
 

 

The Pennsylvania State University 

The Graduate School 

College of Engineering 

 

USING NUMERICAL OPTIMIZATION TECHNIQUES 

AND GENERAL PERTURBATION EQUATIONS TO FIND 

OPTIMAL NEAR-EARTH ORBIT TRANSFERS  

A Thesis in  

Aerospace Engineering 

by 

Patrick S. Williams 

 

© 2009 Patrick S. Williams 

 

Submitted in Partial Fulfillment 
of the Requirements 

for the Degree of 

Master of Science 

 

May 2009 

 



 ii

 

 

 

 

The thesis of Patrick S. Williams was reviewed and approved* by the following: 

 

David B. Spencer 
Associate Professor of Aerospace Engineering 
Thesis Advisor 
 
 
 
Robert G. Melton 
Professor of Aerospace Engineering 
 
 
 
George A. Lesieutre 
Professor of Aerospace Engineering 
Head of the Department of Aerospace Engineering 
 
 
 
*Signatures are on file in the Graduate School. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iii

ABSTRACT 

With recent developments in low-thrust optimization techniques, several methods 

of trajectory optimization can be implemented across various transfers. Much recent work 

has focused on performing methods of optimal control on low-thrust, near-Earth orbit 

transfers, achieving maximum efficiency in both energy use and time-of-flight. However, 

the use of optimal control relies on the exploitation of a satellites’ equation of state, 

which becomes problematic if optimization is to be performed through a “black box” 

venue, where state equations cannot be manipulated. This situation is particularly evident 

when attempting to perform trajectory optimization through a commercial off-the-shelf 

satellite mission modeling software package. Thus, a robust optimization method must be 

chosen to produce competitive results comparable to optimal control in these types of 

situations. However, the formulation of an objective function, as well as which type of 

optimization method to chose is important, since some formulations or algorithms may 

lead to better or faster convergence when compared to others. To address this issue, 

several non-linear constrained numerical optimization methods, including classical 

algorithms and evolutionary strategies, are implemented on simple low-thrust trajectories 

modeled using Satellite Toolkit’s Astrogator®, to determine what methods perform better 

when applied to these transfers. Once a suitable algorithm is selected, an appropriate 

objective function and problem formulation based on general perturbation equations is 

created, which can construct a time-varying thrust vector without manipulating a 

satellite’s equation of state. The objective function is then optimized within the selected 

algorithm in an attempt to obtain an optimal LEO to Molniya trajectory which can 

produce results on par with those found using a method of optimal control. Initial testing 
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has shown that when an evolutionary strategy is applied to the objective function created 

in these studies, the resulting optimal trajectories are in fact competitive with those found 

using optimal control.   
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Chapter 1: Introduction 
 
 A spacecraft with a low-thrust propulsion system can achieve numerous types of 

orbit transfers. Specifically, long duration low-thrust maneuvers to drastically change 

certain orbital parameters are of primary concern. These transfers could take the form of 

simply increasing a spacecraft’s altitude, or sending a low Earth orbiting spacecraft into a 

GPS or geosynchronous orbit. While obtaining the proper transfer orbit may consist of a 

relatively simple finite thrusting maneuver, there are various combinations of engine 

types, thrust magnitudes and durations which can lead to an almost infinite number of 

solutions. Thus, it is critical that these transfers be optimized to achieve maximum 

efficiency in their propellant use.  

 Since the 1960’s much emphasis has been placed on optimizing near-Earth orbit 

transfers using optimal control [2], and specifically, primer vector theory [3]. These 

methods involve defining additional state variables (referred to as costates, or adjoint 

variables) which are integrated along with the state equation, in an effort to converge to a 

final state which minimizes some cost function. In primer vector theory, these costates 

are also used to create both a direction of thrust, as well as a “switching function”  which 

dictates times of zero, maximum, or intermediate thrust arcs [3]. The result in both 

methods is an optimal or near-optimal trajectory between the initial and final states of 

some orbit transfer.  

 With the ever growing popularity of commercial satellite mission modeling 

software, where numerical integration of satellite’s equations of motion are performed 

within the software itself, denying a user the ability to manipulate the state equations, the 

use of optimal control becomes problematic. This type of numerical integration can be 
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referred to as a “black box” method of satellite modeling. In this situation, adding 

costates and performing the necessary numerical integration of those costates may not be 

possible. Therefore, a method of trajectory optimization must be developed which does 

not rely on assessing the state equations, but can optimize some cost function for a low-

thrust transfer, while staying competitive with other methods of optimal control.  

 For these studies, low thrust trajectories are modeled in Satellite Toolkit’s 

Astrogator® to which the optimization algorithms are connected. Astrogator serves as the 

black box framework to which this new method of trajectory optimization is implemented 

and tested. To achieve an optimal solution, a non-linear constained numerical 

optimization algorithm is implemented in accordance with general perturbation equations 

to optimize the change in certain orbital elements, and thus create a propellant-optimal 

(and change in velocity-optimal) solution, which also meets final orbital element 

constraints. Using this commercial satellite mission modeling software package, an 

optimal solution can be achieved by means of selecting a type of propulsion system, then 

altering the amount of engine thrust, duration of that thrust, and some initial orbital 

element values to achieve a desired final orbit while also obtaining a propellant optimal 

solution.  

 However, just as there are many possible solutions to each low-thrust transfer 

problem, there are also varying methods of which to converge to an optimal solution. As 

is often the case, optimization of these mission parameters is performed in accordance 

with non-linear constraints imposed on the spacecraft properties and/or its orbital 

elements, in conjunction with bounds on the control parameters. Therefore, a robust 

optimization method which can handle non-linear equality constraints must be chosen to 
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properly address these issues. However, which type of optimization method to chose is 

important, since some algorithms may lead to better or faster convergence when 

compared to others. To address this issue, tests which compare a classical Sequential 

Quadradic Programming method (implemented in Matlab®’s Optimization Toolbox [4]) 

and an evolutionary strategy (taken from Hansen’s Covariance Matrix Adaptation 

Evolutionary Strategy [CMA-ES] Matlab® source code [7]) are conducted. The transfer 

for these algorithm test cases will be that of a LEO to 10,000 km semimajor axis with 

inclination change low-thrust transfer. Selection criteria of the best algorithm will be 

based upon a combination of the consistency of convergence, the optimal solution found 

by the algorithms, the effectiveness of constraint handling, and the overall convergence 

time.  

 Once the best algorithm is chosen, it is implemented on an objective function 

based upon using general perturbation equations to create switching functions, which will 

dictate the engine burn and coast times. Testing of these switching functions will be done 

by means of optimizing a LEO to Molniya low-thrust transfer, with a fixed total transfer 

time. These tests will show how the switching functions may be reformulated in order to 

achieve the most optimal low-thrust trajectory. Additionally, these tests will continue to 

validate the robustness and effectiveness of the selected numerical optimization 

algorithm. 

  Finally, once reformulations are made to the switching functions, comparisons 

are made to a LEO to Molniya transfer using optimal control and a higher order 

collocation method studied by Herman and Spencer in 2002 [2]. This comparison will 

attempt to determine how competitive the methods used in these studies are to the proven 
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methods in optimal control. All of the results from the testing of the algorithms, the 

testing of the switching functions, and the comparison with the method of optimal control 

will then be analyzed, to which future work will be suggested.   

 Therefore, the contents of this thesis will be presented as follows. First, an 

explanation of the optimization algorithms (SQP and CMA-ES) will be given as to their 

implementation, objective function creation, and constraint handling. Additionally, the 

connection between these algorithms and STK will be described, along with the basic 

modeling of low-thrust trajectories through STK. Next, a discussion of problem 

formulations for the testing of the optimization algorithms (circle to circle transfer) and 

the use of general perturbation equation-based switching functions (LEO to Molniya 

transfer) will be discussed. This section will include attitude, engine, and force model 

definitions for conducting these tests, as well as a detailed derivation of how to apply 

general perturbation equations into various switching functions. Finally, results from the 

tests will be presented which not only show not only the performance of the optimization 

algorithms, but also the resulting optimal trajectories, when compared to a method of 

optimal control. Upon discussion of these results, summations and final conclusions will 

be drawn, and further work will be presented.  
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Chapter 2: Optimization Algorithms 

 The objective of this study is to find optimal trajectories for near-Earth, low-thrust 

transfers. To achieve this, many have used various methods of optimal control, a process 

which depends on exploiting a satellites state equation through the addition of costates [3, 

13]. However, since satellite trajectory modeling is done though a “black box” numerical 

integrator in this study, the state vector cannot be manipulated and thus traditional forms 

of optimal control cannot be used. Due to this fact, optimization must be done in more of 

a direct method approach in which a function of the satellites trajectory is optimized 

through the use of a numerical optimization algorithm.  

 For this study, it is desired to optimize a satellites amount of propellant used in a 

low-thrust transfer (which also translates to an optimal change in velocity). Depending on 

the type of optimization algorithm used, the propellant used would be incorporated in 

some part of an objective function. The objective function represents a function to which 

an extrema (for these studies, a global minimum) is to be found, and it is evaluated based 

on some vector of control values, u .  

 Additionally, the final trajectory should result in a convergence to certain final 

orbital elements, which will serve as equality constraints imposed on some optimization 

algorithm. Depending on the numerical optimization algorithm used, these constraints 

may be incorporated into the objective function, or used to dictate a search direction 

within an iteration of the algorithms themselves. These constraints will also be evaluated 

based on the control vector u , which may or may not vary linearly with respect to the 

objective function or other equality constraints.  
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 Due to these needs, a robust nonlinear constrained numerical optimization 

algorithm must be chosen in order to optimize the propellant used through the transfer, 

while simultaneously converging to various non-linear equality constraints. This 

optimization problem could thus be viewed as 

Find: 
 

Min  )(uF  
 

Subject to: 
 

0)( =uC  
 

 Where )(uF  is the objective function, or function desired to be minimized, and u  

is a vector of independent variables of )(uF , such that ],.....,,[ 21 nuuuu = . )(uC  is an    

[m x 1] equality constraint vector where m is the number of constraints. 

 While many types of nonlinear constrained numerical optimization methods exist, 

two algorithms will be selected for these studies. These algorithms will be a gradient 

based Sequential Quadratic Programming (SQP) method, implemented in Matlab’s 

Optimization Toolbox [4], and A Covariance Matrix Adaptation Evolutionary Strategy 

(CMA-ES) for which source code was provided by Nikolous Hansen [7]. The SQP 

method represents a very popular type of efficient classical optimization algorithm, while 

the CMA-ES algorithm represents a more computationally expensive evolutionary 

algorithm. Both algorithms have their own strengths and weaknesses, which this study 

will seek to expose when applied to creating propellant optimal solutions for low-thrust 

transfers.  
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Sequential Quadratic Programming Algorithm 

 In a classical non-linear optimization method, a numerical algorithm will be used 

to minimize )(uF  while also satisfying the constraints in )(uC . These algorithms vary in 

their approaches to minimize the objective function, but they all seek the same general 

convergence criteria. These criteria generally include (but are not limited to) 

i) )()( 1−− kk uFuF  is sufficiently small, thus *uuk =  

ii) 0)( * =uC  

iii) 0)( * =ug  

iv) 0* ≥iλ  For ni ,...,2,1=  

 
where *u  is the optimum value of u ,  k denotes an iteration of the algorithm, )( *ug  is 

the gradient of )(uF  evaluated at *u , and *
iλ  represent the optimum Lagrange 

Multipliers, which are a [n x 1] single column matrix, with n being the number of 

equality constraints [8]. 

An SQP method in particular seeks to convert a standard non-linear constrained 

optimization problem into a quadratic programming format, and solved using a standard 

quadratic programming sub-problem [8]. This method is implemented by first 

converting )(uF  to a quadratic function )(δkq , giving: 

δδδδ k
TT

kkk WuguFq
2
1)()()( ++=                                     (1) 

where  

∑ ∇−∇=
i

kiikkk uCuFW )()( 2
,

2 λ                                         (2) 
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and δ is the difference in control variables between iterations, such that 

kkk uu δ+=+1                                                         (3) 

 Next, the active constraint functions, )(uC  are adjusted to fit the SQP layout, 

giving 

0)()( =+ k
T

k uCuA δ                                                   (4) 

where )( kuA  represents the constraint vector Jacobian evaluated at iteration k. Finally, a 

standard SQP system can be written as: 

⎭
⎬
⎫

⎩
⎨
⎧−

=
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−

−

+ )(
)(

0)(
)(

1 k

k

k

k
T

k

kk

uC
ug

uA
uAW

λ
δ

                                (5) 

 Through iteration of the system of equations in (5), the next iteration of the 

control vector can be found using equation (3). This system can be iterated until a 

suitable value for *uu =  is found. Also, while the above system can give an iterative 

process for λ , as long as 1λ  is given, it is advised that the value for λ  be solved exactly 

at each iteration, given by the formula: 

kkk uAug λ)()( =                                                   (6) 

which represents the definition of the Lagrange Multiplier. The reason for determining 

the value of λ  at each iteration by equation (6), and not by the SQP system iterative 

process is because the SQP system value of λ  can lead to a final *uu =  value which is 

not a local minimizer [8]. A model algorithm for the SQP method can thus be viewed as 

follows  
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Set k = 1, and given 1u … 

i) Compute kk W,λ and solve the SQP system 
ii) Set kkk uu δ+=+1 , and set k = k + 1 
iii) If  convergence criteria has been met, Terminate, Else, go back to i) 

 

 Eventually, an algorithm similar to this will converge to an optimal value of u . 

