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ABSTRACT 

History matching is one of the more critical steps in the reservoir performance 

predictions. It is during this step the reservoir parameters used in the model are adjusted until the 

reservoir model mimics actual reservoir behavior. A lot of times, there is no reliable way to 

measure some of the reservoir parameters required to build the model. This leads to gross 

approximation of these properties over the whole reservoir.  Often these parameters are adjusted 

and readjusted until a good history match is obtained. Once a good history match is obtained, 

greater confidence can be placed on predictions made by the model. 

The most common method of history matching is to make numerous simulation runs with 

each run using a different set of model parameters. The model parameters are varied in small 

steps in a trial-and-error fashion between each run until the observed production data matches 

with simulation model production data. This process is computationally intensive and time 

consuming. The number of simulation runs required to obtain a good history match also depends 

on the initial estimates of the parameters. 

In this study, artificial neural networks are used to build a neuro-simulation tool for 

predicting properties like porosity, permeability, net pay thickness and two-phase relative 

permeability curves. Network uses cumulative production and pressure data as input to predict the 

history match parameters. Predictions made by the tool developed will give a good history match 

or the least serve as a good starting point to perform history match. The main advantage of using 

this tool is that the tool will not require an initial guess value for the parameters. This will remove 

the guess work involved in estimating some of the unknown parameters. The proposed artificial 

neural network will also reduce the actual number of simulation runs required to obtain a good 

history match when good estimate of model parameters are not available. The parameters 
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predicted should provide a good history match or the least serve as good estimate for parameters 

that can be fine tuned to improve history match. 

A commercial reservoir simulator was used to generate synthetic data necessary to train 

and validate the artificial neural network. The neural network developed can be used to predict 

reservoir properties of black oil reservoirs. Two separate networks were developed. A prediction 

network that will predict reservoir properties and the other, a network designer, that will provide 

design parameters required to build the prediction network. 

The results of this study show that the prediction network as designed by the network 

designer is capable of predicting reservoir parameters within acceptable margins of error. It will 

also considerably reduce the number of simulation runs required to achieve a good history match, 

thus reducing the computational resources and time required for history matching process. 

The developed tool was implemented to real field data from Perry reservoir located in 

Brayton Fields, west of Corpus Christi, Texas. Neuro-simulation tool was able to obtain a good 

history match with field production data. With just 50 simulation runs made to generate the 

training data for the network, it was able to predict the properties of the reservoir without any 

need for an initial estimate of the parameters. 
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2
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Bo: oil formation volume factor (STB/RB) 
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h: thickness (ft) 

k: absolute permeability (md) 

kr: relative permeability (fraction) 

krgro: relative permeability of gas at residual oil saturation (fraction) 

kroirw: relative permeability of oil at irreducible water saturation (fraction) 

krocritg: relative permeability of oil at critical gas saturation (fraction) 

krwro: relative permeability of water at residual oil saturation (fraction) 
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Chapter 1 

 

INTRODUCTION 

The modeling of hydrocarbon reservoirs is a complex, multi-disciplinary task. Generally, 

reservoir simulation is considered to be the most powerful predictive tool available to the 

reservoir engineer. Building a reservoir model is a complicated task. One of the key hurdles in 

building a good reservoir simulation model is the lack of reliable data required to build the model. 

Once the model is built it has to be validated before it can be deployed for reservoir performance 

forecasting. Validation of the reservoir model is an important step in reservoir simulation, during 

which model production data are compared with field production data. This validation step is 

called history matching. It involves performing numerous simulation runs with slight variations to 

the reservoir parameters until a good match with field production data are obtained. A history 

matched reservoir model can be used to forecast reservoir performance with some confidence. 

History matching is benefitted by the knowledge and judgment of the simulation engineer. 

History matching is more of an art than science. History matching is a computationally intensive 

task that is time consuming and consequently costly.  

Artificial neural network has been effectively used in several petroleum engineering 

applications. They are information processing systems that mimic the working of biological 

neurons present in the human brain. They are neither as complex nor as powerful as the biological 

neurons. But they can be used to solve complicated problems similar to history matching. Neural 

network is a soft computing technique that requires some training with known data. Once they are 

trained they can be used to solve similar problems at a much faster rate than by hard computing 

techniques like reservoir simulation.  
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In this study, a neuro-simulation tool is developed that can help reduce the number of 

simulation runs required to achieve a good history match. The neuro-simulation tool consists of 

two separate networks, a prediction network that will predict reservoir properties and the other, a 

network designer, which will provide artificial neural network design parameters required to 

build the prediction network. An inverse approach is used to solve the history match problem. 

Reservoir production and pressure data are used as input to the neural network. That information 

is processed by the network and predicts the porosity, permeability, thickness and endpoint 

saturation and relative permeability values. The prediction network developed is used to predict 

history match parameters for black oil models.  

Synthetic production data are generated using a commercial reservoir model. These data 

are used to train and validate the neural network. Several sample cases starting from a simple 

square homogeneous reservoir with 1 well up to a complicated reservoir with irregular boundaries 

with 20 regions and 20 wells are examined.  

The proposed prediction tool along with network designer provides an efficient way to 

perform history matching using artificial intelligence.   



 

 

Chapter 2 

 

LITERATURE REVIEW 

2.1 History Matching 

The modeling of hydrocarbon reservoirs is a complex, multi-disciplinary task. Generally, 

reservoir simulation is considered to be the most powerful predictive tool available to the 

reservoir engineer. It considers much more geologic and reservoir data than any other reservoir-

prediction technique. Consequently, reservoir simulation has a much greater data requirement 

than other techniques. Once a satisfactory model is developed, it is used for predicting 

performance under a range of operating and maintenance scenarios, for planning development 

strategies and for assisting production operations [Ertekin et al., 2001; Parish et al., 1993].  

An important stage in the development of reservoir simulation model is the validation of 

the model itself. In this step, the numerical model is tested to see how closely a given model can 

reproduce certain aspects of observed or measured data. This validation process is called history 

matching [Parish et al., 1993]. Validation of simulation model is the primary objective of history 

matching. During history matching, properties at each grid block are set such that the simulated 

well pressures and production data are as close as possible to the measured values. A good history 

match is generally achieved with numerous simulation runs, each run evaluating a different set of 

model parameters. It can be time-consuming and costly [Dye et al., 1986]. Once the historical 

production data are matched, a much greater confidence can be placed in the predictions made 

with the model [Ertekin et al., 2001] 
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2.1.1 Objectives of History Matching 

The primary objectives of history matching are to improve and to validate the reservoir 

simulation model. In general, the initial simulation input data does not produce results that match 

historical reservoir performance to a level that is acceptable for making accurate future forecasts. 

To improve the quality of the match, an iterative procedure involving adjusting initial input data 

are utilized. Figure 2-1 schematically shows the steps followed to adjust the initial simulation 

data systematically to provide an improved match [Ertekin et al., 2001]. 

Apart from the primary objectives, there are several beneficial byproducts to a successful 

history match. The very nature of history matching process may help understand the reservoir 

better with respect to level of aquifer support, paths of fluid migration, and areas of bypassed oil. 

This also means that a successful history match can identify opportunities to improve reservoir 

description and the data acquisition program. Finally, the history-matching process may identify 

unusual operating conditions. For example, if the water cut or GOR from an individual well 

appears to go against areal trends, problems (such as behind pipe communication) may be 

identified. On a field scale, areas of bypassed oil may be identified that can aid in an in-fill 

drilling program. Problems of this type are identified easily during a history match because the 

history-matching process forces engineers to look for areal and temporal trends in production data 

that may be overlooked otherwise [Ertekin et al., 2001]. 

2.1.2 Selection of History-Matching Method 

Two approaches are commonly used for the history-matching process: manual and 

automatic history matching. Of the two methods, manual history matching is used more often 

[Ertekin et al., 2001].  
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Figure 2-1:  Overall iterative procedure for a history match [adapted from Ertekin et al, 2001]. 

1. Set the objectives of the history-matching process. 

2. Determine the method to use in the history match. This should be dictated by the objectives 

of the history match, company resources available for the history match, the deadlines for the 

history match, and data availability. 

3. Determine the historical production data to be matched and the criteria to be used to 

describe a successful match. These should be dictated by the availability and quality of the 

production data and by the objectives of the simulation study. 

6. Compare the results of the history match run with the historical production data chosen in 

Step 3. 

7. Change the reservoir data selected in Step 4 within the range of confidence. 

5. Run the simulation model with the best available input data. During the pressure-match 

stage of the history match the reservoir-voidage rates (oil rate plus free-gas rate plus water 

rate at reservoir conditions) are specified. During the saturation stage of the history match, oil 

rates (for an oil reservoir) or gas rates (for a gas reservoir) at standard conditions are specified. 

4. Determine the reservoir data that can be adjusted during the history match and the 

confidence range for these data. The data chosen should be those that are the least accurately 

known in the field but that have the most significant impact on reservoir performance. This 

step should be performed in conjunction with the reservoir engineers, geologists, and field 

operations staff working on the field under study. 

8. Continue with Steps 5 through 7 until the criteria established in Step 3 are met. 
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In both methods, simulation model is run for the historical period considered and the 

results are compared with known field data. After comparison of the results, the simulation model 

parameters are modified in an effort to improve the match. In manual history matching, the 

parameters are modified by the simulation engineer. Thus, it requires knowledge of field under 

study, engineering judgment, and reservoir-engineering experience. While in automatic history 

matching, reservoir engineer is removed from picture and computer logic is used to modify the 

parameters. There are several approaches to automatic history matching, and each one attempts to 

minimize an error function. The error function is defined as a function of the difference between 

the observed reservoir performance and the simulated reservoir performance during the historical 

production period. 

Both methods have their advantages and disadvantages. While manual history matching 

takes advantage of the engineering judgment and engineer's knowledge of the subject reservoir, it 

tends to be more time consuming. Automatic history matching is relatively faster but loses the 

advantage of knowledge learned during history matching. Thus selection of a specific method to 

use is defined by the objectives of the history match, the company resources devoted to the 

history match, and the deadlines of the simulation study. 

2.1.3 Selection of Production Data to Specify and Match 

In general, the selection of production data to specify depends on the stage of the history 

match and the hydrocarbons present in the reservoir. History-matching process generally is 

performed in a two-stage procedure.  Mattax and Dalton refer to these two stages as gross and 

detailed, while Saleri and Toronyi refer to these stages as a pressure match and a saturation 

match. Regardless of the names, the objective of the first stage is to match average reservoir 

pressure and the objective of the second stage is to match individual well histories. 
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During the pressure-matching stage of the history match, the current reservoir-energy and 

reservoir-energy behavior with time are the most critical considerations. The most appropriate 

production data to specify during this stage of the history match are the historical well-voidage 

rates. The voidage rate is the sum of oil, free gas and water rates at reservoir conditions. During 

the saturation-matching stage of the history match, the production data to be specified are the oil 

production rates for an oil reservoir and the gas production rates for a gas reservoir. The selection 

of injection data to specify for injection wells is not as critical for production wells. In general, 

the specification of the historical surface injection rates is adequate for injection wells during all 

stages of the history match [Ertekin et al., 2001]. 

Selection of the production/injection data to be matched during a history match depends 

on the availability of production/injection data and the quality of the data. In general, the more 

data that can be matched during the history matching process, the more confidence that can be 

placed in the simulation model during the prediction stage of the study [Ertekin et al., 2001]. 

2.1.4 Adjusting Reservoir-Data to Match Historical Production 

A fundamental concept of history matching is the concept of a “hierarchy of uncertainty.” 

The hierarchy of uncertainty is a ranking of model input data quality that lets the modeler 

determine which data are most and least reliable. When making changes to the model input, least 

reliable data should be changed first. Reliability of the data is determined when data are collected 

by evaluating the completeness and validity of the data [Fanchi, 1997, 2006; Raza, 1992; Saleri et 

al., 1992]. 



8 

 

2.1.5 History Match Quality 

There is no industry standard definition of what constitutes a successfully matched 

simulation model [Ertekin et al., 2001]. The definition of history match varies widely. A clear 

understanding of the study objectives should be used while defining what constitutes a successful 

history match. For example, pressure may be considered matched if the difference between 

calculated and observed pressures is within ±10% drawdown. The tolerance of ±10% is 

determined by estimating the uncertainty associated with measured field pressures and the 

required quality of study. A study demanding greater reliability in predictions may need to reduce 

the tolerance to ±5% or even less [Fanchi, 1997, 2006].  

2.1.6 History-Match Limitations 

The accuracy of the results is directly dependent upon the ability of the numeric model to 

emulate the reservoir. The first requirement of any simulation is a precise description of reservoir 

parameters over a large number of grid blocks. In most cases, field data does not permit such fine 

scale resolution of the parameters [Dye et al., 1986]. 

A vast majority of the reservoir remains unknown to the engineers and geologists 

working on the simulation study. Therefore, the initial data generally need to be adjusted, or 

tuned, for the simulation model to predict reservoir performance adequately [Ertekin et al., 2001]. 

The values obtained are not any „true‟ average of the block properties of that reservoir, but are 

those which tend to compensate for the inaccuracies in the size and shape of logs in the model. 

