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ABSTRACT 

 

 

 

Traditional models of project management have laid emphasis on scheduling of 

operations to meet deadlines. The research presented here approaches project management as a 

resource allocation problem where project completion is constrained by the man-hours available 

from those involved in the project. The variations in the relation between completion of project 

and time allocated to it are influenced by subjective factors. Hence there is a problem of inability 

to fit a standard or well-defined distribution. This thesis addresses this problem by a robust 

optimization approach. The budget of uncertainty is set by the decision maker, consequently 

controlling the extent of variation in the parameters whose bounds of uncertainty are known. The 

optimal allocation of time to the tasks in the project has been provided. 
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Chapter I 

INTRODUCTION 

 

In the product development segment of an automotive firm, the roll-out of a new model 

involves the development of all the parts that go into building it. The project is broken down into 

sub-projects, and each is a conglomeration of parts that go through different stages of 

development, prototyping, testing, etc. Most of these operations are done in parallel, and are 

constrained not only by the deadline for completion, but also by the number of people working 

on them, or effectively, the number of man-hours invested in them. In the sense of a project 

having a specific team assigned and members allocating certain hours in working for that project, 

it can be seen that the more time spent on a project within the scheduled deadline, the more 

development or completion it attains. This encourages project management to be approached as a 

resource allocation problem.  

Furthermore, subjective factors or human element being involved in the relationship 

between the completion of a project and the hours worked by the people in it, it is not always 

easy to assign standard properties to variations as would be observed in machine outputs or 

statistical data. Due to the inappropriateness of fitting a distribution to such phenomenon, it 

would be safer to work with the bounds of this variation rather than assuming functional 

properties of the randomness. This can be approached using robust optimization (RO) that uses 

the worst-case value of the observed parameters rather than a wrongfully measured average.  

Chapter II presents an overview of contributions of operations research to automotive 

decision making processes, existing work that has influenced the model and the approach to the 

problem addressed in this paper. Chapter III explains the model in a deterministic case and the 
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modifications made to implement a robust formulation. The subsequent chapters present the 

results for a sample problem, their interpretation and directions for future work in this problem. 
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Chapter II 

LITERATURE REVIEW 

 

a. Optimization models in the automotive industry 

The automotive industry has relied heavily on operations research methodologies for its 

growth, development and expansion. In particular, mathematical programming has been used in 

making key decisions in globalizing the company’s base and building an international network of 

operations. The approach made to the research presented here is heavily influenced by the work 

of Loch et al (2001) in addressing project management problems at BMW. An MILP was built 

for the problem of selecting projects in the company, whose objective was to minimize the 

shortfall or the gap in the contribution of a project to the company. The problem was constrained 

by the available development capacity, or the human capital in person-years required for each 

project. This model, although theoretically successful, was adopted only partially since the effort 

invested in constrained optimization required considerable resources while yielding only a 

marginal improvement in the solution derived. The quantitative analysis of the problem, 

however, did increase transparency in the project selection strategies and criteria used by the 

management. The research also tried best to substitute the practice of subjective, intuition-based 

selection of R&D projects with detailed and structured data. In yet another business model 

developed for BMW (Fleischmann, Ferber and Henrich, 2006), the problem of assigning long-

term production of different models to the various production facilities world-wide was 

addressed. It was modeled on the lines of a global supply chain. The solution was broken into 

phases, focusing first on an MIP model that analyzed the load on a facility and the strategic 

planning, studying its implications within the process. The next phase developed the model 
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further to include financial variables and study the role or the impact of investment decisions on 

the sites themselves. The model promised optimistic results by showing reduction in investments 

and costs in the supply chain by upto 7%. A GUI is proposed to implement the model in the 

company for use by employees who need not possess knowledge of or expertise in OR. Meyr 

(2004) also presented a study of German automotive supply chain planning and organization for 

the recent trend of mass customization of cars. The problem of reducing lead times and lowering 

costs on catering to end-user customization demands was focused on. Various existing strategies 

such as Just-in-Time delivery and Sequence-in-Line supply were listed and their impact on 

delivery reliability measured on new practices like online ordering and late order assignment 

being rapidly adopted by German carmakers.  

