
The Pennsylvania State University

The Graduate School

BLOCKAGE DETECTION IN NATURAL GAS PIPELINES BY TRANSIENT

ANALYSIS

A Thesis in

Petroleum and Mineral Engineering

by

Najeem A. Adeleke

c© 2010 Najeem A. Adeleke

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

May 2010



The thesis of Najeem A. Adeleke was reviewed and approved∗ by the following:

Michael A. Adewumi
Professor of Petroleum and Natural Gas Engineering,

Quentin E. and Louis L. Wood University Endowed Fellow
Thesis Co-Advisor

M. Thaddeus Ityokumbul
Associate Professor of Mineral Processing and Geo-Environmental Engineering
Thesis Co-Advisor

Turgay Ertekin
Professor of Petroleum and Natural Gas Engineering,

George E. Trimble Chair in Earth and Mineral Sciences,

Semih Eser
Professor of Energy and Geo-Environmental Engineering,

Yaw D. Yeboah
Professor of Energy and Geo-Environmental Engineering,

Head of the Department of Energy and Geo-Environmental Engineering

∗Signatures are on file in the Graduate School.



Abstract

Pipelines are the most reliable means for the transportation of natural gas. A major problem
of flow assurance in natural gas pipelines is solid deposition that result in partial/complete
blockages. Blockages in natural gas pipelines are mostly due to hydrate formation and deposition.
The industry has adopted a handful of hydrate formation prevention techniques however there is
still no known means for the complete eradication of hydrates that is applicable under all pipeline
blockage scenarios. The industry is now resorting to early blockage detection techniques in order
to appropriately manage blockage scenarios for economic and safety reasons. Several studies
have been conducted to determine the best approach for early blockage detection. Modeling
and analyzing natural gas transients for blockage characterization is one of the promising early
blockage detection techniques. It is the most economical and least intrusive simply because it
requires no additional instrument other than a dynamic pressure gauge which is usually already
part of most modern pipeline networks.

However, the problem with this technique lies in the resulting mathematical model. Its for-
mulation results in a system of non-linear hyperbolic partial differential equations which have no
known generalized solution. Besides, numerical techniques for solving the resulting mathemati-
cal model are computationally involved and are subject to numerical stability issues. This study
explores the possibility of the use of a simple numerical technique based on finite volume method
for blockage characterization.

In previous studies, pressure waves were assumed to be propagating at the speed of sound.
This assumption is incorporated into the mathematical formulation by the isentropic assumption
where the the pressure term within the momentum conservations flux is substituted for a function
of the speed of sound. A calculated estimate of the speed of sound is then assigned prior to
conducting numerical experiments. This assumption idealizes the model and causes the resulting
pressure waves to propagate at sonic speed. The idealized solution and thereby affects the
blockage characterization capability of the model when applied to real pipeline blockages or lab
flow loop experiments. In this study, we do not make this assumption and instead the pressure
one of our unknown variables. Hence the compression wave is expected to travels at its true
speed.

Additionally, previous studies did not include viscous effects in their mathematical model for
blockage characterization (Ahmed, 1996; Eltohami, 1999; Adewumi et al., 2000 and 2003; Chen
et al., 2007). This is another assumption of ideality which further makes the solution impractical
and reduces the accuracy of blockage characterization analysis. This study evaluates the effect
of neglecting viscous effects on blockage characterization and a preliminary alternative equation
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that accounts for the effect of friction on blockage severity estimation is proposed.
Furthermore, previous studies (Adewumi et al., 2000 and 2003) utilized empirical formulations

(Dranchuk and Abou-Kassem, 1974) for the estimation of the compressibility factor. In this
study, the mathematical formulation is a quasi-compositional Eulerian gas flow model in which
the compressibility factor is estimated using the Peng-Robinson equation of state. This provides
a more realistic prediction of transport properties since the composition of the gas is put into
direct consideration.

The numerical techniques implemented here are specialized the for finite volume method of
discretization. A staggered three-point stencil upwind scheme and a second-order centered five-
point Nessyahu and Tadmor TVD scheme with MUSCL reconstruction are solved implicitly using
the Newton-Raphson iterative technique. The fully implicit approach offers model stability for
relatively large time steps thereby reducing the overall computational time despite the use of an
iterative solver.

Blockage location prediction error was found to be reduced by one order of magnitude if
the actual speed of the pressure wave that is determined from the inlet pressure profile is used.
If viscous effects are considered, blockage severity analysis using the linear theory equation for
determining wave reflection ratio that does not account for viscous effects results in large blockage
severity prediction errors. However, blockage severity prediction is improved when the analysis
is made in consideration of viscous effects.

iv



Table of Contents

List of Figures viii

List of Tables x

Acknowledgments xi

Chapter 1
Introduction 1

Chapter 2
Background 4
2.1 Pipeline Blockages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Industrial Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Chemical Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Natural Gas Dehydration (Water Dew point lowering) . . . . . . . . . . . 5
2.2.3 Maintenance Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.3.1 Optimal Transmission Operations Design . . . . . . . . . . . . . 7
2.2.3.2 Regular Pipe inspection and Pigging Operations . . . . . . . . . 7

2.2.4 Early Blockage Detection Techniques . . . . . . . . . . . . . . . . . . . . . 8
2.2.4.1 Blockage Detection Using Acoustics . . . . . . . . . . . . . . . . 8
2.2.4.2 Blockage Detection Using Pressure Transients . . . . . . . . . . 10
2.2.4.3 Blockage Detection Using Steady State Techniques . . . . . . . . 14

2.2.4.3.1 Blockage Detection Using the Backpressure Technique . 14
2.2.4.3.2 Mass Balance Technique . . . . . . . . . . . . . . . . . 14

Chapter 3
Mathematical Formulation 15
3.1 Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Euler’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Navier-Stokes Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 The Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 The constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 The Frictional Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 The Gravitational Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



3.4 Fluid Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.1 Gas Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Gas Compressibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 4
The Numerical Technique 21
4.1 Finite Volume Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Piecewise Constant Averages for Grid Cells . . . . . . . . . . . . . . . . . 21
4.1.2 The Integral Form of the Conservation Laws . . . . . . . . . . . . . . . . 22
4.1.3 The Conservative Nature of FVM . . . . . . . . . . . . . . . . . . . . . . 23
4.1.4 FVM or Direct Finite Difference of the Conservation Laws . . . . . . . . . 23

4.2 Convergence requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 Numerical Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.2.1 Courant Number . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.3 Additional Stability requirements for Non-linear PDEs . . . . . . . . . . . 27

4.2.3.1 Monotone Property . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.3.2 TVD and TVB Property . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Numerical Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1 Lax-Friedrichs Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 The Richtmyer Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.3 The First-Order Upwind Method . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.4 Nessyahu and Tadmor centered scheme . . . . . . . . . . . . . . . . . . . 31

4.4 One-Dimensional Symmetrical Griding Systems . . . . . . . . . . . . . . . . . . . 33
4.4.1 Regular/Collocated Finite Volume (FV) Grid . . . . . . . . . . . . . . . . 33
4.4.2 Staggered Grid Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Treatment of Source Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.1 The Half Step Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2 The Unsplit Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 The Fully Discretized System of Equations . . . . . . . . . . . . . . . . . . . . . 34
4.7 Steady-State Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.8 Numerical Solver: GNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.9 Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.10 Initial Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 5
Results and Discussions 39
5.1 Numerical Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Sudden Valve Shut-in Experiment 1 . . . . . . . . . . . . . . . . . . . . . 39
5.1.2 Sudden Valve Shut-in Experiment 2 . . . . . . . . . . . . . . . . . . . . . 43

5.2 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.1 No Blockage Case: Scenarios 1 and 2 . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 Partial Blockage Case: Scenarios 3 and 4 . . . . . . . . . . . . . . . . . . 47

5.2.2.1 Continuous Area Change . . . . . . . . . . . . . . . . . . . . . . 47
5.2.2.2 Blockage Position Location . . . . . . . . . . . . . . . . . . . . . 48
5.2.2.3 Blockage Severity Determination . . . . . . . . . . . . . . . . . . 48

vi



Chapter 6
Conclusion 64

Chapter 7
Recommendation 66

Appendix A
THEORETICAL EXPRESSIONS FOR SEVERITY DETERMINATION 67
A.1 Continuous Area Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Appendix B
Equation of State: Peng and Robinson, 1976 68

Appendix C
Effect of Time Step Size on Solution Accuracy 70

Bibliography 74

vii



List of Figures

1.1 Generic Hydrate Formation Curve. The properties of Petroleum Fluids (William
D. McCain, 1990). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Temperature-Composition diagram for Mehtane and Water. Clatherate Hydrates
of Natural Gases, (Dendy E. Sloan, 1998) . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Domain of Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Upwind Linear Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Linear Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Collocated Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Staggered Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Line Parking Validation Experiment 1 (Staggered Upwind Scheme) . . . . . . . . 40
5.2 Line Parking Validation Experiment 1 (NT centered Scheme) . . . . . . . . . . . 41
5.3 Validation Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Line Parking Validation Experiment 2 (Staggered Upwind Scheme) . . . . . . . . 44
5.5 Line Parking Validation Experiment 2 (NT centered Scheme) . . . . . . . . . . . 45
5.6 Validation Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.7 Inlet Pressure Profile (IN FRICTIONLESS PIPE) . . . . . . . . . . . . . . . . . 51
5.8 Inlet Pressure Profile (WITH FRICTION) . . . . . . . . . . . . . . . . . . . . . . 52
5.9 Transient Profiles (IN FRICTIONLESS PIPE) . . . . . . . . . . . . . . . . . . . 53
5.10 Transient Profiles (WITH FRICTION) . . . . . . . . . . . . . . . . . . . . . . . . 54
5.11 Speed of Sound and Density profiles (IN FRICTIONLESS PIPE) . . . . . . . . . 55
5.12 Speed of Sound and Density profiles (WITH FRICTION) . . . . . . . . . . . . . 56
5.13 Schematic of events generating expansion and compression pulses . . . . . . . . . 57
5.14 Continuous Area Change Experiment; Inlet Pressure Profiles (NO FRICTION) . 58
5.15 Continuous Area Change Experiment; Inlet Pressure Profiles (WITH FRICTION) 59
5.16 Continuous Area Change Experiment; Area Profile . . . . . . . . . . . . . . . . . 60
5.17 Continuous Area Change Experiment; Transient Profiles (NO FRICTION) . . . 61
5.18 Continuous Area Change Experiment; Transient Profiles (WITH FRICTION) . . 62
5.19 Continuous Area Change Experiment; Speed of Sound and Density Profiles (WITH

FRICTION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

C.1 Pressure and Velocity Profile for λ = 3.7878E-5 . . . . . . . . . . . . . . . . . . . 71
C.2 Pressure and Velocity Profile for λ = 3.7878E-4 . . . . . . . . . . . . . . . . . . . 72
C.3 Pressure and Velocity Profile for λ = 3.7878E-3 . . . . . . . . . . . . . . . . . . . 72
C.4 Inlet Pressure Profile for λ = 3.7878E-5 . . . . . . . . . . . . . . . . . . . . . . . 73

viii



C.5 Inlet Pressure Profile for λ = 3.7878E-4 . . . . . . . . . . . . . . . . . . . . . . . 73
C.6 Inlet Pressure Profile for λ = 3.7878E-3 . . . . . . . . . . . . . . . . . . . . . . . 73

ix



List of Tables

5.1 Data for First Validation Experiment (Eltohami, 1999; Zhou and Adewumi,1995) 39
5.2 Arbitrary Gas Composition of Approximate standard gravity of 0.64 . . . . . . . 43
5.3 Data for Second Validation Experiment (Ibrahim and Adewumi, 1999) . . . . . . 43
5.4 Experiment 1: Continuous Area Change . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Inlet pressure data for Blockage Severity Prediction . . . . . . . . . . . . . . . . . 50
5.6 Continuous Area Change Location and Severity Prediction . . . . . . . . . . . . 50

x



Acknowledgments

Indeed all praise is due to Allah, the creator of the universe and all that is in it. We praise him,
and continue to seek his aid and guidance. I am most grateful to Allah, the exalted, through the
commencement and completion of this work.The one without whom nothing is possible and with
whom nothing is impossible.

I will like to show gratitude to Professors, Michael Adewumi and Mku Thaddeus Ityokumbul
for their unwavering support and understanding through out the course of this work. Their
continued support and understanding was instrumental to the success of this work and greatly
appreciated.

Furthermore, I will like to show gratitude to all professors in Petroleum and Natural Gas
engineering program for their nurturing courses and inspirations which set the pace of this de-
velopment. Additionally, I will like to show gratitude to colleagues and well wishers in the
department.

Finally, I will like to show gratitude to my parents, Alhaji Murtala S. Adeleke and Alhaja
Muteaat T. Adeleke to whom I dedicate this work. Their love, encouragement and prayers were
instrumental to the completion of this work.

xi



Chapter 1
Introduction

Economic, technological, environmental and political drivers in addition to relative abundance

have given natural gas its edge in the fossil fuel market today. Natural gas (NG) was flared for

lack of economic viability in the past and preference was given to liquid hydrocarbons due to

demand. However, this is no longer the case for several reasons. One reason is the hike in natural

gas prices over the last couple of decades induced partly by the quest for energy independence by

industrialized nations through control over the worlds’ fossil fuel reserves. Another contributor

to the appreciation of the value of natural gas is its clean burning attribute which appeals

to environmentalist and proponents of global warming in both the developed and developing

world. Additionally, the abundance of natural gas makes it appealing to energy policy makers

who aim to enrich their portfolios with clean burning natural gas reserves to demonstrate their

commitment to green energy supply. Furthermore, technological advancements in addition to the

economic viability of natural gas makes deep water, tight shale and other unconventional natural

gas reserves viable today. Notwithstanding, for natural gas to enjoy its increased demand it will

have to maintain a competitive cost for consumers in the fossil fuel market.

