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ABSTRACT 

 

We studied several neural network architectures for predicting whether a patient will 

convert to Alzheimer's disease after being initially diagnosed with Mild Cognitive Impairment. 

The first architecture to be studied was what we call a Localized Neuron Architecture which tries 

to learn the non-linear relationship between the brain atrophy and the age of the patient. Next, we 

studied how good the performance is when using a standard multilayer perceptron architecture. 

We used the brain scan data of the first visit only since the prediction is prognostic. Furthermore, 

we observed how including the age of the patient when the base line scan was taken would 

impact the performance. On a previous study based on this data, a support vector machine 

(SVM) was used to predict conversion. Here, we are using a neural network in place of an SVM. 

Also, we are trying to predict when the conversion will happen. The challenge is to train a neural 

network of the correct size and correct structure such that the error in predicting conversion and 

the standard deviation in the prediction of time at which conversion takes place are minimal. 
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CHAPTER 1 

 INTRODUCTION 

 Alzheimer’s disease (AD) is the most common form of dementia which is usually seen in 

people whose age is 65 and above. The disease has no cure and is almost always terminal. The 

course of the disease follows a unique path for every individual and hence it is very difficult to 

predict. In most cases the symptoms can be mistaken as problems due to old age. The transitional 

state between normal aging and Alzheimer’s is commonly referred to as Mild Cognitive 

Impairment (MCI). But, there is no unanimous opinion on whether MCI patients truly convert to 

AD. Even though there is no consensus on the conversion, many of the past works have used 

such a definition (Davatzikos et al., 2010; Chou et al., 2009; Misra et al., 2009). The reason for 

using such a definition is to design models which will help in predicting how the disease 

progresses and to identify early disease biomarkers. 

Alzheimer’s disease Neuro-imaging Initiative (ADNI) [Ref. 1] is established to define the 

progress rate of MCI and AD. Their main aim is to develop better methods for clinical trials and 

to provide a bigger database for aiding design of treatment trials. MRI scans of the volunteers are 

taken every six to twelve months for a period of approximately 3 years. A database is formed 

from their brain scan information, age and clinical scores such as CDR and MMSE (explained 

below). 

1.1 Past Approaches 

 Prior works in this area have used either the Clinical Dementia Rating (CDR) or the 

Mini-Mental State Examination (MMSE) scores (Misra et al., 2009; Davatzikos et al., 2010; 

Wang et al., 2010). The problem with such an approach can be understood by looking at how the 
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scores are obtained. For example, CDR
14

 scores are obtained by evaluating the performance of 

the patients in six areas: memory, orientation, judgment & problem solving, community affairs, 

home & hobbies, and personal care. Scores in each of these are combined to obtain a composite 

score ranging from 0 to 3. The higher the score the more pronounced the dementia, with 0 being 

no dementia and 3 being severe dementia. Similarly, the MMSE scores (Folstein et al., 1975) are 

also derived from interviews with the patients. 

 The main problem with the past approaches is that they use these CDR / MMSE scores to 

define the ground truth ignoring the information present in the MRI scan of the patient. There are 

other concerns with using CDR/ MMSE also. For example, the CDR scores usually do not 

change very much from the baseline score for most patients (whether they have AD or MCI). 

This makes the data set biased towards non-converters and eventually makes it difficult to design 

an accurate classifier. The problem of predicting whether a patient converts from MCI to AD 

using the brain scan information is not extensively studied. Even though (Wang et al., 2010) 

worked on predicting future MMSE scores from the baseline scans that was not the main focus 

of the paper – they focused on predicting the current score. 

1.1.1 Trajectory based Approach 

 This thesis extends the work by (Aksu et al., 2011) which used basically two things 

available from the ADNI database. 

1) Brain scan image  

2) Labeled examples saying whether a patient is AD or Control.  

It is important to note that the problem of identifying converters from non-converters 

falls neither under supervised learning nor unsupervised learning. This is because we do not have 
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labeled examples for converters and non-converters. Rather, we have the labeled examples only 

for AD or Control. 

Given this data, (Aksu et al., 2011) built an accurate image-based linear kernel based 

SVM classifier to predict whether a patient is AD or control. The classification accuracy was 

approximately 91%. The examples were labeled using the CDR scores which ranged from 0 to 3. 

But the authors made sure that they only used patients whose scores equaled 0 (Control) and 

those whose scores are more than 1 (AD) for training and test purposes. This classifier was then 

applied to a population of MCI patients and they observed which side of the classifier the 

patients fell into for each visit. The classifier, apart from the binary decision of AD or Control, 

gives a numerical output called the “score” for each visit, which tells how far the patient is from 

the classifier boundary. Based on these scores, they defined converters as those who went to the 

AD side from the control side or those who stayed on the AD side throughout all the visits and 

non-converters as those who stayed on the control side during all the visits. The ground truth for 

a patient being a converter or a non-converter is thus established.  

Next, the authors built another linear-kernel based SVM classifier which took as its input 

the baseline image (first visit MRI scan) and tries to predict if the patient is classified as a 

Converter or Non-converter by the first classifier. The second SVM classifier was trained and 

tested using the data and provided cross-validation (CV) generalization accuracy as high as 83% 

when they did a voxel-based (nearly 11,000 features) classification. For the region based 

classification (100 features), the accuracy obtained was as only high as 77% (D.J. Miller, 2011).  

(Schuff et al., 2010) conducted experiments on how the brain-atrophy is related to age of 

the patients. Their results show that the brain region volumes are non-linear functions of age with 

each region volume having a different non-linear independence. So, the authors (Aksu et al., 
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2011) also built nonlinear-kernel (Gaussian-kernel) SVMs to consider the non-linear dependence 

on age. The AD-Control classifier had an accuracy of 90% and the second classifier accuracy 

was as high as 71%. 

