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Abstract

Practical problems concerning the aeroacoustics of aircraft demand the use of unstruc-
tured grids, to handle the complex geometry boundaries. The work presented in this
thesis develops, implements and optimizes high order accurate algorithms on unstruc-
tured grids using Finite Element Methods. The focus of the applications is on problems
involving the propagation of sound in sheared mean flows. Methods are developed for
both time and frequency domain solutions of the linearized Euler equations in two spa-
tial dimensions. In the time domain, a solver using the Discontinuous Galerkin method
is developed. A novel way to approximate the flux expressions in the linearized Euler
equations is implemented. This reduces the computational cost considerably relative
to existing Discontinuous Galerkin implementations. The two dimensional solver is de-
signed to run on parallel computing platforms, and is validated by solving several bench-
mark problems. The parallel Discontinuous Galerkin solver is then used to simulate the
acoustic propagation in the shear layer of a realistic aircraft jet engine exhaust config-
uration, modeled as a rectangular nozzle. In the frequency domain, the suppression of
the instability wave solution of the linearized Euler equations is sought on unstructured
grids. The implementation and evaluation of the Discontinuous Galerkin method for
frequency domain applications is carried out. A continuous, Streamline Upwind Petrov
Galerkin method is then used to obtain only the acoustic solution for a benchmark prob-
lem involving the instability waves in two dimensions. Unlike other existing frequency
domain solvers, no assumption is made regarding the nature of the mean flow. This
feature assures that the methods developed in this study are better suited for problems
of practical interest.
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Chapter 1

Introduction

This thesis describes the development, implementation and optimization of high order

accurate algorithms on unstructured grids. Methods are developed for both time and

frequency domain solutions. The focus of the application is on problems in aeroacous-

tics: specifically, the propagation of sound in sheared mean flows and in the presence

of complex geometry boundaries. Both continuous and discontinuous Galerkin meth-

ods are used. The primary contributions of this thesis are: the optimization of time

domain discontinuous Galerkin methods, the implementation and evaluation of discon-

tinuous Galerkin methods in the frequency domain, and the use of stabilized, continuous

Galerkin methods in the frequency domain.

1.1 Computational Aeroacoustics

Aerodynamic noise is a major concern in the design of modern aircraft. The control

and minimization of noise are significant engineering design issues in today’s environ-

mentally conscious society. Some of the primary generators of noise encountered in

aeronautic applications are jet engines, propellers, airframe components such as high
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lift systems, and helicopter rotors. A key goal of the science of aeroacoustics is the

development of effective modeling techniques for the analysis and control of radiated

noise Experimental studies in aeroacoustics are very expensive. They require anechoic

tunnels and delicate instruments able to measure the high-frequency, low amplitude

pressure fluctuations. The exponential growth of computing power in today’s world

has increased the emphasis on computational aeroacoustics (CAA), the branch of com-

putational fluid dynamics that deals with the numerical simulation of generation and

propagation of sound waves through a moving medium. CAA is a powerful tool to

simulate the aerodynamic noise from complex turbulent flow fields.

Aerodynamic noise in a turbulent flow originates from the unsteady motion of tur-

bulent structures in the flow, usually in a shear layer or near a solid surface. The sound

generated then propagates to the far field through the non-uniformly moving air. The

pressure perturbations caused by the sound are very small compared to the value of the

mean flow pressure. Now, computational fluid dynamics (CFD) codes based on some

form of turbulence modeling can be used to characterize the sources of noise in the flow

field. Since acoustic perturbations are small, linear methods could be used to simulate

the propagation of sound to far field observer locations. Such methods include Ffowcs

Williams-Hawkings (FW-H) method, the Kirchoff method [1] and methods using the

Linearized Euler Equations (LEE). The FW-H method involves a rearrangement of the

Navier-Stokes equations for the calculation of sound propagation at a particular far field

location, given the perturbations on a surface. The sources outside the surface are usu-

ally neglected. The Kirchoff method assumes the wave equation as a model for the

propagation of the sound waves outside the surface on which the perturbation values are

given. The LEE, on the other hand, do not involve the specification of a volume or a

surface which bounds the sources. While the FW-H method and the Kirchoff method are

suited for the calculation of noise at a particular observer location, the LEE are suited
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for a obtaining a contour map of the noise surrounding the acoustic sources. The noise

map can be of importance in certain situations, such as the community noise levels near

an airport. In this work, the LEE are used for the simulation of acoustic propagation,

with a particular focus on the jet noise.

The LEE describe the propagation of sound waves in a mean flow. Euler equations

are used to describe the sound propagation since the sound perturbations are only weakly

affected by viscosity. The solution methods for the LEE, which try to resolve the pertur-

bations in the flow pressure, have to be orders of magnitude more accurate compared to

the solution schemes used for traditional CFD. The primary requirements of numerical

methods for CAA can be summarized as:

1. High order of accuracy.

2. Low dispersion and dissipation errors.

3. Ability to propagate the sound perturbations to large spatial and time scales with-

out a prohibitive computational cost.

4. Applicability to complex geometries.

Devising robust, accurate, and efficient numerical methods for the solution of problems

in CAA is a challenge. Many traditional approaches based on finite difference methods

(FDM) are relatively easy and straightforward to implement. However, they suffer from

a major drawback, that is, their inability to handle complex geometries. As can be

seen in Fig. 1.2, a typical configuration of a forced mixer of an aircraft jet engine is so

complex that it is best represented using an unstructured grid. The use of FDM in such

complex geometry is very difficult. Finite volume methods, which are very popular in

CFD, are an alternative. However, finite volume methods do not provide high orders of

accuracy in the solution and so require a very fine grid.
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Figure 1.1. The configuration of an internal mixer in a jet engine. (courtesy Rolls Royce Alli-
son), from Mengle et al. [2].

Figure 1.2. A conceptual diagram of the lobed internal mixer.
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The finite element method (FEM) is another natural alternative for unstructured

grids. Conventional finite element methods involve an assembly of elements, and sub-

sequent solution of a global matrix. As the order of the approximation polynomials is

increased, the size of the global matrix increases rapidly. One of the requirements of

CAA is the accurate simulation of sound propagation over large time and spatial scales.

This would involve a solution of the global matrix at each time step. The procedure

would consume a prohibitive amount of time since a global matrix has to be inverted

at each time step, for millions of time steps in engineering applications. However, as

described in this thesis, there are situations in which a finite element approach can be

valuable.

A class of finite element methods, known as the discontinuous Galerkin finite ele-

ment method, (DG method), has been developed specifically for the solution of convec-

tion dominated flows. The DG method has many properties that are desirable not only

in CAA, but in many other engineering fields as diverse as gas dynamics, meteorology,

oceanography, turbulent flows, viscoelastic flows, magneto hydrodynamics and electro-

magnetism [3].These properties are briefly described in the following section. Most of

the work in this thesis concentrates on the development of an optimal DG method solver

for aeroacoustic applications in aerospace engineering. The interest in the DG method

has been growing in the aeroacoustic community in recent years. A brief review of the

existing literature on the DG method applied to aeroacoustics is given in section 2.1.

1.2 The DG method

The DG method was first developed in 1973, and enhancements and further develop-

ment of the method have taken place in the last decade. The method has been shown

to be well suited for high order accurate long time scale simulations. A key distinction
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between the DG method and the conventional Galerkin FEM is that the resulting formu-

lation is local to an element. Each element in the DG method can be thought of as an

independent entity, merely requiring the boundary data, that is, flux, from the surround-

ing elements. Since the DG method incorporates numerical fluxes and discontinuous

elements, it can be considered as a generalization of finite volume methods. The DG

method has been classified also as one among the spectral h � p finite element meth-

ods, where convergence is achieved by a combination of both grid refinement (h-type)

and polynomial order increase (p-type). Owing to its unique finite element nature, the

DG method has numerous advantages over classical finite volume and finite element

methods [3, 4]. These include:� The method can be used to obtain uniformly high order accurate solutions. The

rate of increase in the computational cost with the order of accuracy is consider-

ably less compared to other numerical methods.� It is well suited for complex geometries since it can be applied on unstructured

grids. In addition the method can also handle non-conforming elements, as shown

in Fig. 1.3, where the elements are seen to have “hanging” nodes. In the figure,

elements (1,8,7), and (2,3,5) are non-conforming. The rest of the element pairs

are conforming.� The method is highly parallelizable. The method is compact, since each element is

independent. Since the elements are discontinuous, and the inter-element commu-

nications are minimal, domain decomposition can be efficiently employed. The

compactness also allows for a structured and simplified coding for the method.� Implementation of various boundary conditions is straight forward and more nat-

ural in the DG method since the flux needs to be specified at the boundaries. This
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Figure 1.3. Conforming and non-conforming elements.

is especially useful in the area of CFD where the boundary conditions are usually

specified in terms of a flux.� It can easily handle adaptive strategies, since refining or coarsening the grid can be

achieved without considering the continuity restrictions typical to the conforming

elements. The method allows for heterogeneity in the elements - for example, the

order of accuracy, or shape, can vary from element to element.� It has several useful mathematical properties with regards to stability and conver-

gence. A brief discussion of some of the studies on the numerical properties of

the method is given in Chapter 2.

Although the DG method is less susceptible to the problems that are common in fi-

nite difference schemes, it is not without its own weaknesses. The method has been

recognized as expensive, in terms of both computational operation count and storage

requirements. Although theoretically the method can be applied to an element of any

shape, the requirement of numerical quadrature for the integrals in the formulation has

restricted the applications to hexahedral and quadrilateral elements. The recently de-

veloped quadrature-free DG method [5] tries to resolve these problems by using simple

polynomial basis functions, the products of which can be integrated without numerical
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quadrature.

1.3 Calculations in the frequency domain

The linearized Euler equations, which are the standard equations in aeroacoustics, sup-

port spatially growing solutions. However, these instabilities, which are known as the

Kelvin-Helmholtz instabilities, are limited in a real flow by the nonlinear effects present

in the full governing equations, Navier-Stokes equations. Often, the acoustic solution is

obscured by the non-physical instability solution. One approach to filter out the instabil-

ities is to assume a time harmonic solution and solve the LEE in the frequency domain

[6]. This transportation to the frequency domain modifies the originally hyperbolic LEE

to an elliptic system of equations. The resulting algebraic system of equations has to

be solved using a non-iterative method to eliminate the instability solution. The solu-

tion process for a hyperbolic problem involves marching in time, and at each time step,

the domain is swept element after element - separate linear systems are solved for each

element. But, for an elliptic problem, the solution is globally dependent, and hence an

assembly of elements is necessary. In the DG method, since each element has a separate

set of variables, the size of the resulting global matrix is large compared to the size of

an equivalent matrix obtained using a continuous Galerkin FEM or FDM. It is shown

in Chapter 5 that the DG method requires a very large usage of memory compared to

a continuous Galerkin method when an assembly of elements is performed. The mem-

ory requirement is critical, especially for the case of the LEE in the frequency domain,

where the problem involves multiple variables. The reduction of the system of equa-

tions to a single equation in pressure is analytically impossible in practical problems

with spatially non-uniform mean flow quantities.

In the present work, as an alternative to the memory-expensive DG method for fre-
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quency domain problems, the streamline upwind Petrov Galerkin (SUPG) method is

considered. It is well known that the conventional Galerkin methods are unstable for

convection-dominated problems [7]. In the SUPG method, stabilization is achieved

by the addition of an artificial dissipation function to the trial space functions of the

Galerkin formulation.

1.4 Motivation

The work presented in this thesis describes development of efficient tools for aeroacous-

tic applications in aerospace engineering, in particular, jet engine noise. The solution to

the LEE is sought on unstructured grids, as the typical engine components have complex

geometry. The first goal is to improve the efficiency of the DG method for applications

in the time domain. The efficiency of the DG method is increased in two ways. First,

new approaches are implemented in the algorithm, by making use of a nodal polynomial

basis with group flux interpolation in a quadrature-free framework. Second, an imple-

mentation of the DG method on parallel computing platforms using domain decompo-

sition is carried out. Another goal of the work is to develop and demonstrate a solver

for the LEE in the frequency domain, to suppress the Kelvin-Helmholtz instabilities.

Again, the solution is sought on an unstructured mesh. Two versions of FEM, namely,

the DG method and the SUPG method are considered. Althogh all the developments in

the thesis are carried out in two spatial dimensions, a discussion of the extension of the

algorithm to three dimensions is also provided. It is expected that in three dimensions

also, the approaches develped in this thesis improve the efficiency of the solvers.



10

1.5 Organization of the thesis

This thesis is organized as follows. In Chapter 2, a general formulation of the DG

method for a hyperbolic conservation law is presented, followed by a detailed discussion

of the choice of polynomials for the basis set expansion. An efficient DG formulation

is developed in a quadrature- free environment using a general polynomial basis set,

and is applied to one and two dimensional advection equations. In Chapter 3, the DG

formulation is applied to the LEE in the time domain. The implementation of boundary

conditions in two dimensions is discussed. The DG solver is validated using benchmark

problems involving uniform and non-uniform mean flows. A parallel implementation

of the DG algorithm is presented in Chapter 4. The parallel time domain DG solver

is then used to predict the propagation of sound waves in the shear layer of a realistic

jet. In Chapter 5, an evaluation of both the DG method and the SUPG method for

solutions to the LEE in the frequency domain is conducted. The suppression of the

instability wave solution for a benchmark problem is demonstrated using both methods.

All the algorithms are coded using the programming language Fortran 90, except the

preprocessor for the parallel solver, which is developed using C++. Finally, in Chapter

6, conclusions, a summary of the results and suggestions for future work are given.



Chapter 2

The generalized DG method

In this chapter, the development of the DG method for a hyperbolic conservation law

is presented using a general polynomial basis set in a quadrature-free set up. Various

methods to improve the efficiency of a DG solver are presented next, with particular

emphasis on aeroacoustic applications involving non-uniform mean flows. It is shown

that the choice of the basis set and the method of evaluation of the element boundary

matrices are significant factors in the optimization of the algorithm. Results from the

application of the DG algorithm are presented for one and two dimensional advection

equations.

2.1 Existing literature on the DG method

Many researchers have worked on the theoretical and computational development, the

mathematical properties and applications of the DG method since its introduction. The

quantity of existing literature pertaining to the DG method is substantial. Here, only

a brief note about some of the important works in its development and application is

presented. The reviews by Cockburn, Karniadakis and Shu [3] provide an exhaustive



12

literature survey, and Cockburn [8, 9] give the general development and analysis of the

DG method.

The DG method was originally introduced in 1973 by Reed and Hill [10] for the

neutron transport equation. In 1974, LeSaint and Raviart [11] performed the first anal-

ysis of the DG method and proved a rate of convergence of
�
∆x
� p � 1 in the L2 norm for

tensor products of polynomials of order p defined on Cartesian grids. Later, Johnson

and Pitkäranta [12] proved a rate of convergence of
�
∆x
� p � 1 � 2 for a general triangula-

tion. A wave propagation analysis of the DG method was performed by Rasetarinera et

al. [13]. An eigensolution analysis of the DG method on non-uniform grids in one and

two dimensions was carried out by Hu and Atkins [14], [15]. They calculated numerical

dispersion and dissipation errors for various orders of the method and directions of wave

propagation. A dispersion analysis of spectral element methods such as the DG method

for various basis functions such as Legendre and Chebyshev polynomials was conducted

by Stanescu et al. [16]. Although implicit time discretizations were initially studied by

many researchers, explicit time discretization became popular due to the development of

Total Variation Diminishing Runge Kutta (TVDRK) schemes by Cockburn and Shu [17]

for hyperbolic equations using generalized slope delimiters.

The choice of the basis set and the expansions of the nonlinear flux terms in the

DG method have been areas of study in recent years. Sherwin and Karniadakis [18]

discuss general choices for the basis set polynomials for spectral element methods such

as the DG method. Atkins and Shu [5] developed the quadrature-free method in 1996

and introduced a novel way to reduce the storage and computational time using a ba-

sis set consisting of simple polynomials from Taylor series expansions of the variables

about the centroids of the elements. They also proved that the DG method is insen-

sitive to mesh discontinuities, that is, sudden changes in the mesh size. Lockard and

Atkins [19] conducted a study on ways to implement the quadrature-free DG method
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of [5] efficiently. Use of the sparcity of matrices resulting from a rearrangement of basis

set polynomials and truncation of the flux expansions were suggested as primary tools

for reducing the computational cost.

The DG method has been applied for the solution of the governing equations in

convection and diffusion dominated phenomena such as gas flows, electromagnetics,

viscous magneto hydrodynamics, shallow water transport, and aeroacoustics [3]. Only

some of the studies that have dealt with the application of the DG method in time-domain

aeroacoustics are noted below. Recently, Stanescu et al. [20] applied a collocation form

of the DG method to the aircraft acoustic scattering problem. Remaki et al. [21] used

a three dimensional DG method for multiple pure tone noise problems in the presence

of shocks and rarefactions. Atkins [22, 23] solved several benchmark problems using

the quadrature free version of the DG method. Lockard and Atkins [24] applied the

DG method to an aeroacoustic analysis of realistic aircraft configurations, such as a two

dimensional slat and a three dimensional blended wing-body configuration. It can be

seen that the DG method has gained interest among researchers owing to its high order

of accuracy and compact nature. Although many researchers have used the DG method

to solve practical problems in aeroacoustics, the development of an optimized DG solver

is still an issue that is being explored extensively.

