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ABSTRACT 

Glacial landforms, especially moraines, have long been used as indicators of decreased 

temperature or increased precipitation in the past.  Cosmogenic exposure dating of moraine 

boulders provides a method for estimating moraine ages.  However, geomorphic processes 

interfere with cosmogenic exposure dating.  To improve the accuracy of the cosmogenic exposure 

dating method, quantitative methods for assessing the effects of geomorphic processes on 

cosmogenic exposure dating are needed.   

To address this need, this dissertation describes models of two geomorphic processes and 

their effects on the cosmogenic exposure dating of moraines.  These processes are moraine 

degradation and inheritance.  Both models use Monte Carlo techniques to estimate the statistical 

distributions of exposure dates from moraine boulders, given specific assumptions about the 

histories of the boulders.  The moraine degradation model is based on prior examples from the 

literature; the inheritance model is novel.   

Some implications of this work for cosmogenic exposure dating of moraines follow.   

Different geomorphic processes give rise to different statistical distributions of 

cosmogenic exposure dates.  Moraine degradation produces distributions that are skewed toward 

the young tail of the distribution, whereas inheritance produces distributions that are skewed 

toward the old tail of the distribution.   

Simple procedures for estimating moraine ages from cosmogenic exposure dates perform 

well in some cases and poorly in others, sometimes producing moraine age estimates that are 

incorrect by thousands of years.  Simple estimators tested here include the mean, the mean after 

discarding outliers, the youngest date, and the oldest date.   

Explicit inversion of the models against collections of cosmogenic exposure dates may 

represent an improvement over simple methods of estimating moraine ages.  These inverse 
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methods yield estimates of the rates and magnitudes of geomorphic processes acting in glaciated 

basins, as well as the moraines’ ages.   

Field sampling criteria that preferentially choose pristine boulders may yield exposure 

dates that underestimate the ages of moraines by thousands of years.  This statement assumes that 

the moraines lose several meters of material from their crests over their lifetimes, that the 

boulders erode at a constant rate after being exhumed, and that inherited nuclides are not present 

in the boulders.   
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For a successful technology, reality must take precedence over public relations, 
for Nature cannot be fooled.   

-- Richard Feynman, The Pleasure of Finding Things Out (Robbins, J., ed., 1999, 
Perseus, p. 169). 

 

 

And for to pass the time this book shall be pleasant to read in, but for to give 
faith and belief that all is true that is contained herein, [you are] at your liberty.   

-- William Caxton, preface, Le Morte Darthur (Strachey, E., ed., 1901, 
Macmillan, p. 2).   



 

 

Chapter 1 
 

Introduction 

This dissertation describes new methods for assessing the influence of geomorphic 

processes on cosmogenic exposure dating of moraine boulders.  This work is intended to explain 

observations that already exist in the literature.  Therefore, this first chapter provides a context for 

these observations, and describes the paleoclimatic questions that these observations were 

intended to answer.  Subsequent chapters describe the methods developed in this work and the 

results of applying those methods to observations.   

This dissertation builds on the author’s MS thesis (Applegate, 2005), which also 

discusses glacial geomorphology and geochronology.  Interested readers are referred to that work 

for more discussion of glacial geomorphology, cosmogenic exposure dating, and climate 

questions related to glacier size changes.   

Glacial geomorphology and glacial geochronology are young scientific fields (see 

historical review in Oldroyd, 1996).  Scientific interest in the behavior and history of glaciers 

dates to 1840, when Agassiz published his Études sur les glaciers (Studies on Glaciers; Agassiz, 

1967).  The earliest efforts to determine absolute chronologies for pre-historic changes in glacier 

extents are even more recent.  The oldest glacial chronology studies that are still relevant today 

are probably the laminated sediment records from Scandinavia and New England (de Geer, 1912; 

Antevs, 1922; see review in Petterson, 1996).  These studies date to the latter half of the 19th 

century and the early part of the last century.   
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Glacier mass balance and the present distribution of glacier ice 

A glacier is a body of ice that persists throughout the year.  The ice in a glacier flows 

laterally under its own weight, much like a viscous fluid.  In addition, the ice in true glaciers is 

mostly or entirely exposed to view.  These characteristics differentiate glaciers from other, 

superficially similar, bodies of snow and ice.  For example, snowfields and snow aprons do not 

last throughout the year and do not flow.  The ice in permafrost lasts throughout the year, but is 

buried and does not flow.  Rock glaciers are composed partly of flowing ice, but rock glacier ice 

is largely covered by debris.   

Glaciers grow and shrink in response to changes in their mass balances.  The mass 

balance of a glacier is the difference between the yearly rate of mass gain from snowfall and the 

yearly rate of mass loss from melting, sublimation, and calving.  Sublimation is the direct 

transformation of solid ice to water vapor.  Sublimation requires far more energy to remove a unit 

mass of ice than does melting, and it is especially important where the air near the upper surface 

of a glacier is extremely dry (Rupper and Roe, 2008).  Calving is the breaking off of ice masses 

from the glacier; it usually occurs where glacier ice enters a body of water, such as an ice-

marginal lake or the ocean (Alley et al., 2007).  Calving sometimes also occurs where ice flows 

over a cliff.   

In the modern world, glaciers occur at high latitudes and high altitudes.  Near the poles, 

glaciers extend down to sea level.  Closer to the equator, glaciers are found only on mountains 

thousands of meters above sea level.  The ice sheets of Greenland, West Antarctica and East 

Antarctica contain well over 90% of the total present-day mass of continental ice (Lemke et al., 

2007); mountain glaciers account for only a small percentage of this total mass.   
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The history of glaciation over the last several million years 

During the last 3-5 million years, glaciers and ice sheets have sometimes been much 

larger and more extensive than they are presently.  The most recent time when ice mass on the 

continents reached a peak was about 20 ka (20,000 years ago), during the so-called Last Glacial 

Maximum.  At that time, the ice mass on the continents was about three times the present amount 

(compare Table 4.1 of Lemke et al., 2007, with Figure 6.8 of Jansen et al., 2007).  In eastern 

North America, the Laurentide ice sheet extended from Labrador and northern Canada to Long 

Island (Dyke and Prest, 1987; Dyke, 2004).  Ice extents in Europe and Asia were also much 

greater than at present (Boulton et al., 2001; Mangerud et al., 2004).  Glaciers and ice sheets 

appeared in places where today they do not exist, such as the British Isles (Clark et al., 2004) and 

atop Mauna Kea volcano in Hawaii (Porter, 2004).   

The marine isotopic record of continental glaciation 

We know about the history of continental ice mass over the last several million years 

primarily from the oxygen isotopic compositions of the shells of planktonic organisms in deep sea 

sediments (Broecker, 2002, and references therein).  Oxygen has three stable nuclides, 16O, 17O, 

and 18O, of which 16O is the most abundant.  The natural abundance of 17O is much less than that 

of the other two oxygen isotopes, so we can speak only of 16O and 18O.  When ice sheets grow on 

the continents, the oceans become enriched in the heavier isotope of oxygen, 18O.  This 

phenomenon happens because water molecules containing the lighter isotope, 16O, preferentially 

evaporate from the oceans and fall out as precipitation over the continents, where they are stored 

in the growing ice sheets.  As the oceans become isotopically heavier, so do the shells of small 

organisms called foraminifera that live in the oceans.  When these organisms die, their shells fall 
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to the sea floor.  In a pile of these shells, the oldest shells are at the bottom and the youngest 

shells are at the top.  A sediment core from the deep sea therefore contains a record of the oxygen 

isotopic composition of the sea surface water over time, which is related to the mass of ice on the 

continents.  Water temperatures also influence the oxygen isotopic compositions of foraminifera 

shells, but fortunately this effect amplifies the continental ice mass signal.  The ratios of 

magnesium and calcium concentrations in the foraminifera shells provide an independent 

estimate of water temperature, allowing us to isolate the continental ice mass signal.   

The marine oxygen isotope record shows about 12 glacial cycles over the last million 

years (Raymo and Nisancioglu, 2003).  During the last 800 ka, these cycles have a common 

structure.  Each cycle begins with a long buildup of continental ice mass, followed by an abrupt 

disintegration of the ice sheets.  The remainder of the cycle reflects a comparatively warm 

interglacial period.  The overall glacial cycle, from interglacial to interglacial, lasts about 100 ka.   

The causes of glacial/interglacial cycles 

The glacial/interglacial cycle over the last 800 ka has been explained by variations in the 

earth’s orbit (Hays et al., 1976), which affect the amount of sunlight reaching the high latitudes of 

the Northern Hemisphere during summer.  Reduced insolation at high northern latitudes in 

summer produces cool summers, leading to ice buildup on the continents.  Under this model, 

summer insolation in the north is more important than that in the south because there is more 

accommodation space for additional ice in the high northern latitudes.   

The earth’s orbit has three major modes of variability (Milankovitch cycles; Alley, 2001; 

Broecker, 2002).  The longest-period mode, eccentricity, affects the shape of the earth’s orbit 

around the sun.  The earth’s orbital path is an ellipse, with the sun at one focus of the ellipse.  

When eccentricity is at a minimum, the path becomes nearly circular; when eccentricity is larger, 
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the earth’s orbit is more elliptical.  A full eccentricity cycle lasts about 100 ka from peak to peak.  

The second mode, obliquity, describes the inclination of the earth’s axis relative to a line drawn 

normal to the plane of the orbit.  The obliquity mode has a period of about 41 ka.  Last, the 

precession cycle influences whether the north pole is inclined toward or away from the sun at 

closest approach.  This cycle has a period of about 20 ka.  Mathematical descriptions of how 

these cycles affect solar insolation over time at different latitudes exist in the literature (Berger, 

1978; Berger and Loutre, 1991).   

Despite the close correspondence of insolation at high northern latitudes with the oxygen 

isotope record of continental ice mass, two major questions remain unanswered.  First, the effect 

of the eccentricity cycle on insolation is weak, out of proportion to its apparent effect on the 

earth’s climate (Hays et al., 1976).  Several workers have suggested that the 100-ka glacial cycle 

arises due to an emergent property of the great ice sheets or the climate system, rather than the 

eccentricity cycle itself (e.g., Pollard, 1982; Paillard, 1998; cf. Weertman, 1976).  That is, ice 

sheets become more prone to collapse after they grow to a particular size, and they attain that size 

every 100 ka on average.  Alternatively, perhaps the ends of glacial cycles occur at the end of 

every second or third obliquity cycle (Huybers and Wunsch, 2005).  Because the length of an 

obliquity cycle is about 40 ka, this variability would give rise to an average ice age cycle length 

of 100 ka.  A second unsolved problem lies in the oxygen isotope record before about 800 ka, 

when glacial cycles had smaller amplitudes and a period of about 41 ka.  No totally satisfactory 

explanation exists for this “41 ka world” or for the abrupt lengthening in the period of glacial 

cycles that occurred at 800 ka (Raymo and Nisancioglu, 2003; cf. Huybers, 2006).   



 

 

6 

Glacial expansions not driven by orbital cycles: the Younger Dryas example 

Although the largest changes in continental ice mass appear to be driven by orbital 

cycles, we know of geographically widespread changes in glacier and ice sheet size that were not 

caused by variations in high-latitude insolation.  For example, the Younger Dryas cold event 

(12.9-11.6 ka; Barrows et al., 2007, and references therein) was associated with glacier 

expansions in New England, Great Britain, mainland Europe, and possibly the western United 

States and New Zealand (e.g., Borns et al., 2004; Clark et al., 2004; Ivy-Ochs et al., 2006, 2007; 

Gosse et al., 1995a; Denton and Hendy, 1994; Ivy-Ochs et al., 1999).  The Younger Dryas 

interrupted the warming at the end of the last glaciation, abruptly returning parts of the world to 

near-glacial conditions.  The traditional explanation for this cold event involves a sudden flood of 

glacial meltwater entering the northern Atlantic (Broecker et al., 1989).  This pulse of fresh water 

floated on the salty water of the northern Atlantic, interrupting the density-driven sinking of 

ocean water near the southern tip of Greenland and causing the poleward transport of heat by 

currents in the Atlantic to stop.  Support for this traditional explanation of the Younger Dryas 

cold event has declined recently, because evidence for the passage of floodwaters through the 

possible drainageways at the appropriate time is lacking (Lowell et al., 2005; Fisher and Lowell, 

2006).  However, no insolation-based alternative hypothesis is under consideration.   

Our best record of the Younger Dryas cold event comes from ice cores drilled through 

the Greenland ice cap (see review in Alley, 2000).  As snow accumulates on a glacier or ice sheet, 

it records the net thickness of the snow that falls in each year.  The water molecules in the ice 

contain oxygen isotopes that are sensitive to the local air temperature (Dansgaard, 1964, as 

discussed in Broecker, 2002; cf. Pierrehumbert, 1999).  Moreover, the ice in an ice sheet has a 

“memory” of surface temperatures, because the rate of snowfall in the center of an ice sheet is 

usually greater than the speed at which past large temperature changes diffuse out of the ice 
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(Paterson, 1994).  These climate indicators reflect the magnitude and abruptness of the onset of 

the Younger Dryas in central Greenland.  The net accumulation rate of new snow dropped by 

one-third to two-thirds, and temperatures declined by 10-15 °C, over about a century (Cuffey and 

Clow, 1997; also see Severinghaus et al., 1998).  Recent work suggests that this temperature 

change was seasonal; that is, Younger Dryas summers were only a few degrees C cooler than at 

present, but the winters were much colder than modern winters (Denton et al., 2005; Chiang and 

Bitz, 2005; Broecker, 2006; Kelly et al., 2008).   

The terrestrial record of glaciation 

A complete picture of the history of continental glaciation requires knowledge of the 

geographic distribution of ice at different times in the past.  Neither the marine oxygen isotope 

record nor the Greenland ice cores provide this information.  For example, the marine oxygen 

isotope record indicates that there was more ice on the continents during the Last Glacial 

Maximum than there is at present, but this record alone tells us nothing about where this extra ice 

was stored.   

Fortunately, glacier processes produce landscape elements that record the past 

distribution of continental ice.  These landscape elements include moraines, polished bedrock, 

and outwash terraces.  Moraines are ridges of debris that indicate the former margins of glaciers 

and ice sheets.  Outwash terraces contain river gravels deposited by streams fed by glacial 

meltwater.  Polished bedrock sometimes crops out on the walls and floors of glacial valleys, 

especially where these surfaces are steep.   

These landscape elements are produced by the transport of sediment by glaciers and their 

meltwater streams.  Glaciers transport sediment both on their upper surfaces and at the interface 

between the ice and the underlying bedrock.  At the glacier’s bed, the ice drags sediment and 
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pieces of rock over the underlying bedrock, which becomes polished.  Near the glacier’s margin, 

sediment falls off the upper surface of the glacier, melts out of subglacial ice, or is stacked in 

frozen sheets from the lower surface of the glacier, producing moraines (Lawson, 1979; Kruger, 

1996; Benn and Evans, 1998).  Moreover, glacier meltwater picks up sediment and transports it 

away from the glacier margin, forming outwash terraces.   

Of these landscape elements, moraines are perhaps the most useful in reconstructing past 

ice extents.  Frontal moraines, those that are roughly perpendicular to the overall direction of ice 

flow, are thought to be isochronous.   That is, the upper surfaces of frontal moraines are believed 

to be the same age everywhere (cf. Gosse et al., 1995b; Vacco et al., 2009).  Under this 

assumption, frontal moraines indicate the areal extent of ice at the time of deposition of the 

moraines.  Polished bedrock indicates that the point where the bedrock is found was covered by 

ice at some time in the past.  Outwash terraces indicate that there was glacier ice upstream from 

the terrace at the time of terrace deposition.  Thus, polished bedrock and outwash terraces yield 

less information on past glacial extents than do moraines.  However, outwash terraces often 

survive long after the moraines of the same age have been removed by subsequent glacier 

advances.  Thus, outwash terraces provide our only record of old glaciations in many places (e.g., 

Sharp et al., 2003).   

However, the moraine record of past ice extents is incomplete.  As glaciers advance, they 

remobilize sediments deposited during earlier glacial episodes, including older moraines 

(Gibbons et al., 1984).  Thus, the moraine record is self-censored.  Moreover, subaerial erosion 

eventually removes those moraines that are not overlapped by subsequent advances (Kirkbride 

and Brazier, 1998).  These problems in the record misled early glacial geomorphologists into 

believing that there had been only four great glaciations in recent geologic time (Oldroyd, 1996, 

and references therein).  This idea was disproven when the marine oxygen isotope record became 

available.   
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Climate questions and moraines 

Thus, glaciers grow and shrink in response to climate changes, and they deposit moraines 

that indicate the glaciers’ past extents.  If we could determine the ages of moraines, we would 

obtain a partial record of climate changes over time (Lowell, 2000; cf. Jones and Mann, 2004).  

This record might reflect geographic patterns that are not captured by marine sediments or ice 

cores.   

Accurate, precise dating of moraines could provide answers to the following questions.  

This list is not exhaustive.   

1. When were there cold periods during recent geologic time?  Moraines outside of 

present-day glacial limits formed when the local climate was favorable to glacier growth.  

Glaciers grow when the climate becomes either colder or snowier (Plummer and Phillips, 2003; 

Laabs, 2006; Anderson and Mackintosh, 2006), but temperature effects dominate precipitation in 

most cases (Oerlemans, 2005; Denton et al., 2005).  Dating moraines therefore yields the times of 

cold periods in the recent past.   

2. Were major climate changes globally synchronous?  In a set of moraines deposited 

during a single glaciation, the outermost moraine is the oldest; the inset moraines become 

progressively younger with distance upvalley.  The outermost moraine was deposited 

immediately after the glacier stopped advancing and just before it began to retreat.  Therefore, 

dating the outermost moraine in a set indicates when the climate changed from a regime favoring 

glacier growth to one favoring glacier retreat (Lowell, 1999).  For example, precise dating of 

prominent moraines from the last glaciation could be used to determine whether the last 

deglaciation began at the same time everywhere (Lowell et al., 1995; Licciardi et al., 2004; 

Applegate, 2005; Schaefer et al., 2006; Laabs et al., 2009).   
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3. How geographically widespread were abrupt climate changes?  For climate changes 

with short onset times, the geographic distribution of moraines that date to the time of the climate 

change indicates what parts of the globe were affected.  For example, it was long thought that the 

Younger Dryas cooling was caused by a slowdown of the ocean circulation (Broecker, 2003; see 

above).  Modeling studies show that such a slowdown would cause a pronounced cooling around 

the North Atlantic basin, but not elsewhere (e.g., Vellinga and Wood, 2002).  Indeed, field 

workers have published moraine chronologies that show glacier advances during Younger Dryas 

time from eastern North America and western Europe (Lowell et al., 1999; Borns et al., 2004; 

Clark et al., 2004; Ivy-Ochs et al., 2006, 2007).  However, other workers have identified Younger 

Dryas-age glacier advances at other sites far from the North Atlantic (e.g., Denton and Hendy, 

1994; Gosse et al., 1995; Ivy-Ochs et al., 1999).  Because both the proposed mechanism for the 

Younger Dryas cooling and the ages of the extra-North Atlantic moraines are under debate at 

present (Lowell et al., 2005; Barrows et al., 2007), this question remains open for the Younger 

Dryas.   

Answering these questions requires careful dating of moraines in multiple glaciated 

drainages in each field area.  Individual glaciers may behave very differently from others in the 

same mountain range, due to local influences on mass balance such as debris cover or windblown 

snow (Gillespie and Molnar, 1995).  Over short time scales, even glaciers that drain the same 

icefield may advance and retreat at different times (Luckman, 2000).  Thus, it is necessary to date 

moraines in several valleys to establish a representative chronology for each field area.   

Glacial geochronologic methods 

The methods that are most commonly used to determine the ages of moraines are 

radiocarbon dating, cosmogenic exposure dating, and optically stimulated luminescence dating.  
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Reviews of these methods are available elsewhere (Taylor, 2000; Cerling and Craig, 1994; Gosse 

and Phillips, 2001; Fabel and Harbor, 1999; Aitken, 1997; also see Applegate, 2005).  Therefore, 

only brief descriptions are presented here.  

Radiocarbon dating estimates how long ago an organism died.  The atmosphere contains 

a certain amount of the radioactive isotope of carbon, 14C, in carbon dioxide molecules.  Living 

things have a concentration of radiocarbon that is in equilibrium with the atmospheric 

concentration; plants incorporate the radiocarbon from atmospheric carbon dioxide in their 

tissues, and animals eat the plants.  When these organisms die, they stop exchanging carbon with 

the atmosphere, and so the radiocarbon concentration in the remains declines over time.  Thus, 

the radiocarbon concentration of animal or plant remains in glacial sediments suggests how long 

ago the sediments were deposited, provided the time lag between the death of the organism and 

the age of the sediments can be estimated.  The method does require calibration, because the 

radiocarbon concentration of the atmosphere varies over time.   

Cosmogenic exposure dating helps determine how long rocks have been at the earth’s 

surface.  Primary cosmic rays strike atoms in the upper atmosphere, producing particle cascades 

that include high-energy protons and neutrons, plus muons (Gosse and Phillips, 2001).  These 

secondary cosmic rays break atomic nuclei in rocks into smaller fragments.  Because the nuclear 

fragments contain fewer protons than the original nuclei, they become atoms of other elements 

with smaller atomic numbers.  The concentrations of these nuclei in rock surfaces increase with 

exposure time.  Therefore, the concentrations of cosmogenic nuclides in boulders on the crests of 

a moraine should be directly related to the age of the moraine.  However, the method makes 

several important assumptions.  First, the boulders must have arrived at the moraine with no 

preexisting concentration of cosmogenic nuclides.  Second, the sampled points must not have 

been covered by snow, sediment, or rock at any time since deposition of the moraine.  If the first 

assumption is violated, the exposure dates will be too old; if the second assumption is violated, 
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the exposure dates will be too young.  Geomorphic processes are often responsible for these 

problems (see review in Ivy-Ochs et al., 2007).  As with radiocarbon dating, the method must be 

calibrated (Balco et al., 2008, and references therein), because the production rates of cosmogenic 

nuclides vary with altitude, latitude, and time.   

Optically stimulated luminescence dating estimates the burial time of sediment, 

especially fine quartz sand deposited by running water.  Buried sediment is bombarded by 

radiation produced by the decay of radioactive elements in the surrounding sediment.  The 

radiation displaces electrons into “traps” in the crystal lattices of the sand grains.  When exposed 

to light or heat, the trapped electrons “fall” back to their usual places, releasing photons.  The 

number of photons released is proportional to the burial time.  Where stream sediments are buried 

by a moraine, optically stimulated luminescence dates provide a maximum limiting estimate of 

the moraine’s age.  As with cosmogenic exposure dating, the method assumes that the sediment 

had no stored signal at the time of burial.  This condition is most often fulfilled by fluvial 

sediments, which are exposed to light during transport.  Further uncertainties are introduced by 

the water content of the sediment, because water shields sand grains from radiation.  In addition, 

the radioactivity of the sediment is often hard to measure, and the sensitivity of different grains to 

radiation can vary strongly within the same sample.   

Of these three methods, cosmogenic exposure dating is perhaps the most widely used.  

Under ideal circumstances, exposure dating estimates the ages of moraines directly.  In contrast, 

there is typically a time lag between the death of an organism, or the laying down of fine sand, 

and the construction of an associated moraine.  The only circumstance in which radiocarbon dates 

directly estimate the time of moraine construction is that in which an advancing glacier buries 

living plants (e.g., Lowell, 1990).  In addition, sampling opportunities for exposure dating are 

much more common than for radiocarbon dating or optically stimulated luminescence dating.  
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Most moraines have bouldery surfaces; exposures in moraines that provide opportunities for 

radiocarbon dating or optically stimulated luminescence dating are comparatively rare.   

Nuclides used in cosmogenic exposure dating 

Cosmic rays produce a variety of nuclides in surface rocks, but only some of these 

species are useful in exposure dating.  The useful nuclides are those that have half-lives of a few 

thousand years or more, are rare in earth surface rocks except where produced by cosmic rays,  

have production rates of at least a few atoms per gram of rock per year, and do not escape from 

rocks over time.  The nuclides that meet these criteria include beryllium-10, chlorine-36, 

aluminum-26, helium-3, carbon-14, and neon-21 (Gosse and Phillips, 2001; Muzikar et al., 2003).   

This dissertation discusses just one of these nuclides, beryllium-10 (10Be).  Opportunities 

for applying beryllium-10 in cosmogenic exposure dating studies are widespread, because 

beryllium-10 is produced in the common mineral quartz.  The cosmogenic nuclides aluminum-26 

and carbon-14 also are produced in quartz, but their concentrations are more difficult to measure 

precisely than those of beryllium-10.  Helium-3 and neon-21 occur in olivine, which is much 

rarer than quartz in moraine boulders (see Licciardi et al., 2001, for a rare counterexample).  Last, 

the production systematics of beryllium-10 are easier to model than those of chlorine-36 (Gosse 

and Phillips, 2001).  For these reasons, the majority of cosmogenic exposure dating studies use 

beryllium-10.   