One could also identify converters and non-converters by their CDR scores (by a suitably 

defined SVM). In fact, the authors (Aksu et al., 2011) studied how such a definition would 

compare against their by-trajectory definition. The overall accuracy in prediction when using by-

CDR definition was only 56% for the best case. They noticed that nearly 66% of the patients 

classified as non-converters by the by-CDR definition were classified as converters when using 

the by-trajectory definition.  

In this thesis, we are trying to extend the work to see if the prediction accuracy could be 

improved by using a neural network instead of the second SVM used previously. Apart from 

that, we are also trying to predict when the actual conversion will happen. Instead of trying to 

predict whether a patient is converter or non-converter directly, here we trained the network to 

predict the scores given out by the first SVM classifier. This was done by giving the 100 features 

(region-based) and the age of the patient during the baseline scan and the delta-age at which the 

score was obtained. Section 3.2 explains how this delta-age input is obtained from the age 

information present in the ADNI Database. 

1.2 DATA 

We have the data for a total of 303 patients. For each patient, we may have the data for a 

maximum of six visits. Each data point, if available, will have the volume information for 100 

brain regions along with the age of the patient for that visit and the AD-control SVM's output for 

each visit which we call the score. The score will indicate whether a patient has Alzheimer's or 
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not. Also, the duration between visits for different patients is different. Some patients will have 

more number of visits than others. On an average, we have 3 sets of data for each patient. We 

have not used all the data present. That is, even though we have the brain scan data for all the 

visits, we have used the brain scan information of the first visit data only (at least  in our initial 

experiments) to train the neural network along with the age information of that visit and other 

visits of the patient. Only with such a network will we be able to do a prognosis on the 

conversion. We call a patient a converter if he/she was on the control side at the first visit and in 

one of the later visits moves to the AD side or if they are on the AD side during all the visits. 

Out of the 303 patients, small amounts (~5%) of the patients are considered outliers. This 

is because their scores go from the AD side to the control side. Removing the outliers, we had a 

total of 287 patients. Based on the by-trajectory definition used in (Aksu et al., 2011), we have in 

total 176 converters and 111 Non-converters.  

1.3 THE NETWORK  

As mentioned already, we use the age of the patient during the first visit and delta-age 

information as additional network inputs. With these inputs, we can use the scores at all the visits 

to train the network. The next step is identifying the structure of the network and size of the 

network.  

Due to (Schuff et al., 2010), we believed that a neural network which has 100 neurons 

(one for each feature) in the input layer, possibly followed by a hidden layer whose size should 

be determined, followed by an output layer with one neuron should be able to model the data 

well. Each neuron in the input layer will be fed with a feature (volume of one of the brain 

regions), age of the patient during the first visit and delta-age for the target output. Having a non-
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linear transfer function for the neurons in the first layer will help the network learn the 

relationship between the brain volume and age. Furthermore, the age input is given to make the 

network aware of “when” the MRI scan was taken. We studied how the network behaved with 

and without the age input. 

  



7 
 

CHAPTER 2 

REVIEW OF MULTI-LAYER PERCEPTRONS 

2.1 Introduction to (Artificial) Neural Networks 

 Artificial Neural Networks (ANNs) are composed of series of interconnected neurons 

arranged in layers. They are primarily used in two applications: 

1. Classification 

2. Regression 

We are concerned about regression in this thesis. The network parameters are adapted based on 

the input given to it and the associated output. 

2.2 Neuron 

 An Artificial Neuron (hereafter called simply a neuron) is a mathematical model of a 

biological neuron. They are the basic elements of any Artificial Neural Network. The block 

diagram of Figure 1.1 shows the model of a neuron. As can be seen from the figure, there are 

three main elements in the model. 

1. Synapses 

2. An Adder 

3. An Activation Function 
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Figure 2.1: An Artificial Neuron 

2.2.1 Synapses 

 In the brain, synapses are the connections between biological neurons. In ANNs, we 

model synapses using weights. The weights along with the choice of the activation function 

decide when a neuron will be activated. Apart from the weights, we may also have biases (not 

shown in figure) for each neuron. The bias term helps in making affine transformations to the 

data. The weights and biases can take positive as well as negative values. 

2.2.2 Adder 

 An adder simply computes the weighted sum of the all the inputs where the weights are 

the values of different synapses. 
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2.2.3 Activation Function 

 Activation function of the neurons decides how expressive the network can be in learning 

the data. It helps in limiting the magnitude of the output of a neuron. There are three basic types 

of Activation Functions: 

1. Threshold Function 

2. Linear Activation Function 

3. Non-Linear Activation Function. 

2.2.3.1 Threshold Function 

 A threshold function is an ordinary step function whose output is 1 if the input is more 

than 0 and 0 otherwise. A neuron with such an activation function is commonly known as the 

McCulloch-Pitts model. 

2.2.3.2 Linear Activation Function 

 In this case, the output of a neuron is just a linear combination of the inputs plus the bias 

term. Usually, this type of activation function is used in the output layer where we need a wide 

range. With a linear transfer function, the output of the neuron can take any value. 

2.2.3.3 Non-linear Activation Function 

 In this case, the output of a neuron is a non-linear function of the inputs. A commonly 

used non-linear activation function is a sigmoid whose shape is shown in the figure below. The 

main reason for using a non-linear function is because such a function has a clearly defined 

derivative, which will be useful when computing the weights of the network.  



10 
 

 

Figure 2.2: Sigmoid Function 

2.3 Learning 

 Generally artificial neural networks are basic input and output devices, with the neurons, 

as mentioned already, arranged in layers. For example, perceptrons consist of an input layer 

followed by a layer of output neurons with a layer of weights between them.  

 The data is given to the input layers which are then weighted and are in turn passed to the 

output layers. Based on the type of transfer function and the input presented to the output layer, it 

decides whether to fire a neuron or not. 