 

b. Robust Optimization models 

It is necessary to understand the effect of randomness on time allocation to projects 

depending on the environment of operations. The manufacturing of products has been addressed 

from different perspectives such as rate of arrival of material for processing, completion time of 

mechanized tasks, conformity of measurements on finished product to required standards, etc. 

Such aspects of a project are measurable by standard formulation and more importantly, by the 

availability of well-defined distributions that can be approximated to these processes. In the 

design phase of products, however, all uncertainty in project completion arises from subjective 

factors. The very measure of project completion is computed using scoring models where the 

input are numbers presented based on the fulfillment of criteria as observed or analyzed by the 

personnel involved. Completion of a design is related to the amount of time spent on it. When 

required to complete one phase of a project by a deadline, time-scheduling of operations is used. 
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However, there is a possibility that one may be contributing to multiple projects at the same time. 

The required level of development in one project may be specified by the number of hours of 

work that would need to be dedicated for it. Hence, the overall completion of a project is 

constrained by sum total of hours available from everyone involved in the project.  

The new and fast-developing field of robust optimization was researched to present a 

possible solution to the problem of relating completion of project to hours worked given in 

intervals like “a hours and a possibility of ±  b hours”. Bertsimas and Thiele (2006) present the 

definition to robust optimization and a reasonable comparison and contrast to stochastic 

optimization. Their research also proposes an alternative robust modeling of various problems 

currently addressed by stochastic programming, eliminating their existing shortcomings or 

constraints. In particular, the problem of capital budgeting and allocation has been modeled by 

this method in Bertsimas and Sim (2003) and referenced therein. The problem considers 

selection of projects and then allocation of resources partially to some projects and completely to 

the others. Since the model considered the aspect of choosing and rejecting projects, it was 

modeled with binary variables. This property of the decision variables provided convenient 

solutions for the inner maximization or minimization problems, that is, the dual of this inner 

optimization problem could be represented by closed form expressions. Kachani and Langella 

(2005) used this technique in their approach to nominal capital rationing. New KKT conditions 

(complementary slackness) were derived on the original deterministic model as a result. The 

solution of the robust optimization model also highlighted the trade-off involved in optimal 

portfolio selection and robustness of the portfolio. The case of an MILP being modified or 

reformulated to an RO model was studied in detail in Lin, Janak and Floudas (2004). Their 

research problem was a scheduling model under two cases of uncertainty: with bounds and with 
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known probability distribution. The approach of interest to RO is narrowed down to the 

condition of bounded uncertainty with no assumptions on the type of distribution.  

 

c. Resource Allocation models 

Analogous to the scoring and weighting of individual parts in a project, Brenner (1994) 

considers scoring of a set of projects to enable project selection by a company so that the limited 

resources available can be distributed selectively for maximizing the completion of those chosen 

alone. The scoring method is built on the lines of Saaty’s Analytical Hierarchy Process (AHP) in 

stages of identifying the goals, the criteria, and rating methodology. It is implemented using the 

standard AHP software Expert Choice. Resource allocation, however, is done according to the 

classification of the final selected set of projects. Categorizing projects as one of ‘winning’, 

‘difficult’ or ‘eliminated’, the winning are completely funded, while the difficult are funded 

enough to overcome their demerits. The remaining projects are simply not selected for further 

development. A similar approach in the healthcare industry was highlighted by Kleinmuntz 

(1999) that used an eight-step approach for capital allocation. This method also followed the 

ideas of assigning weights and rating based on the cost as well as NPV of the projects or 

proposals. The problem being multi-objective, traditional optimization methods were used to 

find combinations of projects that would maximize company success, constrained by their 

budget. 
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Chapter III 

PROBLEM FORMULATION 

 

