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ABSTRACT 

With increasing demand on oil, it is important to improve the recovery factor of 

oil reservoirs. Naturally fractured reservoirs constitute a major portion of world’s 

hydrocarbon reserves and are good targets for enhanced oil recovery operation (EOR). 

Cyclic steam injection is an attractive EOR process for recovering oil from naturally 

fractured reservoirs. Predicting the performance of different naturally fractured oil 

reservoirs undergoing cyclic steam injection under varying design parameters is a 

difficult task. The simulation time and effort required to evaluate such performance for a 

large number of scenarios is likely to be very high.  

Artificial neural networks (ANNs) are mathematical tools designed to map an 

input domain into an output domain. They are based on observations made in the study of 

biological systems. Their function is similar to that of a mathematical function. In this 

work neural network based proxy models are developed for comparative evaluation of 

cyclic steam injection in various naturally fractured oil reservoirs with constant injection, 

soaking and production periods. Five different oils with viscosities ranging from 5800 cp 

to as low as 1 cp at room temperature are used as reservoir fluids in this study and a 

proxy model is developed for each oil.  The proxy models developed are found to be 

capable of successfully mimicking the reservoir simulation model for above mentioned 

process within a certain range of input parameters in considerably small computational 

times.   
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Chapter 1 

 

Introduction 

With increasing demand of consumption of oil, it is important to improve the 

recovery factor of reservoirs. Recovery factor is the ratio of oil that can be produced with 

the existing technology to the original oil in place (OOIP). When oil wells are produced 

under natural oil recovery mechanisms and shut-in after abandonment rate is reached, a 

major portion of the original oil in place is left unrecovered. The average oil recovery 

even after performing secondary oil recovery techniques like water drive or gas injection 

drive is only 35%. Recoveries can be as low as 5% or less for highly viscous oils 

[Boberg, 1988]. Hence, it is important to implement enhanced oil recovery techniques in 

depleted and heavy oil reservoirs. Enhanced oil recovery (EOR) is a method of tertiary 

recovery of oil by injection of fluids not normally present in the reservoir. There are 

many types of EOR processes, the important ones being: chemical, thermal and miscible 

recovery methods.  

Naturally fractured reservoirs constitute a large portion of hydrocarbon reserves 

of the world. They contain up to 30% of the world supply of oil and thus represent a 

significant target for EOR [Reis, 1992]. Naturally fractured reservoirs contain fractures 

and matrix blocks. The fracture network has higher permeability than matrix and 

provides flow paths for the oil to flow. It has high permeability but low porosity 

compared to matrix. The matrix on the other hand acts as a sink or source of oil in the 

reservoir. It has low permeability and high storativity.  
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 “Injection of high temperature fluids into fractured reservoirs to recover matrix 

oil has been considered as an effective EOR application and numerous studies have been 

published providing enough evidence to support this” [Babadagli, 2002]. Steam Injection 

is an attractive process for recovering oil from fractured reservoirs. It has been shown 

that more oil can be recovered from heated blocks than unheated blocks [Reis, 1992]. 

Cyclic steam injection is more attractive than steam flooding in naturally fractured 

reservoirs because condensed steam breaks through early through the fracture network in 

a steam drive process. On the other hand, as cyclic steam injection is a single-well 

process, such problems do not occur. Though initially the water production rate is high, 

the oil rate peaks and the well can be produced till the abandonment rate is reached. Once 

a cycle is completed, the process can be repeated till sufficient oil is produced from the 

reservoir. The payback period is also shorter compared to steam flooding projects. For 

large reservoirs, a network of such wells can be created to produce oil.  

Evaluating the performance of different oil reservoirs undergoing cyclic steam 

injection under varying design parameters is a difficult task. Also the simulation time 

required to evaluate the performance of such reservoirs is extensive. In this work, proxy 

models are developed to evaluate the performance of different naturally fractured oil 

reservoirs undergoing cyclic steam injection with constant injection, soaking and 

production periods. Five different oils with viscosities ranging from 5800 cp to as low as 

1cp at room temperature are used in this study. Five proxy models are developed, each 

corresponding to the respective oil.  
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The proxy models are developed using artificial neural network (ANN) toolbox of 

MATLAB
® 1

. The CMG
® 2

 STARS
™ 3

 black oil simulator is used to generate data sets for 

training the neural network. MATLAB is also used to generate batch files to run CMG 

STARS. In this work CMG STARS will now be referred as commercial simulator.  

The thesis is divided into 7 Chapters and 3 Appendices. Chapter 2 is a survey of 

literature on naturally fractured reservoirs, cyclic steam injection and artificial neural 

networks. Chapter 3 gives the statement of the problem. Chapter 4 describes the reservoir 

model used in this study along with description of how data sets were generated for 

training the artificial neural networks. Chapter 5 is a summary of results obtained in this 

study and it also contains discussion of results. Chapter 6 gives the conclusion of this 

work and recommendations for future work. Chapter 7 contains references used in this 

study. Appendix A describes the implementation of graphical user interface (GUI) 

developed in this study. Appendix B contains MATLAB code used to train Artificial 

Neural Networks. Finally, Appendix C contains MATLAB code used to create batch 

files.  

                 

  

 

______________________________________________________________________ 
1
MATLAB: MATrix LABoratory, a numerical computing environment developed by  

 The MathWorks, Inc., 
2
CMG: Computer Modeling Group 

3
STARS: Steam, Thermal, and Advanced Processes Reservoir Simulator  

  



4 

 

Chapter 2 

 

Literature Review 

This chapter gives a brief description of Naturally Fractured Reservoirs, Cyclic 

Steam Injection and Artificial Neural Networks.   

2.1 Naturally Fractured Reservoirs 

Naturally fractured reservoirs contain a large portion of world’s oil reserves. It is 

estimated that they contain 30% of the world supply of oil [Reis, 1992]. It is also 

estimated that naturally fractured carbonate reservoirs hold well over 100 billion barrels 

of heavy oil [Shahin, 2006]. Unlike non fractured reservoirs the fractures of naturally 

fractured reservoirs can provide flow paths having permeabilities higher than that of 

reservoir matrix. The fracture network has porosity that is an order of magnitude lower 

than the matrix. Thus fractures control fluid flow whereas matrix acts as sink/source for 

oil in the reservoir. Several papers have been published to quantify fluid and heat flow in 

naturally fractured reservoirs. In these papers different models are proposed. All these 

models divide the reservoir into matrix and fracture continua with a superimposed 

computational grid. There may be several fracture and matrix elements lumped together 

in each grid block as shown in Figure 2-1 [STARS user guide, 2008]. 
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Figure 2-1:  Representation of Fractured Reservoir [STARS user guide, 2008]. 

 

The fractured porous media models developed in various papers can be broadly 

classified into two groups: dual porosity and dual permeability. Dual porosity models are 

based on the assumption that the fracture network is the primary continuum for fluid 

flow. The matrix is considered to be a sink or source to the fracture. The models are 

further sub-divided into standard dual-porosity model, multiple interacting continua 

model and vertical refinement model. In the work presented here standard dual porosity 

model is used. 
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2.1.1 Standard Dual Porosity Model 

This is the simplest model to describe the behavior of naturally fractured 

reservoirs. In this model matrix blocks are isolated and they do not directly communicate 

with each other. They are only connected through fractures Figure 2-2. Thus, either fluid 

or heat can be transferred only to adjoining fracture. As the fracture acts as primary 

continuum for fluid flow the wells are assumed to be connected to fracture only. Within a 

grid block fracture and matrix are assumed to be at the same depth [STARS user guide, 

2008]. 

 

Figure 2-2:  Standard Dual Porosity Model [STARS user guide, 2008]. 
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   2.2 Cyclic Steam Injection 

Cyclic steam injection is a thermal enhanced oil recovery method in which a well 

is injected with steam and subsequently put on production after a brief shut-in period. It 

basically involves three stages (see Figure 2-3). During the first stage called injection 

period, steam is injected into the reservoir for a certain number of days usually 3-4 

weeks. In the second stage called soaking period, the well is shut-in allowing the steam to 

condense and lose its heat to reservoir rock and fluids for few days. The soaking period 

allows thermal gradients to equalize, but it should not be long enough for the pressure to 

escape [Lake, 1989]. Finally, during the third stage called production period the well is 

put on production till the economic rate limit is reached. In this period lot of water is 

produced initially, but the water cut quickly declines and oil production rate will peak 

usually higher than the original value [Boberg, 1988]. Cyclic steam injection is different 

from steam drive in that it is a single well process and the same well acts as both injector 

and producer. 

       

 

Figure 2-3:  Cyclic Steam Injection [Lake, 1989]. 
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The problem of cyclic steam injection simulation in a single porosity system is 

discussed by [Aziz et al, 1987]. The paper compares the results of cyclic steam injection 

problem submitted by six different participants using their simulators. All the participants 

use the same reservoir fluid and same reservoir properties to study cyclic steam injection 

in a single porosity reservoir. 

A simulator for modeling thermal recovery processes in naturally fractured 

reservoirs is presented by [Chen et al, 1987]. The rock matrix block is subdivided into a 

two dimensional (r-z) grid system to study the effects of gravity. According to [Chen et 

al, 1987], both conductive and convective rate of heat transfer between matrix and 

fracture plays an important role in oil recovery from naturally fractured reservoirs. Also, 

the effect of capillary pressure is small and is ignored. 

A simulator for studying the effect of various parameters on the performance of 

cyclic steam injection operations in heavy oil naturally fractured reservoirs is presented 

by [Briggs, 1989]. The importance of fracture system in conducting heat to rock matrix is 

highlighted. The paper also shows the importance of steam injection rate and bottom hole 

pressure in attaining the best operating conditions. 

Oil expulsion mechanisms during steam injection in naturally fractured reservoirs 

are presented by [Reis, 1992]. Thermal expansion of oil and generation of gases from 

chemical reactions at high temperature are considered to be the most important recovery 

mechanisms. With these mechanisms it has been found that oil is expelled from blocks as 

wide as 10 feet within a year. It has also been shown that steam injection is attractive in 

both light and heavy oil naturally fractured reservoirs. Pilot studies also have been 

performed to study cyclic steam injection [Li et al, 2010].
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2.3 Artificial Neural Network 

Artificial neural network (ANN) is a mathematical tool that has been developed 

based on inspiration from biological neural networks. The objective of a neural network 

is to map an input into a desired output [Priddy et al, 2005] and it is characterized by 

[Fausett, 1994]: 

1. Its architecture – a pattern of connections between the neurons 

2. Its method of assigning the weights for the connections 

3. Its activation function or transfer function. 

A neural net consists of a large number of small computing engines/elements 

called neurons. The neuron takes in inputs, processes them, and transmits an output. Each 

neuron of one layer is connected to neurons of other layers through links, each associated 

with a weight. Figure 2-4 shows the architecture of a typical artificial neural network.  

 

Figure 2-4:  Typical Architecture of an artificial neural network. 
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Neural networks have a plethora of applications. They are used for speech 

generation, speech recognition, autonomous vehicle navigation, handwritten digit 

recognition, image compression etc., [Bose and Liang, 1996]. There have been many 

recent advances in the application of neural networks in petroleum industry. They have 

been used for oil spill detection [Browne, 1997], for predicting relative permeability 

[Guler et al, 2003], for determining optimum production protocols for exploitation of 

gas/condensate reservoirs [Ayala et al, 2007], for predicting the performance of coalbed 

methane reservoirs [Srinivasan and Ertekin, 2008], for optimized design of gas cyclic 

pressure pulsing [Artun et al, 2008], for field development [Doraisamy et al, 2008]. 

2.3.1 Normalizing data 

Normalizing data is one of the most common tools used by ANN developers. In 

order to minimize bias towards certain input parameters, the developer would want to 

confine all of them into a same range (usually 0-1 or -1-1) of values. Normalizing data 

can also speed up training time. It is particularly useful when the inputs are on widely 

different scales [Priddy et al, 2005]. There are many types of normalizing data. In this 

work the min-max normalization method has been used. The min-max normalization is 

done by rescaling the input features or outputs from original values to a new range of 

values. Mostly the features are rescaled to lie between 0 to1 or between -1 to 1. The 

rescaling is done using a linear interpolation formula as shown in Equation (2.1) [Priddy 

et al, 2005]: 
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where, 

xi
’
  = normalized input/output 

maxtarget  = maximum normalized value (1 here) 

mintarget  = minimum normalized value (-1 here) 

xi  = input/output before normalizing 

maxvalue  = maximum input/output value 

minvalue  = minimum input/output value 

Min-Max method preserves exactly all relationships in the data without 

introducing any bias. 

2.3.2 Feed Forward Neural Network 

A feed forward network typically looks like the one shown in Figure 2-5. 

