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Abstract 
 

Recent trends in globalization have led to an increase in competition between 

manufacturers across many industries that are producing new products with shorter life cycles. 

The success of these manufacturers is largely due to not only to how quickly they can get these 

products to market but also how quickly they can produce these products at full volume. This has 

led to a need for efficient production ramp-up techniques that can determine optimal resource 

allocation plans for a manufacturing system. This research seeks to develop a method which 

determines the optimal machine allocation strategy during the ramp-up in a job shop 

environment. The method uses optimization and simulation techniques to arrive at a solution 

which is both optimal and robust. The technique is then applied to a case study to demonstrate its 

use and effectiveness in determining a solution. Such a solution would provide a manufacturing 

system’s decision makers with a production ramp-up strategy that would minimize cost and allow 

the system to produce the throughput required by its end customers. 
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Chapter 1  
 

Introduction 

1.1 Background Information 

The 21
st
 century has brought with it increased competition between companies both 

domestically and abroad. New global markets and more demanding consumer behavior further 

add to the challenges of manufacturing a variety of products in large quantities. More products 

are constantly being introduced, and they are experiencing shorter life cycles. This is especially 

true in electronics and telecommunications industries where products are quickly replaced and 

made obsolete (Terwiesch and Bohn, 2001). The transition between new products and 

manufacturing processes can be very costly, especially in process learning and new machine 

acquisition. This trend in manufacturing has led many companies to explore how to best progress 

through the design and manufacturing processes. 

The term, “ramp-up,” refers to the time period between when a product is first introduced 

to the market and when it reaches full volume production. The ramp-up process occurs every time 

a new product is introduced in a manufacturing system. It is a critical time in the product’s life 

cycle as well since the product’s demand and price are often highest when it is first released 

(Haller et al., 2003). Hopp and Spearman (2008) have stated that on average “products that come 

in on budget but 6 months behind schedule sacrifice 33% of profits over 5 years. On-time projects 

which are 50% over budget lost 4% of profits.” At the same time, the production rate of the 

product is at its lowest point as it is at the beginning of its learning curve. Unfamiliar processes, 

lower yields, new machines requiring testing and maintenance and high process setup times all 
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contribute to this low initial production rate (Terwiesch and Bohn, 2001). Despite these setbacks, 

companies that can quickly get their product to market and produce it in large volumes will 

achieve considerable competitive advantage in the marketplace. 

This research will explore production ramp-up in order to determine an optimal method 

for machine allocation in a job shop manufacturing environment. A job shop provides a strong 

manufacturing system for experimentation as it is made up of many independent workstations 

which can have different numbers of machines depending on their utilization. It is a less 

predictable type of ramp-up than a continuous line manufacturing ramp-up because it is 

comprised of multiple workstations that act independently and produce multiple product lines in 

varying amounts. Also, very little research has been conducted in the area of production ramp-up 

in a job shop environment. 

Optimization and simulation will be used to solve the production ramp-up problem and 

find a near-optimal solution that satisfies user-defined constraints. An integer program first 

quickly determines the optimal solution in a deterministic system. Its solution is then tested in a 

simulation model that tests the solution in a stochastic environment where product routings and 

variability are introduced. The results from this simulation are then factored into the optimization 

model in order to move toward an optimal and robust solution. This process continues until that 

solution is determined. Marginal changes to the solution are also able to be made by the decision 

makers until the performance goals are met.  

1.2 Organization of this Research 

Following a thorough literature review of past and present production ramp-up research 

in Chapter 2, a description of the developed algorithm and methodology will be given. This 

description, available in Chapter 3, will begin by comprehensively describing the problem to be 
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examined as well as the assumptions made in the models that solve the problem. The solution 

algorithm describes the process that the decision makers follow in order to find a ramp-up 

solution for the job-shop. It also sets the performance goals of the user that the system aims to 

fulfill. A detailed look at the optimization and simulation procedures and components used in the 

algorithm are provided in Sections 3.4 and 3.5. 

Chapter 4 will focus on experimentation and analysis of the production ramp-up system. 

A case study will be explored in order to demonstrate the system’s functionality and will look at 

some of the advantages that it provides over other techniques. The individual data set that is used 

is explained, and sensitivity analysis is eventually performed to show the effect of changes to the 

input data. The solution procedure and each iteration of the process is described and analyzed. 

The results of this case study are then generalized to apply to other job shop systems and other 

manufacturing environments. Lastly, Chapter 5 will summarize the research and present the 

conclusions and some possible areas of future research to further advance the field. 
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Chapter 2  
 

Literature Review 

2.1 Overview 

This literature review will begin by exploring what production ramp-up means in industry 

according to many well known researchers in the field. Ramp-up problems will be examined from 

all different types of manufacturing systems with a focus to how similar problems have been 

approached in a job shop environment. The literature review will look at how the term has been 

perceived throughout the past and what changes new technology and research have made to 

ramp-up methodologies. The review will also look at many authors’ different theories and 

methodologies regarding production ramp-up and how these are applicable to different 

manufacturing environments. Each different manufacturing scenario requires unique ramp-up 

strategies. For this reason, there is a wide array of previously practiced methods, each distinct and 

inventive in its own way. 

The purpose of looking into production ramp-up techniques, as is done in this review, is 

to provide a technique to assist in making critical business decisions. Such a technique could be 

implemented into a decision support tool or an easy-to-use system for an end user. This idea of a 

decision support tool or system has been around for decades and has expanded into many 

different classifications (e.g., Keen 1980a, 1980b; Cox and Adams, 1980; Power, 2007, 2011). 

Understanding the purpose and ways that decision support systems are used is important to 

developing a methodology that could drive such a tool that is both flexible enough to work in 

different situations but is also precise enough to provide a sufficient solution in a given scenario. 
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The production ramp-up system used to provide solutions for the ramp-up problem in this 

report has a two-fold solution procedure. First, the problem is optimized for a given level of 

production, and then the solution is tested using simulation to ensure that the solution is feasible 

and robust. There are many different optimization techniques that have been used and many 

different software packages that are now available to help users write and solve mathematical 

programs of all different types. Mathematical programming is one of the more common 

techniques of optimization, but researchers have solved resource allocation problems using many 

different analytical and heuristic approaches (e.g., Fox, 1966; Dallery and Frein, 1988; Dallery 

and Stecke, 1990; Boxma et al., 1990; Frenk et al., 1994; Terweish and Xu, 2004; Huang et al., 

2006). 

The second element to the decision support tool is the use of simulation. Many 

researchers and engineers use simulation in this area of manufacturing as increased customization 

is available, and it allows systems to be easily manipulated (e.g., Ziegler, 1984, 1990; Ziegler and 

Praehofer, 2000; Couretas et al, 1998, 1999, 2001). New technologies and software packages 

allow for more accurate forecasting and resource planning, creating many options and allowing 

managers to test different situations with several performance measures. Further research has 

expanded to optimize these simulations and the ramp-up operation that they model, creating new 

challenges and possibilities (e.g., Harmonosky et al., 1999; Eklin et al., 2009). 

Mathematical programming and simulation have been used together previously, but many 

researchers are hesitant because of the different capabilities of the two methods. Mathematical 

programming provides a single optimal solution, while simulation introduces variability and tests 

parameters under these conditions. Many decision makers using simulation to make business 

decisions seek only to find an acceptable solution, not one that is necessarily optimal. Despite the 

difference in nature, the two techniques do complement each other to provide a stronger and more 

robust solution than either could achieve alone (Armstrong and Hax 1974). A special set of 
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heuristic approaches have been developed in the past (e.g., Armstrong and Hax, 1974; Schriber 

and Stecke, 1987; Yan and Wang, 2007; Klemmt et al. 2007, 2009; Caricato et al., 2008) that 

involve both of the methods. One especially useful method is simulation optimization. Research 

in this area provides an interesting view of the differences that the technologies provide and in 

what situations it is desirable to combine their capabilities. 

2.2 Introduction to Production Ramp-Up 

 As early as products were manufactured to be sold, producers looked to discover ways to 

manufacture more goods in a shorter period of time. The faster that they could meet consumer 

demand, the higher the return they would obtain. Production ramp-ups generally occur whenever 

a new product is introduced or a company changes its manufacturing operations for a specific 

product. It can also occur if a company opens a new plant to expand its production capabilities. 

Production ramp-up is important because it is a risk-filled science that can drastically change the 

future of a company. Oftentimes, large investments are made in plant and equipment when the 

company is not positive of whether or not the project will succeed. Unexpected challenges can 

occur even when adding similar or identical machinery to a plant (Couretas et al., 2001). 

Different companies may be under different levels of pressure to ramp-up their production 

depending on their industry, and they may even have different standard operating procedures to 

ramp-up production depending on the scale of the project. 

 There is relatively limited research done in the production ramp-up area due to the nature 

of the concept. The ramp-up strategy for every situation is different, as companies may 

manufacture the same product using two completely different methods. One ramp-up strategy is 

not universal, and it may even take multiple methods within different facilities of the same 

company. Having a strong ramp-up strategy and decision support technology to help with the 
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decisions provides a competitive advantage to the company that is performing a ramp-up of its 

output. This knowledge and technology can be valuable, and many companies work hard to keep 

their strategies secret so as to not give their competition an advantage. 

Terwiesch and Bohn (2001) describe ramp-up as “the period between the end of product 

development and full capacity production” (pg. 1). This period is characterized by a high demand 

for the product but a low production rate and low yield of the new technology due to poor 

understanding and lack of experience of the manufacturing process. The production rates 

gradually improve as learning takes place and adjustments are made to both the product and the 

manufacturing process. Both learning and experimentation in the product’s “recipe” and the 

process are vital to significantly improving the yield and production rate (pg. 9). The problem of 

ramp-up often occurs in the high-tech telecommunications industries where products are 

becoming increasingly complex and are quickly replaced by better, more complex technologies 

(Terwiesch and Bohn, 2001). These industries are often competitive, so decreasing time-to-

volume production is critical to a company’s success and survival. 

Many researchers have also found that a lack of manufacturability contributed to poor 

ramp-up performance (e.g., Koren et al., 1999; Du et al., 2008). In their definition of production 

ramp-up, Koren et al. (1999) further elaborate to include the importance of quality in a successful 

ramp-up. They define system ramp-up as “the period of time it takes a newly introduced or 

reconfigured manufacturing system to reach sustainable, long-term levels of production in terms 

of throughput and part quality, considering the impact of equipment and labor on productivity.” It 

is often necessary to make costly changes in the product’s design after manufacturing has begun 

in order to improve the final product’s quality. A quick response in this case is necessary, but too 

many engineering changes in design and processing can devastate a project’s success. A high 

“first time right” ratio will lead to a leaner manufacturing environment with little waste, a high 

yield and a faster production (Du et al., 2008, pg. 180-1). 
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All of these ideas that define a “successful” production ramp-up strategy are relative and 

important to each company that is expanding its manufacturing capabilities. Companies must be 

flexible and aware of the undertaking because it can become a complicated problem very quickly. 

Management must know the goals of its individual ramp-up and must tailor its strategy and rate 

accordingly. There are many techniques that help managers make these important decisions; 

however, these techniques will not act ideally in all situations. 

2.3 Decision Support Systems (DSS) 

 An important underlying purpose behind studying areas such as production ramp-up is to 

design techniques and methodologies that can be integrated into accurate and easy-to-use decision 

support systems for operations management. Understanding how these decision support tools 

work and how they can be implemented is crucial to building a system that is functional. In order 

to make strong, well-informed decisions, managers need tools that will quickly provide up-to-date 

information. Much of the research behind production ramp-up has been implemented into 

countless decision support tools (e.g., Keen 1980a, 1980b; de Boer et al., 1997; Greenwood et al., 

2005; Power and Sharda, 2007; Matta et al., 2007). These tools can be as simple as marginal 

analysis or a quick mathematical program developed to give a rough solution to a complex 

problem. 

Matta et al. (2007) discuss the importance of using decision support systems in a 

production ramp-up environment. They found that managing production ramp-up events are 

related to three issues that justify the need for tools and methods to assist in decision making. 

First is the identification of the duration of the ramp-up period and all of its associated costs. 

Second is determining useful tools and methods for managers to make decisions on how to 

shorten the ramp-up phase. Lastly, they stress the importance that these management tools can 
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help to assess the configuration and reconfiguration of the system. Matta et al. ultimately 

presented a solution for a capacity-related reconfiguration problem by using Markov decision 

theory to drive their decision support system. This section provides some background information 

and history on such decision support systems and how they have been used in industry. 

2.3.1 Background 

 The idea of a decision support system (DSS) began in the 1970s, and they have only 

become more important to companies as technology has advanced. Peter Keen (1980b) was one 

of the first to bring to light the importance of the DSS. He published several papers in the early 

1980s that demonstrated the advantages of decision support and provided examples of its use. He 

stressed the importance of recognizing the difference between efficiency and effectiveness when 

building a DSS. Efficiency is knowing how to do a job, while effectiveness is knowing what job 

to do. The two concepts go hand-in-hand, and both facets must be satisfied to make a successful 

decision support tool. 
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Figure 2-1: An Adaptive Framework for DSS (adopted from Keen, 1980a) 

 

Building a DSS is a dynamic process that requires constant adaptation by the system, its 

user and its builder. The builder receives feedback from the user and must update the system to 

adjust to changing or additional needs. The user also receives feedback from the system and the 

builder regarding the feasible solutions and system capabilities (Keen, 1980a). These 

relationships can be seen in Figure 2-1. The ultimate goal of the implementation of a DSS is to 

increase productivity by improving communication, flexibility, learning and responsiveness. The 

resulting benefits of using a DSS are as follows: 

 

1. “Increasing the number of alternatives examined” 

2. “Better understanding of the business” 

3. “Fast response to unexpected situations” 

4. “Ability to carry out ad hoc analysis” 

5. “New insights and learning” 

6. “Improved communication” 

7. “Control” 

8. “Cost savings” 

9. “Better decisions” 

10. “More effective team work” 
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11. “Time savings” 

12. “Making better use of data resources” 

(adopted from Keen, 1980b) 

 

There are many different types of decision support systems. Many have analyzed and 

classified different types of systems, determining in what contexts they prove to be most useful. 

One champion of decision support technology, Daniel J. Power (2007, 2011), provides DSS 

resources and consulting on his constantly updated webpage <www.dssresources.com>. A 

summary and description of the different decision support systems are provided below in Table 2-

1. These classifications help decision makers determine which type of system could most benefit 

from their application. Power’s work in model-driven DSS proves to be particularly useful in this 

thesis. 

Table 2-1: Decision Support System Classifications 

Decision Support 

Classification 

Details Example 

Communication-

Driven 

Collaborative system which has been developed to 

help a decision maker (DM) identify and solve 

problems and, ultimately, make decisions using 

support from another DM or a group 

Bulletin board, email 

thread 

Data-Driven Involves the use of database information from internal 

and external sources 

Data warehouse, 

ERP 

Document-Driven Revolves around the organization and retrieval of 

documents in a central location 

Lexis-Nexis, 

InfoSys, UNCOVER 

Knowledge-

Driven 

Computer-based system which relies on data mining 

to recommend solutions 

Database 

Model-Driven Decision support systems which revolve around a 

model which could be statistical, financial, simulation, 

etc. and allows for updates and trial-and-error analysis 

Decision tree, utility 

model, Bayesian 

model 

Spreadsheet-Based Spreadsheet allows for easy manipulation and 

visualization of data. DSS can be made up of model-

driven, data-driven or both. 

Solver optimization 

Web-Based Accessible online through a web browser and often 

incorporates other DSS classifications 

Online data records 
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2.3.2 Applications 

With modern technology, the development of powerful model-driven decision support 

systems in particular has grown rapidly. These decision support systems assist with production 

ramp-up and other related manufacturing operations. Power and Sharda (2007) analyze the most 

current applications and research areas for model-driven DSS. They demonstrate the need for 

more wide-spread use of decision support technology and show how it can reduce costs and 

increase flexibility of decision makers. They also stress the importance of more state-of-the-art 

DSS development software. Such software that would allow for multiple models to be developed 

and run concurrently would greatly increase the complexity of decisions that could be optimized. 

This type of technology is precisely what is being examined in this research, as few DSS 

packages allow for mathematical programming and simulation models to be integrated and work 

in tandem. Power and Sharda challenge researchers in the field to develop more complex model-

driven decision support systems that would help increase knowledge about the tools and further 

research in the field. 

Researchers have used DSS technology to support operations throughout all fields. One 

highly researched area in particular is DSS for naval applications. De Boer et al. (1997) built a 

system to assist with ship maintenance capacity planning, and Greenwood et al. (2005) used 

simulation optimization techniques integrated into a DSS package to analyze ship panel 

manufacturing operations. This decision support system is of particular interest because of its 

employment of optimization heuristics and a simulation model to produce alternative solutions. 

The DSS helped decision makers at Northrop Grumman Ship Systems better sequence panel 

production and improve resource allocation during the process. The user of their system inputs 

data, such as the production schedule, panel characteristics and job standards. This data set is 

converted into a form that the simulation model can read. The performance of the system is 
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evaluated, and then the optimizer generates an alternative solution. This process continues until 

significant improvements are no longer seen. Both the simulation and optimization models run 

completely in the background with no direct user interaction. The general schematic of the DSS 

and how it interacts with the decision makers and the actual system can be seen in Figure 2-2. 

The resulting product of the project was a very simple to use tool, which decision makers could 

use with little or no knowledge of advanced simulation or optimization techniques. A similarly 

structured process and integration of the decision support system is used in this thesis in order to 

solve the production ramp-up problem. 

 

Figure 2-2: High-Level DSS Process Flow (adopted from Greenwood et al., 2005) 

 

Another application of decision support system research that has become more common 

is that of manufacturing resource planning. Complex decision making tools can help managers to 

plan resources to meet schedule needs for both the short and long term. Cox and Adams (1980) 

produced a DSS tool which uses forecasted demand, production plans, the master schedule, 
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material requirement plans and capacity requirements to determine if due dates are attainable. It 

also produces financial statements for the projected amount of production and calculates the 

workloads for the equipment. Such a system can require many man-hours to design and 

implement, but the cost savings can be substantial. 

There has been an evolution in DSS research, and the field has grown as manufacturing 

has become more complex and companies are faced with producing a larger number of more 

diverse products. Much of the last century’s research in the field involved optimization modeling 

using mathematical programming and a three-step approach. Optimization models first are 

formulated, an optimal solution is found, and then examination and what-if analysis are 

performed on the solution. The future of DSS research will find new applications in innovative 

areas outside of manufacturing, newly surfaced software tools and a newly found appreciation for 

the tool (Shim et al., 2002). 