The case of project management in an automotive product development environment can 

be considered as a man-hour allocation problem. Consider a set of parts to be developed in 

parallel for a project, and the net growth of the project is given by the aggregate development or 

completion of the individual parts (analogous to project management, these can be termed as 

sub-projects or tasks) in the project. The importance of each task to the overall project is 

specified by a weight associated with it. Using standard scoring models for evaluation of project 

completion and success, each task can also be given a score for its development. Comparing the 

current development of a part and the required development for an acceptable completion of the 

overall project, the problem becomes one of minimizing this aggregated gap weighted by the 

importance of each part to the product. The development of a part is constrained by the amount 

of time that can be spent for each of them. Using a function to represent the relationship between 

hours allocated and development achieved for a part, the problem now becomes one of resource 

allocation as the project has only a fixed number of man-hours that can be assigned to all the 

parts. 

Let

No.of parts

Weight (importance)of part i in project

Current development scoreof part i

* Required development scoreof part i

' Minimumacceptabledevelopment scoreof part i

Time(man-hours) allocated to part i

i

i

i

i

i

n

w

D

D

D

t

T

=

=

=

=

=

=

= ( )Total time man-hours available
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State of the system: Di 

Output of interest: ti 

 The development to be achieved in the design of part i should meet the minimum 

requirements in the current stage of the project. This has been assigned as 'iD . Furthermore, in 

the case of expensive resources or even limited resources, the over-achievement of target 

development may not be required. To limit this over-use of resources, a required development 

score *iD  has been set. In problems where this may not be applicable, *iD  can be set to the 

maximum score attainable. Hence,  

' *i i iD D D≤ ≤       (1) 

 The amount of time required to achieve a certain score of development can be obtained 

through a study or mapping of score achieved with time input. For our problem, we will assume 

and approximate this relation to be linear. Setting a as the fixed amount of hours invested for any 

part and bi as the scaling factor that decides how many hours it will take to achieve an 

incremental score of 1 for part i, we can say 

i i it a b D= +       (2) 

We assume that this scaling factor bi is affected by uncertainty, that is, the time to complete the 

design for a score to be achieved will vary by the task. This uncertainty can be assumed to be 

symmetric and summarized as  

ˆ ˆ( , )i i i i ib b b b b∈ − +      (3) 

Furthermore, the total time available for the project is limited by the number of hours that 

the personnel involved are able to dedicate to the project. Hence, 

1

n

i

i

t T
=

≤∑  



 9 

or using in (2), 

1

n

i i

i

na b D T
=

+ ≤∑      (4) 

 In light of these constraints, we seek to achieve the highest development possible. This 

can be modeled as trying to minimize the gap between the ideal development score and the 

achievable development score. Also, each part is weighted by its importance to the project. 

These weights (wi) are specified by the decision maker. The objective becomes: 

1

( * )
n

i i i

i

Minimize w D D
=

−∑     (5) 

where 

0 1iw≤ ≤  and 
1

1
n

i

i

w
=

=∑  

Combining equations (1)–(5), the nominal problem of time allocation in a project is 

(N):  Minimize 
1

( * )
n

i i i

i

w D D
=

−∑  

subject to 
1

n

i i

i

na b D T
=

+ ≤∑  

ˆ ˆ( , )i i i i ib b b b b i∈ − + ∀  

' *i i iD D D i≤ ≤ ∀  

0iD i≥ ∀  

The reformulation to model (N) through robust optimization follows Bertsimas and 

Thiele (2006) which draws heavily upon the theory of Bertsimas and Sim (2004). These 

references also use two-dimensional parameter matrix A for the constraint of type Ax ≤ b, 

whereas the problem considers only a vector for A. There is also only one constraint affected by 
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uncertainty. Taking these into consideration while following the approach suggested by 

Bertsimas and Sim (2004), the steps in reformulation of (N) into robust model (R) through 

intermediary programs (denoted by Tk, k = 1, 2, 3, 4) are presented here. 

Given  ˆ ˆ( , )i i i i ib b b b b i∈ − + ∀  , 

Let 
ˆ

i i
i

i

b b
x i

b

−
= ∀   be the scaled deviation of parameter bi. 