 The challenge now is to find the weights which minimize the error between the network 

output and the target output (Supervised Learning). This type of learning is also called as 

“learning with a teacher”. Conceptually, the teacher has the knowledge of the problem where 

knowledge is the set of input-output examples. The network has to be fed with the knowledge. 
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By using the target values for each output, the teacher is able tell the network how to react to 

such an input. This is called “training of the network”. First, the network weights are initialized 

to random values and then the inputs are passed through the network. The weights of the network 

are adjusted based on the error between the network output and the target value. Thus, the 

network learns about the data iteratively. Once the entire knowledge is transferred, we no longer 

need the teacher. The network would have learned enough to make its own decisions on inputs it 

has not seen before. The most commonly used method for minimizing the error is Gradient 

Descent. Gradient Descent is an optimization algorithm used to find the local minimum of a 

function. It is not guaranteed that we will find the global minimum unless the function has only 

one minimum. By running the algorithms several times with random starting points, we can try 

to ensure that we reach a minimum close to the global minimum. 

2.4 Multilayer Perceptrons 

 The problem with perceptrons is its expressive power. It can only be used to solve 

problems which are linearly separable. And most of the real-life problems are in fact not linearly 

separable. This is where Multi-layer Perceptrons (MLPs) come in. MLPs consist of an input 

layer, one or more hidden layer of neurons followed by an output layer of neurons. It can be 

easily proven that an MLP with a single hidden layer can approximate any function provided it 

has enough number of hidden neurons (Ref. 4). 

2.5 Back propagation Algorithm 

 The back propagation algorithm is one of the most commonly used methods for training 

an ANN. It requires that we know the target output value for any given input (Supervised 

Learning). Also, it requires that the activation function used is differentiable. So, we cannot have 
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a step function as activation function. We could still have either a linear or a non-linear transfer 

function. 

 There are two steps in training a network using back propagation algorithm: 

1. Forward Pass 

2. Backward Pass 

2.5.1 Forward Pass 

 In this step, the input is given to the network and based on the weights and biases of the 

network, the output is calculated. Here the input is allowed to propagate through the network in 

the forward direction. 

2.5.2 Backward Pass 

 In this step, the errors are computed starting from the output layer and then going back 

layer by layer and the weights are updated in each layer to minimize the errors. Since the errors 

are propagated starting from the output and going back, this step is called backward pass. A 

detailed explanation of how the algorithm works can be found in [6]. 

2.6 Model Order Selection 

 One of the biggest problems in designing a neural network is in choosing the size of the 

hidden layer. The hidden layer is a layer of neurons which are neither the input nor the output 

layer and are called so because they are hidden from the user’s view point. Having a large 

number of neurons in the hidden layer may result in over-fitting of the data. The effect is that the 

network memorizes the data and may be useless when presented with an unseen data. On the 

other hand, having less number of neurons may mean that the network will not have the 
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complexity to properly learn the data. In most cases, the ideal model order is selected 

heuristically.  
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CHAPTER 3 

EXPERIMENTAL METHODS 

3.1 Data pre-processing 

 As mentioned already, we had the data for 287 patients. If the score starts out positive 

and then goes negative or if it stays negative throughout, we say that the patient is a converter, 

meaning he/she has gone from having Mild Cognitive Impairment (MCI) to AD. The patients 

whose score never goes below the threshold, we call them Non-converters. There is also a third 

category, patients who start in the AD side and then go to the control side. We have a very few of 

those (5%) and they are considered outliers and we leave those patients from the data set. There 

are two ways of classifying patients as converters or non-converters. One is based on the raw 

scores and other is by fitting a line to the data and then using that line to classify. The raw scores 

as such are quite noisy as seen from the diagram below (Figure 2.1). Figure 2.2 shows how the 

same data look like when fitted using a line. Once the line fitting is done, we use the line to 

predict the score for the sixth visit by extrapolating. Similarly, one could fit a line to the output 

of the network before making a decision on whether the patient is a converter or not. The effects 

of using fitted scores vs. raw scores are summarized in section 4.3. All the results shown before 

that section are based on training the network using the fitted scores and testing it using raw 

scores. The reason for using this method is also explained in section 4.3. 
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Figure 3.1: Raw Score Trajectories vs. Age 

 

Figure 3.2: Fitted Score Trajectories vs. Age (Ground Truth) 
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3.2 Delta age input 

 As mentioned already, for each visit of a patient, we have the brain volume data for 100 

regions along with the patient’s age during that visit. For example, a sample data may look like 

what is present in Table 3.1. The delta-age values are calculated from the age value by making 

the first-visit delta-age equal to zero and by subtracting the first visit age value from the future 

visit values. In this example, visit 1 is the first visit for which we have the data. So, the delta-age 

for visit 1 is made 0 and the rest is obtained by subtracting 69.42 (first visit age) from the age 

during that visit. 

  Age Features Delta-Age 

Visit 1 69.42 100 x 1 Vector 0 

Visit 2 N/A N/A N/A 

Visit 3 70.44 100 x 1 Vector 1.02 

Visit 4 71.08 100 x 1 Vector 1.66 

Visit 5 N/A N/A 0 

Visit 6 72.42 100 x 1 Vector 3 

Table 3.1: Sample Data for a Patient 

3.3 Network Architectures 

 We started with neural network architecture where we have 100 neurons in the Input 

Layer with each neuron supplied with 3 Inputs:  

1. A unique feature from the brain scan data  

2. Age 

3. Delta-age 

Here, the features are extracted from the 1st visit data’s brain scan. Even though we have 

the brain volume information for the subsequent visits, we are not using them since the 

prediction is intended to be prognostic. We expected to see a non-linear relation between the 
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brain features and the age data. But, we did also try out a linear transfer function in the input 

layer. The second layer of the network had only one neuron and it is the output layer. We also 

experimented with the input structure. We left out age input and studied the performance.  