Thus to some extent the parameters used are properties of the reservoir model and not properties 

of the reservoir itself [Dye et al., 1986].  Due to all these reason, no history-matching method, 
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manual or automatic, guarantees a successful history match (one that meets all the history-

matching objectives).  

History matching process involves making numerous simulation runs of the reservoir 

with minor adjustments to input parameters until a satisfactory match is achieved. This makes 

history-matching time consuming and costly. In practice, a final match is often declared when the 

time or money allotted for the study is depleted [Fanchi, 1997, 2006]. 

The final history-matched model is not unique. In other words, several different history-

matched models may provide equally acceptable matches to past reservoir performance but may 

yield significantly different future predictions [Ertekin et al., 2001].  

2.2 Hard Computing-Reservoir Simulation 

Reservoir simulation combines physics, mathematics, reservoir engineering, and 

computer programming to develop a tool for predicting hydrocarbon-reservoir performance under 

various operating conditions. The use of reservoir simulation as a predictive tool is becoming 

standard in the petroleum industry [Ertekin et al., 2001]. 

Reservoir modeling can be broadly classified into two as, 

1. Black-oil simulation 

2. Compositional simulation.  

Black oil modeling is used for reservoir situations where fluid flow behavior is modeled 

using reservoir pressure and the effects of fluid phase composition on flow behavior do not need 

to be considered. The fluid is represented by a three component system (oil, water, gas) of 

constant composition.  

Compositional simulator is used when an equation of state is required to describe 

reservoir fluid phase behavior or the compositional changes associated with depth. A 



10 

 

compositional model is the right choice for studying condensates or volatile crude oils, gas 

injection programs, and secondary recovery studies. Knowledge of compositional behavior is also 

required for accurate planning and design of surface production facilities. 

In both approaches, a form of mass balance equation is utilized. Temperature is assumed 

to be constant throughout the system. So, energy balance equations are not utilized. 

Advancements in technology and use of thermal recovery processes such as steam injection and 

in-situ combustion, has warranted the use of thermal simulators to model these operations. 

Thermal simulators use the compositional approach, where the energy-balance equation and the 

mass-balance equation are applied simultaneously.  

2.3 Overview of Artificial Neural Networks (ANN) 

Artificial neural network are information processing systems that are a rough 

approximation and simplified simulation of the biological neuron network system. In 1940‟s 

Warren McCulloch and Walter Pitts showed that networks of artificial neurons could, in 

principle, compute any arithmetic or logical function. Their work is often acknowledged as the 

origin of the neural network field. However, it was not until 1980‟s when ANN became popular 

due to the development of powerful computing systems [Hagan et al., 1996]. 

A biological neuron consists of three principle components: dendrites, cell body and axon 

as shown in Figure 2-2. The tree-like structures are called dendrites. They are receptive networks 

of nerve fibers that carry electrical signals into the cell body. The cell body effectively sums and 

thresholds these incoming signals. The signal from the cell body is carried out to other neurons by 

the single long fiber called axon. The point where an axon of one cell and a dendrite of another 

cell are in contact is called synapses. 
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Artificial neural networks are neither as powerful as biological neurons in the brain nor 

are they as complex. They have two basic similarities between them, 1. Both are simple 

computational devices that are highly interconnected, 2. The connections between neurons 

determine the function of the network.  

A schematic of the multiple input neuron with n inputs is shown in Figure 2-3. The 

individual inputs P1, P2, … Pn are each multiplied by corresponding elements W1, W2, … Wn 

 

 

Figure 2-2:  Schematic Drawing of Biological Neurons [adapted from Hagan et al., 1996]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3:  Multiple Input Neuron. 
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to form W1*P1, W2*P2, … Wn*Pn. The weight corresponds to the strength of the synapses. 

The body of the neuron is represented by the summation of all W*P products and its modification 

by the transfer function „f‟. The neuron‟s output „a‟ represents the electrical impulse carried 

through the axon [Hagan et al., 1996]. 

2.3.1 Artificial Neural Network Architecture 

Typically the neurons in artificial neural network applications are arranged in layers. The 

arrangement of neurons into layers and the connections between them defines the network 

architecture. All the neurons in any particular layer perform similarly. Their behavior is 

conditioned by the transfer function and weights. 
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Figure 2-4:  Classification of Network Architectures. 
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Networks are classified into two based on the number of layers they have, 1. Single layer, 

2. Multilayer networks. Figure 2-4 shows typical architectures of a single layer and a multilayer 

network.  

Single layer networks have an input layer and an output layer. While counting the 

number of layers in a network, input layer is not counted since its only task is to provide input 

data. Input layer doesn‟t perform any calculations. Multi-layer network has several layers which 

include an input layer, one or more hidden layers and an output layer. The hidden layers don‟t 

interact directly with the external surroundings of the net, hence the name hidden layers. The 

multilayer network shown in Figure 2-4 consists of three layers; two hidden layers and one output 

layer connected by three layers of weights.  

2.3.1.1 Weights and Network Training 

Weight corresponds to the strength of a synapse between 2 neurons. It is also referred to 

as synaptic weight. Initially, weights are set to either zero or a very small number. Those weights 

are changed using a learning rule during the iterative training process. A positive weight 

represents an excitatory stimulus while a negative weight corresponds to an inhibitory stimulus. A 

zero weight value indicates no connection or stimulus. The weight connections between layers of 

neurons are denoted as weight matrices „W‟. Typically, the matrix element wij, is used to denote 

the weight connecting the output of neuron i to the input of neuron j [Hagan et al., 1996]. 

Network training is performed by the use of learning algorithms. Network training 

process can be classified into three major types. They are, 1. Supervised learning, 2. 

Unsupervised learning and 3. Reinforced learning.  
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In supervised learning, pattern or input vector is provided with an associated target or 

output vector. The supervised learning can be thought of as learning with a „teacher‟, in the form 

of a function that provides continuous feedback on the quality of solutions obtained thus far. 

Weights are updated continuously based on the feedback received about the quality of solutions 

obtained thus far. Supervised learning is used in pattern recognition and regression. Unsupervised 

learning uses only an input vector. The weights are modified so that similar input patterns are 

assigned to the same target [Fausett, 1994]. Unsupervised learning can be used for general 

estimation, estimation of statistical distribution and filtering. In reinforced learning, input data are 

not given, but generated by an agent‟s interactions with the environment. At each point in time t, 

the agent performs an action and the environment generates an observation and an instantaneous 

cost, according to some (usually unknown) dynamics. Reinforced learning is used in control 

problems, games and other sequential decision making tasks. In the present study supervised 

learning will be utilized with pattern or input and target or output generated using a commercial 

reservoir simulator. 

2.3.1.2 Transfer Functions 

Transfer function scales the response of an artificial neuron to an external stimulus and 

generates the neuron activation [Maren et al., 1990]. Transfer function can be either a linear or 

non-linear function. Any multilayer perceptron using a linear transfer function has an equivalent 

single-layer network; a non-linear function is therefore necessary to gain the advantages of a 

multi-layer network [Fausett, 1994 and Maren et al., 1990]. 

The output (a) of a linear transfer function is equal to its input (n): 

    a=n                                                                      2.1 
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The purelin transfer function is shown in the left of Figure 2-5, while the output (a) 

versus input (p) characteristic of a single-input linear neuron with a bias is shown on the right of 

Figure 2-5. This function commonly applied to the output layer since it allows the network to 

produce its output within the desired limits without having to de-normalize them. 

Log-sigmoid and hyperbolic tangent sigmoid are the transfer functions commonly used in 

multilayer networks using the back-propagation algorithm [Hagan et al., 1996]. Log-sigmoid 

transfer function takes the input (which may have any value between plus and minus infinity) and 

scales its output to range in between 0 and 1. The output (a) of a log-sigmoid transfer function is 

calculated according to the expression: 

    𝑎 =
1

1+𝑒−𝑛                                                                 2.2 

Log-sigmoid transfer function is shown in the left of Figure 2-6, while the output (a) 

versus input (p) characteristic of a single-input linear neuron with a bias is shown on the right of 

Figure 2-6. 

 

 

 

 

Figure 2-5:  Linear Transfer Function [reproduced from Hagan et al., 1996]. 
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Hyperbolic tangent sigmoid transfer function has an advantage over log-sigmoid function 

of being able to deal directly with negative numbers. The output (a) of a hyperbolic tangent 

sigmoid transfer function is calculated according to the expression: 

    𝑎 =
𝑒𝑛−𝑒−𝑛

𝑒𝑛+𝑒−𝑛                                                                 2.3 

Hyperbolic tangent sigmoid transfer function is shown in the left of Figure 2-7, while the 

output (a) versus input (p) characteristic of a single-input linear neuron with a bias is shown on 

the right of Figure 2-7. 

 

 

Figure 2-6:  Log-Sigmoid Transfer Function [reproduced from Hagan et al., 1996]. 

 

 

Figure 2-7:  Hyperbolic Tangent Sigmoid Transfer Function. 
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Table 2-1 shows a list of other commonly used transfer functions. However, it should be 

noted that in the present work multilayer networks with sigmoid functions are proved to be more 

appropriate for our problem. Previous works, as the one presented by Ramgulam (2006), have 

also shown that these types of architectures are more suitable for application to similar reservoir 

engineering problems. 

Table 2-1:  Transfer Functions [reproduced from Hagan et al., 1996]. 
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2.3.2 Multilayer Feedforward Network with Backpropagation 

Multilayer feedforward network with backpropagation is the most widely used network 

architecture [Maren et al., 1990, Patterson, 1995]. Feedforward networks are the simplest 

artificial neural networks. It has no feedback. This means there are no connections that loop. 

Backpropagation is a supervised learning method. It is an implementation of the delta rule. The 

term „backpropagation‟ is an abbreviation for „backwards propagation of errors‟. Feedfoward 

network are most benefited when working with backpropagation since it adds the component of 

feedback to the network. 

Feedforward networks with backpropagation are easy to implement, trains faster than 

other types of networks and solves many types of problems correctly [Centilmen, 1999]. They 

operate in two steps. First is the feedforward step. During this step, input pattern is presented to 

the input layer and the information is transferred through hidden layer(s) to the output layer. 

Transfer functions process the information as they move from layer to layer. Second is the 

backpropagation step when, backpropagation is used to calculate the gradient of the error of the 

network with respect to the network's modifiable weights. During this step, networks response is 

compared to the desired output and the errors are propagated from the output layer to the inner 

layers. This error signal is used to adjust the network weights. Each intermediate layer receives a 

portion of the total error signal based roughly on the relative contribution of the unit made to the 

original output [Ali, 1994]. Thus after several iterations of this process, the error signal generated 

becomes small. At this stage the network is considered trained for the intended purpose. It must 

be able to make predictions from a novel set of inputs. 
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2.3.3 Convergence and Training Efficiency 

Convergence problem refers to a situation where the total error of the current iteration is 

lower than the one from previous iteration. There can be several causes for convergence 

problems. The most common cause is the presence of several local minima on the error surface. 

This problem can be prevented by using a momentum parameter. Using a high momentum 

parameter can also help to increase speed of convergence. But care should be taken not to use a 

very high momentum since this may lead to overshooting the actual minimum thus making the 

network unstable. The optimization method used may not be guaranteed to converge when the 

system is far away from the local minimum.  

Learning efficiency can be improved by taking the following measures, 1. Using high 

momentum parameter, 2. Using functional links, 3. Using faster learning functions. As discussed 

earlier use of high momentum parameter can improve the speed of learning. Use of functional 

links in the input and/or output layers usually helps the network interpret the data better and thus 

improves the learning efficiency. Training and learning functions are mathematical procedures 

used to automatically adjust the network's weights and biases. The training function dictates a 

global algorithm that affects all the weights and biases of a given network. Gradient decent is the 

most commonly used learning method. Other learning algorithms like conjugate gradient 

methods, the Levenberg-Marquardt algorithm (LM) can be used to make the learning faster. 

Levenberg-Marquardt algorithm is one of the fastest backpropagation algorithms, and is highly 

recommended as a first-choice supervised algorithm, although it does require more memory than 

other algorithms. 
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2.3.4 Application of Neuro-Simulation 

Neuro-simulation is a technique that combines soft computing techniques with hard 

computing techniques. The main advantage of utilizing this technique is to reduce simulation 

times and also to reduce computational resource required. Hard computing is usually used to 

generate the necessary pattern/target data used in training. And soft computing is usually used to 

learn the internal relationship between the pattern and target. The trained net can be used to 

simulate and predict performance for scenarios that are different from the ones used in training. 

Neuro-simulation can be used for a variety of petroleum engineering applications. Some 

work done in the past include exploring field development strategies in conjunction with various 

recovery schemes [Doraisamy et al., 1998], predicting natural gas production [Al-Fattah, 2001], 

development of proxy model for gas condensate reservoir exploitation [Ayala, 2004], 

characterization of carbon dioxide sequestration and coalbed methane projects [Gorucu et al., 

2005], optimization of history matching [Ramgulam et al., 2007], screening and designing 

improved oil recovery methods [Parada, 2008] , optimizing design of cyclic pressure pulsing in 

naturally fractured reservoirs [Artun, 2008] just to name a few.  

In the present study, Artificial Neural Network (ANN) and reservoir simulator are the 

soft computing and hard computing techniques used respectively. Reservoir simulator is used to 

generate reservoir production history for several sets of reservoir properties. This constitutes the 

pattern/target data that will be used while training the neural network. A successfully trained 

network can be used to predict the properties for reservoir that are different from the ones used 

during training. 