Defining  

J = set of coefficients bi subject to uncertainty 

Γ = budget of uncertainty, or number of coefficients that vary from nominal value 

we can set Γ to any value in 0, J   . Note that Γ need not necessarily be an integer. Specific 

cases include –  

o Γ = 0 : implies that none of the coefficients will vary from their nominal value. Hence the 

problem is deterministic, or the same as the nominal LP. The solution has no protection 

from uncertainty. 

o Γ = J  : implies all the elements of J vary to their extreme. If J  = n, the total number of 

tasks, then this represents the worst-case of the problem where every parameter varies. 

The model is protected from all uncertainty, and hence provides a highly conservative 

solution. 

The budget of uncertainty is incorporated into the formulation such that upto Γ    parameters 

can vary, and one bi varies by ( ) ˆibΓ− Γ   , to account for the (non-integer) Γ variations in the 

model. In order to maintain the feasibility of the problem, the largest such deviation should 

satisfy constraint (4). Including uncertainty of bi and Γ into problem (N) yields: 
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(T1): Minimize 
1

( * )
n

i i i

i

w D D
=

−∑  

 subject to ( )
1 1

ˆ ˆmax
n n

i i i i t t
t J

i i

na b D b y b y T
∈

= =

 
+ + + Γ− Γ ≤   

 
∑ ∑  

   i i iy D y i− ≤ ≤ ∀  

' *i i iD D D i≤ ≤ ∀  

0iD i≥ ∀  

 At optimality,  

  opt

i iy D=  

The inner maximization problem of T1 has been shown (Proposition 1, Bertsimas and 

Sim (2004)) to be equivalent to: 

(T2): Maximize ˆ opt

i i i

i J

b D x
∈
∑  

 subject to  i

i J

x
∈

≤Γ∑  

   0 1ix i J≤ ≤ ∀ ∈  

 In order to solve it, the dual of (T2), the equivalent to the inner maximization problem can 

be written. Let z be the dual variable corresponding to the constraint i

i J

x
∈

≤Γ∑  and pi be the set of 

dual variables for the constraints 0 1ix i J≤ ≤ ∀ ∈ . Then, the dual problem is: 

(T3): Minimize i

i J

z p
∈

Γ +∑  

 subject to ˆ opt

i i iz p b D i J+ ≥ ∀ ∈  

0ip i J≥ ∀ ∈  
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0z≥  

It has been shown (Theorem 1, Bertsimas and Sim (2004)) that applying strong duality, problem 

(T2) is feasible and bounded, following 0, JΓ∈   . Hence the dual problem (T3) is also bounded 

and feasible. Since their objective function values are equal, and the objective functions 

themselves are shown to be equivalent to the inner maximization problem of (T1), simple 

substitution yields: 

(T4): Minimize 
1

( * )
n

i i i

i

w D D
=

−∑  

subject to 
1 1

n n

i i i

i i

na b D z p T
= =

+ + Γ+ ≤∑ ∑  

ˆ opt

i i iz p b D i J+ ≥ ∀ ∈  

' *i i iD D D i≤ ≤ ∀  

        

0

0

0

i

i

D i

p i

z

≥ ∀

≥ ∀

≥

 

Relaxing the right side of the second constraint in T4 to linearize the problem, we replace 
opt

iD  

by the variable originally in its place, yi. The substitution used was that, at optimality, 
opt

i iy D=  

and it is related to the decision variable Di by the inequality i i iy D y i− ≤ ≤ ∀ . However, Di is a 

non-negative variable, hence at optimality, opt

i iy D= . Therefore, in model (T4), it is possible to 

replace opt

iD  by Di itself. This gives the equivalent model for robust optimization of time 

allocation in a project: 
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(R): Minimize 
1

( * )
n

i i i

i

w D D
=

−∑  

subject to 
1 1

n n

i i i

i i

na b D z p T
= =

+ + Γ+ ≤∑ ∑  

   ˆ
i i iz p b D i+ ≥ ∀  

' *i i iD D D i≤ ≤ ∀  

         
0

0

ip i

z

≥ ∀

≥
 

It has been shown that the choice of Γ affects the objective function, i.e. conservatism of 

the resulting objective value depends on the level of uncertainty in the constraints, or the 

possibility of its violation due to the parameter variation. This expression has also been 

summarized in Bertsimas and Thiele (2006), to show that for a constraint to be violated with a 

probability of at most ε with n sources of uncertainty, the minimum choice of Γ should be 

