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Abstract

Smartphones have several network interfaces like WiFi, Bluetooth and GSM. Since today’s tele-

phony infrastructure supports 3G and various other protocols of data transfer like WAP, GPRS

and EVDO, it is possible to bring the desktop internet experience on the handheld device. With

this comes the same level of security risk that we see on desktop machines. There is extensive

research [1],[2],[3] on securing such desktops. But there is only a recent effort in securing hand-

held devices. The computing power of such devices restricts the portability of security solutions

from the desktop over to embedded systems. Due to these restrictions, there is a need to optimize

the security solutions without compromising on the effectiveness.

The key idea behind the solutions presented here is to detect a real users intent to trigger an

event such as sending an SMS or making a phone call. Malware which attempts to perform these

events tries to do so without the knowledge of the user and hence the events triggered are purely

generated in software. The way to differentiate these events is to monitor the hardware interrupts

generated by the keypad or touchscreen of the device, since it is the only way a real user can begin

an event such as sending a message or making a call. Our framework resides entirely in the kernel

and adopts a specification based prevention approach. The specification is defined by signatures

of application behavior using their inter− process communication patterns. Using the hardware

interrupt as a necessary event for any function of the device, followed by a signature defined

communication pattern, we are able to prevent two of the most common attacks (messaging and

covert audio channel attacks) found on mobile devices. The framework is lightweight and has
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almost negligible overheads (20 µs ) during the normal functionality of the running system.
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Chapter 1
Introduction

1.1 Smartphones

Since the early 90’s we have seen several devices which were labelled as smartphones of that era.

The Palmtops, Symbians, Nokias all had their go at making sleek and slender devices that would

bring your daily productivity applications such as calendar, alarms, todo lists, planners etc on

the palm of your hand. While the technology to make things faster existed, it was too expensive

to bring it to the consumer. Therefore these devices of the early age were limited in what they

could achieve. However, once the embedded systems industry picked up pace, we saw several

high power ARM processor variants make their way into such handheld devices. These low cost,

low power consuming devices marked a new beginning for the handheld industry. Developers

could port their desktop applications on these devices with relative ease. More processing power

meant more eye-candy applications and low power consumption meant longer durability. This

was exactly what the consumer market needed.

Today we see a lot more advancement on the handheld hardware. Devices such as the Apple

iphone, Google gphone, Openmoko [4]etc. have advanced chipsets that can handle GSM/3G tele-

phony, wireless networking and much more. Some even have support for accelerated graphics.

With the beginning of GSM capability on these handhelds, the market for smartphones became

very lucrative. Bigger companies such as Microsoft, Apple, Windriver, Google started to build

frameworks that enabled users of their devices to develop applications themselves. Some compa-

nies such as Apple and Google even have a shared online market place for individual developers
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to sell their applications online to other users of their phones. Meanwhile, the Linux market also

showed its strengths. The open source model that had already existed and matured for so long

made it an easy transition for Linux to be ported on these devices. The ease with which one

could customize their devices with everything from the kernel to the running applications made

Linux a strong competitor for this market.

While the market for handheld devices was growing rapidly, it is only now, that we are seeing

a stronger focus on the reliability issues of these devices. The security issues of desktops were

already well known and some of them were solved. But since these devices enabled the cross

porting of desktop applications onto the phones, we see similar vulnerability issues being carried

over. Security frameworks such as SELinux etc. demonstrated what they could do for hardening

desktops. But they could not be easily ported over to embedded devices mostly because of

performance issues [5], [6]. This meant we needed other means of securing the mobile application

space.

1.2 Thesis Contribution

This thesis focuses on preventing the most common attack vectors [7], [8] found in today’s

smartphones. Past research and surveys [9], [10] shows the alarming number of malware spread

through the Messaging interfaces found on the devices. The framework explained in the following

chapters aims to prevent the spread of malware by focusing on the root of the problem. The

problem in question being unmonitored access to the GSM engine on the device. So the framework

detects if a real user intends to send the message by monitoring the touchscreen or keypad

interrupts and the ensuing the IPC between critical userspace components. The framework

monitors for these specific events and then allows or disallows the outgoing SMS.

Similarly, another attack vector that has been recently brought into the limelight, is the covert

channel audio attack. Here, the malware covertly turns on the microphone on the device and

records conversations into a file without the knowledge of the device owner. Malware may also

interfere with an ongoing call by injecting noise into the headset speaker, or play a music file

so the other party hears it instead of the real users voice. A similar attack is possible using

the on-board camera. The recorded video or audio file is then transferred back to the attacker

through the messaging interfaces. The kernel framework described in this thesis, uses the same
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concept as the messaging attack prevention. By monitoring the keypad or touchscreen interrupts

and the ensuing IPC, the reference monitor allows or denies access to the audio subsystem.

This kernel reference monitor is a lightweight module that monitors only the specific kernel

API that are involved in the messaging and audio related functions. Unlike other security so-

lutions, there is no userspace component that communicates with the kernel to gather data. In

this way, the entire userspace stack can be untrusted. The requirements for this design to work

are described in the Security Model chapter.

By using malware prevention instead of detection, the kernel framework is able to have only

minimal overheads. The main reason for this is that for mobile devices, the attack vectors

have a common pattern for attacking. Unlike desktops the applications running on the mobile

device are smaller and simpler. The limited resources on the device limit what the malware can

do. Every phone stack has some critical components that perform functions on behalf of the

other applications. Therefore it is easier to focus on these critical components and monitor their

behavior for correctness. Also, if the malware subverts these components and attempts to access

the kernel API directly, it can be easily detected by the reference monitor within the kernel.

Alternately, using intrusion detection techniques and anomaly detection and misuse detection

principles, leads to an extensive database of signatures. These signatures consist of white lists

and black lists for application behavior. Also, the monitoring overheads are significantly higher

[11] with such approaches which make it an unattractive solution for mobile devices mainly

due to the machine learning techniques used by these approaches. By using specification based

techniques, we are able to manually define signatures for normal behavior and use the Reference

Monitor to enforce this behavior. Although anomaly detection techniques may be able to detect

newer forms of attack, we think for mobile devices, the attack vectors are limited. Thus it is very

easy to manually add the specifications and we get the benefits of very low run-time overheads.

The results section shows the minimal overheads involved in the monitoring framework.

1.3 Structure

Chapter 2 begins with a description of the Security Model which includes the Threat Model and

Trusted Computing Base, Chapter 3 lays out the background information required to understand

the technical details of the implementations, Chapter 4 lists the related work, Chapter 5 describes



4

the main design of the implementation with a formal analyses and Chapter 6 shows the benefits

of our design in the form of results and instrumentation. We end with Chapter 7 as a conclusion

summarizing the motivations for our design and some possible future research ideas.



Chapter 2
Security Model

Since most mobile phone vendors have started online market places to enable any user to develop

his applications and sell them to other users of the device, this may profit the company to

market its devices, but it opens up a huge scope for buggy and malicious applications to enter

these devices. As an example consider a scenario where a user downloads an application that has

a buffer overflow vulnerability. However, this application may still be downloaded by millions of

users since the vulnerability doesnt affect the usability of the device and is therefore hidden from

the user. Now another malicious developer who is aware of this vulnerability creates another

viral application that exploits the other applications buffer overflow. In this way, the malware

can spread itself like an internet worm. As another example, the malware may even exploit the

affected devices functionality, by depleting its power resources and sending messages [12], [13].

This motivates us to consider the security model relevant to the mobile phone. The compo-

nents of the model are described below.

2.1 Threat Model

Most of the vulnerabilities in applications are due to programming errors or bugs that are left

undetected even after testing procedures. These bugs are most commonly buffer overflows due

to lack of out-of-bound error checks. Applications that are coded by inexperienced programmers

tend to have such loopholes which are exploited by malicious software. The main components of

userspace that are vulnerable constitute the following:
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• Network Interfaces: Most smartphones comprise of WiFi, Bluetooth the GSM inter-

faces. The malware enters the device through these interfaces. However, for this thesis we

do not consider the ingress path of malware. This can be tackled by looking at the security

measures designed around the interaction of the device with the external network infras-

tructure like access points, securing the network medium on the air and GSM telephony

setups of service providers.

• Phone Stack on the device: This is the multithreaded application running in user space

and is responsible for implementation of the phone functionality. The threads that are at

threat are particularly the GSM thread which implements the AT command set and the

audio thread that interfaces with the audio subsystem of the kernel.

• Kernel exported interfaces: The critical components of the phone stack are responsible

for interfacing with the kernel for registering, receiving and sending events and data. For the

keypad device the kernel exports a node via the input subsystem (eg. /dev/input/keypad),

the GSM engine as a serial node (eg. /dev/ttySx) and the audio port as device nodes (eg.

/dev/asound/). These interfaces interact with the hardware through their respective device

drivers.

2.2 Attack Model

Given that the userspace applications are part of the threat model, here we consider how the

attacker can exploit the interfaces to launch his attacks.

• The attacker can interface directly with the exported serial port of the GSM engine and

implement his own messaging framework, thus bypassing all the phone stack components.

This can allow him to send messages and interfere with GSM calls.