 

 

Chapter 3 

 

PROBLEM STATEMENT 

History matching is one of the more critical steps in the reservoir performance 

predictions. It is during this step the reservoir parameters used in the model are adjusted until the 

reservoir model mimics actual reservoir behavior. A lot of times, there is no reliable way to 

measure some of the reservoir parameters required to build the model. Especially in the early life 

of the reservoir the limited set of parameters available are from a few well locations. This leads to 

gross approximation of these properties over the whole reservoir.  At this point engineering 

judgment and experience of the engineer from working with similar or adjacent fields/reservoirs 

is also utilized in estimating some of the parameters. Often these parameters are adjusted and 

readjusted until a good history match is obtained.  

The most common method of history matching is to make numerous simulation runs with 

each run using a different set of model parameters. The model parameters between each run are 

varied in small steps in a trial-and-error fashion until the observed production data matches with 

simulation model production data. This process is computationally intensive and time consuming. 

The number of simulation runs required to obtain a good history match also depends on the initial 

estimate of the parameters. When a good estimate of the parameters is available a good history 

match can be obtained with fewer simulation runs.  

The main objective of this study is to develop an artificial neural network tool that will be 

able to predict the parameters required to build the reservoir model but not suffer from some of 

the problems discussed earlier. The proposed tool will use production and pressure data from the 

actual reservoir as input to predict the reservoir model parameters. The proposed tool will not 

require an initial guess value for the parameters. This will remove the guess work involved in 
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estimating some of the unknown parameters. The proposed artificial neural network will also 

reduce the actual number of simulation runs required to obtain a good history match when good 

estimate of model parameters are not available. The parameters predicted should provide a good 

history match or the least serve as good estimate for parameters that can be fine tuned to improve 

history match.  

The proposed artificial neural network tool will predict porosity, permeability and net pay 

thickness of each zone/region in the reservoir. It will also predict the endpoint saturations, relative 

permeability at endpoint saturations and exponent values for the oil-water and oil-gas two phase 

relative permeability curves. 

There are no established guidelines for use of soft computing techniques like artificial 

neural network to history matching application. This study intends to establish guidelines and 

suggestions for the development of artificial neural network that can provide a good history 

match or act as good starting point for history matching procedure.  

 



 

 

Chapter 4 

 

RESERVOIR MODEL 

Numerical reservoir simulation is an industry standard tool used by petroleum engineers 

to model hydrocarbon reservoirs. A successful history matched model is usually used to forecast 

performance of the reservoir. They are also used as a tool to design an optimum field 

development plan by simulating several possible scenarios. In our study, numeric reservoir 

simulation will be used to generate the necessary pattern/target data that will be used in the 

artificial neural network development. 

4.1 Properties 

Multi-phase black oil model was used to simulate the depletion of hydrocarbons in the 

reservoir. Synthetic production data were generated using CMG IMEX
1
 (black oil simulator) for 

various sets of porosity (), permeability (k), net pay thickness (h), and relative permeability 

curves. Part of the generated data is used to train and the rest is used to validate the artificial 

neural network. 

In order to build a reservoir model, it is essential to know the rock properties, fluid 

properties, formation structure, well design parameters, initial reservoir conditions and well 

control mechanism. To train and develop the proposed neural network, it is essential to create a 

set of reservoirs with different sets of porosity (), permeability (k), net pay thickness (h), and 

relative permeability curves, while keeping the other parameters uniform. In the initial study, only 

                                                      
1
 CMG is a commercial reservoir simulator developed by Computer Modeling Group Ltd. 

Calgary, Canada. IMEX is their black oil simulator. 
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porosity (), permeability (k) and net pay thickness (h) values are varied.  Later, relative 

permeability curves are also varied. Relative permeability curves are varied by varying endpoint 

saturation (Sorw, Sorg, Swirr, Sgcrit), relative permeability at endpoint saturation (krwro, kroirw, krgro, 

krocritg) and exponent (N) values. 

4.1.1 Porosity () 

Porosity is the fraction of a porous medium that is void space.  It is measured as a 

fraction and posses no units. Porosity of consolidated materials depends mainly on the degree of 

cementation. The porosity of unconsolidated materials depends on the packing of the grains, their 

shape, arrangement and size distribution. Graton and Fraser (1935) analyzed the porosity of 

various packing arrangements of uniform spheres. The least compact arrangement of uniform 

spheres is that of cubical packing with a porosity of 47.6%. Table 4-1 gives typical porosity 

values for various materials. In this study, porosity values ranging from 5% to 50% is used. 

Table 4-1: Typical Porosity Values of Natural Sedimentary Materials [adapted from Bear, 1972]. 

Sedimentary Material 
Porosity Value 

(percent) 
Sedimentary Material 

Porosity Value 

(percent) 

Peat Soil 

Soils 

Clay 

Silt 

Medium-to-coarse mixed sand 

Uniform sand 

60-80 

50-60 

45-55 

40-50 

35-40 

30-40 

Fine-to-medium mixed sand 

Gravel 

Gravel and sand 

Sandstone 

Shale 

Limestone 

30-35 

30-40 

30-35 

10-20 

1-10 

1-10 
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4.1.2 Permeability (k) 

Permeability is a measure of rock‟s ability to transmit fluids. It may also be defined as the 

measure of the connectivity of pore spaces. It is commonly measured in darcy (d) or millidarcy 

(md). Permeability has dimensions of L
2
 where L is a unit of length. Permeability is a rock 

property and it depends on the rock type. Productive sandstone reservoirs usually have 

permeability in the range of 10 md to 1000 md [Fanchi, 2006].  In this study, permeability values 

ranging from 10 md to 2000 md is used. 

4.1.3 Net Pay Thickness (h) 

The reservoir rock thickness capable of producing commercial hydrocarbons within a 

specified interval is called net pay thickness. It is commonly measured in feet (ft). Thickness of 

reservoir can vary widely from reservoir to reservoir and also within the same reservoir. Net pay 

thickness of a reservoir can vary anything between a few feet to few hundred feet. In this study, 

net pay thickness values ranging from 10 ft to 1000 ft is used. 

4.1.4 Relative Permeability Curves 

When there is only one fluid flowing through the porous medium, permeability of the 

porous medium to the fluid is the absolute permeability of the medium. When two or more fluids 

flow simultaneously through the porous medium, flow path has to be shared by more than one 

fluid. Thus effective permeability of the porous medium to each fluid is less than absolute 

permeability of the porous medium. Relative permeability is a dimensionless measure of this 

effective permeability of each phase. Relative permeability value varies between zero and one.  
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Typically, relative permeability of each phase for a black oil model is calculated from 

two-phase relative permeability. Two-phase relative permeability curves, oil-water relative 

permeability and oil-gas relative permeability are constructed from endpoint saturations (Sorw, 

Sorg, Swirr, Sgcrit), relative permeability at endpoint saturation (krwro, kroirw, krgro, krocritg) and exponent 

(N) values using the following equations.  

𝑘𝑟𝑤 = 𝑘𝑟𝑤𝑟𝑜 ×  
𝑆𝑤−𝑆𝑤𝑖𝑟𝑟

1−𝑆𝑤𝑖𝑟𝑟 −𝑆𝑜𝑟𝑤
 
𝑁

 .......................................................................................... 4.1 

𝑘𝑟𝑜𝑤 = 𝑘𝑟𝑜𝑖𝑟𝑤  
1−𝑆𝑤−𝑆𝑜𝑟𝑤

1−𝑆𝑤𝑖𝑟𝑟 −𝑆𝑜𝑟𝑤
 
𝑁

 .......................................................................................... 4.2 

𝑘𝑟𝑔 = 𝑘𝑟𝑔𝑟𝑜  
𝑆𝑔−𝑆𝑔𝑐𝑟𝑖𝑡

1−𝑆𝑔𝑐𝑟𝑖𝑡 −𝑆𝑜𝑟𝑔
 
𝑁

 .............................................................................................. 4.3 

𝑘𝑟𝑜𝑔 = 𝑘𝑟𝑜𝑐𝑟𝑖𝑡𝑔  
1−𝑆𝑔−𝑆𝑜𝑟𝑔

1−𝑆𝑔𝑐𝑟𝑖𝑡 −𝑆𝑜𝑟𝑔
 
𝑁

 ........................................................................................ 4.4 

 

Figure 4-1 shows two-phase relative permeability curves generated using the above 

equations. 

 

  
a) Oil-water two phase system b) Oil-gas two phase system 

 

Figure 4-1: Two phase relative permeability curves. 
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4.1.4.1 Endpoint Saturations (Sorw, Sorg, Swirr, Sgcrit) 

When more than one fluid is present in a porous medium, the fraction of pore volume 

occupied by each fluid is called saturation. Oil remaining in the reservoir rock after the flushing 

or invasion process is called residual oil saturation (Sor). Residual oil saturation in a two phase 

oil-water system is represented by Sorw and in a two phase oil-gas system it is represented by Sorg. 

The fraction of the pore volume occupied by water in a reservoir at maximum hydrocarbon 

saturation is called irreducible water saturation (Swirr). The value of saturation of the specific gas 

phase at which the gas will first begin to flow as the saturation is increased is called critical gas 

saturation (Sgcrit). In this study, residual oil saturation and irreducible water saturation ranging 

from 0.10 to 0.40 along with critical gas saturation ranging from 0.00 to 0.05 are used. 

4.1.4.2 Relative Permeability at Endpoint Saturations (krwro, kroirw, krgro, krocritg) 

Relative permeability at endpoint saturations represents the maximum relative 

permeability. These values are used to construct two-phase relative permeability curves. Relative 

permeability of water in an oil-water system at residual oil saturation (Sorw) is represented by krwro. 

Relative permeability of oil in an oil-water system at irreducible water saturation (Swirr) is 

represented by kroirw. Relative permeability of gas in an oil-gas system at residual oil saturation 

(Sorg) is represented by krgro. Relative permeability of oil in an oil-gas system at critical gas 

saturation (Sgcrit) is represented by krocritg. Relative permeability value varies between zero and 

one. In this study, relative permeability at endpoint saturations ranging from 0.5 to 0.9 are used. 
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4.1.4.3 Exponent (N) 

The curvature of the relative permeability curves is defined by exponent (N). In this 

study, exponent values ranging from 2 to 4 are used. 

4.1.5 Synthetic Reservoir Data Generation Strategy 

As discussed earlier, for the initial studies a set of reservoirs with different porosity, 

permeability and net pay thickness is created while keeping all the other properties and 

parameters same.  

To create several unique sets of these three properties, a random number generator is 

used. Those randomly generated values are then matched up into sets containing all three 

properties. After creating these sets, they are normalized to eliminate sets of properties that fall 

outside the typical permeability-porosity combinations. Cross plots of porosity and permeability 

 

 

Figure 4-2: Effect of grain size on permeability and porosity [adapted from Coalson et al., 1990]. 
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of sand stone created by Coalson (1990), Hartman (2000) is used as reference in the process. 

Figure 4-2 shows cross plot of permeability versus porosity showing effect of grain size.  

 

 

 

Figure 4-3: Permeability versus porosity used for reservoir model creation.  

 

 

Figure 4-4: Net pay thickness versus porosity used for reservoir model creation.  
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Finally, 200 unique sets of porosity, permeability and net pay thickness values are 

generated. These properties are be used to build reservoir models that are used to generate 

synthetic production data. Of them 50 data sets are used for training and 150 data sets are used for 

testing the artificial neural network. Figures 4-3, 4-4 show plots of permeability and net pay 

thickness versus porosity values that are used in this study. 

Initial reservoir conditions, rock properties and fluid properties required for building 

reservoir models are included in Appendix A. All these data are necessary to create reservoir 

model. 

4.2 Case Studies 

In order to build a reservoir model, the reservoir simulation engineer must know the rock 

properties, fluid properties, initial conditions, operating conditions, reservoir architecture, and 

drilling and completion information. All these properties except reservoir architecture and well 

information have been discussed in Section 4.1. This section discusses the reservoir architecture 

and well information for each reservoir that is studied. The reservoir models that are studied can 

be broadly classified into three based on the shape of their boundaries. They are, 

 1. Multiphase reservoir with square boundaries 

 2. Multiphase reservoir with rectangular boundaries 

 3. Multiphase reservoir with uneven boundaries 

Present study is initiated with a simple system that has one well and one region with 

homogeneous properties. Complexity of the model is increased progressively by increasing the 

number of wells and regions. Complex reservoirs with up to 20 wells and 20 regions are studied. 

Based on the number of wells and regions present in a reservoir, they can be further 

classified into, 
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 1. Reservoir with number of wells equal to number of regions 

 2. Reservoir with number of wells greater than number of regions 

 3. Reservoir with number of wells less than number of regions 

The simplest system studied is a multiphase reservoir with square boundaries that has one 

well and one region with homogeneous properties and the most complex reservoir model studied 

is a multiphase reservoir with uneven boundaries that has 20 wells and 20 regions. 

4.2.1 Case 1: Multiphase Reservoir with Square Boundaries 

A multiphase black oil model with square boundary constitutes the first case studied. 