 

Figure 2-5: Multilayer Feed Forward Neural Network [Priddy et al, 2005]. 
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The input layer of the network does no processing and is also called the zeroth 

layer. The outputs of this layer are described by Equation (2.2): 

ii xo 0                                                                                                                 (2.2)   

where, 

i  = 1…..N
0
  

N
0
  = number of neurons in the input or zeroth layer 

xi  = input vector 

The input to a neuron in first hidden layer is the summation of product of weights 

(wi) between input layer and hidden layer and the input vector. The sum known as net 

stimulus is denoted by net. A bias term θ or w0 is added to offset the input. The bias can 

also be viewed as a weight coming from a unitary valued input [Priddy et al, 2005]. This 

is given by Equation (2.3):  






0

1

0

0
N

i

ii wownet                                                                                              (2.3) 

 The net stimulus is transformed by the neuron’s activation or transfer function 

f(net). The transfer function is used to map non linearity into the network. It also 

stabilizes the net stimulus. There are many types of transfer functions. They are discussed 

by [Kulga, 2010]. In this work linear transfer function (purelin) and tangent sigmoid 

(tansig) are used. The final output of the neuron is given by: 

).()( 0

1

0

0

wowfnetfoutput
N

i

ii  


            (2.4) 
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This is shown in Figure 2-6. 

 

Figure 2-6: The working process of a neuron [Priddy et al, 2005]. 

When we extend this concept to multilayer networks, the output of j
th

 neuron in l
th

 

layer is given by Equation (2.5): 
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1

1

1

l

j

N

i

l

i

l

ji

l

j

l

j

l

j

l
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                                (2.5) 

The outputs of the final layer or L
th

 layer are given by Equation (2.6): 

L

jj oy                                                                                                                 (2.6) 

The whole process described above can be visualized in Figures 2-5 & 2-6. 
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Chapter 3 

 

Problem Statement 

The objective of this research is to develop an expert system for evaluating the 

performance of different naturally fractured reservoirs undergoing cyclic steam injection 

with constant injection, soaking and production periods. The reservoir properties 

evaluated in this study are: matrix permeability (km), fracture permeability (kf), matrix 

porosity (ɸm), fracture porosity (ɸf), fracture spacing (Sf), thickness of reservoir (h), 

initial temperature (Ti), initial oil saturation (Soi) and initial pressure (Pi). The design 

characteristics pertaining to cyclic steam injection are: drainage area (A), steam 

temperature (Ts), steam quality (Qs), steam injection rate (qinj) and bottom hole pressure 

(Psf). The output parameters evaluated in this study are cumulative production of each 

cycle (Qi). The number of cycles is fixed to four. This work is divided into the following 

tasks: 

1. Devise a reservoir model in commercial simulation software (CMG) for steam 

injection process in a single porosity system. 

2. Extend the model for a dual porosity system. 

3. Extend the dual porosity model for a large number of scenarios by varying the 

reservoir properties and design characteristics within meaningful ranges. 

4. Extract results after simulating the model with large number of scenarios in the 

commercial simulator. 

5. Create data sets containing inputs and outputs. 

6. Train an artificial neural network for the generated data sets. 

7. Repeat the above six steps for each specific oil. 
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Five different oils are used in this study. The oils have viscosities ranging from 

5800 cp to 1 cp at room temperature. An expert system is developed for each oil. Finally 

a GUI is designed. The GUI integrates all the five expert systems and mimics the 

commercial simulator in predicting the performance of different naturally fractured 

reservoirs undergoing cyclic steam injection with constant injection, soaking and 

production periods. 

The initial objective of this research was to develop an expert system for single oil 

using only five of the reservoir properties and three of design characteristics mentioned 

above. After successfully developing an expert system for single oil, the complexity of 

the system was increased by including additional reservoir properties like thickness of 

reservoir, initial temperature and initial oil saturation. The number of oils/reservoir fluids 

was increased to five based on their viscosity. An expert system was developed for each 

oil. The viscosity of the oil could not be included in the list of reservoir properties 

because by varying the viscosity randomly with other reservoir properties there was a 

possibility of generating large number of incorrect reservoir models. Finally, the system 

was further complicated by including initial pressure in reservoir properties and steam 

injection rate and bottom hole pressure in design characteristics making the total number 

of inputs to 14.       
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Chapter 4 

 

Reservoir Model and Generation of Data Sets 

4.1 Reservoir Model 

 The reservoir model was built based on following assumptions: 

1. Two dimensional cylindrical (r-z) grid with 91 blocks in the radial (r) 

direction and 4 blocks in the vertical (z) direction. The blocks in the radial 

direction are logarithmically spaced. 

2. Single well reservoir, well being placed at the center. The well acts as injector 

and producer depending on the time of operation. 

3. Constant well bore radius of 0.3 ft. 

4. Dual porosity system. 

5. Thermal conductivity of reservoir, overburden and underburden is 24 Btu/(ft-

D-
0
F). 

6. Heat capacity of reservoir, overburden and underburden is 35 Btu/ (ft
3
 of 

rock-
0
F).  

7. Capillary pressures are equal to zero throughout. 

8. Skin factor is zero throughout. All layers are open to flow during injection and 

production. 

9. Injection with specified injection rate (qinj). 

10. Production with specified bottom hole pressure (Psf).  

11. Constant injection period of 30 days/cycle, soaking period of 10 days/cycle 

and production period of 550 days/cycle. Total number of cycles is fixed at 4. 
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Many of these assumptions were taken from literature [Aziz et al, 1987]. Figure 

4-1 is a snapshot of the reservoir used in this work. 

 

 

 

 

Figure 4-1: Two dimensional cylindrical grid system with a well at center. 

 

Gridblock sizes are relatively arbitrary for rectangular grid systems. Usually 

cylindrical grid system follows logarithmic spacing. The pressure points are spaced away 

from the wellbore in the following way [Ertekin et al, 2001]: 
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and 

ii rr lg1               (4.3) 

where, 

re  = external radius. 

rw  = radius of wellbore.  

ri+1  = radius of i+1
th 

block.   

ri   = radius of i
th

 block. 

nr   = number of blocks. 

The number of blocks in the radial direction is fixed to 91 after performing 

sensitive analysis on the radius of outermost block rnr. Figure 4-2 is a schematic of 

logarithmically spaced grid. 
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Figure 4-2: Logarithmic spacing of grids in the radial direction. 

4.1.1 Reservoir Fluid 

Five different oils are used as reservoir fluids in this study. Oil 1 is heavy oil, oil 2 

and oil 5 are black oils, and oil 3 and oil 4 are volatile oils. The data for oil 1 and oil 2 are 

taken from literature [Aziz et al, 1987; Michael, 1982]. The data for rest of the oils are 

taken from the template files of the commercial simulator. The properties of these oils are 

summarized in Table  4-1. 
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OIL TYPE M.W(LB/LBMOLE) DENSITY 

(LB/FT
3
) 

API
0
 

Oil 1 Heavy Oil 600 60.67 14 

Oil 2 Black Oil 450 56.7 24.2 

Oil 3 Volatile Oil 450 57.64 22 

Oil 4 Volatile Oil 250 52.3 37.3 

Oil 5 Black Oil 200 52.4 37 

   

Table 4-1: Properties of various reservoir fluids used in the study. 

  

These oils are selected as their viscosities range from as high as 5800 cp to 1 cp at 

room temperature. The variation of viscosity of these oils with temperature is shown in 

Tables 4-2, 4-3 & 4-4. 

 

TEMPERATURE 

(
0
F) 

VISCOSITY OF 

OIL 1 (CP) 

VISCOSITY OF 

OIL 3 (CP) 

VISCOSITY OF 

OIL 4 (CP) 

75 5780 10.58 2.328 

100 1380 9.06 1.9935 

150 187 6.775 1.4905 

200 47 5.183 1.1403 

250 17.4 4.043 0.8896 

300 8.5 3.208 0.7058 

350 5.2 2.583 0.5683 

500 2.5 1.45 0.32 

800 2.4 1.44 0.318 

 

Table 4-2: Variation of viscosity of oils 1, 3 & 4 with temperature. 
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TEMPERATURE 

(
0
F) 

VISCOSITY OF  

OIL 2 (CP) 

80 182 

100 91 

150 27.3 

200 11.4 

250 5.46 

300 3.46 

350 2.46 

500 1.13 

800 1.11 

   

 Table 4-3: Variation of viscosity of oil 2 with temperature. 

 

TEMPERATURE 

(
0
F) 

VISCOSITY OF 

OIL 5 (CP) 

70 1.36 

80 0.844 

90 0.57 

100 0.41 

200 0.0838 

300 0.06 

400 0.056 

500 0.0553 

800 0.054 

 

Table 4-4: Variation of viscosity of oil 5 with temperature. 
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4.1.2 Relative Permeability 

The capillary pressures are assumed to be zero. The interstitial water saturation 

Siw is assumed to be equal to irreducible water saturation Swir (Siw = Swir = 0.25). The 

residual oil saturation for water/oil system, is Sorw = 0.15, and the residual oil saturation 

for gas/oil system Sorg = 0.1 and the critical gas saturation Sgc = 0.06. The following 

relative permeability expressions are used [Aziz et al, 1987]: 

For water/oil system, 

5.2

1 
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For gas/oil system, 
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where, 

krw  = relative permeability to water. 

krow = relative permeability of oil w.r.t water 

krg  = relative permeability to gas 

krog = relative permeability of oil w.r.t gas 

Sw  = saturation of water 

Sg  = saturation of gas 
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Figure 4-3: Relative permeability of water/oil system. 

 

 



24 

 

 

 

SW KRW KROW 

0.25 0 0.4 

0.3 0.0002 0.3361 

0.35 0.001134 0.2777 

0.4 0.003125 0.225 

0.45 0.00641 0.1777 

0.5 0.01112 0.1361 

0.55 0.01768 0.1 

0.6 0.02598 0.0694 

0.65 0.03628 0.0444 

0.7 0.04871 0.025 

0.75 0.06339 0.0111 

0.8 0.08045 0.00277 

0.85 0.1 0 

 

Table 4-5: Relative permeability values for water/oil system. 
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Figure 4-4: Relative permeability of gas/liquid system. 
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SG KRG KROG 

0.25 0.2 0 

0.35 0.1581 0 

0.37 0.1501 0.00038 

0.4 0.1384 0.00237 

0.42 0.1308 0.0046 

0.45 0.1196 0.0095 

0.47 0.1124 0.0136 

0.5 0.1018 0.0213 

0.52 0.0949 0.0273 

0.55 0.0849 0.0378 

0.57 0.0785 0.0458 

0.6 0.0692 0.0592 

0.62 0.0632 0.069 

0.65 0.0545 0.0852 

0.67 0.0489 0.0969 

0.7 0.041 0.1159 

0.72 0.036 0.1296 

0.75 0.0289 0.1515 

0.77 0.0244 0.167 

0.8 0.0182 0.1917 

0.82 0.0145 0.2091 

0.85 0.0094 0.2366 

0.87 0.0064 0.256 

0.9 0.0028 0.2864 

0.94 0 0.3295 

1 0 0.4 

 

Table 4-6: Relative permeability values of gas/liquid system. 

 Stone’s three phase relative permeability models were used to calculate three 

phase oil relative permeability kro. 
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4.2 Data File Generation  

In order to study the performance of cyclic steam injection in naturally fractured 

reservoirs, the reservoir properties and design characteristics are varied between a range 

of values. Tables 4-7 and 4-8 show the ranges of reservoir properties and design 

characteristics respectively. A large number of random combinations of these parameters 

are generated using MATLAB. These combinations of reservoir properties and design 

characteristics are stored in an input file. The input file has 14 rows and around 250 

columns of data. Each column represents a sample and rows represent either reservoir 

property or design characteristic. So each sample has 14 inputs whose value is randomly 

selected between the ranges. The input file is then used to create data sets containing a 

reservoir model corresponding to each sample. As described by [Bansal, 2009], a batch 

file was then created to run all the data sets in the simulator. The results of simulation of 

each data set were extracted by another code in MATLAB. The code extracted 

cumulative production of each cycle. The results were then stored in an output file. The 

output file thus had 4 rows and 250 columns of data. Again each column represents a 

sample and rows represent cumulative production of each cycle. The input and output 

data files were then screened to eliminate any incongruent data. The screened files were 

then used for training the artificial neural network. Finally, the procedure was repeated 

for all the five oils.  
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RESERVOIR 

PROPERTIES 

MAXIMUM 

VALUE 

MINIMUM 

VALUE 

UNIT 

Matrix Porosity (ɸm) 0.3 0.15 % 

Matrix Permeability (km) 200 10 md 

Fracture Porosity (ɸf) 0.05 0.01 % 

Fracture Permeability (kf) 2000 100 md 

Fracture Spacing (Sf) 40 4 ft 

Thickness (h) 200 20 ft 

Initial Temperature (Ti) 240 120 
0
F 

Initial Oil Saturation (Soi) 0.75 0.4 - 

Initial Pressure (Pi) 750 75 psia 

 

Table 4-7: Range of reservoir properties. 