11 (1 ) nε−Γ = + Φ −                                                      (6) 

where Φ is the CDF of the standard normal distribution. Using this expression, it was possible to 

narrow the guarantee of conformance to the constraints to be able to get a feasible solution. i.e., 

fixing ε could show the minimum protection against uncertainty in the model. For the extreme 

cases of Γ = 0 and Γ = n, the model gives the deterministic solution (all parameters are at their 

expected value) and worst case situation (all parameters are at their extremes) respectively. This 

relation has been plotted in Figure 1 for values n = 5 and ε upto 0.7. 
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Figure 1: Level of protection of robust solution against uncertainty in the parameters 
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Chapter IV 

IMPLEMENTATION AND RESULTS 

 

 A toy problem of n = 5 parts was taken up. The weights wi, fixed working hours per part 

a, part-dependant working hours bi, total time available T, acceptable and required levels of 

development were assigned fixed values. These values are presented in Table 1. The difference 

in performance between the nominal formulation and the robust formulation for various levels of 

the budget of uncertainty was studied. 

 

 Table 1: Values of parameters in toy model with n = 5 

Scalars n = 5 a = 4 (hours) 

      

Part 

Index 

i 

Weight of 

part i in 

project 

wi 

Required 

development 

score of part i 

Di
*
 

Acceptable 

development 

score of part i 

Di’ 

Expected value 

of scaled 

duration of 

work for part i 

ib  (hours) 

Maximum 

deviation of scaled 

duration of work 

for part i 

ˆ
ib  (hours) 

1 0.1 7 4 3 1 

2 0.1 7 4 3.5 1 

3 0.3 7 4 4 2.5 

4 0.2 7 4 4 2 

5 0.3 7 4 5 2.5 

 

The best objective function value, i.e. the minimum gap between target completion and best 

possible completion is 0 for all parts achieving the required development (score = 7), and the 
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worst case value is 3 for a feasible problem achieving only the minimum acceptable level of 

development (score = 4). Using
1

n

i i

i

na b D T
=

+ ≤∑ , the upper and lower bounds on T to have a 

feasible nominal problem were found to be 156.5 hours and 98 hours respectively. For various T 

within these bounds, the model was run. Also, for each T, different values of Γ were set. The 

model was run in GAMS for each pair of (T, Γ). Each run took between 6 and 10 iterations on 

the OSL solver. Figure 2 shows the resulting objective values for each (T, Γ) pair. Each curve 

represents the net difference between required development of the overall project (
1

*
n

i i

i

wD
=
∑ ) 

and achievable development of the project (
1

n

i i

i

wD
=
∑ ) under the given constraints.   

Minimum weighted gap for various Gamma
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Figure 2: Objective function values for various (T, Γ) 

 

Figure 3 is a useful interpretation of the same results, showing the achievable development of the 

overall project, taken by the weighted sum of individual parts’ development score (
1

n

i i

i

wD
=
∑ ). 
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Overall Project Development for various Gamma
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Figure 3: Overall project development for various (T, Γ) 

The figures presented in this section prove that higher the number of variations in the 

model, lower the achievable development. This is also proof of the conservatism of the solution 

of the robust problem compared to nominal problem. The decline in performance is seen to be 

steep as the nominal model initially progresses towards uncertainty. The rate of decrease in the 

overall project development is lower for large Γ. 

Furthermore, inadequate time (low T) coupled with large number of parameter variations 

(high Γ) drive the model to infeasibility. In these cases, even the minimum acceptable 

development cannot be achieved. Only those pairs of (T, Γ) that were feasible are represented in 

the graphs. The infeasibility results from constraint violation explained in Section III. It can be 

seen that higher the Γ, smaller the feasible region of the robust problem, thus giving a more 

conservative solution.  

