

The Pennsylvania State University

The Graduate School

College of Engineering

A NEURAL NETWORK BASED APPROACH FOR PREDICTING A PATIENT'S

CONVERSION TO ALZHEIMER'S DISEASE BASED ON BRAIN SCAN DATA

A Thesis in

 Electrical Engineering

by

Mahadevan Srinivasan

 2011 Mahadevan Srinivasan

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

 Master of Science

August 2011

ii

The thesis of Mahadevan Srinivasan was reviewed and approved* by the following:

David J. Miller

Professor of Electrical Engineering

Thesis Adviser

George Kesidis

Professor of Electrical Engineering

Kultegin Aydin

Professor of Electrical Engineering

Graduate Program Coordinator

* Signatures are on file in the Graduate School

iii

ABSTRACT

We studied several neural network architectures for predicting whether a patient will

convert to Alzheimer's disease after being initially diagnosed with Mild Cognitive Impairment.

The first architecture to be studied was what we call a Localized Neuron Architecture which tries

to learn the non-linear relationship between the brain atrophy and the age of the patient. Next, we

studied how good the performance is when using a standard multilayer perceptron architecture.

We used the brain scan data of the first visit only since the prediction is prognostic. Furthermore,

we observed how including the age of the patient when the base line scan was taken would

impact the performance. On a previous study based on this data, a support vector machine

(SVM) was used to predict conversion. Here, we are using a neural network in place of an SVM.

Also, we are trying to predict when the conversion will happen. The challenge is to train a neural

network of the correct size and correct structure such that the error in predicting conversion and

the standard deviation in the prediction of time at which conversion takes place are minimal.

iv

TABLE OF CONTENTS

List of Tables .. vii

List of Figures ... vii

Acknowledgments ... ix

Chapter 1: Introduction ... 01

1.1 Past Approaches .. 01

1.1.1 Trajectory based Approach ... 02

 1.2 The Data ... 04

 1.3 The Network .. 05

Chapter 2: Review of Multi-layer Perceptrons…………………………………………….. 07

 2.1 Introduction to Artificial Neural Networks.. 07

 2.2 Neuron ... 07

 2.2.1 Synapses ... 08

 2.2.2 Adder .. 08

 2.2.3 Activation Function .. 09

 2.2.3.1 Threshold Function ... 09

 2.2.3.2 Linear Activation Function .. 09

 2.2.3.3 Non-Linear Activation Function .. 09

 2.3 Learning ... 10

 2.4 Multilayer Perceptrons.. 11

 2.5 Back Propagation ... 11

 2.5.1 Forward Pass .. 12

 2.5.2 Backward Pass .. 12

 2.6. Model Order Selection ... 12

v

Chapter 3: Experimental Methods ... 14

 3.1 Data Pre-processing .. 14

 3.2 Delta age Input ... 16

 3.3 Network Architectures .. 16

 3.4 Training the network .. 17

 3.5 Testing the network .. 18

Chapter 4: Model Development and Results .. 19

 4.1 Localized Neuron Architecture ... 20

 4.1.1 With one hidden layer ... 21

 4.1.2 With two hidden layers ... 22

 4.1.2.1 Non-Linear, Non-Linear, Linear .. 23

 4.2 Standard MLP Neural Network Model.. 25

 4.3 Standard Deviation in Predicting the Conversion .. 28

 4.4 Raw Scores vs. Fitted Scores .. 29

 4.4.1 Raw scores for training the neural network ... 29

 4.4.2 Raw scores for evaluating the performance of the network 30

 4.5 Linear Mean Squares Approach .. 32

 4.6 Diagnosis vs. Prognosis .. 33

 4.6.1 Approach 1: Visit Accuracy .. 33

 4.6.2 Approach 2: Patient Accuracy ... 34

 4.6.3 Approach 3: Patient Conversion Accuracy while predicting the score trajectory34

Chapter 5: Conclusions and Recommendations ... 36

 5.1 Accuracy ... 36

 5.2 Age as a feature ... 36

 5.3 Difficulty in doing prognosis .. 37

vi

Appendix: Creating a Custom Neural Network in MATLAB .. 38

Bibliography ... 43

vii

LIST OF TABLES

Table 3.1: Sample Data for a Patient ... 16

Table 4.1: Performance with a Validation Set (No Hidden Layer) 22

Table 4.2: Performance with a Validation Set (Hidden Layer of 18 neurons) 22

Table 4.3: Performance without Validation Set (Hidden Layer of 18 neurons) 23

Table 4.4: Best Model Performances for Localized Arch. with Delta age only 25

Table 4.5: Best Model Performances for Localized Arch. with Age & Delta age 25

Table 4.6: Best Model Performances for Standard MLP Arch. Delta age only 28

Table 4.7: Best Model Performances for Standard MLP Arch. with Age & Delta age 28

Table 4.8: Deviation in Prediction Accuracy for Localized Arch. with Delta age only 29

Table 4.9: Deviation in Prediction Accuracy for Localized Arch. with Age and Delta age 29

Table 4.10: Deviation in Prediction Accuracy for Standard MLP Arch. with Delta age only

 ... 29

Table 4.11: Deviation in Prediction Accuracy for Standard MLP Arch. with Age and Delta age

 ... 29

Table 4.12: Best Model Performances for Localized Arch. with Delta age only (Raw score

Training & Testing) .. 30

Table 4.13: Best Model Performances for Localized Arch. with Age & Delta age (Raw score

Training & Testing) .. 30

Table 4.14: Accuracy obtained when using the LMS Approach ... 33

Table 4.15: Best Performances for Visit-Accuracy Approach .. 34

Table 4.16: Best Performances for Patient-Conversion-Accuracy Approach 34

Table 4.17: Best Performances for Patient-Conversion-Accuracy Approach with Interpolation &

Extrapolation... 35

viii

LIST OF FIGURES

Figure 2.1 An Artificial Neuron .. 08

Figure 2.2 Sigmoid Function ... 10

Figure 3.1 Raw Score Trajectories vs. Age .. 15

Figure 3.2 Fitted Score Trajectories vs. Age .. 15

Figure 4.1 Trajectories when using a Linear Function in Input Layer................................. 20

Figure 4.2 Trajectories when using a Non-Linear Function in Input Layer 20

Figure 4.3 Localized Architecture ... 21

Figure 4.3 Performance vs. Order for Non-Linear, Non-Linear, Linear Arch. (Delta Age only) 24

Figure 4.4 Performance vs. Order for Non-Linear, Non-Linear, Linear Arch. (Age and Delta

Age) .. 24

Figure 4.5 Training & Validation Performance vs. Order for the Standard MLP model (Delta

Age only) .. 26

Figure 4.6 Test Performance vs. Order for the Standard MLP model (Delta Age Only) 26

Figure 4.7 Training & Validation Performance vs. Order for the Standard MLP model (Age and

Delta Age) .. 27

Figure 4.8 Test Performance vs. Order for the Standard MLP model (Age and Delta Age) 27

Figure 4.9: Fitted Score Trajectories vs. Age compared to Ground Truth 31

Figure 4.10: Raw score trajectories vs. Age compared to Ground Truth............................. 32

ix

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my advisor Dr. David Miller

for his continued support during the course of my study. Without his subject expertise, I would

not have completed the thesis. I would like to thank Dr. George Kesidis for taking time out of his

busy schedule to be my co-advisor. I also want to thank all my friends here at Penn State who

made my stay here a memorable one. Lastly and most importantly, I thank my parents and my

entire family for the love and encouragement they have given me throughout my life.