2.2 Formulation of the DG method

The Runge-Kutta DG method, which was developed initially by Cockburn and Shu [17]

can be applied to discretize a system of first order conservation equations, such as the

linearized Euler equations in aeroacoustics. Here, for the sake of simplicity, the govern-

ing equation is chosen to be the conservation equation of a scalar variable in a bounded
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domain Ω �! d :
∂q
∂t
" ∇ # �F � s 
 (2.1)

where q is the conserved variable,
�
F is the flux, which is a function of q, and s is a source

term independent of q. Let the domain be divided into a number of non-overlapping

elements Ωe that span the entire Ω. In the work of this thesis, the spatial dimension

d $ 2 and Ωe is assumed to be a straight line in one dimension and an unstructured

triangle with straight edges in two dimension, and the coordinate system is chosen to be

Cartesian, unless stated otherwise. Let qe represent an approximation to the variable q

in Ωe using functions of a basis set as:

qe � N

∑
j � 1

qe
jψ j (2.2)

where ψk 
 1 $ k $ N are polynomials of degree p in a basis set given by%'& �
ψk
� �)(+* p � x 
 y � � �

xmyn � : p $ m
"

n ,-� (2.3)

The size of the basis set, N � Ne � p 
 d � depends on the degree of the polynomials of

expansion, and the number of spatial dimensions, as:

N � �
p
"

1
���

p
"

2
� �.�/� � p " d

�
d!

for d � 1 
 2 
 3 �.�/� (2.4)

Applying the traditional Galerkin method to equation (2.1) using (2.2) and (2.3) yields,

for k � 1 �.�/� N, 0
Ωe

ψk 1 ∂qe

∂t
" ∇ # �Fe � se 2 dΩe � 0 
 (2.5)
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Using integration by parts, equation (2.5) can be written as,0
Ωe

ψk

N

∑
j � 1

ψ j
∂qe

j

∂t
dΩe � 0

Ωe
∇ψk # �FedΩe " 0

∂Ωe
ψkF

e
RdΓ � 0

Ωe
ψksedΩe (2.6)

for k � 1 �/�/� N � Here dΓ is the surface area element (or the line element in 2D), and

FR is the Riemann flux through the surface or the line element. The Riemann flux is

approximated using the traces of the flux values of the element and the neighboring

element on the common surface or edge. In the present work, the Riemann flux is

approximated using the Lax-Friedrich’s form:

F
e
R � 1

2 3 1 �Fe� " �
F

e4 2 # �n∂Ωe � α 1 qe� � qe
4 265 (2.7)

where
�
F

e4
is the trace of the flux of the element to the left of the edge, and

�
F

e� is that

of the element to the right of the edge.
�
n∂Ωe

is the unit normal to the edge from left to

right, and α is a smooth positive parameter, chosen for the upwind bias. The value of

α is chosen to be close to the convection speed, given by dF
du . The choice for the value

of α is discussed further in section 3.3.1. It is convenient to carry out the integrations

in the formulation (2.6) in transformed coordinates. The integrals are calculated on a

mapped element, denoted by ∆, but the final equation is evaluated and assembled in the

real coordinates of Ω. Let the coordinates in the transformed space be ξ, η and ζ, as

shown in Fig. 2.1, with
�
0 7 ξ 
 η 
 ξ " η 7 1

�
. Then, for k � 1 �/�/� N,0

∆
ψk

N

∑
j � 1

ψ j 8 ∂qe
j

∂t 9;: J : d∆ � 0
∆

J

4
1∇ψk # �Fe : J : d∆ " 0

∂∆
ψkF

e
R : JΓ : dΓ∆ � 0

∆
ψkse : J : d∆

(2.8)
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Figure 2.1. The mapping from the real coordinates to the transformation coordinates.

J is the Jacobian of the transformation, given by

J
�
∆ < Ωe � � ∂

�
x 
 y 
 z �

∂
�
ξ 
 η 
 ζ � �

=>>>>? ∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

@BAAAAC (2.9)

and JΓ is the Jacobian of the line coordinate transformation. In general, the flux can be

a nonlinear function of q. Let us approximate the flux using the same basis set, as�
F
�
q
�ED �

Fe � M

∑
j � 1

ψ j

�
f e

j 
 for M F N � (2.10)

Let the source term also be approximated in fashion similar to qe in equation (2.2). Then

equation (2.8) is written as,

Me ∂qe

∂t
� Kefe " 0

∂∆
ψkF

e
R : JΓ : dΓ∆ � Mese � (2.11)
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The notation qe � �
qe

j

� 
 j � 1 �/�/� N has been used, and the expression for the terms in

F
e
R, to be explained later, are omitted. Here the mass matrix,

Me
k j � 0

Ωe
ψkψ jdΩe � 0

∆
ψkψ j : J : d∆ 
 G k 
 j � 1 �.�/� N 
 (2.12)

and the stiffness matrix,

Ke
k j � 0

Ωe
∇ψkψ jdΩe � 0

∆
J

4
1∇ψkψ j : J : d∆ G k � 1 �/�/� N 
HG j � 1 �/�/� M � (2.13)

Due to the term J

4
1, the matrix Ke

k j is comprised of a sum of several matrices. The mass

and stiffness matrices together are denoted as element volume matrices. The evaluation

of the surface integral in equation (2.8) is discussed further later in this chapter. The

above equation (2.8) for qe is solved using the Total Variation Bounded Runge-Kutta

(TVBRK) scheme [17] to march in time, for each Ωe in the domain. It can be seen

from the formulation that there is no global assembly of the elements involved in the

DG method. The implementation of boundary conditions, which are discussed in detail

further in Chapter 3 are applied by modifying the Riemann flux expression on the ele-

ment edges that coincide with the computational boundary. A detailed formulation of

the DG method using the moment polynomials basis set

χ̂ � �
1 
 ξ 
 η 
 ξ2 
 ξη 
 η2 �/�/� � (2.14)

for the linear advection equation is presented in the Appendix A, to provide a basic and

more detailed understanding of the transformations and calculations involved.
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2.3 Application to the advection equation

In this section, the DG method developed in section 2.2 is applied to the simple linear

scalar advection equation in one and two dimensions using both Lagrange polynomials

and moment polynomials. The nonlinear Burger’s equation in one dimension is also

solved using the generalized quadrature-free approach. These applications have proved

helpful in understanding the basic concepts of the DG method and aspects of its imple-

mentation.

2.3.1 One dimensional calculations

The test equations are the advection equation,

∂u
∂t
"

a
∂u
∂x

� 0 (2.15)

and the nonlinear Burger’s equation

∂u
∂t
" ∂

�
u2 I 2 �
∂x

� 0 (2.16)

on the domain 0 $ x $ 10 with periodic boundary conditions.

The solution to the linear advection problem is obtained with an initial condition of

a half sine wave over a unit interval. When using the moment polynomials, the initial

condition is expanded as a Taylor series about the center of each element. The domain

from x � �
1 
 10

�
is divided uniformly into 100 parts, that is, the value of ∆xe � 0 � 1. The

value of the advection speed is a � 4 � 0. Fig. 2.2 shows the advected pulse after time

t � 1 � 5 using a moment basis of degree p � 3 and a fourth order Runge Kutta method.

The solution to the nonlinear equation is also shown in figure 2.3. The initial condition

is a sine wave, which transforms into an ‘N’ wave after sufficient time.
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Figure 2.2. One dimensional calculations: The linear advection equation.
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Figure 2.3. One dimensional calculations : The nonlinear Burger’s equation.
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2.3.2 Two dimensional calculations

The linear two dimensional advection equation considered here is given by:

∂u
∂t
"

ax
∂u
∂x
"

by
∂u
∂y

� 0 
 with (2.17)

u
�
x 
 y 
 0 � � u0 �J� sin

�
πx
�
sin
�
πy
� � 4 


on a periodic square domain � 1 7 x 
 y 7 1. The value of the advection speeds are

ax � by � 1 � 0. The grid is made up of 800 similar right angle triangles. The size of

the triangles is constant, with ∆e
x � ∆e

y � 0 � 1. The basis set is made up of Lagrange

polynomials of up to second order and moment polynomials of up to fourth degree. The

initial condition is shown in Fig. 2.4 and Fig. 2.5.
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Figure 2.4. The initial condition in two dimensional advection equation: The sine wave pulse
with the unit maximum value at the center of the domain.

Figure 2.6 shows the results for the case with the basis set being comprised of cubic

moment polynomials (p � 3), using the three stage TVBRK method. The advected pulse

is shown at various time intervals within a cycle of advection in the periodic domain. A
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similar result is obtained with Lagrange polynomials in the basis set. Figure 2.7 and
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Figure 2.5. The initial condition in two dimensional advection equation: A contour map of the
initial condition with the direction of advection.

Fig. 2.8 show the error in the solution after one cycle.

The L2 norm of the global error in the solution after a cycle is found to beK
u � uo

K
2 � LMMN 1

Nnod

Nnod

∑
i � 1

�
ui � u0i

�
2 � 3 � 7 � 10

4
3 � O

�
h3 � (2.18)
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Figure 2.6. Advection of the initial pulse. (a) t O 0 P 2 (b) t O 0 P 8 (c) t O 1 P 4 (d) t O 2, advection
through one cycle.

2.4 The choice of polynomials for the basis set

The formulation, as given in the previous section, is independent of the choice of poly-

nomials for the basis set and the transformation, as long as the Jacobian of the trans-
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Figure 2.7. Error in the advection solution after a cycle: Global error u Q u0.
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Figure 2.8. Error in the advection solution after a cycle: A slice of the solutions at yx R 0 at the
end of one and two cycles of advection.

formation does not become singular. With a judicious choice of the basis set and the

transformation space, the number of numerical operations becomes substantially less,

and the algorithm is less cumbersome to program [25]. There are at least three aspects

to be considered for the choice of the basis set polynomials in the DG method: The

calculation of the element volume matrices, the expansion of flux expressions and the



24

calculation of edge integrals [26]. The calculation times using the DG method for the

solution of the LEE in a uniform mean flow is shown in table 2.1, and Fig. 2.9, for

increasing degree of the basis set polynomials. In this case, the basis set polynomials

are chosen as the Lagrange interpolants, for reasons which are elaborated futher in the

following sections. The problem considered is explained in section 3.3.1. As it can be

seen, the edge integral calculations take up most of the computation time compared to

the ther two, for lower orders of approximation. For higher order accurate calculations,

the fraction of the calculations involved in element matrices and the flux approximations

also increase.

p Total Flux Edge Element matrices
time approximation flux and time step

1 1059 103 881 75
2 1188 128 962 98
3 1327 152 1039 136
4 1557 188 1167 202
5 1897 239 1350 308

Table 2.1. The three parts of the computation time (seconds) using the DG method.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p

F
ra

ct
io

n 
of

 to
ta

l t
im

e

Flux approximation
Edge flux
Element matrices + time step

Figure 2.9. The three parts of the computation time using the DG method
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The three aspects of the DG calculations are discussed in detail in the next sections.

2.4.1 Element volume matrices

The element matrices in equations (2.12) and (2.13) are formed by the sum of several

matrices that are common to all the elements in the computation domain, multiplied

by the components of the Jacobian matrix. In the DG method, there is no assembly

of elements required. Hence it is reasonable to calculate and store the element volume

matrices prior to marching in time. It is favorable to use a basis set containing orthogonal

or nodal polynomials, such as Jacobi, Legendre or Lagrange polynomials. This makes

the mass and stiffness matrices sparse and easily invertible. However, with the use of

orthogonal or nodal polynomials, there is a need to use quadrature in the evaluation of

the integrals.

2.4.2 Expansion of flux expressions

Usually, as in the case of Navier-Stokes equations, the flux is nonlinear, or as the in

LEE with non-uniform mean flows, the components of the flux expression are spatially

varying. Then, the products of variables need to be approximated up to an equal or

higher order compared to the variables themselves, with the same set of polynomials as

used for the variables. For example, consider a flux component expression in the LEE

of the form

Fu � ρou (2.19)
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where ρo is the spatially varying mean flow density, and u is a component of the acoustic

velocity. Let us approximate ρo and u by,

ρe
o � N

∑
j � 1

ψ jρe
o j

ue � N

∑
j � 1

ψ ju
e
j � (2.20)

Then the approximate flux takes the form

Fe
u � N

∑
j � 1

N

∑
k � 1

ψ jρe
o jψkue

j (2.21)

If the above expression is not truncated, the corresponding second term in the DG for-

mulation in equation (2.8) takes the form:0
Ωe

∇ψui
�
ψ jψkρe

o ju
e
j
�
dΩe 
 G i 
 j 
 k � 1 �/�.� N � (2.22)

We have denoted the component of
�
∇ψ in the direction of u as ∇ψu. This integral con-

tains triple products of basis set polynomials, which need to be either evaluated and

stored prior to matching in time, or evaluated at each time step. Either way it is compu-

tationally expensive, for two reasons. Since N is large for higher orders,( see equation

(2.4)) and there are N3 terms in the tensor formed by these integrals. Further, the use

of orthogonal or nodal polynomials requires the use of quadrature. This was the main

reason behind the DG method being recognized as expensive, until the development of

the quadrature-free DG method by Atkins and Shu [5].
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The original quadrature-free method.

Atkins and Shu [5] demonstrated the use of the moment basis, equation (2.14) on trian-

gular elements with straight edges in most of the computational domain. The moment

basis can be recognized as the terms in the Taylor series expansion of the variables about

the centroid of the element. Using the moment basis, the integrals in the formulation

are calculated analytically and stored for a certain class of elements before the main

computation, using mathematical packages such as Maple or Mathematica. The use

of elements with straight edges for most of the domain means that the Jacobian is a

constant for each element. Under these conditions, the mass and stiffness matrices are

merely additions of matrices that are common for all the elements of a particular type.

Using the moment basis, the flux expression in equation (2.21) is further approximated

as

Fe
u
D M

∑
j � 1

χ j f e
j 
 for M F N � (2.23)

This is accomplished relatively easily using a moment basis by either direct truncation,

or by projection.

Truncation: (for d � 1 and p � 2)

Fe
u � 1 ρo1

" ρo2ξ " ρo3ξ2 �/�.� 2 1 u1
"

uo2ξ " u3ξ2 �/�/� 2 (2.24)� ρo1u1S TVU W
f e
1

" 1 ρo2u1
" ρo1u2

2 ξS TVU W
f e
2

" 1 ρo3u1
" ρo1u3

2S TVU W
f e
3

ξ2 " �/�/� neglected termsD
f e
1
"

f e
2 ξ " f e

3 ξ2(2.25)

This is equivalent to minimizing the truncation error at the centroid of the element.
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Projection: This involves minimizing the truncation error over the whole element.0
Ωe

ψk 1 Fe
u � ρe

oue 2 dΩe � 0 
 or 
X 0
Ωe

ψkψldΩe Y � f e
j
� �Z( 0

Ωe
ψk 1 ψiρe

oiψ ju
e
j
2 dΩe ,+� (2.26)

Despite these simplifications, the use of moment basis has several serious disadvantages:

1. There is a need for additional computation in the formation of the coefficients

of equation (2.25) or in the calculation of the right hand side of equation (2.26).

These have to be performed at each time step for every element.

2. The coefficients ρo1 
 u1 
 ρo2 
 u2 in equation (2.24) are the derivatives of the vari-

ables ρo and u at the centroid of the element. These need to be calculated sep-

arately. This means an additional step in post-processing the solution, where,

usually, the values of the variables at the vertices of the elements are sought.

3. The boundary matrices are dense and the coding for the boundary matrices is

cumbersome, as explained below.

2.4.3 Element edge integral calculation

In the DG method, the flux needs to be computed on the edge of every element. This

involves a transformation of coordinates with a reduction in dimension, as shown in

Fig. 2.10. Using a moment basis, it is convenient to transform to an equilateral triangle

with the origin at the centroid and the length of the edges equal to unity. Consider the
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Figure 2.10. Transformation to the edge coordinates.

edge 3 � 1. Using the moment basis with p � 1, the transformation is given by,

χ � [\\\\] \\\\^ 1

ξ

η

_`\\\\a\\\\b � =>>>>? 1 0

1
4 � 1

2

1
4 c 3

c 3
2

@ AAAAC [\] \^ 1

Γ

_ \a\b � Te
3χΓ (2.27)

Consider a term corresponding to the variable qe
4

of the Riemann flux 2.7, given by

equation (2.7) in the edge flux integral, in equation (2.8). Using (2.27), the value of the

integral on the side 3 � 1 is0
3

4
1

�
χ
�
qe
4 : JΓ : dΓ � : JΓ : 0 3

4
1

Te
3
�
χΓ
�d�

qe � T Te
3
�
χΓ
�
dΓ� : JΓ :Te

3

X 0
3

4
1

�
χΓ
�d�

χΓ
� T dΓ Y �Te

3 � T qe (2.28)

Thus the numerical edge integral consists of a matrix vector operation, with the matrices

Te being dense for higher p, and different for different edges.

If the polynomials chosen reduce to zero, or to simple polynomials along the edges

of the computational domain, then the operation count for the boundary integral calcu-

lations are reduced significantly. On an unstructured grid made of triangles, orthogonal

and nodal polynomials possess this property. Considering Lagrange polynomials, the
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transformation on any edge of the triangle is given by their equivalents of the same de-

gree along the edge. This is shown for p � 2 for an arbitrary triangle in Fig. 2.11a and

Fig. 2.11b.

For p � 1, the transformed polynomials on side 3 � 1 in Fig. 2.10 are � 1 � Γ 
 0 
 1 " Γ � T ,

and the permutations of this vector on the other sides. The edge integral on side 3 � 1 is,0
3

4
1

�
φ
�
qe
4 : JΓ : dΓ � 1

6

[\\\\] \\\\^ 2qe
1
"

qe
3

0

qe
1
"

2qe
3

_ \\\\a\\\\b � 1
6

=>>>>? 2 0 1

0 0 0

1 0 2

@ AAAAC qe (2.29)

Note that the second row and column corresponding to the second node is zero in the

above matrix. The rest of the elements are simply the rearrangements of the elements

of the mass matrix corresponding to d � 1. This means that the boundary integrals can

be computed by simple dot products of the rows of the mass matrix in one (or two)

dimensions and the nodal variables on that boundary. So, even the sparcity in the matrix

above, which is substantially high for higher p and d need not be separately included in

the algorithm, saving complex routines or calls to sparse matrix packages. It is extremely

important to cut down on the operation count in the edge flux calculations, since they

constitute a major part of the total computation, as noted by Lockard and Atkins [19].

Hence the use of nodal or orthogonal polynomials is advantageous.