 

 

DESIGN 

CHARACTERISTICS 

MAXIMUM 

VALUE 

MINIMUM 

VALUE 

UNIT 

Drainage Area (A) 40 5 Acres 

Steam Temperature (Ts) 600 450 
0
F 

Steam Quality (Qs) 1 0.7 - 

Steam Injection Rate (qinj)  5000 700 Barrels/day
 

Bottom Hole Pressure (Psf) 100 17 psia 

 

Table 4-8: Range of design characteristics. 
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Chapter 5 

 

Results and Discussion  

Initially, an expert system was developed for oil 1 using only five of the reservoir 

properties and three of design characteristics given in Tables 4-7 & 4-8. Later additional 

reservoir properties like thickness of reservoir, initial temperature and initial oil 

saturation were added and expert systems were developed for five oils. Finally, the 

system was further complicated by including initial pressure in the reservoir properties 

and steam injection rate, bottom hole pressure in design characteristics. Hence in the final 

stage of this project there were 14 inputs and 4 outputs.  

After generating the input and output data files for all the oils, an artificial expert 

system was developed for each oil. Training an artificial neural network is a heuristic 

procedure. Many rules of thumb are proposed in literature but each case is different. An 

attempt was made to replicate the architecture of ANN from previous works. They did 

not work for the system in this study. Hence the networks were trained using trial and 

error procedure. Different training algorithms were used and the number of neurons was 

increased. When that did not yield any good results, the procedure was repeated by 

including functional links. Then the number of hidden layers was increased. For all the 

networks the thumb rule of “funneling” the number of neurons as one went from input 

layer/zeroth layer to output layer improved the performance of the network.  Around 200 

samples were used for training the neural network, 25 samples were used for validation 

and 25 samples were used for testing the trained network. The error percentage of 

training and testing samples was evaluated based on Equation 5.1: 
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The performance of the network was decided based on error percentage of the 

testing samples. Though the overall performance of the network was satisfactory, there 

were around two or three outliers during the testing of each network. The outliers are 

worst predictions of a network. They increased the mean error.  

In order to improve the performance of the network further an error filter was 

used. In this approach a new artificial neural network was trained in which the outputs of 

the network were error percentages (e) instead of the cumulative production of each 

cycle. The purpose of this error filter was to provide prediction of error percentage of the 

original network. By knowing what error percentage the original network would 

generate, it was thought the results of the network could be improved. However after 

training the new network it was found that the errors worsened. A new testing sample 

was taken and a comparison was made between the simulator results and the prediction of 

original network. The new sample was then tested with the new network to predict the 

error. Based on this error, the prediction of original network was corrected and a new 

comparison was made with result of commercial simulator. It was found that 

implementation of error filter worsened the error and original network prediction was 

better. The possible reason why error filter did not work in this project is because the 

number of outputs in this project is only four. This means, presence of one or more 

outliers in the prediction of error filter would affect the cumulative production at the end 

of four cycles. On the other hand, if there were 20 outputs, presence of one or more 

outliers would not have affected the prediction as much as it did in this project.    
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 This chapter provides a description of the best prediction, the worst prediction 

and the error frequency of five artificial neural networks. It also contains the sensitivity 

of the reservoir properties and design characteristics.  

5.1 Results of ANN for Oil 1 (Network 1) 

For training network 1, 187 samples were used for training, 23 were used for 

validation and 23 were used for testing. Scaled conjugate gradient (trainscg) training 

algorithm was implemented. Five hidden layers were used. The first layer has 61 neurons, 

second layer 47 neurons, third layer 23 neurons, fourth layer 11 neurons and fifth layer 

has 9 neurons. As discussed before the input layer or zeroth layer originally had 14 

inputs. In addition to this 5 functional links containing maximum eigenvalue of 2 X 2 

matrices containing various input properties were included in the input layer. The 

inclusion of eigenvalues improved the performance of the network. No functional links 

were included in the output layer as it did not improve the performance of the network. 

Tangent sigmoidal transfer function (tansig) was used in all the hidden layers. Linear 

transfer function (purelin) was used in the final layer. Figure 5-1 shows the reservoir 

properties and design characteristics of the best and worst testing sample. 
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Figure 5-1: Inputs for best and worst predictions of network 1. 
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5.1.1 Best Prediction of Network 1 

Out of 23 testing samples, network 1 predicts very well for sample 5. The input 

for this sample is shown as best case in Figure 5-1.Figure 5-2 shows a comparison of the 

cumulative production of each cycle as predicted by the commercial simulator and ANN. 

The error percentage (e) values for all the cycles for this sample are reported in Table 5-

1. This is the best prediction of the neural network for oil 1. 

 

Figure 5-2: Best prediction of network 1. 
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CYCLE ERROR PERCENTAGE (%) 

1 -4.14 

2 -2.18 

3 0.441 

4 9.43 

 

Table 5-1: Error percentage values of best prediction of network 1. 

5.1.2 Worst Prediction of Network 1 

The prediction of network 1 for sample 6 is worst of all the 23 testing samples. 

The input for this sample is shown as worst case in Figure 5-1. Figure 5-3 shows a 

comparison of the cumulative production of each cycle as predicted by the commercial 

simulator and ANN. The error percentage (e) values for all the cycles for this sample are 

reported in Table 5-2. 
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Figure 5-3: Worst prediction of network 1. 
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CYCLE ERROR PERCENTAGE (%) 

1 32.33 

2 39.29 

3 40.69 

4 41.25 

 

Table 5-2: Error percentage values of worst prediction of network 1. 

5.1.3 Error Frequency of Network 1 

The error percentages (e) of all the four cycles of 23 testing samples were 

recorded and a bar plot was made to study the frequency of error. In all, there were 92 

points (23 samples X 4 cycles). Figure 5-4 is the bar plot reporting the error frequency of 

network 1. The mean error percentage of these 23 testing samples is 15.8%.  
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Figure 5-4: Error frequency of network 1. 

The cumulative production values at the end of each cycle for oil 1 are in the 

range of 10
3 

– 10
4 

barrels. As oil 1 is heavy, the production is lower compared to other 

oils. It can be observed that 39% of the points are below 10% error percentage and 72% 

of the points are below 20% error percentage. However 28% of the points are above the 

error percentage of 20. Though the percentage of outliers is high, it should be noted that 

the absolute difference between the result of commercial simulator and ANN prediction 

is small. 
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5.2 Results of ANN for Oil 2 (Network 2) 

For training network 2, 212 samples were used for training, 26 were used for 

validation and 26 were used for testing. Scaled conjugate gradient (trainscg) training 

algorithm was implemented. Four hidden layers were used. The first layer has 79 

neurons, second layer 41 neurons, third layer 17 neurons and fourth layer has 11 neurons. 

As discussed earlier the input layer or zeroth layer has 14 inputs. The inclusion of 

eigenvalues did not improve the performance of the network. No functional links were 

included in the output layer as it did not improve the performance of the network either. 

Tangent sigmoidal transfer function (tansig) was used in all the hidden layers. Linear 

transfer function (purelin) was used in the final layer. Figure 5-5 shows the reservoir 

properties and design characteristics of the best and worst testing sample. 
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Figure 5-5: Inputs for best and worst predictions of network 2. 
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5.2.1 Best Prediction of Network 2 

Out of 26 testing samples, network 2 predicts very well for sample 17. The input 

for this sample is shown as best case in Figure 5-5. Figure 5-6 shows a comparison of the 

cumulative production of each cycle as predicted by the commercial simulator and ANN. 

The error percentage (e) values for all the cycles for this sample are reported in Table 5-

3. This is the best prediction of the neural network for oil 2. 

 

Figure 5-6: Best prediction of network 2. 
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CYCLE ERROR PERCENTAGE (%) 

1 -3.36 

2 -1.02 

3 0.12 

4 -0.79 

 

Table 5-3: Error percentage values of best prediction of network 2. 

5.2.2 Worst Prediction of Network 2 

The prediction of network 2 for sample 6 is worst of all the 26 testing samples. 

The input for this sample is shown as worst case in Figure 5-5. Figure 5-7 shows a 

comparison of the cumulative production of each cycle as predicted by the commercial 

simulator and ANN. The error percentage (e) values for all the cycles for this sample are 

reported in Table 5-4. 
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Figure 5-7: Worst prediction of network 2. 
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CYCLE ERROR PERCENTAGE (%) 

1 -56.7 

2 36.02 

3 80.83 

4 118.33 

 

Table 5-4: Error percentage values of worst prediction of network 2. 

5.2.3 Error Frequency of Network 2 

The error percentages (e) of all the four cycles of 26 testing samples were 

recorded and a bar plot was made to study the frequency of error. In all, there were 104 

points (26 samples X 4 cycles). Figure 5-8 is the bar plot reporting the error frequency of 

network 2. The mean error percentage of these 26 testing samples is 20%. 
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Figure 5-8: Error frequency of network 2. 

The percentage of outliers is large for network 2. Around 37% of the points are 

above error percentage of 20. Also since the cumulative productions are in the order of 

10
4
-10

5
 barrels, the absolute difference between the result of commercial simulator and 

ANN prediction is high. However as 73% of testing points are below error percentage of 

20 network 2 is the best trained ANN for oil 2. 

 

 

39 

24 

13 

24 

0

10

20

30

40

50

60

70

80

90

100

<10% 10-20% 20-30% >30%

P
e

rc
e

n
ta

ge
 o

f 
Te

st
in

g 
p

o
in

ts
 

Range of Error 

Error Frequency Plot 

Oil 2



45 

 

5.3 Results of ANN for Oil 3 (Network 3) 

For training network 3, 195 samples were used for training, 25 were used for 

validation and 25 were used for testing. Scaled conjugate gradient (trainscg) training 

algorithm was implemented. Five hidden layers were used. The first layer has 71 neurons, 

second layer 47 neurons, third layer 23 neurons, fourth layer 17 neurons and fifth layer 

has 11 neurons. As discussed earlier the input layer or zeroth layer originally had 14 

inputs. In addition to this 5 functional links containing maximum eigenvalue of 2 X 2 

matrices containing various input properties were included in the input layer. The 

inclusion of eigenvalues improved the performance of the network. No functional links 

were included in the output layer as it did not improve the performance of the network. 

Tangent sigmoidal transfer function (tansig) was used in all the hidden layers. Linear 

transfer function (purelin) was used in the final layer. Figure 5-9 shows the reservoir 

properties and design characteristics of the best and worst testing sample. 
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Figure 5-9: Inputs for best and worst predictions of network 3. 

 

 



47 

 

5.3.1 Best Prediction of Network 3 

Out of 25 testing samples, network 3 predicts very well for sample 10. The input 

for this sample is shown as best case in Figure 5-9. Figure 5-10 shows a comparison of 

the cumulative production of each cycle as predicted by the commercial simulator and 

ANN. The error percentage (e) values for all the cycles for this sample are reported in 

Table 5-5. This is the best prediction of the neural network for oil 3. 

 

Figure 5-10: Best prediction of network 3. 
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CYCLE ERROR PERCENTAGE (%) 

1 3.46 

2 3.8 

3 2.78 

4 2.35 

 

Table 5-5: Error percentage values for best prediction of network 3. 

 

5.3.2 Worst Prediction of Network 3 

The prediction of network 3 for sample 23 is worst of all the 25 testing samples. 

The input for this sample is shown as worst case in Figure 5-9. Figure 5-11 shows a 

comparison of the cumulative production of each cycle as predicted by the commercial 

simulator and ANN. The error percentage (e) values for all the cycles for this sample are 

reported in Table 5-6.  
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Figure 5-11: Worst prediction of network 3. 
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CYCLE ERROR PERCENTAGE (%) 

1 -177.48 

2 -145.12 

3 -131.42 

4 -141.09 

 

Table 5-6: Error percentage values of worst prediction of network 3. 

5.3.3 Error Frequency of Network 3 

The error percentages (e) of all the four cycles of 25 testing samples were 

recorded and a bar plot was made to study the frequency of error. In all, there were 100 

points (25 samples X 4 cycles). Figure 5-12 is the bar plot reporting the error frequency 

of network 3. The mean error percentage of these 25 testing samples is 24.7%. 
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Figure 5-12: Error frequency of network 3. 

It can be observed that 74% of the testing points are below the error percentage of 

20. More number of testing points are below 10% compared to oil 1 and 2.   
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5.4 Results of ANN for Oil 4 (Network 4) 

For training network 4, 197 samples were used for training, 25 were used for 

validation and 25 were used for testing. Scaled conjugate gradient (trainscg) training 

algorithm was implemented. Four hidden layers were used. The first layer has 51 

neurons, second layer 27 neurons, third layer 17 neurons and fourth layer has 13 neurons. 

