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Abstract

Nonparametric Techniques in Finite Mixture of Regression Models

Mixture models have been popular in the literature of both statistics and

social science. In this dissertation, we propose a new mixture model, namely,

nonparametric finite mixture of regression models, which can be viewed as a

natural extension of finite mixture of linear regression. In the newly proposed

model, it allows both the regression and variance function as functions of covari-

ates, and their functional forms are nonparametric rather than a specified form.

We first consider the mixing proportion in the nonparametric finite mixture of

regression models is also a nonparametric function of covariates. We develop an

estimation procedure for the nonparametric finite mixture of regression models

by employing kernel regression, and proposed an algorithm to carry out the es-

timation procedure by modifying an EM algorithm. We further systematically

studied the sampling properties of the newly proposed estimation procedures

and the proposed algorithm. We found that the proposed algorithm preserves

the ascent property of the EM algorithm in an asymptotic sense. We derive the

asymptotic bias and variance of the resulting estimate. We further established

the asymptotic normality of the resulting estimate. Monte Carlo simulation

studies are conducted to assess the finite sample performance of the resulting

estimate. The proposed methodology is illustrated by analysis of a real data

example.
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We further study the nonparametric finite mixture of regression models

with constant mixing proportion. Since the mixing proportion is parametric,

while the regression function and variance function for each components are

nonparametric, the model indeed is a semiparametric model. To achieve better

convergent rate for mixing proportional parameters, we develop an estimation

procedures by using back-fitting algorithm. To reduce computational cost, we

further suggest one-step back-fitting algorithm, which behaves similar to the gra-

dient ECM algorithm. Thus, the convergence behavior of the proposed algorithm

can be analyzed along the lines for the gradient EM algorithm. We studied the

asymptotic properties of the resulting estimate. We showed that the resulting

estimate for the mixing proportion parameter is root n consistent, and follows an

asymptotic normal distribution. We also derived the asymptotic bias and vari-

ance for the resulting estimate of the regression function and variance function,

and further established their asymptotic normality. Finite sample performance

of the proposed procedure is examined by a Monte Carlo simulation study. The

proposed procedure is demonstrated by analysis of a real data example.

As the advent of data collection technology and data storage device, re-

searchers are able to collect functional data without much cost. In this disserta-

tion, we studied mixture models for functional data. More specifically, we pro-

posed mixtures of Gaussian processes for functional data. The proposed model

is a natural extension of mixture of high-dimensional normals. We develop an es-

timation procedure to the mean and covariance function of mixture of Gaussian

processes by using kernel regression. The proposed methodology is empirically

justified by simulation and illustrated by an analysis of the supermarket data.
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Chapter 1

Introduction

Mixture models have been widely used in econometrics and social science,

and the theory for mixture models has been well studied (Lindsay, 1995). As a

class of useful models of the mixture models, finite mixtures of linear regression

models have received increasing attention in the literature since its introduction

in Goldfeld and Quandt (1976). For example, there are applications in econo-

metrics and marketing (Wedel and DeSarbo, 1993; Frühwirth-Schnatter, 2001;

Rossi et al., 2005), in epidemiology (Green and Richardson, 2002), and in bi-

ology (Wang et al., 1996). Bayesian approaches for mixture regression models

are summarized in Frühwirth-Schnatter (2005). Many efforts have been made

to these models and their extensions such as finite mixture of generalized linear

models, and comprehensively summarized in McLachlan and Peel (2000).

1.1 Nonparametric Finite Mixture of Regression Models

Motivated by an empirical analysis of US housing index data, we propose

a new class of mixture models, namely, nonparametric finite mixture of regression

models. The US housing index data contains the monthly SP-Case Shiller House

Price Index (HPI) change and United States GDP growth rate from January 1990

to December 2006. It is known that in the literature of economic research, HPI

is a measure of a nation’s housing cost, and GDP is a measure of the size of

1
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Figure 1.1: Scatterplot of US Housing Index Data

a nation’s economy. It is of interest to study the relationship between GDP

growth rate and HPI change. As expected, the impact of GDP growth rate on

HPI may have different patterns in different macroeconomic cycles. However, it

may be difficult to specify the macroeconomic cycles exactly. Figure 1.1 depicts

the scatterplot of the GDP growth rate versus the HPI change. From Figure 1.1,

it seems that the variability of HPI at any given GDP growth rate seems to be

large, and there is no clear relationship between the GDP growth rate and the

HPI change.

To interpret the large variability of HPI at a given GDP growth rate, we

consider the framework of mixture models, which are powerful tools for data

analysis when the population consists of several sub-populations. From Fig-

ure 1.1, we may consider a three-component mixture of regression models to fit
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this data set. However, a mixture of linear regression may not be appropriate

here because the relationship between the GDP growth rate and the HPI changes

seems to be nonlinear for the data points with HPI changes lying between 1 and

3 percent. To reduce approximation error and model bias, we may consider a

nonparametric regression function rather than a linear regression function for

each component.

In Chapters 3, we propose nonparametric mixture of regression mod-

els. Specifically, let C be a latent class variable, and assume that conditioning on

X = x, C has a discrete distribution P (C = c|X = x) = πc(x) for c = 1, 2, · · · , C.

Conditioning on C = c and X = x, Y follows a normal distribution with mean

mc(x) and variance σ2
c (x), where mc(·) and σc(·) are unknown but smooth func-

tions. In other words, conditioning on X = x, the response variable Y follows a

finite mixture of normals

C∑
c=1

πc(x)N{mc(x), σ2
c (x)}, (1.1)

where it is assumed that C is fixed. We refer to model (1.1) as a nonparametric

finite-mixture-of-regression model because both mc(·) and σ2
c (·) are nonparamet-

ric. For example, we may fit the housing price index data by a nonparametric

mixture of regression models with C = 3. Detailed analysis of the housing price

index will be given in Chapter 3.

When σ2
c (x) is constant, and mc(x) is linear in x, model (1.1) reduces

to a finite mixture of linear regression models (Goldfeld and Quandt, 1976).

When C = 1, model (1.1) is a nonparametric regression model. Thus, model

(1.1) can be regarded as a natural extension of both nonparametric regression

models and finite mixture of linear regression models. Compared with the finite

mixture of linear regression models, the newly proposed models relax the linearity
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assumption on the regression function, and allow that the regression function in

each of components is unknown but smooth functions of its covariates. It is

easy to adapt the conventional constraints imposed on the finite mixture of

linear models for the proposed models so that they are identifiable, and the

corresponding likelihood function is bounded. For further references of these

two issues, see Hening (2000) and Hathaway (1985).

In Chapter 3, we develop an estimation procedure for the unknown func-

tions in nonparametric mixture of regression model via a local likelihood ap-

proach. It is desirable to estimate the curves by evaluating the resulting esti-

mate over set of grid points in x. A naive implementation of the EM algorithm

would not ensure that the labels match correctly at different grid points. This is

similar to the issue of label switching problem in mixture modeling. We modify

the EM algorithm (Dempster et al., 1977) to simultaneously maximize the local

likelihood functions for the proposed nonparametric mixture of regression model

at set of grid points. The modified EM algorithm works well in our simulation

and real data example. We further demonstrate that the proposed EM algo-

rithm preserves the monotone ascent property of the EM algorithm. We further

systematically studied the sampling properties of the newly proposed estimation

procedures and the proposed algorithm. We found that the proposed algorithm

preserves the ascent property of the EM algorithm in an asymptotic sense. We

derive the asymptotic bias and variance of the resulting estimates. We further

established the asymptotic normality of the resulting estimates. Monte Carlo

simulation studies are conducted to assess the finite sample performance of the

resulting estimate. The proposed methodology is illustrated by an analysis of a

real data example.

In Chapter 4, we further study the nonparametric finite mixture of regres-
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sion models with constant mixing proportion. Specifically, let C be a latent class

variable with a discrete distribution P (C = c) = πc for c = 1, 2, · · · , C. Con-

ditioning on C = c, the relationship between X and Y follows a nonparametric

regression model,

Y = mc(X) + σc(X)ε, (1.2)

where ε ∼ N(0, 1), mc(·) and σc(·) are unknown but smooth functions. In other

words, conditioning on x,

Y ∼
C∑

c=1

πcN{mc(x), σ2
c (x)}. (1.3)

Compared with nonparametric mixture of regression model (1.1), model (1.3)

indeed is a semi-parametric model because πc is unknown parameter rather than

unknown nonparametric function of x. Thus, we may derive a more efficient

estimate for πc.

To achieve a better convergence rate for the mixing proportion param-

eters, we develop an estimation procedure using a back-fitting algorithm. To

reduce computational cost, we further suggest a one-step back-fitting algorithm,

which behaves similar to the gradient ECM algorithm. Thus, the convergence

behavior of the proposed algorithm can analyzed along the lines for the gradient

EM algorithm. We studied the asymptotic properties of the resulting estimate.

We showed that the resulting estimate for the mixing proportion parameter

is root n consistent, and follows an asymptotic normal distribution. We also

derived the asymptotic bias and variance for the resulting estimate of the regres-

sion function and variance function, and further established their asymptotic

normality. Finite sample performance of the proposed procedure is examined by

a Monte Carlo simulation study. The proposed procedure is demonstrated by

analysis of a real data example.
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Figure 1.2: Plot of supermarket data.

1.2 Mixture Models for Functional Data

With modern data collection technology, one may easily collect a set of

curves over an interval. As an illustration of functional data, Figure 1.2 depicts

the plot of a set of collected curves. This data set contains the number of

customers who visited a particular supermarket on each of 139 days. For each

day, the number of customers shopping in the supermarket is observed every

half hour from 7:00am to 5:30pm. Thus, there are 22 observations for each day.

The collected time was coded as 1 for 7:00am, 2 for 7:30am, and so on. In the

analysis of this data in Chapter 5, we regard each day as one subject. Thus, we

have a total of 139 subjects.

Figure 1.2 shows that the variability may be large in certain time periods.

Naively, we may consider a 22-dimensional multivariate Gaussian mixture for

the data analysis. The challenge with a high-dimensional mixture of normals
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is to estimate the covariance matrix. From our own limited experience, the

resulting estimate for the covariance matrix of high-dimensional is likely ill-

conditioned. This is undesirable. As an alternative, we consider a mixture of

Gaussian processes to model this data set. Compared with the high-dimensional

mixture normals, mixtures of Gaussian processes naturally take into account the

smoothness of the mean function and covariance function over times.

In Chapter 5, we consider mixture of Gaussian processes, which are de-

fined as follows. Let C be a latent class variable with a discrete distribution

P (C = c) = πc for c = 1, 2, · · · , C. Given C = c, {X(t), t ∈ T} follows a Gaussian

process with mean µc(t) and covariance function Cov{X(s), X(t)} = Gc(s, t).

Here µc(t) is a smooth function of t, and Gc(s, t) is a positive definite and bi-

variate smooth function of s and t. Thus, the path of X(t) indeed is a smooth

function. In practice, the observed functional curve Y (t), t ∈ T , may not be

smooth, as depicted in Figure 1.2. Therefore, it is common in the literature to

assume that the observed process Y (t) is

Y (t) = X(t) + ε(t),

where ε(t) ∼ N(0, σ2) is measurement error. In the literature, it is also assumed

that ε(t) and ε(s) are independent for t 6= s. For reference, see Yao et al. (2003),

and Yao et al. (2005).

In Chapter 5, we systematically study the proposed mixture Gaussian

processes. We propose an estimation procedure for the newly proposed model

by using back-fitting algorithm. We empirically test the proposed algorithm by

a Monte Carlo simulation, and further apply the proposed procedure for analysis

of the supermarket data.
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1.3 Organization of This Dissertation

The rest of this thesis is organized as follows. Chapter 2 provides a liter-

ature review of mixture models, including mixture regression models and an EM

algorithm for mixture models, and local modeling methods. We systematically

study finite nonparametric mixture regression models in Chapter 3, and finite

nonparametric mixture regression models with constant mixing proportion in

Chapter 4. For these two classes of nonparametric mixture regression models,

we will develop effective estimation procedures using an EM algorithm and lo-

cal likelihood method. We further study asymptotic properties of the resulting

estimates. We derive the convergence rate of the resulting estimate, and further

establish its asymptotic normality. We also conduct Monte Carlo simulation to

assess the finite sample performance of the proposed methodologies. In Chapter

5, we propose mixture of Gaussian processes model, and develop an estimation

procedure for this mixture of Gaussian processes model. The proposed method is

illustrated by simulations and an analysis of a real data set. Chapter 6 presents

some discussion and ideas for future research.



Chapter 2

Literature Review

In this chapter, we review the literature of mixture models, EM algo-

rithms and their application in mixture regression models. We will also review

local polynomial regression, local likelihood methods, and functional data anal-

ysis. These materials will be used to develop statistical inference procedures for

the newly proposed models in this thesis.

2.1 Mixture Models

Mixture models are associated with mixture density functions, which are

convex combinations of component density functions. A mixture model has the

density form

f(x) =
C∑

c=1

πcfc(x),

where πc ≥ 0 and
∑C

c=1 πc = 1. fc(x) is the cth component density function and

πc is the mixing proportion of the cth component. Parametric mixture models

specify a parametric form with some unknown parameters for each component

density, and the mixture density function can be written as

f(x|Φ) =
C∑

c=1

πcfc(x|βc), (2.1)

9
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where Φ = {π1, · · · , πC−1, β1, · · · ,βC}. In this thesis, we consider C is a fixed

number, and model (2.1) is a parametric finite mixture model.

Mixture models may be viewed as model-based clustering approaches for

data from several homogeneous subgroups with missing grouping identities. In

the literature, mixture models were mainly studied from the likelihood point of

view. Lindsay (1983a) and Lindsay (1983b) gave some fundamental properties of

the maximum likelihood estimator of the mixing distribution, including sufficient

conditions for uniqueness of the maximum likelihood estimate. See Lindsay

(1995) and and McLachlan and Peel (2000) for a broad review of mixture models.

In practice, there are two major classes of estimation methods. The

first one is EM algorithm, which was proposed in Dempster et al. (1977), and

systematically studied in McLachlan and Krishnan (1997). The other one is

Bayesian methods, especially Markov Chain Monte Carlo estimation. Smith

and Roberts (1993) proposes a Gibbs sampling procedure for mixture models.

Recent developments in Bayesian analysis include the reverse-jump algorithm

(Green, 1995) and the birth-and-death algorithm (Stephens, 2000), which can

be used to estimate the number of components. Frühwirth-Schnatter (2005)

gives a comprehensive summary of Bayesian analysis for mixture models and

Markov switching models.

In general, Bayesian methods provide more information about the un-

known parameters, but they are very expensive in terms of computational cost.

Since nonparametric smoothing typically requires intensive computation, we will

use the EM algorithm for estimation procedures in the proposed models in this

dissertation.
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2.1.1 EM Algorithm

The EM algorithm provides iterative steps to maximize a likelihood func-

tion when some the data are missing. Suppose that the complete data are

{(xi, zi), i = 1 · · · , n}, which are independent samples from population (X,Z).

The observed data is {xi, i = 1 · · · , n}. Denote `(Φ) the log-likelihood function,

where Φ denotes the unknown parameters in the likelihood model. Let L(Φ) be

the complete likelihood function if the missing data z is given.

The EM algorithm consists of two steps: E-step and M-step. In the E

step, we compute the expectation of the complete log-likelihood function over

the missing data conditioning on the observed data with the given parameters.

The expectation is called a Q function. That is, in the E step of the lth iteration,

we compute

Q(Φ|Φ(l)) = E(L(Φ)|Φ(l),x).

Then in the M step, we maximize Q function Q(Φ|Φ(l)) with respect to Φ, and

update the parameters Φ as

Φ(l+1) = arg max
Φ

Q(Φ|Φ(l)).

The E step and M step will be iterated until algorithm convergence, i.e. the

likelihood difference

`(Φ(l+1))− `(Φ(l))

is sufficient small. The EM algorithm has several advantages such as reliable

convergence and ease of use. Theoretical properties show that in every iteration,

EM algorithm increases the objective likelihood function `(Φ) by maximizing

the Q function Q(Φ|Φ(l)). In particular, we have

`(Φ(l+1))− `(Φ(l)) ≥ 0



12

for all l > 0. However, it cannot guarantee a global MLE, not even a local MLE.

It may converge to a saddle point. Wu (1983) and Mclachlan and Krishnan

(1997) analyze the convergence behaviors of the EM algorithm. Under fairly

general conditions, the EM algorithm can provide global maximum likelihood

estimators. For further reference of EM algorithm, see Dempster et al. (1977)

and Mclachlan and Krishnan (1997).

2.1.2 Mixture of Regression Models

Mixture of regression models are well known as switching regression mod-

els in econometrics literature, which were first introduced by Goldfeld and Quandt

(1976). Mixture of regression models are appropriate to use when the observa-

tions are from several subgroups with missing grouping identities, and in each

subgroup, there are two or more variables with linear relationships between these

variables. The model setting can be stated as follows. Let C be a latent class

variable with P (C = c) = πc for c = 1, 2, · · · , C. Suppose that given C = c, the

response y depends on x in a linear way:

y = xT βc + εc = β0c + β1cx + εc, εc ∼ N(0, σ2
c ). (2.2)

The conditional distribution of Y given X = x can be written as

Y |X = x ∼
C∑

c=1

πcN(xT βc, σ
2
c ), (2.3)

where the {(βc, σ
2
c ), c = 1, · · · , C} are the parameters of each component density,

and {πc, c = 1, · · · , C} are the mixing proportions for each component. Since we

have the constraint that
∑C

c=1 πc = 1, denote π = (π1, · · · , πC−1), and πC = 1−
∑C−1

c=1 πc. Denote φ(y|µ, σ2) to be the density function N(µ, σ2). The conditional
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likelihood function of mixture of regression models can be written as

f(y|x) =
C∑

c=1

πcφ(y|xT βc, σ
2
c ).

EM Algorithm for Mixture Regression Models

In a C-component mixture of regression model (2.3), the observations

are {(xi, yi), i = 1, 2, . . . , n}, the unobserved data are the latent variables, which

identify the distribution membership. The complete data are {(xi, yi, Ci), i =

1, 2, . . . , n}, where Ci is the component identity of (xi, yi) and has a discrete

distribution P (Ci = c) = πc, c ∈ {1, 2, · · · , C}. The log-likelihood function of a

mixture of regressions model is:

`(Φ) =
n∑

i=1

log

(
C∑

c=1

πcφ(yi|xT
i βc, σ

2
c )

)
, (2.4)

where Φ = (βT ,σ2T , πT )T , β = (βT
1 , · · · ,βT

C)T , σ2 = (σ2
1, · · · , σ2

C)T , and π =

(π1, · · · , πC−1)
T . In practice it is difficult to directly maximize the log-likelihood

function (2.4) because of its complicated structure. The EM algorithm provides

a convenient iterative way to maximize the log-likelihood. We next illustrate

how the EM algorithm is carried out in a mixture of regressions models. We

first define random variables

zic =





1, if (xi, yi) is in the cth group

0, otherwise.

and let zi = (zi1, · · · , ziC)T . The complete data are now {(xi, yi, zi), i = 1, 2, . . . , n}.
The complete log-likelihood function for (2.4) is

L(Φ) = log

(
n∏

i=1

C∏
c=1

[πcφ(yi|xT
i βc, σ

2
c )]

zic

)

=
n∑

i=1

C∑
c=1

zic

{
log πc + log φ(yi|xT

i βc, σ
2
c )

}
.
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E-step: Given Φ(l), compute

r
(l)
ic = E(zic|Φ(l)) =

π
(l)
c φ(yi|xT

i β(l)
c , σ

2(l)
c )∑C

q=1 π
(l)
q φ(yi|xT

i β(l)
q , σ

2(l)
q )

. (2.5)

Then we can calculate the Q function

Q(Φ|Φ(l)) = E(L(Φ)|Φ(l))

=
n∑

i=1

{
C∑

c=1

r
(l)
ic log π(l)

c +
C∑

c=1

r
(l)
ic log φ(yi|xT

i β(l)
c , σ2(l)

c )

}
,

where Φ(l) = (β(l)
c , σ

2(l)
c , π

(l)
c |c = 1, . . . , c).