 The next architecture we studied is similar to the above architecture but with an extra 

hidden layer. We experimented with various values for number of neurons in the hidden layer.  

 After studying these architectures, we checked to see how well a standard MLP neural 

network model would work. We had three layers, an input layer, a hidden layer and an output 

layer. The hidden layer had a non-linear transfer function and the output layer had a linear 

transfer function. The reason for not trying a linear transfer function in the hidden layer is 

explained in chapter 4. The output layer had only one neuron. We gradually increased the 

number of neurons in the hidden layer and checked the performance. The input to the neural 

network is the 100 features, age and the delta age information with all the 102 inputs fed to all 

the neurons in the input layer. As before, we evaluated the performance by leaving out age.  

3.4 Training the Network 

 After removing the outliers, we had the data for 287 patients. Of these 287, we kept 143 

for training and validation purposes and the remaining 144 for the test set. Since the training may 

end early due to a local minimum, we had to train the network several times with random weight 

initialization each time. We trained the network 100 times for each architecture. The data split 

(training and test split) was same for each cycle but the training and validation split was random 

for each cycle. Also, the weight and bias initializations were random for each run. The 143 

patients in the training set is split into two sets again, one for training and the other is for the 

validation. The performance measure used for training the network is the mean squared error 
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(MSE). The weights and biases are initialized in two different ways. One is using Matlab’s 

default initnw function which uses the Nguyen-Widrow initialization algorithm (Ref. 8). The 

other method is initializing them using values randomly from the interval [-10
-5

, 10
-5

]. The 

second initialization method is chosen to make sure that we are not saturating the network by 

initializing the weights to a large value. 

3.4 Testing the Network 

 After the training is complete, the test inputs are passed through the network to obtain the 

network output. Here, we do not use MSE as performance measure since our goal is predicting 

the converters and non-converters correctly. We have two performance measures for the test set: 

1. Total accuracy in predicting converters and non-converters 

a. Converter Prediction Accuracy (A Measure of Sensitivity) 

b. Non-converter Prediction Accuracy (A Measure of Specificity) 

2. Standard deviation in predicting when conversion will happen. 

Here again, we could use either the raw scores or the fitted line for checking whether a 

patient is a converter or not. For the standard deviation, we have to use a fitted line to see where 

the line crosses the threshold. For simplicity, we will hereafter call the Converter Prediction 

Accuracy as Sensitivity and Non-Converter Prediction Accuracy as Specificity. 
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CHAPTER 4 

 MODEL DEVELOPMENT AND RESULTS 

 

As mentioned already, we first trained the network with a linear transfer function in the 

hidden layer. The problem with such a network can be understood by looking at the trajectories 

the network was predicting for the test set (Figure 4.1) and comparing it with Figure 3.2, the 

ground truth. Clearly, the linear transfer function makes all the trajectories follow a same 

whereas a non-linear transfer function tries to better estimate the ground truth behavior as can be 

seen from Figure 4.2. Even though it is not obvious, it is quite trivial to prove mathematically 

why the trajectories for all the patients follow the same slope in the linear transfer function case.  

                                  

   

   

                           

   

   

   

   

                 

   

   

   

   

    

                                                    

   

   

   

   

 

                                                           

                                                                    

                               

 Above equation clearly shows that in case of the linear transfer function in the hidden 

layer, the localized architecture and the standard MLP architecture are the same. This is the 

reason why we did not try a linear transfer function in the hidden layer with the standard MLP 

architecture. 
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Figure 4.1 Trajectories while using a Linear Transfer Function in the Hidden Layer 

Figure 4.2 Trajectories while using a Non-Linear Transfer Function in the Hidden Layer 

4.1 Localized Neuron Architecture 

 

 We started with localized neuron architecture with 1 or 2 hidden layers to see what 

transfer functions will work well in different layers. Also, we wanted to study how good the 

performance was when including age and/or delta age. With this, we experimented with all 
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possible combinations of transfer functions. Figure 4.3 shows a pictorial representation of how 

the first hidden layer looks like. 

 

Figure 4.3: Localized Architecture 

4.1.1 Localized Neuron Architecture (with one hidden layer) 

Tables 4.1 and 4.2 show the (average) performance of the best architectures when having 

just a single hidden layer. It was clear that having a non-linear transfer function in the hidden 

layer and a linear transfer function in the output layer worked well in terms of prediction 

accuracy as well as in terms of predicting the score trajectories. Surprisingly, having a linear 

transfer function in the input layer gave better prediction accuracy. But, the trajectories show that 

the linear network treats all patients as equals which we know is not true.  



22 
 

In the following table, a 3 in the type field indicates that the inputs age and delta-age 

were used in the network along with the features. 

Model Type Linear, Linear 

Non-Linear, 

Linear Linear, Linear,3 

Training MSE 1.1717 2.2982 1.7031 

Validation MSE 1.2552 2.2477 1.6468 

Test MSE 2.0309 2.3538 1.9634 

Total Accuracy (%) 74.1259 67.1329 67.8322 

Non-Converter Accuracy (%) 57.4815 40.2469 47.8458 

Converter Accuracy (%) 80.7865 84.1448 83.8340 

Table 4.1: Performance with a Validation Set (One Hidden Layer) 

4.1.2 Localized Neuron Architecture (With two hidden layers) 

Having evaluated the performances for the single hidden layer architecture, we tried a 

two hidden layer architecture taking into consideration the best network architectures in the 

previous step. Since, the output of the network can take any value, we settled for a linear transfer 

function in the output layer. The performances of the networks are shown in Tables 4.3 and 4.4. 

We randomly initialized the number of neurons in the 2
nd

 hidden layer to 18 and noted the 

performance. These experiments were done with only delta-age and volume information as 

inputs. 