Problems in cosmogenic exposure dating 

Despite the obvious potential of beryllium-10 exposure dating for determining the ages of 

moraines, problems in applying the method remain.   
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First, the scatter among exposure dates from single moraines is often unexpectedly large.  

The 1σ measurement uncertainty of beryllium-10 exposure dates generated using modern 

analytical methods is small, about 3-5% of the central estimate (e.g., Kelly et al., 2008).  Moraine 

surfaces are thought to be about the same age everywhere, and measurement errors tend to be 

normally distributed.  Therefore, we expect that exposure dates from a single moraine crest 

should obey a normal distribution, and this distribution should have a standard deviation 

consistent with the measurement uncertainty.  In practice, these criteria are rarely fulfilled; the 

observed scatter is, on average, about 40% of the oldest exposure date, after old outliers are 

discarded (Putkonen and Swanson, 2003).   

Second, there is little agreement between studies in terms of how to estimate the ages of 

moraines from highly scattered collections of exposure dates.  Proposed estimators include 

measures of a data set’s central tendency (e.g., the mean of the exposure dates, the mean weighted 

by the inverse square of the measurement uncertainty, and the mode), as well as extreme 

estimators (the oldest date and the youngest date).  Often, some of the exposure dates are 

discarded before one or another of these estimators is applied.   

This variety of interpretive methods produces an unacceptably large uncertainty in the 

estimated ages of moraines.  For last-glacial moraines, about 20 ka old, the range of exposure 

dates can be several thousand years (e.g., Laabs et al., 2009).  If any age estimate between the 

youngest date and the oldest date is permissible, then the uncertainty in moraine age estimates is 

at least as great as this range.  This uncertainty is too large to provide useful answers to the 

paleoclimate questions listed above.   
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Outline of this dissertation 

Given these problems, this dissertation asks two questions.  First, why are cosmogenic 

exposure dates from single moraines so widely distributed?  Second, given this degree of scatter, 

how can we best determine the ages of moraines from collections of cosmogenic exposure dates?   

This work addresses these problems from a modeling perspective.  The models presented 

here use Monte Carlo methods (Bevington and Robinson, 2003) to estimate the probability 

distributions of exposure dates under particular sets of geomorphic assumptions.  The models are 

then compared against observed data sets by adjusting the model input parameter values until the 

models reproduce the distributions of the observations.   

The remaining chapters are arranged as follows.  Chapter 2 describes two numerical 

models that explain the variability in exposure dates from moraines.  Chapter 3 gives methods for 

inverting these models against collections of exposure dates. Last, Chapter 4 describes other 

problems that are addressed by this work, and suggests potential solutions.   

Appendix A is a technical comment that was published in Science (Applegate et al., 

2008).  This comment describes early versions of the numerical models described in Chapter 2.  

Appendix B describes the production of cosmogenic nuclides in spherical solid bodies; a more 

developed version of this work will be submitted as a technical note in the future.   

Authorship statement 

Chapters 2-4 and Appendix B are intended for eventual submission as journal articles; 

Appendix A has already been published.  Although these chapters and appendices have multiple 

contributors, I (Patrick J. Applegate) am the primary author for all parts of this dissertation.  The 
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model code and simulations are exclusively my work, and the bulk of the interpretations are 

mine.   



 

 

Chapter 2 
 

Modeling the statistical distributions of cosmogenic exposure dates from 
moraines 

Cosmogenic exposure dating provides a method for estimating the ages of glacial 
moraines deposited in the last ~100,000 years.  Cosmic rays break atoms in 
surface rocks at predictable rates.  Thus, the ages of moraines are directly related 
to the concentrations of cosmic ray-produced nuclides in rocks on the moraine 
surfaces, under ideal circumstances.  However, many geomorphic processes may 
interfere with cosmogenic exposure dating.  Because of these processes, boulders 
sometimes arrive at the moraines with preexisting concentrations of cosmogenic 
nuclides, or else the boulders are partly shielded from cosmic rays following 
deposition.  Many methods for estimating moraine ages from cosmogenic 
exposure dates exist in the literature, but we cannot assess the appropriateness of 
these methods without knowing the parent distribution from which the dates were 
drawn on each moraine.  Here, we make two contributions.  First, we describe 
numerical models of two geomorphic processes, moraine degradation and 
inheritance.  Second, we assess the robustness of several methods for estimating 
the ages of moraines from collections of cosmogenic exposure dates.  Our 
models estimate the probability distributions of cosmogenic exposure dates that 
we would obtain from moraine boulders with specified geomorphic histories, 
using Monte Carlo methods.  We expand on pioneering modeling efforts to 
address this problem by placing these models into a common framework.  We 
also evaluate the sensitivity of the models to changes in their input parameters.  
The sensitivity tests show that moraine degradation consistently produces left-
skewed distributions of exposure dates; that is, the distributions have long tails 
toward the young end of the distribution.  In contrast, inheritance produces right-
skewed distributions that have long tails toward the old side of the distribution.  
Given representative distributions from these two models, we can determine 
which methods of estimating moraine ages are most successful in recovering the 
correct age for test cases where this value is known.  The mean is a poor 
estimator of moraine age for data sets drawn from skewed parent distributions, 
and excluding outliers before calculating the mean does not improve this 
mismatch.  The extreme estimators (youngest date and oldest date) perform well 
under specific circumstances, but fail in other cases.  We suggest a simple 
estimator that uses the skewnesses of individual data sets to determine whether 
the youngest date, mean, or oldest date will provide the best estimate of moraine 
age.  Although this method is perhaps the most globally robust of the estimators 
we tested, it sometimes fails spectacularly.  The failure of simple methods to 
provide accurate estimates of moraine age points toward a need for more 
sophisticated statistical treatments.   
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Cosmogenic exposure dating is an important technique for learning about glacier size 

changes during the last ~105 yr of geologic time (Gosse and Phillips, 2001).  Glaciers and ice 

sheets grow and shrink in response to climate change (Dyurgerov and Meier, 2000; Oerlemans, 

2005; Jansen et al., 2007).  Therefore, reconstructions of past glacier sizes over time yield 

information on past climates and rates of sea level rise.  As glaciers advance and retreat, they 

mark their former margins with ridges of debris, called moraines (Gibbons et al., 1984).  In 

cosmogenic exposure dating, field geomorphologists collect samples from boulders on the crests 

of moraines, and the concentrations of certain rare chemical species (cosmogenic nuclides) are 

measured in the samples.  These cosmogenic nuclides are produced at predictable rates in surface 

materials by cosmic rays (Lal, 1991; Gosse and Phillips, 2001).  Under ideal conditions, the ages 

of the moraines can be calculated directly from the nuclide concentrations (e.g., Gosse et al., 

1995a).   

Unfortunately, geomorphic processes bias cosmogenic exposure dates (see review in Ivy-

Ochs et al., 2007).  If the boulders contain some preexisting concentration of cosmogenic 

nuclides when they are deposited on the moraine, then the exposure dates will tend to 

overestimate the moraine’s age.  Most other processes tend to reduce the apparent exposure times 

of the boulders.  For example, cover by snow or sediment reduces the flux of cosmic rays through 

the upper surfaces of the boulders.  The exposure dates from these shielded boulders will 

underestimate the true age of the moraine on which they rest.  Similarly, erosion of boulders 

removes the most nuclide-rich part of the rocks (Lal, 1991); therefore, eroded boulders also yield 

exposure dates that underestimate the age of their host moraine.   

The effects of these processes on the distributions of exposure dates from moraines are 

not known a priori, and this lack of knowledge complicates efforts to estimate the ages of 

moraines from cosmogenic exposure dates.  This uncertainty is reflected in the variety of 

procedures for estimating the ages of moraines that are described in the literature.  Many workers 
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prefer to use some measure of the central tendency of a data set; such estimators include the 

arithmetic average, the mean weighted by the inverse variance, and the mode (e.g., Kaplan et al., 

2005; Licciardi et al., 2004; Kelly et al., 2008).  Other investigators prefer extreme estimators, 

including both the youngest and the oldest dates (e.g., Benson et al., 2005; Briner et al., 2005).  

For data sets with large ranges, the choice of estimator has a profound effect on the estimated 

ages of the moraines (for example, compare Chevalier et al., 2005, with Brown et al., 2005).  The 

choice of estimator is typically informed by geomorphic observations.  However, without 

knowledge of the underlying parent distribution from which the dates are drawn, we cannot 

evaluate the effectiveness of these different procedures.   

We might evaluate the effects of geomorphic processes on cosmogenic exposure dating 

by performing a positive control experiment.  In such an experiment, we would identify a 

moraine whose age was known independently, perhaps from bracketing radiocarbon dates (e.g., 

Kowalski et al., in prep.).  We would then collect many samples from this moraine for 

cosmogenic exposure dating, and compare a histogram of the exposure dates to the independently 

known age of the moraine.  The distribution of the exposure dates about the true age of the 

moraine would tell us the effects of geomorphology on the exposure dates from that moraine, 

other factors being equal.   

Unfortunately, such a positive control experiment is impractical.  To achieve robust 

results, we would need many exposure dating samples from one moraine.  The exact number of 

samples required is poorly defined, but it seems likely that 50 samples are insufficient (see 

Murphy, 1964, his Fig. 6).  Because cosmogenic exposure dates are expensive, the necessary 

number of samples is probably not achievable.  In addition, the geomorphic processes that affect 

exposure dating are likely to be highly variable between field sites.  Thus, we would need to 

repeat the experiment on a large sample of moraines, multiplying the cost many times.  Moreover, 

there are few sites where the ages of moraines are known independently, and these sites are 
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already included in the nuclide production rate calibration database (Balco et al., 2008).  Last, 

there are potential confounding effects.  The difference between the independently determined 

age of a moraine and any individual exposure date is influenced by errors in estimating both the 

age of the moraine and the local production rates of cosmogenic nuclides, as well as geomorphic 

processes.  Thus, a positive control experiment to isolate the effects of geomorphic processes on 

exposure dating is prohibitively expensive, probably cannot be done for a representative sample 

of moraines, and is subject to strong confounding effects from uncertainties in moraine age 

estimates and nuclide production rates.   

Monte Carlo-based numerical models offer a means of assessing the effects of 

geomorphic processes on cosmogenic exposure dating that avoids the disadvantages of positive 

control experiments.  Although these models can never replace field observations, they provide a 

test bed for understanding existing exposure dates.  Such models can generate thousands of 

synthetic exposure dates in a few minutes on desktop computers.  Thus, these models do not have 

the large costs associated with collecting a representative number of samples from individual 

moraines.  In these models, the user prescribes the age of the moraine and the nuclide production 

rate.  Therefore, there are no confounding effects in the model experiments from errors in 

estimating these values.   

In this chapter, we present Monte Carlo models of two geomorphic processes that 

introduce biases into exposure dating.  These processes are moraine degradation and inheritance, 

which we describe below.  Our models are based on earlier work (e.g., Zreda et al., 1994; Hallet 

and Putkonen, 1994; Putkonen and Swanson, 2003; Benson et al., 2005; see also Muzikar, 2009).  

We expand on these groundbreaking studies in several ways.  First, we provide explicit 

descriptions of the mathematical formulations of the models, pointing out the simplifying 

assumptions that are inherent in these formulations.  We test the models’ sensitivity to changes in 
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their input parameters.  Last, we provide code for these models that is written in MATLAB, an 

easily understood, high-level programming language.   

In Chapter 3, we describe methods for making explicit comparisons between the output 

of our models and individual data sets.  This comparison can indicate which of the two processes 

we treat here is dominant on a particular moraine.  More importantly, this inverse modeling 

procedure yields explicit estimates of moraine age, as well as other model parameters.   

Methods 

Numerical models 

We describe models of two geomorphic processes that influence cosmogenic exposure 

dates from moraine boulders.  These processes are moraine degradation and inheritance.  In this 

section, we describe how our models treat these two processes, and we present preliminary results 

from these models.   

These models are deliberately simplified.  In theory, we could build a comprehensive 

model of moraine geomorphology that would incorporate all of the processes that influence 

exposure dates on moraines.  However, we wish to invert these models against observations, to 

allow direct estimation of moraine ages from collections of cosmogenic exposure dates (Chapter 

3).  In a model inversion, the maximum number of model parameters that can be estimated from a 

data set is typically smaller than the number of observations.  Our models have three to five 

parameters each, and most collections of cosmogenic exposure dates from moraines contain about 

five observations (Putkonen and Swanson, 2003).  Therefore, our models are already at the 

complexity limit imposed by the sizes of most available data sets.   
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In any case, the usefulness of our models should be evaluated by confronting them with 

data (Box and Draper, 1987; Hilborn and Mangel, 1997).  We describe this confrontation between 

our models and exposure dates from the literature in Chapter 3.  If our models produce good 

representations of observed data sets, then perhaps we have identified the most important 

processes that influence exposure dates on moraines.   

The moraine degradation model 

In moraine degradation (Fig. 2.1), slope processes remove material from the crests of 

moraines and redeposit this material at the bases of the moraine slopes.  The theoretical basis for 

understanding the redistribution of sediment on moraine slopes comes from observations made on 

fault scarps, wave-cut bluffs, and other landforms composed of unconsolidated sediment.  These 

landforms become less steeply inclined and more rounded over time, suggesting that hillslope 

evolution can be modeled as a diffusive process (Nash, 1986; Hanks, 2000; Pelletier et al., 2006; 

Pelletier, 2008).  That is, material moves downhill at a rate that is proportional to the local 

gradient.  This observation implies that a sharp-crested moraine will become shorter (less tall) 

over its lifetime, as material moves from the moraine’s crest to the toe of its slope (Anderson and 

Humphrey, 1989; Hallet and Putkonen, 1994; O’Neal, 2006; Putkonen et al., 2007; Pelletier, 

2008).   

Moraine degradation imparts a bias to cosmogenic exposure dates because it exposes 

boulders at the moraine crest that have been buried in sediment for some part of the moraine’s 

history (Fig. 2.1).  Moraines typically contain large rocks distributed throughout a fine-grained 

matrix (Dreimanis, 1988; Benn and Evans, 1998).  Because slope processes preferentially move 

fine-grained material, the boulders become concentrated on the crest of the moraine.  Some of 

these boulders have been partly shielded from cosmic rays by the overlying sediment; they 
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therefore contain smaller concentrations of cosmogenic nuclides than the boulders that have 

rested on the moraine crests since deposition of the moraine.  The exhumed boulders yield 

cosmogenic exposure dates that underestimate the age of the moraine.   

The model framework that we describe here builds on earlier studies. The use of slope 

evolution models to study moraines was first considered by Anderson and Humphrey (1989); 

Zreda et al. (1994) developed a model for the production of nuclides in boulders buried in an 

eroding surface.  The first model of cosmogenic nuclide production on a diffusively evolving 

 

 

Figure 2.1:  Conceptual model of 
moraine degradation.   
Top: An advancing glacier margin 
constructs a new moraine.  Some 
boulders, shown as cubes, are buried, 
whereas other boulders rest on the 
surface of the moraine.   
Middle: The glacier margin retreats, 
abandoning the moraine.  Several 
processes begin.  The boulders begin to 
accumulate cosmogenic nuclides as they 
are bombarded by cosmic rays, shown 
as arrows.  The cosmic ray flux is made 
up of neutrons (n0), protons (p+), and 
negative muons (µ-).  The production 
rate in each boulder depends on its 
burial depth; boulders at the surface 
accumulate nuclides most rapidly, and 
the production rate falls off 
exponentially with depth, as shown in 
the inset panel.  At the same time that 
the boulders accumulate nuclides, loose 
sediment moves downhill.   
Bottom: After some period of time, 
many boulders are on the moraine 
surface, including a large number that 
were originally buried.  The moraine 
slope has diminished, and so has the 
downhill flux of sediment.  The original 
surface of the moraine is shown as a 
dashed line.   Eventually, the boulders 
are sampled, yielding a wide range of 
exposure dates. 
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moraine was presented by Hallet and Putkonen (1994).  This model was later developed further 

by Putkonen and Swanson (2003).  Our model is closest to that of Putkonen and Swanson (2003).   

To model the effects of slope processes on the height of moraines over time, we assume 

that moraines have an initial cross-section that is triangular, with an initial height h0 and an initial 

slope S0, which is the (dimensionless) tangent of the slope in degrees.  This profile evolves over 

time according to the one-dimensional diffusion equation,  
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(cf. Pelletier, 2008, his eqn. 2.45).  Equation 2.1 agrees well with a Crank-Nicolson solution to 

equation 4 of Hallet and Putkonen (1994) if their β = 0; compare equation 4 of Hallet and 

Putkonen (1994) to equations 9.56 and 9.67 of Fletcher (1991).  This analytical solution can be 

evaluated very quickly.   
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Setting x = 0 in equation 2.1 yields an expression for the height of the moraine’s crest as 

a function of time,  
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Figure 2.2 shows solutions to equations 2.1 and 2.2 for selected parameter values.  The 

left panel (Fig. 2.2a) shows the moraine half-profile for elapsed time values of 5 ka, 10 ka, and 20 

ka.  The moraine starts with a triangular profile, but becomes more rounded and shorter over 

time.  The right panel (Fig. 2.2b) shows the height of the moraine as a function of time.  The rate 

of crest lowering is rapid at first, then slows.  In both panels, the initial moraine height is 50 m, 

the initial moraine slope is 34° (Putkonen and Swanson, 2003), and the topographic diffusivity is 

 

 
Figure 2.2:  Evolution of moraine profile with time (a) and change in height of moraine with time 
(b) for a representative case.  As time goes on, the moraine’s profile changes most at the crest and 
at the toe of the slope, becoming generally more rounded.  As material is transported from the 
crest to the toe of the slope, the moraine becomes shorter.  The moraine loses height rapidly at 
first, then more slowly.  In (a), only one-half of the moraine’s profile is shown; the modeled 
moraine is symmetrical about the y-axis.  Note that the moraine loses more than 10 m of its initial 
height over 20 ka.  Compare (a) to Figure 1 of Hallet and Putkonen (1994); compare (b) to Figure 
1 of Putkonen and Swanson (2003).  In this figure, the moraine’s initial height is 50 m, its initial 
slope is 34°, and its topographic diffusivity is 10-2 m2/ yr.   
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10-2 m2/ yr (Hanks, 2000; Putkonen et al., 2007).  These values seem reasonable for the large, 

last-glacial moraines of the western United States.   

Given equation 2.2, we can calculate the nuclide concentration in a boulder buried to 

some specified depth d0 below the moraine’s surface at the time of deposition.  For purposes of 

calculating nuclide production rates, the depth of a boulder d(t) is given by  

! 

d t( ) = h t( ) " h
0
" d

0( )   for 

! 

h t( ) " h0 # d0, and 

! 

d t( ) = 0   for 

! 

h t( ) < h
0
" d

0
.   

Note that d0 and d here refer to the depth of the top of the boulder, which is the point that will be 

sampled for cosmogenic nuclide measurements.   

Values of d0 that exceed h0- hf are not meaningful, because these boulders will still be 

buried in the moraine at the time of sampling.  By hf, we mean the final height of the moraine, 

achieved when t reaches the moraine’s age.  In addition, field geomorphologists typically do not 

sample boulders that stand less than some minimum height hb above the moraine crest (~1 m; 

e.g., Gosse et al., 1995b).  Thus, all the boulders that are sampled have values of d0 that satisfy 

the criterion 

! 

0 " d
0
"max d

0( );  

! 

max d
0( ) = h

0
" hf " hb .   

The production rate of most cosmogenic nuclides declines exponentially as a function of 

depth below material surfaces (Lal, 1991; see Zreda et al., 1994, for an important exception).  

That is,  

! 

P d( ) = P0 exp
"d

#

$ 

% 
& 

' 

( 
) ,         (eqn. 2.3) 

where P0 is the production rate of the nuclide at the surface (atoms/ g rock/ yr), and Λ is the 

attenuation length of cosmic rays in the material (~160 g/ cm2, divided by the material’s density).  
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We use the Lal/Stone production rates from the CRONUS online calculator (Balco et al., 2008) to 

estimate P0.   

Equation 2.3 is a good approximation only at shallow depths, where nucleon production 

dominates; at greater values of d(t), muon production becomes important (Gosse and Phillips, 

2001).  To account for muon production, we use the parameterization of Granger and Muzikar 

(2001, their eqns. 1-3).  This scheme represents production at a given depth as the sum of four 

exponential terms, each with its own P0 and Λ.  That is,  

! 

P d( ) = P
i
exp

"d

#
i

$ 

% 
& 

' 

( 
) 

i=1

4

* .        (eqn. 2.4) 

We scale these terms relative to their values at sea level and high latitude, again using the 

CRONUS online calculator (Balco et al., 2008).  This expression is a parameterization; Heisinger 

et al. (2002a, 2002b) present alternative expressions that resolve the underlying physics.  We use 

the relationship presented in equation 2.4 because it can be evaluated very quickly as a vector 

calculation in MATLAB.  The speed of evaluation is important because this calculation must be 

performed approximately 107 times for each forward run of this model (see below).   

Figure 2.3a shows the production rate of the cosmogenic nuclide beryllium-10 as a 

function of depth.  Nucleon production dwarfs muon production at the surface, but muon 

production becomes increasingly important at greater depths (Fig. 2.3b).   
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Given equations 2.2 and 2.4, we can calculate the final concentration of cosmogenic 

nuclides in a moraine boulder.  This calculation depends only on the moraine’s initial geometry 

(h0, S0), its age, its topographic diffusivity k, and the boulder’s initial depth d0.  However, the 

production rate in a given boulder is a piecewise function of time, because the production rate 

stops changing when the boulder breaks the surface of the moraine (that is, when d becomes 0; 

Fig. 2.4b).  Therefore, we break the lifetime of the moraine into n time steps, each having a 

duration Δt.  We then evaluate the change in concentration during each of these time steps.  The 

final concentration Cf in any single boulder is the sum of the changes in concentration during the 

individual time steps, or 

 

 
Figure 2.3:  Production rate of beryllium-10 with depth (a) and fraction of beryllium-10 
production due to muons as a function of depth (b) in quartzite, following Granger and Muzikar 
(2001).  The total production rate of beryllium-10 is roughly exponential as a function of depth; 
production is greatest at the surface, and falls off below the surface with an e-folding length of a 
few tens of centimeters (Lal, 1991).  Most production near the surface is caused by high-energy 
protons and neutrons, which produce beryllium-10 by splitting atoms of oxygen and silicon in 
quartz (Gosse and Phillips, 2001).   At greater depths, most production is due to muons, which do 
not interact with target atoms in the rock as easily as high-energy protons and neutrons.  Compare 
this figure to Figure 2a of Gosse and Phillips (2001).  This figure assumes surface beryllium-10 
production rates corresponding to sea level and high latitude and a rock density of 2.65 g/ cm3.   
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! 

Cf = P t( )"t #Ci#1 1# exp #$"t( )[ ]{ }
i=1

n

%     (eqn. 2.5) 

(Lal, 1991, his eqn. 6; cf. eqn. 2.6, below).  The second term in brackets represents the 

progressive decay of unstable cosmogenic nuclides; λ is the decay constant of the appropriate 

nuclide (yr-1; Gosse and Phillips, 2001; Balco et al., 2008).  The difference between this 

approximation and an exact solution can be made arbitrarily small by reducing Δt.  For the model 

runs shown in this dissertation, we used values of Δt ranging from 25 yr to 100 yr.  Note that the 

initial concentration C0 is taken to be zero here; we treat inheritance in the next section.   

Figure 2.4a shows the depths of four boulders within the moraine as a function of time, 

assuming the same model parameters as in Figure 2.2.  At the beginning of the simulation, one 

boulder is at the surface (d0 = 0 m), another boulder is buried to a depth of 9 m (d0 = 9 m), and the 

other two boulders are evenly spaced between these depths.  As the moraine becomes shorter over 

time, the boulders approach the surface and are eventually exposed at the surface.  Compare this 

figure to Figure 2.2b.   

Figure 2.4b shows the concentrations of beryllium-10 as a function of time in each of the 

boulders whose depth trajectories are shown in Figure 2.4a.  Again, the model parameters used to 

generate this figure are the same as those in Figure 2.2.  The concentrations in the boulders 

increase slowly while the boulders are still buried in the moraine; after they reach the surface, the 

concentration increases roughly in proportion to surface residence time.  Although the curves that 

describe nuclide concentration in the boulders as a function of time appear to be linear after the 

boulders reach the surface, they are slightly sublinear because of nuclear decay (eqn. 2.5).  Note 

that the bulk of the final nuclide concentration in each boulder is acquired only after the boulder 

reaches the surface, even for the boulder that is buried most deeply in the moraine at the 

beginning of the simulation. This figure assumes that the beryllium-10 concentrations in all the 

boulders are zero when the simulation begins.   
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Although we do not emphasize boulder erosion in this chapter, the model treats erosion 

by the progressive removal of thin shells of material from boulder surfaces after they are 

exhumed from the till.  In contrast to Hallet and Putkonen (1994), we do not allow boulders to 

shrink below the observed boulder height hb (see Zreda et al., 1994).  Instead, we determine the 

amount of time that each boulder will be exposed to surface weathering from equation 2.2, then 

specify initial sizes for the boulders that will result in the boulders having the observed height.   