As discussed earlier the input layer or zeroth layer originally had 14 inputs. In addition to 

this 5 functional links containing maximum eigenvalue of 2 X 2 matrices containing 

various input properties were included in the input layer. The inclusion of eigenvalues 

improved the performance of the network. No functional links were included in the 

output layer as it did not improve the performance of the network. Tangent sigmoidal 

transfer function (tansig) was used in all the hidden layers. Linear transfer function 

(purelin) was used in the final layer. Figure 5-13 shows the reservoir properties and 

design characteristics of the best and worst testing sample. 
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Figure 5-13: Inputs for best and worst predictions of network 4. 

 

 

 



54 

 

5.4.1 Best Prediction of Network 4 

Out of 25 testing samples, network 4 predicts very well for sample 16. The input 

for this sample is shown as best case in Figure 5-13. Figure 5-14 shows a comparison of 

the cumulative production of each cycle as predicted by the commercial simulator and 

ANN. The error percentage (e) values for all the cycles for this sample are reported in 

Table 5-7. This is the best prediction of the neural network for oil 4. 

 

Figure 5-14: Best prediction of network 4. 
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CYCLE ERROR PERCENTAGE (%) 

1 -1.04 

2 1.51 

3 0.38 

4 -1.94 

 

Table 5-7: Error percentage values of best prediction of network 4. 

5.4.2 Worst Prediction of Network 4 

The prediction of network 4 for sample 8 is worst of all the 25 testing samples. 

The input for this sample is shown as worst case in Figure 5-13. Figure 5-15 shows a 

comparison of the cumulative production of each cycle as predicted by the commercial 

simulator and ANN. The error percentage (e) values for all the cycles for this sample are 

reported in Table 5-8. 
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Figure 5-15: Worst prediction of network 4. 
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CYCLE ERROR PERCENTAGE (%) 

1 -16.11 

2 -24.93 

3 -31.2 

4 -33.07 

 

Table 5-8: Error percentage values of worst prediction of network 4. 

5.4.3 Error Frequency of Network 4 

The error percentages (e) of all the four cycles of 25 testing samples were 

recorded and a bar plot was made to study the frequency of error. In all, there were 100 

points (25 samples X 4 cycles). Figure 5-16 is the bar plot reporting the error frequency 

of network 4. The mean error percentage of these 25 testing samples is 7.6%. 
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Figure 5-16: Error frequency of network 4. 

The cumulative production values for oil 4 are greater than 10
5
 barrels. As the 

viscosity of oil is decreasing the cumulative production at the end of each cycle is 

increasing. Also it can be observed 92% of the testing points fall below error percentage 

of 20. 
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5.5 Results of ANN for Oil 5 (Network 5) 

For training network 5, 210 samples were used for training, 26 were used for 

validation and 26 were used for testing. Scaled conjugate gradient (trainscg) training 

algorithm was implemented. Only one hidden layer was sufficient to satisfactorily train 

this network. The hidden layer had 53 neurons. As discussed before the input layer or 

zeroth layer originally had 14 inputs. In addition to this 5 functional links containing 

maximum eigenvalue of 2 X 2 matrices containing various input properties were included 

in the input layer. The inclusion of eigenvalues improved the performance of the 

network. No functional links were included in the output layer as it did not improve the 

performance of the network. Tangent sigmoidal transfer function (tansig) was used in the 

only hidden layer. Figure 5-17 shows the reservoir properties and design characteristics 

of the best and worst testing sample. 
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Figure 5-17: Inputs for best and worst predictions of network 5. 
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5.5.1 Best Prediction of Network 5 

Out of 26 testing samples, network 5 predicts very well for sample 2. The input 

for this sample is shown as best case in Figure 5-17. Figure 5-18 shows a comparison of 

the cumulative production of each cycle as predicted by the commercial simulator and 

ANN. The error percentage (e) values for all the cycles for this sample are reported in 

Table 5-9. This is the best prediction of the neural network for oil 5. 

 

Figure 5-17: Best prediction of network 5. 



62 

 

 

CYCLE ERROR PERCENTAGE (%) 

1 -4.11 

2 2.22 

3 1.11 

4 0.21 

 

Table 5-9: Error percentage values of best prediction of network 5. 

5.5.2 Worst Prediction of Network 5 

The prediction of network 5 for sample 13 is worst of all the 26 testing samples. 

The input for this sample is shown as worst case in Figure 5-17. Figure 5-19 shows a 

comparison of the cumulative production of each cycle as predicted by the commercial 

simulator and ANN. The error percentage (e) values for all the cycles for this sample are 

reported in Table 5-10. 
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Figure 5-19: Worst prediction of network 5. 
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CYCLE ERROR PERCENTAGE (%) 

1 -8.36 

2 -20.47 

3 -18.8 

4 -18.54 

 

Table 5-10: Error percentage values of worst prediction of network 5. 

5.5.3 Error Frequency of Network 5 

The error percentages (e) of all the four cycles of 26 testing samples were 

recorded and a bar plot was made to study the frequency of error. In all, there were 104 

points (26 samples X 4 cycles). Figure 5-20 is the bar plot reporting the error frequency 

of Network 5. The mean error percentage of these 26 testing samples is 6.75%. 
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Figure 5-20: Error frequency of Network 5. 

The cumulative production at end of each cycle for oil 5 is also greater than 10
5
 

barrels. It can be observed that 95% of the testing points are below error percentage of 

20. And there are no testing points with error percentage greater than 30%.   
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5.6 Sensitivity of Input Parameters 

In order to study the effect of each input parameter on the output, sensitivity 

analysis was performed on all 14 input parameters. This was done by varying an input 

parameter to be studied between the minimum and maximum values given in Tables 4-7 

and 4-8 and by keeping rest of the 13 parameters constant. The parameter was varied by 

dividing the range between minimum value and maximum value into ten equal points. 

Hence each input parameter was varied eleven times including the minimum and 

maximum value by keeping rest of the parameters constant. Table 5-11 shows how each 

input parameter was varied. 

 

INPUT\RUN 1 2 3 4 5 6 7 8 9 10 11 

Bhp (psi) 17 25.3 33.6 41.9 50.2 58.5 66.8 75.1 83.4 91.7 100 

Drainage area (acres) 5 8.5 12 15.5 19 22.5 26 29.5 33 36.5 40 

Fracture perm (md) 100 290 480 670 860 1050 1240 1430 1620 1810 2000 

Fracture por  0.01 0.014 0.018 0.022 0.026 0.03 0.034 0.038 0.042 0.046 0.05 

Fracture spacing (ft) 4 7.6 11.2 14.8 18.4 22 25.6 29.2 32.8 36.4 40 

Initial oil saturation 0.4 0.435 0.47 0.505 0.54 0.575 0.61 0.645 0.68 0.715 0.75 

Initial pressure (psi) 75 142.5 210 277.5 345 412.5 480 547.5 615 682.5 750 

Initial temp (F) 120 132 144 156 168 180 192 204 216 228 240 

Matrix perm (md) 10 29 48 67 86 105 124 143 162 181 200 

Matrix por 0.15 0.165 0.18 0.195 0.21 0.225 0.24 0.255 0.27 0.285 0.3 

Steam inj rate(bbl/d) 700 1130 1560 1990 2420 2850 3280 3710 4140 4570 5000 

Steam quality 0.7 0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1 

Steam temp (F) 450 465 480 495 510 525 540 555 570 585 600 

Thickness (ft) 20 38 56 74 92 110 128 146 164 182 200 

 

Table 5-11: Values of input parameters when they are varied. 
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Run 1 is the minimum value of a parameter and run 11 is the maximum value. 

Run 6 is the base simulation file in entire sensitivity analysis. When sensitivity of matrix 

porosity was studied, it was varied from 0.15 to 0.3 as shown in Table 5-11. However, 

rest of the parameters were kept at a constant with the values given in run 6 of Table 5-

11. For example, while studying the effect of matrix porosity on output, the input 

parameter values were assigned as shown in Table 5-12. 

 

INPUT\RUN 1 2 3 4 5 6 7 8 9 10 11 

Bhp (psi) 58.5 58.5 58.5 58.5 58.5 58.5 58.5 58.5 58.5 58.5 58.5 

Drainage area (acres) 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 

Fracture perm (md) 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 

Fracture por  0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Fracture spacing (ft) 22 22 22 22 22 22 22 22 22 22 22 

Initial oil saturation 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 

Initial pressure (psi) 412.5 412.5 412.5 412.5 412.5 412.5 412.5 412.5 412.5 412.5 412.5 

Initial temp (F) 180 180 180 180 180 180 180 180 180 180 180 

Matrix perm (md) 105 105 105 105 105 105 105 105 105 105 105 

Matrix por 0.15 0.165 0.18 0.195 0.21 0.225 0.24 0.255 0.27 0.285 0.3 

Steam inj rate(bbl/d) 2850 2850 2850 2850 2850 2850 2850 2850 2850 2850 2850 

Steam quality 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

Steam temp (F) 525 525 525 525 525 525 525 525 525 525 525 

Thickness (ft) 110 110 110 110 110 110 110 110 110 110 110 

 

Table 5-12: Values of input parameters for studying sensitivity of matrix porosity. 

 

Similarly when sensitivity of any other parameter say drainage area is studied, it 

is varied between 5-40 acres as shown in Table 5-11 and rest of parameters are kept 

constant with the base run (run 6) values. The values of input parameters while studying 

the sensitivity of drainage area are shown in Table 5-13. While studying the effect of a 

particular parameter, same values were used irrespective of the oil i.e., Tables 5-12 &    
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5-13 were used to study   Figure 5-20 is a schematic of run 6 also known as base run or 

base simulation file.  

 

 

 

 

INPUT\RUN 1 2 3 4 5 6 7 8 9 10 11 

Bhp (psi) 58.5 58.5 58.5 58.5 58.5 58.5 58.5 58.5 58.5 58.5 58.5 

Drainage area (acres) 5 8.5 12 15.5 19 22.5 26 29.5 33 36.5 40 

Fracture perm (md) 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 

Fracture por  0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Fracture spacing (ft) 22 22 22 22 22 22 22 22 22 22 22 

Initial oil saturation 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 

Initial pressure (psi) 412.5 412.5 412.5 412.5 412.5 412.5 412.5 412.5 412.5 412.5 412.5 

Initial temp (F) 180 180 180 180 180 180 180 180 180 180 180 

Matrix perm (md) 105 105 105 105 105 105 105 105 105 105 105 

Matrix por 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 

Steam inj rate(bbl/d) 2850 2850 2850 2850 2850 2850 2850 2850 2850 2850 2850 

Steam quality 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

Steam temp (F) 525 525 525 525 525 525 525 525 525 525 525 

Thickness (ft) 110 110 110 110 110 110 110 110 110 110 110 

 

Table 5-13: Values of input parameters for studying sensitivity of drainage area.  
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Figure 5-21: Schematic of base run (run 6). 
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5.6.1 Sensitivity of Bottom Hole Pressure 

Figures 5-22, 5-23, 5-24, 5-25 & 5-26 show the sensitivity of bottom hole 

pressure on cumulative production for oils 1, 2, 3, 4 & 5 respectively. In all these figures, 

run 6 is the base simulation file.  

 

 

Figure 5-22: Sensitivity of bottom hole pressure on cumulative production of oil 1. 
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Figure 5-23: Sensitivity of bottom hole pressure on cumulative production of oil 2. 

 

 

 
 

Figure 5-24: Sensitivity of bottom hole pressure on cumulative production of oil 3. 
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Figure 5-25: Sensitivity of bottom hole pressure on cumulative production of oil 4. 

 

 

 
 

Figure 5-26: Sensitivity of bottom hole pressure on cumulative production of oil 5. 
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It can be observed from the plots above that the effect of bottom hole pressure on 

cumulative production of reservoirs containing various oils is insignificant. Irrespective 

of the oil present in the reservoir variation in bottom hole pressure has insignificant 

account on the cumulative production. The possible reason for this is: the bottom hole 

pressure was varied only between 17 to 100 psia. This margin is too small to observe any 

significant difference in cumulative production. 

5.6.2 Sensitivity of Drainage Area 

Figures 5-27, 5-28, 5-29, 5-30 & 5-31 show the sensitivity of drainage area on 

cumulative production for oils 1, 2, 3, 4 & 5 respectively. In all these figures, run 6 is the 

base simulation file. 

 

Figure 5-27: Sensitivity of drainage area on cumulative production of oil 1. 
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Figure 5-28: Sensitivity of drainage area on cumulative production of oil 2. 