1

CHAPTER 1

 INTRODUCTION

 Alzheimer’s disease (AD) is the most common form of dementia which is usually seen in

people whose age is 65 and above. The disease has no cure and is almost always terminal. The

course of the disease follows a unique path for every individual and hence it is very difficult to

predict. In most cases the symptoms can be mistaken as problems due to old age. The transitional

state between normal aging and Alzheimer’s is commonly referred to as Mild Cognitive

Impairment (MCI). But, there is no unanimous opinion on whether MCI patients truly convert to

AD. Even though there is no consensus on the conversion, many of the past works have used

such a definition (Davatzikos et al., 2010; Chou et al., 2009; Misra et al., 2009). The reason for

using such a definition is to design models which will help in predicting how the disease

progresses and to identify early disease biomarkers.

Alzheimer’s disease Neuro-imaging Initiative (ADNI) [Ref. 1] is established to define the

progress rate of MCI and AD. Their main aim is to develop better methods for clinical trials and

to provide a bigger database for aiding design of treatment trials. MRI scans of the volunteers are

taken every six to twelve months for a period of approximately 3 years. A database is formed

from their brain scan information, age and clinical scores such as CDR and MMSE (explained

below).

1.1 Past Approaches

 Prior works in this area have used either the Clinical Dementia Rating (CDR) or the

Mini-Mental State Examination (MMSE) scores (Misra et al., 2009; Davatzikos et al., 2010;

Wang et al., 2010). The problem with such an approach can be understood by looking at how the

2

scores are obtained. For example, CDR
14

 scores are obtained by evaluating the performance of

the patients in six areas: memory, orientation, judgment & problem solving, community affairs,

home & hobbies, and personal care. Scores in each of these are combined to obtain a composite

score ranging from 0 to 3. The higher the score the more pronounced the dementia, with 0 being

no dementia and 3 being severe dementia. Similarly, the MMSE scores (Folstein et al., 1975) are

also derived from interviews with the patients.

 The main problem with the past approaches is that they use these CDR / MMSE scores to

define the ground truth ignoring the information present in the MRI scan of the patient. There are

other concerns with using CDR/ MMSE also. For example, the CDR scores usually do not

change very much from the baseline score for most patients (whether they have AD or MCI).

This makes the data set biased towards non-converters and eventually makes it difficult to design

an accurate classifier. The problem of predicting whether a patient converts from MCI to AD

using the brain scan information is not extensively studied. Even though (Wang et al., 2010)

worked on predicting future MMSE scores from the baseline scans that was not the main focus

of the paper – they focused on predicting the current score.

1.1.1 Trajectory based Approach

 This thesis extends the work by (Aksu et al., 2011) which used basically two things

available from the ADNI database.

1) Brain scan image

2) Labeled examples saying whether a patient is AD or Control.

It is important to note that the problem of identifying converters from non-converters

falls neither under supervised learning nor unsupervised learning. This is because we do not have

3

labeled examples for converters and non-converters. Rather, we have the labeled examples only

for AD or Control.

Given this data, (Aksu et al., 2011) built an accurate image-based linear kernel based

SVM classifier to predict whether a patient is AD or control. The classification accuracy was

approximately 91%. The examples were labeled using the CDR scores which ranged from 0 to 3.

But the authors made sure that they only used patients whose scores equaled 0 (Control) and

those whose scores are more than 1 (AD) for training and test purposes. This classifier was then

applied to a population of MCI patients and they observed which side of the classifier the

patients fell into for each visit. The classifier, apart from the binary decision of AD or Control,

gives a numerical output called the “score” for each visit, which tells how far the patient is from

the classifier boundary. Based on these scores, they defined converters as those who went to the

AD side from the control side or those who stayed on the AD side throughout all the visits and

non-converters as those who stayed on the control side during all the visits. The ground truth for

a patient being a converter or a non-converter is thus established.

Next, the authors built another linear-kernel based SVM classifier which took as its input

the baseline image (first visit MRI scan) and tries to predict if the patient is classified as a

Converter or Non-converter by the first classifier. The second SVM classifier was trained and

tested using the data and provided cross-validation (CV) generalization accuracy as high as 83%

when they did a voxel-based (nearly 11,000 features) classification. For the region based

classification (100 features), the accuracy obtained was as only high as 77% (D.J. Miller, 2011).

(Schuff et al., 2010) conducted experiments on how the brain-atrophy is related to age of

the patients. Their results show that the brain region volumes are non-linear functions of age with

each region volume having a different non-linear independence. So, the authors (Aksu et al.,

4

2011) also built nonlinear-kernel (Gaussian-kernel) SVMs to consider the non-linear dependence

on age. The AD-Control classifier had an accuracy of 90% and the second classifier accuracy

was as high as 71%.

One could also identify converters and non-converters by their CDR scores (by a suitably

defined SVM). In fact, the authors (Aksu et al., 2011) studied how such a definition would

compare against their by-trajectory definition. The overall accuracy in prediction when using by-

CDR definition was only 56% for the best case. They noticed that nearly 66% of the patients

classified as non-converters by the by-CDR definition were classified as converters when using

the by-trajectory definition.

In this thesis, we are trying to extend the work to see if the prediction accuracy could be

improved by using a neural network instead of the second SVM used previously. Apart from

that, we are also trying to predict when the actual conversion will happen. Instead of trying to

predict whether a patient is converter or non-converter directly, here we trained the network to

predict the scores given out by the first SVM classifier. This was done by giving the 100 features

(region-based) and the age of the patient during the baseline scan and the delta-age at which the

score was obtained. Section 3.2 explains how this delta-age input is obtained from the age

information present in the ADNI Database.