 

Model 

Linear, Linear, 

Linear 

Non-Linear, 

Linear, Linear 

Non-Linear, Non-

Linear, Linear 

Training MSE 1.184 2.275 2.983 

Validation MSE 1.284 2.58 2.866 

Total Accuracy (%) 73.008 66.293 61.818 

Non-Converter Accuracy (%) 58.547 31.947 11.017 

Converter Accuracy (%) 82.299 88.779 95.364 

Table 4.2: Performance with a Validation set (2
nd

 Hidden Layer of 18 neurons) 
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Model 

Linear, Linear, 

Linear 

Non-Linear, 

Linear, Linear 

Non-Linear, Non-

Linear, Linear 

Training MSE 0.614 0.576 0.094 

Total Accuracy (%) 70.56 70.141 62.866 

Non-Converter Accuracy (%) 61.298 60.682 54.827 

Converter Accuracy (%) 76.719 76.304 67.945 

Table 4.3: Performance without Validation set (2
nd

 Hidden Layer of 18 neurons) 

Next, we wanted to study the performance as a function of the number of neurons in the second 

hidden layer. 

4.1.2.1 Localized Architecture (Non-Linear, Non-Linear, Linear) 

From the plots for the training performance and test performance (Figures 4.3 and 4.4), 

we could make no inference on which order is the best. By looking at the prediction accuracies 

for various orders, we could see that the best performance (with only delta-age) in terms of total 

accuracy was obtained for order 4, in terms of sensitivity for order 20, and in terms of specificity 

for order 4. When using age also, the best performance in terms of total accuracy was obtained 

for order 3, in terms of sensitivity for order 11, and in terms of specificity for order 20. 
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Figure 4.4: Performance vs. Order for Non-Linear, Non-Linear, Linear Arch. (Delta Age 

only) 

 

Figure 4.5: Performance vs. Order for Non-Linear, Non-Linear, Linear Arch. (Age and 

Delta Age) 
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Model Order / Performance 

Measure 

4 / Total 

Accuracy 

20 / Converter 

Accuracy 

4 / Non-Converter 

Accuracy 

Training MSE 1.8486 1.9036 1.8486 

Test MSE 2.2703 2.2126 2.2703 

Validation MSE 1.964 2.0301 1.964 

Total Accuracy (%) 69.3244 68.6661 69.3244 

Non-Converter Accuracy (%) 49.9141 45.3588 49.9141 

Converter Accuracy (%) 82.1843 84.1109 82.1843 

Table 4.4: Best Model Performances for Localized Arch. with Delta age only 

Model Order / Performance 

Measure 

3 / Total 

Accuracy 

11 / Converter 

Accuracy 

20 / Non-Converter 

Accuracy 

Training MSE 3.0301 2.7581 2.6496 

Test MSE 3.1348 2.8019 2.7372 

Validation MSE 2.9784 2.6611 2.6855 

Total Accuracy (%) 66.345 64.9383 65.9263 

Non-Converter Accuracy (%) 39.0162 29.8729 39.5386 

Converter Accuracy (%) 84.2437 88.0214 83.1958 

Table 4.5: Best Model Performances for Localized Arch. with Age & Delta age 

4.2 Standard MLP Neural Network Model  

 

 After studying all these localized architectures, we wanted to know how well they fared 

when compared to a standard MLP neural network with two layers and with all the inputs given 

to all the neurons. As always, we tried both combinations in the inputs by having delta-age only 

and having them both. 

Seeing the performance curves of the two models (Delta Age only and Age & Delta 

Age), we see that the training MSE and validation MSE decrease continuously as a function of 

model order for the first model. But the test MSE is not in the same order as the training and 

validation MSEs. Clearly, the network was over-fitting the data in spite of the validation dataset. 

The over-fitting phenomenon was confirmed by looking at the training MSEs for those runs 

whose test MSEs were high. Training continued for 1000 epochs and the training MSEs were 
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nearly zero. For both the models, it is interesting and gratifying (looking at figures 4.7, 4.9 & 

tables 4.6, 4.7) to note that the best performances (in terms of classification accuracy) were 

obtained when the test set MSEs were small.  

 

Figure 4.6: Training & Validation Performance vs. Order for the Standard MLP model (Delta 

Age only) 

 

Figure 4.7: Test Performance vs. Order for the Standard MLP model (Delta Age Only) 
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Figure 4.8: Training & Validation Performance vs. Order for the Standard MLP model (Age and 

Delta Age) 

 

Figure 4.9: Test Performance vs. Order for the Standard MLP model (Age and Delta Age) 
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Model Order / 

Performance Measure 

8 / Total 

Accuracy 

8 / Converter 

Accuracy 

4 / Non-Converter 

Accuracy 

Training MSE 1.1303 1.1303 1.1338 

Test MSE 8.7531 8.7531 6.6029 

Validation MSE 1.3022 1.3022 1.3994 

Total Accuracy (%) 67.2797 67.2797 65.9301 

Non-Converter Accuracy (%) 60.1547 60.1547 63.8411 

Converter Accuracy (%) 71.847 71.847 67.258 

Table 4.6: Best Model Performances for Standard MLP Arch. Delta age only 

Model Order / Performance 

Measure 

12 / Total 

Accuracy 

7 / Converter 

Accuracy 

12 / Non-Converter 

Accuracy 

Training MSE 0.3309 1.2485 0.3309 

Test MSE 8.6384 13.8257 8.6384 

Validation MSE 0.5951 1.7592 0.5951 

Total Accuracy (%) 71.1888 68.4755 71.1888 

Non-Converter Accuracy (%) 67.5926 59.6111 67.5926 

Converter Accuracy (%) 73.3708 73.8539 73.3708 

Table 4.7: Best Model Performances for Standard MLP Arch. with Age & Delta age 

4.3 Standard deviation in predicting the conversion 

The second performance measure we used is the standard deviation in predicting the 

conversion measured in years. After we have computed the accuracy in predicting the converters 

and non-converters, we take the subset of converters predicted correctly by the neural network. 