2.5 A general polynomial basis set in quadrature-free

method

From the discussions in the previous sections, it is evident that it is important to use

a nodal or orthogonal polynomial basis, without using quadrature for evaluation of the



31

X

Y

Z

1

2

3

4

56

1

ψ1

(a)

X

Y

Z

1

2

3

4

56

ψ2

1

(b)

Figure 2.11. Lagrange polynomials, p O 2.
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integrals. To use any general polynomial basis set of order p, without using quadrature,

a simple transformation from χp to ψp is sufficient:

ψp � Zpχp (2.30)

∂ψp

∂ξ
� Zp ∂χp

∂ξ
�/�/�

Zp is a matrix containing only numerical constants, depending on the basis set ψp. This

makes the evaluation of integrals of the mass and stiffness matrices extremely simple,

for any basis set. As an example, in the transformed space, the Lagrange interpolants

for p � 1 are related to the moment basis as,

ψ1 � [\\\\] \\\\^ 1 � ξ � η

ξ

η

_ \\\\a\\\\b � Z1χ1 � =>>? 1 � 1 � 1

0 1 0

0 0 1

@ AAC
[\\\\] \\\\^ 1

ξ

η

_ \\\\a\\\\b (2.31)

For p e 1, the numerical values of elements in each row of Z are evaluated by using the

values of ψ corresponding to that row at the nodes of interpolation. That is, for the ith

row of Z, solve
N

∑
j � 1

Zi jχ j
�
ξk 
 ηk

� � ψi
�
ξk 
 ηk

� 
 G k � 1 �/�/� N � (2.32)

Using ψp and χp, the equations (2.12) and (2.13) for N � M are written as,

Me � 0
∆

ψpψpT d∆ � Zp 1 0
∆
� χpχpT � d∆ 2 ZpT (2.33)

and,

Ke � 0
∆

J

4
1∇ψpψpT : J : d∆ � Zp 1 0

∆
�∇χpχpT � : J : d∆ 2 ZpT (2.34)
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Using the definition of χp in two dimensions, the terms in the integrals in equations

(2.33) and (2.34) are evaluated as:0
ξkηld∆ � k!l!�

k
"

l
"

2
�
!

for k 
 l F 0 (2.35)

over the right angle triangle element in the transformation space.

2.5.1 Use of Lagrange polynomials for flux interpolation

In this work, Lagrange polynomials are used in the basis set. Lagrange polynomials

have been extensively used in FEM, because they are nodal basis functions. Nodal basis

functions interpolate the actual values of the flow variables over the nodes of an element,

thus allowing for global assembly of elements. Under the DG framework, Lagrange

polynomials have been rarely used, not only because of the absence of global assembly

in the DG method, but also due to the difficulty encountered in integrating the products

of Lagrange polynomials arising out of the nonlinear flux expansion.

However, since Lagrange polynomials interpolate the values of the variables, they

can as well be used to interpolate the products of variables. The flux in equation (2.21)

is approximated as,

Fe
u
D N

∑
j � 1

φ j f j � N

∑
j � 1

φ j
�
ρo ju j

�
(2.36)

This makes the evaluation of integrals of the mass and stiffness matrix extremely simple.

The integrals are precomputed and stored without much storage requirement.

Remark 1. Lagrange polynomials used in this fashion can be seen as an automatic

truncation of the flux expansion. Although this implies a decrease in the accuracy,

it can be overcome by using higher order elements. It has to be also noted that

truncation of terms is indeed necessary to reduce the time of computation. For
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example, Lockard and Atkins [19] report a 75% reduction in computational time

when the product of terms in the flux expressions are approximated by truncation,

while using the moment polynomials in the basis set.

Remark 2. Although the idea of using Lagrange polynomials in this fashion was pro-

posed independently in this study, it was later found that this had already been

employed by Fletcher [27] in his studies, and referred to as “Group interpolation”.

Having selected the Lagrange polynomials as the basis set functions, the develop-

ment of the DG method for the LEE in the time domain is considered next. In the next

chapter, the application of a serial DG algorithm to solve several benchmark problems

in aeroacoustics is discussed.



Chapter 3

Time domain calculations

In this chapter, the generalized DG method from Chapter 2 is applied to the linearized

Euler equations, with uniform and non-uniform mean flows in two dimensions. A poly-

nomial basis set comprising of Lagrange polynomials is used. The effective imple-

mentation of boundary conditions is discussed. Some recommendations are made for

improvements in the algorithm and extensions to three spatial dimensions.

3.1 DG method applied to the LEE in the time domain

The governing equations are the linearized Euler equations in two dimensions, written

in non-dimensional, conservation form:

∂q
∂t
" ∂Arq

∂xr

"
Cq � s for r � 1 
 2 (3.1)
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with x1 � x 
 x2 � y,

q �
[\\\\\\\] \\\\\\\^

ρ

u

v

p

_`\\\\\\\a\\\\\\\b 
 A1 �
=>>>>>>>? Mx ρo 0 0

0 Mx 0 1 I ρ0

0 0 Mx 0

0 γPo 0 Mx

@BAAAAAAAC 
 A2 �
=>>>>>>>? My 0 ρo 0

0 My 0 0

0 0 My 1 I ρ0

0 0 γPo My

@BAAAAAAAC 

C �

=>>>>>>>? 0 0 0 0

1
ρo 1 Mx

∂Mx
∂x

"
My

∂Mx
∂y
2 � ∂My

∂y
∂Mx
∂y � ∂ � 1 � ρo �

∂x

1
ρo 1 Mx

∂My

∂x
"

My
∂My

∂y
2 ∂My

∂x � ∂Mx
∂x � ∂ � 1 � ρo �

∂y

0
�
1 � γ

� ∂Po
∂x

�
1 � γ

� ∂Po
∂y

�
γ � 1

� 1 ∂Mx
∂x
" ∂My

∂y
2
@ AAAAAAAC 
(3.2)

and s is a vector of time varying acoustic source terms. Here ρ 
 u 
 v 
 p are the acoustic

density, velocity components and pressure fluctuation respectively, and ρo 
 Mx 
 My 
 Po

are the values of the mean density, velocity components and pressure respectively,

nondimensionalized using appropriate reference values. The mean flow quantities can

be spatially varying. Ar denotes the coefficient matrices. The matrix C, made up of

the derivatives of the mean flow quantities, is called as the reaction matrix. The DG

approximation in each element gives:

∂qe

∂t
" � I � Me � 4 1 � ke " be � �f� ce " se (3.3)

The number of discretized equations above is 4N, and corresponds to the values of each

variable in q at all the nodes in an element. Here qe is a 4N vector of the nodal values

for all variables in q:

qe � �
ρe

j 
 ue
j 
 ve

j 
 pe
j
� T 
 for j � 1 �/�/� N � (3.4)
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se is the vector of the nodal acoustic source values for each equation in (3.1). I is a 4 � 4

identity matrix, Me is given by equation (2.12), and
�

represents the Kronecker product,

defined in Appendix C. The mass matrix is easily invertible, and the inverse of the mass

matrix is computed analytically prior to the main computation. The calculation of the

stiffness vector, ke, and the reaction vector ce involve flux interpolation. The edge flux

vector, be also involves flux interpolation, along with the calculation of the Riemann

flux. A full description of the evaluation of the terms ke, be and ce is provided in

Appendix B.

3.2 Boundary conditions

An effective implementation of the boundary conditions is crucial for obtaining an accu-

rate solution in aeroacoustics. The common types of boundary conditions encountered

in aeroacoustics are the reflecting boundary condition, the non-reflecting boundary con-

dition, and the inflow-outflow boundary condition. The last two are implemented when

a finite computational domain has to represent an infinite or semi-infinite physical do-

main that is often encountered in CAA. In this case, precise boundary conditions are

not known at the computational boundaries. The numerical conditions imposed at the

computational boundaries must make the flow field behave as if the computational do-

main were larger: the waves must be allowed to exit the domain without any reflections.

Boundary conditions used in CFD are usually based on characteristic formulations [22].

But these formulations lead to spurious reflections as the computational domain gets

reduced, and as the angle of incidence of the waves departs from the direction normal

to the boundary. One of the ways to reduce the reflections from the boundaries has been

to incorporate damping layers [28] around the physical domain. The Perfectly Matched

Layer (PML) technique is one such method, and has become popular among the aeroa-
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coustic community in recent years.

The implementation of boundary conditions in the DG algorithm is simple, since the

algorithm for the interior elements can be easily modified to incorporate the boundary

conditions. On the edges of the elements coinciding with the computational boundary,

only the expression for the Riemann flux is modified. A discussion of the characteristic

and PML boundary conditions is given below. Atkins [22] presents a comprehensive

report on the implementation of reflective and characteristic boundary conditions using

the DG method.

3.2.1 Characteristic boundary conditions

The characteristic formulation is obtained by splitting the normal component of the

flux at the boundary into components that are leaving and entering the domain. Let
�
nr

represent the normal to the computational boundary at a node on the edge of an element

that lies on the computational boundary. Then, the characteristic formulation for the

nodes on the boundary is written as [22],

Fn �J�Ar # �nr � q � P � λ � P 4 1q � P � λ � � P 4 1qS TVU W
interior

"
P � λ 4 � P 4 1qS TVU W

exterior

� (3.5)

Here, P is the eigenvector matrix and � λ � is the matrix composed of the eigenvalues of

∂Fn
∂q �g�Ae

r # �nr � . � λ � 4 � is the matrix containing positive or negative eigenvalues only. The

negative eigenvalues correspond to the exterior solution, and are usually set to zero. A

way of implementing the characteristic boundary condition is to decompose the nodal

values themselves into interior and exterior components, and to set the exterior compo-

nent to zero, as:

qinterior � P � I � � P 4 1q 
 (3.6)
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where I � is a diagonal matrix containing ones only in places that correspond to the

positive eigenvalues, λ � . This value of q is used in the expression for the Riemann flux

in equation (2.7). The Riemann flux is one sided on a boundary. That is, equation (2.7)

is re-written using (3.6) as:

F
e
R � F

e4 �J�Ae
r # �nr � qe

interior � P � I � � P 4 1qe (3.7)

Since the LEE can not be decoupled into separate equations, the splitting in the equation

(3.5) is not accurate for waves that are not normal to the boundary. Hence characteristic

boundary conditions result in spurious reflections for such waves.

3.2.2 The PML technique

Background

The Perfectly Matched Layer technique was originally introduced by Berenger [29] in

the field of electromagnetics. It was later improved by many other researchers, such as

Hu [30], for applications in aeroacoustics. The original PML technique consists of split-

ting the LEE in the normal and tangential directions to the physical domain boundary, in

a buffer layer surrounding the physical domain. For the homogeneous LEE, the splitting

can be written as:

∂q1

∂t
" σxq1

"
A1

∂q
∂x

� 0 (3.8)

∂q2

∂t
" σyq2

"
A2

∂q
∂y

� 0 (3.9)

with q1 and q2 being the split variables. Damping terms are added to the split equations

such that only the waves corresponding to the normal direction to the physical domain
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boundary are damped, as illustrated in Fig. 3.1. Also, the damping is zero at the

Figure 3.1. Damping parameters in the PML.

beginning and increases smoothly in the PML. The damping of waves in this manner

assure that there are no reflections at the interface of the PML and the physical domain,

and hence the name “perfectly matched”. Because of this, the PML technique is very

effective as an absorbing boundary condition with a relatively small number of grid

points compared to other types of absorbing boundary conditions [31].

The initial version of the PML technique using split variables was reported to support

unstable solutions [32]. Hu [33] improved on this unstable version and derived a stable

version of the PML in unsplit variables. In the present work using the DG methods in

the time domain, the stable version of the PML is used, with characteristic boundary

conditions at the outer boundaries of the PML.

Stabilized PML

The stable version of the PML in unsplit variables, as developed by Hu [33] corresponds

to a uniform mean flow in one direction. For a uniform mean flow in the x-direction, the
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PML formulation corresponding to the LEE (3.1) is:

∂q
∂t
"

Ar
∂q
∂xr

" σxA1
∂z
∂x
" σyA2

∂z
∂y
" �

σx
" σy

�
q (3.10)" σxσyz

" σx
Mx�

1 � M2
x
� A1

�
q
" σyz

� � s

∂z
∂t
� q 
 (3.11)

where z is the additional or PML variable. The above set of equations is obtained by

transforming the coordinates and applying a change of variables in the frequency domain

for the LEE (3.1). This change of variables is equivalent to splitting the LEE [33]

as in equations (3.8) and (3.9). The formulation in (3.11) can be extended to a case

with a uniform mean flow in both the directions by a coordinate rotation prior to the

transformation and change of variables associated with the stabilized PML formulation.

The stable PML equations for a mean flow in both the x and y directions can be written

as:

∂q
∂t
"

Ar
∂q
∂xr

" σxA1
∂z
∂x
" σyA2

∂z
∂y
" �

σx
" σy

�
q
" σxσyz (3.12)")h σ2

x
" σ2

yQ

1 � Q2

�
β1A1q

" β2A2q
� " σxσyQ

1 � Q2

�
β1A1z

" β2A2z
� � s

∂z
∂t
� q 
 (3.13)

with β1 � Mx

Q

 β2 � My

Q

 and Q � h M2

x
"

M2
y

The damping parameters σx and σy are zero at the beginning of the PML, and are varied

smoothly within the PML to reach a maximum value at the end of the computational

domain. The variation could be chosen, for example, to be a polynomial function of

the distance from the beginning of the PML [33]. In the implementation of the PML
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using the DG method in this thesis, the damping parameters are treated as piecewise

constants in the PML; they are taken as a constant over each element in the PML. Con-

sider an element in the PML with xcen and ycen as the coordinates of the centroid of

an element inside the PML. The damping parameters are chosen as a function of the

non-dimensional distance from the beginning of the PML:

σx � σ 8 xcen

LxPML 9 k

(3.14)

σy � σ 8 ycen

LyPML 9 k

(3.15)

and k e 0. Here LxPML and LyPML are the thicknesses of the PML in the x and y directions

respectively. σ is the maximum value of σx and σy, and is usually chosen close to

unity. The DG formulation applied to equations (3.13) and (3.14) results in the following

relations:

∂qe

∂t
" � M̂e � 4 1 � ke " be � " � M̂e � 4 1 � kez " bez �" � σx

" σy
�
qe " σxσyze " gz � se (3.16)

∂ze

∂t
� qe 
 (3.17)

with gz � h σ2
x
" σ2

yQ

1 � Q2

�
β1A1

" β2A2
� �

qe " σxσyQ

1 � Q2

�
β1A1

" β2A2
� �

ze 

kez and bez are formed by replacing Ar with σxr Ar in the formulation of ke and be.

The additional computational time required using a PML in a problem is directly

proportional to the number of elements in the PML. This can be understood by looking

at equations (3.16) and (3.16). The additional calculations with the PML include the

calculation of the edge flux, the volume flux and three vectors for the PML variable

, and the solution of another simple differential equation. Figure 3.2 shows the addi-
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tional time taken for varying thickness of the PML, for a benchmark problem which is

discussed in the next section, using a second order polynomial basis set. The fraction

of the additional time is directly proportional to the fraction of the elements within the

PML. The additional difference between the linear variation and the computation time is

attributed to the time required for the three vectors and the solution of equation (3.16).

For calculations in three dimensions also, the additional time required is expected to

vary in a fashion similar to the Fig. 3.2.
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Figure 3.2. The time required using the PML.

3.3 Applications

Here, an application of the DG method in the time domain for solving the LEE in uni-

form and non-uniform mean flow cases is considered. Results from a h � p refinement

study for the uniform mean flow case are presented. A comparison of the computation
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times for the algorithms using Lagrange and moment polynomials is made. Also, the

variation of the error in the solution with the dissipation parameter in the Lax-Friedrich’s

flux is studied.

3.3.1 Uniform mean flow - propagation of an initial pulse

The 4th benchmark problem from the ICASE/LARC workshop [34] is considered. The

problem concerns the propagation of an initial Gaussian pulse near a wall in a uniform

mean flow of Mach number 0 � 5 in the positive x direction. The mean flow quantities in

equation (3.1) are non dimensionalized with respect to the speed of sound and mean ther-

modynamic properties. The problem domain is
� � 100 7 x 7 100

�
and

�
0 7 y 7 200

�
with the initial pulse located at

�
0 
 25

�
, as shown in Fig. 3.3. The lower boundary is

treated as a rigid wall. The inflow and outflow boundary conditions are implemented

using the PML. A constant damping parameter of value σx � σy � 0 � 2 is used in the in-

let, outlet and top PML, which is shown in the Fig. 3.3. A thickness of 8 to 10 elements

in the PML is expected to reduce the the amplitude of the acoustic waves to zero at the

outer edge of the PML [33]. In such a case, the value of the acoustic variables could

be specified to be zero at the end of the PML. In this work, however, the thickness of

the PML is taken to be 5 to 6 elements, to reduce the computational time. Characteris-

tic boundary conditions [22] are used at the outer edge of the PML. Since the acoustic

waves are reduced to very low values towards the end of the PML, the reflections caused

by the characteristic boundary conditions would be weak. These weak reflections are in

turn completely damped off in the PML. Basis sets made up of Lagrange polynomials

of up to 5th degree are used on an unstructured grid consisting of uniform triangles.

Fig. 3.4 shows the propagation of the pulse in the mean flow after 100 non-dimensional

time units, using a basis set of degree one. The acoustic amplitudes are damped effec-
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Figure 3.3. The computation domain: the grid for increasing degree of polynomials.

tively in the PML. The solution after the pulse has propagated for a time of 200 time

units is shown in Fig. 3.5a. The solution obtained without using the PML is shown in

Fig. 3.5b. The reflections from the outflow boundary due to the characteristic boundary

condition are clearly seen. In this case, the PML is in x 7i� 88, x e 88 and y e 172.