2.4 Optimizing Production Ramp-Up 

2.4.1 Optimization Techniques for One Time Period 

Many analytical and heuristic approaches have been applied to optimize ramp-up 

problems. Some of the most commonly practiced forms of optimization include mathematical 

programming and queueing theory. These techniques can be especially useful when approaching 

problems of capacity analysis. This section will discuss some of these methods and how they can 

be applied to real-life scenarios. There is a wide array of applications for the optimization 

techniques, and they can be of use in both single and multiple time period analyses. 

 There is an extensive amount of research performed using mathematical modeling 

focused on allocating manpower and machines for one defined time period. Dallery and Frein 
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(1988) use analytical modeling in order to determine the optimal configuration for a flexible 

manufacturing system (FMS). They describe why they chose the method they did by saying: “The 

advantage of using analytical models as opposed to simulation is that they are easy to both 

develop and run. This is attractive for performance evaluation and even more so for optimization 

purposes” (pg. 208). Their formulation of the closed queueing network minimizes the cost of 

configuring machines to meet a prescribed level of throughput. They then marginally increased 

the number of machines in the network for each class of customer and stopped when the desired 

throughput was reached. The use of mathematical modeling in this case allows for quick marginal 

analysis. Small models can be run relatively quickly; therefore, many different runs using new 

inputs can be made and examined to determine what would happen differently with different 

configurations or numbers of machines. This is one important advantage to using mathematical 

modeling. 

Dallery and Stecke (1990) continued research in the area of server allocation. Their paper 

determines the optimal allocation of servers into multi-server workstations by using a 

decomposition method which isolates independent components of a closed queueing network. 

The theorems that are proposed generate three rules when assigning a flexible manufacturing 

system’s configuration. The three rules are as follows: 

 

1. For any machine type for which there are no physical constraints, group all machines 

into a single group (Proposition 1). 

2. For any machine type for which the group sizes are prescribed and equal for the 

different groups, the optimal workload allocation is balanced within this machine type 

(Proposition 3). 

3. For any machine type for which the maximum group size is limited and such that the 

total number of machines of this type is a multiple of this maximum size, the server 
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allocation is balanced and each group size is equal to the maximum group size. The 

workload allocation is balanced (Conjecture 2, pg. 701). 

 

This rule set is useful when determining the optimal allocation of servers in a single class 

network with a given workload for the system. Its application, however, is limited to this 

individual instance and the system presented by Dallery and Stecke (1990). The problem becomes 

more complex when different workloads are applied to the system over different time periods and 

planning for future configuration adjustments. Such a configuration method is necessary when 

trying to optimize the configuration as production experiences ramp-up. 

 Others have also dedicated much of their research to solving machine allocation 

problems. Boxma et al. (1990) and Frenk et al. (1994) used marginal analysis to solve these 

machine allocation problems. Marginal analysis, or the evaluation of a particular activity’s 

additional benefits against its additional costs, is often used in correlation with optimization 

techniques to perform sensitivity analysis. The effects found can often be as important as the 

solution and can help decision makers better understand the underlying components in their 

system. Boxma et al. looked to solve the server allocation problem by modeling the 

manufacturing system as a network of queues. They used marginal analysis to optimally allocate 

the servers with two goals in mind. First, they kept the work-in-process at a target level and 

minimized cost by changing the number of servers in the system. Second, they tried to minimize 

the amount of work-in-process by keeping the number of servers fixed. The algorithms that use 

this marginal analysis approach were first developed by Fox (1966) and have been used 

extensively by other researchers including Dyer and Proll (1977), Rolfe (1971) and Weber 

(1980). Fox’s approach begins with an infeasible allocation of machines and adds servers 

strategically to where they make the largest improvement. Once a feasible solution is found, the 

algorithm ends, leaving the user with a sufficient solution. This approach does not take into 
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account all of the details of the system, including restrictions on interchanging machines, so it 

may not provide a completely reasonable solution (Boxma et al., 1990). 

 Continuing on this line of research were Frenk et al. (1994) who improved the machine 

allocation algorithm, originally created by Fox (1966), and applied it to semiconductor 

manufacturing. Similarly, the problem was to determine the minimum cost allocation of machines 

by still meeting the system’s production target. They also provide a worst-case analysis to show 

the robustness of their improved algorithm. Their algorithm is applied to a semiconductor 

manufacturing system which was modeled as a queueing network by Van Vliet and Kan (1991) to 

test their allocation algorithm. Frenk et al. show that their algorithm results in a substantially 

smaller average relative error than the algorithm proposed by Boxma et al., making it a better 

methodology to use and apply to other resource allocation problems. 

 The resource allocation problems can also be examined on a larger scale. Cohen and 

Moon (1990) and Billington and Davis (1992) researched areas of resource and capacity analysis 

of entire supply chains in the early 1990s when interest grew after the advancement of flexible 

manufacturing systems. Billington and Davis carried on Cohen and Moon’s investigation into the 

effects of economies of scale and the optimal logistics and transportation cost on supply chain 

optimization. They added new decision variables to the linear cost model which functionally open 

and close distribution centers and determine if a distribution center would service a particular 

customer zone. Additional constraints were also added to incorporate these decision variables, 

and this led to a more complete cost analysis of the supply chain. This new model was applied to 

a case study involving a Hewlett-Packard manufacturing reconfiguration. The model proved its 

effectiveness when it produced a savings of more than $15 million per year and a solution that 

senior management had not initially considered. These mathematical programming strategies can 

help find improved or optimal solutions not only for individual manufacturing systems but also 

for entire supply chains.  
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2.4.2 Optimization Techniques for Multiple Time Periods 

Optimizing resource allocation during multiple time periods becomes more difficult as 

more time periods, resources and product types are added. Not only is throughput or work-in-

process a driving constraint but so are other periods and their required configurations. Most 

research in this area is more recent as it often requires faster and more powerful computers to 

solve problems with large numbers of variables. With an older technology, the use of the 

mathematical programming techniques becomes less attractive to decision support system 

creators, since accurate decisions are often needed in a timely fashion. Still there is much less 

research that has been performed that analyzes this problem over multiple time periods. Very few 

researchers have examined this problem focusing on resource allocation. Much of the focus has 

been directed to analyzing the learning curves and the amount of process change involved with 

production ramp-up (e.g., Carrillo and Gaimon, 2000; Terwiesch and Bohn, 2001; Terwiesch and 

Xu, 2004). 

2.4.2.1 Learning and Process Change 

The process of production ramp-up, like any other manufacturing operation under 

development is dynamic. Production and the evolution of the process are not fixed as the 

company is trying to determine not only the best way to manufacture a good but also the best way 

to manufacture more of that good. During this period of scaled-up production, many deviations 

from the prescribed method of production occur. Determining quick solutions to problems is 

important in order to maintain a certain level of production, and these solutions are not always 

planned for but are necessary. These discrepancies can change the production process from how it 

was intended and first planned to operate but are more difficult to avoid with larger ramp-ups. 
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Terwiesch and Xu (2004) define the reduction of these discrepancies as the process of learning. 

This process is a necessary part of any ramp-up, and its goal is to improve the yield and output of 

the production process. There is also another component to learning, process change, which is 

often necessary but counterproductive. Companies look to improve their processes by changing 

them. The end goal of process change may also be to improve yield and output, but more learning 

is necessary to understand the changes and reduce discrepancies from the way the process was 

originally designed. 

Terwiesch and Xu (2004) developed a non-linear model which had been studied 

previously by researchers who explored the area of learning, and they applied it to production 

ramp-up. The deterministic, profit-maximization model uses the company’s production rate, 

amount of process change and learning effort over time to maximize profit over the production 

ramp-up period. The model is closely related to one generated by Carrillo and Gaimon (2000) that 

also takes into effect the detrimental effects of process change. Their non-linear model as well as 

that by Terwiesch and Bohn (2001) uses capacity loss of the company to model the effects of 

process change. While the company loses capacity for the short term, it gains knowledge. 

Terwiesch and Xu’s new model does not assume the company gains knowledge just by changing 

the process, but it allows the company to reach a new frontier after additional learning takes 

place. Due to the detrimental effects of process change to a production ramp-up period, 

Terwiesch and Xu propose a “copy-exactly” strategy and propose some characteristics under 

which it will work best. Under this type of strategy, a company implements the exact production 

process that it used during product development in the full scale manufacturing of the product. 

The results of the Terwiesch and Xu (2004) model determined several important 

characteristics that are important to companies who plan to ramp-up using a strategy of least 

process change. First, ramp-up processes with little starting knowledge would benefit from a copy 

exactly, or “CE-ramp,” because of their ability to quickly learn with small investments. Ramp-ups 
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that are difficult to improve or very sensitive to change would also benefit because of the high 

cost incurred when changing any aspect of the system. Lastly, ramp-ups with shorter lifecycles or 

steeper demand growth will also benefit from a CE-ramp. These types of products benefit 

because it is more important that yields are kept as high as possible during the short time period 

when demand is high. At the same time, process change is delayed so as to not disrupt the shorter 

time frame, which holds a higher opportunity cost. Although it may seem impossible to avoid 

process change, in some ramp-up scenarios it is important and beneficial to avoid or delay 

process change as long as possible. Oftentimes, this technique is employed in the high-tech, 

semiconductor industry where product lifecycles are short, demand growth is steep and process 

change is expensive. 

2.4.2.2 Resource Allocation 

 Other researchers have focused less on learning and process change during ramp-up and 

more on equipment and machine expenditure. Huang et al. (2006) wrote: “Equipment expenditure 

generally accounts for a substantial portion of total investment capital in a typical job shop. 

Therefore, manufacturing companies… must deal with the important problem of how to allocate 

and expand the processing machines used in their job shops in a step-by-step fashion” (pg. 148). 

It is often too expensive to upgrade all equipment at once, and job shop management must decide 

which piece of equipment to invest in first. They must bring the equipment online in such a way 

that will also not disrupt the flow of production. Allocating machinery incorrectly can create 

bottlenecks, idle machinery, early depreciation, a large amount of work-in-process and poor 

efficiency, all which create poor manufacturing and financial reports. 

 The Huang et al. (2006) approach seeks to meet specific performance targets for each 

period of the ramp-up process while minimizing machine investment. The integer-planning 
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formulation that they developed explores each period individually and uses the previous period’s 

workstation allocation strategy as a starting point for the new period. Huang et al. term this 

strategy the “forward recursive scheme with improved marginal analysis.” It essentially optimizes 

each period individually running an adjusted math program for each new time period of increased 

production. This technique helps produce a solution very close to the optimum. Their strategy is 

applied to a ramp-up problem at a new virtual semiconductor manufacturer with 78 workstations 

and produced savings of over $17 million in machine procurement costs. The conclusion drawn 

from their study was that the solution technique was very practical and could be applied to 

manufacturing systems that are even less complicated than the semiconductor manufacturing 

problem. 

 When analyzing a production ramp-up problem, it is critical to take into account multiple 

time periods. By the nature of the problem and how manufacturing companies ramp-up 

production of their products, a step-by-step progression of machine expansion is necessary. One 

large investment in the beginning would be unreasonable and would produce a large amount of 

excess machine capacity before the company could catch up with other aspects of the production 

system. Mathematical programming techniques, including linear and integer programming, can 

be used to optimize each period individually, as was the strategy used by Huang et al. (2006), or 

it can optimize all periods simultaneously, which can help with the synchronization between time 

periods. Math programming techniques are not the only ones that can help optimize the machine 

expansion scheduling problem, but they are also one of the most widely used. 

2.5 Simulating Production Ramp-Up 

Despite their similar uses and shared goals, simulation is not optimization. Simulation has 

been widely used for many different manufacturing applications especially as computer power 
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improves and the number of simulation software packages increases (e.g., Harmonosky et al., 

1999; Couretas et al., 2001; Rosen et al., 2008; Eklin et al., 2009). It can be used to determine or 

predict the performance of a system. It will not tell the simulation analyst how to adjust the 

system to make it better. Some software packages will incorporate optimization tools, but 

simulation is generally not regarded as an optimization tool (Armstrong and Hax, 1974). Its 

usefulness often comes in how it can be easily manipulated to perform marginal analysis on a 

manufacturing system. The simulation will update statistics that can help an analyst determine 

beneficial changes to the system. It will also show how the system will perform under stochastic 

conditions based on user-selected distributions for different variables. 

 Production ramp-up is a dynamic process where the manufacturing system is constantly 

changing to increase production to a higher level. Significant stages during the ramp-up process, 

including the initial and final states, can be modeled to simulate production during different 

phases of the ramp-up. This can be helpful during long-term ramp-ups or those with progressive 

stages throughout. Manne (1961, 1967), who was one of the pioneer researchers in the area of 

capacity planning and expansion, took this very approach of planning a ramp-up based on regular 

intervals. His first paper in 1961 discusses capacity planning for a plant and how to optimally 

equip the facility with excess capacity for future use. Manne does this by producing a 

probabilistic model that minimizes an expected cost function. In his subsequent paper, he 

determined that the optimal ramp-up policy for linearly increasing demand is for a plant to add 

machinery at specific intervals and that this will lead to the optimal plant capacity for a given 

demand. Much of the focus of his papers was in the distribution of the demand, and he 

demonstrated the importance of the demand as an input to the problem. Researchers after him 

have tested the problem using different demand growth distributions, showing the robustness of 

his optimal plant growth policy (e.g., Couretas et al., 2001; Klemmt et al., 2009). 
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2.5.1 Simulation as a Performance Evaluator 

Determining the performance of a production ramp-up and its associated fixed asset costs 

has been generally approached using static techniques. Many production managers find it difficult 

to learn a simulation language and resort back to these inflexible methods or simple queueing 

methods of solving capacity-related issues. However, the evaluation of a manufacturing system’s 

performance and how it is correlated with demand on the system requires a dynamic evaluation 

technique. This is where simulation has proven useful. When system inputs such as resource 

availability are variable, techniques such as linear programming and queueing theory do not 

prove to be as useful or as accurate as simulation. Using simulation for such performance 

evaluation methods also allows the demand and other input factors to be tested both on discrete 

and continuous scales (Couretas et al., 2001). 

 Manufacturing cost is an important performance metric for most companies. Since a cost 

can be assigned to different parts of an operation, many companies use cost as a metric to 

determine if a project or configuration is feasible. Beginning in the 1990s, simulation helped 

many companies make more accurate estimations of operations costs. The use of simulation 

allowed for better automation of the process and increased the popularity of activity-based 

costing. Using simulation, processes could now be simulated activity-by-activity, making 

movements and actions more visible (Takakuwa, 1997). Costs can then be assigned to each of 

these motions, which allowed for more accurate estimations of cost. 

 As the importance of activity-based costing was seen across many industries, economic 

value added (EVA) analysis became another important tool to measure profitability. EVA is 

especially important to a production ramp-up problem because it takes into account the total cost 

of capital, and capital expenditure is generally the largest cost incurred during ramp-up. EVA also 

helps tie in the different business divisions’ roles and is a good indicator of how management is 
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performing. It is regarded as especially important to shareholders as it is an indicator of cost of 

equity capital, and it attempts to match the timing of capital expenditures with the resulting 

payoffs (Couretas et al., 2001). This component is especially important as shareholders look to 

see how long the payback horizon is for any large expenditure. The longer the horizon, the higher 

the risk involved. Shareholders are less willing to fund projects where they will not see their 

money back until 10 or more years down the road. This demonstrates the importance and need for 

a quick and efficient ramp-up procedure that will quickly produce return on investment. 

 It is particularly important to use key performance evaluators when using a dynamic 

simulation to analyze a manufacturing system. The performance measures can easily be obtained 

as statistics of the model and will help validate the model’s functionality. The Couretas et al. 

(2001) model was developed from extensive research from Zeigler (1984, 1990), Zeigler and 

Praehofer (2000) and Couretas et al.’s prior work in 1998 and 1999. It was built to exhibit 

simulation-based manufacturing capacity analysis. This analysis found an optimal balance 

between manufacturing capacity and work-in-process. It used performance measures such as 

return on net assets (RONA) and return on operating assets (ROOA), which take into account 

short and long-term capital investment strategies. Measures such as these help evaluate solutions 

in the simulation model and create local optimal solutions. The model created by Couretas et al. 

(2001) used quarterly demand level, fixed machine costs, failure/repair times, processing times, 

processing yield and administrative polling time as input parameters for the model. These 

parameters fed the simulation model which presented the user with outputs such as machine 

availability, line utilization, cycle time, work-in-process, RONA and ROOA. Two different 

approaches were considered: “optimistic” and “conservative.” The optimistic approach liberally 

adds capacity, whereas the conservative adds just enough to produce the period’s projected 

demand.  



25 

 

The conclusion from Couretas et al. (2001) is that simulation provides a useful but 

limited instrument for solving capacity planning problems. The method was tested using only one 

product stream and assumed that instantaneous additions of work cells could be made. It was also 

a considerably complex model that the authors found to be difficult or impossible to solve 

without a program supporting distributed simulation. The results show that the method supports 

Manne’s suggestion of adding capacity at constant, defined periods. This “conservative” 

technique provides the adequate capacity expansion with lower overall investment for the 

company (Couretas et al., 2001), and the methodology provides a general underlying structure 

that is applicable to many different optimization problems. Their research brings up many new 

directions and demonstrates the functionality of simulation in quantifying production ramp-up 

performance. 

Like the model developed by Couretas et al. (2001) that judges a system’s performance 

based on RONA, ROOA, utilization, cycle time, etc., Rosen et al. (2008) demonstrate the 

importance of analyzing system designs using multiple performance measures. Using only one 

performance measure to assess system performance, an area that has been researched extensively, 

can limit a method’s ability especially when more complex models with conflicting performance 

measures are involved (Rosen et al., 2008). Such models cannot be formulated using a simple 

cost function. Rosen et al. provide many suggestions about new approaches to solve multiple 

objective simulation problems. One suggestion was to include simulation optimization 

techniques, which better incorporate the user’s risk and uncertainty preferences. This problem 

could be approached by using different methods including the multiple attribute utility method, 

which uses a utility function to capture the end user’s preferences, or a metamodeling approach 

such as response surface models or neural networks, which would provide a non-dominated 

solution and allow the user to evaluate the solution based on personal preferences. Rosen et al. 
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show that this area of simulation is still wide open with new topics to be developed allowing for 

more complex simulation tools and applications. 

