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ABSTRACT

With increasing demand amil, it is important to improve theecovery factor of
oil reservors. Naturally fractured reservoirs constitute a major portibn owor | d 6 s
hydrocarbon remves and are good targets for enhanced oil recovery operation.(EOR)
Cyclic steam injection is an attractiEOR process for recovering oil fromaturally
fractured reervoirs. Predicting the performance of differevdturally fractured oil
reservoirs undergoingyclic steam injection under varyingdesign parameterss a
difficult task. The simulation timand effortrequired toevaluate such performance for a
large number of scenarios igkely to bevery high.

Artificial neural networks (ANNs) are mathematal took designed to map an
input domain into an output domaifiheyarebased on obseations made in the study of
biological systemsTheir function is similar to that of a mathematical function. In this
work neural network basegloxy models are developed for comparative evaluation of
cyclic steam injection ivariousnaturally fractured oil reservoirs with constant injection,
soakingand production period§ive different oils with viscosities ranging from 5800 cp
to as low as p at room temperature are used asrvesefluids in this study anc
proxy model is developed for eacll. The proxy modelslevelopedare found to be
capalte of successfullymimicking the resevoir simulation modefor above mentioned
processwithin a certain range of input parameters in considerably small computational

times.
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Chapter 1

Introduction

With increasing demand afonsumption of b, it is important to improve the
recovery factor of reservoirs. Recovery factor is the ratio of oil that can be produced with
the existing technology to the original oil in place (OOIP). Whikmvells are produced
under natural oil recovery mechanisms and -ghatfter abandonment rate ngached, a
major portion of the wginal ail in place is left unrecovered. The average oil recovery
even after performing secondary oil recovery techniques like water drive or gas injection
drive is only 35%. Recoveries can be as low as 5% or less falyhigscous oils
[Boberg, 1988] Hence, it is important to implemeethancedil recovery techniques in
depletedand heavy oireservoirs. Enhanceall recovery (EOR) isa method of tertiary
recoveryof oil by injection of fluidsnot normally presnt in te reservoir There are
many types of EOR processes, the important ones behegical,thermal andmiscible
recovery methods

Naturally fracturedreservoirs constitute a large portion of hydrocarbon reserves
of the world. They contain up to 30% of the world supply of oil and thus represent a
significant target for EORReis, 1992] Naturally fracturedreservoirs contain fractures
and matrix blocks.The fracture networkhas higher permeability than matrix and
provides flow paths for the oil to flawlt has high permeability but low porosity
compared to matrix. The matrix on the other hand acts as a sink or sbuiten the

reservoir It has low grmeability and high storativity
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Al njection of high temperature fl uids
oil has been considered as an effective EOR application and numerous studies have been
published providing moudh evidence to support tligBabadagli, 2002]Steam Injection
is an attractive process for recovering oil from fractured reservoirs. It has been shown
that more oil can be recovered from heated blocks than unheated pRmi&s 1992]

Cyclic steam injection is more attractive tha steam floodingin naturally fractured
reservoirsdbecause condensed steam brahksugh earlythrough the fracture network in

a steam drive proces®©n the other handas cyclic steam injectionis a singlewell
process, such problems do not occur. Thoughally the water production rate is high,

the oil rate peaks and the well can be produced till the abandonment rate is reached. Once
a cycle is completed, the process can be repeated till sufficient oil is produced from the
reservoir. The paybacgeriad is ako shorer compared to stearfiooding projects. For

large reservoirsa network of such wells can be created to produce oil.

Evaluating theperformance of different oil reservoirs undergoing cyclic ratea
injection under varyinglesign parametelis a difficult task.Also the simulation time
required to evaluate the performarafesuch reservoirgs extensive In this work proxy
models aredeveloped to evaluate the performance of differeaturally fracturedoil
reservoirs undergoing cyclic steainjection with constantinjection, soaking and
productionperiods.Five different oils with viscosities ranging from 5800 cp to as low as
1cp at room temperature are used in this study. priory models are developed, each

corresponding to the respediwil.
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The proxy models areleveloped usingrtificial neuralnetwork (ANN) toolbox of
MATLAB ®*. TheCMG®2 STARS black oil simulator isised to generate data sets for
training the neural networtMATLAB is also used to generatmtch files to run C\G
STARS. In this work CMG STARS will now be referrad commercial simulator

The thesis is divided into Chapters and 3 Appendices. Chapter 2 is a survey of
literature onnaturally fracturedreservoirs,cyclic steaminjection andartificial neural
networks. Chapter 3 gives the statement of the problem. Chapter 4 descrites®their
model used in this study algnwith description of how dateets were generated for
trainingthe atificial neuralnetworks. Chapter 5 is a summary of results obtaindtis
study and it also contairdiscussion of results. Chapter 6 gives the conclusion of this
work and recommendations for future work. Chapteoiitainsreferences used in this
study. Appendix A describes thenplementationof graphical user interfa@ (GUI)
developed in this study. Appendix B contains MATLAB code used to train Atrtificial
Neural Networks. Finally, Appendix C contains MATLAB code used to create batch

files.

'MATLAB: MATrix LABoratory, a numerical computing environment developed by
The MathWorksInc.,

’CMG: Computer Modeling Group

3STARS:Steam,Thermal, andddvanced Process&eservoirSimulator



Chapter 2

Literature Review

This chapter gives a brief description of Naturally FracturRssbervoirs, Cyclic

Steam InjectiorandArtificial Neural Networks.

2.1 Naturally Fractured Reservoirs

Naturally fractured reservoirs contain
estimated that they contain 30% of the world supply of[Riis, 1992] It is also
estimated that naturally fractured carbonate reservoirs hold well over 100 billretsbar
of heavy oil[Shahin, 2006] Unlike non fractured reservoirs the fractures of naturally
fractured reservoirs can provide flow paths havimgmeabilities higher than that of
reservoir matrix. The fracture network has porosity thaniorderof magntude lower
than the matrix. Thus fracturesntrol fluid flow whereasmatrix actsas sink/source for
oil in the reservoirSeveral papers have been published to quantify fluid and heat flow in
naturally fractured reservoirs. In these papers different maatel proposed. All these
models divide the reservoir into matrix and fracture continua with a superimposed
computational grid. There may be sealdracture and matrix elementanped together

in each grid bloclas shown irFigure2-1 [STARS user guide,d8].
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Figure2-1: Representation of Fractured Resery8iFARS user guide, 2008]

The fractured porous mediaodels developed in various papers can be broadly
classified into two groups: dual porosity and dual permeabiitial porosity modelsare
based on the assumption that the fracture network is the primary continuum for fluid
flow. The matrix is considered to be a sink or source to the fracture. The models are
further subdivided into standard duakporosity model, multiple interacting continua
model andvertical refinementmodel. In the work presented hesmndarddual porosity

model is used.