The computational domain is from � 108 7 x 7 108 and 0 7 y 7 192, and the element

size h � 4. The degree of the basis set polynomials is p � 2. A time step of 0 � 1 non-

dimensional units is used with a third order three stage total variation bounded Runge

Kutta (TVBRK) scheme [17].

h � p refinement

Decreasing the size of the elements in the domain, while keeping the degree of the

approximation a constant, is termed as the h refinement. This is also equivalent to

increasing the number of elements. On the other hand, increasing the degree of the
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approximating polynomial without a change in the size of the elements is termed as

the p refinement. For a study of the p refinement, the mesh size is increased with an

increase in the degree of the basis set polynomials, so that the total number of nodes

in the domain remains almost the same. For example, the element size in the case with

5th order polynomials is five times greater than the element size with first order. The

grids for the 2nd, 3rd, 4th and the 5th order calculations are shown in Fig. 3.3a. The

number of elements used in the computation are 27776, 6944, 3108, 1736 and 1056, for

polynomial orders from one to five respectively. The time step for each order is kept the

same, at ∆t � 0 � 25, to keep the temporal error at the same level for all the five cases.

The time marching scheme used is a third order TVBRK method for all the cases.

Figure 3.6a shows a contout plot of the computed solution and the exact solution [34]

for p � 2 at t � 100. The variation of the difference between the two solutions is shown

in Fig. 3.6b. In the workshop on benchmark problems which included this pulse
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Figure 3.5. Propagation of the pulse: (a) with and (b) without the PML.
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Figure 3.6. Contour plot of the calculated and the exact pressure

propagation problem, the solution along the line x � y is compared with the exact so-

lution. Here, the values of pressure from the DG method are compared with the exact

solution along the line x � y at t � 60, in Fig. 3.8. The values at the first peak, within the

dashed box in Fig. 3.8a are magnified and shown in Fig. 3.8b. It is seen that the solution

improves with the increase in order, even with a dramatic increase in element size.

The L2 norm of the difference between the numerical and exact solutions is shown

in Fig. 3.9a, for varying degrees of the basis set polynomial. The error is computed

as the difference between the computed and the exact solution at x � y. Finally, the

computational time required for all the cases is shown in Fig. 3.9b. The calculations

have been performed on a 800 MHz single processor. The time required drops by almost

a factor of four from the p � 1 to p � 5 case. This is attributed to the elimination of

boundary integrals inside the larger element in the latter case.
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Figure 3.7. Variation in the error between the calculated and the exact pressure

Efficiency improvements from Lagrange interpolation

A comparison between the computation times for the quadrature-free methods using La-

grange and moment polynomials has been made for basis sets of up to 4th degree poly-

nomials. The problem domain and the initial conditions are kept the same, but periodic

boundary conditions are implemented along all the boundaries, in order to compare only

the element calculations, but not the time required for the implementation of PML and

characteristic boundary conditions. No algorithm optimizations have been performed

and the sparcity of the matrices is not used in both the cases. The ratio of the compu-

tational time required using the Lagrange basis to that using the moment polynomial

basis set is presented in Fig. 3.10. The use of Lagrange polynomials reduces the effort

by about 36% when 4th degree polynomials are used in the basis set. This significant

reduction is attributed to the absence of transformation matrices in the calculation of the

inter-element boundary flux, using Lagrange polynomials.

The flux expressions in this benchmark problem are linear, of the form Mx
�
u where
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Mx is a constant of value 0.5. In the case of moment polynomials, the flux terms are

calculated by interpolating the acoustic variables and then multiplying the expansion

coefficients by the constant mean flow Mach number. In the case of Lagrange polyno-

mials, the flux terms are interpolated separately, as mentioned in the previous section.

This explains the increase in the ratio of the computational times in Fig. 3.10 for higher

order polynomials. However when the mean flow is non-uniform, the flux expressions

have to be interpolated separately and this would increase the operation count in the

case moment polynomials. Hence, for more realistic problems in aeroacoustics involv-

ing non-uniform mean flows, the reduction in computational effort is expected to be

greater using Lagrange polynomials.

Dissipation parameter

In the DG method, the discontinuities between the elements are “smoothed out” by

adding the dissipation terms, in which the jumps across the edges of the element are
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used. As explained in [8], the artificial dissipation is directly proportional to the residual

inside the element. Hence as the polynomial degree of approximation increases, the

artificial viscosity diminishes.

The selection of the dissipation parameter α in the Lax-Friedrich’s flux in equation

(2.7) affects the stability of the scheme, and also the error in the solution. Consider

the one dimensional advection equation in section 2.3, with an advection speed of unity.

The variation of the error in the L2 norm of the solution with the choice of the dissipation

parameter for p � 1 is shown in Fig. 3.11a. The error decreases with an increase in

the dissipation parameter, and the scheme becomes unstable for values of α e a, the

advection speed in equation (2.15). In this case, a � 1. The convergence of the solution

for h refinement in two dimensional calculations for p � 1 is shown in Fig. 3.11b. The

problem is the LEE with uniform mean flow, with the configuration and grid as shown

in Fig. 3.3a. The abscissa represents the number of nodes on the x axis in Fig. 3.3a, or

essentially a decreasing size of the elements. The rate of convergence in the solution is

hp for α � 0 � 02, and improves to hp � 1
2 for α � 0 � 8.

Conventionally, the value of α is chosen [5] to be related to the eigenvalues of the

trace of the average flux Jacobian,

1
2 3 ∂ 1 �F� " �

F
4 2

∂q
# �n 5 (3.18)

on the edges of the element. In a recent work, Hu and Atkins [14] have conducted an

eigensolution analysis of the discontinuous Galerkin method in one dimension. They

show that the spurious non physical modes in the one dimensional conservation equa-

tions are damped when the dissipation parameter in the Lax-Friedrich’s flux is near the

minimum eigenvalue of the flux Jacobian.
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3.3.2 Non-uniform mean flow - acoustic propagation in a shear layer

The 5th benchmark problem from the CAA workshop [35] is considered. It involves the

excitation of instability waves in the shear layer of a two dimensional jet by an acoustic

source. The mean flow is in the x direction only, but varies in the y direction in the

shear layer. The problem domain is given by � 5 7 x 7 50 and 0 7 y 7 10. Symmetry

boundary conditions are imposed at the lower boundary. The computational region is

extended in the x direction up to � 15 7 x 7 60 and the mean flow is accelerated to

supersonic speed in the buffer region. This buffer region is not treated as a PML, since

the mean flow is non-uniform. The top boundary is extended to y � 20 and a PML is

used from 10 7 y 7 20. Radiating boundary conditions are used at the outer boundaries.

A grid consisting of triangles, similar to the one shown in Fig. 3.12a is used. The grid

is refined between y � 0 � 6 to y
D

1 � 7, where the gradient of the mean flow, ∂U0
I ∂y, is

high, and the acoustic solution varies greatly. The variation of the mean flow from y � 0

to y
D

1 � 7 is represented in Fig. 3.12b.

The high-gradient, non-uniform mean flow region in the y direction is divided into

nine equal parts between 0 � 6 7 y 7 1 � 7. The solution is computed using basis sets

of Lagrange polynomials of up to 5th degree. A three stage third order Runge Kutta

method is used to march in time, with the non-dimensional time step kept constant at

∆t � 0 � 3333 � 10

4
3T , where T is the period of the source. The numerical solution

using the DG method is compared to that using a fourth order finite difference method

by Agarwal and Morris [36]. The instantaneous pressure values at the end of a cycle of

oscillations at y � 1 for the non dimensional frequency St � 0 � 14 are plotted in Fig. 3.13

for polynomial orders 4 and 5. The variation of the mean square of the pressure at y � 10

is plotted in Fig. 3.14. The solution is compared with the second order accurate finite

difference solution obtained by Agarwal and Morris [36].
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Figure 3.12. (a) The grid for the 5th benchmark problem domain. (b) The profile of mean flow
in the clustered region.

Oscillations in higher order

Using higher orders of the Lagrange polynomial basis set, oscillations in the solution, as

shown in Fig. 3.15a, are observed. These oscillations are in turn amplified in the shear

layer, as shown in Fig. 3.15b, after two periods of the acoustic source. If characteristic

boundary conditions alone are used at the outflow boundaries, secondary oscillations

reflected from these boundaries enter the domain, further contaminating the solution.

To minimize the reflections from the boundaries, a buffer region in which the mean flow

is accelerated to supersonic speeds is used at the right boundary, and a PML is used at

the top boundary. By using a value for α near the minimum of the eigenvalues of the
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Figure 3.13. Solution to the 5th benchmark problem:Instantaneous pressure at y O 1 at the end
of a source cycle.

flux Jacobian on a refined grid, these oscillations are reduced.

3.4 Future directions

3.4.1 Interpolation error: the choice of nodes

The choice of the nodes on the elements plays an important role in determining the ac-

curacy of the solution, as the polynomial order of approximation is increased. Consider

the interpolation of a function in one dimension. A grid with equidistant nodes gives

rise to oscillations at the end points, or the boundaries. This behavior is termed as the

Runge phenomenon [37]. The nodes must be clustered near the end points to avoid such

oscillations. Such nodal sets can be chosen, for example, to be the zeros of classical
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orthogonal polynomials and their derivatives. The choice is not so simple in the case

of two dimensional and three dimensional elements. Chen and Babuska [38, 39] have

developed nodal sets for minimizing interpolation errors on triangles and tetrahedrons.

The use of such nodal sets in the DG method will further improve the accuracy of the

solution.

3.4.2 Extension of the algorithm to three dimensions

The extension of the DG solver to three spatial dimensions is an obvious next step.

The process of extension is straightforward, but demands substantial effort. Some of

the issues to be addressed are the preprocessing, the analytical evaluation of element

integrals, the implementation of the PML in three dimensions, and the postprocessing

of the finite element solution. Further, the parallelization of a three dimensional solver,

although identical to the two dimensional case, demands a significant effort on account
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Figure 3.15. Oscillations in the non-uniform mean flow region with a 2nd order basis set. (a) At
the end of a cycle (b) after two cycles.

of the additional details of the mesh and partitions. These aspects are discussed below,

with an assumption that the three dimensional element is a tetrahedron, and the basis set

is made up of Lagrange interpolation polynomials.

Preprocessing

1. As in two dimensions, the three dimensional solver requires the information of

the neighbors. The element numbers of the neighbors have to be extracted from

the conventional FEM data, namely, the coordinates of the nodes and the connec-
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tivity of the elements. However, in 3d, in addition to the numbers of elements

neighboring the four surfaces, information is also needed about the arrangement

of the nodes on the surface of the neighboring element. This is necessary for the

calculation of the edge flux, where the nodal values need to be multiplied with the

rows of the mass matrix for 2d.

2. The preprocessor which has to be developed for the parallel solver, discussed in

Chapter 4, needs changes for a 3d grid. Instead, the use of a readily available

parallel partition-preprocessing software such as PARMETIS [40] could also be

explored. However, with such a usage, the information for the PML domains and

elements needs to be extracted.

Element volume matrices

The element mass and stiffness matrices need to be computed for 3d calculations. The

methodology for these calculations is exactly the same as that given in section 2.5. The

only difference is in equation (2.35) which now has to be expressed for a tetrahedron.

Consider a tetrahedron as shown in Fig. B.2 in Appendix B with the origin at the right

angle vertex, and with unit length edges. The equivalent of the integral in equation

(2.35) for this tetrahedron is written as:0i0f0
ξkηlζmdξdηdζ � k!l!m!�

k
"

l
"

m
"

3
�
!

for k 
 l 
 m F 0 (3.19)

The coordinates of the nodes in a tetrahedron need to be selected based on the optimal

choices, which have been discussed in section 3.4.1.
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Element surface integrals

In 3d, the calculation of element surface integrals is similar to that explained in sec-

tion 2.4.3, with Lagrange polynomials. The elements in the rows of the surface integral

vectors corresponding to each surface in a tetrahedron are calculated by a dot product of

the rows of the mass matrix in two dimensions (corresponding to the surface) with the

nodal values on the surface. This is explained in section B.3.

PML calculations and postprocessing

The PML calculations in 3d are similar to those in 2d, but with an additional term

corresponding to the mean flow in the additional direction. The stabilized version of the

PML equations in 3d are provided by Hu [33]. While the basic structure of the solver

remains the same, some additions are necessary to run the solver in three dimensions. As

with the two dimensional results, the solution obtained in three dimensions is difficult

to plot and analyze, especially for high order elements. There is a need to triangulate

or create tetrahedrons from arbitrary points in both cases. Technical software packages

such as Tecplot [41] can triangulate a set of arbitrary points in two dimensions. However,

in three dimensions, a postprocessing algorithm may be necessary to assist the creation

of tetrahedrons and extraction of data on the vertices.

3.4.3 A note on the efficiency of the 3d solver

The extension of the solver to three dimensions introduces an additional variable, and

corresponding flux terms. These demand additional memory and computation resources.

The DG solver developed in this study has been already shown to be more efficient in

two dimensions compared to the original quadrature free (QF) method proposed by

Atkins and Shu [5]. A comparison of the two methods in 3d for a given order of approx-
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imation and grid is given below.� The calculation of the element volume matrices and stiffness matrices are done

prior to the main computation. The time marching takes the same amount of time

in both the original QF method and the method proposed here, since the size of

the matrices and vectors, N, is the same for both the cases.� In the original QF method, the approximation of flux expressions takes significant

time in 3d compared to the method proposed here. This conclusion can be drawn

on the basis of the operation count required for the flux approximation, especially

when the flux expression is nonlinear or contains spatially varying components.

The operation count using the original QF method is provided in [5], and could

be as high as �N � p 
 d � �j�N � p " 1 
 d � � . On the other hand, the operation count using

flux interpolation described in section 2.5 is only N. The expression for N
�
p 
 d � is

given in equation 2.4. The value of N increases greatly with p for d � 3, and hence

the approach described here becomes more efficient compared to the original QF

method.� Using moment polynomials as in the original QF method, the computation of

element surface integrals involves the calculation and multiplication of surface

transformation matrices, T, as given in equation 2.28. These matrices are not only

dense for higher order basis sets, but also different for different surfaces of the

tetrahedron. In the present method, the surface integrals are easily calculated by a

product of the rows of the mass matrix in d � 1 dimensions and the nodal values

corresponding to the surface, as explained in section 2.4.3. There is no need to

even calculate the transformation matrices. Hence the present method is expected

to be more efficient for calculations in 3d.
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for the flux approximations, the structure of the original QF code is more com-

plex compared to that of the present method. Details about the structure of the

code using the original QF method can be found in the study by Lockard and

Atkins [19]. Also, using the original QF method, there is a need for additional pre

and postprocessing. The initial condition and the solution in any physical prob-

lem are expressed in terms of their values at specific physical points, or, the nodes

of an element. Using the moment basis, the coefficients of expansion need to be

computed from the nodal values. But using Lagrange functions, the nodal values

can be used directly.

To be of practical value, it is important to develop the time domain DG algorithm to

run on parallel computing platforms. In the following chapter, a parallel implementation

of the DG method for unstructured two dimensional grids is presented.



Chapter 4

Parallel implementation

As discussed in Chapter 1, the primary requirements of CAA in aerospace engineer-

ing are high order of accuracy, the simulation of noise propagation over large distances

and times, and applicability in complex geometries. To be of practical value, the usu-

ally massive computations must be performed quickly, and to do so, an efficient use of

parallel computing platforms is necessary.

The requirement of a high order simulation in complex geometries complicates the

design of a parallel implementation. Traditional high order finite difference methods are

not compact, and the amount of data to be communicated across partition boundaries

increases considerably with the order of the method [42]. Further, the application of

high order finite difference methods on unstructured meshes for complex geometries is

extremely difficult. The DG method, however, satisfies the requirement of high order ac-

curacy and applicability to complex geometries. As noted previously, in the DG method,

each element behaves as a separate entity, and the element communication involves only

the trace of the flux at the surfaces/edges of the element. Hence the method is compact.

This compactness allows for an easier implementation of parallel algorithms on unstruc-

tured grids. In the present work, a parallel version of the time domain solver using the
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DG method is developed using domain decomposition. A detailed description of the

parallelization approach is presented here. This is followed by performance results on a

Beowulf cluster.

4.1 Existing literature on parallel-DG implementation.

Several investigators have studied the parallel implementation of the DG method. Biswas

et al. [43] applied a third order quadrature based DG method to the scalar wave equa-

tion on 256 processors. Bey et al. [44] applied a parallel h � p adaptive DG method on

structured grids for hyperbolic conservation laws and obtained nearly optimal speedups.

Baggag et al. [42] modified an object oriented DG solver with different parallelization

strategies using MPI. They reported slightly superlinear speedup on an SGI Origin due

to cache effects for large scale problems, using more than 60 processors. cache effects.

Further improvements on the parallelization approach of [42] were implemented in [45],

to minimize redundant computations on inter-partition boundary elements. The method

was tested on various platforms such as SGI Origin, IBM SP2, and clusters of SGI and

Sun workstations. Atkins and Lockard [46] implemented a parallel DG method for the

aeroacoustic analysis of realistic aircraft configurations. They used fifth order triangular

elements on over 100 processors in a study of acoustic scattering near a leading edge

slat. Xu et al. [47] predicted the noise from the dominant spinning modes from the fan

of an aircraft engine using a parallel DG method. They reported a computation time of

10 days on a 32 processor IBM SP4 machine using approximately 22 million nodes in

the computation domain, with a sixth order Legendre polynomial basis.
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4.2 Domain decomposition

The computational space is divided into a number of polygonal partitions,using the

package METIS [40], and computation in each partition is assigned to a separate proces-

sor. METIS is a family of open-source programs for partitioning unstructured meshes.

It attempts to balance the load and minimize the communication among the proces-

sors [40]. A parallel version of METIS, known as PARMETIS is also available, but it

has not been used in the present work. This is to allow for additional modifications for

complexities encountered in adding PML to the physical domain. Instead, a separate

preprocessor, discussed further in this chapter, is developed for generating the finite el-

ement data for each partition. The partition data from METIS is a text file containing

2 columns, with the first column being a list of the element numbers, and the second,

their corresponding partition numbers. A separate package called PMVIS [48] is used

to visualize the partition configuration.