 

Figure 5-29: Sensitivity of drainage area on cumulative production of oil 3. 
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Figure 5-30: Sensitivity of drainage area on cumulative production of oil 4. 

 

Figure 5-31: Sensitivity of drainage area on cumulative production of oil 5. 
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It can be observed from plots above that drainage area has little effect on 

cumulative production of all the oils. For particular oil the variation in drainage area from 

5 to 40 acres brings only small change in cumulative production. This could be because 

in this project the injection, soaking and production cycles have been kept constant. 

Hence even though the drainage area is increased, only certain portion of the reservoir is 

affected by injected steam. 

5.6.3 Sensitivity of Fracture Permeability 

  Figures 5-32, 5-33, 5-34, 5-35 & 5-36 show the sensitivity of fracture 

permeability on cumulative production for oils 1, 2, 3, 4 & 5 respectively. In all these 

figures, run 6 is the base simulation file. 

 

Figure 5-32: Sensitivity of fracture permeability on cumulative production of oil 1. 
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Figure 5-33: Sensitivity of fracture permeability on cumulative production of oil 2. 

 

Figure 5-34: Sensitivity of fracture permeability on cumulative production of oil 3. 
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Figure 5-35: Sensitivity of fracture permeability on cumulative production of oil 4. 

 

Figure 5-36: Sensitivity of fracture permeability on cumulative production of oil 5. 
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It can be observed from the plots above that fracture permeability has significant 

effect on cumulative production. This is particularly true for oils 1, 2. 3 & 4. 

5.6.4 Sensitivity of Fracture Porosity 

Figures 5-37, 5-38, 5-39, 5-40 & 5-41 show the sensitivity of fracture porosity on 

cumulative production for oils 1, 2, 3, 4 & 5 respectively. In all these figures, run 6 is the 

base simulation file. 

 

Figure 5-37: Sensitivity of fracture porosity on cumulative production of oil 1. 
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Figure 5-38: Sensitivity of fracture porosity on cumulative production of oil 2. 

 

Figure 5-39: Sensitivity of fracture porosity on cumulative production of oil 3. 
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Figure 5-40: Sensitivity of fracture porosity on cumulative production of oil 4. 

 

Figure 5-41: Sensitivity of fracture porosity on cumulative production of oil 5. 
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It can be observed from the plots above that fracture porosity has significant 

effect on cumulative production. This effect cannot be clearly seen in Figures 5-40 & 5-

41 because the scale is in the order of one million barrels and the difference between 

various runs is in the order of 10
5
 barrels. 

5.6.5 Sensitivity of Fracture Spacing 

Figures 5-42, 5-43, 5-44, 5-45 & 5-46 show the sensitivity of fracture spacing on 

cumulative production for oils 1, 2, 3, 4 & 5 respectively. In all these figures, run 6 is the 

base simulation file. 

 

Figure 5-42: Sensitivity of fracture spacing on cumulative production of oil 1. 
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Figure 5-43: Sensitivity of fracture spacing on cumulative production of oil 2. 

 

Figure 5-44: Sensitivity of fracture spacing on cumulative production of oil 3. 
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Figure 5-45: Sensitivity of fracture spacing on cumulative production of oil 4. 

 

Figure 5-46: Sensitivity of fracture spacing on cumulative production of oil 5. 
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It can be observed from plots above that fracture spacing does not have a very 

significant effect on cumulative production of any of the oils.  

5.6.6 Sensitivity of Initial Oil Saturation (IOS) 

Figures 5-47, 5-48, 5-49, 5-50 & 5-51 show the sensitivity of initial oil saturation 

on cumulative production for oils 1, 2, 3, 4 & 5 respectively. In all these figures, run 6 is 

the base simulation file. 

 

Figure 5-47: Sensitivity of IOS on cumulative production of oil 1. 
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Figure 5-48: Sensitivity of IOS on cumulative production of oil 2. 

 

Figure 5-49: Sensitivity of IOS on cumulative production of oil 3. 
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Figure 5-50: Sensitivity of IOS on cumulative production of oil 4. 

 

Figure 5-51: Sensitivity of IOS on cumulative production of oil 5. 
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It can be observed from plots above that initial oil saturation has a very significant 

effect on cumulative production of all the oils. As a reservoir has more initial oil 

saturation more oil is produced from the reservoir. As we move from oil 1 to oil 4 it can 

be observed that more oil is produced from the reservoir as the oil saturation increases. 

However, as we move to oil 5 the increase in production at the end of all cycles is not as 

significant as oil 4. The possible reason for this could be that in this project the 

production period is constant at 550 days/cycle. If the production period was varied 

reservoir containing oil 5 would have produced more for longer periods. 

5.6.7 Sensitivity of Initial Pressure  

Figures 5-52, 5-53, 5-54, 5-55 & 5-56 show the sensitivity of initial pressure on 

cumulative production for oils 1, 2, 3, 4 & 5 respectively. In all these figures, run 6 is the 

base simulation file. 
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Figure 5-52: Sensitivity of initial pressure on cumulative production of oil 1. 

 

Figure 5-53: Sensitivity of initial pressure on cumulative production of oil 2. 
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Figure 5-54: Sensitivity of initial pressure on cumulative production of oil 3. 

 

Figure 5-55: Sensitivity of initial pressure on cumulative production of oil 4. 
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Figure 5-56: Sensitivity of initial pressure on cumulative production of oil 5. 

 

It can be observed from plots above that initial pressure has more effect on oil 1 

than any other oils. For other oils the increase in initial pressure did not have much effect 

on cumulative production. 

5.6.8 Sensitivity of Initial Temperature  

Figures 5-57, 5-58, 5-59, 5-60 & 5-61 show the sensitivity of initial temperature 

on cumulative production for oils 1, 2, 3, 4 & 5 respectively. In all these figures, run 6 is 

the base simulation file. 
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Figure 5-57: Sensitivity of initial temperature on cumulative production of oil 1. 

 

Figure 5-58: Sensitivity of initial temperature on cumulative production of oil 2. 
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Figure 5-59: Sensitivity of initial temperature on cumulative production of oil 3. 

 

Figure 5-60: Sensitivity of initial temperature on cumulative production of oil 4. 
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Figure 5-61: Sensitivity of initial temperature on cumulative production of oil 5. 

 

It can be observed from plots above that initial temperature of reservoir has 

significant effect on cumulative production of heavier oils. Even though the viscosity of 

oil 1 is high at room temperature, its effect on production is determined by its viscosity at 

reservoir temperature. Oil 1 has a viscosity of 5800 cp at 75 F, but at a reservoir 

temperature of 240 F, its viscosity is only 17 cp. For oil 5 the drop in viscosity of oil at 

higher temperatures is not as significant as other oils. Hence the effect of initial 

temperature is not very pronounced. 
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5.6.9 Sensitivity of Matrix Permeability 

Figures 5-62, 5-63, 5-64, 5-65 & 5-66 show the sensitivity of matrix permeability 

on cumulative production for oils 1, 2, 3, 4 & 5 respectively. In all these figures, run 6 is 

the base simulation file. 

 

Figure 5-62: Sensitivity of matrix permeability on cumulative production of oil 1. 
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Figure 5-63: Sensitivity of matrix permeability on cumulative production of oil 2. 

 

Figure 5-64: Sensitivity of matrix permeability on cumulative production of oil 3. 
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Figure 5-65: Sensitivity of matrix permeability on cumulative production of oil 4. 

 

Figure 5-66: Sensitivity of matrix permeability on cumulative production of oil 5. 
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It can be observed from above plots that the effect of matrix permeability on 

cumulative production is insignificant. This is true irrespective of the oil in the reservoir. 

5.6.10 Sensitivity of Matrix Porosity 

Figures 5-67, 5-68, 5-69, 5-70 & 5-71 show the sensitivity of matrix porosity on 

cumulative production for oils 1, 2, 3, 4 & 5 respectively. In all these figures, run 6 is the 

base simulation file. 

 

Figure 5-67: Sensitivity of matrix porosity on cumulative production of oil 1. 
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Figure 5-68: Sensitivity of matrix porosity on cumulative production of oil 2. 

 

Figure 5-69: Sensitivity of matrix porosity on cumulative production of oil 3. 
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Figure 5-70: Sensitivity of matrix porosity on cumulative production of oil 4. 

 

Figure 5-71: Sensitivity of matrix porosity on cumulative production of oil 5. 
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It can be observed from plots above that the effect of matrix porosity on 

cumulative production is negligible. This is true for all the oils. 

5.6.11 Sensitivity of Steam Injection Rate (SIR) 

Figures 5-72, 5-73, 5-74, 5-75 & 5-76 show the sensitivity of steam injection rate 

on cumulative production for oils 1, 2, 3, 4 & 5 respectively. In all these figures, run 6 is 

the base simulation file. 

 

Figure 5-72: Sensitivity of SIR on cumulative production of oil 1. 
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Figure 5-73: Sensitivity of SIR on cumulative production of oil 2. 

 

Figure 5-74: Sensitivity of SIR on cumulative production of oil 3. 
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Figure 5-75: Sensitivity of SIR on cumulative production of oil 4. 

 

Figure 5-76: Sensitivity of SIR on cumulative production of oil 5. 
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It can be observed from the plots above that steam injection has small effect on 

cumulative production of oil. As we move from oil 1 to oil 5 the effect of steam injection 

becomes significant. But in all the oils the cumulative production decreases as we inject 

more steam at same quality and temperature. The possible reason for this could be that as 

more steam is injected at same quality, temperature and soaking period, more condensed 

steam is produced along with oil during production period – thereby reducing the 

cumulative production at the end of four cycles. 

  5.6.12 Sensitivity of Steam Quality 

Figures 5-77, 5-78, 5-79, 5-80 & 5-81 show the sensitivity of steam injection rate 

on cumulative production for oils 1, 2, 3, 4 & 5 respectively. In all these figures, run 6 is 

the base simulation file. 

 

Figure 5-77: Sensitivity of steam quality on cumulative production of oil 1. 
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Figure 5-78: Sensitivity of steam quality on cumulative production of oil 2. 

 

Figure 5-79: Sensitivity of steam quality on cumulative production of oil 3. 
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Figure 5-80: Sensitivity of steam quality on cumulative production of oil 4. 

 

Figure 5-81: Sensitivity of steam quality on cumulative production of oil 5. 

 

 



107 

 

It can be observed from plots above that steam quality has a very small effect on 

cumulative production of oil. This is true for all the oils in the reservoir. The possible 

reason for this could be that at steam temperature of 525 F the enthalpy of steam does not 

vary significantly as the steam quality is varied between 0.7-1.  

5.6.13 Sensitivity of Steam Temperature 

Figures 5-82, 5-83, 5-84, 5-85 & 5-86 show the sensitivity of steam injection rate 

on cumulative production for oils 1, 2, 3, 4 & 5 respectively. In all these figures, run 6 is 

the base simulation file. 

 

Figure 5-82: Sensitivity of steam temperature on cumulative production of oil 1. 
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Figure 5-83: Sensitivity of steam temperature on cumulative production of oil 2. 

 

Figure 5-84: Sensitivity of steam temperature on cumulative production of oil 3. 
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Figure 5-85: Sensitivity of steam temperature on cumulative production of oil 4. 

 

Figure 5-86: Sensitivity of steam temperature on cumulative production of oil 5. 
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It can be observed from plots above that steam temperature has almost no effect 

on cumulative production. This is true for all the oils. The possible reason for this could 

be that, as the soaking period is constant at 10 days/cycle in this project, there was not 

sufficient time for the thermal gradients to equalize at higher steam temperatures. Hence 

we observe similar production profile for all steam temperatures irrespective of the oil. 

5.6.14 Sensitivity of Thickness 

Figures 5-87, 5-88, 5-89, 5-90 & 5-91 show the sensitivity of steam injection rate 

on cumulative production for oils 1, 2, 3, 4 & 5 respectively. In all these figures, run 6 is 

the base simulation file. 

 

Figure 5-87: Sensitivity of thickness on cumulative production of oil 1. 
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Figure 5-88: Sensitivity of thickness on cumulative production of oil 2. 

 

Figure 5-89: Sensitivity of thickness on cumulative production of oil 3. 
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Figure 5-90: Sensitivity of thickness on cumulative production of oil 4. 

 

Figure 5-91: Sensitivity of thickness on cumulative production of oil 5. 
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It can be observed from plots above that thickness has a significant effect on 

cumulative production. As the thickness of the reservoir increases, the production 

increases. This is true for all the oils. Note that for oils 4 and 5 the scale is in million 

barrels of oil. Hence the curves are not as far apart as in oils 1, 2 and 3. The obvious 

reason why thickness effects the cumulative production is that, increase in thickness 

amounts to increase in original oil in place. The second reason is that if we assume heat 

losses only through overburden and underburden of the reservoir, thick reservoirs lose 

less heat compared to thin reservoirs. That amounts to more recovery from thick 

reservoirs under same operating conditions even when the original oil in place is the 

same. It is a common practice to perform steam injection operations in thick reservoirs 

and non-thermal EOR operations in thin reservoirs. 