 

 

Figure 2.4:  Depths of boulders in a 
degrading moraine over time (a) and 
beryllium-10 concentrations in the same 
boulders as a function of time (b).  If 
boulders are uniformly distributed 
throughout the till, then some boulders 
will be at the surface when the moraine 
is deposited, whereas other boulders will 
be present in the till at greater depths.  
As time goes forward, the moraine 
becomes shorter (Fig. 2.2), and the 
boulders approach the surface.  At the 
same time, cosmogenic nuclides are 
produced in the boulders (Fig. 2.3).  For 
buried boulders, production rates 
increase slowly as the surface lowers, 
then become constant after the boulders 
are exposed at the surface.  Note that the 
majority of the cosmogenic nuclides in 
each boulder are produced after the 
boulder reaches the surface, even for the 
most deeply buried boulder.  In (b), the 
dots indicate the time when each 
boulder reaches the surface.  As in 
Figure 2.2, the moraine’s initial height is 
50 m, its initial slope is 34°, and its 
topographic diffusivity is 10-2 m2/ yr.  
The final heights of all the boulders are 
1 m.   
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This model assumes that exhumed boulders do not topple or rotate as the crest of the 

moraine deflates.  It also neglects the effects of cryoturbation (Lal and Chen, 2005).  Toppling or 

rotation of boulders on a degrading moraine would produce a larger range of exposure dates than 

degradation alone, because these processes effectively reduce the measured nuclide 

concentrations in sampled boulders (Ivy-Ochs et al., 2007; Schaefer et al., 2008).  Conversely, 

cryoturbation might bring boulders to the moraine surface sooner than would be predicted by 

diffusive removal of the moraine crest, thereby reducing the range of exposure dates from the 

moraine.  In this chapter, we assume that these processes are not dominant.   

Some moraines have geomorphic characteristics that are inconsistent with the 

assumptions used in constructing the moraine degradation model.  For example, it would be 

inappropriate to apply our model of moraine degradation to the large Pinedale terminal moraines 

near Pinedale, Wyoming (Richmond, 1973; Gosse et al., 1995), particularly in the Halls Lake 

(Mud Lake) drainage.  These moraines have broad, flat crests, where the local slope is close to 

zero.  Consequently, the downhill flux of material at the crests of these moraines should be small.  

We expect that these moraines have lost little material from their crests over time.  Moreover, 

limited exposures in roadcuts at Fremont Lake show that there are few or no boulders in the 

subsurface till (E. Evenson, personal communication).  This observation invalidates the 

assumption that the boulders are uniformly distributed throughout the outermost Pinedale-age 

moraine at Fremont Lake.   

The inheritance model 

Boulders that are deposited on a moraine with nonzero concentrations of cosmogenic 

nuclides are said to have inheritance.  The inherited nuclides were produced in each boulder 

during one or several periods of “pre-exposure” (Ivy-Ochs et al., 2007).  That is, the boulders 
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were incompletely shielded from cosmic rays before being deposited on the moraine. These 

boulders contain larger concentrations of cosmogenic nuclides than boulders that were 

completely shielded from cosmic rays at all times before being incorporated into the moraine.  

Exposure dates from boulders with inherited nuclides tend to overestimate the age of the moraine.   

There are at least two potential sources of pre-exposed boulders in glaciated landscapes 

(Ivy-Ochs et al., 2007).  First, boulders may topple onto the glacier surface from cirque headwalls 

or adjacent, oversteepened valley walls (Seong et al., 2009).  These boulders then ride the 

glacier’s surface to the terminus, where they fall onto the moraine.  Second, glaciers may re-

entrain boulders deposited in the valley bottom during an earlier advance, or pluck boulders from 

bedrock outcrops at the glacier bed.  These boulders are then transported subglacially to the 

glacier terminus, where they may be emplaced at the moraine surface by thrusting (e.g., Kruger, 

1996) or other ice-marginal processes.   

The mathematical descriptions of these two situations are nearly identical.  In both cases, 

the concentration measured in each boulder is the sum of the inherited component acquired 

during pre-exposure, and the post-depositional component that reflects the exposure history of the 

boulder after moraine construction.   

The model that we describe here is based on an earlier model presented by Benson et al. 

(2005), which treated inheritance in boulders derived from cirque headwalls.  Our model uses a 

mathematical formulation that is similar to the one used by Benson et al. (2005), but treats a 

larger set of geomorphic situations.  In addition, our model of inheritance is similar to the model 

of nuclide concentrations in sediment over time used in cosmogenic burial dating (Granger et al., 

2001; Granger and Muzikar, 2001).  Following this pioneering work, we assume that the sampled 

clasts had two distinct periods of residence in the landscape, and that the rate of change of nuclide 

concentrations in the clasts was different during these two periods.   
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For simplicity, we begin by describing the model treatment of inheritance in reworked 

boulders (Fig. 2.5).  We then point out a slight change in the model formulation that allows it to 

treat inheritance in boulders derived from cirque headwalls and valley walls.   

For reworked boulders, the inherited concentration in each boulder depends on the time 

between deposition of the boulder by the retreating ice and entrainment of the boulder by the 

readvancing glacier tpre, and on how deeply the boulder was buried during this time dpre.  Both 

 

 

Figure 2.5:  Conceptual model of 
inheritance, as caused by boulder 
reworking.   
Top: A retreating glacier margin 
deposits a till carpet on its former bed.  
The till carpet is outlined in dashed, 
brown lines.  Some boulders, shown as 
cubes, are distributed throughout the till 
carpet.  The boulders contain different 
concentrations of cosmogenic nuclides, 
depending on their depth in the till 
carpet and the length of time since the 
margin of the ice sheet uncovered the 
overlying till surface.  The dot on each 
boulder represents the point that will 
eventually be sampled for cosmogenic 
nuclides.   
Middle: The glacier readvances, eroding 
to some depth within the till carpet and 
incorporating the boulders into a new 
moraine.  Glacial transport rotates the 
boulders to their final orientations.   
Bottom: The glacier margin abandons 
the new moraine, and the boulders 
accumulate more cosmogenic nuclides.  
Eventually, the boulders are sampled, 
yielding a wide range of exposure dates.   
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these parameters are unknown for any individual boulder, but it is reasonable to say that they 

must range from zero to some maximum.   

! 

0 " tpre "max tpre( ), and 

! 

0 " dpre "max dpre( ).   

The maximum time max(tpre) represents the time between the beginning of the penultimate glacial 

retreat and the time of moraine deposition; the maximum depth max(dpre) is the maximum 

thickness of material eroded by the glacier during its readvance.   

Note that dpre refers to the depth of the point on each boulder that is eventually sampled, 

not the top of the boulder, during the predepositional exposure time.  Field geomorphologists 

typically sample the upper surfaces of boulders, because those surfaces receive the maximum flux 

of cosmic rays.  However, glacial transport rotates boulders, and so the sample point is not 

necessarily the same as the apex of the boulder during the predepositional exposure time.  

Sampling of the sides of moraine boulders yields a range of nuclide concentrations (Schaefer et 

al., 2008), consistent with theoretical predictions of the distribution of nuclide production in 

solids (Masarik and Wieler, 2003; Lal and Chen, 2005).   

For a boulder buried in a till sheet, equation 2.4 gives the production rate in the point that 

is eventually sampled.  Given this production rate, the inherited concentration Cpre is 

! 

Cpre =
P dpre( )
"

1# exp #"tpre( )[ ]  

(Lal, 1991, his eqn. 6), and the final concentration Cf, achieved after the boulder has rested on the 

moraine for a time t, is  

! 

Cf = Cpre exp "#t( ) +
P0

# + $%"1
1" exp "#t( )[ ]    (eqn. 2.6) 

(Lal, 1991, his eqn. 6).  Here, ε is the erosion rate of the boulders after they are delivered to the 

moraine (cm/ yr; assumed negligible), and Λ is the attenuation length of the nucleonic component 
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of cosmogenic nuclide production (~160 g/ cm2, divided by the material’s density; Lal, 1991; 

Gosse and Phillips, 2001).   

Our model is readily adapted to treat inheritance in boulders derived from cirque 

headwalls and valley walls, as in Benson et al. (2005). From a nuclide production perspective, the 

angle of the overlying surface is the critical difference between a boulder buried in a till sheet and 

one that is still in a cirque headwall; for a till sheet, the overlying surface should be nearly 

horizontal, whereas cirque headwalls are quite steep.  To model nuclide production as a function 

of depth below inclined surfaces, we use the parameterization of Dunne et al. (1999, their eqn. 

18).  This parameterization gives results within 3% of estimates from a more explicit model 

(Dunne et al., 1999), even for the steep slopes representative of cirque headwalls (~30°; Benson 

et al., 2005).   

This inheritance model relies on many assumptions.  First, we assume that there are no 

nuclides inherited from any periods of residence in the landscape preceding the last glacial cycle.  

Because many cosmogenic nuclides have half-lives that are long compared to glacial cycles 

(Gosse and Phillips, 2001; Shackleton, 2000), this assumption requires that glaciers sweep out 

most of the easily eroded material from their valleys during each advance.  Second, we assume 

that surface production rates were the same during the predepositional exposure time as they are 

in the boulders’ observed positions.  Because some boulders are undoubtedly coming from higher 

elevations than the present-day moraine crests, this assumption tends to underestimate surface 

production rates during the predepositional exposure time.  Future versions of this model will 

need to incorporate information on the elevation distribution of glaciated basins (e.g., Bierman et 

al., 2005).  Third, we assume that the density contrast between the boulders and the surrounding 

material is small; otherwise, the production rate in the sample point would differ, depending on 

the orientation of the boulder during its predepositional exposure time.  For boulders that travel to 

the moraine atop glacial ice, some cosmogenic nuclide atoms are produced during the transport 
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time (Seong et al., 2009), and our model neglects this production.  Moreover, glaciers do erode 

boulders during subglacial transport, and this model does not include that process.  We tolerate 

these problems for the sake of developing this preliminary model.   

Monte Carlo simulation 

As we indicated in the introduction, our objective is to use the statistical distributions of 

real exposure dates to estimate the ages of moraines and gain information on the geomorphic 

processes acting on the moraines.  We present our methods for comparing models to data in 

Chapter 3.  In the remainder of this section, we show the distributions of exposure dates produced 

by the models under assumptions that are reasonable for a variety of field situations.  

To determine a statistical distribution of apparent exposure dates from our models, we 

use Monte Carlo methods (Hilborn and Mangel, 1997; Bevington and Robinson, 2003).  In Monte 

Carlo simulation, the values of highly variable model parameters are chosen randomly from 

predefined probability distributions.  The model is then run for these parameter values, and the 

output is saved.  This process is repeated many times; depending on the speed of the model and 

the desired precision, Monte Carlo model evaluations may include thousands to millions of 

individual model runs.  The model output is then plotted as a histogram, which is a graphical 

representation of the probability distribution.   

In our models, there are several free parameters that will be different for each boulder on 

a moraine.  We have no way of determining, for example, how deeply buried any individual 

boulder was at the time of moraine deposition.  The moraine degradation model has only one 

highly variable parameter, the initial depth d0; the inheritance model has two highly variable 

parameters, the predepositional exposure time tpre and the depth during the predepositional 

exposure time dpre.   
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Because all these free parameters range from zero to some maximum, we choose random 

values for these parameters from continuous uniform distributions.  In a continuous uniform 

distribution, all real numbers that lie between the minimum and maximum ends of the distribution 

are equally probable (Hilborn and Mangel, 1997; Bevington and Robinson, 2003).  For our 

models, the minimum ends of these distributions are always 0; the maximum ends are specified 

by max(d0), max(tpre), and max(dpre).   

For each draw of these randomly chosen parameter values, we calculate the final 

concentration Cf (eqns. 2.5 and 2.6, above) and the apparent exposure time tapp, according to 

! 

tapp =
"1

#
ln 1"

Cf #

P
0

$ 

% 
& 

' 

( 
)        (eqn. 2.7) 

(Lal, 1991, his eqn. 6).  This expression reflects the “naïve” estimate (Wolkowinsky and Granger, 

2004) of moraine age from a single boulder sample, neglecting boulder erosion and all other 

geomorphic processes.   

Note that we differentiate between moraine-level parameters and boulder-level 

parameters.  Moraine-level parameters in the degradation model include the moraine age, 

topographic diffusivity, initial height, and initial slope; in the inheritance model, the moraine-

level parameters are the moraine age, the maximum predepositional exposure time, and the 

maximum predepositional burial depth.  The boulder-level parameters are the initial depth of 

boulders below the moraine surface in the degradation model, and the predepositional exposure 

time and burial depth in the inheritance model.  In estimating the probability distribution of 

cosmogenic exposure dates from a single moraine, we vary the boulder-level parameters, but the 

moraine-level parameters remain constant.   
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Plotting non-normal distributions 

Most common methods of plotting collections of exposure dates from moraines implicitly 

assume that the dates are drawn from a normal distribution.  This assumption is unjustified for the 

distributions produced by our models, which are clearly not normal.  Therefore, we represent the 

statistical distributions of exposure dates using histograms, cumulative density functions, and box 

plots (Chambers et al., 1983; Croarkin and Tobias, 2006).  These plotting methods are robust, 

even for statistical distributions that vary considerably from the normal distribution.   

Histograms are probably the most familiar method of representing distributed data, but 

the choice of bin size exerts a strong control on the shape of the histogram.  In a histogram, the 

synthetic observations are sorted into bins.  The heights of the bars on the histogram are 

proportional to the number of observations in each bin.  

Unlike histograms, plots of cumulative density functions do not require arbitrary choices 

about how to group the data.  On a plot of a cumulative density function, the y-axis represents the 

probability that any individual observation is equal to or less than a particular value on the x-axis 

(Press et al., 1992, their ch. 14; Hilborn and Mangel, 1997; Croarkin and Tobias, 2006).  The x-

axis therefore ranges from the minimum to the maximum of the observations; the y-axis ranges 

from 0 to 1.0.   

Box plots provide a compact way of representing distributed data; placing several box 

plots next to one another allows quick comparison of distributions.  In a box plot, the position and 

width of the box indicates where the middle 50% of the observations lie.  That is, the box 

represents the interquartile range of the data (Chambers et al., 1983; Croarkin and Tobias, 2006).  

The line in the box is the median, or the value that separates the lower half of the observations 

from the upper half.  In this dissertation, the ends of the whiskers indicate the positions of the 



 

 

39 

largest and smallest observations.  Often, box plots indicate outliers as dots or small crosses 

outside the whiskers (Chambers et al., 1983), but we do not follow this practice. 

Results 

Model output for representative parameter values 

The output from the moraine degradation model is shown in Figure 2.6.  All these figures 

assume the same parameter values used in Figures 2.2 and 2.4; as before, the initial height of the 

moraine is 50 m, the initial slope of the moraine is 34° (Putkonen and Swanson, 2003), the 

topographic diffusivity is 10-2 m2/ yr (Hanks et al., 2000; Putkonen et al., 2007), and the age of 

the moraine is 20 ka.  In addition, we specify that the tops of all sampled boulders must be at least 

1 m above the crest of the moraine at the time of sampling.   

Figure 2.6a illustrates the relationship between the initial depth of a given boulder and the 

apparent exposure time yielded by that boulder.  As expected, the more deeply buried samples 

yield younger apparent exposure times.   

Figures 2.6b and 2.6c show the statistical distribution of the exposure dates produced by 

the degradation model for these parameter values.  The distribution is strongly left-skewed; that 

is, more of the probability mass falls to the left of the distribution’s peak than would be the case if 

the distribution were normal.  The corresponding cumulative density function rises slowly, then 

more rapidly as it approaches the true age of the moraine (20 ka).  The box portion of the box 

plot, which represents the position of the bulk of the data, falls on the right-hand side of the plot.   
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Figure 2.6:  Distribution of cosmogenic 
exposure dates produced by the moraine 
degradation model for a representative 
case.  Panel (a) shows the exposure 
dates yielded by boulders as a function 
of their initial burial depth in the 
moraine (compare Fig. 2.4b).  Panel (b) 
shows a histogram of these apparent 
ages.  Most of the exposure dates cluster 
around the true age of the moraine (20 
ka), but there is a long, heavy tail to the 
left.  That is, the distribution of 
exposure dates produced by the moraine 
degradation model is left-skewed.  The 
total number of observations shown in 
this histogram is 105.  Panels (c) and (d) 
show the cumulative density function 
and box plot of the 105 observations 
shown in the histogram.  Dashed lines in 
(c) and (d) show the relationship of the 
box plot to the cumulative density 
function; breaks in the box plot 
represent the quartiles of the distribution 
(Chambers et al., 1983). As in Figures 
2.2 and 2.4, the moraine’s initial height 
is 50 m, its initial slope is 34°, and its 
topographic diffusivity is 10-2 m2/ yr.  
The final heights of all the boulders are 
1 m.   
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The output from the inheritance model is shown in Figures 2.7a-2.7c.  These plots 

assume a moraine age of 20 ka, a maximum predepositional exposure time of 100 ka, a maximum 

depth during the predepositional exposure period of 2 m, an overburden density of 2.0 g/ cm3, and 

a flat surface geometry during the predepositional exposure period.  Again, the total number of 

synthetic observations in each of these plots is 105.   

Figure 2.7a shows contours of the apparent exposure time produced by the inheritance 

model as a function of the model’s free parameters, predepositional exposure time and 

predepositional exposure depth.  As expected, the samples that yield the greatest apparent 

exposure times are those that had the greatest length of time to acquire inherited nuclides and 

were near the surface during that time.  That is, the samples that appear oldest have the longest 

predepositional exposure times and the smallest predepositional exposure depths.   

Figures 2.7b and 2.7c show the statistical distributions of exposure dates expected from 

the inheritance model for these parameter values.  The distribution is right-skewed; it contains a 

mode close to the true age of the moraine (20 ka), and a long, heavy tail to the old side, as shown 

in the histogram (Fig. 2.7b).  These features of the distribution are reflected in the cumulative 

density function (Fig. 2.7c), which rises rapidly, then levels off.  The box portion of the box plot 

falls near the left end of the plot.   
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Figure 2.7:  Distribution of cosmogenic 
exposure dates produced by the 
inheritance model for a representative 
case.  Panel (a) shows contours of the 
apparent ages yielded by boulders as a 
function of the length of time that they 
were exposed to cosmic rays and the 
depth to which they were buried during 
that time.  Panel (b) shows a histogram 
of exposure dates produced by random 
sampling of 105 synthetic observations 
from the contour plot in (a).  In contrast 
to the distribution produced by the 
moraine degradation model (Fig. 2.6), 
the inheritance model produces right-
skewed distributions.  The bulk of the 
exposure dates fall near the true age of 
the moraine (20 ka), but there is a long, 
heavy tail to the right.  Panels (c) and 
(d) show the cumulative density 
function and box plot of the 105 
observations shown in the histogram.  
The true age of the moraine is 20 ka, the 
maximum predepositional exposure 
time is 100 ka, and the maximum 
predepositional burial depth is 2.0 m. 



 

 

43 

Sensitivity of modeled distributions to input parameter choices 

Some of the parameters used in our models are either highly uncertain, or else vary 

considerably between moraines.  In this section, we show how the modeled distributions of 

exposure dates change as individual parameters vary.  Figures 2.8 and 2.9 illustrate the sensitivity 

of the two models using box plots (Chambers et al., 1983).   

In both models, the moraine age controls the position of the box plot along the time axis.  

In the inheritance model, the spread of the exposure dates is independent of moraine age; the 

distance between the ends of the whiskers is the same for all values of moraine age.  In contrast, 

the moraine age does affect the spread of exposure dates yielded by the degradation model; that 

is, younger moraines show less spread than older moraines (Fig. 2.8; Putkonen and Swanson, 

2003).  The increase in spread among exposure dates with age for degrading moraines happens 

because older moraines have more time to lose material from their crests (Fig. 2.2), and this 

process exposes more boulders that have spent progressively less time exposed to the full surface 

flux of cosmic rays (Fig. 2.4).   

In the degradation model, the spread of dates is most strongly controlled by the 

topographic diffusivity, although the initial slope and initial height of the moraine also have some 

influence on the scatter (Fig. 2.8).  Small diffusivities cause the moraine’s height to change only 

slightly over its lifetime, and so few new boulders are exhumed at the crest of the moraine.  Very 

large diffusivities flatten the moraine in a few thousand years after its construction; the reduced 

spread in exposure dates produced by the model for a diffusivity of 1 m2/ yr happens because 

such a high diffusivity exposes most of the buried boulders within a few thousand years after the 

deposition of the moraine.  Such large diffusivities cause the moraine to disappear almost totally 

over 20 ka, so they are inconsistent with the observed persistence in the landscape of 

topographically distinct moraines (see Hanks, 2000; Putkonen et al., 2007).  The modeled 
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distributions of exposure dates from tall moraines are wider than distributions from shorter 

moraines of the same age (Putkonen and Swanson, 2003), although the width of the distribution 

stops increasing as the initial height of the moraine is made greater than ~35 m.  The range of 

modeled exposure dates increases monotonically with the initial slope of the moraine.   

 

 

 
Figure 2.8:  Sensitivity of the moraine degradation model to changes in its input parameters.  See 
text for discussion.  In each panel, one of the model parameters is varied between the values 
shown on the y-axis, whereas the other model parameters are held constant at the base values. As 
in Figures 2.2, 2.4, and 2.6, the base values for the input parameters specify that the moraine’s 
initial height is 50 m, its initial slope is 34°, and its topographic diffusivity is 10-2 m2/ yr. 
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In the inheritance model, the maximum predepositional exposure time controls the width 

of the distribution, and the maximum predepositional exposure depth controls where the bulk of 

the data falls between the extreme ends of the distribution (Fig. 2.9).  A large value for the 

maximum predepositional exposure time causes a wide range of exposure dates; a small value 

 

 
Figure 2.9:  Sensitivity of the inheritance model to changes in its input parameters.  See text for 
discussion.  In each panel, one of the model parameters is varied between the values shown on the 
y-axis, whereas the other model parameters are held constant at the base values.  As in Figure 2.7, 
the base values for the input parameters specify that the true age of the moraine is 20 ka, the 
maximum predepositional exposure time is 100 ka, and the maximum predepositional burial 
depth is 2.0 m.   
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produces a narrow range.  Large values of the maximum predepositional exposure time 

concentrate most of the observations near the young end of the range, whereas smaller values 

place more of the observations into the tail of the distribution.   

Increasing the surface slope has only a small effect on the distributions of exposure dates 

produced by the inheritance model (Fig. 2.9).  There is little difference between the distributions 

of modeled exposure dates for boulders derived from flat surfaces and those for boulders derived 

from sloped surfaces with inclinations of 30° or less, because the depth dependence of nuclide 

production changes only slightly over this range of slopes (Dunne, 1999).  A 30° slope is 

representative of cirque headwalls (Benson et al., 2005), a likely source for supraglacial boulders.  

The model sensitivity to surface slope is not extreme, even for larger slope values. 

Discussion 

There is no plausible combination of parameters that can cause the output from the 

moraine degradation model to resemble the output from the inheritance model (compare Fig. 2.6b 

with Fig. 2.7b, Fig. 2.6c with Fig. 2.7c, and Fig. 2.8 with Fig. 2.9), except in the special case 

where neither process is active.  The statistical distributions of exposure dates produced by the 

moraine degradation model are always left-skewed (Fig. 2.6b); conversely, the distributions of 

exposure dates produced by the inheritance model are always right-skewed (Fig. 2.7b).  That is, 

the cumulative density functions from the degradation model are always concave-up (Fig. 2.6c), 

and the cumulative density functions from the inheritance model are always concave-down (Fig. 

2.7c).  On the box plots, the box occurs near the right-hand end of the distribution in the 

degradation model (Fig. 2.8), and near the left-hand side of the plot for the inheritance model 

(Fig. 2.9).   
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We can now examine how successful different methods for estimating moraine ages will 

be, given the statistical distributions of exposure dates yielded by our models (Fig. 2.10).  

Common methods include the mean, the mean after discarding outliers, the oldest date, and the 

youngest date.  In this case, we define outliers as those observations that are more than twice the 

standard deviation away from the mean of the exposure dates in a data set.   