Aside from understanding how the SQP method works, it is important to understand the 

role gradients have on these algorithms. In terms of convergence criteria, simply looking 

for a location where the gradient is equal to zero may result in finding on a local rather 

than a global minimum. Thus for multi-modal function spaces, a classical algorithm may 

not yield a globally optimal solution, and extensive search of the function space would be 

necessary to obtain such a solution. Secondly, the use of gradients for defining search 

directions between iterations indicates that function spaces must be continuous, with 

continuous derivatives. Therefore, classical algorithms such as this SQP method may fail 

when preformed over complex function spaces.  

 

Covariance Matrix Adaptation Evolutionary Strategy 

The Evolutionary Strategy chosen for the proposed optimization problem is a 

Matlab version of the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) 

written by Nikolous Hansen. Evolutionary strategies differ from classical algorithms in 

that they do not rely on the calculation of gradients for their search direction, thus they 

can operate in function spaces with discontinuities, singularities, or discreteness. 

Additionally, they search an extensive portion of a function space, and are not directed to 

find the closest minimum like classical algorithms. Instead, they take many function 

evaluations, and slowly “evolve” through “generations” of the control variable vector to 
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an optimal point. This leads evolutionary strategies to be very computationally expensive, 

but also more robust and more inclined to converge to global extrema than classical 

algorithms.  

The CMA-ES method can be summed up as a real-valued evolutionary strategy, 

which optimizes some objective function generally viewed to be a black box. Just as a 

quasi-newton method uses an estimation of a hessian matrix to adapt a convex problem to 

a quadratic one, the CMA-ES algorithm uses a careful estimation of a covariance matrix 

to adapt a convex-quadratic function into a spherical one [7].  

The algorithm uses a randomized search of the objective function space to obtain 

a search distribution, which conveniently does not require any direct calculations of 

gradients or hessians. The covariance matrix of this search distribution is used to 

calculate the normal distribution, which is defined by the distribution containing the 

largest entropy in the function space. This normal distribution is then used to calculate 

each new set of offspring, along with certain selection, recombination and auto adapted 

Gaussian recombination methods. These are create a self-adapting step sized based on the 

evolutionary path history, and is why this algorithm can be viewed as an evolutionary 

strategy [7].  

Selection and recombination are implemented primarily by ranking each 

individual for each generation and placing a specific weight on them, known as 

recombination weights. These weights can either be distributed superlinearly, linearly, or 

equally, with superlinear and linear distributions placing higher weights on the fittest 

individuals. The summation of each individual and their respected weight are then used to 

calculate the children of the next generation. Thus, if a superlinear or linear 
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recombination method is selected, the fittest individuals will have more prominence in 

determining the next generation [7].  

Next, by using the number of parents, μ, population size, λ, variables of the 

previous generation, and their respective weights, a covariance matrix is calculated. This 

matrix is then manipulated first by a rank-μ-update (ensures the next generation step will 

move steadily towards the optimum) and rank one update (which ensures the covariance 

matrix is updated based on a desired evolution path) in order to drive the next search 

distribution in the general direction of the fittest individuals, while still obtaining a broad 

enough distribution to avoid premature convergence.  Thus, the rank-μ-update and rank 

one update of the covariance matrix are combined to a new estimate of that matrix, which 

is used to calculate the normal distribution and ultimately the next generation of 

individuals. A step size limitation is also placed on the covariance matrix, to ensure that it 

doesn’t result in a step which would converge too rapidly to a local minimum [7]. 

The CMA-ES algorithm avoids the pitfalls of many genetic and evolutionary 

algorithms by its ability to handle poorly scaled problems, problems with diverse arrays 

of population and parent sizes, and avoids premature convergence by limiting the step 

size taken at each iteration. 

 However, one obstacle in the CMA-ES algorithm is that it does not handle 

equality constraints directly. Therefore, a penalty function method is applied to the 

objective function, in which the discrepancy between a current value of some nonlinear 

constraint is subtracted from its desired value, and multiplied by a scalar weight [9, 10]. 

These weights vary in scale for the different orbital element constraints, so as to equalize 

their contribution to the objective function. If the weights are too high, the algorithm may 
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pre-converge to satisfying a particular equality constraint, instead of minimizing the 

propellant used. If the weight is too small, then the equality constraint may not be 

satisfied to a desired tolerance, or even satisfied at all, upon convergence of a final 

solution.  

 A simple example of how a penalty function works is to take the minimization of 

the function f(x) = x - 5 with the equality constraint x = 1. This would make the objective 

function represented by  

|1|)5()( −+−= xxxF σ                                          (7) 

 Where σ represents a penalty weight. The effect of this type of penalty function 

formulation can be viewed in Figure 1, where it is obvious that the minimum is located 

where the equality constraint is satisfied. It should be noted that the fact that F(x) has an 

undefined derivative at the location of the minimum does not matter since evolutionary 

strategies do not require continuous derivatives to function.  

 Taking the penalty function formulation into account, the objective function for a 

propellant optimal trajectory can now be viewed as 

=)(uF Propellant Used TCw+                                       (8) 

 Where the w  vector represents a penalty weight for each equality constraint, and 

C  is a vector of equality constraints. For example, the C  element for a theoretical final 

orbit argument of periapsis constraint would be viewed as  

finalcurrentC ωωω −=                                              (9)  
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Figure 1: Plot of equation (7) for σ = 0, 1, 10, and 100 

 

 Both the SQP and CMA-ES algorithms will be subjected to objective functions 

and constraints tailored to various low-thrust trajectories. Upon their convergence to an 

optimal set of control variables, *u  for each transfer, these algorithms will be compared in 

their overall optimal value, time to convergence, and other performance characteristics. 

However, objective functions, constraint functions, and control variables for these 

algorithms will be defined within STK. Therefore, before any optimization can be 

conducted, a method for modeling these trajectories within STK, as well as connecting 

both the SQP and CMA-ES algorithms to the STK Astrogator interface must be created.  
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Chapter 3: Commercial Software 
 
 For these studies, a commercial software package will be used to model low-

thrust transfers and integrate a satellites equation of motion. When choosing the correct 

software package to accomplish this, there are many considerations which must be made. 

Primarily, the software should be industry proven so that results can be trusted as being 

accurate and correct. Secondly, the software should be versatile in both its ability to 

model multiple low-thrust scenarios, as well as allow for a user to customize force 

models, attitude definitions, and numerical integration algorithms tailored to various 

transfers. Finally, the commercial software needs to have some venue in which an 

external optimization algorithm can be connected in order to perform the necessary 

optimization of objective function control variables. Due to these reasons, Satellite 

Toolkit (STK) was chosen as the mission modeling software package for this thesis work. 

STK is a robust, industry proven off-the-shelf mission modeling software package, which 

has an extensive software plugin structure (software code written by user), in which the 

user can customize STK’s force models and satellite properties for various transfer 

scenarios.  

 

Satellite Toolkit and Astrogator 

 All low-thrust scenarios will be designed using STK’s Astrogator ®, a facet of 

STK that can model various mission segments, a few of which can be described as 

follows:  

Initial State: Represents the initial orbital elements, position and velocity vectors, and 

spacecraft properties [5]. 
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Propagate: Given initial spacecraft parameters and force model (e.g. two-body), a 

propagate segment will iterate through a user-specified numerical integration algorithm to 

determine final position, velocity, orbital elements, etc, of the spacecraft at some user 

defined stopping condition. A stopping condition could be a specified time duration, date, 

location in an orbit, or instant some orbital parameter is met a set number of repetitions 

[5]. 

Maneuver: Applies user specified inputs for spacecraft attitude, direction and magnitude 

of thrust vector (can be constant or time-varying) and stopping condition for maneuver (if 

it is not impulsive). The specified attitude and thrust model (referred to as engine model 

in STK) will be applied to a spacecraft until the stopping condition is met. The attitude 

and engine models can either be specified using pre-defined models in STK, or 

customized by a user using an attitude or engine plugin [5]. 

Targeting Sequence: Spacecraft or orbit parameters in propagate or maneuver segments 

can be set as independent variables (controls) and dependant variables (results) which can 

be placed in some sort of “search” algorithm. This algorithm will perturb the controls and 

output the results bases on those perturbations. Should the user want to implement their 

own search algorithm, such as an orbit tuner, parameter search, or optimization 

algorithm, they can do so through the use of a search plugin [5].  

 Using these various Astrogator segments, a satellite can be created with some 

initial state, to which a maneuver is added which transfers it to a specified final state. 

Control values within the initial state and maneuver segment can be placed inside a 

targeting sequence which contains a search plugin, connecting STK to an optimization 



 16

algorithm. The optimization algorithm can then perturb various control values until an 

optimal trajectory from the initial to final state has been created.  

 However, while commercial mission modeling software can be very useful in 

modeling satellite trajectories, it also has its challenges in that the user may be subject to 

the limitations of the software itself. STK was not immune to some of these challenges 

(inability to pass global variables between plugins, for example), primarily version 8.1, 

the original version used in this study. These challenges made modeling a practical (or 

real-world applicable) low-thrust transfer difficult within STK 8.1, although conceptual 

low-thrust transfers could be modeled. Therefore, the testing for determining the 

effectiveness of the optimization algorithms and perturbation equation-based problem 

formulations were conducted in this version, since these test cases did not need to reflect 

practical transfers to give valuable results. Once the best optimization algorithm and 

problem formulation are chosen based on these results, they can be applied in STK 

version 9.0, where practical low-thrust trajectories are easier to model. Thus, while the 

initial testing is conducted in STK 8.1, the final applications are conducted using STK 

9.0. 

 

Connection with Optimization Algorithms 

 Using the Astrogator sequences described perviously, Matlab coded optimization 

algorithms can be applied to a targeting sequence by means of a custom software plugin. 

This plugin was taken from an AGI VBScript search plugin template, and modified to fit 

the needs of these experiments [5]. The VBScript file connects to Astrogators search 

interface, which represents the targeting sequence mission control segment (MCS) in the 
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Astrogator Graphical User Interface (GUI), and passes certain STK object classes, as well 

as values for control parameters, constraints functions and the objective function into the 

Matlab workspace. Once here, an initial Matlab function will handle the object classes 

and data, and pass numeric values into separate Matlab based constraint functions and 

objective functions, which will be used within an optimization algorithm. The initial 

Matlab function then initiates an optimization algorithm (either the Matlab Optimization 

Toolbox or CMA-ES algorithm for these studies), and while it iterates, numeric data will 

be passed back and forth between STK, the VBScript file, the initial Matlab function, the 

constraint function, the objective function, and the optimization algorithm. This process 

continues until the algorithm meets some termination criteria, and an optimal trajectory is 

found. A diagram of this integration process can be seen in Figure 2.  

 

Figure 2: Diagram of STK integration with VBScript and MATLAB 
 

 As Figure 2 illustrates, both a method for creating low-thrust trajectories, and 

connecting an external optimization algorithm to STK have been established. Therefore, 

the next iteration into the optimization process is to derive various problem formulations 
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the algorithms will be implemented on. These problem formulations will define 

spacecraft attitude, force models (including thrusts), initial and final states, which will in 

turn create a control vector, objective function, and constraint functions to be inputted 

into an optimization algorithms. These problem formulations will seek two primary 

objectives, in that they will help determine which optimization algorithm is best suited 

for solving low-thrust trajectory problems, as well as how to use these algorithms coupled 

with general perturbation equations to create an optimal LEO to Molniya low-thrust 

trajectory.  
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Chapter 4: Low-Thrust Problem Formulations 

 Low-thrust transfers have been studied extensively in recent decades, primarily 

for their ability to reduce spacecraft weight, and to employ advanced propulsion 

techniques. With these advancements in propulsion technology, an engine can achieve a 

specific impulse on the order of thousands of seconds, leading to very low mass flow 

rates for a low-thrust engine (thrusts in these studies are on the order of 0 – 5 N). 