2.1.1 Standard Dual Porosity Model

This is the simplest model to describe the behavior of naturally fractured
reservoirsin this model matrix blockare isolated and thejo not directly communicate
with each other. They are only conreztthrough fractureBigure2-2. Thus either fluid
or heatcan be transferred only to adjoining fracture. As the fracture acts as primary
continuum for fluid flow the wells are assumed to be connected to fracturé/ditiyn a
grid block fracture and matrix are assumed to bth@asame depthiSTARS user guide,

2008]

Fracture b At

-----------------

....... <« Grid Block
|_ Boundary

D N I T T T T T T T TR R T Ty

i i ime i mrmimemim i mamm

Figure2-2: Standard Dual Porosity Mod@TARS user guide, 2008]



2.2 Cyclic Steam Injection

Cyclic geaminjectionis a thermalenhancedil recovery method in which a well
is injected with steam and subsequently put on production after a brighgteriod. It
basicallyinvolves three stagegsee Figure2-3). During the first stage calleihjection
period, steam is injected into the reservimr a certain number of dayssually 34
weeks. In the second stage cakedkingperiod, the well is shein allowing the steam to
condense and lose its heat to reservoir rock and fluids for few days. The soaking period
allows thermal gradients tequaize, but it should not bleng enough for the pssure to
escapglLake, 1989] Finally, duing the third stage callegroductionperiod the well is
put on production till the economic rate limit is reached. In this periodfletater is
produced initially but the water cut quickly declines and oil production rate will peak
usually hgher than the original valu@oberg, 1988] Cyclic steaminjection is different
from steam drive in thait is a single well process and the same well acts as both injector

and producer.

Steam Shut in Qil + water

RN D AR R 3 2 2

e

Cold  Sweam Cold  Cold Hot Cod Coid Hot  Cold
oil oil oil water 0o oll water ail

Inject {2-30 days) Soak (5-30 Days) Produce {1-6 months)

Figure2-3: Cyclic Steam InjectiofLake, 1989]
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The problem ofcyclic steaminjection simulationin a singleporosity system is
discussed byAziz et al, 1987] The papecompareghe results of cyclic steam injection
problem submitted by six different participants using their simulagdrshe participants
use the same reservoir fluid and same reservoir properties to study cyclic steam injection
in a single porosity reseoir.

A simulator for modeling thermal recovery processes in naturally fractured
reservoirs is presented pghen et al, 1987]The rock matrix block is subdivided into a
two dimensional @z) grid system to study the effects of gravity. AccordingGben et
al, 1987] both conductive and convective rate of heat transfer between matrix and
fracture plays an important role in oil recovery from naturally fractured reservoirs. Also
the effect of capillary pressure is small an@yisored

A simulator fa studying the effect of various parameters on the performance of
cyclic steam injection operations in heavy oil naturally fractured reservoirs is presented
by [Briggs, 1989] The importance of fracture system in conducting heat to rock matrix is
highlighted. The paper also shows the importance of steantioneateand bottom hole
pressure in attaining the best operating conditions.

Oil expulsionmechanismsluring steam injection in naturally fractured resaw
are presented bjReis, 1992] Thermal expansion of oil and generation of gases from
chemical reactions at high temperature @esidered to bthe most inportant recovery
mechanisms. With these mechanisms it has been found that oil is expelled from blocks as
wide as 10 feetwvithin a year. It has also been shown that steam injection is attractive in
both light and heavy oil naturally fractured reservolPdot studies also have been

performed to study cyclic steam injection [Li et al, 2010]



2.3 Artificial Neural Network

Artificial neuralnetwork (ANN)is a mathematical tool that has been developed
based on inspiration from biological neural networks. The objective of a neural network
is to map an input into a desired outpatiddy et al, 2005jndit is characterized by
[Fausett, 1994]
1. Its architecturé a pattern of connections between the neurons
2. Its method of assigning the weights for the connections
3. lIts activation function or transfer function.
A neural net consists of a large number of small computing engines/¢é¢emen
called neurons. The neuron takes in inputs, processes them, and transmits an output. Each
neuron of one layer is connected to neurons of other layers through links, each associated

with a weight. Figur@-4 showsthearchitecture of a typicalrtificial neuralnetwork.

INPUTLAYER HIDDEN LAYERS OUTPUT LAYER

Figure2-4. Typical Architecture oanartificial neuralnetwork.
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Neural retworks have gplethora of applicationsThey are used fospeech
generation, speechiecognition, autonomous vehicle navigation, handwritten digit
recognition, mage compression etdBose and Liang, 1996]There have beemany
recent advances in the applicatiohneural networks impetroleumindustry They have
been used for oil spill detectionBrowne, 1997] for predicting relative permeability
[Guler et al,2003] for determining optimum production protocols for exploitation of
gas/condensate reservojfsyala et al, 2007]for predicting the performance obalbed
methanereservoirs[Srinivasan and Ertekin, 2008for optimized design of gas cyclic

pressurgulsing[Artun et al, 2008]for field developmenfDoraisamy et al, 2008]

2.3.1 Normalizing data

Normalizing data is one of the most common tools useANM developersin
order to minimize biasotvards certain input parameters, the developer would want to
confine all of them into a same range (usualy Or-1-1) of values. Normalizing data
can also speed up training time. It is particularly useful when the inputs are on widely
different scalegPriddy et al, 2005]There are many types abrmalizing data. In this
work the min-max normalization method has been us&tie mn-max normalization is
done by rescaling the input features or outputs fromiral values to a new range of
values. Mostly the features are rescaled to lie between O tol or betéerl. The
rescaling is done using a linear interpolation formula as showguation(2.1) [Priddy

et al, 2005]
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e - min g .
é (XI v.alue) l:l+ min
é(maxvalue- mlnvalugu

(2.1)

X =(maxtarget_ mlntatrget)3 target

where,

x° = normalized input/output

MaXarget = Maximumnormalized value (1 here)
MiNarget = MiNimum normalized value 1 here)
X = input/output before normalizing

MaXawe = Maximum input/output value
MiNyaie = MiNiMum input/output value

Min-Max method preserves exactly all relationships in the data without

introducing any bias.