 

 
Figure 2.10:  The reliability of different interpretive methods in estimating moraine ages from 
collections of cosmogenic exposure dates.  Each box plot represents age estimates from 106 
randomly selected data sets containing eight synthetic cosmogenic exposure dates each.  The 
heavy, vertical black line in each panel represents the true age of the moraine, which is 20 ka in 
each case.  In each panel, the methods listed on the y-axis are listed according to how close the 
median age estimate falls to the true moraine age; the method listed at the top is the best for the 
indicated parent distribution, and the method listed at the bottom is the worst.  This ordering is 
insensitive to the number of samples in each data set for reasonable data set sizes (3≤ n ≤ 21).  
The parent distribution in the middle panel is a normal distribution with a mean of 20 ka and a 
standard deviation of 1 ka, corresponding to a case where all of the scatter between the exposure 
dates is due to measurement error.  The parent distributions in the other two panels are those 
shown in Figures 2.6 and 2.7.   
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To this list of methods, we add the min/mean/max technique, which was suggested by our 

modeling results.  If a data set has a skewness greater than 0.5, we infer that the dates are biased 

by inheritance, so we take the youngest date.  If the skewness is less than -0.5, we assume 

moraine degradation, and take the oldest date.  If the skewness is between -0.5 and 0.5, we take 

the mean.   

Of these methods, min/mean/max appears to be the most widely applicable; however, 

none of these methods is universally successful in recovering the known ages of moraines for our 

modeled distributions (Fig. 2.10).  The median of the min/max/mean age estimates always lies 

within a few thousand years of the true age for the parent distributions we examine here.  This 

statement is not true of any other method that we have tested.  However, the min/max/mean 

estimate of moraine age sometimes overestimates or underestimates moraine ages by tens of 

thousands of years.   

The min/mean/max method fails because the skewness of a small data set (n < ~50) is a 

poor guide to the form of the parent distribution (Fig. 2.11).  For a moraine where geomorphic 

processes do not affect exposure dating, we would expect the exposure dates to be normally 

distributed (Balco, in press), and to have a standard deviation equal to the measurement 

uncertainty of the dates.  By definition, this parent distribution will have a skewness of zero.  

However, the skewness of a small number of exposure dates drawn randomly from this parent 

distribution has a poor chance of approximating the true skewness of the parent distribution.  

Most randomly selected data sets containing a small number of observations will give either a 

positive or negative skewness.  Under the min/mean/max framework, we would wrongly 

conclude that we should take the oldest or the youngest date from these data sets, whereas the 

average is the maximum likelihood estimator of the moraine’s age (Bevington and Robinson, 

2003).  This problem is most pronounced for the smallest data sets (n = 3), for which the 

distribution of skewnesses is U-shaped.  
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These problems persist for data sets drawn from distributions generated by the 

inheritance model and the degradation model.  For highly skewed parent distributions like those 

produced by the inheritance model, the interquartile range of sample skewnesses does not even 

overlap the skewness of the parent distribution until the number of observations in each data set is 

about 15.  To our knowledge, there is no moraine with more than 15 independent, published 

cosmogenic exposure dates.  

 

 
Figure 2.11:  Skewnesses of randomly chosen data sets, compared to the skewnesses of the 
underlying parent distributions.  Each box plot indicates the skewnesses of 106 randomly selected 
data sets that contain a number of exposure dates indicated by the corresponding value on the y-
axis.  The skewnesses of the underlying parent distributions are indicated by the heavy, black, 
vertical line in each panel.  Even large data sets (n = 21) can provide a misleading estimate of the 
skewness of the parent distribution.  In particular, randomly chosen data sets will often yield 
skewnesses that do not have the same sign as the underlying parent distribution.  The parent 
distribution in the top panel is the same as that shown in Figure 2.7b; the parent distribution in the 
bottom panel is shown in Figure 2.6b.  The parent distribution in the middle panel is a normal 
distribution with a mean of 20 ka and a standard deviation of 1 ka.    
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Taking the mean after discarding outliers fails to correctly estimate the ages of moraines 

for skewed parent distributions (Fig. 2.10) because the bias imparted by geomorphic processes is 

continuous, rather than binary.  Discarding outliers before taking the mean implicitly assumes 

that bias is either present or absent in each exposure date.  Our model results suggest, instead, that 

the majority of exposure dates from moraines that are affected by geomorphic processes have 

some degree of bias, even though small biases are more common than large ones (Figs. 2.6, 2.7; 

Benson et al., 2005).  These small biases lead the mean away from the correct answer, if that 

answer lies at one end of the distribution.   

The extreme estimators work well in very specific circumstances (Fig. 2.10), but we 

cannot reliably determine when to apply these estimators (Fig. 2.11).  The extreme estimators 

involve choosing the youngest date or the oldest date from a data set.  If we believe correctly that 

the parent distribution from which a set of exposure dates is drawn is skewed in one direction or 

the other, then the corresponding extreme estimator is the best choice for determining the 

moraine’s age (Fig. 2.10).  However, an incorrect guess about the form of the parent distribution 

will likely cause a large error in estimating the age of a moraine using an extreme estimator.  

Because our skill in determining the form of parent distributions from small data sets is limited 

(Fig. 2.11), the extreme estimators should be used with caution.   

The failure of simple methods to correctly estimate the ages of moraines in our test cases 

indicates that more sophisticated methods are necessary.  Direct inversion of our models against 

data may allow more accurate estimation of moraine ages from collections of cosmogenic 

exposure dates.  We present methods for this inversion in the next chapter.   

 



 

 

Chapter 3 
 

Extracting moraine ages and geomorphic process information from the 
statistical distributions of cosmogenic exposure dates 

New statistical methods allow estimation of both moraine ages and rates and 
magnitudes of geomorphic processes from collections of cosmogenic exposure 
dates.  Cosmogenic exposure dating holds considerable promise for estimating 
the ages of glacial landforms, because exposure dates record the ages of 
geomorphic surfaces directly if confounding factors are absent. However, 
exposure dates from single moraines are sometimes spread over thousands of 
years, and the best way to choose the age of the landform from a widely scattered 
set of exposure dates is often unclear. As a first step toward addressing this 
problem, we have developed methods for fitting models of two potential 
confounding processes to the statistical distributions of exposure dates from 
moraines. These processes are moraine degradation, which causes exposure dates 
to underestimate the ages of moraines, and inheritance, which causes exposure 
dates to overestimate the ages of moraines. We present fits of these models to 
collections of exposure dates from Gurreholm Dal in eastern Greenland and from 
the Uinta Mountains of Utah. The resulting fits yield information on both the 
ages of the moraines and other parameters of geomorphic interest, such as the 
depth of glacial erosion and the topographic diffusivity.  

Cosmogenic exposure dating is a powerful method for estimating the ages of glacial 

landforms, but geomorphic processes complicate the interpretation of the dates. Cosmic rays split 

atoms in surface rocks at predictable rates, producing measurable concentrations of isotopes that 

are otherwise rare in surface rocks (Gosse and Phillips, 2001; Muzikar et al., 2003). The 

concentrations of these cosmogenic nuclides in moraine boulders are directly related to the ages 

of the host moraines (Lal, 1991), assuming that the boulders had no preexisting concentration of 

cosmogenic nuclides when deposited on the moraine, and that the sampled surfaces of the 

boulders were exposed to the full surface flux of cosmic rays for the entire post-depositional 

history of the moraines. These assumptions are sometimes violated by geomorphic processes, 

which affect different boulders on the same moraine to varying degrees (Ivy-Ochs et al., 2007). 

Thus, the spread among exposure dates from a single moraine is often greater than we would 
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expect from the analytical uncertainty of the method (Putkonen and Swanson, 2003). Various 

methods exist for estimating moraine ages from exposure dates, and these methods give very 

different results when applied to highly scattered data sets (compare Chevalier et al., 2005, with 

Brown et al., 2005). This interpretive uncertainty confounds efforts to determine the timing of 

rapid climate changes from exposure dates.  

Here, we suggest a new method for estimating moraine ages from cosmogenic exposure 

dates. This method matches the statistical distributions of exposure dates generated by 

geomorphic process models to the distributions of observed exposure dates from single moraines. 

The models’ input parameters include moraine age, topographic diffusivity, and the depth of 

glacial erosion. The matching method yields estimates of these quantities.  

This study improves on past work in several ways. Our method honors all the exposure 

dates within a data set; outlier deletion is not required, at least for the data sets that we examine 

here. Thus, the method reduces the interpretive uncertainties in exposure dating. Second, the 

method gives estimates of the rates and magnitudes of geomorphic processes. Because many 

hundreds of exposure dates already exist in the literature, our method provides a means to learn 

about geomorphic processes in a large sample of glaciated drainages. Last, our method allows us 

to draw inferences about individual moraines; most prior modeling studies in this area treat 

aggregate data sets representing many moraines (see Zreda et al., 1994, for an exception).  

Methods 

In Chapter 2, we described numerical models that predict the effects of two geomorphic 

processes on the statistical distributions of exposure dates from moraines. These processes, 

moraine degradation and inheritance, are thought to be pervasive influences on the exposure 

dating of moraines (Putkonen and Swanson, 2003; Benson et al., 2005; Putkonen and O’Neal, 
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2006); other processes may be important at some sites. In moraine degradation, slope processes 

remove material from the crest of a moraine and transfer it to the toe of the slope (Anderson and 

Humphrey, 1989; Pelletier, 2008). This process exposes boulders at the moraine crest that have 

been partly shielded from cosmic rays during some part of the moraine’s postdepositional history. 

In inheritance, boulders acquire concentrations of cosmogenic nuclides in cirque headwalls, 

valley walls, or valley floors before being transported by the glacier to its terminus (Seong et al., 

2009). Our models build on prior efforts, most notably those of Hallet and Putkonen (1994) and 

Benson et al. (2005).  

Here, we invert these models against five data sets from the literature (see below). Given 

a collection of exposure dates from a single moraine and a process model, we run the model 

repeatedly, adjusting the input parameters each time. We search over reasonable parameter ranges 

to find the set of parameter values that produces the best match between the modeled and 

observed distributions of exposure dates. To find this best match, we use a genetic algorithm to 

minimize the Kolmogorov-Smirnov test statistic, which measures the mismatch between two 

statistical distributions (Appendix D). The method is able to recover the correct parameter values 

for simple test cases.  

Moraine age is a parameter in both models. The output of the moraine degradation model 

also depends on the moraine’s initial height, initial slope, and topographic diffusivity. The 

inheritance model requires the maximum exposure time and maximum burial depth for boulders 

during the predepositional exposure time, as well as the slope of the surface from which the 

boulders are derived. For boulders derived from subglacial material, the maximum burial depth 

corresponds to the maximum depth of glacial erosion; for boulders that are transported 

supraglacially, this parameter is related to the depth of landsliding onto the glacier surface. Each 

model has three important parameters.  Sensitivity tests of the degradation model show that initial 

height is comparatively unimportant for tall moraines. Likewise, the slope of the surface from 
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which boulders with inherited nuclides are derived has a minor effect on the distributions 

produced by the inheritance model.  

Selected data sets 

To illustrate the application of our geomorphic models, we have chosen five data sets 

from the recent literature.  Three of these data sets come from moraines in the Gurreholm valley 

in Scoresby Sund, eastern Greenland (Kelly et al., 2008); the others come from moraines in the 

Uinta Mountains of Utah (Munroe et al., 2006; Laabs et al., 2009).   

In Gurreholm Dal, eastern Greenland, three groups of moraines lie between the Little Ice 

Age-equivalent moraines and where the valley empties into the fjord (Kelly et al., 2008). In order 

from youngest to oldest, these groups are the G-II, G-III, and G-IV moraines. The G-II and G-III 

moraine groups are thought to correspond to the inner and outer Milne Land stade moraines of 

Funder (1978). Each group contains moraines corresponding to 2-4 distinct positions of the 

glacier margin. The distance between the innermost and outermost moraines in any moraine 

group (~1 km) is small compared to the length of the valley, which is about 20 km from the 

outermost Little Ice Age moraine to the edge of the seawater filling the fjord. The stratigraphic 

positions of these moraine groups imply that all three groups must be older than the culmination 

of the Little Ice Age in Greenland and younger than the Last Glacial Maximum (Hakansson et al., 

2007; Kelly et al., 2008).  

On the southern slope of the Uinta Mountains of Utah, the river valleys contain 

prominent moraines of the Smiths Fork glaciation (Pinedale-equivalent; Atwood, 1909; Munroe 

et al., 2006, Laabs et al., 2009). The Lake Fork and Yellowstone drainages contain the two best-

preserved moraine complexes of this age in the Uinta Mountains. In both of these drainages, the 

outermost Smiths Fork-age lateral moraines are well-defined and continuous. These moraines 
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may be several thousand years younger than the time of the Last Glacial Maximum in the western 

United States, because the glaciers that deposited the moraines were likely sustained by moisture 

from pluvial Lake Bonneville (Laabs et al, 2006; Munroe et al., 2006).  

We have recalculated the exposure dates from our chosen sites using several presently 

accepted scaling methods (Balco et al., 2008; Appendix D). In the text and figures, we show the 

dates as calculated using the Lal/Stone scaling method (Lal, 1991; Stone, 2000). However, the 

choice of scaling method has little influence on the scatter among exposure dates for the moraines 

in our selected data sets (Appendix D).  

The exposure dates in all five of our chosen data sets are likely influenced by geomorphic 

processes (Fig. 3.1). If measurement error is the only cause of the scatter among the exposure 

dates from a single moraine, the dates will be normally distributed, and the scatter of the dates 

will be consistent with the measurement uncertainties of the dates. Of the five data sets treated 

here, four are not normally distributed, as shown by their histograms and normal probability plots 

(Appendix D). The number of observations in each data set limits our ability to determine the 

forms of the parent distributions from which the dates are drawn. However, we are confident that 

all of the data sets have more scatter than can be explained by the measurement uncertainties of 

the dates, as shown by their reduced chi-squared scores (Appendix D; Fig. 3.1).   
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Figure 3.1:  (Caption on following page.) 
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Results 

We present the best-fit model curves for each data set in Figure 3.2. The model 

parameters that give rise to these best fits are shown in Table 3.1.  

In general, these parameter estimates appear reasonable. The fits of the moraine 

degradation model to the data sets from the Uinta Mountains yield estimates of moraine age, 

initial slope, and topographic diffusivity that lie within reasonable ranges (Licciardi and Pierce, 

2008; Putkonen and O’Neal, 2006; Hanks, 2000). Likewise, the estimated glacial erosion depths 

are generally consistent with past estimates (Briner and Swanson, 1998; Fabel and Harbor, 1999; 

James et al., 2002; Fabel et al., 2004).   

Figure 3.1:  Comparison of a synthetic data set in which all the scatter is due to measurement 
error (a) to the data sets treated in this study (b-f; Kelly et al., 2008; Laabs et al., 2009).  If all the 
scatter among a group of exposure dates from a single moraine is due to measurement error, the 
exposure dates will be normally distributed and will have a degree of scatter consistent with the 
measurement uncertainties of the dates. In each figure part (a-f), the top panel is a histogram of 
the exposure dates, and the bottom panel is a normal probability plot (Appendix). A normal 
probability plot provides a qualitative test for normality; if the dates (black dots) fall near the 
solid gray line, they are probably drawn from a normal distribution. The gray curve in the top 
panel of part a shows the expected distribution of exposure dates for a moraine that is 20 ka old, 
assuming a 1σ measurement uncertainty of 5% and an arbitrarily large number of exposure dates. 
This theoretical distribution has the familiar bell shape of the normal distribution. For a more 
reasonable number of exposure dates (n = 10), we might obtain a distribution like that shown by 
the histogram in the top panel of part a. When displayed on a normal probability plot, these dates 
fall in a line, confirming that they are drawn from a normal distribution. The dates in this 
hypothetical example have a reduced chi-squared statistic χR

2 of 0.7 (close to 1.0), indicating that 
their scatter is consistent with the measurement errors of the dates (Bevington and Robinson, 
2003; Appendix D). In contrast, the exposure dates in our selected data sets (parts b-f) do not fall 
in a line on normal probability plots, and their χR

2 scores range from 20 to 504 (>> 1.0). These 
non-normal, highly scattered data sets are likely influenced by geomorphic processes. Note that, 
although the Yellowstone data set (part c) appears to be normally distributed, its χR

2 score is 
much larger than 1.0.  
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Figure 3.2:  Fits of models to observations. The black dots with error bars represent the exposure 
dates and their 1σ measurement uncertainties, plotted in cumulative probability density space 
(Appendix D). The solid gray curves are the modeled distributions that provide the best fit to the 
observations, and the dashed vertical gray lines are the corresponding moraine age estimates; the 
values in each panel represent our best estimates of moraine age for these data sets. For a data set 
that is normally distributed and has a reduced chi-squared χR

2 score close to 1.0 (part a), the most 
appropriate model assumes a normal distribution, which has an S-shape on a cumulative 
probability density plot. The best estimate of moraine age is then just the mean of the exposure 
dates. Note that, because our randomly chosen exposure dates sample the young tail of the 
distribution more than the old tail (Fig. 3.1a), we do not recover the known age of the moraine 
(20 ka) in this synthetic example. In contrast, the moraine degradation model provides a better fit 
to our chosen data sets that are widely scattered and have most of the dates arranged to the young 
side of the mode (Lake Fork and Yellowstone; parts b and c). Further, our sample data sets that 
are widely scattered and have most of the dates on the old side of the mode are well fitted by the 
inheritance model (G-II, G-III, and G-IV; parts d, e, and f). On cumulative density plots, the 
moraine degradation model produces distributions that rise slowly, then more quickly; the 
inheritance model’s distributions rise quickly, then level off.   
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However, the age estimates for the Greenland data sets deserve comment. First, the best-

fit ages for the G-II and G-III moraine groups produce a stratigraphic inversion; given the relative 

positions of these moraine groups, the G-III moraines cannot be younger than the G-II moraines, 

contrary to the values presented in Table 3.1. This result probably indicates that the G-II and G-

III moraines are very close in age, consistent with the original interpretations of Kelly et al. 

(2008). This outcome also points out a need for methods to determine the uncertainties of our 

parameter estimates (see Discussion, below). Moreover, the inferred age of the G-IV moraines is 

about 20 ka, corresponding to the height of the Last Glacial Maximum. It is generally thought that 

glacial ice in eastern Greenland was much more extensive than the margin position indicated by 

the G-IV moraines at this time (Hakansson et al., 2007). Without taking a position on this 

question, we note that our inferred age for these moraines is dominated by the youngest sample in 

the set. Further sampling on these moraines might yield younger exposure dates that would cause 

us to revise our inferred age. 

Table 3.1: Best fits of the models to the  eastern Greenland and Uinta Mountains data sets (Kelly 
et al., 2008; Laabs et al., 2009).   

Degradation model 
Data set Moraine age 

(ka) 
Initial slope 

(°) 
Diffusivity 

(m2/yr) 
KS statistic 

Lake Fork 19.98 39.45 1.982* 10-3 0.1977 
Yellowstone 19.18 33.78 8.761* 10-3 0.2286 
     
Inheritance model 
Data set Moraine age 

 
(ka) 

Max. pre. 
exposure time 

(ka) 

Max. pre.  
burial depth 

(m) 

KS statistic 

G-II 9.967 38.12 4.371 0.1333 
G-III 9.740 55.56 1.919 0.1093 
G-IV 20.21 96.28 1.978 0.1979 
max. pre., maximum predepositional.   
KS, Kolmogorov-Smirnov (see Appendix D).   
The parameter estimates here are probably good to two or three significant figures.  Four 
figures are reported to allow checking of the model fits.    
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Also, the maximum predepositional burial depth inferred for the G-II moraine boulders is 

much larger than that inferred for the G-III and G-IV moraine groups (Table 1). The significance 

of this result depends on whether these boulders were subglacially or supraglacially derived. If 

the boulders were derived from subglacial till or bedrock, this result seems contrary to our 

expectations. The G-II moraines were deposited by a thinner and less extensive ice cap than were 

the G-III and G-IV moraines (Kelly et al., 2008). In general, thick ice exerts a greater shear stress 

on its bed than does thin ice (Paterson, 1994), so we might expect thick ice to be more erosive 

than thin ice for the same subglacial conditions. On the other hand, perhaps the boulders fell onto 

the glacier from the adjacent bedrock slopes. In that case, the greater maximum predepositional 

burial depth for the G-II moraine boulders may reflect the abrupt exposure of destabilized 

bedrock slopes by downwasting ice, allowing deeper-seated landslides to fall onto the glacier 

surface. In any case, this result is only weakly significant; the large inferred predepositional burial 

depth for the G-II moraines is produced entirely by the oldest sample in the data set.  

Discussion 

This work suggests that widely scattered collections of cosmogenic exposure dates from 

moraines have a coherent structure that can be understood through modeling. The process of 

identifying this structure yields estimates of moraine ages and the rates and magnitudes of 

geomorphic processes acting in glaciated drainages.  

This conclusion is subject to severe limitations. In particular, we present fits to only a few 

data sets, which we have selected because we are able to reproduce them with our models. There 

is some nonzero chance that any given data set will agree with one of our models, even if the 

model is not appropriate for the geomorphic situation. Thus, we cannot exclude the possibility 

that our model fits are due to chance, rather than to a real agreement between our models and the 
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geomorphic contexts of our chosen data sets. There are many data sets that we cannot fit well, 

such as the exposure dates from the outermost Pinedale moraine at Fremont Lake, Wyoming 

(Gosse et al., 1995b). Our inability to fit particular data sets may arise from the small numbers of 

exposure dates available from many moraines, or from the incompleteness of our models. Our 

modeling work to date treats inheritance and moraine degradation separately, but there must be 

sites where both processes are important. Moreover, some data sets probably reflect one or more 

geomorphic processes not treated by our models, such as boulder toppling, boulder erosion, or 

snow cover (Ivy-Ochs et al., 2007).  

Still, we believe that our methods represent a promising avenue for future investigation. 

Any final answer to the problem of how to interpret cosmogenic exposure dates from moraines 

will have to explicitly account for the statistical distributions of these dates from individual 

moraines. We believe that our work is a step toward this eventual solution.  

The statistical methods presented here do not provide uncertainties for their estimates of 

moraine age or geomorphic parameters. In the future, we will use resampling techniques, such as 

the bootstrap, to estimate these uncertainties. Because this chapter represents a proof of concept, 

rather than a final solution, formal uncertainty estimation is beyond the scope of this work. We 

expect that the geomorphic uncertainties associated with exposure dating will prove to be larger 

than the measurement uncertainty of the method.  

We did not attempt to invert a combined model of moraine degradation and inheritance 

against our data sets, for two reasons. First, the data sets we treat here appear to be well described 

by one process each (Fig. 3.2).  Second, the combined model would have too many parameters to 

estimate confidently, given the numbers of observations in our chosen data sets. 

In fitting our models to data, one might be tempted to combine the data from moraines of 

the same morphostratigraphic age, to overcome the limitations imposed by small data sets. This 

temptation should be resisted. For example, the Yellowstone and Lake Fork moraines are in 
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similar geomorphic contexts, are about the same height, and are probably the same age (Laabs, 

2009). Combining the exposure dates from these two moraines would bring the number of 

independent observations up to 13 from six or seven. However, this approach is inappropriate 

because the moraines may have had different post-depositional histories, and these varying 

histories may cause substantial differences in the distributions of exposure dates yielded by the 

moraines.  

If the results presented here prove to be robust, our work has several implications for the 

practice of exposure dating on glacial landforms. First, neither moraine degradation nor 

inheritance necessarily affects cosmogenic exposure dating in all field areas. Our model fits 

suggest that the excess scatter among exposure dates from the Lake Fork and Yellowstone lateral 

moraines is caused exclusively by moraine degradation, whereas the exposure dates from 

Gurreholm Dal are influenced only by inheritance. Second, our model fits to the Gurreholm Dal 

data sets are inconsistent with past suggestions that the amount of inheritance in moraine boulders 

should be consistent between moraines deposited by the same glacier (Brown et al., 2005). The 

inferred maximum predepositional exposure time for these moraines increases with their 

stratigraphic age.  



 

 

Chapter 4 
 

Challenges in the use of cosmogenic exposure dating of moraine boulders to 
trace the geographic extents of abrupt climate changes 

Cosmogenic exposure dating has sometimes been used to identify moraines 
associated with very short-lived climatic events, such as the Younger Dryas.  
Here, we point out some remaining challenges in using exposure dating of 
moraines to resolve abrupt climate changes.  These challenges include 
identifying an optimal strategy for choosing boulders to sample for exposure 
dating, and potential errors in estimating production rates of cosmogenic nuclides 
caused by geomorphic processes.  We fit a geomorphic process model that treats 
both moraine degradation and boulder erosion to collections of exposure dates 
from two moraines that date to around the time of the Younger Dryas.  
Subsampling of the modeled distributions shows that choosing boulders for 
exposure dating based on boulder height is a good strategy, whereas choosing 
boulders based on surface freshness is a poor strategy.  Moreover, one of our 
fitted data sets is part of the global nuclide production rate database.  Our fit of 
the moraine degradation model to this data set suggests that nuclide production 
rates at that site are several percent higher than previously thought.  Potential 
errors associated with poor sampling strategies and production rate estimation are 
large enough to interfere with exposure dating of moraines, especially when the 
moraines are associated with abrupt climate changes.  We suggest sampling 
strategies that may help reduce the effects of these problems.   