However, this low thrust will also correlate with a long transfer time, as well as an almost 

infinite number of possible trajectories. Therefore, for some given transfer time, it 

becomes necessary to find the most propellant optimal (and correspondingly most change 

in velocity optimal) transfer from some given initial state to a given final state. 

Composing this process can be referred to as the problem formulation, and can be viewed 

two-fold.  

 First a low-thrust trajectory will be modeled using STK, and a specific objective 

function will be chosen which seeks to minimize the propellant use while satisfying some 

final state orbital elements. Control variables in the objective function will change the 

magnitude and/or direction of the satellites thrust vector, resulting in separate trajectories, 

representing separate final states and usage of propellant.  

 The second tier of this approach consists of implementing a non-linear 

constrained optimization algorithm on this objective function to converge on an optimal 

trajectory. However, which type of optimization algorithm to choose is unknown, and 

initial problem formulations must therefore be designed to test the overall robustness of 

both the SQP and CMA-ES algorithms. Since these preliminary problem formulations are 

designed simply test the effectiveness of implementing the SQP and CMA-ES algorithms 
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within a black box framework, they can be relatively rudimentary concerning their 

applicability to real-world low-thrust trajectories. Thus, a simple problem formulation  

based on modeling a basic LEO to 10,000 km semimajor axis circle to circle low-thrust 

transfer consisting of an inclination change will be chosen to complete this task.  

 Once the best optimization algorithm is chosen, a more complicated problem 

formulation can be created which seeks to find optimal low-thrust trajectories, producing 

results comparable to a method of optimal control. This more complicated problem 

formulation is based on modeling a real-world LEO to Molniya orbit, and will be based 

on manipulating general perturbation equations.  

 

Creating Dynamics and Attitude Systems 

 In each problem formulation, a satellite with a mission control sequence is created 

in Astrogator, to which various mission parameters may be changed for each problem 

formulation. Each satellite will have initial state properties as defined for each separate 

problem formulation. Next, the satellite propagates until it reaches periapsis of its initial 

LEO orbit*, at which point a thrust maneuver will occur. This maneuver resides within a 

targeting sequence, to which the VBScript plugin will connect and pass object classes, 

control variables, and results from the maneuver segment into the Matlab workspace and 

subsequently into an optimization algorithm. The maneuver will run for a finite amount 

of time, dictated by a stopping condition, and propagated using a two-body force system 

with an Runge Kutta 4(5) numerical integrator with a 5 second initial time step. 

                                                 
* Note, for a circular orbit, the periapsis can be defined as the point where true anomaly is equal to 0 
degrees 
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 Within this maneuver segment the direction of thrust is also specified for each 

problem formulation, with some being restricted to a particular spacecraft body axis, and 

others free to rotate in three-dimensional space. The body axis will serve as the reference 

to the satellite attitude system, which will either be fixed, or oscillating with respect to 

the satellite. The attitude systems for the various problem formulations are specified 

within Astrogator, or implemented through a custom attitude plugin, taken and modified 

from an AGI attitude plugin template [5].  

 The thrust vector will be created in reference to the particular attitude system 

selected for the various problem formulations, with its magnitude and direction being 

controlled by an engine model. Each engine model is created in STK, and applies a 

constant user-specified thrust, and specific impulse. These engines can either be created 

from templates in Astrogator, or customized by means of custom engine plugins, taken 

and modified from and AGI engine plugin template [5].  

 

Problem Formulations (Circle to Circle Transfer) 

 The first problem formulation in this study is based on a simple LEO to 10,000 

km semimajor axis circle to circle low-thrust transfer with an inclination change. The 

primary objective of this problem formulation is to simulate a very simple low-thrust 

transfer to which an optimization algorithm can be applied. The problem formulation 

lacks complexity (and therefore much real-world applicability) because it is desired to 

isolate the performance of the optimization algorithms from that of the thrusting method. 

The method of applying thrust, which is presented as a switching function based on 

general perturbations, will be discussed later in the chapter.  
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 For this simple problem formulation, the spacecraft will undergo a constant 

applied thrust (i.e. no coast times) from an initial LEO orbit, specified in Table 1, to a 

final orbit specified in Table 2.  

Table 1: Initial state and satellite properties for LEO to 10,000 km semimajor axis 
with inclination change problem formulation 

Spacecraft/orbit property Value 
Semi-major axis (a) 6678.14 km 

Eccentricity (e) 0 
Inclination (i) 10° 

Right Ascension of Ascending 
Node (Ω) 

0° 

Argument of Periapsis (ω) 0° 
True Anomaly (ν) 0° 

Spacecraft Mass (mf) 100 kg 
Propellant Mass (mprop) 500 kg 

Earth Specific Acceleration (g) 0.00980665 km/sec2 
Engine Specific Impulse (Isp) 4000 sec 

 

Table 2: Final state for LEO to 10,000 km semimajor axis with inclination change 
problem formulation 

Spacecraft/orbit property Value 
Semi-major axis (a) 10,000 km 

Eccentricity (e) 0 
Inclination (i) 0° 

Right Ascension of Ascending 
Node (Ω) 

Free 

Argument of Periapsis (ω) Free 
True Anomaly (ν) Free 

 

It should be noted that for this problem, the final inclination and semimajor axis 

will serve as equality constraints imposed on the objective function. Since this problem 

formulation is based on how the optimization algorithms perform under simple 

conditions, the semimajor axis constraint is actually removed as an equality constraint 

and instead imposed as a stopping condition for the numerical integration (a second 

stopping condition of an 0.5 year duration will also be imposed). This will effectively 
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retain the semimajor axis equality constraint without imposing it on the objective 

function. This is done because imposing equality constraints in a penalty function method 

greatly complicates the optimization process. The optimization algorithms are thus tested 

under a simpler problem formulation, to which more complicated problem formulations 

(and more equality constraints) will be implemented in subsequent tests.  

Throughout this transfer, the spacecraft attitude will be set to the velocity, normal, 

and co-normal ( CNV ˆˆˆ ) axes system. In this system, the  V̂  axis is tangential to the 

spacecraft orbit, in the direction of velocity, the N̂  axis is parallel to the angular 

momentum vector (out of orbital plane), and the Ĉ  axis is normal to the spacecraft orbit. 

This axes system remains fixed with respect to the instantaneous direction of spacecraft 

motion, and can allow for thrust vectors which produce changes to both in-plane and out-

of-plane orbital elements. A basic diagram of this attitude system is illustrated in Figure 

3.  

 
Figure 3: Basic diagram of spacecraft VNC axis.  
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Ĉ – Orbit Normal  V̂ - Tangential 

Satellite 

Satellite Orbit  
(Moves within Orbital Plane)



 24

Thrust within this attitude system will be controlled by a four-engine thruster set, 

with one thruster acting along the V̂  axes, one along the Ĉ  axis, and two acting along 

both the positive and negative N̂  axis’. Each thruster in the set will have a constant 

specific impulse, as well as a constant thrust applied throughout the maneuver. The value 

for each thrust in each thruster will serve as four control variables for an optimization 

algorithm. 

The two thrusters along the N̂  axes are created to allow for a constant change in 

inclination throughout the orbit. Should there only thrust in one direction along the N̂  

axes, the inclination would simply oscillate with respect to time, and no inclination 

change would be possible. The axis of rotation for the inclination can be viewed as a line 

connecting the points of transition between ascending and descending portions of the 

spacecrafts orbit, as illustrated by Figure 4.  

 
Figure 4: Diagram of ascending and descending portion of spacecraft orbit 
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Therefore, the out-of-plane thrust direction should be switched from positive to 

negative, or vice versa at each crossing of these transitional points. In this study, since the 

desired change in inclination is negative throughout the transfer, there will be one thruster 

acting in the positive N̂  axes, which will be “on” while the spacecraft is ascending, and 

one in the negative N̂  direction which will be “on” when the spacecraft is descending.  

This will create the desired continuous change in inclination, and not cause the 

aforementioned wobble effect.  

Therefore, constant thrust and Isp engines are created for the V̂ and Ĉ  thrusters, 

and custom engine plugins are created for the positive and negative N̂  thrusters to 

achieve this desired thrusting behavior.  The thruster set consisting of each V̂ , N̂  and Ĉ  

direction thrusters can is illustrated in Figure 5.  

 
Figure 5: Diagram of spacecraft thruster set for circle to circle transfer problem 

formulation 
 

 Therefore, with the proposed attitude system, and engine thrust force models, the 

initial LEO to 10,000 km circle to circle low-thrust transfer with inclination change 

control vector can be viewed as 

V̂  thrust (constant) Ĉ  thrust (constant) 

+ N̂  thrust (on when ascending) 

- N̂  thrust (on when descending) 

Each thruster has properties 
Isp = 4000 s 
g = 0.00980665 km/sec2 
0 < T < 0.5 N (control variable) 

Spacecraft 
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>=<
−+++ ,ˆ,ˆ,ˆ,ˆ ,,, NNCV TTTTu                                      (10) 

where 
+,V̂T , +,ĈT , 

+,N̂T , and 
−,N̂T  represent the thrust components in the attitude system 

illustrated in Figure 3, applied to the four-engine thruster set illustrated in Figure 5. The 

control vector outlined in equation (10) is also a preliminary control vector for this 

particular problem formulation, and will be changed based on testing results in 

subsequent problem reformulations. Additionally, for this problem formulation, the 

following bounds bounds are imposed on each control variable  

0 < 
+,V̂T < 0.5 N 

0 < 
+,ĈT < 0.5 N 

0 < 
+,N̂T < 0.5 N 

0 < 
−,N̂T < 0.5 N 

 Using the objective function, control vector, attitude definition and engine thruster 

set, the proposed problem formulation is implemented within both the SQP and CMA-ES 

algorithm to see which algorithm produces more desired results. Certain problem 

reformulations will be made in an attempt to expose weaknesses, or display observed 

strengths of both algorithms to aid in the selection of the best technique. Once an 

algorithm is chosen, a problem formulation based on using general perturbation equations 

is created, which when optimized, will lead to results competitive with those found using 

one method of optimal control.  
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Use of General Perturbation Equations 

 The preliminary problem formulation in these studies is created to aid in the 

selection of an optimization algorithm which performs well on low-thrust trajectories 

within a black box numerical integration framework such as STK. Once this algorithm is 

selected, it is then necessary to alter the problem formulation so that the optimal 

trajectories created by this formulation could produce results competitive with methods 

of optimal control. In particular, this problem formulation should seek to create one or 

more switching functions which control burn and coast times of a low-thrust arc. This 

problem formulation will be used to optimize a low-thrust LEO to Molniya transfer, to 

which results will be compared to a LEO to Molniya transfer created using methods of 

optimal control performed by Herman and Spencer [2].  

 As stated previously, since STK does not allow for the manipulation of the state 

vector, the use of costates and a traditional primer vector theory type switching function 

is not possible [3]. However, using general spacecraft perturbation equations, a new type 

of switching function can be created which does not rely on evaluation of costate 

variables. This switching function relies on applying maximum spacecraft thrust when 

the change in certain orbital elements are at a maximum. In the case of a LEO to Molniya 

orbit transfer, it is the semimajor axis (a), eccentricity (e), inclination (i) and argument of 

periapsis (ω) which must be altered to go from an initial LEO to a final Molniya orbits 

within a specified time of flight. Initial conditions for a LEO orbit and final conditions for 

a Molniya orbit are given in Tables 3 and 4 respectively. The equations for the 

derivatives with respect to time of these elements are given by Vallado [1] as 
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 Where n is the mean motion, ν is the true anomaly, u is the mean longitude 

( ων +=u ), and FS, FR and FW represent the thrust acceleration components in the R̂  

(radial), Ŝ  (transverse), and Ŵ  (orbit normal) axes respectively. For this problem 

formulation, the R̂ , Ŝ , Ŵ  system will be used in accordance with the nomenclature of 

Vallado [1], illustrated in Figure 6. It should be noted that this system is typically referred 

to as the radial-transverse-normal ( NTR ˆ,ˆ,ˆ ) system. 