One of the major impacts on the price of natural gas is its transportation. The quickest

and most viable means of the transportation of natural gas is through pipe networks. Pipelines

are a reliable avenue for the supply of NG to consumers. Another major impact on the price

of this commodity is the cost of production. As more deep offshore developments emerge, the

need to reduce risks associated with natural gas production is on the rise due to the large

capital outlay associated with deep water developments. In such investments, time is money

and lost time which can be caused either by temporary flow interruption or asset damage due

to solid deposition greatly reduces profitability and therefore economic viability. Financial losses

associated with flow assurance mishaps can be astronomical and hence the need to understand

events associated with such mishaps.

Flow interruption may occur in pipelines due to partial blockages from condensation or solid

formation and/or deposition. These may reduce deliverability hence making it difficult for gas
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transmission companies to meet contractual obligations. In the least, partial blockages increase

energy requirement for fluid transmission and thereby increases compression cost for gas trans-

mission companies. Moreover, pipeline blockages could lead to catastrophic events such as pipe

rupture in deep water developments. Solid deposition in pipelines may involve hydrates, paraffin

wax, scale and naphthenates. For natural gas pipelines, most blockage occurrences involve gas

hydrates. Hydrate deposition occurs after its formation under high pressure and low temperature

conditions befitting of the deep water environments but not restricted to such. Figure 1.1 shows

a generic hydrate equilibrium line which illustrates region hydrate formation. Hydrate deposition

in NG pipelines are known to be the most catastrophic due to the possibility of complete pipe

blockage. The Piper Alpha explosion incident is a tale much remembered in connection with

such a fatal event. Remedial measures such as the use of hydrate inhibitors have not been able to

completely eliminate the formation of hydrates and in fact effectively handling hydrate formation

and deposition is one of the key aspects of flow assurance for NG systems.

Figure 1.1: Generic Hydrate Formation Curve. The properties of Petroleum Fluids (William D.
McCain, 1990).

The three-phase critical point is point C on the diagram that represents the condition where

the liquid and gas hydrocarbon merge into a single hydrocarbon phase in equilibrium with liquid

water. Point Q2 is the upper quadruple point, where four phases (liquid water, liquid hydrocar-

bon, gaseous hydrocarbon, and solid hydrate) can be found in equilibrium. Point Q1, the lower

quadruple point, typically occurs at 32oF (ice freezing point) where four phases (ice, hydrate,

liquid water, and hydrocarbon gas) can be found in equilibrium.

The formation of hydrates can not be fully eliminated however early detection of solid deposi-

tions within pipes is one way to ensure flow and safety of people and assets. The knowledge of the

location and severity of blockages in pipes will serve as a tremendous asset to NG transmission

operators since it will help them to device optimum production schedules with the least possible
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disruption during pigging operations. Additionally, it will help deep water operators maintain

safety and integrity of deep water assets through early detection and remediation.

The goal of this study is to develop a transient, compositional gas flow model in order to

explore the possibility of detecting the location and severity of partial blockages in pipes. Hydrate

formation in pipelines have been reported to occur under the transient conditions of start-up or

shutdown operations when pressure, temperature and fluid-property changes still exist. The

advantage of the proposed techniques lie in the fact that it involves modeling transient states

were hydrates are most likely to form and be deposited. The basic strategy is to use pressure

transients to determine the existence of blockages in the pipeline. This transient is initiated

by a surge in rate of fluid incursion into the pipeline that is allowed to propagate through the

system. Upon reaching any obstacle transient reflections propagate back upstream to the inlet

where pressure measurement are observed and blockage characteristic information are collected

and analyzed.



Chapter 2
Background

2.1 Pipeline Blockages

Pipeline blockage may be structure-related or fluid-related. Structure-related blockages involves

damage to pipeline infrastructure such as pipe deformation, valve malfunction and corrosion

deposition which can all be avoided by proper maintenance and regular inspection. However,

fluid-related blockages are more persistent and difficult to handle. Fluid-related blockages involve

formation and/or deposition of solids such as asphalthenes and wax in oil pipelines and gas

hydrates in natural gas pipelines. The most troublesome of these is gas hydrate deposition which

is known to lead to catastrophic events. Hermmerschmidt (1934) was first to realize that it was

gas hydrates and not ice that was plugging gas pipelines and ever since the main focus of flow

assurance in natural gas pipelines has been effective handling of gas hydrates.

Natural gas hydrates are solid crystalline compounds resembling ice however much denser and

form at temperatures above freezing point of water. They are formed by a non-chemical entrap-

ment(enchlathration) of guest molecules in hydrogen bonded water crystal latices. These guest

molecules are usually shorter chain hydrocarbons such as methane, ethane, propane and butane

in addition to combinations of methane and other longer chain hydrocarbons. Other molecule

such as nitrogen, carbon dioxide and hydrogen sulphide are also found in hydrates and are known

to promote hydrate formation since they are more soluble in water than hydrocarbon. Hydrates

are known to block transmission lines, plug blowout preventers, jeopardize the foundations of

deepwater platforms and pipelines, cause tubing and casing collapse among other things.

2.2 Industrial Solutions

The key circumstances essential for hydrate formation are: (1) Presence of water (be it as a free

phase or dissolved in another phase), (2) Hydrate conducive states i.e. low temperatures, high

operating pressures and presence of short chain hydrocarbons (i.e. natural gas), (3) Turbulence
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from high velocities, or agitation, or rapid pressure increase, or pressure pulsations (4) Presence

of catalysts such as H2S and CO2. The solutions to the problem of hydrates hinges around the

elimination of some of the above mentioned conditions or introduction of counter effect agents.

2.2.1 Chemical Injection

Though not the best approach, this is one of the most publicized method of handling the hydrate

problem as it requires minimal interruption to gas flow and it is also less intrusive. Just like

the presence of H2S and CO2 promotes hydrate formation because both of these acidic gases

are more soluble in water than the hydrocarbon, other chemicals may be introduced into natural

gas transmission lines to induce the opposite effect. These chemicals inhibit the formation of

hydrates by shifting the hydrate formation line of equilibrium (see Fig. 1.1).

Hemmerschmidt(1934) conducted early studies on hydrate inhibition using aqueous solutions

such as lithium chloride, calcium chloride, zinc chloride, di-ethylene glycol, methanol and glyc-

erine. Nakamaya and Hashimoto (1980), Davidson et al. (1981), Makogon(1981), Berecz and

Balla-Achs(1983), Svatar and Fadnes (1992), Kelland et al. (1995) also have all conducted sim-

ilar studies. More recent studies have been on the mechanisms of gas hydrate inhibition. See

Sloan (1991), Lederhos et al.(1996), Sloan (2003). Though these studies have greatly increased

our understanding of gas hydrates, there is still no known hydrate inhibitor that can completely

eliminate the problem of hydrate formation and deposition.

The two most common hydrate inhibitor used today are methanol and ethylene glycol. How-

ever, methanol injection continues to be the most simple and cost effective inhibition agent. It

is most beneficial in cases where hydrate problems are relatively mild, infrequent and in cases

where inhibitor injection is only a temporary phase, or where inhibition is done in conjunction

with a primary dehydration system as will be discussed later. Hence the need for alternative

measures to curb the problem under more severe conditions still exists.

2.2.2 Natural Gas Dehydration (Water Dew point lowering)

No hydrate formation is possible if water is not present hence we understand the importance

of removal of water vapor from natural gas systems. Removal of water from natural gas causes

hydrate instability since the host molecules (water) become insufficient to form enough lattices

to house the guest molecules. This is the only method so far found to be completely satisfactory

in preventing the formation of hydrates in transmission lines. It is important to mention that

a common misconception is that for the formation of hydrate, water must exist as a ”free”

phase. However, from a strictly thermodynamic point of view, vapor or liquid hydrocarbon with

dissolved water can form hydrates at the hydrate-vapor or the hydrate-liquid hydrocarbon (HC)

boundaries with out the presence of a free water phase (see Fig.2.1)

Figure 2.1 shows the cooling of a 60 mol percent CH4 + 40 mol percent H20 mixture from a

high temperature at a constant pressure shown as a dashed vertical line. The vapor (v) exists as

a single phase until the water dew point (Point 1) is reached, where composition of equilibrium
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Figure 2.1: Temperature-Composition diagram for Mehtane and Water. Clatherate Hydrates of
Natural Gases, (Dendy E. Sloan, 1998)

liquid water (Lw) is point 5. Further cooling of the gas-liquid mixture causes the water phase to

increase until point 2 (Lw-H-V coexists) is reached where hydrate (H) phase forms. Note that if

at point 8 hydrate phase forms from the vapor phase and if at point 6 hydrate phase forms from

”free” water phase. Further reduction in temperature results in the conversion of any available

free water to hydrate and the system enter a two phase (H-V) region below horizontal line at

point 2. Further reduction in temperature causes some of the methane in the vapor phase to

transition into liquid methane (Lm) at the three phase (Lm-H-V) boundary. Further reduction in

temperature results in the conversion of any available methane in vapor phase to liquid methane

and the system enter a two phase (H-Lm) region below horizontal line at point 3. point 4 is the

point of the lowest three phase (H-Lm-Sm) line where solid methane (Sm), liquid methane and

hydrate exists in equilibrium. A further reduction in temperature causes the conversion of all

available liquid methane in solid methane below the horizontal line at point 4. Hence only solid

phase methane and hydrate exists below this temperature.

After free water is separated from the gas stream, Figure 2.1 shows the need to remove water

present in both the liquid and vapor hydrocarbon phases. Within ten years of Hammershmidt’s

1934 discovery of hydrates in pipelines, he and his colleagues published details of gas dehydration

with solid dessicants. The most common solid desiccants today in order of decreasing drying

efficiency are molecular sieves, silica gel and alumia. Molecular sieves are crystalline solids

designed to adsorb particular molecules based upon polarity and size. They have become the

dominant absorbent due to the advantages of extremely low due point, high water adsorption

capacity and unlike silica gel are not damaged by liquid water.

Deaton and Frost (1946, p.42) suggested three processes for dew point lowering removal of

dissolved water: (1) Hygroscopic solution (2) Chemical adsorption (3) Physical adsorption by
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solids. Of the three suggestions only two have evolved into commercial processes. The third

process we already discussed. The second process is not in commercial use based of the economic

feasibility of the use of non-regenerative solid chemical adsorbents. However, the first involves

lowering the water concentration by contacting the gas with tri-ethylene glycol (TEG) which

adsorbs water through hydrogen bonding. Detailed description of this process can be found in

Perry (1960), Hall and Polderman (1960), Loomer and Welch (1961) and Bucklin et al. (1985).

As mentioned earlier, water removal is one of the most satisfactory approach to preventing

hydrate formation. However, other than the fact that it increases the overall cost of trans-

portation of natural gas, it requires a technical process which may not always be practically

implementable. For instance, in deep water production of natural gas, hydrates formation occurs

before one ever gets the natural gas to the surface. In such cases the dehydration process can

not be implemented.

2.2.3 Maintenance Operations

2.2.3.1 Optimal Transmission Operations Design

Since hydrate inhibitors can not completely eliminate hydrate formation and deposition trans-

mission operators have been able to use the knowledge of hydrate forming conditions to optimize

gas transmission operations to reduce hydrate formation in transmission lines when possible.

Hydrates occur at or below the hydrate formation temperature for a given pressure and gas com-

position. Phase behavior thermodynamics is usually invoked for the prediction of the lower and

upper quadruple points (Q1 and Q2) on the hydrate formation/dissociation line (see Fig. 1.1).

The first two methods of prediction were proposed by Katz and coworkers, and are known as

the Gas Gravity Method (Katz, 1945) and the Ki-value Method (Carson and Katz, 1942). Both

methods allow calculating the Pressure-Temperature equilibrium curves for three phase systems

involving liquid water, hydrate and natural gas. These methods yield initial estimates for the

calculation and provide qualitative understanding of the equilibrium; the latter method being

the more accurate of the two. See Sloan (1990) for more detail. The third method relies on

Statistical Mechanics for the prediction of equilibrium. It is recognized as the most accurate of

all three-phase calculations as it is more comprehensive and detailed.

2.2.3.2 Regular Pipe inspection and Pigging Operations

One good but intrusive method for removing hydrates from pipelines is pigging. The industry

has adopted pigging as a remedial measure and most pipeline networks are constructed with pig

lunchers and receivers built on with bypass and isolation valves that allow fluid to either flow

through or around the pig launcher/receivers. Also ball valves instead of butterfly valves are used

to accommodate pig trafficking through pipelines. Pigging is the practice of inserting a device

known as the ”pig” into a flowing pipeline. Pig devices vary depending on usage. They may be

used to scrape off solid deposits (hydrates, wax, paraffins) from the inside of the pipeline, or to
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remove liquids and condensate from NG pipelines. Pigs can also be used to inspect the pipeline

for corrosion damage, leakages or for blockage detection.