These reservoirs have square reservoir boundary that is discretized into 43 x 43 grid blocks. Each 

grid block measures 100 ft x 100 ft. The number of wells in the reservoir is varied from 1 to 20 

and so are the regions with different set of porosity, permeability and net pay thickness. Thus, 

creating 400 different possible combinations based on number of wells and regions in the 

reservoir. All these are studied as separate types of reservoirs. Figure 4-5 shows a square 

reservoir with 20 wells and one region. All of the 400 different reservoirs studied under this case 

share the same well locations. Reservoirs that have less than 20 wells share the same well 

locations but would eliminate the excess wells. For example, in a reservoir with 7 wells they are 

located at points marked 1 through 7 in Figure 4-5. Rest of the well locations 8 through 20 are not 

used in the model. Similar to the wells, the reservoirs built may have up to 20 regions. Figure 4-

6a and 4-6b shows how the reservoir is divided into regions in this study. 
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Figure 4-5: 43 x 43 square reservoir with one region and 20 wells. 
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5 region 6 region 7 region 8 region 

 

Figure 4-6a: 43 x 43 square reservoir divided into regions.  
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As discussed in Section 4.1, the 200 unique sets of properties are used to build reservoir 

models used in this study. Thus, there are 200 unique reservoirs for each of the 400 different 

types of models discussed. Production and pressure data from these simulation runs constitute the 

data required to build the artificial neural network. 

4.2.2 Case 2: Multiphase Reservoir with Rectangular Boundaries 

Second case studied uses a reservoir that is a little more complex by changing the 

reservoir boundaries from square to a rectangle. These reservoirs have a rectangular reservoir 

 

    
9 region 10 region 11 region 12 region 

    
13 region 14 region 15 region 16  region 

    
17 region 18 region 19 region 20 region 

 

Figure 4-6b: 43 x 43 square reservoir divided into regions (cont‟d).  



34 

 

boundary that is discretized into 70 x 43 grid blocks. Each grid block measures 100 ft x 100 ft. 

Similar to the square reservoir the number of wells and regions in this case is also varied from 1 

through 20. Figure 4-7 shows a rectangle reservoir with 20 wells and one region. All the 400 

different reservoirs studied under this case share the same well locations. Similar to previous 

case, reservoirs that have less than 20 wells share the same well locations but eliminate the excess 

wells. 

Similar to the wells, the reservoirs built may have up to 20 regions. Figure 4-8a and 4-8b 

shows how the rectangular reservoir is divided into regions in this study. 

 

 

Figure 4-7: 70 x 43 rectangular reservoir with one region and 20 wells. 
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1 region 2 region 3 region 4 region 

    
5 region 6 region 7 region 8 region 

    
9 region 10 region 11 region 12 region 

 

Figure 4-8a: 70 x 43 rectangular reservoir divided into regions.  
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4.2.3 Case 3: Multiphase Reservoir with Irregular Boundaries 

The third case studied adds more complexity to the reservoir by using irregular 

boundaries for the reservoir. The irregular boundary used in this study is adapted from Ertekin et 

al., 2001. This reservoir is discretized into 59 x 28 grid blocks. Each grid block measures 100 ft x 

100 ft. Similar to the square reservoir the number of wells and regions in this case is also varied 

from 1 through 20. Figure 4-9 shows a reservoir with 20 wells and one region. Figure 4-10a and 

4-10b shows how the reservoir is divided into regions in this study. 

 

    
13 region 14 region 15 region 16 region 

    
17 region 18 region 19 region 20 region 

 

Figure 4-8b: 70 x 43 rectangular reservoir divided into regions (cont‟d).  
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Figure 4-9: 59 x 28 reservoir with irregular boundary one region and 20 wells. 
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Figure 4-10a: 59 x 28 reservoir with irregular boundary divided into regions.  
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Figure 4-10b: 59 x 28 reservoir with uneven boundary divided into regions (cont‟d).  
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4.3 Summary 

The three cases that are discussed each have 400 different types of reservoirs with 

varying number of wells and regions/zones. And 200 different models with different porosity, 

permeability and net pay thickness are built for each type of reservoir.  

Simulation runs are performed for all three cases discussed in Section 4.2. The runs are 

used to generate 3600 days (~10 years) of production data. All the wells in the reservoir are put to 

production at the same time. The production and pressure results from the simulation runs are 

used to create the synthetic data that are necessary for developing the artificial neural network. 

In the initial studies, porosity, permeability and net pay thickness are varied. Later 

relative permeability curves are also varied along with porosity, permeability and net pay 

thickness.  

 

 

 

 

 

 

 

 



 

 

Chapter 5 

 

DISCUSSION OF DEVELOPMENT OF ANN PREDICTION TOOL 

This chapter describes the methodology employed in the design of the artificial neural 

network at each stage of its development. The network evolves all the way through the 

development process. Some of the challenges faced and solutions developed are also discussed. 

Few significant case studies are presented in increasing order of complexity. The development of 

network can be divided into two stages. First stages of development concentrate on capturing 

complexities introduced by varying reservoir geometries. Porosity, permeability and net pay 

thickness are predicted during this stage. During second stage of development other parameters 

like relative permeability curves are included to the list of parameters predicted. Development of 

network designer is also discussed. Based on observations made during the development process, 

guidelines for development of ANN prediction tool is summarized at the end. 

5. 1 Factors Influencing the Design of Artificial Neural Networks 

Design of ANN involves optimizing several parameters. The factors that are taken into 

consideration when determining the optimum architecture for ANN are the following. 

 Data structure – The structure of data inputs to and outputs from the network 

 Number of hidden layers – the number of middle layers in the network that 

would optimize the training/learning process 

 Number of neurons in each layer – the number of neurons within the hidden 

layers of the network that would produce the desired characteristics of the output 

layer 
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 Transfer functions – a linear or non-linear function in each layer that is chosen to 

satisfy some specification of the problem that the neuron is attempting to solve 

 Training algorithm – a training function that updates the weight and bias values 

in each layer of the network 

 Performance functions – a function that measures the network‟s performance 

 Functional links – mathematical functions of inputs or outputs which amplify 

subtle differences in the data 

5.2 Data Formulation 

Production and pressure data for various cases described in Section 4.2 are obtained from 

simulation runs. Those are formatted such that they can be effectively learnt by the network. 

Ramgulam (2006) has suggested ways to formulate the data for effective training of network for 

history match problems. Some of those suggestions are implemented in our study. 

Input/target data to the network constitutes time, incremental cumulative production, and 

incremental pressure values (t, Np, Wp, Gp, P). Incremental cumulative production at time 

intervals of 30 days during the 3600 days (~10 yrs) period was used. In initial studies, porosity, 

permeability and thickness are used as output/target for the network. In later studies, parameters 

used to generate relative permeability curves (viz., end point saturation, relative permeability at 

end point saturations and exponent) are added to the output/target for the network. The input data 

are pre-processed by normalizing them between -1 and 1. Normalizing the data standardizes the 

numerical range of the input data and enhances the fairness of training by preventing an input 

with large values from swamping out another input that is equally important but with smaller 

values [Al-Fattah, 1994]. 
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At later stages of the study it is necessary to add functional links that are mathematical 

functions of either input or output data. These amplify subtle differences in the data and provide 

more connections to the middle layers and correspondingly improve predictive capabilities. The 

amount of data in the input is also reduced by increasing data intervals to 90 days instead of 30 

days. Production data are also limited to 1800 days (~5 years). 

5.3 Case studies 

Some of the significant case studies are discussed in detail. Stage I concentrates on 

capturing the complexities introduced by varying reservoir geometries. Porosity, permeability and 

net pay thickness are the parameters being predicted in this stage. Stage II concentrates on adding 

more parameters to the list of parameters predicted. Due to lack of well established guidelines 

design of neural network is by trial-and-error. Network performance is considered as acceptable if 

the prediction errors are under ±5%. 

5.3.1 Stage-I 

Study is initiated with a simplest case (square homogeneous reservoir with one region 

and one producing well). The study is then expanded to more complicated reservoir geometries. 

Figure 5-1 shows the progression of complexity of reservoir geometries during network 

development process. 
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5.3.1.1 Square boundary with one region and one producing well 

Production data obtained from the simulation runs are formatted into input and output 

data for neural network. Input data are constructed with time, incremental cumulative production, 

and incremental pressure values (t, Np, Wp, Gp, P). Production data at 30 day intervals for 

the first 3600 days of production are used. Output data are constructed with porosity, permeability 

and thickness values. The 200 data sets are split into training and testing datasets with 50 and 150 

data sets respectively. 

The training data are used during the network training/learning process. During this time 

the neural network studies the data to understand the interrelations between the input and output 

data. The testing data consisting of 150 data sets are used to test the validity of the network. At 

this phase, only the production data are presented to the network and the network is utilized to 

predict the reservoir properties. Prediction errors are calculated to determine the quality of 

predictions. In our study, we accept the network performance as acceptable if the prediction 

errors are under ±5%.  Once the network is trained and tested, they can be used to make 

predictions with novel data sets.  

Initially, a network with 3 hidden layers is used. The hidden layers have 20, 30, 25 

neurons in the 3 hidden layers respectively. Hyperbolic tangent sigmoid (tansig) transfer function 

is used in the hidden layers and linear (purelin) transfer function is used in the output layer. 

Levenberg-„Marquardt backpropagation‟ (trainlm), one of the fastest and hence most 

recommended training functions, along with „Gradient descent with momentum‟ weight and bias 

learning function (learngdm) is used. In order to determine whether the data structure that is input 

to the network will have any effect on the network‟s performance and prediction results, two 

different data structures are examined.  
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Figure 5-1: Process of study with increasing complexity in reservoir geometries 
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The first data structure consists of all time steps for a specific case followed by the 

second case, third case etc., for all 50 cases. The second data structure consists of the first time 

step for each case followed by the second time step for each case, etc. Sample from both data 

structures are shown in Appendix B. It is determined that the first data structure gives lower 

average training errors for all properties as shown in Figure 5-2.  

In order to study the effect of network architecture, several different architectures with 

differing number of neurons are tested. Three different network architectures of significance are 

presented. First network uses [20 20 25] neurons; second network uses [20 25 25] neurons and 

third network uses [20 30 25] neurons in the 3 hidden layers respectively. It is observed that third 

network gives lower training errors compared to others as shown in Figure 5-2. Data structure 1 is 

used with all three architectures. 

Although the training errors are low, when the network is used to predict the properties 

using testing data set, results are not satisfactory as shown in Figure 5-3. The set criteria of less 

than ±5% error for the predicted values were not met. This led to exploration of functional links 

that might help improve network performance. 

 

 

  
a) Comprision of data structure b) Comparison of Network Structures 

 

Figure 5-2:  Average training errors for each property using different data structures and network 

architectures (square reservoir with 1 well and 1 region). 
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Several different functional links for both input and output layers are tested. Some of the 

significant functional links tested are listed in Table 5-1. Testing results with those functional 

links are shown in Figure 5-3. 

Thus, use of functional links t/365 and t/365 x Np together in the input layer proves to be 

the most beneficial. Another point to be noticed is that while use of functional links can improve 

the network performance, it can also cause deterioration of network performance. Other 

parameter that is optimized is convergence criterion. After testing several different convergence 

criterions, it is observed that a convergence criterion of 5e-4 yielded best results. Amount of input 

data were also reduced to 1800 days (~5 years) production data at 90 day intervals in an attempt 

to speedup network training. This change reduced the training time without affecting the quality 

of predictions. Network architecture used is shown in Figure 5-4. 

 

 

 

 

Table 5-1:  Functional links examined (square reservoir with 1 well and 1 region). 

Input Layer  Output Layer 

Functional link(s) 
Prediction 

errors 
 Function link(s) 

Prediction 
errors 

t/365   ln(k)  

t/365 x Np   ln()  

t/365 x Wp   ln(h)  

t/365 x Gp   k/  

Area of region   k x h  

Distance of well from 
boundaries 

  1/( x k)  

t/365; t/365 x Np    x h  
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5.3.1.2 Square boundary with number of wells equal to number of regions 

After obtaining good predictions in the previous case, study is extended to reservoirs with 

more wells and regions. At this point, study is limited to reservoirs with number of wells equal to 

number of regions. All regions in the reservoir have one producing well. As the number of 

 

  
a) fn links that reduce prediction errors b) fn links that increase prediction errors 

 

Figure 5-3:  Average prediction errors for each property using different functional links (square 

reservoir with 1 well and 1 region). 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-4:  Structure of feedforward backpropagation network for square reservoir with 1 well 

and 1 region. 
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regions increase, the number of input and output variables in the neural network also increases. 

This also means that the number of neurons required in the hidden layers of the neural network to 

capture the interrelations between input and output also increases. So, at every stage the number 

of neurons required has to be determined by trial-and-error method.  

With the current network architecture, it is observed that the prediction errors increase as 

the number of regions is increased. It is clear from Figure 5-5 that the current network 

architecture is not powerful enough to capture the interrelationship between input and output data 

for systems with more regions.  

Thus at this point, possibilities of improving the network architecture are explored. As a 

first step, the list of functional links that helped reducing the prediction errors in previous section 

is revisited. Reservoir with three regions and wells are used to experiment with more functional 

links and combination of several functional links in the input and output layers. Several different 

functional links for both input and output layers are tested. Some of the significant functional 

 

 

 

 

  

Figure 5-5:  Average prediction errors for each property using network architectures developed in 

Section 5.3.1.1 (number of wells equal to number of regions). 
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links tested are listed in Table 5-2. Testing results with some of the functional links are shown in 

Figure 5-6.  