4.3 The algorithm

Following the same notation as before, the boundary of an element Ωe in a partition is

denoted by ∂Ωe. The element edges lying on the partition boundary are denoted by ∂ΩI,

and are termed inter-boundary (IB) edges. The communication between the processors

involves the trace of the flux terms on these edges. All other element edges, which are

not common to different processors, are denoted by ∂ΩP, and called interior edges.

Consider the scalar hyperbolic equation (2.1). The application of the DG method

results in the set of equations for each element. This set of equations can be rewritten

as:
∂qe

∂t
" �Me � 4 1Keqe " �Me � 4 1

3

∑
j � 1

Be� j � FR � j � � se (4.1)
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Me 
 Ke, are defined by equations (2.12) and (2.13), and Be� j � 
 j � 1 �.�/� 3 are defined by

equation (B.13) in Appendix B, and the Riemann flux for edges that are not on the

computational boundary given by equation (2.7). The details of the edge flux term in

the above equation can be found in Appendix B.

The Riemann flux for the edges on the computational boundary is expressed in terms

of the trace of flux from the left side only, with appropriate modifications for boundary

conditions. Note that the flux is discontinuous across an element boundary. However,

the absolute value of the Riemann flux on an edge shared by two elements is the same

for both the elements. Hence, it is not necessary to compute the Riemann flux for every

edge of every element. The computation in a processor is carried out as follows.

1. Calculate the traces q and
�
F for the inter-boundary edges, ∂ΩI .

2. Pack the arrays of q and
�
F, into a single array. Send parts of the packed array to

the corresponding neighbor processors.

3. Calculate q,
�
F, and FR for all ∂ΩP.

4. Receive and unpack the data from the neighbors.

5. Calculate FR for all ∂ΩI .

6. Compute the edge flux term ∑3
j � 1 Be� j � FR � j � in equation (4.1) G ∂Ωe

7. Compute Me 
 Ke and se G Ωe. Advance in time.

The parallel implementation is MPI [49] based. Non blocking send and receive are used,

so that the communication is overlapped with computation in step 3. The period of

overlap can be increased by breaking up the process in step 6 between ∂ΩP and ∂ΩI and

computing the edge flux terms for ∂ΩP between non blocking send and receive. Further

overlap can be achieved by breaking up the calculation of Me 
 Ke, in step 7, between the
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elements completely inside the domain,ΩP and the elements on the partition boundary,

ΩI. The Riemann flux is computed only once for all ∂Ωe � ∂ΩP. For element edges

∂Ωe � ∂ΩI , it is computed once on each partition. However, the calculation of FR on

all edges in the partition consumes only 2% � 3% of the total time, as noted by Baggag

et al. [45]. Several other strategies for parallel implementation of the DG method in

the time domain can be found in the same reference. However, the complexity of the

implementation increases with improvements in the algorithm.

4.4 Pre-processor for parallel implementation

Every processor assigned to a partition must contain information about the number of

neighbor partitions, corresponding elements and edges to communicate the data across

the inter-partition boundaries. The partitions obtained using METIS are unstructured,

meaning that the number of neighbor partitions of a partition under consideration is

not constant for all the partitions. This can be seen in a sample unstructured triangular

mesh that is used in the study, in Fig. 4.1. This is an important condition to be dealt

with when developing the preprocessor. Further, the elements within each partition are

numbered randomly. These features are depicted in Fig. 4.2. The common boundary

between partitions ‘A’ and ‘B’ is shared by six elements in each of the partitions. These

six elements themselves are numbered randomly. The communication across the inter

partition boundary requires information about the exact arrangement of the 12 elements

, that is , which element in partition A shares what side of which element in partition ‘B’.

Such an arrangement information is required for all the neighbor partitions of a partition

under consideration. The tasks of the preprocessor can be summarized as follows:� Generate the coordinate, connectivity and neighbor arrays for all the nodes and

elements inside each partition. In other words, number the nodes and elements
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Figure 4.1. An example of a partition by METIS.

locally within each partition.� Extract the number of neighbors and the number of element edges on the common

boundary between each of the neighbors for each partition.� Create the arrangement array for each of the neighbor in each partition. This array

contains a list of the local number of elements on the inter-partition boundary, their

edge number, the local number of the neighbor element in the neighbor partition,

the neighbor element’s edge member, and the index of the neighbor element in

the neighbor partition’s arrangement array. The parts of the arrangement arrays

in ‘A’ and ’B’ corresponding to one another are shown in table 4.1 and table 4.2

respectively.

In the table, the edge members on the IB edge for each element in partition ’A’

and ’B’ are assumed to be 2 and 3 respectively. The column of indices of elements

is necessary in unpacking the data communicated across the IB edges.
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Figure 4.2. A typical partition configuration.

Element Edge Partition Element Edge Index
in A in B in B
12 2 B 34 3 3
27 2 B 68 3 6
38 2 B 23 3 2
43 2 B 57 3 5
52 2 B 46 3 4
61 2 B 10 3 1

Table 4.1. The arrangement array for the partition A of figure 4.2

4.5 Parallel implementation with PML

The implementation of the PML technique in the calculations introduces an additional

variable and damping terms into the system of equations for elements in the buffer do-

main. The discretized LEE with the unsplit PML is rewritten here:

∂qe

∂t
" �Me � 4 1Keqe " �Me � 4 1Kezze " �Me � 4 1

3

∑
j � 1

Be� j � � FR � j � " F
z
R � j � � (4.2)" � σx

" σy
�
qe " σxσyze " gz � se
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Element Edge Partition Element Edge Index
in B in A in A
10 3 A 61 2 6
23 3 A 38 2 3
34 3 A 12 2 1
46 3 A 52 2 5
57 3 A 43 2 4
68 3 A 27 2 2

Table 4.2. The arrangement array for the partition B of figure 4.2

∂ze

∂t
� qe (4.3)

The flux terms from the PML variable have to be communicated across the IB edges of

a partition in addition to the flux terms from the acoustic variables. The calculations are

carried out as follows:

1. Calculate q and
�
F G ∂ΩI in all partitions.

2. Calculate z and
�
F

z ∂ΩI in partitions having elements in the PML.

3. Pack the arrays q,
�
F, and send data to neighbors from all partitions.

4. Pack the arrays z,
�
F

z
and send to neighbors with elements in the PML from parti-

tions having elements in the PML.

5. Calculate q,
�
F, and FR G ∂ΩPin all partitions. Calculate z 
 �

F
z
, and F

z
R G ∂ΩP in

partitions having elements in PML.

6. Receive and unpack the data from the neighbors.

7. Calculate FR G ∂ΩI . Calculate F
z
R G ∂ΩI in partitons having elements in PML.

8. Compute the edge flux terms G ∂Ωe
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9. Compute Me 
 Ke and se G Ωe. Compute the damping terms for PML. Advance in

time.

There are two differences in the algorithm including the PML compared to that without

the PML. The first is that the edge flux terms need to be computed for all the elements

with the PML present. The second, which is particularly important in the parallel im-

plementation, is that the trace of the PML flux terms, F
z
, on the IB edges needs to be

communicated only among partitions with elements in the PML. While some partitions

in the computational domain may lie completely outside or inside the PML, others may

have elements on both sides of the PML boundary, as illustrated in Fig. 4.3. This com-

PML PML

PML

1

2

3

A

B

Figure 4.3. An example of partitions with PML.

plicates the handling of accurate data communication. Three types of computations may

be required among partitions that have elements on both sides of the PML boundary:

1. The computation for IB edges not in the PML, such as the IB edge 1 in Fig. 4.3.

This involves calculation and communication of only q and
�
F across 1.

2. The computation for IB edges coinciding with the PML boundary, such as the IB



73

edge 2. This involves the communication of only q and
�
F across 2. The traces z

and
�
F

z
are calculated only for elements on the side of partition ‘B’. The elements

in partition ‘A’ lying on the IB edge 2 do not have a PML variable, and hence z

and
�
F

z
are neither calculated nor communicated by the partition ‘A’. The Riemann

flux for the PML variable in partition ‘B’ on element edges coinciding with the

IB edge 2 is one sided. Thus even if some of the elements lying on the IB edge in

partition ‘B’ are in the PML, no communication of the PML flux is necessary for

those elements.

3. The computation for IB edges inside PML, such as the IB edge 3. The traces from

both the acoustic and PML variables are calculated and communicated across the

IB edge.

Use of one or several processors only for the PML would indeed decrease the compli-

cations in the computation mentioned above. However, this is deemed to be inefficient

for two reasons. Since the domain decomposition is accomplished using METIS, which

tries to minimize the inter-processor communications, the addition of partitions in the

PML could make the communications unequal and sub-optimal among the processors.

Also, the PML calculations will consume additional computation time only in the PML

partitions. This would mean a waiting period for processors in the physical domain,

as the computations among the processors have to be synchronized. To implement the

three cases of computations with PML, additional information is extracted from the pre-

processor about the number of neighbors, number of element edges and the arrangement

of elements in the neighbors which share the elements in the PML.
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4.5.1 Preprocessing for PML

The information from the preprocessor for the partitions in Fig. 4.2 is shown in Fig. 4.4.

The elements that communicate are connected by lines at the left. Let us assume that the
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Figure 4.4. Preprocessing for PML partitions.

elements in the shaded boxes are the elements in the PML. These elements are connected

by darker lines. Now, within each such arrangement between two processors, the PML-

elements are numbered separately, as shown by the encircled numbers. Then the packing

for the PML flux communication is accomplished using the PML arrangement array

shown in the box at the right for each processor, corresponding to the neighbor. A

summary of the steps taken in extracting the data needed for communication in partitions

with elements in the PML is given below.� Extract the ranks of the neighbor partitions with which the PML communication

has to be carried out.� Number the elements which need PML communication, that is, create the encir-

cled list in Fig. 4.4.� Exchange the list of encircled numbers between the neighbors.
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4.6 Application issues for real flow problems

For real flow problems, such as the noise prediction from the jet engines, the mean flow

data that is used in this code is obtained from CFD. The CFD data is more likely to be on

a very fine grid, in order to resolve the high gradients in the shear layers and boundary

layers.The size of the time step for higher orders p F 3 has to be usually an order of

magnitude less compared to the minimum element size in the domain, using the TVDRK

schemes. As an example, if the CFD grid has a minimum grid size of ∆x � 10

4
4m, the

acoustic code can have a maximum time step size of the order of ∆t
D

10

4
5s. Hence,

it is not practical to use the same grid for the time domain acoustic propagation code.

This is further elaborated using a practical example in section 4.7. As a consequence, it

is required to generate a separate coarser grid for acoustic propagation calculations, and

the mean flow data needs to be interpolated onto the new grid. For simple problems,

this interpolation could be accomplished using a commercial software such as Tecplot.

For problems with a highly complex geometry, or when an already partitioned mean

flow grid itself is to be used, a separate algorithm needs to be developed to interface the

present solver with the output from the mean flow solver.

The DG code developed in this thesis can be used for the calculation of the propa-

gation of noise from a single source in the shear layer at any observer location. In order

to calculate the noise from all the sources in the flow at a particular frequency, a source

can be located at the observer’s location, and the acoustic reciprocity theorem could be

used.
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4.7 Results from parallel implementation

In this section the parallel DG solver is applied to two problems. The first is a benchmark

problem modeling the acoustic scattering by the fuselage of an aircraft. The second is

the acoustic propagation in the shear layer of the exhaust from a realistic aircraft jet

engine. Results from the performance study of the parallel solver are presented.

The problems considered in this study are solved using a uniformly same order ap-

proximation through out the computational domain. The parallel solver developed in

the study is not applicable to two domains or elements with different orders of approxi-

mation. Such elements or domains are non-conforming, as explained in Chapter 1. The

calculation of flux over such elements require additional modifications and additions to

the exisiting basic solver.

4.7.1 Acoustic scattering from the fuselage of an aircraft

The physical problem is to find the sound field generated by a propeller, scattered by the

fuselage of an aircraft, as stated in the 2nd CAA workshop [50]. The fuselage is ideal-

Source

A

B

C

x

y

Figure 4.5. Acoustic scattering by the fuselage - problem configuration.
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ized as a circular cylinder, and the propeller as a line source or an initial Gaussian pulse,

so that the computation is in two dimensions, as shown in Fig. 4.5. The diameter of the

cylinder is unity, and the source is located at
�
x 
 y � � �

4 
 0 � . The initial value problem,

with a zero mean flow and a Gaussian pulse at the source location is considered. The

initial conditions are:

p � exp kl� ln
�
2
� 1 � x � 2

� 2 " y2

0 � 22
2nm (4.4)

u � v � ρ � 0

The measurement points are located at a radius r � 5 � 0 and angles of 90, 135 and 180

degrees from the
"

x direction, as shown in Fig. 4.5. The computational domain is as

shown in the Fig. 4.6. The unstructured mesh is generated using Gmsh [51], which is

-10 -5 0 5 100

2

4

6

8

10

Figure 4.6. Acoustic scattering by the fuselage - the mesh.

an excellent open source software for generating unstructured meshes. The triangulation

consists of 4054 elements and 2100 nodes, with the cylinder being modeled by 8 nodes.

The mesh is refined in the region of the cylinder to represent the curved wall. The

computational domain is taken to be � 10 7 x 7 10 and 0 7 y 7 10, so that any residual

effects of reflection after damping in the PML are negligible at the measurement points
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within the time span of interest, t $ 10. The origin is at the center of the cylinder. The

PML occupies a thickness of 2 units at the edge of the domain. Symmetry boundary

condition is applied at the bottom boundary. The smallest characteristic length of an

element in the domain is h
D

O
�
10

4
2 � . The domain decomposition obtained by METIS

on the computational domain for four partitions is shown in Fig. 4.7. The calculations

Figure 4.7. Acoustic scattering - the partitions from METIS.

are performed on a Beowulf cluster with Pentium III 800MHz processors. The pressure

contour after t � 10 is shown in Fig. 4.8. The initial pulse generates two reflections

from the surface of the cylinder. The reflections from the computational boundary are

effectively damped in the PML. The degree of the basis set used is p � 3. A time step

of ∆t � 0 � 0025 is used with a third order three stage TVBRK method. Fig. 4.9 shows a

comparison of the pressure history at the measurement points for 6 $ t $ 10. The exact

value of the pressure was obtained from Kurbatskii [52], Apart from the error inherent

in the DG approximation, the error in the calculation is due to several other factors: the

accuracy in the initial condition, the accuracy of the non reflecting boundary conditions

and the post-processing error. The initial condition is represented by the grid at the

source location,
�
x 
 y � � �

4 
 0 � . The non reflective boundary conditions are effective

due to the presence of PML. The post processing involves interpolation of the acoustic
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Figure 4.8. Pressure contour at t O 10.

pressure values at the three locations, which was carried out using Tecplot [41].

4.7.2 Parallel performance

The parallel DG solver is applied to the problem of propagation of an initial pulse in

a uniform mean flow [34], which was described previously in Chapter 3. The compu-

tational domain is � 108 $ x $ 8 and 0 $ y $ 196. The PML boundary is: x 7g� 88,

x e 88 and y e 172. The grid is made of similar right angle triangles of height h � 4

units. There are 5184 elements and 2695 nodes in the domain. The performance of

the parallel solver is tested by varying the number of partitions from 1 to 32. A typical

partition from METIS is shown in Fig. 4.10. The calculations are performed on CO-

COA2, a Beowulf cluster in the Department of Aerospace Engineering, at Penn State.

The cluster has 21 nodes with 2 Pentium III 800 MHz processor at each node. It has a

dual fast-Ethernet per node and all the nodes are connected using two HP2524 switches

with channel bonding.

The calculations are performed using a second order basis set, and marching in

time up to t � 200 with ∆t � 0 � 1. The parallel speedup in computation is shown in

Fig. figspeedup. The parallel speedup is calculated as the ratio of the computation time
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Figure 4.9. Pressure history at points A(top), B(center), and C(bottom).
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Figure 4.10. A typical partition used for the parallel performance study.

consumed using a single processor with a serial algorithm to the time using a parallel

algorithm for a particular number of processors. The parallel efficiency, defined as the

percentage ratio of the speedup to the number of processors is shown in Fig. 4.12 The

speedup and efficiency deteriorate with the increase in the number of processors. An

explanation for this behavior lies in the load balance and the communication overlap

period. As the number of processors is increased, the number of elements within a pro-

cessor decreases, and at the same time, the number of elements on the IB edges varies.

The latter may increase or decrease, depending on the configuration and the number

of neighbor partitions for a given partition. However, too many partitions in a domain

involves a substantial communication time. This implies a waiting period for each time

step, during which only communications occur, hence a deterioration in the efficiency.

The scalability of the solver is tested by increasing the problem size with the increase

in the number of processors. The scaled speed up is shown in table 4.3. The number
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Figure 4.11. Parallel speedup for the pulse propagation problem.

of elements is increased in the same ratio as that of the number of processors. A scaled

speed up of upto 88% is observed for the case with 16 processors.

Number of Nel Computation Scaled
Processors time (s) speed up

1 1296 988.7 100
2 2392 1047.6 94.4
4 5184 1052.1 94.0
8 10368 1085.6 91.1

16 20736 1122.2 88.1

Table 4.3. Scaled speed up for the parallel solver.

4.7.3 Acoustic propagation in the shear layer of a realistic jet

The configuration of the selected jet nozzle is similar to a Rolls Royce Allison test noz-

zle, as shown in Fig. 1.2, in two dimensions. This may be imagined as a nozzle between
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Figure 4.12. Parallel efficiency for the pulse propagation problem.

two curved plates, with a splitter plate in the middle. The configuration is not however

axysymmetric, since the DG algorithm developed in this thesis is for rectangular carte-

sian grids only. Hence the solution obtained could be considered as the simulations for a

rectangular nozzle. The mean flow solution is obtained from CFD, using a finite differ-

ence method. The details of the method used in the obtaining the mean flow solution and

the turbulence model used can be found in the Master’s thesis of Steve Zygmunt [53].

The structured grid used in the mean flow solution is shown in Fig. 4.13. The mean

flow solution is obtained using a parallel solver, with 8 partitions, as shown in the fig-

ure. A contour plot of the mean flow velocity in the x direction is shown in Fig. 4.14.

