increases appear

excessively large because the higher harmonics of S;'@‘ for the baseline rotor were very small

(see Table 2¢). The variation of S'* over arotor revolution (Fig. 8.5a) shows that despite the

introduction of some high-frequency loading, relative to the baseline rotor, the overall changes
are very small, so the flexbeam dynamic stresses will not be adversely affected. The variation of

Srﬂ@‘ over a rotor revolution (Fig. 8.5b) shows that the peak-to-peak oscillations are actually
reduced by about 300 Ibs when cyclic lag damping variations are used. Some harmonics of

M Zf'ex are increased significantly by as much as 180% for the 3" harmonic, but the increases are

not perceptible since the corresponding baseline values are small to begin with. Changes in
harmonics of other flexbeam root loads are again insignificant due to indirect effect of the
damping variation.

Figure 8.6 shows the blade flap, lag, and torsion tip responses over one rotor revolution.
Comparing with the response for the baseline rotor, the cyclic variation in lag damping does not
appear to have had any significant influence. However, the higher harmonic damper loads do in
fact introduce higher harmonics in the tip lag response, as seen in Table 8.7. The percentage
increases in the 2" through 5™ harmonics appear a little exaggerated since the baseline values
were very small (see Table 8.2e — baseline lag response was primaritgvat TZhanges in

harmonics of flap and torsion response are much smaller.
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8.2.2 Influence of lag damper sizing and configuration

From section 8.2.1 it is clear that multi-cyclic variations in lag damping coefficient can reduce
the vibratory hub in-plane forces and yawing moment. However, the effectiveness of the
controllable damper in reducing vibration can be expected to vary, depending on the damper
configuration and size. For the results in section 8.2.1, nominal values of damper mounting

angle, a, = 20 deg, offset, ¢ = c, and attachment point, L = 0.2R, were used. Further, the

nominal damping coefficient, Cv, related to the damper size, was selected to provide 11%
damping in the fundamental lag mode. The present section examines the reductions in hub

vibration levels that would be observed when these parameters are varied. It should be noted
that when the parameters, o, e, L, and C. are varied, the basdline vibration levels (without

any semi-active inputs) may themselves change, and the optimal 2/rev and 3/rev variationsin lag

damping coefficient have to be re-evaluated.

Figure 8.7 shows the influence of the lag damper mounting angle, o , varied from 0 — 40 deg,
on the vibration index,J,, and the control effort indexJ . For every value ofa , the

vibration levels are non-dimensionalized with respect to the uncontrolled vibration levels of the
nominal configuration. From the figure, it is seen that the uncontrolled vibrations (no semi-

active input) are relatively insensitive to changesrin  When optimal lag damping variations

are introduced, slight additional reductions in vibration index (relative to the nominal) can be

obtained for values ofr  in the 5 — 10 deg range. However, the control effhrtincreases
substantially in this range. Conversely, the control effort can be reduced somewhatsif

increased beyond the nominal value of 20 deg, but the vibration index increases slightly. For

values ofa,, in the range of 15 — 40 deg the total performance indlethe sum ofJ, (with
optimal damping variation) and , shows little variation; which implies that any of these

designs perform more-or-less comparably. However, as the mountinganglereases, it may

be difficult to install the device.
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Figure 8.8 shows the influence of the lag damper offset, e , varied between 0.2c and 1.4c
(nominal valueis 1 chord). From thefigureitisseenthat for e, varying between 0.7c and 1.4c,

the uncontrolled vibrations (no semi-active input) are relatively unchanged. However, as the
offset decreases below 0.7c — (i) the uncontrolled vibrations increase significan(iliy), reductions
in vibration index with optimal variations in lag damping coefficient are smaller(iaghdhe
control effort,J,, starts to decrease as well. The second and the third points suggest that the
effectiveness of the semi-active inputs is diminishing when the offset becomes too small. From

Eqg. 2.34 it is deduced that since the nomimalis small, the controllable moments introduced
by the damper on the blade would be quite important, anel atecreases, the damper is no

longer able to effectively exert controllable lag bending moments on the blade. The total

performance index] = J_ (with optimal damping variationy J,, is near its minimum foe,

ranging betweer and 1.4, so that any offset in this range would constitute a good choice. As

e, increases in this range, a slight increase in vibration index (relative to the nominal) is

observed, but the control effod, decreases.

Figure 8.9 shows the influence of the lag damper attachment point on the bladerying
between 0.1R — 0.23R (nominal value is OR). In general, ad.  increases, the uncontrolled
vibrations, the vibration levels with optimal lag damping variations, and the control effort, all
undergo very significant reductions. Of course larger values ofay be undesirable from a
practical standpoint, which needs to be taken into consideration. It is also seen that as

decreases below 0.BGthe control effort index reduces, and the reductions in vibration index
relative to the uncontrolled levels also diminish. An explanation for this is that the damper
attachment point may be undergoing very limited motion, so that the effectiveness of the motion-
dependent semi-active forces decreases. However, it should be noted that for articulated blades,
or blades with a very soft flexure, this may not be the case and effectiveness of lag damping

variations in reducing hub vibrations may be preserved even for low values of

Finally, the effect of varying the lag damper size from 70% to 150% of its nominal @lués

considered. In principle, larger reductions in vibration could potentially be obtained for larger
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cyclic variations in damping, AC . However, since the cyclic variations in damping coefficient

are generaly a fraction of Cv,a larger Cy is required for greater semi-active authority. From
Fig. 8.10, it is observed that the uncontrolled vibration levels (no semi-active inputs) are
relatively insensitive to damper size. The vibration index with optimal lag damping variations

also shows only mild changes with damper sizing. The control effort index, which depends on

ACVIGV, reduces with increasing damper size, which suggests that the damper has not

saturated, and would be unlikely to produce additional vibration reduction with larger cyclic
variations in damping being possible. The limited reductions in vibration obtained may simply
be due to the fact that the optimal inputs required to reduce Fy4p may be conflicting with those

reducing F* and M,*.

8.3 Simultaneous flap and lag damping variations

The present section explores additional possible vibration reductions when 2/rev and 3/rev lag
damping variations and 2/rev and 3/rev flap damping variations are introduced simultaneously.
Changes in vibratory hub loads, blade root loads, flexbeam root loads, damper loads, and blade
response due to optimal 2, 3/rev flap and lag damping variations are presented in Section 8.3.1.
Section 8.3.2 examines the effectiveness of the flap and lag damping variations on hub vibration

reduction for various forward speeds.

8.3.1 Influence of optimal 2,3/rev flap and lag damping variations

The effect of optimal 2, 3/rev flap and lag damping variations on hub vibration is examined in
this section. The optimal lag and flap damping variations (amplitude and phase values) are
presented in Table 8.8, and their time histories over one rotor revolution are shown in Fig. 8.11.

From thefigure, it is observed that the maximum variation in lag damping is 64% of the baseline

value, Cy, and the maximum variation in flap damping is 60% of the baseline value, Cw (well
within the achievable range of controllable orifice dampers). For these optima damping
variations, the vibration index, J, is reduced by 47%, with corresponding reductions in
individual components of vibratory hub loads shown in Fig. 8.12. Aswas the case when only lag
damping variations were used, the vibratory hub drag force, F,*, and vibratory hub yawing

moment, M,*, are basically eliminated, and a 10% reduction in the vibratory hub side force, Fy4p,
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is seen. However, in addition, a 30% reduction in the vibratory hub vertical force, F,*, is now
observed, on account of the variations in flap damping coefficient. The vibratory hub pitching

and rolling moments remain unaffected.

Figures 8.13 and 8.14 show the lag damper force and the flap damper force, respectively, over a
rotor revolution, when the optimal multi-cyclic damping variations in Table 8.8 are used. Also
shown in the figures is the reference damper force without any semi-active damping variations.
From Fig. 8.13, the peak-to-peak lag damper force levels do not undergo any significant change,
relative to the baseline, although some high-frequency content is now introduced in the damper
force. Table 8.9 indicates that there are increases of approximately 90%, 150%, 30%, and 55%,
respectively, in the 2" through 5" harmonics of the lag damper force. Asin section 8.2.1, the
higher harmonic loads introduced by the lag damper will modify the blade lag response so as to
reduce vibratory in-plane hub forces and yawing moment. From Fig. 8.14, the peak-to-peak flap
damper force is seen to actually reduce by some 70 Ibs, and Table 8.9 indicates that there are no
increases in any of the flap damper force harmonics due to optimal damping variations. It is
interesting to compare how the flap and the lag dampers reduce vibration. The lag damper
actually generates higher harmonic semi-active forces, which increase the higher harmonics in
blade lag response. The modified lag response, in turn, generates higher harmonic blade drag
shear forces to cancel the vibratory radial shear contributions to the in-plane hub forces. The
effect of the flap damper, in contrast, is to reduce the blade vertical shear forces (the only

contributors to the hub vertical vibratory forces), thereby reducing the hub vertical vibrations.

Table 8.10 shows variation in harmonics of blade root loads when the optimal flap and lag
damping variationsin Table 8.8 are used. The controllable flap and lag dampers are expected to

influence only specific components of blade root loads, particularly S, S, , and M ; (by the lag
damper) and S,and M 5 (by the flap damper). Asin Section 8.2.1, large percentage increasesin
the 3/rev and 5/rev components of blade root drag shear, S , are observed, which (along with

some modest reductions in the 3 and 5™ harmonics of S, ) contribute to the elimination of Fx“p .

Also seen in Table 8.10 are reductions of around 30% in the 4™ harmonic of S, and nearly 100%
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in the 4™ harmonic of M ; » Which produce the corresponding reductions in F* and M P seen
in Fig. 8.12. Small reductions in al harmonics of blade root flapping moment, M 5 are also

observed, athough the reductions in the 3" harmonic are insignificant and therefore do not

reduce the rotor hub vibratory rolling and pitching moments, M " and M ;‘ P Changes in

harmonics of M, are primarily due to nonlinear coupling effect and are considered insignificant

(since the corresponding baseline values are very small), but are presented for completeness.