 

From Figure 5-6 it is clear that use of functional links t/365 and t/365 x Np, in the input 

layer along with k/ and k x h in output layer is the best choice of functional links for reservoir 

with 3 wells and 3 regions. This combination of functional links is used to train and test neural 

networks for reservoirs which have more regions. It is observed that this new network 

architecture is capable of predicting history match parameters for square reservoirs where number 

of wells is equal to number of regions as shown in Figure 5-7. 

Table 5-2:  Functional links examined (square reservoir with number of wells equal to number of 

regions). 

Option Functional link(s) Prediction errors 

1 t/365, t/365 x Np, k/  

2 t/365, t/365 x Np, k x h  

3 t/365, t/365 x Np, 1/(k x )  

4 t/365, t/365 x Np, k/, k x h  

5 t/365, t/365 x Np, t/365 x Wp  

6 t/365, t/365 x Np, t/365 x Gp  

   
 

 

 

 

 

  
a) fn links that reduce prediction errors b) fn links that increase prediction errors 

  

Figure 5-6:   Average prediction errors for each property using different functional links (square 

reservoir with 3 wells and 3 regions). 
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Figure 5-7:  Average prediction errors for each property using network architectures developed in 

Section 5.3.1.2 (square boundary with number of wells equal to number of regions). 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-8:  Generalized structure of feedforward backpropagation network for square reservoir 

with n wells and n regions. 
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Figure 5-8 shows the generalized architecture of neural network used to train square 

reservoirs with equal number of regions and wells. This network uses, hyperbolic tangent sigmoid 

(tansig) transfer function in the hidden layers and linear (purelin) transfer function in the output 

layer. Levenberg-„Marquardt backpropagation‟ (trainlm) training function along with „Gradient 

descent with momentum‟ weight and bias learning function (learngdm) is used. The number of 

neurons in the hidden layers varies according to the number of regions present in the reservoir. 

Number of neurons in the input layer is equal to 5*n+2 and number of neurons in output layer is 

equal to 5*n, where „n‟ is the number of regions/wells. 

5.3.1.3 Rectangular boundary with number of wells equal to number of regions 

After obtaining satisfactory performance of network for square reservoirs in the previous 

case, complexity of the reservoir geometry was increased by changing the reservoir boundary 

from square to a rectangle. Reservoirs with rectangular boundaries that are discretized into 70x43 

grid blocks (discussed in section 4.2.2) are studied. All regions in the reservoir have one 

producing well. Network architecture developed in the section 5.3.1.2 is used. The number of 

neurons in each hidden layer is identical to the previous case. This neural network was trained 

and tested for reservoirs with varying number of regions. Network prediction errors are within 

acceptable range as shown in Figure 5-9. Thus, it is concluded that the network architecture 

developed in Section 5.3.1.2 is generalized enough for use with both square and rectangular 

boundary reservoirs with equal number of wells and regions.  
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5.3.1.4 Square boundary with number of wells greater than number of regions 

Network architecture developed in Section 5.3.1.2 has worked well when the number of 

wells is equal to number of regions. So, study is extended to reservoirs with number of wells 

greater than number of regions. All regions in the reservoir have at least one producing well. It 

has to be noted that as the number of wells increase the number of input variables also increase. It 

is logical to assume that with more input variables and same number of output variables, the 

predictions made by the network should be good. Study is pursued with this hope. The number of 

neurons required for each system varies according to the number of wells and regions present in 

the system being studied. As the number of wells and regions increase, the number of input and 

output variables also increases respectively. Thus, the number of neurons required in the hidden 

layers also increases. So, at every stage the number of neurons required has to be determined by 

 

 

 

 

  

Figure 5-9:  Average prediction errors for each property using network architectures developed in 

Section 5.3.1.2 (rectangular boundary with number of wells equal to number of regions). 
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trial-and-error method. The network architecture was able to predict properties within reasonable 

error margins. Prediction errors of a sample of the reservoirs tested is shown in Figure 5-10. 

Figure 5-11 shows the generalized form of network architecture for reservoirs with 

square boundary where number of wells is greater than number of regions. This network also 

uses, hyperbolic tangent sigmoid (tansig) transfer function in the hidden layers and linear 

(purelin) transfer function in the output layer along with trainlm training function and learngdm 

weight and bias learning function. The number of neurons in the hidden layers varies according to 

the number of regions and number of wells present in the reservoir. Number of neurons in the 

input layer is equal to 5*n+2 and number of neurons in output layer is equal to 5*m, where „n‟ is 

the number of wells and „m‟ is the number of regions in the reservoir. 

 

 

 

 

 

 

  

Figure 5-10:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.2 (square boundary with number of wells greater than number of regions). 
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5.3.1.5 Rectangular boundary with number of wells greater than number of regions 

Reservoir geometry is modified from square to a rectangular boundary as complexity of 

the reservoir being studied is increased. All regions in the reservoir have at least one producing 

well. This system is trained and tested using the network architecture developed in Section 

5.3.1.2. The number of neurons in each hidden layer is identical to the previous case. The 

network is able to predict properties within reasonable error margins. Prediction errors of a 

sample of the reservoirs tested is shown in Figure 5-12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5-11:  Generalized structure of feedforward backpropagation network for square reservoir 

with n wells and m regions; n > m (number of wells greater than number of regions). 
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5.3.1.6 Irregular boundary with number of wells equal to number of regions 

Network developed in Section 5.3.1.2 has been able to predict properties in reservoirs 

with square boundaries as well as rectangular boundaries. This network is next exposed to 

reservoir with irregular boundary and equal number of wells and regions. All regions in the 

reservoir have one producing well.  It is observed that the network is not able to predict properties 

within reasonable margin of error as shown in Figure 5-13. Network is not able to handle the 

complexity brought by the reservoir with irregular boundary. At this point it has become 

inevitable to explore options to modify the base architecture of the network again. Several 

functional links that could provide clues about the shape of the reservoir are examined. Some of 

 

 

 

 

  

Figure 5-12:   Average prediction errors for each property using network architectures developed 

in Section 5.3.1.2 (rectangular boundary with number of wells greater than number of regions). 
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the significant functional links tested are listed in Table 5-3. Testing results with some of the 

functional links are shown in Figure 5-14.  

 

 

 

 

 

 

  

Figure 5-13:   Average prediction errors for each property using network architectures developed 

in Section 5.3.1.2 (irregular boundary with number of wells equal to number of regions). 

Table 5-3:  Functional links examined (irregular boundary reservoir with number of wells equal 

to number of regions). 

Option Functional link(s) 
Prediction 

errors 

1 t/365, t/365 x Np, k/, k x h, Area of region  

2 t/365, t/365 x Np, k/, k x h, Area of region / k  

3 t/365, t/365 x Np, k/, k x h, Area of region / h  

4 t/365, t/365 x Np, k/, k x h, Area of region /   

5 t/365, t/365 x Np, k/, k x h, Distance of well to nearest boundary  

6 t/365, t/365 x Np, k/, k x h, Distance of well to farthest boundary  
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From Figure 5-14 it is clear that use of functional links t/365, t/365 x Np, in the input 

layer along with k/, k x h, A/k in output layer is the best choice of functional links for reservoir 

with 3 wells and 3 regions. These functional links are used to training and testing other reservoirs 

with equal number of wells and regions. It was observed that this new network architecture works 

fine for irregular reservoirs with equal number of wells and regions as shown in Figure 5-15.  

 

  
a) fn links that reduce prediction errors b) fn links that increase prediction errors 

Figure 5-14:   Average prediction errors for each property using different functional links 

(irregular boundary reservoir with 3 wells and 3 regions). 

 
Figure 5-15:   Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary with number of wells equal to number of regions). 
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As the number of regions increase, the number of input and output variables also 

increase. Thus, the number of neurons required in the hidden layers also increase. So, at every 

stage the number of neurons required in the hidden layers has to be determined by trial-and-error 

method. Number of neurons in the input layer is 5*n+2 and number of neurons in the output layer 

is 6*n, where „n‟ is the number of regions. Figure 5-16 shows the generalized form of network 

architecture for reservoirs with irregular boundary with equal number of wells and regions. 

5.3.1.7 Irregular boundary with number of wells greater than number of regions 

The new network architecture developed in Section 5.3.1.6 is tested on reservoirs with 

number of wells greater than number of regions. All regions in the reservoir have at least one 

producing well. It has to be noted that as the number of wells increase the number of input 

variables also increase. It is logical to assume that with more input variables and same number of 

outputs, the predictions made by the network should be good. Study is pursued with this hope and 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-16:  Generalized structure of feedforward backpropagation network for square reservoir 

with n wells and n regions (number of wells equal to number of regions). 
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the logic proves right again. The neural network developed in section 5.3.1.6 is able to predict 

properties within reasonable error margins. Prediction errors of a sample of the reservoirs tested 

is shown in Figure 5-17. The number of neurons required for each system varies according to the 

number of wells and regions present in the system being studied. As the number of wells and 

regions increase, the number of input and output variables also increases respectively. Thus, the 

number of neurons required in the hidden layers also increases. So, at every stage the number of 

neurons required has to be determined by trial-and-error method. The neural network developed 

in section 5.3.1.6 is able to predict properties within reasonable error margins. Prediction errors of 

a sample of the reservoirs tested is shown in Figure 5-17. The number of neurons in the hidden 

layers varies according to the number of regions and number of wells present in the reservoir. 

Number of neurons in the input layer is equal to 5*n+2 and number of neurons in output layer is 

equal to 6*m, where „n‟ is the number of wells and „m‟ is the number of regions in the reservoir. 

 
Figure 5-17:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary with number of wells greater than number of regions). 
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Figure 5-18 shows the generalized form of network architecture for reservoirs with 

irregular boundary where number of wells greater than number of regions. 

5.3.1.8 Irregular boundary with number of wells less than number of regions 

This is the most complex reservoir geometry that is studied. None of the regions in the 

reservoir have more than one producing well. It should be noted that when the number of wells is 

decreased the number of input variables used by network also decreases. But, the number of 

output variables which depends on number of regions does not decrease. This is not a good 

scenario to be in because now the network has to learn to predict more properties with less 

production information.  

Network developed in section 5.3.1.6 is used to train and test the reservoirs. As the 

number of regions increase, the number of input and output variables also increase. Thus, the 

number of neurons required in the hidden layers also increase. So, at every stage the number of 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5-18:  Generalized structure of feedforward backpropagation network for reservoir with 

irregular boundary with n wells and m regions; n > m (number of wells greater than number of 

regions). 
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neurons required has to be determined by trial-and-error method. The number of neurons in the 

hidden layers varies according to the number of regions and number of wells present in the 

reservoir. Number of neurons in the input layer is equal to 5*n+2 and number of neurons in 

output layer is equal to 6*m, where „n‟ is the number of wells and „m‟ is the number of regions in 

the reservoir. 

In reservoirs where number of wells is less than number of regions, it is observed that as 

the difference between number of wells and number of regions increase, prediction errors also 

increase. This is a reflection of the fact that it is a harder task to predict properties with fewer 

production data. Figures 5-19a and 5-19b show the prediction errors for a sample of the 

reservoirs tested.  

From figures 5-19a and 5-19b it is clear that as the number of wells go below the number 

of regions, the quality of predictions deteriorate. Prediction quality deteriorates rather fast as the 

difference between number of wells and number of regions increases. The current situation can be 

 
Figure 5-19a:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary with number of wells less than number of regions). 
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compared to solving a system of equation. To solve a system of equations with 'n' unknowns, 'n' 

simultaneous equations are required. In this case, this balance is disturbed and the number of 

unknowns is more than the number of relationships neural networks could make between the 

input and output parameters. When this happens the performance of the network gets attenuated. 

So, as the difference between the number of wells and regions increase the number of 

relationships neural network makes decrease. 

 

5.3.1.9 Summary 

The neural network developed in section 5.3.1.6 has an architecture that can handle 

almost all the cases studied. This network was used to predict properties for reservoir with square 

and rectangular boundaries. The number of neurons used in each of the hidden layers is identical 

to those of reservoir with irregular reservoirs. The prediction errors for all the cases studied while 

 
Figure 5-19b:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary with number of wells less than number of regions) (cont‟d). 
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using the network developed in section 5.3.1.6 are included in Appendix C. Figure 5-20 shows 

the generalized network architecture. This feedforward backpropagation network can be used to 

predict properties for all types of reservoirs except systems with number of wells is less than 

number of regions and the difference is large. The number of neurons in the input layer is 5*n+2 

and number of neurons in output layer is 6*m, where „n‟ is the number of wells and „m‟ is the 

number of regions in the reservoir.  

5.3.2 Stage-II 

In Stage-II, relative permeability curves are varied along with porosity, permeability and 

net pay thickness. Reservoir with irregular boundary with n wells and m regions are studied in 

this stage of the study. Network developed in Stage-I is modified to include reservoirs with 

different relative permeability curves. To construct different sets of two-phase relative 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-20:  Generalized structure of feedforward backpropagation network for reservoir with 

irregular boundary with n wells and m regions. 
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permeability curves, end point saturations (Sorw, Sorg, Swirr, Sgcrit), relative permeability at endpoint 

saturation (krwro, kroirw, krgro, krocritg) and exponent values (N) are varied.  