1.2 DATA

We have the data for a total of 303 patients. For each patient, we may have the data for a

maximum of six visits. Each data point, if available, will have the volume information for 100

brain regions along with the age of the patient for that visit and the AD-control SVM's output for

each visit which we call the score. The score will indicate whether a patient has Alzheimer's or

5

not. Also, the duration between visits for different patients is different. Some patients will have

more number of visits than others. On an average, we have 3 sets of data for each patient. We

have not used all the data present. That is, even though we have the brain scan data for all the

visits, we have used the brain scan information of the first visit data only (at least in our initial

experiments) to train the neural network along with the age information of that visit and other

visits of the patient. Only with such a network will we be able to do a prognosis on the

conversion. We call a patient a converter if he/she was on the control side at the first visit and in

one of the later visits moves to the AD side or if they are on the AD side during all the visits.

Out of the 303 patients, small amounts (~5%) of the patients are considered outliers. This

is because their scores go from the AD side to the control side. Removing the outliers, we had a

total of 287 patients. Based on the by-trajectory definition used in (Aksu et al., 2011), we have in

total 176 converters and 111 Non-converters.

1.3 THE NETWORK

As mentioned already, we use the age of the patient during the first visit and delta-age

information as additional network inputs. With these inputs, we can use the scores at all the visits

to train the network. The next step is identifying the structure of the network and size of the

network.

Due to (Schuff et al., 2010), we believed that a neural network which has 100 neurons

(one for each feature) in the input layer, possibly followed by a hidden layer whose size should

be determined, followed by an output layer with one neuron should be able to model the data

well. Each neuron in the input layer will be fed with a feature (volume of one of the brain

regions), age of the patient during the first visit and delta-age for the target output. Having a non-

6

linear transfer function for the neurons in the first layer will help the network learn the

relationship between the brain volume and age. Furthermore, the age input is given to make the

network aware of “when” the MRI scan was taken. We studied how the network behaved with

and without the age input.

7

CHAPTER 2

REVIEW OF MULTI-LAYER PERCEPTRONS

2.1 Introduction to (Artificial) Neural Networks

 Artificial Neural Networks (ANNs) are composed of series of interconnected neurons

arranged in layers. They are primarily used in two applications:

1. Classification

2. Regression

We are concerned about regression in this thesis. The network parameters are adapted based on

the input given to it and the associated output.

2.2 Neuron

 An Artificial Neuron (hereafter called simply a neuron) is a mathematical model of a

biological neuron. They are the basic elements of any Artificial Neural Network. The block

diagram of Figure 1.1 shows the model of a neuron. As can be seen from the figure, there are

three main elements in the model.

1. Synapses

2. An Adder

3. An Activation Function

8

Figure 2.1: An Artificial Neuron

2.2.1 Synapses

 In the brain, synapses are the connections between biological neurons. In ANNs, we

model synapses using weights. The weights along with the choice of the activation function

decide when a neuron will be activated. Apart from the weights, we may also have biases (not

shown in figure) for each neuron. The bias term helps in making affine transformations to the

data. The weights and biases can take positive as well as negative values.

2.2.2 Adder

 An adder simply computes the weighted sum of the all the inputs where the weights are

the values of different synapses.

9

2.2.3 Activation Function

 Activation function of the neurons decides how expressive the network can be in learning

the data. It helps in limiting the magnitude of the output of a neuron. There are three basic types

of Activation Functions:

1. Threshold Function

2. Linear Activation Function

3. Non-Linear Activation Function.

2.2.3.1 Threshold Function

 A threshold function is an ordinary step function whose output is 1 if the input is more

than 0 and 0 otherwise. A neuron with such an activation function is commonly known as the

McCulloch-Pitts model.

2.2.3.2 Linear Activation Function

 In this case, the output of a neuron is just a linear combination of the inputs plus the bias

term. Usually, this type of activation function is used in the output layer where we need a wide

range. With a linear transfer function, the output of the neuron can take any value.

2.2.3.3 Non-linear Activation Function

 In this case, the output of a neuron is a non-linear function of the inputs. A commonly

used non-linear activation function is a sigmoid whose shape is shown in the figure below. The

main reason for using a non-linear function is because such a function has a clearly defined

derivative, which will be useful when computing the weights of the network.

10

Figure 2.2: Sigmoid Function

2.3 Learning

 Generally artificial neural networks are basic input and output devices, with the neurons,

as mentioned already, arranged in layers. For example, perceptrons consist of an input layer

followed by a layer of output neurons with a layer of weights between them.

 The data is given to the input layers which are then weighted and are in turn passed to the

output layers. Based on the type of transfer function and the input presented to the output layer, it

decides whether to fire a neuron or not.

 The challenge now is to find the weights which minimize the error between the network

output and the target output (Supervised Learning). This type of learning is also called as

“learning with a teacher”. Conceptually, the teacher has the knowledge of the problem where

knowledge is the set of input-output examples. The network has to be fed with the knowledge.

11

By using the target values for each output, the teacher is able tell the network how to react to

such an input. This is called “training of the network”. First, the network weights are initialized

to random values and then the inputs are passed through the network. The weights of the network

are adjusted based on the error between the network output and the target value. Thus, the

network learns about the data iteratively. Once the entire knowledge is transferred, we no longer

need the teacher. The network would have learned enough to make its own decisions on inputs it

has not seen before. The most commonly used method for minimizing the error is Gradient

Descent. Gradient Descent is an optimization algorithm used to find the local minimum of a

function. It is not guaranteed that we will find the global minimum unless the function has only

one minimum. By running the algorithms several times with random starting points, we can try

to ensure that we reach a minimum close to the global minimum.

2.4 Multilayer Perceptrons

 The problem with perceptrons is its expressive power. It can only be used to solve

problems which are linearly separable. And most of the real-life problems are in fact not linearly

separable. This is where Multi-layer Perceptrons (MLPs) come in. MLPs consist of an input

layer, one or more hidden layer of neurons followed by an output layer of neurons. It can be

easily proven that an MLP with a single hidden layer can approximate any function provided it

has enough number of hidden neurons (Ref. 4).

2.5 Back propagation Algorithm

 The back propagation algorithm is one of the most commonly used methods for training

an ANN. It requires that we know the target output value for any given input (Supervised

Learning). Also, it requires that the activation function used is differentiable. So, we cannot have

12

a step function as activation function. We could still have either a linear or a non-linear transfer

function.

 There are two steps in training a network using back propagation algorithm:

1. Forward Pass

2. Backward Pass

2.5.1 Forward Pass

 In this step, the input is given to the network and based on the weights and biases of the

network, the output is calculated. Here the input is allowed to propagate through the network in

the forward direction.

2.5.2 Backward Pass

 In this step, the errors are computed starting from the output layer and then going back

layer by layer and the weights are updated in each layer to minimize the errors. Since the errors

are propagated starting from the output and going back, this step is called backward pass. A

detailed explanation of how the algorithm works can be found in [6].