Changes in harmonics of flexbeam root loads due to optimal flap and lag damping variation are

presented in Table 8.11. Components of the flexbeam root loads that are directly affected by the

lag damping variation are S"*, S, and M ;'eX, while the flap damping variation directly
affects only S*and M ;'@‘. The 2™ harmonic of S reduces by around 55%, but large

increases in the 3, 4™ and 5™ harmonics are observed, similar to the results presented previously
in Section 8.2.1. It is interesting to note that even as the 4™ harmonic of S, reduces by 30%

(Table 8.10), the 4™ harmonic of S!'™ is showing a 24% increase (Table 8.11). Clearly, the

loads at the root of the flexbeam (Eg. 2.38) are being cancelled by the loads coming in at the
damper (Eq. 2.39), so that the 4" harmonic of the “total” blade root vertical shear (Eq. 2.40) is

flex

v shows a reduction

reduced. Similarly, the"sharmonic of the flexbeam root lag momekt

of only 38% and the additional lag moment introduced by the damper results in the elimination
of the 4" harmonic of the “total” blade root lag momel\aII,Z , seen in Table 8.10.

Figure 8.15 shows the blade flap, lag, and torsion tip responses over one rotor revolution.
Comparing with the response for the baseline rotor, the cyclic variations in flap and lag damping
do not appear to have had any significant influence. However, the higher harmonic lag damper
loads do in fact introduce higher harmonics in tip lag response, as seen in Table 8.12. The
changes in the tip flap response are much more modest, consistent with the smaller changes in

higher harmonic flap damper loads.
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8.3.2 Effectiveness of flap and lag damping variations at different flight speeds

This section examines the effectiveness of 2/rev and 3/rev flap and lag damping variations for
vibration reduction over a range of flight speeds. Figure 8.16 shows the vibration performance
index, J,, with and without the multi-cyclic damping variations, over forward speeds ranging
from advance ratio of 0.30 to 0.375 (the optimal damping variations are re-calculated at different
flight speeds). The vibration performance index is normalized with respect to the baseline
(uncontrolled) vibrations at an advance ratio of 0.35 given in Table 8.2a, (corresponding to J, =
100). It isseen that as the advance ratio increases from 0.35 to 0.375, the uncontrolled vibration
index increases from 100 to 165. As the advance ratio decreases from 0.35 to 0.30, the
uncontrolled vibration index again increases from 100 to 245, due to the dominant effect of the
rotor wake at the lower speeds. With optimal 2/rev and 3/rev flap and lag damping variations, the
vibration index shows reductions across the advance ratio range. The reductionsin J,, relative to
the uncontrolled case, range from 45% at ¢ = 0.30, to 32% w = 0.325, to 47% at ¢ = 0.35
(nominal flight speed in this study), and to 43% at 1= 0.375. The control effort index, J,, shows
only mild variations over the range of forward speeds considered, despite the large differencesin

the uncontrolled vibration levels.

8.4 Summary on controllable orifice dampers

Using the controllable orifice dampers, it was shown that cyclically varying the damping
coefficient of controllable lag and flap dampers could reduce the 4/rev vibratory hub loads. The
results showed that optimal 2/rev and 3/rev lag damping variations could virtually eliminate the
vibratory hub drag force and yawing moments, and produce small reductions in the vibratory hub
side force without detrimental effect on blade response, damper loads, and blade and flexbeam
root loads. When optimal 2/rev and 3/rev variations in flap damping were introduced in
conjunction with the optimal lag damping variations, 30% reductions in the hub vertical
vibrations were obtained, in addition to the reductions in the vibratory in-plane forces and
yawing moment. Reductionsin hub vibration levels were obtained over arange of forward flight
Speeds.
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Figure 8.1: Optimal lag damping variation over one rotor revolution
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Figure 8.2: Hub vibration reduction due to optimal 2, 3/rev lag damping variation
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Figure 8.3: Lag damper force variation over one rotor revolution (with optimal semi-active lag
damping variation from Table 8.3)
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Figure 8.4: Blade root loads over one rotor revolution (with optimal semi-active lag damping
variation from Table 3), (a) blade root drag shear, S;, and (b) blade root radial shear, S
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Figure 8.5: Flexbeam root loads over one rotor revolution ﬂwith optimal semi-active lag damping
variation from Table 8.3), (a) flexbeam root dracf:? shear, S, and (b) flexbeam root radial shear,
S ex

142



0.040 -

0.020 -

0.000

-0.020 -

-0.040 -

-0.060

Azimuthal Position

Figure 8.6: Blade flap, lag, and torsional tip responses over one rotor revolution (with optimal
semi-active lag damping variation from Table 8.3)
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Figure 8.12: Hub vibration reduction due to optimal 2, 3/rev flap and lag damping variations
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Figure 8.13: Lag damper force variation over one rotor revolution (with optimal semi-active flap
and lag damping variations from Table 8.8)
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Figure 8.14: Flap damper force variation over one rotor revolution (with optimal semi-active flap
and lag damping variations from Table 8.8)
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Figure 8.15: Blade flap, lag, and torsional tip responses over one rotor revolution (with optimal
semi-active flap and lag damping variations from Table 8.8)
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Cuw 8% (1 flap mode)
o e
Controllable Damper Cv 11% (1" lag mode)
Properties Qw, Qy 30°, 20°
Lw, L, 0.2R
&u, & c
Flap 1.147, 3.405, 7.508, 13.60L/rev
BF'f‘deu';i‘i‘g Lag 0.750, 4.372, 11.073, 21.137/rex
™ Torsion 4.590, 13.604/rev

Table 8.1: Discrete controllable damper properties and blade frequencies

Vibratory Hub Loads’
F P 0.5960
F,* 1.3484
P 6.7270
P 31.0628
M,* 45.4364
M, 8.3403

Table 8.2a: 4/rev vibratory hub loads for baseline rotor, no cyclic damping variation

Blade Root Harmonics™
Loads lrev 2lrev 3lrev 4dfrev 5/rev
S 0.0162315 | 0.0013585 | 0.0004744 | 0.0002330 | 0.0001373
S 0.0133722 | 0.0007594 | 0.0000419 | 0.0005449 | 0.0000679
S 0.0043653 | 0.0020158 | 0.0043754 | 0.0017716 | 0.0010215
My 0.0000960 | 0.0000360 | 0.0000087 | 0.0000005 | 0.0000026
Mg 0.0015967 | 0.0007553 | 0.0013771 | 0.0005467 | 0.0002586
M, 0.0040404 | 0.0001995 | 0.0000215| 0.0001496 | 0.0000155

Table 8.2b: Harmonics of blade root loads for baseline rotor, no cyclic damping variation

Flexbeam Harmonics™
Root Loads Urev 2/rev 3lrev 4frev 5/rev
S flex 0.0254709 | 0.0036988 | 0.0069444 | 0.0022150 | 0.0012934
S flex 0.0128488 | 0.0007105 | 0.0001206 | 0.0003878 | 0.0001240
Szﬂex 0.0024654 | 0.0012152 | 0.0015691 | 0.0008342 | 0.0003226
My flex 0.0000960 | 0.0000360 | 0.0000087 | 0.0000005 | 0.0000026
Mg flex 0.0005831 | 0.0003394 | 0.0002595 | 0.0001058 | 0.0000222
M, flex 0.0049912 | 0.0002996 | 0.0000813 | 0.0002735 | 0.0000458

Table 8.2c: Harmonics of flexbeam root loads for baseline rotor, no cyclic damping variation

" All vibratory hub forces arein % of F,° (6016 Ibs.), all vibratory hub moments arein % of M,° (6654 ft-lbs.)
" Root shear are non-dimensionalized by m,Q*R?, root moments are non-dimensionalized by m,Q°R?
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Harmonics'
Damper loads
lrev 2/rev 3lrev 4frev Sirev
LagFgf::rgper 0.0115328 | 0.0009755 | 0.0004394 | 0.0009092 | 0.0002112
H angrir:per 0.0072865 | 0.0056419 | 0.0082052 | 0.0032957 | 0.0014002

Table 8.2d: Harmonics of damper |oads for baseline rotor, no cyclic damping variation

) Harmonics
Tip Responses
lrev 2/rev 3lrev 4frev Sirev
Flap (Wip/R) 0.0137415 | 0.0085815 | 0.0006332 | 0.0009103 | 0.0000420
Lag (vip/R) 0.0196645 | 0.0008083 | 0.0001069 | 0.0001341 | 0.0000135
Torsion (Rad.) | 0.0148971 | 0.0050936 | 0.0014854 | 0.0001077 | 0.0002467

Table 8.2e: Harmonics of blade tip response for baseline rotor, no cyclic damping variation

Inout Amplitude Ph
npu (ACJC) e
0 o
L ag damping 2/rev 29 % 80
variaion | 40, 52 % -165°

Table 8.3: Optimal 2,3/rev lag damping variation (J, = 64.55)

Change in harmonics (% Baseline)

Urev | 2/rev 3rev | 4lrev S/rev
Lag Damper Force -13.48 | 139.98 | 19343 | 85.89| 57.04
Flap Damper Force -003| -424| -3.28 452 | -14.69

Table 8.4: Change in harmonics of damper loads, due to optimal lag damping variation
(from Table 8.3)

" Damper forces are non-dimensionalized by meQ?R?
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Blade Root Change in Harmonics (% Baseline)
Loads Urev 2lrev 3lrev 4lrev 5irev
S -1.89 10.11 -16.43 77.52 -49.01
S -2.49 19.77 154.15 5.03 275.36
S -4.57 1.74 -1.42 8.37 -15.51
M, 0.50 0.00 -5.18 906.67 62.89
Mg -3.72 -0.03 -1.39 7.70 -17.66
M, -4.34 75.85 95.54 -98.05 208.67
Table 8.5: Change in harmonics of blade root |oads, due to optimal lag damping variation
(from Table 8.3)
Flexbeam Change in harmonics (% Baseline)
Root Loads 1Urev 2rev 3lrev 4frev 5/rev
i -6.76 -24.43 -16.05 17.77 -32.11
S 0.55 -51.08| 350.08| 196.39 97.09
S, -20.78 -2.47 -9.27 18.14 -14.35
M, & 0.50 0.00 518|  906.67 62.89
Mg " -22.12 -1.91 -13.33 30.79 -50.67
M -900| 12835 179.35 -10.33 93.14
Table 8.6: Change in harmonics of flexbeam root loads, due to optimal lag damping variation
(from Table 8.3)
_ Change in Harmonics (% Baseline)
Tip Response
Urev 2rev 3lrev Afrev 5/rev
Lag -2.14 43.56 160.53 61.26 97.93
Table 8.7: Change in harmonics of blade tip lag response, due to optimal lag damping variation
(from Table 8.3)
Input Amplitude Phase
Flap damping 2rev | ACy=33%Cuw 7°
variation 3rev ACW =27 %EW 167°
Lag damping 2rev | AC,=26%C, 92°
variation 3rev | AC,=38%C, -163°