2.5.2 Simulation-Based Marginal Analysis 

Simulation can also prove to be a useful tool for marginal analysis of a system’s 

performance. The addition, subtraction and rearrangement of machines, the workforce and the 

overall work flow can easily be manipulated before a large capital investment is made. This tool 

has widely been used by production managers to test the performance of their systems and see 

where they can make the largest improvement with the smallest change. Many different scenarios 

and combinations can be tested in a small amount of time allowing for greater probability of 

finding a sufficient solution. Most simulation languages can also accommodate small details in a 

system, which makes the model highly accurate. Marginal analysis is an important procedure in 

examining the additional benefits of a change to the system compared to the additional costs. The 

use of simulation has only broadened the capabilities and ease of performing this analysis 

technique. 

Though not much research focuses solely on marginal analysis, it is generally used to 

compliment optimization problems or the analysis of production systems. Rubinstein (1989) 

provides a strong background into the methods for using simulation and sensitivity analysis of a 

particular performance measure. All of the sensitivities and performance estimation methods that 

he produced can be made straight from the simulation model itself. Harmonosky et al. (1999) 

showed how marginal analysis helped save money during the ramp-up of high density 

interconnect (HDI) modules for Lockheed Martin Government Electronic Systems. Their 

simulation model interfaces with costing software to help make the best decisions when designing 

the higher-capacity lines. Eklin et al. (2009) also utilize marginal analysis when developing their 
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model that also optimizes a shop floor layout using costing estimation. Different researchers have 

used similar techniques of optimizing diverse system using marginal analysis and applying these 

methods to unique case studies that show its extensive applicability. 

The method that Rubinstein (1989) presents, the “score function (SF)” method, was 

unique in that it simultaneously estimates the driving objective value as well as its associated 

sensitivity information. He justifies the method’s practicality by saying that most people who are 

trying to optimize a given system are interested not only in its optimality but also its sensitivity to 

changes. The sensitivity components that he studies in particular are the gradient and Hessian 

metrics. This makes it a realistic methodology to follow for systems, such as reliability systems, 

stochastic networks and queueing networks. He also demonstrates that the performance measure 

for his model, the efficient score, is simpler and requires less computation than a general 

performance estimate. The Rubinstein model is also open to improvements including several 

variation reduction techniques. This research drew on much of the earlier research on 

performance measurement and sensitivity analysis (e.g., Law and Kelton, 2000) and helped 

develop new applications for simulation and marginal analysis. 

Harmonosky et al. (1999) focused on the interaction between cost-optimization software 

and the flexibility of simulation modeling. Cost is often the driving performance measure for 

many simulation optimization problems, so the interaction between discrete event simulation and 

costing software, which can estimate costs for auditing and proposal purposes, can be useful and 

applicable across many industries. The costing software, however, cannot accurately estimate 

costs for a manufacturing ramp-up problem that incorporates variability, competition for 

resources and material handling operations. The costing software provided baseline inputs for the 

simulation model which produced extensive output to calculate total costs using explicit cost 

equations. The model was then run for different scenarios that altered either the inter-arrival time 

of parts, the number of workers, the number of skills per worker or additional equipment. The 
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resulting work-in-process, labor, scrap, tardiness penalty and total costs were calculated using the 

derived cost equations to compare the scenarios and find the optimal configuration. Though the 

cost and throughput values may change, the report provides a method for sensitivity analysis that 

is applicable to many different scenarios. It also demonstrates the practicality of using an 

optimization technique to feed a simulation model. This gave their analysis more flexibility to 

handle the system’s inherent variation and created a more robust solution. 

Eklin et al. (2009) took a different approach to solve a similar capacity-related problem 

of a shop floor. Unlike other research, the model they developed takes into account the stochastic 

behavior that is associated with a shop floor. The simulation model also uses cost estimation to 

determine the optimal shop floor layout. Marginal analysis is used to measure the difference in 

total cost after adding one additional order. The technique used in the report runs a simulation 

model to test a linear program’s output and then recycles the data back to the optimization 

procedure until a suitable feasible solution is found. Their solution method improves on a 

decision support system developed by Feldman and Shtub (2006) that helps managers decide 

whether or not to accept a new product order. Their model minimizes cost as a function of load 

on the shop floor. It follows a three-phase method that first optimizes the production volume of 

each product on the floor. It then tests the feasibility of the solution by using a scheduling 

procedure. If the solution is sufficient, it is accepted. If not, the capacity of the shop floor is 

adjusted marginally, and the problem begins again from phase 1. Eklin et al. suggest several 

improvements to the model including estimating the cost of orders marginally rather than by total 

cost and replacing the scheduling procedure with a simulation model. The process that their 

heuristic model follows can be seen in Figure 2-3. Their method improves the solution in terms of 

cost as well as CPU time. Their method was more accurate in its cost estimation because it takes 

into account not only processing time, but also idle machine time as well. The model also limits 

the amount of time a product can remain in the system to improve throughput and eliminates a 
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weakness of the original procedure that could lead to missed feasible solutions by making too 

large of a capacity update between subsequent runs. 

 

Figure 2-3: Process Flow Diagram of Heuristic Model (adopted from Eklin et al., 2009) 

 

The use of costing software and other programs to optimize a system or an equation 

provides the first look at techniques of solving simulation optimization problems. One such 

technique is using mathematical programming to produce the input needed to feed the simulation 

model. This similar approach was seen in the method used by Harmonosky et al. (1999) to create 
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a robust solution to a capacity expansion problem and by Eklin et al. (2009) to optimize shop 

floor capacity. In the following section, this topic of utilizing optimization techniques with 

simulation and the current research methodologies will be discussed in more depth. 

2.6 Simulation Optimization 

It is important to emphasize the difference between simulation and optimization. 

Simulation models are built to provide a detailed, realistic solution to a system that may be too 

complex to write a mathematical programming for or use another optimization technique to solve. 

The simulation will not provide the optimal solution. Mathematical programming models will, on 

the other hand, provide the optimal solution, but they are not subject to any variation. This allows 

optimization techniques to generate “optimal” values that can be used in a simulation model of 

the system under investigation. The simulation model then can determine how robust the solution 

is and if the solution is optimal or close to optimal in a more detailed model. Although these two 

techniques are often regarded as the two most widely used operation research tools, the 

combination of them on a large scale is not yet available (Fu, 2007). 

Simulation optimization is a subcategory of optimization that is becoming more popular 

as manufacturing systems become more complex and difficult to simulate. A simulation 

optimization problem can be defined as an optimization problem where the constraints, objective 

function or both can only be evaluated using computer simulation (Caricato et al., 2008). The 

problem cannot be solved using standard analytical techniques. Even though the field has been 

rapidly growing with new software available and faster computers to run more complicated 

models, it is important to create optimization algorithms that are as efficient as possible so they  

solve in a reasonable time. 
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Fu et al. (2008) provide a tutorial of simulation optimization, offering approaches and 

discussion of several areas of research. Approaches to simulation optimization problems include 

sample path optimization, sequential response surface methodology, stochastic approximation 

and deterministic metaheuristics. Sample path optimization, also known as sample average 

approximation, seeks to use a large enough sample size to eliminate the stochastic nature of the 

problem. This way, non-linear programming tools can be applied. Sequential response surface 

methodology provides algorithms that utilize statistical methods, such as regression, to search the 

feasible space for superior solutions. The stochastic approximation method uses algorithms that 

mimic gradient methods in non-linear optimization to converge asymptotically on an acceptable 

solution. Lastly, the deterministic metaheuristic category includes many approaches including 

genetic algorithms, tabu search, scatter search and other iterative algorithms. These techniques 

involve little statistical considerations, but prove to be useful in solving simulation optimization 

problems. 

2.6.1 Simulation Optimization Techniques for Scheduling Problems 

 The scheduling problem is one that all production systems face, and solving it is critical 

to organized operations and reaching potential production capacity. Many researchers have 

looked into this problem in the past, solving it using different methods, and it has been explored 

in more depth than the production ramp-up problem. As far back as 1959, mixed-integer 

programming (MIP) techniques were used by Wagner (1959), Bowman (1959) and Manne (1960) 

to solve small scheduling problems. These solvers were not particularly relevant because of their 

small size, and adding more objects makes the problem grow very rapidly to an unsolvable scale. 

In recent years, a movement from these mathematical solving techniques, such as branch and 

bound, to more heuristic approaches, such as simulation-based optimization, has taken place 
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because of its flexibility (Klemmt et al., 2009). New computing power has allowed for more exact 

scheduling solutions to be produced in a shorter amount of time. Recent research has revealed the 

benefits of using simulation optimization to solve real scheduling problems that modern 

technology makes manageable. 

 Much research was performed by Pinedo (2009), who developed and popularized many 

mathematical programming techniques to solve job shop scheduling problems. He demonstrated 

how the problems could be formulated as both mixed integer and disjunctive programs. Pinedo 

preferred to use disjunctive programs as they could initially take into account some ordering of 

jobs on a single machine. These mathematical formulations as well as Pinedo’s research in 

genetic algorithms helped Klemmt et al. (2007) develop their simulation optimization technique 

which proved to be both highly flexible and accurate. Their “global iterative operating (meta-) 

heuristic” is a cyclic approach that first runs a simulation model and then updates an objective 

function value using a heuristic optimization algorithm. A diagram of this cyclic approach is 

shown in Figure 2-4. 
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Figure 2-4: Simulation-Based Optimization (adopted from Klemmt et al., 2009) 

 

Klemmt et al. (2009) used a more generic mixed-integer programming (MIP) formulation 

when applying his simulation optimization approach to a job shop scheduling problem. The 

advantages and disadvantages of using a solver and a simulation approach are discussed and 

summarized in the Table 2-2. Using simulation in solving the scheduling problem allows for the 

simpler MIP to be used, and its interface allows the user and an underlying enterprise resource 

(ERP) system to quickly and easily enter the large amount of data needed to run the simple math 

program. The MIP model takes into account additional information that restricts the optimal 

solution, including release dates, due dates and setup data. The math model, which generally 

requires more training to develop and understand, is automatically generated for the user from the 

simulation. This makes the tool a very easy-to-use decision support tool that can solve practical 

problems because of the reduction in variables created from unique index set definitions. The 
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system developed is flexible for job shop scheduling, especially in real-time, and can also be 

interfaced with most simulation languages with only slight modifications. 

Table 2-2: Comparison of Simulation-Based and Solver-Based Optimization (adopted from 

Klemmt et al., 2009) 

 

 

 

A similar approach was used to optimize a job shop scheduling problem by Yan and 

Wang (2007). The simulation model they developed evaluates the performance of proposed 

scheduling plans and feeds the results back into a genetic algorithm module, which then 

formulates the next generation of candidate plans to be tested. The genetic algorithm module that 

is used guides the system to superior solutions using a series of scheduling rules. This cycling of 

information between the genetic algorithm and the simulation model continues until a satisfactory 

scheduling solution is found. Their simulation model incorporates control logic from shop level, 

cell level and the equipment level, which is often overlooked, but adds flexibility and reusability 

to their model. They show from their simulation model that it is advantageous to assign individual 

scheduling rules to each machine rather than an identical scheduling rule to all machines. 

There has been a wide array of research performed on optimization modeling of 

scheduling problems. It is particularly useful to examine such techniques that were applied to a 
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job shop application. It is clear that similar techniques can be applied to optimization of other 

aspects of a job shop manufacturing system. 

2.6.2 Simulation Optimization Techniques for Resource Allocation Problems 

Simulation optimization techniques have proven to be useful in solving scheduling 

problems, but they can also be useful when determining the optimal allocation of resources in a 

production system. Resource allocation problems look to determine the optimal number of 

machines, workers, tools, inventory, etc., in order to achieve a certain performance measure such 

as throughput. The resource allocation problem can be equally important, if not more important 

than the scheduling problems that a manufacturing floor faces. Without an adequate number of 

machines to perform all necessary jobs, it is inevitable that products will be left unfinished or 

machines will have excess capacity. Decision makers are often more interested in resource 

allocation because the investment associated with it is generally substantial, and it can drastically 

affect the outcome of a project from the start. There is a limited window of opportunity to 

purchase the correct quantity of machines at the beginning of a ramp-up project, whereas the 

schedule can be adjusted periodically depending on performance as well as new product 

requirements. 

Though simulation is often used to analyze systems with high complexity involved with 

the number of components and their interactions, techniques have been proposed to map a 

discrete event system into a mathematical program. This alternative method of modeling was 

proposed by Schruben (2000) who represented the system as an optimization model minimizing 

the sum of event times, which attempted to execute each activity as early as possible. His model 

was constrained by the routing of customers, limited buffer capacity and waiting times. This 

model was extended further and analyzed for single-server tandem queues by Chan and Schruben 
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(2003). They demonstrate how their model, which they solve using the linear model’s dual 

problem, can be also applied to multi-server tandem queues as well. They also later examined 

how discrete event systems could be modeled by using the structural properties of systems and 

how to route entities through the shortest network paths. Matta (2008) researches this with 

particular interest in how to optimally allocate resources in a production flow line system. She 

develops three types of mathematical programming representations, including a mixed-integer 

linear program, a linear approximation model and a stochastic programming model of a discrete 

event system that perform the optimization while many of the performance measures are 

calculated using standard queueing equations. It is determined that the linear approximation 

model proves to be a useful fast search technique when trying to find more optimal areas of the 

solution space, whereas the stochastic programming model is more exact but also limited to small 

search areas. She applies her models to a production flow line problem, but it can also be applied 

elsewhere such as kanban, CONWIP and assembly systems. 

The problem of flow shop configuration was also solved using discrete event simulation 

and mathematical programming tools in a method designed by Caricato et al. (2008). Their 

method centers around a multi-objective math program that attempts to minimize both the 

number of workers required to maintain the flow line and machine underutilization. Due to the 

different nature of the objectives, it is difficult to assimilate the two functions into a single 

objective, such as a cost function. In order to solve the problem, an integer program was 

formulated to optimize the second objective using every possibility of the number of workers that 

could be assigned to the line. The best solutions were set as inputs for the simulation, which 

provided the non-dominated, Pareto-optimal solution. The hybrid technique, shown in Figure 2-5 

below, was tested against the commercially available simulation optimization software, 

OptQuest, and proved to provide a superior solution. It also solved in less time than the OptQuest 
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set because the proposed method was able to limit the number of simulation runs to those which 

would provide suitable solutions. 

 

 

Figure 2-5: Model Overview where η is Number of Workers (adopted from Caricato et al., 2008) 

 

Solving resource allocation problems using simulation optimization is common due to the 

complexity of different types of modern manufacturing systems. Such a technique has been used 

to analyze job shop production systems for several different applications first by Armstrong and 

Hax (1974) and then in a flexible manufacturing environment by Schriber and Stecke (1987). The 

simulation optimization technique was endorsed early on by Armstrong and Hax to analyze the 

design of a naval tender job shop. The goal of their model was to optimally configure the job 

shop’s machines and workers by minimizing cost. They also wanted to determine if the job shop 

should invest in numerically-controlled (NC) machines and how many should be purchased. NC 

machinery was a new technology at the time of the paper’s publication, so it was a large 

investment for the company seeking to upgrade its manual lathes and machining centers. The 

model did take into account multiple time periods; however, demand remained relatively steady 
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throughout, so it was not a ramp-up problem. After the optimization of the mathematical model, 

the simulation model was then used primarily to test how the configuration functions with the 

different product routings in the job shop. Based on the nature of a job shop, there are many 

products with different sequences of processes. Simulation proves to be very useful when testing 

many scenarios with differing levels of uncertainty. It also allowed Armstrong and Hax to ensure 

that their mathematical model was correct by running the simulation with the manual and NC 

machine configurations of interest. 

Schriber and Stecke (1987) used mathematical programming and simulation to determine 

the optimal level of resource allocation which would maximize machine utilization in a flexible 

manufacturing system. Simulation provided a means to test certain factors of the system not 

incorporated into the optimization program due to the difficulty in accounting for them. These 

variables tested in the simulation model include secondary resources, physical layout limitations, 

secondary time requirements, operating procedures, operating interruptions and job 

characteristics, such as part routings and due dates. Lastly, the sensitivity of the machine 

utilizations was tested to determine the flexibility of the FMS operations. 

The importance of simulation optimization is evidenced by how far research in the area 

dates back. Even when the power of current computing and modeling systems was minute 

compared to the technology available today, methods of simulation optimization were being 

developed. It was clear that mathematical programming or simulation alone could not solve all of 

the scheduling and resource allocation problems of even moderately complex manufacturing 

systems. Many methodologies have demonstrated the benefits of using simulation optimization to 

model and assess all different types of production systems. It eliminates the classic trade-off 

between accuracy and flexibility and determines the optimal solution that is both exact and 

robust. 
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2.7 Summary and Research Goals 

This literature review has provided an introduction to the concepts and methods which 

have been used to solve production ramp-up and capacity-related problems. Researchers have 

used many different techniques to solve the problem which can be critical to a manufacturer’s 

success. Large investments in capital are to be made, and if the decision support technique is not 

adequate, the ramp-up process will not produce the optimal output. Techniques such as 

mathematical programming have long been used to solve such problems, and simulation has 

proven in more recent years to be a useful tool for complex manufacturing systems. More 

recently, simulation optimization techniques have been applied for problems in which the system 

is too complex for one of the techniques alone. Search heuristics, such as genetic algorithms, and 

marginal analysis have been incorporated into simulation optimization techniques to add to their 

flexibility and accuracy. 

This research aims to develop a simulation method for optimizing resource allocation 

during production ramp-up in a job shop. Much research has been done in the area of production 

ramp-up, from learning curves to capacity analysis, but few, if any, have analyzed resource 

allocation in a job shop. Research in the area is generally regarded as company specific, but 

generalizations can be made that apply to production ramp-up of job shops of any type or scale. 

Conclusions drawn from this research and the system that is developed will be applicable to 

manufacturers looking to increase throughput in job shop operations. 
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Chapter 3  
 

Methodology 

3.1 Problem Statement and Objectives 

 With the increases in competition between manufacturing companies to constantly 

deliver new, innovative products to the expanding global marketplace comes the growing 

importance of efficiently ramping-up production from the first unit to full capacity. Definite 

ramp-up strategies are not universal and cannot be applied across all manufacturing systems. This 

thesis will look to determine the optimal ramp-up production strategy in a job shop environment 

with multiple workstations and product lines. Given product demand by time period, the optimal 

number of machines required to produce the given throughput will be determined when 

considering purchasing costs of machines, operating costs and the cost associated with unfinished 

products. There are also many constraints that can further complicate the problem including 

financial, spatial, labor and other special case limitations. The ramp-up strategy in this case will 

be evaluated by several different performance measures including cost, unfinished products, 

workstation utilization, average time in queue and average time in system. These measures 

provide a wide array of information to the decision makers and will help determine the best ramp-

up strategy. 