Pigs for cleaning may be as simple a polyurethane foam plug to push along liquids and

condensates or include tungsten studs with abrasive wire meshes on the outside to cut rust, scale

or paraffin. Pigs used for inspection, also known as ”smart pigs” or ”intelligent pigs”, are highly

sophisticated instruments that vary in complexity based on the intended usage. Magnetic Flux

Leakage (MFL) pigs are smart pigs used for surface pitting and corrosion inspection as well as

cracks/weld defects. Caliper pigs on the other hand are a much simpler type of smart pigs used

for determining roundness of the pipeline.

The pig diameter is bigger than the pipe diameter so the pipe is sealed on both sides and

driven by gaseous or liquid propellants or whatever fluid is in the pipe at the time. Pigging

helps keep the pipeline free of liquids and solid deposits, reduce the overall pressure drop and

increase pipeline flow efficiency. However, pigging operations are associated with a great deal of

risk which can be very costly. The risks range from mechanical failures to safety issues. One

problem associated with pigging operations is the possibility of the pig getting lodged behind an

obstruction within the pipe. Not only is it costly to locate and retrieve the pig, usually done by a

contractor firm specializing in pig retrieval, it is also an obstruction to the production schedule.

A whole industry thriving off of the eminent need for pig retrieval services have emerged. This

services are mostly needed in the early stages of operation when not much is known about the

interior of the pipe which therefore increases the risk of having a stuck pig. The risks associated

with pipeline pigging highlights the need for non-intrusive methods for locating and determining

the severity of pipe blockages.

2.2.4 Early Blockage Detection Techniques

2.2.4.1 Blockage Detection Using Acoustics

Acoustic techniques were formally used for leakage detection in pipelines. Prior to this, bar

test surveys were used to detect leakages in natural gas transmission lines. Bar test surveys

also known as ”barholing” are carried out by driving or boring bar holes at regular intervals

along the way of an underground gas pipe line and the atmosphere in the holes is tested with a

combustible gas detector or similar equipments. This was the standard method and is still in use

till today. The first attempts to develop methods for leak detection using acoustics appeared in

the 1930’s (Parker, 1981). Smith (1933); Gilmore (1935); Richardson (1935) and Larson (1939)

all had publications on acoustic techniques in the same decade. However, there were no more

publications on the subject for another two decades (McElwee, 1957).

Earlier studies were based on a passive approach in the sense that they limited the technique

to the use of listening devices. Sonic Sensors were coupled to the gas stream inside the pipe

and since noise generated from leakage is distinctly audible and renders ambient noise negligible,

leakage detection was possible. However, in the late 50’s to the mid 60’s the Institute of Gas

Technology(IGT) with the support of The American Gas Association (A.G.A.) made record
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progress in the first systematic attempt to develop an improved approach using both passive

and active acoustic techniques for leak detection (Reid, 1961 and Hogan, 1964). Although IGT

achieved some success in leak detection at the time, the systems developed were not considered

reliable enough to replace the traditional bar test surveys.

The theoretical and experimental work in this area was unraveled by Parker (1981) who

identified factors of major importance in the operation of active leak detection systems. He

developed a correlation to improve signal to noise ratio that was independent of time, hence very

small initial values of emitted acoustic signals could be detected even after relatively long periods

of time with damping effect. The pitfall of his acoustic technique was in its limited application to

sensors in close proximity to the leak site thereby requiring a mobil sensor to traverse the pipe.

Hence continuous monitoring was not feasible.

In the late 80’s Watanabe and his coworkers introduced a new acoustic leak detection tech-

nique where a leak in the pipeline was estimated by impulse response to an acoustic wave from

signals detected at two terminal sites within a pipe. This method requires continuous monitoring

through microphones at both the input and output terminals and is based on the observation that

sudden leaks in pipes produce sharp impulse responses to acoustic waves. Watanabe’s modeled a

pipeline like a tube wind instrument with resonance and standing waves computed as a function

of leak position (Watanabe et. al. 1986, 1987a, 1987b, 1990) by introducing ”white noise” a

distance from the leakage site at the input terminal and acoustic signals excited by the white

noise are detected at both terminals. It is important to note that Loth, et. al. (2003) developed

a theoretical model of the wave equation to show how and why the leaks could be detected using

Watanabe’s model. Watanabe’s model was based on the following initial assumptions:

1. the test zone in the pipe system has two constrictions, one at the input end and one at the

output end,

2. the pipe system is a single tube with no side branches,

3. there can only be one leak in the test section at one time (this was only an initial assumption

and the application of this technique to multiple leakages can be demonstrated where time

locations are derived ( Loth, et. al., 2003)),

4. the entire test section has a uniform cross section,

5. the pressure at the input end includes random, almost white, fluctuations,

6. the pressure at the input and output can be measured with a microphone having a limited

frequency range, and

7. the acoustic wave propagates through the pipeline without attenuation and the velocity of

the fluid in the pipe is insignificant when compared to the speed of sound.

Koyama et. al. (1993) extended Watanabe’s studies to include the detection of blockages and

blockage severity in pipelines with the following assumptions:
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1. The fluid in the pipe is ideal gas

2. There is only one blockage in the pipe

3. The tested zone is a straight section of pipe with no branches and bends

4. The tested zone has a uniform cross-section in the absence of partial blockage

5. The outlet of the pipeline is partially closed

The advantage of this method is that it can be used to detect both blockages and leakages.

However, this technic requires that both the inlet and outlet be fitted with microphones which

further complicates the design of the pipe network. However, the main disadvantage of acoustic

methods in general is the degradation of acoustic signals.

Another acoustic method that can be used to detect blockages as well as leakages was pro-

posed by Sharp and Campbell(1996). They discussed a method involving the injection of sound

pulse into a pipeline and recording of resulting reflections using a microphone installed on the

exterior of the pipe. The premise of this method is from the idea that for an ideal delta function

sound pressure pulse, the reflection obtained from the pipe should be its input impulse response.

However, lack of ideality causes a deviation in the impulse response reflections. The reflections

obtain are deconvolved using the input pulse to obtain the impulse response using Fourier trans-

forms. Analysis of this reflection is used to obtain information about the bore profile as well as

the input impedance of the pipe.

2.2.4.2 Blockage Detection Using Pressure Transients

Transient modeling have been used to study several problems in the natural gas industry ranging

from the determination of pressure drop and flow rate of natural gas at different nodes in a pipe

network undergoing variations in demand and supply, to the analysis of compressor start-up and

shut-down operations. Ratchford and Dupont (1974), Stoner (1969), Wilkinson et al. (1965),

Steeter and Wylie (1970), Thompson and Skogman (1983) all are examples of transient modeling

in the natural gas industry. The last paper applies transient fluid flow and heat transfer models

to real time pipeline leak detection.

Transients are in general a short-lived phenomena that can be observed over a finite period

of time prior to the system achieving steady or pseudo-steady conditions. Transients are studied

not only in fluid flow but also in electrical circuits, mechanical system deformation, and even

astronomy. Transient analysis of natural gas systems involves the solution of a system of non-

linear partial differential equations with initial and boundary conditions. The fact that there is no

generalized solution for non-linear PDEs highlights the difficulty involved in solving this problem.

The starting point in formulating most mathematical models involving fluid flow is the Navier-

Stokes equation. Solving such an equation is never an easy task and always involves compromises.

Moreover, the Navier-Stokes equation is simply a statement of momentum conservation and in

order to adequately describe the flow of fluids, more information is needed depending on how
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much justifiable assumptions are made. However, regardless of assumptions made, a statement

of the conservation of mass (or the mass continuity equation) is generally necessary.

The earliest solution for partial differential equations was given by Jean le Rond D’Alembert

in 1750 in application to a vibrating string. It is a simple algebraic method requiring excessive

assumptions. It should be noted that Bernoulli also came up with a very different solution in the

same year based on eigenfunction comparable with the Fourier series and this forms the basis for

numerical Fourier transforms in the field of electrical engineering today. The concepts and theory

of transients have been well developed since D’Alembert’s solution starting with Alleivi(1902)

who first applied the theory to the field of hydraulics and established the general theory and

the idea of a graphical method. However, since the advent of digital computers these methods

have become obsolete and are only referenced for chronographic or pedagogic reasons. Schnyder

(1929), Bergeron (1935) and Angus (1935) applied Alleivi’s graphical method to analyze the

water hammer phenomena. This method is known today as Bergeron’s method in the field of

electrical engineering though it was first developed by Schnyder. The water hammer phenomena

is synonymous to line packing effect in natural gas systems.

Computer advancements have made more accurate methods that were previously considered

too costly due to their heavy computational loads more prominent today. Hence, the old conven-

tional wisdom that resulted in simplification of mathematical formulations is no longer necessary.

Now the criteria are practicalilty/accuracy and computational time cost. These two need to be

juggled carefully to arrive at an optimum model by minimizing computation time without com-

promising the physical integrity of the model. The field of numerical analysis is very broad and

divided into various aspects depending on the type of problem that needs to be solved. For dif-

ferential equations, a solution is reached through (1) Development of a mathematical model that

describes the physical problem (2) Identification of the domain of the mathematical formulations,

(3) Discretization of the differential equations involved into a finite dimensional subspace, (4)

Application of a numerical scheme and appropriate treatment of boundary condition(s), and (5)

Application of a numerical solver.

Computational mathematical models usually involve differential equations. Differential equa-

tions vary across one or more domain which must be discretized. Discretization can be done by

finite difference, finite element, finite volume, and so on. In this study we will be using finite

volume since it is a conservative discritization technique and is expected to yield better results

in comparison to alternative options for the conservation laws. After descritization, a numerical

scheme is formulated to represent the original mathematical formulation in a finite domain. A

solver is then applied to the numerical scheme to obtain approximate solutions to the physical

problem described by the mathematical formulation. In this study we will be comparing sev-

eral numerical schemes and an iterative solver will also be utilized to obtain simultaneously the

solution of every cell within our finite domain.

The numerical technique to be used is influenced by the mathematical formulation of the

problem to be solved. The method of characteristics (MOC) is known to be one of the best

methods for solving first-order hyperbolic partial differential equations though it can be used to
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solve any PDE. MOC simplifies the system of hyperbolic PDE describing gas flow by converting

them to ODEs integrated along the natural co-ordinates of the system otherwise known as the

characteristics. The resulting characteristic equations obtained can be solved numerically on

either a grid of characteristics or on a rectangular coordinate grid. The disadvantage of MOC is

that it is comparatively slow since the time steps are strictly restricted by the stability criterion.

Issa and Spalding (1972) and Wylie et al. (1974) both used the method of characteristics to solve

transient one-dimensional flow. Wylie applied the inertia multiplier in a pipe network model as

proposed by Yow (1972). It was found that the time step size could be adjusted to the desired

degree of accuracy to suit the particular transient that is being imposed upon the system and

arbitrary pipe lengths may be treated without awkward adjustments to satisfy the common time

interval requirements of the Courant-Friedrichs-Lewy (CFL) condition (Wylie et al., 1974).

Ratchford and Dupont (1974) used the Galerkin method to simulate two-dimensional isother-

mal transient gas flow. They multiplied the set of hyperbolic PDEs by a restricted set of contin-

uous real functions (Hermite cubic polynomials) on uniform spacing along the length of the pipe

before integrating in space to obtain a new set of non-linear ODEs. The system of non-linear

ODEs were then discretized in time using finite difference method to second order accuracy and

solved implicitly.

There are many first and second order, explicit and implicit numerical schemes applicable to

finite difference discretization. Heath and Blunt (1969) used a finite difference method known as

the CrankNicolson method to solve the conservation of mass and momentum equations for slow

transients in modeling isothermal gas flow. It was found that this method does not always give

a stable solution according to the Neumann stability analysis of large time steps for nonlinear

problems. Wylie et al. (1971) also presented an implicit central finite difference scheme and

compared it with the method of characteristics. They showed that implicit methods are accurate

for large time steps and are not limited by the stability criterion of the MOC.

Poloni et al. (1987) used an explicit Lax-Wendroff scheme which is second-order accurate

with finite difference discretization and they found that first-order finite difference schemes are

not sufficiently accurate for modeling gas transients in pipelines. Kiuchi (1994) used a fully

implicit finite difference scheme to model transient isothermal compressible flow and compared

it with MOC, LaxWendroff method, Guys method, and CrankNicolson method. It was found

that the fully implicit finite difference scheme is unconditionally stable if the inertia terms in the

momentum equations are neglected. Like Wylie (1971), they also found that the fully implicit

schemes are accurate for large time step sizes.

Zhou and Adewumi (1995, 1996) developed a one-dimensional isothermal transient gas flow

model without neglecting any terms in the conservation of momentum equation using a monotone

preserving finite difference scheme having the property of a Total Variation Diminishing (TVD)

scheme by introducing a ‘limiter’ which controls the gradients of the computed solution so as

to prevent the appearance of any over/undershoot as first introduced by Harten (1983). The

results were compared to the first-order Godunov scheme and it was found to be better suited

for the problem. Ibrahim and Adewumi (1996a, 1996b) also implemented an upwind finite
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difference TVD flux splitting scheme developed by Steger/Warming and its modification by Van

Leer as well as that proposed by Roe. The 4th order Runge-Kutta method was used along with

the spacial TVD scheme to achieve higher-order temporal resolution. Adewumi et al. (2000

and 2003) also used the TVD scheme to model a one-dimensional isothermal non-compositional

single-phase Eulerian model to describe the propagation of a pressure pulse through a pipe

with multiple blockages. They demonstrated the possibility of detecting multiple blockages in

pipelines by monitoring and analyzing pressure variations at the inlet caused by reflections of

the propagating transient in order to deduce the internal configuration of the pipe. Their work

is of pivotal importance to this study.