2.3.2 Feed Forward Neural Network

A feed forward network typically looks like the one shown in Fidlike

Input Layer
(distribution) Hidden Layers
(processing)

QOutputLayer
(processing)

Input Signals

Figure2-5: Multilayer Feed Forward Neural NetwofRriddy et al, 2005]

Output Signals
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The input layer of the network does no processing and is also called the zeroth
layer.The outputs of this layer are describedBayation (2.2)

o’ =x, (2.2)

where,

i= 1€é. . N

N® = number of neurons in the input or zeroth layer

X = input vector

The input to a neuron in first hidden laystthe summation of product of weights
(w;) between input layer and hidden layer and the input vector. Theksamn as net
stimulus is denoted byet A b i as tyesrasdeddo ofiset thevinput. The bias can
also be viewed as a weight coming fromaratary valued inpufPriddy et al, 2005]This
is given by Euation (2.3)

NO
net=3 wo’ +w, (2.3)
i=1

The net stimul us i s activationsof wansfieefdnctibny t
f(net) The transferfunction is used to map non linearity into the network. It also
stabilizes the net stimulus. There are many types of transfer functions. They are discussed
by [Kulga, 2010] In this work linear transfefunction (urelin) and tangent sigmoid
(tansig are used. The final output of the neuron is given by:

NO
output= f(net) = f(§ wo’ +w,). (2.4)

i=1
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This is shown in Figurg-6.

bigs =% or w,
output

o =f{net)
J ’

Figure2-6: The working process of a neurfi®riddy et al, 2005]

/ M

When we extenthis concept to multilayer networks, the outpuj'dfieuron inl™

layer is given byequation (2.5):
| | | | Nll I Al-1 |
o; = f;(net) = f; (@ w; 0" +w,). (2.5)
i=1
The outputs of the final layer &f" layer are given by guation (2.6):
Y, =0j (2.6)

The whole process described above can be visualized in FRj6r&s2-6.
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Chapter 3

Problem Statement

The objective ofthis researchsi to develop amxpert system for evaluating the
performance of different naturally fractured reservoirs undergoing cyclic steam injection
with constantinjection, soaking and production periods. Theeservoir properties
evaluated in tlg sudy are:matrix permeability (k,), fracturepermeability (k), matrix
por o s imt fyactutepo r o s k),tfracture spacing &), thickness of reservoir (h),
initial temperature (), initial oil saturation ($) andinitial pressure (B. The design
characteristicspertaining to cyclic steam injectioare: drainage area (A), steam
temperature (J, steamquality (Q), steaminjectionrate (g,) andbottom hole pressure
(Ps). The output parameters evaluated in this study aneutative productiorof each
cycle (Q)). Thenumber of cycles is fixed to foufhis work is divided into the following
tasks:

1. Devise a reservoir modeh icommercial simulatiorsoftware(CMG) for steam
injection process in a single porosity system.

2. Extend the model for a dupbrosity system.

3. Extend the dual porosity model for a large number of scenarios by vahgng
reservoir properteand design characteristics within meaningful ranges.

4. Extract results after simulating the moaéth largenumber of scenarios ithe
commecial simulator

5. Create data sets containimgputs andutputs.

6. Train an atificial neuralnetwork for the generated data sets

7. Repeat the above six steps éarch specifioil.
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Five different oils are used in this study. The oils have viscosities ranigarg
5800 cp to 1 cp at room temperature. é&mpertsystem is developed for each oil. Finally
a GUI is designed. The GUI integrates all the five expert systems and ntimics
commercial simulator in predicting the performance of different naturally festtur
reservoirs undergoing cyclic steam injection with constant injection, soaking and
production periods.

The initial objective of this research was to develop an expert system for single oil
using only five of the reservoir properties and three of dedignacteristics mentioned
above. Ater successfully developing axpert system for single oil, the complexity of
the system was increased by including additional reservoir properties like thickness of
reservoir, initial temperature and initial oil saturation. The number of oils/reservoir fluids
was increased to fivieased on their viscosityAn expert system was developed for each
oil. The viscosity of the oil could not be included in the list of reservoir properties
because by varying the viscosity randomly with other reservoir propertieswiasra
possibility of gemrating large number of incorrect reservoir models. Finally, the system
was further complicated by including initial pressure in reservoir properties and steam
injection rate and bottom hole grare in design characteristics making the total number

of inputs to 14.
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Chapter 4

Reservoir Model andGeneration of Data Sets

4.1 Reservoir Model

The reservoir model was built based on following assumptions:

1. Two dimensional cylindrical {£) grid with 91 blocks in the radial (r)
direction and 4 blocks in éhvertical (z) directionThe blocks in the radial
direction are logarithmically spaced.

2. Single well reservoir, well being placed at the cenfee well acts as injector
andproducer depending on the time of operation.

3. Constant welbore radius of 0.3 ft.

4. Dual porosity system.

5. Thermal conductivity of reservoir, overburden and underburden Bt{ft-
D-F).

6. Heat capacity of reservoir, overburden and underburden is 35(fBtwf
rock-%F).

7. Capillary pressures are equal to zero throughout.

8. Skin factor iszero throughout. All layers are open to flow during injection and
production.

9. Injection with specified injection rate;fg.

10. Production with specified bottom hole pressurg) (P

11.Constant injection griod of 30 days/cyclesoaking period of 10 days/cycle

andproductionperiod of 550 days/cycle. Total number of cycles is fixed at 4.
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Many of these assumptions were taken from literaiieez et al, 1987] Figure

4-1is a snapshot of the reservoir used in this work.

Figure4-1: Two dimensional cylindricagrid system withawell at center.

Gridblock sizes are relatively arbitrary for rectangular grid systems. Usually
cylindrical grid system follows logarithmic spacinthe pressure points are spaced away

from the wellbore in théollowing way[Ertekin et al, 200it
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ar. g
alg :§i8 (41)
Clw~
ar. log_l\a, )@
rlz%w ge( |g)8 (4.2)
gl la,)?2
and
Mg =&y, (4.3)
where,

re = external radius.

rv = radius of wellbore.

ria = radius of i+1" block.

ri = radius of " block.

n, = number of blocks.