• Similarly, the attacker can interface with the network components of the system. eg. He

could use the BT stack, WiFi network interface to send files to other devices. This is a

common technique to spread malware and infect surrounding phones. It can also be used

to infect the device with new malware.

• Any other peripherals on the device, like camera, audio ports maybe exported to userspace

by their respective device drivers. These peripherals are exported through device nodes
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and can be configured through system calls (IOCTL’s etc). The telephony stack on the

device registers with these nodes and provides the respective service to other applications.

But, the kernel doesn’t naturally restrict opening the device nodes multiple times. Hence,

an attacker may open them by himself and use them to alter the audio configurations by

subverting the userpsace stack.

2.3 Trusted Computing Base

Here we describe all the relevant modules that are part of the TCB and the requirements for

correct operation.

The operating system running on the device mainly forms the trusted computing base. The

security of the operating system as far as rootkits are concerned is assumed in this case. By

preventing access to the kernel memory, the installation of rootkits at runtime can be prevented.

The alteration of kernel control flow can also be avoided by preventing such modification to

the kernel memory [14]. Rootkit installation through malicious device drivers [15] , [16] can be

prevented by denying the privileges of the root user, thus allowing only the phone manufacturer

to install new modules by flashing the device. There are several other schemes to prevent kernel

rootkits. But this is not the focus of this research.

The other components of the TCB are as follows:

• The device driver for the keypad is trusted to perform its operation correctly. The keypad

driver correctly initializes the keypad hardware and receives the hardware interrupts. The

logic to detect the precise scan code when an interrupt is triggered and the interface to the

input device subsystem to pass on the scan code is trusted to function properly. The input

device subsystem itself should report scan codes correctly to the user space application. It

is up to the user application to interpret this event appropriately.

• The GSM device driver is trusted to implement the bus protocol correctly. This bus in-

terface maybe a serial SPI, I2C or any other proprietary bus, but it needs to ensure the

hardware on the other end of the bus is initialized properly. The ensuing transactions over

the bus should be interpreted properly since these comprise of data in the form of requests

or responses. Although the commands to the hardware maybe implemented by the GSM
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thread from the user space which is part of the threat model as described above, the driver

must ensure correctness of operations for low level communication. This means the driver

is agnostic to the semantics of the AT command set and just deals with the low level bits

that are transferred over the bus as per the bus protocol.

• The audio driver should correctly perform its functions of delivering audio and recording

audio from the hardware ports. The audio subsystem is also responsible for multiplexing

between various input sources such as microphone, headset microphone and the bluetooth

handset microphone. The other output sinks include, handset speakers, headset speakers

and bluetooth headset speaker. The configuration for these sources and sinks comes from

userspace and thus maybe misused by malware. But as described below, the kernel reference

monitor can verify the operation.

• The kernel memory interfaces are not exported to userspace via /dev/mem and /dev/kmem.

This is a necessary requirement to prevent userspace apps from writing into kernel memory

[17]. These interface can be easily disabled during kernel configuration time. They are

usually enabled for only debugging purposes.

• The operating system is trusted to perform all its operations on memory, I/O, scheduling,

system resource management etc. Particularly the OS is trusted to maintain a correct

Process Control Block with the required in-memory representation of the running processes.

(eg. Page tables)

• There is a trusted user/administrator of the device who is required for setting up the code

page hash of the trusted applications and also for entering the signatures in the reference

monitor. This requirement is elaborated in chapter 5.

• The bootloader should correctly load the kernel which contains the Reference Monitor

implementation. However, we do not address secure booting in this research.



Chapter 3
Background

This chapter explains all the relevant components involved in the smartphone used for this thesis.

3.1 Linux

Linux is an open source operating system that is developed under a GPL license. The GPL

license allows anyone to freely download, extend and distribute the code. Under this principle

of development Linux has gained a widespread popularity in the embedded systems, servers and

desktop market. The mainline kernel on www.kernel.org is owned by Linus Torvalds who is the

founder of the Linux OS. This tree contains all the stable releases of code. The development life

cycle for Linus’s tree last for 3 weeks per version revision. This means, Linus accepts patches

which are deemed stable and worthwhile by him and select few respected developers. These

select few developers are core subsystem maintainers who have their own trees and their own

schedules for release. eg. Andrew Morton owns the Memory management tree, Dave Miller owns

the Networking tree etc. Each of these developers accepts patches to their trees wait till they get

stable testing reports from people who use their trees and then submit these patches to Linus’s

tree.

Any user can download this code and choose to use it and improve it. If the user wants to

submit his code upstream, then there is a procedure to submit patches of code to the appropriate

lists. These mailing lists are extremely active high traffic lists. The submitted code get almost

instant reviews and suggestions and will undergo extensive testing on individual machines. After
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a few months, it may get pulled into one of the subsystem trees as mentioned earlier. This

suggests a very robust testing procedure. Writing code for the kernel is not a very easy task

and is therefore likely to be buggy if not reviewed properly. The Linux open source model helps

massively control the kind of bugs that creep in and this is mainly the reason why it has gained

widespread popularity as compared to the Windows kernels.

The Linux kernel source code is designed into architecture dependent and independent sec-

tions [17]. The architecture dependent parts program the hardware required for initial bootup

and hardware bringup, while the architecture independent parts implement the functions of an

operating system such as memory management algorithms, I/O management etc. The whole ker-

nel source is supported by the GNU compiler toolchain which is also open source. The compiler

contains support for GNU C extensions which are widely used throughout the kernel source code

to facilitate extremely efficient and compact code.

Although the choice of operating system here is Linux, the same design principles apply to

the other operating systems ported for mobile devices.

3.2 Subsystems

The operating systems functions are implemented as different subsystems. eg. Memory man-

agement subsystem, I/O resource management subsystems etc.. The ones that are relevant are

described below.

3.2.0.1 Serial Subsystem

The serial protocol is widely used by many hardware devices that are usually low bandwidth (as

compared to Ethernet) low error rate tolerant devices. Such devices work on the UART bus. For

embedded systems like mobile phones, there are several such UART’s. One of those is used for

exporting the console (command line shell) to a remote computer like a desktop. This assists in

debugging the system as well as testing the applications and kernel code. The other UART ports

are used to connect the GSM engine, hardware debuggers etc.. There are faster variants of the

UART bus such as SPI bus’s that are used for network devices, but their underlying protocol of

communication remains the same.

The GSM engine is a separate hardware module that is connected over the serial bus to the
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main CPU. The implementation of this serial communication is shared with that of the console

serial port. The two are differentiated based on the minor number of the node that is created

in the /dev directory by the kernel. This minor number helps the kernel identify which port is

communicating at that point in time. The GSM engine is controlled by a set of AT commands.

Some important AT commands are described in the table 3.2.0.1.

Command Description
AT+CFUN Init hardware
AT+COPS Get network status
AT+CMGF SMS mode
AT+CMGS Submit SMS
AT+ATE0 Echo AT commands

Table 3.1. Sample AT Command Set

3.2.0.2 Touchscreen Interrupt

The interrupt subsystems support an asynchronous way of communicating to the core processor

to indicate the occurrence of an event. Since interrupt signals only last a very short period of

time (eg. a few nanosecs, or one clock cycle) they cannot convey much data by themselves. Hence

they they work as a means to signal the CPU that data is ready. The process of scheduling to

obtain that data from the hardware then follows in a separate transaction. However, the main

advantage of interrupts is that, their asynchronous nature allows the main CPU to either sleep

in power saving mode or attend to other tasks while waiting for data to arrive [18].

For mobile phones one of the most frequently used interrupt based devices is the touchscreen

or keypad. The alternative to interrupt driven devices is polling based which keeps the CPU

busy polling the hardware, checking for new data. Although this may simplify the hardware

circuitry, there are many drawbacks from a power saving and performance perspective. When a

key is pressed, the hardware constructs a bitmask indicating which key was pressed. This scan

code is conveyed to the main CPU through an interrupt that is raised by the keypad/touchscreen

controller.

The device driver for the touchscreen implements the interrupt service routine(ISR). This

ISR is invoked by the kernel after the responsible hardware wakes the CPU. The ISR is called

in what is called as an interrupt context which is given the highest priority of scheduling in an

operating system. This enables fast service time to hardware events. The ISR itself needs to
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execute quickly if nested interrupts are not supported. This ensures minimum interrupt latency.

The touchscreen ISR is mainly responsible for obtaining the scan code from the hardware. This

transfer of data from the hardware memory into CPU memory is the primary job of most ISR’s.

From then on, the appropriate processing of the data which is in CPU memory is scheduled

at a later time. This division of interrupt processing is called top and bottom half processing.

The bottom half takes care of the time critical function of the interrupt such as transfer of data

from device memory to RAM, and the top half then processes that data into the appropriate

subsystem of the kernel.

3.2.0.3 Input Device

The Input Device framework is a consolidated framework in Linux for all input devices like

keyboards, mouse, touchscreens, joysticks etc. This unification helps to have a common pro-

gramming model for userspace applications that register to receive or initiate events. Events

are described by a common structure that contains the event scan code, device information and

other device specific information. This way, an application that has registered to listen to these

device events can choose to filter information as it needs and simultaneously support multiple

kinds of input devices.