M step: Maximize Q(Φ|Φ(l)) under the following constraints:

C∑
c=1

r
(l)
ic = 1, and

C∑
c=1

π(l)
c = 1.

The resulting estimators are

π(l+1)
c = n−1

n∑
i=1

ric,

β(l+1)
c = (XT R(l)

c X)−1XT R(l)
c y, (2.6)

σ2(l+1)
c =

∑n
i=1 ric(yi − xT

i βc)
2

∑n
i=1 ric

,

where R
(l)
c = diag(r

(l)
1c , · · · , r

(l)
nc), and

X =


 1, 1 · · · , 1

x1, x2 · · · , xn




T

.

Iteratively update the E-step and the M-step until the algorithm converges.

2.1.3 Choose The Number of Components

Choosing the number of component is a very important issue in mixture

models. In literature there are two major approaches. One approach is the

penalized likelihood method. A penalized likelihood function is defined as

Ln(Φ̂C)− λ(ΦC),
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where ΦC represents the parameters for a C component mixture model, Ln(Φ̂C)

is the maximum likelihood function, and λ(ΦC) is added as a penalty term.

There are two popular criteria which can be used as a penalty term, AIC (Akaike,

1974) is given by λ(ΦC) = dim(ΦC), and BIC (Schwarz, 1978) is given by

λ(ΦC) = 1
2
log(n)dim(ΦC), where dim(ΦC) is the number of parameters in a C

component mixture model. Leroux (1992) proves the weak consistency of the

maximum penalized likelihood estimators for the mixing distribution. For other

reference, see Chen and Kalbeisch (1996), Lindsay (1995), and McLachlan and

Peel (2000).

Another approach for selecting the number of components is Bayesian

methods. By assuming some prior distributions, the Bayesian approach pro-

vides estimates as well as their posterior distributions. See Green (1995) for

the reversible jump Metropolis-Hasting algorithm and Stephens (2000) for the

birth-death processes.

2.2 Local Modeling Methods

Regression is one of the most widely used general statistical methods. Ap-

plications of regression models can be found in many research fields, including

econometrics, social science, medicine, and psychology. A simple linear regres-

sion model has the form

y = β0 + β1x + ε,

where E(ε|x) = 0 and Var(ε|x) = σ2. If the relationship from the observed data

is close to linearity, then the above model can be used and the parameters can

be estimated by the least square methods. However, linear regression may not

be appropriate to estimate a functional form of a curved relationship, especially
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when the unknown function has a complex shape, and cannot be converted to

a linear relationship by some transformation. One successful technique to relax

the linear assumption is the nonparametric regression model

y = m(x) + ε.

There is a huge literature on nonparametric regression. One approach

to nonparametric regression is local modeling. The basic idea of local modeling

is to locally estimate the mean function m(x) by a set of parametric models.

Nadaraya (1964) and Watson (1964) proposed the Nadaraya-Watson estimator,

which is also referred to as the kernel regression estimator. This is a special case

of local polynomial regression, or local constant regression estimator. Fan and

Gijbels (1996) give a comprehensive account on local polynomial regression.

2.2.1 Local Polynomial Regression

Suppose we are interested in estimating the mean function m(x) at the

point x0. In local polynomial regression, we first apply a Taylor expansion to

m(x) in a neighborhood of x0:

m(x) ≈ xT β = β0 + β1(x− x0) + · · ·+ βp(x− x0)
p,

where x = {1, x− x0, · · · , (x− x0)
p}T , β = (β0, · · · , βp)

T , and βj = m(j)(x0)/j!.

Intuitively, points close to x0 will have more influence on the m(x0) estimate,

while points far from x0 will have less influence. This suggests a weighted re-

gression model, which puts more weight on the points near x0, and less weight

on the points far from x0. This goal can be achieved by minimizing a weighted

polynomial regression:

n∑
i=1

{yi − β0 − · · · − βp(xi − x0)
p}2Kh(xi − x0), (2.7)
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where Kh(·) = h−1K(·/h) and K(·) is a kernel function which will control the

weights of the points at different locations. In general, a symmetric kernel func-

tion K satisfies the following conditions

K(u) ≥ 0,

∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
u2K(u)du > 0.

The resulting estimator is called the local polynomial regression estimator. For

convenience, denote

W = diag{Kh(x1 − x), . . . , Kh(xn − x)},

X =




xT
1

...

xT
n


 =




1, x− x1, · · · , (x− x1)
p

...
... · · · ,

...

1, x− xn, · · · , (x− xn)p


 .

Then the solution to the locally weighted least squares problem (2.7) is

β̂ = (XT WX)−1XT Wy, (2.8)

m̂(x) = eT
1 × (XT WX)−1XT Wy, (2.9)

where y = (y1, · · · , yn)T , and e1 = (1, 0, . . . , 0)T is a 1× (p + 1) vector with first

entry one and others zero. Furthermore, we can obtain an estimate of the qth

(q < p) derivative of m(x):

m̂(q)(x) = q!eT
q+1(X

T Wx0X)−1XT Wy,

where eq+1 is a 1× (p + 1) vector with (q + 1)th entry one and others zero.

Kernel estimators and local linear regression are special cases of local

polynomial regression. When p = 0, the local polynomial regression estimator

reduces to a local constant estimator, and (2.8) becomes:

m̂(x) =

∑n
i=1 Kh(xi − x)yi∑n
i=1 Kh(xi − x)

,
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Table 2.1: Asymptotic biases and variances

Method Bias Variance

NW estimator m′′(x) + 2m′(x)f ′(x)
f(x)

bn Vn

Local linear m′′(x)bn Vn

bn = 1
2
h2

∫
u2K(u)du, Vn = σ2(x)

f(x)nh
h2

∫
K(u)du

which is the same as the N-W estimator proposed by Nadaraya (1964) and

Watson (1964). When p = 1, the local polynomial regression estimator is called

a local linear estimator. Asymptotic bias and variance of the two estimators

are summarized in Table 2.1. From Table 2.1, the local linear estimator has a

more concise form of asymptotic bias than N-W estimator, while the asymptotic

variances are the same. In addition, the local linear estimator has several good

properties, such as automatic correction of boundary effects (Fan and Gijbels,

1992; Cheng, Fan and Marron, 1997), design adaptivity, and best asymptotic

efficiency by minimax criteria (Fan, 1993).

The choice of the smoothing parameter h, referred to as bandwidth, is

an important issue in local polynomial regression. The smoothing parameter

h controls the weights of the observation points used to estimate of regression

function. For a good estimate of the unknown function, bandwidth cannot be

too large or too small, since a tradeoff occurs between the bias and the variance

of the resulting estimate. Theoretically, the optimal bandwidth can be obtained

by minimizing mean integrated square error (MISE) or an asymptotic leading

term of MISE (Simonoff, 1998). In practice, data driven methods can be used

for bandwidth selection, such as cross-validation (CV) criterion. Denote by D
as the full data set. We then partition D into a training set Rj and test set Tj,
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j = 1, · · · , N . Then we have D = Tj ∪ Rj. Denote Φ̂Rj
the estimate based on

the training set and ŷ the fitted value on the test set Tj. The CV criterion has

the form

CV =
N∑

j=1

∑
xi∈Tj

{yi − ŷ(xi)}2. (2.10)

We choose bandwidth when CV is minimized.

The choice of kernel function is not crucial for the selection of bandwidth.

A commonly used kernel is the Gaussian kernel:

K(x) =
1√
2π

exp(−x2/2).

The symmetric beta family are also popular choices,

K(x) =
1

Beta(1/2, γ + 1)
(1− x2)γ

+, γ = 0, 1, 2, · · · ,

where Beta(·, ·) denotes a beta function, and the support of the beta func-

tion family is [−1, 1]. When γ = 0, the kernel function becomes the uni-

form kernel. When γ = 1, the kernel function becomes Epanechnikov kernel

K(x) = 0.75(1 − x2). Symmetric kernel functions are preferred because they

yield less biased estimates. Marron and Nolan (1988) shows that estimation of

a regression function is not sensitive to the choice of kernel function.

2.2.2 Local Likelihood Estimation

Tibshirani and Hastie (1987) first extended the idea of nonparametric re-

gression to likelihood based regression models. Local likelihood techniques were

developed for generalized linear models in Fan et al. (1995), hazard regression

models in Fan et al. (1997) and estimating equations in Carroll et al. (1998). To

introduce the idea of local likelihood estimation, we review an example in Fan
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et al. (1998), which shows the connection between local polynomial regression

and local likelihood estimation.

Assume the observed data {(xi, yi), i = 1, · · · , n} are independent random

samples from population (X, Y ), and (x, y) follows a normal regression model

y = m(x) + ε,

where ε ∼ N(0, σ2), and m(x) is an unknown mean function. Conditioning on

X = x, the density function of Y can be written as

φ(y|m(x), σ2) =
1√

2πσ2
exp

[
− 1

2σ2
{y −m(x)}2

]
. (2.11)

Suppose we are interested in estimating m(x) at x0. Similar to local

polynomial regression, m(x) is locally approached by a polynomial around x0:

m(x) ≈ xT β = β0 + β1(x− x0) + · · ·+ βp(x− x0)
p.

We then consider a kernel weighted log-likelihood, which puts more weight on

the points in a neighborhood of x0 and less weight on the points far from x0.

This kernel weighted log-likelihood is called a local likelihood. Let xi = (1, xi −
x0, · · · , (xi − x0)

p)T . The local likelihood function for normal regression model

is

`(β) = − log(
√

2πσ2)
n∑

i=1

Kh(xi − x0)

− 1

2σ2

n∑
i=1

{yi − xT
i β}2Kh(xi − x0).

Maximizing the above local likelihood function is equivalent to minimizing

n∑
i=1

(yi − xT
i β)2Kh(xi − x0),
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which yields the local polynomial regression estimator.

Now we can generally describe local likelihood estimation. Suppose we

have independent observed data {(x1, y1), · · · , (xn, yn)} from population (X,Y ),

and (xi, yi) has log-likelihood l{m(xi), yi}, where m(x) is an unknown function

of interest. Similar to local polynomial estimation, we apply a Taylor expansion

to m(x) in a neighborhood of x0:

m(x) ≈ xT β = β0 + β1(x− x0) + · · ·+ βp(x− x0)
p,

then maximize a local likelihood function

`(β) =
n∑

i=1

l{xT
i β, yi}Kh(xi − x0) (2.12)

with respect to β. Suppose the solution is β̂, then we have m̂(x0) = β̂0. From

the above discussion we can see that local likelihood estimation is a natural

extension of local polynomial estimation in likelihood based models.

Example 2.1: Fan et al. (1998) gives an application of the local likelihood

method in nonparametric logistic regression. The detail is given below. Suppose

we have independent data (x1, y1), · · · , (xn, yn) form population (X, Y ). Condi-

tioning on X = x, Y has Bernoulli distribution with success rate p(x)

P (Y = 1|X = x) = p(x), P (Y = 0|X = x) = 1− p(x).

The function of interest is m(x), which relates to p(x) in the following way:

p(x) =
exp {m(x)}

1 + exp {m(x)} .

Then the pointwise log-likelihood is

l{y,m(x)} = log[p(x)y{1− p(x)}1−y] = ym(x)− log(1 + em(x)).
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To estimate m(x) at x0, we apply a Taylor expansion of m(x) as before, then

maximize a local log-likelihood

`(β) =
n∑

i=1

[yi{β0 + · · ·+ βp(xi − x0)
p}

− log(1 + exp{β0 + · · ·+ βp(xi − x0)
p})]Kh(xi − x0).

The maximization of `(β) can be achieved by a Newton-Raphson algo-

rithm:

β(l+1) = β(l) −
(

∂2`(β)

∂β∂βT

)−1
∂`(β)

∂β

= β(l) + (XD(l)WXT )−1XT W (y− p(l)),

where

W = diag{Kh(x1 − x), . . . , Kh(xn − x)},
p(l) =

{
p(l)(x1), · · · , p(l)(xn)

}T
,

D(l) = diag
{
p(l)(x1){1− p(l)(x1)}, · · · , p(l)(xn){1− p(l)(xn)}} .

and

p(l)(xi) =
exp (xT

i β(l))

1 + exp (xT
i β(l))

.

Example 2.2: Fan et al. (1998) also point out that local likelihood method

can be applied to likelihood models based on Poisson distribution and gamma

distribution, without showing details of the estimation procedure. Now we derive

the results for nonparametric Poisson regression. Suppose we have independent

observed data {(x1, y1), · · · , (xn, yn)} from population (X, Y ). Given X = x, Y

has a Poisson distribution:

P (Y = y|X = x) =
exp{−λ(x)}{λ(x)}y

y!
.
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The parameter of interest is m(x), which relates to λ(x) in the following way:

λ(x) = exp{m(x)}.

Then the pointwise log-likelihood function without a normalizing constant log(y!)

is

l{y, m(x)} = −λ(x) + y log(λ(x)) = ym(x)− exp{m(x)}.

To estimate m(x) at x0, we use a Taylor expansion as before, then maximize a

local log-likelihood function

`(β) =
n∑

i=1

[yi{β0 + · · ·+ βp(xi − x0)
p}

− exp{β0 + · · ·+ βp(xi − x0)
p}]Kh(xi − x0).

The maximization of `(β) can be achieved by a Newton-Raphson algo-

rithm:

β(l+1) = β(l) −
(

∂2`(β)

∂β∂β′

)−1
∂`(β)

∂β

= β(l) + (XD(l)WXT )−1XT W (y− E(l)),

where

W = diag {Kh(x1 − x), · · · , Kh(xn − x)} ,

E(l) =
{

exp(xT
1 β(l)), · · · , exp(xT

nβ(l))
}T

,

D(l) = diag(E(l)).

The asymptotic normality of local likelihood estimates in the generalized

linear model setting is given by Fan et al. (1995); in the hazard model setting

are given by Fan et al. (1997); and in the local estimating equation setting are

given by Carroll et al. (1998). For further reference, see Fan and Gijbels (1996).
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2.3 Functional Data

Functional data analysis has received much attention in the literature; see

Ramsay and Silverman (1997) for a comprehensive summary. The basis of func-

tional data analysis consists of two parts: the estimation of the mean function

and of the covariance structure. Among many approaches, functional principal

component (FPC) analysis serves as a key technique in functional data analy-

sis. Rice and Silverman (1991) studies the spline smoothing in FPC analysis;

Staniswalis and Lee (1998) and Yao et al. (2003) focus on kernel-based smooth-

ing for irregular and sparse longitudinal data, Yao et al. (2005) further gives the

asymptotic properties for eigenfunctions and eigenvalues.

2.3.1 Functional Principal Component Analysis

Suppose we have a collection of functional curves {Xi(t), i = 1 · · · , n; t ∈
T}, which are random samples from a smooth random function X(t). We write

its mean function as EX(t) = µ(t), and covariance function as Cov{X(s), X(t)} =

G(s, t). By the Karhunen-Loève theorem, we can further assume there is a lin-

ear combination of orthogonal eigenfunctions for individual curve representa-

tion, Xi(t) = µ(t) +
∑

q ξiqvq(t), t ∈ T , where ξiq are considered as independent

random variables with Eξiq = 0, Var(ξiqc) = λq. In classical FPC analysis, co-

variance function G(s, t) can be orthogonal expanded in terms of eigenvalues

λq, and eigenfunctions vq, that is G(s, t) =
∑

q λqvq(t)vq(s). We assume λq is a

nondecreasing sequence, λq ≥ λq+1, q ≥ 1; and the sum of the sequence is finite,
∑

q λq < ∞.

In the model setting, we model functional data in a closed and bounded

interval T . This conventional time index variable does not necessary mean that

our model is limited to time intervals; it can also be equally adapted to other
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variables besides time, to widen its applications. For the observed data, we

assume there are uncorrelated measurement errors with mean 0 and variance

σ2 for all the curves. Suppose the observations are {(yij, tij), j = 1, · · · , Ni; i =

1, · · · , n}, where yij ≡ y(tij). In the ith curve, we have

yij = µ(tij) +
∞∑

q=1

ξiqvq(tij) + εij, (2.13)

where E(εij) = 0, Var(εij) = σ2. Denote Σ(s, t) = Cov(y(s), y(t)), then it is

obvious that Σ(t, t) = G(t, t) + σ2, and Σ(s, t) = G(s, t), if s 6= t. We consider

Ni ≡ N as fixed for balanced data. Note that this method can be applied to

sparse and irregular designs.

The first step is to estimate the mean function µ(t). Since µ(t) does

not have a specific form, we introduce local linear regression (Fan and Gijbels,

1996), a well established nonparametric smoothing technique. Using a Taylor’s

expansion, µ(t) can be approximated by a linear function in a neighborhood of

t0:

µ(t) ≈ β0 + β1(t− t0) ≡ tT β,

where β = (β0, β1)
T . Let Kh(·) = h−1K(·/h) be a rescaled kernel for a kernel

function K(·) and a bandwidth h. We apply a local linear smoother on the

pooled data from all curves, minimizing

n∑
i=1

Ni∑
j=1

{yij − β0 − β1(tij − t0)}2Kh1(tij − t0), (2.14)

with respect to β0 and β1. Let β̃ = (β̃0, β̃1) be a solution of maximizing

(2.14), then we have µ̃(t0) = β̃0. Once the estimates of mean functions are ob-

tained, covariance functions can be estimated by nonparametric surface smooth-

ing mehtod. Follow Staniswalis and Lee (1998) and Yao et al. (2005), we estimate
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Gc(s, t) by minimizing

n∑
i=1

∑

1≤j 6=l≤N

[Gi(tij, til)− g(β, s, t, tij, til)]
2Kh2(tij − s, til − t), (2.15)

where Gi(tij, til) = (Yij − µ̃c(tij))(Yil − µ̃c(til)) are the ‘raw elements’ of the

covariance function, and Kh2(tij − s, til− t) = Kh2(tij − s)Kh2(til− t). Note that

the diagonal elements of covariance function are Σ(t, t) = G(t, t) + σ2. Thus,

the diagonal of the ‘raw elements’ should be excluded for covariance function

estimation. For a local linear surface smoother, we choose g(β, s, t, tij, til) =

β0+β1(tir−s)+β2(til−t), and minimize (2.15) with respect to β = (β0, β1, β2)
T ,

then we have Ĝ(s, t) = β̂0. The eigenvalues and eigenfunctions can be derived

by

∫

T

Ĝ(s, t)v̂q(s)ds = λ̂qv̂q(t), (2.16)

where the eigenfunctions v̂q(t) satisfy
∫

T
v̂2

q (t)dt = 1, and
∫

T
v̂p(t)v̂qc(t)dt = 0

if p 6= q. The estimation is based on an orthogonal expansion of Ĝ(s, t), as

illustrated in Rice and Silverman (1991). The projection scores ξiqc is then

estimated by ξ̂iq =
∫

T
(y(t)− µ̃(t))v̂q(t)dt.