We then fitted a line to their predicted scores and saw where the line crossed the threshold of 

zero and compared it with actual conversion time based on their actual scores. With these two 

data, we computed the standard deviation in predicting the conversion. For those converters 

whose scores are all below the threshold, we set their first visit age as their conversion time. The 

following are the results of the standard deviation values for the best models in various 

architectures. 
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Model Order 4 20 4 

Total Accuracy (%) 69.3244 68.6661 69.3244 

Non-Converter Accuracy (%) 49.9141 45.3588 49.9141 

Converter Accuracy (%) 82.1843 84.1109 82.1843 

Deviation in Prediction Accuracy 0.6476 0.5467 0.6476 

Table 4.8: Deviation in Prediction Accuracy for Localized Arch. with Delta age only 

Model Order 3 11 20 

Total Accuracy (%) 66.345 64.9383 65.9263 

Non-Converter Accuracy (%) 39.0162 29.8729 39.5386 

Converter Accuracy (%) 84.2437 88.0214 83.1958 

Deviation in Prediction Accuracy 0.75 0.6944 0.7848 

Table 4.9: Deviation in Prediction Accuracy for Localized Arch. with Age and Delta age 

Model Order 8 8 4 

Total Accuracy (%) 67.2797 67.2797 65.9301 

Non-Converter Accuracy (%) 60.1547 60.1547 63.8411 

Converter Accuracy (%) 71.847 71.847 67.258 

Deviation in Prediction Accuracy 0.6565 0.6565 0.4814 

Table 4.10: Deviation in Prediction Accuracy for Standard MLP Arch. with Delta age only 

Model Order 12 7 12 

Total Accuracy (%) 71.1888 68.4755 71.1888 

Non-Converter Accuracy (%) 67.5926 59.6111 67.5926 

Converter Accuracy (%) 73.3708 73.8539 73.3708 

Deviation in Prediction Accuracy 0.6473 0.9707 0.6473 

Table 4.11: Deviation in Prediction Accuracy for Standard MLP Arch. With Age and Delta age 

4.4 Raw scores Vs. Fitted scores 

Up till this point, we have used fitted scores for training the network and raw scores for 

evaluating the network. In this section, we study the performance of the networks when the other 

combinations were used. 

4.4.1 Raw scores for training the neural network 

Using raw scores for training the network means that we cannot extrapolate the scores to 

get the sixth visit score. In this case, the network performance was far better (in terms of 

prediction accuracy) when compared to using the fitted scores. Best accuracy was ~79% when 

compared to the 71% obtained when using fitted scores. The standard deviations in predicting 

when conversion will happen were also smaller. Table 4.10 gives the performance values when 
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using delta-age only and 4.11 gives it for the case when age was also used. Raw scores were used 

at the output of the network also. When fitted scores were used at the output instead of raw 

scores, no significant changes in the prediction accuracy were seen. 

Model Order / Performance 

Measure 

19 / Total 

Accuracy 

8 / Converter 

Accuracy 

7 / Non-Converter 

Accuracy 

Training MSE 1.2945 1.2719 1.4702 

Test MSE 1.6982 1.6853 1.9580 

Validation MSE 1.4807 1.3643 1.4446 

Total Accuracy (%) 78.87 77.06 77.34 

Non-Converter Accuracy (%) 80.93 73.33 84.50 

Converter Accuracy (%) 77.38 79.76 72.17 

Standard Deviation in 

Prediction Accuracy 0.2607 0.2314 0.3196 

Table 4.12: Best Model Performances for Localized Arch. with Delta age only (Raw 

score Training & Testing) 

Model Order / Performance 

Measure 

19 / Total 

Accuracy 

19 / Converter 

Accuracy 

15 / Non-Converter 

Accuracy 

Training MSE 1.6392 1.6392 1.9920 

Test MSE 2.1919 2.1919 2.7036 

Validation MSE 1.6252 1.6252 1.8411 

Total Accuracy (%) 75.61 75.61 67.13 

Non-Converter Accuracy (%) 78.96 78.96 80.67 

Converter Accuracy (%) 73.19 73.19 57.35 

Standard Deviation in 

Prediction Accuracy 0.3437 0.3437 0.5689 

Table 4.13: Best Model Performances for Localized Arch. with Age & Delta age (Raw 

score Training & Testing) 

4.4.2 Raw scores for evaluating the performance of the network 

For the test data, when we compute the prediction accuracy, we have a choice of using the 

raw score or the fitted score trajectories. We have plotted the network output trajectories for raw 

scores as well as fitted scores along with ground truth for a few patients whose conversion the 

network predicted correctly. As can be seen, the network actually tries to fit a line by itself. This 

behavior can be explained due to the nature of training data we used. The training was done 

based on a fitted line for the patients’ scores. So, the network is trying to imitate the behavior. 
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Also, we saw a slight improvement in the prediction accuracy while using raw scores instead of 

fitted scores at the network output. This again can be explained by viewing the line fitting at the 

network’s output as an addition of noise. 