Table 8.8: Optimal 2, 3/rev flap and lag damping variations (J, = 52.87)
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Change in harmonics (% Baseline)

lrev 2/rev 3lrev 4frev Slrev
Lag Damper Force -12.33 87.53 | 147.88 30.46 55.56
Flap Damper Force -23.14 | -13.95 -0.27 -852 | -18.61

Table 8.9: Change in harmonics of damper loads, due to optimal flap and lag damping variations

(from Table 8.8)
Blade Root Change in Harmonics (% Baseline)
L.oads Urev 2lrev 3lrev 4frev Sirev
S -0.67 8.88 -14.69 38.76 -32.13
S -1.19 16.21 176.11 -21.87 296.68
S 8.01 -0.60 -6.00 -31.15 -13.21
My 0.69 1.06 -8.75 671.11 21.48
Mg -5.62 -9.51 -2.59 -20.75 -19.29
M, -2.67 58.48 36.80 -99.71 280.45

Table 8.10: Change in harmonics of blade root |oads, due to optimal flap and lag damping
variations (from Table 8.8)

Flexbeam Change in harmonics (% Baseline)

Root Loads Urev 2/rev 3lrev 4frev 5/rev
g Mlex -4.21 -38.39 -10.81 22.92 -33.30
s e 1.64 -54.67 300.32 114.10 54.89
g, Mex 1.73 8.88 -0.06 23.79 8.13
M, 0.69 1.06 -8.75 671.11 21.48
Mg " 10.29 6.04 -1.73 42.25 42.00
M -7.32 9277 | 12837 -37.86 | 128.40

Table 8.11: Change in harmonics of flexbeam root loads, due to optimal flap and lag damping
variations (from Table 8.8)

_ Change in Harmonics (% Baseline)
Tip Response
Urev 2rev 3lrev Afrev 5/rev
Flap 5.64 0.33 10.65 -19.58 -9.90
Lag -0.87 34.45 155.05 21.30 134.52

Table 8.12: Change in harmonics of blade tip flap and lag responses, due to optimal flap and lag
damping variations (from Table 8.8)
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Chapter 9

Semi-Active | solator

The results presented in Chapters 4-8 showed that semi-active controllable stiffness and damping

devices introduced in the rotor system were effective in reducing hub vibration, at the source.

The current chapter examines another possible application of semi-active devices in reducing
helicopter vibration — by introducing these devices in the fixed system, between the rotor hub
and the fuselage (as semi-active isolators), so that the incoming vibratory loads transmitted to the
fuselage are reduced. A simplified single degree of freedom system is used to represent the
semi-active isolation system. The rotor (represented by a lumped mass under harmonic force
excitation) is supported by a spring and a parallel damper on the fuselage (assumed to have
infinite mass). Properties of the spring or damper could then be controlled to reduce
transmission of the force into the fuselage or the support structure. Variations in the properties
(stiffness or damping) of semi-active isolators are calculated ygingen loop(ii) closed-loop,

and (iii) closed-loop adaptive control schemes. Section 9.1 describes the basic configuration of
the isolation system including the semi-active devices. Development of open-loop, closed-loop,
and adaptive controllers are provided in Sections 9.2 and 9.3. Effectiveness of the controllers in
reducing force transmission is examined in Section 9.4 using semi-active controllable stiffness
and damping devices. Section 9.5 summarizes the results for this semi-active isolation

technique.

9.1 System description

The effectiveness of the semi-active controller for vibration reduction is evaluated for a smple
single-degree-of-freedom (SDOF) system shown in Fig. 9.1. The mass, m, supported on a spring
and a parallel damper, is subjected to a harmonic vibratory force, F, at frequency, Q. A
mathematical model of the system with the controllable stiffness and damping devices is

presented in Section 9.1.1 and 9.1.2, respectively.

153



9.1.1 System with controllable stiffness device

A mathematical model of the vibration control system using controllable stiffness device (see
Fig. 9.1a) is developed in this section. Reduction of the support force Fs at frequency Q is
achieved by optimally modulating the stiffness of the semi-active controllable spring. The total
stiffness of the semi-active spring is assumed to varied as follows:

K(t) = K +K,u(t) (9.1)

where K represents the baseline (passive) stiffness, and K u(t) represents the variation in

stiffness due to the command input u. Without any modulation of the stiffness (u = 0), the

baseline spring, K _, in paralel with the damper, Co, provides a passive isolation treatment

between the vibratory force and the support.

The equilibrium equation for the system in Fig. 9.1a, and the corresponding force at the support,

can be expressed as:
mX+C_x+(K_ +Kux=F =F sn(Qt) (9.28)
F, =C_ x+(K_+Ku)x (9.2b)

The bilinear term, ux, which appears in the above equations (such a bilinear term appears in most
semi-active systems), makes it difficult to apply conventional linear control theories.
9.1.2 System with controllable damper

A model representing a vibration control system using a controllable damper (see Fig. 9.1b) is
described in this section. The vibratory support force, Fs, will be reduced through optimal
modulation of the damping coefficient of the controllable damper. It is assumed that the

damping coefficient of the controllable damper can be varied as

Ct)=C, +Cut) (9.3)
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where C_ is the baseline (passive) damping, and C u(t) represents the damping variation due to

command input u. In the absence of any modulation of the damping coefficient (zero command

input, u), the spring, Ko, and the baseline damper, C_, provide passive isolation.

From Fig. 9.1b, the equilibrium equation and the corresponding force at the support, can be

derived as;
mx+(C_+CuJx+K_x=F =F_sin(Qt) (9.49)
F. =(C, +Cux+K_x (9.4b)

In the above equations the bilinear term, ux, complicates the control system design.

9.2 Fundamentalsof Controller Design

This section describes basic components of the semi-active controller. The vibration reduction
controller is derived using an optimal control scheme in the frequency-domain (see Section
9.2.1). Semi-active input saturation is also incorporated by scaling down the input whenever
saturation limits are exceeded (Section 9.2.2). Selection of frequency content of the semi-active
input, which provides vibration reduction, is described in detail in Section 9.2.3. System
identification method, which is the key component of an adaptive controller, is described in
Section 9.2.4.

9.2.1 Optimal semi-active control scheme

For vibration reduction using the semi-active devices (controllable stiffness device or damper),
an optimal controller is developed in the frequency-domain, as an adaptation of an approach
previously used in Ref. 117 for vibration reduction through pure active control. The basic
approach is conceptually similar to that previously presented in Chapter 3, but is repeated here
for the SDOF system; and thereafter extended to account for semi-active device, saturation
concerns, and adaptive control implementation. The vibratory force at the support, Fs, and the
command input, u, are expressed in the frequency-domain (as cosine and sine components of

specified harmonics), and are denoted as z and uc, respectively (defined later in Section 9.2.3).
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The harmonics of u; are carefully selected to regect the incoming vibration at frequency Q
(details provided in Section 9.2.3). The control algorithm is based on the minimization of a
guadratic objective function, J, defined as:

— 5T T
J=zWz+u_ W,u_ (9.5)

In Eq. 9.5, W, and W, represent penalty weighting corresponding to the vibratory force at the

support, z, and the input, uc, respectively.

Due to the hilinear terms (see Eq. 9.2 or Eq. 9.4), the relationship between the input, u;, and the
support vibration, z, isnot linear. However, it is assumed that the vibrations, z, are related to the

frequency-domain inputs, uc, as follows:
z=z +Tu, (9.6)

where T is the system transfer matrix, and z, represents the baseline support vibration levels
without the input, uc.. The transfer matrix, T, can be calculated using both off-line and on-line
approaches (detailed discussion is presented in Section 9.2.4). A gradient-based method is used
to minimize J and determine the optimal inputs, u.. By substituting Eg. 9.5 into Eg. 9.6 and
setting dJ/ du. = 0, the resulting optimal input may be obtained as:

u =Tz (9.79)
T=—{rwT+w, ) Tw, (9.7b)

A Frequency-to-Time domain conversion (F/T) unit is used to obtain the optimal time-domain

input, u(t), corresponding to the frequency-domain input, u. (see Fig. 9.2)

9.2.2 Semi-active device saturation consideration

To ensure that maximum or minimum values of physically achievable device properties
(stiffness or damping coefficient) are not exceeded, the input, uc, will be modified if necessary.
The semi-active controllable stiffness device has a baseline stiffness of Ko, and it is assumed that

the maximum and minimum physically achievable values of stiffnessare K_ + K, and K -K_,
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respectively. Similarly, the semi-active controllable damper, which has a baseline damping

coefficient, C_, is assumed to vary between the maximum and minimum physically achievable
values of damping coefficient of C_ +C, and C_ - C,, respectively. Typicaly, the terms C,
andK, could be expressed in term of fraction of K~ and C_, and in this chapter they are
assumed to be asfollows:

K, =0.7K, (9.89)
C, =0.75C, (9.80)

From Egs. 9.1 and 9.8a (for controllable stiffness device) and Egs 9.3 and 9.8b (for controllable
damper), it can be deduced that the range of the nondimensional semi-active input u(t) is:

~1<u<l (9.9)

The amplitude of optima frequency-domain input, u__ , is determined after uc is determined
using Eq. 9.7, and if |u__ | exceeds the maximum permissible value (of unity), then the semi-

active input, uc, will be “scaled down” as follows:

Uo =—¢ (9.10)

However, with such a scaling-down there is a question regarding the optimality of the input

signal. Alternately, the input can be reduced by increasing the input penalty Wéjght,

9.2.3 Frequency content of the semi-active input

In order to reduce vibration at frequendy,, higher harmonic semi-active inputs are required.