 
Figure 6: Basic diagram of spacecraft RSW axis.  
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Table 3: Initial state and satellite properties for LEO orbit 
Spacecraft/orbit property Value 

Semimajor axis (a) 6678.14 km 

Eccentricity (e) 0 

Inclination (i) 28.5° 

Right Ascension of Ascending Node (Ω) Free 

Argument of Periapsis (ω) Free 

True Anomaly (ν) 0° 

Spacecraft Mass (m) 100 kg 

Propellant Mass (mprop) 500 kg 

Earth Specific Acceleration (g) 0.00980665 km/sec2 

Engine Specific Impulse (Isp) 4000 sec 

 

 

Table 4: Final state properties for Molniya orbit 
Spacecraft/orbit property Value 

Semimajor axis (a) 26553.4 km 

Eccentricity (e) 0.740969 

Inclination (i) 63.4° 

Right Ascension of Ascending Node (Ω) Free 

Argument of Periapsis (ω) 270° 

True Anomaly (ν) 0° 
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 Based on equations (11) – (14), it can be deduced that in order to perform 

thrusting maneuvers representing positive changes in semimajor axis, eccentricity, and 

inclination, there needs to be an engine model constructed of a five-engine thruster set, 

with thrusters in each of the Ŝ , Ŵ , R̂ , -Ŵ , and - R̂  directions. Note that there is no 

thrust in the - Ŝ  direction. This is because a propellant optimal solution will also be an 

energy optimal solution, in which the maximum change in energy should be achieved. 

Using the vis viva equation (15), it can be shown in equation (16) that a maximum 

change in energy will correspond to a maximum change in semimajor axis, and thus 

equation (11) should remain positive.  

a2
με −=       (15) 

dt
da

adt
d

22
με

=           (16) 

 

 Since the Ŝ  direction thrust corresponds to a positive value for FS, and vice versa, 

thrust should therefore never be in the - Ŝ  direction because it would result in a negative 

Ŝ  component of equation (11). It will be shown later that due to the sinusoidal behaviors 

of the R̂  and Ŵ components of equations (11), (12) and (13), that thrust in both the 

positive and negative directions is necessary. 

 For a minimum propellant and correspondingly minimum change in velocity 

transfer, these orbital elements should remain on when their derivatives are at their 

maximum values, thus ensuring the most efficient transfer for a given maximum thrust.  

In an ideal situation, the most propellant optimal solution would be a series of impulsive 

thrusts located at the points of maximum change in a, e, and i, and would correspond to 
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the longest possible transfer time. It should be noted that creating thrusts at these points 

would result in changes to ω, a problem which will be taken into account later in the 

problem formulation. Using equations (11) – (14), the true anomaly locations of 

maximum change in a, e, and i are derived, and given in Table 5. 

Table 5: Locations of Optimal Change in a, e and i 
Orbital 
Element 

Thrust Direction Location of Greatest Change ( max|
dt
d ) 

 
 

Semimajor Axis  
 

(a) 

Ŝ  ν = 0 

Ŵ  Ν/Α 

R̂ ν = π/2 

Ŝ−  Ν/Α 

Ŵ−  Ν/Α 

R̂− ν = −π/2 
 
 

Eccentricity  
 

(e) 

Ŝ  ν = 0 

Ŵ  Ν/Α 

R̂ ν = π/2 

Ŝ−  Ν/Α 

Ŵ−  Ν/Α 

R̂− ν = −π/2 
 
 

Inclination  
 

(i) 

Ŝ  Ν/Α 

Ŵ  ωω −−= − )]sin([sin 1 ev  

R̂ Ν/Α 

Ŝ−  Ν/Α 

Ŵ−  ωωπ +−−= − )]sin([sin 1 ev  

R̂− Ν/Α 
 

 Using results from Table 5, equations (17) – (21) can be derived which show the 

maximum possible values of equations (11) – (14) can obtain for a given set of orbital 

elements along each of the Ŝ , Ŵ , and R̂  axes.  
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 Using equations (17) – (21), plots can be made which show the contribution each 

thrusting force makes to changes in a, and e for 74969.00 ≤≤ e  and 

4.553,2614.6678 ≤≤ a  km. It should be noted that for the case of plotting equation (21), 

since ω is considered a slowly changing variable with respect to a and e, and it results in 

an oscillation of equation (21). From equation (21), if a factor of a  is removed, it can 

be seen that di/dt will obviously increase as a increases. By setting 4.553,26max == aa  

km, plots can be made of di/dt at various values of ω and e. Plots of equations (17) and 

(18) can be seen on Figure 7, plots of equations (19) and (20) on Figure 8, and finally a 

plot of the effects of changing ω and e on equation (21) in Figure 9. It should be noted 

that in each of these plots the thrust acceleration (either  FS, FR or FW) and μ-1/2 are 

factored out of equations (17) - (21) since they represent unchanging constants.  
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Figure 7: Plots of equations (7) and (8) for 74969.00 ≤≤ e  and 

4.553,2614.6678 ≤≤ a  
 

 

Figure 8: Plots of equations (9) and (10) for 74969.00 ≤≤ e  and 
4.553,2614.6678 ≤≤ a  
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Figure 9: Plot of equation (11) for 74969.00 ≤≤ e , πω 20 ≤≤ , and factoring out a  
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as outlined by Table 5. Due to these relationships, the best option is to simultaneously 

change the semimajor axis and eccentricity, so that they are both increasing at some rate 

close to their maximum value. This rate can be accounted for by introducing the scalar 

ratios, ηa and ηe. These ratios will represent something similar to a switching function, in 

that if the ratio of the current change of an orbital element value to its maximum change 

is greater than the value of the ratio scalar, the maximum thrust will be applied. If the 

change in the element is less than the ratio scalar, no thrust will be applied. Each of the Ŝ  

and R̂  directions will have their own values of ratio scalars, which will be set as control 

variables.  

 An example of this process can best be viewed by first looking at the thrust in the 

Ŝ  direction. For a thrust in this direction, the ratio of the current change in a to its 

maximum change (for a given value of a and e) can be views as 
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 Evaluating equation (22) at each time step of the LEO to Molniya transfer, a 

statement can be made that for some given value of ηa, if the result of equation (22) is 

greater than ηa, then the criteria for applying a thrust in the Ŝ  direction to change a has 

been met. However, since it is necessary to get the maximum change in both a and e at 

each incident of thrust in the Ŝ  direction, an equation for the ratio of current change in e 

to its maximum value (for given a and e) must be created, and can be written as 
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 Similarly, if equation (23) is evaluated at each time step of the transfer, for a 

given value of ηe, if the result of equation (23) is greater than ηe, then the criteria for 

applying thrust in the Ŝ  direction to change e has been met. Therefore, a hypothesized 

switching function to apply thrust in the Ŝ  direction can be summarized as follows 
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where ST ˆ  represents the thrust applied in the Ŝ  direction, and 
max,ŜT is the maximum 

possible thrust the Ŝ  direction engine can apply.  

 Next, a switching function must be made for the thrusters in the R̂  and - R̂  

directions. When looking at Figures 7 and 9, it is clear that the contribution to da/dt and 

de/dt is much less for R̂  direction thrusts than for thrusts in the Ŝ  direction. 

Mathematically, when comparing the maximum possible da/dt and de/dt contribution of 

Ŝ  and R̂  direction thrusts per orbit, the ratios can be observed as 
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where it should be noted that 
m

T
FFF WRS

WRS
max,ˆ,ˆ,ˆ

=== . From equations (25) and (26) it 

can be seen that an R̂  direction thrust will at maximum produce only half the thrust of 

the maximum Ŝ  direction thrust (assuming there is an upper bound on the eccentricity of  

e = 1). Due to this fact, it would not be an efficient use of propellant to use the R̂  

direction thrusters unless the Ŝ  direction thrusters are set to operate with Sa ˆ,η  and Se ˆ,η  

less than 0.5 (or 50% maximum da/dt and de/dt output). Therefore, a switching function 

for the R̂  direction thrust can be described as follows 
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 It should be noted that in equation (29), a constraint is also put on the control 

values Ra ˆ,η  and Re ˆ,η  in that SaRa ˆ,ˆ, ηη ≥  and SeRe ˆ,ˆ, ηη ≥ . This is due to the fact that the 

maximum contributions to equations (11) and (12) will always be greater in the Ŝ  

component than the R̂  component, as illustrated by equations (25), (26) and Figures 7 

and 8. Therefore, contributions to da/dt and de/dt in the R̂  direction should not be 

allowed to dip below the contributions in the Ŝ  direction, resulting in an inefficient use 

of propellant. The constraint placed on Ra ˆ,η  and Re ˆ,η ensures that this inefficiency will not 

take place.  

 Finally, a switching function for the Ŵ  direction thrust must be created. By 

observing equation (13) it can be seen that any change in inclination caused by a thrust in 

a Ŵ  direction will have no effect on the semimajor axis or eccentricity. Since forces in 

the Ŵ  direction do not have any effects on other in plane elements, the Ŵ  direction 

thrust therefore does not have to be activated at the same time as the thrusts in the Ŝ  and 

R̂  directions. Additionally, from Figure 9, Table 5, and observations of equation (21) it 

can be seen that the maximum possible value of di/dt will occur when 

ωω −−= − )]sin([sin 1 ev , 740969.0max == ee , 4.26553max == aa  km, and ω = π for 

thrust in the Ŵ  direction, ( ωωπ +−−= − )]sin([sin 1 ev , ω = 0 for thrust in the -Ŵ  

direction). Applying these conditions to equation (13), an analytical representation can be 

derived for the maximum possible change inclination over all possible orbital elements 
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 Since di/dt will increase in maximum magnitude as a spacecraft goes from a LEO 

to Molniya orbit, and because changing the inclination has no effect on changing either 

the semimajor axis or eccentricity, the inclination will have two ratio scalars associated 

with it. The first scalar is the ratio of the current di/dt with respect to the maximum 

possible value, denoted as toti ,η . A switching function based on this value will ensure that 

the thrust in the Ŵ direction will not be activated until the most efficient stages of the 

total transfer. A second ratio scalar, denoted as iη , will represent a scalar ratio much like 

ηa and ηe, which will ensure that thrust in the Ŵ  direction, once satisfying the toti ,η  ratio 

criteria, will only be activated as the most efficient times per each orbit. Therefore, the 

switching function for thrust in the Ŵ  direction can be defined as follows 
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 The switching functions outlined in equations (24), (29) and (33) represent an 

initial hypothesis as to how to perform low-thrust trajectory optimization, specifically for 

a LEO to Molniya orbit, without the use of altering the equations of state. This switching 

function thus serves as a basis, to which alterations will be made due to testing results. 

Before each test is explained, the switching functions may be altered to meet the needs of 

a particular test. Once testing has been completed, a final optimal switching function will 

be decided upon and compared against a higher-order collocation method for solving the 

low-thrust LEO to Molniya optimal control problem, originally studied in the work of 

Herman and Spencer [2].  

 

Problem Formulations (LEO to Molniya Transfer) 

 For the case of testing a LEO to Molniya low-thrust transfer, the switching 

functions outlined in equations (24), (29), and (33) (or slight variations) will be 

implemented in STK. These switching functions will alter the value of a propellant based 

objective function, subject to certain final orbit equality constraints. Preliminary tests will 

be conducted which will show what alterations can be made to equations (24), (29), and 

(33) to aid in the optimality of the final solution, or speed of algorithm convergence. 

Once testing has concluded what alterations to make, these final switching functions will 
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be implemented in final test cases. One test case will show the most optimal low-thrust 

trajectory from a LEO to Molniya orbit, subject to a transfer time of 30 days, while the 

other will compare results from a time-constrained LEO to Molniya transfer which was 

found using a higher order collocation method of optimal control [2].  

 For each problem formulation (both preliminary testing and final results), some or 

all of the ratio scalar values; Sa ˆ,η , Se ˆ,η , Ra ˆ,η , Re ˆ,η , toti ,η  and iη  will represent parameters 

in the switching functions in equations (24), (29), and (33). These values can be selected 

as control values in Astrogator, and would therefore also represent elements in an 

objective function control vector. Unless otherwise specified, the initial argument of 

periapsis, ωi, will also be selected as a control variable. This is done because of all the 

effects perturbations in the Ŝ , Ŵ , and R̂  directions have on the argument of periapsis, 

illustrated in equation (14). Any maneuver that changes a, e, or i will also change ω, so 

instead of attempting to keep ω fixed at some value, it is instead allowed to rotate freely, 

and its initial position varied so that it will rotate into the correct final position at the end 

of the maneuver. Therefore, a control vector for the LEO to Molniya problem 

formulation can be viewed as 

>=< itotiiReRaSeSau ωηηηηηη ,,,,,, ,ˆ,ˆ,ˆ,ˆ,                            (34) 

 The control vector outlined in equation (34) is also a preliminary control vector 

for this particular problem formulation, and will be changed based on testing results and 

problem reformulations. Additionally, the following initial bounds will be imposed on 

these control variables 
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 Also for this particular problem formulation, the spacecraft attitude is set to the  

R̂ Ŝ Ŵ  system illustrated in Figure 6, while the thrust is governed by the switching 

functions. These switching functions will be implemented in three custom engine plugins 

in STK, representing engines providing thrust in the Ŝ , Ŵ , and R̂  directions, which will 

be referred to as engineŜ , engineŴ , and engineR̂ . Five separate engines will be created using 

these three plugins; one engine representing the Ŝ  direction switching function, using the 

engineŜ  plugin, two engines representing the R̂  and - R̂  switching functions using the 

engineR̂  plugin, and two engines representing the  Ŵ  and -Ŵ  switching functions using 

the engineŴ  plugin. Therefore, a thruster set for this particular problem formulation can is 

illustrated in Figure 10. The thruster set in Figure 10 represents the thruster set which will 

be used in the final test cases, performed in STK 9.0.  
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Figure 10: Diagram of final test case spacecraft thruster set for LEO to Molniya 

Problem Formulation. 
 