The diameter of the nozzle at the exit is D � 0 � 762m. The maximum mean flow Mach

number based on local speed of sound in the jet is 0 � 7. The free stream Mach number
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Figure 4.13. The structured grid used in the mean flow solution. Courtesy Steve Zygmunt [53].

is 0 � 2. The Reynolds number in the free stream is 4 � 375 � 107. The length of the com-

putational domain is 10D in the x direction, and 3 � 9D in the y direction. The structured

grid has close to 53000 grid points, and 103000 elements when triangulated using the

same points. It is clustered in the vicinity of the solid boundaries, as well as the shear

layer, to resolve the sharp gradients in the flow variables. As evident from Fig. 4.13, the

clustering extends beyond the areas of sharp gradients near the walls of the jet well into

the far field. The minimum characteristic length of the grid is hmin
D

5 � 10

4
5m, near

the tip of the nozzle. Clearly, this resolution is excessive when extended to the far field,

as seen in the figure directly above the tip of the nozzle exit, at the top boundary.

Using a third order time marching scheme for acoustic propagation with the DG
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Figure 4.14. Contour plot of the mean flow velocity in the x direction.

method, the time step needs to be at least one order of magnitude less than the minimum

spatial dimension. This implies that the time step needs to be less than ∆tmax
D

1 �
10

4
6s. Assuming a non dimensional frequency of St � 0 � 5, this translates to marching

through approximately 0 � 5 � 106 time steps for a single cycle of the oscillation. The

acoustic propagation has to be simulated to the far field, which will require several( o
O
�
10
�
) periods of oscillations, or several million time steps using the structured grid. If

the same grid were to be used with the DG method, the calculations for over 100,000

elements would require several days.

The excessive resolution in the boundary layers and shear layer regions of the flow

are not usually critical in a computational aeroacoustic calculation. Hence it is imper-

ative to generate and interpolate the flow variables to a separate grid for the CAA cal-

culations. Figure 4.15 shows an unstructured triangulation on the same computational

domain, obtained using Gmsh. This grid has approximately 13,000 nodes and 25,000

elements, with the minimum characteristic element dimension hmin
D

1 � 10

4
2m. The

coordinates of the boundary points of the solid walls of the nozzle are extracted and

plotted in Gmsh, and the resulting plot is triangulated, as shown in Fig. 4.15. The coor-

dinates of the shear layer boundaries in Fig. 4.14 are extracted, and are used to cluster
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Figure 4.15. The unstructured grid for the splitter plate nozzle problem.

the unstructured grid in the shear layer. The mean flow variables are interpolated onto

the unstructured grid using Tecplot [41]. The interpolation introduces errors in tne mean

flow values that are used for the acoustic calculations. In this study, the interpolation

is linear. Linear interpolation finds the values in the destination points based on their

location within the elements of the source mesh. The value is linearly interpolated to

the destination data points using only the data points at the vertices of the element in

the source mesh [41]. Other interpolation methods within Tecplot include the inverse

and the kriging algorithm, which use a weighting function to reduce the error in the

interpolation. Further details about the interpolation algorithms could be obtained from

Tecplot’s user manual [41].

The mean flow variables interpolated for the aeroacoustic computation are the flow

density, velocity, pressure and their spatial derivatives at the nodes. The thickness of the

PML is 0 � 9D in the x direction at each end, and 0 � 8D at the top. The original structured

grid in Fig. 4.13 near the entrance to the nozzle is extended upstream to provide for

the PML at the inlet. The acoustic propagation from a time harmonic pressure source

embedded in the shear layer of the jet is simulated using the parallel DG solver. The
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source location is at
�
x 
 y � � �

1 � 45 
 0 � 262
�
, near the exit of the nozzle. The origin of the

coordinates is at the lower left corner of Fig. 4.15. The source frequency is chosen to

be St � f D I Uc � 0 � 33 where Uc is the jet inlet speed of sound, Uc � 437 � 9m I s. The

characteristic variables for non-dimensionalization are chosen to be Uc, D, and the free

stream density. The source frequency based on St � 0 � 33 is f � 189 � 6Hz. The source

is a periodically oscillating Gaussian distribution, with an amplitude of 0 � 01N I m2, and

a width of 1 cm. A symmetry boundary condition is applied at the bottom boundary,

and a combination of PML with radiating boundary conditions is used on the other

three boundaries. The time step for the computation is chosen as ∆t � 1 � 10

4
3 non-

dimensional units, with a third order basis set.

Figure 4.16 shows a contour plot of the pressure after a time of t � 6Ts where Ts

is the non-dimensional time period of the source. The computation is performed on the

Beowulf cluster ‘Lionxe’, of the Pennsylvania State University, with 32 processors run-

ning at 1GHz for approximately 7 hours. Incidentally, the source produced an instability

wave which is evident in the contour plot. The reflections of the acoustic pressure waves

are seen to travel upstream of the nozzle in the external flow field. Figure 4.17 shows

a contour plot of the pressure after a time of t � 6T for the same source placed in the

far field, at
�
x 
 y � � �

6 
 2 � � �
7 � 874D 
 2 � 624D

�
. The sound waves propagate upstream

inside the nozzle, indicating that the sources inside the nozzle contribute to the noise at

the source location. The experimental results of the noise from this nozzle configuration

involve the data at several observer locations, from all the sources in the flow, at various

frequencies. This information can only be gathered by processing the output from the

DG solver further, using the acoustic reciprocity principle. These additional calculations

are have not been performed in the present thesis.

The next chapter deals with the evaluation and development of both discontinuous

and continuous Galerkin methods for solution of the LEE in the frequency domain.
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Figure 4.16. Contour plot of the acoustic pressure at the end of a cycle of oscillation of a source
inside the nozzle.
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Figure 4.17. Contour plot of the acoustic pressure at the end of a cycle of oscillation of a source
in the far field.



Chapter 5

Frequency domain calculations

In this chapter, the application of finite element methods in the frequency domain is con-

sidered. As mentioned previously in Chapter 1, the linearized Euler equations support

instability wave solutions for certain source frequencies. These instability wave solu-

tions are only mathematical in nature, but are absent in real flows. Various techniques

have been used by several researchers to suppress the instability wave solution in the

time domain solution [6]. These techniques range from assuming zero gradient in the

mean flow to numerical filtering of the instability waves. One of the approaches that

suppresses the instability wave solution is to solve the LEE in the frequency domain [6].

The solution of LEE in the frequency domain also saves substantial computational time

compared to time domain calculations. In the frequency domain, a harmonic response

is assumed for the acoustic variables. The frequency of response is chosen as the fre-

quency of oscillation of the source. The resulting set of equations is elliptic in nature.

Since the boundary conditions affect the solution at every point inside the computational

domain for an elliptic system, the algebraic system of equations obtained after numerical

discretization needs to be assembled globally.

The use of iterative techniques to solve the resulting global matrix has been dis-
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cussed by Agarwal [54]. It is proved that the use of any iterative technique to solve the

global matrix is equivalent to a pseudo-time marching method, and hence, produces an

instability wave solution. Hence, the solution of the global matrix needs to be sought by

using direct methods such as Gaussian elimination or LU decomposition techniques.

In the following sections, a brief review of the literature on the development and

application of the DG method to elliptic problems is provided. This is followed by the

development of an algorithm using the DG method for frequency domain problems. The

algorithm is tested using examples in one and two dimensions. Further, a comparison

of the DG method with the continuous Galerkin method in terms of the computational

expense is carried out. Finally, a stabilized continuous Galerkin method is used to seek

the suppression of the instability wave solution.

5.1 Literature on the DG method for elliptic equations

The DG methods were originally developed for applications to convection dominated

hyperbolic problems. Some early work on the extension of the DG methods to elliptic

problems was carried out by Cockburn and Shu [55], in their development of the local

DG method for convection-diffusion problems. The mathematical development of the

DG method for elliptic problems was addressed by Oden et al. [56]. An a priori error

estimate, convergence proofs and stability estimates were developed. An exponential

convergence rate was proved for simple problems in one and two dimensions. Later, a

comprehensive discussion of the literature on the DG methods applied to elliptic equa-

tions was provided by Arnold et al. [57]. A unified DG approach to elliptic systems was

also developed. However, there have been relatively few discussions on the application

aspects of DG method for elliptic problems. Hesthaven and Warburton [58] applied the

elliptic DG method to problems in electromagnetics, by solving Maxwell’s equations in
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the frequency domain.

Several researchers have attempted to solve the linearized Euler equations in the fre-

quency domain [6]. However, in all such implementations, an assumption has been

made regarding the mean flow gradients, or the equations themselves have been altered

so as to obtain a Green’s function for the resulting set of equations. For example, the

assumption of no gradients in the direction of the mean flow allows the reduction of the

LEE to Lilley’s equation, for which an analytical solution can be found. A frequency do-

main solution of the LEE for the acoustic propagation and scattering of jet noise around

an aircraft was sought by Xu et al. [47]. They did not reduce the LEE to an equation

with an analytical solution. However, the mean flow around the aircraft was assumed to

be irrotational, so that the momentum equation reduced to an algebraic relation between

the density to the velocity potential. The development of a frequency domain solver for

the case of a general mean flow configuration is still an issue which needs much atten-

tion. The primary goal of the present work is the initial development and demonstration

of a finite element frequency domain solver of the full LEE, for a general mean flow

configuration.

5.2 DG method for the LEE in the frequency domain

Consider the LEE in two dimensions given by equation (3.1). In the frequency domain

approach, a time harmonic response is assumed for the acoustic variables of the form

q � q̃e

4
iωt 
 (5.1)
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with the frequency of response ω equal to the frequency of oscillation of the source.

Under this assumption, the linearized Euler equations reduce to

� iωq̃
" ∂Arq̃

∂xr

"
Cq̃ � s̃ for r � 1 
 2 
 (5.2)

with Ar and C as given in section 3.1. The discretized equation following the application

of the DG method to the above equation within an element in the domain is

Peq̃e " 3

∑
j � 1

Pne jq̃ne j � fe (5.3)

with

Pe � X � iωI
�

Me " Ae
r



Ke
r
"

Ce 
 Me Y " 1
2

3

∑
j � 1

X �Ae
r
�
n j

r � 
 Be j " αI
�

Be j Y 
 (5.4)

Pne j � 1
2

3

∑
j � 1

X �Ane
r
�
n j

r � 
 Be j � αI
�

Be j Y 
 (5.5)

and

fe � X
I
�

Me Y s̃e � (5.6)

The element matrices and the symbols are as follows. q̃e and s̃e are vectors of size

4N made up of the nodal values for all variables in q̃, and the acoustic source values

s̃ respectively. The superscript
�;� ne j denotes the values from the neighbor element on

side j. The mass matrix Me is given by equation (2.12). The stiffness matrix Ke
r is given

by the component of the Ke in the rth direction of ∇ψ in equation (2.13). The elemental

edge matrix Be j for a given side j is given in section B.3.1 in Appendix B. The symbols�
and



are the Kronecker product and the row multiple, which are defined in Appendix

C.

The elemental equations need to be assembled to form a global matrix. In the global
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assembly, the only connection between the elements is through the elemental boundary

matrices. Since the solution in each element is discontinuous, each element has its own

set of 4N nodal variables, for the nodal values of the four variables in q̃e. There are

a total of 4N # Nel variables in the computational domain. The structure of the global

matrix is illustrated in Fig. 5.1. The global matrix is made of smaller block matrices.

4N

Blocks
Nel

{

Figure 5.1. The structure of the global matrix and the vector of variables in the frequency
domain DG method.

The numerical equation from each element occupies a set of 4N rows. The diagonal

block matrix in a set of rows for an element corresponds to the contribution from the

element. There are three more blocks in the same set of rows, from the three neighbors

surrounding the element.

5.2.1 Boundary conditions

A buffer zone type boundary condition is implemented. The physical domain in a prob-

lem is surrounded by a buffer zone of sufficient width. The acoustic amplitudes are

damped by adding an imaginary component to the frequency of response only in the

buffer zone, similar to the method utilized in Agarwal and Morris [6]. In the buffer
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zone,

ω < ω
�
1
"

iσ
�
x 
 y �/� � (5.7)

The damping function σ is varied smoothly from zero at the beginning to a maximum

value at the end of the buffer zone. The values of the acoustic variables are assumed to

be zero on the boundary of the computational domain. For a one dimensional problem,

the damping function is taken as

σ
�
x
� � ε

1 � exp
�
κx2

b

�
1 � exp

�
κ
� 
 (5.8)

with xb being the coordinate in the buffer region normalized by the width of the region.

ε and κ are taken as positive constants.

5.2.2 The direct solver

In the present work, a sparse LU decomposition solver routine from Matlab [59] is

utilized to solve algebraic systems of reasonably smaller sizes, of the order of a few

tens of thousand rows. For algebraic systems of a larger size, a parallel solver called

SuperLU [60] is used. The size of the global matrix is stated from this point in terms

the number of rows. SuperLU is an open source sparse matrix LU decomposition solver

with MPI based parallel implementation written in C. It has been extensively tested on

various parallel platforms. The only constraint with the SuperLU solver is that the sparse

matrix must be written in the Harwell-Boeing format. The other alternative is, however,

to modify the solver’s source code itself, but this is a tedious process, which in turn

would consume more time and effort. In the present work, the elements of the global

matrix are written out in the coordinate-storage format, and then, a modified Matlab

routine from Xiaoye Li [61] is utilized to write out the global matrix in the Harwell-
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Boeing format.

5.3 Applications

In this section the application of the DG method to a one dimensional wave equation

is considered. This is followed by an example of the acoustic propagation in a two

dimensional parallel jet flow, with the presence of instability waves in the solution of

the LEE. The DG method is then compared with the continuous Galerkin methods in

terms of computational requirements.

5.3.1 One dimensional calculations

The one dimensional inhomogeneous wave equation in the frequency domain is consid-

ered. The wave equation is written as a system of first order differential equations:

� iωq̃
"

A
dq̃
dx

� s̃ 
 (5.9)

where

q̃ � [\] \^ ũ

p̃

_`\a\b 
 A � =>?
0 a

a 0

@ AC 
 and s̃ � [\] \^ s̃u

s̃p

_`\a\b � (5.10)

The computational domain is 0 7 x 7 10. The value of the wave propagation velocity,

a � 4, and the source frequency is chosen to be ω � 10. The sources are chosen to have

a Gaussian variation, with the peak at x � 3 � 5, and a variance of 0 � 2. The variation of the

source terms is given in Fig. 5.2. Characteristic boundary conditions are implemented

at the boundaries. The exact solution, which is obtained using Green’s functions [62] is
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Figure 5.2. The strength of the source for the 1d wave equation.

given by:

p �f� 1
2ika2

0 � ∞4
∞

eik p x 4 ζ p 8 iω " 2a
�
y � 3 � 5 �
0 � 22 9 e

4 � ζ 4 3 q 5 � 2 � 0 q 22
dζ (5.11)

The solution obtained using the DG method with a basis set made up of first order

polynomials is compared to the exact solution in Fig. 5.3. There are 300 equisized

elements. The elements are clustered in the region of variation of the solution. There

are only 10 elements per unit length between 0 7 x 7 2 � 9, and there are 38 elements

per unit length in the rest of the domain. The L2 norm of the global error between the

DG solution and the exact solution is calculated for varying number of elements. The

convergence plot in Fig. 5.4 shows the variation in the error, which decreases as h2 q 5.

5.3.2 Two dimensional calculations

The benchmark problem from the fourth CAA workshop [63] is chosen as the test prob-

lem. The problem concerns the radiation and refraction of acoustic waves generated by

a time harmonic source immersed in the shear layer of a jet. The geometry of the prob-
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Figure 5.3. Comparison of the DG solution with the exact solution for the 1d wave equation in
the frequency domain.
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Figure 5.4. Convergence of the DG solution for the 1d wave equation.

lem domain, and the mean flow profile is similar to that shown in Fig. 3.12. However,

the physical domain is � 50 7 x 7 150 and 0 7 y 7 50. The source is located at the

origin. The frequency of excitation of the source is 76 rad/s. The Mach number of the

mean flow, which is only in the x direction, is 0.756, based on the speed of sound in the
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jet. The gradient of the mean flow along the y direction is very high between y � 0 to

y
D

4 compared to the region 4 7 y 7 50. An instability wave is excited by the source at

the specified frequency of the source, but only the acoustic solution is obtained by solv-

ing the LEE in the frequency domain. The instability wave and the acoustic solution

from Agarwal et al. [6] are shown in Fig. 5.5, where the instantaneous pressure values

at y � 15 at the end of a cycle of oscillation of the source are plotted.
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Figure 5.5. The instability wave and the acoustic solution from Agarwal et al. [6]

The physical domain is surrounded by a buffer domain, in which the acoustic am-

plitudes are damped by adding an imaginary component to the frequency. The com-

putational domain is � 250 7 x 7 225 and 0 7 x 7 100. The mesh consists of similar

right angle triangles obtained by halving the rectangles of a 89x49 grid. There are 8500

elements in the mesh. The mesh is clustered near the origin in both x and y directions

to resolve the mean flow gradient and also the source. The result obtained using a first

order polynomial basis set is shown in Fig. 5.6. The solution from the DG method is
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Figure 5.6. Comparison of the DG solution with the exact solution for the two dimensional
frequency domain problem.

compared with a solution from a 2nd order finite difference method given by Agarwal

et al. [6]. The size � of the global matrix is over 105. The solution time using the

SuperLU solver on 4 processors is approximately 3 � 5 minutes. By comparison, a time

domain solver used on the same number of elements takes a few hours to obtain a so-

lution at the far field. However, the DG solution needs improvement. There are several

areas that could be worked on to improve the solution. The solution depends heavily

on the boundary conditions, which could be changed by extending the buffer zone, and

changing the damping coefficients, or by using a PML. The order of approximation

and the number of grid points could be increased. But, an analysis of the computational

needs and a comparison with other finite element methods has shown that such improve-

ments are unnecessary, since the DG method itself proves to be far more expensive for

aeroacoustic problems in the frequency domain.r
The size of a matrix has been previously defined as just the number of rows.
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5.3.3 Evaluation of the DG method

As mentioned above, the size of the global matrix in the DG method is given by 4NNel .