 

Figure 4.10: Fitted Score Trajectories vs. Age compared to Ground Truth 
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Figure 4.11: Raw score trajectories vs. Age compared to Ground Truth 

4.5 Linear Mean Squares Approach 

 Since the accuracy for the linear architecture was high, we wanted to see how the 

performance would be if we were to use a Linear Mean Squares (LMS) Approach for this 

problem. For the fitted scores approach, we extrapolated the scores to the sixth visit and for the 

raw scores approach we just used what was available. The impact of having the age parameter 

was also studied. For each combination, we split the data into two halves randomly and repeated 

the experiment 20 times to get the average performance. The following table summarizes the 

results. Even though the standard deviation in predicting the conversion is slightly higher, the 

accuracy is far better than any other neural network architecture studied. The main difference 

between training a linear neural network and this approach is that here we directly jump to the 

global minimum instead of settling for some local minima. 
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Score Type / Age Raw / Age 

included 

Raw / Age not 

included 

Fitted / Age 

included 

Fitted / Age not 

included 

Total Accuracy 80.88 77.78 73.99 69.55 

Converter Accuracy 79.46 77.17 77.29 76.21 

Non-converter Accuracy 82.69 78.36 68.40 59.57 

Standard Deviation 1.53 1.31 0.48 0.59 

Test Set MSE 1.06 1.49 2.20 2.78 

Table 4.14: Accuracy obtained when using the LMS Approach 

4.6 Diagnosis Vs.  Prognosis 

 Once the prediction accuracies were studied for prognostic prediction of conversion to 

AD from MCI, we wanted to see how that compared to a diagnosis. By studying this, we could 

see how difficult it is to do a prognosis for this problem. We used standard MLP neural network 

architecture for this purpose and we did three types of experiments based on how we defined a 

patient as a converter or a non-converter. Note that, for diagnosis we used the MRI scans from 

all the visits for training and testing of the neural network. 

4.5.1 Approach 1: Visit Accuracy 

 In the first approach, we disregarded the idea of a patient and computed the visit 

accuracy. To clarify, we used each visit by a patient as a data point. We trained the network 

using 50% of the data and tested it using the remaining 50%. Here, a visit is termed as a 

conversion visit if the score is below the threshold (0) and a non-conversion visit otherwise.  As 

before, we computed the accuracy in predicting the converters, non-converters and also the total 

accuracy. Here, we cannot have the concept of standard deviation in predicting the conversion 

since the testing is visit-based and not patient based. Obviously, we expected to see a much 

better performance when compared to the prognosis performance. The results of the testing are 

shown in the following table (Table 4.15). 

 



34 
 

Model Order, Score Usage 1 / Raw Scores 2 / Fitted Scores 

Training MSE 0.0834 0.1799 

Validation MSE 0.1457 0.3058 

Test MSE 0.1593 0.4386 

Total Accuracy 92.35 % 87.29 % 

Converter Accuracy 92.46 % 87.58 % 

Non-converter Accuracy 92.29 % 87.15 % 

Table 4.15: Best Performances for Visit-Accuracy Approach 

 

4.5.2 Approach 2: Patient Conversion Accuracy 

 This approach is similar to the previous approach but instead of defining conversion 

visits or non-conversion visits, we defined converters or non-converters. Here, the definition of 

converter and non-converter is slightly changed when compared to the prognosis experiments. If 

a patient’s score goes below the threshold for at least one visit, then the patient is classified as a 

converter. The results of this approach are shown in table 4.16. 

Model Order / Score Usage 1 / Raw Scores 1 / Fitted Scores 

Training MSE 0.2398 0.4582 

Validation MSE 0.3174 0.5534 

Test MSE 0.2791 0.6222 

Total Accuracy 88.52 % 86.91 % 

Converter Accuracy 83.33 % 81.85 % 

Non-converter Accuracy 95.81 % 95.09 % 

Table 4.16: Best Performances for Patient-Conversion-Accuracy Approach 

4.5.3 Approach 3: Patient Conversion Accuracy while predicting the score trajectory 

 In this final approach, we gave the network brain volume information from all the six 

visits of a patient as a single input. That is, the network took in 600 inputs. For patients who had 

some of the visits missing, we did interpolation as well as extrapolation depending on which visit 

data was missing. The network outputted the scores for all six visits together. As before, we used 

the by-trajectory definition for classifying a patient as a converter or a non-converter. Note that, 

in this method we cannot use raw scores for training and testing the network since we need 600 
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inputs and none of the patients had the scan information for all 6 visits. The results of this 

approach are shown in table 4.17. 

Model Order / 

Performance Measure 

8 / Total Accuracy 20 / Non-Converter 

Accuracy 

6 / Converter 

Accuracy 

Training MSE 0.1857 0.0630 0.3104 

Validation MSE 0.9117 1.4882 0.7878 

Test MSE 1.0476 1.4819 0.9565 

Total Accuracy 62.63 % 59.54 % 60.59 % 

Converter Accuracy 52.93 % 28.13 % 56.93 % 

Non-converter Accuracy 72.08 % 90.13 % 64.16 % 

Table 4.17: Best Performances for Patient-Conversion-Accuracy Approach with Interpolation & 

Extrapolation 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Accuracy 

This neural network approach produced accuracy (best performance) of approximately 

71% when using the standard MLP architecture and 69% when using the localized architecture 

(with fitted scores for training) and as high as ~79% when using the raw scores for training. This 

accuracy is slightly better than what was obtained when a linear-kernel SVM (~77%) was used 

with the region-based features (Aksu et al., 2011). Refer to tables 4.11, 4.4 & 4.12 

It is interesting to note that the classification performance for a linear neural network 

(localized architecture) was 74%. And, when we viewed the problem as a Linear Mean Squares 

problem the accuracy obtained was as high as 80% and the standard deviation performance 

measure was slightly worse than what was obtained with fitted scores. Refer to tables 4.1 & 4.14 

5.2 Age as a feature 

 For the localized architecture, using age (age during the first visit) as an input to the 

network did not help improve the performance. In fact, the performance was slightly poorer 

when age was included (69% as compared to 66% classification accuracy – tables 4.4 & 4.5). On 

the other hand, for the standard MLP architecture, using age helped improve performance 

slightly (71% as compared to 67% - tables 4.6 & 4.7). For the LMS approach, including age 

helped improve the performance by approximately 3%. Even though, the standard MLP neural 

network architecture had better classification accuracy, the test set MSE was comparably higher.  