The number of blocksn the radial direction idixed to 91 after performing
sensitive analysis on the radius of outermost blggk Figure 4-2 is a schematic of

logarithmically spaced grid.
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Figure4-2: Logarithmic spacing of grids in the radial direction

4.1.1 Reservoir Fluid

Five different oilsareused as reservoir fluids in this study. Oil héavyoil, oil 2
andoil 5 areblack oils,andoil 3 andoil 4 arevolatile oils.The data fooil 1 andail 2 are
taken from literaturgAziz et al, 1987;Michael, 1982] The data for rest of the oitge
taken fromthe template files of the commercial simulafbine properties of these oils are

summarizedn Table 4-1.
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olIL TYPE M.W(LB/LBMOLE) DENSITY API°
(LB/FT?)

il 1 Heavy Oil 600 60.67 14

Qil 2 Black Oil 450 56.7 24.2

il 3 Volatile Oil 450 57.64 22

il 4 Volatile Oil 250 52.3 37.3

Qil 5 Black Oil 200 52.4 37

Table4-1: Properties of various reservoir fluids used in the study

These oils arselected as their viscosities range from as high as 5800 cp to 1 cp at
room temperaturelhe variation of viscosity of these oils with temperature is shown in

Tables4-2, 43 & 4-4.

TEMPERATURE | VISCOSITY OF | VISCOSITY OF | VISCOSITY OF

°F) OIL 1 (CP) OIL 3 (CP) OIL 4 (CP)
75 5780 10.58 2.328
100 1380 9.06 1.9935
150 187 6.775 1.4905
200 47 5.183 1.1403
250 17.4 4.043 0.8896
300 8.5 3.208 0.7058
350 5.2 2.583 0.5683
500 2.5 1.45 0.32
800 2.4 1.44 0.318

Table4-2: Variation of vscosity ofoils 1, 3 & 4 withtemperature.



TEMPERATURE | VISCOSITY OF

°F) OIL 2 (CP)
80 182
100 91
150 27.3
200 11.4
250 5.46
300 3.46
350 2.46
500 1.13
800 1.11

Table4-3: Variation of uscosity ofail 2 with temperature

TEMPERATURE | VISCOSITY OF

C°F) OIL 5 (CP)
70 1.36
80 0.844
90 0.57
100 0.41
200 0.0838
300 0.06
400 0.056
500 0.0553
800 0.054

Table4-4: Variation of viscosity obil 5 with temperature

21
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4.1.2 Relative Permeability

The capillary pressures are assumed to be Zére.interstitial water saturation
S is assumed to be equal to irreducible water saturatign(S&y = Syir = 0.25). The
residual oilsaturation for water/oil system, &, = 0.15,andthe residual oil saturation
for gas/oil system a3, = 0.1 and the critical gas saturatiog. S 0.06. Thefollowing
relative pemeability expressions atsed[Aziz et d, 1987}

For water/oil system,

_, & S,-Sw 8
krw - krwroéﬁTg (44)

= krme%]: ;W g (45)

For gas/oil system,

H]

- Q
k =k . e °r9 98 (4.6)

.l
Q
k =k ug (4.7)

where,

kw =relative permeaility to water.

krow = relative permeability of oil w.r.t water
kg = relative permeabilityo gas

kiog = relative permeability of oil w.r.t gas
Sy = saturation of water

& = saturation of gas
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Sw Krw Krow
0.25 0 0.4
0.3 0.0002 0.3361
0.35 0.001134( 0.2777
0.4 0.003125| 0.225
0.45 0.00641 | 0.1777
0.5 0.01112 | 0.1361
0.55 0.01768 0.1
0.6 0.02598 | 0.0694
0.65 0.03628 | 0.0444
0.7 0.04871 0.025
0.75 0.06339 | 0.0111
0.8 0.08045 | 0.00277
0.85 0.1 0

Table4-5:

Relativepermeability values for water/oil system

24
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Se Kro Kros
0.25 0.2 0
0.35 0.1581 0
0.37 0.1501 0.00038
0.4 0.1384 0.00237
0.42 0.1308 0.0046
0.45 0.1196 0.0095
0.47 0.1124 0.0136
0.5 0.1018 0.0213
0.52 0.0949 0.0273
0.55 0.0849 0.0378
0.57 0.0785 0.0458
0.6 0.0692 0.0592
0.62 0.0632 0.069
0.65 0.0545 0.0852
0.67 0.0489 0.0969
0.7 0.041 0.1159
0.72 0.036 0.1296
0.75 0.0289 0.1515
0.77 0.0244 0.167
0.8 0.0182 0.1917
0.82 0.0145 0.2091
0.85 0.0094 0.2366
0.87 0.0064 0.256
0.9 0.0028 0.2864
0.94 0 0.3295
1 0 04

26

Table4-6: Relativepermeability values of gas/liquid system

Stoneds three

phase oil relative permeabilityok

phase relative

per meabi l i
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4.2 DataFile Generation

In order to study the performance of cyclic steam injection in naturally fractured
reservoirs, the reservopropertiesand design characteristics ar@ried between a range
of values. Tables 4-7 and 4-8 show the ranges of reservoir propertisd design
characteristics respectivelfx. largenumber ofrandom combinationsf theseparameters
are generated using MALAB. Thesecombinations of reservoir propertiend design
characteristics arstored in an inpufile. The input file hasl4 rows andaround 250
columns of data. Each colunrepresers a sample and rows represeagither reservoir
propertyor design chareristic. So each sample has 14 inputs whose vauandomly
selected between the rang&be input file § then used to create data smiataining a
reservoir model corresponding to each sampitedescribed byBansal, 2009] a batch
file was then azated to runlathe data seté the simulator Thereaults of simulation of
each data setvere extracted by another code in MATLABThe code extracted
cumulative production of each cycl€he results were then stored in an output filee
output file thus had 4 row and 250 columns of data. Again each column represents a
sample and rows represent cumulative production of each &yuéeinput and output
datafiles werethen screened to eliminate any incongruent data. The screened files were
thenused or training theartificial neural network. Finally, the procedure was repeated

for all the five oils



RESERVOIR MAXIMUM MINIMUM UNIT
PROPERTIES VALUE VALUE
Matrix BRpr 0.3 0.15 %
Matrix Permeability (k) 200 10 md
FractureyP 0.05 0.01 %
Fracture Permeability {k 2000 100 md
Fracture Spacing (b 40 4 ft
Thickness (h) 200 20 ft
Initial Temperature (J 240 120 °F
Initial OIl Saturation (§) 0.75 0.4 -
Initial Pressure (fp 750 75 psia
Table4-7: Range ofeservoirmproperties
DESIGN MAXIMUM MINIMUM UNIT
CHARACTERISTICS VALUE VALUE
Drainage Area (A) 40 5 Acres
Steam Temperature T 600 450 oF
Steam Quality (Q 1 0.7 -
Steam Injection Rate i) 5000 700 Barrels/day
Bottom Hole Pressure {p 100 17 psia