The functional PCA method was well studied in Ramsay and Silverman

(1997). Principal component analysis for sparse functional and longitudinal data

is developed in James et al. (2000). The asymptotic results can be found at Yao

et al. (2005) and Hall et al. (2006) for principal component functions, Yao (2007)

for the local polynomial estimators of mean function and covariance function.

2.3.2 Clustering Analysis for Functional Data

Classical methods for functional data clustering include regularization

methods and filtering methods. Regularization methods transform the data at
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fine grid points of the time interval, and then clustering methods such as K-

mean algorithm and EM algorithm are applied to the regularized data. Filtering

methods project the observations onto a finite basis, and then the clustering are

based on basis coefficients. James and Sugar (2003) provides a mixture-model-

based clustering approach to sparse functional data, where curves are represented

by cubic splines. Sugar and James (2003) discuss how to select the number

of cluster in functional clustering analysis. In genetic research, model based

functional clustering methods have been used in Luan and Li (2003), Luan and

Li (2004). Spline bases are used to model the mean function in their methods.

Bayesian approaches for functional data clustering are studied in Heard et al.

(2006), and Ma and Zhong (2008).



Chapter 3

Nonparametric Mixture of Regression Models

3.1 Introduction

In this chapter, we propose nonparametric mixtures of regression models.

Compared with finite mixture of linear regression models, the newly proposed

models relax the linearity assumption on the regression function, and allow that

the regression function in each of components is an unknown but smooth function

of its covariates. We consider the situation in which the mixing proportion,

the mean functions and the variance functions all are nonparametric. Using a

kernel regression technique, we develop an estimation procedure for the unknown

functions in the nonparametric mixture of regression models via local likelihood

approach. The sampling properties of the proposed estimation procedure are

investigated. We derive the asymptotic bias and variance of the local likelihood

estimates, and establish its asymptotic normality.

Although one may naively implement an EM algorithm for maximizing

the local likelihood function. However, it is desirable to estimate the whole

curves by evaluating the resulting estimate over set of grid points. The naive

implementation of the EM algorithm does not ensure that the component labels

will match correctly at different grid points. This is similar to label switching

problem in older applications of mixture modeling. We modify the EM algorithm

(Dempster, Laird and Rubin, 1977) to simultaneously maximize the local likeli-

28
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hood functions for the proposed nonparametric mixture of regression model at

set of grid points. The modified EM algorithm works well in our simulation and

in a real data example. We further study the ascent property of the proposed

EM algorithm.

We derive a standard error formula for the resulting estimate by the

conventional sandwich formula. A bandwidth selector is proposed for the lo-

cal likelihood estimate using a multi-fold cross-validation method. A simulation

study is conducted to examine the performance of the proposed procedures and

test the accuracy of the proposed standard error formula. We further demon-

strate the proposed model and estimation procedure by an empirical analysis of

US housing price index data.

3.2 Estimation Procedure and its Sampling Properties

Suppose that {(xi, yi), i = 1, · · · , n} are random samples from the popula-

tion (X, Y ). Throughout this chapter, we assume X is univariate. The proposed

methodology and theoretical results can be extended to multivariate X, but the

extension is less useful due to the “curse of dimensionality”. Let C be a latent

class variable, and assume that conditioning on X = x, C has a discrete distri-

bution P (C = c|X = x) = πc(x) for c = 1, 2, · · · , C. Conditioning on C = c and

X = x, Y follows a normal distribution with mean mc(x) and variance σ2
c (x),

where mc(·) and σc(·) are unknown but smooth functions. In other words, con-

ditioning on X = x, the response variable Y follows a finite mixture of normals

C∑
c=1

πc(x)N{mc(x), σ2
c (x)}. (3.1)

In this chapter we assume that C is fixed, and refer to model (3.1) as a nonpara-

metric finite mixture of regression models because πc(·), mc(·) and σ2
c (·) are all
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nonparametric. When πc(x) and σ2
c (x) are constants, and mc(x) is linear in x,

model (3.1) reduces to a finite mixture of linear regression models (Goldfeld and

Quandt, 1976). When C = 1, model (3.1) is a nonparametric regression mod-

els. See Chapter 2 and Fan and Gijbels (1996) for a review of nonparametric

regression model. Thus, model (3.1) can be regarded as a natural extension of

nonparametric models and finite mixture of linear regression models. It is easy to

adapt the conventional constraints imposed on the finite mixture of linear mod-

els for the proposed models so that they are identifiable, and the corresponding

likelihood function is bounded. For further references on these two issues, see

Hening (2000) and Hathaway (1985).

Since πc(x), mc(·) and σ2
c (·) are nonparametric, we need nonparametric

smoothing techniques for (3.1). In this thesis, we will employ kernel regression

techniques for model (3.1). Suppose we want to estimate the unknown functions

at x0. In kernel regression, we first use local constants πc0, σ2
c0, and mc0 to

approximate πc(x0), σ2
c (x0), and mc(x0). Let Kh(·) = h−1K(·/h) be a rescaled

kernel for a kernel function K(·) and a bandwidth h. Further, denote φ(y|µ, σ2)

to be the density function N(µ, σ2). Then, the corresponding local log-likelihood

function for data {(xi, yi), i = 1, 2, · · · , n} is

`n(π, σ2
0,m0) =

n∑
i=1

log

{
C∑

c=1

πc0φ(yi|mc0, σ
2
c0)

}
Kh(xi − x0), (3.2)

where m0 = (m10, · · · ,mC0)
T , σ2

0 = (σ2
10, · · · , σ2

C0)
T , π = (π10, · · · , πC−1,0)

T ,

and πC0 = 1−∑C−1
c=1 πc0. One may also apply local linear regression techniques

for estimation of πc(·), mc(·), and σ2
c (·). Local linear regression has several

nice properties. It is design-adaptive and possesses high statistical efficiency in

an asymptotic minimax sense (Fan, 1993). It automatically corrects edge effects

(Fan and Gijbels, 1992; Cheng, Fan and Marron, 1997). However, we do not have
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a closed form solution for local linear regression of variance function in normal

likelihood function setting. See Fan and Yao (1998) for estimation of conditional

variance function under the setting of a simple nonparametric regression model.

In this chapter, we consider local constant estimation because it has a closed

form solution, and because it is convenient for deriving asymptotic properties.

Let {π̃, σ̃2, m̃} be the solution of maximizing the local likelihood function

(3.2). Then the estimates for πc(x0), σ2
c (x0), and mc(x0) are

π̃c(x0) = π̃c0, σ̃2
c (x0) = σ̃2

c0, and m̃c(x0) = m̃c0.

3.2.1 Asymptotic Properties

We next study the asymptotic properties of π̃c(x0), σ̃2
c (x0) and m̃c(x0).

Let θ = (πT , σ2T ,mT )T , and denote

η(y|θ) =
C∑

c=1

πcφ
{
y|mc, σ

2
c

}
, and `(θ, y) = log η(y|θ).

Let θ(x0) = {πT (x0),σ
2(x0)

T ,m(x0)
T}T , and define

η1{θ(x), y} =
∂η{y|θ(x)}

∂θ
, η2{θ(x), y} =

∂2η{y|θ(x)}
∂θ∂θT

,

q1{θ(x), y} =
∂`{θ(x), y}

∂θ
, q2{θ(x), y} =

∂2`{θ(x), y}
∂θ∂θT

,

I(x0) = −E[q2{θ(X), Y }|X = x0], and Λ(x) =

∫

Y

q1{θ(x0), y}η{y|θ(x)}dy.

Denote γn = (nh)−1/2,

m̂∗
c =

√
nh{m̃c0 −mc(x0)},

σ̃2∗
c =

√
nh{σ̃2

c0 − σ2
c (x0)},

π̃∗c =
√

nh{π̃c0 − πc(x0)},

π̃∗C =
√

nh{π̃C0 − πC(x0)} =
√

nh[1−
C−1∑
c=1

{π̃c0 − πc(x0)}].
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Let m̃∗ = (m̃∗
1, · · · , m̃∗

C)T , σ̃2∗ = (σ̃2∗
1 · · · , σ̃2∗

C )T , and π̃∗ = (π̃∗1, · · · , π̃∗C−1)
T ,

and θ̃
∗

= {(π̃∗)T , (σ̃2∗)T , (m̃∗)T}T . The asymptotic bias, variance, and normal-

ity of the resulting estimate are given in the following theorem. The proof is

given in section 3.5.

Theorem 1. Suppose that conditions (A)—(F) in section 5 hold. Then it follows

that

√
nh{γnθ̃

∗ − B(x0) + op(h
2)} D−→ N

{
0, f−1(x0)ν0I−1(x0)

}
,

where f(·) is the marginal density function of X,

B(x0) = I−1(x0)

{
f ′(x0)Λ

′(x0)

f(x0)
+

1

2
Λ′′(x0)

}
κ2h

2,

κl =
∫

ulK(u) du, and νl =
∫

ulK2(u) du.

3.2.2 An Effective EM Algorithm

For a given x0, one may maximize the local likelihood function (3.2) using

an EM algorithm easily. However, in practice we typically want to evaluate the

estimated functions at a set of grid points over an interval of x. This requires

us to maximize the local likelihood function (3.2) at different grid points. This

imposes some challenges because the labels in the EM algorithm may change at

different grid points, and therefore, the resulting estimated curve may be mixed

up. This is similar to the label switching problem occurs when one conducts a

bootstrap to get a confidence interval for parameters in a mixture model. Thus,

a naive implementation of the EM algorithm may fail to yield smooth estimated

curves. An illustration is given in Figure 3.1.

In this section, we propose an effective EM algorithm to deal with this

issue. The key idea is that in the M-step of the EM algorithm, we update the
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u(j−1)  u(j)   u(j+1)  

y

No "label switching"
"Label switching"

Figure 3.1: Naive implementation of EM algorithm at each location may lead
to“label switching” type problem, which yields possible solutions in both solid
and dash lines.

estimated curves at all grid points for the given label in the E-step. Define

Bernoulli random variables

zic =





1, if (xi, yi) is in the cth group,

0, otherwise.

and let zi = (zi1, · · · , ziC)T . The complete data are {(xi, yi, zi), i = 1, 2, · · · , n},
and the complete log-likelihood function is

n∑
i=1

C∑
c=1

zic

[
log πc(xi) + log φ{yi|mc(xi), σ

2
c (xi)}

]
.

In the l-th step of the EM algorithm iteration, we have m
(l)
c (·), σ

2(l)
c (·), and

π(l)(·). In the E-step, the expectation of the latent variable zic is given by

r
(l)
ic =

π
(l)
c (xi)φ{yi|m(l)

c (xi), σ
2(l)
c (xi)}∑C

c=1 π
(l)
c (xi)φ{yi|m(l)

c (xi), σ
2(l)
c (xi)}

. (3.3)
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Let {u1, · · · , uN} be a set of grid points at which the estimated functions are

evaluated, where N is the number of grid points. In the M-step, we maximize

n∑
i=1

C∑
c=1

r
(l)
ic

[
log πc0(x0) + log φ{yi|mc0(x0), σ

2
c0(x0)}

]
Kh(xi − x0), (3.4)

for x0 = ui, i = 1, · · · , N . In practice, if n is not very large, one may directly

set the observed {x1, · · · , xn} to be the grid points. In such case, N = n.

The maximization (3.4) is equivalent to maximizing for c = 1, · · · , C,

n∑
i=1

r
(l)
ic log πc0(x0)Kh(xi − x0), (3.5)

and

n∑
i=1

r
(l)
ic log φ{yi|mc0(x0), σ

2
c0(x0)}Kh(xi − x0), (3.6)

separately. The solution for (3.5) is, for x0 ∈ {uj, j = 1, · · · , N},

π
(l+1)
c0 (x0) =

∑n
i=1 r

(l)
ic Kh(xi − x0)∑n

i=1 Kh(xi − x0)
. (3.7)

The closed form solution for (3.6) is, for x0 ∈ {uj, j = 1, · · · , N},

m
(l+1)
c0 (x0) =

n∑
i=1

w
(l)
ci (x0)yi/

n∑
i=1

w
(l)
ci (x0), (3.8)

σ
2(l+1)
c0 (x0) =

∑n
i=1 w

(l)
ci (x0)(yi −m

(l+1)
c0 (x0))

2

∑n
i=1 w

(l)
ci (x0)

, (3.9)

where w
(l)
ci (x0) = r

(l)
ic Kh(xi − x0). Furthermore, we update πc(xi), mc(xi) and

σ2
c (xi), i = 1, · · · , n by linearly interpolating π

(l+1
c (uj), β

(l+1)
c0 (uj) and σ2

c0(uj), j =

1, · · · , N , respectively. With initial values of πc, mc(·) and σ2(·), the proposed

estimation procedure is summarized in the following algorithm.

An EM algorithm:
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Initial Value: Obtain an initial value for πc(·), mc(·) and σ2
c (·) by conducting

a mixture of polynomial regressions. Denote the initial value by π
(1)
c (·),

m
(1)
c (·) and σ

2(1)
c (·). Set l = 1.

E-step: Use (3.3) to calculate r
(l)
ic for i = 1, · · · , n, and c = 1, · · · , C.

M-step: For c = 1, · · · , C and j = 1, · · · , N , evaluate π
(l+1)
c (uj) in (3.7),

m
(l+1)
c (uj) in (3.8) and σ

2(l+1)
c0 (uj) in (3.9). Further obtain π

(l+1)
c (xi), m

(l+1)
c (xi)

and σ
2(l+1)
c (xi) using linear interpolation.

Iteratively update the E-step and the M-step with l = 1, 2, · · · , until the algo-

rithm converges.

It is well known that an ordinary EM algorithm for parametric models

possesses an ascent property, which is a desired property. The ascent property

guarantees that the likelihood function is nondecreasing as we update the pa-

rameters in the EM iterations. The effective EM algorithm can be regarded

as an extension of the EM algorithm from parametric models to nonparametric

models. Thus, it is of interest to study whether the modified EM algorithm still

preserves the ascent property.

Let θ(l)(·) = {π(l)(·), σ2(l)(·),m(l)(·)} be the l-th step estimated functions

in the proposed EM algorithm. We rewrite the local likelihood function (3.2) as

`n(θ) =
n∑

i=1

`(θ, yi)Kh(xi − x0). (3.10)

Theorem 2. For any given point x0 in the interval of x, suppose that θ(l)(·) has

continuous first derivative. as h → 0 n →∞, it follows

lim inf
n→∞

n−1
[
`n{θ(l+1)(x0)} − `n{θ(l)(x0)}

]
≥ 0 (3.11)

in probability.
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The proof of Theorem 2 is given in Section 3.4. Theorem 2 implies that

when the sample size n is large enough, the proposed algorithm possess the

ascent property at any given x0. We evaluate estimated curve at a set of grid

points {u1, · · · , uN}. For large n, we have

`n{θ(l+1)(uj)} − `n{θ(l)(uj)} ≥ 0.

3.3 Simulation and Application

In this section, we address some practical implementation issues such as

standard error formula and bandwidth selection for nonparametric mixture of

regression model. To assess the performance of the estimates of the unknown

regression functions mc(x), we consider the square root of the average square

errors (RASE) for mean functions,

RASE2
m = N−1

C∑
c=1

N∑
j=1

{m̂c(uj)−mc(uj)}2,

where {uj, j = 1, · · · , N} is the grid points at which the unknown functions mc(·)
are evaluated. For simplification, the grid points are taken evenly on the range

of the x-variable. Similarly, we can define RASE for variance functions σ2
c (x)s

and proportion functions πc(x)s, denoted by RASEσ and RASEπ, respectively.

In simulation, we set N = 100.

3.3.1 Standard Error Formula

Define the fitted value for the i-th observation as a weight sum of the

estimated means,

ŷi =
C∑

c=1

ricm̂c(xi),



37

where ric are the posterior of the identities when the effective EM algorithm

converges. Then, the residual is ei = yi − ŷi. Rewrite the estimate of mc(x) in

the proposed algorithm as

m̂c(x) = (ET WcE)−1ET Wcy,

where E is a n × 1 vector with all entries equal to 1; Wc = diag{wc1, · · · , wcn}
with wci = ricKh(xi−x0). We consider the following approximate standard error

formula for m̂c(x):

V̂ar{m̂c(x)} = (ET WcE)−1ET WcĈov(y)WcE(ET WcE)−1, (3.12)

where Ĉov(y) = diag{e2
1, e

2
2, · · · , e2

n}, a diagonal matrix consisting of the residu-

als squares e2
i . Furthermore, (3.12) can be written as

V̂ar{m̂c(x)} =

∑n
i=1 w2

ice
2
i

(
∑n

i=1 wic)2
. (3.13)

The accuracy of this formula will be tested in section 3.3.3.

3.3.2 Bandwidth Selection

Bandwidth selection is fundamental to nonparametric smoothing. In

practice, data driven methods such as cross-validation (CV) can be used to

choose the bandwidth. Denote D to be the full data set. We then partition

D into a training set Rj and test set Tj, D = Tj ∪ Rj j = 1, · · · , J . We use

the training set Rj to obtain the estimates {m̂c(·), σ̂2
c (·), π̂c(·)}. Then we can

estimate mc(x), σ2
c (x) and πc(x) for the data points belong to the corresponding
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test set. For (xl, yl) ∈ Tj,

m̂c(xl) =

∑
{i:xi∈Rj} ricKh(xi − xl)yi∑
{i:xi∈Rj} ricKh(xi − xl)

,

σ̂2
c (xl) =

∑
{i:xi∈Rj} ricKh(xi − xl)(yi − m̂c(xi))

2

∑
{i:xi∈Rj} ricKh(xi − xl)

,

π̂c(xl) =

∑
{i:xi∈Rj} ricKh(xi − xl)∑
{i:xi∈Rj} Kh(xi − xl)

.

Based on the estimated m̂c(xl) of test set Tj, we again calculate the posterior

memberships in test set Tj. For (xl, yl) ∈ Tj, c = 1, · · · , C,

rlc =
π̂c(xl)φ{yl|m̂c(xl), σ̂

2
c (xl)}∑C

q=1 π̂q(xl)φ{yl|m̂q(xl), σ̂2
q (xl)}

.

Now we can implement regular CV criterion in this mixture model

CV =
J∑

j=1

∑

l∈Tj

(yl − ŷl)
2, (3.14)

where ŷl =
∑C

c=1 rlc m̂c(xl) is the predicted value of yl in the test set Tj.

3.3.3 Simulation Study

In the following example, we conduct a simulation for a 2-component

nonparametric mixture of regressions model with

π1(x) = exp(0.5x)/{1 + exp(0.5x)}, and π2(x) = 1− π1(x),

m1(x) = 4− sin(2πx), and m2(x) = 1.5 + cos(3πx),

σ1(x) = 0.25 exp(0.5x), and σ2(x) = 0.3 exp(−0.2x).