 Of particular importance are the limitations of STK 8.1 on implementing the R̂  

and Ŵ  direction switching functions. Recall that while the final test cases will be done in 

STK 9.0 (and use the thruster set illustrated in Figure 10), all other testing is performed in 

STK 8.1. Based on the constraint imposed on Ra ˆ,η  and Re ˆ,η   in equation (29) the engineR̂  

plugin will need to reference Sa ˆ,η  and Se ˆ,η   values in the engineŜ  plugin. Likewise, in 

equations (29) and (33), it can be seen that both switching functions rely on using one 

value for Ra ˆ,η , Re ˆ,η , iη  and toti,η , but will be implemented across four custom engines 

(for thrusters in the R̂ , - R̂ , Ŵ  and -Ŵ directions) . In STK 8.1, there is no way to 

transfer one value between multiple engines. That is, values can be changed for each 

individual engine, but they cannot represent global variables, used by multiple engines. 

Therefore, for initial testing of the aforementioned switching functions, the R̂  direction 

switching function will be removed (due to the inability to handle its control variable 

+ Ŝ  thrust 
R̂+  thrust 

+Ŵ  thrust  

-Ŵ  thrust 

Each thruster has properties 
Isp = 4000 s 
g = 0.00980665 km/sec2 
T = 5.0 N  
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constraints) and the Ŵ  direction switching function will be represented as follows (with 

the Ŝ  direction switching function remaining unchanged) 
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 Therefore, for the preliminary test cases of this problem formulation conducted in 

STK 8.1, the thruster set used can be illustrated in Figure 11.  

 
Figure 11: Diagram of spacecraft initial test case thruster set for LEO to Molniya 

Problem Formulation. 
 

 This thruster set, while not as thorough as the one illustrated in Figure 10, will 

help show how effective the two switching functions outlined in equations (25) and (36) 

are in creating burn and coast times. However, one major problem with the thruster set 

illustrated in Figure 11 completely eradicates radial thrusts (since the R̂  direction 

switching function cannot be used effectively in STK 8.1). As a result of this 

inconvenience, a long transfer time of 30 days is chosen for the preliminary test cases. 

+ Ŝ  thrust 

+Ŵ  thrust  

Each thruster has properties 
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This long duration was chosen because optimal values of Sa ˆ,η  and Se ˆ,η  were in the range 

of ~0.7, much higher than the ~0.5 upper bound on Ra ˆ,η  and Re ˆ,η , indicating radial thrust 

would not even be activated under the definition of equation (30).  Future alterations of 

the switching functions, as well as the switching functions chosen for the final test cases 

will be discussed and presented in subsequent tests and problem formulations. 

   Therefore, with the circle to circle and LEO to Molniya transfer problem 

formulations defined, their control vectors, objective functions and constraint functions 

can be implemented in both the SQP and CMA-ES algorithms. As a preliminary test, the 

circle to circle transfer will be used to help determine the strengths and weaknesses of 

both algorithms, so an educated choice can be made as to which one is more desirable for 

solving low-thrust trajectory optimization problems. Once an algorithm is selected, it will 

be implemented on the LEO to Molniya problem formulation, in an attempt to refine, if 

necessary, the various switching functions. The overall best configuration of optimization 

algorithm and set of switching functions will then be selected to replicate a LEO to 

Molniya transfer studied using optimal control, to determine the overall competitiveness 

of the methods described in this thesis.  
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Chapter 5: Initial Testing and Final Results 
 
 In this chapter, several initial tests are conducted, both on the SQP and CMA-ES 

optimization algorithms, as well as the general perturbation switching function problem 

formulations. These tests will show the strengths and weaknesses in both the optimization 

algorithms, objective functions and switching functions, so that reformulations can be 

made, and thus the overall best optimization scheme can be selected.  

 The optimization algorithms will be tested first, by means of subjecting them to 

the LEO to 10,000 km semimajor axis with inclination change problem formulation. This 

simple problem formulation will give insight as to how each algorithm performs within 

STK’s black box framework. Specifically, it will test weather the algorithms converge to 

global or local extrema, how well they handle equality constraints, and their overall time 

to convergence. A final comparison will be made based on these observations, and either 

the SQP or CMA-ES algorithm will be selected to continue with future testing, as well as 

the gathering of final results.  

 With the selection of the proper optimization algorithm, the problem formulation 

consisting of definitions for switching functions and an objective function, can now be 

revised and tested. The problem formulation is what dictates how thrust will be applied 

within the transfer, as well as how a cost variable, control variables, and constraints will 

be applied to a numerical optimization algorithm. A problem formulation for a LEO to 

Molniya low-thrust transfer is tested in this stage, to see what modifications should be 

made to the switching functions and objective function to aid in the speed to 

convergence, constraint handling, and overall optimal solution. As with the initial testing 

of the optimization algorithms, the testing of the problem formulation will seek to expose 
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weaknesses and/or strengths in the formulation, rather than creating real-world applicable 

optimal low-thrust transfers.  

 Once the proper reformulations have been made to the switching functions and 

objective function, the final test cases can be conducted. These final test cases will seek 

to find real-world applicable optimal low-thrust transfers, rather than testing the 

algorithms or problem formulations. In these final tests, the selected optimization 

algorithm, and best set of switching functions are used to determine two optimal low-

thrust LEO to Molniya transfers. The first transfer will consist of a 30-day transfer time, 

while the second will model a transfer created using a higher order collocation method of 

optimal control presented by Herman and Spencer [2]. In the latter case, the results from 

the methods imposed in this study will be compared to the results using optimal control 

to determine if the methods are compeditive for solving a LEO to Molniya low-thrust 

transfer.  

 

Optimization Algorithm Testing: Circle to Circle Transfer 

 In order to test the performance of both the SQP and CMA-ES algorithms on 

finding optimal low-thrust trajectories within a black box framework, a simple LEO to 

10,000 km semimajor axis with an inclination change problem is created. This problem 

formulation is based off of finding a propellant optimal solution from a given initial state 

to a desired final state, subject to equality constraints on the final semimajor axis* and 

inclination. Therefore, this particular optimization problem could be described as 

 

                                                 
* Recall, this constraint is handled by a stopping condition within the numerical integration algorithm, as 
described in Chapter 4 
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Given 
 Initial conditions in Table 1, attitude illustrated in Figure 3, thruster set illustrated in 

Figure 5, and af = 10,000 km  
 

Find 
>=<

−+++ ,ˆ,ˆ,ˆ,ˆ ,,, NNCV TTTTu    
 
 

That Minimizes  
=)(uF Propellant Used   (SQP) 

fi iiw  Used PropellantuF −+=)(     (CMA-ES) 
 

Subject to:  
0 < Tx,+ < 0.5 N 
0 < Tz,+ < 0.5 N 
0 < Ty,+ < 0.5 N 
0 < Ty,- < 0.5 N 
if = 0 Degrees 

 

where af and  if is the final orbit semimajor axis and inclination respectively, and wi is a 

scalar weight penalty associated with the inclination constraint (used for testing CMA-ES 

algorithm only). It should be noted that there are two possible objective functions, one for 

the SQP algorithm, and one for the CMA-ES algorithm. This is due to the fact that the 

CMA-ES algorithm must handle equality constraints by imposing them as penalty 

functions within the objective functions, while the SQP algorithm handles then directly.  

 Since there is an equality constraint associated with this problem formulation, it 

becomes necessary to implement the proper weight for the objective function used in the 

CMA-ES algorithm. For this case, initial weights (wi) of 1, 10, and 100 are applied to the 

CMA-ES objective function, with results displayed in Table 6. It should be noted that 

there are four runs of wi = 10 and wi = 100 only one for wi = 1 because it was obvious that 

after one run of wi = 1, the objective function did not accurately match the desired 

function space to be minimized. Specifically, for w = 1, the weight was not big enough, 
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and the inclination constraint was not even met because its penalty was not high enough 

to properly alter the function space. Results from execution of the SQP algorithm can 

also be seen in Table 7. Note, in Table 7, and future result tables, the number of function 

evaluations (nfe) the given optimization algorithm performed before convergence is 

given.  

 Table 6: CMA-ES executions of circle to circle transfer with inclination 
change for weights of wi = 1, 10, and 100.  

wi nfe 
+,V̂T  

(N) 
+,ĈT  

(N) 
+,N̂T  

(N)
−,N̂T  

(N) 

Propellant 
(kg) 

if  (deg) af (km) 

1 6290 0.4687 0.0000 0.0000 0.0000 21.2406 9.9924 10,000.0
10 17978 0.2193 0.0000 0.3499 0.2444 48.8721 0.0000 10,000.0
10 9138 0.3178 0.0000 0.4002 0.4615 48.8606 0.0000 10,000.0
10 13586 0.3462 0.0000 0.4449 0.4939 48.8598 0.0000 10,000.0
10 10050 0.3365 0.0000 0.4288 0.4838 48.8599 0.0000 10,000.0
100 10010 0.2803 0.0000 0.4834 0.2815 49.0146 0.0000 10,000.0
100 16818 0.2117 0.0000 0.1135 0.4606 48.8870 0.0000 10,000.0
100 12986 0.3018 0.0002 0.3434 0.4766 48.9317 0.0000 10,000.0
100 22498 0.3268 0.0000 0.4069 0.4817 48.9318 0.0000 10,000.0

 

Table 7: SQP execution of circle to circle low-thrust transfer with inclination 
change.  

nfe 15 
+,V̂T  (N) 0.3698 

+,ĈT  (N) 0.2026 

+,N̂T  (N) 0.4999 

−,N̂T  (N) 0.4999 

Propellant 
(kg)

59.562 

if  (deg) 0.0286 
af (km) 10,000.0 

 

 As Table 6 shows, while the difference in optimal propellant consumption differs 

slightly from wi = 10 and w = 100, it can still be seen that a weight of wi = 10 performs 

faintly better than wi = 100. However, between the four runs at wi = 10, different optimal 
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control values for 
+,V̂T , 

+,N̂T , and  
−,N̂T are calculated. While the CMA-ES algorithm can 

handle multi-modal function spaces, when presented with noise in the function space, it 

can still be plagued by inconsistent convergence. However, while the CMA-ES algorithm 

converged to different control variable values for a weight of w = 10, the overall 

propellant use converged to the same general value. This could be an indication that 

while this problem may have a global minimum; it is it is hidden within an area of small 

amplitude noise, making convergence to a single point difficult. If this is the case, then an 

optimal solution could be viewed as any set of values within that domain, and not 

necessarily one point (that is, if the noise amplitude is small). Taking into account the 

fact that STK uses numerical integration to solve a spacecraft’s equations of motion 

(which includes truncation and round-off error), coupled with a termination criteria of the 

final semimajor axis (which is met to a tolerance, and not exactly), stating that there may 

be some small amplitude noise within this black box function space is a valid assumption. 

 As for the classical algorithm runs seen in Table 7, the SQP algorithm converged 

in far fewer function evaluations than the CMA-ES algorithm, but obviously converged 

to a local minimum. The SQP algorithm converged to a final propellant use of about 10 

kg higher than the CMA-ES algorithm, no doubt because it converged to the first 

stationary point ( 0)( =∇ xF ) within the vicinity of the initial control vector, rather than 

performing a more thorough search of the function space. Also of note is that the SQP 

algorithm did not solve the final inclination constraint as strictly as the CMA-ES 

algorithm.  

 Due to these observations seen in Table 6, the problem formulation is altered in 

several ways to attempt to simplify the problem, and create a more narrow focus on 
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where the optimal value may lie. This may help differentiate whether there is a 

distinguishable global minimum, or whether noise within STK still makes pinpointing an 

exact global minimum difficult. Testing of this reformulation will be done exclusively 

within the CMA-ES algorithm. Should this noise still be present, the optimal control 

vector will occur within a domain, rather than one specific point.  

 In this problem reformulation, a weight of wi = 10 is used for all remaining CMA-

ES trial runs, because it was shown to perform the best between the weights in Table 6. 

Second, the 
+,ĈT component of thrust is removed from the control vector, and set to zero. 