Table4-8: Range ofdesigncharacteristics

28
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Chapter 5

Results andDiscussion

Initially, an expert system was developed for oil 1 using only five of the reservoir
properties and three of design characteristics given in Tdble® 4-8. Lateradditional
reservoir properties like thickness of reservoir, initial temperature and initial oll
saturation were added and expert systemse vaeveloped for fivenils. Finally, the
system was further complicated by including initial pressure in the res@nropertes
and steam injection ratbpttom hole pressutia design characteristics. Hence in the final
stage of this project there were 14 inputs and 4 outputs.

After generating the input and output data files for all the oilsrt#icial expert
system was developed for each dikaining anartificial neural network is a heuristic
procedure. Manyules of thumbare proposed in literature but each case is different. An
attempt was made to replicate the architecture of ANN from previous works. ey d
not work for the system in this study. Hence the networks were trained using trial and
error procedure. Different training algorithms were used and the number of neurons was
increased. When that did not yield any good results, the procedure was rdpeated
including functional links. Then the number of hidden layers was increased. For all the
networks the thumb rule of Afunnel i ngd t he
layer/zeroh layer to output layer improved the performance of the netwarkund 200
samples were used for training the neural network, 25 samples were used for validation
and 25 samples were useor ftesting the trained networK.he error percentage of

training and testing samples was evaluated basédjoation5.1:
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Q. -Q %)
error percentagéo (e) = SQ' s = Q Ly o° 100 (5.1)
é Qi |SIM l:l

The performance of the network was decided based on ercenpage of the
testing samplesThough the overall performance of the network was satisfactory, there
were around two or threeutliers during the testing afach network. The outliers are
worst prediction®f a network. They incread¢he mean error.

In order to improve the performance of the netwarkthfer anerror filter was
used. In this approachnewartificial neuralnetwork was trained in whickthe outputs of
the neéwork were error percentage(e) instead of the cumulative production of each
cycle. The purpose of this error filter was to provide prediabioarror percentage of the
original network. By knowing what emropercentage theoriginal network would
generatejt was thoughtthe results otthe network could be improveddowever after
training the new network it was found that the errors worsened. A new testing sample
was taken and a comparison was made betieesimulator resultand the prediction of
original network. The new sample was then tested with the new network to predict the
error. Based orthis error the prediction of original network was corrected and a new
comparison was made with resutff commercial simulator It was found that
implementation of error filter worsened the error and original network prediction was
better.The possible reason why error filter did not work in this project is because the
number of outputs in this project anly four. This means, presence of one or more
outliers in the prediction of error filter would affect the cumulapveduction at the end
of four cycles. On the other hand, if there were 20 outputs, presence of one or more

outliers would not have affectehe prediction as muas it did in this project.
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This chapter provides a description tbe best predictionthe worst prediction
andthe error fequency of five artificial neural networki$.also comains the sensitivity

of thereservoir propertie and design characteristics.

5.1 Resultsof ANN for Oil 1 (Network 1)

For training network 1, 187 samples were used for training, 23 were used for
validation and 23 were used for testing. Scatedjugategradient (trainscg) training
algorithm was implermanted Hve hidden layers were used. The first layer &thseurons,
second layer 47 neurons, third layer 23 neurons, fourth layer 11 neurons and fifth layer
has 9 neurons. As discussed before the input layer or zeroth layer originally had 14
inputs. In adition to this 5 functional linksontaining maximuneigervalue of2 X 2
matiices containing various input properties were included in the input lajke
inclusion ofeigervalues improved the performance of the netwd&.functional links
were includedin the output layer as it did not improve the performance of the network.
Tangentsigmoidal transfer function (tansig) was used in all the hidden layers. Linear
transfer function (purelin) was used in the final lay€igure 5-1 shows thereservoir

propertesand design characteristics of the best and worst testing sample.
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5.1.1 Best Prediction of Network 1

Out of 23 testing samplesetwork 1 predicts very well for sample Bhe input
for this sample is shown as best case in Figetd-igure5-2 shows a comparison of the
cumulative production of each cycle as predidigdhe commercial simulat@nd ANN.
The error percentage (e) values for all the cycles for this samptepmged in Tabl®-

1. This is the best prediction of timeuralnetwork foroil 1.

. 104 Best Prediction of ANN for il 1
5 T T T

I Commecial simulator
I

45k

35k

25F

Cumulative Production of each cycle (bbl)

05F

Cycles

Figure5-2: Bestprediction ofnetwork 1
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CYCLE | ERROR PERCENTAGE (%)
1 -4.14
2 -2.18
3 0.441
4 9.43

Table5-1: Errorpercentge values of best prediction étwork 1

5.1.2 Worst Prediction of Network 1

The prediction ofnetwork 1 forsample 6 is worstf all the 23 testing samples.
The input for this sample is shown as worst case in Figtke Figure 5-3 shows a
comparison of the cumulative productionesch cycle as predictdny the commercial
simulatorand ANN. The error percentage (e) values for all the cycles for this sample are

reported in Tabl&-2.
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CYCLE | ERROR PERCENTAGE (%)
1 32.33
2 39.29
3 40.69
4 41.25

Table5-2: Errorpercentage alues of worst prediction aietwork 1

5.1.3 Error Frequency of Network 1

The error percentages (e) of all the four cycles of 23 testing samples were
recorded and a bar plot was made to studyfrbguency of errorin all, there were 92
points(23 samples X 4 cyclesfigure5-4 is the bar plot reporting the error frequgrof

network 1. The mean error percentage of ttf&seesting samplds 15.8%.
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Error Frequency Plot
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Figure5-4: Error frequency ohetwork 1.