For each of the samples, 500 simulations were conducted with sample sizes

n = 200, 400, 800. The predictor x is generated from one dimension uniform

distribution in [0, 1]. The Epanechnikov kernel is used in our simulation. Fig-

ure 3.2 shows the plots of true mean functions with a typical sample data.
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Figure 3.2: (a) Plot of true mean functions for the two components in the simulation;
(b) A typical sample of simulated data (n=400)
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It is well known that the EM algorithm may be trapped by a local maxi-

mizer. Thus, the EM algorithm may be sensitive to the initial value. To obtain

a good initial value, we first fit a mixture of polynomial regression models, which

gives the estimates of mean functions m̄c(x), and parameters σ̄2
c , π̄c. Then we

set the initial values m
(1)
c (x) = m̄c(x), σ2(1)(x) = σ̄2

c , and π
(1)
c (x) = π̄c. In our

simulation, we first generate several simulation data sets for a given sample size,

and then use the CV bandwidth selectors to choose a bandwidth for each data

set. This provides us an idea about the optimal bandwidth for a given sam-

ple size. To demonstrate that the proposed procedure works quite well for a

wide range of bandwidths, we consider three different bandwidths: half of the

selected bandwidth, the selected bandwidth, and twice of the selected band-

width, which corresponds to the under-smoothing, appropriate-smoothing and

over-smoothing, respectively. Table 3.1 displays the mean and standard devia-

tion of RASEs over 500 simulations. From Table 3.1, the proposed procedure

performs quite well for all three different bandwidths.

We next test the accuracy of the standard error formulas. Table 3.2

summarizes the simulation results for the unknown functions mc(x) at points

0.25, 0.5, 0.75. The standard deviation of 500 estimates, denoted by SD, can be

viewed as the true standard errors. We then calculate the mean and standard

deviation of the estimated standard error using the proposed standard error

formulas (3.12), denoted by MSD(Std). The result shows that the proposed

sandwich formula works reasonably well because the difference between the true

value and the estimate is less than twice of the standard error of the estimate.

We now illustrate the performance of the proposed procedure by using

a typical simulated sample, which is selected to be the one with the median of

RASEm in the 500 simulation. For this data set, we use the cross-validation (CV)
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Figure 3.3: Cross-validation error versus the bandwidth: (a) n=400; (b) n=800.
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Table 3.1: RASEs: Mean and Standard Deviation

RASEm RASEσ RASEπ

n h Mean(Std) Mean(Std) Mean(Std)

0.16 0.1007(0.0476) 0.0081(0.0060) 0.0092(0.0066)

200 0.08 0.0330(0.0177) 0.0045(0.0027) 0.0113(0.0042)

0.04 0.0588(0.0573) 0.0163(0.0572) 0.0203(0.0059)

0.12 0.0420(0.0318) 0.0034(0.0004) 0.0053(0.0045)

400 0.06 0.0168(0.0065) 0.0027(0.0013) 0.0069(0.0023)

0.03 0.0320(0.0201) 0.0048(0.0012) 0.0140(0.0033)

0.08 0.0112(0.0042) 0.0011(0.0007) 0.0028(0.0016)

800 0.04 0.0107(0.0029) 0.0019(0.0005) 0.0051(0.0016)

0.02 0.0183(0.0030) 0.0037(0.0007) 0.0103(0.0020)

Table 3.2: Standard error of the unknown mean functions

m1(x) m2(x)

n x SD MSD(Std) SD MSD(Std)

0.25 0.0753 0.0691(0.0155) 0.1068 0.0874(0.0219)

200 0.50 0.0938 0.0804(0.0185) 0.1315 0.0866(0.0234)

(h=0.08) 0.75 0.0977 0.0856(0.0198) 0.1222 0.0860(0.0227)

0.25 0.0586 0.0580(0.0108) 0.0803 0.0731(0.0152)

400 0.50 0.0810 0.0648(0.0121) 0.0921 0.0696(0.0153)

(h=0.06) 0.75 0.0735 0.0728(0.0146) 0.0731 0.0710(0.0180)

0.25 0.0517 0.0511(0.0098) 0.0731 0.0649(0.0113)

800 0.50 0.0607 0.0575(0.0109) 0.0713 0.0639(0.0126)

(h=0.04) 0.75 0.0653 0.0634(0.0104) 0.0699 0.0628(0.0140)
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Figure 3.4: (a) The estimated mean functions and 95% pointwise confidence intervals
(n = 400, h = 0.07); (b) True mean functions and 95% confidence intervals.
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criterion proposed in Section 3.2 to select a bandwidth. The cross-validation

scores are depicted in Figure 3.3. The CV bandwidth selector yields the band-

width 0.07 for n = 400, and 0.045 for n = 800. The resulting estimate with

n = 400 along with its pointwise confidence interval is depicted in Figure 3.4,

from which we can see that the true mean functions lies within the confidence

interval. This implies that the proposed estimation procedure performs quite

with the moderate sample size.

3.3.4 Analysis of US Housing Index Data

We apply the proposed nonparametric mixture of regression model and

estimation procedure to analyze a real data set, which contains the SP-Case

Shiller House Price Index (HPI) change and United States GDP growth rate

from Jan, 1990 to Dec, 2006. It is known that in the literature of economic

research, HPI is a measure of a nation’s housing cost and GDP is a measure

of the size of a nation’s economy. It is of interest to investigate the impact

of GDP growth rate on HPI change. As expected, the impact of GDP growth

rate on HPI may have different pattern in different macroeconomic cycles. In

this illustration, we set HPI change to be the response variable, and the GDP

growth rate to be predictor. In this analysis, we limit ourselves to the data

with positive GDP growth rate. The scatter plot of this data set is depicted

in Figure 3.5(a). In our analysis, we consider three component nonparametric

mixture of regression models.

We first select the bandwidth by a 5-folder CV selector described in (3.14).

The selected optimal bandwidth is 0.365, as shown in Figure 3.5(b). With the

optimal bandwidth we fit the data in a 3-component nonparametric mixture of

regression models. The estimated mean functions and a hard-clustering result
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Figure 3.5: (a) Scatterplot of GDP Growth and HPI Change; (b)Cross-validation
error versus the bandwidth.
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based on posterior estimate of identities are shown in Figure 3.6(a). The dotted

points from the lower cluster are mainly from January 1990 to September 1997,

and from April 2006 to December 2006. The triangular points in the upper

cluster are mainly from October 2003 to September 2005, which is recognized as a

serious housing bubble period. In the middle cluster, the observations are mainly

from October 1997 to September 2003, during which the economy experienced

an internet boom and the following bust. We plot the estimated component

identities ric against time in Figure 3.6(b), along with corresponding smoothed

curves. This figure verify our claims that the three components have identified

the three distinct time periods. The estimated mixing proportion functions are

plotted in Figure 3.7. The 95% pointwise confidence intervals of each component

are plotted in Figure 3.8(a). We observe that the mixing proportion function for

the “housing bubble component” is close to 0 when GDP growth rate is low (less

than 0.4%), and has a dramatic increase as GDP growth rate is modest (between

0.4% and 1.2%). There are overlaps of the confidence intervals (Figure 3.6(b))

in the two upper components, which suggest that they can be considered as one

component when the overlaps occur. This result agrees with posterior hard-

identity in Figure 3.5(a).

We compare the proposed nonparametric finite mixture of regression

model to two other models: a local linear regression model and 3-component

mixture of linear regression models. The optimal bandwidth for local linear

regression was selected by a plug-in method (Ruppert et al., 1995), and para-

metric mixture of regression model will be estimated by an EM algorithm. We

randomly select 20% of the data to be a test set and the rest as a training set.

Estimations for 3 different models are obtained from training set and prediction

errors are calculated based on the deviations in test set. Our result shows that
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Figure 3.6: (a)Clustering result; (b)The estimated component identities against time.



48

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

GDP Growth Rate

Estimated Proportion Functions

M
ix

in
g 

pr
op

or
tio

n 
fu

nc
tio

n

 

 
Lower component
Upper component
Middle component

Figure 3.7: Estimated mixing proportion functions.

in 100 simulations, the nonparametric mixture of regression model has average

prediction error 1.38×10−5, while average prediction error for local linear regres-

sion and a 3-component parametric mixture of regression model are 1.47× 10−4

and 1.63 × 10−5. The result means that nonparametric mixture of regression

model has 15.4% reduction in prediction error compared to parametric mixture

of regression model, and 90.6% reduction in prediction error compared to local

linear regression. The improved prediction error demonstrates the advantages of

nonparametric finite mixture of regression model in the analysis of US housing

data. We finally plot the prediction and true value of first 3 quarters (Q1,Q2,

and Q3) of year 2007 data in Figure 3.8(b). From the figure we see that 2007

Q1 data still falls in the cycle of lower HPI change. However, from 2007 Q2 the

economic enters a new scenario of decreasing housing price and increasing GDP

growth rate which goes out of the historical ranges since 1990.



49

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Estimated mean functions and confident intervals

GDP Growth Rate

H
P

I C
ha

ng
e

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−3

−2

−1

0

1

2

3

4

2007 Q1−Q3 data

GDP Growth Rate

H
P

I C
ha

ng
e

2007−Q1
2007−Q2
2007−Q3

(b)

Figure 3.8: (a)95% confidence intervals; (b) True value of HPI change vs GDP growth
rate in 2007 Q1-Q3.
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3.4 Discussion

In this chapter we proposed nonparametric finite mixture of regression

models, and develop estimation procedure for unknown functions. We study the

monotone ascent property of the proposed effective EM algorithm and further

give asymptotic distribution of the resulting estimates. Young (2007) proposed

an “EM-like” algorithm for a mixture of linear regression models with covariate-

dependent mixing proportions. This model is similar to a special case of model

(3.1) with constant variances and a linear form in the regression functions. How-

ever, his estimation procedure does not maximize a local likelihood function.

The performance of the proposed procedures was empirically examined

by a Monte Carlo simulation and illustrated by an analysis of a real data ex-

ample. Throughout the thesis, the computations and calculations are performed

in MATLAB, a numerical computing environment and scientific programming

language. In general the proposed procedure performs well in simulation and

application. To achieve computational stability the bandwidth must not be too

small. In our simulation we do observe several computational failures in a 500

simulation with n = 200 and h = 0.04 (Table 3.1), which did not occur in other

settings. Note that in the case where computational failures happen, there are

nh = 8 expected number of data points within a local window controlled by

the bandwidth. This number is larger than 5, which is the number of unknown

parameters in local likelihood (3.2) with 2 components. However, for a random

sample there may be some locations at which number of data points is less than

5 within the bandwidth, and this may cause a failure in computation. Although

we do not have a accurate idea on the general data requirements in an analysis

using the proposed model, the mixture of linear regression models may provide a

guide on this issue if we look at the dataset locally. Since our estimation proce-
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dure depends on the grid points, we may choose grid points that avoid the areas

where data points are too sparse.

3.5 Proofs

In this section we outline the key steps of proofs for Theorems 1 and 2.

Note that θ = (πT ,σ2T ,mT )T is a (3C − 1) × 1 vector. Whenever necessary,

we rewrite θ = (θ1, · · · , θ3C−1)
T without changing the order of π, σ2, and m.

Correspondingly, we rewrite η = (σ2T ,mT )T as η = (η1, · · · , η2C)T if necessary.

Otherwise, we will use the same notations as we defined in section 2.

Regularity Conditions

A. The sample {(xi, yi), i = 1, · · · , n} is independent and identically distributed

from its population (x, y). The support for x, denoted by X , is closed and

bounded of R1. The density η{y|θ(x0)} is identifiable up to a permutation

of the mixture components.

B. The marginal density function f(x) is continuous first derivative and positive

for x ∈ X .

C. There exists a function M(y), with E{M(Y )} < ∞, such that for all y, and

all θ in a neighborhood of θ(x0), |∂3`(θ, y)/∂θj∂θk∂θl| < M(y).

D. The unknown functions θ(x) has continuous second derivative.

E. The kernel function K(·) has a bounded support, and satisfies that

∫
K(t)dt = 1,

∫
tK(t)dt = 0,

∫
t2K(t)dt = κ2 > 0.
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F. The following conditions hold for all i and j.

E

(∣∣∣∣
∂`(θ(x0), Y )

∂θj

∣∣∣∣
3
)

< ∞, E

[{
∂2`(θ(x0), Y )

∂θi∂θj

}2
]

< ∞.

All these conditions are mild conditions and have been used in the literature of

local likelihood estimation and mixture models. The following lemma will be

used in the proof of Theorem 1.

Lemma 1. Under Conditions A, C, and F, for x0 in the interior of X , it holds

that

E[q1{θ(X), Y }|X = x0] = 0, (3.15)

E[q2{θ(X), Y }|X = x0] = −E[q1{θ(X), Y }qT
1 {θ(X), Y }|X = x0].(3.16)

Proof. Conditioning X = x0, Y follows a finite mixtures of normals. Thus,

(3.15) holds by some calculations. Furthermore, (3.16) follows by using under

regularity conditions C, F and the arguments in Page 39 of McLachlan and Peel

(2000) together. This completes the proof of this lemma.

We refer (3.15 and (3.16) to as the local Barlette’s first and second iden-

tities, respectively. (3.15) implies that Λ(x0) = 0.

Proof of Theorem 1. Denote

m∗
c =

√
nh{mc0 −mc(x0)},

σ2∗
c =

√
nh{σ2

c0 − σ2
c (x0)},

π∗c =
√

nh{πc0 − πc(x0)},

π∗C =
√

nh{πC0 − πC(x0)} =
√

nh[1−
C−1∑
c=1

{πc0 − πc(x0)}].
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Let m∗ = (m∗
1, · · · ,m∗

C)T , σ2∗ = (σ2∗
1 · · · , σ2∗

C )T , and π∗ = (π∗1, · · · , π∗C−1)
T .

Denote θ∗ = (π∗T ,σ2∗T ,m∗T )T . Recall that

`(θ(x0), y) = log η{y|θ(x0)} = log

{
C∑

c=1

πc(x0)φ{y|mc(x0), σ
2
c (x0)}

}
.

Let

`(θ(x0) + γnθ
∗, y) = log

{
C∑

c=1

(πc(x0) + γnπ∗c )

×φ
(
y|mc(x0) + γnm∗

c , σ
2
c (x0) + γnσ

2∗
c

)
}

.

Thus, if {π̃, σ̃2, m̃} maximizes (3.2), then θ̃
∗

maximizes

`∗n(θ∗) = h

n∑
i=1

{`(θ(x0) + γnθ∗, yi)− `(θ(x0), yi)}Kh(xi − x0). (3.17)

By the Taylor expansion,

`∗n(θ∗) = ∆nθ∗ +
1

2
θ∗T Γnθ

∗ +
hγ3

n

6

n∑
i=1

R(θ(x0), ξ̃), (3.18)

where ξ̃ is a vector between 0 and γnθ
∗, and

∆n =

√
h

n

n∑
i=1

q1{θ(x0), yi}Kh(xi − x0),

Γn =
1

n

n∑
i=1

q2{θ(x0), yi}Kh(xi − x0),

R(θ(x0), ξ̃) =
∑

j,k,l

∂3`(θ(x0) + ξ̃, yi)

∂θj∂θk∂θl

Kh(xi − x0).

Denote Γn(i, j) the (i, j) element of Γn. By condition E, it can be shown that

EΓn(i, j) =

∫

Y

∫

X

∂2`(θ(x0), y)

∂θi∂θj

η{y|θ(x)}f(x)Kh(x− x0)dxdy

= fX(x0)

∫

Y

∂2`(θ(x0), y)

∂θi∂θj

η{y|θ(x0)}dy + op(1).
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Therefore, EΓn = −fX(x0)I(x0) + op(1). Var{Γn(i, j)} is dominated by the

following term

1

n

∫

Y

∫

X

{
∂2`(θ(x0), y)

∂θi∂θj

}2

η{y|θ(x)}f(x)K2
h(x− x0)dxdy,

which can be shown to have the order Op{(nh)−1} under condition F. Therefore,

we have

Γn = −fX(x0)I(x0) + op(1).

By Condition C, the expectation of the absolute value of the last term of (3.18)

is bounded by

O

(
γnE max

j,k,l

∣∣∣∂
3`(θ(x0) + ξ̃, Y )

∂θj∂θk∂θl

Kh(xi − x0)
∣∣∣
)

= O(γn). (3.19)

Thus, the last term of (3.18) is of order Op(γn). Therefore, we have

`∗n(θ∗) = ∆nθ
∗ − 1

2
f(x0)θ

∗TI(x0)θ
∗ + op(1). (3.20)

Using the quadratic approximation lemma (for example, see p.210 of Fan and

Gijbels, 1996), we have

θ̂
∗

= f(x0)
−1I(x0)

−1∆n + op(1). (3.21)

To establish asymptotic normality, it remains to calculate the mean and variance

of ∆n, and verify the Lyapounov condition. Note that

E(∆n) =
√

nh

∫

Y

∫

X

q1{θ(x0), y}η{y|θ(x)}f(x)Kh(x− x0)dxdy

=
√

nh

∫

X

Λ(x)f(x)Kh(x− x0)dx.

Under Conditions C, D and F, Λ(x) has continuous second derivative. Thus,

using the fact Λ(x0) = 0 by Lemma 1 and standard arguments in the kernel

regression, it follows that

E(∆n) =

{
f ′(x0)Λ

′(x0)

f(x0)
+

1

2
Λ′′(x0)

}
κ2h

2 + o(h2).
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For the covariance term of ∆n, we have

Cov(∆n) = hE
{
q1{θ(x0), Y }qT

1 {θ(x0), Y }K2
h(X − x0)

}
+ op(1),

where its (i, j) element is

h

∫

Y

∫

X

∂`(θ(x0), y)

∂θi

∂`(θ(x0), y)

∂θj

K2
h(x− x0)f(x)η{y|θ(x)}dxdy

P−→ f(x0)ν0

∫

Y

∂`(θ(x0), y)

∂θi

∂`(θ(x0), y)

∂θj

η{y|θ(x0)}dy

= −f(x0)ν0

∫

Y

∂2`(θ(x0), y)

∂θi∂θj

η{y|θ(x0)}dy.

The last step holds due to (3.16). Thus, Cov(∆n) = f(x0)I(x0)ν0 + op(1). In

order to establish asymptotic normality for ∆n, it is necessary to show for any

unit vector d,

{dT Cov(∆n)d}−1/2dT{∆n − E(∆n)} D−→ N(0, 1). (3.22)

Since Cov(∆n) = Op(1), it follows that {dT Cov(∆n)d} = Op(1). Let λi =

dT q1{θ(x0), yi}Kh(xi − x0), then dT ∆n = hγn

∑n
i=1 λi. Then, it is sufficient

to show that nh3γ3
nE(|λi|3) = op(1). By condition F and arguments similar to

(3.19), it can be shown that nh3γ3
nE(|λi|3) = Op(γn) = op(1), and thus Lya-

pounov’s condition holds for (3.22). By (3.21) and the Slutsky theorem, we

have

√
nh{γnθ̃

∗ − B(x0) + op(h
2)} D−→ N

{
0, f−1(x0)ν0I−1(x0)

}
. (3.23)

Proof of Theorem 2.

We assume the unobserved data (Ci, i = 1, · · · , n) are random samples

from population C, and the complete data {(xi, yi, Ci), i = 1, 2, · · · , n} are ran-

dom samples from (X,Y, C). Let h{y, C|θ(x)} be the joint pdf of (Y, C) given
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X = x, and fX(x) be the marginal density of X. Conditioning on X = x, Y

follows a distribution fY {y|θ(x)}. Then the conditional density of C is given by

g{c|y, θ(x)} =
h{y, c|θ(x)}
fY {y|θ(x)} . (3.24)

The local log-likelihood function (3.2) can be re-written as

`n(θ0) =
n∑

i=1

log{fY (yi|θ0)}Kh(xi − x0). (3.25)

Given a fixed θ̃
(l)

(xi), i = 1, · · · , n, it is obvious that
∫

g{c|yi, θ̃
(l)

(xi)}dc = 1.