Cosmogenic exposure dating of moraines is an attractive method for tracing the 

geographic extents of former abrupt climate changes.  Glaciers grow and shrink in response to 

climate changes (Lowell, 2000; Oerlemans, 2005; Denton et al., 2005), and they deposit ridges 

called moraines at their margins (Gibbons et al., 1984).  Thus, for abrupt climate changes that 

propagated over long distances quickly, we expect to find moraines of about the same age in 

mountain ranges within the area affected by the change.  The crests of moraines are often studded 

with large boulders that can be sampled for cosmogenic exposure dating (e.g., Phillips et al., 

1990; Gosse et al., 1995).  In principle, cosmogenic exposure dating yields direct estimates of 

moraine ages; other Quaternary dating methods give only maximum or minimum age estimates, 

except in rare cases.   
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The Younger Dryas is an example of an abrupt climate change whose geographic extent 

has been traced partly with cosmogenic exposure dating of moraines.  The Younger Dryas was an 

abrupt return to near-glacial conditions at the end of the last glaciation (12.9-11.7 ka; Barrows et 

al., 2007; Walker et al., 2009) that was first noted in pollen records from Europe (Mangerud et 

al., 1974).  The subsequent elucidation of a Younger Dryas signal in the Greenland ice cores 

(Alley et al., 1993) precipitated a search for other records showing the same signal.  At about the 

same time, the first successful exposure dating studies of moraines were undertaken (Phillips et 

al., 1990; Gosse et al., 1995).  Thus, glacial geomorphologists used this new tool, exposure 

dating, to look for the Younger Dryas signal.  Moraines that yielded exposure dates within the 

correct range were identified in the Alps (Ivy-Ochs et al., 1999, 2006, 2007; cf. Kelly et al., 

2004), but also far from the European type areas of the Younger Dryas (Gosse et al., 1995; Ivy-

Ochs et al., 1999).  The Younger Dryas age assignments for these additional sites were later 

called into question by modeling studies (e.g., Vellinga and Wood, 2002) that showed that the 

Younger Dryas cooling was strong only around the North Atlantic basin, and weaker elsewhere in 

the Northern Hemisphere (though cf. Chiang and Bitz, 2005; Lowell et al., 2005; Broecker et al., 

2006).  In fact, the Southern Hemisphere likely warmed during the Younger Dryas (Broecker, 

1989).   

The analytical precision of cosmogenic exposure dating with beryllium-10 is high, 

suggesting that the method can identify moraines associated with abrupt climate changes such as 

the Younger Dryas.  Confident identification of Younger Dryas moraines probably requires an 

uncertainty of 10% of the event’s duration, or about 100 yr.  Repeated sampling appears able to 

yield the desired precision.  Measurements of beryllium-10 concentrations often have 

uncertainties of ~3% (e.g., Gosse et al., 1995; Owen et al., 2003; Kelly et al., 2008).  Thus, the 1σ 

analytical uncertainties of beryllium-10 exposure dates from Younger Dryas moraines should be 

about 360 yr (3% of 12.0 ka).  If measurement error were the only source of uncertainty in 
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exposure dating, we would need about 13 samples to reduce this 360-yr uncertainty to 100 yr 

(Bevington and Robinson, 2003, their eqn. 4-19; Fig. 4.1).  Many published studies include 13 or 

more exposure dates, suggesting that this number of samples is achievable.  Note that the 

uncertainty of the weighted mean is an appropriate characterization of the uncertainty in our age 

estimate of a moraine only where the dates are normally distributed and have a scatter consistent 

with the measurement uncertainties of the dates.   

However, the measurement of nuclide concentrations is only one step in the overall 

procedure of dating a moraine with cosmogenic nuclides.  These steps are as follows.   

1) collecting the samples (Gosse and Phillips, 2001; Briner, 2009),  

2) processing the samples (Kohl and Nishiizumi, 1992; Bierman, 1994),  

3) measuring the nuclide concentrations in the processed samples (Muzikar et al., 2003),  

 

 
Figure 4.1:  Uncertainty of the weighted mean as a function of the number of exposure dates 
available from a single moraine (Bevington and Robinson, 2003, their eqn. 4-19), normalized by 
the measurement uncertainty of one exposure date.  This function provides a guide to the 
minimum number of samples that should be taken from a moraine in order to achieve a desired 
precision.  Because geomorphic processes also contribute to the scatter among exposure dates on 
most moraines (Putkonen and Swanson, 2003; Balco and Schaefer, 2006; Ivy-Ochs et al., 2007), 
more samples will generally be needed. 
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4) calculating the apparent exposure times of the samples from the nuclide concentrations (Lal, 

1991; Gosse and Phillips, 2001; Balco et al., 2008), and  

5) estimating the age of the moraine from the exposure dates.   

All these steps contribute to the total uncertainty of cosmogenic exposure dating.   

In this chapter, we indicate potential problems in the selection of samples for exposure 

dating and the calculation of exposure dates from nuclide concentrations (steps 1 and 4, above).  

Briefly, geomorphic process modeling suggests that sampling boulders with minimal surface 

weathering will yield too-young exposure dates on moraines that have lost material from their 

crests over time.  Moreover, geomorphic processes likely introduce errors into the calibration of 

nuclide production rates.  These problems limit our ability to confidently identify moraines 

associated with abrupt climate changes.   

Practitioners of the exposure dating method are undoubtedly aware of these issues, but 

we have not seen them discussed in print.  Here, we attempt to quantify the effects that these 

issues may have on exposure dating.   

Prior work 

This work builds on other contributions by us that treat methods for estimating the ages 

of moraines from exposure dates (step 5, above).  We have developed models of two processes, 

moraine degradation and inheritance, that likely increase the scatter among exposure dates from 

moraines and cause the statistical distributions of these dates to be non-normal (Chapters 2 and 3; 

see also Zreda et al., 1994; Hallet and Putkonen, 1994; Putkonen and Swanson, 2003; Benson et 

al., 2005).  Our work suggests that the statistical distributions of exposure dates from moraines 

should be left-skewed where moraine degradation is predominantly responsible for the scatter 

among exposure dates, and should be right-skewed where inheritance is the dominant process.   
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Our past work suggests that 1) the best method of estimating moraine ages varies 

between moraines, and 2) it is difficult to determine which method to apply to a given data set.  

The maximum exposure date in a data set is the best estimator of moraine age where moraine 

degradation is the dominant process, and the minimum exposure date provides the best estimate 

of moraine age where inheritance is responsible for most of the scatter (Phillips et al., 1990; 

Briner et al., 2005; Benson et al., 2005).  Where measurement error dominates geomorphic 

biases, the mean is the best estimator of moraine age.  Thus, one might choose which method to 

apply to any given data set based on the skewness of the dates.  This method tends to yield results 

that are close to the correct answer for the parent distributions we have tested, but it sometimes 

fails spectacularly; the numbers of samples that are typically collected from moraines (20 or 

fewer per moraine) do not allow us to confidently determine the skewness of the parent 

distribution.  Thus, we sometimes choose the wrong method for estimating moraine ages using 

the skewness criterion, leading to errors of thousands of years.   

We have also developed methods for inverting our process models against observations 

(Chapter 3).  Besides yielding explicit estimates of moraine age, our inverse methods also give 

estimates of the rates and magnitudes of the geomorphic processes described by the forward 

models.  These inversions require a fairly large number of observations (n ≈ 10 or greater) to 

achieve a good fit.   

Selected data sets 

We have attempted to identify moraines that were deposited at about the time of the 

Younger Dryas and have a sufficient number of published, independent beryllium-10 exposure 

dates that we can have reasonable confidence in our age assignments (Fig. 4.1).   
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Such moraines are rare.  The Egesen stade moraines in the Alps seem firmly tied to the 

Younger Dryas (Ivy-Ochs et al., 2006; cf. Kelly et al., 2004), but we know of no Egesen moraine 

with more than four independent, published beryllium-10 exposure dates.  Because the Egesen I 

and II moraines are geomorphically distinct in many Alpine valleys (Ivy-Ochs et al., 2006), the 

age difference between different moraine crests within the Egesen stade is likely to be substantial.  

This conclusion is supported by the exposure dates from Julier Pass, Switzerland, where the 

difference in the mean of the 10Be exposure dates from the outer and inner Egesen moraines is 

about 860 yr (Ivy-Ochs et al., 2007, their Fig. 4).  Hence, we do not combine exposure dates from 

the Egesen I and II moraines to increase the number of exposure dates.   

Thus, we have chosen to use the beryllium-10 exposure dates (Fig. 4.2) from the inner 

Titcomb Lakes moraine (Wind River Range, Wyoming; Gosse et al., 1995a) and from the Waiho 

Loop moraine in New Zealand (Barrows et al., 2007; Applegate et al., 2008).  Each of these 

moraines has some independent age control.  The inner Titcomb Lakes moraine is correlated to 

the Temple Lake moraine of Zielinski and Davis (1987), elsewhere in the Wind River Range.  

The Temple Lake moraine is bracketed by radiocarbon dates that indicate an age of about 12.0 

calendar ka (Balco et al., 2008; cf. Zielinski and Davis, 1987; Gosse et al., 1996).  The Waiho 

Loop moraine has a large collection of radiocarbon dates that provide a minimum age estimate 

(Denton and Hendy, 1994), although the significance of these dates is debated (Broecker, 2003; 

Barrows et al., 2007; Turney et al., 2007).   

For our purposes, it is unimportant whether or not these moraines belong to the Younger 

Dryas.  It is sufficient that they are late glacial or early Holocene in age (10-15 ka), and have a 

comparatively large number of beryllium-10 exposure dates (n = 10 for the inner Titcomb Lakes 

moraine; n = 8 for the Waiho Loop).  Both of these moraines also have exposure dates 

determined with other cosmogenic nuclides (Barrows et al., 2007; Balco et al., 2008), but we 
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neglect these other measurements here; our model is most appropriate for evaluating the 

distributions of beryllium-10 exposure dates.   

For consistency, we have recalculated the exposure dates from the inner Titcomb Lakes 

moraine following Barrows et al. (2007; Appendix E).  We also recalculated the Waiho Loop 

 

 
Figure 4.2:  Beryllium-10 exposure dates from the inner Titcomb Lakes moraine (Gosse et al., 
1995) and the Waiho Loop moraine (Barrows et al., 2007).  The dates from these moraines fall 
fairly close to a line when displayed on normal probability plots (bottom panels; Chambers et al., 
1983).  Thus, we cannot rule out the hypothesis that these data sets are drawn from normal 
distributions.  However, the scatter in these data sets is much larger than we would predict from 
the measurement uncertainties of the individual dates; their reduced chi-squared (χ2

R; Bevington 
and Robinson, 2003) scores are much larger than 1.  Thus, both these data sets are likely 
influenced by geomorphic processes. 
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beryllium-10 exposure dates; our recalculated dates agree with those reported by Barrows et al. 

(2007) to within 0.6%, suggesting that our calculation method is consistent with theirs.  We did 

not use the CRONUS online calculator (Balco et al., 2008) because the calibration of the online 

calculator depends in part on the concentration measurements from the inner Titcomb Lakes 

moraine (see below).  Thus, using the online calculator would introduce circularity into our 

results.  In any case, the choice of scaling model has little influence on the scatter among 

exposure dates from individual moraines (Chapter 3), even at midlatitude sites where the effects 

of geomagnetic field changes are greatest.   

Both these data sets are likely influenced by geomorphic processes.  The reduced chi-

squared scores of these data sets are much greater than 1 (Fig. 4.2), indicating that the data sets 

contain more scatter than can be explained by measurement error alone.  We cannot rule out the 

possibility that these data sets are drawn from normal distributions, because the points 

representing the observations fall reasonably close to a line on normal probability plots (Fig. 4.2).  

However, both data sets have skewnesses less than -0.5, and these skewness values are more 

consistent with moraine degradation than either measurement error alone or inheritance (Chapter 

2).  

Explicit fitting of the degradation model to these data sets also suggests that moraine 

degradation is responsible for most of the scatter in each data set (Fig. 4.3, top; Table 4.1), 

although the model fit to the inner Titcomb Lakes data set is poor.  For the purposes of these fits, 

we prescribed the initial height of each moraine and the erosion rate of the exposed boulders (1.0 

mm/ka; Gosse et al., 1995a, b).  We then used the Differential Evolution genetic algorithm to 

search for the minimum value of the Kolmogorov-Smirnov test statistic.  The model evaluation 

with the minimum KS statistic indicates the values of moraine age, initial moraine slope, and 

topographic diffusivity that are most consistent with each data set.  We specified the initial 
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moraine heights for these model inversions because the distributions of cosmogenic exposure 

dates are only weakly sensitive to small changes in initial height (Chapter 2).   

 

 

 
Figure 4.3: Top: Fits of the moraine degradation model to the beryllium-10 exposure dates from 
the inner Titcomb Lakes and Waiho Loop moraines (Gosse et al., 1995; Barrows et al., 2007).  In 
each panel, the points with error bars represent the exposure dates with their 1σ measurement 
uncertainties; the curves are the best-fit modeled distributions for each data set.  These fits 
presume an erosion rate for exposed boulders of 1.0 mm/ka.  The initial height of the Titcomb 
Lakes moraine was prescribed at 25 m (cf. Gosse et al., 1995), and the initial height of the Waiho 
Loop moraine was prescribed to be 50 m (cf. Denton and Hendy, 1994).  Bottom: Effects of 
different sampling strategies on the resulting distributions of cosmogenic exposure dates.  The 
distributions are shown as boxplots (Chambers et al., 1983).  Sampling very tall boulders (height 
> 1.5 m) produces exposure dates that are within a few thousand years of the true age of the 
moraine (heavy line); sampling boulders with minimal surface relief (relief < 2.5 mm) produces 
exposure dates that are thousands of years younger than the true age of the moraine.   
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Implications for field sampling criteria 

After identifying a moraine, the first step in cosmogenic exposure dating is deciding 

which boulders to sample.  Depending on which boulders are sampled, the measured 

concentrations either will or will not be representative of the moraine’s true age.  Thus, imperfect 

boulder selection strategies could interfere with our ability to identify moraines associated with 

abrupt climate changes.   

Field workers use a variety of criteria to select samples for cosmogenic nuclide 

measurements, but the two most common criteria are boulder height and surface freshness (e.g., 

Nishiizumi et al., 1989; Phillips et al., 1990; Cerling and Craig, 1994; Gosse et al., 1995b; Fabel 

and Harbor, 1999; Licciardi et al., 2001; Laabs et al., 2009).  Most field geomorphologists avoid 

sampling boulders below some minimum height, often 1 m.  This minimum height is often 

adjusted to take into account the distribution of boulder sizes available on particular moraines.  

Fresh boulders are those that retain polish or striations from subglacial transport.  Few moraine 

boulders have polish or striations when they are sampled, so field geomorphologists estimate the 

thickness of material eroded from each boulder by measuring the relief on the boulders’ upper 

surfaces (M. Kelly, personal communication).  For a single boulder, relief is the distance between 

the lowest point and the highest point on the boulder’s upper surface, measured at right angles to 

Table 4.1:  Best fits of the degradation model to the Waiho Loop and Titcomb Lakes data sets 
(Barrows et al., 2007; Gosse et al., 1995a). 

Data set Moraine age 
(ka) 

Initial slope 
(°) 

Diffusivity 
(m2/yr) 

KS statistic 

Waiho Loop 11.59 32.77 2.909* 10-3 0.1400 
Titcomb Lakes 14.27 36.80 6.883* 10-4 0.3113 
KS, Kolmogorov-Smirnov (see Appendix D).   
The parameter estimates here are probably good to two or three significant figures.  Four 
figures are reported to allow checking of the model fits.    
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the sampled surface.  The style of weathering varies with lithology, but the low points on boulder 

surfaces are often weathering pits, and the high points are often veins of resistant mineralogies 

such as quartz (e.g., Barrows et al., 2007).  Unless the high points retain polish, boulder surface 

relief is a minimum estimate of the thickness of material removed from the surfaces of the 

boulders.   

Both these criteria are intended to minimize the chance that the samples have been 

shielded from cosmic rays during part of their postdepositional history.  Tall boulders are less 

likely to have been covered by sediment or snow; boulders with polished or striated surfaces have 

not lost their nuclide-rich outer surfaces to erosion.   

However, tall and fresh boulders sometimes yield exposure dates that are much younger 

than shorter and more weathered boulders from the same moraine.  There is no correlation 

between boulder height and apparent exposure time for the samples from the inner Titcomb Lakes 

moraine (Fig. 4.4; boulder heights were not reported for the Waiho Loop data set).  Briner (2009) 

took both pebble collections and boulder samples from moraines in Colorado, and found no 

relationship between the clast size from which each sample was taken and the apparent exposure 

time of the sample.  Likewise, a literature review by K. Walsh (now at Ohio State University) 

found no consistent relationship between boulder size and apparent exposure time (unpublished 

compilation).  We are unaware of any study that reports on the relationship between surface 

freshness and apparent exposure time.  However, we believe that surface freshness is a poor 

predictor of the apparent exposure times yielded by individual boulders; that is, fresh boulders are 

not more likely than weathered boulders to yield exposure dates that are representative of the 

moraine’s actual age.  

Moraine degradation can explain the failure of these sampling criteria to indicate which 

boulders to sample on moraines (although other scenarios are also possible; see Discussion, 

below).  If moraines lose meters of material from their crests over time, and boulders are 
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distributed throughout the removed soil column, then there will be no correlation between boulder 

height and apparent exposure time.  If boulders do not erode while buried, but do erode at a 

constant rate after exhumation, then those boulders that are least eroded are also those that have 

spent the least amount of time at the surface.  

Our model fits and limited field observations support these assumptions.  The scatter 

among the beryllium-10 exposure dates from the Waiho Loop moraine are best explained by the 

progressive loss of ~4.2 m of material from the moraine’s crest; similarly, the model fit suggests 

that the inner Titcomb Lakes moraine has lost ~2.6 m of material from its crest.  It is more 

difficult to assess the correctness of our assumptions about boulder erosion from the model fits, 

because the shape of the modeled distributions is insensitive to the boulder erosion rate.  

However, some support for our statements about boulder erosion comes from the Huancané II 

moraines near the Quelccaya Ice Cap (Mercer and Palacios, 1977).  On these moraines, clasts 

buried less than a meter below the surface are fresh and have striated surfaces, but surface 

 

 
Figure 4.4:  Apparent exposure time as a function of boulder height for the inner Titcomb Lakes 
moraine (Gosse et al., 1995).  For this data set, there appears to be no relationship between 
boulder height and apparent exposure time.  The exposure dates shown here have not been 
corrected for snow cover or boulder erosion. 
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boulders adjacent to the soil pits are weathered.  The weathered boulders have pits and pedestals 

on their upper surfaces that indicate several centimeters of lost material.  Taken together, these 

observations suggest that boulders in this environment do not erode unless they are exposed at the 

surface.   

Given our model fits (Fig. 4.3, top), we can evaluate the effects of different sampling 

strategies on the distributions of cosmogenic exposure dates (Fig. 4.3, bottom).  The modeled 

boulders have heights, surface relief values, and exposure dates that are consequences of the 

model physics.  Thus, we can identify the modeled boulders that are taller than a certain height or 

have less than a certain amount of surface relief.  By comparing the exposure dates within each 

subsample to the “true” age of the moraine, we can determine which sampling strategies produce 

exposure dates that are closest to this true value.  

Very tall boulders are most likely to yield exposure dates that are close to the true age of 

the moraine (Fig. 4.3, bottom).  The median exposure date moves closer to the true moraine age 

as the minimum boulder height becomes greater.  However, even fairly large boulders, standing 

at least 1.5 m above the moraine’s crest, can yield exposure dates that are several thousand years 

younger than the moraine’s true age.   

Sampling boulders with minimal surface relief always yields exposure dates that are 

younger than the moraine’s true age (Fig. 4.3, bottom).  Moreover, as the criterion is made more 

stringent, the median exposure date moves away from the true age.  Thus, the more strictly one 

adheres to the freshness criterion, the worse the resulting exposure dates become.   

This result can be understood by comparing the thicknesses of material that can be eroded 

from a boulder’s surface and from a moraine’s crest over the same period of time (D. Pollard, 

personal communication).  The changes in moraine heights implied by our model fits (Fig. 4.3, 

top) are much greater than the thickness of material that can be removed by erosion from boulder 

surfaces over an equivalent period.  Even if we allow a very rapid boulder erosion rate of 100 
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mm/ka (cf. Gosse et al., 1995a, b), a boulder exposed to surface weathering for 12 ka would lose 

only 1.2 m of material from its surface.  This thickness is much smaller than the 2-4 m of moraine 

height change implied by our model fits, even allowing for the difference in density between 

boulders and till.  Thus, the effects of moraine degradation on cosmogenic exposure dates appear 

to dominate those of boulder erosion for late glacial and early Holocene moraines (Hallet and 

Putkonen, 1994).   

Implications for determining nuclide production rates 

Step 5 in determining the age of a moraine using cosmogenic exposure dating involves 

calculating the apparent exposure time of each sample, using the estimated local production rate 

of the nuclide (Balco et al., 2008).  Thus, any error in determining the local production rate will 

translate into errors in the apparent exposure times, reducing our ability to identify moraines 

associated with short-lived climate events.   

The production rates of cosmogenic nuclides are not known a priori. Instead, the 

concentrations of cosmogenic nuclides are measured in boulders from moraines whose ages are 

known independently from other chronologic methods, usually radiocarbon dating.  Ideally, the 

nuclide concentration in a single boulder, divided by the independently determined moraine age, 

yields the local time-averaged production rate after correcting for nuclear decay.  In practice, the 

nuclide concentrations in boulders at the calibration sites are highly scattered (Balco et al., 2008).  

Consequently, there is uncertainty about the representative nuclide concentration at each 

calibration site.   

Recent efforts to determine a reference production rate from the calibration database 

(Balco et al., 2008) average the measured nuclide concentrations to determine a representative 

nuclide concentration for each site.  This procedure is reasonable, but it ignores the effects of 
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geomorphic processes on the nuclide concentrations, as well as problems with the independent 

age constraints.  These potential problems were fully acknowledged by Balco et al. (2008). 

The measured beryllium-10 concentrations from the inner Titcomb Lakes moraine are 

part of the global nuclide production rate calibration database (Gosse and Klein, 1996; Balco et 

al., 2008).  The degree of scatter in the exposure dates from the inner Titcomb Lakes moraine is 

probably larger than can be explained by measurement error, and the skewness of the data set 

suggests that the maximum exposure date is the best estimator of the moraine’s age (Fig. 4.2; 

Chapter 3).  Thus, the representative nuclide concentration at the Titcomb Lakes study site is 

probably the maximum measured concentration.  Prior studies that used the Titcomb Lakes 

concentration measurements to estimate the production rate of beryllium-10 took the average of 

the nine largest observed concentrations as the representative nuclide concentration for this site, 

treating the smallest concentration as a statistical outlier (Gosse and Klein, 1996; Balco et al., 

2008).  The largest concentration is about 7% greater than the mean of the nine largest 

concentrations.  In turn, the time-averaged production rate of beryllium-10 at the Titcomb Lakes 

site may be about 7% larger than previously believed.   

A potential error of a few percent in estimating nuclide production rates has serious 

implications for our ability to identify moraines associated with abrupt, short-lived climate 

changes such as the Younger Dryas.  Even a 5% error in estimating nuclide production rates 

translates into an error in apparent exposure time of ~600 yr (5% of 12 ka), about half the length 

of the Younger Dryas.   

This example suggests that the calibration of beryllium-10 production rates should be 

reevaluated, taking the effects of geomorphology on the calibration measurements into account. 

This recalibration might help reduce the extreme mismatch between some of the calibration 

samples and the best fit of the scaling models to the calibration data set (Balco et al., 2008, their 

Fig. 4.5).   
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Discussion 

In this chapter, we have identified two challenges in the use of cosmogenic exposure 

dating to date moraines associated with abrupt climate changes such as the Younger Dryas.  First, 

pristine boulders will tend to yield exposure dates that are younger than the true age of the 

moraine.  Second, geomorphic processes likely impart an additional uncertainty of at least several 

percent in our present estimates of reference cosmogenic nuclide production rates.  For moraines 

of late glacial to early Holocene age, these effects bias exposure dates by hundreds to thousands 

of years.  Thus, these challenges limit our confidence in the ability of cosmogenic exposure 

dating to identify moraines associated with abrupt climate changes, which have time scales of a 

few years to a few hundred years.   

Moreover, our results confirm prior suggestions that preferentially sampling tall boulders 

is a good strategy (Phillips et al., 1990; Gosse et al., 1995).  However, even exposure dates from 

tall boulders may underestimate the age of a moraine by thousands of years, depending on the 

maximum boulder height and the thickness of material lost from the moraine’s crest.   