The touchscreen driver is implemented such that it hooks with the input framework. The

ISR of the touchscreen acquires the scan code and delivers it to the input framework for post

interrupt processing. In this part of the code, the scanned code is converted into an input event

by filling up the necessary fields. The input event is then enqueued into a buffer and the userspace

application is woken up through an asynchronous I/O notifier signal. The woken up application

then performs a read system call on the device node when it is scheduled after the signal. The

event is then transfered from the kernel buffer to the userspace application memory. The scan

code to key bindings is performed by a key map that is part of the user application. This way the

same scan code can perform different application specific functions depending upon the context.

3.2.0.4 Interprocess Communication

Interprocess communication is implemented in several ways in an operating system. Processes

can communicate through sockets that belong to the AF UNIX family, share pages in physical

memory, use pipes to transfer data and so on. The common thing in all these mechanisms is
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that the data transfer from one process address space to another occurs only inside the process

context in the kernel. The process context is one where the kernel is performing some functions

on behalf of the process.

For the socket based communication, the usual socket initialization procedure is followed,

wherein the server sets up a socket and the client registers or binds to that socket. The only

difference from network based socket communication is that there are no IP addresses or ports

involved in the socket descriptor. The socket is a named socket node that looks like a file. The

open, close, read, write system calls work according the POSIX standards and require a socket

file descriptor. The system call implementation in the kernel recognizes the socket as a AF UNIX

family socket from the socket descriptor and appropriately invokes the send msg/read msg func-

tions for IPC communication. The sockets are associated with peers which signify the other end

of the socket communication. This helps the kernel identify the destination of the data during

a send call and also the source of the data during a receive call. Each socket has an associated

queue for the data in the process address space that owns the socket. During the send/receive

calls the data is enqueued during the send call and the peer is notified of data ready in queue.

This invokes the dequeue operation on the socket after a read call.

3.2.0.5 Cryptography Subsystem

The crypto subsystem in the kernel is a new framework that implements the famous hashing and

encryption/decryption algorithms. The idea of consolidating it in a framework has the benefit

that the algorithm is agnostic to the other subsystems using it. Therefore, network stacks IPsec

and disk based crypto can share the same code and not interfere with each others functionality.

The crypto system supports encryption of chunks of bytes from different regions of memory

through scatter gather lists. These lists are usually used by DMA engines. The data is picked

up from various memory addresses and represented as a chunk of data to the crypto algorithm.

This avoids the need to copy data from different memory and redundant buffers.

3.2.0.6 Timer Subsytem

The kernel supports multishot and single shot timers. These are mechanisms to run parts of

code at a deterministic point in the future. The timer resets itself and runs again for the next

iteration for multishot timers. Timers are used for polling events. They are especially useful if
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data needs to be processed at specific intervals like in voice and video codecs. It can also be

used to check the status of flags or variables periodically. Timers run in interrupt context so the

caveats for programming ISRs apply to them as well.

3.2.0.7 Process Control Block

The process control block is a kernel data structure that describes a process. It contains a lot

of metadata about the running processes. The PCB helps to quickly and conveniently organize

process specific information in the kernel for scheduling and identifying processes. The PCB is

called the task struct in the Linux operating system. Some important members of task struct

include pid, virtual address ranges of the code, stack and data segments, memory descriptor for

the processes page tables, the file descriptors in use by the process and various instrumenting

information that indicates whether this task is I/O bound or CPU bound.

3.2.1 Audio Subsystem

The audio subsystem in Linux is called the ALSA (Advanced Linux Sound Architecture) subsys-

tem. The deprecated OSS (Open Sound System) has been replaced by ALSA and provides far

more superior features and support for modern audio chipsets. The ALSA framework implements

the support for various codecs for wav, pcm, stereo etc. The recording and output functionality

and their respective configuration is exported by ALSA to the userspace app’s through device

nodes (/dev/asound/..). The main advantage of ALSA is that it can interface with the bluetooth

kernel stack and provide audio profile support. The real controls to change parameters such as

gain, volume, mute etc. are implemented in audio chipset device driver. ALSA just provides an

abstraction so that other kernel components and user space applications can interface with the

chipset.

3.3 Openmoko

Following the open source model, the FIC company in Taiwan decided to build a completely open

source mobile phone based on the open source software. They also decided to open source the

hardware reference manuals to encourage the community to contribute and expand the function-

ality of the phone. The phone is shipped with the tools and debuggers required to open it up and
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modify absolutely any part of the phone. The smartphone[19] contains a touchscreens interface,

ARM9 based S3C24xx series processor. The core boots off a flash chip and has expandable flash

slots. The other features include GSM, GPRS, BT 2.0, AGPS. The kernel core support for the

Samsung family of ARM cores is already well maintained online. There are some more kernel

patches required to the get other hardware running on the platform. These patches are available

on the openmoko wiki pages. Following the linux kernel cycle of development, the openmoko

teams have several developers who own their GIT trees with the lastest patches merged. The

active community develops and optimizes the main upstream kernels to perform well on the

openmoko platform.

The userspace telephony stack also has various options. The first one from the developers

at FIC was completely based on GTK+. This distribution had most of the phone functionality

running, but lacked some important features like SMS messaging and generally had bugs. The

later revisions decided to shift to a different programming model. Instead of GTK+ they used

Python bindings with C programming. There were several distributions other than this one. A

long list of distributions and their respective howto instructions are described on the wiki page.

3.4 Qtopia

Trolltech is a Finnish company now owned by Nokia, which produced an alternative programming

environment for GUI’s and desktop applications. This stack is completely programmed in the

C++ language. Qtopia is the base for running the KDE desktop environment just as GTK+ is the

base for running the Gnome desktop environment. Trolltech then released a new version of their

stack for embedded systems called Qt-Embedded [20]. This was primarily not meant to be under

an open source license. This made it harder to port Qt-embedded to various embedded devices.

However, Trolltech developers seemed to port their stacks to some mobile phones. Around early

2004 Qt-embedded was ported to some PDA’s and Motorola phones. Nokia bought over Trolltech

and then released the stacks under the GPL licenses. This move allowed a lot more developers to

contribute and expand the portability of the software. The Object Oriented model of the Qtopia

stack allowed for easy plugin and application development, but the enormity of the code base

made it a much harder deal to modify the core components of the stack.

However, with the support of the Qtopia core developers and the open source community,
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several applications were coded that made a complete phone stack. This stack supported by

the far the most comprehensive features in a phone stack. The standard features included,

address book, complete telephony support, messaging, camera support, networking etc. They

also extended the programming model to incorporate some security policy support as well.



Chapter 4
Related Work

Securing data and applications on mobile devices is only recently gaining the attention it needs.

However, most of the research work focused on optimizing desktop solutions for embedded devices.

Very few of these propositions started the design from the ground up with an exclusive focus on

mobile devices. Since the mobile devices have a very different usage model and are restricted

by their relative lower power resources, there are significant changes in the approaches towards

intrusion detection and prevention for cellphones.

Bose, Hu et al. [21] proposed a solution to logically order the events caused by applications

on the device. Using a Support Vector Machine they use machine learning theory to detect the

pattern of these events and compare them to a whitelist of behavior signatures. This kind of

anomaly detection approach works well for them since they generalize the pattern signature in

order to keep them lightweight. However, their scheme requires a complex framework in userspace

to detect and monitor these learning patterns. Hence they depend on remote analyses of behavior

to reduce the overhead of computation on the device.

Guo, Wang et al. [22] layout the most common attack scenarios on mobile devices by cate-

gorizing their attack vectors. They show how the blocking probability in the GSM cell can be

increased from 0.01% to 1.2%. This shows the attacks caused by infected phones on the backend

telephony infrastructure leading to various denial of service cases. Their solutions include shut-

ting down the PC interfacing components of the smartphone during voice calls and messaging

to reduce the chances of malware entering the device during a PC sync phase, or enabling the

operating system API to turn on the LCD of the device whenever there is an outgoing call or
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message to alert the user of suspicious activity and using secure TPM TCG measures to access

the SIM card.

Cheng, Wong, Yang et al. [23] developed a collaborative virus detection and alert system

for smartphones. They rely on collecting data from neighboring devices and performing joint

analyses to detect an infected phone. There is also a provision for a proxy server in cases

where collaborative analyses is not possible. This scheme requires an additional component in

userspace that constantly monitors for other devices and also collects information from the device

it is running on. Also there is a need for constant network connectivity and the requirement that

nearby devices need to run their client stub for collaboration.

Traynor, McDaniel et al. [24] [25]demonstrate how malware on phones can exploit the data

channels of the GSM network and compromise the infrastructure for whole cities. Specially

crafted SMS’s packets can flood the channel originating from the internet or users devices and

jam the communication channel for voice thus increasing the blocking probabilities.

Schmidt, Bye, Clausen et al. [26] describe an architecture for collaborative anomaly detection

on the Android. Their work is a first of its kind for the phones developed with the open source

model. However, their scheme revolves around userspace components constantly gathering ap-

plication and kernel data and depending upon remote servers or peer devices for analyses. The

data collected involves systems events such as filesystem changes, signals, process creation, appli-

cation access events and so on. This data is used to construct behavior patterns and then later

for pattern matching at the server or shared amongst other participating devices for analyses.