Although Adewumi et al. (2003) included viscous effects in their model, they neglected it

in order to properly characterize the blockages using the inlet pressure profile. Hence, instead

of the experience of a slow but continuous increase in their inlet pressure profile over time due

to frictional force deterring flow. Their inlet pressure profile instead showed a constant value

after the initial increase induced by the imposition of a constant mass flux passing through

the system. In this study, we will be exploring the possibility of achieving blockage detection

without neglecting viscous effects. Additionally, their numerical technique requires relatively

large computational time due to smaller time step requirements as a result of stability restrictions.

Moreover, the numerical technique is also highly computationally involved. In this study we will

explore the possibility of using a simpler less computationally involved numerical technique while

maintaining physical consistency of the mathematical model. We will also make use of a numerical

technique whereby we will solve the system of equations implicitly in order to maintain accuracy

of the solution for relatively large time steps and improve stability. The system of equations will

also be solved simultaneously for every grid cell in order to reduce computational time.

Chen et al. (2007) also explored the feasibility of blockage detection using transient simulation

of an isothermal Eulerian model. They cited and implemented the TVD scheme presented by

Zhou and Adewumi (1996). They also cited the work of Adewumi et al. (2000 and 2003) and

utilized the analytical solution for the analysis of the inlet pressure profile adopted from linear

theory. The inlet pressure analysis technique was also applied to experimental inlet pressure data

collected by a dynamic pressure gauge on a flow loop. For the numerical experiments, blockage

location and length prediction errors were found to be within ± 5 % and blockage severity

prediction error was found to be under ± 3 %. For the single phase flow loop experiment,

blockage location and length prediction errors ± 0.02 % and ± 0.5 % respectively, while blockage

severity prediction error was under predicted by 48 %.

Adewumi et al. (2000 and 2003) and Chen et al. (2007) both incorporated the speed of

sound in their mathematical description of the single phase fluid flow problem by assuming the

compression/pressure wave is an acoustic wave (See Hirsch, 2007 [2nd Edition]). Therefore it

is expected that the compression wave generated in their studies will propagate at the speed

of sound. In this study, the pressure value within the flux term of the momentum equation

is one of taking as one of the unknown variables obtained iteratively. Therefore, compression

wave generated are expected to propagate at its actual speed. It is intuitive that the speed
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of a compression wave will differ from that of sound wave propagation base on the fact that

sound waves propagate within a medium as a result of the vibration of particles/molecules while

pressure waves propagates as a result of compression or expansion involving every molecule along

a path within a medium.

2.2.4.3 Blockage Detection Using Steady State Techniques

For the sake of completeness we will discuss another set of early blockage detection techniques

available in the literature. Information necessary to implement these techniques must be collected

under steady state conditions in order to ensure accuracy. This methods are also referred to as

Frictional loss methods and have been successfully tested in laboratories to detect changes in

pipe diameter, hence an indication of blockage severity. However they are neither recognized for

determining blockage location nor for multiple blockage detection.

2.2.4.3.1 Blockage Detection Using the Backpressure Technique Cullender (1955)

and Fetkovich, (1975) applied the backpressure technique for inflow performance monitoring in

gas wells. When applied to gas pipelines, this technique provides a means of monitoring flow

performance. A baseline is established based on the premise that a linear relationship is expected

between flow rate and the difference of the square of the pressure at the inlet and outlet of a pipe

under steady state conditions. Therefore, plotting flow rate versus ∆P 2 should yield a straight

line. Deviations from this is then an indication of leakages/blockages along the pipe. Scott and

Satterwhite (1998) applied the backpressure technique gas pipelines for blockage detection and

attempted to quantify the deviations through the introduction of a blockage factor for both ”fully

rough” pipe and ”smooth” pipe defined based on pipe friction factor determination. The difficulty

in utilizing this method lies in the establishment of the baseline which requires a multirate test.

2.2.4.3.2 Mass Balance Technique The mass balance technique relies on the fact that

matter is always conserved. Thus accurate metering of all materials entering and exiting from

the inlet and outlet of a pipe under steady state condition is required and expected to tally up.

Deviations indicate either leakage. Longer flowlines and the limited ability to accurately meter

flowrates further reduces the feasibility of this technique in determining blockage location and

severity.
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Mathematical Formulation

The complete representation of any transfer process can be derived from the general transport

equation below. The generic scalar transport equation is a general PDE that describes transport

phenomena, or better still, the mechanisms by which particles or quantities move from one place

to another.

∂φ

∂t
+∇ · f(t, x, φ,∇φ) = g(t, x, φ) (3.1)

The earliest works in fluid dynamics dates back to medieval Persian and Arab natural philoso-

phers. From the likes of polymath scientist Abu-Rayhan Al-Biruni (973-1048) who was the first

to apply experimental scientific methods to mechanics. He established the experimental method-

ology for the determination of weight per unit volume of matter (or specific weight). Physi-

cists like Al-Biruni and Al-Khazini (1115-1130) who also designed the first hydrostatic balance,

unified statics and dynamics into continuum mechanics. Their achievements were complimen-

tary to the works of their predecessors such as Al-Farabi (872-950), Aristotle (384BC-322BC)

and Archimedes (287BC-212BC) who mostly focused on static mechanics. Later between the

15th to 18th century came European scientists of the likes of Leonardo da Vinci (1452-1519),

Evangelista Torricelli (1608-1647), Blaise Pascal (1623-1662), Isaac Newton (1643-1727), Daniel

Bernoulli (1700-1782), Leonhard Paul Euler (1707-1783), Jean le Rond D’Alembert (1717-1783),

Joseph-Louis Lagrange (1736-1813), Pierre-Simon Laplace (1749-1827), Simeon-Denis Poisson

(1781-1840) who later made further advancements in the field of continuum mechanics.

Torricelli is noted for the invention of the barometer and his works in static mechanics;

Pascal for his clarification of the concepts of pressure and vacuum through his generalization

of the work of Torricelli; Newton for his studies on viscous fluids and the concept of viscos-

ity; Bernoulli for his extensive work in continuum mechanics in general and his introduction of

mathematical fluid dynamics in his publication Hydrodynamica (1738); Euler for his studies on

inviscid flow among many other achievements in the area of fluid mechanics; D’Alembert for
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his Lagrange-D’Alembert (or simply D’Alembert) principle which is a statement of newtonian

laws of motion; Lagrange for analysis of inviscid fluids and Lagrangian mechanics which is a

reformulation of classical/Newtonian mechanics for ease of calculation through the combination

of momentum and conservation of energy; Laplace for his analysis of inviscid fluids and his trans-

lation of Newton’s work into the language of differential calculus in his five volume publication

Mecanique celeste (Celestial Mechanics) and Poisson for his analysis of inviscid fluids, potential

theory and correction of Laplace’s second order partial differential equation to include potential.

3.1 Fluid Dynamics

3.1.1 Euler’s Equations

Euler’s equations were one of the first differential equations to be written down. They govern

inviscid flow without heat conduction. Though the Energy balance (or adiabatic condition) was

later added by Laplace in 1816, these equations are attributed to Euler. They are a set of

transport equations for mass, momentum and energy in a closed system.

∂ρ

∂t
+∇ · (ρv) = 0 (3.2)

∂ρv

∂t
+∇ · (v ⊗ (ρv)) +∇P = 0 (3.3)

∂E

∂t
+∇ · (v(E + P )) = 0 (3.4)

where:

ρ is the fluid mass density,

v is the fluid velocity vector, with components u, v, and w,

P is the pressure.

E is the total energy per unit volume,

E = ρ e + 1
2 ρ (u2 + v2 + w2), and

e is the internal energy per unit mass

Further developments leading to what we know today as fluid dynamics came from French

European scientists Claude-Louis Navier (1785−1836) and George Gabriel Stokes (1819−1903)

to whom the Navier-Stokes equation is named after.

3.1.2 Navier-Stokes Equation

The starting point in formulating most mathematical models involving fluid flow today is the

Navier-Stokes equation. It is the general transport equation in its application to fluid dynamics.

The equation comes from a differential calculus representation of Newton’s second law to fluid

motion, together with the assumption that the fluid stress, due to conduit wall friction, is the
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sum of a diffusing viscous term proportional to the gradient of velocity, plus a pressure term.

The Navier-Stokes equation coupled with other equations can also be used in a myriad of other

applications other than fluid dynamics.

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇P +∇ · T + f (3.5)

Where:

v is the flow velocity,

ρ is the fluid density,

P is the pressure,

T is the stress tensor, and

f represents body forces (per unit volume) acting on the fluid.

The Navier-Stocks equation is simply a statement of momentum conservation and in order to

adequately describe the flow of fluids more information is needed.

3.2 The Governing Equations

Transient modeling of compressible flow is not an easy task due to the difficulty involved in

obtaining the solution of the PDE describing the problem. In order to acquire preliminary

understanding of the purpose for which we are doing the mathematics, we will like to keep the

mathematics as simple as possible while maintaining a satisfactory level of practicality. This

simplification comes in the form of the following assumptions:

1) Single phase Flow: The fluid maintains one continuous phase

2) Isothermal Flow: Temperature changes are negligible

3) Annular Flow: The flow is 1-D and remains annular such that any blockage in the pipe

occurs symmetrically around the pipe

As mentioned earlier in section 3.1.2, the flow of fluids is not adequately described by the

Navier-Stokes equation hence the need for additional information. Irrespective of assumptions,

in order to adequately describe fluid flow, one must couple the mass balance equation to a

Momentum balance equation. This is the simplest practical form of the mathematical description

of fluid flow. However, a consideration of viscous effects will improve the formulation (Zhou and

Adewumi, 1995a, 1995b; Ibrahim and Adewumi, 1996a, 1996b).

Taking the set of assumptions above into consideration, a one-dimensional representation of

a single phase, isothermal, quasi-compositional natural gas model in a variable area pipe is given

by:
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∂(ρA)
∂t

+
∂(ρAv)
∂x

= 0 (3.6)

∂(ρAv)
∂t

+
∂((ρv2 + P )A)

∂x
= P

∂(A)
∂x
− Ff − Fg (3.7)

where:

Ff = Friction force at the pipe wall, lbf

ft3

Fg = Gravitational force, lbf

ft3

The above equations can be unified into the one-dimensional, first-order, non-linear, non-

homogeneous, hyperbolic PDE form below:

∂
−→
Q

∂t
+
∂(
−→
F (
−→
Q))

∂x
=
−→
G(
−→
Q) (3.8)

where:

−→
Q =

[
ρA

ρvA

]
(3.9)

−→
F (
−→
Q) =

[
ρvA

(ρv2 + P )A

]
(3.10)

−→
G(
−→
Q) =

[
0

P ∂A
∂x − Ff − Fg

]
(3.11)

One of the advantages of this formulation is that the third assumption helps us avoid the need

to impose boundary conditions at locations within the pipe where the inner diameter changes.

However, this implies that the roughness of the wall of the pipe is assumed to be correspondent

to that of the blockage material.

Furthermore, in order to have a well defined problem we must have the same number of

equations as unknowns, but the two equations above features three unknown variables (density,

Velocity and Pressure). To resolve this problem, we know that density can easily be defined as a

function of pressure through equations of states (EOSs), hence a third equation. This equation

is a simple isothermal EOS which includes the gas compressibility factor (z) and this will aid us

in incorporating the effect of real gases on the system.

P =
zRT

Mg
ρ (3.12)

where:
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z = gas compressibility factor

R = Universal Gas Constant (10.731 psift3

lbmolR )

T = Isothermal Temperature (R)

Mg = Molecular Weight (lbm/lbmol)

Given the pressure profile and temperature within the pipe, the acoustic wave speed within

the pipe can also be determined by:

c = (
Pgc

ρ
)

1
2 = (

zRT

Mg
)

1
2 (3.13)

3.3 The constitutive Equations

3.3.1 The Frictional Force

The frictional force is a shear force that represents the inertia term in the Navier-Stokes equation.

It retards the flow of fluids within the pipe. In the formulation above, its effect is assumed to be

distributed evenly around the cylindrical pipe surface and it is calculated as a function of friction

factor (f):

Ff =
2fρ|v|v
dgc

(3.14)

For laminar flow the fanning friction factor is:

f =
16
NRe

(3.15)

For turbulent flow we use Chen’s Equation (1979):

1√
f

= −4log{
( ε

d )
3.7065

− 5.0452
NRe

log[
( ε

d )1.1098

2.8257
+

5.8506
N0.8981

Re

]} (3.16)

where:

ε is pipe roughness d is pipe diameter NRe is the Reynolds number

NRe =
ρvd

µ
(3.17)
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3.3.2 The Gravitational Force

This term allows for the simulation of the effects of pipe inclination with respect to the horizontal

axis. For a horizontal pipe, this term drops out of the formulation because it is then equal to

zero as can be inferred from the equation below.