Then local likelihood (3.25) is

`n(θ) =
n∑

i=1

log{fY (yi|θ)}
{∫

g{c|yi, θ̃
(l)

(xi)}dc

}
Kh(xi − x0)

=
n∑

i=1

{∫
log{fY (yi|θ)}g{c|yi, θ̃

(l)
(xi)}dc

}
Kh(xi − x0). (3.26)

By (3.24), we also have

log{fY (yi|θ)} = log{h(yi, c|θ)} − log{g(c|yi,θ)}. (3.27)

Thus, we have

`n(θ) =
n∑

i=1

E{log{h(yi, C|θ)}|θ(l)(xi)}Kh(xi − x0)

−
n∑

i=1

E{log{g(C|yi,θ)}|θ(l)(xi)}Kh(xi − x0), (3.28)

where θ(l)(xi) is the l-th step local estimations at xi. Taking the expectation is

equivalent to calculating (3.3). In M step, we choose θ(l+1)(x0) such that

1

n

n∑
i=1

E
{

log[h{yi, C|θ(l+1)(x0)}]|θ(l)(xi)
}

Kh(xi − x0)

≥ 1

n

n∑
i=1

E
{

log[h{yi, C|θ(l)(x0)}]|θ(l)(xi)
}

Kh(xi − x0).
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It suffices to show that

lim inf
n→∞

1

n

n∑
i=1

E

[
log

{
g{C|yi, θ

(l+1)(x0)}
g{C|yi, θ

(l)(x0)}

} ∣∣∣∣θ(l)(xi)

]
Kh(xi − x0) ≤ 0 (3.29)

in probability. Denote

Lg =
1

n

n∑
i=1

E

[
log

{
g{C|yi, θ

(l+1)(x0)}
g{C|yi, θ

(l)(x0)}

} ∣∣∣∣θ(l)(xi)

]
Kh(xi − x0),

and

LJ =
1

n

n∑
i=1

log

[
E

{
g{C|yi,θ

(l+1)(x0)}
g{C|yi,θ

(l)(x0)}

∣∣∣∣θ(l)(xi)

}]
Kh(xi − x0).

By Jensen’s inequality, Lg ≤ LJ . Next we show that LJ → 0 in probability. To

this end, we first calculate the expectation of LJ .

E(LJ) = E

(
log

[∫

C

g{c|Y, θ(l+1)(x0)}
g{c|Y, θ(l)(x0)}

g{c|Y, θ(l)(X)}dc

]
Kh(X − x0)

)
,

which tends to 0 by a standard argument. We next calculate the variance of LJ .

Note that the variance of LJ is dominated by the following term

1

n
E

(
log

[∫

C

g{c|Y, θ(l+1)(x0)}
g{c|Y, θ(l)(x0)}

g{c|Y, θ(l)(X)}dc

]
Kh(X − x0)

)2

,

which can be shown to have the order Op{(nh)−1}. Then we have LJ = op(1)

by Chebyshev inequality. This completes the proof.



Chapter 4

Nonparametric Mixture of Regression Models

with Constant Mixing Proportions

4.1 Introduction

In this chapter, we consider a situation in which the mean functions

and the variance functions are all nonparametric, but the mixing proportion is

constant. Thus, the model studied in this chapter indeed is a semiparametric

model. Using a kernel regression technique, we propose an estimation procedure

for the unknown functions via local likelihood approach, and further develop

backfitting algorithm for in nonparametric mixture of regression model. The

sampling properties of the proposed estimation procedure are investigated. We

derive the asymptotic bias and variance of the local likelihood estimates, and

establish its asymptotic normality.

In Chapter 3, we proposed a modified EM algorithm (Dempster, Laird

and Rubin, 1977) to maximize the local likelihood functions for nonparametric

mixture of regression models. The EM algorithm is used in the proposed es-

timation procedure of nonparametric mixture of regression models. Given an

estimate of the mixing proportion, we maximize the local likelihood functions

and obtain the estimates of nonparametric functions using the modified EM al-

gorithm. Given the estimates of nonparametric functions, we can further derive

a more efficient estimate for the mixing proportion. The backfitting algorithm

58
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works well in our simulation and a real data example.

We derive a standard error formula for the resulting estimate by the con-

ventional sandwich formula. A bandwidth selector is proposed for the local like-

lihood estimate using a multi-fold cross-validation method. A simulation study

is conducted to examine the performance of the proposed procedures and test

the accuracy of the proposed standard error formula. We further demonstrate

the proposed model and estimation procedure by a continued analysis of the US

housing price index data.

The rest of this paper is structured as follows. In section 2, we present

the nonparametric finite mixture of regression models with constant mixing pro-

portions, and develop an estimation procedure for nonparametric mixture of

regression models. Simulation results and an empirical analysis of a real data

are presented in section 3. Some discussions are provided in section 4. Technical

conditions and proofs are given in section 5.

4.2 A Semiparametric Model

Let C be a latent class variable with a discrete distribution P (C = c) = πc

for c = 1, 2, · · · , C. Conditioning on C = c, the relationship between X and Y

follows a nonparametric regression model,

Y = mc(X) + σc(X)ε, (4.1)

where ε ∼ N(0, 1), mc(·) and σc(·) are unknown but smooth functions. In other

words, conditioning on x,

Y ∼
C∑

c=1

πcN{mc(x), σ2
c (x)}. (4.2)
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Compared with the nonparametric mixture of regression model (3.1), model (4.2)

indeed is a semi-parametric model because πc is an unknown parameter rather

than unknown nonparametric function of x. Thus, we may derive a more efficient

estimate for πc. Suppose that {(xi, yi), i = 1, · · · , n} are random samples from

the population (X, Y ). The likelihood function of the collected data is

`n(π,m, σ2) =
n∑

i=1

log

{
C∑

c=1

πcφ{yi|mc(xi), σ
2
c (xi)}

}
, (4.3)

where m = m(·) = {m1(·), · · · ,mC(·)}, and σ2 = σ2(·) = {σ2
1(·), · · · , σ2

C(·)}.
Since m(·), σ2(·) are nonparametric functions, (4.3) is not ready for maximiza-

tion. In our approach, we first use kernel regression techniques (Fan and Gijbels,

1996) to estimate m(·), and σ2(·), substitute the resulting estimates to (4.3) and

then maximize (4.3) with respect to π. Given the estimate of π, we may fur-

ther derive a more efficient estimate for mc(x) and σ2
c (x) by the local likelihood

method.

4.2.1 An Estimation Procedure

We first propose an approach to obtain good initial values. The idea is as

follows. We treat the constant mixing proportion as a function of x, and apply

the estimation procedure proposed in Chapter 3 to estimate π, mc(·) and σ2
c (·).

Let Kh(·) = h−1K(·/h) be a rescaled kernel for a kernel function K(·) and a

bandwidth h. Further, denote φ(y|µ, σ2) to be the density function N(µ, σ2).

The local likelihood method is to maximize the local likelihood function

`n(π0,σ
2
0,m0) =

n∑
i=1

log

{
C∑

c=1

πc0φ(yi|mc0, σ
2
c0)

}
Kh(xi − x0), (4.4)

where m0 = (m10, · · · , mC0)
T , σ2

0 = (σ2
10, · · · , σ2

C0)
T , π0 = (π10, · · · , πC−1,0)

T ,

and πC0 = 1−∑C−1
c=1 πc0. Let {π̃, σ̃2, m̃} be the solution of maximizing the local
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likelihood function (4.4). Then the estimates for πc(x0), σ2
c (x0), and mc(x0) are

π̃c(x0) = π̃c0, σ̃2
c (x0) = σ̃2

c0, and m̃c(x0) = m̃c0.

The maximization can be achieved by the modified EM algorithm proposed in

Chapter 3. We have showed that the resulting estimates are
√

nh consistent.

To achieve the root consistency of an estimate for π, we should use all

data rather than data in a local neighborhood. For given estimates m̂c(·) and

σ̂2
c (·), we maximize

`1(π) =
n∑

i=1

log

{
C∑

c=1

πcφ{yi|m̂c(xi), σ̂
2
c (xi)}

}
, (4.5)

with respect to π. Let π̂ = (π̂1, · · · , π̂C−1)
T be a maximizer of (4.5). If m̂c(·) and

σ̂2
c (·) are chosen to be m̃c(·) and σ̃2

c (·), the resulting estimate is referred to as a

one step estimate of π. In section 3.2 we will show that under certain regularity

conditions, the one step estimate of π is a root n consistent estimator of π.

To maximize (4.5), define Bernoulli random variables

zic =





1, if (xi, yi) is in the cth group,

0, otherwise.

and let zi = (zi1, · · · , ziC)T . The complete data are {(xi, yi, zi), i = 1, 2, · · · , n},
and the corresponding complete log likelihood function is

n∑
i=1

C∑
c=1

zic

{
log πc + log φ{yi|m̂c(xi), σ̂

2
c (xi)}

}
. (4.6)

In E step, we calculate the expectation of zic, given by

r
(l)
ic =

π
(l)
c φ{yi|m̂c(xi), σ̂

2
c (xi)}∑C

c=1 π
(l)
c φ{yi|m̂c(xi), σ̂2

c (xi)}
. (4.7)
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Then in M step, we only need to maximize

n∑
i=1

C∑
c=1

r
(l)
ic log πc,

which gives solution

π(l+1)
c =

1

n

n∑
i=1

r
(l)
ic . (4.8)

For a given π̂, we maximize

`2(σ
2
0,m0) =

n∑
i=1

log

{
C∑

c=1

π̂cφ(yi|mc0, σ
2
c0)

}
Kh(xi − x0), (4.9)

with respect to m0 and σ2
0. The EM algorithm proposed in the last chapter can

be adapted to maximize (4.9). Note that the complete log-likelihood function is

n∑
i=1

C∑
c=1

zic

[
log π̂c + log φ{yi|mc(xi), σ

2
c (xi)}

]
.

In the l-th step of the EM algorithm iteration, we have m
(l)
c (·), and σ

2(l)
c (·). In

the E-step, the expectation of the latent variable zic is given by

r
(l)
ic =

π̂cφ{yi|m(l)
c (xi), σ

2(l)
c (xi)}∑C

c=1 π̂cφ{yi|m(l)
c (xi), σ

2(l)
c (xi)}

. (4.10)

Let {u1, · · · , uN} be a set of grid points at which the estimated functions are

evaluated, where N is the number of grid points. In the M-step, we maximize

n∑
i=1

C∑
c=1

r
(l)
ic

[
log φ{yi|mc0(x0), σ

2
c0(x0)}

]
Kh(xi − x0), (4.11)

for x0 = ui, i = 1, · · · , N . The closed form solution is, for x0 ∈ {uj, j =

1, · · · , N},

m(l+1)
c (x0) =

∑n
i=1 w

(l)
ci (x0)yi∑n

i=1 w
(l)
ci (x0)

, (4.12)

σ2(l+1)
c (x0) =

∑n
i=1 w

(l)
ci (x0){yi −m

(l)
c (xi)}2

∑n
i=1 w

(l)
ci (x0)

, (4.13)
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where w
(l)
ci (x0) = r

(l)
ic Kh(xi−x0). Furthermore, we update m

(l+1)
c (xi) and σ

2(l+1)
c (xi),

i = 1, · · · , n by linearly interpolating m
(l+1)
c (uj) and σ

2(l+1)
c (uj), j = 1, · · · , N ,

respectively. Similar to the effective EM algorithm in Chapter 3, the proposed

EM algorithm for (4.9) also has a corresponding ascent property. For large n,

we have

`2{m(l+1)(uj),σ
2(l+1)(uj)} − `2{m(l)(uj),σ

2(l)(uj)} ≥ 0.

A Backfitting Algorithm:

Step 1: Calculate π̃(xi), m̃c(xi) and σ̃2
c (xi) using the effective EM algorithm in

Chapter 3, regarding the semiparametric model as the fully nonparametric

model.

Step 2; Set the initial value for maximizing `1(π) as follows. π
(0)
c to be the

average of π̃c(xi)s. Take m̂c(xi) and σ̂2
c (xi) to be m̃c(xi) and σ̃2

c (xi), respec-

tively. Maximize `1(π) by using an EM algorithm. Denote the resulting

estimate by π̂, which will be referred to as the one-step estimate for π.

Step 3: Maximize `2(σ
2,m) with π̂. Obtain m̂(xi) and σ̂2(xi) using the

proposed EM algorithm.

Step 4: Maximize `1(π) with m̂(xi) and σ̂2(xi) obtained in Step 3.

Because we can construct a good initial value, it may be unnecessary to

iterate the EM algorithms in both Steps 3 and 4 until they converge; by avoiding

this, computational cost can be reduced. Indeed, for a good initial value, we may

iteratively calculate (a) (4.7) and (4.8), and (b) (4.10), (4.12) and (4.13), until the

algorithm converges. Even more aggressively, we may iteratively calculate (4.7),
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(4.8), (4.12) and (4.13). This may be viewed as the gradient ECM algorithm by

combining the idea the gradient EM algorithm in Lange (1995) and the ECM

algorithm proposed in Meng and Rubin (1993). The convergence behavior of the

gradient ECM algorithm can be studied along the lines in Lange (1995). Further

discussion will be given in section 4.4.

4.2.2 Asymptotic Properties

We study the sampling properties of the proposed estimation procedure in

Section 3.1. Following the convention, we will show that the one-step estimator

π̂ obtained in Step 2 in the backfitting algorithm is root n consistent and follows

an asymptotic normal distribution. We further study the asymptotic property

of m̂(·) and σ̂2(·) for any given root n consistent estimate π̂.

Denote η = {(σ2)T ,mT}T , η(x) = {{σ2(x)}T ,m(x)T}T , and

`(π, η) = log

{
C∑

c=1

πcφ
{
y|mc, σ

2
c

}
}

.

Further define

Iπ(x) = −E

(
∂2`(π, η)

∂π∂πT

) ∣∣∣
η=η(x)

, Iπη(x) = −E

(
∂2`(π, η)

∂π∂ηT

) ∣∣∣
η=η(x)

,

where the latter has a block-matrix representation form Iπη(x) = (IT
mπ, IT

σπ).

Denote the one-step estimate by π̂OS.

Theorem 3. Suppose that nh4 → 0, nh2 log(1/h) →∞, and conditions (A)—(H)

in Section 5 hold. Then we have the asymptotic normality

√
n(π̂OS − π)

D−→ N{0, B−1ΣB−1},

where B = E{Iπ(X)}, and

Σ = Var

{
∂` (π, η(X), Y )

∂π
− ω(X,Y )

}
,
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where

ω(x, y) = Iπη(x)ψ(x, y) + op(1),

and ψ(x, y) a 2C × 1 vector, where the elements are taken from [Cth, · · · , (3C −
1)th] entries of I−1(x)× {∂`(θ(x), y)/∂θ}.

Given π̂, let m̂, σ̂2 be the maximizer of (4.9). Denote

m̂∗
c =

√
nh{m̂c0 −mc(x0)},

σ̂2∗
c =

√
nh{σ̂2

c − σ2
c (x0)}.

Let m̂∗ = (m̂∗
1, · · · , m̂∗

C)T , σ̂2∗ = (σ̂2∗
1 · · · , σ̂2∗

C )T . Define η̂∗ = {(σ̂2∗)T , m̂∗T}T ,

and

`(η, y) = log

{
C∑

c=1

πcφ
{
y|mc, σ

2
c

}
}

,

where η = (σ2T ,mT )T , and π is true value. Further define

Iη(x0) = −E

(
∂2`(θ)

∂η∂ηT

) ∣∣∣
η=η(x0)

.

Theorem 4. Assume that conditions (A)—(H) in Section 5 hold. Then as

n →∞, h → 0, nh →∞, we have the asymptotic normality results for η̂∗

√
nh{γnη̂

∗ − Bη(x0)} D−→ N
{
0, f−1(x0)I−1

η (x0)ν0

}
,

where Bη(x0), is a 2C×1 vector, which the elements are taken from [Cth, · · · , (3C−
1)th] entries of B(x0) in Theorem 1.

4.3 Simulation and Application

In this section, we address some practical implementation issues such as

standard error formula and bandwidth selection for nonparametric mixture of
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regression model. To assess the performance of the estimates of the unknown

regression functions mc(x), we consider the square root of the average square

errors (RASE) for mean functions,

RASE2
m = N−1

C∑
c=1

N∑
j=1

{m̂c(uj)−mc(uj)}2,

where {uj, j = 1, · · · , N} is the grid points at which the unknown functions

mc(·) are evaluated. For simplification, the grid points are taken evenly on the

range of the x-variable. In simulation, we set N = 100. Similarly, we can define

RASE for variance functions σ2
c (x)s, denoted by RASEσ.

4.3.1 Standard Error Formula

Define the fitted value for the i-th observation as a weight sum of the

estimated means,

ŷi =
C∑

c=1

ricm̂c(xi),

where ric are the posterior of the identities when the proposed back-fitting al-

gorithm converges. Then, the residual is ei = yi − ŷi. Rewrite the estimate of

mc(x) in the proposed algorithm as

m̂c(x) = (ET WcE)−1ET Wcy,

where E is a n × 1 vector with all entries equal to 1; Wc = diag{wc1, · · · , wcn}
with wci = ricKh(xi−x0). We consider the following approximate standard error

formula for m̂c(x):

V̂ar{m̂c(x)} = (ET WcE)−1ET WcĈov(y)WcE(ET WcE)−1, (4.14)
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where Ĉov(y) = diag{e2
1, e

2
2, · · · , e2

n}, a diagonal matrix consisting of the squared

residuals e2
i . Furthermore, (4.14) can be written as

V̂ar{m̂c(x)} =

∑n
i=1 w2

ice
2
i

(
∑n

i=1 wic)2
. (4.15)

4.3.2 Bandwidth Selection

Bandwidth selection is fundamental to nonparametric smoothing. In

practice, data driven methods can be used to choose the bandwidth, such as

cross-validation (CV). Denote by D as the full data set. We then partition D
into a training set Rj and test set Tj, D = Tj ∪ Rj j = 1, · · · , J . We use the

train set Rj to obtain the estimates {m̂c(·), σ̂2
c (·), π̂c}. Then we can estimate

mc(x), σ2
c (x) and πc for the data points belong to the corresponding test set.

For (xl, yl) ∈ Tj,

m̂c(xl) =

∑
{i:xi∈Rj} ricKh(xi − xl)yi∑
{i:xi∈Rj} ricKh(xi − xl)

,

σ̂2
c (xl) =

∑
{i:xi∈Rj} ricKh(xi − xl)(yi − m̂c(xi))

2

∑
{i:xi∈Rj} ricKh(xi − xl)

,

π̂c =

∑
{i:xi∈Rj} ric∑
I{i:xi∈Rj}

.

Based on the estimated m̂c(xl) of test set Tj, we again calculate the posterior

memberships in test set Tj. For (xl, yl) ∈ Tj, c = 1, · · · , C,

rlc =
π̂cφ{yl|m̂c(xl), σ̂

2
c (xl)}∑C

q=1 π̂qφ{yl|m̂q(xl), σ̂2
q (xl)}

.