2.6 Model Order Selection

 One of the biggest problems in designing a neural network is in choosing the size of the

hidden layer. The hidden layer is a layer of neurons which are neither the input nor the output

layer and are called so because they are hidden from the user’s view point. Having a large

number of neurons in the hidden layer may result in over-fitting of the data. The effect is that the

network memorizes the data and may be useless when presented with an unseen data. On the

other hand, having less number of neurons may mean that the network will not have the

13

complexity to properly learn the data. In most cases, the ideal model order is selected

heuristically.

14

CHAPTER 3

EXPERIMENTAL METHODS

3.1 Data pre-processing

 As mentioned already, we had the data for 287 patients. If the score starts out positive

and then goes negative or if it stays negative throughout, we say that the patient is a converter,

meaning he/she has gone from having Mild Cognitive Impairment (MCI) to AD. The patients

whose score never goes below the threshold, we call them Non-converters. There is also a third

category, patients who start in the AD side and then go to the control side. We have a very few of

those (5%) and they are considered outliers and we leave those patients from the data set. There

are two ways of classifying patients as converters or non-converters. One is based on the raw

scores and other is by fitting a line to the data and then using that line to classify. The raw scores

as such are quite noisy as seen from the diagram below (Figure 2.1). Figure 2.2 shows how the

same data look like when fitted using a line. Once the line fitting is done, we use the line to

predict the score for the sixth visit by extrapolating. Similarly, one could fit a line to the output

of the network before making a decision on whether the patient is a converter or not. The effects

of using fitted scores vs. raw scores are summarized in section 4.3. All the results shown before

that section are based on training the network using the fitted scores and testing it using raw

scores. The reason for using this method is also explained in section 4.3.

15

Figure 3.1: Raw Score Trajectories vs. Age

Figure 3.2: Fitted Score Trajectories vs. Age (Ground Truth)

16

3.2 Delta age input

 As mentioned already, for each visit of a patient, we have the brain volume data for 100

regions along with the patient’s age during that visit. For example, a sample data may look like

what is present in Table 3.1. The delta-age values are calculated from the age value by making

the first-visit delta-age equal to zero and by subtracting the first visit age value from the future

visit values. In this example, visit 1 is the first visit for which we have the data. So, the delta-age

for visit 1 is made 0 and the rest is obtained by subtracting 69.42 (first visit age) from the age

during that visit.

 Age Features Delta-Age

Visit 1 69.42 100 x 1 Vector 0

Visit 2 N/A N/A N/A

Visit 3 70.44 100 x 1 Vector 1.02

Visit 4 71.08 100 x 1 Vector 1.66

Visit 5 N/A N/A 0

Visit 6 72.42 100 x 1 Vector 3

Table 3.1: Sample Data for a Patient

3.3 Network Architectures

 We started with neural network architecture where we have 100 neurons in the Input

Layer with each neuron supplied with 3 Inputs:

1. A unique feature from the brain scan data

2. Age

3. Delta-age

Here, the features are extracted from the 1st visit data’s brain scan. Even though we have

the brain volume information for the subsequent visits, we are not using them since the

prediction is intended to be prognostic. We expected to see a non-linear relation between the

17

brain features and the age data. But, we did also try out a linear transfer function in the input

layer. The second layer of the network had only one neuron and it is the output layer. We also

experimented with the input structure. We left out age input and studied the performance.

 The next architecture we studied is similar to the above architecture but with an extra

hidden layer. We experimented with various values for number of neurons in the hidden layer.

 After studying these architectures, we checked to see how well a standard MLP neural

network model would work. We had three layers, an input layer, a hidden layer and an output

layer. The hidden layer had a non-linear transfer function and the output layer had a linear

transfer function. The reason for not trying a linear transfer function in the hidden layer is

explained in chapter 4. The output layer had only one neuron. We gradually increased the

number of neurons in the hidden layer and checked the performance. The input to the neural

network is the 100 features, age and the delta age information with all the 102 inputs fed to all

the neurons in the input layer. As before, we evaluated the performance by leaving out age.

3.4 Training the Network

 After removing the outliers, we had the data for 287 patients. Of these 287, we kept 143

for training and validation purposes and the remaining 144 for the test set. Since the training may

end early due to a local minimum, we had to train the network several times with random weight

initialization each time. We trained the network 100 times for each architecture. The data split

(training and test split) was same for each cycle but the training and validation split was random

for each cycle. Also, the weight and bias initializations were random for each run. The 143

patients in the training set is split into two sets again, one for training and the other is for the

validation. The performance measure used for training the network is the mean squared error

18

(MSE). The weights and biases are initialized in two different ways. One is using Matlab’s

default initnw function which uses the Nguyen-Widrow initialization algorithm (Ref. 8). The

other method is initializing them using values randomly from the interval [-10
-5

, 10
-5

]. The

second initialization method is chosen to make sure that we are not saturating the network by

initializing the weights to a large value.

3.4 Testing the Network

 After the training is complete, the test inputs are passed through the network to obtain the

network output. Here, we do not use MSE as performance measure since our goal is predicting

the converters and non-converters correctly. We have two performance measures for the test set:

1. Total accuracy in predicting converters and non-converters

a. Converter Prediction Accuracy (A Measure of Sensitivity)

b. Non-converter Prediction Accuracy (A Measure of Specificity)

2. Standard deviation in predicting when conversion will happen.

Here again, we could use either the raw scores or the fitted line for checking whether a

patient is a converter or not. For the standard deviation, we have to use a fitted line to see where

the line crosses the threshold. For simplicity, we will hereafter call the Converter Prediction

Accuracy as Sensitivity and Non-Converter Prediction Accuracy as Specificity.

19

CHAPTER 4

 MODEL DEVELOPMENT AND RESULTS

As mentioned already, we first trained the network with a linear transfer function in the

hidden layer. The problem with such a network can be understood by looking at the trajectories

the network was predicting for the test set (Figure 4.1) and comparing it with Figure 3.2, the

ground truth. Clearly, the linear transfer function makes all the trajectories follow a same

whereas a non-linear transfer function tries to better estimate the ground truth behavior as can be

seen from Figure 4.2. Even though it is not obvious, it is quite trivial to prove mathematically

why the trajectories for all the patients follow the same slope in the linear transfer function case.

 Above equation clearly shows that in case of the linear transfer function in the hidden

layer, the localized architecture and the standard MLP architecture are the same. This is the

reason why we did not try a linear transfer function in the hidden layer with the standard MLP

architecture.

20

Figure 4.1 Trajectories while using a Linear Transfer Function in the Hidden Layer

Figure 4.2 Trajectories while using a Non-Linear Transfer Function in the Hidden Layer

4.1 Localized Neuron Architecture

 We started with localized neuron architecture with 1 or 2 hidden layers to see what

transfer functions will work well in different layers. Also, we wanted to study how good the

performance was when including age and/or delta age. With this, we experimented with all

21

possible combinations of transfer functions. Figure 4.3 shows a pictorial representation of how

the first hidden layer looks like.