 The main objective of this thesis is to develop a robust solution procedure to determine 

the optimal ramp-up procedure for a job shop manufacturing system. It will utilize both 

optimization and simulation techniques that work jointly to provide this solution. The solution 

procedure will also allow for manipulation and input from the user who can set target 
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performance measures and marginally alter the solution until it is acceptable. Marginal analysis in 

this system will focus on analyzing the benefits of making a change in the system to the 

additional costs of that change. The end user makes the final decision as to whether the benefits 

outweigh the costs and that the change should be realized. This part of the solution procedure is 

crucial when multiple criteria are to be considered. In contrast, sensitivity analysis will be 

performed to show the sensitivity of the output to changes in the input. Rather than adjusting the 

solution that is provided by the system, sensitivity analysis examines the effect of changes to the 

system’s input parameters. This allows the user to test input parameters in the system which may 

not be precisely known and to determine their effects on the system’s output. After the solution 

procedure and models are explained, a case study will be solved to display the system’s 

capabilities. 

3.2 Assumptions 

 Several assumptions were made about the model being tested in order to simplify the 

models and make experimentation possible. Those assumptions are listed below and describe the 

job shop discussed in the following chapters: 

1. Machines can only be added at fixed intervals between time periods. They may not 

be introduced to the system during the duration of any time period. 

2. All time periods are of equal duration. 

3. All machines in a given workstation are identical throughout all time periods. 

Machines purchased in a later time period do not experience any technological 

changes that would increase their efficiency. 

4. The number of machines or products cannot be fractional. All machines and products 

are considered to be integer. 
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5. Machines cannot be sold or removed from the system during the ramp-up phase. 

6. If a machine is utilized at any point of a time period, its associated operating cost for 

the period is applied to the total cost of the ramp-up phase. 

7. Machines do not experience failures or breakdowns. Machine failures and repair time 

are not accounted for in this study. 

8. Demand is deterministic with no uncertainty about its quantity or timing.  It is 

constant over the entire time period and is introduced into the job shop at a constant 

rate. 

9. The product mix remains constant throughout all time periods. 

10. No unfinished products are in the system when the ramp-up period begins. 

11. Products that are unfinished in a given time period are given priority to be finished 

during the following time period. Their quantity is added to the new demand for the 

subsequent time period. 

12. It is assumed that there are no spatial, labor or material handling limitations on the 

job shop system. 

3.3 Solution Procedure 

 An algorithm was created to test the production ramp-up system and arrive at an optimal 

solution that the user can adjust marginally. This algorithm describes the process that the system 

goes through in order to reach this solution and sets the criteria which the system must meet for 

the job shop being simulated. These criteria are essentially acceptable limits for the critical 

performance measures of the system. The individual user of the system can choose specific 

criteria that apply more consistently to his or her individual situation. A process flow chart of the 

algorithm’s solution procedure is shown below in Figure 3-1. An example of the process is then 
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demonstrated in the following chapter where criteria were generated to resemble that of a typical 

job shop system. 

Enter job shop 

specific data

Solve optimization 

program to get 

initial solution

Run simulation 

with optimized 

solution

Solutions 

converge?

Start

End

Send simulation 

results back to 

optimization 

program

No

Performance 

goals 

achieved?

Yes

Marginally adjust 

machines and run 

simulation

No

Yes

 

Figure 3-1: Flow Chart of Algorithm Procedure 
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 The first step in the algorithm is for decision makers to enter system-specific data into the 

system in order to tailor it to their own job shop environment. More detailed and accurate data 

entered into the system will yield a better output from the system. These data are then used in the 

optimization model to quickly generate an initial solution that is close to an acceptable solution. 

The result is run through the simulation model to test it under stochastic conditions. This tests 

how the system performs with the optimization program’s solution, outputting key performance 

measures including how many unfinished products were left during each time period. These data 

are then fixed in the optimization program, which is run again. The process repeats until the 

solutions converge and an optimal or near-optimal machine ramp-up configuration is achieved. If 

the decision makers have specific performance goals, like cost or a desired utilization, they can 

marginally adjust the solution until their desired performance goals are met. Doing so, however, 

may make the solution less than optimal. A more detailed view of the ramp-up system’s processes 

and interactions can be found below in Figure 3-2. 
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Figure 3-2: Detailed View of System Functionality 

 

The production ramp-up system is made up of three main components. These include the 

user interface, optimization model and simulation model. Initially, decision makers enter the 

system parameters that they would like to test. This information is then sent to the integer 

program to quickly determine a near-optimal solution. This solution, however, has yet to be tested 

in a stochastic environment. The idea behind this is to efficiently produce a solution in a time that 

would be much shorter than it takes a typical simulation optimization software. This solution is 

reported and displayed to the decision makers in the user interface and then passed on to the next 

leg of the system to test its robustness. 

In order to test the solution’s robustness and how it will align with the acceptable criteria, 

the solution is run through a simulation model. The integer program’s solution is passed to the 

simulation model, which will determine how the system will actually perform in the presence of 
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variability. The simulation model and the optimization model pass the solution back and forth 

until the solutions converge, and an optimal, robust solution is found. The resulting performance 

measures from this solution are compared to the acceptable criteria set by the user. The model can 

then be marginally adjusted by adding or removing machines to workstations that do not meet the 

user’s specifications, and the simulation run is repeated. The suitable solution is found when all 

of the solution criteria have been met. 

This has been a general overview of how the ramp-up system works and some of its 

benefits. In the following sections, the integer program and simulation model will be described in 

greater detail. 

3.4 Mathematical Model 

The purpose of the mathematical model in the job shop resource allocation problem is to 

quickly find a mathematically optimal solution that the simulation model can test under 

conditions of variability. The model is made in a way that it can be altered or customized to a 

certain extent to test the system under a variety of situations. The model is a pure integer linear 

program having a single objective function and multiple constraints to limit the size of the 

feasible region. 

Tables 3-1, 3-2 and 3-3 show the index sets, variable names and data sets associated with 

the integer program. These values have been changed from the actual program that was used and 

is shown in Appendix A for convenience and legibility. 

 

Table 3-1: Index Sets for Integer Program 

Index Sets 

i Workstation 

k Product 

t Time period 
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Table 3-2: Variables in Integer Program 

Variables 

xit Machines assigned to workstation i during time period t 

ykt Unfinished products during time period t 

 

 

Table 3-3: Data Sets for Integer Program 

Data Sets 

pit Purchase cost of machine i during time period t 

wi Original number of machines in workstation i 

oit Operating cost of machine i during time period t 

ukt Cost of each unfinished product during time period t 

dkt Demand for product k during time period t 

hik Hours of processing of product k in workstation i 

ai Hours of available processing time for workstation i 

T Total number of time periods 

z Target utilization of workstations 

 

3.4.1 Objective Function 

      

 



















t k

ktkt

T

t i

TiTiTiiiiiiiii

tiit

T

t i

itiit

t i

it

yu

xxoxxoxxoxo

xxpwxpMinimize

*

))(())(()1(

1

1,,,2,3,3,1,2,2,1,1,

1,

2

1

1


 

The objective function for the integer program seeks to find the minimum total cost for T 

time periods. The total cost is made up of three components – machine purchase cost, machine 

operating cost and unfinished product cost. The program does this by finding the optimal number 

of machines to allocate to each workstation in each time period and the optimal number of 
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products of each type to leave unfinished. The first parts are written in standard, linear form. It 

first sums the purchase cost of the first time period by multiplying the purchasing cost, p, by the 

difference in the number of machines between period 1 and the original state of the system. It 

then sums the purchase cost for the rest of the time periods after period 1. Next, the operating cost 

for each machine in each time period is added to the objective value. This formulation of the 

operating cost component allows for additional functionality for the decision makers. The time 

periods in this summation refer to the number of time periods the machine has been in the system. 

If operating or maintenance costs increase through the machine’s life, this increase can be 

factored into the total cost as well. Finally, the last component of the objective function is a 

penalty function used to sum the cost of unfinished products at the end of each time period. 

3.4.2 Constraints 

 The following constraints limit the size of the feasible region. The objective function then 

creates the gradient to find the optimal solution for the job shop. The first constraint of the 

formulation is the demand constraint: 
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 The above constraint’s purpose is to ensure that the demand for each product type is met 

or noted as unfinished product during each time period. The demand is calculated in terms of 

hours to more accurately determine the number of goods that should be left unfinished of each 

product type. In all periods except the first, the number of unfinished goods from the previous 

period is added to the total demand that the system must meet. Products that have not started to be 
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processed or that are not completed are considered unfinished, and it is assumed that they are the 

first to finish processing during the successive time periods. Because of this, the performance 

measure of unfinished goods looks only at the final time period’s number of unfinished goods. 

The left-hand side of the constraint contains the x and y variables and must be greater than the 

total demand to satisfy the constraint. This side sums the utilization, z, times the number of hours 

available with x number of machines for each workstation with the total number of hours of work 

that would be associated with y unfinished products. The proportion of z of the hours available 

from the workstation is used because it is the objective utilization for the workstations.  
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 Constraint (3) is a conditional constraint that controls the number of machines that are 

added to each workstation during each time period. During period 1, the number of machines 

must be greater than or equal to w, the number of machines originally in the system. For all other 

time periods, the number of machines must be greater than or equal to the number of machines in 

that workstation during the previous time period. This model of the job shop production ramp-up 

does not allow or test for decreases in machines of a certain workstation from one time period to 

the next. It is assumed that the job shop is expanding or at least keeping the number of machines 

in a given workstation steady when undergoing a time period transition. 
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 Constraint (4) is a non-negativity constraint that limits the variables to positive numbers. 

The total number machines and unfinished products must be non-negative for all workstations, 

products and time periods. 
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 Constraint (5) ensures that the number of machines and unfinished products are integers, 

since fractional numbers are illogical. Constraints (4) and (5) together ensure that the variables 

are of the correct number type and set, i.e., non-negative integers. 

3.4.3 Solution 

The solution of the integer program, made up of the objective function and subsequent 

constraints, will provide the optimal number of machines needed in each time period and the 

number of products that should be left unfinished through the ramp-up period for the minimum 

cost ramp-up process. This solution is the optimal under a deterministic environment, which may 

not be the most accurate for a system which inherently has variability. The solution is sent to the 

simulation model as a starting point in testing under conditions of variability. 

3.5 Simulation Model 

The purpose of the simulation model is to test the robustness of the solution provided by 

mathematical modeling. The math model does not account for the routing of products through the 

system. It determines the number of machines to assign to each workstation based solely on the 

total number of hours of processing required. More importantly, it does not show how the system 

behaves under uncertainty and variability in processing times. Running the simulation allows the 

user to see which workstations are more highly utilized than others and where large queues build 

up. Targeting these areas can improve the system and lead to a superior production solution. 
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Figure 3-3: Representation of Simulation Model Structure 

 

There are many different methods of producing a simulation model that could adequately 

represent a job shop, but they will all have some of the same general components. Figure 3-3 

gives a simplified look at the model’s general structure. First, there will need to be different types 

of model entities consistent with the number of product types, k. These entities are created at one 

or more sources according to an arrival rate consistent with the demand for the time period and 

are routed into the production system. The main part of the simulation model is a network of 

servers and paths that connect them. Each workstation can be represented by either a set of x 

servers or a single server with capacity equal to x. Each server has a processing time associated 

with it and each type of entity. The i workstations should be arranged in a manner that reflects the 

layout of the actual system represented. The entities are routed through the network according to 

their product type and leave the system through a sink when complete. After each of the t time 

periods, an event must occur to change the number of servers, x, and also the arrival rate of 

entities at the server according to the new time period’s demand. In order to compare the different 

ramp-up strategies, statistics must be kept throughout the process during each time period. 

Further customization can also help make the model more representative of the actual system it 

represents.  
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 This chapter has discussed the methodology behind the system that will determine the 

best possible ramp-up strategy. In the following chapter, these ideas and models are implemented 

into a real case study to test how they function in a job shop environment. A data set is applied to 

the optimization model, and a well known job shop model is used to test how the solution 

algorithm performs. 
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Chapter 4  
 

Experimentation and Analysis 

4.1 Algorithm 

This chapter will serve to experiment with the production ramp-up system and show its 

effectiveness in solving a case study. The algorithm that was discussed in the previous chapter is 

used to reach a solution that meets a set of performance goals. The solution procedure will then 

be tested to show how sensitive it is to changes in the data using marginal analysis. 

The first step of the algorithm is to enter the data set that reflects the job shop being 

tested. These data are displayed and explained in the following section. The statistics collected 

during the simulation runs are compared to the performance goals. For this case study, the 

performance goals that will be used are listed in Table 4-1. 

Table 4-1: Performance Measures for Experiment 

Performance Measure Goal 

Total Cost < $1,500,000 

Unfinished Products < 1% 

Workstation Utilization < 80% 

Average Number in Queue < 2 Products 

Average Time in System < 1.5 * Base Process Time 

   Product 1    < 3.675 hours 

   Product 2    < 3.975 hours 

   Product 3    < 6.075 hours 

 

If the system does not meet these performance goals, including the ramp-up project 

budget of $1,500,000, adjustments to the number of machines will have to be made. The 
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simulation is run again with the new machine configuration and compared to the goal again. This 

sequence continues until all performance goals are met. The new solution may not be the least 

costly or have the fewest unfinished products, but it is a trade-off that decision makers must 

evaluate and compare to the stringency of their performance goals. Once all of the performance 

goals are met or deemed to be satisfactory, the resulting machine configuration is the best ramp-

up strategy for the job shop system being analyzed. 

4.2 Data

The inputs to the ramp-up system are important and need to be carefully determined so 

that the output will be useful to the user. If the data are not accurate, the system may produce an 

unexpected result or a production ramp-up plan that is irrational. Also, if the data do not resemble 

data that may be seen in a real production environment, it will have no use to the user or any job 

shop manager.  

The job shop used in this case study closely follows the job shop model created by Law 

and Kelton (2000), and much of the data and structure of the job shop prior to its ramp-up phase 

is employed. It will experience a ramp-up phase consisting of five time periods (T) of equal 

length. The job shop will also have five workstations that process three distinct product lines. The 

following data are the inputs used in the system to demonstrate how it functions. These data sets 

follow those explained in Table 3-3 in the previous chapter. 

 



55 

 

Table 4-2: Purchase Cost of Machines by Workstation in each Time Period 

Purchase Cost (pit) 
 

Time Period 

  
1 2 3 4 5 

W
o

rk
s
ta

ti
o

n
 1 $ 10,000 $ 10,000 $ 10,000 $ 10,000 $ 10,000 

2 $ 10,000 $ 10,000 $ 10,000 $ 10,000 $ 10,000 

3 $ 10,000 $ 10,000 $ 10,000 $ 10,000 $ 10,000 

4 $ 10,000 $ 10,000 $ 10,000 $ 10,000 $ 10,000 

5 $ 10,000 $ 10,000 $ 10,000 $ 10,000 $ 10,000 

 

Table 4-2 describes the purchase cost of each additional machine during each of the 5 

time periods. These numbers were generated to represent a substantial investment for the job 

shop. The purchase price of machines remains constant throughout all time periods because the 

time value of money principle is not taken into account. Time value of money could be applied 

using this system and is important in making capital expenditure decisions over larger time 

horizons. As stated in the assumptions, machines in each workstation are assumed to be identical 

regardless of what time period they are added to the system. 

 

Table 4-3: Original Number of Machines in each Workstation 

Original (wi) Machines 

W
o

rk
s
ta

ti
o

n
 1 3 

2 2 

3 4 

4 3 

5 1 

 

Table 4-3 shows the number of machines that are in the job shop before any ramp-up has 

begun. The number of machines added to the system starting in period 1 adjoins to this amount. It 

is the basis for the job shop and is used in the warm-up period to initialize the simulation model. 

This initial machine configuration was established using the Law and Kelton (2000) model. 
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Table 4-4: Operating Cost of Machines by Workstation in each Time Period 

Operating Cost (oit) Time Period 

  
1 2 3 4 5 

W
o

rk
s
ta

ti
o

n
 1 $ 100 $ 200 $ 300 $ 400 $ 500 

2 $ 100 $ 200 $ 300 $ 400 $ 500 

3 $ 100 $ 200 $ 300 $ 400 $ 500 

4 $ 100 $ 200 $ 300 $ 400 $ 500 

5 $ 100 $ 200 $ 300 $ 400 $ 500 

 

Table 4-4 shows the operating cost of each machine during each time period of its 

lifetime. In the example that is used, the operating cost through the time periods increases steadily 

through the life of the machine. The increase is to reflect increased maintenance costs on 

machines through their lifetime and to make the system act more realistically. The machines that 

were originally in the system during the warm-up period are assumed to be in good condition and 

are assigned the first year’s operating cost once the ramp-up process begins. This example will 

assume that the increases in operating and maintenance costs are equal for all types of machines 

in the workstations. Like the purchase price, the reaction to changes in operating cost is explored 

using sensitivity analysis.  

 

Table 4-5: Cost of Unfinished Products in each Time Period 

Unfinished Cost (ukt) Time Period 

  
1 2 3 4 5 

P
ro

d
u

c
t 

1 $ 150 $ 150 $ 150 $ 150 $ 150 

2 $ 150 $ 150 $ 150 $ 150 $ 150 

3 $ 200 $ 200 $ 200 $ 200 $ 200 

 

Unfinished cost represents the cost assumed per product that was not completed during 

the desired time period. The remaining products that are not finished are added to the demand for 

the subsequent time period, and it is assumed that they are finished before work begins on the 

next time period’s demand. As shown in Table 4-5, the unfinished cost for products 1 and 2 is 

$150 each, and the cost for product 3 is $200 to reflect the extra processing time it requires that 
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adds additional value. Table 4-7 shows the total base processing time for each product, and 

product 3 clearly requires significantly more processing than the other product types. Like the 

other cost data sets, the sensitivity of the unfinished cost is explored using marginal analysis. It is 

difficult to determine an exact cost of unfinished products, so an abstract number is formulated. 

The selling price of the product is a part of the unfinished cost price, but also non-quantifiable 

aspects such as loss of future business and goodwill must be factored into the cost as well. 