Now we can implement regular CV criterion in this mixture model

CV =
J∑

j=1

∑

l∈Tj

(yl − ŷl)
2, (4.16)

where ŷl =
∑C

c=1 rlc m̂c(xl) is the predicted value of yl in the test set Tj.
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4.3.3 Simulation Study

In the following example, we conduct a simulation for a 2-component

nonparametric mixture of regressions model with

π1 = 0.4, and π2 = 0.6,

m1(x) = 4− sin(2πx), and m2(x) = 1.5 + cos(3πx),

σ1(x) = 0.25 exp(0.5x), and σ2(x) = 0.3 exp(−0.2x).

We take the sample size n = 200, 400, 800. For each case, 500 simulations were

conducted. The predictor x is generated from one dimension uniform distribution

in [0, 1]. The Epanechnikov kernel is used in our simulation. Figure 4.1 shows

the plots of true mean functions with a typical sample data.

To obtain a good initial value, we first fit a mixture of polynomial regres-

sion models, which gives the estimates of mean functions m̄c(x), and parameters

σ̄2
c , π̄c. Then we set the initial values m

(1)
c (x) = m̄c(x), σ2(1)(x) = σ̄2, and

π
(1)
c = π̄c. In our simulation, we first generate several simulation data sets for a

given sample size, and then use the CV bandwidth selectors to choose a band-

width for each data set. This provides us an idea about the optimal bandwidth

for a given sample size. To demonstrate that the proposed procedure works

quite well over a wide range of bandwidths, we consider three different band-

widths: two-third of the selected bandwidth, the selected bandwidth, and 1.5

times the selected bandwidth, which corresponds to the under-smoothing, opti-

mal smoothing and over-smoothing, respectively. Table 4.1 displays the mean

and standard deviation of RASEs over 500 simulations. From Table 4.1, the

proposed procedure performs quite well for all three different bandwidths.

We next test the accuracy of the standard error formulas. Table 4.2

summarizes the simulation results for the unknown functions mc(x) at points
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Figure 4.1: (a) Plot of true mean functions; (b) A typical sample of simulated data
(n=400)
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Table 4.1: RASE: Mean and Standard Deviations

RASEm RASEσ π1 = 0.4

n h Mean(Std) Mean(Std) Mean(Std)

0.12 0.0440(0.0164) 0.0036(0.0030) 0.4038(0.0318)

200 0.08 0.0315(0.0127) 0.0052(0.0043) 0.3998(0.0341)

0.053 0.0383(0.0144) 0.0061(0.0022) 0.3893(0.0397)

0.09 0.0193(0.0068) 0.0021(0.0009) 0.4036(0.0253)

400 0.06 0.0170(0.0054) 0.0028(0.0010) 0.4007(0.0232)

0.04 0.0211(0.0062) 0.0043(0.0018) 0.3927(0.0263)

0.075 0.0103(0.0038) 0.0012(0.0005) 0.4002(0.0186)

800 0.05 0.0092(0.0029) 0.0016(0.0006) 0.3999(0.0187)

0.033 0.0125(0.0028) 0.0025(0.0007) 0.4007(0.0165)

0.25, 0.5, 0.75. The standard deviation of 500 estimates, denoted by SD, can be

viewed as the true standard errors. We then calculate the mean and standard

deviation of the estimated standard error using the proposed standard error

formulas (4.14), denoted by MSD(Std). The result in Table 4.2 shows that the

proposed sandwich formula works reasonably well because the difference between

the true value and the estimate is less than twice of the standard error of the

estimate.

We now illustrate the performance of the proposed procedure by using a

typical simulated sample, which is selected to the one with the median of RASEm

in the 500 simulations. For this data set, we use the cross-validation (CV) crite-

rion proposed in Section 3.2 to select a bandwidth. The cross-validation scores

are depicted in Figure 4.2. The CV bandwidth selector yields the bandwidth 0.07
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Table 4.2: Standard error of the unknown mean functions

m1(x) m2(x)

n x SD MSD(Std) SD MSD(Std)

0.25 0.0839 0.0788(0.0190) 0.0978 0.0757(0.0169)

200 0.50 0.1186 0.0859(0.0237) 0.1105 0.0754(0.0177)

(h=0.08) 0.75 0.1299 0.1066(0.0316) 0.0893 0.0715(0.0171)

0.25 0.0732 0.0699(0.0157) 0.0715 0.0656(0.0126)

400 0.50 0.1059 0.0762(0.0180) 0.0866 0.0630(0.0123)

(h=0.06) 0.75 0.0863 0.0824(0.0201) 0.0639 0.0623(0.0116)

0.25 0.0622 0.0591(0.0114) 0.0593 0.0584(0.0097)

800 0.50 0.0679 0.0677(0.0132) 0.0611 0.0550(0.0088)

(h=0.04) 0.75 0.0814 0.0748(0.0137) 0.0561 0.0513(0.0083)

for n = 400, and 0.055 for n = 800. The resulting estimate with n = 400 along

with its pointwise confidence interval is depicted in Figure 4.3, from which we

can see that the true mean functions lies within the confidence interval. This im-

plies that the proposed estimation procedure performs quite with the moderate

sample size.

4.3.4 Analysis of US Housing Index Data (Continued)

We continue the analysis for US housing index data in last chapter. The

data set contains the SP-Case Shiller House Price Index (HPI) change and United

States GDP growth rate from Jan, 1990 to Dec, 2006. In this analysis, we set

HPI change to be the response variable, and the GDP growth rate to be pre-

dictor, and limit ourselves to the data with positive GDP growth rate. By an

analysis using nonparametric mixture of regression model, we model the impact
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Figure 4.2: Cross-validation error versus the bandwidth: (a) n=400; (b) n=800.
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Figure 4.3: (a) The estimated mean functions and 95% pointwise confidence intervals
(n = 400, h = 0.07); (b) True mean functions and 95% confidence intervals
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of GDP growth rate on HPI change in 3 nonparametric curves, corresponding

for 3 underlying macroeconomic cycles. We observe that the estimated mixing

proportion function of the “housing bubble component” has dramatic changes

as GDP growth rate increased. However, the estimated mixing proportion func-

tions of the rest clusters do not change a lot. For further analysis, we remove

the “housing bubble component” (upper cluster in Figure 4.4(a)), and apply the

proposed semiparametric mixture of regression model and estimation procedure

to analyze the data with moderate and low HPI change. The scatter plot of

this data set is depicted in Figure 4.4(b). We consider a two component non-

parametric mixture of regression models with constant mixing proportion in our

analysis.

We first select the bandwidth by a 5-fold CV selector described in (4.16).

The selected optimal bandwidth is 0.50, as shown in Figure 4.5(a). With the

optimal bandwidth we fit the data in a 2-component semiparametric mixture of

regression models. The estimated mean functions and a hard-clustering result

based on posterior estimates of component identities are shown in Figure 4.5(b).

The dotted points from lower cluster are mainly from January 1990 to September

1997, and from April 2006 to December 2006. The upper cluster are mainly

from October 1997 to September 2003, during the internet boom and bust. The

estimated variance functions are plotted in Figure 4.6(a). We observe that the

variance proportion function for the lower cluster decrease as GDP growth rate

increase. The 95% pointwise confidence intervals of each component are plotted

in Figure 4.6(b).
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Figure 4.4: (a) Clustering results from nonparametric mixture of regressions model;
(b) Scatterplot.
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Figure 4.5: (a)Cross-validation error versus the bandwidth; (b)Clustering result.
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4.4 Discussion

In this chapter we develop an estimation procedure for nonparametric

mixture of regression models with constant mixing proportion, and derive the

asymptotic properties for the resulting estimates. The proposed methodology

is examined by Monte Carlo simulation and illustrated by a real data analysis.

In this section we discuss the backfitting algorithm and one simplified version,

which can be viewed as ECM algorithm. Note that both step 3 and step 4 in

the backfitting algorithm consist of EM iterations. We have pointed out that it

may not be necessary to iterate both EM procedures until they converge. We

first suggest compute one EM iteration in both backfitting steps. This simplified

algorithm is described in the following. In the l-th iteration, we first calculate

the expectation of zic, given by

r
(l)
ic =

π
(l)
c φ{yi|m(l)

c (xi), σ
2(l)
c (xi)}∑C

c=1 π
(l)
c φ{yi|m(l)

c (xi), σ
2(l)
c (xi)}

. (4.17)

Then we update

π(l+1)
c =

1

n

n∑
i=1

r
(l)
ic . (4.18)

We complete one EM iteration of step 3. It then follows by one EM iteration of

step 4. First, the expectation of zic is given by

r
(l+ 1

2
)

ic =
π

(l+1)
c φ{yi|m(l)

c (xi), σ
2(l)
c (xi)}∑C

c=1 π
(l+1)
c φ{yi|m(l)

c (xi), σ
2(l)
c (xi)}

. (4.19)

Then we update for x0 ∈ {uj, j = 1, · · · , N},

m(l+1)
c (x0) =

∑n
i=1 w

(l+ 1
2
)

ci (x0)yi

∑n
i=1 w

(l+ 1
2
)

ci (x0)
, (4.20)

σ2(l+1)
c (x0) =

∑n
i=1 w

(l+ 1
2
)

ci (x0){yi −m
(l)
c (xi)}2

∑n
i=1 w

(l+ 1
2
)

ci (x0)
, (4.21)
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where w
(l+ 1

2
)

ci (x0) = r
(l+ 1

2
)

ic Kh(xi − x0). Furthermore, we update m
(l+1)
c (xi) and

σ
2(l+1)
c (xi), i = 1, · · · , n by linearly interpolating m

(l+1)
c (uj) and σ

2(l+1)
c (uj), j =

1, · · · , N , respectively. (4.17) and (4.18) may be regarded as maximizing `1(π)

conditioning on mc(·) and σ2(·). (4.19), (4.20), and (4.21) may be regarded as

maximizing `2(σ
2
0,m0) conditioning on π. Thus the simplified version can be

viewed as an ECM algorithm. Furthermore, one may omit (4.19), and replace

w
(l+ 1

2
)

ci (x0) with w
(l)
ci (x0) = r

(l)
ic Kh(xi − x0), which is a acceleration scheme of the

ECM algorithm.

4.5 Proofs

In this section we outline the key steps of proofs for Theorems 1 and 2.

Note that θ = (πT ,σ2T ,mT )T is a (3C − 1) × 1 vector. Whenever necessary,

we rewrite θ = (θ1, · · · , θ3C−1)
T without changing the order of π, σ2, and m.

Correspondingly, we rewrite η = (σ2T ,mT )T as η = (η1, · · · , η2C)T if necessary.

Otherwise, we will use the same notations as we defined in Section 2.

Regularity Conditions

A. The sample {(xi, yi), i = 1, · · · , n} is independent and identically distributed

from the population (x, y). The support for x, denoted by X , is closed and

bounded of R1.

B. The marginal density function fX(x) is continuous and positive for x ∈ X .

C. The third derivative |∂3`(θ, y)/∂θj∂θk∂θl| ≤ Mjkl(θ, y), where E{Mjkl(θ, Y )}
is bounded for all j, k, l, and all θ. The expectation E (|∂`(θ, Y )/∂θj|3) is

finite.

D. The unknown functions θ(x) have continuous second derivative.
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E. The kernel density function K(·) is symmetric, and has a closed and bounded

support.

F. For any j, l, E|∂2`(θ, y)/∂θj∂θl|2 < ∞, and

sup
x

∫
y2∂2`(θ, y)

∂θj∂θl

f(x, y)dy < ∞.

G. For c = 1, · · · , C, πc(x) > 0 and σ2
c (x) > 0 hold for all x ∈ X .

H. The second derivative matrix E∂2`(θ(x), y)/∂θ∂θT is positive definite.

Lemma 2. Let {(Xi, Yi), i = 1 · · · , n} be i.i.d random variables from (X,Y ),

where X and Y are both scalar random variables. Denote f to be the joint

density of (X,Y ), and further assume that E|Y |r < ∞ and supx

∫ |y|rf(x, y)dy <

∞. Let K(·) be a bounded positive function with bounded support, satisfying a

Lipschitz condition. Then

sup
x∈X

∣∣∣∣∣n
−1

n∑
i=1

[Kh(Xi − x)Yi − E{Kh(Xi − x)Yi}]
∣∣∣∣∣ = Op{γn log1/2(1/h)},

given n2ε−1h →∞, for some ε < 1− r−1.

Denote γn = (nh)−1/2,

m̃∗
c =

√
nh{m̃c0 −mc(x0)},

σ̃2∗
c =

√
nh{σ̃2

c − σ2
c (x0)},

π̃∗c =
√

nh{π̃c0 − πc(x0)},

π̃∗C =
√

nh{π̃C0 − πC(x0)} =
√

nh[1−
C−1∑
c=1

{π̃c0 − πc(x0)}].

Let m̃∗ = (m̃∗
1, · · · , m̃∗

C)T , σ̃2∗ = (σ̃2∗
1 · · · , σ̃2∗

C )T , and π̃∗ = (π̃∗1, · · · , π̃∗C−1)
T .

Define θ̃
∗

= {(π̃∗)T , (σ̃2∗)T , (m̃∗)T}T , νl =
∫

ulK2(u) du. We use the following
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notations:

Q1(θ(x), y) =
∂`(θ(x), y)

∂θ
, Q2(θ(x), y) =

∂2`(θ(x), y)

∂θ∂θT
.

Recall that

`∗n(θ∗) = ∆nθ∗ +
1

2
θ∗T Γnθ

∗ + op(1), (4.22)

where

∆n =

√
h

n

n∑
i=1

Q1(θ(x0), yi)Kh(xi − x0),

Γn =
1

n

n∑
i=1

Q2(θ(x0), yi)Kh(xi − x0).

By the SLLB, it follows that Γn = −fX(x0)I(x0) + op(1). Therefore,

`∗n(θ∗) = ∆nθ
∗ − 1

2
fX(x0)θ

∗TI(x0)θ
∗ + op(1). (4.23)

Lemma 3. Assume that conditions (A)—(H) holds, in addition with nh → 0

as n →∞, then for all x in the support X , we have

sup
x∈X

|θ̃∗ − f−1
X (x)I−1(x)∆n| = Op{h2 + γn log1/2(1/h)}.

Proof. Since each element in Γn is sum of i.i.d. random variables, by condition

(F) and Lemma 2, we can show that Γn converge to −fX(x0)I(x0) uniformly for

all x0 ∈ X . By (4.22) and condition (H), we know `∗n(θ∗) is a concave function

of θ∗ for large n. Then by condition (G), when n is large enough, −`∗n(θ∗) is a

convex function defined on a convex open set. Thus, by the convexity lemma

(Pollard, 1991),

sup
x∈X

∣∣∣∣(∆nθ
∗ +

1

2
θ∗T Γnθ∗)− (∆nθ

∗ − 1

2
fX(x)θ∗TI(x)θ∗)

∣∣∣∣
P−→ 0 (4.24)
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holds uniformly for all x0 ∈ X and θ∗ in any compact set C. We know that

f−1
X (x)I−1(x)∆n is a unique maximizer of (4.23), and is continue in x; θ̃

∗
is a

maximizer of (4.22). Then by Lemma A.1 of Carroll et al. (1997), we have

sup
x∈X

|θ̃∗ − f−1
X (x)I−1(x)∆n| P−→ 0. (4.25)

Then by the definition of θ̃
∗
,

∂`∗n(θ∗)
∂θ∗

∣∣∣∣
θ∗= ˜θ

∗ = hγn

n∑
i=1

Q1{θ(x), yi}Kh(xi − x). (4.26)

By a Taylor expansion, we have

∆n + Γnθ̃
∗
+

hγ3
n

2

n∑
i=1

∑

j, l

∂2Q1(θ(x) + ξ̃i)

∂θ∗j∂θ∗l
θ̃∗j θ̃

∗T
l Kh(xi − x) = 0, (4.27)

where θ∗ is rewritten as θ∗ = (θ∗1, θ
∗
3C−1)

T . ξ̃i is a vector between 0 and γnθ∗.

The last term of (4.27) is of order Op(γn||θ̃∗||2). Again it can be deduced from

Lemma 2, for each element of Γn,

sup
x∈X

|Γn(i, j)− E{Γn(i, j)}| = Op{h2 + γn log1/2(1/h)}. (4.28)

By (4.27), Γnθ̃
∗
+ Op(γn||θ̃∗||2) = −∆n, then

{Γn − E(Γn)}θ̃∗ + Op(γn||θ̃∗||2) = −∆n + fX(x)I(x)θ̃
∗
. (4.29)

By (4.25), it is obvious that supx∈X |θ̃
∗| = Op(1). Thus for the left side of (4.29),

we have

sup
x∈X

|{Γn − E(Γn)}θ̃∗|+ Op(γn) = Op{h2 + γn log1/2(1/h)}.

It follows that the order also holds for the right side of (4.29),

sup
x∈X

|fX(x)I(x)θ̃
∗ −∆n| = Op{h2 + γn log1/2(1/h)}.
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The proof is completed by the conditions that fX(x) and I(x) are bounded and

continuous functions in a closed set of X .

Proof of Theorem 3. Denote π̂∗c =
√

n{π̂c − πc}, where πc is the true value

of πc. Let π̂∗ = (π̂∗1, · · · , π̂∗C−1)
T , and π̂∗C =

√
nh{1−∑C−1

c=1 (π̂c − πc0)}. Further,

denote η = {(σ2)T ,mT}T , and η̃(xi) = {{σ̃2(xi)}T , m̃(xi)
T}T , then

`(π, η̃(xi), yi) = log

{
C∑

c=1

πcφ{yi|m̃c(xi), σ̃
2
c (xi)

}
,

`(π + π∗c/
√

n, η̃(xi), yi) = log

{
C∑

c=1

(πc + π∗c/
√

n)φ{yi|m̃c(xi), σ̃
2
c (xi)

}
.

Then π̂∗ maximizes

`n(π∗) =
n∑

i=1

{`(π + π∗c/
√

n, η̃(xi), yi)− `(π, η̃(xi), yi)}. (4.30)

By a Taylor expansion,

`n(π∗) = Anπ∗ +
1

2
π∗T Bnπ∗{1 + op(1)}, (4.31)

where

An = n−1/2

n∑
i=1

∂`(π, η̃(xi), yi)

∂π
,

Bn = n−1

n∑
i=1

∂2`(π, η̃(xi), yi)

∂π∂πT
.

It can be shown that

Bn = −E{Iπ(X)}+ op(1).

Then by (4.31)

`n(π∗) = Anπ
∗ − 1

2
π∗T B π∗ + op(1). (4.32)
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Let η(xi) = ({σ2(xi)}T )T ,m(xi)
T . We have

An =
1√
n

n∑
i=1

∂`(π, η(xi), yi)

∂π
+

1√
n

n∑
i=1

∂`(π, η(xi), yi)

∂π∂ηT
{η̃(xi)− η(xi)}+ Op(d1n)

=
1√
n

n∑
i=1

∂`(π, η(xi), yi)

∂π
+ Tn1 + Op(d1n).

where d1n = n−1/2||η̃ − η||2∞. By Lemma 3, we have

θ̃(xi)− θ(xi) =
1

n
f−1

X (xi)I−1(xi)
n∑

j=1

∂`(θ(xi), yj)

∂θ
Kh(xj − xi) + Op(dn2),

where dn2 = γ2
n

√
log(1/h). Let ψ(xi, yj) be a 2C × 1 vector, which the elements

are taken from [Cth, · · · , (3C−1)th] entries of I−1(xi)×{∂`(θ(xi), yj)/∂θ}, then

η̃(xi)− η(xi) =
1

n
f−1

X (xi)
n∑

j=1

ψ(xi, yj)Kh(xj − xi) + Op(dn2).