5.7 Comparison between commercial simulator and GUI 

A GUI was developed to integrate all the five networks under a single window. 

Appendix A gives a description of working of the GUI. A comparison was made between 

the GUI and the commercial simulator on time taken to run a sample. On a 64 bit 

Windows 7 operating system with Intel Core ™ i7-2600 CPU @ 2.4 GHZ and 8 GB 

RAM, while the commercial simulator took around 2 minutes to run, the GUI took 

around 5 seconds to report the output.    
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Chapter 6 

 

Conclusions and Recommendations   

6.1 Conclusions 

1. Artificial neural networks were successfully developed for five oils under 

study. As shown in Appendix A, a GUI was developed to integrate all the 

neural networks under a single window. The GUI thus mimics the 

commercial reservoir simulator within the assumptions stated above.  

2. The comparison of results between the commercial simulator and ANN for 

all testing samples could not be presented. Only the best and worst 

predictions were presented in addition to the error frequency of testing 

points.  

3. From sensitivity analysis it can be concluded that certain variables affect 

the output (cumulative production from each cycle) more than others. 

These are initial oil saturation (Soi), initial temperature (Ti) and thickness of 

reservoir (h). The higher the value of these variables the higher is the 

production from the reservoir.  

4. The viscosity of oil plays an important role in production of oil from the 

reservoirs. The fact that more oil can be recovered from light oil reservoirs 

compared to heavy oil reservoirs under similar operating conditions can be 

seen here.  

5. It can be concluded that ANN predicts better when the input of testing 

sample is at middle or at higher end of input range. For inputs at lower end 
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the prediction is not very good. This is particularly true for some of the 

more important variables such as Soi, Ti, and h. This can be seen inferred 

from figures 5-1, 5-5, 5-9, 5-13 and 5-17.  

6. It can be observed that for oils 1 and 2 the production per each cycle is 

around 10
4
-10

5
 barrels and the production per each cycle for oils 4 and 5 is 

of the order of 10
5
-10

6
 barrels. 10% error of 10

4
 barrels is only 1000 barrels 

while 10% error of 10
6
 barrels is around 10

5
 barrels. Hence it can be 

concluded that though the error percentage is higher for high viscosity oils 

the absolute difference between ANN prediction and result of commercial 

simulator is low. 

7. A comparison of time taken to run the simulation between GUI and the 

commercial simulator showed that GUI predicts the output faster than the 

simulator. However, it should be noted that the GUI makes this prediction 

only for the specific problem stated in this work. 

8. Error filter was implemented to improve the result of original artificial 

neural networks. However, for this problem it was found that the use of 

error filter did not yield expected results. 
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6.2 Recommendations  

This work can be extended further by removing some of the assumptions made. In 

this work the number of cycles was fixed to four. Also the injection, soaking and 

production periods were kept constant. Hence the future work for this project would be to 

develop an expert system for variable injection, soaking and production periods and also 

variable number of cycles.  

Also in this work a vertical well was used. A lot of current research on cyclic 

steam injection is being done using horizontal and multilateral wells. Hence this work can 

be extended by developing an expert system for cyclic steam injection processes using 

horizontal wells. 

 

 

 

 

 

 

 

 



117 

 

 

Chapter 7 

 

References  

 Artun, E., Ertekin, T. and Watson, R. 2008. Optimized Design of Cyclic 

Pressure Pulsing in a Depleted, Naturally Fractured Reservoir. Paper SPE 

117762-MS presented at SPE Eastern Regional/AAPG Eastern Section 

Joint Meeting, Pittsburgh, Pennsylvania, USA, 11-15 October. 

 Ayala, Luis F., Ertekin, T. and Adewumi, M. 2007. Study of 

Gas/Condensate Reservoir Exploitation Using Neurosimulation. SPE Res 

Eval &Eng 10 (2): 140-149. 

 Aziz, K., Ramesh, A.B. and Woo, P.T. 1987. Fourth SPE Comparative 

Solution Project: Comparison of Steam Injection Simulators. J. Pet Tech 

(December 1987): 1576-1584. SPE-13510. 

 Babadagli, T. 2002. Evaluation of EOR methods for heavy-oil recovery in 

naturally fractured reservoirs. Journal of Petroleum Science and 

Engineering 37 (2003): 25-37. 

 Bansal, Y. 2009. Conducting In-Situ Combustion Tube Experiments using 

Artificial Neural Networks, M.S. Thesis, The Pennsylvania State 

University, State College, Pennsylvania. 

 Boberg, Thomas C. 1988. Thermal Methods of Oil Recovery. An Exxon 

Monograph. USA: John Wiley & Sons, 1, 13. 



118 

 

 Bose, N.K., Liang, P. 1996. Neural Network Fundamentals with Graphs, 

Algorithms and Applications. USA: McGraw-Hill, Inc. 

 Briggs, P.J. 1989. A Simulator for the Recovery of Heavy Oil from 

Naturally Fractured Reservoirs Using Cyclic Steam Injection. Paper SPE 

17954 presented at the SPE Middle East Oil Technical Conference and 

Exhibition, Manama, Bahrain, 11-14 March. 

 Browne, A. 1997. Neural Network Analysis, Architectures and 

Applications. Bristol, UK: J W Arrowsmith. 

 Chen, W.H., Wasserman, M.L. and Fitzmorris, R.E.1987. A Thermal 

Simulator for Naturally Fractured Reservoirs. Paper SPE 16008 presented 

at the Ninth SPE Symposium on Reservoir Simulation, San Antonio, 

Texas, 1-4 February.  

 Doraisamy, H., Ertekin, T. and Grader, A.S. 1998. Key Parameters 

Controlling the Performance of Neuro-Simulation Applications in Field 

Development. Paper SPE 51079-MS presented at SPE Eastern Regional 

Meeting, Pittsburgh, Pennsylvania, 9-11 November. 

 Ertekin, T., Abou-Kassem, J.H. and King, G.R. 2001. Basic Applied 

Reservoir Simulation. Richardson, Texas, USA: SPE. 

 Fausett, Laurene V. 1994. Fundamentals of Neural Networks. Upper 

Saddle River, New Jersey: Prentice Hall. 

 Gilman, J.R., Kazemi, H. 1983. Improvements in Simulation of Naturally 

Fractured Reservoirs. SPE J (August 1983): 695-707. SPE-10511. 



119 

 

 Guler, B., Ertekin, T. and Grader, A.S. 2003. An Artificial Neural 

Network Based Relative Permeability Predictor. Journal of Canadian 

Petroleum Technology 42 (4): 49-57. 

 Kulga, I.B. 2010. Development of an Artificial Neural Network for 

Hydraulically Fractured Horizontal Wells in Tight Gas Sands, M.S. 

Thesis, The Pennsylvania State University, State College, Pennsylvania. 

 Lake, Larry W. 1989. Enhanced Oil Recovery. Englewood Cliffs, New 

Jersey: Prentice Hall, 1, 451-452. 

 Li, M., Astete, E. and Wang, H. 2010. A Simulation Study of a Cyclic 

Steam Stimulation Pilot in a Deep Carbonate Heavy Oil Reservoir in 

Oudeh Field, Syria. Paper CSUG/SPE 137603 presented at the Canadian 

Unconventional Resources & International Petroleum Conference, 

Calgary, Alberta, Canada, 19-21 October.  

 Michael, P. 1982. Thermal Recovery. New York, Dallas, USA: SPE of 

AIME. 

 Priddy, Kevin L. and Keller, Paul E. 2005. Artificial Neural Networks: An 

Introduction. Bellingham, Washington USA: SPIE Press. 

 Reis, J.C. 1992. An Analysis of Oil Expulsion Mechanisms from Matrix 

Blocks during Steam Injection in Naturally Fractured Reservoirs. IN SITU 

16 (1): 43-73. 

 Shahin, G.T. Jr. 2006. The Physics of Steam Injection in Fractured 

Carbonate Reservoirs: Engineering Development Options That Minimize 



120 

 

Risk. Paper SPE 102186 presented at the 2006 Annual Technical 

Conference and Exhibition, San Antonio, Texas, 24-27 September.  

 STARS Advanced Process and Thermal Reservoir Simulator, Version 

2008 User Guide. 2008. Calgary, Alberta: CMG. 

 Srinivasan, K. and Ertekin, T. 2008. Development and Testing of an 

Expert System for Coalbed Methane Reservoirs Using Artificial Neural 

Networks. Paper SPE 119935-MS presented at SPE Eastern 

Regional/AAPG Eastern Section Joint Meeting, Pittsburgh, Pennsylvania, 

USA, 11-15 October. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



121 

 

Appendix A 

 

Graphical User Interface (GUI) 

 

The five artificial neural networks developed in this work were integrated into a 

single window by developing a GUI. As the range of inputs for all the expert systems is 

same the process of integrating them became relatively simpler. Various snapshots of the 

GUI are presented in this section. 

Figure A-1 is a snapshot of the GUI when it is opened 

 

Figure A-1: Snapshot of GUI when it is opened. 
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As shown in Figure A-1 the user has an option to choose from five different oils. 

When the user selects a radio button the corresponding oil is selected. Figure A-2 shows a 

snapshot of GUI after a radio button is selected. 

 

Figure A-2: Snapshot of GUI after reservoir fluid is selected. 

One can observe that there are four options at the bottom of GUI. The example 

button loads a valid input sample. A valid input sample is one in which all the reservoir 

properties and design characteristics are within the range specified in the figure. Figure 

A-3 is a snapshot of GUI after Example button is selected. 
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Figure A-3: Snapshot of GUI after Example button is selected. 

After selecting the Example button, the user has option to change reservoir 

properties or design characteristics to any other value within the range. In fact the user 

need not click on Example button and can directly enter a valid input sample. If the user 

does not enter a property say fracture spacing within the range an error message pops up. 

Figure A-4 is a snapshot of the error message window.  
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Figure A-4: Snapshot of error message when input is out of range. 

 

If the user enters an extreme value of an input say thickness, a warning message 

pops out. The valid input range for thickness is 20-200 ft. If 20 ft is entered a warning 

message as shown in Figure A-5 appears. If other the extreme 200 ft is entered a warning 

message as shown in Figure A-6 appears.  

 

 

Figure A-5: Snapshot of warning message when lowest possible input is chosen. 
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Figure A-6: Snapshot of warning message when highest possible input is chosen. 

 

After entering a valid input the user can click on Simulate button. By clicking 

Simulate button the neural network corresponding to the oil selected is activated and it 

predicts the output (cumulative production from each cycle). It also predicts the 

percentage recovery of original oil in place. Figure A-7 is a snapshot of GUI after 

Simulate button is selected. 
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Figure A-7: Snapshot of GUI after Simulate button is selected. 

 

The user can plot the cumulative production of each cycle. This can be done by 

clicking on plot button. After the plot button is selected a bar plot of cumulative 

production of each cycle is displayed on the GUI. Figure A-8 is a snapshot of GUI after 

plot button is selected. 
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Figure A-8: Snapshot of GUI after Plot button is selected. 