Fg = ρg sin θ
gc

(3.18)

3.4 Fluid Properties

3.4.1 Gas Viscosity

Gas viscosity is estimated using Lee, Gonzalez and Eakin (1966) correlation given below:

µ = Kexp(X(
ρ

62.4
)y) (3.19)

where:

K = T 1.5 (9.4+0.02Mg)
104(209+19Mg+T )

X = 3.5 + 0.01Mg - 986
T

y = 2.4-0.2X

Fluid viscosities estimated using the above equation are in good agreement with measured

values and have a standard deviation of ±2.7 percent for a temperature range of 100 to 340

degree Fahrenheit and a pressure range of 100 to 8000 psia.

3.4.2 Gas Compressibility

The Peng-Robin equation of state is used to estimate the gas compressibility at new time step

in this formulation. See Appendix for more detail.



Chapter 4
The Numerical Technique

4.1 Finite Volume Method

Finite volume method (FVM) is based upon subdividing the spatial domain into sections also

known as finite volumes (or grid cells) and then keeping track of the approximations to the integral

of continuous function(s) over each section/segment. FVMs are closely related to finite difference

methods (FDMs) and a FVM can be interpreted as a direct finite difference approximation to

differential equations without separation of variables by chain rule. Unlike the FDM, the FVM

is derived on the basis of the integral form of the conservation laws thereby mimicking the true

solution and ensuring that the numerical method is conservative. The conservative property of

the FVM is extremely important for shock wave modeling and this is because the summation

of the piecewise approximations of each finite volume (or grid cell) over the entire section (or

interval) approximates the integral of the continuous function such that the discrete sum will

change only due to fluxes at the boundary. Therefore, when applied to the mass conservation

equation, the total mass within the domain (or system) is preserved or will vary appropriately

at the boundaries.

4.1.1 Piecewise Constant Averages for Grid Cells

∂q

∂t
+
∂(f(q))
∂x

= 0 (4.1)

Consider the hyperbolic PDE as described above where q = q(x, tn) is a smooth continuous

function. If we denote the ith grid cell as Si = (xi− 1
2
, xi+ 1

2
). The value Qn

i will represent the

approximated average of the continuous function, q, over the ith interval at time tn:

Qn
i
∼=

1
∆x

∫ x
i+ 1

2

x
i− 1

2

q(x, tn)dx ≡ 1
∆x

∫
Si

q(x, tn)dx (4.2)
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where ∆x = xi+ 1
2
− xi− 1

2
, is the length of a cell. For simplicity we will be using uniform grid

sizes through out this work.

4.1.2 The Integral Form of the Conservation Laws

As mentioned earlier FVM involves discretizing the system such that each piecewise constant

estimate approximates the integral of the continuous function (q) over an interval. Consider the

equation 4.1 above. If we integrate equation 4.1 across a finite volume (or grid cell) denoted Si

we will obtain the following:

d

dt

∫
Si

q(x, t)dx+
d

dx

∫
Si

f(q(x, t))dx = 0 (4.3)

Or better still, the above equation can be rewritten as:

d

dt

∫
Si

q(x, t)dx+ (f(q(xi+ 1
2
, t))− f(q(xi− 1

2
, t))) = 0 (4.4)

Integrating equation 4.4 in time within the time interval, tn and tn+1 gives:

(∫
Si

q(x, tn+1)dx−
∫

Si

q(x, tn)dx
)

+ ...(∫ tn+1

tn

f(q(xi+ 1
2
, t))dt−

∫ tn+1

tn

f(q(xi− 1
2
, t))dt

)
= 0 (4.5)

We can then obtain the piece wise averages to each grid cell as defined in equation 2.2 simply

by dividing through equation 4.5 by ∆x.

(
1

∆x

∫
Si

q(x, tn+1)dx− 1
∆x

∫
Si

q(x, tn)dx
)

+ ...

1
∆x

(∫ tn+1

tn

f(q(xi+ 1
2
, t))dt−

∫ tn+1

tn

f(q(xi− 1
2
, t))dt

)
= 0 (4.6)

Or better still:

(Qn+1
i −Qn

i ) +
1

∆x

(∫ tn+1

tn

f(q(xi+ 1
2
, t))dt−

∫ tn+1

tn

f(q(xi− 1
2
, t))dt

)
= 0 (4.7)

This tells us exactly how the average value of the continuous function(q) should be updated in

one time step. Note that we have not made any approximations so far and the above equation is

still exact assuming that the piece wise constant averages are properly evaluated. However, time
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integral of the flux terms in equation 4.7 above can not evaluated exactly because the continuous

function (q) varies along both edges of the grid cell. Hence we approximate the average time

integral of the flux terms as Fn
i± 1

2
. Therefore, rewriting equation 4.7 gives:

(Qn+1
i −Qn

i ) +
∆t
∆x

(
Fn

i+ 1
2
− Fn

i− 1
2

)
= 0 (4.8)

Where:

Fn
i+ 1

2
= the average time integral of the flux term at the right edge of the grid cell, Si at time

tn. Also known as the numerical flux function.

Fn
i+ 1

2
≈ 1

∆t

∫ tn+1

tn

f(q(xi+ 1
2
, t))dt (4.9)

The method used to evaluate the average time integral of the flux term is determined by the

numerical scheme adopted. Numerical schemes will be discussed later.

4.1.3 The Conservative Nature of FVM

Equation 4.8 is said to be in the conservative form since it mimics the exact form (Equation 4.6).

If we were to sum ∆xQn+1
i from equation 4.4 over any set of cells we obtain:

∆x
J∑

i=I

Qn+1
i = ∆x

J∑
i=I

Qn
i −

∆t
∆x

(
Fn

J+ 1
2
− Fn

I− 1
2

)
(4.10)

It is therefore clear that with the exception of the boundaries (extreme ends of the full domain)

in the system , the sum of flux differences cancel out. As a result we have exact conservation

over the full domain except at the boundaries.

4.1.4 FVM or Direct Finite Difference of the Conservation Laws

The finite volume method can be viewed as a direct finite difference approximation of equation

4.1. Just for pedagogical reasons, if we divide equation 4.8 by ∆t, we obtain:

(Qn+1
i −Qn

i )
∆t

+
(Fn

i+ 1
2
− Fn

i− 1
2
)

∆x
= 0 (4.11)

However, what makes finite volume a conservative method is the fact that Qn
i are piece wise

averages for each grid cell and Fn
i± 1

2
are the average time integrals of the whole flux term at the

left and right edges of the grid cell, Si at time, tn. Finite difference method instead uses linear

approximations in the form of finite slopes to approximate the continuous function. This is what

makes the FDM unsuitable for non-linear functions especially when dealing with sharp fronts like
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expect when solving non-linear hyperbolic PDEs. However, FDM is quite sufficient for modeling

linear or smoother functions.

4.2 Convergence requirements

Before discussing the various numerical schemes that can be used to approximate the flux func-

tions it is important to highlight some important requirements for convergence while using any

finite volume numerical scheme. One important requirement is that the numerical scheme must

be convergent. Meaning that as grid is refined (i.e. ∆t and ∆x → 0), the solution should con-

verge to the real integral form discussed earlier. For a numerical scheme to be convergent, it

must satisfy two conditions:

1. Numerical Consistency: This means that the numerical scheme adopted must approximate

the flux function very well using the adjacent blocks.

2. Stability: Stability requirements vary from problem to problem. However, regardless of the

type of problem being solved (whether linear or non-linear, hyperbolic or parabolic etc.),

a numerical scheme must satisfy the Courant-Friedrichs-Lewy (CFL) conditions. Secondly,

the error that arises as one marches along the time domain must not grow too fast.

4.2.1 Numerical Consistency

As mentioned briefly above, consistency in a numerical scheme implies that the scheme approx-

imates the flux functions satisfactorily. This means that if the average block estimates of the

continuous function (q(x,t)) of two blocks at one edge for which we are estimating the flux func-

tion is equal to q, then the approximated flux function, F(Qi, Qi±1), at that edge between Qi

and Qi±1 must be equal to f(q).

i.e., If

Qi = Qi+1 = q (4.12)

then

Fi+1(Qi, Qi+1) = f(q)) (4.13)

4.2.2 Stability

For any FVM or FDM the CFL condition is necessary for convergence though as already men-

tioned briefly, satisfying the CFL condition does not guarantee stability. The CFL condition

states that “a numerical method can be convergent only if its numerical domain of dependence

contains the true domain of dependence of the PDE [being approximated], at least in the limit as

∆t and ∆x → 0” (LeVeque, 2002)[18].
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In simpler terms, the average piecewise constant approximation of the continuous function,

(q(x,t)), at the grid cell “Si” and new time step, tn+1, (i.e. Qn+1
i ), is a function of some average

piecewise constant estimates around and possibly including the ith grid cell from the previous

time step, tn. Therefore, for the CFL condition to be satisfied, the approximate value, Qn+1
i

must be determined as a function of the appropriate average piecewise constant estimates, Qn
I .

where I includes all blocks at time, tn for which Qn+1
i is dependent on. Figure 4.1 illustrates this

point. For a centered three-point stencil numerical scheme, the time step size must not be larger

than ∆t = t′n+1− tn (see Figure 4.1). Note that if the time step is small enough, the information

needed to determine Qn+1
i can be obtained from the adjacent blocks (Qn

i−1, Qn
i , Qi−1) only.

This is especially very important if we choose to utilize a centered three-point stencil numerical

scheme.

Figure 4.1: Domain of Dependence

The question now becomes: “So how can I ensure that my numerical domain of dependence

contains the true domain of dependence of the PDE?” or better still, “If I already know the

stencil size I will be using based on the numerical scheme I choose, how can I ensure that I keep

the time step small enough such that the true domain of dependence of my PDE is within the

stencil range I am using ?”

4.2.2.1 Courant Number

The answer to the question above is the courant number (ν) also known as the CFL number (R.

Courant K. Friedrichs and H. Lewy, 1967). For a closed linear PDE (or conservation equation)
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of the form in equation 4.14 below, the courant number is a function of the constant wave speed

(v).

∂q

∂t
+ v

∂(q)
∂x

= 0 (4.14)

For the linear PDE 4.14 above The courant number can be determined using the following

equation:

ν ≡
∣∣∣∣v ∆t

∆x

∣∣∣∣ ≤ 1 (4.15)

Figure 4.2: Upwind Linear Extrapolation

Using a centered three-stencil scheme to approximate the linear flux term in equation 4.14, the

CFL condition can only be satisfied if courant number is less than or at most equal to 1. Visually,

one can observe from Figure 4.2 that if Qn+1
i is to be approximated as a simple extrapolation

from time step n to n+1 to obtain equation 4.16 below, v × ∆t must be greater than ∆x or

else, the true domain of dependence will no longer be within the range of a centered three-stencil

numerical scheme.

Qn+1
i = Qn

i −
Qn

i −Qn
i−1

∆x

[
xi− 1

2
− (xi− 1

2
− v∆t)

]
(4.16)

For a system of PDE’s, the courant number is a function of the maximum wave speed. And

in case of a non-linear set of PDE’s (or conservation equations) of the form in equation 4.1 which

we are concerned about, the courant number is a function of the maximum eigen value from the

Jacobian matrix obtained from the flux terms as a function of the vector
−→
Q .
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ν ≡ max(|λ|)× ∆t
∆x
≤ 1 (4.17)

4.2.3 Additional Stability requirements for Non-linear PDEs

As mentioned earlier the CFL condition is a requirement for stability of a numerical scheme

but not sufficient to ensure stability. Depending on the kind PDE being solved there may exist

additional requirements. Here we will focus on non-linear conservation laws since that is what

we are trying to solve.

4.2.3.1 Monotone Property

For non-linear scalar conservation laws, the use of a numerical scheme with monotone property

in addition to satisfying the CFL condition is sufficient for stability since the monotone property

implies that such a scheme is contractive in some norm (LeVeque, 2002). For a numerical

scheme to possess the monotone property, an increase in the approximated variable, Qn
I (where

I represents any grid cell ”i” in the full domain) at time step n must follow an increase in the

approximated variable, Qn+1
J (where J represents any grid cell ”j” in the full domain) at time

step tn+1 and vice-versa. i.e. a numerical scheme has the monotone property if:

δQn+1
I

δQn
J

≥ 0 (4.18)

4.2.3.2 TVD and TVB Property

For non-linear numerical schemes (or methods) such as higher resolution methods involving the

use of limiters that are themselves dependent on the original data, a stronger contractive property

is required for stability. Numerical methods with the Total Variation Non-increasing (TVNI) (or

Total Variation Diminishing (TVD)) property are effective tools for ensuring stability of non-

linear problems. A numerical method is Total Variation Bounded (TVB) if:

TV (Qn) ≤ R (4.19)

For any time, n∆t < T whenever ∆t < ∆t0
where:

T = nmax∆t

R = AConstantV alue

∆t0 = ∆t @ Q0
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This means that for any data Q0, and time, T, there is a constant R and a value ∆t0 > 0

such that the total variation for any data Qn is less than or equal to R. A numerical method

with TVD property has the TVB property with TV(Qn) = R.