Thus,

Tn1 = n−3/2

n∑
i=1

∂2`(π, η(xi), yi)

∂π∂ηT
f−1

X (xi)
n∑

j=1

ψ(xi, yj)Kh(xj − xi) + Op(n
1/2d2n).

By condition nh2/ log(1/h) → ∞, we have Op(n
1/2d2n) = op(1). Since η(xi) −

η(xj) = O((xi − xj)
2), therefore

Tn1 = n−3/2

n∑
j=1

n∑
i=1

∂2`(π, η(xi), yi)

∂π∂ηT
f−1

X (xi)ψ(xi, yj)Kh(xi − xj) + Op(n
1/2h2)

= Tn2 + Op(n
1/2h2).

It can be shown, by calculating the second moment, that

Tn2 − Tn3
P−→ 0, (4.33)

where Tn3 = −n−1/2
∑n

j=1 ω(xj, yj), with

ω(xj, yj) = E

{
∂2`(π, η(X), Y )

∂π∂ηT
f−1

X (X)ψ(X, yj)Kh(X − xj)

}

= Iπη(xj)ψ(xj, yj).
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By condition nh4 → 0, we know

An = n−1/2

n∑
i=1

{
∂`(π, η(xi), yi)

∂π
− ω(xi, yi)

}
+ op(1).

By (4.32) and quadratic approximation lemma,

π̂∗ = B−1An + op(1).

Then we calculate the mean and variance of An. It is obvious that Var(An) = Σ,

and

E(An) =
√

n E

{
∂`(π, η(X), Y )

∂π
− ω(X,Y )

}
.

Similar to the proof in Chapter 3, we can show that the elements of E(∂`(π, η(X), Y )/∂π)

are equal to 0, and

E {ω(X,Y )} = −E {Iπη(X)ψ(X, Y )} ,

where ψ(X, Y ) are the [Cth, · · · , (3C−1)th] elements of I−1(X)×{∂`(θ(X), Y )/∂θ}.
Further calculation shows that E {ω(X, Y )} = 0. So we have E(An) = op(

√
n).

By the Central Limit Theorem we complete the proof of Theorem 3.

Proof of Theorem 4. Using similar arguments in the proof of Theorem 1, we

have

θ̂
∗

= fX(x0)
−1Iη(x0)

−1∆̂n + op(1), (4.34)

where

∆̂n =

√
h

n

n∑
i=1

∂`(π̂, η(x0), yi)

∂η
Kh(xi − x0).

It can be calculated that

∆̂n =

√
h

n

n∑
i=1

∂`(π, η(x0), yi)

∂η
Kh(xi − x0) + Dn + op(1),
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where

Dn =

√
h

n

n∑
i=1

∂`(π, η(x0), yi)

∂η∂πT
(π̂ − π)Kh(xi − x0)

=
√

h E

{
∂`(π, η(x0), Y )

∂η∂πT
Kh(X − x0)

}
×√n(π̂ − π).

Since
√

n(π̂ − π) = Op(1), and

E

{
∂`(π, η(x0), Y )

∂η∂πT
Kh(X − x0)

}
= −IT

πη(x0) = Op(1).

Thus, Dn = op(1) . The rest of the proof follows similar arguments to the proof

of Theorem 1.



Chapter 5

Mixture of Gaussian Processes

Since its systematic introduction in Ramsay and Silverman (1997), func-

tional data analysis has become a very active research topic. Various statistical

procedures have been developed for functional data. Section 2.3 provides a brief

review of the recent development in the topic of functional data analysis. In

this chapter, we propose a model for functional data as a mixture of Gaussian

processes. In Section 5.2, we propose an estimation procedure for the newly

proposed model by assuming independent correlation structure. In Section 5.3,

we further propose estimation procedure to incorporate the estimated covariance

functions. In Section 5.4, we empirically test the proposed estimation procedures

by Monte Carlo simulation study. We further apply the newly proposed model

for analysis of the supermarket data introduced in Section 1.2.

5.1 Model Definition and Observed Data

Let C be a latent class variable with a discrete distribution P (C = c) = πc

for c = 1, 2, · · · , C. Here C is fixed and is assumed to be known. Conditioning on

C = c, {X(t), t ∈ T} = {Xc(t) : t ∈ T}, which is a Gaussian process with mean

µc(t) and covariance function Cov{Xc(s), Xc(t)} = Gc(s, t), which is a positive

definite, bivariate smooth function of s and t. We refer to {X(t) : t ∈ T} as a

mixture of Gaussian processes.

87
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As a covariance function, Gc(s, t) can be represented as

Gc(s, t) =
∞∑

q=1

λqcvqc(t)vqc(s),

where λqc’s are eigenvalues, and vqc(·)’s are eigenfunctions. Furthermore, λ1c ≥
λ2c ≥ · · · and

∑
q λqc < ∞, for c = 1, · · · , C.

By the Karhunen-Loève theorem, Xc(t) can be represented as follows

Xc(t) = µc(t) +
∞∑

q=1

ξqcvqc(t),

where ξqcs are considered as independent random variables with Eξqc = 0, and

Var(ξqc) = λqc.

Since the sample path of Xc(t) is a smooth function of t, Xc(t) is termed

a smooth random function (Yao et al., 2003; Yao et al., 2005). In practice, the

collected sample of random curves are typically not smooth, and therefore, it is

assumed in the literature that the observed curve {Yi(t), t = tij, j = 1, · · · , Ni}
is

Yi(t) = Xi(t) + εi(t),

where εi(t) is additive measurement error, and it is assumed that εi(tij), for all

i and j, are independent and identically distributed as N(0, σ2) (See also Rice

and Wu, 2000; James and Sugar, 2003).

Denote yij = yi(tij) and εij = εi(tij). Throughout this chapter, it is

assumed that conditioning on C = c, the observations yij, j = 1, · · · , Ni and

i = 1, · · · , n, follows

yij = µc(tij) +
∞∑

q=1

ξiqcvqc(tij) + εij, (5.1)

where εijs independent and identically distributed according to N(0, σ2). We

propose an estimation procedure for πc, µc(·), vqc(·) and σ2 in the next two

sections.
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5.2 An Estimation Procedure with Working Independent
Correlations

In this section, we first develop an estimation procedure for µc(t) using

working independent correlation. Local estimation procedures have been pro-

posed for estimating the regression function with longitudinal data. As demon-

strated in Lin and Carroll (2000), the kernel generalized estimating equations

(GEE) method with working independent correlation matrix yields an optimal

estimate for the regression function in a certain sense. Another advantage of

the working independence kernel GEE is that it is easy to implement. Thus,

we propose an estimation procedure for µc(·) under the working independence

assumption. The resulting estimate may be refined by incorporating a correct

correlation structure when tijs are dense for each subject i. We will consider a

refined estimation procedure.

By working independence, we mean that conditioning on C = c, Gc(s, t) =

0 if s 6= t. Denote σ∗2c (t) = Gc(t, t) + σ2, it follows that

yij = µc(tij) + ε∗ij, (5.2)

where ε∗ij are independent with E(ε∗ij) = 0 and Var(ε∗ij) = σ∗2c (tij). In other

words, we assume working independence for the correlation structure, and con-

sider yijs come from the following distribution

y(t) ∼
C∑

c=1

πcN{µc(t), σ
∗2
c (t)}. (5.3)

The likelihood function of the collected data is

n∑
i=1

log

[
C∑

c=1

πc

Ni∏
j=1

φ{yij|µc(tij), σ
∗2
c (tij)}

]
. (5.4)
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5.2.1 An Effective EM algorithm

The estimation procedure developed in Chapter 4 can be modified for

estimating πc, µc(·) and σ∗2c (·). Define the group identity random variables

zic =





1, if {Xi(t), t ∈ T} is in the cth group,

0, otherwise.

Thus, the complete likelihood of {yij, j = 1, · · · , Ni, j = 1, · · · , n} is

n∏
i=1

C∏
c=1

[
πc

Ni∏
j=1

φ{yij|µc(tij), σ
∗2
c (tij)}

]zic

.

The kernel regression method and EM algorithm developed in Chapter 4 can

be extended for the estimation of model (5.1). In the l-th iteration of the EM

algorithm, we have π
(l)
c , σ

∗2(l)
c (·), and µ

(l)
c (·). In the E-step, the expectation of

the latent variable zic is given by

r
(l)
ic =

π
(l)
c

[∏Ni

j=1 φ{yij|µ(l)
c (tij), σ

∗2(l)
c (tij)}

]

∑C
c=1 π

(l)
c

[∏Ni

j=1 φ{yij|µ(l)
c (tij), σ

∗2(l)
c (tij)}

] . (5.5)

In the M-step of the EM algorithm, we update the estimated curves at a set of

grid points for the given label in the E-step. Let {u1, · · · , uN} be a set of grid

points at which the estimated functions are evaluated, where N is the number

of grid points. For t0 ∈ {u1, · · · , uN},

µ(l+1)
c (t0) =

∑n
i=1

∑Ni

j=1 w
(l)
cijyij∑n

i=1

∑Ni

j=1 w
(l)
cij

, (5.6)

σ∗2(l+1)
c (t0) =

∑n
i=1

∑Ni

j=1 w
(l)
cij{yij − µ

(l)
c (tij)}2

∑n
i=1

∑Ni

j=1 w
(l)
cij

, (5.7)

where w
(l)
cij = r

(l)
ic Kh(tij − t0). Furthermore, we update µc(tij) and σ∗2c (tij), i =

1, · · · , n, j = 1, · · · , Ni by linearly interpolating µ
(l+1)
c (uk) and σ

2(l)
c (uk), k =
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1, · · · , N . We further update mixing proportion πc as

π(l+1)
c =

1

n

n∑
i=1

r
(l)
ic . (5.8)

Denote the resulting estimate of πc and µc(·) to be π̃c and µ̃c(·), respectively.

5.2.2 A Backfitting Algorithm

In this section, we propose a backfitting algorithm for maximizing likeli-

hood (5.4). We further show the connection of the backfitting algorithm and the

effective EM algorithm in section 5.2.2. For given µ̂c(·), and σ̂∗2(·), we maximize

`n(π) =
n∑

i=1

log

[
C∑

c=1

πc

Ni∏
j=1

φ{yij|µ̂c(tij), σ̂
∗2
c (tij)}

]
, (5.9)

with respect to π. The maximization can be achieved by an EM algorithm. In

E step, we calculate the expectation of zic, given by

r
(l)
ic =

π
(l)
c

[∏Ni

j=1 φ{yij|µ̂c(tij), σ̂
∗2
c (tij)}

]

∑C
c=1 π

(l)
c

[∏Ni

j=1 φ{yij|µ̂c(tij), σ̂∗2c (tij)}
] . (5.10)

Then in M step, we only need to maximize

n∑
i=1

C∑
c=1

r
(l)
ic log πc,

which gives the solution

π(l+1)
c =

1

n

n∑
i=1

r
(l)
ic . (5.11)

Given π̂c, we maximize the local likelihood function

n∑
i=1

log

[
C∑

c=1

π̂c

(ρ σ∗2c0 )
Ni
2

exp
{
− 1

2σ∗2c0

Ni∑
j=1

(yij − µc0)
2Kh(tij − t0)

}]
, (5.12)
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with respect to µ0 and σ∗2
0 , where µ0 = (µ10, · · · , µC0)

T , and σ∗2
0 = (σ∗210, · · · , σ∗2C0)

T .

Note that π has been used for mixing proportion, here we use the notation ρ to

represent 2 times the circular constant to avoid confusion. Since we are interest

in maximization of (5.12) at a set of grid points, the effective EM algorithm

can be extended for estimation. In the l-th step of the EM iteration, we have

σ
∗2(l)
c (·), and µ

(l)
c (·). In the E-step, the expectation of the latent variable zic is

given by

r
(l)
ic =

π̂c

[∏Ni

j=1 φ{yij|µ(l)
c (tij), σ

∗2(l)
c (tij)}

]

∑C
c=1 π̂c

[∏Ni

j=1 φ{yij|µ(l)
c (tij), σ

∗2(l)
c (tij)}

] . (5.13)

In the M-step of the EM algorithm, we update the estimated curves at a set of

grid points for the given label in the E-step. Let {u1, · · · , uN} be a set of grid

points at which the estimated functions are evaluated, where N is the number

of grid points. For t0 ∈ {u1, · · · , uN},

µ(l+1)
c (t0) =

∑n
i=1

∑Ni

j=1 w
(l)
cijyij∑n

i=1

∑Ni

j=1 w
(l)
cij

, (5.14)

σ∗2(l+1)
c (t0) =

∑n
i=1

∑Ni

j=1 w
(l)
cij{yij − µ

(l)
c (tij)}2

∑n
i=1

∑Ni

j=1 w
(l)
cij

, (5.15)

where w
(l)
cij = r

(l)
ic Kh(tij − t0). Furthermore, we update µc(tij) and σ∗2c (tij), i =

1, · · · , n, j = 1, · · · , Ni by linearly interpolating µ
(l+1)
c (uk) and σ

2(l)
c (uk), k =

1, · · · , N .

Similar to the backfitting algorithm in Chapter 4, we can reduce the

computational cost by iteratively calculating (a) (5.10) and (5.11), and (b) (5.12),

(5.14) and (5.15), until the algorithm converges. More aggressively, given a good

initial value, we may iteratively calculate (5.10), (5.11), (5.14) and (5.15), which

is essentially the same as the effective EM algorithm in section 5.2.1.
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5.3 Estimation Procedure with Correlation Structure

From our own limited experience, the estimate of πc’s from Section 5.2.1

can be improved by incorporating the correlation structure. Functional principal

analysis provides a convenient way to incorporating the information of the esti-

mated covariance functions. With the estimated µc(t), we calculate the residuals,

which are raw material to estimate the covariance function Gc(·, ·). We then pro-

posed an estimation procedure to σ2 and π in Section 5.3.2. With the updated

πc and posteriors ric, we may further improve the estimation of µc(t).

5.3.1 Estimation of Covariances

Denote

Ḡic(tij, til) = (yij − µ̂c(tij))(yil − µ̂c(til)).

Note that Cov{Y (t), Y (t)} = Gc(t, t) + σ2 and Cov{Y (s), Y (t)} = Gc(s, t) for

s 6= t. If zic were observable, then the covariance function G(s, t) could be

estimated by a two-dimensional kernel smoother, which is to minimize

n∑
i=1

zic

∑

1≤j 6=l≤N

[Ḡic(tij, til)− β0]
2Kh(tij − s)Kh(til − t), (5.16)

with respect to β0. In practice, zic is a latent variable. Following the idea of the

EM algorithm, we replace zic by its expectation ric, which was obtained in the

estimation procedure for µc(·) described in Section 5.2.1. Thus, we minimize

n∑
i=1

ric

∑

1≤j 6=l≤N

[Ḡic(tij, til)− β0]
2Kh(tij − s)Kh(til − t), (5.17)

with respect to β0. The minimizer β̂0 of (5.17) has a closed form given by

Ĝc(s, t) =

∑n
i=1 ric

∑
1≤j 6=l≤Ni

Ḡc(tij, til)Kh(tij − s)Kh(tiq − t)

n∑
i=1

ric

∑
1≤j 6=l≤Ni

Kh(tij − s)Kh(tiq − t)
. (5.18)
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Following Rice and Silverman (1991), the estimation of eigenvalues and eigen-

functions are based on discretizing the covariance Ĝc(s, t). The estimates of

eigenvalues λ̂qc and eigenfunctions v̂qc(·) are determined by eigenfunctions

∫

T

Ĝc(s, t)v̂qc(s)ds = λ̂qcv̂qc(t), (5.19)

where v̂qc(t) satisfies
∫

T
v̂2

qc(t)dt = 1, and
∫

T
v̂pc(t)v̂qc(t)dt = 0 if p 6= q. Then, in

order for the resulting estimate of G(s, t) to be positive definite, we set

Ĝ(s, t) =
∑

q

λ̂qcI(λ̂qc > 0)v̂qc(s)v̂qc(t).

5.3.2 Estimation of σ2 and πcs

Given µ̂c(t), and v̂qc(t), define

ξ̂iqc =

∫

T

{yi(t)− µ̂c(t)} v̂qc(t)dt, (5.20)

which is an estimate of principal component scores ξiqc. Further, for j =

1, · · · , Ni and j = 1, · · · , n, define

X̂ic(tij) = µ̂c(tij) +
∑

q

ξ̂iqcI(λ̂qc > 0)v̂qc(tij). (5.21)

To estimate π and σ2, we maximize

`n(π, σ2) =
n∑

i=1

log

{
C∑

c=1

πc

Ni∏
j=1

φ
(
yij|X̂ic(tij), σ

2
)}

, (5.22)

with respect to πc and σ2. The EM algorithm can be used to maximize (5.22).

In the E-step, the expectation of the latent variable zic is given by

r
(l)
ic =

π
(l)
c

[∏Ni

j=1 φ{yij|X̂ic(tij), σ
2(l)}

]

∑C
c=1 π

(l)
c

[∏Ni

j=1 φ{yij|X̂ic(tij), σ2(l)}
] . (5.23)



95

In the M-step of the EM algorithm, we update πc and σ2 as

π(l+1)
c =

1

n

n∑
i=1

r
(l)
ic , (5.24)

σ2(l+1) =
1∑n

i=1 Ni

n∑
i=1

C∑
c=1

Ni∑
j=1

r
(l)
ic {yij − X̂ic(tij)}2. (5.25)

5.3.3 An Iterative Estimation Procedure

When maximizing (5.22), we update the posterior component identities

ric by adapting the estimated covariance Ĝc(·, ·). This procedure may provide a

better estimate of the posterior identities ric compared to ric yielded by working

independent correlation in section 5.2.1. Given rics yielded by maximizing (5.22),

we may further improve the estimation of µc(·). For t0 ∈ {u1, · · · , uN},

µ̂c(t0) =

∑n
i=1

∑Ni

j=1 ricKh(tij − t0)yij∑n
i=1

∑Ni

j=1 ricKh(tij − t0)
. (5.26)

Given the newly updated µ̂c(·), and rics from the EM algorithm, we may further

update Gc(s, t) in section 5.3.1, and improve the estimation of πc and σ2 again

using the proposed procedure in section 5.3.2. Motivated by the backfitting

algorithm in Chapter 4, we propose the following iterative estimation procedure

for mixture of Gaussian processes.

An Iterative Estimation Procedure:

Step 1: Calculate π̃c, µ̃c(·) and σ̃∗2c (·) using the proposed EM algorithm for

model (5.3). Retain rics and set µ̂c(·) = µ̃c(·).

Step 2: Given µ̂c(·), and rics, obtain Ĝc(s, t) using (5.18) in section 5.3.1.
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Step 3: Given µ̂c(·) and Ĝc(·, ·), calculate X̂ic(·) using (5.19), (5.20), and

(5.21). Further obtain π̂c, and rics by maximizing (5.4) by the proposed

EM algorithm, and update µ̂c(·) using (5.26).