The cumulative production values at the end of each cycle for oil 1 are in the
range of 167 10" barrels As oil 1 is heavy, the production is lower compared to other
oils. It can be observed that 39% of the points are below 10% error percentaggdand 7
of the points are below 20% error percentage. However 28% of the points aectlado
error percentage of 20. Though the percentage of outliers is high, it should be noted that
the absolute difference between tresultof commercial simulatoand ANN pediction

is small.
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5.2 Results of ANN for Oil 2 (Network 2)

For taining network 2, 212 samples were used for training, 26 were used for
validation and 26were used for testing. Scalednjugategradient (trainscg) training
algorithm was implemented. Fouhidden layers were used. The first layer &s
neurons, second layer 41 neurons, third layer 17 neurorfeani layerhas 11 neurons
As discussecearlier the input layer or zeroth layer has 14 inpufhe irclusion of
eigenvalues did not improvihe performance of the network. No functional links were
included in the output layer as it did not improve the performance of the netitioek
Tangentsigmoidal transfer function (tansig) was used in all the hidden layers. Linear
transfer function (prelin) was used in the final layer. Figute5 shows thereservoir

propertiesand design characteristics of the best and worst testing sample.
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5.2.1 Best Prediction oNetwork 2

Out of 26 testing samplesetwork 2 predicts very well for sample 17. The input
for this sample is shown as best case in FiguseFigure5-6 shows a comparison of the
cumulative production of each cycle as predicted by the commercial simulator and ANN.
The error percentage (e) values for all the cycles for this sample are reported iB-Table

3. This is the best prediction of the neural netwiorloil 2.

10 Best Prediction of ANN for Oil 2
45 | | |

I Commercial simulator
|

251

Curmnulative Production of each cycle (bbl)

Cycles

Figure5-6: Bestprediction ofnetwork 2



CYCLE | ERROR PERCENTAGE (%)
1 -3.36
2 -1.02
3 0.12
) 0.79

Table5-3: Error percentge values of best prediction iétwork 2

5.2.2 Worst Prediction of Network 2

41

The prediction ofhetwork 2 for sample 6 is worst of all the 26 testing samples.

The input for this sample is shown as worst case in Figtbe Figure 5-7 shows a

comparison of the cumulative production of each cycle as predigtede commercial

simulatorand ANN. The ewr percentage (e) values for all the cycles for this sample are

reported in Tabl&-4.
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Figure5-7: Worstprediction ofnetwork 2




43

CYCLE | ERROR PERCENTAGE (%)
1 -56.7
2 36.02
3 80.83
4 118.33

Table5-4: Errorpercentag values of worst prediction aoétwork 2

5.2.3 Error Frequency of Network 2

The error percentages (e) of all the four cycles of 26 testing samples were
recorded and a bar plot was made to study the frequency of error,. threedl were 104
points (26 samples X 4 cycles). Figi8 is the bar plot reporting the error frequency of

network 2. The mean error percentage of these 26 testing samples is 20%.
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The percentage obutliers islarge for network 2. Around 37% of the points are
above erroipercentage of 20Also since the cumulative productions are in the order of
10°-10° barrels, theabsolute difference between thesultof commercial simulatoand
ANN prediction is highHowever as 73% of testing points are below error percentage of

20 network 2 is the best trained ANN for oil 2.
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5.3 Results of ANN for Oil 3 (Network 3)

For training network 3, 195 samples were used for training, 25 were fmed
validation and 25 were used for testing. Scatedjugategradient (trainscg) training
algorithm was implemented. Five hidden layers were used. The first layer has 71 neurons,
second layer 47 neurons, third layer 23 neurons, fourth layer 17 neurofithatayer
has 11 neurons. As discussearlier the input layer or zeroth layer originally had 14
inputs. In addition to this 5 functional links containing maximeigervalue of 2 X 2
matrices containing various input properties were included in thet ilgyer. The
inclusion ofeigenvalues improved the performance of the network. No functional links
were included in the output layer as it did not improve the performance of the network.
Tangentsigmoidal transfer function (tansig) was used in all the éidthyers. Linear
transfer function (purelin) was used in the final layer. Figat® shows thereservoir

propertiesand design characteristics of the best and worst testing sample.
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5.3.1 Best Prediction of Network 3

Out of 25 testing samplesetwork 3predicts very well for sample 10. The input
for this sample is shown as best case in Figu9e Figure5-10 shows a comparison of
the cumulative production of each cycle as predidy the commercial simulatand
ANN. The error percentage (e) values for all the cycles for this sample are reported in
Table5-5. This is the best prediction of the neural networkofb8.

; X 105 Best Prediction of ANN for Gil 3
T T

I Commercial simulator
I A

251

Curnulative Production of each cycle (bhl)
&
T

05F

Cycles

Figure5-10: Bestprediction ofnetwork 3



CYCLE ERROR PERCENTAGE (%)
1 3.46
2 3.8
3 2.78
4 2.35

Table5-5: Errorpercentage values for best predictiomefwork 3

5.3.2 Worst Prediction of Network 3

48

The prediction ohetwork 3 for sample 23 is worst of all the 25 testing samples.

The input for this sample is shown as worst case in Figi8eFigure5-11 shows a

comparison of the cumulative production of each cycle as predigtede commercial

simulatorand ANN. The gor percentage (e) values for all the cycles for this sample are

reported in Tabl&-6.



Curnulative Production of each eyele (bbl)

49

<10 Warst Prediction of ANN for Cil 3
g
I ‘ I Commercial simulator
I A

45

4 -
kRS

3 -

25

05

Cycles
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CYCLE | ERROR PERCENTAGE (%)
1 -177.48
2 -145.12
3 -131.42
4 -141.09

Table5-6: Errorpercentage values of worst predictiomefwork 3

5.3.3 Error Frequency of Network 3

The error percentages (e) of all the four cycles of 25 testing samples were
recorded and a bar plot was made to study the frequency of error,. threedl were 100
points (25 samples X 4 cycles). Figusel2 is the bar plot reporting the error frequency

of network 3. The mean error percentage of these 25 testing samples is 24.7%.
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Figure5-12: Errorfrequency ohetwork 3

It can be observed that 74% of the tegtimwints are below the error percentage of

20. More number of testing points are below 10% compared to oil 1 and 2.
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5.4 Results of ANN for Oil 4 (Network 4)