 

 



37 
 

5.3 Difficulty in doing prognosis 

 When the MRI scans from all the visits were used (diagnosis), we could achieve accuracy 

as high as 92%. Comparing this to the 79% accuracy we obtained (with a reasonable standard 

deviation in predicting conversion) for prognosis tells us how difficult prognosis is for this 

particular problem. 
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APPENDIX 

Creating a Custom Neural Network in MATLAB 

 It is very simple to create a standard MLP neural network in MATLAB. All we have to 

do is execute the following command: 

net = newff(input_sample, output_sample, no_of_neurons); 

This command will create a Multilayer Perceptron based on the three arguments provided 

to it. The size of output_sample will decide how many neurons there will be in the output 

layer. The no_of_neurons can be an array which decides the number of the hidden layers 

and the size of each layer. For example, no_of_neurons = [10, 5] means that there will be 10 

neurons in the first layer which will be connected to the inputs and the second layer will have 5 

neurons whose inputs will be connected to the outputs of the first layer and there will be an 

output layer whose size, as mentioned already, will be decided based on the size of the 

output_sample. By default, all the layers except the output layer will have a non-linear 

transfer function while the output layer will have a linear transfer function. For most cases, we 

do not need any customization to the network. 

If one wishes to create a custom neural network, one has to start from scratch and has to 

set each and every setting. Reference 9 explains how to create a custom network using the 

Neural Network Toolbox Version 3.0. The current version of the toolbox is 6.0 and has several 

changes from the 3.0 version. 

The following code is an example of how to create a custom network. 
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net = network; 

net.numInputs = 100;  

 

for i = 1 : 100 

    net.inputs{i}.size = no_of_layers;  

end 

 

net.numLayers = 102;  

 

for i = 1 : 100 

    net.layers{i}.size = 1;  

end 

 

net.layers{101}.size = hidden_neurons;  

net.layers{102}.size = 1;  

net.biasConnect = ones(102,1);  

 

for i = 1 : 100 

    net.inputConnect(i,i) = 1;  

end 

 

 

for i = 1 : 100 

    net.layerConnect(101, i) = 1;  

end 

 

net.layerConnect(102, 101) = 1;  
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net.outputConnect(102) = 1;  

 

for i = 1 : 100 

    net.layers{i}.transferFcn = input_txr_fcn; 

end 

 

net.layers{101}.transferFcn = hidden_txr_fcn; 

net.layers{102}.transferFcn = output_txr_fcn; 

 

net.initFcn = 'initlay'; 

for i = 1 : 102 

    net.layers{i}.initFcn = 'initwb'; 

    net.biases{i}.initFcn = 'rands'; 

end 

 

for i = 1 : 100 

    net.layerWeights{101,i}.initFcn = 'rands'; 

end 

net.layerWeights{102,101}.initFcn = 'rands'; 

 

net.performFcn = 'mse'; 

net.trainFcn = 'trainlm'; 

net.divideFcn = 'dividerand'; 

net.divideParam.trainRatio = 0.9; 

net.divideParam.valRatio = 0.1; 

net.divideParam.testRatio = 0.0; 

net.plotFcns = {'plotperform','plottrainstate'}; 
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After creating an empty network (which is an object), we have to set all its parameters. 

The first parameter to set is the Number of Input Sources. This can be done by setting the 

parameter net.numInputs to the required value. In our case, we have a total of 100 input 

sources. It is important to note that this parameter sets the number of input sources and not the 

size of the input array. The number of elements in the input vector can be set by setting the 

parameter net.inputs{i}.size where i varies from 1 to net.numInputs. In our case, it 

can be 2 or 3 depending on whether age input is included and we have 100 such input sources. 

The next parameter of interest is net.numLayers. The definition of layer here is not 

exactly the same as we have used it before. When we have only one input source, they are the 

same. But, if we have more than one input source, then the definition will change.  In our case, 

we have a total of 100 input sources. Also, we have a hidden layer and an output layer. We have 

one layer for every input source. So, in this case we have a total of 102 layers. 

The next parameter decides how many neurons are there in each layer. This can be done 

using the parameter net.layers{i}.size. To make the neurons have a bias input, we have 

to set the value of net.biasConnect connect for all the layers. 

Next, we make the connections between the input sources & the input layer, input layer 

& hidden layer and output layer and output link. These can be done using 

net.inputConnect, net.layerConnect and net.outputConnect. To set the 

transfer function for the layers, we have to use net.layers{i}.transferFcn. For a non-

linear transfer function, set it to tansig and for a linear transfer function, set it to purelin. 

Next step is to configure how the weights and biases are initialized. For this, first set 

net.initFcn to initlay. Then, for every layer set the parameter 
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net.layers{i}.initFcn and net.biases{i}.initFcn. The layer initialization 

function can be set to initnw or initwb. More information on those functions can be found in 

Ref. 8. Also, set the initialization function for the weights between layers using 

net.layerWeights{j,i}.initFcn where layers j’s output goes to input of layer i. These 

parameters can be set to rands which initializes them to random values between -1 and 1. 

Next, we have to set the performance function which is used during training and 

validation. To use mean squared error, set net.performFcn to mse. For setting the training 

algorithm, configure the parameter net.trainFcn. The most commonly used training 

function is trainlm. 

Next, to configure what percentage of the data set should be used for training, validation 

and testing, set net.divideParam.trainRatio, net.divideParam.valRatio and 

net.divideParam.testRatio. 

Finally to configure what plotting functions should be invoked during the training and 

once the training is done, set the value of net.plotFcns. For example, set it to 

plotperform which plots the performance function as a function of epochs for training, 

validation and test set. If you set it to plottrainstate, you will see how the mse decreases 

epoch by epoch as training progresses. One can also have both the plotting functions together. 
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