Our conclusions do not hold where geomorphic processes other than moraine degradation 

and boulder erosion affect exposure dates.  In particular, inheritance might cause the exposure 

dates from tall boulders to overestimate the ages of moraines; boulders that fall onto the glacier 

from oversteepened valley walls will not be eroded in transport, and thus may be larger than other 

clasts that have had most of their inherited nuclides stripped away by subglacial transport.   

Moreover, we assume that the erosion rate for exposed boulders is the same for all the 

rocks on a moraine.  However, we expect that boulders on real moraines will weather at different 

rates, depending on their lithology, position in the landscape, and size.  Our models also assume 

slow, grain-by-grain erosion of moraine boulders, but the rapid loss of several centimeters of rock 
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is also possible (Zimmerman et al., 1995).  In the future, we will update our models to represent 

this style of erosion, perhaps following Muzikar (2009).   

Here, we explain the lack of correlation between boulder height and apparent exposure 

time (Fig. 4.4) with moraine degradation.  Other explanations are also possible.  In cases where 

inheritance dominates the scatter among exposure dates, there may be no relationship between 

boulder size and apparent exposure time.  If all the boulders on a moraine are taller than the 

thickness of snow cover or the thickness of sediment that has been removed from the surface of a 

moraine, there will also be no correlation between boulder height and apparent exposure time.  

We believe that the geomorphic processes responsible for the scatter among exposure dates vary 

between moraines, and so the degree and sign of the correlation between boulder height and 

apparent exposure time probably also vary between moraines.   

Our results imply that our ability to invert our models against collections of exposure 

dates depends on how the samples were chosen.  The inverse methods can account for the heights 

of boulders from which samples were taken, as long as these heights are reported with the 

exposure dates.  However, the inverse methods cannot account for use of the surface pristinity 

criterion.  Preferentially sampling fresh boulders produces distributions of exposure dates that are 

all younger than the true age of the moraine and emphasize the tail of the modeled distribution at 

the expense of the mode (Fig. 4.3), if both moraine degradation and boulder erosion are active on 

a particular moraine.  Given a data set collected in this way, our methods would likely be unable 

to determine whether the excess scatter in the data were caused by inheritance or moraine 

degradation.  Any age estimates made using our methods from such a data set would be far too 

young.   

For future field campaigns, and in evaluating past data sets, we recommend determining 

what overall precision would be necessary to answer the paleoclimate question at hand.  For 
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example, confident determination of whether a moraine dates to the Younger Dryas probably 

requires an overall 1σ uncertainty of about 100 yr.   

With that information, the minimum number of samples required to answer the question 

can be estimated from the expected measurement uncertainty of the exposure dates and Figure 

4.1.  Figure 4.1 represents the uncertainty of the weighted mean (Bevington and Robinson, 2003, 

their eqn. 4-19).  This quantity is the uncertainty of repeated exposure dating on a single moraine 

in the very special case where geomorphology has no effect on the exposure dates.  Note that 

repeated sampling will not reduce uncertainty associated with external factors such as production 

rate errors (Balco et al., 2008).  In practice, the uncertainty of exposure dating will be larger than 

Figure 1 implies, so more samples will be required.  

The number of samples required to achieve a desired precision will sometimes be 

unrealistically large. The curve in Figure 4.1 reaches a point of diminishing returns around 10-15 

samples, where the uncertainty of the weighted mean is 25-30% of the uncertainty of one date.  

The number of samples required to achieve a precision better than 25-30% of the uncertainty of 

one date will often be larger than can be produced with available resources.  Thus, some 

questions can be answered only approximately with cosmogenic exposure dating.   

In choosing which boulders to sample, we recommend sampling all the tallest boulders 

on the moraine.  If resources for further sampling are available, additional boulders should be 

chosen randomly.  All the sampled boulders should be on the crest of the moraine.  The samples 

from the tall boulders have a good chance of producing at least one exposure date that correctly 

estimates the moraine’s age, assuming inheritance is not important.  The randomly chosen 

samples will help identify the source of any geomorphic bias, if the exposure dates from the tall 

boulders are widely scattered.  Moreover, the surface relief of sampled boulders should be 

recorded in the field and given in papers that report new exposure dates.   
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Appendix A 
 

Comment on “Absence of cooling in New Zealand and the adjacent ocean 
during the Younger Dryas Chronozone” 

Barrows et al. (2007) presented evidence, from cosmogenic exposure dating and 
an ocean sediment core, that “overturn[s]... glacier advance in New Zealand 
during the [Younger Dryas] chronozone.”  Here, we argue that their cosmogenic 
exposure dates are inconclusive, based on modeling of geomorphic processes that 
influence exposure dates.   

[This appendix was originally published as a peer-reviewed, technical comment in 

Science (Applegate et al., 2008; see Barrows et al., 2008, for their response).  Thomas V. Lowell 

(University of Cincinnati) and Richard B. Alley were listed as second and third authors, 

respectively, on this technical comment.  Dr. Lowell pointed out the Barrows et al. (2007) paper 

to me, and edited several drafts of the technical comment.  Dr. Alley also commented on the text 

of the comment before submission.  However, the model code, model simulations, and most of 

the text are my work.  Permission to reprint this technical comment was granted under AAAS 

license number 2273780278520 on 21 September 2009.  This appendix differs slightly from the 

published version.]   

Barrows et al. (2007) argued that the Waiho Loop moraine in New Zealand was 

deposited after the end of the Younger Dryas (~11,600 yr BP).  They presented 24 new 

cosmogenic exposure dates, ranging from ~5,000 yr BP to ~12,800 yr BP, from ten boulders on 

the moraine.  

Barrows et al. estimated the age of the moraine by taking the error-weighted mean of the 

ages of their nine oldest boulders.  This procedure yielded an age of 10,480 +/- 240 yr BP (1σ).  

The age of the Waiho Loop moraine had previously been estimated to be ~12,800 yr BP by 

radiocarbon dating (Denton and Hendy, 1994; cf. Turney et al., 2007).  Because their new age 
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estimate for the Waiho Loop moraine is much younger than this previous estimate, Barrows et al. 

concluded that “the Waiho Loop advance... was not a Younger Dryas event...”   

Barrows et al. determined each boulder age by taking the weighted mean of the exposure 

dates from that boulder (Bevington and Robinson, 2003, their eqn. 4.17), weighting the exposure 

dates by the inverse squares of their measurement errors.  They then estimated the age of the 

moraine using the weighted mean of the boulder ages from their nine oldest boulders, this time 

weighting each boulder age by the inverse square of the standard deviation of the cosmogenic 

exposure dates from that boulder.  They determined the uncertainty of their moraine age estimate 

from these standard deviations (Bevington and Robinson, 2003, their eqn. 4.19).  This uncertainty 

(240 yr) is quite small compared to the range of their dates (~7,800 yr). 

We applaud Barrows et al. (2007) for their investigation of the age of this moraine.  As 

they note, the age of the Waiho Loop moraine is a critical test of various hypotheses explaining 

the climatic changes at the end of the last glaciation.  Their use of multiple cosmogenic nuclides 

and multiple samples from each boulder enables assessment of their analytical work.   

However, the age assignment for the Waiho Loop moraine given by Barrows et al. (2007) 

is potentially biased.  Barrows et al. noted that the scatter in their exposure dates is greater than 

can be explained by measurement error alone.  This additional scatter is common in sets of 

exposure dates from moraines (Putkonen and Swanson, 2003; Balco and Schaefer, 2006); it is 

usually attributed to geomorphic processes (Putkonen and Swanson, 2003; Balco and Schaefer, 

2006; Ivy-Ochs et al., 2007).  To address this scatter, many authors remove a subset of the data 

and then take an average, as Barrows et al. did.  However, application of the error-weighted mean 

assumes that the differences between the exposure dates and the true age of the moraine are 

normally distributed (Bevington and Robinson, 2003) and have a mean of zero.  The known 

geomorphic processes that affect cosmogenic exposure dates change the mean of these 

differences, as well as their standard deviation (Ivy-Ochs et al., 2007).  Consequently, the error-
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weighted mean may return a misleading estimate of the moraine’s age if the dates have been 

affected by geomorphic processes.   

Barrows et al. (2007) acknowledged the effects that “former shielding... or earlier 

exposure” may have had on their dates; here, we consider these effects more explicitly.  

If the boulders sampled by Barrows et al. (2007) were shielded from cosmic rays by a till 

cover, their exposure dates would tend to underestimate the moraine’s age.  Barrows et al. noted 

that one of their boulders had “...smaller blocks resting on top of it, perhaps indicating a former 

till cover.”  Moreover, the Waiho Loop receives over 2 m of precipitation yearly (Wratt et al., 

2009).  These observations suggest that till has been removed from the crest of the moraine, 

exposing fresh boulders to cosmic rays.   

We present output from a simple numerical model that shows the impact of till shielding 

on the distribution of cosmogenic exposure dates.  We updated the moraine degradation model of 

Putkonen and Swanson (2003) and Hallet and Putkonen (1994) to predict the distributions of 

beryllium-10 exposure dates on moraines, including production at depth by muons (Granger and 

Muzikar, 2001).  This model predicts that the distribution of beryllium-10 exposure dates from a 

degrading moraine should have a peak close to the true age of the moraine, and a long, heavy tail 

toward the young side of the distribution (Fig. A.1).  This result is robust over a range of initial 

moraine heights, initial moraine slopes, and topographic diffusivities. For this exercise, we 

consider only the beryllium-10 dates, because the relationship between chlorine-36 dates and the 

true age of an eroding surface is complex (Zreda et al., 1994).  Although further modeling work 

may change the shape of this distribution somewhat, the conclusions we draw from this exercise 

are sound.   

For an assumed moraine age of 11,600 yr BP, at the end of the Younger Dryas, the model 

produces a distribution that resembles the beryllium-10 exposure dates reported by Barrows et al. 

(Fig. A.1).  If their beryllium-10 exposure dates are drawn from a parent distribution like that 
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produced by the model, their error-weighted mean underestimates the age of the moraine.  

Instead, we suggest that the age of the moraine lies somewhere close to their oldest beryllium-10 

dates, possibly at the end of the Younger Dryas chronozone.  Our preferred age assignment is 

thus ~1,100 years older than that favored by Barrows et al.   

We have also considered the possibility that the dates observed by Barrows et al. (2007) 

are biased by earlier exposure, rather than till shielding.  Glaciers sometimes incorporate boulders 

 

 
Figure A.1:  Comparison of eight beryllium-10 exposure dates from the Waiho Loop moraine 
(black curves; Barows et al., 2007) to the distribution of 106 exposure dates predicted by the 
updated degradation model (red curves; Hallet and Putkonen, 1994; Putkonen and Swanson, 
2003).  The best fit between the model and the data occurs at a model age of 11,600 yr BP 
(dashed, red line), corresponding to the end of the Younger Dryas.  Our preferred age assignment 
is thus ~1,100 years older than that given by Barrows et al. (2007; black, dashed line).  This best 
fit was found by adjusting the modeled age of the moraine until both the sum of squared errors 
and the maximum vertical distance between the cumulative density curves (inset) were 
minimized. The probability density curve for the observed exposure dates was constructed by 
summing the Gaussian curves of the individual dates, and normalizing the total curve to 1. We 
assumed that the moraine’s initial height and slope were 50 m and 34°, respectively; topographic 
diffusivities are from Putkonen and Swanson (2007). Although these diffusivities are probably 
too small for the wet West Coast of New Zealand (Wratt et al., 2000), multiplying the 
diffusivities by 10 does not change the fundamental resemblance of the model results to the 
beryllium-10 dates.  [Compare this figure to Figure 4.3.] 
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with preexisting concentrations of cosmogenic nuclides in their moraines (Ivy-Ochs et al, 2007).  

Dates from these preexposed boulders tend to overestimate the ages of the moraines they rest 

upon.  Modeling of this process produces distributions with a peak near the true age of the 

moraine and a long, heavy tail toward the old side of the distribution.  These distributions do not 

resemble the distribution of dates reported by Barrows et al. (2007).  We conclude that earlier 

exposure is not primarily responsible for the spread in their dates, although their measured 

concentrations may include a small inherited component.   

We do not intend to reinterpret the cosmogenic exposure dates presented by Barrows et 

al. (2007) as requiring a Younger Dryas age for the Waiho Loop moraine.  Other geologic 

processes not treated by our modeling may have influenced the observed exposure dates, and 

further calibrations of nuclide production rates may require reassessment of these data.  Instead, 

we use this example to argue that geomorphic processes must be carefully considered before 

making age assignments for moraines from cosmogenic exposure dates.  In particular, discarding 

some observations and taking an average of the rest can lead to biased age estimates.   
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Appendix B 
 

Production of cosmogenic nuclides in spherical boulders 

The production rates of cosmogenic nuclides vary as a function of position within solid 

bodies.  In laterally extensive, planar surfaces, production rates decline exponentially with depth 

(Chapter 2; Lal, 1991; Dunne et al., 1999; Granger and Muzikar, 2001), where depth is measured 

normal to the surface.  For solid bodies of other geometries, the production rate at a given point 

within the body must be determined from the total flux of cosmic rays that reaches the point of 

interest from the unobstructed part of the sky.  In general, production rates are greatest at the 

apices of solid bodies (Masarik and Wieler, 2003).   

This fact provides a potential means for identifying boulders that contain inherited 

nuclides (Schaefer et al., 2008), or have rotated.  Exposure dating assumes that boulders are 

delivered to moraines with no inventories of cosmogenic nuclides, and that they remain in the 

same orientation during their post-depositional history.  If these conditions are fulfilled for any 

individual boulder, then nuclide concentrations in the sides and bottom of the boulder will be less 

than the concentrations in the boulder’s top.  If nuclide concentrations in the sides or bottom of a 

boulder are greater than or equal to the concentrations in the boulder’s top, then the exposure date 

from that boulder is suspect.   

This point is well understood in the exposure dating community (Benson et al., 2005), but 

studies that take advantage of this potential method are rare (e.g., Schaefer et al., 2008).  This 

rarity stems in part from the added time and expense required to measure nuclide concentrations 

in shielded portions of a boulder.   

In addition, a theoretical basis is lacking in the literature for calculating the expected 

concentrations at different points within boulders.  Masarik and Wieler (2003) and Lal and Chen 
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(2005) provide some guidance, but the results of these studies are difficult to transfer to situations 

not treated by their analyses.  Masarik and Wieler (2003) use Monte Carlo-based particle 

transport codes that require a supercomputer.  Lal and Chen (2005, their eqns. 3 and 4) provide a 

solution for the final concentration of a cosmogenic nuclide at any point within a body after a 

given exposure time, but this solution depends on knowledge of the path length of cosmic rays 

through the body for various azimuth and inclination angles.  They give expressions for the path 

length for points lying on the axes of spheres and rectangular prisms, but more general solutions 

are needed.   

Here, I generalize Equations 5 and 6 of Lal and Chen (2005) to allow determination of 

cosmic ray fluxes through any point within a sphere.  This solution is potentially useful because 

1) it provides a template for nuclide production rate estimates in bodies with more complex 

shapes, and 2) it provides an analytical solution against which more complex models of nuclide 

production in solid bodies can be tested.   

The solution presented here only gives the path length d as a function of the sphere’s 

radius R, the point’s position within the sphere θ, φ, r, and the cosmic ray’s orientation θray, φray.  

Determination of nuclide production rates at the chosen point also requires knowledge of the 

angular dependence of the cosmic ray flux over the unobstructed sky, the attenuation length of 

cosmic rays in matter, and the distribution of nuclide production over the earth’s surface (Lal and 

Chen, 2005).  These topics are beyond the scope of this appendix; see Nishiizumi et al. (1989), 

Dunne (1999), Gosse and Phillips (2001) and Balco et al. (2008) for more information.   

Here, we take θ and θray to be the azimuth as measured from the y-axis, and φ and φray to 

be the inclination measured from the vertical.  This convention is similar to that used by Beyer 

(1978); it is not the same as that used by Lal and Chen (2005), but their conventions appear to 

differ within their paper (cf. their Fig. 1 with their Appendix A).   
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The variables that describe the position of the point of interest and the orientation of the 

cosmic ray are shown schematically in Figure B.1.   

For a sphere with the center at the origin and a radius R,  

! 

x
2

+ y
2

+ z
2

= R
2      (eqn. B.1) 

Our choice of a point θ, φ, r within the spherical boulder is limited by 

! 

0 "# " 360

0 " $ "180

0 " r " R

 

 

 
Figure B.1:  Illustration of variables used in this appendix for two simplified cases.  In both 
cases, the origin O is at the center of the spherical boulder; the z-axis is vertical, and the x- and y-
axes are orthogonal to the z-axis and to each other.  θray is measured clockwise from a line drawn 
parallel to the y-axis, and φray is measured clockwise from the vertical.  The point of interest is 
shown by open circles; the cosmic ray path is represented by heavy, black arrows.  The desired 
quantity is d, the distance between the point where the cosmic ray enters the sphere and the point 
of interest.   
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Likewise, the orientation of any single cosmic ray θray, φray passing through the point must satisfy 

! 

0 "#ray " 360

0 " $ray " 90
 

Given this point of interest and this cosmic ray orientation, our goal is to find the length d 

of the line segment that connects the point to the surface of the sphere along the path of the 

cosmic ray.   

Converting the point of interest into Cartesian coordinates x0, y0, z0, we have 

! 

x
0

= rsin" sin#

y
0

= rcos" sin#

z
0

= rcos#

 

and, converting the line segment to Cartesian coordinates,  

! 

x = x
0

+ ad

y = y
0

+ bd

z = z
0

+ cd

       (eqns. B.2a-c) 

where 

! 

a = sin"ray sin#ray

b = cos"ray sin#ray

c = cos#ray

 

Thus, we have four equations and four unknowns (B1, B2a-c; x, y, z, d).  We know the 

location of the point of interest in Cartesian coordinates x0, y0, z0, because we can calculate those 

values from the specified spherical coordinates of the point θ, φ, r.  We also know the values of 

the unit vector parallel to the cosmic ray a, b, c, because those values are uniquely determined 

from the orientation of the cosmic ray θray, φray.  The unknowns are just the location x, y, z of a 

point common to the surface of the sphere and the line segment, and the length of the line 

segment d.   

Substituting B.2 into B.1, we have 
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! 

(x
0

+ ad)
2

+ (y
0
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2

+ (z
0
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2

= R
2  

Solving for d, 

! 
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This expression has the form of the quadratic equation,  

! 

Ad
2

+ Bd + C = 0  

which is solved 

! 

d =
"B ± B

2
" 4AC

2A
 

! 
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0
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)

 

Although this derivation could be carried forward to yield a full solution for the path 

length d, in practice this equation will be solved by a computer program as part of a numerical 

integration.  Because longer equations are more difficult to code and debug, we leave the 

expression for d in this shorter form.   

As usual, the quadratic equation will generally have more than one root.  For a point 

actually within the spherical boulder (r < R), there will always be two roots, one positive, and one 

negative.  The positive root is the one to use as the path length.  Points on the surface of the 

sphere (r = R) will have either one or two roots, depending on the orientation of the cosmic ray.  

The determination of nuclide production rates at a single point is then found by 

integrating production over all cosmic ray orientations, following Lal and Chen (2005).  The 

contribution of each cosmic ray orientation to the integrated production rate is weighted by the 
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angular separation between adjacent cosmic ray orientations (that is, the coarseness of the angle 

step in the numerical integration), and the distribution of cosmic ray fluxes over the open sky.   

A simplified example application of this work is shown in Figure B.2.   

 

 

 
Figure B.2:  Distribution of cosmogenic nuclide production within a spherical boulder with a 
radius of 1 m, assuming that the cosmic ray flux is exclusively vertical.  Contours show nuclide 
production rates in atoms per gram of rock per year.  Because a sphere has rotational symmetry 
about the vertical axis, the distribution of production is independent of the azimuth θ.  This figure 
assumes that the production rate on an unobstructed surface is 1 atom/ g/ yr at this site, and that 
the attenuation length of nuclide production along a single ray path is 80 cm, consistent with a 
rock density of 2.6 g/ cm3 (Dunne, 1999; Gosse and Phillips, 2001; eqn. 2.3).  Compare this 
figure with Figure 2 of Masarik and Wieler (2003).   



 

 

Appendix C  
 

Model code for Chapter 2, with documentation 

The codes given in this appendix (Table C.1) are numerical models that describe the 

influence of moraine degradation and inheritance on the statistical distributions of cosmogenic 

exposure dates from glacial landforms, especially moraines.  These two processes are treated in 

separate models, so the degradation model and the inheritance model reside in distinct files.   

These codes were written in MATLAB version R2008a, and were run on an Intel-based 

Macintosh MacBook.   

These codes were written carefully, and they have been checked for obvious errors.  

However, no warranty of any kind is implied.  The output from these codes should not be trusted 

without testing.   

Please give proper credit if using these codes in research and teaching.  Derivative works 

based on this code should include a reference to this dissertation.   

Table C.1: List of files given in Appendix C. 

File name Description 
degradation_model.m Main file for degradation model; calls the function 

m_diffusion.m 
m_diffusion.m Contains the part of the code that describes how moraine 

profiles change over time; based on a derivation prepared by 
Dr. Nathan Urban 

inheritance_model.m Main file for inheritance model  
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The moraine degradation model 

Input variables 

The user-adjustable input parameters (Table C.2) are contained in the same file as the 

model code, degradation_model.m.  The values of these parameters are defined in lines 31-87.   

 

Table C.2: Input parameters for the degradation model. 

Name Line Default 
value 

Symbol in 
Chapter 2 

Description 

moraine_age 32 20 ka  Age of moraine (ka) 
initial_height 33 50 m h0 Initial height of moraine (m) 
initial_slope 34 34° tan-1(S0) Initial slope of moraine flanks; note 

that the variable initial_slope is the 
slope angle, whereas S0 in the text is 
the slope (rise over run).  Few 
measurements of this parameter exist 
in the literature; see Hallet and 
Putkonen (1994), Putkonen and 
Swanson (2003), and Putkonen and 
O’Neal (2006).   

k 39 10-2 m2/yr 
(range: 10-4 

to 10-1) 

k Topographic diffusivity (m2/yr).  See 
Hallet and Putkonen (1994), Hanks 
(2000), Putkonen and Swanson 
(2003), and Putkonen et al. (2007).   

erosion_rate 42 0 mm/ka  Erosion rate of boulders when 
exposed at the moraine’s surface 
(mm/ka) 

boulder_height 43 1 m hb Minimum sampled boulder height 
(m).  The minimum boulder height 
that a field geomorphologist would 
sample.   

rho_rock 44 2.6 g/cm3  Density of the boulders (g/cm3); 
controls the e-folding length of cosmic 
rays into the boulders.   

rho_till 45 2.0 g/cm3  Density of the unconsolidated 
sediment surrounding the boulders; 
controls the e-folding length of cosmic 
rays into the till.    
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Table C.2 (continued): Input parameters for the degradation model.   

Name Line Default 
value 

Symbol in 
Chapter 2 

Description 

P_spall 48 4.97 atoms 
10Be/g/yr 

Pi=1 Production rate of cosmogenic nuclide 
by spallation at the earth’s surface at 
the latitude and elevation of the study 
site.  Get this from Balco et al. (2008), 
using the St scaling model.   

P_mu 53 0.133 atoms 
10Be/g/yr 

Σ(Pi=2, 3, 4) Production rate of cosmogenic nuclide 
by muons at the earth’s surface at the 
latitude and elevation of the study site.  
Get this from Balco et al. (2008).   

decay_const 56 4.67* 10-7 
yr-1 (?) for 

10Be 

λ Decay constant of the cosmogenic 
nuclide.  For 10Be, this value is in 
dispute (Balco et al., 2008, and refs 
therein), but this parameter has little 
effect on 10Be exposure dating over 
the time scales of interest (102-105 yr).   

P_slhl 59 [5, 0.09, 
0.02, 0.02] 

atoms 
10Be/g/yr 

Pi=1, 2, 3, 4 Surface production rates of nuclide at 
sea level and high latitude for various 
production pathways; see Granger and 
Muzikar (2001).   

att_length 64 [160, 738, 
2688, 4360] 

g/cm2 

material 
density* 
Λi=1, 2, 3, 4 

Attenuation lengths of components of 
the cosmic ray flux; see Granger and 
Muzikar (2001).  In the text, Λi=1, 2, 3, 4 
are these values, divided by the 
density (in g/cm3) of the material the 
cosmic rays are passing through.   

num_boulders 71 105 boulders  Number of boulders to simulate; more 
boulders produce a more robust 
distribution of exposure dates, but also 
cause the model to run more slowly.   

time_step 75 25-100 yr  Controls fineness of model 
discretization in time; smaller values 
produce more accurate results, but 
also cause the model to run more 
slowly.   

plots 82 0 or 1  If 0, the code produces no plots; if 1, 
the plots described below are 
generated.   

bin_width 87 1-5 ka  If plots = 1, this variable controls the 
widths of the bins into which the 
calculated exposure dates are sorted to 
create the histogram (see below).    
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Output variables 

The degradation model places its output into the following variables (Table C.3).   