Figure 4.3: Localized Architecture

4.1.1 Localized Neuron Architecture (with one hidden layer)

Tables 4.1 and 4.2 show the (average) performance of the best architectures when having

just a single hidden layer. It was clear that having a non-linear transfer function in the hidden

layer and a linear transfer function in the output layer worked well in terms of prediction

accuracy as well as in terms of predicting the score trajectories. Surprisingly, having a linear

transfer function in the input layer gave better prediction accuracy. But, the trajectories show that

the linear network treats all patients as equals which we know is not true.

22

In the following table, a 3 in the type field indicates that the inputs age and delta-age

were used in the network along with the features.

Model Type Linear, Linear

Non-Linear,

Linear Linear, Linear,3

Training MSE 1.1717 2.2982 1.7031

Validation MSE 1.2552 2.2477 1.6468

Test MSE 2.0309 2.3538 1.9634

Total Accuracy (%) 74.1259 67.1329 67.8322

Non-Converter Accuracy (%) 57.4815 40.2469 47.8458

Converter Accuracy (%) 80.7865 84.1448 83.8340

Table 4.1: Performance with a Validation Set (One Hidden Layer)

4.1.2 Localized Neuron Architecture (With two hidden layers)

Having evaluated the performances for the single hidden layer architecture, we tried a

two hidden layer architecture taking into consideration the best network architectures in the

previous step. Since, the output of the network can take any value, we settled for a linear transfer

function in the output layer. The performances of the networks are shown in Tables 4.3 and 4.4.

We randomly initialized the number of neurons in the 2
nd

 hidden layer to 18 and noted the

performance. These experiments were done with only delta-age and volume information as

inputs.

Model

Linear, Linear,

Linear

Non-Linear,

Linear, Linear

Non-Linear, Non-

Linear, Linear

Training MSE 1.184 2.275 2.983

Validation MSE 1.284 2.58 2.866

Total Accuracy (%) 73.008 66.293 61.818

Non-Converter Accuracy (%) 58.547 31.947 11.017

Converter Accuracy (%) 82.299 88.779 95.364

Table 4.2: Performance with a Validation set (2
nd

 Hidden Layer of 18 neurons)

23

Model

Linear, Linear,

Linear

Non-Linear,

Linear, Linear

Non-Linear, Non-

Linear, Linear

Training MSE 0.614 0.576 0.094

Total Accuracy (%) 70.56 70.141 62.866

Non-Converter Accuracy (%) 61.298 60.682 54.827

Converter Accuracy (%) 76.719 76.304 67.945

Table 4.3: Performance without Validation set (2
nd

 Hidden Layer of 18 neurons)

Next, we wanted to study the performance as a function of the number of neurons in the second

hidden layer.

4.1.2.1 Localized Architecture (Non-Linear, Non-Linear, Linear)

From the plots for the training performance and test performance (Figures 4.3 and 4.4),

we could make no inference on which order is the best. By looking at the prediction accuracies

for various orders, we could see that the best performance (with only delta-age) in terms of total

accuracy was obtained for order 4, in terms of sensitivity for order 20, and in terms of specificity

for order 4. When using age also, the best performance in terms of total accuracy was obtained

for order 3, in terms of sensitivity for order 11, and in terms of specificity for order 20.

24

Figure 4.4: Performance vs. Order for Non-Linear, Non-Linear, Linear Arch. (Delta Age

only)

Figure 4.5: Performance vs. Order for Non-Linear, Non-Linear, Linear Arch. (Age and

Delta Age)

25

Model Order / Performance

Measure

4 / Total

Accuracy

20 / Converter

Accuracy

4 / Non-Converter

Accuracy

Training MSE 1.8486 1.9036 1.8486

Test MSE 2.2703 2.2126 2.2703

Validation MSE 1.964 2.0301 1.964

Total Accuracy (%) 69.3244 68.6661 69.3244

Non-Converter Accuracy (%) 49.9141 45.3588 49.9141

Converter Accuracy (%) 82.1843 84.1109 82.1843

Table 4.4: Best Model Performances for Localized Arch. with Delta age only

Model Order / Performance

Measure

3 / Total

Accuracy

11 / Converter

Accuracy

20 / Non-Converter

Accuracy

Training MSE 3.0301 2.7581 2.6496

Test MSE 3.1348 2.8019 2.7372

Validation MSE 2.9784 2.6611 2.6855

Total Accuracy (%) 66.345 64.9383 65.9263

Non-Converter Accuracy (%) 39.0162 29.8729 39.5386

Converter Accuracy (%) 84.2437 88.0214 83.1958

Table 4.5: Best Model Performances for Localized Arch. with Age & Delta age

4.2 Standard MLP Neural Network Model

 After studying all these localized architectures, we wanted to know how well they fared

when compared to a standard MLP neural network with two layers and with all the inputs given

to all the neurons. As always, we tried both combinations in the inputs by having delta-age only

and having them both.

Seeing the performance curves of the two models (Delta Age only and Age & Delta

Age), we see that the training MSE and validation MSE decrease continuously as a function of

model order for the first model. But the test MSE is not in the same order as the training and

validation MSEs. Clearly, the network was over-fitting the data in spite of the validation dataset.

The over-fitting phenomenon was confirmed by looking at the training MSEs for those runs

whose test MSEs were high. Training continued for 1000 epochs and the training MSEs were

26

nearly zero. For both the models, it is interesting and gratifying (looking at figures 4.7, 4.9 &

tables 4.6, 4.7) to note that the best performances (in terms of classification accuracy) were

obtained when the test set MSEs were small.

Figure 4.6: Training & Validation Performance vs. Order for the Standard MLP model (Delta

Age only)

Figure 4.7: Test Performance vs. Order for the Standard MLP model (Delta Age Only)

27

Figure 4.8: Training & Validation Performance vs. Order for the Standard MLP model (Age and

Delta Age)

Figure 4.9: Test Performance vs. Order for the Standard MLP model (Age and Delta Age)

28

Model Order /

Performance Measure

8 / Total

Accuracy

8 / Converter

Accuracy

4 / Non-Converter

Accuracy

Training MSE 1.1303 1.1303 1.1338

Test MSE 8.7531 8.7531 6.6029

Validation MSE 1.3022 1.3022 1.3994

Total Accuracy (%) 67.2797 67.2797 65.9301

Non-Converter Accuracy (%) 60.1547 60.1547 63.8411

Converter Accuracy (%) 71.847 71.847 67.258

Table 4.6: Best Model Performances for Standard MLP Arch. Delta age only

Model Order / Performance

Measure

12 / Total

Accuracy

7 / Converter

Accuracy

12 / Non-Converter

Accuracy

Training MSE 0.3309 1.2485 0.3309

Test MSE 8.6384 13.8257 8.6384

Validation MSE 0.5951 1.7592 0.5951

Total Accuracy (%) 71.1888 68.4755 71.1888

Non-Converter Accuracy (%) 67.5926 59.6111 67.5926

Converter Accuracy (%) 73.3708 73.8539 73.3708

Table 4.7: Best Model Performances for Standard MLP Arch. with Age & Delta age

4.3 Standard deviation in predicting the conversion

The second performance measure we used is the standard deviation in predicting the

conversion measured in years. After we have computed the accuracy in predicting the converters

and non-converters, we take the subset of converters predicted correctly by the neural network.