This is different from a fully active system where the control input,would simply consist of

cosine and sine components at the disturbance frequ@ncwhich would essentially minimize
the support vibrationsz, at Q. However, for a semi-active controller input @t (producing
stiffness or damping variation &), it is seen from Egs. 9.2 and 9.4 that the resulting primary or
dominant semi-active force would be & 2 due to the bilinear termsx and ux. Thus, there

could be no vibration reduction @, and additionally support vibrations would now be
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introduced at 2Q . Instead, a semi-active controller input (stiffness or damping modulation) at
2Q would directly result in semi-active forces (proportional to ux and ux) at Q and 3Q, with
the component at Q then canceling the incoming vibration. Thus, for the present system the

semi-active input, u_, and output, z (used in minimization of objective function, J, Eq. 9.5), are

selected as:
T
u_= [u 20c UZQS] (9.11a)
z= [F *°F QS] ' (9.11b)
S S

In the above equations, the superscripts “c” and “s” represents cosine and sine components,
respectively, at frequencieQ or 2Q. It should be noted that while the selected inputs will
reduce the incoming disturbanceQ@t the support will now experience additional forces @t. 3

These could in principle be reduced by expandingto include these components and

introducing additional harmonics in the input.

9.2.4 I dentification of the system transfer matrix, T

The system transfer matriX, (defined in Eqg. 9.6), can be identified using both off-line and on-
line approaches. Off-line identification of tHematrix is achieved by perturbation of individual

component of the input. The first column off matrix, which corresponds to the first input of

U, is obtained by setting the first inpuf“ to a non-zero value (while the other inuf* is set

to zero), and the column is calculated as:

o z-z
=— (9.12)
uC

moOd

Ei
D:
mE
Eln

?Qs

This process is repeated fof*~to obtain the second column of thenatrix.

For the on-line identification of th€ matrix, an initial estimate is obtained using the batch least

square method [119], and it is updated using the recursive least square method (with variable

forgetting factors) [120]. The on-line batch least square method yields an initial estimate of the
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T matrix from an array of inputs, uc, and corresponding vibration measurements, z, at m+1 time

steps, as follows:

T=z0" (007" (9.13)
®=lu(k) u (k-1 - u_(k-m)
Z=[z(k) z(k-1) - z(k-m)

where u_(k)and z(k) represents the input and the corresponding vibration level at the k™ time

step. It should be noted that the number of time steps used has to be greater than or equal to the
number of parameters to be identified, which is equal to 4 in this case (T is a2x2 matrix). Inthis
chapter, the number of time steps used for the batch least square identification is 5 time steps

with each time step covering an interval of six disturbance cyclesto avoid transient response.

An on-line recursive least square method is implemented for introducing updates to the T matrix.
A variable forgetting factor, A, is used to prevent parameter estimation ‘blow-up’, which can
occur when the estimation is running continuously for a long time without any change in

parameters being estimated. The recursive least square identification is summarized as follows:
T(k) =T(k-2) +&(k)K (k) (9.14)
£(kK) = z(k) = T(k =Du_(k)
K (k) = [l +u " (k)P(k —1)uc(k)]_1uCT (K)P(k -1)

P-1)[
0 [l -u (K )]

P(K) =

]
Ak =1-[1- K(k)uc(k)]M

o

where 2, was chosen to be 0.0025, and lower limitAoivas set at 0.15. Updates T¢k) are

carried out at every time step with each time step covering an interval of four disturbance cycles.
It should be noted that the recursive least square method uses shorter time steps than the batch
least square identification. The shorter time step is introduced to expedite the rate of adaptation

of the adaptive controller.
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9.3 Semi-active controller schemes

Using the fundamental components presented in Section 9.2, this section explains how those
components are linked together in different types of controllers (open-loop, closed-loop, and

closed-loop adaptive).

9.3.1 Open-loop controller

An open-loop control scheme can in principle be effective for vibration reduction if the
excitation force and the system are not changing with time. In such a situation, the optimal

control input in the frequency-domain, u_, is based only on the baseline (uncontrolled) support
vibration levels, z_, as seen in Eq. 9.7, (and not on any measurements of “current” vibration
levels). Once the uncontrolled support vibratiap, is determined, and the transfer matfixjs

obtained using the off-line identification, the open-loop control scheme can be implemented
following a block diagram shown in Fig. 9.3. Input scaling is introduced to ensure that the semi-

active input is well within physical limits.

9.3.2 Closed-loop controller

If the excitation force changes during the course of operation, an open-loop algorithm is in
general no longer suitable and a closed-loop algorithm has to be employed instead. Using an
approach adapted from Ref. 121, previously applied to the active vibration reduction problem,
the closed-loop control scheme for the present semi-active vibration reduction problem is
implemented in the discrete-time domain. The idea is to calculate adjustments inAaput,

based on “current” support vibration levegk), such that vibration levels in the next time step

are minimized. In such a case,

Au_(k) =Tz(k) (9.15)

with T identical to that in Eq. 9.7, and tfiematrix identified off-line, a priori. The total semi-

active input is then expressed as

u (k) =u_(k -1 +Au_(K) (9.16)
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The block diagram corresponding to such a closed-loop control scheme is shown in Fig. 9.4.

Updates to the inputs, Au_ (k) , are carried out at intervals of every two disturbance cycles, based

on calculated support vibration levels, z(k), at these times.

9.3.3 Closed-loop adaptive controller

In addition to basing control inputs on currently measured vibration levels to allow for variations
in excitation force, the system transfer matrix, T, would require identification and updating on-
line if the system is undergoing changes (making it a closed-loop adaptive control scheme).
However, the current semi-active system is non-linear (bi-linear), and the results in sections 9.4.3
and 9.4.4 will show that on-line identification of the transfer matrix is required for effective
vibration reduction even when the system properties are not changing (and only the disturbance
changes) during operation. A detailed explanation of this phenomenon is provided in section
9.4.4. The closed-loop adaptive control algorithm is simply the closed-loop scheme described in
the previous section with the controller gain, T (in Egs. 9.7 and 9.15), updated using on-line
identification of the transfer matrix, T, (as described earlier in Section 9.2.4). The block diagram
for this closed-loop adaptive controller is shownin Fig. 9.5.

9.4 Effectiveness of semi-active controllersfor vibration reduction

Numerical simulations are carried out to evaluate the effectiveness of semi-active controllers
(using either a controllable stiffness device or a controllable damper) for reducing force
transmitted to the support structure due to harmonic excitation. The system parameters used in
the smulations are given in Table 9.1. Without any semi-active input, Section 9.4.1 presents the
baseline vibration produced by passive isolation characteristics of the system. Additional
vibration reduction achieved using open-loop, closed-loop, and closed-loop adaptive controllers
are presented in Section 9.4.2-9.4.4, respectively. The effect of change in excitation force on

controller performance is evaluated and compared for all types of controllers.

9.4.1 Baseline System

The baseline support force, F_ (z, in the frequency domain), due to a disturbance force,

F,sin(Qt) , isfirst calculated in the absence of any semi-active input (see Figs. 9.6). From Fig.
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9.6b, the amplitude of the support force is seen to be 41% of the excitation force, this attenuation

being due to the passive isolation characteristics of K ~and C_ in paralel. In the following

simulations, further reductions in the support vibrations due to semi-active modulation in

stiffness or damping are compared to this baseline vibration level (due to pure passive isolation).

9.4.2 Vibration reduction using open-loop controller

In this section, additional reductions in the vibration transmitted to the support are examined
when an open-loop control scheme is used with controllable stiffness device and controllable

damper.

9.4.2.1 Controllable stiffness device

The effectiveness of the open-loop controller for vibration reduction using controllable stiffness
device is evaluated in this section. The semi-active inputs are calculated using Eq. 9.7, which
specifies stiffness modulation required to minimize the support vibration at frequency Q. The
first set of simulations used a penalty weighting of W, =1 (identity matrix), and W, = 0. For the

mathematically optimal inputs determined directly from Eq. 9.7 (no “scaling down”)u??=

1.8186 andu®?® = -2.1271, Fig. 9.7 shows the frequency content of the steady state vibrations
transmitted to the support. Although the amplitude of the support force at the disturbance
frequency,Q, is seen to be reduced to 9% of the excitation force amplitude (compared to 41% in
the absence of any stiffness modulations), a higher harmonic componefl #wish an
amplitude of 26% of the excitation force) is now observed. This, of course, is expected due to
the Kixu term as discussed in Section 9.2.3. From this perspective, some of the disturbance
energy can effectively be thought of as being transferred to higher harmonics. This may be
advantageous in certain conditions when it is important to avoid specific frequencies due to
resonances, or to exploit the improved effectiveness of viscous and viscoelastic damping

mechanisms at higher frequencies. However, it should be noted that the amplitude of the control

. 2 2 . . . ..
input, ‘um‘ =\/(UZQC) +(u29‘°‘) , exceeds unity, so the condition on the maximum permissible

input, specified in Eq. 9.9, is violated. For the system considered, it is clear that the
mathematically optimal control input, or stiffness variation, is not practically realizable. Since

the stiffness variations required are larger than those that can be physically achieved by
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modulations of the variable stiffness device, it implies that to achieve the levels of disturbance
rgjection at Q seen in Fig. 9.7, energy input would be actually required, and the system would

no longer be semi-active.

In the next set of simulations, the control inputs were “scaled down” (as described in Section

9.2.2), so that the stiffness variation input$¢= 0.6498 andu®**® = -0.7601) never exceeded
the maximum permissible values. In this case, Fig. 9.8 shows that the amplitude of the
transmitted force at the disturbance frequemy,is 28% of the disturbance force amplitude.
Compared to a corresponding value of 41% in the absence of stiffness variation (recall Fig.
9.6b), this represents an additional 32% reduction in transmitted vibration over that achieved due
to the pure passive isolation characteristics. The amplitude of the higher harmonic component at

3Q is now 10% of the disturbance force amplitude.