For training network 4, 197 samples were used for training, 25 were used for
validation and 25 were used for testing. Scatedjugategradient (trainscg) training
algorithm was implemented. Four hidden layers were used. The first layer has 51
neurons, second layer 2@urons, third layer 17 neurons and fourth layer has 13 neurons.
As discussee@arlierthe input layer or zeroth layer originally had 14 inputs. In addition to
this 5 functional links containing maximueigervalue of 2 X 2 matrices containing
various input poperties were included in the input layer. The inclusiomigénvalues
improved the performance of the network. No functional links were included in the
output layer as it did not improve the performance of the network. Tasgembidal
transfer functio (tansig) was used in all the hidden layers. Linear transfer function
(purelin) was used in the final layer. Figusel3 shows thereservoir propertieand

design characteristics of the best and worst testing sample.
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5.4.1 Best Prediction of Network 4

Out of 25 testing samplesetwork 4 predicts very well for sample 16. The input
for this sample is shown as best case in Figt8. Figure5-14 shows a comparison of
the cumuléive production of each cycle as predicted by the commercial simulator and
ANN. The error percentage (e) values for all the cycles for this sample are reported in

Table5-7. This is the best prediction of the neural networkofb4.

o 105 Best Prediction of ANN for Oil 4
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Figure5-14: Bestprediction ofnetwork 4



CYCLE ERROR PERCENTAGE (%)
1 -1.04
2 151
3 0.38
4 -1.94

Table5-7: Error percentage values of best predictiomefwork 4

5.4.2 Worst Prediction of Network 4
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The prediction ofhetwork 4 for sample 8 is worst of all the 25 testing samples.

The input for this sample is shown as worst case in Figur&@ Figure5-15 shows a

comparison of the cumulative production of each cycle as predicted by the commercial

simulator and ANN. Thereor percentage (e) values for all the cycles for this sample are

reported in Tabl&-8.
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CYCLE | ERROR PERCENTAGE (%)
1 -16.11
2 -24.93
3 -31.2
4 -33.07

Table5-8: Errorpercentage values of worst predictiometwork 4

5.4.3 Error Frequency of Network 4

The error percentages (e) of all the four cycles of 25 testing samples were
recorded and a bar plot was made to study the frequency of error,. threedl were 100
points (25 samples X 4 cycles). Figi€ 6 is the bar plot reportinthe error frequency

of network 4 The mean error percentage of these 25 testing samples is 7.6%.
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Figure5-16: Errorfrequency ohetwork 4
The cumulativeproduction values for oil 4 are greater thar brrels. As the
viscosity of oil is decreasing the cumulative production at the end of each cycle is
increasingAlso it can be observed 92% of the testing points fall below error percentage

of 20.



59
5.5 Results of ANN for Oil 5 (Network 5)

For training network 5, 210 samples were used for training, 26 were used for
validation and 26 were used for testing. Scatedjugategradient (trainscg) training
algorithm was implemented. Only one hidden layer wascsefit to satisfactorily train
this network. The hidden layer had 53 neurons. As discussed before the input layer or
zeroth layer originally had 14 inputs. In addition to this 5 functional links containing
maximumeigervalue of 2 X 2 matrices containingn@us input properties were included
in the input layer. The inclusion cofigervalues improved the performance of the
network. No functional links were included in the output layer as it did not improve the
performance of the network. Tangeigmoidal transfer function (tansig) was used in the
only hidden layerFigure 5-17 shows thereservoir propertieand design characteristics

of the best and worst testing sample.
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5.5.1Best Prediction of Network 5

Out of 26 testing samplesetwork 5 predicts very well for sample 2. The input
for this sample is shown as best case in Figt&. Figure5-18 shows a comparison of
the cumulative production of each cycle as predicted bycdnemercial simulator and
ANN. The error percentage (e) values for all the cycles for this sample are reported in
Table5-9. This is the best prediction of the neural networkofbb.
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Figure5-17: Bestprediction ofnetwork 5



CYCLE | ERROR PERCENTAGE (%)
1 -4.11
2 2.22
3 1.11
4 0.21

Table5-9: Errorpercentage values of best predictiometwork 5

5.5.2 Worst Prediction of Network 5
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The prediction ohetwork 5 for sample 13 is worst of all the 26 testing samples.

The input for this sample is shown as worst case in Figuiré Figure5-19 shows a

comparison of the cumulative production of each cycle as predigtede commercial

simulatorand ANN. Theerror percentage (e) values for all the cycles for this sample are

reported in Tabl&-10.
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CYCLE | ERROR PERCENTAGE (%)
1 -8.36
2 -20.47
3 -18.8
4 -18.54

Table5-10: Errorpercentage values of worst predictiometwork 5

5.5.3 Error Frequency of Network 5
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The error percentages (e) of all the four cycles of 26 testing samples were

recorded and a bar plot was made to study the frequency of error,. threedl were 104

points (26 samples X 4 cycles). Figuse20 is the bar plot reporting the error frequency

of Network 5. The mean error percentage of these 26 testing samples is 6.75%.
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Figure5-20: Error frequency of Network.5
The cumulative production at end of eafsle for oil 5 is also greater than>10
barrels. It can be observed that 95% of the testing points are below error percentage of

20. And there are no testing points with error percentage greater than 30%.
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5.6 Sensitivity of Input Parameters

In orde to study the effect of each input parameter on the output, sensitivity
analysis was performed on all 14 input parameters. This was done by varying an input
parameter to be studied between the minimum and maximum values given in4Fables
and4-8 and by keeping rest of the 13 parameters constaet parameter was varied by
dividing the range between minimum value and maximum value into ten equal points.
Hence each input parameter was varied eleven times including the minimum and
maximum value bkeeping rest of the parameters constant. Taldlé shows how each

input parameter was varied.