We then fitted a line to their predicted scores and saw where the line crossed the threshold of

zero and compared it with actual conversion time based on their actual scores. With these two

data, we computed the standard deviation in predicting the conversion. For those converters

whose scores are all below the threshold, we set their first visit age as their conversion time. The

following are the results of the standard deviation values for the best models in various

architectures.

29

Model Order 4 20 4

Total Accuracy (%) 69.3244 68.6661 69.3244

Non-Converter Accuracy (%) 49.9141 45.3588 49.9141

Converter Accuracy (%) 82.1843 84.1109 82.1843

Deviation in Prediction Accuracy 0.6476 0.5467 0.6476

Table 4.8: Deviation in Prediction Accuracy for Localized Arch. with Delta age only

Model Order 3 11 20

Total Accuracy (%) 66.345 64.9383 65.9263

Non-Converter Accuracy (%) 39.0162 29.8729 39.5386

Converter Accuracy (%) 84.2437 88.0214 83.1958

Deviation in Prediction Accuracy 0.75 0.6944 0.7848

Table 4.9: Deviation in Prediction Accuracy for Localized Arch. with Age and Delta age

Model Order 8 8 4

Total Accuracy (%) 67.2797 67.2797 65.9301

Non-Converter Accuracy (%) 60.1547 60.1547 63.8411

Converter Accuracy (%) 71.847 71.847 67.258

Deviation in Prediction Accuracy 0.6565 0.6565 0.4814

Table 4.10: Deviation in Prediction Accuracy for Standard MLP Arch. with Delta age only

Model Order 12 7 12

Total Accuracy (%) 71.1888 68.4755 71.1888

Non-Converter Accuracy (%) 67.5926 59.6111 67.5926

Converter Accuracy (%) 73.3708 73.8539 73.3708

Deviation in Prediction Accuracy 0.6473 0.9707 0.6473

Table 4.11: Deviation in Prediction Accuracy for Standard MLP Arch. With Age and Delta age

4.4 Raw scores Vs. Fitted scores

Up till this point, we have used fitted scores for training the network and raw scores for

evaluating the network. In this section, we study the performance of the networks when the other

combinations were used.

4.4.1 Raw scores for training the neural network

Using raw scores for training the network means that we cannot extrapolate the scores to

get the sixth visit score. In this case, the network performance was far better (in terms of

prediction accuracy) when compared to using the fitted scores. Best accuracy was ~79% when

compared to the 71% obtained when using fitted scores. The standard deviations in predicting

when conversion will happen were also smaller. Table 4.10 gives the performance values when

30

using delta-age only and 4.11 gives it for the case when age was also used. Raw scores were used

at the output of the network also. When fitted scores were used at the output instead of raw

scores, no significant changes in the prediction accuracy were seen.

Model Order / Performance

Measure

19 / Total

Accuracy

8 / Converter

Accuracy

7 / Non-Converter

Accuracy

Training MSE 1.2945 1.2719 1.4702

Test MSE 1.6982 1.6853 1.9580

Validation MSE 1.4807 1.3643 1.4446

Total Accuracy (%) 78.87 77.06 77.34

Non-Converter Accuracy (%) 80.93 73.33 84.50

Converter Accuracy (%) 77.38 79.76 72.17

Standard Deviation in

Prediction Accuracy 0.2607 0.2314 0.3196

Table 4.12: Best Model Performances for Localized Arch. with Delta age only (Raw

score Training & Testing)

Model Order / Performance

Measure

19 / Total

Accuracy

19 / Converter

Accuracy

15 / Non-Converter

Accuracy

Training MSE 1.6392 1.6392 1.9920

Test MSE 2.1919 2.1919 2.7036

Validation MSE 1.6252 1.6252 1.8411

Total Accuracy (%) 75.61 75.61 67.13

Non-Converter Accuracy (%) 78.96 78.96 80.67

Converter Accuracy (%) 73.19 73.19 57.35

Standard Deviation in

Prediction Accuracy 0.3437 0.3437 0.5689

Table 4.13: Best Model Performances for Localized Arch. with Age & Delta age (Raw

score Training & Testing)

4.4.2 Raw scores for evaluating the performance of the network

For the test data, when we compute the prediction accuracy, we have a choice of using the

raw score or the fitted score trajectories. We have plotted the network output trajectories for raw

scores as well as fitted scores along with ground truth for a few patients whose conversion the

network predicted correctly. As can be seen, the network actually tries to fit a line by itself. This

behavior can be explained due to the nature of training data we used. The training was done

based on a fitted line for the patients’ scores. So, the network is trying to imitate the behavior.

31

Also, we saw a slight improvement in the prediction accuracy while using raw scores instead of

fitted scores at the network output. This again can be explained by viewing the line fitting at the

network’s output as an addition of noise.

Figure 4.10: Fitted Score Trajectories vs. Age compared to Ground Truth

32

Figure 4.11: Raw score trajectories vs. Age compared to Ground Truth

4.5 Linear Mean Squares Approach

 Since the accuracy for the linear architecture was high, we wanted to see how the

performance would be if we were to use a Linear Mean Squares (LMS) Approach for this

problem. For the fitted scores approach, we extrapolated the scores to the sixth visit and for the

raw scores approach we just used what was available. The impact of having the age parameter

was also studied. For each combination, we split the data into two halves randomly and repeated

the experiment 20 times to get the average performance. The following table summarizes the

results. Even though the standard deviation in predicting the conversion is slightly higher, the

accuracy is far better than any other neural network architecture studied. The main difference

between training a linear neural network and this approach is that here we directly jump to the

global minimum instead of settling for some local minima.

33

Score Type / Age Raw / Age

included

Raw / Age not

included

Fitted / Age

included

Fitted / Age not

included

Total Accuracy 80.88 77.78 73.99 69.55

Converter Accuracy 79.46 77.17 77.29 76.21

Non-converter Accuracy 82.69 78.36 68.40 59.57

Standard Deviation 1.53 1.31 0.48 0.59

Test Set MSE 1.06 1.49 2.20 2.78

Table 4.14: Accuracy obtained when using the LMS Approach

4.6 Diagnosis Vs. Prognosis

 Once the prediction accuracies were studied for prognostic prediction of conversion to

AD from MCI, we wanted to see how that compared to a diagnosis. By studying this, we could

see how difficult it is to do a prognosis for this problem. We used standard MLP neural network

architecture for this purpose and we did three types of experiments based on how we defined a

patient as a converter or a non-converter. Note that, for diagnosis we used the MRI scans from

all the visits for training and testing of the neural network.