5.3.2.1 Irregular boundary with ‘n’ wells and ‘m’ regions using different relative permeability 

curves 

Network developed in Section 5.3.1.6 has been able to predict porosity, permeability and 

net pay thickness in reservoirs with irregular boundary with n wells and m regions. This network 

is next exposed to a system that has to predict endpoint saturations, relative permeability at 

endpoint saturation and exponent along with porosity, permeability and net pay thickness. In 

preliminary tests it is observed that the network is not able to predict properties within reasonable 

margin of error as shown in Figure 5-21.  

 

 

 

 

  

Figure 5-21:   Average prediction errors obtained during preliminary test of reservoirs with 

different relative permeability curves using network architectures developed in Section 5.3.1.6  
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Network is not able to handle the complexity brought by reservoirs with different relative 

permeability curves. At this point it has become inevitable to explore options to modify the base 

architecture of the network again. Several functional links are examined. Some of the significant 

functional links tested are listed in Table 5-4. Testing results with some of the functional links are 

shown in Figure 5-22. 

From Figure 5-22 it is clear that use of functional links t/365, t/365 x Np, WOR, GOR, in 

the input layer along with k/, k x h, A/k in output layer is the best choice of functional links for 

reservoir with 3 wells and 3 regions. These functional links are used to training and testing other 

reservoirs with irregular boundaries. It was observed that this new network architecture works 

fine for irregular reservoirs with equal number of wells and regions as shown in Figure 5-23.  

As the number of regions increase, the number of input and output variables also 

increase. Thus, the number of neurons required in the hidden layers also increase. So, at every 

stage the number of neurons required in the hidden layers has to be determined by trial-and-error 

method. Number of neurons in the input layer is 7*n+2 and number of neurons in the output layer 

is 6*m+9, where „n‟ is the number of wells and m is the number of regions. Figure 5-24 shows 

Table 5-4:  Functional links examined (irregular boundary reservoirs with different sets of 

relative permeability curves). 

Option Functional link(s) 
Prediction 

errors 

1 t/365, t/365 x Np, WOR, k/, k x h, Area of region / k  

2 t/365, t/365 x Np, GOR, k/, k x h, Area of region / k  

3 t/365, t/365 x Np, GLR, k/, k x h, Area of region / k  

4 t/365, t/365 x Np, WOR, GOR, k/, k x h, Area of region / k  

5 t/365, t/365 x Np, WOR, GLR, k/, k x h,  Area of region / k   

6 t/365, t/365 x Np, GOR, GLR, k/, k x h,  Area of region / k   
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the generalized form of network architecture for reservoir with irregular boundary with n wells 

and m regions. Matlab code used to train and test the network are shown in Appendix D. 

 

 

 

 
a) fn links that reduce prediction errors 

 

 

b) fn links that increase prediction errors 

Figure 5-22:   Average prediction errors for each property using different functional links 

(irregular boundary reservoir with 3 wells and 3 regions). 
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Figure 5-23:   Average prediction errors for each property using network architectures developed 

in Section 5.3.2.1 (irregular boundary with n wells and m regions). 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 5-24:   Generalized structure of feedforward backpropagation network for reservoir with 

irregular boundary with n wells and m regions. 
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5.4 Network Designer 

A network that performs well in all the scenarios studied has been developed. At this 

stage there is only one issue with the network. The number of neurons required in each hidden 

layer varies with number of wells and number of regions. So, users will be forced to refer to a 

manual to figure out the number of neurons required. In order to streamline the process, a 

network designer is developed. Network designer is a simple neural network that takes number of 

wells and number of regions in the reservoir as input and gives the number of neurons required in 

each hidden layer as output. Figure 5-25 shows the network architecture used to predict number 

of neurons required. 

Network designer uses data observed during the properties prediction network. It has 1 

hidden layer with 8 neurons. Transfer functions used are hyperbolic tangent sigmoid (tansig) and 

linear (purelin) functions. Network designer will act as an easy to use tool to calculate number of 

neurons required for the reservoir being studied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5-25:  Network Architecture of Network Designer. 
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Figure 5-26:  Prediction errors for number of neurons required in each of the hidden layers in the 

prediction network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
Figure 5-27:  Comparison of average prediction errors for each property using network 

architecture developed in Section 5.3.2.1 with number of neurons determined by trial-and-error 

method and number of neurons as calculated by network designer (reservoir with irregular 

boundary). 
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The number of neurons required in the prediction network for different reservoirs is 

determined by trial-and-error process. A small set of this data are used to train the network 

designer. The network designer is then used to calculate the number of neurons required for other 

reservoirs. Prediction errors of a sample of the reservoirs tested is shown in Figure 5-26. Network 

designer is able to predict the number of neurons required in each of the three hidden layers in the 

prediction network within an error of ±5 neurons. Figures 5-27 shows a comparison of prediction 

errors for a sample of reservoirs tested using number of neurons in hidden layers determined by 

trial-and-error and number of neurons as calculated by network designer. 

5.5 Guidelines for Development of ANN Prediction Tool 

Artificial neural networks are widely used in a lot of petroleum engineering applications. 

But, lack of established guidelines for design of ANN prediction network has forced users to 

resort to trial-and-error procedure at every step along the development process. Based on the 

observations made during the development of ANN prediction tool for history matching, a set of 

guidelines have been developed. Design of ANN prediction tool can be broadly divided into 1. 

Network structure, 2. Input/output parameters, 3. Data formulation. 

5.5.1 Network Structure 

Artificial neural network has several neurons which are arranged in layers and the 

connections between these layers constitute the network architecture. They can be either a single 

layer network or a multilayer network. Single layer networks have one input layer and one output 

layer. Multilayer networks have one input layer, one output layer and they are connected by one 
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or more hidden layers. Any problem can be solved provided there is enough number of neurons in 

the hidden layers. Most problems do not require more than four hidden layers [Fausett, 1994]. 

For history matching, it is has been shown that multilayer feedforward network with back 

propagation works well.  The problem being solved requires three hidden layers for optimum 

performance. The actual number of neurons in each hidden layer depends on the number of input 

and output neurons. Hyperbolic tangents sigmoid (tansig) transfer function works well between 

all layers except output layer. Typically, linear transfer function like purelin is used in the output 

layer. As choice for training algorithm, Levenberg-Marquardt algorithm is highly recommended 

as a first-choice supervised algorithm. Although it does require more memory than other 

algorithms, it is one of the fastest backpropagation algorithms. It has been observed that using a 

performance goal between e
-4

 and e
-5

 works well. So, all through the study a performance goal of 

5e
-5

 has been used.  

5.5.2 Input/Output Parameters 

A good starting point to begin would be to list the parameters present in the governing 

equations to solve the particular problem. In our case, for history matching process, mass balance 

equations are used. From this, preliminary list of parameters are complied. Output parameters are 

the easiest list to assemble because we already have our objectives defined. Most of the times 

both the input and output layers end up using extra parameters which are functions of other 

parameters. They are called functional links. They help amplify minor changes in parameters. 

This in-turn help the network understand the relationship between input and output values. Some 

of the functional links may have some physical meaning while others may look very random yet 

improve network performance. For example, functional link t/365 which is nothing but time in 

years has helped improve network performance. But, there is no real explanation why time in 
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days along with time in yrs used in input improves network performance. Functional links k/ and 

kxh were introduced when more regions and wells were added to the reservoirs being studied. 

Now, the network not only predicts the property values k,  and h, it also ensures that k/ and kxh 

relationships are satisfied. This essentially acts as a mechanism to cross check predicted property 

values using other relationships. This type of reinforcing helps improve the network performance. 

Table 5-5 lists the input and output parameters used by network developed to predict history 

match parameters of reservoirs with different relative permeability curves.  

Table 5-5:  Input and output parameters used in network used to predict history match parameters. 

(irregular boundary reservoirs with different sets of relative permeability curves). 

Input Parameters  Output Parameters 

t  k 

Np  

Gp  h 

Wp  k /  

P  k x h 

t/365  A / k 

t/365 x Np  Sorw 

WOR  Sorg 

GOR  Swirr 

  Sgcrit 

  krwro 

  kroirw 

  krgro 

  krocritg 

  N 
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5.5.3 Data Formulation 

Data formulation is an important step that determines the performance and accuracy of 

predictions made by the network. This step involves making several critical decisions about the 

data being presented to the network during training phase of the process. Some of them 

significant ones are, 1. Data generation strategy, 2. Number of data sets to be presented to the 

network during training phase, 3. Order in which data are presented to the network. 

5.5.3.1 Data Generation Strategy 

Neural network works better at interpolation than extrapolation. So, the data presented to 

the network during training stage should cover the whole spectrum of parameter values in the 

output layer. In this study, data used in training were generated using a random number generator 

then manually inspected to ensure there is uniform distribution of properties. 

5.5.3.2 Number of Data Sets 

Number of data sets used in the training phase of the network development is very 

critical. Use of too few data sets may lead to a network that has not captured the actual 

relationship between input and output parameters. Use of too many data sets may lead to a 

network that memorizes the values rather than understanding the relationship between input and 

output parameters. Both scenarios are undesirable since neither will give good predictions for 

actual problem. Apart from this, time required to train the network also increases as the number 

of data sets increase. So, there is always incentive to reduce the number of data sets. It is essential 

to find an optimum number of data sets that give good results. In this study, 50 data sets were 

used in training. 
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5.5.3.3 Sort Order of Data in Data Sets 

The order in which data are presented to the network can make some difference in the 

performance. But there is no documented evidence that suggests that change in sort order will 

make a big difference in network performance. In this study, it was observed that presenting all 

time steps of a single data set together gave slightly better results compared to sorting all the data 

based on time steps. 



 

 

Chapter 6 

 

IMPLEMENTATION OF ANN PREDITION TOOL TO ACTUAL FIELD 

DATA 

The artificial neural network developed is implemented to actual field data obtained from 

Perry reservoir located in Brayton field. To gauge the performance of the developed artificial 

neural network, history match is performed using the on predicted properties. 

6.1 Perry Reservoir in Brayton Field 

 Brayton field is located about 30 miles west of the City of Corpus Christi in the western 

Nueces County, Texas. Brayton field is a local productive area on the east flank of the Agua 

Dulce structure in District 4, Nueces County, Texas. This study will use field production data 

from Perry reservoir. It is located at a depth between 7100 to 7300 feet below the ground. It was 

first proved productive in late 1945. 

Perry sand is a lenticular north-south strike oriented Lower Frio sand that is located in the 

Brayton field. The Perry sand dips uniformly east at 100 feet per mile. Figure 6-1 shows the 

structure contour map of Perry sand. Perry sand has a maximum thickness of 30 feet. Figure 6-2 

shows the isopach map of Perry sand. The type of hydrocarbon trapping mechanism is a 

stratigraphic pinchout or strandline re-entry from eastern direction. This sand as well as other 

overlying sands was deposited in a lagoonal environment as wash over sands or bar sands that 

were confined by adjacent lagoonal muds. Perry sand has good porosity and permeability 
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Figure 6-1:   Structural contour map on top of Perry sand. 
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.  

6.2 Implementation of Artificial Neural Network 

Before implementing the artificial neural network developed for predicting properties of 

the Perry reservoir, it has to be classified based on the number of wells and number of regions. 

Perry sand has 18 producing wells. From the Isopach map, the reservoir was delineated into four 

 
 

Figure 6-2:   Isopach map of Perry sand. 
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regions. Figure 6-3 shows well locations in Perry reservoir on top structure contour map. Figure 

6-4 shows Perry reservoir delineated into 4 regions on isopach map.  

 

 

 
 

Figure 6-3: Well locations in Perry reservoir on top structure contour map. 
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6.2.1 Training the Artificial Neural Network 

Next step is to generate training data set. Training data set are generated using 50 

different reservoirs with different porosity, permeability, net pay thickness and relative 

permeability curves. The rock and fluid properties used to build the simulation model for Perry 

sand is outlined in Appendix E. Production data obtained from these reservoirs simulations 

becomes the training data. They are formatted into the pattern and target data. They are used to 

train the multilayer feedforward network with back propagation. Network is trained until a 

 
 

Figure 6-4:    Perry reservoir delineated into 4 regions on isopach map. 

Region 1 

Region 2 

Region 3 

Region 4 
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performance goal of 5e
-5

 is achieved. Thus we have a trained network that can be used to predict 

the properties of Perry reservoir. 

6.2.2 Predicting the Artificial Neural Network 

Production data from the field are formatted into the target data. This constitutes the input 

data to our prediction network. Prediction network is used to predict the porosity, permeability, 

net pay thickness of the four regions along with parameters required for constructing two-phase 

relative permeability curves. Table 6-1 shows the predicted property values.  

In a separate study, Al-Saadoon et.al (1990) had evaluated various enhanced oil recovery 

schemes for Simmonds and Perry reservoirs. In that study, it has been shown that an average 

porosity of 0.28 and an average permeability of 1672md in the Perry reservoir gave good history 

match. The porosity and permeability values predicted by the artificial neural network are close to 

the values from the EOR study. This may indicate that a good history match is likely to be 

obtained using predicted property values.  