Once the optimal Di was established, the solution of interest (time allocation) is obtained 

through: 

i i it a b D= +  

All numerical computations from the runs are presented in Appendix B. 
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Chapter V 

FUTURE SCOPE 

 

 The robust optimization methodology helped show the impact of the number of sources 

of uncertainty in achieving a target performance of the objective function. Setting a low T value 

does not give the model adequate flexibility for time allocation. It is not possible to fulfill the 

minimum development requirements when there is small time available and there are a large 

number of parameters varying. Hence, lack of control on the parameters’ variation yielded a 

highly conservative solution and the model was seen to be infeasible for certain pairs of (T, Γ). 

This preliminary model can be used to develop a multi-period approach to robust optimization of 

resource allocation in a project, where the cost of a resource would be taken into consideration in 

order to optimally use it in different phases of the project. Such an approach could stem from the 

theory laid out by Bertsimas and Caramanis (2007). One of the initial proposals of that research 

is to develop a two-stage optimization problem in order to model adaptability, and then to 

convert the static robust formulation into an adaptable formulation using different levels of 

adaptability. The scope of the problem could be expanded from symmetric uncertainty 

considered here to other types. 
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Appendix A 

COMPUTATIONAL RESULTS 

Table 2: Minimum gap between required project development and achievable project development 

Total time available (maximum amount of resource) in hours Budget of 

Uncertainty 

Γ 
T = 98 T = 110 T = 122 T = 134 T = 146 T = 156.5 

0 3 2.1 1.38 0.75 0.3 0 

0.1 Infeasible 2.22 1.49 0.84 0.36 0.05 

0.2 Infeasible 2.33 1.59 0.92 0.42 0.1 

0.3 Infeasible 2.43 1.69 1.01 0.48 0.15 

0.4 Infeasible 2.52 1.8 1.1 0.53 0.2 

0.5 Infeasible 2.59 1.89 1.19 0.59 0.25 

0.6 Infeasible 2.66 1.97 1.29 0.67 0.3 

0.7 Infeasible 2.72 2.05 1.38 0.76 0.36 

0.8 Infeasible 2.78 2.13 1.47 0.85 0.42 

0.9 Infeasible 2.84 2.2 1.56 0.94 0.48 

1 Infeasible 2.9 2.27 1.64 1.03 0.53 

1.1 Infeasible 2.95 2.34 1.72 1.11 0.59 

1.2 Infeasible 3 2.4 1.8 1.2 0.68 

1.3 Infeasible Infeasible 2.46 1.86 1.27 0.76 

1.4 Infeasible Infeasible 2.51 1.93 1.34 0.84 

1.5 Infeasible Infeasible 2.56 1.99 1.41 0.92 

1.6 Infeasible Infeasible 2.61 2.04 1.48 0.99 

1.7 Infeasible Infeasible 2.66 2.1 1.54 1.06 

1.8 Infeasible Infeasible 2.71 2.15 1.6 1.12 

1.9 Infeasible Infeasible 2.75 2.2 1.65 1.18 

2 Infeasible Infeasible 2.8 2.25 1.7 1.24 

2.1 Infeasible Infeasible 2.85 2.29 1.75 1.3 

2.2 Infeasible Infeasible 2.89 2.34 1.79 1.35 

2.3 Infeasible Infeasible 2.93 2.37 1.84 1.4 

2.4 Infeasible Infeasible 2.96 2.41 1.88 1.45 

2.5 Infeasible Infeasible 3 2.45 1.92 1.5 

2.6 Infeasible Infeasible Infeasible 2.48 1.95 1.53 

2.7 Infeasible Infeasible Infeasible 2.52 1.98 1.56 

2.8 Infeasible Infeasible Infeasible 2.56 2.02 1.6 

2.9 Infeasible Infeasible Infeasible 2.59 2.05 1.63 

3 Infeasible Infeasible Infeasible 2.63 2.08 1.66 

3.1 Infeasible Infeasible Infeasible 2.65 2.1 1.68 

3.2 Infeasible Infeasible Infeasible 2.67 2.11 1.69 

3.3 Infeasible Infeasible Infeasible 2.69 2.13 1.71 
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3.4 Infeasible Infeasible Infeasible 2.7 2.15 1.72 