Forrest and Longstaff [27] showed a way to profile application behavior based on the systems

calls it makes. By having an observation window they characterized the normal behavior of

an application. They observed that a longer window had a better precision of profiling an

application and thereby reduces the false positive rates during comparison at run time. However,

this approach has a major drawback. Mimicry attacks are easily able to subvert the detection

system. Also, they ignore the arguments passed to the system calls which could be used to

improve the identification of a process.

Vigna, Mulliner et al [28] showed a way of labeling processes and data to prevent cross service

attacks. By tagging resources used by processes upon network activity they monitor the flow

of data in between processes. Their scheme is effective in achieving their goal, but not without

overheads. Labeling resources requires several rules, transition of labeling requires monitoring
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overheads and false positives can easily occur when legitimate processes initiate network activity.

Kinder, Jha et al. [29] came up with a scheme to normalize malware that obfuscates applica-

tion binaries. By normalizing the applications before they are executed, the code obfuscations,

packing and junk injection vectors of attack are removed. However, this approach can be sub-

verted by malware easily by using novel techniques to exploit vulnerabilities in applications. Also,

they are unable to normalize complex executables which contain opaque predicates and branch

functions. This makes their approach limited to only a certain Instruction Set Architecture and

unsuitable for mobile devices.

Courtney, Stevens et al. [30] categorized and quantified the effectiveness of mobile phone

virus response mechanisms. They show the propagation statistics of MMS based malware and

categorize the vectors according to point of reception, point of infection and point of dissemina-

tion. Their work shows the significance of prevention of malware that originates through MMS’s

on mobile handhelds. They consider running anti virus algorithms on MMS gateways, the effec-

tiveness of user awareness about malware and monitoring for anomalous activity in the network

using the GSM infrastructure elements such as HLR, VLR, BS etc.

Racic, Ma, Chen [13] studied the MMS based malware that depletes energy resources on the

phone. Here they stress on exploiting the insecure interaction between cellular data networks and

internet (PDP context retention and paging channel). By making use of the active PDP context

which remains valid for very long even after the user has finished his transaction, they show that

the energy resources can be depleted 22 times faster. Their solutions include making changes to

the GSM protocols by reducing the PDP context activation periods, information hiding at the

gateways, and making use of the GGSN to discriminate between malicious and normal packets.

Xie, Zhu et al. [31] ported SELinux on the smartphone to prevent the SMS/MMS related

attacks. Due to excessive complexities and overheads involved in setting and enforcing the

policies, they tried using CAPTCHA’s before sending a message. Although CAPTCHA’s is an

effective way to differentiate between humans and machines, it is an unnecessary inconvenience

to the user of the device.

Desmet, Joosen et al. [32] describe a way to securely run third party applications on mobile

phones without using the conventional sandboxing techniques. Their design uses secure execution

techniques like run-time monitoring, static verification and proof carrying code. They describe a

policy package consisting of a policy language to define the security intentions of the application.
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The run time monitors insert hooks into the applications and enforce correctness according to

the policies. The only problem with this approach is with the policies. The number of policies

can increase greatly for critical applications which are responsible for core functionality of the

device. Even for simple applications, the policies could be imprecise and thus lead to weaker

security.

Trolltech [33] has an article describing Qtopia’s SXE(Safe Execution Environment) archi-

tecture which works along with the Linux Intrusion Detection (LIDS) kernel patches. This

architecture provides a sandboxing framework in userspace for untrusted qtopia plugins. It relies

on defining a policy request for the services that the applications require. At run-time the SXE

framework monitors for illegal resource accesses. During the installation of that application, the

user is given options to accept of deny the policy requests for resources. This solution requires a

knowledgeable user and thus can be very un-userfriendly.

Venugopal [34] came up with a faster way to lookup signatures using hashes. He focused on

the overhead of detection which signature matches the current behavior in the system. Instead

of scanning through the database, a whole signature at a time, he proposed scanning using only

a part of the signature. His results show a good improvement in memory and time complexity.

However, these anomaly detection techniques still have the downside of false positives and lack

of detection of zero day attacks.

Schmidt, Peters, Lamour et al. [35] propose an anomaly detection framework for the Symbian

OS based smartphones. Their design learns to extract features from applications run-time be-

havior which describe the state of the device at that point in time. These features are then sent

to a remote server for complex intrusion detection. Such approaches depend upon the intervals

for capturing the snapshot of the system. Malware could learn about these monitoring patterns

and stealthily subvert the IDS.

Venugopal, Hu, Roman [36] describe a virus detection system for the Symbian platform which

monitors the DLL functions used by applications. By using Bayesian decision theory and past

virus samples, they try to check the behavior of applications to find matches with malicious

activity. Although they claim a 0% false negative rate, they are only able to detect 95% of the

viruses.

Kim, Smith et al. [12] aim to detect malware whose main goal is to deplete battery resources.

By collecting samples intermittently they form a power consumption signature and later analyze
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it to detect for malicious activity.

Divya, Sawani et al. [37] use a stripped down SELinux policy infrastructure based on the

PRIMA model to define policies for applications running on the smartphone. Using these stripped

down policies for all applications during installation, they are able to prove to remote verifiers

that the monitored system is secure enough to run critical third party applications like banking

software. However, they still rely on defining policies manually, where improper settings could

easily compromise the system.

Xu, Zhang et al [38] described a novel attack which stealthily captures video using the on-

board camera found on smartphones. Their algorithm covertly records video according to the

phone usage and uses a compression algorithm to store the video on disk. This file can later be

transfered to the attacker. These attacks are very realistic and go easily unnoticed to the user of

the device. However, they do not propose any solutions. We believe our kernel framework is able

to address this issue successfully. Although the Neo1973 device used for this research does not

have an on-board camera, the same concept is shown using the microphone device to covertly

record audio conversations.



Chapter 5
Design

5.1 Model Overview

For the demonstration of this framework, we consider two kinds of attacks.

• Messaging Attacks: Here, the malware attempts to generate a stream of messages by

itself with an intention to deplete the battery charge on the phone, spread the malware to

other devices and affect the monthly bill of the user.

• Audio Attacks: Here, the malware interferes with the audio subsystem of the phone and

can act as a covert channel to record the voice conversation or deny the voice conversation

by routing the audio source from the MIC to a file. The recording can begin during a

call, or even when the user is not using the phone. The latter scenario can be used by the

attacker to stealthily capture the ambient sounds of two people conversing.

The common thing between these attacks is that the malware will stealthily try to perform

its actions without the knowledge of the user, by directly accessing the hardware. eg. malware

will directly try to control the GSM engine and send messages. In order to prevent this, we use

specification based prevention methods. We define a specification which comprises of a legitimate

series of events in the system which are necessary for the messaging or audio function. This

specification is defined as a signature of hardware interrupt generated scan codes and a pattern

of IPC between applications. Since the applications involved during the function of sending a

message or controlling audio are limited, the specification is very simple, making the signature
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very concise. The Reference Monitor enforces the behavior between applications according to

the signature.

The implementation of this framework was done in the Linux kernel version 2.6.24 on the

Openmoko Neo1973 smartphone with the Qtopia telephony stack. Telephony stacks are usually

designed in two different ways.

• The first kind implements a central server that mediates all functionality from other compo-

nents of the phone stack. For eg. The server will communicate with the Operating System

on behalf of the Messaging thread, or even the Networking thread. Qtopia is an example of

such an architecture. The advantage of this design is that most of the complexity is hidden

away in the central server. This helps to keep the overall architecture simple to develop

and expand. Functionality is implemented in the form of plugins which run as threads in

userspace. These threads interact with the central server through IPC mechanisms. The

main disadvantage of this design is the IPC overheads involved. Since the Linux kernel is

not a microkernel or an RTOS, one of its main overheads comes from the implementation

of the IPC code. The other disadvantage is that if the central server goes down, the whole

phone stack is rendered unusable.

• The second kind implements several independent threads which are each responsible for a

part of the phone stacks’s functionality. For eg. There are separate threads for handling

the wifi network, GSM telephony, audio etc. The advantage of having this design is that

the overall architecture is simple to design and there is no single critical component in the

architecture. The main disadvantage of this design is that each thread needs to implement

the whole functionality in itself. eg. The SMS application will need the code for controlling

the GSM engine. So it lacks the abstraction that is present in the first design. However,

this kind of architecture is still present in old generation phones. The first implementation

of the stack called FSO on the Openmoko Neo1973 had this design.

The first type of architecture is more commonly present in today’s smartphones. Userspace

security solutions seem to fit in well with such designs. Programming language security

features present in Java, SELinux labeling of processes and their access control and App

Armor style application level sandboxing are some of the userspace security options.
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5.2 Qtopia Model

Qtopia contains a critical component called QPE[39]. This is the main server that interfaces with

the Operating system through device nodes and sockets for IPC communication. QPE is the first

application to spawn when the stack executes. It opens all the necessary sockets and devices and

then initiates the invocation of Message Server and Media Server. The Message Server controls

the messaging and emailing functions of the stack. The Media Server controls the voice and

audio related functions of the stack. There are several other applications like Qtmail, Games,

Browser etc. that are invoked as plugins. These plugins are separate binaries that link with the

QPE server at runtime. An application like Qtmail which implements the functionality of SMS,

MMS, Email only contains the GUI code for displaying the text box and buttons. The graphical

components like widgets are coded with the help of an API that is exported by the QPE server.