 

Table 4-6: Demand for each Product Type by Time Period 

Demand (dkt) Time Period 

  
1 2 3 4 5 

P
ro

d
u

c
t 1 600 1200 1800 2400 3000 

2 1000 2000 3000 4000 5000 

3 400 800 1200 1600 2000 

Total 2000 4000 6000 8000 10000 

 

Table 4-6 represents the total demand that the job shop must meet throughout the time 

periods of the production ramp-up. It is divided up by product for the mathematical model to read 

the data, but the totals are given at the bottom, and these are what are used to look at the overall 

ramp-up of the system. These values are chosen to look at a linear ramp-up approach, but other 

ramp-up plans, such as a more exponential approach, are explored in the marginal analysis 

section. The product mix was set by the Law and Kelton model (2000) and consisted of 30% 

Product 1, 50% Product 2 and 20% Product 3. These proportions are kept constant throughout all  

5 time periods and the initial warm-up time period. The warm-up period’s demand was also set 

by Law and Kelton who assumed an interarrival rate of 0.25 hours, which is equivalent to 960 

units in the 240 hours for which the job shop operates each time period. In the simulation model, 

the same amount of demand is used, but these values are transferred into interarrival times 

according to the 240 hours that the job shop operates per time period. The interarrival rate was 

constant to simulate a realistic flow of a known demand for each time period. 
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Table 4-7: Processing Time (hours) Required for each Product Type at each Workstation 

Hours (hik) Product 

  
1 2 3 

W
o

rk
s
ta

ti
o

n
 1 0.6 0.8 0.7 

2 0.85 - 1.2 

3 0.5 0.75 1 

4 - 1.1 0.9 

5 0.5 - 0.25 

Total 2.45 2.65 4.05 

 

Table 4-7 lists the amount of time (in hours) that each product type spends at each 

workstation as it is routed through the system. These numbers were also adopted from the Law 

and Kelton model (2000). The total number of hours that each product spends in the entire system 

is summed at the bottom of the table. In the simulation model, the actual time that each product 

spends in processing at each workstation is generated using a normal distribution with mean of 

the times listed and a standard deviation of 10% of the mean. As can be seen in Table 4-7, not all 

products are processed in every workstation, and Product 3 has a significantly higher total 

processing time than the other two product lines.  

 

Table 4-8: Number of Available Hours at each Machine in Workstation i 

Available (ai) Hours 

W
o

rk
s
ta

ti
o

n
 1 240 

2 240 

3 240 

4 240 

5 240 

 

Table 4-8 shows the number of hours that each machine in each workstation can devote 

to producing the three product lines during one time period. This number can easily be altered in 

order to change the work mix in the shop or to instantly change the utilization of shop hours. The 

number of hours that was chosen, 240, assumes that the job shop operates for one 8 hour shift per 

day for 30 days a month. One month transitions were used for the time periods, but larger ramp-
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up processes may require longer time intervals with more demand and more available hours. 

These data points can easily be changed in the ramp-up system for easy customization.  

Utilization is clearly an important performance metric for a job shop environment with 

increasing throughput. It allows the job shop managers to gauge machine performance and 

bottlenecks in the job shop. The system allows for users to input their own objective utilization 

value, but a value of 0.8 was used for this case study. The number was derived from Hopp and 

Spearman (2008) who developed Figure 4-1. This utilization value is factored into the 

optimization program to quickly approximate the number of machines in each workstation 

required in order to achieve the utilization goal.  

 

Figure 4-1: Cycle Time vs. Utilization (adopted from Hopp and Spearman, 2008) 

 

 Figure 4-1 shows the relationship between utilization and cycle time for both high and 

low variability systems. As the system’s utilization reaches about 80%, the cycle time for each 
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part begins to rise drastically. The system presented has relatively little variability, so 80% was 

chosen as the upper limit for workstation utilization. This constraint is repeated for all i 

workstations and t time periods. 

 

Table 4-9: Number of Unfinished Products (Data after Iteration 1) 

Unfinished Products Time Period 

(ykt) 1 2 3 4 5 

P
ro

d
u
c
t 

1 6 13 21 23 34 

2 12 23 31 45 54 

3 6 13 19 28 37 

Total 24 49 71 96 125 

 

 Though the number of unfinished products, ykt, is a variable, the user has an option of 

fixing the parameter to specific values as in Table 4-9. The main purpose for this functionality is 

to relay the simulation solution back to the optimization model when the user is trying to 

converge on an optimal solution. During the first iteration, the number of unfinished products is a 

variable, but in the subsequent iterations, it becomes data and an input into the optimization 

model. These values are pulled directly from statistics generated during the job shop simulation. 



61 

 

4.3 Optimization Model 
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The data described in the previous section are used to run the optimization model. The 

complete analytical model is shown above with the objective function expanded and some of the 

data filled in. Lingo optimization software 13.0 was used to solve the mathematical program. The 

full model’s code can be seen in Appendix A, and the model, as generated by Lingo, is shown in 

Appendix B. Lingo was chosen because it provides an easy-to-use environment to quickly write 

many constraints of the same type. It also functions seamlessly with Excel and other programs to 

make the interface easier to use and build. The unique language uses sum loops and for loops to 

easily sum many variables or generate many constraints using a single line of code. The Lingo 
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Solver uses the branch and bound technique and generally solves in one second or less. The same 

model could be solved, however, in many different optimization languages. 

Solving the optimization model described above provides the following results.  The total 

number of machines in the job shop per workstation as well as the number of products of each 

type that are left unfinished are shown in Table 4-10. At the bottom, the total cost of the ramp-up 

strategy is broken down to show where the costs are being incurred. This initial solution will next 

be assessed using the simulation model. 

 

Table 4-10: Optimization Model Results (Iteration 1) 

0 1 2 3 4 5

1 3 8 15 23 30 36

2 2 6 11 16 21 24

3 4 8 16 23 31 36

4 3 8 16 23 31 36

5 1 3 5 7 9 10

1 0 0 0 0 25

2 0 0 0 0 132

3 0 0 0 0 270

0 0 0 0 427

427

200,000.00$ 300,000.00$ 290,000.00$ 300,000.00$ 200,000.00$ 1,290,000.00$ 

3,300.00$     9,600.00$     18,800.00$   31,000.00$   45,200.00$   107,900.00$    

-$              -$              -$              -$              77,550.00$   77,550.00$      

203,300.00$ 309,600.00$ 308,800.00$ 331,000.00$ 322,750.00$ 1,475,450.00$ 

Number of Machines

Unfinished Products

Time Period

W
o
rk

s
ta

tio
n

Machine Acquisition Cost:

Operating Cost:

Unfinished Cost:

Total Cost:

Subtotal:

P
ro

d
u
c
t

Total:

 

4.4 Simulation Model 

The other component of the production ramp-up system is the simulation model. Table 4-

11 explains the elements used in the simulation model and how they are utilized specifically in 

the model. The full simulation, which utilizes these elements, can be seen in Figure 4-2. The 

simulation of the job shop environment to test the capacity ramp-up plan is created using the 

Simio simulation software. Simio is an object-oriented, multi-paradigm simulation language that 

allows for a wide array of applications with wide flexibility. Simio provides a highly visible 
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environment for simulating the job shop and flexible process capabilities, which made collecting 

statistics and performance measures simple. Each simulation run was replicated 10 times, and the 

statistics were averaged over these 10 runs to ensure the significance of the results. 
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Table 4-11: Elements of the Simulation Model 

Element Simio Symbol General Information Simulation Constraints 

Source 
 

A source object creates 

entities at a specified rate 

and pattern. It has an output 

buffer where entities can be 

seized before leaving the 

source. 

The source generates entities at a rate 

which changes each time period based on 

that period’s demand. It creates entities 

based on their product mix and assigns 

the appropriate routing sequence before 

the entity leaves the source. 

Sink 
 

A sink object destroys 

entities and records 

statistics for the simulation. 

It has an input buffer where 

entities can be seized 

before they are destroyed. 

The sink destroys entities to clear up 

system memory. In the simulation, it is 

used to tally the total amount of time in 

system for each product for calculating 

the average time in system statistic. 

Server 
 

A server object has three 

queues for processing 

entities. It has input and 

output buffers to store 

entities before and after 

they are processed. It also 

has a processing station 

queue with a specified 

capacity where objects are 

processed for a specific or 

variable amount of time. 

There are five servers in the simulation 

model, and each of them is assigned its 

respective capacity based on a data table 

which lists all of the capacities for all of 

the servers in each of the five time 

periods. The model entities are processed 

at the servers for a designated amount of 

time following a normal distribution. The 

three different product lines are routed 

through a sequence of servers in different 

orders and are processed for a range of 

time intervals. 

Path 
 

A path object is a link 

between two nodes. Travel 

time is determined based 

on the length of the path 

and the traveler’s speed. 

Paths are used to connect the source, 

servers and sink. The model entities, or 

products, use the paths to be routed 

through the system. 

Model  

Entities 

 

 

 

Model entities are objects 

that can have intelligent 

behavior and make 

decisions as they travel 

through a model. They 

travel along paths through 

the system and are 

processed by the other 

model objects.  

The model entities in the simulation 

represent the products. Three 

independent model entities are used, one 

for each type of product. They are given 

a sequence to follow through the system 

based on their type of model entity. 

These model entities are used to simulate 

flow of products through the job shop. 

Timer 
 

A timer is an element used 

to fire one or more events.  

Timer elements were used to change the 

system’s properties at the end of each 

time period. Six timers were needed, one 

for each time period, including the warm-

up period. The timers fire events which 

change the capacity of the servers at the 

end of each time period as well as collect 

statistics. These statistics include the 

number created, number destroyed, 

server utilization, average number in 

queue and average time in system. 
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4.4.1 Structure and Layout 

 

Figure 4-2: Structure of the Simulation Model (Simio) 

 

The simulation model of the job shop environment is built using a relatively simple set of 

components. It consists of a source, sink and five servers that represent the five different 

workstations. The source creates one of three different model entities that represent the three 
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separate product lines produced in the job shop. The entities are created using a constant 

interarrival time based on the demand in each time period. Since the demand for each period was 

forecast, it is assumed that the products can be introduced to the system in a fairly constant 

manner. The entities are assigned a product type based on their probabilistic weights of 0.3, 0.5 

and 0.2 respectively. The type of product determines its routing and processing time through the 

system of workstations as is summarized in Table 4-12. 

 

Table 4-12: Simulation Product Mix and Routing 

Product Product Mix Routing (Workstations) 

1 0.3 3,1,2,5 

2 0.5 4,1,3 

3 0.2 2,5,1,4,3 

 

The servers begin with an initial capacity, or number of machines, and the increase in 

machines through the time periods is represented by corresponding increases in capacity. The 

server processing times are product-specific, so they are assigned according to the sequence 

tables that route the different products through the system. These processing times were discussed 

previously in Table 4-7. They were those used in the Law and Kelton (2000) model. They follow 

a normal distribution with a coefficient of variation of 0.1 for each of the processing times. This 

is a relatively low amount of variation in the processing times, which can be assumed for a 

process with such large throughput. Finally, after the entities are processed through their 

respective sequence of workstations, they are sent to the sink to be destroyed and removed from 

the system. 
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4.4.2 Time Period Transitions 

It is assumed that the job shop runs for one 8-hour shift, 7 days a week, or 240 hours per 

month. There is also no delay or productivity change during individual days or between days. It is 

assumed that work is stopped at the end of a shift and picked up where it was left off the next day. 

This allows the simulation to run continuously for 240 hours of simulation time. Each month is 

considered a new time period where the capacity of the workstations is changed based on the 

results from the mathematical program. The simulation model recognizes the change in time 

periods based on a set of events triggered to go off after each 240 hour simulation period. These 

events also allow the simulation to gather period-specific statistics. 

4.4.3 Performance Measures 

The performance measures that are gathered using Simio’s process capabilities include 

workstation utilization, average number in queue and average time in system by product. These 

statistics along with the total cost of the ramp-up and the number of unfinished products are used 

to determine the quality of the solution. The number of products created and destroyed during 

each period is collected in order to verify that the model is producing and destroying entities 

correctly as well. These data points were verified using Simio’s experiment capabilities on 

individual time periods as well, but processes were used in order to collect the statistics using a 

single simulation run. Utilization, average number in queue and average time in system were 

chosen as performance measures for the system because they can provide a wide array of 

information about bottlenecks and how workstations and different product types are behaving. 

Other performance measures can be calculated or estimated using these figures, but many provide 

redundant information.  
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A summary of the results from running the integer program solution of iteration 1 

through the simulation model are shown in Table 4-13. These results show the key performance 

measures and allow the decision makers to compare them to their goals, in this case, those listed 

in Table 4-1. 
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Table 4-13: Simulation Model Results (Iteration 1) 

Period 1 2 3 4 5

0 3 2 4 3 1

1 8 6 8 8 3

2 15 11 16 16 5

3 23 16 23 23 7

4 30 21 31 31 9

5 36 24 36 36 10

Period 1 2 3 4 5

0 93.99 97.68 70.62 94.27 78.55

1 75.23 69.82 75.70 76.32 56.41

2 79.75 75.22 75.37 75.96 66.35

3 78.19 76.90 78.65 79.36 70.86

4 79.91 78.18 77.76 78.57 73.59

5 83.19 86.32 83.76 84.13 83.63

Period 1 2 3 4 5

0 1.55 10.91 0.14 3.56 0.27

1 0.11 0.48 0.22 0.27 0.08

2 0.14 0.25 0.11 0.10 0.13

3 0.06 0.22 0.14 0.15 0.18

4 0.07 0.21 0.08 0.07 0.22

5 0.11 0.67 0.22 0.20 0.54

Period 1 2 3

0 8.35 4.32 11.19

1 2.74 2.76 4.50

2 2.52 2.68 4.14

3 2.50 2.67 4.12

4 2.49 2.66 4.10

5 2.53 2.67 4.14

Number of Machines

Workstation

Performance Measures Result

Unit Cost 48.54$                                           

Total Cost 1,456,150.00$                         

Unfinished Products 124.1

Average Time in System (Hours)

Product

% of Total 0.41%

Utilization (%)

Workstation

Average Number in Queue

Workstation
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 Comparing these results to the performance goals, it can be seen that the only goal that 

hasn’t been achieved in iteration 1 is the utilization of less than 80%. It is violated in all five 

workstations during time period 5. This signals the user to proceed to iteration 2. 

4.5 Solution Procedure 

The design of the production ramp-up system seeks to find a solution in which the 

optimization and simulation models converge. This solution is optimal under the conditions of 

variability that the simulation model introduces to the system. If this solution does not meet all of 

the criteria set forth by the decision makers, they would be able to marginally adjust the solution 

until they are satisfied with the performance metrics. All criteria may not be satisfied since they 

are inversely related (i.e., utilization vs. average time in queue), and the decision makers may 

have to prioritize the criteria or assign heavier weight to those deemed most important. 

After the initial iteration, each of the following iterations is slightly different in that the 

number of unfinished goods is no longer a decision variable. The number of unfinished goods is 

then pulled from the simulation model and becomes data in the following iteration’s optimization 

model. When the optimization model is run again using the number of unfinished products from 

iteration 1, the following results are attained. Note that the unfinished goods figures shown are an 

input, not an output, to this model. 
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Table 4-14: Optimization Model Results (Iteration 2) 

0 1 2 3 4 5

1 3 8 15 23 30 38

2 2 6 11 16 21 26

3 4 8 16 23 31 38

4 3 8 16 23 31 38

5 1 3 5 7 9 11

1 6 13 21 23 34

2 12 23 31 45 54

3 6 13 19 28 37

24 49 71 96 125

365

200,000.00$ 300,000.00$ 290,000.00$ 300,000.00$ 290,000.00$ 1,380,000.00$ 

3,300.00$     9,600.00$     18,800.00$   31,000.00$   46,100.00$   108,800.00$    

3,900.00$     8,000.00$     11,600.00$   15,800.00$   20,600.00$   59,900.00$      

207,200.00$ 317,600.00$ 320,400.00$ 346,800.00$ 356,700.00$ 1,548,700.00$ 

Number of Machines

Unfinished Products

Time Period

W
o
rk

s
ta

tio
n

Machine Acquisition Cost:

Operating Cost:

Unfinished Cost:

Total Cost:

Subtotal:

P
ro

d
u
c
t

Total:

 
 

 Compared to iteration 1, this solution adds two additional machines to workstations 1-4 

and a single additional machine to workstation 5 in the final time period. It decreases the total 

unfinished cost for the job shop but increases the total cost of the ramp-up. Running this 

optimized solution through the simulation model yields the following results in Table 4-15. 
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Table 4-15: Simulation Model Results (Iteration 2) 

Period 1 2 3 4 5

0 3 2 4 3 1

1 8 6 8 8 3

2 15 11 16 16 5

3 23 16 23 23 7

4 30 21 31 31 9

5 38 26 38 38 11

Period 1 2 3 4 5

0 93.99 97.68 70.62 94.27 78.55

1 75.23 69.82 75.70 76.32 56.41

2 79.75 75.22 75.37 75.96 66.35

3 78.19 76.90 78.65 79.36 70.86

4 79.91 78.18 77.76 78.57 73.59

5 78.80 79.63 79.33 79.74 76.01

Period 1 2 3 4 5

0 1.55 10.91 0.14 3.56 0.27

1 0.11 0.48 0.22 0.27 0.08

2 0.14 0.25 0.11 0.10 0.13

3 0.06 0.22 0.14 0.15 0.18

4 0.07 0.21 0.08 0.07 0.22

5 0.03 0.21 0.08 0.07 0.25

Period 1 2 3

0 8.35 4.32 11.19

1 2.74 2.76 4.50

2 2.52 2.68 4.14

3 2.50 2.67 4.12

4 2.49 2.66 4.10

5 2.48 2.66 4.09

Number of Machines

Workstation

Performance Measures Result

Unit Cost 51.56$                                           

Total Cost 1,546,900.00$                         

Unfinished Products 122.9

Average Time in System (Hours)

Product

% of Total 0.41%

Utilization (%)

Workstation

Average Number in Queue

Workstation
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The simulation results support the suggestion of higher total cost for the ramp-up. 

Clearly, adding machines to the workstations decreases their total utilization but, at the same 

time, it increases both purchase and operating expenses. These trade-offs must be weighed by the 

decision makers, and the system allows for marginal adjustments until the solution is satisfactory. 