This was done because of the tendency of this value to converge to 0 for each weight case 

in Table 6. While this value did not converge to zero for the SQP algorithm (Table 7), it 

produced a less optimal result than in Table 6, and therefore removal of this variable is 

still justified. Thus, another set of runs is made with there revisions to the problem 

formulation, to yield the results seen in Table 8. 

Table 8: CMA-ES executions of low-thrust circle to circle transfer with inclination 
change for weights of wi = 10, and no co-normal thrust 

(w) nfe 
+,V̂T  (N) 

+,N̂T  (N) −,N̂T  (N) Propellant 
(kg) 

if  (deg) af (km) 

10 5252 0.303021 0.485979 0.335582 48.86628 0.000001 10,000.0
10 3740 0.187206 0.024786 0.482654 48.86973 0.000008 10,000.0
10 3446 0.213766 0.286897 0.292444 48.87665 0.000000 10,000.0
10 4531 0.000016 0.018510 0.139496 31.60728 0.002579 6605.25 
10 4762 0.000001 0.157959 0.000047 31.59386 0.038367 6604.50 

 

 From Table 8, it becomes obvious (at least for the last two executions) that the 

CMA-ES algorithm has found a minimum around the vicinity of the lower bounds 

(specifically, thrust = 0) for the control values. From Table 8, it can be seen that for these 

runs, the semi-major axis constraint was not met; only the inclination constraint was. This 

is due to the fact that the semi-major axis constraint was removed as an equality 
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constraint and replaced as a stopping condition on the thrust segment propagation. By 

recollection, another stopping condition, that of thrust duration of 0.5 years was also 

placed on the thrust segment propagation. Therefore, if the velocity-direction thrust is 

driven to zero, it turns out that the inclination constraint can be met using less propellant 

than meeting both the inclination and semi-major axis constraints. In this case, the 

algorithm converges to values which result in an activation of the thrust duration, not 

final semi-major axis stopping condition. 
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Figure 12: Plot of optimal propellant vs. thrust magnitude for the circle to circle 
low-thrust transfer (contains data from all w = 10 runs in Table 6 and first 3 runs in 

Table 8) 
 

 It can also be observed from Table 6 and Table 8 that for wi = 10, increasing the 

values for 
+,V̂T , 

+,N̂T , and  
−,N̂T seem to cause the algorithm to gravitate to a slightly (on 
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the order of 0.02 kg) more optimal values for propellant used. This observation can be 

better illustrated in Figure 12 which represents the magnitude of the thrust vectors 

(excluding the last two runs in Table 8) plotted against the over all propellant optimal 

solution. 

 As a result of this observation, three more tests are created, one in which the value 

for 
+,V̂T is removed as a control value, and set to its upper bound of 0.5 N, another in 

which the values for 
+,N̂T , and  

−,N̂T are removed as control values and set to their upper 

bound of 0.5 N, and a third where velocity and orbit-normal direction thrusts are kept as 

control values but their domains are changed from: 

0 < 
+,V̂T < 0.5 N 

0 < 
+,N̂T < 0.5 N 

0 < 
−,N̂T < 0.5 N 

to 

0.3 < 
+,V̂T < 0.4 N 

0.4 < 
+,N̂T < 0.5 N 

0.4 < 
−,N̂T < 0.5 N 

 Which were found to be the areas consisting of the most propellant optimal 

solutions based on Table 6. These tests are executed in an attempt to see whether a 

consistent globally optimal solution can be achieved when one thrust direction is set to its 

maximum, and the other merely adjusts to meet the equality constraints, or whether a 

maximum still occurs in an area between those extremes. Results for the maximum 

velocity direction thrust, maximum orbit-normal direction thrusts, and reduced domain 
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thrusts formulations tested using the CMA-ES algorithm can be seen in Table 9, Table 

10, and Table 11 respectively. A table containing data from the SQP algorithm for the 

velocity maximum and orbit-normal maximum thrust problem formulations can also be 

seen in Table 12.  

Table 9: CMA-ES executions of circle to circle low-thrust transfer with inclination 
change for maximum thrust in velocity direction  

Run nfe 
+,N̂T  (N) −,N̂T  (N) Propellant 

(kg) 
if  (deg) af (km) 

1 188 0.500000 0.500000 41.72685 2.627770 10,000.0 
2 140 0.500000 0.500000 41.72685 2.627770 10,000.0 

  3 194 0.500000 0.500000 41.72685 2.627770 10,000.0 
 

Table 10: CMA-ES executions of circle to circle low-thrust transfer with inclination 
change for maximum thrust in orbit-normal directions  
Run nfe 

+,V̂T  (N) Propellant 
(kg) 

if  (deg) af (km) 

1 606 0.368481 48.87583 0.000016 10,000.0 
2 790 0.368476 48.87616 0.000015 10,000.0 

  3 854 0.368460 48.87739 0.000012 10,000.0 
 

Table 11: CMA-ES executions of circle to circle low-thrust transfer with inclination 
change for bounded thrust in velocity  and orbit-normal directions  

Run nfe 
+,V̂T  (N) 

+,N̂T  (N) −,N̂T  (N) Propellant 
(kg) 

if  (deg) af (km) 

1 4671 0.329753 0.446036 0.448111 48.85946 0.000007 10,000.0
2 6043 0.300265 0.410944 0.403217 48.86426 0.000004 10,000.0
3 4664 0.322764 0.475257 0.400068 48.86168 0.000000 10,000.0

 
Table 12: SQP execution of circle to circle low-thrust transfer with inclination 

change maximum velocity direction and maximum orbit-normal direction thrust. 
 Problem Formulation 
 Velocity Thrust Max Orbit-Normal Thrust Max 

nfe Did Not Converge 101 
+,V̂T  (N) N/A 0.3702 

+,N̂T  (N) N/A 0.5000 

−,N̂T  (N) N/A 0.5000 

Propellant (kg) N/A 48.748 
if  (deg) N/A 0.045 
af (km) N/A 10,000.0 
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 As seen in Table 9, if the velocity direction thrust is maintained at a maximum, 

even with the maximum amount of orbit-normal thrust, the spacecraft cannot change its 

inclination enough to satisfy the inclination constraint given the short time it takes for the 

thrusting maneuver to reach its stopping condition of a 10,000 km semi-major axis orbit. 

As a result, the CMA-ES algorithm converges to maximize the orbit-normal direction 

thrust, which places the spacecraft in a final orbit which most closely satisfies the 

inclination equality constraint, but ultimately does not achieve a final inclination of 0.0 

degrees.   

 However, the SQP algorithm did not converge at all for this test case. This could 

be due to the fact that the algorithm approached an area where the gradient was ill-

defined, where there may have been discontinuities within the black box function space, 

or the algorithm could have simply failed. In any case, it showed that this particular SQP 

algorithm might not be as consistently reliable (in terms of simply converging) as the 

CMA-ES algorithm when performed within a black box framework.  

 For the case of maximum orbit-normal thrust, the CMA-ES algorithm consistently 

converged to the same optimal velocity direction thrust, as can be seen from Table 10. 

However, the optimal propellant used in this problem formulation is slightly higher than 

some results obtained in Table 6 and Table 8, which leads to a speculation that the 

optimal thrust magnitudes will not actually occur when one of the spacecraft thrust is set 

to a maximum. However, the SQP method converged to a propellant use less than any 

previous convergence of the CMA-ES algorithm. This decrease was extremely small 

(~0.1 kg) and can could be attributed to the fact that the final inclination constraint was 

not met to a tolerance as exact as the CMA-ES algorithm. This test case was more 
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encouraging for the SQP algorithm, because it shows that it has the potential to find 

results on par with the CMA-ES algorithm, given the proper starting values.  

 When observing the results for the more tightly bounded control variables, seen in 

Table 11, the optimal propellant used converged to values on par with the lowest 

currently seen in any problem formulation. However, these values are still smaller by 

rather insignificant amounts when compared to other optimal values, which can lead to 

the assumption that any set of control variables within a specific domain can be 

considered “optimal”. For this particular problem, it could be safe to say that any set of 

control variables which converged to a propellant use of approximately 48.87 kg or lower 

would be considered optimal. Based on observations, values of propellant concurrent 

with this optimal value will typically occur within the following approximate set of 

control variables 

0.3 < 
+,V̂T < 0.4 N 

0.4 < 
+,N̂T < 0.5 N 

0.4 < 
−,N̂T < 0.5 N 

+,ĈT = 0 N 

 As a final test, the SQP algorithm is executed with initial control values 

corresponding to the best results observed thus far. From the results of the maximum 

orbit-normal thrusts, it is hypothesized that given the correct initial control vector, the 

SQP algorithm may be able to effectively find a minimum competitive with the CMA-ES 

algorithm in a fraction of the time. Thus, the SQP algorithm is executed with a initial 
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control vector of <
+,V̂T ,

+,ĈT ,
+,N̂T ,

−,N̂T > =  <0.32, 0.00, 0.44, 0.44> N and subject to the 

optimal bounds of those variables, with results found in Table 13.  

Table 13: SQP execution of circle to circle low-thrust transfer with inclination 
change, and initial values of <

+,V̂T ,
+,ĈT ,

+,N̂T ,
−,N̂T > =  <0.32, 0.00, 0.44, 0.44> N 

nfe 158 
+,V̂T  (N) 0.3247 

+,ĈT  (N) 0.00000 

+,N̂T (N) 0.4000 

−,N̂T  (N) 0.4841 

Propellant 
(kg)

48.972 

if  (deg) 0.003 

af (km) 10,000.0 

 

 As can be seen from Table 13, even given a more ideal initial guess on the control 

vector, the SQP algorithm produced results similar to the CMA-ES algorithm, but failed 

to get a better optimal value of propellant used.  

 

Selection of Best Optimization Algorithm 

 Based on observations from several tests of both the SQP and CMA-ES 

algorithm, various conclusions can be made concerning the overall performance of these 

two algorithms, as well as which should be used in further tests.  

 With regard to the classical-based SQP algorithm, while convergence was usually 

met (except in one case), and computational costs were small, the algorithm was plagued 

by problems common with classical algorithms. The SQP algorithm appeared to converge 

to local minimums often, and would require a good initial guess of the control vector in 
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order to converge to an optimal solution competitive with that of the CMA-ES algorithm. 

This is almost certainly due to the fact that search directions in classical algorithms such 

as this are dictated by gradients, and are therefore susceptible to converging to the closest 

point where the gradient is equal to zero, thus hindering a more global search, and 

locating of multiple extrema. A more global search method, based on several executions 

of the SQP algorithms for randomized initial control variables would probably be 

necessary to alleviate converging to local rather than global minimums.  

 As for the CMA-ES algorithm, performance was more consistent than in the SQP 

algorithm. The evolutionary-computation-based CMA-ES algorithm always converged to 

optimal values either equal or substantially better than the SQP algorithm, and never 

failed to converge. The CMA-ES algorithm, with its more global, and non-gradient based 

search was no doubt more robust in finding global minimums within the black box 

function space as compared to the SQP algorithm. However, one significant drawback to 

this robust global search was that the CMA-ES algorithm was very computationally 

expensive, generating anywhere from approximately 20 ~ 200 times longer to converge 

than the SQP algorithm. Additionally, constraints were met to suitable tolerances using 

the weighted penalty function method, and were often met to more accurate tolerances 

than the SQP method.  

 Due to these facts, it is decided that the CMA-ES algorithm, with its more robust 

global search method yielding better optimal results than the SQP algorithm, will be used 

for the remaining tests in these studies.  
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Switching Function Testing: LEO to Molniya Transfer 

 As a preliminary test, using the CMA-ES algorithm, the switching functions 

outlined in equations (24) and (35) are implemented in STK 8.1, so as to gain insight 

converning the effectiveness of these functions. Additionally, the objective function, 

outlined in equation (8) is tested as to its effectiveness in both minimizing the problem 

and satisfying the equality constraints. For this particular problem formulation, the 

constraint vector and corresponding weights can be viewed as 

=TCw |||||||| ffifefa wiiweewaaw ωωω −+−+−+−            (36) 

 Where wa, we, wi, and wω are the scalar weights for the semimajor axis, 

eccentricity, inclination, and argument of periapsis constraints, respectively. A total 

transfer time stopping condition of 30 days is used to eliminate negative effects from the 

exclusion of equation (29). This particular problem formulation can be viewed as 

Given:  
Initial conditions in table 1, using switching functions outlined in equations (24) and (36) 

with NTT WS 0.5max,ˆmax,ˆ ==  and a total transfer time = 30 days  
 

Find:  
=u { Sa ˆ,η , Se ˆ,η , toti ,η , iη , ωi } 

 
That minimizes: 

 F(u ) = Propellant Use + |||||||| ffifefa wiiweewaaw ωωω −+−+−+−  
 

Subject to:  
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af =26553.4 km 
ef = 0.740969 
 if = 63.4 deg 
 ωf = 270 deg 

 

 Preliminary tests have shown that { aw  , ew  , iw  , ωw } = {0.001, 500, 500, 500} 

for penalty constraint weights work well in satisfying the various end condition equality 

constraints without pre-convergence. Implementing the CMA-ES algorithm on this 

problem formulation in STK 8.1 results in an optimal trajectory as seen in Table 14. 