 

Finally the user can reset everything by selecting the Reset button. The GUI looks 

like Figure A-1 after reset button is selected. All the results and the plot are refreshed.    
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Appendix B 

 

MATLAB CODE FOR TRAINING ANN 

clear all 

close all 

clc 

format long 

 

%% load input and output files 

load INPUTimp.txt 

load prodcycleimp.txt 

 

%% Eigen values 

for i=1:length(INPUTimp(1,:)); 

    A1 = [INPUTimp(5,i) INPUTimp(6,i); INPUTimp(3,i) INPUTimp(4,i)]; 

    A2 = [INPUTimp(1,i) INPUTimp(10,i); INPUTimp(11,i) INPUTimp(14,i)]; 

    A3 = [INPUTimp(7,i) INPUTimp(8,i); INPUTimp(12,i) INPUTimp(13,i)]; 

    A4 = [INPUTimp(11,i) INPUTimp(10,i); INPUTimp(14,i) INPUTimp(9,i)]; 

    A5 = [INPUTimp(2,i) INPUTimp(4,i); INPUTimp(6,i) INPUTimp(9,i)]; 

  

    INPUTimp(m+1,i) = max(eig(A1)); 

    INPUTimp(m+2,i) = max(eig(A2)); 

    INPUTimp(m+3,i) = max(eig(A3)); 

    INPUTimp(m+4,i) = max(eig(A4)); 

    INPUTimp(m+5,i) = max(eig(A5)); 

     

end 

 

%% 

P = INPUTimp;  

T = prodcycleimp; 

  

[P2,ps2] = removeconstantrows(P); 

  

%normalising the data 

[Pn,ps] = mapminmax(P2,-1,1);   % gives all values between -1 & 1 

[Tn,ts] = mapminmax(T,-1,1);   % gives all values between -1 & 1 

  

[mi,ni] = size(Pn); 

[mo,no] = size(Tn); 
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[Pn_train,Pn_val,Pn_test,trainInd,valInd,testInd] = dividerand(Pn,0.80,0.1,0.1);    

%Assigns the number of neurons for training, validation&           testing 

[Tn_train,Tn_val,Tn_test] = divideind(Tn,trainInd,valInd,testInd); 

  

  

val.T = Tn_val; 

val.P = Pn_val; 

test.T = Tn_test; 

test.P = Pn_test; 

  

%Initiating network parameters 

NNeu0 = 61;   

NNeu1 = 47;   

NNeu2 = 23;   

NNeu3 = 11; 

NNeu4 = 9; 

net = 

newff(Pn,Tn,[NNeu0,NNeu1,NNeu2,NNeu3,NNeu4],{'tansig','tansig','tansig','tansig','pur

elin'},'trainscg','learngdm','msereg'); 

 

  

%setting training parameters for the network 

  

net.trainParam.goal = 0.00005; %accuracy within this range 

net.trainParam.epochs = 10000; % number of iteration sets 

net.trainParam.show = 1; 

net.trainParam.max_fail = 1000; 

net.trainParam.mem_reduc = 50; %to reduce memory requirements 

  

%starting training the network 

[net,tr] = train(net,Pn_train,Tn_train,[],[],test,val); 

plotperf(tr) 

 

%%  

%getting data from the trained network 

Tn_train_ann = sim(net,Pn_train); 

Tn_test_ann = sim(net,Pn_test); 

Tn_val_ann = sim(net,Pn_val); 

  

  

[m_Te,n_Te] = size(Tn_test); 

NP_test = 1:n_Te; 

%denormalising the data sets obtained 

%output reversal 

T_train = mapminmax('reverse',Tn_train,ts); 
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T_test = mapminmax('reverse',Tn_test,ts); 

T_train_ann = mapminmax('reverse',Tn_train_ann,ts); 

T_test_ann = mapminmax('reverse',Tn_test_ann,ts); 

  

T_val = mapminmax('reverse',Tn_val,ts); 

T_val_ann = mapminmax('reverse',Tn_val_ann,ts); 

  

%input reversal 

P_train = mapminmax('reverse',Pn_train,ps); 

P_val = mapminmax('reverse',Pn_val,ps); 

P_test = mapminmax('reverse',Pn_test,ps); 

 

%% error estimation 

% A = abs(T_test-T_test_ann); 

A = (T_test-T_test_ann); 

B= A./T_test; 

error_test = B.*100; 

mean(mean(abs(error_test))) 

for i=1:size(error_test,1) 

    ER(i) = mean(abs(error_test(i,:))); 

end 

  

A2 = (T_train-T_train_ann); 

B2= A2./T_train; 

error_train = B2.*100; 

mean(mean(abs(error_train))) 
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Appendix C 

 

MATLAB CODE FOR GENERATING BATCH FILE 

function runmaker() 
  
clc 
clear all 
range(1,1) = 5; range(1,2) = 40;                   % area (acres) 
range(2,1) = 4; range(2,2) = 40;                   % fracture spacing (ft)    
range(3,1) = 0.15; range(3,2) = 0.30;              % matrix porosity   
range(4,1) = 0.01; range(4,2) = 0.05;              % fracture porosity  
range(5,1) = 10; range(5,2) = 200;                 % matrix permeability (md) 
range(6,1) = 100; range(6,2) = 2000;               % fracture permeability (md)  
range(7,1) = 450; range(7,2) = 600;                % steam temperature (F) 
range(8,1) = 0.7; range(8,2) = 1;                  % steam quality   
range(9,1) = 20; range(9,2) = 200;                 % thickness (ft) 
range(10,1) = 120; range(10,2) = 240;              % Initial temperature of reservoir (F) 
range(11,1) = 0.4; range(11,2) = 0.75;             % Initial oil saturation 
range(12,1) = 700; range(12,2) = 5000;             % Steam Injection Rate (BPD of CWE) 
range(13,1) = 17; range(13,2) = 100;               % Bottom Hole Pressure (psia) 
range(14,1) = 75; range(14,2) = 750;               % Initial Pressure of formation (psia)    
INPUT(1,:) = range(1,1) + (range(1,2)-range(1,1)).*rand(300,1); 
INPUT(2,:) = range(2,1) + (range(2,2)-range(2,1)).*rand(300,1); 
INPUT(3,:) = range(3,1) + (range(3,2)-range(3,1)).*rand(300,1); 
INPUT(4,:) = range(4,1) + (range(4,2)-range(4,1)).*rand(300,1); 
INPUT(5,:) = range(5,1) + (range(5,2)-range(5,1)).*rand(300,1); 
INPUT(6,:) = range(6,1) + (range(6,2)-range(6,1)).*rand(300,1); 
INPUT(7,:) = range(7,1) + (range(7,2)-range(7,1)).*rand(300,1); 
INPUT(8,:) = range(8,1) + (range(8,2)-range(8,1)).*rand(300,1); 
INPUT(9,:) = range(9,1) + (range(9,2)-range(9,1)).*rand(300,1); 
INPUT(10,:) = range(10,1) + (range(10,2)-range(10,1)).*rand(300,1); 
INPUT(11,:) = range(11,1) + (range(11,2)-range(11,1)).*rand(300,1); 
INPUT(12,:) = range(12,1) + (range(12,2)-range(12,1)).*rand(300,1); 
INPUT(13,:) = range(13,1) + (range(13,2)-range(13,1)).*rand(300,1); 
INPUT(14,:) = range(14,1) + (range(14,2)-range(14,1)).*rand(300,1); 
 

forCMG='CMGbatch_file.bat'; 

  

fidbat=fopen(forCMG,'wt'); 

     

  

  

for i=1:size(INPUT,2) 
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    temp = ['run' num2str(i) '.dat']; 

    fid = fopen(temp,'w'); 

    nb=91;                             % number of radial blocks 

    rw=0.3;                            % radius of well 

    height=INPUT(9,i)/4;               % height of block 

    area=INPUT(1,i); 

    re=sqrt(area*43560/pi); 

    wi= 2*pi*INPUT(5,i)*height/(log(0.5*3/0.3)); 

    fprintf(fid,'**  ==============  INPUT/OUTPUT CONTROL  

======================\n\n'); 

  

fprintf(fid,'RESULTS SIMULATOR STARS\n\n'); 

fprintf(fid,'*INTERRUPT *STOP\n\n'); 

fprintf(fid,'*INUNIT *FIELD \n'); 

fprintf(fid,'*OUTPRN *GRID *PRES *SW *SO *SG *TEMP *Y *X *W *SOLCONC 

*OBHLOSS *VISO *VISG\n'); 

fprintf(fid,'*OUTPRN *WELL *ALL\n'); 

fprintf(fid,'*WRST 200\n'); 

fprintf(fid,'*WPRN *GRID 200\n'); 

fprintf(fid,'*WPRN *ITER 200\n'); 

fprintf(fid,'OUTSRF SPECIAL BLOCKVAR CCHLOSS 1,1,4\n'); 

fprintf(fid,'               MATBAL  WELL %s\n','''OIL'''); 

fprintf(fid,'               MATBAL  WELL %s\n','''Water'''); 

fprintf(fid,'OUTSRF GRID PRES SG SO TEMP\n\n'); 

fprintf(fid,'**  ==============  GRID AND RESERVOIR DEFINITION  

=================\n\n'); 

fprintf(fid,'GRID RADIAL 91 1 4 *RW 0.3     \n\n'); 

fprintf(fid,'KDIR UP\n'); 

fprintf(fid,'DI IVAR'); 

  

for j=1:nb 

    alpha=(re/rw)^(1/nb); 

    if j==1 

    ri(j)=rw*(log(alpha))/(1-1/alpha); 

    else 

    ri(j)=ri(j-1)*alpha; 

    end 

    fprintf(fid,' %f',ri(j)); 

    if rem(j,13)==0 

    fprintf(fid,'\n'); 

    end 

end 

fprintf(fid,'\nDJ CON 360  **  Full circle\n'); 
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fprintf(fid,'DK KVAR %f %f %f 

%f\n',INPUT(9,i)/4,INPUT(9,i)/4,INPUT(9,i)/4,INPUT(9,i)/4); 

fprintf(fid,'NULL MATRIX CON            1\n'); 

fprintf(fid,'NULL FRACTURE CON          1\n\n'); 

fprintf(fid,'DUALPOR\n\n'); 

fprintf(fid,'DIFRAC CON %f\n',INPUT(2,i)); 

fprintf(fid,'DJFRAC CON %f\n',INPUT(2,i)); 

fprintf(fid,'DKFRAC CON %f\n',INPUT(2,i)); 

fprintf(fid,'\nPOR MATRIX CON %f\n',INPUT(3,i)); 

fprintf(fid,'\nPOR FRACTURE CON %f\n',INPUT(4,i)); 

fprintf(fid,'\nPERMI MATRIX CON %f\n',INPUT(5,i)); 

fprintf(fid,'PERMJ MATRIX CON %f\n',INPUT(5,i)); 

fprintf(fid,'PERMK MATRIX CON %f\n',INPUT(5,i)); 

fprintf(fid,'\nPERMI FRACTURE CON %f\n',INPUT(6,i)); 

fprintf(fid,'PERMJ FRACTURE CON %f\n',INPUT(6,i)); 

fprintf(fid,'PERMK FRACTURE CON %f\n',INPUT(6,i)); 

fprintf(fid,'\nPINCHOUTARRAY CON  1\n'); 

fprintf(fid,'\nEND-GRID\n'); 

fprintf(fid,'\nROCKTYPE 1\n'); 

fprintf(fid,'\n*CPOR 5e-5\n'); 

fprintf(fid,'*PRPOR 75\n'); 

fprintf(fid,'*ROCKCP 35\n'); 

fprintf(fid,'*THCONR 24\n'); 

fprintf(fid,'*THCONW 24\n'); 

fprintf(fid,'*THCONO 24\n'); 

fprintf(fid,'*THCONG 24\n'); 

fprintf(fid,'*HLOSSPROP  *OVERBUR 35 24  *UNDERBUR 35 24\n'); 

fprintf(fid,'\n\n**  ==============  FLUID DEFINITIONS  

======================\n\n'); 

fprintf(fid,'*MODEL 2 2 2   ** Components are water and dead oil.  Most water\n'); 

fprintf(fid,'               ** properties are defaulted (=0).  Dead oil K values\n'); 

fprintf(fid,'               ** are zero, and no gas properties are needed.\n'); 

fprintf(fid,'*COMPNAME       %s    %s\n','''Water''','''OIL'''); 

fprintf(fid,'**               -----    -------\n'); 

fprintf(fid,'     *CMM        18.02      600\n'); 

fprintf(fid,'     *PCRIT      3206.2      0        ** These four properties\n'); 

fprintf(fid,'     *TCRIT      705.4       0        ** are for the gas phase.\n'); 

fprintf(fid,'     *AVG        1.13e-5     0        ** The dead oil component does\n'); 

fprintf(fid,'     *BVG        1.075       0        ** not appear in the gas phase.\n'); 

fprintf(fid,'\n     *MOLDEN     0        0.10113\n'); 

fprintf(fid,'     *CP         0        5.e-6\n'); 

fprintf(fid,'     *CT1        0        3.8e-4\n'); 

fprintf(fid,'     *CPL1       0        300\n'); 

fprintf(fid,'\n*VISCTABLE\n'); 

fprintf(fid,'**      Temp\n'); 
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fprintf(fid,'          75     0        5780\n'); 

fprintf(fid,'         100     0        1380\n'); 

fprintf(fid,'         150     0         187\n'); 

fprintf(fid,'         200     0          47\n'); 

fprintf(fid,'         250     0          17.4\n'); 

fprintf(fid,'         300     0           8.5\n'); 

fprintf(fid,'         350     0           5.2\n'); 

fprintf(fid,'         500     0           2.5\n'); 

fprintf(fid,'         700     0           2.5\n'); 

fprintf(fid,'\n*PRSR 14.7\n'); 

fprintf(fid,'*TEMR 60\n'); 

fprintf(fid,'*PSURF 14.7\n'); 

fprintf(fid,'*TSURF 60\n'); 

fprintf(fid,'\n**  ==============  ROCK-FLUID PROPERTIES  

======================\n'); 

fprintf(fid,'\n*ROCKFLUID\n'); 

fprintf(fid,'RPT 1\n'); 