The number of non-zeros (Nnz) in the matrix can be calculated as follows. In the dis-

cretized equation (5.3) for the two dimensional LEE, The global matrix is made of el-

ement volume matrices and element edge matrices. The total number of these matrices

in Pe is equal to the total number of terms in the matrix Ae
r
�
n
� j �
r , that is 10. Each volume

matrix is of size N. For simplicity, the volume matrices will be considered to be full.

The number of non zeros in the edge matrices is equal to the number of entries in the

mass matrix in one dimension, and is given by
�
p
"

1
� 2. Considering the three edges,

the total number of non-zeros in an elemental matrix is given by, 10 s 3 � p " 1
� 2 " N2 t .

Hence the total number of non-zeros in the global matrix is given by,

Nnz � 10 s 3 � p " 1
� 2 " N2 t Nel 
 (5.12)

with N � �
p
"

1
���

p
"

2
�

2
�

Consider a modest 8500 element grid. The size of the global matrix is 105 and the

number of non-zeros is over 1 � 75 � 106. The size of the Harwell-Boeing binary format

file containing the sparse global matrix is 92 MB. The sizes of this matrix are 220 MB

and 660 MB, using a uniformly second and third degree basis sets. Thus, the files size

grows rapidly, and it becomes increasingly difficult to deal with the computer memory.

Evidently, the number of non-zeros increases as the square of the degree of the basis set,

and is directly proportional to the number of elements.
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5.4 Evaluation conclusions

In an unstructured grid, the number of elements is generally twice the number of nodes.

Using a a conventional continuous Galerkin method, the size of the global matrix is

equal to the number of nodes. Hence the global matrix from the DG method is twice

the size of that from a continuous FEM. Moreover, the edge flux terms are absent in a

continuous Galerkin formulation. Therefore the number of non-zeros is also consider-

ably less compared to the DG method. Considering the same 8500 element grid, using a

continuous Galerkin method, which is described in the following section, the number of

non-zeros is 4 � 5 times less than the DG method. While the solution of the linear system

using the DG method requires a parallel solver, the solution using the SUPG method is

obtained in Matlab on a single processor, in relatively less time.

Some useful conclusions can be drawn from this comparison: The DG method is

suited for seeking a high order accurate solution on unstructured grids. However, for

problems requiring a global assembly, the DG method is expensive in memory require-

ments compared to conventional continuous Galerkin methods. Even then, the use of

the DG method is recommended in those cases where:� The physics of the problem can be expressed using a single governing equation,

and� An adaptive refinement needs to be performed on unstructured meshes - The DG

method can incorporate the h � p refinement very easily.

However, for an elliptic system of equations, as in the case of LEE, the use of the DG

method poses prohibitive computational memory constraints compared to the continu-

ous FEM. The memory requirements will be much greater for three dimensional calcu-

lations also. This is due the increased number of nodal variables per element in three
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dimensions, especially for higher orders. For example, the number of variables in a

second order triangular element in two dimensions is N � 6 and for a three dimensional

tetrahedron, N � 10. In addition, since the number of surfaces is higher in three dimen-

sions compared to the number of sides in two dimensions, the global matrix is expected

to be denser due to the additional surface flux terms.

Although finite difference methods are as good as continuous FEM in terms of the

memory requirements, they are not applicable on unstructured grids. In the following

sections, the application of continuous Galerkin methods to frequency domain aeroa-

coustic problems is considered. Particularly, the emphasis will be on the use of the

streamline upwind Petrov Galerkin (SUPG) method.

5.5 The Streamline Upwind Petrov Galerkin method

Conventional continuous Galerkin methods were originally developed for problems in

structural mechanics, where the governing equations are elliptic in nature. It has been

shown in [7] that the standard continuous Galerkin method is not well behaved for con-

vection dominated problems, that are hyperbolic in nature. Let us consider the appli-

cation of the standard Galerkin method to a scalar transport equation in the absence of

diffusion: �
a # ∇q

"
cq � s � (5.13)

Let the convection velocity,
�
a and the coefficient c be constants. The discretized weak

form using the element approximation (2.2) is:0
Ωe

ψk s �a # ∇ψ j
t qe

jdΩe " 0
Ωe

c s ψkψ j
t qe

jdΩe � 0
Ωe

ψksdΩe 
 k 
 j � 1 �/�/� N � (5.14)
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The weak form has an unsymmetrical term associated with the convection operator.

Consequently, spurious node to node oscillations appear in the solution [7]. This is

better understood by recalling that the standard Galerkin method is similar to a central

finite difference scheme, which suffers from dissipation errors for convection dominated

problems. Initial attempts to stabilize the Galerkin method included adding an artificial

dissipation term to the weak form, much similar to the upwind finite difference schemes

[64]. Later attempts were the introduction of the Petrov Galerkin method, in which the

test functions in equation (5.14) are modified to add a symmetric term to the weak form.

Several variations of the Petrov Galerkin method were then proposed [64, 7] to stabilize

the weak form, such as the streamline upwind Petrov Galerkin (SUPG) method, and the

Galerkin least squares (GLS) method.

In the SUPG method, an upwind biased diffusion term is added [64] to the weak

form by modifying the test function:

ψ
&

ψ " τe �a # ∇ψ � (5.15)

Here, τe is a stabilizing parameter controlling the artificial dissipation, and is determined

based on the element size, the reaction coefficient c and the convection velocity. A

possible candidate for τe when c � 0 is:

τe � αhe

2 : a : 
 (5.16)

with α as a positive constant. The discretized weak form in equation (5.14) now be-

comes: 0
Ωe

ψk s �a # ∇ψ jq
e
jdΩe " cψkψ jq

e
j � s t dΩe
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Ωe

τe �a # ∇ψk s �a # ∇ψ jq
e
j
" ψ jq

e
j � s t dΩe � 0 � (5.17)

The second term corresponds to the SUPG formulation. The product of the gradients

of the test and trial functions in the first term of the SUPG expression is essentially the

artificial diffusion. This is equivalent to adding a diffusion term to the left hand side in

the original equation (5.13) of the form:

µk j
∂

∂xk
8 ∂q

∂x j 9 with

µk j � τeaka j for k 
 j � 1 �/�/� d (5.18)

The diffusion is introduced only in the direction of the resultant velocity, due to the inner

product of the velocity vector with the gradient of the test function in equation (5.15).

This accounts for the upwind bias [64]. Considering the one dimensional case, the basis

functions in equation (5.15) at a node are schematically sketched in Fig. 5.7 for p � 1.

It can be seen that the element upstream of the node has more weight compared to the

downstream.

SUPG

Galerkin

FLOW

Figure 5.7. The one dimensional basis functions for p O 1.
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5.6 Literature on the SUPG method

The SUPG method was introduced simultaneously by Hughes and Brooks [65] and

Kelly et al. [66], in 1980. Hughes and Mallet [67] established error estimates for general

linear advective diffusive multidimensional systems using the SUPG method. The de-

pendence of the convergence properties of the SUPG method on the stability parameter

was analyzed for scalar advection diffusion systems by Franca et al. [68]. A comparison

of the SUPG method with other stabilized Galerkin methods such as the GLS method

was conducted by Codina [69]. In 1987, Hughes [70] gave an overview of the applica-

tions of the SUPG method to compressible and incompressible Navier-Stokes equations.

The relation between the DG method and the SUPG method was also explained in the

same work. Application of the SUPG method to an advective-diffusive problem was an-

alyzed in detail by Franca et al. [68]. Beau et al. [71] tested the use of entropy variables

in the SUPG method for the solution of compressible Navier-Stokes equations in the

presence of shocks. They also described the design and addition of a shock capturing

term to the SUPG formulation. Recently, Behr [72] applied stabilized Galerkin methods

in the finite element formulation for free surface flows.

The selection of the stability parameter for systems of hyperbolic equations is still

an active research area. The SUPG formulation for a system of equations involves the

flux coefficient matrices in the place of the convection velocity components in equation

(5.17). Also, the stability parameter can be a matrix in such a formulation. The two

components in the expression for the stabilizing parameter for a scalar variable are the

convection speed and the element size. The selection of values equivalent to these two

parameters in multiple variable problems, in multiple dimensions has attracted signifi-

cant attention in research. Some of the works in this area are noted below.

Hughes and Mallet [67] first discussed the selection of the stability parameter for
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general multidimensional systems. However, some assumptions were made so that the

system could be decoupled. Codina [73] discussed the selection of the stability pa-

rameter for nonlinear systems of equations. Codina also developed a methodology for

choosing the stabilization parameter on the basis of inverse estimates of the coefficient

matrices for some particular examples, such as multidimensional Stokes equation and

Reissner-Mindlin plate bending equations. Beau et al. [71] used the spectral radius

of the flux coefficient matrices to define the stability parameter for compressible Euler

equations. Recently, Tezduyar and Osawa [74] developed a methodology for selecting

the stability parameter based on the element matrices and vectors of the Galerkin for-

mulation. They also looked at various possibilities of defining the element length for

different types of elements in multiple dimensions. Tezduyar and Sathe [75] improved

on this formulation and applied the method to advection-diffusion and Navier-Stokes

equations. It is clear that a consistent methodology for the design of the stabilizing pa-

rameter has not yet been established. The methods used by many of the researchers are

either ad-hoc, or involve very complex calculations for specific problems.

5.7 SUPG method for the LEE in the frequency domain

Consider the linearized Euler equation defined in Ω �i 2 in the frequency domain:

� iωq̃
" ∂Arq̃

∂xr

"
Cq̃ � s̃ for r � 1 
 2 (5.19)

with Ar and C as given in section 3.1. The weak form obtained from the SUPG formu-

lation for such a system of equations over an element can be written as:
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0
Ωe

ψ 8 � iωq̃
" ∂Arq̃

∂xr

"
Cq̃ 9 dΩe " 0

Ωe
τeAT

k
∂ψ
∂xk

8 � iωq̃
" ∂Arq̃

∂xr

"
Cq̃ 9 dΩe� 0

Ωe
ψ s̃ dΩe " 0

Ωe
τeAT

k
∂ψ
∂xk

s̃ dΩe (5.20)

In the conventional SUPG method, the test function is given by ψ "
Ar

∂ψ
∂xr

. However,

the use of AT
r in the place of Ar in the stabilizing term has been shown to produce

superior results for non-linear problems [73]. Also, Beau et al. [71] have used AT
r in

the stabilizing term for Euler equations applied to compressible flows with shocks. In

this work, since the linearized version of the compressible Euler equations is used, AT
r

is used in the formulation.

The choice of the stability parameter matrix has a significant influence on the result

obtained using the SUPG method. The simplest method of selecting the stability pa-

rameter involves replacing the convection speed by functions of the eigenvalues of the

flux coefficient matrices. In this work, an expression similar to that provided in Beau et

al. [71] is used. The stability parameter matrix is expressed as

τe � max 8 αhe
r

λr 9 I 
 (5.21)

with I being a 4 � 4 identity matrix. The element size he
r is the width of the element in

the rth direction, as shown in Fig. 5.8. λr is the spectral radius of the coefficient matrix

Ar.
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Figure 5.8. The element lengths in a triangle.

5.7.1 The discretized equation

The discretized form of the weak formulation in an element can be written as:

Peq̃e � fe (5.22)

with

Pe � X � iωI
�

Me " Ar



Ke
r
"

Ce 
 Me Y" X � iω � τeAk
T � 
 Ke

k
T " � τeAk

T Ar � 
 Vkr
" � τeAk

T C � 
 Me Y (5.23)

and

fe � X
I
�

Me " � τeAk
T � 
 Ke

k
T Y s̃e for k 
 r � 1 
 2 (5.24)

The element matrices and the symbols are as defined before for the DG algorithm. The

diffusion matrix in an element is defined as

Vkr � 0
Ωe

∂ψ
∂xk

∂ψ
∂xr

dΩe � (5.25)
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A global assembly is carried out with the element matrices and vectors of equation

(5.22). After imposing the boundary conditions, the resulting linear system is solved

using direct solvers.

5.7.2 The boundary conditions

A buffer zone type boundary condition similar to the type described in section 5.2.1 is

implemented in two dimensional calculations. The width of the buffer region is taken as

8 � 10 wavelengths of oscillations of the solution. In the two dimensional calculations,

the values of the parameters ε and κ in equation (5.8) are chosen to be 5 � 0 and 1 � 0
respectively.

5.8 Applications

In this section we consider the application of the SUPG method to the wave equation

in one dimension and the linearized Euler equations in two dimensions for acoustic

propagation in a plane shear layer.

5.8.1 One dimensional wave equation

The SUPG method is applied to the one dimensional inhomogeneous wave equation in

the frequency domain, to understand and validate the algorithm for a system of equations

in a simple case. The governing equations, the source variation and the computational

domain are the same as in section 5.3.1. Characteristic boundary conditions are imple-

mented at the boundaries. A comparison of the solution obtained using SUPG with the

exact solution is shown in Fig. 5.9. The basis set is made of first degree Lagrange poly-

nomials. The domain is divided into 300 equal parts. That is, h � 0 � 033. The stabilizing
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parameter is chosen to be τe � 0 � 5h I a. The L2 norm of the global error between the ex-
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Figure 5.9. Comparison of the exact and SUPG solution for the 1d wave equation.

act and the SUPG solution is calculated for varying number of elements. The variation

is shown in Fig. 5.10.
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Figure 5.10. Convergence of the SUPG solution for the 1d wave equation.
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5.8.2 Two dimensional LEE

The problem considered is the same as the benchmark problem involving the instability

wave solution, as described in section 5.3.2. The computational domain is taken to be� 250 7 x 7 225 and 0 7 y 7 100. In the buffer region, a damping function of the form

in equation (5.8) is used, with ε � 5 and κ � 1 � 0. The computation is performed on

two grids made of similar right angle triangles. The first grid has 89 � 49 nodes and

the second has 177 � 97 nodes in x and y directions respectively. The second grid is

shown in Fig. 5.11a, without the triangulation. The triangles are created by diagonally

halving the rectangular elements. The nodes are clustered near the origin in both
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Figure 5.11. The SUPG method in 2d LEE. (a) The 177 u 97 grid used. (b) A contour plot of
the acoustic pressure.

the directions to resolve the source and the high mean flow gradient. The resulting

numerical linear algebraic system is solved using a direct solver in Matlab [59], using

LU decomposition. The size of the global matrix to be inverted is
�
4 � Nnodes

� 2. The
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actual LU decomposition and the solution took only 4 minutes for the finer grid case,

on a 1GHz Pentium IV processor, with a 512 MB RAM. A contour plot of the acoustic

pressure obtained using a first order SUPG method is shown in Fig. 5.11b. The values of

the instantaneous pressure along y � 15 at the end of a cycle of oscillation of the source

for the 89 � 49 grid is shown in Fig. 5.12. The improved solution, which is much closer

to the exact solution, is shown in Fig. 5.13.
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Figure 5.12. The pressure values at y O 15: The 89 u 49 grid.

The values of the pressure along y � 50 using the finer grid is shown in Fig. 5.14.

The exact solution is obtained from Agarwal et al. [6].

5.9 Observations and future directions

The SUPG method has an inherent damping, which increases with the size of the el-

ement. This can be seen from the expression (5.16). This basically means that the
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Figure 5.13. the 177 u 97 grid.
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115

artificial dissipation is decreased as the grid resolution is increased. The grid in the

buffer region is more coarse compared to the physical domain, and hence there is an

inherent damping of the acoustic waves in the SUPG method. This needs to be taken

into account while choosing the parameters in the damping function in equation (5.8).

There is also a need to reduce the length of the buffer region surrounding the problem

domain, to cut down on the computation time. This requires a study on the damping

parameters, as well as an implementation of PML in the frequency domain.

The results presented here were obtained using a value of α � 0 � 125 in equation

(5.21). It was observed that the solution is very sensitive to the value of α, and subse-

quently the stabilizing parameter matrix. The design of the stability parameter matrix

requires significant research and analysis. In this implementation of the SUPG method,

a fairly simple expression (5.21) was chosen for the stability parameter matrix. Meth-

ods using the inverse estimates of the coefficient matrices and the source matrices, as

mentioned in Codina [73] are expected to be more accurate. Also, for higher order so-

lutions, estimates based on the element matrices Me and Ke have to be evaluated, since

they have been documented [74] to produce better solution in such cases.



Chapter 6

Conclusions

Several contributions have been made in this research to the application of numerical

methods to computational aeroacoustics on unstructured grids. The work can be broadly

classified to be in three main areas, as follows.

A solver using the DG method has been developed for the linearized Euler equations

in the time domain. An in-depth analysis of various factors affecting the overall compu-

tational cost of a solver using the DG method is conducted. A novel method to reduce

the computational cost using a Lagrange polynomial basis set to approximate the flux

expressions has been developed. The element integrals have been shown to be easily

evaluated for a basis set made of any polynomial, without the use of quadrature. As a

result of this analysis, the final DG solver developed in this study is considerably more

efficient compared to the recently developed, and presently the most popular quadrature-

free DG method using moment polynomials. It is concluded that the choice of the basis

set polynomials plays a critical role in determining the efficiency of the DG solver. The

use of polynomials that reduce the edge flux as well as flux expansion computations

significantly reduces the computation time.

The time domain DG solver has been transformed to run on parallel platforms, so
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that it is practically useful for realistic flow applications involving fully non-uniform

mean flows. The parallel version of the solver is capable of using a domain decomposi-

tion with unstructured partitions. The solver has been validated using several benchmark

problems involving acoustic propagation with uniform and non-uniform mean flows.

The sound propagation in a realistic aircraft jet engine exhaust configuration from a

source upstream of the exit of the nozzle has been calculated to the far field. It is con-

cluded that in many practical time domain applications, the mean flow solution obtained

using CFD might have to be interpolated to a new grid that is generated particularly for

the simulation of noise propagation to the far field observer locations.