If the variable plots is set to 1, the degradation model also produces plots of these 

variables.  The plots show the initial and final profile of the moraine (initial_profile and 

final_profile vs. distances), the height of the moraine crest as a function of time (crest_height vs. 

times), and a histogram of the exposure dates simulated by the model (naive_age).   

The inheritance model 

Input variables 

Many of the inheritance model’s parameters are the same as those used in the degradation 

model (Table C.4).   

Table C.3: Output variables for the degradation model. 

Name Line Symbol in 
Chapter 2 

Description 

initial_profile 109 z(x, t = 0) Initial height of the moraine above its base as a 
function of distance from the crest (m).   

final_profile 109 z(x, t) Final height of the moraine above its base as a 
function of distance from the crest (m).   

crest_height 109 z(x = 0, t) Height of the moraine’s crest above its base as a 
function of time.   

distances 109 x A plotting variable that contains evenly spaced 
values of distance from the moraine crest (m).   

times 109 t A plotting variable that contains evenly spaced 
values of time from the beginning of the simulation 
(yr or ka).   

initial_depth 116 d0 Initial burial depth of each boulder in the moraine 
(m).   

naive_age 171 tapp Apparent exposure time yielded by each boulder (yr 
or ka).    
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Table C.4: Input parameters for the inheritance model.   

Name Line Default 
value 

Symbol in 
Chapter 2 

Description 

moraine_age 27 20 ka  Age of moraine (ka).   
max_pre_time 28 100 ka max(tpre) Maximum predepositional exposure 

time for the boulders (ka).   
max_pre_depth 30 2.0 m max(dpre) Maximum predepositional burial 

depth for the boulders (m).   
pre_slope 32 0°  Slope of surface from which 

preexposed boulders were derived 
(°).   

erosion_rate  0 mm/ka  Erosion rate of boulders after being 
deposited on the moraine (mm/ka) 

rho_rock 36 2.6 g/cm3  Density of the boulders (g/cm3); 
controls the e-folding length of 
cosmic rays into the boulders.   

rho_over 37 2.6 g/cm3  Density of material overlying the 
boulders during the predepositional 
exposure period (g/cm3); controls the 
e-folding length of cosmic rays into 
the boulders during that time.   

P_spall 42 4.97 atoms 
10Be/g/yr 

Pi=1 Production rate of cosmogenic 
nuclide by spallation at the earth’s 
surface at the latitude and elevation 
of the study site.  Get this from Balco 
et al. (2008), using the St scaling 
model.   

P_mu 47 0.133 atoms 
10Be/g/yr 

Σ(Pi=2, 3, 4) Production rate of cosmogenic 
nuclide by muons at the earth’s 
surface at the latitude and elevation 
of the study site.  Get this from Balco 
et al. (2008).   

decay_const 50 4.67* 10-7 
yr-1 (?) for 

10Be 

λ Decay constant of the cosmogenic 
nuclide.  For 10Be, this value is in 
dispute (Balco et al., 2008, and refs 
therein), but this parameter has little 
effect on 10Be exposure dating over 
the time scales of interest (102-105 
yr).   

P_slhl 53 [5, 0.09, 
0.02, 0.02] 

atoms 
10Be/g/yr 

Pi=1, 2, 3, 4 Surface production rates of nuclide at 
sea level and high latitude for various 
production pathways; see Granger 
and Muzikar (2001).    
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Output variables 

The inheritance model places its output into these variables (Table C.5).   

If the variable plots is set to 1, the model produces a histogram of the apparent exposure 

times.   

Table C.4 (continued): Input parameters for the inheritance model. 

Name Line Default 
value 

Symbol in 
Chapter 2 

Description 

att_length 58 [160, 738, 
2688, 4360] 

g/cm2 

material 
density* 
Λi=1, 2, 3, 4 

Attenuation lengths of components of 
the cosmic ray flux; see Granger and 
Muzikar (2001).  In the text, Λi=1, 2, 3, 4 
are these values, divided by the 
density (in g/cm3) of the material the 
cosmic rays are passing through.   

num_boulders 65 105 boulders  Number of boulders to simulate; more 
boulders produce a more robust 
distribution of exposure dates, but 
also cause the model to run more 
slowly.   

plots 71 0 or 1  If 0, the code produces no plots; if 1, 
the plots described below are 
generated.   

bin_width 76 2-10 ka  If plots = 1, this variable controls the 
widths of the bins into which the 
calculated exposure dates are sorted to 
create the histogram (see below).    

 

Table C.5: Output parameters for the inheritance model. 

Name Line Symbol in 
Chapter 2 

Description 

pre_time 99 tpre Predepositional exposure time of each boulder (yr).   
pre_depth 100 dpre Predepositional burial depth of each boulder (m).   
naive_age 118 tapp Apparent exposure time yielded by each boulder (yr 

or ka).    
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Model codes 

The files listed in Table C.1 follow.   
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% degradation_model.m 
%  
% Evaluates probability distributions of cosmogenic exposure dates on a 
% degrading moraine.  Based on a conceptual model first described by 
% Hallet and Putkonen (1994) and Putkonen and Swanson (2003), but the 
% code presented here is entirely original.  Uses an analytical solution  
% for moraine degradation developed by Dr. Nathan Urban, Penn State.  Code  
% written by Patrick Applegate, Penn State (papplegate@psu.edu).   
%  
% Code written to run under MATLAB R2008a on an Intel-based Macintosh 
% MacBook.   
%  
% Calls the function m_diffusion.m, which is provided in a separate file.   
%  
% This code was written carefully and has been checked for obvious errors. 
% However, no warranty of any kind is implied.  The code may not even run 
% on your system.  The output from the code should not be trusted without 
% testing.   
%  
% Please give proper credit if using this code in research and teaching. 
% Derivative works based on this code should include a reference to the 
% original paper.   
 
% Clear all variables, commands, and figures.  Set figures to dock 
% automatically.   
clear all 
close all 
clc 
set(0,'DefaultFigureWindowStyle','docked') 
 
% Define parameters that will be tuned during model inversion.   
moraine_age = 20.0;         % ka (10^ 3 yr); true age of moraine 
initial_height = 50.0;      % m; initial height of moraine 
initial_slope = 34;         % degrees; initial moraine slope angle (Hallet  
                            % and Putkonen (1994) assume 31 degrees;  
                            % Putkonen and Swanson (2003) use 34 degrees;  
                            % 25 degrees may be more reasonable, given  
                            % Putkonen and O'Neal (2006))  
k = 10^ -2;                 % sq. m/ yr; topographic diffusion coefficient 
 
% Define other geomorphic parameters that are not part of the inversion.   
erosion_rate = 0.0;         % mm/ ka; erosion rate of exposed boulders  
boulder_height = 1.0;       % m; observed height of boulders when sampled 
rho_rock = 2.6;             % g/ cm^ 3; density of boulders 
rho_till = 2.0;             % g/ cm^ 3; density of till matrix 
 
% Define nuclide production parameters.   
P_spall = 4.97;             % atoms/ g/ yr; surface production rate due to  
                            % spallation (get this from the CRONUS online 
                            % calculator described in Balco et al., 2008;  
                            % assumed to be constant over the lifetime of  
                            % the moraine) 
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P_mu = 0.133;               % atoms/ g/ yr; surface production rate due to  
                            % muons (also get this from the CRONUS 
                            % calculator) 
decay_const = 4.62* 10^ -7; % yr^ -1; nuclear decay constant of nuclide of 
                            % interest (4.62* 10^ -7 for 10Be, following  
                            % Balco et al., 2008, and refs therein) 
P_slhl = [5 0.09 ...        % atoms/ g/ yr; sea level, high-latitude  
    0.02 0.02];             % production rates of different cosmic ray  
                            % flux components, following Granger and 
                            % Muzikar (2001); for 10Be, about  
                            % [5 0.09 0.02 0.02] 
att_length = [160 738 ...   % g/ sq. cm; effective attenuation lengths of  
    2688 4360];             % exponential components of Granger and Muzikar 
                            % (2001) production-as-a-function-of-depth 
                            % parameterization; for 10Be and 26Al, about 
                            % [160 738 2688 4360] 
 
% Define model parameters.   
num_boulders = 1* 10^ 3;    % number of randomly generated synthetic  
                            % boulders (at least 10^ 4; bigger numbers 
                            % yield more consistent results, but the model 
                            % will take more time to run)  
time_step = 25;             % yr; time step during post-depositional 
                            % period (25 yr works well; small values 
                            % increase the accuracy of the calculation,  
                            % but also cause the code to run more 
                            % slowly) 
 
% Turn plotting on and off.   
plots = 1;                  % If 1, plots the moraine profile, height of  
                            % the moraine's crest as a function of time,  
                            % and a histogram of the modeled exposure  
                            % dates.  If 0, none of these plots are 
                            % produced.   
bin_width = 1;              % ka; width of bins in naive age histogram 
 
% Convert all quantities to consistent units.  All lengths should be in 
% meters, slopes should be dimensionless, times should be in years, and 
% masses should be in grams.   
moraine_age = moraine_age* 10^ 3;               % yr 
initial_slope = tand(initial_slope);            % d'less 
erosion_rate = erosion_rate* 10^ -6;            % m/ yr 
rho_till = rho_till* 100^ 3;                    % g/ cu. m 
rho_rock = rho_rock* 100^ 3;                    % g/ cu. m 
att_length = att_length* 100^ 2;                % g/ sq. m 
 
% Scale production rates to site.   
P_surf(1) = P_spall; % atoms/ g/ yr 
P_surf(2: 4) = P_slhl(2: 4)* P_mu/ sum(P_slhl(2: 4));  
 
% Determine length scales for nuclide production.   
L_till = att_length/ rho_till; % m  
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L_rock = att_length/ rho_rock; % m 
 
% Determine height of moraine crest as a function of time and initial 
% and final moraine profiles.   
[times, crest_height, distances, initial_profile, ... 
    final_profile] = m_diffusion(initial_height, initial_slope, k, ... 
    moraine_age, time_step);  
 
% Establish the initial depth for each boulder.   
final_height = min(crest_height); % m  
max_depth = initial_height- final_height- boulder_height; % m  
initial_depth = max_depth* rand(1, num_boulders); % m  
% initial_depth = 0: max_depth/ (num_boulders- 1): max_depth;  
 
% Determine the thickness of the erodible shell on each boulder.  This 
% thickness depends on the time that each boulder's upper surface is  
% higher than the crest of the moraine, and on the erosion rate.   
shell_thick = zeros(1, num_boulders); % m 
if erosion_rate > 0; % don't do these steps if erosion is nil 
    for count1 = 1: 1: num_boulders;  
        boulder_top = initial_height- initial_depth(count1); % m  
        yn = 0;  
        count2 = 1;  
        while yn == 0;  
            if crest_height(count2) <= boulder_top;  
                exposure_time = moraine_age- times(count2); % yr 
                shell_thick(count1) = exposure_time* erosion_rate;  
                yn = 1;  
            end 
            count2 = count2+ 1;  
        end 
    end 
    initial_shell_thick = shell_thick; % m 
end 
 
% Step through time, tracking the nuclide concentration in each boulder.   
boulder_conc = zeros(1, num_boulders); % atoms/ g 
% num_exposed = zeros(1, numel(times));  
for count1 = 2: 1: numel(times);  
    disp(['Calculating time step #', num2str(count1- 1), ' of ',... 
        num2str(numel(times)- 1), '... ']) 
    % Increment concentrations for nuclear decay.   
    boulder_conc = boulder_conc.* exp(-decay_const* time_step);  
    % Step through the list of boulders.   
    for count2 = 1: 1: num_boulders;  
        depth = crest_height(count1)- ... 
            (initial_height- initial_depth(count2)); % m  
        % If the boulder is at the surface,  
        if depth <= 0;  
            P_sample = P_surf.* exp(-shell_thick(count2)./ L_rock);  
            shell_thick(count2) = shell_thick(count2)- ... 
                erosion_rate* time_step;  
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            % num_exposed(count1) = num_exposed(count1)+ 1;  
        % Otherwise,  
        else  
            P_till = P_surf.* exp(-depth./ L_till);  
            P_sample = P_till.* exp(-shell_thick(count2)./ L_rock);  
        end 
        % Increment the concentration in the boulder by the production rate 
        % during this time step.   
        boulder_conc(count2) = boulder_conc(count2)+ ... 
            sum(P_sample)* time_step;  
    end 
end 
 
% Calculate the apparent exposure time for each boulder.   
naive_age = -decay_const^ -1* ... 
    log(1- ((boulder_conc.* decay_const)./ (P_spall+ P_mu))); % yr 
 
% For ease of plotting, convert variables with a time dimension to ka 
% (10^3 yr).   
times = times/ 10^ 3;  
naive_age = naive_age/ 10^ 3;  
moraine_age = moraine_age/ 10^ 3;  
 
if plots == 1; 
    % Plot the initial (dotted) and final (solid) moraine profiles. 
    figure 
    plot(distances, initial_profile, 'k--', 'LineWidth', 1.5) 
    axis square 
    hold on 
    plot(distances, final_profile, 'k', 'LineWidth', 1.5) 
    xlabel('Distance from moraine crest (m)', 'FontSize', 16, ... 
        'FontWeight', 'bold') 
    ylabel('Height (m)', 'FontSize', 16, ... 
        'FontWeight', 'bold') 
    h_leg = legend('Initial profile', 'Final profile'); 
    legend('boxoff') 
    set(h_leg, 'FontSize', 14) 
    set(gca, 'FontSize', 14) 
    set(gca, 'LineWidth', 1) 
%    set(gca, 'Box', 'off') 
 
    % Plot moraine height as a function of time. 
    figure 
    plot(times, crest_height, 'k', 'LineWidth', 1.5) 
    axis square 
    xlabel('Elapsed time (ka)', 'FontSize', 16, 'FontWeight', 'bold') 
    ylabel('Crest height (m)', 'FontSize', 16, ... 
        'FontWeight', 'bold') 
    set(gca, 'FontSize', 14) 
    set(gca, 'LineWidth', 1) 
%    set(gca, 'Box', 'off') 
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    % Histogram the apparent ages given by the modeled boulders.   
    figure 
    nbins = ceil((max(naive_age)- min(naive_age))/ bin_width);  
    hist(naive_age, nbins) 
    axis square 
    hold on 
    xlabel('Apparent age (ka)', 'FontSize', 16, 'FontWeight', 'bold') 
    ylabel('Number of boulders', 'FontSize', 16, 'FontWeight', 'bold') 
    set(gca, 'FontSize', 14) 
    set(gca, 'LineWidth', 1) 
    set(gca, 'XTickMode', 'auto') 
%    set(gca, 'Box', 'off') 
    h = findobj(gca, 'Type', 'patch'); 
    set(h, 'FaceColor', 'b', 'EdgeColor', 'k') 
    ylimits = get(gca, 'YLim');  
    plot([moraine_age moraine_age], ylimits, 'k--', 'LineWidth', 1.5) 
end 
 
beep 



114 

 

function [times, crest_height, distances, initial_profile, ... 
    final_profile] = m_diffusion(initial_height, initial_slope, k, ... 
    moraine_age, time_step) 
 
% m_diffusion.m 
%  
% Calculates the height of a moraine's crest as a function of time, plus 
% the final topographic profile of the moraine.  Assumes a "sawtooth" 
% initial profile.  Based on an analytical solution developed by Dr. Nathan 
% Urban, Penn State.   
%  
% Syntax: [times, crest_height, distances, initial_profile, ... 
%    final_profile] = m_diffusion(initial_height, initial_slope, k, ... 
%    moraine_age, time_step) 
% times, vector of elapsed time values (yr) 
% crest_height, height of moraine crest as a function of the values in the 
%   vector times (m) 
% distances, vector of distance from the moraine crest (m) 
% initial_profile, height of moraine as a function of the values in the 
%   vector distances (m) 
% final_profile, height of moraine as a function of the values in the 
%   vector distances (m) 
% initial_height, initial height of the moraine (m) 
% initial_slope, initial slope of the moraine sides (d'less) 
% k, topographic diffusion coefficient (sq. m/ yr) 
% moraine_age, assumed age of moraine (yr) 
% time_step, interval between calculations of moraine height (yr) 
 
% Set model variables.   
length_step = 2;            % m; space step (1-2 m is best) 
length_factor = 1.5;        % profile length factor (at least 1.5; not  
                            % important, except for large, old moraines)  
 
% Establish plotting variables times and distances.   
L = initial_height/ initial_slope; % m; half-width of the moraine's base 
times = 0: time_step: moraine_age; % yr 
distances = 0: length_step: (length_factor* L); % m 
 
% Calculate height of moraine as a function of time.   
crest_height = zeros(1, numel(times)); % m 
h0 = initial_height; % m   
for count1 = 1: 1: numel(times);  
    t = times(count1);  
    crest_height(count1) = (h0/ L)* ((2* sqrt(k* t)/ sqrt(pi))* ... 
        (exp(-L^ 2/ (4* k* t))- 1)+ ... 
        L* erf(L/ (2* sqrt(k* t))));  
end 
 
% Calculate initial moraine profile as a function of distance from the 
% moraine's crest. 
initial_profile = zeros(1, numel(distances)); % m 
for count1 = 1: 1: numel(distances); 
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    initial_profile(count1) = initial_height- (count1- 1)* ... 
        length_step* initial_slope; 
    if initial_profile(count1) < 0; 
        initial_profile(count1) = 0; 
    end 
end 
 
% Calculate final moraine profile as a function of distance from the 
% moraine's crest. 
final_profile = zeros(1, numel(distances)); % m 
h0 = initial_height; % m 
t = moraine_age; % yr 
for count1 = 1: 1: numel(distances); 
    x = distances(count1); % m 
    z1 = exp(-(L+ x)^ 2/ (4* k* t))- ... 
        2* exp(-x^ 2/ (4* k* t))+ ... 
        exp(-(L- x)^ 2/ (4* k* t)); 
    z2 = (L+ x)* erf((L+ x)/ (2* sqrt(k* t)))- ... 
        2* x* erf(x/ (2* sqrt(k* t)))+ ... 
        (L- x)* erf((L- x)/ (2* sqrt(k* t))); 
    final_profile(count1) = (h0/ (2* L))* ... 
        ((2* sqrt(k* t)/ sqrt(pi))* z1+ z2); 
end 
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% inheritance_model.m 
%  
% Evaluates probability distributions of cosmogenic exposure dates for 
% boulders that contain inherited nuclides.  Code written by Patrick 
% Applegate, Penn State (papplegate@psu.edu).   
%  
% Code written to run under MATLAB R2008a on an Intel-based Macintosh 
% MacBook.   
%  
% This code was written carefully and has been checked for obvious errors. 
% However, no warranty of any kind is implied.  The code may not even run 
% on your system.  The output from the code should not be trusted without 
% testing.   
%  
% Please give proper credit if using this code in research and teaching. 
% Derivative works based on this code should include a reference to the 
% original paper.   
 
% Clear all variables, commands, and figures.  Set figures to dock 
% automatically.   
clear all 
close all 
clc 
set(0,'DefaultFigureWindowStyle','docked') 
 
% Define parameters that will be tuned during model inversion.   
moraine_age = 20.0;         % ka (10^ 3 yr); true age of moraine 
max_pre_time = 100.0;       % ka; maximum time that any individual boulder  
                            % had to acquire inherited nuclides 
max_pre_depth = 2.0;        % m; maximum depth of sample point on any  
                            % boulder during predepositional exposure time 
pre_slope = 0;              % degrees; slope of surface from which boulders 
                            % are derived 
                             
% Define other geomorphic parameters that are not part of the inversion.   
erosion_rate = 0.0;         % mm/ ka; erosion rate of boulders on moraine 
rho_rock = 2.6;             % g/ cm^ 3; density of boulders 
rho_over = 2.0;             % g/ cm^ 3; density of material overlying  
                            % boulders during predepositional exposure time 
 
% Define nuclide production parameters.   
P_spall = 4.97;             % atoms/ g/ yr; surface production rate due to  
                            % spallation (get this from the CRONUS online 
                            % calculator described in Balco et al., 2008;  
                            % assumed to be constant over the lifetime of  
                            % the moraine) 
P_mu = 0.133;               % atoms/ g/ yr; surface production rate due to  
                            % muons (also get this from the CRONUS 
                            % calculator) 
decay_const = 4.62* 10^ -7; % yr^ -1; nuclear decay constant of nuclide of 
                            % interest (4.62* 10^ -7 for 10Be, following  
                            % Balco et al., 2008, and refs therein) 
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P_slhl = [4.97 0.09 ...     % atoms/ g/ yr; sea level, high-latitude  
    0.02 0.02];             % production rates of different cosmic ray  
                            % flux components, following Granger and 
                            % Muzikar (2001); for 10Be, about  
                            % [4.97 0.09 0.02 0.02] 
att_length = [160 738 ...   % g/ sq. cm; effective attenuation lengths of  
    2688 4360];             % exponential components of Granger and Muzikar 
                            % (2001) production-as-a-function-of-depth 
                            % parameterization; for 10Be and 26Al, about 
                            % [160 738 2688 4360] 
 
% Define model parameters.   
num_boulders = 1* 10^ 5;    % number of randomly generated synthetic  
                            % boulders (at least 10^ 3; bigger numbers 
                            % yield more consistent results, but the model 
                            % will take more time to run)  
 
% Turn plotting on and off.   
plots = 1;                  % If 1, plots the moraine profile, height of  
                            % the moraine's crest as a function of time,  
                            % and a histogram of the modeled exposure  
                            % dates.  If 0, none of these plots are 
                            % produced.   
bin_width = 10;             % ka; width of bins in naive age histogram 
 
% Convert all quantities to consistent units.  All lengths should be in 
% meters, times should be in years, and masses should be in grams.  Note 
% that pre_slope should remain in degrees -- do not reduce this angle to 
% its slope equivalent.   
moraine_age = moraine_age* 10^ 3;               % yr 
max_pre_time = max_pre_time* 10^ 3;             % yr 
erosion_rate = erosion_rate* 10^ -6;            % m/ yr 
rho_over = rho_over* 100^ 3;                    % g/ cu. m 
rho_rock = rho_rock* 100^ 3;                    % g/ cu. m 
att_length = att_length* 100^ 2;                % g/ sq. m 
 
% Scale production rates to site.   
P_surf(1) = P_spall; % atoms/ g/ yr 
P_surf(2: 4) = P_slhl(2: 4)* P_mu/ sum(P_slhl(2: 4));  
 
% Determine length scales for nuclide production.   
L_over = att_length/ rho_over; % m  
L_rock = att_length/ rho_rock; % m 
 
% Determine predepositional exposure time for each boulder, and the depth 
% of the sample point on each boulder during that time.   
pre_time = max_pre_time* rand(1, num_boulders); % yr 
pre_depth = max_pre_depth* rand(1, num_boulders); % m 
 
% Calculate the final nuclide concentration in each boulder.  The 
% production rate parameterization here follows Dunne et al. (1999), using 
% the four-component production rate scheme described by Granger and 
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% Muzikar (2001).   
boulder_conc = zeros(1, num_boulders);  
for count1 = 1: 1: num_boulders;  
    P_pre = sum(P_surf.* (1- 3.6* 10^ -6* pre_slope^ 2.64).* ... 
        exp((-pre_depth(count1)./ L_over).* (1+ pre_slope^ 2/ 5000)));  
    C_pre = (P_pre/ decay_const)* ... 
        (1- exp(-decay_const* pre_time(count1))); 
    boulder_conc(count1) = C_pre* exp(-decay_const* moraine_age)+ ... 
        (P_spall+ P_mu)/ (decay_const+ erosion_rate* L_over(1))* ... 
        (1- exp(-decay_const* moraine_age));  
end 
 
% Calculate the apparent exposure time for each boulder.   
naive_age = -decay_const^ -1* ... 
    log(1- ((boulder_conc.* decay_const)./ (P_spall+ P_mu))); % yr 
 
% For ease of plotting, convert variables with a time dimension to ka 
% (10^3 yr).   
naive_age = naive_age/ 10^ 3;  
moraine_age = moraine_age/ 10^ 3;  
pre_time = pre_time/ 10^ 3;  
 
if plots == 1;  
    % Histogram the apparent ages given by the modeled boulders.   
    figure 
%     bins = floor(min(naive_age)): bin_width: ceil(max(naive_age));  
%     bar(bins, histc(naive_age, bins), 'histc') 
    nbins = ceil((max(naive_age)- min(naive_age))/ bin_width);  
    hist(naive_age, nbins) 
    axis square 
    xlabel('Apparent age (ka)', 'FontSize', 16, 'FontWeight', 'bold') 
    ylabel('Number of boulders', 'FontSize', 16, 'FontWeight', 'bold') 
    set(gca, 'FontSize', 14) 
    set(gca, 'LineWidth', 1) 
    set(gca, 'XTickMode', 'auto') 
%    set(gca, 'Box', 'off') 
    h = findobj(gca, 'Type', 'patch'); 
    set(h, 'FaceColor', 'b', 'EdgeColor', 'k') 
    hold on 
    ylimits = get(gca, 'YLim');  
    plot([moraine_age moraine_age], ylimits, 'k--', 'LineWidth', 1.5) 
end 
 
beep 



 

 

Appendix D 
 

Additional methods and data table for Chapter 3 

In this appendix, we provide descriptions of the methods that we used to generate the 

results described in Chapter 3.  