fprintf(fid,'\n*SWT   **  Water-oil relative permeabilities\n'); 

fprintf(fid,'\n**   Sw        Krw        Krow\n'); 

fprintf(fid,'**  ----     --------    -------\n'); 

fprintf(fid,'    0.25     0.0         0.4\n'); 

fprintf(fid,'    0.30     0.0002      0.3361\n'); 

fprintf(fid,'    0.35     0.001134    0.2777\n'); 

fprintf(fid,'    0.40     0.003125    0.225\n'); 

fprintf(fid,'    0.45     0.00641     0.17777\n'); 

fprintf(fid,'    0.50     0.01112     0.1361\n'); 

fprintf(fid,'    0.55     0.01768     0.1\n'); 

fprintf(fid,'    0.60     0.02598     0.0694\n'); 

fprintf(fid,'    0.65     0.03628     0.0444\n'); 

fprintf(fid,'    0.70     0.04871     0.025\n'); 

fprintf(fid,'    0.75     0.06339     0.01111\n'); 

fprintf(fid,'    0.80     0.08045     0.00277\n'); 

fprintf(fid,'    0.85     0.1         0.0\n'); 

fprintf(fid,'\n*SLT   **  Liquid-gas relative permeabilities\n'); 

fprintf(fid,'\n**   Sl        Krg         Krog\n'); 

fprintf(fid,'**  ----     -------     -------\n'); 

fprintf(fid,'    0.25     0.2         0.0\n'); 

fprintf(fid,'    0.35     0.15813     0.0\n'); 

fprintf(fid,'    0.37     0.15016     0.000379\n'); 

fprintf(fid,'    0.40     0.13846     0.002367\n'); 

fprintf(fid,'    0.42     0.13084     0.004639\n'); 

fprintf(fid,'    0.45     0.11968     0.009467\n'); 

fprintf(fid,'    0.47     0.11243     0.013633\n'); 

fprintf(fid,'    0.50     0.10184     0.021302\n'); 

fprintf(fid,'    0.52     0.09498     0.027361\n'); 
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fprintf(fid,'    0.55     0.08498     0.037870\n'); 

fprintf(fid,'    0.57     0.07853     0.045822\n'); 

fprintf(fid,'    0.60     0.06917     0.05917\n'); 

fprintf(fid,'    0.62     0.06316     0.06901\n'); 

fprintf(fid,'    0.65     0.05449     0.08520\n'); 

fprintf(fid,'    0.67     0.04895     0.09694\n'); 

fprintf(fid,'    0.70     0.04102     0.11597\n'); 

fprintf(fid,'    0.72     0.03600     0.12961\n'); 

fprintf(fid,'    0.75     0.02889     0.15147\n'); 

fprintf(fid,'    0.77     0.02445     0.16700\n'); 

fprintf(fid,'    0.80     0.01827     0.19171\n'); 

fprintf(fid,'    0.82     0.01450     0.20913\n'); 

fprintf(fid,'    0.85     0.00942     0.23668\n'); 

fprintf(fid,'    0.87     0.00646     0.25600\n'); 

fprintf(fid,'    0.90     0.00279     0.28639\n'); 

fprintf(fid,'    0.94     0.0         0.32956\n'); 

fprintf(fid,'    1.00     0.0         0.4\n'); 

fprintf(fid,'\n**  ==============  INITIAL CONDITIONS  

======================\n'); 

fprintf(fid,'\n*INITIAL\n'); 

fprintf(fid,'\n** Automatic static vertical equilibrium\n'); 

fprintf(fid,'VERTICAL DEPTH_AVE\n'); 

fprintf(fid,'REFPRES %f\n',INPUT(14,i)); 

fprintf(fid,'REFBLOCK 1 1 4\n'); 

fprintf(fid,'TEMP MATRIX CON          %f\n',INPUT(10,i)); 

fprintf(fid,'TEMP FRACTURE CON        %f\n',INPUT(10,i)); 

fprintf(fid,'SW MATRIX CON         %f\n',1-INPUT(11,i)); 

fprintf(fid,'SW FRACTURE CON         %f\n',1-INPUT(11,i)); 

fprintf(fid,'\n\n**  ==============  NUMERICAL CONTROL  

======================\n'); 

fprintf(fid,'\n*NUMERICAL   ** All these can be defaulted.  The definitions\n'); 

fprintf(fid,'             ** here match the previous data.\n'); 

fprintf(fid,'\n*SDEGREE GAUSS\n'); 

fprintf(fid,'*DTMAX 90\n'); 

fprintf(fid,'\n*NORM     *PRESS 200  *SATUR 0.2   *TEMP 180  *Y 0.2   *X 0.2\n'); 

fprintf(fid,'\n*RUN\n\n'); 

fprintf(fid,'**  ==============  RECURRENT DATA  

======================\n\n'); 

fprintf(fid,'**    The injection and production phases of the single cycling well\n'); 

fprintf(fid,'**  will be treated as two distinct wells which are in the same\n'); 

fprintf(fid,'**  location but are never active at the same time.  In the well data\n'); 

fprintf(fid,'**  below, both wells are defined immediately, but the producer is\n'); 

fprintf(fid,'**  shut in, to be activated for the drawdown.\n'); 

fprintf(fid,'\n\n*DATE 2011 2 1\n'); 

fprintf(fid,'\n   *DTWELL .02\n'); 
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fprintf(fid,'**    *WELL 1 %s *VERT 1 1\n','''Injector 1'''); 

fprintf(fid,'WELL  %s\n','''Injector 1'''); 

fprintf(fid,'   *INJECTOR *MOBWEIGHT %s\n','''Injector 1'''); 

fprintf(fid,'   *INCOMP WATER  1.0  0.0\n'); 

fprintf(fid,'   *TINJW %f\n',INPUT(7,i)); 

fprintf(fid,'   QUAL %f\n',INPUT(8,i)); 

fprintf(fid,'   *OPERATE      *BHP   1550     \n'); 

fprintf(fid,'   *OPERATE *MAX *STW   %f       \n',INPUT(12,i)); 

fprintf(fid,'PERF  WI  %s\n','''Injector 1'''); 

fprintf(fid,'**$ UBA    wi       Status  Connection\n'); 

fprintf(fid,'    1 1 4  %f  OPEN    FLOW-FROM  %s  REFLAYER\n',wi,'''SURFACE'''); 

fprintf(fid,'    1 1 3  %f  OPEN    FLOW-FROM  1\n',wi); 

fprintf(fid,'    1 1 2  %f  OPEN    FLOW-FROM  1\n',wi); 

fprintf(fid,'    1 1 1  %f  OPEN    FLOW-FROM  1\n',wi); 

fprintf(fid,'\n**    *WELL 2 %s *VERT 1 1\n','''Producer 1'''); 

fprintf(fid,'WELL  %s\n','''Producer 1'''); 

fprintf(fid,'   *PRODUCER %s\n','''Producer 1'''); 

fprintf(fid,'   *OPERATE      *STL    1000    \n'); 

fprintf(fid,'   *OPERATE *MIN *BHP    %f      \n',INPUT(13,i)); 

fprintf(fid,'\n**$          rad  geofac  wfrac  skin\n'); 

fprintf(fid,'GEOMETRY  K  0.3  0.5  1.  0\n'); 

fprintf(fid,'PERF  GEO  %s\n','''Producer 1'''); 

fprintf(fid,'**$ UBA    ff  Status  Connection\n'); 

fprintf(fid,'    1 1 4  1.  OPEN    FLOW-TO  %s  REFLAYER\n','''SURFACE'''); 

fprintf(fid,'    1 1 3  1.  OPEN    FLOW-TO  1\n'); 

fprintf(fid,'    1 1 2  1.  OPEN    FLOW-TO  2\n'); 

fprintf(fid,'    1 1 1  1.  OPEN    FLOW-TO  3\n'); 

fprintf(fid,'   ** Cycle No. 1  -  Injection\n'); 

fprintf(fid,'\n   *SHUTIN %s   ** Shut in producer\n','''Producer 1'''); 

fprintf(fid,'OUTSRF GRID PRES SG TEMP\n'); 

fprintf(fid,'\n*TIME 30\n'); 

fprintf(fid,'\n   *DTWELL 7\n'); 

fprintf(fid,'   ** Cycle No. 1  -  Soak\n'); 

fprintf(fid,'\n   *SHUTIN %s   ** Shut in injector\n','''Injector 1'''); 

fprintf(fid,'OUTSRF GRID SG TEMP\n'); 

fprintf(fid,'\n*TIME 40\n'); 

fprintf(fid,'\n   *DTWELL 1\n'); 

fprintf(fid,'   ** Cycle No. 1  -  Production\n'); 

fprintf(fid,'   *OPEN %s   ** Turn on producer\n','''Producer 1'''); 

fprintf(fid,'OUTSRF GRID PRES\n'); 

fprintf(fid,'\n*TIME 550\n'); 

fprintf(fid,'\n   *DTWELL .01\n'); 

fprintf(fid,'\n   ** Cycle No. 2  -  Injection\n'); 

fprintf(fid,'   *SHUTIN %s   ** Shut in producer\n','''Producer 1'''); 

fprintf(fid,'   *OPEN %s     ** Turn on injector\n','''Injector 1'''); 
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fprintf(fid,'OUTSRF GRID NONE\n'); 

fprintf(fid,'\n*TIME 580\n'); 

fprintf(fid,'\n   *DTWELL 7\n'); 

fprintf(fid,'\n   ** Cycle No. 2  -  Soak\n'); 

fprintf(fid,'   *SHUTIN %s   ** Shut in injector\n','''Injector 1'''); 

fprintf(fid,'\n*TIME 590\n'); 

fprintf(fid,'   *DTWELL .5\n'); 

fprintf(fid,'\n   ** Cycle No. 2  -  Production\n'); 

fprintf(fid,'  *OPEN %s    ** Turn on producer\n','''Producer 1'''); 

fprintf(fid,'\n*TIME 1140\n'); 

fprintf(fid,'\n   *DTWELL .002\n'); 

fprintf(fid,'\n   ** Cycle No. 3  -  Injection\n'); 

fprintf(fid,'\n   *SHUTIN %s    ** Shut in producer\n','''Producer 1'''); 

fprintf(fid,'   *OPEN %s      ** Turn on injector\n','''Injector 1'''); 

fprintf(fid,'OUTSRF GRID SG TEMP\n'); 

fprintf(fid,'\n*TIME 1170\n'); 

fprintf(fid,'\n   *DTWELL 7\n'); 

fprintf(fid,'   ** Cycle No. 3  -  Soak\n'); 

fprintf(fid,'\n   *SHUTIN %s   ** Shut in injector\n','''Injector 1'''); 

fprintf(fid,'OUTSRF GRID SG TEMP\n'); 

fprintf(fid,'\n*TIME 1180\n'); 

fprintf(fid,'\n   *DTWELL 1\n'); 

fprintf(fid,'   ** Cycle No. 3  -  Production\n'); 

fprintf(fid,'   *OPEN %s   ** Turn on producer\n','''Producer 1'''); 

fprintf(fid,'OUTSRF GRID SO\n'); 

fprintf(fid,'\n*TIME 1730\n'); 

fprintf(fid,'\n   *DTWELL .02\n'); 

fprintf(fid,'\n   ** Cycle No. 4  -  Injection\n'); 

fprintf(fid,'   *SHUTIN %s   ** Shut in producer\n','''Producer 1'''); 

fprintf(fid,'   *OPEN %s     ** Turn on injector\n','''Injector 1'''); 

fprintf(fid,'OUTSRF GRID SG TEMP\n'); 

fprintf(fid,'\n*TIME 1760\n'); 

fprintf(fid,'\n   *DTWELL 7\n'); 

fprintf(fid,'\n   ** Cycle No. 4  -  Soak\n'); 

fprintf(fid,'   *SHUTIN %s   ** Shut in injector\n','''Injector 1'''); 

fprintf(fid,'\n*TIME 1770\n'); 

fprintf(fid,'   *DTWELL 1\n'); 

fprintf(fid,'\n   ** Cycle No. 4  -  Production\n'); 

fprintf(fid,'  *OPEN %s    ** Turn on producer\n','''Producer 1'''); 

fprintf(fid,'OUTSRF GRID SO \n'); 

fprintf(fid,'\n*TIME 2320\n'); 

fprintf(fid,'STOP\n'); 

     

fclose(fid); 

%      temp = ['check' num2str(i) '.dat']; 
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    fprintf(fidbat,'%s','call "C:\Program Files 

(x86)\CMG\STARS\2009.11\Win_x64\EXE\st200911.exe" -f run'); 

    fprintf(fidbat,num2str(i)); 

    fprintf(fidbat,'%s\n','.dat');  

end 

  

fclose(fidbat); 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 