The time domain solution of the LEE includes the Kelvin-Helmholtz instability

waves that are solutions to the LEE, but not the original governing equations, namely,

the full Navier-Stokes equations. To suppress the instability waves in the solution, the

development of a frequency domain solver has been undertaken. The test problem in

two dimensions is a recent benchmark problem of acoustic refraction and propagation

in the shear layer of a parallel jet. The DG method is considered initially. The frequency

domain calculations involve the solution of a global matrix, and the DG method pro-

duces a prohibitively large algebraic system. It is concluded that the DG method is not

suited for aeroacoustic applications in the frequency domain, if adaptive meshing is not

to be used. The use of continuous Galerkin methods has also been explored, and the sup-

pression of instability waves has been demonstrated with the use of the SUPG method.

Unlike other frequency domain solutions in the present literature, no assumptions are

made regarding the nature of the mean flow. The solver using the SUPG method has

been shown to be applicable for a non-uniform mean flow, which makes it more suitable

for practical problems in aeroacoustics.

In terms of the computational time, the time domain methods have been shown to be

more expensive compared to the frequency domain methods. However, the time domain
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methods have the ability to provide a solution over multiple frequencies in a single

computation. For practical problems of aeroacoustics in aeronautical applications, a

combined use of both the time domain and frequency domain methods is helpful. The

work in this thesis is a fundamental step in that direction.

6.1 Suggestions for future work

In this section, some suggestions are provided for the future work in the direction of the

present research. This can be concentrated in two main categories: first, the improve-

ment and extension of the existing finite element algorithms, and second, the addition

of new features to the solvers and their application to the problems in the aeroacoustics

of aircrafts and other vehicles.

An extension of the existing algorithms in both the time and frequency domains to

three dimensions is necessary in order to obtain results for practical problems in aeroa-

coustics. In the time domain solver using the DG method, a substantial pre-processing

of the standard FEM grid data is necessary to obtain the neighbor cell data. Various other

aspects pertaining to the extension of the DG algorithm to three dimensions have also

been discussed in section 3.4. The efficiency of the parallel solver could be increased by

altering the overlap period between the computation and communication between the

processors. A rearrangement of the existing algorithm, along with some changes is nec-

essary for this purpose. A separate algorithm may have to be written for interpolating

the mean flow values to the acoustic grid.

In the frequency domain solver using the SUPG method, an extension to three di-

mensions would involve additional post-processing to extract and visualize the data. At

present, the final global matrix is stored in the Harwell-Boeing format, and is read by

the direct solver, which is run independently of the SUPG code. A method to incorpo-
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rate a parallel direct solver into the SUPG code needs to be developed, to minimize the

implementation time. This is crucial for applications in three dimensions, since the size

of the global matrix is much larger. Some suggestions regarding possible future work on

the stabilization parameter, the element size, and the treatment of boundary conditions

in the SUPG method have already been provided in section 5.9.

The solvers developed in this research are applicable to several problems of practical

interest, such as jet noise, fan noise and airframe noise. As explained earlier, the time

domain solver has the capability to provide a solution for multiple frequencies with

a broadband excitation. On the other hand, the frequency domain solver solves for a

single frequency, but requires only a fraction of the computation time required for the

time domain solver. It would be interesting indeed to compare the two approaches for

problems of practical value.

One of the new features that could enhance the capacity of the solvers is the addi-

tion of an adaptive mesh, or a mesh with non-conforming elements. It is particularly

straightforward to implement this feature using the DG method. A rearrangement of the

algorithm, along with a new routine to calculate the element edge integrals in a more

general fashion is necessary to incorporate such non-conforming elements.
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Appendix A

The DG formulation using a moment

polynomial basis set

A complete formulation of the DG method in two dimensions using moment polynomial

basis set is presented in this appendix. Consider a general triangular element as shown

on the left in Fig. A.1. The triangle has straight edges, and
�
x0 
 y0

�
are the coordinates

of the centroid. A linear transformation is necessary to compute the mass and stiffness

matrices for the element. The general element is mapped to an equilateral element in

the standard region, as shown on the right in Fig. A.1. The centroid of this element is

at the origin in the standard region. The coordinate transformation is achieved using the

Figure A.1. The transformation.
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transformation matrix denoted by JT :[\] \^ x � x0

y � y0

_ \a\b � JT

[\] \^ ξ

η

_ \a\b 
 JT � =>?
a1 a2

b1 b2

@ AC (A.1)

where

a1 � x3 � x2 
 a2 � 1c 3

�
2x1 � x2 � x3

�
, and

b1 � y3 � y2 
 b2 � 1c 3

�
2y1 � y2 � y3

�
.

In this appendix, vectors are represented by
���

and tensors by �v� , and the bold typeface

convention for vectors and matrices is dropped. Also, all the symbols are defined as they

appear.

The basis set for the element consists of moment polynomials, which are essentially

the polynomials in a Taylor series expansion of the solution about the centroid of the

element,
�
x0 
 y0

�
. In other words, the basis set in the real region can be denoted by

ψ � �
1 
 � x � x0

� 
 � y � y0
� 
 � x � x0

� 2 
 � x � x0
���

y � y0
� 
 � y � y0

� 2 �/�/� � T (A.2)

and the basis set in the standard equilateral triangle region is formed by the polynomials

of a Taylor series expansion about the centroid,
�
0 
 0 � :

φ � �
1 
 ξ 
 η 
 ξ2 
 ξη 
 η2 �/�/� � T (A.3)

Using equation (A.1) the two basis sets can be related as:�
ψ
� �J� A � � φ � (A.4)

where � A � is unique for each element.
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A.1 The mass matrix

The mass matrix is given by,

�M � element � 0 �
ψ
�d�

ψ
� T dxdy � : J : � A � X 0 � φ �d� φ � T dξdη Y � A � T (A.5)

where : J : is the determinant of the Jacobian of transformation given below in equa-

tion (A.8). The matrix involving the integral is common for all the elements, and will

be denoted by �M � . Hence, we have

�M � element � : J : � A �j�M �w� A � T (A.6)

A.2 The stiffness matrix

The stiffness matrix is formed by the combinations of two matrices (in two dimensions):

�Kx �x� 0 � dψ
dx

�d�
ψ
� T dxdy 
 and �Ky �x� 0 � dψ

dy

�d�
ψ
� T dxdy

For example, in the case of the advection equation, with advection speeds of ‘Mx’ and

‘My’ in x and y directions respectively, the stiffness matrix is given by �K � element �� � Mx �Kx � " My �Ky � � . Now, the Jacobian of transformation is defined by,[\] \^ dψ I dξ

dψ I dη

_ \a\b �J� J � [\] \^ dψ I dx

dψ I dy

_ \a\b (A.7)

or � J �y� =>?
dx
dξ

dy
dξ

dx
dη

dy
dη

@ AC � =>?
a1 b1

a2 b2

@ AC (A.8)
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Using equation (A.7) and (A.8) the components of the stiffness matrix �Kx � and �Ky � are

written as:

�Kx �x�g� A � X 0 1 b2
� dφ

dξ
� � b1

� dφ
dη

� 2 � ψ � T dξdη Y � A � T 
 and�Ky �x�g� A � X 0 1 � a2
� dφ

dξ
� "

a1
� dφ

dη
� 2 � ψ � T dξdη Y � A � T � (A.9)

The terms in the integral except the ‘a’s and ‘b’s are common for all the elements. Hence

these can be precomputed and stored.

A.3 The boundary integrals

The boundary integral is given by�
b
� �{z � ψ �x� �F # n̂ � ds (A.10)

Where
�
F is the flux vector, n̂ is the unit normal to the edge, s is the edge coordinate in

the real space, and the line integral is performed on the three edges of the element. In

linear acoustics, the flux can be considered as a linear function of the flow variable, say

U . The flow variable in turn is represented by the coefficients of the expansion basis set,

which is denoted as
�
u
�
. We have, U � �

u
� T � ψ � � �

ψ
� T � u � .

Consider one edge of the triangle. The contribution to the boundary integral is,�
b
� � k

0
e

�
ψ
� 1 � u � T � ψ � 2 ds 


where k is a scalar term arising from the dot product of the flux vector and the unit

normal, involving the sines and cosines of the angle made by the normal to the edge.

The subscript
�|�

e refers to the fact that the integral is on an edge and the same integral
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has to be carried out on the three edges. Using the transformation in (A.1), this can be

written as �
b
�

e � k � A � 0
e

�
φ
� 1 � u � T � A � � φ � 2 ds (A.11)

Using the same transformation, a set of new variables in the standard space can be

derived as:

U � �
ψ
� T � u � � 1 � A � � φ � 2 T �

u
� � �

φ
� T � A � T � u � � �

φ
� T � v �

or, �
v
� �i� A � T � u � (A.12)

Now, there are two transformations involved in carrying out the edge integral:� The element coordinates have to be transformed to edge coordinates in order to

carry out the boundary integral. The transformation is represented as:�
φ
� �J� T � � S � (A.13)

where � T � is the transformation matrix, and
�
S
�

is the edge basis, given by
�
S
� �� 1 
 ζ 
 ζ2 
 ζ3 �/�.�}� T with ζ being the edge coordinate in the standard space. The

details of the transformation and values of the transformation matrix elements can

be found in [5] and [76].� The edge coordinate in real space, s, in (A.11) has to be transformed to that in the

standard space, ζ. This involves a Jacobian, denoted by Je, which is a function

of the length of the edge, the difference in the coordinates of the vertices, and the

elements of the matrix � T � and � JT � .
Using the above two transformations and the notation in (A.12) the boundary integral
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can be written as, �
b
�

e � k
Je
� A �w� T � X 0

e

�
S
�d�

v
� T � T � � S � dζ Y (A.14)

This can be rearranged as:�
b
�

e � k
Je
� A �j� T � X 0

e

�
S
�d�

S
� T dζ Y � T � T � v � (A.15)

Here again, the matrix involving the integral, and the edge matrices � T � are common for

all the elements. Finally, this equation is evaluated on each edge to give
�
b
�
.

A.4 The final equation

Assembling the terms, using (A.12), and canceling out the � A � ’s in each term results in:

: J : �M � dv
dt

�~�|�K � � v � " � b �
This equation is for the new variable

�
v
�

in each element, which needs to be trans-

formed back to the original variable
�
u
�

through (A.12). Since �M � is common for all

the elements, it can be readily inverted, and premultiplied with the leading matrices in

the expressions for �K � and
�
b
�
. The final equation can be written as:

dv
dt

�f� 1: J : �M � 4 1 �K � � v � " 1: J : �M � 4 1 � b � (A.16)

This equation is solved using the TVBRK schemes developed in Shu [17]. Thus the final

solution involves only multiplications and additions of matrices and vectors, instead of

matrix inversions.



Appendix B

Element vectors and matrices

Here, a full description is given of the evaluation of the element vectors of the final

discretized equation (3.3) from the DG formulation in the time domain for the LEE. The

basis set is assumed to be made up of Lagrange polynomials of degree p.

B.1 The stiffness vector

Following the basic steps in the DG formulation for the advection equation in section

2.2, applied to the LEE leads to

ke �~� 0
Ωe

∂ψ
∂xr

�
Arq

�
dΩe 
 r � 1 
 2 � (B.1)

Using group interpolation, as defined in equation (2.36), the product of the variables q

with the elements of Ar are approximated within the element as:

A
� kl �
r q

� l � D N

∑
j � 1

Fe � kl �
r � j � ψ j 


with Fe � kl �
r � j � � 1 Ae � kl �

r � j � qe � l �
j
2 (B.2)



134G k 
 l � 1 �/�/� 4 �
In the above equation, the Einstein summation convention is not followed for the re-

peated index l. The indices k 
 l � 1 �/�.� 4, corresponding to the size of the matrices Ar for

d � 2. The stiffness vector can then be expressed as:

ke � k � �i� 4

∑
l � 1

X 0
Ωe

∂ψ
∂xr

ψT dΩe Y Fe � kl �
r G k � 1 �/�/� 4 
 r � 1 
 2 � (B.3)

or,

ke � k � �f� 4

∑
l � 1

�Ke
r � Fe � kl �

r G k � 1 �/�/� 4 
 r � 1 
 2 � (B.4)

where Ke
r is the part of Ke in equation (2.13) corresponding to the rth component of ∇ψ.

The size of the stiffness vector is 4N.

B.2 The reaction vector

The reaction vector is formed in a way similar to that of the stiffness vector. The reaction

vector is given by

ce �i� 0
Ωe

ψ
�
Cq

�
dΩe � (B.5)

Using group interpolation, the reaction vector is then,

ce � k � �i� 4

∑
l � 1

Re � kl � G k � 1 �/�/� 4 � (B.6)

with Re � kl � being a vector of size N given by

Re � kl � � ( Ce � kl �
j qe � l �

j , 
 G k 
 l � 1 �/�.� 4; and j � 1 �/�/� N � (B.7)
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Again, no summation is carried out over the repeated index l.

B.3 The edge flux vector

The edge flux term is formed by the sum of the contributions from the three sides of the

triangular element:

be � 3

∑
j � 1

be j (B.8)

where be j is the contribution from the side j. Using the Lax Friedrich’s expression in

equation (2.7), the edge flux on the side j is

be j � 1
2

0
Ωe

ψ ( � Arq
� e j " �

Arq
� ne j , �n j

rdΓe j � α
2

0
Ωe

ψ ( qne j � qe j , dΓe j 
 (B.9)

where the superscript
��� ne denotes the values from the neighbor element. Now, in the

discretized set of equations (3.3), each of the equations corresponding to the acoustic

variables, ρ 
 u 
 v 
 and p in q has an edge flux term. This term is denoted as be j� k � , of size

N, for k � 1 �/�.� 4. The edge flux term for the equation corresponding to a variable q
� k � is

obtained using (B.9) and (B.2):

be j� k � � 1
2

4

∑
l � 1

X 0
Ωe

ψψT dΓe j Y ( Fe j
r

� kl � "
Fne j

r

� kl � , �n j
r� α

2

X 0
Ωe

ψψT dΓe j Y ( qne j
� k � � qe j

� k � , � (B.10)

Now, as explained in section 2.4.3, Lagrange polynomials reduce to their one dimen-

sional equivalents along the edges. So, the matrix
X��

Ωe ψψT dΓe j Y is a rearrangement of

the one dimensional mass matrix. The exact structure of this matrix is discussed in the

next section. his matrix of size N � N is denoted as Be j. Then, the edge flux term can
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be written as,

be j� k � � 1
2

4

∑
l � 1

�Be j � ( Fe j
r

� kl � "
Fne j

r

� kl � , �n j
r � α

2
�Be j � ( qne j

� k � � qe j
� k � , � (B.11)

B.3.1 The edge flux matrix

The structure of the edge flux matrix is related to the numbering of the nodes in an

element. In the present work, the nodes in a triangle are numbered progressively in a

counter-clockwise fashion, until all the nodes on the edges of the element are numbered.

Then the nodes inside the triangle are numbered. Fig. B.1 shows a typical triangular ele-

ment node numbering for a third degree Lagrange polynomial basis set. The numbering

in a tetrahedral element can be in a spiral fashion. Fig. B.2 shows a typical tetrahedral

element node numbering for a second degree Lagrange polynomial basis set. Let nod j

1

2

3

4

5

6

y

x

7
8

9

10

Figure B.1. Node numbering in a triangular element for p O 3.
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X
Y

Z
11

2
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4

5

6

7

8

9

10

Figure B.2. Node numbering in a tetrahedral element for p O 2.

denote an ordered set of nodes on a side (or surface) j. The size of nod j is p
"

1 for

d � 2, and
�
p
"

1
���

p
"

2
� I 2 for d � 3. For example, for the triangle shown in Fig. B.1,

nod1 � �
1 
 2 
 3 
 4 �

nod2 � �
4 
 5 
 6 
 7 � (B.12)

nod3 � �
7 
 8 
 9 
 1 �

Then the elements of the edge flux matrix Be j in d dimensions are given by

Be� i � k � � [\] \^ M̂e � l �m � 
 if i 
 k � nod j 
 with i � nod j
�
l
�

and k � nod j
�
m
�

0 
 i 
 k I� nod j 
 (B.13)G i 
 k � 1 �/�/� N
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with M̂e being the mass matrix of a standard element in d � 1 dimensions. The edge flux

matrix is sparse and the sparcity is higher for higher d. For time domain calculations,

the product of the edge flux matrix with the flux variables in equation (B.10) is not

computed by a matrix vector product in the code. Instead, only the values at the nodes

of the edge (or surface) are used, saving computational time, as explained in section

2.4.3.



Appendix C

The Kronecker product and the row

multiple

C.1 The Kronecker product

The result of the Kronecker product, ‘
�

’, of a matrix X of size M � M with a matrix of

Y size N � N is defined to be a matrix of size MN � MN, made up of M � M blocks of

Y multiplied with the elements of X. The
�
k 
 j � th block, which is of size N � N is given

by, �X �
Y � � k j � � X

X
� k j � Y Y 
�G k 
 j � 1 �/�/� M � (C.1)

An example illustrating the Kronecker product is given below.=>?
a b

c d

@ AC � �D ��� =>?
a �D � b �D �
c �D � d �D �

@ AC (C.2)
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C.2 The Row multiple

The symbol ‘



’ is defined to be a “row multiple” of two matrices, X, and Y of sizes

M � M and N � N respectively. This is a product defined in the case when the elements

of X are nodal variables, expanded in a basis set of size N. For example, the flux

coefficient matrices are made up of mean flow values that are nodal variables. The

“row multiple” of X with Y is then defined to be made of M � M blocks of Y, with the

columns in every row of Y multiplied by the corresponding expansion coefficients of the

elements of X. The
�
k j
� th block of the row multiple, which is of size N � N is defined

to be:

�X 

Y � � k j � � X

Xe
� k j �

mYnm
Y G k 
 j � 1 �/�/� M 
�G m 
 n � 1 �.�/� N (C.3)

with X
� k j � D N

∑
n � 1

Xe
� k j �

nψn �
In equation (C.3), the Einstein summation is not carried out on the repeated index m.
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