Iteratively update Step 2 and Step 3 until convergence.

5.4 Simulation and Application

In this section, we conduct numerical simulation to demonstrate the per-

formance of the estimation procedure. To assess the performance of the estimates

of the unknown regression functions µc(x), we consider the square root of the

average square errors (RASE) for mean functions,

RASE2
µ = n−1

grid

C∑
c=1

ngrid∑
j=1

{µ̂c(uj)− µc(uj)}2,

where {uj, j = 1, · · · , ngrid} are the grid points at which the unknown functions

µc(·) are evaluated. For simplification, the grid points are taken evenly on the

range of the tijs. In the simulation, we set ngrid = 50. Similarly, we can define

the RASE of the eigenfunctions for the c-th component, which is

RASE2
vc

= n−1
grid

Qc∑
q=1

ngrid∑
j=1

{v̂qc(uj)− vqc(uj)}2.

We are also interest in the average of mean square of predicted error, given by

MSE = (
n∑

i=1

Ni)
−1

n∑
i=1

Ni∑
j=1

{
yij −

C∑
c=1

ricX̂ic(tij)

}2

,

where X̂ic(tij) is defined in (5.21). MSE is considered as a natural estimate of

σ2.
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5.4.1 Simulation Study

In the following example, we generate data from a two component mixture

of Gaussian processes with

π1 = 0.45, π2 = 0.55, and σ2 = 0.01,

µ1(t) = δ + 1.5 sin(πt), and µ2(t) = sin(πt),

φ11(t) =
√

2 sin(4πt), and φ12(t) =
√

2 cos(4πt),

φ21(t) =
√

2 sin(πt), and φ22(t) =
√

2 cos(πt).

Suppose t is evenly distributed in [0, 1]. The data are observed at grid points

t = (1/N, · · · , 1), where N is set to be 20 and 40. Let the eigenvalues for both

components be λ11 = 0.04, λ12 = 0.01, λ21 = 0.04, λ22 = 0.01, and λqc = 0, for

q > 2, c = 1, 2, and let the principal component scores ξiqc be generated from

N(0, λqc), q = 1, 2, and c = 1, 2.

We consider two classes of simulation data sets from the above generation

scheme. In the first class of simulations, we set δ = 0.5, and thus the subjects

of the two components are well separated. In this setting, the difference of the

two components are mainly from the difference in their mean functions, and

thus the estimation procedure with working independent correlation structure is

expected to work well. In the second class we set δ = 0, and the mean functions

of the two components are close to each other. Thus, the subjects of the two

components are heavily overlapping. In this setting, estimation with working

independent correlation structure may not work well. We expect that the differ-

ence in correlation structures can be used to improve the estimation, and expect

that models which incorporate correlations will yield better results than mod-

els with working independent correlation structure. Figure 5.1 shows a typical

sample data set for the two classes. In the following simulation, we compare
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the performance of the two models in both the well-separated setting, and the

heavy-overlap setting. For the heavy-overlap setting, we further investigate the

performance of eigenfunction estimation using model (5.22).

We first fit a multivariate normal mixture model, which gives the esti-

mates of mean µ̄c(·), covariance matrixes Σ̄c, and π̄c. This would provide us a

good initial value. To avoid intensive computation, the smoothing parameter for

covariance functions should be predetermined. We use one-curve-leave-out cross

validation to choose this smoothing parameter. The selection of the bandwidth

for covariance functions is based on Σ̄c. In our simulation, we first generate

several simulation data sets for a given sample size, and then use the CV band-

width selectors to choose a bandwidth for each data set. This provides us an

idea about the optimal bandwidth for a given sample size. For a typical sample

from the overlap setting with n = 50, N = 40, and given a bandwidth of covari-

ance (0.06), we use 5-fold cross-validation method to select the bandwidth for

mean functions. As shown in Figure 5.2, the CV bandwidth selector yields the

bandwidth 0.07.

To demonstrate the proposed procedure working quite well in a wide

range of bandwidth, we consider three different bandwidths: two-thirds of the

selected bandwidth, the selected bandwidth, and 1.5 times the selected band-

width, which corresponds to the under-smoothing, appropriate smoothing and

overs-moothing, respectively. Table 5.1 displays the simulation results of the

case that δ = 0.5. The mean and standard deviation of RASEµ, and the esti-

mate of π over 100 simulations are recorded for both models. From Table 5.1,

the proposed procedures performs quite well for all three different bandwidths

in the two models. Table 5.2 displays the simulation results of the case that

δ = 0. The mean and standard deviation of RASEµ, and the estimate of π over
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Figure 5.1: (a) A typical sample data of the well-separated setting, δ = 0.5; (b) A
typical sample data of the heavy-overlap setting δ = 0.
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Figure 5.2: Cross-validation error versus the bandwidth. Settings: n=50, N=40,
δ = 0.

Table 5.1: Comparisons: the well-separated setting

Working independent Incorporating correlation

δ = 0.5 RASEµ π1 = 0.45 RASEµ π1 = 0.45

(n,N) h Mean(Std) Mean(Std) Mean(Std) Mean(Std)

0.15 0.2157(0.0104) 0.4382(0.0688) 0.2200(0.0075) 0.4458(0.0679)

(50, 20) 0.10 0.2061(0.0108) 0.4384(0.0687) 0.2105(0.0082) 0.4458(0.0679)

0.067 0.2063(0.0113) 0.4488(0.0698) 0.2105(0.0087) 0.4562(0.0694)

0.09 0.2119(0.0115) 0.4538(0.0707) 0.2164(0.0085) 0.4614(0.0702)

(50, 40) 0.06 0.2089(0.0118) 0.4540(0.0705) 0.2135(0.0090) 0.4614(0.0702)

0.04 0.2086(0.0116) 0.4520(0.0713) 0.2110(0.0090) 0.4558(0.0711)
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Table 5.2: Comparisons: the heavy-overlap setting

Working independent Incorporating correlation

n = 50 RASEµ π1 = 0.45 RASEµ π1 = 0.45

N h Mean(Std) Mean(Std) Mean(Std) Mean(Std)

0.15 0.3533(0.0263) 0.3049(0.0791) 0.3140(0.0073) 0.4828(0.0838)

20 0.10 0.3436(0.0232) 0.3155(0.0788) 0.3103(0.0075) 0.4618(0.0787)

0.067 0.3508(0.0303) 0.3140(0.0645) 0.3097(0.0079) 0.4746(0.0725)

0.09 0.3392(0.0222) 0.3235(0.0713) 0.3065(0.0065) 0.4693(0.0668)

40 0.06 0.3358(0.0211) 0.3304(0.0715) 0.3067(0.0068) 0.4657(0.0677)

0.04 0.3355(0.0246) 0.3344(0.0644) 0.3069(0.0064) 0.4533(0.0691)

100 simulations, are recorded for both models. From Table 5.2, the estimation

procedure with working independent correlation does not perform well since the

estimation of π1 has large bias. However, as shown in Table 5.2, model the es-

timation procedure incorporating correlations does give better results. For the

case of δ = 0, we further summarize the estimation of σ2, MSE, and the RASE

of the eigenfunctions for each component in Table 5.2. The result show that

both the σ̂2 yielded by the iterative procedure and the MSE are good estimates

of σ2. Furthermore, the iterative procedure also provides a good estimate of the

eigenfunctions in the heavy overlap setting.

5.4.2 Analysis of Supermarket Data

We apply the proposed mixture of Gaussian processes and estimation

procedure to analyze a real dataset, which contains the number of customers

visiting a supermarket on each of 139 days. For each day, the number of cus-
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Table 5.3: Estimation of eigenfunctions and measurement error

n = 50 RASEv1 RASEv2 MSE σ̂2 = 0.01

N h Mean(Std) Mean(Std) Mean(Std) Mean(Std)

0.15 0.3974(0.3934) 0.3749(0.2800) 0.0112(0.0011) 0.0113(0.0011)

20 0.10 0.3862(0.3568) 0.3357(0.2796) 0.0093(0.0008) 0.0093(0.0008)

0.067 0.3912(0.3582) 0.3341(0.2798) 0.0087(0.0007) 0.0087(0.0007)

0.09 0.2136(0.0986) 0.2473(0.1469) 0.0100(0.0003) 0.0100(0.0003)

40 0.06 0.2342(0.1165) 0.2302(0.1410) 0.0094(0.0004) 0.0094(0.004)

0.04 0.2182(0.1038) 0.2420(0.1449) 0.0093(0.0003) 0.0093(0.0003)

tomers in the supermarket is recorded every half hour from 7:00am to 5:30pm.

In the analysis, we regard each day as one subject. Thus, we have 139 subjects

in total. Figure 5.3 depicts the plot of this data set.

Results of two component model

We first analyze the data using a working independent correlation model

with two components. The smoothing parameter is chosen to be 0.063. The

estimated proportions of the two components are 0.2138 and 0.7862. The esti-

mated mean functions and a hard-clustering result are shown in Figure 5.4. The

hard-clustering is is obtained by assigning component identities according to the

largest ric, c = 1, · · · , C. From the hard-clustering result and the original data,

we found that the days in the upper component are mainly from those which

are 1-3 days before weekends and holidays. The estimated mean functions can

be viewed as estimated average customer flows of the two classes. We observed

that there are two peaks of customer flows for both components. The first peak

occurs around 9:00 am in both components. The second peak occurs around
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Figure 5.3: Plot of supermarket data

2:00 pm for the first component, and 3:00 pm for the second component. This

pattern may indicate that people tend to buy earlier in the afternoon if they are

preparing for holidays and weekends. We further plot the estimated variance

functions of the two component in Figure 5.5. Combining Figure 5.4 and 5.5,

we observed that the variance functions incerese along with the mean functions

in both components, in that the higher the mean, the higher the associated

variance.

The next step is to analyze the data by incorporating the estimated corre-

lations. Based on the estimated posterior, we estimate the covariance functions

and obtain estimates of the eigenfunctions of both components. We plot the first

two eigenfunctions of both components in Figure 5.6. For the first component

(upper class), the first eigenfunction explains 59.42% of the total variation, and

has a negative value along its time interval from 9:00 am to 5:30 pm. It means
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that a subject (i.e., a day) with a positive (negative) loading score on this direc-

tion tends to have larger (smaller) customer flows than the population average

in a whole observed time interval. We also observe that there are two negative

peaks in the first eigenfunction, which occurs around 9:00 am and 2:00 pm. It

means that the variations of the costumor flows are large in the two peaks, es-

pecially for the peak at 9:00 am. Note that these peaks are also observed in the

first estimated variance function, that the results agree with each other as we ex-

pected. The second eigenfunction, which explains 13.57% of the total variation,

has negative values in the morning time and positive values in the afternoon.

This means that a subject with a positive loading score on this direction tends

to have smaller costumer flow in the morning and a higher costumer flow in the

afternoon. The variation characterized by the second eigenfunction has a minor

magnitude compared to the variation in the first eigenfunction, where the mag-

nitude is determined by the eigenvalues. The third eigenfunction explains 5.67%

of the total variation, and is of little interest. Similarly we can interpret the

eigenfunctions of the second component. Further analysis shows that incorpo-

rating the estimated covariances does not lead to significant improvement, and

thus those results are not reported.

Results of three component model

We next analyze the data using model (5.3) with three components. The

smoothing parameter is chosen to be 0.063. The estimated proportions of the

three components are 0.1632, 0.4308, and 0.4060. The estimated mean functions

and a hard-clustering result based on posterior estimate of identities are shown

in Figure 5.7. The estimated variance functions of the three component are

plotted in Figure 5.8. The MSE of the two component model is 13.08, while the

MSE of the three component model is 12.89. Compared to the two component
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Figure 5.4: Estimated mean functions and clustering results based on posteriors.
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Figure 5.5: Estimated variance functions.
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Figure 5.6: (a) First two eigenfunctions of the upper cluster; (b) First two eigenfunc-
tions of the lower cluster.
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Figure 5.7: Estimated mean functions and clustering results based on posteriors.
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Figure 5.8: Estimated variance functions.
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model, the MSE of the three component model is not significantly reduced. This

result may suggest that a two component model is enough for the analysis of the

supermarket dataset.

5.5 Discussion

In this chapter we introduced mixtures of Gaussian processes for func-

tional data analysis, and developed estimation procedures for model estimation.

We conducted a simulation study to evaluate the performance of the proposed

model, and illustrated the methodologies by an application in the analysis of

supermarket data. Yet there are many issues needing further research. The

asymptotic properties of the resulting estimates have not been investigated.

The selection of the number of components, the number of eigenfunctions in

each component, and the bandwidth selection for the covariance functions needs

further research and discussion.

In the simulation and the analysis of supermarket data, we see that the

proposed procedures perform quite well for balanced data. The computations are

very efficient given a good initial value and a reasonably well-chosen bandwidth.

We do not have an accurate idea of the minimum requirements for the dataset,

i.e., how large (and dense) the dataset need to be for plausible inference. For

balanced data, the model can handle high dimensional data where multivariate

Gaussian mixtures fail to work, since our approach perform dimension reduction

during the estimation, and maintain the main feature of the original data in a

relatively small model. For instance, in the simulation example in section 5.4,

the model can handle simulated data up to n = 100, N = 400, without changing

of other settings. Further research in the application of unbalanced data is of

interest.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we study nonparametric techniques in two newly proposed

models: nonparametric mixture of regression models, and mixture of Gaussian

processes.

In Chapter 3, we develop an effective estimation procedure for nonpara-

metric mixture of regression model via local likelihood approach and EM al-

gorithm. The modified EM algorithm automatically avoids an issue similar to

label switching problem, and enable us to simultaneously maximize the local

likelihood functions for the proposed nonparametric mixture of regression model

at set of grid points. We demonstrate that the proposed EM algorithm pre-

serves the ascent property in an asymptotic sense. We further established the

asymptotic normality of the resulting estimate, conduct Monte Carlo simulation

studies, and apply the newly proposed model to real data analysis.

In chapter 4, we study the nonparametric finite mixture of regression

models with constant mixing proportion, which is indeed a semiparametric model.

We develop an estimation procedure by using back-fitting algorithm, and further

suggest one-step back-fitting algorithm, which behaves similar to the gradient

ECM algorithm. We studied the asymptotic properties of the resulting estimate,
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and demonstrate that the mixing proportion parameter is root n consistent, and

follows an asymptotic normal distribution. The asymptotic properties for the

resulting estimate of the regression function and variance function are given.

Monte Carlo simulation is conducted to assess the performance of the proposed

procedure. We further apply the proposed procedure to real data analysis.

In Chapter 5, we propose mixture Gaussian processes, and the estimation

procedure for the newly proposed model by using back-fitting algorithm. We

further introduce functional principal component analysis as a convenient way to

effectively incorporate covariance in the estimation procedure. We examine the

finite sample performance of the proposed procedure by Monte Carlo simulation

studies, and further apply the proposed procedure to analyze a supermarket

dataset.

6.2 Future Work

6.2.1 Mixture of Varying Coefficient Models

The proposed nonparametric mixture of regression models can be nat-

urally extended to mixture of varying coefficient models. Varying coefficient

model is a useful extension of classical linear models. Among several nonpara-

metric regression models, the varying coefficient model can be used to explore

some functional features in high dimensional data. The varying coefficient model

has the following structure:

Y =
J∑

j=1

aj(U)Xj + ε,

where E(ε|U,X1, · · · , XJ) = 0, and Var(ε|U,X1, · · · , XJ) = σ2(U). By allowing

the coefficients aj(·) depend on U , we can study how the response variable de-

pends on predictors X1, · · · , XJ over a range of covariate U , such as time and
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temperature and so on. The idea of the varying coefficient model is first intro-

duced by Cleveland et al.(1992) and extended in Hastie and Tibshirani (1993).

For reference of estimation procedure and inference, see Fan and Zhang (2000)

and Cai, Fan and Li (2000). We will further study the estimation procedure,

asymptotic properties, and the applications of mixtures of varying coefficient

models.

6.2.2 Testing Hypothesis

Future work should include testing hypothesis for the proposed nonpara-

metric mixture of regression model and mixture of Gaussian processes. In prac-

tice, it is of interest to know whether the unknown function has a closed para-

metric form or not. This consideration leads to the following hypothesis test:

H0 : m(x) = β0 + β1x versus Ha : m(x) 6= β0 + β1x.

Under the null hypothesis, it is a parametric model, and therefore we can esti-

mate the parameters and calculate the likelihood. Under the alternative hypoth-

esis, we can also calculate the likelihood based on the local likelihood estimators.

Denote the log-likelihood under H0 by `(H0), and the log-likelihood under Ha

by `(Ha). A generalized likelihood ratio statistic is defined by

T = `(Ha)− `(H0).

The likelihood ratio statistic asymptotically follows a chi-square distribution

when Ha is a parametric model. The degrees of freedom is the difference of

the effective number of parameters in the two models. Several papers deal with

testing problems in varying coefficient models. Theoretical asymptotic results

when Ha is a nonparametric model are given by Cai, Fan and Li (2000) and Fan,

Zhang and Zhang (2001).
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6.2.3 High Dimensional Gaussian Mixtures

The methodologies developed in Chapter 5 may provide some efficient ap-

proaches for high dimensional Gaussian mixture models. Consider a multivariate

mixture model

y ∼
C∑

c=1

πcN(µc, Σc),

where y is a high dimensional random vector. The log-likelihood function of

data {y1, · · · ,yn} is

n∑
i=1

log

{
C∑

c=1

πcφ
(
yi|µc, Σc

)}
.

The multivariate mixture model may suffer the problem of the “curse of dimen-

sionality”, and the computation of the inverse of Σ̂c may not be stable. We

suggest an alternative approach for these issues. Consider

y ∼
C∑

c=1

πcN(µc +

Qc∑
q=1

ξiqcvqc, σ
2
c ), (6.1)

where ξiqc = (yi − µc)
Tvqc, and vqcs are orthogonal with norm 1. That is, for

c = 1, · · · , C, we constrain vT
qcvqc = 1 and vT

qcvq′c = 0 if q 6= q′. Thus, the

log-likelihood function is

n∑
i=1

log

{
C∑

c=1

πcφ
(
yi|µc +

Qc∑
q=1

ξiqcvqc, σ
2
cI

)}
. (6.2)

From our experience in simulation, the EM algorithm for model (6.2) performs

quite well for high dimensional data with correlation structure. Bayesian ap-

proaches for model (6.1) may provide comprehensive solutions, including choos-

ing the number of components. Future work on these models is of interest.
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6.2.4 Other Issues

In Chapter 3, we focus on estimation of the newly proposed nonparamet-

ric finite mixture of regression models when x0 is an interior point in the range of

the covariate. It is certainly also of interest to study the boundary performance

of the proposed procedure. The boundary effect has been studied in Cheng, Fan

and Marron (1997) for the nonparametric regression model. We may apply local

polynomial regression for the mean function, and kernel regression for variance

function and mixing proportion functions. It is of interest to test hypotheses

such as whether the mixing proportions are constants, whether some of mean

functions are constant or of specific parametric forms, and whether the variance

functions are parametric. It is of interest to use different bandwidths for differ-

ent functions, which has not been investigated in this thesis. These can be for

further research.

The proposed models focus on mixtures of normal distributions. We may

extend the developed methodologies for mixture of other distributions. For ex-

ample, we could further study the nonparametric mixture of Poisson regressions,

the nonparametric mixture of generalized linear models, or mixture of Poisson

processes.
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