So the QPE server implements the windowing manager as well. These widgets have mechanisms

for triggering events. Eg. the messaging text box of the Qtmail plugin has a signal handler to

receive the keys that are typed. The SEND button on the Qtmail screen also invokes another

signal that results in constructing an Email or Message depending on the context. The following

figure 5.2 shows the components of the Qtopia phone stack and the key interactions.

The signal itself and other data is transfered from QPE to the plugin via IPC mechanisms.

In case of Qtopia, the communication channels are implemented as Sockets and Pipes. These

are created by QPE during startup and then the connection at the other end is completed by

the plugins when they are executed. Some of these sockets and pipes are named while others

are unnamed. eg. one of the important communication sockets is called /tmp/qtembedded −

0/QtEmbedded − 0. This socket is opened by each plugin that connects with QPE to receive

events. Although the name of the socket stays the same, the socket is identified by socket Inodes.

In Linux, sockets are just like files and have a similar structure in the kernel. So, different

applications communicating over the same named socket can still be identified uniquely in the

kernel.

This form of IPC over sockets is implemented over AF UNIX domain sockets. These are

similar to the AF INET socket family with the primary difference being in the machines involved

in the communication. AF UNIX sockets are used for inter process data transfers, whereas

AF INET is used for communication between remote processes running on remote hosts across a
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Figure 5.1. Qtopia Stack Diagram

network. The Linux implementation of AF UNIX domain sockets is made such that a majority

of the code is shared with the AF INET code. The function operations (fops) performed over

AF UNIX sockets is separate so that the Send and Receive functionality for these sockets is

identified uniquely. The actual data is transferred in a socket buffer (skb). This is a unit of

network data transfer in the kernel. The skb data structure has all the information that is
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required for identifying the sockets involved and the protocol used between the sockets.

5.3 Formalization

In order to represent the design formally we use the TLCK (Temporal Logic of Causal Knowledge)

described by Bose et al. [21] The TLCK uses concurrency relations to describe the sequence of

events in the system and the interactions in the Reference Monitor State Machine. The technical

details of the reference monitor are explained in the next section.

The temporal events in the system are described using the following notations.⊙
t is an event true at time t.

4t is an event true before time t.

�t−k
t is an event true in the interval [t− k, t].

The other relational operators such as ∧ and ∨ etc. carry their usual meanings. Next we

define some propositional variables.

• KeyPressed(S):

Where, S = {s1, s2, s3, .., sn} which is a set of ′n′ scan code interrupts which we need to

monitor. eg.SEND,CALL,ENDCALL,RECORD,STOP etc. KeyPressed(S) returns

TRUE if any of the monitored keys is pressed.

• AuthenticateApp(T):

Where, T = {t1, t2, ..., tn} which is a set of ′n′ applications that we need to authenticate.

eg. QPE,Qtmail,Mediaserver,Messageserver etc. AuthenticateApp(T ) returns TRUE

if the hash of the running application matches with a pre stored digest of that application.

The hash is calculated only over the TEXT segment of the application. A more detailed

explanation is described in the next section.

• IPC(T, Sockname):

IPC encapsulates both IPC read and write functions over the AF UNIX socket. The name

of the socket is defined by Sockname.

Here we define some more notations for each IPC operation.
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– A
r−→ B denotes an IPC Read of application A from application B.

– A
w−→ B denotes an IPC Write of application A to application B.

• ParseATCMD(C):

Where, C = {AT +CMGS,AT +CHLD = 1} is the set of AT commands to be monitored.

ParseATCMD(C) returns TRUE when the reference monitor finds any of these commands

in the data buffer that is passed to the GSM engine over the serial port.

5.3.1 Signatures

Now we can define signatures using the TLCK and the aforementioned notations. As a first

example let us consider the signature for submitting an SMS.

The set S = {SEND}

The set T = {Qpe,Qtmail,Messageserver}

The set C = {AT + CMGS}

Sockname = ”/tmp/qtembedded− 0/QtEmbedded− 0”

The truth table for IPC(T, Sockname) is as follows:-

Variable Value

Qpe
r−→ Qtmail T

Qtmail
r−→ Qpe T

Qpe
w−→ Qtmail T

Qtmail
w−→ Qpe T

Qpe
r−→Msgserver T

MsgServer
r−→ Qpe T

Qpe
w−→MsgServer T

Msgserver
w−→ Qpe T

IPC(T, Sockname) T

Table 5.1. Messaging Truth Table

The IPC variable is TRUE iff all the other variables are TRUE. Due to space constraints

the FALSE cases haven’t been shown.⊙
t(SubmitSMS) = 4t(KeyPressed(S) ∧AuthenticateApp(T ))

∧(�t−k
t (IPC(T, Sockname)) ∧ ParseATCMD(C))
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This means that a real user pressed the SEND key on the touchscreen/keypad, the applications

in set T were authenticated by the Reference Monitor and there was an expected IPC trans-

action over the socket defined by Sockname between these authenticated components within a

time frame and the Reference Monitor received an AT + CMGS command to the submit the

SMS in the data buffer of the GSM serial port. The time frame for IPC can be customized

depending upon the overheads of the IPC calls. When SubmitSMS evaluates to TRUE, then

the outgoing SMS is allowed, else denied. In a similar way, a signature for the audio attacks can

be constructed as follows.

The set S = {CALL,ENDCALL}

The set T = {Qpe,Mediaserver}

The set C = {AT + CHLD = 1}

Sockname = ”/tmp/qt− embedded/valuespace applayer”

The truth table for IPC(T, Sockname) is as follows:-

Variable Value

Qpe
w−→Mediaserver T

Mediaserver
r−→ Qpe T

Mediaserver
w−→ Qpe T

Qpe
r−→Mediaserver T

IPC(T, Sockname) T

Table 5.2. Audio Call Truth Table

The IPC variable is TRUE iff all the other variables are TRUE. Due to space constraints

the FALSE cases haven’t been shown.

The signature for this is defined as :⊙
t(AllowAudio) = 4t(KeyPressed(S) ∧AuthenticateApp(T ))

∧(�t−k
t (IPC(T, Sockname)))

Here the Reference Monitor looks for the CALL scan code. When AllowAudio evaluates to

TRUE, then the Reference Monitor turns the microphone ON . At all other times, any command

to alter the microphone state is denied. Since the Reference Monitor controls the microphone, it

needs to know when to turn it OFF again. For this we have another signature.⊙
t(DenyAudio) = 4t(KeyPressed(S) ∧AuthenticateApp(T ))
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∧(�t−k
t (IPC(T, Sockname)) ∧ ParseATCMD(C))

Here the Reference Monitor looks for the ENDCALL scan code. The truth table for this

IPC operation in case of the Qtopia stack is the same as the case for CALL. In order to ensure

that a call is being dropped or ended, the Reference Monitor parses the AT commands passed to

the GSM engine. So, when it detects the command AT + CHLD = 1 after the IPC operations,

it switches the microphone OFF .

Note that during the IPC transactions, the Reference Monitor also checks that the entities

that are communicating are authentic. When AuthenticateApp(T ) returns TRUE, the reference

monitor sets a bit in the process control block in order to avoid recalculating the hashes for every

IPC call. This implies that AuthenticateApp(T ) is evaluated during the application load time.

5.4 Reference Monitor Design

This section describes the design of the Reference Monitor and how it functions to prevent the

aforementioned attacks. The Reference Monitor is completely implemented as part of the kernel.

The Reference Monitor consists of the following components:

5.4.1 Reference Monitor Interfaces

For the Reference Monitor to have complete mediation it needs to have hooks in all the secu-

rity critical flows from the userspace application to the kernel that are relevant to the attack

prevention.

• Application startup: The primary interface is the exec system call. This call invokes

the process and sets up its memory maps for execution. At this point in time the reference

monitor is able to authenticate the application. For the Qtopia stack the QPE, Qtmail,

Messageserver and Mediaserver binaries are critical, since for any attack prevention these

components are necessarily involved in IPC communication. For the authentication of these

binaries, the reference monitor stores pre-computed md5 hashes of the TEXT segments.

The procedure for computing the TEXT segment hashes is described in the Appendix

section. When the binary runs, the Reference Monitor mediates the exec system call, to

find out which binary is being loaded. If the binary name matches with either of the
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Figure 5.2. Reference Monitor

critical components, then it proceeds to generate a TEXT segment hash of the about-

to-run application and compares it with the respective stored copy. If the hashes match,

then a permission bit is set in the PCB of the running application. This signifies that

this application has been authenticated. This is useful while checking whether authentic

applications are involved in the IPC communication as described in the following sections.

• Input device scan code: The next interface is the input device framework’s send-to-

user function. This function is responsible for sending the scan code from the touchscreen

hardware to the userspace application that has registered to receive these events. At this

point the reference monitor checks which key was pressed. If the scan code corresponds to

some specific keys like the SEND, CALL etc. key, then the Reference Monitor can decide

the next steps. For any other key, the function simply returns control from the Reference
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Monitor as it is irrelevant for the security purpose.