4.3 Numerical Schemes

In order to have a fully discretized system, the average time integral of the flux term (or the

numerical flux) at each edge of the cell block of interest, ”Si”, in equation 4.8 must be approx-

imated using an appropriate numerical scheme. This approximation should be done such that

Qn+1
i is a function dependent on the surrounding cell blocks of Si. That is:

For a centered three-point stencil explicit scheme:

Fn
i+ 1

2
= F(Qn

i , Q
n
i+1) (4.20)

Therefore equation 4.8 becomes:

(Qn+1
i −Qn

i ) +
∆t
∆x

(
F(Qn

i , Q
n
i+1)− F(Qn

i−1, Q
n
i )
)

= 0 (4.21)

In this section, we will be discussing the various numerical schemes studied for a hyperbolic

system of the form in Eq. 4.1.

4.3.1 Lax-Friedrichs Method

For a three-point stencil scheme, where the flux functions at both edges of the block Si are to

be estimated as a function of Qi−1, Qi, Qi+1, one might want use a simple arithmetic average of

the Q-values at the grid blocks left and right of an edge as follows:

Fn
i+ 1

2
= F(Qn

i , Q
n
i+1) =

1
2

[f(Qn
i ) + f(Qn

i+1)] (4.22)

so that equation 4.21 becomes:

(Qn+1
i −Qn

i ) +
∆t
∆x

(
1
2

[f(Qn
i ) + f(Qn

i+1)]− 1
2

[f(Qn
i−1) + f(Qn

i )])
)

= 0 (4.23)

after some arithmetic manipulation the equation above becomes:

(Qn+1
i −Qn

i ) +
∆t

2∆x
(f(Qn

i+1)− f(Qn
i−1)) = 0 (4.24)



29

However, there is a problem. The equation above happens to be unstable for hyperbolic

PDEs, so we can not use it to solve our problem. In order to make the equation above stable

Peter Lax and Kurt O. Friedrichs introduced an artificial viscosity term to the numerical flux so

that it takes the form:

Fn
i+ 1

2
=

1
2

[f(Qn
i ) + f(Qn

i+1)]− λ′(Qn
i+1 −Qn

i ) (4.25)

where:

λ′ =
∆x
∆t

(4.26)

Replacing the numerical flux terms with that of Lax-Friedrichs and applying some arithmetic

manipulations, Equation 4.21 then becomes:

[
Qn+1

i − 1
2

(Qn
i−1 +Qn

i+1)
]

+
∆t

2∆x
(f(Qn

i+1)− f(Qn
i−1)) = 0 (4.27)

The formulation above is known as the Lax-Friedrichs method. There are other variations of

this numerical scheme depending on the definition of λ. This numerical scheme is generally stable

and gives reasonable results. However, for our problem the accuracy of the results dissipates

over time and the spacial resolution is very poor for shock wave problems. It also tends to

provide solutions that are not as smooth if care is not taken with the solver adopted. Another

important point to mention, though not observed in our numerical experiment is that Lax-

Friedrichs numerical method typically produces results that are badly smeared unless very fine

grid is used.

4.3.2 The Richtmyer Method

The Richtmyer method also known as the Two-Step Lax-Wendroff Method for non-linear PDE’s

is a modification of the Lax-Wendroff Method used for linear PDE’s. This provides second order

accuracy in time simply by approximating q at half time step, tn± 1
2

using the Lax-Friedrichs

(L-F) scheme as in equation 4.29 prior to evaluating the numerical flux functions using the mid-

time step approximation. The Richtmyer method evaluation of the numerical flux function is as

follows:

Fn
i+ 1

2
= f(Qn+ 1

2
i+ 1

2
) (4.28)

where:
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Q
n+ 1

2
i+ 1

2
=

1
2

(Qn
i−1 +Qn

i+1)− ∆t
2∆x

(f(Qn
i+1)− f(Qn

i )) (4.29)

This methods provides the same spacial resolution as does the L-F scheme. However, the

accuracy of the solution over time does not dissipate as fast thereby giving this method an

advantage over the L-F method though it is a little bit more computationally involved.

The numerical schemes mentioned so far are best used when one has no idea of the directions

of wave propagation in the system. However, with the knowledge of the direction of disassembled

waves propagation in a system of equations, can help us determine a better approximation

the numerical flux term that will yield better spacial resolution with out necessarily increasing

computational load.

4.3.3 The First-Order Upwind Method

The knowledge of the direction of disassembled waves moving along characteristics in hyperbolic

conservation laws helps in identifying the domain of dependence of Qn+1
i . So therefore, for an

advection equation such as the mass balance equation, given a small enough time step size and

assuming that the positive direction of flow is from left to right, the flux through the left and

right edges of a grid cell ”Si” can be entirely dependent on Qi−1 and Qi respectively.

This implies that we can define the flux at the right and left edges of the grid cell ”Si” as:

Fn
i+ 1

2
= F(Qn

i ) & Fn
i− 1

2
= F(Qn

i−1) (4.30)

Applying equation 4.30 above to equation 4.8 leads to a first order version of the standard

Upwind method of the form:

(Qn+1
i −Qn

i ) +
∆t
∆x

(f(Qn
i )− f(Qn

i−1)) = 0 (4.31)

As can be inferred from equation 4.31 above, the First-order Upwind method is less computa-

tionally involved and yet provides better spacial resolution which is very important in modeling

shock waves.

It is important to note that this first-order upwind scheme is essentially a linear extrapolation

from one time step to another. This can be illustrated by a little algebraic manipulation of

equation 4.16 which is simply a linear extrapolation as was discussed earlier. This will yield the

upwind scheme for a linear hyperbolic PDE as shown in equation 4.32 below:

(Qn+1
i −Qn

i ) + v
∆t
∆x

(Qn
i −Qn

i−1) = 0 (4.32)
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Equation 4.31 forms the basis for the final form of the numerical scheme applied in this

work. However, to accommodate the physics of actual problem a slight twist is applied to the

two-point stencil upwind scheme above to convert it to a three-point stencil upwind scheme as

will be discussed section 4.4. It is important to note that first-order upwind methods have the

advantage of keeping the solution monotonically varying in regions where the solution should be

monotone (LeVeque, 2002).

4.3.4 Nessyahu and Tadmor centered scheme

So far we have considered only first-order schemes. In order to obtain higher order accuracy

in space we can redefine the way we approximate the numerical flux function for second-order

accuracy. This is achieved by the use of piecewise linear approximations of the continuous

function as opposed to piecewise constant approximations used in previously discussed schemes.

Although there are simpler methods for reconstructing the data (Qn
i ) for second order accuracy

such as a simple linear extrapolation, these methods like most second order accurate schemes,

are known to produce spurious oscillations at discontinuities and do not have the TVD property.

However, Van Leer (1979) proposed a slope limited linear reconstruction technique known as the

MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) reconstruction. This is

the first high-order TVD reconstruction technique ever proposed.

MUSCL reconstruction is relatively easy to implement and will also be considered in this

work. If we reconstruct the data (Qn
i ) by an extrapolation to obtain both the left and right

states at both edges of each cell (see figure 4.3) as described in equation 4.33 to 4.36 we can

define the numerical flux function as F(QL
i± 1

2
, QR

i± 1
2
).

Figure 4.3: Linear Reconstruction
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QL
i+ 1

2
= Qi + 0.5φ (ri) (Qi+1 −Qi) (4.33)

QR
i+ 1

2
= Qi+1 − 0.5φ (ri+1) (Qi+2 −Qi+1) (4.34)

QL
i− 1

2
= Qi−1 + 0.5φ (ri−1) (Qi −Qi−1) (4.35)

QR
i− 1

2
= Qi − 0.5φ (ri) (Qi+1 −Qi) (4.36)

where:

φ(r) is a slope limiter

r is the measure of smoothness of the data around an edge and defined as: ri = Qi−Qi−1
Qi+1−Qi

Once we have the reconstructed left and right states at the edges of each grid cell, we may

now apply it to any numerical scheme where the numerical flux function can be defined as

F(QL
i± 1

2
, QR

i± 1
2
). However, in order to obtain these values we still need a limiter. There are many

limiters in the literature but we will be using the Monotonized Central (MC) limiter which is a

symmetric limiter also proposed by Van Leer (1977). The MC limiter is well noted as a good

default choice for a wide range of problems (LeVeque, 2002) and is defined as follows:

φmc(r) = max[0,min(2r, 0.5(1 + r), 2)] (4.37)

where:

limr→∞ φmc(r) = 2 We can now introduce a numerical schemes that allows the definition of

the numerical flux function as F(QL
i± 1

2
, QR

i± 1
2
). As a modification to the Lax-Friedrichs centered

scheme, Nessyahu and Tadmor (1990) proposed the following NT centered scheme that utilizes

linear reconstruction:

Fn
i+ 1

2
=

1
2

[f(QL
i+ 1

2
) + f(QR

i+ 1
2
)]− λ′(QR

i+ 1
2
−QL

i+ 1
2
) (4.38)

where:

λ′ = ∆x
∆t
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4.4 One-Dimensional Symmetrical Griding Systems

Two single-dimensional symmetrical finite volume griding options are discussed for allegorical

reasons.

4.4.1 Regular/Collocated Finite Volume (FV) Grid

The application of the finite volume method (FVM) implies that we are estimating grid cell

averages of the continuous function q. From our mathematical formulation we know that q is a

vector of two variables, density and mass flux. Density which is related to pressure is a scalar

quantity while mass flow rate which is related to velocity is a vector quantity. Using the regular

FV grid both density and mass flow rate are estimated at the same location as illustrated in the

Figure below.

Figure 4.4: Collocated Grid

For the problem we are trying solve, this griding system is known to produce spurious pressure

results at wave fronts or discontinuities. However, this griding system is used for all the centered

schemes discussed in section 4.3.

4.4.2 Staggered Grid Approach

Here the vector variables are estimated at the edges of the grid cell Si, while the scalar variables

are estimated at the center as illustrated below. It is known as the half-staggered griding system.

For the system of hyperbolic PDEs we are concerned about, this grid system is ideal and well

tested with FVM (C.Frepoli, et al., 2000 and 2003). It is also broadly used with FDM.

Figure 4.5: Staggered Grid

This gridding system will be employed in the two-point stencil upwind numerical approx-

imation of our system of equations thereby transforming it into a three-point stencil upwind
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scheme.

4.5 Treatment of Source Terms

So far we have treated the source term like it did not exist through out our formulations. However,

like we discussed in chapter 3, inclusion of the source terms in the momentum equation will help

to improve the physical practicality of our mathematical model.

4.5.1 The Half Step Method

One approach is to use a half step model where we solve the simpler homogeneous problem of

the form in equation 4.8 and then we are left with an ODE of the form below which is then

solved using various ODE solvers. This method is widely used but is a bit more computationally

demanding.

d(
−→
Q)
dt

=
−→
G(
−→
Q) (4.39)

where:
−→
G(
−→
Q) is a vector of the non-linear source terms from the system of equations.

4.5.2 The Unsplit Method

Another approach is the Unsplit method which more clearly models the correct equation (LeV-

eque, 2002). Here the source term is simply included in the equation so that equation 4.8

becomes:

(Qn+1
i −Qn

i ) +
∆t
∆x

(
Fn

i+ 1
2
− Fn

i− 1
2

)
= G(Qi) (4.40)

This approach will be applied in our numerical discretization due to its simplicity. For the

centered schemes, average values are obtained at the edges of the blocks where necessary.

4.6 The Fully Discretized System of Equations

A fully discretized explicit form of our mathematical model using the unsplit staggered three

point stencil upwind scheme yields the following algebraic equations:

Mass Conservation Equation {units: lbm/ft} :

[(ρiAi)n+1 − (ρiAi)n] + λ [(ρiviAi)n − (ρi−1vi−1Ai−1)n] = 0 (4.41)
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Momentum Conservation Equation {units: lbm/s} :

[(ρiviAi)n+1 − (ρiviAi)n] + ...

λ
[
(ρi+1v

2
i+1Ai+1 + 144gcPi+1Ai+1)n − (ρiv

2
iAi + 144gcPiAi)n

]
− ...

λ144gcP
n
i (Ai+1 −Ai) + ∆tFn

f gcAi = 0 (4.42)

where:

A = Pipe Area, ft

v = Gas Velocity,
ft

s

P = Pressure,
lbf
in2

ρ = Gas Density,
lbm
ft3

gc = standard gravity, (32.174
ft

s2
)

144 = conversion factor for pressure from
lbf
in2

to
lbf
ft2

λ =
∆t
∆x

Note that the momentum equation is staggered downstream relative to the direction of flow.

The fully implicit form is:

Mass Conservation Equation {units: lbm/ft} :

[(ρiAi)n+1 − (ρiAi)n] + λ
[
(ρiviAi)n+1 − (ρi−1vi−1Ai−1)n+1

]
= 0 (4.43)

Momentum Conservation Equation {units: lbm/s} :

[(ρiviAi)n+1 − (ρiviAi)n] + ...

λ
[
(ρi+1v

2
i+1Ai+1 + 144gcPi+1Ai+1)n+1 − (ρiv

2
iAi + 144gcPiAi)n+1

]
− ...