3.5 Infeasible Infeasible Infeasible 2.72 2.17 1.74 

3.6 Infeasible Infeasible Infeasible 2.74 2.19 1.76 

3.7 Infeasible Infeasible Infeasible 2.76 2.21 1.77 

3.8 Infeasible Infeasible Infeasible 2.78 2.22 1.79 

3.9 Infeasible Infeasible Infeasible 2.8 2.24 1.8 

4 Infeasible Infeasible Infeasible 2.82 2.26 1.82 

4.1 Infeasible Infeasible Infeasible 2.83 2.28 1.84 

4.2 Infeasible Infeasible Infeasible 2.85 2.3 1.85 

4.3 Infeasible Infeasible Infeasible 2.87 2.32 1.87 

4.4 Infeasible Infeasible Infeasible 2.89 2.34 1.88 

4.5 Infeasible Infeasible Infeasible 2.91 2.35 1.9 

4.6 Infeasible Infeasible Infeasible 2.93 2.37 1.92 

4.7 Infeasible Infeasible Infeasible 2.94 2.39 1.93 

4.8 Infeasible Infeasible Infeasible 2.96 2.41 1.95 

4.9 Infeasible Infeasible Infeasible 2.98 2.43 1.96 

5 Infeasible Infeasible Infeasible 3 2.45 1.98 

 

Table 3: Achievable project development for a given (T, Γ) 

Total time available (maximum amount of resource) in hours Budget of 

Uncertainty 

Γ 
T = 98 T = 110 T = 122 T = 134 T = 146 T = 156.5 

0 4 4.9 5.62 6.25 6.7 7 

0.1 Infeasible 4.78 5.51 6.16 6.64 6.95 

0.2 Infeasible 4.67 5.41 6.08 6.58 6.9 

0.3 Infeasible 4.57 5.31 5.99 6.52 6.85 

0.4 Infeasible 4.48 5.2 5.9 6.47 6.8 

0.5 Infeasible 4.41 5.11 5.81 6.41 6.75 

0.6 Infeasible 4.34 5.03 5.71 6.33 6.7 

0.7 Infeasible 4.28 4.95 5.62 6.24 6.64 

0.8 Infeasible 4.22 4.87 5.53 6.15 6.58 

0.9 Infeasible 4.16 4.8 5.44 6.06 6.52 

1 Infeasible 4.1 4.73 5.36 5.97 6.47 

1.1 Infeasible 4.05 4.66 5.28 5.89 6.41 

1.2 Infeasible 4 4.6 5.2 5.8 6.32 

1.3 Infeasible Infeasible 4.54 5.14 5.73 6.24 

1.4 Infeasible Infeasible 4.49 5.07 5.66 6.16 

1.5 Infeasible Infeasible 4.44 5.01 5.59 6.08 

1.6 Infeasible Infeasible 4.39 4.96 5.52 6.01 

1.7 Infeasible Infeasible 4.34 4.9 5.46 5.94 

1.8 Infeasible Infeasible 4.29 4.85 5.4 5.88 

1.9 Infeasible Infeasible 4.25 4.8 5.35 5.82 
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2 Infeasible Infeasible 4.2 4.75 5.3 5.76 