• IPC Send and Receive: The next interface is the AF UNIX send and receive function-

ality. These are responsible for performing the actual IPC data transfer over sockets. As

mentioned before, the sockets are identifiable by their unique inode numbers in the process

context. The PCB of each process contains the inodes of all the sockets that are in use.

When an application performs a send or receive operation on the socket, the CPU performs

a mode switch and control is passed to the kernel via a system call. During this time the

userspace application is paused, while the kernel functions on behalf of it. The kernel is

able to identify which process invoked this system call. The Reference Monitor mediates

both; send and receive system calls. The Reference Monitor is able to learn the socket inode

numbers of the processes involved because it knows the name of the socket over which the

processes communicate. For eg. the name of the socket /tmp/qtembedded-0 /QtEmbedded-0

is pre-stored in the reference monitor. When one of the critical processes tries to send or

receive over this socket, the Reference Monitor records the socket inode numbers after en-

suring that the authenticated processes are involved in this transfer. During a pre-training

run, the pattern of IPC communication amongst the critical components is observed by the

Reference Monitor. During run time, the Reference Monitor then observes the currently

ongoing IPC transfers between the processes to find a match in the IPC pattern. This

pattern is described in the signatures as explained in the Formalization section.

• GSM Serial port: In order to communicate with the GSM engine, the applications in

userspace have to use the serial port that is exported by the kernel serial subsystem. The

read and write operations of this serial driver are also mediated by the reference monitor.

The GSM port in the kernel driver is identified by a unique identifier. All data going

through this port consists of the AT commands and the actual data that is transfered and

received over-the-air. During the write system call to this driver, the Reference Monitor

observes the data buffer to check for the AT +CMGS command. If the reference monitor

has concluded that malware is trying to send the message then it locks the GSM TX path

thereby denying the SMS. If the buffer contains the AT + CHLD = 1 command, then

reference monitor switches the microphone OFF . The action taken here depends on the

attack that the Reference Monitor is trying to prevent and is described by the signatures
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described earlier.

• Audio configuration: The audio controller has a multiplexer that is capable of routing

audio data to and from multiple sources and sinks in the mobile device. eg. If the source

of the audio is the MIC, then the sink could be the stereo speakers, or the headset, or

even a bluetooth device. Likewise, the source of audio could also be a file with any of

the sinks from the above. The configuration of these scenarios is done through an IOCTL

command from userspace on the audio device node. The IOCTL function implementation

in the kernel audio subsystem deciphers which kernel function to invoke depending upon

the configuration of the scenario. The Reference Monitor mediates this IOCTL, since it is

the entry point into the kernel from where the audio configurations are made possible. The

significance of this interface is described in the Authorization Module functionality of the

Reference Monitor.

5.4.2 Authorization Module

The Authorization Module of the Reference Monitor ensures that authenticated applications are

involved in the IPC communication. It also decides whether to progress in the state machine

towards preventing the attack vectors. The functions performed by this module are described

below:

• When the plugins and servers begin to execute, they are checked for authenticity by com-

paring their TEXT segment hashes as described earlier. This is to ensure that the critical

components are not malware masquerading as the originals. In the Qtopia model, QPE,

Qtmail, MessageServer and MediaServer are critical since these components are collectively

responsible for the messaging and voice telephony functionality.

• By mediating all the key strokes’ scan codes, the Reference Monitor checks if one of the

monitored keys are pressed. Depending upon this the next stage is activated. All other key

strokes are ignored.

• If the SEND button is pressed, then the Reference Monitor looks for a pattern in the

IPC communication between QPE, Qtmail and Message Server. These three components

collaborate together in constructing and sending the message to the GSM engine. The
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IPC pattern consists of AF UNIX send and receive system calls on the named socket

/tmp/qtembedded−0/QtEmbedded−0. For each send and receive from these components,

a bit in a bit mask is flipped. This bitmask is a local variable to the reference monitor. A

timer is started when QPE sends a message to Qtmail, since this is the beginning of the

procedure to form an SMS. The timer is set to go off after 1 second. At the end of this

second, the Reference Monitor checks for the final value of the bit mask. If this mask has

an expected value then the Reference Monitor concludes that the SEND key was pressed

by the user for sending an SMS. Since the Reference Monitor has also checked that the inter

communicating processes are authenticated, it is able to conclude that the user legitimately

intended to send this SMS. After this the Reference Monitor opens up the TX path in the

GSM port of the serial driver. Here a couple of things can arise:

– The Reference Monitor incorrectly concludes that one of the monitored keys is pressed:

This may happen since the Openmoko device has a touchscreen, each button on the

screen is defined by [x, y] co-ordinates. Moreover a button spans a range of [x, y]

co-ordinates. These co-ordinates may have different semantics which depends on the

application. eg. The co-ordinates for the SEND button on the Qtmail application

screen, may represent a different button, or action for the Mediaserver’s applications

like Mediaplayer. In this case, the ensuing IPC communication will differ from that

of the signature and the Reference Monitor will not flip the bits in the bitmasks.

– The Reference Monitor incorrectly concludes the key press events and starts the timers:

This may happen when the screen co-ordinates for the keys have different semantics

as above and the IPC communication matches the expected pattern at the start. The

match could occur because we start the timer upon the first IPC send or receive over

the socket specified in the signature. In this case the timer will go off, but upon expiry

the bitmask will have a different value at the end, because the later part of the IPC

will not match as expected. The Reference Monitor reverts back to the initial state.

The basis for correctness of this approach is that when legitimate applications communicate

over the named socket for constructing and sending an SMS, there is a unique pattern of

IPC communication, so the Reference Monitor is able to guarantee that a message is on

the way when it observes the pattern and gets the expected value in the bitmask.
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For all other cases, when the Reference Monitor doesn’t grant permission to send the

SMS, the TX path in the serial driver has a hook where the Reference Monitor parses the

outgoing AT commands. When there is no permission, the Reference Monitor garbles up

the outgoing AT+CMGS command, thus denying the SMS.

Similarly for the audio attack vector, there is a unique IPC communication pattern between

QPE and the Media Server over the named socket /tmp/qt-embedded/valuespace applayer.

When the CALL key is pressed, the Reference Monitor observes this IPC pattern and flips

bit respectively. A similar timer as in the case for SMS, is triggered when QPE sends an IPC

message to Media Server. Upon expiry of this timer, the value of the bitmask is compared.

If it has the expected value, then the Reference Monitor concludes that a user intends to

make a call and turns the microphone ON . During the duration of this call, the reference

monitor locks the audio configuration path from the userspace. The IOCTL function in the

audio subsystem has a hook, where the reference monitor denies any further configuration

of the audio chip while the call is in progress. When the END CALL key is pressed, the

Reference Monitor switches the microphone OFF after monitoring for the expected IPC

pattern and the occurrence of an AT +CHLD command in the data buffer. In this manner

the Reference Monitor is able to prevent malware from interfering with an ongoing call and

also prevents it from capturing ambient sounds without the users knowledge.

5.5 Reference Monitor State Machine

The description of the Reference Monitor operations described above can be summarized with a

State Machine as shown in figure 5.5.

5.5.1 States

• State INT: This is the Start state of the machine, where the Reference Monitor is just

parsing the Input key events. The set of key scan codes to be monitored is dependent

upon the signature. When either of these key presses are detected, the Reference Monitor

transitions to the IPC State.

• State IPC: This is where the Reference Monitor begins to monitor the ensuing IPC com-
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Figure 5.3. State Machine

munication between processes after a specific key press event. In this state, it also checks

if the communication is being performed over a signature specified named socket and the

communicating peer processes are authenticated. If they are authentic, then it proceeds to

either the T1 or T2 States.

• State T1: Here, the Reference Monitor detects there was an IPC Send operation from Qpe

to Qtmail (Qpe w−→ Qtmail). This is an indication that there could be a process to form

an outgoing SMS. Then the SMS timer is set off. After this timer expires, the Reference

Monitor checks the value of the bit mask which indicates how many IPC operations specified

in the signature were performed. If the value of this mask is as expected and the Reference

Monitor gets an AT + CMGS command in the data buffer of the GSM serial driver, then

the GSM TX is unlocked and the SMS is let though the GSM engine in STATE MSG.

• State T2: Here the Reference Monitor detects there was an IPC Send operation from

QPE to Mediaserver (Qpe w−→ Mediaserver). This signifies that an outgoing GSM call

could be in progress. The Call timer is set off. After this timer expires, the Reference

Monitor checks the value of the bit mask as in the case of State T1 and if the expected
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value is found, then checks if the AT + CHLD = 1 command is found in the data buffer

of the GSM serial driver. If this command is found, then it signifies an end of call, so the

Reference Monitor switches the microphone OFF, else it is turned ON.

5.5.2 Reverse Edges

The dashed back arrows in the State Machine figure 5.5 are explained here.

• INT → INT:

This means the Reference Monitor has not encountered any key press events for the ones

it is monitoring.