Table 14: Results from CMA-ES implementation of preliminary LEO to Molniya 
test case 

nfe 2401 

Sa ˆ,η  0.0979 

Se ˆ,η  0.6887 

toti,η  0.1351 

iη  0.8212 
ωi (deg) 290.48 
af  (km) 26553.6 

ef 0.7268 
if  (deg) 63.392 
ωf (deg) 270.03 

Propellant Used (kg) 90.508 
vΔ  (km/s) 6.3498 

 

 From Table 14, several observations are made. Primarily, it can be seen that 

Sa ˆ,η converges to a very low value. Given the definition of equation (24), it can be 

inferred that since equations (11) and (12) are maximized at the same points and equation 

(11) will always be positive in the Ŝ  direction, that optimization of a single ratio scalar 

can produce a desired result. When deciding which ratio scalar to terminate as a control 

variable, it is easy to see that Sa ˆ,η  should be eliminated.  This is because the Ŝ  

component of equation (11) is constant for an initial LEO orbit and would always satisfy 
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equation (24), negating the purpose of the switching function. Therefore, in subsequent 

tests, the ratio scalars Sa ˆ,η  and Ra ˆ,η  are removed from the switching function equations 

(24) and (29), resulting in 
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 Taking into account the elimination of the control variables Sa ˆ,η  and Ra ˆ,η , the 

optimization procedure is repeated, and results are shown in Table 15, with plots of the 

change in semimajor axis, eccentricity, inclination and argument of periapsis in Figures 

13, 14, 15 and 16 respectively. 

 From Table 15, it can be seen that removing the Sa ˆ,η  control variable does little to 

transform the optimal solution and even leads to a faster evaluation time due to the 

decrease in problem complexity. However, when viewing Figure 15, it appears that the 

inclination is not changing as hypothesized. Theoretically, equation (35) should cause the 

inclination begin to change closer to the end of the transfer, not throughout its duration. 

However, toti,η  converged to such a low value that the inclination changed throughout the 
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orbit, instead of when it was most efficient.  Through inspection, it was discovered that 

the satisfaction of the argument of periapsis equality constraint, coupled with the 

positive-only  Ŵ  direction thrust outlined in equation (35) caused this phenomenon. 

 From Figures 13, 14, and 15, it can also be seen that the switching functions are 

executing properly, initiating burn and coast segments, indicated by the “stepping” 

behavior in these plots.   

 

 

Table 15: Results from CMA-ES implementation of the LEO to Molniya  low-thrust 
transfer, removing semimajor axis ratio scalars 

nfe 1617 

Se ˆ,η  0.7116 

toti,η  0.0989 

iη  0.8405 

ωi (deg) 290.40 
af  (km) 26553.7 

ef 0.7290 
if  (deg) 63.401 
ωf (deg) 269.95 

Propellant Used (kg) 89.898 
vΔ  (km/s) 6.3345 
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Figure 13: Semimajor axis change during maneuver for switching function 

alteration in equation (37) for the LEO to Molniya  low-thrust transfer 
 

 
Figure 14: Eccentricity change during maneuver for switching function alteration in 

equation (37) for the LEO to Molniya  low-thrust transfer 
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Figure 15: Inclination change during maneuver for switching function alteration in 

equation (37) for the LEO to Molniya  low-thrust transfer 
 

 
Figure 16: Argument of periapsis change during maneuver for switching function 

alteration in equation (37) for the LEO to Molniya  low-thrust transfer 
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 To illustrate how sensitive the argument of periapsis constraint is to the 

preliminary test formulation, another execution of the CMA-ES algorithm was run on a 

similar problem formulation, except that ωi is set to an initial value of 180 degrees (its 

optimal value for inclination changes in the Ŵ  direction) and the argument of periapsis 

constraint is removed from the objective function. Results from this simulation can be 

seen in Table 16, with a plot of the inclination change over the trajectory illustrated in 

Figure 17. From Table 16, it is clear that eliminating the argument of periapsis constraint 

and placing its initial value at the optimal value can have drastic changes on the optimal 

solution. Additionally, Figure 17 shows that when the final argument of periapsis 

constraint is removed, the inclination can be changed at its most efficient time, thus 

causing a drastic improvement to the optimal solution. This particular test illustrates how 

sensitive the optimal solution can be to the various final orbital element equality 

constraints. 

Table 16: Results from CMA-ES implementation of the LEO to Molniya transfer, 
removing semimajor axis ratio scalars, and argument of periapsis constraint 

nfe 6809 

Se ˆ,η  0.6903 

toti,η  0.7789 

iη  0.5992 
ωi (deg) 172.37 
af  (km) 26553.5 

ef 0.7270 
if (deg) 63.415 
ωf (deg) 176.17 

Propellant Used (kg) 54.188 
vΔ  (km/s) 3.7130 
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Figure 17: Inclination change during maneuver for switching function alteration in 
equation (37) and removal of argument of periapsis constraint for LEO to Molniya 

transfer 
 
 
Selection of Best Problem Formulation 
 
 Due to the results of these three preliminary test cases, a final set of switching 

functions and objective function can be created for testing in STK 9.0, which allows for 

thrusts in the -Ŵ , R̂  and - R̂  directions. Keeping this in mind, the radial switching 

function, given by equation (38) can be used for the first time in these studies. It should 

be refreshed that equation (38) takes into account the removal of the Ra ˆ,η  scalar control 

variable, since the semimajor axis and eccentricity can both be maximized 

simultaneously solely using Re ˆ,η . Secondly, the preliminary tests were given a long 30-

day transfer time in order to eliminate the need for radial thrust (since Se ˆ,η  converged to 
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values greater than ~0.5). The first final test case will seek to reinforce or debunk this 

hypothesis, by implementing equation (38) using a 30-day transfer time.  

 Additionally, due to the ability of STK 9.0 to implement -Ŵ  direction thrusts, the 

out-of-plane switching function in equation (35) can be replaced with equation (33). This 

replacement should aid in changing the inclination at a faster rate, allowing for a longer 

time to initiate the out-of-plane thrust, decreasing the amount of propellant used in the 

transfer. Also, the addition of a -Ŵ  direction thrust should help create a wobble effect on 

the argument of periapsis, making its equality constraint less of a burden than in the 

preliminary LEO to Molniya test cases.  

 As testing showed, the Ŝ  direction switching function given by equation (37) 

produced the best results, and will be implemented in the final test cases. furthermore, the 

constraint handling, given by equation (36), with weights { aw  , ew  , iw  , ωw } = {0.001, 

500, 500, 500} was shown to allow for convergence to an optimal value of propellant 

used while satisfying the various final state equality constraints, and will be used in the 

final test cases.  

  Therefore, the final problem formulation will use switching functions given by 

equation (37) for the Ŝ  direction, equation (33) for the Ŵ  direction, and equation (38) 

for the R̂  direction. The final test case objective function will be to minimize the 

propellant use during the transfer, subject to the weighted penalty parameters given by 

equation (36).  
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Final Application: 30 day LEO to Molniya Low-Thrust Transfer 
 
 From the preliminary test cases, adjustments have been made to the switching 

functions to ensure both a reliable, and competitive optimal solution for the LEO to 

Molniya transfer. These adjustments include the elimination of the Sa ˆ,η  and Ra ˆ,η  control 

variables, and use of STK 9.0 to include thrusts in the -Ŵ , R̂  and - R̂  directions. The 

inclusion of these thrust directions will lead to a real-world applicable optimal solution, 

as well as a problem formulation which is ready to be tested against other methods of 

optimal control.  

 Before a comparison to the work of Herman and Spencer is made, the 

optimization of the preliminary LEO to Molniya test case is conducted, to ensure that the 

inclusion of the -Ŵ , R̂  and - R̂  thrusting directions does indeed improve the overall 

solution as hypothesized. Secondly, the results of this optimization simulation will be 

concluded as the most optimal 30-day LEO to Molniya trajectory for the given initial and 

final orbital elements, initial spacecraft and engine configuration, and problem 

formulation (based on general perturbation equations). Therefore, this final optimization 

problem, can be viewed as 

Given:  
Initial conditions in table 1 and using switching functions outlined in equations (33), (37) 

and (38), with NTTT WRS 0.5max,ˆmax,ˆmax,ˆ ===  and a total transfer time = 30 days 
 

Find:  
=u { Se ˆ,η , Re ˆ,η , toti,η , iη , ωi } 

 
That minimizes: 

 F(u ) = Propellant Use + |||||||| ffifefa wiiweewaaw ωωω −+−+−+−  
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Subject to:  
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af =26553.4 km 
 ef = 0.740969 
 if = 63.4 deg 
 ωf = 270 deg 

 

 Implementing the CMA-ES algorithm on this problem formulation in STK 9.0, 

the following results of an optimal trajectory can be seen on Table 17. Additionally, plots 

of inclination and argument of periapsis are seen in Figures 18 and 19 respectively.  

Table 17: Results from CMA-ES implementation of optimal LEO to Molniya 30 day 
transfer problem formulation 

nfe 2074 

Se ˆ,η  0.6977 

Re ˆ,η  0.6881 

toti,η  0.2518 

iη  0.4624 

ωi (deg) 269.18 
af  (km) 26555.9 

ef 0.7278 
if  (deg) 63.400 
ωf (deg) 269.98 

Propellant Used (kg) 82.875 
vΔ  (km/s) 5.8308 

 

 As predicted, the addition of thrust in the -Ŵ  direction has allowed for a much 

more optimal solution, with approximately an 8% decrease in propellant used and vΔ  in 

comparison to the preliminary test cases. This is in part because more thrust along the Ŵ  

axes means that the inclination can be changed at a later and concordantly more efficient 
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time in the total trajectory, represented by the increase in both toti,η  and iη . This effect 

can also be seen in Figure 18, by observing that the inclination remains fixed at 28.5 

degrees until approximately 10 days into the maneuver.  

 Aside from the inclination change, the addition of thrust in the -Ŵ  direction also 

leads to less drift in the argument of periapsis, aiding in a more optimal solution than in 

preliminary test cases.  As can be seen from Figure 19, thrust in both the Ŵ  and -Ŵ  

directions leads to a stabilization effect in the argument of periapsis, which may allow for 

easier satisfaction of its final state equality constraint. 

 Additionally, it can be seen that the ratio scalar Re ˆ,η  converged to a value higher 

than 0.5. Any convergence above this upper bound indicates that the R̂ direction thrust 

would not be utilized, due to its propellant inefficiency with respect to the current 

problem formulation. The particular value of its convergence is arbitrary, should it 

converge to a value above the upper bound in a case such as this. It is hypothesized that 

should the transfer time be drastically decreased, leading to the value for Se ˆ,η to converge 

below 0.5, then Re ˆ,η  would also converge below 0.5, and cause activation in the R̂  

direction thrust.  
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Figure 18: Inclination change during maneuver for optimal LEO to Molniya 30 day 

transfer problem formulation 
 
 

 
Figure 19: Argument of periapsis change during maneuver for optimal LEO to 

Molniya 30 day transfer problem formulation 
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Final Application: Comparison to Optimal Control Method  

 Due to the positive results from the pervious simulation, the current problem 

formulation is tested against an optimal LEO to Molniya low-thrust trajectory found in 

the work of Herman and Spencer. In this work, Herman and Spencer used a standard 

optimal control problem formulation, and were able to directly solve a cost function 

minimizing the vΔ  of several LEO based, continuous thrust-acceleration low-thrust 

transfers through the use of a Higher Order Collocation 7th degree system. A more 

detailed explanation of these methods can be found in reference [2]. 