In this case study, it is assumed that the target utilization was 80%, but it is not as critical 

to the ramp-up as total cost. The budget for the ramp-up project has been set at the goal of 

$1,500,000, and this cannot be exceeded. The utilization goal is less of a priority and can be 

sacrificed in order to meet the cost restriction. Since the utilization goal is going to be relaxed, 

machines will marginally be removed from the workstation with the lowest current utilization in 

the final time period. In this case, since workstation 5 has the lowest utilization of 76.01%, the 

number of machines in time period 5 should be decreased from 11 machines to 10. This solution 

is run through the simulation model to determine the new total cost and see if any other 

performance goals are then violated. This process continues until the solution is acceptable to the 

decision makers. The marginal adjustment iterations performed in this study can be seen in 

Appendix D. The final solution was achieved when one machine was removed from each 

workstation producing a total cost of $1,496,550. Full details of the solution are shown in Table 

4-16. Each workstation’s utilization is slightly over the goal of 80%, but this solution is deemed 

acceptable with the budget restriction placed on the ramp-up. 
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Table 4-16: Simulation Model Results (Final Iteration) 

Period 1 2 3 4 5

0 3 2 4 3 1

1 8 6 8 8 3

2 15 11 16 16 5

3 23 16 23 23 7

4 30 21 31 31 9

5 37 25 37 37 10

Period 1 2 3 4 5

0 93.99 97.68 70.62 94.27 78.55

1 75.23 69.82 75.70 76.32 56.41

2 79.75 75.22 75.37 75.96 66.35

3 78.19 76.90 78.65 79.36 70.86

4 79.91 78.18 77.76 78.57 73.59

5 80.97 82.27 81.54 82.34 82.79

Period 1 2 3 4 5

0 1.55 10.91 0.14 3.56 0.27

1 0.11 0.48 0.22 0.27 0.08

2 0.14 0.25 0.11 0.10 0.13

3 0.06 0.22 0.14 0.15 0.18

4 0.07 0.21 0.08 0.07 0.22

5 0.06 0.32 0.14 0.13 0.59

Period 1 2 3

0 8.35 4.32 11.19

1 2.74 2.76 4.50

2 2.52 2.68 4.14

3 2.50 2.67 4.12

4 2.49 2.66 4.10

5 2.51 2.67 4.11

Number of Machines

Workstation

Performance Measures Result

Unit Cost 49.89$                                           

Total Cost 1,496,550.00$                         

Unfinished Products 124.3

Average Time in System (Hours)

Product

% of Total 0.41%

Utilization (%)

Workstation

Average Number in Queue

Workstation
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Table 4-17: Summary of Results 

Product 1 Product 2 Product 3

1 1,456,150.00$       124.1 84.21 0.35 2.53 2.67 4.14

2 1,546,900.00$       122.9 78.70 0.13 2.48 2.66 4.09

3 1,536,800.00$       122.6 80.10 0.23 2.51 2.66 4.11

4 1,526,500.00$       122.2 80.63 0.23 2.51 2.66 4.11

5 1,516,400.00$       121.7 80.95 0.23 2.50 2.66 4.12

6 1,506,500.00$       122.6 81.59 0.25 2.51 2.66 4.12

7 1,496,550.00$       124.3 81.98 0.25 2.51 2.67 4.11

M
ar

gi
n

al
 

A
n

al
ys

is

Average Time in System (Period 5)Average Number in Queue 

(Period 5)

Average Utilization 

(Period 5)

Total Unfinished 

Goods
Total CostIteration

 

 

 Table 4-17 provides a summary of the results throughout all the iterations of the solution 

process. Iterations 1 and 2 were those resulting from the optimization and simulation models 

converging on the results in iteration 2. The remainder of the iterations is the result of the 

marginal removal of machines in order to decrease the total cost to meet the budget restriction. 

Statistics here, including utilization, average number in queue and average time in system, are 

only shown for period 5, since it was the only period in which they exceeded the limits set for the 

ramp-up. Marginal analysis shows to have brought down total cost by roughly $50,000, while 

increasing utilization by about 3% on average to slightly exceed the limit. If this trade-off is 

deemed acceptable, then this is the final production ramp-up solution. 

4.6 Sensitivity Analysis 

Sensitivity analysis is necessary for this type of system in order to determine the effects 

of changes to the system inputs on the resulting machine outputs and total cost of the system. 

Specific changes to the system or the data that drives it can have a large impact on the resulting 

output, and this information is critical to fully understand the system and the decision support 

tool. Some changes or trials may be unrealistic in the actual job shop environment, but they 

would provide a good idea of the robustness of the system from the data standpoint. Total cost 

will be the main indicator of the performance of the system under marginal changes. One-factor-

at-a-time (OFAT) experiments will be run on several different input parameters to demonstrate 
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the reaction and its magnitude to the system as a whole. These changes and the different trials that 

will be performed will be explained, but testing solely one independent variable at a time will 

provide a good idea of how the variable makes the system react. 

4.6.1 Demand 

 Demand is the basis for the production ramp-up, and it has the single largest impact on 

cost and production for the system. It determines how the job shop ramp-up process will occur 

and whether the ramp-up follows one of three different ramp-up strategies. The system can 

experience a linear ramp-up in which the demand for products is increased by an equal amount in 

each time period. It can also undergo a ramp-up strategy that is weighted toward the beginning or 

end of the ramp-up period. A ramp-up strategy that is more heavily weighted in the beginning 

with larger demand increases in the earlier time periods will be referred to as following a 

logarithmic pattern, while one with larger demand increases toward the end of the ramp-up 

follows an exponential ramp-up strategy. There are varying degrees of growth rates for linear, 

logarithmic and exponential ramp-up strategies, and several are explored here. Figure 4-1 shows 

five strategies: logarithmic with rapid growth, logarithmic with slow growth, linear, exponential 

with slow growth and exponential with rapid growth. The figure plots the demand in number of 

products for each time period, including the warm-up period in which 960 units are produced. 

Exploring these ramp-up strategies provides a strong understanding of how a variety of strategies 

would perform. 
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Figure 4-3: Ramp-Up Strategies Tested Using Marginal Analysis 

 

 Each of the ramp-up strategies presented has its own strengths and weaknesses. Some 

may be better suited for specific products or manufacturing environments, or the necessary 

strategy may be determined by the demand for the product. Oftentimes, technological products 

and electronics have large demand in the beginning of their lifecycle, but it dissipates as the 

technology become outdated or obsolete. In cases such as this, it is advantageous for the 

manufacturer to build as many products in the shortest time frame possible. Table 4-18 breaks 

down the cost for each ramp-up strategy and provides some interesting results. The strategies 

with faster ramp-up rates in the earlier time periods have higher total cost, primarily due to 

operating costs, but have lower unit costs for their products. Faster ramp-up rates mean that more 

products will be made throughout the ramp-up process, so this drives down the unit costs of 

products.  
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Table 4-18: Marginal Analysis Results for Ramp-Up Strategies 

Strategy Price per Time Period ($) Total Cost Finished Products Unit Cost 

Logarithmic (Rapid) 6000, 8000, 9250, 9750, 10000  $    1,646,750.00  42,879.4  $    38.40 

Logarithmic (Slow) 4500, 6500, 8000, 9000, 10000  $    1,518,200.00  37,876.9  $    40.08  

Linear 2000, 4000, 6000, 8000, 10000 $    1,457,800.00 29,875.9  $    48.80  

Exponential (Slow) 1500, 2500, 3500, 6000, 10000  $    1,334,150.00  22,485.7  $    59.33  

Exponential (Rapid) 1000, 1250, 1750, 4500, 10000  $    1,360,450.00  16,102.3  $    84.49  

 

 Determining which strategy is best for a particular job shop or product line may depend 

on demand for the product, or it may be constrained by funding for the ramp-up process. As it can 

be seen in the logarithmic ramp-up strategies, a larger initial investment is necessary in order to 

satisfy the larger demand in early time periods. Clearly, these types of ramp-ups yield superior 

solutions when measured by unit price, but such early, drastic changes to the manufacturing 

system could produce unprofitable results. Terwiesch and Bohn (2001) explored learning and 

process improvement during production ramp-up and concluded that it is optimal for a system to 

perform more experimentation for learning purposes earlier in the ramp-up process and decrease 

the experimentation as the process continues until the system is operating at full capacity. It was 

determined that this was the best strategy even when product prices are at their highest at the 

beginning of the ramp-up process. These results favor a more exponential ramp-up strategy, 

despite the larger unit costs. One interesting feature about the exponential ramp-up strategy can 

be seen in the Exponential (Rapid) strategy. Once the ramp-up rate becomes steep enough, the 

system is unable to process the products as fast as they are being introduced. This creates large 

queues in the system and leaves more products unfinished. Care must be taken to avoid this type 

of scenario, as the unit cost of the products skyrockets. 
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4.6.2 Purchasing Cost 

 The total cost of the ramp-up process is made up of purchasing cost, operating cost and 

unfinished products cost. Purchasing cost of the machines for the workstations makes up the 

majority of the expenses in the ramp-up, so it is clearly an important area to analyze when 

optimizing the system and finding the minimum cost solution that is acceptable. Several pricing 

scenarios were explored to determine how the purchasing cost of the machines impacts the 

solution. These different pricing scenarios included prices ranging from $5,000 to $50,000. The 

summary of the resulting simulation costs and the number of unfinished products after the 5 time 

periods analyzed can be seen below in Table 4-19. 

 

Table 4-19: Marginal Analysis Results for Machine Purchase Price 

Price per Machine Total Cost Unfinished Products 

$5,000  $       858,250.00  122.9 

$7,500 $    1,203,250.00  122.9 

$10,000  $    1,457,800.00 124.1 

$12,500 $    1,557,600.00  149.4 

$15,000 $    1,820,350.00  152.0 

$20,000 $    2,325,000.00  243.6 

$30,000 $    3,170,000.00  1,797.4 

$50,000 $    4,743,000.00 4,110.2 

 

 As expected, the scenarios with larger prices have higher overall cost. Higher priced 

machines directly increase the objective function value and the total cost of the ramp-up. As the 

machine prices decrease, the job shop is less hesitant to purchase new machines to process more 

products. At higher machine prices, the job shop is more inclined to incur the unfinished cost, 

especially in later time periods. The number of unfinished goods remains relatively constant and 

less than 1% of the total demand until some point between the $20,000 and $30,000 purchase 

prices. Compared to the relatively low cost of unfinished goods at these high machine prices, the 
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number of goods left unfinished is surprisingly low. The purchase cost clearly can have a large 

impact on the solution for the ramp-up process, but it is robust in a wide range of rational prices. 

4.6.3 Operating Cost 

 Operating cost is another component of the total cost of the system, which makes up the 

next largest portion of the total after the purchasing cost. The operating cost works slightly 

differently than the purchasing cost table, as operating cost is measured retroactively as well as in 

the current time period. The older the machine, the more the operating cost for that period due to 

the need for increased maintenance. Generally, as operating costs increase, the total simulation 

cost increases. Table 4-20 summarizes the results of the 5 trials. 

 

Table 4-20: Marginal Analysis Results for Operating Cost 

Scenario Price per Time Period ($) Total Cost Unfinished Products 

Linear 1 50, 100, 150, 200, 250 $    1,403,850.00 124.1 

Linear 2 100, 200, 300, 400, 500  $    1,457,800.00 124.1 

Linear 3 200, 400, 600, 800, 1000 $    1,455,100.00 134.5 

Exponential 1 100, 200, 400, 800, 1600 $    1,528,500.00 124.1 

Exponential 2 1000, 2000, 4000, 8000, 16000 $    2,914,850.00 145.5 

 

 Despite the increases in simulation costs, there were only slight changes in two of the 

experiments. The scenarios Linear 1, 2 and Exponential 1 produced machine configurations that 

were identical. The operating costs during the time periods were all that differed among the 

scenarios causing the difference in total costs. The Linear 3 scenario had fewer machines in each 

of the 5 workstations during the last time period. Its total cost actually decreased from the other 

linear scenarios, and this can be attributed to high workstation utilization values. The utilization 

values were also very high in the Exponential 2 scenario, and this helped to keep the total cost 

low for these scenarios and the number of unfinished goods similar throughout all of the 
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scenarios. Exponential 2 showed the largest difference in machine configuration, and it still was 

not drastically different. It allocated the fewest machines to the workstations in the final time 

period and was the only scenario that altered the number of machines in any of the earlier time 

periods. Time period 1 showed one machine fewer than in each of the other scenarios in order to 

avoid the large penalty of $16,000 incurred during those machines’ final year of operation. The 

operating costs had to be raised to the unrealistic levels shown for Exponential 2 in order for the 

system to produce a solution that was not similar to the others. The values assumed in the 

Exponential 2 scenario were extreme in that the operating cost eventually became more expensive 

than the purchase price of the machines. This experimentation showed that the system was robust 

in how it utilizes operating costs and that the distribution of the operating costs over time made 

little difference. 

4.6.4 Unfinished Cost 

 Unfinished cost is the final and smallest component of the total ramp-up cost. Again, it is 

an obscure value that is made up of the lost revenue from the sale of the product and loss of 

goodwill. It is the most volatile and creates different solutions for relatively small changes. This 

is partially due to how the objective function was formulated, calculating the number of 

unfinished products using a penalty function. It is also partially due to the fact that the reduction 

of a single machine can drastically increase the average number of products in queue, thus 

increasing the number of products that are left unfinished. Table 4-21 summarizes the results of 5 

experiments that were run using different unfinished cost values. 
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Table 4-21: Marginal Analysis Results for Product Unfinished Cost 

Unfinished Cost Total Cost Unfinished Products 

$25 $    1,010,150.00 10,393.1 

$50  $    1,119,500.00  3,454.9 

$100  $    1,255,000.00  149.4 

$150  $    1,293,450.00  140.3 

$200  $    1,460,600.00  124.1 

 

 The total cost of the ramp-up process does not accurately reflect the difference in the 

solutions that are presented under these different scenarios. When the unfinished cost is assigned 

to be $25 throughout the process, over 10,000 products are left unfinished, which is roughly 35% 

of the total demand. Even at $50, almost 12% of the total demand was left unfinished. The 

optimization program found it less costly to assume this unfinished cost for each unit than to 

purchase new machines and pay for their operating costs throughout the time horizon. When the 

unfinished cost is increased to $100, the opposite effect occurs, and the job shop makes an 

investment in machines, fewer products are left unfinished. Once the unfinished cost is increased 

to $100 and above, few products are left unfinished in the integer program’s solution, so similar 

machine assignments are made. These result in similar numbers of simulated unfinished products 

remaining at the end of the ramp-up phase, creating a small difference in the total cost. 

 The areas that have been examined have shown that the production ramp-up system is 

robust in managing variable inputs when reasonable data are used. For the examination of the 

system demand, it was determined that the logarithmic ramp-up strategy was the most costly in 

total, but the least costly at the unit level. On the other hand, the exponential strategy was the 

least costly in total, but the most expensive at the component level. Purchase and operating costs 

proved to behave as expected and were not greatly affected in price changes until extreme 

scenarios were tested. The unfinished cost was the most volatile, and care must be taken to assign 

a reasonable value that is appropriate for the system. Small changes in this value led to extreme 
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changes in the solution that were correct but may not be desirable in many production 

environments. Sensitivity analysis here has helped show how the system reacts to changes in the 

input parameters and determine areas where care must be taken so that it provides an 

implementable solution. 
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Chapter 5  
 

Summary, Conclusions and 

Future Research

5.1 Summary and Conclusions 

 As the global marketplace expands, an increased numbers of new, innovative products 

are continuously introduced to the market. It is now more important than ever for manufacturers 

to gain an advantage over their growing number of competitors in any way possible. Successful 

companies are characterized by their ability to achieve a high throughput and a low time-to-

market on their new product lines. This, however, brings about the challenge of how to optimally 

transition from low rate initial production to full volume production. The question is not easily 

answered and inevitably varies from case to case, and the problem becomes even more significant 

when the total investment on such an endeavor is examined. Companies make huge capital 

investments in order to produce the supply required by their customers. This poses great risk for 

the company and gives them the incentive to ramp-up production efficiently. Although, the ramp-

up phase will be different depending on industry and type of manufacturing system, exploring the 

best practices in one system can provide insight into principles that serve a wide range of 

circumstances. 

 This thesis investigated the optimal production ramp-up strategy in a job shop 

manufacturing system while allowing for flexibility by the user. It used simulation and 

optimization techniques to quickly converge on an optimal, yet robust, solution. This is one of the 

main advantages of this technique and of pairing optimization with simulation. It yields a solution 
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that has been tested in a stochastic environment and is optimal for the conditions of variability 

that the simulation presents. Neither optimization nor simulation can work alone to produce such 

a solution. The system also allows for manipulation by the decision makers, which is critical in a 

multi-objective optimization problem such as this. This flexibility and the ability to customize the 

models to a unique job shop system make the system more implementable in a variety of 

environments. 

  The case study examined demonstrates the technique’s capabilities and applies data to a 

simulation model presented by Law and Kelton (2000). The case study’s results demonstrate the 

system’s ability to quickly converge on a solution and show how decision makers could adjust the 

solution to meet specific performance goals. Due to the fact that some of the performance goals 

are inversely related, marginally altering the solution to meet the performance goals of the user 

can move the solution away from optimal. Though the solution may not be optimal according to 

the optimization model, it may be preferred by the decision makers according to the significance 

placed on each performance metric. Lastly, sensitivity analysis was performed in order to test the 

influence of the data on the results. In general, the data proved to act in a predictable manner. 

 Through this thesis, a technique has been developed to optimally allocate machines 

during production ramp-up in a job shop manufacturing system. The technique leads to a solution 

that is optimal under stochastic conditions, which can be a difficult computation in manufacturing 

environments that are influenced by numerous sources of variability. This demonstrates the 

importance of production ramp-up as a growing area of research and why many companies invest 

in research and development in the field. Companies must take care in producing an effective and 

economical ramp-up plan that can affect both the total cost of the ramp-up and future earnings. 
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5.2 Areas for Future Research 

 Due to the novelty of the problem in modern manufacturing industries, there are many 

areas in which research on production ramp-up can expand. This thesis has explored ramp-up 

techniques in a job shop manufacturing system, but there are several other types of manufacturing 

systems that must ramp-up production as well. Future research could explore techniques to 

determine optimal machine allocation strategies in these other types of manufacturing systems, 

including flow shops, continuous assembly lines and flexible manufacturing systems. Studying 

these types of systems will provide a more comprehensive look at how production ramp-up works 

as a whole and will enable generalizations to be made. 

 Other research could examine the changes in ramp-up strategies if one or more of the 

assumptions made in this study were relaxed. Different trends in machine allocation and ramp-up 

cost could be found if, for example, labor, material handling, machine failures or spatial 

constraints were taken into account. These factors would complicate the optimization and 

simulation models but would make production ramp-up estimates more accurate in real 

manufacturing environments. 