• IPC → INT:

This could happen when :-

– The Reference Monitor falsely recognized a key press event. This case is explained the

Authorization Module section.

– When unauthenticated entities tried to communicate over that socket.

– When authenticated entities sent data over some other socket than the one specified

in the signature.

• T1 → INT: Here the Reference Monitor started the SMS timer, but the ensuing IPC

transactions didn’t match with the signature.

• T2 → INT: Here the Reference Monitor started the Call timer, but the ensuing IPC

transactions didn’t match with the signature.

5.6 Reference Monitor Assessment

By definition [40] a Reference Monitor defines the necessary and sufficient properties of any system

that securely enforces a mandatory protection system, consisting of the following guarantees.

• Complete Mediation: The system ensures that its access enforcement mechanism me-

diates all security sensitive operations.
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• Tamperproof: The system ensures that its access enforcement mechanism, including its

protection system, cannot be modified by untrusted processes.

• Verifiable: The access enforcement mechanism, including its protection system, ”must be

small enough to subject to analysis and tests, the completeness of which can be assured”.

Using this definition, we assess the implementation using the assessment criteria question

given in the book by Jaeger et al. [40]. The definitions in the book are designed around the

Mandatory Access Control implementations. However, our implementation is slightly different

since, we do not define any specific labels, objects or subjects. But, their questions can still be

used as guiding points for analyses.

5.6.1 Complete Mediation

• How does the Reference Monitor interface ensure that all security sensitive operations are

mediated correctly ?

In this context, the security sensitive operations are those that are related to sending an

SMS or making a GSM call. So, we need to make sure that the Reference Monitor mediates

all the possible interfaces through which the hardware devices can be controlled. As men-

tioned in the Reference Monitor interfaces section, the GSM hardware, Audio hardware

and Touchscreen hardware are exported as device nodes to userspace programs. Accessing

these device nodes results in mode-switching into the kernel where the respective device

drivers perform the functions as requested. The Reference Monitor implementation here,

has hooks in all these drivers to mediate all accesses to the hardware and the data flow

occurring at those instants. For device access, the only way applications can access them

directly is through these device nodes. The kernel is assumed to be free of rootkits and the

access to kernel memory is denied by disabling the /dev/kmem node. This ensures that

applications cannot alter the control flow of the kernel or use alternate means to access

or interfere with device access. The program loader in the kernel is the only way for an

application to begin execution. Therefore the do exec system call is a mandatory call for

an application to get a CPU timeshare. This ensures that the Reference Monitor is able to

mediate all applications being loaded into the system.

• Does the Reference Monitor interface mediate security sensitive operations on all system
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resources ?

Examples of system resources are, files, network interfaces, hardware interfaces and memory

interfaces. In the current implementation, we do not mediate all system resources. Only

the ones that are relevant to the attack prevention are mediated. eg. We do not mediate

file system access or network access. However, by not mediating all system resources, the

effectiveness of the Reference Monitor is not compromised, since all the security sensitive

operations relevant to the attack prevention are mediated, as explained above. So, even

if malware alters files on disk, the Reference Monitor Authorization Module is able to

detect changes like masquerading. For network access, currently this implementation does

not mediate access, but it will be necessary to add the required hooks to the network

subsystem in order to prevent cross-service attacks where malware spreads through these

interfaces.

5.6.2 Tamperproof

• How does the system protect the Reference Monitor, including its protection system, from

modification ?

Here, the protection system consists of the Reference Monitor code which contains the

signatures and timers for preventing the attacks. In theory, the protection system consists

of a protection state where subjects and objects are represented by lables and the state

defines the operations on them. It also consists of a labeling state and a transition state

which define the mapping of objects and subjects to labels and their transitions during the

flow of control in the system. But for this implementation, we do not define any labels.

So, the definition of protection system changes for our purposes. The critical parts of the

Reference Monitor which contain the signatures, digests for application authentication and

the timers for IPC monitoring are protected from modification since they are entirely in

the kernel space and are inaccessible to any userspace applications.

• Does the system’s protection system protect the trusted computing base programs ?

In our case, the trusted computing base consists of only the operating system and the

bootloader. The protection system does not protect the booloader, since it comes up only

after the kernel boots.
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5.6.3 Verifiability

• What is the basis for the correctness of the system’s trusted computing base ? The boot-

loader and the operating system used for this implementation are completely open source.

So, the correctness of their implementation is based on the extensive review process pro-

vided by the testers and kernel hackers around the world. Since only such reviewed code

makes it to the final release of the kernel after a three week review window, the chances of

coding bugs are minimal. The verifiability of the Reference Monitor code can be justified

on the basis of its simplicity in terms of lines of code. As shown in the Appendix section,

the total lines of code added to the kernel is only around 780. The compactness of this

implementation makes it easier to review for errors and loopholes.



Chapter 6
Results

This section explains all the overheads added by the Reference Monitor interfaces. The instru-

mentation was performed completely in the kernel of the Openmoko device. The hardware of the

device consists of a Samsung S3c2410 ARM9 core running at 266MHz, with 128MB SDRAM,

64MB NAND Flash. The Linux kernel version on the device was 2.6.24 with modifications to

add the Reference Monitor core and its interface hooks. The Appendix section shows a diff of

the files that were affected.

The timing was gathered using the Linux Kernel Time API that is commonly used to calculate

process startup times. The Struct timespec contains variables for seconds and nanoseconds.

The API do posix clock monotonic gettime(&timespec), fills up the timespec structure with

the values of seconds and nanoseconds since epoch. The pseudocode to profile a function call is

as follows:

struct timespec delta, before, after;

do_posix_clock_monotonic_gettime(&before);

call_funtion();

do_posix_clock_monotonic_gettime(&after);

delta = timespec_sub(after, before);

printk( delta.tv_sec, (delta.tv_nsec / NANOSEC_PER_SEC /1000))

The tv nsec can be divided appropriately to get values in µs or ms.
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6.1 Application Text Segment Sizes

Since the Reference Monitor only calculates the hashes of the TEXT segment of the critical

applications, the following table lists the sizes as stored in the respective Process Control Blocks

of the applications.

Application Size (KB)
QPE 176
MediaServer 192
MessageServer 596
Qtmail 28

Table 6.1. Applications TEXT Segment Sizes

6.2 Application Load Time

The Reference Monitor affects the load time of only a select few applications. These applications

for the Qtopia stack are QPE, Qtmail, MessageServer and Mediaserver. These applications

collectively perform all the critical functionality of the telephony stack as explained earlier. All

the other applications being loaded in the system are not considered by the Reference Monitor.

Since do execv is the system call to load the application into main memory for the Linux

kernel, the table shown below shows the overheads for this call with and without the Reference

Monitor.

Application Time
With RefMon (ms) Without Refmon (ms)

QPE 374 2
MediaServer 210 78
MessageServer 561 66
Qtmail 40 10

Table 6.2. Application Load Overheads

The time taken for these applications to load through the Reference Monitor interface may

seem very high. But this is because it scans through the whole TEXT segment of the application,

calculates an md5 hash and then compares this hash with a pre-stored digest that was computed

in the training run phase. This scan may include a page table walk to fetch the respective pages

into memory. However, this is only a one-time overhead, since the Reference Monitor sets a bit
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in that applications PCB after comparing the hashes to signify whether the application has been

authenticated. This bit is then checked during the IPC transactions thus avoiding re-calcuation

of the hashes.

6.3 Training Run Time

For the training run, the Reference Monitor uses the same logic to calculate the hash of the

running applications, but stores the hashes into a file, so that the trusted user may then statically

link these digests with the kernel for run-time usages. The overheads for this procedure are shown

below.

Application Time (ms)
QPE 375
MediaServer 185
MessageServer 816
Qtmail 43

Table 6.3. Training Run Overheads

The overheads here include a file WRITE operation to store the digest in the file on the flash

device. After the training phase, the trusted user can then include these digests as static arrays

into the Reference Monitor.

6.4 Input Event Overheads

The Reference Monitor parses the scan code of specific keys such as the SEND, CALL, ENDCALL

keys. The overheads to check if these keys are pressed is shown in table 6.4.

Key Time (µs)
SEND 1.0
CALL 1.1
ENDCALL 1.1

Table 6.4. Input Event Overheads

For the OpenMoko device, the touchscreen hardware produces screen co-ordinates which then

map to scan codes. So, for every Key Press event, it generates several values as displayed below:
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{type: 3, code: 0, value: 276}

{type: 3, code: 1, value: 222}

{type: 1, code: 330, value: 1}

{type: 3, code: 24, value: 1}

{type: 0, code: 0, value: 0}

{type: 3, code: 0, value: 267}

{type: 3, code: 1, value: 232}

{type: 0, code: 0, value: 0}

{type: 3, code: 0, value: 269}

Here, code : 0 signifies the ′X ′ co-ordinate and code : 1 signifies the ′Y ′ co-ordinate. The

value contains the co-ordinate value. The type : 3 value is of relevance to the application that

has registered to listen to these events. These prints are made by the kernel just before sending

them to the userspace application.

Hence the Reference Monitor deciphers the keys according to the range of co-ordinates for

each button.