Table 18: Initial state and satellite properties for LEO orbit, outlined in [2] 
Spacecraft/orbit property Value 

Semi-major axis (a) 7003 km 
Eccentricity (e) 0 
Inclination (i) 28.5° 

Right Ascension of Ascending Node (Ω) 0º 

Argument of Periapsis (ω) 0° 
True Anomaly (ν) 0° 

Thrust Acceleration (TA) 0.01 2m/s  
 
 

Table 19: Final state properties for Molniya orbit outlined in [2] 
Spacecraft/orbit property Value 

Semi-major axis (a) 26578 km 
Eccentricity (e) 0.73646 
Inclination (i) 63.435° 

Right Ascension of Ascending Node (Ω) Free 

Argument of Periapsis (ω) 0° 
Total Transfer Time 159.75 hr 

 

 In [2], initial and final orbital elements identical to those in Tables 18 and 19 were 

used. It is the objective of the comparison between the methods described in this work to 

those in [2] to create competitive optimal results for vΔ  using identical thrust 
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accelerations and transfer time, for the given initial and final states. Therefore, a problem 

formulation for this comparison can be summarized as follows: 

Given:  
Initial conditions in table 18 and using switching functions outlined in equations (33), 

(37) and (38) with 210−=== WRS FFF  m/s2 and a total transfer time = 159.75 hr 
 

Find:  
=u { Se ˆ,η , Re ˆ,η , toti,η , iη , ωi } 

 
To Minimize: 

 F(u ) = Propellant Use + |||||||| ffifefa wiiweewaaw ωωω −+−+−+−  
 

 
Subject to:  

3600
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η
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af =26578km 
 ef = 0.73646 

 if = 63.435 deg 
 ωf = 0 deg 

 
 One matter of concern when comparing the aforementioned problem formulation 

to that of Herman and Spencer is the thrust acceleration. In their work, the thrust 

acceleration was kept constant at 10-2 m/s2, which was done to create a problem in which 

spacecraft mass and thrust were not necessary to define. However, their work did not use 

a switching function, so the thrust acceleration was kept at the value of 10-2 m/s2 for the 

duration of the trajectory. Using the switching function formulation described in these 

studies, this thrust acceleration will not be constantly applied. Furthermore, since each 

engine in the Ŝ , Ŵ , and R̂  directions will have a thrust acceleration of 10-2 m/s2, the 
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total thrust acceleration could be anywhere in the range of 21030 −≤≤ totalF  m/s2. Due 

to these facts, the comparison to reference [2] should be taken as an approximate, and not 

an exact comparison. Therefore, should the optimal vΔ  found using the switching 

function method be slightly better or worse than the value found by Herman and Spencer, 

it would not be appropriate to conclude which method is indeed superior (unless the 

discrepancies in optimal vΔ  are drastic). Instead, should the two methods give similar 

results, it can be said that the switching function method outlined in this work is 

competitive to the method of optimal control used by Herman and Spencer.  

 Using the problem formulation described previously, results from the comparison 

of the two low-thrust trajectory optimization methods can be seen in Table 20, with plots 

of semimajor axis, eccentricity and inclination throughout the trajectory in Figures 20, 

21, and 22 respectively.  

Table 20: Results from CMA-ES implementation of Herman and Spencer problem 
formulation 

nfe 3082 

Se ˆ,η  -0.164 

Re ˆ,η  0.1597 

toti,η  0.4276 

iη  0.5324 

ωi (deg) 3.0586 
af  (km) 26578.7 

ef 0.7329 
if  (deg) 63.449 
ωf (deg) 0.0129 

Propellant Used (kg) 102.14 
vΔ  (km/s) 6.0638 

vΔ  Herman and 
Spencer (km/s) 

6.1090 

% Change -0.73 % 
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Figure 20: Semimajor axes change during maneuver for Herman and Spencer 

problem formulation 
 

 
Figure 21: Eccentricity change during maneuver for Herman and Spencer problem 

formulation 
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Figure 22: Inclination change during maneuver for Herman and Spencer problem 

formulation 
 

 Based on these results, it can be seen that there is a 0.73% decrease in vΔ  from 

the problem formulation in this study as opposed reference [2]. Again, this does not give 

any definitive results as to which method is better, but it does indicate that the 

optimization approach through use of general perturbation equation switching functions 

in conjunction with an evolutionary strategy may be competitive to certain methods of 

optimal control. 

 Additionally, Table 20 shows that for the first time in these studies, the criteria for 

using R̂  direction thrust has been met ( Se ˆ,η  < ~ 0.5), and radial thrusts were initiated. 

Thus the decrease in transfer time and convergence of Se ˆ,η  < 0.5 resulted in the activation 

of the R̂  direction thrust, just as hypothesized. 
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 In terms of the computational costs associated with finding this optimal trajectory 

using the CMA-ES algorithm, the number of function evaluations (3082) was reflective 

of roughly a 6 hour time to convergence. While no data in reference [2] was given to 

show the time to convergence for that study, it should be noted that in practical 

applications, the convergence time would play a large role in the overall comparison of 

two optimization methods.  
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Chapter 6: Summary, Conclusions, and Further Study 
 
 Based on the results for both the testing of the CMA-ES and SQP algorithms, 

several conclusions can be drawn concerning the effectiveness of evolutionary and 

classical algorithms with regard to solving low-thrust optimization problems within a 

black box environment. Additionally, the overall usefulness of creating switching 

functions using general perturbation equations can be determined.  

 

Testing of the CMA-ES and SQP Algorithms 

 In the preliminary stages of these studies, a proper non-linear constrained 

optimization algorithm needed to be selected. This algorithm would serve a primary 

objective of finding optimal solutions to various low-thrust transfer problems, while 

simultaneously converging to an array of end condition equality constraints. Selection of 

an algorithm which met these criteria would be based on the consistency of convergence, 

the optimal value converged upon, the handling of equality constraints, and the overall 

time to convergence. The algorithms tested in these studies reflected two methods of 

numerical optimization. The first algorithm, representing a classical, gradient-based 

method of optimization was an SQP algorithm performed within Matlab’s Optimization 

Toolbox. The second algorithm, based on evolutionary computation was the CMA-ES 

algorithm created by Hansen. These algorithms were tested on a LEO to 10,000 km 

semimajor axis low-thrust transfer, which included an inclination change. This problem 

was reformulated several times in order to get a thorough test of both algorithms, so that 

a proper assessment of their performance could be made.  



 79

 In terms of the SQP algorithms performance, convergence was met in all but one 

test case. Since the SQP algorithm, like any other classical algorithm, is based upon 

creating search directions from gradients, it can be pre-conditioned to avoid ill 

convergence within function spaces that are discrete, discontinuous, or contain areas 

where the gradient cannot be easily calculated. Since optimization in these studies was 

conducted within a black box, it could be a reasonable assumption that noise within this 

framework could lead to problems calculating a gradient, resulting in the lone case of 

non-convergence. In the cases where the SQP algorithm did converge, the optimal values 

were either on par with those of the CMA-ES algorithm, or they were significantly worse. 

This phenomena can easily be explained by a classical algorithms pre-disposition to 

converge to local rather than global extrema. Therefore, if this low-thrust optimization 

problem had many local minimums, the SQP algorithm would converge to the one it was 

closest too, and would only converge to a global minimum if it were given a starting 

point within a proximity of that minimum. The SQP algorithm also handled the equality 

constraints it was presented with, to only a slightly less accurate tolerance than the CMA-

ES algorithm. The one substantial advantage the SQP algorithm had when compared to 

the CMA-ES algorithm was that its convergence time was significantly lower, and was 

thus much less computationally expensive.  

 As for the CMA-ES algorithm, convergence was always met, and performance 

was rather consistent. The CMA-ES algorithm was shown to consistently converge to an 

equally, or more optimal solution than the SQP algorithm. This is due to the more 

thorough search process within the evolutionary strategy, allowing it to observe a larger 

portion of the function space than the SQP algorithm. However, the CMA-ES algorithm 
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would converge to inconsistent optimal locations, which had near-consistent optimal 

values. This was most likely due to low-amplitude noise within the black box framework. 

Should noise like this be present in the function space, an algorithm would have trouble 

converging when the noise is greater than or equal to the average objective function 

change within iterations of the search direction. Therefore, it was decided that the CMA-

ES algorithm was converging to a domain for optimal results, and a location of the global 

minimum was almost “hidden” within some low level of noise. Regardless of this 

hypothesis, the CMA-ES algorithm still outperformed the SQP algorithm in its optimal 

solutions in almost every test case. 

 One drawback to the CMA-ES algorithm was that it did not directly handle 

equality constraints, which therefore had to be implemented by infusing weighted penalty 

functions within the objective function. This method of handling equality constraints 

proved to work, so long as the weight associated with the equality constraint was chosen 

correctly. In the first test case of the CMA-ES algorithm on the LEO to 10,000 km 

semimajor axis transfer, the weight chosen for the inclination constraint was too small, 

and the algorithm did not converge to meet the constraint. Once weights were increased, 

the equality constraint was consistently satisfied. It was also hypothesized that should the 

weights get too high, the algorithm may pre-converge, but this behavior was not seen in 

these preliminary tests. Another drawback to the CMA-ES algorithm was that it was very 

computationally expensive, and required much time to converge.  

 Taking into account the results of testing these two algorithms, it was eventually 

decided that the ability of the CMA-ES algorithm to consistently find global extrema 
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(within a domain) outweighed all aspects of performance, and thus the CMA-ES 

algorithm was selected as the best algorithm.  

 

Creation of Switching Functions and Comparison to Optimal Control 

 Once the appropriate numerical optimization algorithm was chosen, it could be 

applied to a more complex low-thrust trajectory optimization problem. This problem 

would seek to create switching functions for transfer burn and coast times which did not 

rely on manipulating a satellite’s state vector, as methods of optimal control do. The 

creation of these switching functions was based on the use of general perturbation 

equations, tailored specifically to a LEO to Molniya low-thrust transfer. These switching 

functions would be used in accordance with a propellant-optimal objective function 

which imposed weighted penalty functions for equality constraints of the final orbit 

semimajor axis, eccentricity, inclination and argument of periapsis. Once reformulations 

were made to these switching functions based on initial tests, they were compared to 

results for a LEO to Molniya transfer using a method of optimal control to test the overall 

competitiveness of the methods employed in these studies. 

 Primarily, these studies showed that when there can be no mathematical 

manipulation of a satellites’ state vector, switching functions to maximize the change in 

certain orbital elements can be created using general perturbation equations. For the LEO 

to Molniya transfer studied, using the R̂ Ŝ Ŵ  coordinate system presented by Vallado, 

the best set of switching functions used were given in equations (33), (37) and (38). In 

these equations, the ratio scalars Se ˆ,η , Re ˆ,η , iη , toti,η  and the initial argument of periapsis 

were control variables which could be inputted into the CMA-ES algorithm. These 
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switching functions were ideal for the specific LEO to Molniya transfer, due primarily to 

the fact that the semimajor axes and eccentricity are maximally perturbed at the same 

locations in an orbit, allowing for the elimination of the Sa ˆ,η  and Ra ˆ,η  control variables. 

In other types of low thrust transfers, the optimal switching functions may change 

formulations, but the general approach of maximizing the rates of change of certain 

orbital elements would still apply.  

 To converge to the final orbital elements of a Molniya orbit, appropriate weights 

were chosen to be imposed on the penalty functions within the objective function. The 

weights for these penalty parameters were chosen based on weights which were found to 

satisfy all equality constraints, without causing pre-convergence or divergence of any 

constraint variables. However, results showed that equality constraints were met to 

accurate tolerances, and constraints were rarely met exactly. This was due to both the 

chosen weights being slightly too small, and to the increased complexity to the function 

space from the addition of four equality constraints. However, while the constraint 

convergences were not exact, these were still close enough to the desired final values to 

be considered acceptable.  

 When comparing these methods an optimal control method, the technique in this 

study were found to be effective in providing optimal results for LEO to Molniya low-

thrust transfers, competitive with one method of optimal control implemented by Herman 

and Spencer. However, due to some aspects of the transfer simulated in STK being 

unable to replicate the transfer Herman and Spencer used, along with possible 

uncertainties in STK (such as convergence tolerances, truncation error, round-off error, 

etc) a conclusion as to which method provided a better final solution could not be 
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determined. However, this initial comparison did show that the methods in this study 

were at least viable to those of optimal control, barring further study.  

 

Further Study 

 The findings in these studies will be used to improve this approach to low-thrust 

trajectory optimization, as well as conduct further testing into its overall competitiveness 

to optimal control. In particular, problems such as a LEO to GEO, LEO to Moon, and 

interplanetary problem formulations will be examined to improve the robustness of the 

switching functions. Additionally, these methods will be tested against different schemes 

of optimal control, including primer vector theory, to gain more insight as to where these 

methods would be at an advantage or disadvantage when compared to optimal control.  

 Furthermore, the CMA-ES algorithm was used more or less to many of its default 

settings. Further research should be done to find the best possible configuration of this 

algorithm to these types of optimization problems, as well as find other methods of 

handling equality constraints, or even optimizing the penalty function weights so that 

those constraints are met exactly, and not approximately. Also, other evolutionary 

strategies could be applied to the LEO to Molniya problem formulations, in an attempt to 

find the most robust algorithm possible.  
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