λ144gcP
n+1
i (Ai+1 −Ai) + ∆tFn+1

f gcAi = 0 (4.44)

4.7 Steady-State Solution

As can be inferred from our mathematical formulation, the time derivative of the hyperbolic

PDE is equal to zero when the fluid is at steady state. So we are left with an ODE of spacial

dependence. The mathematical formulation of the steady state solution is of the form:
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Steady State Mass Conservation Equation

d(ρAv)
dx

= 0 (4.45)

Steady State Momentum Conservation Equation

d((ρv2 + P )A)
dx

= P
d(A)
dx
− Ff − Fg (4.46)

where:

Ff = Friction force at the pipe wall, lbf

ft3

Fg = Gravitational force, lbf

ft3

The Fully discretized implicit version is of the form:

Mass Conservation Equation {units: lbm/s} :

(ρiviAi)n+1 − (ρi−1vi−1Ai−1)n+1 = 0 (4.47)

Momentum Conservation Equation {units: lbm-ft/s2} :

[(ρi+1v
2
i+1Ai+1 + 144gcPi+1Ai+1)n+1 − (ρiv

2
iAi + 144gcPiAi)n+1]...

− 144gcP
n+1
i (Ai+1 −Ai) + Fn+1

f gc∆xAi = 0 (4.48)

4.8 Numerical Solver: GNR

The Generalized Newton-Raphson (GNR) iterative technique was employed to simultaneously

solve the fully-implicit version of the non-linear system of two algebraic equations in every grid

block within the system. This means that we are simultaneously solving a set of equations equal

to twice the number of blocks in the system to obtain the solution of unknown variables that are

twice the number of blocks in the system. If the set of equations is written as:

−→
F (−→x ) = [f1(−→x ), f2(−→x ), ..., fN (−→x )]T = 0 (4.49)

where:
−→x is the array of variables from every grid cell.

From a first order Taylor series expansion of
−→
F (−→x m+1) about the approximate solution at

the iteration level, m, i.e. −→x m we have:
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−→
F (−→x m+1) ≈

−→
F (−→x m) +

∂
−→
F

∂−→x m
δ−→x m =

−→
F (−→x m) + J

m
δ−→x m (4.50)

where J
m

= Jacobian Matrix.

GNR is an iterative method that seeks the solution update δ−→x m that drives
−→
F (−→x m+1) to

zero. So if we set the left hand side of equation to zero, we are essentially solving the linear

system of equations:

J
m
δ−→x m = −

−→
F (−→x m) (4.51)

where:
−→
F (−→x m) is a vector of residuals calculated using variables from the previous iteration level,

m.

The new solution at iteration level, m, is updated as follows:

−→x m+1 = −→x m + δ−→x m (4.52)

This greatly reduced computational time while maintaining physical consistency of the model

and ensuring better convergence due to the strict convergence criteria applied. Most runs con-

verge in three iterations and computational speed is greatly determined by how finely defined is

the grid system. All necessary adjustments necessary to make the GNR technique more efficient

have been studied and well documented by C.Frepoli et al (2003).

4.9 Boundary Condition

The boundary condition applied have significant effect on the numerical solution especially con-

sidering the fact that finite volume method is a conservative method whereby variations in the

conserved variables only occur at the boundaries. Since we have a system of two equations and

two unknowns, there must be two boundary specifications both at bounds of the domain (i.e.

pipe inlet and outlet).

One method for boundary specification is a first-order linear extrapolation from within the

domain, also known as the zero curvature extrapolation. Here we simply do a linear extrapolation

from inside the real domain to obtain the new boundary block values.

Another option is the zero-order extrapolation where we set the boundary blocks equal to

the nearest block within the real domain. For a three-point stencil formulation like that of the

staggered upwind scheme and three/five point centered schemes, this has minimal effect on the

computations within the real domain. The zero-order extrapolation is our preferred option not
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only for its simplicity but also due to its minimal interference with computations within real

domain.

Notwithstanding, there are other more elaborate methods for boundary specification that

utilize the original mathematical formulations to obtain the boundary block approximations

that can be found in the literature (Zhou and Adewumi, 1995; 1996). This formulations allow

the boundary blocks estimation to mimic the computations within the real domain thereby

maintaining minimal impact on the real domain from boundary condition extrapolation errors.

4.10 Initial Condition

Initial conditions vary depending on the numerical experiment to be run. The idea is to try

to mimic the real condition within the pipe at the beginning of the numerical experiment. For

instance, in order to model transients observed after a sudden valve shut-in in a natural gas

pipeline at steady-state, the steady state solution if first obtained as described in Section 6 and

then a valve shut-in effect is applied numerically simply be setting the mass flux (or velocity)

at the boundary block to zero. This way, the numerically induced initial condition mimics the

actual condition expected within a natural gas pipeline that has achieved steady state condition

prior to a valve shut-in.



Chapter 5
Results and Discussions

5.1 Numerical Model Validation

5.1.1 Sudden Valve Shut-in Experiment 1

Before we begin blockage characterization experiments we will demonstrate the accuracy of our

transient fluid flow model. For this reason, we reproduce results from a well published experiment

in the literature known as the ’line packing’ or ’sudden valve shut-in’ experiment. In such an

experiment, sharp transient propagation is induced by a sudden valve closure on a gas pipeline

that had achieved steady state flowing conditions. Tables 5.1 and 5.4 contain fluid and pipeline

condition information used in this validation experiment (See Zhou and Adewumi, 1995).

Table 5.1: Data for First Validation Experiment (Eltohami, 1999; Zhou and Adewumi,1995)

Parameters Data Value
Pipeline Length 30 meters
Pipeline Internal Diameter 0.1 meters
Pipe Roughness 0.03 cm
Gas specific Gravity 0.64
Temperature 80 F
Number of Cell Blocks 300

InletBoundaryConditions

Density 2 kg
m3

Mass Flux 20 kg
m2s

OutletBoundaryConditions

Density * kg
m3

Mass Flux at t = 0− *(≈ 20) kg
m2s

Mass Flux at t = 0+ 0 kg
m2s

* Calculated from Steady−state Solution
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In their work, they derived an analytical solution from the original PDE to determine the

steady state solution expected prior to the sudden valve shut-in. They then numerically imposed

the effect of a valve shut-in on the natural gas flow at steady state by setting the mass flux at the

boundary block originally at 20 kg
m2s to zero. The sudden halt in flow at the end of the pipe results

in the compression of gases flowing toward the closed valve. As the fluid is compressed, pressure

rises due since the pipe is assumed to be rigid. This produces the effect of a sharp transient

propagating upstream, opposite the direction of flow. Snap shots of pressure distribution are

then recorded at distinct time increments.
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Figure 5.1: Line Parking Validation Experiment 1 (Staggered Upwind Scheme)
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Figure 5.2: Line Parking Validation Experiment 1 (NT centered Scheme)

In order to mimic this scenario, we generate the corresponding steady-state solution as de-

scribed in section 4.7. This solution is used as the initial condition for the sudden valve shut-in

experiment. We then numerically imposed the effect of a sudden valve shut-in by setting the

massflux (or velocity) value to zero at the boundary grid cell. The transient response can be

observed in Figures 5.1, 5.2 and 5.3.

The numerical experiment was completed using grid cell sizes of 0.1 m and temporal step sizes

of 0.5 ms which is larger than the 0.1 ms used in the work of Eltohami (1999) to generate the same

result and yet the model was found to be stable. Every transient profile line generated in Figures

5.1, 5.2 and 5.3 are plotted at 4.5 ms intervals. It is important to note that both works (Zhou

and Adewumi, 1995; Eltohami, 1999) employed a much more complicated and computationally

involved numerical technique than is proposed here.

An important observation is that even though the pressure profile follows the general trend

expected, the pressure profile is slightly different from that determined by Eltohami(1999) and
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Figure 5.3: Validation Experiment 1

Zhou and Adewumi (1995). The steady state solution shows a pressure shift of about 3.8 psi

across the pipe. This difference is due to the slight difference in the estimation of z-factor in

both models. In previous works z-factors were estimated using empirical formulations and a

gas with standard gravity of 0.64 was used. In this study, the z-factor is estimated using the

Peng-Robinson equation of state and the gas composition was deliberately defined in a way that

yields standard gravity of 0.64. Notwitstanding, a pressure increase of approximately 1 psi is

observed which is in agreement with the work of Zhou and Adewumi (1995) and Eltohami(1999).

As expected, the fluid mass flux (or velocity) drops to zero at the outlet due to the sudden valve

shut-in and propagates backward. The observed profile agrees with that presented in the works

of Zhou and Adewumi (1995) and Eltohami(1999).

A comparison of the results from the staggered upwind scheme and the centered NT scheme

can be observed in Figure 5.3. Results from both numerical schemes are very similar however, it

is clear that the staggered upwind scheme is provides a sharper wave front than the the centered
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Table 5.2: Arbitrary Gas Composition of Approximate standard gravity of 0.64

Component Percentage Gas Composition
Nitrogen 2.00
Methane 72.99
Ethane 17.95
Propane 5.10
n-Butane 1.10
n-Pentane 0.86

NT scheme.

Table 5.3: Data for Second Validation Experiment (Ibrahim and Adewumi, 1999)

Parameters Data Value
Pipeline Length 30 meters
Pipeline Internal Diameter 0.3 meters
Pipe Roughness 0.03 cm
Gas specific Gravity 0.64
Temperature 80 F
Number of Cell Blocks 300

InletBoundaryConditions

Density 2 kg
m3

Velocity 10 m
s

OutletBoundaryConditions

Density * kg
m3

Velocity t = 0− *(≈ 10) m
s

Velocity t = 0+ 0 m
s

* Calculated from Steady-state solution

5.1.2 Sudden Valve Shut-in Experiment 2

Another similar validation experiment with a larger pipe diameter was made to guarantee the

accuracy of our numerical model. The work of Ibrahim and Adewumi (1999) which was validated

using the analytical solution to the shock tube problem was also reproduced satisfactorily using

this model. A similar sudden valve shut-in experiment was conducted, for which the data can

be found in Table 5.3. Like the previous validation experiment, initial conditions were obtained
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Figure 5.4: Line Parking Validation Experiment 2 (Staggered Upwind Scheme)

from the steady state solution. All numerical experiments performed to simulate this problem

was completed using grid cell sizes of 0.1 m and temporal step sizes of 1 ms. The results can be

seen in Figures 5.4, 5.5 and 5.6. Every transient profile line in Figures generated in the simulation

of this problem are plotted at 10 ms intervals. Like the previous validation, there is an equal

shift in the steady state pressure profile across the pipe of approximately 3.8 psia due to the real

gas consideration in this study. All other profiles agree with the work of Ibrahim and Adewumi

(1999).

5.2 Numerical Experiments

After satisfactorily validating our mathematical model, we tested its blockage detection capacity.

Four scenarios modeled in this study are as follows:

• Scenario 1: Gas flow through frictionless pipe without blockage
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Figure 5.5: Line Parking Validation Experiment 2 (NT centered Scheme)

• Scenario 2: Gas flow through pipe with viscous effects considered without blockage

• Scenario 3: Gas flow through frictionless pipe with partial blockage

• Scenario 4: Gas flow through pipe with viscous effects considered with partial blockage

5.2.1 No Blockage Case: Scenarios 1 and 2

Here we have a natural gas pipeline shut-in at both ends (inlet and outlet boundaries) and allowed

to achieve an equilibrium state. Pressure becomes equally distributed across the pipe and flow

rate across the pipe goes to zero. A valve at the inlet is then opened and allowed to flow at

a constant rate. The valve opening causes a rise in pressure at the inlet (see Pinc in Fig. 5.7

and 5.8). The induced pressure wave then propagates along the pipe (see arrow 1 in Fig. 5.9

and 5.10) till it arrives at the boundary. For the frictionless pipe scenario, this incident pressure

is maintained constant as the incident wave propagates along the pipe. However, when viscous
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Figure 5.6: Validation Experiment 2

effects are considered, pipe friction deters fluid flow as more gas is pushed along the pipe. As a

result, the energy requirement (pressure difference) needed to maintain a constant flow rate at

the inlet is higher. For this reason, a continuous rise in inlet pressure is observed as more gas is

pushed along the pipe.

Once the pressure wave hits the boundary it is reflected upstream (opposite the direction of

fluid flow). See arrow 2 in Figs. 5.9 and 5.10). The pressure wave propagates back upstream with

a magnitude twice that of the incident wave. When the wave arrives at the inlet it is reflected

back downstream (see arrow 3 in Figs. 5.9 and 5.10) with a magnitude approximately three

times that of the original incident pressure (see Pref in Fig. 5.7 and 5.8). Figures 5.11 and 5.12

illustrate the effect of fluid density on the speed of sound.
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5.2.2 Partial Blockage Case: Scenarios 3 and 4

5.2.2.1 Continuous Area Change

This experiment is considered for its simplicity as well as the availability of an analytical solution

for the reflection of sound energy from linear theory (see Appendix A). To model a sudden

continuous area change along a pipe, the diameter of the pipe is reduced from a position xstart

somewhere along the pipe and the reduced diameter is maintained to the end of the pipe. All

necessary transient information needed to characterize a blockage can be obtained from the inlet

pressure profile. However, an understanding of the other transient profiles will help in interpreting

the inlet pressure profile appropriately. This numerical experiment has also been carried out by

Eltohami (1999) and the results follow a similar trend as observed in this study. However, a

slight difference is observed in the inlet pressure profile. ∆Pinc0 is approximately 0.5 psi lower

than that in the work of Eltohami (1999). This difference is attributed to the exclusion of the

speed of sound from the momentum equation in this study.