Figure 9.9 shows the force transmitted to the support (both at the disturbance frequeasy,
well as the higher harmonic component & )3 corresponding to different amplitudes of control

input, u_. Vibration levels corresponding to control inputs greater than unity represent only a

mathematical solution not practically achievable by the variable stiffness device. In f#.cct‘, for

> 1.43, the total stiffness would actually megjative over parts of the cycle. Since energy input

would be required to realize the solutions correspondidgct@ 1, this region has been marked

as “active” on Fig. 9.9. Examining the support vibrations corresponding to different “semi-
active” stiffness variation inputs, it can be observed that as the control input increases, the
support force at the excitation frequency decreases linearly (producing up to an additional 32%
reduction over the passive isolation case for the present system), and)theorBponent
increases linearly. The control input levels were varied using two different meth@dthe
“scaling down” approach; angi) using different values of the input penalty weightiig,

(which produces an optimal solution). Since the results produced by both methods were
identical, it is concluded that the “scaling down” approach, also, essentially provides optimal
inputs when considering physical limits in stiffness variation. Since scaling-down is simple and

convenient, it is used in all subsequent simulations.
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9.4.2.2 Controllable damper

This section presents vibration reduction achieved using an open-loop control scheme with

controllable damper for vibration reduction. The optimal damping variation determined using

Eqg. 9.7 is u?*=-2.4527 and u®?* = -2.1057. Since the required damping variation exceed
alowable limit (Ju] > 1), input scaling is employed to adjust the semi-active input. With the
scaled down semi-active input, Fig. 9.10 shows the steady-state support force (both the Q and
3Q components) corresponding to various level of semi-active damping variation inputs. Asthe
semi-active damping variation input increases, the support force at the excitation frequency
decreases linearly producing up to 29% reduction over the passive case. As expected the 3Q

component of the support force increases as the semi-active damping variation input increases.

The vibration reduction achieved using semi-active damping variation is comparable to that
obtained using semi-active stiffness variation (see Section 9.4.2.1). The achievable reduction is
roughly 30% over the passive case using maximum alowable stiffness and damping variations
presented in Eqg. 9.8. For increasing semi-active authority, the achievable vibration reduction is

increased, and vice versa

9.4.3 Vibration reduction using closed-loop controller

Benefits to using a closed-loop controller are expected when the disturbance changes during
operation. In this section, the performance of both open-loop as well as closed-loop controllers
are examined when the disturbance phase changes during the simulation. For the closed-loop
controller, the semi-active control inputs (stiffness or damping variations) are updated based on
Egs. 9.15 and 9.16 at intervals of every two disturbance cycles. The change in disturbance

phase, ¢, isintroduced at t = 101ts, as described below:

0 F sin(Qt) 0<t<10m

P = , SN(Qt+9) t=10m7

(9.17)

The influence of this change in excitation force on performance of the closed-loop controller is
evaluated using both a controllable stiffness device and a controllable damper.
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9.4.3.1 Closed-loop controller with controllable stiffness device

This section examines effectiveness of the controllable stiffness device in reducing vibration
when there are changes in excitation force. For a phase change of ¢ = 45° (Eq. 9.17), Fig. 9.11
shows the time history of the excitation force, as well as the force transmitted to the support,
when the closed-loop controller is operational. It is seen that even after the change in
disturbance phase occurs, the closed-loop controller is once again able to reduce the support
vibration levels, in a short duration. Figure 9.12 shows the amplitude of the support force at the
disturbance frequency, Q, using both open- and closed-loop controllers. As expected the open-
loop controller is no longer effective in reducing vibration after the phase of excitation force
changes (since the control inputs, which are based only on the initial vibration levels, become
non-optimal after the phase of excitation force, and therefore the phase of the support vibrations,
changes). However, with the closed-loop controller, after a transition period, the vibration

transmitted to the support is once again reduced. When a phase change of ¢ = 90° isintroduced,

Fig. 9.13 once again shows that the closed-loop controller performs better than the open-loop

controller. For the 45° change in phase angle, the closed-loop control inputs (stiffness variation)
are changed to U= -0.3097 and u**® = -0.9508, and the corresponding inputs for the 90°
phase change are U= -0.9265 and u** = -0.3762. It should be noted that although the

closed-loop controller is more effective than the open-loop controller, the steady state vibration
levels transmitted to the support are not as low as those prior to change in disturbance phase (as

would have been expected if an active force-generator type actuator had been used).

Figure 9.14 shows the steady-state support vibrations at the disturbance frequency, Q, as a
function of phase change (varying between -90° and 90°). It is observed that as the phase change
increases, the effectiveness of the open-loop control scheme is degraded significantly, to the
extent that the support vibration levels are larger than those for the uncontrolled case when the
phase change exceeds +40°.  Performance degradation is also observed for the closed-loop
scheme, but is milder. The reason that the closed-loop controller is not able to track phase
changes perfectly (as would have been expected if an active force-generator type actuator) can be
explained asfollows: For apure active controller, the control force can be written as Au (where

A is some constant coefficient). When the disturbance phase changes during operation, the phase
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of the response and the support vibrations will correspondingly change, and since the input, u, is
based on the current support vibrations, its phase is appropriately adjusted and comparable

reductions in vibration are obtained. For the semi-active controller, the control force is leu.

Thus, when the closed-loop controller adjusts the input u proportional to the change in phase of

the response (and the support vibration levels), the bi-linear semi-active force generated, K, xu,

isno longer simply proportional to this change in response phase. This suggests that an adaptive
controller (recalculating the system transfer matrix, T, online) may be required for the semi-
active vibration reduction if the excitation force is likely to change during operation, even when

the system parameters are unchanged.

9.4.3.2 Closed-loop controller with controllable damper

The effectiveness of the controllable damper in reducing vibration is evaluated when the phase of
excitation force changes during simulation (Eg. 9.17). Figure 9.15 shows the steady state
support force after the change in excitation phase, as a function of excitation phase change. The
results are very similar to those obtained for a controllable stiffness device. The performance of
the open-loop controller is again degraded considerably (the vibration is above passive level) for
phase changes over +40°. For the closed-loop control scheme, a mild degradation in
performance is observed when the phase changes between +90°. The reason for the performance
deterioration presented in Section 9.4.3.1 is also applicable for the case of the controllable
damper. Once again, this suggests the necessity of using an adaptive control scheme when the
excitation force can change.

9.4.4 Closed-L oop Adaptive Control Scheme

The effectiveness of the closed-loop adaptive controller with controllable stiffness device is
evaluated in this section when the disturbance phase changes during operation. Online
identification of the transfer matrix, T, using batch least square approach (Eq. 9.13) for initial
estimates and recursive least square identification (Eq. 9.14), for updates is carried out, as
described in section 9.2.4. For the present simulations, updates of the transfer matrix (in the
recursive least squares approach) were carried out every four disturbance cycles. The

disturbance phase changes as described in Eqg. 9.17, except that it is introduced at t = 321t s
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(instead of 101ts). The first 241t seconds is used for batch least square identification of the T

matrix by inputting a sequence of small input signals, at the end of which period the controller is
switched on. Figures 9.16 and 9.17, respectively, show the variation of the support force
amplitude at the disturbance frequency, Q, for disturbance phase changes of 45° and 90°. It is

seen from both figures that when the adaptive controller is operational, after a transition period,

the support vibration levels are reduced to those prior to the change in disturbance phase (unlike

the “non-adaptive” closed-loop controller that did not retain its effectiveness; recall Figs. 9.11-
13).

Figure 9.18 shows the steady-state support vibrations at the excitation freq@en@s a
function of phase change (varying betweer?-&d 90). It is observed that even as there is an
increase in disturbance phase change, unlike the open- and closed-loop controllers, the closed-
loop adaptive controller completely retains its effectiveness in reducing support vibrations.
Thus, for a semi-active (bi-linear) system, a closed-loop adaptive controller (continuous on-line
identification of system transfer matrix) is required even when there is only a disturbance
change, and not a “direct” change in system properties. Although, it could be said that for a non-
linear semi-active system, the “system”, as such, is dependent on the excitation, so a change in

the disturbance changes the system itself.

9.5 Summary of semi-activeisolator

The results in this chapter demonstrated that the semi-active isolation system was effective in
reducing vibration of a single degree of freedom system. The vibration reduction controller

could be applied to use with both a controllable stiffness device and a controllable damper. The
effectiveness of open-loop, closed-loop, and adaptive controllers in reducing the transmitted
force was evaluated and compared. The results of the study indicated that for physically
achievable stiffness and damping coefficient variations, the support force could be reduced by
about an additional 30%, beyond the levels due to the passive isolation characteristics (no
stiffness/damping variations), but higher harmonic loads were generated. When the phase of
excitation force changed during the simulation, the effectiveness of the open-loop controller

rapidly degraded. While the closed-loop controller (with inputs based on current support

vibration levels) performed better, there was still some degradation in performance, and support
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vibrations were not reduced to levels prior to the phase change. The results showed that for the
semi-active isolation system to retain its effectiveness in rejecting disturbances, a closed-loop,
adaptive controller (with on-line system identification) is required; even when there is only a

change in disturbance, and no change in basic system properties.
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Figure 9.1: Schematics of single-degree-of-freedom system for vibration reduction using (a)
semi-active controllable stiffness device, and (b) controllable damper
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Figure 9.3: Block diagram of open-loop control system
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Figure 9.4: Block diagram of closed-loop control system
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Figure 9.5: Block diagram of closed-loop adaptive control system
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Figure 9.6: (a) Time history and (b) corresponding frequency content of disturbance force, F, and

support force, Fs, of the baseline uncontrolled system
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Figure 9.7: Frequency content of disturbance force, F, and support force, Fs, due to optimal
stiffness variation input (no input limits)
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Figure 9.8: Frequency content of disturbance force, F, and support force, Fs, due to optimal
semi-active stiffness variation (input “scaled-down”)
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Figure 9.11: Time history of disturbance force, F, and support force, Fs, for closed-loop
controller with controllable stiffness device, with change in phase of excitation force (= 45°)
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Figure 9.12: Amplitude of support force, Fs, at disturbance frequency, Q, for open-loop and
closed-loop controller with controllable stiffness device, with change in phase of excitation force
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Figure 9.13: Amplitude of support force, Fs, at excitation frequency, Q, for open-loop and
closed-loop controllers with controllable stiffness device, with change in phase of excitation
force (= 90°)
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Figure 9.17: Amplitude of support force, F, at excitation frequency, Q, for closed-loop adaptive
controller using controllable stiffness device, with change in phase of excitation force (¢= 90°)
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Parameter Vaue
m 1
Co/m 0.4
Ko/m 1
K1/ Ko 0.7
Ci Co 0.75
Fo/m 1
Q 2rad/s
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Table 9.1: Numerical values of system parameters for single degree of freedom system




Chapter 10

Concluding Remar ks and Recommendations

The results presented in this dissertation showed viability of using semi-active concepts for
helicopter vibration reduction. Semi-active devices, controllable stiffness devices or controllable
orifice dampers, were introduced; (i) in the blade root region (rotor-based concept) and (ii)
conceptually, between the rotor and the fuselage as semi-active isolators (in non-rotating frame).
The corresponding semi-active controllers for vibration reduction were also developed and
evaluated. This fina chapter presents major concluding remarks from this dissertation and

recommendations for future work.