Table 6-1:  Property values for Perry reservoir predicted by artificial neural network. 
 

Region Porosity Permeability Net Pay Thickness 

1 0.269 1652 8.3 

2 0.281 1684 18.2 

3 0.275 1671 29.4 

4 0.284 1677 22.8 

    

Sorw = 0.41 Sorg = 0.37 Swirr = 0.29 Sgcrit = 0.06 

Krwro = 0.73 Krgro = 0.66 Kroirw = 0.92 Krocritg = 0.91 

N = 3.1    
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 6.2.3 History Matching 

Using the predicted properties a reservoir simulation model is built. The model is run for 

1800 days of production. Then, the production results from the model are compared to the field 

production data. Figure 6-4 shows comparison of production data. 

From Figure 6-4 it is clear that model production and field production are in close 

agreement with each other. This can be called a successful history match. Thus, the model created 

using predicted properties is a good history match to the actual reservoir. 

 

  

a. Oil Production b. Gas Production 

 

c. Water Production 

 

Figure 6-5: Simulated production profiles for the Perry reservoir built using ANN predicted 

properties compared to field production data. 
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6.3 Summary 

The neural network developed in section 5.3.2.1 has been successfully implemented to 

predict properties of Perry reservoir using actual field data. Training data were generated for the 

reservoir with 18 wells and 4 regions. Artificial neural network was trained using this training 

data. The trained network was then used in prediction mode with actual field data to predict the 

properties of Perry reservoir. Predicted properties were used to build a simulation model whose 

production is compared with actual field production. The properties predicted by the artificial 

neural network have provided a good history match to the field production data. Thus it has been 

shown through this field application that the artificial neural network developed in this study can 

serve as an effective tool in predicting the properties of actual reservoirs. 

 

 

 

 

 

 



 

 

Chapter 7 

 

CONCLUSIONS 

7.1 Conclusions 

In this study, an artificial neural network tool was developed that can help simulation 

engineers obtain a good history match for black oil reservoirs with fewer simulation runs. This 

tool is capable of predicting porosity (), permeability (k), net pay thickness (h) for each 

zone/region and parameters required to construct the two phase relative permeability curves (Sorw, 

Sorg, Swirr, Sgcrit, krwro, kroirw, krgro, krocritg, N). Cumulative production and pressure data constitute 

input data to the tool. The property and parameter values predicted by the tool will provide a good 

history match or the least serve as a good starting point for history matching. The main advantage 

of this tool is that it doesn‟t require an initial estimate of properties and parameters to obtain a 

good history match. This tool actually obtains a good history match with fewer simulation runs 

compared to conventional history matching techniques. Using this tool, only a finite number of 

simulation runs (in this study, typically 50 sets of training data were used), to generate synthetic 

training data, are required to obtain a good history match. While by conventional history 

matching techniques, a few hundred runs could be required, especially when a good initial 

estimate of these properties and parameters are not available. 

Implementation of the tool for history matching involves two steps, 1. Training of 

network using synthetic data, 2. Prediction of property and parameter values of actual reservoir. 

During the training stage, network is shown several sets of synthetic data. Once the network is 

trained, it can be used to predict property and parameter values of actual reservoir by providing 
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production and pressure data as input to the network. The predicted values should be useful in 

building a model that provides good history match to the actual reservoir. 

The number of neurons required in each of the hidden layers of the artificial neural 

network tool developed depends on the number of wells and regions in the reservoir. A separate 

tool called network designer was developed to determine the number of neurons required. 

Network designer takes number of wells and regions as input to predict the number of neurons in 

each hidden layer.  

The developed tool was successfully implemented to a real field. Field data from Perry 

reservoir was tested using the prediction tool. History match was performed using properties 

predicted by the tool. It has been shown that a good history match has been obtained between the 

model and field production data. 

The major conclusions from this study are as follow: 

1. Artificial neural network tool using multilayer feedforward back propagation 

network algorithm is effective in history matching applications. 

2. The constructed prediction tool is capable of predicting the history match 

parameters porosity, permeability, net pay thickness, endpoint saturations, 

relative permeability at endpoint saturations and exponent for black oil reservoirs 

within acceptable margins of error. 

3. A good history match to Perry reservoir was obtained using the artificial neural 

network tool developed. Thus it has been shown through this field application 

that the artificial neural network developed in this study can serve as an effective 

tool in predicting the properties of actual reservoirs. 

4. Network designer is effective in designing the prediction network.  

5. Prediction network designed by network designer is capable of predicting history 

match properties within acceptable margins of error. 
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6. When the number of wells is greater than or equal to number of regions, history 

match parameters can be predicted within acceptable margins of error. 

7. When the number of wells is less than number of regions, prediction errors are 

high and continue to increase as the difference between number of wells and 

number of regions increase. 

8. Production data input to the network at every 90 day intervals for the 1800 days 

effectively trained the network while reducing training times compared to 

production inputs at 30 day intervals for 3600 days. 

9. Levenberg-Marquardt backpropagation (trainlm) is an effective and fast training 

function. 

10. Functional links t/365, t/365 x Np, WOR and GOR in input layer are most 

effective. 

11. Functional links k/f, k x h and A/k in output layer are most effective. 

7.2 Recommendations for Future Work 

The study can be further improved with the following potential research: 

 Initial conditions of the reservoir like reservoir pressure, saturation, water-oil 

contact, gas-oil contact; rock-fluid properties like capillary pressure curves; and 

PVT data are some of the parameters that are usually adjusted during history 

matching process. Including some of these to the list of parameters to be 

predicted would be good logical next step. 

 Current study works well with reservoirs upto 20 wells and 20 regions. It is 

essential to generalize the network structure such that the limit on the number of 
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wells and number of regions that can be handled by the network is expanded or 

removed.  

 Performing a sensitivity analysis on the amount of production history required by 

the neural network could help reduce the amount of production history provided 

to the neural network. The amount of production history required may depend on 

the size of the reservoir itself. Network should be analyzed from that perspective 

as well. 

 Some of the properties predicted like porosity may be known to reservoir 

engineer.  There is an option of keeping that value constant across the training 

data set and in-turn reduce the number of data sets used in training. A protocol 

may be developed for performing such changes. 

 What happens when some production data is not available? Can the network still 

be trained to predict the properties? 

 Current study involves only reservoir with producing wells only. Exploring 

reservoirs with injectors and producers would be good next step. 

 Current study has history matched black oil reservoir. The possibility of 

expanding it to compositional and may be even thermal reservoirs can be 

explored. 
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Appendix A 

 

Reservoir Rock and Fluid Properties Used to Build Reservoir Models 

This section describes the parameters used in the reservoir model that is used generate 

synthetic data for training and testing of neural network.  

 

A.1 Initialization Data 

 

 

 

 

 

 

Table A-1: Rock and fluid data used in the initialization of reservoir model. 

Type of fluid model 
Stock tank water density 
Water salinity 
Water formation volume factor 
Water viscosity 
Water compressibility 
Rock compressibility 
Reservoir pressure 
Reservoir temperature 
Gas gravity 
Oil density 

Black oil 
61.9073 lb/ft3 
20,000 ppm 
1.01501 
0.440258 cp 
3.3225e

-006
 1/psi 

3.2 e
-006

 1/psi 
1000 psi 
158 

o
F 

0.65 
53.0013 lb/ft3 
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A.2 Rock Property Data 

Table A-3: Two-phase relative permeability data. 

Water–Oil Table  Gas-Oil Table 

Sw Krw Krow  Sg Krg Krog 

0.200 

0.225 

0.250 

0.275 

0.300 

0.325 

0.350 

0.375 

0.400 

0.425 

0.450 

0.475 

0.500 

0.525 

0.550 

0.575 

0.600 

0.00000 

0.00117 

0.00469 

0.01055 

0.01875 

0.02930 

0.04219 

0.05742 

0.07500 

0.09492 

0.11719 

0.14180 

0.16875 

0.19805 

0.22969 

0.26367 

0.30000 

0.80000 

0.70313 

0.61250 

0.52813 

0.45000 

0.37813 

0.31250 

0.25313 

0.20000 

0.15313 

0.11250 

0.07813 

0.05000 

0.02813 

0.01250 

0.00313 

0.00000 

 

0.050 

0.084 

0.119 

0.153 

0.188 

0.222 

0.256 

0.291 

0.325 

0.359 

0.394 

0.428 

0.463 

0.497 

0.531 

0.566 

0.600 

0.00000 

0.00117 

0.00469 

0.01055 

0.01875 

0.02930 

0.04219 

0.05742 

0.07500 

0.09492 

0.11719 

0.14180 

0.16875 

0.19805 

0.22969 

0.26367 

0.30000 

0.80000 

0.70313 

0.61250 

0.52813 

0.45000 

0.37813 

0.31250 

0.25313 

0.20000 

0.15313 

0.11250 

0.07813 

0.05000 

0.02813 

0.01250 

0.00313 

0.00000 

 

Table A-2: Endpoint input data used to generate relative permeability curves. 

Connate water saturation 
Critical water saturation 
Irreducible oil saturation for water-oil table 
Residual oil saturation for water-oil table 
Irreducible oil saturation for gas-liquid table 
Residual oil saturation for gas-liquid table 
Connate gas saturation 
Critical gas saturation 
Oil relative permeability at connate water saturation 
Water relative permeability at irreducible oil saturation 
Gas relative permeability at connate liquid saturation 
Gas relative permeability at connate gas saturation 
Exponent for calculating krw 
Exponent for calculating krow 
Exponent for calculating krog 
Exponent for calculating krg 

0.2 
0.2 
0.4 
0.4 
0.2 
0.2 
0.05 
0.05 
0.8 
0.3 
0.3 
0.8 
2 
2 
2 
2 
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A.3 Black Oil PVT Data 

 

 

Table A-4: Black oil PVT data used in the reservoir simulator to generate synthetic data. 

 

P, psi 
Rs, 

(SCF/STB) 
Bo, 

(RB/STB) 
Bg, 

(RB/MSCF) 
µo, (cp) µg, (cp) co, 1/psi 

14.70 
76.57 
138.44 
200.31 
262.18 
324.05 
385.92 
447.79 
509.66 
571.53 
633.40 
695.27 
757.14 
819.01 
880.88 
942.75 
1769.46 
2596.18 
3422.89 
4249.61 
5076.32 

3.81 
11.72 
20.74 
30.51 
40.84 
51.65 
62.86 
74.41 
86.29 
98.44 
110.86 
123.52 
136.41 
149.50 
162.80 
176.28 
370.83 
585.33 
814.37 
1055.03 
1305.48 

1.0455 
1.0484 
1.0517 
1.0553 
1.0592 
1.0632 
1.0675 
1.0719 
1.0765 
1.0812 
1.0861 
1.0910 
1.0962 
1.1014 
1.1068 
1.1122 
1.1948 
1.2923 
1.4023 
1.5233 
1.6542 

0.2107 
0.0402 
0.0221 
0.0151 
0.0115 
0.0092 
0.0077 
0.0066 
0.0058 
0.0051 
0.0046 
0.0041 
0.0038 
0.0035 
0.0032 
0.0030 
0.0015 
0.0010 
0.0008 
0.0007 
0.0006 

2.5412 
2.4081 
2.2746 
2.1482 
2.0311 
1.9236 
1.8253 
1.7355 
1.6535 
1.5786 
1.5099 
1.4468 
1.3887 
1.3352 
1.2856 
1.2397 
0.8457 
0.6503 
0.5337 
0.4559 
0.4002 

0.0125 
0.0125 
0.0126 
0.0127 
0.0127 
0.0128 
0.0129 
0.0130 
0.0131 
0.0132 
0.0133 
0.0134 
0.0135 
0.0136 
0.0137 
0.0139 
0.0161 
0.0190 
0.0222 
0.0252 
0.0280 

3.00E-05 
3.00E-05 
3.00E-05 
3.00E-05 
3.00E-05 
3.00E-05 
3.00E-05 
3.00E-05 
3.00E-05 
3.00E-05 
3.00E-05 
3.00E-05 
3.00E-05 
3.00E-05 
3.00E-05 
3.00E-05 
2.45E-05 
1.49E-05 
1.04E-05 
7.86E-06 
6.25E-06 

 

 



 

 

Appendix B 

 

Sample Data 

 

Table B-1: Sample training input data - Data structure 1. 