Model descriptions 

Chapter 2 includes a full description of our numerical models, including tests of the 

models’ sensitivity to changes in their input parameters and the assumptions involved in 

constructing the models. We provide brief descriptions of these models here to preserve the 

continuity of this chapter.  

The model of moraine degradation couples an analytical solution for the evolution of 

moraine slopes over time to a parameterization of nuclide production at depth (Granger and 

Muzikar, 2001). The slope evolution equation describes the height of the moraine crest as a 

function of time. With this curve, we can determine the depth as a function of time for any 

boulder with a specified initial depth. The final nuclide concentration in the boulder is then the 

integral of production within the boulder over time, correcting for nuclear decay.  

Our inheritance model tracks nuclide concentrations in boulders that had significant 

exposure to cosmic rays in the landscape before being deposited on the moraine, where they are 

eventually sampled. The model formulation is identical for boulders that were derived from 

subglacial material and boulders that fell onto the glacier from the adjacent valley walls. In both 

cases, the final concentration in each boulder is the sum of production during the predepositional 

and postdepositional exposure periods, after accounting for nuclear decay. The model calculates 
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the concentration acquired during the predepositional exposure period for each boulder, given the 

length of that boulder’s predepositional exposure time and the depth to which the boulder was 

buried during that time. This calculation is performed using the same parameterization of 

production as a function of depth used in the moraine degradation model (Granger and Muzikar, 

2001), with a correction for the slope of the surface during the predepositional exposure time 

(Dunne et al., 1999).  

Latin hypercube sampling 

To produce probability distributions of exposure dates using the models, we run the 

models repeatedly for different values of the free parameters. In the moraine degradation model, 

the only free parameter is the initial depth of each boulder. In the inheritance model, the free 

parameters are the predepositional exposure time and the predepositional burial depth of each 

boulder. In effect, this procedure indicates the statistical distribution of exposure dates that we 

would expect to obtain if we could collect an arbitrarily large number of samples from a single 

moraine.  

We select the free parameter values using Latin hypercube sampling (Urban and Fricker, 

in review, Computers and Geosciences) instead of the more-common and simpler Monte Carlo 

methods (Chapter 2; Bevington and Robinson, 2003). Latin hypercube methods select model free 

parameter values such that no two points within free parameter space share the same value for 

any parameter. In a two-dimensional parameter space divided into equal-width rows and columns, 

this rule requires that each row and column contains one and only one point. Thus, Latin 

hypercube methods provide a more even sampling of parameter space than do Monte Carlo 

methods, ensuring that the distributions produced by our models are consistent between different 
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runs of the models for the same parameter values. We found that 3* 103 Latin hypercube samples 

produced acceptably consistent statistical distributions for the applications discussed here.  

The Kolmogorov-Smirnov test statistic 

There are several fitting statistics that we could use to compare a modeled distribution to 

a data set, but the simplest is probably the Kolmogorov-Smirnov test statistic (KS statistic; Press 

et al., 1992; Croarkin and Tobias, 2006; Clauset et al., 2007). The KS statistic DKS is the 

maximum distance between the two cumulative density functions, measured parallel to the y-axis. 

That is,  

! 

D
KS

=max
x"xmin

F
model

x( ) # Fdata x( ) ,  

where Fmodel and Fdata are the cumulative density functions of the modeled and observed exposure 

dates, respectively.  

The Differential Evolution genetic algorithm 

To search for the model parameter values that minimize the KS statistic for each data set, 

we use the Differential Evolution genetic algorithm (Price et al., 2005). Differential Evolution is a 

fast, widely used method for minimizing functions that avoids local minima, unlike gradient 

descent techniques.  

Differential Evolution requires the user to specify ranges in which to search for the best-

fit model parameters. In fitting the degradation model to the Uinta Mountains data sets, we 

assumed that the moraines’ ages must lie in the range of 15-25 ka, their initial slopes must have 

been between 30° and 40°, and their topographic diffusivities must be between 0.5* 10-2 m2/ yr 

and 0.5* 10-4 m2/ yr. These parameter ranges are in line with the chronology of glaciation in the 
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western United States (Richmond, 1986; Pierce, 2004; Applegate, 2005; Licciardi and Pierce, 

2008), recent topographic profiles measured on these moraines (P. Applegate and B. J. C. Laabs, 

unpublished data), and prior estimates of topographic diffusivity from unconsolidated landforms 

in arid environments (Hanks, 2000; Putkonen et al., 2007).  

In fitting the inheritance model to the Gurreholm Dal data sets, we assumed that the 

maximum predepositional burial depth ranged between 1 and 5 m, consistent with prior estimates 

of the depth of glacial erosion (Briner and Swanson, 1998; Fabel and Harbor, 1999; James et al., 

2002; Fabel et al., 2004). We found it necessary to adjust the ranges of moraine age and 

maximum predepositional exposure time for each data set, but in general we searched between 5- 

25 ka and 10-120 ka for these parameters, respectively. The moraine age range is based on the 

likely ages of the moraine groups, given their stratigraphic positions upvalley from the LGM-age 

Kap Brewster moraine (Funder, 1978; Kelly et al., 2008; cf. Hakansson et al., 2007). The 

maximum end of the predepositional exposure time range is based on the lengths of glacial-

interglacial cycles (Hays et al., 1976; Shackleton, 2000). 

Tests of the inverse method 

As a test of our inverse method, we attempted perfect model experiments. In these 

experiments, we created two synthetic data sets, one from each of our models, using specified 

values of the model input parameters. We then attempted to recover these parameter values using 

the inverse methods described above.   

We created our test data sets by sampling the percentiles of two modeled distributions, 

one from the moraine degradation model and one from the inheritance model. This procedure 

yielded data sets containing 100 observations each, and these observations were guaranteed to be 

representative of the underlying statistical distribution. For real moraines, we never have so many 
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observations, and we have no assurances that the few observations we do have are really 

representative of the underlying statistical distribution. However, our purpose in making this test 

is to check the reasonableness of the algorithm; whether we can reliably reconstruct moraine age 

from a few randomly chosen observations is a separate issue. The input parameters for the 

degradation model were moraine age, 20 ka; initial moraine height, 50 m; initial moraine slope, 

34°; and topographic diffusivity, 10^(-2) m2/yr. The input parameters for the inheritance model 

were moraine age, 20 ka; maximum predepositional exposure time, 100 ka; maximum burial 

depth, 2.0 m. 

The inverse method successfully recovered the appropriate parameter values for these test 

data sets. The best fit of the degradation model to the test data set was achieved for the parameter 

values moraine age, 20.064 ka; initial slope, 36.0139°; topographic diffusivity, 10^(-2.10845) 

m2/yr. We do not invert for the initial moraine height because the distributions produced by the 

degradation model are insensitive to changes in the initial height above ~35 m (Chapter 2). The 

best fit of the inheritance model to the test data set was found for moraine age 19.9875 ka; 

maximum predepositional exposure time, 104.389 ka; and maximum predepositional burial 

depth, 2.06155 m.  

The recovered values all lie within 6% of the correct values, except for the topographic 

diffusivity, which is about 22% different from the correct value. Still, the estimated topographic 

diffusivity is only about a tenth of a log unit from the correct value. Given that the topographic 

diffusivity can range over four orders of magnitude (Putkonen et al., 2007), we consider this 

degree of accuracy to be acceptable.  
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The influence of scaling model choice on the scatter among exposure dates 

We have recalculated the exposure dates from eastern Greenland and the southern Uinta 

Mountains using the Lal/ Stone scaling model (Lal, 1991; Stone, 2000; Balco et al., 2008) and the 

CRONUS online calculator (Balco et al., 2008; main production code, v. 2.1; constants file, v. 

2.1; muon production code, v. 1.1). We use the Lal/ Stone scaling model because it produces 

time-averaged estimates of nuclide production rates, as required by our geomorphic models 

(Chapter 2). The exposure dates from the eastern Greenland sites have been corrected for isostatic 

uplift (B. Goehring, personal communication; Kelly et al., 2008), using uplift curves derived from 

radiocarbon dating of raised marine terraces (Hall et al., 2008).   

To ensure that our results are not strongly dependent on the scaling model we used to 

calculate the exposure dates, we calculated the exposure dates using a variety of presently 

accepted scaling models (Balco et al., 2008).   

Figure D.1 shows the effect of scaling model choice on the distributions of exposure 

dates from our chosen data sets (also see Table D.1, at the end of this appendix). For the 

Greenland data sets, the scaling models that account for magnetic field variations (Lm, De, Du, 

and Li; Balco et al., 2008) produce exposure dates that are somewhat older than exposure dates 

calculated from the same samples using the St scaling model. The more sophisticated scaling 

models also increase the range of the exposure dates from these moraines relative to the St scaling 

model. In the Uinta Mountains, the effects of scaling model choice are larger and have the 

opposite sign. That is, the scaling models that account for magnetic field variation indicate that 

the Uinta Mountains samples are somewhat younger and more narrowly distributed than the St 

scaling model suggests.   
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Figure D.1:  Effects of scaling model choice on the distributions of exposure dates within our 
chosen data sets. Each set of box plots (Chambers et al., 1983) represents the influence of scaling 
method on the statistical distribution of exposure dates for one data set treated in this paper. The 
scaling model abbreviations on the y-axis follow those used by Balco et al. (2008). In each line, 
the box represents the middle 50% of the observations, the line in the box shows the position of 
the median, and the ends of the whiskers indicate where the maximum and minimum of the 
distribution lie.   
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In general, the choice of scaling model has the greatest influence on the oldest values in a 

collection of exposure dates. This result is a consequence of how the exposure dates are 

calculated; a change in the production rate will affect the apparent ages of high-concentration 

samples more than the apparent ages of low-concentration samples.   

Overall, the effect of scaling model choice on the spread of exposure dates within each 

data set is small compared to the likely effects of geomorphic processes on this spread. That is, 

the scatter among exposure dates is always the same (to within 10%) for these data sets, 

regardless of the scaling model used in calculating the exposure dates.  For each data set and 

scaling model, we compared the range of the exposure dates to the range of exposure dates 

calculated using the St scaling model for the same moraine by calculating a quantity R,  

! 

R =
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i,M

" r
i,St

r
i,St

,  

where ri,M is the range of exposure dates from the ith moraine or moraine group, calculated using 

scaling model M. The maximum value of R for the data sets treated here is less than 8%. If the 

range of exposure dates is a proxy for the effects of geomorphic processes on these exposure 

dates, this result suggests that the geomorphic processes responsible for the scatter in our chosen 

data sets have a larger influence on the spread of the exposure dates than our choice of scaling 

model. 

Normal probability plots 

Normal probability plots provide a graphical test for normality. If a set of observations 

fall in a line when displayed on a normal probability plot, then the observations are likely to be 

drawn from a normal distribution. This statement remains true regardless of the mean and 

standard deviation of the normal distribution. Like most tests for normality, we have low 



127 

 

confidence in conclusions drawn from normal probability plots of small data sets (n < ~20). 

Chambers et al. (1983) give procedures for the construction of normal probability plots.  

The reduced chi-squared statistic 

The degree of scatter in a data set relative to the scatter expected from the measurement 

error can be expressed using the reduced chi-squared statistic χR
2 (Bevington and Robinson, 

2003; Balco and Schaefer, 2006). The reduced chi-squared statistic is sometimes called the mean 

square of weighted deviates in the exposure dating literature (e.g., Kaplan and Miller, 2003; 

Douglass et al., 2006). For well-behaved data sets, the reduced chi-squared value approaches 1.0; 

more scattered data sets have larger reduced chi-squared values.  

We calculate the reduced chi-squared statistic for each group of exposure dates as 
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(Bevington and Robinson, 2003). Here, n is the number of exposure dates from different 

boulders, and µi and σi are the central estimate and 1σ measurement uncertainty of the ith 

exposure date. µavg is the arithmetic mean of the exposure dates, following Kaplan et al. (2005); it 

is not the mean weighted by the inverse variance.   

In calculating the reduced chi-squared statistic for each data set, we use only the mass 

spectrometric measurement uncertainties of the exposure dates (the “internal uncertainties” of 

Balco et al., 2008; see also Gosse et al., 1995; Gosse and Phillips, 2001). The total uncertainties 

of these exposure dates are somewhat larger than these internal uncertainties (Gosse and Phillips, 

2001, their section 6), because the nuclide production rates and half-life values that we use to 

calculate the dates are not exact. However, these additional sources of uncertainty are highly 
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correlated between samples from the same moraine (Balco et al., 2008); they may bias the 

exposure dates from a moraine toward too-young or too-old values, but they should not increase 

the variance among exposure dates from a single moraine. Using the total uncertainties of the 

exposure dates would produce a too-small value for the reduced chi-squared statistic, effectively 

underestimating the real spread of the exposure dates.  

Recalculated exposure dates 

The following table (Table D.1) lists the exposure dates referred to in Chapter 3 and this 

appendix, as recalculated using various presently accepted scaling models (Balco et al., 2008).   
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Table D.1: Beryllium-10 exposure dates recalculated according to Balco et al. (2008). 

Lal/Stone (St) Lal time-variant (Lm) Sample ID Nucleon 10Be 
prod’n ratea  

 
(atoms/g/yr) 

Muon 10Be 
prod’n rate  

 
(atoms/g/yr) 

Apparent 
age  
(yr) 

1-sigma 
uncertaintyb 

(yr) 

Apparent 
age  
(yr) 

1-sigma 
uncertaintyb 

(yr) 
       
G-II moraines, Gurreholm Dal., eastern Greenland (Kelly et al., 2008)c 
MKG-32 10.070 0.257 10440 265 10667 271 
MKG-33 9.760 0.254 12109 281 12376 287 
MKG-35 8.980 0.248 13690 294 13993 301 
MKG-36 9.240 0.249 11307 379 11555 388 
MKG-89 7.340 0.228 10651 311 10883 318 
MKG-90 7.310 0.227 13400 337 13698 345 
MKG-91 7.220 0.226 17175 417 17556 426 
MKG-92 7.060 0.224 10994 298 11234 304 
MKG-98 8.300 0.238 11623 389 11879 398 
MKG-99 8.310 0.239 47203 827 48209 845 
MKG-100 9.700 0.258 11450 506 11701 517 
MKG-101 10.130 0.257 10107 414 10327 423 
MKG-102 10.400 0.260 11637 281 11894 287 
MKG-103 10.590 0.261 10327 256 10552 261 
MKG-104 9.050 0.247 10027 246 10244 252 
       
G-III moraines, Gurreholm Dal., eastern Greenland (Kelly et al., 2008)c 
MKG-11 6.910 0.225 12690 433 12970 442 
MKG-12 7.010 0.226 37083 862 37877 880 
MKG-13 5.630 0.208 17675 529 18066 541 
MKG-14 5.710 0.208 18854 438 19270 448 
MKG-15 5.600 0.208 11221 262 11467 268 
MKG-20 6.180 0.215 12547 323 12824 331 
MKG-21 6.230 0.215 22957 965 23458 986 
MKG-22 6.870 0.223 13092 304 13382 311 
MKG-24 7.110 0.227 20811 715 21267 731 
MKG-25 7.300 0.228 59930 1433 61201 1464 
MKG-26 7.240 0.228 23539 455 24053 465 
MKG-30 5.580 0.207 14740 344 15068 352  
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Table D.1 (continued): Beryllium-10 exposure dates recalculated according to Balco et al. 
(2008). 

Desilets (De) Dunai (Du) Lifton (Li) Sample ID 
Apparent 

age  
(yr) 

1-sigma 
uncertaintyb 

(yr) 

Apparent 
age  
(yr) 

1-sigma 
uncertaintyb 

(yr) 

Apparent 
age  
(yr) 

1-sigma 
uncertaintyb 

(yr) 
       
G-II moraines, Gurreholm Dal., eastern Greenland (Kelly et al., 2008)c 
MKG-32 10906 277 10820 275 10710 272 
MKG-33 12655 293 12552 291 12451 289 
MKG-35 14297 307 14184 305 14081 302 
MKG-36 11809 396 11718 393 11632 390 
MKG-89 11046 322 10975 320 10920 319 
MKG-90 13886 349 13792 347 13733 345 
MKG-91 17758 431 17636 428 17562 427 
MKG-92 11374 308 11302 306 11254 305 
MKG-98 12112 405 12025 402 11955 400 
MKG-99 49024 859 48646 853 48347 847 
MKG-100 11966 529 11868 525 11768 520 
MKG-101 10558 433 10475 430 10361 425 
MKG-102 12164 294 12063 291 11958 289 
MKG-103 10789 267 10702 265 10585 262 
MKG-104 10465 257 10388 255 10287 253 
       
G-III moraines, Gurreholm Dal., eastern Greenland (Kelly et al., 2008)c 
MKG-11 13137 448 13050 445 12997 443 
MKG-12 38226 889 37957 882 37792 878 
MKG-13 17867 535 17761 532 17733 531 
MKG-14 19059 443 18945 440 18913 439 
MKG-15 11405 266 11342 265 11323 264 
MKG-20 12860 331 12783 329 12751 329 
MKG-21 23452 986 23302 979 23236 977 
MKG-22 13528 314 13440 312 13390 311 
MKG-24 21525 740 21374 735 21278 731 
MKG-25 61809 1478 61362 1467 61080 1461 
MKG-26 24351 470 24178 467 24065 465 
MKG-30 14921 349 14834 347 14813 346  
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Table D.1 (continued): Beryllium-10 exposure dates recalculated according to Balco et al. 
(2008). 

Lal/Stone (St) Lal time-variant (Lm) Sample ID Nucleon 10Be 
prod’n ratea  

 
(atoms/g/yr) 

Muon 10Be 
prod’n rate  

 
(atoms/g/yr) 

Apparent 
age  
(yr) 

1-sigma 
uncertaintyb 

(yr) 

Apparent 
age  
(yr) 

1-sigma 
uncertaintyb 

(yr) 
       
G-IV moraines, Gurreholm Dal., eastern Greenland (Kelly et al., 2008)c 
MKG-07 7.180 0.226 25654 594 26211 607 
MKG-08 7.210 0.226 38681 917 39509 937 
MKG-09 7.330 0.228 24899 838 25441 856 
MKG-16 8.050 0.236 90920 1996 92849 2040 
MKG-19 6.910 0.224 45125 761 46085 777 
MKG-27 7.290 0.227 25646 943 26203 964 
MKG-28 7.020 0.224 37040 858 37833 876 
       
Outer Smiths Fork lateral moraine, Lake Fork drainage, Uinta Mountains (Laabs et al., 2009) 
LF-RK-5 31.200 0.443 19123 1200 18792 1200 
LF04-1 30.770 0.441 16604 758 16399 758 
LF04-2 30.500 0.439 17428 734 17179 734 
LF04-3 30.910 0.441 10863 548 10770 548 
LF04-4 30.150 0.437 19835 1010 19467 1010 
LF04-5A 29.910 0.436 18332 796 18038 796 
LF04-5B 30.900 0.441 17747 806 17483 806 
Wtd meand   18043 566 17764 566 
       
Outer Smiths Fork lateral moraine, Yellowstone drainage, Uinta Mountains (Laabs et al., 2009) 
YS-3 31.410 0.445 17419 797 17171 797 
YS-6 29.870 0.435 13230 547 13144 547 
YS-7 30.190 0.437 15095 627 14965 627 
YS-8 30.530 0.439 19013 734 18690 734 
YS-9 30.470 0.439 17399 747 17156 747 
YS-10 31.210 0.444 17826 756 17558 756 
YS-11 28.860 0.430 11970 497 11887 497  
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Table D.1 (continued): Beryllium-10 exposure dates recalculated according to Balco et al. 
(2008). 

Desilets (De) Dunai (Du) Lifton (Li) Sample ID 
Apparent 

age  
(yr) 

1-sigma 
uncertaintyb 

(yr) 

Apparent 
age  
(yr) 

1-sigma 
uncertaintyb 

(yr) 

Apparent 
age  
(yr) 

1-sigma 
uncertaintyb 

(yr) 
       
G-IV moraines, Gurreholm Dal., eastern Greenland (Kelly et al., 2008)c 
MKG-07 26485 614 26301 609 26186 607 
MKG-08 39868 946 39589 939 39416 935 
MKG-09 25743 867 25561 860 25443 856 
MKG-16 94222 2071 93501 2054 92965 2042 
MKG-19 46392 782 46073 777 45885 774 
MKG-27 26503 975 26316 968 26196 963 
MKG-28 38120 883 37856 877 37701 873 
       
Outer Smiths Fork lateral moraine, Lake Fork drainage, Uinta Mountains (Laabs et al., 2009) 
LF-RK-5 18414 1200 18287 1200 17945 1200 
LF04-1 16083 758 16000 758 15684 758 
LF04-2 16841 734 16744 734 16421 734 
LF04-3 10609 548 10622 548 10311 548 
LF04-4 19067 1010 18928 1010 18578 1010 
LF04-5A 17679 796 17566 17566 17234 17566 
LF04-5B 17140 806 17038 17038 16712 17038 
Wtd meand 17413 566 17294 12230 16965 12230 
       
Outer Smiths Fork lateral moraine, Yellowstone drainage, Uinta Mountains (Laabs et al., 2009) 
YS-3 16830 797 16733 797 16410 797 
YS-6 12924 547 12899 547 12588 547 
YS-7 14709 627 14652 627 14345 627 
YS-8 18351 734 18226 734 17887 734 
YS-9 16863 747 16766 747 16446 747 
YS-10 17213 756 17109 756 16782 756 
YS-11 11714 497 11709 497 11398 497 
Dates recalculated using the CRONUS online calculator (Balco et al., 2008), v. 2.1, with v. 2.1 of the 
constants file and v. 1.1 of the muon production code.   
a, Nucleon production rates from the St scaling model (Balco et al., 2008).   
b, 1-sigma uncertainties reflect measurement uncertainties only, that is, the internal uncertainties of 
Balco et al. (2008).   
c, Exposure dates from Gurreholm Dal recalculated by Brent Goehring (Lamont-Doherty Earth 
Observatory, Columbia University) with a correction for uplift over the exposure times of the samples 
(Kelly et al., 2008).   
d, Weighted mean of samples LF04-5A and -5B, which come from the same boulder.  

 



 

 

Appendix E 
 

Data table for Chapter 4 

The following table (Table E.1) gives the recalculated exposure dates described in 

Chapter 4.   

Table E.1: Beryllium-10 exposure dates recalculated following Barrows et al. (2007). 

Sample ID Boulder 
height  

(m) 

Nucleon 10Be 
prod’n rate  

(atoms/g/yr) 

Muon 10Be 
prod’n rate  

(atoms/g/yr) 

Apparent age  
 

(yr) 

1-sigma 
uncertainty 

(yr) 

      
Waiho Loop moraine, western New Zealand (Barrows et al., 2007) 
WH-01B  5.554 0.157 11.24 0.42 
WH-02  5.580 0.157 10.33 0.70 
WH-03  5.576 0.157 10.70 0.38 
WH-04B  5.575 0.157 9.65 0.47 
WH-05  5.472 0.156 9.10 0.41 
WH-08A  5.473 0.156 6.85 0.91 
WH-09  5.473 0.156 5.30 0.33 
WH-10  5.475 0.156 11.33 1.55 
      
Inner Titcomb Lakes moraine, Wind River Range (Gosse et al., 1995a) 
WY-92-138 1.0 51.892 0.568 12.80 0.38 
WY-92-139 1.0 51.892 0.568 12.06 0.36 
WY-92-140 1.0 51.892 0.568 9.93 0.30 
WY-93-333 1.0 51.892 0.568 12.08 0.36 
WY-93-334 1.5 51.892 0.568 14.00 0.42 
WY-93-335 0.6 51.892 0.568 12.97 0.39 
WY-93-336 2.0 51.892 0.568 13.30 0.40 
WY-93-337 1.5 51.892 0.568 13.26 0.40 
WY-93-338 0.8 51.892 0.568 12.86 0.39 
WY-93-339 0.1 51.892 0.568 12.73 0.38 
WY-92-138 1.0 51.892 0.568 12.80 0.38 
WY-92-139 1.0 51.892 0.568 12.06 0.36 
WY-92-140b 1.0 51.892 0.568 9.93 0.30 
prod’n, production.   
Production rates and exposure dates recalculated following Barrows et al. (2007), using the 
scaling model of Stone (2000) for both nucleon and muon production.   
1-sigma uncertainties reflect measurement uncertainty only.    
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