10.1 Concluding remarks

The initial phase of this research focused on examining whether hub vibration could be
influenced by modulating the stiffness of the blade in the root region. This sensitivity study was
conducted for a 4 bladed hingeless rotor helicopter in moderate- to high-speed flight. It was
observed that the hub vibration could be modified using specific harmonic variations in root
element stiffness (flap, lag, and torsion). With proper harmonics, amplitudes, and phase angles,
flap stiffness variation could produce significant reduction in vibratory hub pitching and rolling
moments and all vibratory hub forces, while lag stiffness variation could reduce vibratory hub
yawing moment and all vibratory hub forces considerably. Torsion stiffness variation, on the
other hand, could produce only modest reductions in vibratory hub vertical force. It was noted
that the stiffness variations could actually create vibration, instead of reducing it, if the amplitude
was larger than an optimal value. For a single harmonic stiffness variation input (even with
proper phase and amplitude), it could produce only vibration reduction in some components of
hub vibration, not all components simultaneously, and other components of hub vibration might

even increase. The vibration reductions were achieved by one of two mechanisms, (i) reduction
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in magnitude and (ii) change in relative phase, of blade root load components contributing to hub

vibrations.

Since the sensitivity study showed that single harmonic stiffness variation did not produce
simultaneous reduction in all components of vibratory hub loads, the effort shifted toward
introducing multi-harmonic stiffness variations to simultaneously reduce all vibratory hub loads.
To calculate the proper (optimal) multi-harmonic variation in root element stiffness, an optimal
semi-active control scheme was developed using gradient based and non-gradient based
optimizations. The effectiveness of this control scheme to calculate semi-active input (root
element stiffness variations) that could produce simultaneous reduction in al components of hub
vibration was evaluated. Using a multi-cyclic stiffness variation (2/rev and 3/rev for both flap
and lag stiffness variations), the developed control scheme could produce significant reduction in
all components of hub vibration, which resulted in a 90% reduction in hub vibration index.
Despite the effectiveness of this multi-cyclic stiffness variation of the root element, the only
practical way to realize it would be through the introduction of discrete controllable stiffness
devicesin the blade root region.

The discrete controllable stiffness devices were introduced in the blade root region to modify
effective root stiffness of the blade for vibration reduction. These devices were mathematically
modeled using controllable springs (trandational and rotational). Two separate spring models
were considered; (i) dual spring model and (ii) single spring model. The single spring model
could be used to represent the controllable stiffness devices more accurately than the dual spring
model, since the single spring model could reflect coupling effect between translational and
rotational springs. The effectiveness of these discrete controllable stiffness devices was
examined using, first, the dual spring model. The multi-cyclic stiffness variations of the flap and
lag controllable stiffness devices (2/rev and 3/rev) could produce significant reduction in all
components of hub vibration (55-75%). Next, the single spring model was used to represent the
discrete controllable stiffness devices (free wake analysis was used to calculated rotor inflow in
this case). Significant reductions in vibratory hub forces were still achieved, athough the
reduction in vibration index was smaller, because of the increased baseline hub vibrations
associated with the inclusion of the rotor wake. Additional results demonstrated that there were

no detrimental effects of the discrete controllable stiffness devices on lower harmonics of blade
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root loads, and the devices were effective in reducing hub vibration over a range of cruise speeds
and for variations in fundamental rotor properties. Even though, the discrete controllable
stiffness devices were effective in reducing hub vibration, availability of the devices is limited
and the amount of stiffness variation might not be sufficient to produce satisfactory results. Thus,
an alternative was considered - using discrete controllable dampers, which were commonly

available and whose damping properties could be varied significantly.

The controllable flap and lag dampers were introduced in the blade root region for vibration
reduction. The effectiveness of the controllable dampers was examined in high-speed flights,
using rotor inflow calculated from free wake analysis. A reduced order controllable damper
model was developed and validated with a fluid dynamic model. The reduced order damper
model was then included in rotor blade analysis, and the damper force was determined using
damper mounting kinematics. The inclusion of these dampers created multiple paths for
transferring loads to the rotor hub. However, direct contributions from damper loads were
canceled out. The effect of the dampers was to modify blade response and thus blade loads
(which were dependent on the blade response). Hub vibrations, particularly the vibratory hub
drag force and yawing moment, were reduced significantly using the controllable lag damper
(2/rev and 3/rev), and the addition of controllable flap damper could produce an additional 30%
reduction in hub vertical vibration. No detrimental effects on lower harmonics of blade response,
damper loads, and blade and flexbeam root |oads were noted. In addition, the vibration reduction

was achieved over arange of forward speeds.

It was demonstrated so far that the semi-active devices (controllable stiffness devices or
controllable dampers) introduced in the rotor system were effective in reducing hub vibration.
As an dternative, these devices could be introduced in the fixed system, conceptualy, between
the hub and the fuselage as semi-active isolators, that reduced vibratory loads transmitted to the
fuselage.

The effectiveness of the semi-active isolators was examined using a simplified single degree of
freedom isolation system. A lumped mass (representing the rotor under harmonic force
excitation) was supported by a spring and a parallel damper on a fixed support (representing the

fuselage). Properties of the spring or damper could then be controlled to reduce transmission of
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the vibratory force into the support structure (or fuselage). Variations in the properties (stiffness
or damping) of semi-active isolators were calculated using; (i) open loop, (ii) closed-loop, and
(iii) closed-loop adaptive control schemes. Using the semi-active isolation concept, the vibratory
support force could be reduced by 30%, beyond the levels achieved using passive isolation (no
stiffness’Tdamping variations), but higher harmonic loads were generated. It was also shown that
a closed-loop adaptive control scheme was required to maintain isolation effectiveness if the

phase of excitation force was changed.

10.2 Recommendations for futurework

Despite this comprehensive study on semi-active helicopter vibration reduction using
controllable stiffness and damping concepts, further investigation on these semi-active concepts
can be conducted. Suggestions for further investigation on these semi-active concepts are
described below;

The adaptive vibration reduction control scheme (developed for the semi-active isolation system)
can also be applied to the rotor-based semi-active vibration reduction concept. No modification
on the controller structure and its components is needed. The effectiveness of the adaptive
controller should be evaluated for various flight conditions, such as for different cruise speeds or

payloads.

The rotor-based semi-active concept should also be applied to articulated rotors. More vibration
reduction is possible since blade deformation (which produces semi-active force) in articulated
rotor blades is generally more than that in hingeless rotor blades. Similar semi-active devices
and controllers can also be used for the articulated rotors.

A comprehensive analysis of the semi-active isolator concept should be conducted using detailed
fuselage structure. This will include the influence of fuselage dynamic response into
consideration. The effectiveness of the semi-active isolator should be examined for various
flight speeds, rotor RPM, payloads, and C.G. offsets. This future research is quite complicated,
since it involves detailed analysis of fuselage, which can be represented by a complex finite
element model (100,000 nodes or more). The semi-active isolation system may be designed as

an integrated unit to mount the rotor/transmission assembly to the fuselage.
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An improvement can be made to the adaptive controller for semi-active vibration reduction to
cope with possible variation in rotor RPM. A frequency identification scheme will be required in
this research to determine the frequency of the rotor. Once the rotor RPM isidentified, it will be
used in the adaptive controller to produce harmonic inputs to the semi-active devices at

appropriate frequencies.

Before the semi-active vibration reduction concepts can be applied to any production helicopters,
stability and failure analysis of the semi-active vibration reduction systems must be conducted.
Stability of the vibration control system may be determined using for example Floguet theory. In
the event of any failure (such as, controller failure, power shortage, and jammed orifice valve), it
iscrucia to evaluate whether the helicopter still can be operated safely.

Experimental verifications of these semi-active concepts are also necessary to reaffirm (or to
disprove) the effectiveness of the concepts. Experimenta setup of semi-active isolator system is
simpler to build and evaluate, since it involves only single degree of freedom system with a
controllable damper or a controllable stiffness device. To show the effectiveness of the rotor-
based semi-active vibration reduction system, it requires that the tests be conducted in a wind

tunnel.
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Appendix A

L oads on Helicopter Fuselage

A.l Loadsfrom fuselage

The fuselage itself can generate both inertial and aerodynamic loads on the helicopter. The
inertial contribution of fuselage load is only the weight of the helicopter, since the helicopter is
assumed to be in level flight for al instants (see Fig. 2.1). The aerodynamic contribution of

fuselage loads is given below as functions of advanceratio, /.

N
D =2/~ 1

" “6ac A

_ N )
Y. =—C

"~ eag H

_ N )
M, =—C A.l
= bag O™ H (A1)

where, iA is fuselage equivalent flat plat area (A is disk area, 7R?), C,; is fuselage side force

coefficient, C,; is fuselage rolling moment coefficient, C . is fuselage pitching moment
coefficient, and C,_ isfuselage yawing moment coefficient.

A.2 Lift from horizontal tail

Lift produced by the horizontal tail is calculated using smple lifting line theory as follows;
1
Lht = E ,OV ZSnt au,a (A.Z)

Where S, a,, and V, are horizontal tail area, lift curve slope, and free stream velocity

respectively.
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A.3 Thrust from tail rotor

Thrust produce by the tail rotor T, can be calculated as follows;

32
Ttr - Ntr PC, 8, Rterr %tr % +/Jt$ E_Atr E (A3)

4

Thetail rotor inflow, Ay, can be estimated by solving Eq. A.4, iteratively using Newton’s method
for nonlinear equations.