4.5.1 Approach 1: Visit Accuracy

 In the first approach, we disregarded the idea of a patient and computed the visit

accuracy. To clarify, we used each visit by a patient as a data point. We trained the network

using 50% of the data and tested it using the remaining 50%. Here, a visit is termed as a

conversion visit if the score is below the threshold (0) and a non-conversion visit otherwise. As

before, we computed the accuracy in predicting the converters, non-converters and also the total

accuracy. Here, we cannot have the concept of standard deviation in predicting the conversion

since the testing is visit-based and not patient based. Obviously, we expected to see a much

better performance when compared to the prognosis performance. The results of the testing are

shown in the following table (Table 4.15).

34

Model Order, Score Usage 1 / Raw Scores 2 / Fitted Scores

Training MSE 0.0834 0.1799

Validation MSE 0.1457 0.3058

Test MSE 0.1593 0.4386

Total Accuracy 92.35 % 87.29 %

Converter Accuracy 92.46 % 87.58 %

Non-converter Accuracy 92.29 % 87.15 %

Table 4.15: Best Performances for Visit-Accuracy Approach

4.5.2 Approach 2: Patient Conversion Accuracy

 This approach is similar to the previous approach but instead of defining conversion

visits or non-conversion visits, we defined converters or non-converters. Here, the definition of

converter and non-converter is slightly changed when compared to the prognosis experiments. If

a patient’s score goes below the threshold for at least one visit, then the patient is classified as a

converter. The results of this approach are shown in table 4.16.

Model Order / Score Usage 1 / Raw Scores 1 / Fitted Scores

Training MSE 0.2398 0.4582

Validation MSE 0.3174 0.5534

Test MSE 0.2791 0.6222

Total Accuracy 88.52 % 86.91 %

Converter Accuracy 83.33 % 81.85 %

Non-converter Accuracy 95.81 % 95.09 %

Table 4.16: Best Performances for Patient-Conversion-Accuracy Approach

4.5.3 Approach 3: Patient Conversion Accuracy while predicting the score trajectory

 In this final approach, we gave the network brain volume information from all the six

visits of a patient as a single input. That is, the network took in 600 inputs. For patients who had

some of the visits missing, we did interpolation as well as extrapolation depending on which visit

data was missing. The network outputted the scores for all six visits together. As before, we used

the by-trajectory definition for classifying a patient as a converter or a non-converter. Note that,

in this method we cannot use raw scores for training and testing the network since we need 600

35

inputs and none of the patients had the scan information for all 6 visits. The results of this

approach are shown in table 4.17.

Model Order /

Performance Measure

8 / Total Accuracy 20 / Non-Converter

Accuracy

6 / Converter

Accuracy

Training MSE 0.1857 0.0630 0.3104

Validation MSE 0.9117 1.4882 0.7878

Test MSE 1.0476 1.4819 0.9565

Total Accuracy 62.63 % 59.54 % 60.59 %

Converter Accuracy 52.93 % 28.13 % 56.93 %

Non-converter Accuracy 72.08 % 90.13 % 64.16 %

Table 4.17: Best Performances for Patient-Conversion-Accuracy Approach with Interpolation &

Extrapolation

36

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Accuracy

This neural network approach produced accuracy (best performance) of approximately

71% when using the standard MLP architecture and 69% when using the localized architecture

(with fitted scores for training) and as high as ~79% when using the raw scores for training. This

accuracy is slightly better than what was obtained when a linear-kernel SVM (~77%) was used

with the region-based features (Aksu et al., 2011). Refer to tables 4.11, 4.4 & 4.12

It is interesting to note that the classification performance for a linear neural network

(localized architecture) was 74%. And, when we viewed the problem as a Linear Mean Squares

problem the accuracy obtained was as high as 80% and the standard deviation performance

measure was slightly worse than what was obtained with fitted scores. Refer to tables 4.1 & 4.14

5.2 Age as a feature

 For the localized architecture, using age (age during the first visit) as an input to the

network did not help improve the performance. In fact, the performance was slightly poorer

when age was included (69% as compared to 66% classification accuracy – tables 4.4 & 4.5). On

the other hand, for the standard MLP architecture, using age helped improve performance

slightly (71% as compared to 67% - tables 4.6 & 4.7). For the LMS approach, including age

helped improve the performance by approximately 3%. Even though, the standard MLP neural

network architecture had better classification accuracy, the test set MSE was comparably higher.

37

5.3 Difficulty in doing prognosis

 When the MRI scans from all the visits were used (diagnosis), we could achieve accuracy

as high as 92%. Comparing this to the 79% accuracy we obtained (with a reasonable standard

deviation in predicting conversion) for prognosis tells us how difficult prognosis is for this

particular problem.

38

APPENDIX

Creating a Custom Neural Network in MATLAB

 It is very simple to create a standard MLP neural network in MATLAB. All we have to

do is execute the following command:

net = newff(input_sample, output_sample, no_of_neurons);

This command will create a Multilayer Perceptron based on the three arguments provided

to it. The size of output_sample will decide how many neurons there will be in the output

layer. The no_of_neurons can be an array which decides the number of the hidden layers

and the size of each layer. For example, no_of_neurons = [10, 5] means that there will be 10

neurons in the first layer which will be connected to the inputs and the second layer will have 5

neurons whose inputs will be connected to the outputs of the first layer and there will be an

output layer whose size, as mentioned already, will be decided based on the size of the

output_sample. By default, all the layers except the output layer will have a non-linear

transfer function while the output layer will have a linear transfer function. For most cases, we

do not need any customization to the network.

If one wishes to create a custom neural network, one has to start from scratch and has to

set each and every setting. Reference 9 explains how to create a custom network using the

Neural Network Toolbox Version 3.0. The current version of the toolbox is 6.0 and has several

changes from the 3.0 version.

The following code is an example of how to create a custom network.