2.1 Infeasible Infeasible 4.15 4.71 5.25 5.7 

2.2 Infeasible Infeasible 4.11 4.66 5.21 5.65 

2.3 Infeasible Infeasible 4.07 4.63 5.16 5.6 

2.4 Infeasible Infeasible 4.04 4.59 5.12 5.55 

2.5 Infeasible Infeasible 4 4.55 5.08 5.5 

2.6 Infeasible Infeasible Infeasible 4.52 5.05 5.47 

2.7 Infeasible Infeasible Infeasible 4.48 5.02 5.44 

2.8 Infeasible Infeasible Infeasible 4.44 4.98 5.4 

2.9 Infeasible Infeasible Infeasible 4.41 4.95 5.37 

3 Infeasible Infeasible Infeasible 4.37 4.92 5.34 

3.1 Infeasible Infeasible Infeasible 4.35 4.9 5.32 

3.2 Infeasible Infeasible Infeasible 4.33 4.89 5.31 

3.3 Infeasible Infeasible Infeasible 4.31 4.87 5.29 

3.4 Infeasible Infeasible Infeasible 4.3 4.85 5.28 

3.5 Infeasible Infeasible Infeasible 4.28 4.83 5.26 

3.6 Infeasible Infeasible Infeasible 4.26 4.81 5.24 

3.7 Infeasible Infeasible Infeasible 4.24 4.79 5.23 

3.8 Infeasible Infeasible Infeasible 4.22 4.78 5.21 

3.9 Infeasible Infeasible Infeasible 4.2 4.76 5.2 

4 Infeasible Infeasible Infeasible 4.18 4.74 5.18 

4.1 Infeasible Infeasible Infeasible 4.17 4.72 5.16 

4.2 Infeasible Infeasible Infeasible 4.15 4.7 5.15 

4.3 Infeasible Infeasible Infeasible 4.13 4.68 5.13 

4.4 Infeasible Infeasible Infeasible 4.11 4.66 5.12 

4.5 Infeasible Infeasible Infeasible 4.09 4.65 5.1 

4.6 Infeasible Infeasible Infeasible 4.07 4.63 5.08 

4.7 Infeasible Infeasible Infeasible 4.06 4.61 5.07 

4.8 Infeasible Infeasible Infeasible 4.04 4.59 5.05 

4.9 Infeasible Infeasible Infeasible 4.02 4.57 5.04 

5 Infeasible Infeasible Infeasible 4 4.55 5.02 
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Appendix B 

GAMS CODE 

sets 
        i index 1 /part1 * part5/ 
; 
 
positive variables 
        d, z, p 
; 
 
variables 
        netd 
; 
 
equations 
        obj_nom 
        time_nom 
 
        obj_rob 
        time_rob 
        var_rob 
 
 
        d_boundlow 
        d_boundhigh 
        timecalc 
; 
 
parameter 
        n   /5/ 
        w(i)     /part1=0.1,part2=0.1,part3=0.3,part4=0.2,part5=0.3/ 
        dhigh(i) /part1=7.0,part2=7.0,part3=7.0,part4=7.0,part5=7.0/ 
        dlow(i)  /part1=4.0,part2=4.0,part3=4.0,part4=4.0,part5=4.0/ 
        a        /4/ 
        b_mean(i)/part1=3.0,part2=3.5,part3=4.0,part4=4.0,part5=5.0/ 
        b_var(i) /part1=1.0,part2=1.0,part3=2.5,part4=2.0,part5=2.5/ 
        budget   /1/ 
        maxtime  /98/ 
        t(i) 
; 
 
 
 
 
obj_nom..       netd =e= sum(i, w(i)*(dhigh(i)-d(i))); 
time_nom..      n*a + sum(i, b_mean(i)*d(i)) =l= maxtime; 
 
obj_rob..       netd =e= sum(i, w(i)*(dhigh(i)-d(i))); 
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time_rob..      
n*a+sum(i,b_mean(i)*d(i))+z*budget+sum(i,p(i))=l=maxtime; 
 
var_rob(i)..    z + p(i) =g= b_var(i)*d(i); 
 
d_boundlow(i)..       d(i) =g= dlow(i); 
d_boundhigh(i)..  d(i) =l= dhigh(i); 
 
 
model nominal 
/ 
        obj_nom 
        time_nom 
        d_boundlow 
        d_boundhigh 
/; 
 
model robust 
/ 
        obj_rob 
        time_rob 
        var_rob 
        d_boundlow 
        d_boundhigh 
/; 
 
 
*solve nominal using lp minimizing netd; 
 
file output /result.txt/; 
 
for (budget = 0 to 5 by 0.1, 
 
solve robust using lp minimizing netd; 
 
put output; 
put /; 
put budget, netd.l; 
 
 
); 