 
# t, days Np, bbl Wp, bbl Gp, bbl P, psi t/365, yrs 

t/365 x Np, 
bbl x yr 

 

 
1 90 -47165.1 499.908 1.22E+08 -197.306 0.246575 -11629.8  

 2 180 -44977 -2486.6 -4E+07 19.856 0.493151 -22180.4  

 3 270 -37678 -1649.4 -4.7E+07 34.351 0.739726 -27871.4  

 : : : : : : : :  

 : : : : : : : :  

 : : : : : : : :  

 18 1620 -1764 -184.2 -1499000 1.5223 4.438356 -7829.26  

 19 1710 -1609 -169.8 -1322000 1.3309 4.684932 -7538.05  

 20 1800 -1475 -157 -1172000 1.1748 4.931507 -7273.97  

 21 90 47639.07 2522.356 1.29E+08 -42.915 0.246575 11746.62  

 22 180 -5592 469.35 50548000 13.255 0.493151 -2757.7  

 23 270 -2768 277.1 22947000 12.808 0.739726 -2047.56  

 : : : : : : : :  

 : : : : : : : :  

 : : : : : : : :  

 38 1620 29 19.2 266000 -0.0566 4.438356 128.7123  

 39 1710 15 15.7 219000 -0.0511 4.684932 70.27397  

 40 1800 4 12.7 182000 -0.0438 4.931507 19.72603  

 : : : : : : : :  

 : : : : : : : :  

 : : : : : : : :  

 981 90 -56098.8 -1168.03 13194090 -120.603 0.246575 -13832.6  

 982 180 -62105 -2873.6 -1.7E+08 18.735 0.493151 -30627.1  

 983 270 -17643 -1365.1 -9.3E+07 15.551 0.739726 -13051  

 : : : : : : : :  

 : : : : : : : :  

 : : : : : : : :  

 998 1620 -917 -138.7 -1924000 1.0169 4.438356 -4069.97  

 999 1710 -835 -126.5 -1663000 0.893 4.684932 -3911.92  

 1000 1800 -764 -116 -1464000 0.79 4.931507 -3767.67  
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Table B-2: Sample training output data - Data structure 1. 

 # k, md  h, ft  

 1 1326 0.31 93  

 2 1326 0.31 93  

 3 1326 0.31 93  

 : : : :  

 : : : :  

 : : : :  

 18 1326 0.31 93  

 19 1326 0.31 93  

 20 1326 0.31 93  

 21 1058 0.2 88  

 22 1058 0.2 88  

 23 1058 0.2 88  

 : : : :  

 : : : :  

 : : : :  

 38 1058 0.2 88  

 39 1058 0.2 88  

 40 1058 0.2 88  

 : : : :  

 : : : :  

 : : : :  

 981 652 0.22 148  

 982 652 0.22 148  

 983 652 0.22 148  

 : : : :  

 : : : :  

 : : : :  

 998 652 0.22 148  

 999 652 0.22 148  

 1000 652 0.22 148  
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Table B-3: Sample training input data - Data structure 2. 

 
# t, days Np, bbl Wp, bbl Gp, bbl P, psi t/365, yrs 

t/365 x Np, 
bbl x yr 

 

 
1 90 -47165.1 499.908 1.22E+08 -197.306 0.246575 -11629.8 

 

 2 90 47639.07 2522.356 1.29E+08 -42.915 0.246575 11746.62  

 : : : : : : : :  

 : : : : : : : :  

 : : : : : : : :  

 50 90 -56098.8 -1168.03 13194090 -120.603 0.246575 -13832.6  

 51 180 -44977 -2486.6 -4E+07 19.856 0.493151 -22180.4  

 52 180 -5592 469.35 50548000 13.255 0.493151 -2757.7  

 42 180 -62105 -2873.6 -1.7E+08 18.735 0.493151 -30627.1  

 : : : : : : : :  

 : : : : : : : :  

 : : : : : : : :  

 998 1800 -1475 -157 -1172000 1.1748 4.931507 -7273.97  

 999 1800 4 12.7 182000 -0.0438 4.931507 19.72603  

 1000 1800 -764 -116 -1464000 0.79 4.931507 -3767.67  

  

Table B-4: Sample training output data - Data structure 2. 

 # k, md  h, ft  

 1 1326 0.31 93  

 2 1058 0.2 88  

 : : : :  

 : : : :  

 : : : :  

 50 652 0.22 148  

 51 1326 0.31 93  

 52 1058 0.2 88  

 42 652 0.22 148  

 : : : :  

 : : : :  

 : : : :  

 998 1326 0.31 93  

 999 1058 0.2 88  

 1000 652 0.22 148  

      
 



 

 

Appendix C 

 

Prediction Errors 

 
Figure C-1:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 1 region system). 

 
Figure C-2:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 2 region system) (cont‟d). 
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Figure C-3:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 3 region system) (cont‟d). 

 
Figure C-4:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 4 region system) (cont‟d). 
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Figure C-5:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 5 region system) (cont‟d). 

 
Figure C-6:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 6 region system) (cont‟d). 
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Figure C-7:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 7 region system) (cont‟d). 

 
Figure C-8:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 8 region system) (cont‟d). 
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Figure C-9:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 9 region system) (cont‟d). 

 
Figure C-10:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 10 region system) (cont‟d). 
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Figure C-11:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 11 region system) (cont‟d). 

 
Figure C-12:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 12 region system) (cont‟d). 
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Figure C-13:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 13 region system) (cont‟d). 

 
Figure C-14:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 14 region system) (cont‟d). 
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Figure C-15:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 15 region system) (cont‟d). 

 
Figure C-16:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 16 region system) (cont‟d). 
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Figure C-17:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 17 region system) (cont‟d). 

 
Figure C-18:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 18 region system) (cont‟d). 
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Figure C-19:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 19 region system) (cont‟d). 

 
Figure C-20:  Average prediction errors for each property using network architectures developed 

in Section 5.3.1.6 (irregular boundary, 20 region system) (cont‟d). 



 

 

Appendix D 

 

Matlab Code 

D.1 Training the network designer 

% Prasanna Chidambaram 
% The Pennsylvania State University 
% Petroleum and Natural Gas Engineering 

  
% This program is part of the network designer. This will be used to 

train the network designer.  

  
clear all; 
format compact; 

  
% Loads the pattern/input and target/output data 
% Inputs: number of wells, number of regions 
% Outputs: number of neurons in I, II and III hidden layers required in 

prediction network 
load Data\net_train.xls; 

  
net_train_in=net_train(:,1:2); 
net_train_out=net_train(:,3:5); 

  
% Transposes the pattern and target data 
pt=net_train_in'; 
tt=net_train_out'; 

  
% Process matrices by mapping row minimum and maximum values to [-1 1] 
[npt,ps]=mapminmax(pt); 
[ntt,ts]=mapminmax(tt); 

  
% Training the network using one hidden layer with 8 neurons 
net=newff(minmax(npt),[8,3],{'tansig','purelin'},'trainlm','learngdm','

mse'); 

  
% Network parameters 
net.trainparam.goal=1e-5; 
net.trainparam.epochs=5000; 
net.trainparam.show=1; 
[net,tr]=train(net,npt,ntt); 

  
% Network weight and bias values saved for use in prediction stage 
save files\net_design.mat; 
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D.2 Predicting number of neurons required in prediction network 

% Prasanna Chidambaram 
% The Pennsylvania State University 
% Petroleum and Natural Gas Engineering 

  
% This program is part of the network designer. This will be used to 

calculate the number of neurons required in the prediction network.  

  
clear all; 
format compact; 

  
% Loads the pattern/input data 
% Inputs: number of wells, number of regions 
% Outputs: number of neurons in I, II and III hidden layers required in 

prediction network 
load files\net_design.mat; 
load data\net_test.xls; 

  
% Transposes the pattern data 
test_T=net_test'; 

  
% Process matrices by mapping row minimum and maximum values to [-1 1] 
n_test_T=mapminmax('apply',test_T,ps) 

  
%Simulate neural network  
neuron=sim(net,n_test_T) 

  
% Reverse the processing of matrix to get actual values 
neuron=mapminmax('reverse',neuron,ts) 

  
% Storing neuron information calculated by the network designer 
f1=fopen('output\neurons.txt','wt'); 
fprintf(f1,'%10.0f %10.0f %10.0f',neuron); 
fprintf(f1,'%10.0f\n',net_test(2)*6+9); 
fclose(f1); 

D.3 Training the prediction network 

% Prasanna Chidambaram 
% The Pennsylvania State University 
% Petroleum and Natural Gas Engineering 

  
% This program is part of the prediction network. This will be used to 

train the prediction network.  

  
clear all; 
format compact; 
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% Loads the neuron information calculated by the network designer data 
load output\neurons.txt; 

  
% Loads the pattern/input and target/output data 
% Inputs: t, Np, Wp, Gp, P, t/365, t/365*Np, WOR, GOR 
% Outputs: k, phi, h, k/phi, k*h, A/h, Sorw, Sorg, Swirr, Sgcrit, 

krwro, kroirw, krgro, krocritg, N 
load data\training.xls; 
load data\training_prop.xls; 

  
% Transposes the pattern and target data 
pt=training'; 
tt=training_prop'; 

  
% Process matrices by mapping row minimum and maximum values to [-1 1] 
[npt,ps]=mapminmax(pt); 
[ntt,ts]=mapminmax(tt); 

  
% Training the network using three hidden layers with number of neurons 

as 
% calculated by the prediction network 
net=newff(minmax(npt),[neurons(1),neurons(2),neurons(3),neuron(4)],{'ta

nsig','tansig','tansig','purelin'},'trainlm','learngdm','mse');  

  
% Network parameters 
net.trainparam.goal=5e-4; 
net.trainparam.epochs=5000; 
net.trainparam.show=1; 
[net,tr]=train(net,npt,ntt); 

  
% Network weight and bias values saved for use in prediction stage 
save files\training.mat; 

D.4 Testing the prediction network 

% Prasanna Chidambaram 
% The Pennsylvania State University 
% Petroleum and Natural Gas Engineering 

  
% This program is part of the prediction network. This will be used to 

predict the history match parameters.  

  
clear all; 
format compact; 

  
% Loads the pattern/input and target/output data 
% Inputs: t, Np, Wp, Gp, P, t/365, t/365*Np, WOR, GOR 
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% Outputs: k, phi, h, k/phi, k*h, A/h, Sorw, Sorg, Swirr, Sgcrit, 

krwro, kroirw, krgro, krocritg, N 

 
load files\training.mat; 
load data\testing.xls; 
load data\testing_prop.xls; 
load data\net_test.xls; 

  
regions=net_test(2); 

  
% Transposes the pattern and target data 
testprop_T=testing_prop'; 
test_T=testing'; 

  
% Process matrices by mapping row minimum and maximum values to [-1 1] 
n_test_T=mapminmax('apply',test_T,ps); 

  
%Simulate neural network  
error3=sim(net,n_test_T); 

  
% Reverse the processing of matrix to get actual values 
error3=mapminmax('reverse',error3,ts); 

  
% Storing predicted properties 
f1=fopen('files\output.txt','wt'); 
j=1 
for i=1:50; 
    for jj=1:regions*6+9; 
        k(i,jj)=mean(error3(jj,j:j+rows-1)); 
    end 
    j=j+rows; 
end 

  
for i=1:50; 
    for jj=1:regions*6+8; 
        fprintf(f1,'%10.4f',k(i,jj)); 
    end 
    fprintf(f1,'%10.4f\n',k(i,regions*6+9)); 
end; 
fclose(f1); 

 



 

 

Appendix E 

 

Reservoir Rock and Fluid Properties Used to Build Perry Reservoir 

Simulation Models 

This section describes the parameters used in the reservoir model that is used generate 

synthetic data for training and testing of neural network.  

 

E.1 Initialization Data 

 

 

 

 

 

 

Table E-1: Rock and fluid data used in the initialization of reservoir model. 

Type of fluid model 
Stock tank water density 
Water salinity 
Water formation volume factor 
Water viscosity 
Water compressibility 
Rock compressibility 
Reservoir pressure 
Reservoir temperature 
Gas gravity 
Oil density 

Black oil 
62.86 lb/ft3 
50,000 ppm 
1.0273 
0.34 cp 
3.44e

-006
 1/psi 

1.695702 e
-005

 1/psi 
3380 psi 
198 

o
F 

0.796 
52.03 lb/ft3 
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E.2 Black Oil PVT Data 

 

Table E-2: Black oil PVT data used in the reservoir simulator to generate synthetic data. 

 

P, psi 
Rs, 

(SCF/STB) 
Bo, 

(RB/STB) 
Bg, 

(RB/MSCF) 
µo, (cp) µg, (cp) 

14.70 
242.05 
469.40 
696.76 
924.11 
1151.46 
1378.82 
1606.17 
1833.52 
2060.88 
2288.23 
2515.59 
2742.94 
2970.29 
3197.65 
3425.00 
3800.00 

4.06 
39.82 
83.54 
131.74 
183.19 
237.25 
293.52 
351.68 
411.53 
472.91 
535.67 
599.71 
664.93 
731.26 
798.64 
866.99 
945.00 

1.0669 
1.0812 
1.0991 
1.1194 
1.1416 
1.1654 
1.1908 
1.2175 
1.2456 
1.2749 
1.3053 
1.3369 
1.3695 
1.4031 
1.4377 
1.4733 
1.4900 

0.224301 
0.013355 
0.006757 
0.004471 
0.003315 
0.002621 
0.002161 
0.001836 
0.001597 
0.001414 
0.001271 
0.001157 
0.001065 
0.000989 
0.000926 
0.000873 
0.000700 

1.5352 
1.2788 
1.0805 
0.9356 
0.8269 
0.7429 
0.6761 
0.6218 
0.5766 
0.5385 
0.5059 
0.4777 
0.4529 
0.4310 
0.4115 
0.3941 
0.0390 

0.013086 
0.013270 
0.013534 
0.013848 
0.014204 
0.014597 
0.015026 
0.015491 
0.015992 
0.016529 
0.017103 
0.017715 
0.018368 
0.019062 
0.019799 
0.020582 
0.021582 
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