2
/\tr — Ntr Cy aTerr %ﬂ B@ + /th B_/\tr E (A4)
Ap+py 088 D
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Appendix B

Elemental Structural Matricesand Load Vector

B.1 Elemental structural mass matrix

The structural mass matrix of thei™ element can be expressed as

M,, M, MWPD
O
[M]i:%ﬂwv Mww Mv<pD (B-l)
E\AW M ou Mw%
where M,,] :IolmHTHds
[M o] = mHTHds
[M 5] = ok °H, TH s
[Mv(p]:[M(W]T :J’;megsineoHTHEpds
M Wq,] = [M(M]T :J';meg cos8H "H .ds
M ]=[M,.]=0
02s*-3s?+1 O
o259
0-25°+3° [
5 (8- H
[Ps? —3s+10
ngT =E-452+4SE
[l 232_3 [l
O O
B.2 Elemental structural stiffness matrix
The structural stiffness matrix of the i element can be written as
Ky Kuw Kyt
H
[K]i :a(wv KWW chpD (B-Z)
Eﬂw K gw Kw%
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where

[Ko]= [RaH THds+ [E1, Sin? B, + E1, cos” 8, JH'THYds— [fmQ?HT Hals
[Ku] = (R HTH s+ [(E1, sin? 6, + E1, cos? 8,4 TH'ds
Kol = I;mQZ(kmzz - kmlz)COSZOOHEpTHEpdS+ J';(GJ— EBleg,z)ngTngds
+ [EC;H!THds
[qu,]: [K(W]T :J';szegsineoHTngds—J';mezegsineoH’THEpds
- [,EB8 cosB,H" THEds — [ EC, sinBH"THYds
[KW@]:[K(M]T :J';meZeg cosBH'"H, ds
—J’;EBZG’O sinGOH"TH’{pds+‘[;EC2 coseoH"TH'é)ds
(K] =[K]" = [ (E1, ~E1, )sing, cos6H T H"ds
Fa =ijxd€

B.3 Elemental structural damping matrix

The structural damping matrix of the i element is defined as

where

[va va qu) O
O
[C]i = %:WV wa Cvch (B-?’)

Epw o Cw%

[CW]:EZmegQcoseoH’THds—J'SZmegQcoseoHTH’ds
[Cou] = ~[;2mQB,HHds - [ 2me, QsinB,HTH'ds

[Con]=-[Cu]
[CcpcpJ =[Co] = lCmNJ = levcp] = lchJ = lecp] =0

B.4 Elemental structural force vector

The structural load vector of thei™ element is given as

|
al

v

.

I I

{F}i =

(B.4)

w

[
el
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where {F} :J';m(QZeg cos6, +6,e, Sineo)HTdS—I;szeg c0s0,xH' Tds
¥ Jj[(Elz ~E1, \psin28, - (E1, - E1, w"pcos28, H"Tds

+J’$2m0§(v'\'/’ + W'W')dE)HTdS—J'SZV'h’im\'/dE)H'Tds
{F,}= —J’Sméoeg coseoHTds—J';szeg sinB,xH'Tds
—J’;[(EIZ ~El, w"psin28, + (El, - E|y)v"€pcoszeo]H"Tds
- [GIHV"H Tds- J’SZW’b;Lm\'/dE)H'Tds
{F(p} = —J’Smkmzéo + mQZ(ka2 - kmlz)sine0 coseonpTds
‘I;(EIZ - Ely)w"zsineo cosf, + (EIZ - Ely)v"w" COSZGOH;pTds
+J’;(E|z —El y)v"2 sing, cosGOHszds—I;GJW'v"H’{pTds
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Appendix C

Rotor Inflow Models

C.1lLinear inflow moded

In this inflow model, the rotor inflow is assumed to vary as a function of radial location, x, and

azimuthal position, ¢, as

A=A +A xcosy +A xsing (C.)
where

A

C
= T _Z,U
1s 2')02'*'/,12( )

C.2 Rotor inflow using free wake analysis

Using afree wake analysis, rotor inflow can be calculated more accurately since the rotor inflow
Is dominated by the induced inflow from vortices released by the rotor blades. The vortices are
approximated using vortex lattice method. The rotor wake is modeled using two different parts;
near wake and far wake. The near wake is represented by horseshoe vortex filaments to
approximate both trailed and bound vorticity. In the far wake portion (beyond some distance
behind the blade, usually around 30°), the trailed vortices are assumed to roll up to form a single
tip vortex, which is represented by a series of connected vortex elements. The geometry of the
vortex elements is changed due to complex interactions between all other vortex elementsin the
rotor wake. Rotor induced inflow is then calculated using Biot-Savart Law (for a straight vortex
element with finite length). Details of this analysis can be found in Ref. [116].
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Appendix D

Elemental Aerodynamic Load Vector

The elemental aerodynamic load vector is described in this section. The formulation of the load
vector begins with calculation of blade sectional velocity. Sectional blade loads due to the
velocity are calculated using quasi-steady aerodynamic. Blade loads due to non-circulatory
effect are also included. The elementa aerodynamic load vector is obtained by integrating these
blade |oads within the element.

D.1 Resultant incident velocity

Resultant velocity of a blade section can be summarized as

HJ
atf

I:I:II:II:II:I

Tou U, E (D.1)
.F

where U, =t~ (V' +w®8, ), cosd, - (W' -v'6, ), sin6, - Q(v +n, cose, )
- QR cosy

U, =v-6;n,sinB, +Q(x +u-v'n, cosd, -w'n, sind,)+uQRsinY
U, =W+0,n, cosB, +AQR

6, =0, +¢
0= -V +ww')dg
% 1-3v —w V' w'

Tou = [T (V' cosB, +w'sing;) (1 "7) 0s8, - V'w'sing, Sinel%_WT’Z%
\'A

H v'sin®, —w'cos8, ( Z)Qne -Vv'w'cos@; cos6, {l-%"

O
OoOod

D.2 Blade sectional loadsfrom circulatory effects
Blade aerodynamic loading due to circulatory effects is calculated using a quasi-steady

aerodynamic model. The aerodynamic loads are functions of blade velocity, and are described in
Eq.D.2.
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ELUE EEUB
DLV = TDUT |:|LV ] (Dza)
H‘WH H:WE
where Ly :6ldoURUT
T VY[ 2 2
Lv Vs d,Us+(d; +c,)U;Up +(c, +d,)Up
Lw =Y (6,U2 - (¢, +d,)UsUp +d,U2)
6aCoT (¢, +d;)UrUp +d,Up
M, = 6l£( £, (U2 +U2) ~f,U;Up)-eyLu (D.2b)

D.3 Blade sectional loads from non-circulatory effects

The effect of non-circulatory airloads isincorporated into sectional blade loads as follow

LA =L, (D.3)
LY =L,
Ly =L, +LY
g = eae
cr ow
where L'JVC:%E—%+4;edél+(x+usinw)éla

YIS +e, w S+ey . S+ey _ . c® .
MNe="_Rpg €= _(4 g, -2 X +usiny)d; - 0
¢ 12a@R rRCR VTR KRN T f

D.4 Elemental aer odynamic for ce vector

The aerodynamic load vector of thei™ element is given as

EFAD
{F} = E: g (0.4
<p D
where {F\f}: J'; LSHds

{Fv’j}zj';L‘v\vHTds

)= (MZH,'ds
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Appendix E

Blade Response Calculation

Rotor blade response is obtained using Finite Element in time method. The blade equations of

motion in modal space (EQ. 2.8) can aso be written in a Hamiltonian form

§"ep" (Mp+ Cp+Kp~Flw =0 (&4

In order to use the temporal Finite Element method, Eq. E.1 are integrated by partsto yield blade

equationsin first order form as

IanBpD O-Cp- Kp+ FD Bp] D\/Ip% (E2)

Mp EFSDDO

The right hand side of the above equation is zero due to the periodicity condition of the response,

p(2m) = p(0). Then Eq. E.2 can be rewritten as

o 3" Q) =0 E3)

Kp+FO
where y = BDD and Q(y) = 5 p-Kp 0
o Mp 0

Using the Finite Element in time method, one revolution of the azimuth position, , is
discretized into a number of time elements (see Fig. 2.4). Eq. E.3 then can be represented by

summation over a number of time elements, N;, as

N

le "8y Qw =0 (E4)

To determine the blade response, afirst order Taylor series expansion of Eq. E.4 is performed

with the result presented in Eq. E.5.
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N N

Y [, 8y ]Q;(Y, +Ay)dy = le (T Q )+ T, () =0 (S

=

BF — oF =0

where T, = E'PTp_ K a_p__ CB. Within the j™ time element, the modal response, p, is expressed
g 0 M g

in term of time shape functions, H;, and temporal nodal response vector, &, as

p; = H&; (E.6).
32t - 904t + 79412 — 25 t +10]
128/t + 228/ 1% — 208/ % +16t
where H; = 0 e4t* -128t° + 76t> —12t [ for afive node element shown in Fig. 2.4
%12%t4+22%t3—11%t2 +1%tg
H 4t -16t°+24t° -t [
Thisaso yields

Yj = P& (E7)

H.d . : . :
where ®, = S;'t 0. Using this transformation, Eq. E.5 can be rewritten as
tU

N!

zl Iq‘ijj+15§qu>tT(Qj +T,0,A8,)dy =0 )
J:

For arbitrary &¢, the integrand must be zero and the blade equations are presented as

Q+TAE=0 (E.9)
J— Nt W, — Nt W, Nj
where Q=% J'w}*lqntTdeqJ, T=% J'w{*lq:tTquntqu, and AZ =3 AZ;. Eq. E9, whichisa
j:l ) J:l ! J:].

simple algebraic equation, can be easily solved for the required changes in the nodal response
vector, A, such that the nodal response, &, satisfies the blade equation of motion Eq. 2.8. The
nodal response vector is updated using Eq. E.10.

gnew = gold 4 0 5AE (E.10)

Using the new set of nodal response, £", Eq. E.9 is updated and solved again. The processis
repeated until the nodal response converges, or A is closed to zero.
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Appendix F

Vehicle Trim Calculation

The vehicle pitch control settings and vehicle orientations or vehicle trim can be obtained
through vehicle equilibrium relations, since the sum of forces and moments in Eq. (2.1) must

equal zero or

F=0 (F.1)
where E:[FXH FyH F' M" MyH MZ“[T, and F is a function of the vehicle trim setting,
n=w, @ 6, 6. 6, 6, DT . To determine the vehicle trim that satisfies equilibrium, afirst

order Taylor series expansion of F is obtained with the result presented in Eq. F.2.