6.5 IPC Overheads

The Reference Monitor monitors each IPC Send and Receive operation over the AF UNIX sock-

ets. However, it only mediates IPC operations over specific sockets and specific processes de-

pending upon the signature.

With RefMon(µs)
Send Receive

No Key Press 1.0 1.0
Not Authenticated 1.0 1.0
Authenticated 20 17

Table 6.5. IPC Overheads

Also, the time taken by the IPC operation depends upon the data being transfered between

the two processes. This varies for every run. Hence the results shown in table 6.5 show the

average time over 5 runs of sending an SMS and making a GSM call.

For each IPC operation, first the Reference Monitor checks to see if any of the monitored
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keys was pressed. If not it simply returns, because that IPC operation was not triggered as a

result of a hardware interrupt. Similarly, it then checks if the application that initiated the IPC

operation was authenticated previously. If not, then it returns. This ends up preventing malware

from sending an SMS or modifying the microphone state as explained by the signatures. If the

application is authentic, then it checks which application sent or received data and on which

socket. Accordingly it decides which timer to trigger as per the signature. The cases shown in

table 6.5 show that the Reference Monitor takes on average 20µs more while trying to prevent

malware activity and negligible overhead for all other cases.



Chapter 7
Conclusion

The framework described in this thesis shows a simple low overhead specification based intrusion

prevention approach. The results section shows that the major overheads are only during the

application startup. Since this is only a one-time overhead, it does not affect the usability of the

device. The other overheads during the key scan code parsing, IPC monitoring and data buffer

manipulation are minimal. The main motivation for using the specification based approach

was due to the simplicity of the overall system as compared to the desktop. Since the mobile

device always comes with one stack to implement the device functionality, the applications to be

monitored for correctness are simple and few in number. This makes the specifications simple

to describe and implement. Machine learning techniques used by anomaly detection approaches

impose a greater overhead on the systems resources and have higher false positives. Misuse

detection approaches also require a large amount of attack signatures and have a higher run-time

monitoring overhead. Mandatory Access Control solutions require vast amounts of policies for

enforcing correct program behavior and therefore have higher chance of weak security due to

imprecise or insufficient policies. Our design has no false positives, has negligible overhead on

the system and is flexible enough for adapting to various forms of telephony stacks.

Here we discuss some of the weaknesses and counter attacks of the described framework.

• We do not consider the integrity of the outgoing messages. So, malware could exploit a

vulnerability of the messaging thread in userspace and piggy-back malicious data along

with an outgoing message. In this case, the Reference Monitor will not be able to detect
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such a tampered message, but still let it through since the message was initiated through

the SEND key interrupt and followed by the IPC pattern according to the signature.

We think this is a challenging research problem using our framework. Some options to

prevent this, would be to monitor each key scan code while forming the message in order

to decipher what message was typed by the user. Then the Reference Monitor could parse

the outgoing message data buffer to check if those letters are present. However, this would

impose much higher overheads during parsing. Also, the data buffer may be encrypted by

the message server, in which case, the Reference Monitor will not be able to decipher the

contents. In such cases, we might need to trust the message server to protect the integrity

of the message.

• If the application’s IPC interaction is similar for more than one case, then we need to

monitor for a stronger IPC pattern to uniquely identify the applications. eg. Consider that

the signature for making a CALL and Recording audio contains the same IPC pattern. Since

these two events are actually different, they should be uniquely identified by the Reference

Monitor. They could have the same IPC pattern if they involve the same components

in userspace to provide their functionality. eg. the CALL application and the Recording

application could both use QPE and Mediaserver.In these cases, we need to monitor for

other events caused in the system by these applications. eg. For the CALL application, we

monitor for an outgoing AT + CNUM command in the GSM serial data buffer to signify

the callee’s number. In other circumstances we could include other named sockets or pipes

involved in the IPC.

• If the malware uses WiFi or BT for spreading, the Reference Monitor needs hooks in the

Network stacks. The Openmoko device Neo1973 does not have a WiFi chip and the Qtopia

Stack with the BT chip did not work during this research. However, we think, the current

framework can be extended in the following way. For BT, it is necessary to scan for devices

and then pair with the peer device before transferring a file. These system events could

form the signature in the Reference Monitor. The trigger for setting up a BT transfer can

be a key press event as is the case with other events. The key scan codes would be for

instance, the transfer file button in the file manager application. After this the Reference

Monitor would look for the key presses and BT commands to scan for devices and pair with
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devices. If all these events are triggered by key press interrupts in that particular order,

the Reference Monitor can allow the BT transfer, else deny it.

For WiFi, the Reference Monitor could monitor for events that occur before sending data

out of the network interface. However, this may work only for file transfer activity. If for

instance, the user is browsing the internet over WiFi, it will be harder to define a signature.

This is another challenging research problem.



Appendix A
Code Fragments

A.1 TEXT Segment Hashing

This snippet of code shows the API involved in finding the TEXT segment of the process and

generating a md5 hash.

char *is_qpe = "/opt/Trolltech/Qtopia/bin/qpe";

char *is_mesg = "/opt/Trolltech/Qtopia/bin/messageserver";

char *is_media = "/opt/Trolltech/Qtopia/bin/mediaserver";

char *is_qtmail = "qtmail"; //This one comes from PRCTL

struct scatterlist sg[1];

..

struct crypto_hash *tfm;

struct hash_desc desc;

char qpe_digest[] = {0x5b,0xe4,0x63,0x32,0x97,0x99,0x8,0xaa,

0xa6,0xa3,0x35,0x46,0xd9,0xb2,0x8f,0x70};

char msg_digest[] = {0x33,0xe0,0xac,0x17,0xa7,0x20,0x1e,0x89,

0xcb,0xb3,0x96,0x8f,0x43,0x19,0x19,0xa3};

char qtmail_digest[] = {0xaf,0xe,0x72,0x67,0xcd,0xc8,0x12,0x76,

0x6f,0x56,0x81,0xd8,0x98,0x75,0x78,0x1d};

char media_digest[] = {0x54,0x57,0x69,0xc3,0x8,0x7b,0x1b,0xdf,
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0x13,0x68,0x14,0x4,0xd6,0x86,0x2e,0x56};

unsigned int start_code, end_code, code_diff;

//Get Application Name

if(strncmp(is_qpe, filename, 29) == 0) {

printk("%s\n", filename);

digest = qpe_digest;

qpe_pid = current->pid;

}

else if(strncmp(is_mesg, filename, 39) == 0) {

printk("%s\n", filename);

digest = msg_digest;

message_server_pid = current->pid;

}

else if(strncmp(is_qtmail, filename, 6) == 0) {

printk("%s\n", filename);

digest = qtmail_digest;

qtmail_pid = current->pid;

}

else if(strncmp(is_media, filename, 37) ==0) {

printk("%s\n", filename);

digest = media_digest;

mediaserver_pid = current->pid;

}

else

return;

//Begin Code page hash

start_code = current->mm->start_code;

end_code = current->mm->end_code;

code_diff = end_code - start_code;
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kbuff = kmalloc(code_diff, GFP_KERNEL);

//Get TEXT Segment

len = access_process_vm(current, current->mm->start_code, kbuff,

code_diff, 0);

tfm = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);

desc.tfm = tfm;

desc.flags = 0;

result_buff = kmalloc(16, GFP_KERNEL);

memset(result_buff, 0, 16);

//Alloc one Scatter-Gather List

sg_init_one(&sg[0], kbuff, len);

//Compute Hash

ret = crypto_hash_digest(&desc, sg, len, result_buff);

hash_len = crypto_hash_digestsize(tfm);

if(memcmp(result_buff, digest,

hash_len) == 0) {

printk("Authenticated: %s: %d\n", current->comm,

current->pid);

current->is_authentic = 1;

}

else {

printk("Failed to authenticate: %s: %d\n", current->comm,

current->pid);

current->is_authentic = 0;

}



Appendix B
Files Affected

B.1 Git Diff

This shows the number of lines changed and files affected in the Linux kernel.

From bee1cc85dd25d7c68ac66a9390dbecdd33ca1a37 Mon Sep 17 00:00:00 2001

From: root <root@ashbert-laptop.(none)>

Date: Thu, 26 Feb 2009 11:25:33 -0500

Subject: [PATCH] Ashwin Chaugule

avc114@cse.psu.edu

Kernel Refmon for Mobile Malware prevention

modified: drivers/input/evdev.c

modified: drivers/serial/s3c2410.c

modified: drivers/serial/serial_core.c

modified: fs/exec.c

modified: include/linux/sched.h

modified: include/sound/soc.h

modified: kernel/Makefile

new file: kernel/refmon.c

modified: kernel/sys.c
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modified: net/unix/af_unix.c

---

drivers/input/evdev.c | 8 +

drivers/serial/s3c2410.c | 7 +

drivers/serial/serial_core.c | 7 +-

fs/exec.c | 13 +

include/linux/sched.h | 4 +

include/sound/soc.h | 7 +-

kernel/Makefile | 2 +-

kernel/refmon.c | 718 ++++++++++++++++++++++++++++++++++++++++++

kernel/sys.c | 11 +

net/unix/af_unix.c | 10 +

10 files changed, 784 insertions(+), 3 deletions(-)

create mode 100644 kernel/refmon.c
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