INPUT\RUN 1 2 3 4 5 6 7 8 9 10 11

Bhp (psi) 17 | 253 | 336 | 41.9| 50.2 | 585 | 66.8 | 75.1| 83.4| 91.7| 100

Drainage eea (acres] 5 8.5 12 | 155 | 19 | 225| 26 | 295| 33 | 36.5 40

Fracture prm (md) | 100 | 290 | 480 | 670 | 860 | 1050 | 1240| 1430 | 1620 | 1810| 2000

Fracture por 0.01| 0.014| 0.018 0.022| 0.026| 0.03 | 0.034| 0.038| 0.042| 0.046| 0.05

Fracture pacing (ft) | 4 76 | 11.2| 148 | 184 | 22 | 256 | 29.2 | 32.8 | 36.4 40

Initial oil saturation | 0.4 | 0.435| 0.47 | 0.505| 0.54 | 0.575| 0.61 | 0.645| 0.68 | 0.715| 0.75

Initial pressure (psi)] 75 | 142.5| 210 | 277.5| 345 | 412.5| 480 | 547.5| 615 | 682.5| 750

Initial temp (F) 120 | 132 | 144 | 156 | 168 | 180 | 192 | 204 | 216 | 228 240

Matrix perm (md) | 10 29 48 67 86 105 | 124 | 143 | 162 | 181 200

Matrix por 0.15] 0.165| 0.18 | 0.195] 0.21 | 0.225| 0.24 | 0.255| 0.27 | 0.285| 0.3

Steam inj rate(bbl/d) 700 | 1130 | 1560 | 1990 | 2420 | 2850 | 3280 | 3710 | 4140 | 4570 | 5000

Steamguality 0.7 0.73 | 0.76 | 0.79 | 0.82 | 0.85| 0.88| 0.91| 0.94 | 0.97 1

Steamtemp (F) 450 | 465 | 480 | 495 | 510 | 525 | 540 | 555 | 570 | 585 600

Thickness (ft) 20 38 56 74 92 110 | 128 | 146 | 164 | 182 200

Table5-11: Values of input parameters when they are varied.
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Run 1 is the minimum value of a parameter and run 11 is the maximum value.

Run 6 is the base simulation file in ents@nsitivityanalysis. When sensitivity of airix

porosity was studied, it was varied from 0.15 to 0.3 as shown in BableHowever,

rest of the parameters were kept at a constant with the values given in run 6 d-Table

11. For example, while studyinthe effect of matrix porosity on outputhe input

parametevalues were assigned as shown in Téble.

INPUT\RUN 1 2 3 4 5 6 7 8 9 10 11
Bhp (psi) 58.5| 585 | 585 | 585 | 58.5| 58.5| 585 | 58.5| 58.5| 58.5 | 58.5
Drainage eea (acres) 22.5| 225 | 225 | 225 | 225 | 225 | 225 | 225 | 225 | 225 | 225
Fracture prm (md) | 1050 | 1050 | 1050 | 1050 | 1050 | 1050 | 1050| 1050 | 1050 | 1050 | 1050
Fracture por 0.03| 0.03| 0.03| 0.03] 0.03| 0.03| 0.03| 0.03| 0.03| 0.03 | 0.03
Fracture pacing (ft) | 22 22 22 22 22 22 22 22 22 22 22
Initial oil saturation | 0.575| 0.575| 0.575| 0.575| 0.575| 0.575| 0.575| 0.575| 0.575| 0.575| 0.575
Initial pressure (psi)| 412.5| 412.5| 412.5| 412.5| 412.5| 412.5| 412.5| 412.5| 412.5| 412.5| 412.5
Initial temp (F) 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180
Matrix perm (md) | 105 | 105 | 105 | 105 | 105 | 105 | 105 | 105 | 105 | 105 | 105
Matrix por 0.15 | 0.165| 0.18 | 0.195| 0.21 | 0.225| 0.24 | 0.255| 0.27 | 0.285| 0.3
Steam inj rate(bbl/d) 2850 | 2850 | 2850 | 2850 | 2850 | 2850 | 2850 | 2850 | 2850 | 2850 | 2850
Steamguality 0.85| 0.85| 0.85| 0.85]| 0.85| 0.85| 0.85| 0.85| 0.85| 0.85| 0.85
Steamtemp(F) 525 | 525 | 525 | 525 | 525 | 525 | 525 | 525 | 525 | 525 | 525
Thickness (ft) 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110

Table5-12: Values of input parameters for studying sensitivity of matrix porosity.

Similarly when sengivity of any other parameter sayainage are& studiedt

is varied between-B0 acres as shown in Tabbell and rest of parameters are kept

constant with the base run (run 6) valuBse values of input parameters while studying

the sensitivity of drainage area are shown in T&kl&. While studying the effect of a

particular parameter, same values were used irrespective of the oil i.e., 345
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5-13 were used to studyFigure5-20is a schematiof run 6 also known as base run or

base simulation file.

INPUT\RUN 1 2 3 4 5 6 7 8 9 10 11

Bhp (psi) 58.5| 58.5| 585 | 58.5| 58.5| 58,5 | 58.5| 58.5| 58.5 | 58.5 | 58.5

Drainage gea (acres)| 5 8.5 12 | 155 | 19 | 225| 26 | 295 | 33 | 365 | 40

Fracture prm (md) | 1050 | 1050 | 1050 | 1050 | 1050 | 1050 | 1050 | 1050 | 1050 | 1050 | 1050

Fracture por 0.03| 0.03| 0.03| 0.03| 0.03| 0.03| 0.03| 0.03 | 0.03 | 0.03| 0.03

Fracture pacing (ft) | 22 22 22 22 22 22 22 22 22 22 22

Initial oil saturation | 0.575| 0.575| 0.575| 0.575| 0.575| 0.575| 0.575| 0.575| 0.575| 0.575| 0.575

Initial pressure (psi) | 412.5| 412.5| 412.5| 412.5| 412.5| 412.5| 412.5| 412.5| 412.5| 412.5| 412.5

Initial temp (F) 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180

Matrix perm (md) 105 | 105 | 105 | 105 | 105 | 105 | 105 | 105 | 105 | 105 | 105

Matrix por 0.25(0.25| 0.225] 0.25 | 0.225| 0.225| 0.225] 0.25 | 0.225| 0.25 | 0.225
Steam inj rate(bbl/d)| 2850 | 2850 | 2850 | 2850 | 2850 | 2850 | 2850 | 2850 | 2850 | 2850 | 2850
Steamquality 0.85] 0.85| 0.85| 0.85| 0.85| 0.85| 0.85]| 0.85| 0.85| 0.85| 0.85

Steamtemp (F) 525 | 525 | 525 | 525 | 525 | 525 | 525 | 525 | 525 | 525 | 525

Thickness (ft) 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110

Table5-13: Values of input parameters for studying sensitivity of drainage area.



Figure5-21: Schematic of base run (run 6).
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