F(n, +2n) =F () +an°- D) af]’” =0 (F2)

n=Me

is

L 5
where 77 is the initial guess of vehicle trim. The trim jacobian matrix, J = E
n=n,

calculated using numerical perturbation method. The required correction in vehicle trim, An, can

be obtained easily by solving algebraic Eq. F.3

0 _
0 F(1,) (F.3)
E

The vehicle trim is updated using the correction as

n*="=n +054n (F.4)
Using the new set of vehicle trim,7™", Eq. F.3 is updated and solved again. The procedure

repeats until vehicle equilibrium is satisfied or A7 is close to zero.
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Appendix G

Fluid Dynamic M odel of Controllable Damper

The fluid dynamic based model is developed using incompressible flow through small orifice

opening [107]. Differential equations governing the pressures developed in each chamber of the
damper are summarized below:

D 1—-k 2|:'1":'2]% P-P O
dP 5Apu pri- pri P %n( 1 2)%

P ‘con oon[

A " a%]|-k A

Th G.1
dt PAFA  AAT G
—u+ 1 f p + f p |:|
' Ka Hﬁl Ka Q
0 e 0
o OA-Auk A ek A [20] snp - )
2 = B (G.2)
dt (A —A)L,-u)
B,

where Ap isthe piston area, A istherod area, A isthe accumulator piston area (see Fig. 2.16),
K isthe equivalent accumulator stiffness, and 3is the fluid bulk modulus (the value of which is
dependent on the fluid pressure and thus varies in the two chambers). Apri and A arethe
primary and controllable orifice aress, kpri and k _ are the primary and controllable orifice

discharge coefficients, disadimensional correction constant, and pis the mean fluid density. u

is the piston velocity, and L and L, are the chamber Iengths (which depend on piston position,

u).
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Appendix H

Helicopter and Rotor Properties

Number of blades 4
Lock number, y 6.34
Main Rotor Properties Solidity ratio,o 0.1
Rotational speed, 2 40.1234 rad/s
Cilo 0.07
Blade radius, R 16.2 ft.
Blade chord, ¢/R 0.08
Mass per unit length, m, 0.135 dug/ft
Flap bending stiffness El,/m.*R* 0.008345
Lag bending stiffness El /m,’R* 0.023198
Torsional stiffness GI/me R 0.003822
Rotor Blade Properties Lift curve dope, a 573
Skin friction drag coefficient, Cyo 0.0095
Induced drag coefficient, Cy, 0.2
0.0

Pitching moment coefficient, Cy,

Flap natural frequencies

1.147, 3.399/rev

Lag natural frequencies

0.750, 4.364/rev

4590, 13.595/rev

Torsion natural frequencies
Number of blades, Ny 4
Talil rotor radius, Ry 3.24 ft.
: . Solidity ratio, oy 0.15
Tail Rotor Properties Rotor speed, 0, 50
Lift curve lope, ay 6.0
Tail rotor location, (X:/R, z//R) (1.2,0.2)
Horizontal Tail Horizontal tail area, Sl TR 0.011
Properties Horlzqntal tail |.If1' cur\(eslope, ant 6.0
Horizontal tail location, /R 0.95
C.G. location, (Xg, Yeg) (0, 0)
Fuselage Properties Hub location, h/R 0.2
Net weight, W 5800 Lbs.

Table H.1: Rotor and fuselage properties
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Appendix |

Convergence Study: Numbers of Finite Elementsand Modal Representation

The introduction of discrete controllable stiffness (damping) devices near the blade root raises
guestions about the required finite element discretization along the span, and the number of
modes required to represent the blade. Since it is possible that a finer finite element mesh may
be required, especially in the root region, or a larger number of modes may be required in the
modal transformation; a convergence study is conducted. The convergence study is conducted
using the same blade configuration as the one implemented in Chapter 7 (discrete controllable

stiffness device study).

[.1 Number of finite elements along the blade span

A nomina number of five equal spanwise finite elements is used to capture the elastic flap-

bending, lag-bending, and torsion deformations of the blade (Fig. 2.2), with the discrete devices
connected between the two innermost elements (at around 20% span). Variation in blade
frequencies (up to 20/rev) and the corresponding mode shapes is examined when increasing

numbers of spanwise elements are used (as shown in Figs. I.1a — 1.1d), with a finer concentration
of elements near the root region where the discrete devices are attached. The variation in blade
natural frequencies with increasing numbers of elements is shown in Fig. 1.2. From the figure it
is seen that starting with a nominal five spanwise elements, and going up to 19 spanwise
elements, the first ten modal frequencies (up toe2pare virtually unchanged. Figures 1.3, 1.4,

and 1.5, respectively, show the flap, lag, and torsion mode shapes, when increasing numbers of
spanwise elements are used. From the figures it is seen that when an increasing number of
elements is used, the first four flap, the first four lag, and the first two torsion mode shapes show
little variation. From the above results, it is concluded that five spanwise finite elements (30
degrees of freedom — 10 flap bending, 10 lag bending, and 10 torsion) are sufficient to capture
the lowest ten modes (up to 88/); and even in the presence of discrete devices in the blade root
region, increasing the number of elements does not improve accuracy of modal frequencies or

mode shapes. Consequently, a total of five spanwise elements can be used to model the blade.
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.2 Number of blade modesin modal transfor mation

In helicopter aeroelastic analyses it is common to transform the blade finite element equations of
motion to a few modal equations, to calculate the blade periodic response in forward flight in a
computationally efficient manner. The number of modes used in the transformation, however,
has to be sufficient to accurately capture the hub vibrations. In the present study, even greater
care is required since the discrete devices are cyclicaly changing their stiffness or damping
coefficients around the azimuth, and it is not known, a priori, how many modes would be
required to accurately predict the hub vibrations. This section examines the effect of using
increasing numbers of flap, lag, and torsion modes on the vibratory hub load predictions.
Simulations are carried out at an advance ratio of 0.35, and the Drees inflow model is used to
obtain rotor inflow. Although it is recognized that this could lead to under-prediction in hub
vibration levels, the emphasis in this section is to establish the number of modes required to
predict hub vibrations with cyclic stiffness variations of discrete devices, rather than predicting

the “correct” vibration levels using a more sophisticated aerodynamic model.

Using, nominally, 2 flap, 2 lag, and 2 torsion modes (along with the Drees inflow model, at an
advance ratio of 0.35), optimalr@y and 3fev stiffness variations of the flap devicer&/ and

3lrev stiffness variations of the lag device, antedand 4fev stiffness variations of the torsion
device were first determined (see Table 1.1). The baseline vibration levels (no cyclic stiffness
variations), and the reduced vibration levels obtained when using the flap device, lag device, or
torsion device (with inputs in Table I.1) were also recorded (see Table 1.2). Next, for the optimal
2Irev and 3fev stiffness variations of the flap device, the hub vibration levels were calculated
using increasing number of flap modes (inputs were held constangcalculated for increasing
number of modes), and these results are shown in Fig. 1.6. The figure clearly indicates that for a
given optimal cyclic stiffness variation of the flap device, when the number of flap modes is
greater than four, no change in any component of the prediatedbratory hub loads is
observed. This process was then repeated using optimal stiffness variations of the lag device and
progressively increasing the number of lag modes; and using optimal stiffness variations of the
torsion device and progressively increasing the number of torsion modes (results are presented in

Figs 1.7 and 1.8, respectively). Examining the effects of increasing number of lag and torsion
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modes on predicted 4/rev hub vibrations suggests that 4 lag modes and 2 torsion modes are
sufficient for hub vibration prediction in the presence of the discrete controllable springs. The
conclusion of this modal convergence study was that 4 flap modes, 4 lag modes, and 2 torsion
modes were required to predict the 4/rev hub vibration levels, when the discrete controllable
stiffness devices are introduced. These are the number of modes used in the vibration reduction
studies in Chapter 7 (discrete controllable stiffness device study). Also, the same number of
modes can be used in Chapter 8, since discrete controllable damping devices are introduced in a

similar manner as the discrete controllabl e stiffness devices here.
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Figure 1.1: Rotor blade finite element discretization used in the convergence study
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Figure 1.2: Blade rotating natural frequencies for increasing number of finite elements
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Input Amplitude Phase
Flap device 2lrev AKy, = 29.3% K w 143.6°
stiffness —
variation 3lrev AK,, = 68.3% K w 36.9°
Lag device 2lrev AK, = 25.1%K y -74.4°
stiffness —
variation 3lrev AK, = 49.8%K -167.1°
Torsion device 3frev AK,= 48.1%K o 8.3°
stiffness — :
variation 4frev AK ;= 42.0%K 134.9

Table1.1: Optimal stiffness variations predicted using 2 flap, 2 lag, and 2 torsion modes
(Dreesinflow, = 0.35)

No Stiffness With 2, 3/rev | With 2, 3/rev With 3, 4/rev
Hub loads* \ariation flap stiffness lag stiffness torsion stiffness
variation variation variation
F, P 2.06 1.43 1.79 2.06
F,* 2.08 1.31 1.65 2.07
P 123 0.002 0.12 121
M, 10.52 2.46 10.33 10.51
M,*P 11.26 0.91 10.41 11.22
P 10.52 7.92 12.34 10.46

Table1.2: 4/rev vibratory hub loads (predicted using 2 flap, 2 lag, and 2 torsion modes), with and

without stiffness variations (Drees inflow, p = 0.35)

" All forces are % of F,° (6042 Ibs.), all moments are % of M,” (6556 ft-Ibs.)
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