 Several performance metrics were taken into account in this study, but some job shops or 

other manufacturing systems may use other metrics. Some may even want to use one of these 

metrics as the objective function value and minimize or maximize it in their system instead of 

total cost. Since multiple metrics are used to determine the performance of the system, multi-

criteria optimization techniques could be implemented. These could be implemented directly in 

the optimization model or simply when the decision makers are deciding between different 

strategies that they have explored using marginal changes. The optimization techniques would 

allow the decision makers to prioritize and assign weights to the performance metrics that they 

feel are most important and would further tailor the results to their individual preferences. 
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 The technique and models used could be implemented into a decision support system, 

which would make it simpler to use for those who are not experienced in the field of simulation 

or optimization. Many managers or decisions makers of manufacturing systems may not have a 

background in these fields, so an easy-to-use package that would allow them to customize the 

system would help to make the methodology used here more implementable both within and 

across organizations. Such a package could be invaluable to a company looking to ramp-up its 

production and would allow it to quickly make key business decisions. 

 The future research directions in the area of production ramp-up are not limited by those 

discussed here. These areas only scratch the surface of the possibilities that are available within 

this expanding research field. This field will become even more important as globalization 

continues, and competition in global markets continues to grow. Companies will look to quickly 

develop new products and produce large quantities of them ahead of their competition. These 

quick changeovers and new product lines will require new manufacturing systems to be built and 

expanded at a rapid pace. Production ramp-up plans will be needed in order to achieve these 

production requirements. Companies that adapt and execute these plans effectively will be those 

that are most successful and can thrive in the new global marketplace. 
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Appendix A 

 

Optimization Model Code (Lingo 13.0) 

model: 

 

! define index sets; 

sets: 

workstation: available, original; !i; 

product; !k; 

time;!t; 

 

workstationproduct(workstation,product): hours; !ik; 

workstationtime(workstation,time): x, purchase_cost, operation_cost; !it; 

producttime(product,time): demand, unfinished_cost, u; !kt; 

workstationproducttime(workstation,product,time); !ikt; 

endsets 

 

 

! data; 

! demand(k,t) = demand for product k in time period t; 

! hours(i,k) = hours required in workstation i for each product k; 

! purchase_cost(i,t) = cost of purchasing a machine for workstation i in time period t; 

! operation_cost(i,t) = cost of operating a machine in workstation i in time period t; 

! unfinished_cost(k,t) = cost of not finishing one job of product k in time period t; 

! available(i) = hours each machine is available in workstation i; 

! original(i) = original number machines in workstation i; 

! utilization = target utilization for workstations; 

 

 

! variables; 

! x(i,t) = number of machines in workstation i during period t; 

! u(k,t) = number of unfinished products k in time period t; 

 

 

! (1) objective function = minimize total purchasing, operating and unfinished product 

costs; 

min = @sum(workstationtime(i,t)| t#eq#1: purchase_cost(i,t)*(x(i,t)-original(i))) 

    + @sum(workstationtime(i,t)| t#gt#1: purchase_cost(i,t)*(x(i,t)-x(i,t-1))) 

    + @sum(workstationtime(i,t)| t#eq#1: operation_cost(i,t)*x(i,t)) 

    + @sum(workstationtime(i,t)| t#eq#2: operation_cost(i,t-1)*(x(i,t) - x(i,t-1)) +  

      operation_cost(i,t)*(x(i,t-1))) 

    + @sum(workstationtime(i,t)| t#eq#3: operation_cost(i,t-2)*(x(i,t) - x(i,t-1)) +  

      operation_cost(i,t-1)*(x(i,t-1) - x(i,t-2)) + operation_cost(i,t)*(x(i,t-2))) 

    + @sum(workstationtime(i,t)| t#eq#4: operation_cost(i,t-3)*(x(i,t) - x(i,t-1)) +  

      operation_cost(i,t-2)*(x(i,t-1) - x(i,t-2)) + operation_cost(i,t-1)*(x(i,t-2) –  

      x(i,t-3)) + operation_cost(i,t)*(x(i,t-3))) 

    + @sum(workstationtime(i,t)| t#eq#5: operation_cost(i,t-4)*(x(i,t) - x(i,t-1)) +  

      operation_cost(i,t-3)*(x(i,t-1) - x(i,t-2)) + operation_cost(i,t-2)*(x(i,t-2) –  

      x(i,t-3)) + operation_cost(i,t-1)*(x(i,t-3) - x(i,t-4)) +  

      operation_cost(i,t)*(x(i,t-4))) 

    + @sum(producttime(k,t): unfinished_cost(k,t)*u(k,t)); 

 

! (2) constraint - demand constraint; 

@for(workstationtime(i,t)| t#eq#1: utilization*(available(i)*x(i,t)) + @sum(product(k): 

hours(i,k)*u(k,t)) > @sum(product(k): hours(i,k)*demand(k,t))); 

@for(workstationtime(i,t)| t#gt#1: utilization*(available(i)*x(i,t)) + @sum(product(k): 

hours(i,k)*u(k,t)) > @sum(product(k): hours(i,k)*(demand(k,t) + u(k,t-1)))); 

 

! (3) constraint - increase number of machines (could add salvage value); 

@for(workstationtime(i,t)| t#eq#1: x(i,t) > original(i)); 
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@for(workstationtime(i,t)| t#gt#1: x(i,t) > x(i,t-1)); 

 

! (4) constraint – non-negativity assumed; 

 

! (5) constraint - make x and u integer; 

@for(workstationtime(i,t): @gin(x(i,t))); 

@for(producttime(k,t): @gin(u(k,t))); 

 

 

data: 

 

! import data from Excel; 

 

workstation, product, time = @ole('Job Shop Data.xlsm','workstation','product','time'); 

 

demand = @ole('Job Shop Data.xlsm','demand'); 

hours = @ole('Job Shop Data.xlsm','hours'); 

purchase_cost = @ole('Job Shop Data.xlsm','purchase_cost'); 

operation_cost = @ole('Job Shop Data.xlsm','operation_cost'); 

unfinished_cost = @ole('Job Shop Data.xlsm','unfinished_cost'); 

available = @ole('Job Shop Data.xlsm','available'); 

original = @ole('Job Shop Data.xlsm','original'); 

utilization = @ole('Job Shop Data.xlsm','utilization'); 

 

 

! export solution to Excel; 

 

@ole('Job Shop Data.xlsm','output') = x; 

@ole('Job Shop Data.xlsm','u') = u; 

 

enddata 

end 
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Appendix B 

 

Generated Optimization Model (Lingo 13.0) 

MODEL: 

 [_1] MIN= 500 * X_1_1 + 400 * X_1_2 + 300 * X_1_3 + 200 * X_1_4 + 10100 * X_1_5 + 

  500 * X_2_1 + 400 * X_2_2 + 300 * X_2_3 + 200 * X_2_4 + 10100 * X_2_5 + 500 *    

  X_3_1 + 400 * X_3_2 + 300 * X_3_3 + 200 * X_3_4 + 10100 * X_3_5 + 500 * X_4_1 +  

  400 * X_4_2 + 300 * X_4_3 + 200 * X_4_4 + 10100 * X_4_5 + 500 * X_5_1 + 400 *    

  X_5_2 + 300 * X_5_3 + 200 * X_5_4 + 10100 * X_5_5 + 150 * U_1_1 + 150 * U_1_2 +  

  150 * U_1_3 + 150 * U_1_4 + 150 * U_1_5 + 150 * U_2_1 + 150 * U_2_2 + 150 * U_2_3 

  + 150 * U_2_4 + 150 * U_2_5 + 200 * U_3_1 + 200 * U_3_2 + 200 * U_3_3 + 200 *     

  U_3_4 + 200 * U_3_5 - 130000;                                                     

 [_2] 192 * X_1_1 + 0.6 * U_1_1 + 0.8 * U_2_1 + 0.7 * U_3_1 >= 1440; 

 [_3] 192 * X_2_1 + 0.85 * U_1_1 + 1.2 * U_3_1 >= 990; 

 [_4] 192 * X_3_1 + 0.5 * U_1_1 + 0.75 * U_2_1 + U_3_1 >= 1450; 

 [_5] 192 * X_4_1 + 1.1 * U_2_1 + 0.9 * U_3_1 >= 1460; 

 [_6] 192 * X_5_1 + 0.5 * U_1_1 + 0.25 * U_3_1 >= 400; 

 [_7] 192 * X_1_2 - 0.6 * U_1_1 + 0.6 * U_1_2 - 0.8 * U_2_1 + 0.8 * U_2_2 - 0.7 * 

  U_3_1 + 0.7 * U_3_2 >= 2880;                                                    

 [_8] 192 * X_1_3 - 0.6 * U_1_2 + 0.6 * U_1_3 - 0.8 * U_2_2 + 0.8 * U_2_3 - 0.7 * 

  U_3_2 + 0.7 * U_3_3 >= 4320;                                                    

 [_9] 192 * X_1_4 - 0.6 * U_1_3 + 0.6 * U_1_4 - 0.8 * U_2_3 + 0.8 * U_2_4 - 0.7 * 

  U_3_3 + 0.7 * U_3_4 >= 5760;                                                    

 [_10] 192 * X_1_5 - 0.6 * U_1_4 + 0.6 * U_1_5 - 0.8 * U_2_4 + 0.8 * U_2_5 - 0.7 * 

  U_3_4 + 0.7 * U_3_5 >= 7200;                                                     

 [_11] 192 * X_2_2 - 0.85 * U_1_1 + 0.85 * U_1_2 - 1.2 * U_3_1 + 1.2 * U_3_2 >= 1980;                                                                                   

 [_12] 192 * X_2_3 - 0.85 * U_1_2 + 0.85 * U_1_3 - 1.2 * U_3_2 + 1.2 * U_3_3 >= 2970;                                                                                   

 [_13] 192 * X_2_4 - 0.85 * U_1_3 + 0.85 * U_1_4 - 1.2 * U_3_3 + 1.2 * U_3_4 >= 3960;                                                                                   

 [_14] 192 * X_2_5 - 0.85 * U_1_4 + 0.85 * U_1_5 - 1.2 * U_3_4 + 1.2 * U_3_5 >= 4950;                                                                                   

 [_15] 192 * X_3_2 - 0.5 * U_1_1 + 0.5 * U_1_2 - 0.75 * U_2_1 + 0.75 * U_2_2 - U_3_1 

  + U_3_2 >= 2900;                                                                   

 [_16] 192 * X_3_3 - 0.5 * U_1_2 + 0.5 * U_1_3 - 0.75 * U_2_2 + 0.75 * U_2_3 - U_3_2 

  + U_3_3 >= 4350;                                                                   

 [_17] 192 * X_3_4 - 0.5 * U_1_3 + 0.5 * U_1_4 - 0.75 * U_2_3 + 0.75 * U_2_4 - U_3_3 

  + U_3_4 >= 5800;                                                                   

 [_18] 192 * X_3_5 - 0.5 * U_1_4 + 0.5 * U_1_5 - 0.75 * U_2_4 + 0.75 * U_2_5 - U_3_4 

  + U_3_5 >= 7250;                                                                   

 [_19] 192 * X_4_2 - 1.1 * U_2_1 + 1.1 * U_2_2 - 0.9 * U_3_1 + 0.9 * U_3_2 >= 2920; 

 [_20] 192 * X_4_3 - 1.1 * U_2_2 + 1.1 * U_2_3 - 0.9 * U_3_2 + 0.9 * U_3_3 >= 4380; 

 [_21] 192 * X_4_4 - 1.1 * U_2_3 + 1.1 * U_2_4 - 0.9 * U_3_3 + 0.9 * U_3_4 >= 5840; 

 [_22] 192 * X_4_5 - 1.1 * U_2_4 + 1.1 * U_2_5 - 0.9 * U_3_4 + 0.9 * U_3_5 >= 7300; 

 [_23] 192 * X_5_2 - 0.5 * U_1_1 + 0.5 * U_1_2 - 0.25 * U_3_1 + 0.25 * U_3_2 >= 800; 

 [_24] 192 * X_5_3 - 0.5 * U_1_2 + 0.5 * U_1_3 - 0.25 * U_3_2 + 0.25 * U_3_3 >= 1200;                                                                                   

 [_25] 192 * X_5_4 - 0.5 * U_1_3 + 0.5 * U_1_4 - 0.25 * U_3_3 + 0.25 * U_3_4 >= 1600;                                                                                   

 [_26] 192 * X_5_5 - 0.5 * U_1_4 + 0.5 * U_1_5 - 0.25 * U_3_4 + 0.25 * U_3_5 >= 2000;                                                                                   

 [_27] X_1_1 >= 3; 

 [_28] X_2_1 >= 2; 

 [_29] X_3_1 >= 4; 

 [_30] X_4_1 >= 3; 

 [_31] X_5_1 >= 1; 

 [_32] - X_1_1 + X_1_2 >= 0; 

 [_33] - X_1_2 + X_1_3 >= 0; 

 [_34] - X_1_3 + X_1_4 >= 0; 

 [_35] - X_1_4 + X_1_5 >= 0; 

 [_36] - X_2_1 + X_2_2 >= 0; 

 [_37] - X_2_2 + X_2_3 >= 0; 

 [_38] - X_2_3 + X_2_4 >= 0; 

 [_39] - X_2_4 + X_2_5 >= 0; 

 [_40] - X_3_1 + X_3_2 >= 0; 

 [_41] - X_3_2 + X_3_3 >= 0; 
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 [_42] - X_3_3 + X_3_4 >= 0; 

 [_43] - X_3_4 + X_3_5 >= 0; 

 [_44] - X_4_1 + X_4_2 >= 0; 

 [_45] - X_4_2 + X_4_3 >= 0; 

 [_46] - X_4_3 + X_4_4 >= 0; 

 [_47] - X_4_4 + X_4_5 >= 0; 

 [_48] - X_5_1 + X_5_2 >= 0; 

 [_49] - X_5_2 + X_5_3 >= 0; 

 [_50] - X_5_3 + X_5_4 >= 0; 

 [_51] - X_5_4 + X_5_5 >= 0; 

 @GIN( X_1_1); @GIN( X_1_2); @GIN( X_1_3); @GIN( X_1_4); @GIN( X_1_5); 

 @GIN( X_2_1); @GIN( X_2_2); @GIN( X_2_3); @GIN( X_2_4); @GIN( X_2_5); 

 @GIN( X_3_1); @GIN( X_3_2); @GIN( X_3_3); @GIN( X_3_4); @GIN( X_3_5); 

 @GIN( X_4_1); @GIN( X_4_2); @GIN( X_4_3); @GIN( X_4_4); @GIN( X_4_5); 

 @GIN( X_5_1); @GIN( X_5_2); @GIN( X_5_3); @GIN( X_5_4); @GIN( X_5_5); 

 @GIN( U_1_1); @GIN( U_1_2); @GIN( U_1_3); @GIN( U_1_4); @GIN( U_1_5); 

 @GIN( U_2_1); @GIN( U_2_2); @GIN( U_2_3); @GIN( U_2_4); @GIN( U_2_5); 

 @GIN( U_3_1); @GIN( U_3_2); @GIN( U_3_3); @GIN( U_3_4); @GIN( U_3_5); 

 END 
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Appendix C 

 

Optimization Model Output (Lingo 13.0) – Iteration 1 

 

  Global optimal solution found. 

  Objective value:                              1475450. 

  Objective bound:                              1475450. 

  Infeasibilities:                              0.000000 

  Extended solver steps:                             467 

  Total solver iterations:                          1727 

 

 

 

    Export Summary Report 

    --------------------- 

    Transfer Method:       OLE BASED 

    Workbook:              Job Shop Data.xlsm 

    Ranges Specified:               1 

        output 

    Ranges Found:                   1 

    Range Size Mismatches:          0 

    Values Transferred:            25 

 

 

    Export Summary Report 

    --------------------- 

    Transfer Method:       OLE BASED 

    Workbook:              Job Shop Data.xlsm 

    Ranges Specified:               1 

        u 

    Ranges Found:                   1 

    Range Size Mismatches:          0 

    Values Transferred:            15 

 

  Model Class:                                      PILP 

 

  Total variables:                     40 

  Nonlinear variables:                  0 

  Integer variables:                   40 

 

  Total constraints:                   51 

  Nonlinear constraints:                0 

 

  Total nonzeros:                     218 

  Nonlinear nonzeros:                   0 

 

 

                                Variable           Value        Reduced Cost 

                             UTILIZATION       0.8000000            0.000000 

                           AVAILABLE( 1)        240.0000            0.000000 

                           AVAILABLE( 2)        240.0000            0.000000 

                           AVAILABLE( 3)        240.0000            0.000000 

                           AVAILABLE( 4)        240.0000            0.000000 

                           AVAILABLE( 5)        240.0000            0.000000 

                            ORIGINAL( 1)        3.000000            0.000000 

                            ORIGINAL( 2)        2.000000            0.000000 

                            ORIGINAL( 3)        4.000000            0.000000 

                            ORIGINAL( 4)        3.000000            0.000000 
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                            ORIGINAL( 5)        1.000000            0.000000 