That is:

d(x) =
{

dpipe for 0≤x≤xstart

dblockage for xstart<x<xend

}
(5.1)

where:

dpipe is the original pipe diameter

dblockage is the blockage diameter

xstart is the beginning of the blockage

xend is the end of the blockage(or in this case end of the pipeline)

Like the no blockage case, the pipeline is shut-in at both ends and allowed to achieve equilib-

rium. The inlet valve is then opened and a constant gas flow is introduced into the system. The

pressure wave is induced at the inlet (see Pinc in Fig. 5.14 and 5.15). The induced pressure wave

then propagates along the pipe (see arrow 1 in Fig. 5.17 and 5.18) till it arrives at the boundary.

Like the no-blockage case, this incident pressure is maintained constant as the incident wave

propagates along the pipe. However, for the case with viscous effect considered, pipe friction

deters fluid flow as more gas is pushed along the pipe. Hence, a continuous rise in inlet pressure
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is observed as more gas is pushed along the pipe. Figure 5.13 is a schematic of events that occur

as the wave propagates through the partial blockage.

Once the wave hits the partial blockage, some wave is reflected back upstream and the original

wave continuous to propagate through the smaller pipe area at a higher magnitude due to fluid

compression. See arrow 2a in Fig. 5.17 and 5.18. This compression wave travels back to the inlet

and can be observed as Pref in Fig. 5.14 and 5.15. Once the pressure wave hits the boundary

it is reflected back upstream opposite the direction of fluid flow (see arrow 3 in Fig. 5.17 and

5.18). The pressure wave propagates back upstream with a magnitude twice that of the incident

wave until it arrives back at the partial blockage where an expansion wave (arrow 4) is formed

and propagate in both directions (see 4a in Figs. 5.17 and 5.18). When the wave arrives at the

inlet it is reflected back downstream (see 5 in Fig. 5.9 and 5.10.

5.2.2.2 Blockage Position Location

Using the input data in Tables 5.2 and 5.4 a sudden area change like that of Fig. 5.16 was

imposed on the system. As described before, a pressure wave front is generated at the inlet due

to the imposed flow rate at time, t = 0+. Note that the speed of the pressure wave is actually

subsonic and can be computed given the distance traveled and how long it takes the wave to

return to the inlet. The time corresponding to the inflection point is used to estimate the the

actual speed of the wave (calculated as 865.574 ft
s from Fig. 5.14 5.15)under the current fluid

and pipe condition. Figure 5.15 shows the rise in pressure from to wave reflection due to the

continuous area change. The inflection point of this inlet pressure response is used to estimate

distance of the continuous area change from the pipe inlet. Note that the speed of the pressure

wave is essentially unaffected by friction and is realistically assumed constant as it propagates

from the inlet to the outlet and back.

Therefore,

xstart =
c× tref

2
(5.2)

where:

c = averaged speed of sound in the pipe (OR actual wave speed).

tref = the time it takes for the reflected wave to reach in inlet.

5.2.2.3 Blockage Severity Determination

The severity of the blockage is estimated through an area ratio, A
Apipe

prediction. The analytical

expression for the area ratio can be found in Appendix-A and a full derivation of the equations

can be found in the work of Ahmed (1996) or Adewumi et al (2000). Note that the pressure

reflection ratio (Rp) is calculated as shown in equation 5.3 instead to account for the effect of

friction:



49

Table 5.4: Experiment 1: Continuous Area Change

Parameters Data Value
Pipeline Length 1 mile
Pipeline Internal Diameter 8 inches
Pipe Roughness 0.0006
Temperature 80 F
Number of Cell Blocks 200
xstart/L 0.64
Area Ratio 0.64

InletBoundaryConditions
Pressure 1000 psia
Flowrate(Q) at t = 0− 0 MMSCFD
Flowrate(Q) at t = 0+ 10 MMSCFD

OutletBoundaryConditions
Pressure 1000 psia
Flowrate(Q) at 0 MMSCF m

s

Rp =
∆Prefb

−∆Pinc0

∆Pinc0 + ∆Pfric
=

∆Prefb
−∆Pinc0

∆Pinc
(5.3)

where:

Rpinlet is the pressure reflection ratio at the inlet.

Prefb
is the blockage reflection inlet pressure response.

Pinc is the incident inlet pressure response right before the block.

Pinc0 is the incident inlet pressure response induced by a constant flowrate.

∆Pfric is the pressure increase due to frictional force.

∆Pfric = ∆Pinc - ∆Pinc0

∆Pref = Pref - Po

∆Pinc = Pinc - Po

∆Pinc0 = Pinc0 - Po

Po is the original pressure prior any pulse induction on the system.
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Table 5.5: Inlet pressure data for Blockage Severity Prediction

Parameter Frictionless Pipe Real Pipe
P0 (psia) 1000 1000
Pinc0 (psia) 1003.5 1003.5
Pinc (psia) 1003.5 1004.1
Prefb

(psia) 1005 1005.4
∆Pinc0 (psia) 3.5 3.5
∆Pinc (psia) 3.5 4.1
∆Prefb

(psia) 5 5.4
Rp (Old Formulae) 0.42857 0.54286
Rp (New Formulae) 0.42857 0.46341

Table 5.6: Continuous Area Change Location and Severity Prediction

Parameter Predicted Actual Abs. Percentage Error
Blockage Location
FrictionlessP ipe
Using speed of sound (980 ft/s) 3,567 ft 3168 12.60 %
Using actual wave speed (865.6 ft/s) 3151 ft 3168 0.54 %

ConsideringFriction
Using speed of sound (980 ft/s) 3,567 ft 3168 12.60 %
Using actual wave speed (865.6 ft/s) 3151 ft 3168 0.54 %

Blockage Severity
FrictionlessP ipe
Using Old Formulae 0.647 0.64 1.1 %
Using New Formulae 0.647 0.64 1.1 %

ConsideringFriction
Using Old Formulae 0.573 0.64 10.5 %
Using New Formulae 0.624 0.64 2.5 %
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Figure 5.13: Schematic of events generating expansion and compression pulses
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Chapter 6
Conclusion

We have developed a simple yet fast and robust numerical technique that accurately captures

transient flow in natural gas pipelines and suitable for blockage characterization. The model has

been utilized for blockage characterization and was found to be stable in the presence of domain

discontinuities. The numerical model was compared to the works of Zhou and Adewumi (1995)

and Ibrahim and Adewumi (1999) and was found to show a similar level of accuracy as one would

expect from more complicated numerical methods. The model was also found to be stable for

relatively large time steps as a result of the fully-implicit solution approach. Furthermore, the

compression wave fronts generated in this study were similar to that of first and second order

TVD schemes (see Ibrahim and Adewumi, 1999).

Additionally, there was no need for prior estimation of wave speed before numerical experi-

ments since the assumption of pressure waves propagating at the speed of sound was not made

it this study. The wave speed is computed from inlet pressure transient profile data generated

from the numerical experiments. Using the actual wave speed to predict blockage location re-

duced blockage location prediction error by one order of magnitude. The speed of sound was not

incorporated into the flux terms in our mathematical formulation of the problem hence analysis

of inlet pressure data using speed of sound for blockage location showed that the sonic speed

wave propagation assumption does not provide accurate estimates for the position of blockages

along a pipe (12 % error). But when the wave speed is computed based on the knowledge of the

length of the pipe and how long it takes for the induced pressure wave front to return to the inlet

after its reflection from the outlet boundary, the position of the artificial blockage is accurately

predicted (0.54 % error).

Previous studies (Adewumi et al., 2000 and 2003) were completed with descent blockage

characterization by neglecting viscous effects in their numerical experiments. Evaluation of the

effect of friction on blockage characterization shows that friction significantly reduces the accuracy

of blockage severity prediction but has no measurable effect on the prediction of the blockage

location. Blockage severity analysis was improved by a modification of the pressure reflection
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ratio equation to account for the effect of friction on the inlet pressure profile. If viscous effects

are considered in the numerical experiments, blockage severity was found to be under predicted

by about 10 % using the old equations. But using the new equation severity is over predicted by

about 7 %. If viscous effects are neglected in the numerical experiments, both equations collapse

to the same and severity prediction error reduces to 1.1 %. However, this is not practical.

The NT centered TVD scheme was found to be unstable upon introduction of a discontinuity

into the domain in the form of the artificial blockage. Hence only the staggered upwind scheme

was used for blockage detection and characterization. The quasi compositional model required

a generic set of composition with equivalent gas standard gravity in order to validate the model

with precious studies and yet validation results were satisfactory.



Chapter 7
Recommendation

Some improvements can still be made to the new model. The temporal resolution used in this

study is a simple first-order implicit finite difference approximation of the time derivatives from

the conservation equations, also known as the backward Euler method. Hence the smearing of

the wave fronts over time. The use of higher order approximations such as the implicit 4th-order

Runge-Kutta method or a higher order variation of the Adams method for the time derivative

will greatly improve the accuracy of the solution over time. Also the simple upwind finite volume

scheme used could be upgraded to a higher order TVD scheme with flux-limiters. This will

improve the spacial resolution of the gas-dynamic model. See Ibrahim and Adewumi (1999).

Blockage severity prediction can be improved by accurately and quantitatively accounting for

the effect of friction in inlet pressure data analysis. Additionally, the assumption that gas com-

pression waves propagates at the speed of sound is inaccurate for natural gas flow. Furthermore,

the isothermal system assumption is far-fetched due to the fact that temperature variations in a

pipelines are too large to be considered negligible. However, this will make the problem more dif-

ficult since it implies that we will need to integrate a thermodynamic model to the gas-dynamic

model to account for changes in the internal energy of the system. In order to have a more

practical model, all of the assumptions of ideality must be discarded.

Additionally, instead of assuming an artificial blockage, phase behavior modeling can be used

to determine the conducive states for the formation of hydrates. The phase behavior model can

then be coupled with the gas-dynamic model. However, this will require a proper understanding

of particle distribution in fluid flow. Altimately, the model can be made more practical for use

in the area of flow assurance in natural gas pipelines as well as sub-sea production facilities.



Appendix A
THEORETICAL EXPRESSIONS

FOR SEVERITY DETERMINATION

A.1 Continuous Area Change

Equation A.1 is an analytical expression that describes blockage severity (or pipe area ratios) as

derived for a plane wave propagating in a pipe of cross-sectional area A1 and entering a second

pipe of area A2 (See Ahmed, 1996). The following assumptions are made in the development of

the analytical expression:

1. No wave is reflected from the far end of the second pipe with area, A2.

2. The wave length is large compared to the diameter of both pipes.

A2

A1
=

1− Rp

2

1 + Rp

2

(A.1)

Rp =
∆Prefb

−∆Pinc0

∆Pinc0

(A.2)

where:

Rp is the pressure reflection ratio at the inlet.

Prefb
is the reflected pressure response due to a partial blockage observed at the inlet.

Pinc0 is the incident pressure response due to an induced flowrate observed at the inlet.

∆Prefb
= Prefb

- Po

∆Pinc0 = Pinc0 - Po

Po is the original pressure prior any flow pulse induction on the system.



Appendix B
Equation of State: Peng and

Robinson, 1976

P =
RT

Vm − b
− aα

V 2
m + 2bVm − b2

(B.1)

a =
0.45724R2 T 2

c

pc
(B.2)

b =
0.07780RTc

pc
(B.3)

α =
(
1 +

(
0.37464 + 1.54226ω − 0.26992ω2

) (
1− T 0.5

r

))2
(B.4)

Tr =
T

Tc
(B.5)

In Polynomial Form:

Z3 − (1−B) Z2 + (A− 3B2 − 2B) Z − (AB −B2 −B3) = 0 (B.6)

A =
aαp

R2T 2
(B.7)
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B =
bp

RT
(B.8)



Appendix C
Effect of Time Step Size on Solution

Accuracy

Since the backward Euler method was used to discretize the time derivative the numerical model

is unconditionally stable. However, convergence is not the only criteria for applicability of a

numerical technique. Another criteria is the ability of the numerical model to accurately represent

the actual physical phenomena. Parameters such as the combination of the magnitude of the

time step and the grid cell sizes have a notable influence on the accuracy of the solution. The

magnitude of the time step used (∆t) is dependent upon the size of the grid cell (∆x). Hence,

we will be concerned about the size of lamda (λ).

λ =
∆t
∆x

(C.1)

We will use the numerical experiment for blockage characterization documented in the results

section to illustrate the effect of the magnitude of λ on the accuracy of the solution. In this

experiment, ∆x was set to 26.4 feet (i.e. 200 segments in a mile long pipe) and ∆t was varied.

The results can be observed in the plots below. Figures C.1, C.2 and C.3 all show pressure and

velocity profiles. We can observe that for λ = 3.7878E-5 (Fig. C.1) the shock front is sharp,

however, there is significant numerical dispersion. However, for λ = 3.7878E-4 the result appears

smoother. And finally, for λ = 3.7878E-3, the solution is too damp and the shock front is smeared.

Similar effects can be observed on the inlet pressure profile data over time. See Figures C.4, C.5

and C.6
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Figure C.2: Pressure and Velocity Profile for λ = 3.7878E-4
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Figure C.3: Pressure and Velocity Profile for λ = 3.7878E-3
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Figure C.4: Inlet Pressure Profile for λ = 3.7878E-5
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Figure C.5: Inlet Pressure Profile for λ = 3.7878E-4
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Figure C.6: Inlet Pressure Profile for λ = 3.7878E-3
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