39

net = network;

net.numInputs = 100;

for i = 1 : 100

 net.inputs{i}.size = no_of_layers;

end

net.numLayers = 102;

for i = 1 : 100

 net.layers{i}.size = 1;

end

net.layers{101}.size = hidden_neurons;

net.layers{102}.size = 1;

net.biasConnect = ones(102,1);

for i = 1 : 100

 net.inputConnect(i,i) = 1;

end

for i = 1 : 100

 net.layerConnect(101, i) = 1;

end

net.layerConnect(102, 101) = 1;

40

net.outputConnect(102) = 1;

for i = 1 : 100

 net.layers{i}.transferFcn = input_txr_fcn;

end

net.layers{101}.transferFcn = hidden_txr_fcn;

net.layers{102}.transferFcn = output_txr_fcn;

net.initFcn = 'initlay';

for i = 1 : 102

 net.layers{i}.initFcn = 'initwb';

 net.biases{i}.initFcn = 'rands';

end

for i = 1 : 100

 net.layerWeights{101,i}.initFcn = 'rands';

end

net.layerWeights{102,101}.initFcn = 'rands';

net.performFcn = 'mse';

net.trainFcn = 'trainlm';

net.divideFcn = 'dividerand';

net.divideParam.trainRatio = 0.9;

net.divideParam.valRatio = 0.1;

net.divideParam.testRatio = 0.0;

net.plotFcns = {'plotperform','plottrainstate'};

41

After creating an empty network (which is an object), we have to set all its parameters.

The first parameter to set is the Number of Input Sources. This can be done by setting the

parameter net.numInputs to the required value. In our case, we have a total of 100 input

sources. It is important to note that this parameter sets the number of input sources and not the

size of the input array. The number of elements in the input vector can be set by setting the

parameter net.inputs{i}.size where i varies from 1 to net.numInputs. In our case, it

can be 2 or 3 depending on whether age input is included and we have 100 such input sources.

The next parameter of interest is net.numLayers. The definition of layer here is not

exactly the same as we have used it before. When we have only one input source, they are the

same. But, if we have more than one input source, then the definition will change. In our case,

we have a total of 100 input sources. Also, we have a hidden layer and an output layer. We have

one layer for every input source. So, in this case we have a total of 102 layers.

The next parameter decides how many neurons are there in each layer. This can be done

using the parameter net.layers{i}.size. To make the neurons have a bias input, we have

to set the value of net.biasConnect connect for all the layers.

Next, we make the connections between the input sources & the input layer, input layer

& hidden layer and output layer and output link. These can be done using

net.inputConnect, net.layerConnect and net.outputConnect. To set the

transfer function for the layers, we have to use net.layers{i}.transferFcn. For a non-

linear transfer function, set it to tansig and for a linear transfer function, set it to purelin.

Next step is to configure how the weights and biases are initialized. For this, first set

net.initFcn to initlay. Then, for every layer set the parameter

42

net.layers{i}.initFcn and net.biases{i}.initFcn. The layer initialization

function can be set to initnw or initwb. More information on those functions can be found in

Ref. 8. Also, set the initialization function for the weights between layers using

net.layerWeights{j,i}.initFcn where layers j’s output goes to input of layer i. These

parameters can be set to rands which initializes them to random values between -1 and 1.

Next, we have to set the performance function which is used during training and

validation. To use mean squared error, set net.performFcn to mse. For setting the training

algorithm, configure the parameter net.trainFcn. The most commonly used training

function is trainlm.

Next, to configure what percentage of the data set should be used for training, validation

and testing, set net.divideParam.trainRatio, net.divideParam.valRatio and

net.divideParam.testRatio.

Finally to configure what plotting functions should be invoked during the training and

once the training is done, set the value of net.plotFcns. For example, set it to

plotperform which plots the performance function as a function of epochs for training,

validation and test set. If you set it to plottrainstate, you will see how the mse decreases

epoch by epoch as training progresses. One can also have both the plotting functions together.

43

BIBLIOGRAPHY

1. Alzheimer's Disease Neuroimaging Initiative (ADNI), www.loni.ucla.edu/ADNI

www.adni-info.org

2. Yaman Aksu, David J. Miller, George Kesidis, Don C. Bigler and Qing X. Yang, “An

MRI-Derived Definition of MCI-to-AD Conversion for Long-Term, Automatic Prognosis

of MCI Patients”, CSE Tech. Report, 2011.

3. N. Schuff, D. Tosun, P.S. Insel, G.C. Chiang, D. Truran, P.S. Aisen, C.R. Jack, Jr., M. W.

Weiner, the Alzheimer’s Disease Intiative, “Non-Linear time course of brain volume loss

in cognitively normal and impaired elders”, Neurobiology of Aging, 2010.

4. Simon Haykin, Neural Networks: A Comprehensive Foundation. Second Edition,

Prentice Hall International, Inc., 1999.

5. Richard O. Duda, Peter E. Hart and David G. Stork, Pattern Classification. Second

Edition, John Wiley and Sons, New York, 2001.

6. Stuart Russell and Peter Norvig, Artificial Intelligence A Modern Approach. p. 578.

7. Derrick Nguyen and Bernard Widrow, Improving the learning speed of 2-layer neural

networks by choosing initial values of the adaptive weights. Proceedings of the

International Joint Conference on Neural Networks, 3:21–26, 1990.

8. Howard Demuth, Mark Beale and Martin Hagan, Neural Network Toolbox™, User’s

Guide The MathWorks, Inc., Natick, MA, revised for version 6.0.3 edition, September

2009. http://www.mathworks.com.

9. C. Davatzikos, P. Bhatt, L. M. Shaw, K. N. Batmanghelich, J. Q. Trojanowski,

"Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern

classification", Neurobiology of Aging, 2010.

http://www.mathworks.com/

44

10. Y.Y. Chou, N. Leporé, C. Avedissian, S. K. Madsen, X. Hua, C. R. Jack Jr., M. W.

Weiner, A. W. Toga, P. M. Thompson, and the Alzheimer's Disease Neuroimaging

Initiative, "Mapping Ventricular Expansion and its Clinical Correlates in Alzheimer's

Disease and Mild Cognitive Impairment using Multi-Atlas Fluid Image Alignment",

Proc. SPIE, vol.7259, 725930, 2009.

11. C. Misra, Y. Fan, C. Davatzikos, "Baseline and longitudinal patterns of brain atrophy in

MCI patients, and their use in prediction of short-term conversion to AD: Results from

ADNI", NeuroImage 44, pp.1415-1422, 2009.

12. Y.Wang, Y. Fan, P. Bhatt, C. Davatzikos, "High-dimensional pattern regression using

machine learning: From medical images to continuous clinical variables", NeuroImage

50, pp.1519-1535.

13. Somesh Srivastava, Introduction to the Matlab Neural Network Toolbox 3.0

http://www.eecs.umich.edu/~someshs/nn/matlab_nn_starter.htm

14. Clinical Dementia Rating: http://www.alz.washington.edu/NONMEMBER/cdr2.html

15. Folstein MF, Folstein SE, McHugh PR. ""Mini-mental state". A practical method for

grading the cognitive state of patients for the clinician". Journal of psychiatric research

12 (3): 189–98, 1975.

16. D.J. Miller, Private Communication, February 28, 2011

http://www.eecs.umich.edu/~someshs/nn/matlab_nn_starter.htm
http://www.alz.washington.edu/NONMEMBER/cdr2.html