                            HOURS( 1, 1)       0.6000000            0.000000 

                            HOURS( 1, 2)       0.8000000            0.000000 

                            HOURS( 1, 3)       0.7000000            0.000000 

                            HOURS( 2, 1)       0.8500000            0.000000 

                            HOURS( 2, 2)        0.000000            0.000000 

                            HOURS( 2, 3)        1.200000            0.000000 

                            HOURS( 3, 1)       0.5000000            0.000000 

                            HOURS( 3, 2)       0.7500000            0.000000 

                            HOURS( 3, 3)        1.000000            0.000000 

                            HOURS( 4, 1)        0.000000            0.000000 

                            HOURS( 4, 2)        1.100000            0.000000 

                            HOURS( 4, 3)       0.9000000            0.000000 

                            HOURS( 5, 1)       0.5000000            0.000000 

                            HOURS( 5, 2)        0.000000            0.000000 

                            HOURS( 5, 3)       0.2500000            0.000000 

                                X( 1, 1)        8.000000            500.0000 

                                X( 1, 2)        15.00000            400.0000 

                                X( 1, 3)        23.00000            300.0000 

                                X( 1, 4)        30.00000            200.0000 

                                X( 1, 5)        36.00000            10100.00 

                                X( 2, 1)        6.000000            500.0000 

                                X( 2, 2)        11.00000            400.0000 

                                X( 2, 3)        16.00000            300.0000 

                                X( 2, 4)        21.00000            200.0000 

                                X( 2, 5)        24.00000            10100.00 

                                X( 3, 1)        8.000000            500.0000 

                                X( 3, 2)        16.00000            400.0000 

                                X( 3, 3)        23.00000            300.0000 

                                X( 3, 4)        31.00000            200.0000 

                                X( 3, 5)        36.00000            10100.00 

                                X( 4, 1)        8.000000            500.0000 

                                X( 4, 2)        16.00000            400.0000 

                                X( 4, 3)        23.00000            300.0000 

                                X( 4, 4)        31.00000            200.0000 

                                X( 4, 5)        36.00000            10100.00 

                                X( 5, 1)        3.000000            500.0000 

                                X( 5, 2)        5.000000            400.0000 

                                X( 5, 3)        7.000000            300.0000 

                                X( 5, 4)        9.000000            200.0000 

                                X( 5, 5)        10.00000            10100.00 

                    PURCHASE_COST( 1, 1)        10000.00            0.000000 

                    PURCHASE_COST( 1, 2)        10000.00            0.000000 

                    PURCHASE_COST( 1, 3)        10000.00            0.000000 

                    PURCHASE_COST( 1, 4)        10000.00            0.000000 

                    PURCHASE_COST( 1, 5)        10000.00            0.000000 

                    PURCHASE_COST( 2, 1)        10000.00            0.000000 

                    PURCHASE_COST( 2, 2)        10000.00            0.000000 

                    PURCHASE_COST( 2, 3)        10000.00            0.000000 

                    PURCHASE_COST( 2, 4)        10000.00            0.000000 

                    PURCHASE_COST( 2, 5)        10000.00            0.000000 

                    PURCHASE_COST( 3, 1)        10000.00            0.000000 

                    PURCHASE_COST( 3, 2)        10000.00            0.000000 

                    PURCHASE_COST( 3, 3)        10000.00            0.000000 

                    PURCHASE_COST( 3, 4)        10000.00            0.000000 

                    PURCHASE_COST( 3, 5)        10000.00            0.000000 

                    PURCHASE_COST( 4, 1)        10000.00            0.000000 

                    PURCHASE_COST( 4, 2)        10000.00            0.000000 

                    PURCHASE_COST( 4, 3)        10000.00            0.000000 

                    PURCHASE_COST( 4, 4)        10000.00            0.000000 

                    PURCHASE_COST( 4, 5)        10000.00            0.000000 

                    PURCHASE_COST( 5, 1)        10000.00            0.000000 

                    PURCHASE_COST( 5, 2)        10000.00            0.000000 

                    PURCHASE_COST( 5, 3)        10000.00            0.000000 

                    PURCHASE_COST( 5, 4)        10000.00            0.000000 

                    PURCHASE_COST( 5, 5)        10000.00            0.000000 

                   OPERATION_COST( 1, 1)        100.0000            0.000000 

                   OPERATION_COST( 1, 2)        200.0000            0.000000 

                   OPERATION_COST( 1, 3)        300.0000            0.000000 
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                   OPERATION_COST( 1, 4)        400.0000            0.000000 

                   OPERATION_COST( 1, 5)        500.0000            0.000000 

                   OPERATION_COST( 2, 1)        100.0000            0.000000 

                   OPERATION_COST( 2, 2)        200.0000            0.000000 

                   OPERATION_COST( 2, 3)        300.0000            0.000000 

                   OPERATION_COST( 2, 4)        400.0000            0.000000 

                   OPERATION_COST( 2, 5)        500.0000            0.000000 

                   OPERATION_COST( 3, 1)        100.0000            0.000000 

                   OPERATION_COST( 3, 2)        200.0000            0.000000 

                   OPERATION_COST( 3, 3)        300.0000            0.000000 

                   OPERATION_COST( 3, 4)        400.0000            0.000000 

                   OPERATION_COST( 3, 5)        500.0000            0.000000 

                   OPERATION_COST( 4, 1)        100.0000            0.000000 

                   OPERATION_COST( 4, 2)        200.0000            0.000000 

                   OPERATION_COST( 4, 3)        300.0000            0.000000 

                   OPERATION_COST( 4, 4)        400.0000            0.000000 

                   OPERATION_COST( 4, 5)        500.0000            0.000000 

                   OPERATION_COST( 5, 1)        100.0000            0.000000 

                   OPERATION_COST( 5, 2)        200.0000            0.000000 

                   OPERATION_COST( 5, 3)        300.0000            0.000000 

                   OPERATION_COST( 5, 4)        400.0000            0.000000 

                   OPERATION_COST( 5, 5)        500.0000            0.000000 

                           DEMAND( 1, 1)        600.0000            0.000000 

                           DEMAND( 1, 2)        1200.000            0.000000 

                           DEMAND( 1, 3)        1800.000            0.000000 

                           DEMAND( 1, 4)        2400.000            0.000000 

                           DEMAND( 1, 5)        3000.000            0.000000 

                           DEMAND( 2, 1)        1000.000            0.000000 

                           DEMAND( 2, 2)        2000.000            0.000000 

                           DEMAND( 2, 3)        3000.000            0.000000 

                           DEMAND( 2, 4)        4000.000            0.000000 

                           DEMAND( 2, 5)        5000.000            0.000000 

                           DEMAND( 3, 1)        400.0000            0.000000 

                           DEMAND( 3, 2)        800.0000            0.000000 

                           DEMAND( 3, 3)        1200.000            0.000000 

                           DEMAND( 3, 4)        1600.000            0.000000 

                           DEMAND( 3, 5)        2000.000            0.000000 

                  UNFINISHED_COST( 1, 1)        150.0000            0.000000 

                  UNFINISHED_COST( 1, 2)        150.0000            0.000000 

                  UNFINISHED_COST( 1, 3)        150.0000            0.000000 

                  UNFINISHED_COST( 1, 4)        150.0000            0.000000 

                  UNFINISHED_COST( 1, 5)        150.0000            0.000000 

                  UNFINISHED_COST( 2, 1)        150.0000            0.000000 

                  UNFINISHED_COST( 2, 2)        150.0000            0.000000 

                  UNFINISHED_COST( 2, 3)        150.0000            0.000000 

                  UNFINISHED_COST( 2, 4)        150.0000            0.000000 

                  UNFINISHED_COST( 2, 5)        150.0000            0.000000 

                  UNFINISHED_COST( 3, 1)        200.0000            0.000000 

                  UNFINISHED_COST( 3, 2)        200.0000            0.000000 

                  UNFINISHED_COST( 3, 3)        200.0000            0.000000 

                  UNFINISHED_COST( 3, 4)        200.0000            0.000000 

                  UNFINISHED_COST( 3, 5)        200.0000            0.000000 

                                U( 1, 1)        0.000000            150.0000 

                                U( 1, 2)        0.000000            150.0000 

                                U( 1, 3)        0.000000            150.0000 

                                U( 1, 4)        0.000000            150.0000 

                                U( 1, 5)        25.00000            150.0000 

                                U( 2, 1)        0.000000            150.0000 

                                U( 2, 2)        0.000000            150.0000 

                                U( 2, 3)        0.000000            150.0000 

                                U( 2, 4)        0.000000            150.0000 

                                U( 2, 5)        132.0000            150.0000 

                                U( 3, 1)        0.000000            200.0000 

                                U( 3, 2)        0.000000            200.0000 

                                U( 3, 3)        0.000000            200.0000 

                                U( 3, 4)        0.000000            200.0000 

                                U( 3, 5)        270.0000            200.0000 

 

                                     Row    Slack or Surplus      Dual Price 
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                                       1        1475450.           -1.000000 

                                       2        96.00000            0.000000 

                                       3        162.0000            0.000000 

                                       4        86.00000            0.000000 

                                       5        76.00000            0.000000 

                                       6        176.0000            0.000000 

                                       7        0.000000            0.000000 

                                       8        96.00000            0.000000 

                                       9        0.000000            0.000000 

                                      10        21.60000            0.000000 

                                      11        132.0000            0.000000 

                                      12        102.0000            0.000000 

                                      13        72.00000            0.000000 

                                      14        3.250000            0.000000 

                                      15        172.0000            0.000000 

                                      16        66.00000            0.000000 

                                      17        152.0000            0.000000 

                                      18        43.50000            0.000000 

                                      19        152.0000            0.000000 

                                      20        36.00000            0.000000 

                                      21        112.0000            0.000000 

                                      22       0.2000000            0.000000 

                                      23        160.0000            0.000000 

                                      24        144.0000            0.000000 

                                      25        128.0000            0.000000 

                                      26        0.000000            0.000000 

                                      27        5.000000            0.000000 

                                      28        4.000000            0.000000 

                                      29        4.000000            0.000000 

                                      30        5.000000            0.000000 

                                      31        2.000000            0.000000 

                                      32        7.000000            0.000000 

                                      33        8.000000            0.000000 

                                      34        7.000000            0.000000 

                                      35        6.000000            0.000000 

                                      36        5.000000            0.000000 

                                      37        5.000000            0.000000 

                                      38        5.000000            0.000000 

                                      39        3.000000            0.000000 

                                      40        8.000000            0.000000 

                                      41        7.000000            0.000000 

                                      42        8.000000            0.000000 

                                      43        5.000000            0.000000 

                                      44        8.000000            0.000000 

                                      45        7.000000            0.000000 

                                      46        8.000000            0.000000 

                                      47        5.000000            0.000000 

                                      48        2.000000            0.000000 

                                      49        2.000000            0.000000 

                                      50        2.000000            0.000000 

                                      51        1.000000            0.000000 
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Appendix D 

 

Case Study Marginal Adjustment Iterations 

Optimal Solution with System Variability (Iteration 2 as shown in Table 4-15)  

Period 1 2 3 4 5

0 3 2 4 3 1

1 8 6 8 8 3

2 15 11 16 16 5

3 23 16 23 23 7

4 30 21 31 31 9

5 38 26 38 38 11

Period 1 2 3 4 5

0 93.99 97.68 70.62 94.27 78.55

1 75.23 69.82 75.70 76.32 56.41

2 79.75 75.22 75.37 75.96 66.35

3 78.19 76.90 78.65 79.36 70.86

4 79.91 78.18 77.76 78.57 73.59

5 78.80 79.63 79.33 79.74 76.01

Period 1 2 3 4 5

0 1.55 10.91 0.14 3.56 0.27

1 0.11 0.48 0.22 0.27 0.08

2 0.14 0.25 0.11 0.10 0.13

3 0.06 0.22 0.14 0.15 0.18

4 0.07 0.21 0.08 0.07 0.22

5 0.03 0.21 0.08 0.07 0.25

Period 1 2 3

0 8.35 4.32 11.19

1 2.74 2.76 4.50

2 2.52 2.68 4.14

3 2.50 2.67 4.12

4 2.49 2.66 4.10

5 2.48 2.66 4.09

Number of Machines

Workstation

Performance Measures Result

Unit Cost 51.56$                                           

Total Cost 1,546,900.00$                         

Unfinished Products 122.9

Average Time in System (Hours)

Product

% of Total 0.41%

Utilization (%)

Workstation

Average Number in Queue

Workstation
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Iteration 3 – Remove Machine from Workstation 5 

Period 1 2 3 4 5

0 3 2 4 3 1

1 8 6 8 8 3

2 15 11 16 16 5

3 23 16 23 23 7

4 30 21 31 31 9

5 38 26 38 38 10

Period 1 2 3 4 5

0 93.99 97.68 70.62 94.27 78.55

1 75.23 69.82 75.70 76.32 56.41

2 79.75 75.22 75.37 75.96 66.35

3 78.19 76.90 78.65 79.36 70.86

4 79.91 78.18 77.76 78.57 73.59

5 78.85 79.20 79.31 79.99 83.13

Period 1 2 3 4 5

0 1.55 10.91 0.14 3.56 0.27

1 0.11 0.48 0.22 0.27 0.08

2 0.14 0.25 0.11 0.10 0.13

3 0.06 0.22 0.14 0.15 0.18

4 0.07 0.21 0.08 0.07 0.22

5 0.04 0.19 0.09 0.07 0.74

Period 1 2 3

0 8.35 4.32 11.19

1 2.74 2.76 4.50

2 2.52 2.68 4.14

3 2.50 2.67 4.12

4 2.49 2.66 4.10

5 2.51 2.66 4.11

Number of Machines

Workstation

Performance Measures Result

Unit Cost 51.23$                                           

Total Cost 1,536,800.00$                         

Unfinished Products 122.6

Average Time in System (Hours)

Product

% of Total 0.41%

Utilization (%)

Workstation

Average Number in Queue

Workstation
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Iteration 4 – Remove Machine from Workstation 1 

Period 1 2 3 4 5

0 3 2 4 3 1

1 8 6 8 8 3

2 15 11 16 16 5

3 23 16 23 23 7

4 30 21 31 31 9

5 37 26 38 38 10

Period 1 2 3 4 5

0 93.99 97.68 70.62 94.27 78.55

1 75.23 69.82 75.70 76.32 56.41

2 79.75 75.22 75.37 75.96 66.35

3 78.19 76.90 78.65 79.36 70.86

4 79.91 78.18 77.76 78.57 73.59

5 80.89 79.51 79.35 79.86 83.52

Period 1 2 3 4 5

0 1.55 10.91 0.14 3.56 0.27

1 0.11 0.48 0.22 0.27 0.08

2 0.14 0.25 0.11 0.10 0.13

3 0.06 0.22 0.14 0.15 0.18

4 0.07 0.21 0.08 0.07 0.22

5 0.06 0.19 0.09 0.07 0.74

Period 1 2 3

0 8.35 4.32 11.19

1 2.74 2.76 4.50

2 2.52 2.68 4.14

3 2.50 2.67 4.12

4 2.49 2.66 4.10

5 2.51 2.66 4.11

Number of Machines

Workstation

Performance Measures Result

Unit Cost 50.88$                                           

Total Cost 1,526,500.00$                         

Unfinished Products 122.2

Average Time in System (Hours)

Product

% of Total 0.41%

Utilization (%)

Workstation

Average Number in Queue

Workstation
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Iteration 5 – Remove Machine from Workstation 3 

Period 1 2 3 4 5

0 3 2 4 3 1

1 8 6 8 8 3

2 15 11 16 16 5

3 23 16 23 23 7

4 30 21 31 31 9

5 37 26 37 38 10

Period 1 2 3 4 5

0 93.99 97.68 70.62 94.27 78.55

1 75.23 69.82 75.70 76.32 56.41

2 79.75 75.22 75.37 75.96 66.35

3 78.19 76.90 78.65 79.36 70.86

4 79.91 78.18 77.76 78.57 73.59

5 80.87 79.30 81.39 79.78 83.41

Period 1 2 3 4 5

0 1.55 10.91 0.14 3.56 0.27

1 0.11 0.48 0.22 0.27 0.08

2 0.14 0.25 0.11 0.10 0.13

3 0.06 0.22 0.14 0.15 0.18

4 0.07 0.21 0.08 0.07 0.22

5 0.06 0.17 0.14 0.07 0.71

Period 1 2 3

0 8.35 4.32 11.19

1 2.74 2.76 4.50

2 2.52 2.68 4.14

3 2.50 2.67 4.12

4 2.49 2.66 4.10

5 2.50 2.66 4.12

Number of Machines

Workstation

Performance Measures Result

Unit Cost 50.55$                                           

Total Cost 1,516,400.00$                         

Unfinished Products 121.7

Average Time in System (Hours)

Product

% of Total 0.41%

Utilization (%)

Workstation

Average Number in Queue

Workstation
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Iteration 6 – Remove Machine from Workstation 2 

Period 1 2 3 4 5

0 3 2 4 3 1

1 8 6 8 8 3

2 15 11 16 16 5

3 23 16 23 23 7

4 30 21 31 31 9

5 37 25 37 38 10

Period 1 2 3 4 5

0 93.99 97.68 70.62 94.27 78.55

1 75.23 69.82 75.70 76.32 56.41

2 79.75 75.22 75.37 75.96 66.35

3 78.19 76.90 78.65 79.36 70.86

4 79.91 78.18 77.76 78.57 73.59

5 80.94 82.41 81.32 79.67 83.60

Period 1 2 3 4 5

0 1.55 10.91 0.14 3.56 0.27

1 0.11 0.48 0.22 0.27 0.08

2 0.14 0.25 0.11 0.10 0.13

3 0.06 0.22 0.14 0.15 0.18

4 0.07 0.21 0.08 0.07 0.22

5 0.06 0.34 0.14 0.06 0.65

Period 1 2 3

0 8.35 4.32 11.19

1 2.74 2.76 4.50

2 2.52 2.68 4.14

3 2.50 2.67 4.12

4 2.49 2.66 4.10

5 2.51 2.66 4.12

Number of Machines

Workstation

Performance Measures Result

Unit Cost 50.22$                                           

Total Cost 1,506,500.00$                         

Unfinished Products 122.6

Average Time in System (Hours)

Product

% of Total 0.41%

Utilization (%)

Workstation

Average Number in Queue

Workstation
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Iteration 7 – Remove Machine from Workstation 4 (Final Solution as shown in Table 4-16) 

Period 1 2 3 4 5

0 3 2 4 3 1

1 8 6 8 8 3

2 15 11 16 16 5

3 23 16 23 23 7

4 30 21 31 31 9

5 37 25 37 37 10

Period 1 2 3 4 5

0 93.99 97.68 70.62 94.27 78.55

1 75.23 69.82 75.70 76.32 56.41

2 79.75 75.22 75.37 75.96 66.35

3 78.19 76.90 78.65 79.36 70.86

4 79.91 78.18 77.76 78.57 73.59

5 80.97 82.27 81.54 82.34 82.79

Period 1 2 3 4 5

0 1.55 10.91 0.14 3.56 0.27

1 0.11 0.48 0.22 0.27 0.08

2 0.14 0.25 0.11 0.10 0.13

3 0.06 0.22 0.14 0.15 0.18

4 0.07 0.21 0.08 0.07 0.22

5 0.06 0.32 0.14 0.13 0.59

Period 1 2 3

0 8.35 4.32 11.19

1 2.74 2.76 4.50

2 2.52 2.68 4.14

3 2.50 2.67 4.12

4 2.49 2.66 4.10

5 2.51 2.67 4.11

Number of Machines

Workstation

Performance Measures Result

Unit Cost 49.89$                                           

Total Cost 1,496,550.00$                         

Unfinished Products 124.3

Average Time in System (Hours)

Product

% of Total 0.41%

Utilization (%)

Workstation

Average Number in Queue

Workstation
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