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Abstract

We introduce the selissembled monolayers (SAMs)malkanethiols on Au{111} as
a standard molecular assembd understandhe physical chemistry of organic moleesl on
solid surfaces We apply these molecular assemblies to create new interfaces amert
control over single moleculesScanning tunneling microscog$6TM) is used to characterize
the molecular orientations, structures, phasasd intermolecular interactions ithin
molecular assembliesn real space, at the smlanometer scaléelNe take advantage dhe
high spatial resolution of STM to obtain fundamental insight into molecular phenomena.
Other surface characterization techniquescluding infrared reflection absorption
spectroscopy, Xay photoelectron spectroscopand cyclic voltammetry complement and

support our STMneasurements

Photon STM is used to investigabptical phenomena of single organic molecules
with Angstm-scale precisionEvanescent waveouapling by total internal reflection adds
chemical specificity to STM function. High quality, th&ku{111} film s depositedon c-cut
sapphire prism efficienty coupk light to thetunneling junction. Annealingignificantly
improvessubstrate quality dboth the sapphire and Au{111} surfaces, providing more stable
tunneling junctios. Lock-in detection with light modulation improves the photoresponse
registry in the photorsTM. One promising candidater efficient organic solar cells, ¢&
tethered2,5dithienylpyrrole triads was isolated within a welbrderedn-dodecanethiolate
monolayer to measure the photocurrentsorgletriad molecules, which will determine the

intrinsic photovoltaic efficiencyat the molecular level Increasedphotoconductivy of



isolatedphotovoltaic or photoconductivaolecules demonstrates the functaord potentiabf

photonSTM.

Photoreactions of conjugated organic molecules may be allowed by selection rules but
not observed in solution reactions because of unfal®raaction geometries. We have used
defect sites in selissembled alkanethiolate monolayers on gold surfaces to direct
geometrically unfavorable photochemical reactions between individual organic molecules.
High conductivity and stochastic switching afthracenderminated phenylethynylthiolates
within alkanethiolate monolayers, as well asitu photachemical transformationsakiebeen
observed anddistinguishedwith the STM. Ultraviolet light absorbed during imaging
increases the apparent heightseatited moleculesn STM images evidence that we are

probing electronically excited states.

The formation o2-adamantanethiate SAMs on Au{111}andtheir displacement by
n-dodecanethiol are investigatading STM, X-ray photoelectron spectrosco@yrd infrared
reflection absorption spectroscop¥ell-ordered2-adamantanethiate monolayers undergo
rapid and significant molecular exchangpon exposureto n-dodecanethiokolutions but
their structures and intermolecularinteractionstemplate the growth oh-dodecanethiolate
domains Annealing 2adamantanethiolate monolayers at°Z8decreaseshe density of
vacancy islandswhile increasing the overall order and the average domain sizes in the films.
Thisresults in slowedisplacemenby n-dodecanethiol molecules, as compared to unannealed
monolayers.The secondary sulfur position dhe adamantyl cage altettse lattice structure
and the exchange of -&lamantanethiolate monolayers by alkanethiols relative to

1-adamantanethiol monoless.



We report the electrochemically driven phase transfoonaif a linear nanostructure
in amidecontaining alkanethiol, 3-mercapteN-nonylpropionamide (LATC9) SAMs.
Hydrogenbonding interactions between buried amide groups caasenulti-step
electrochenical desorptionwhich involvesan unusual phase changghis reaction can be
exploited to producea less dense, textured structu&nglecomponentlATC9 SAMs
prepared in solution at room temperature for 24 hours consist of two phases with different
apparent height®s STM images; these phases are readinipulated byontrolling solution
temperature and deposition timietermoleculathydrogenbonding nteractios producefilms
with high thermal stability The presence of two independent cathodic peak$ARCY9
monolayer voltammogramgdicates two-step reductive desorptionA monolayer phase
transitionoccursafter the first cathodic peakransforminga closepacked monolayeinto a
stripedphase that ienergetically favored at low surfati@olate densityScanning tunneling
microscopy, cyclic voltammetry, infrared reflectiomsarption spectroscopyand X-ray
photoelectron spectroscopyeveal electrohemical nanostructuring, driven by partial
reductive desorption and strong interchain hydrogen bondihg resultant striped, low
coverage phase is inaccessible by other synthetic preparations, except by controlled dosing in

ultrahigh vacuum.
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Lunnel= 1.0 PA e ettt n ettt nnee sttt s s s srneenteneeeen e D

Figure 3.6 (A to C) Scanning tunneling microscopy imagedREA molecules inserted
into aC12 SAM matrix, and then exposed to UV light (=365 nm). Images
were collected during irradiation after (A) 24 minutes, (B) 124 minutes, and
(C) 220minutes.Imaging conditionsVsampie=11.0V, lynnei= 1.0 pA.The UV
illumination increases the apparent height of photoreactive molecules and more
molecules appear asqgprusions at longer irradiation (see arrows). Several
pairs of molecules show substantial decreases in apparent height, attributed to
photodimerization (boxes in B and C).........cccoooiieiiiiiiiieeei e 76

Figure 3.7 (A) The calculated electronic energy profile and (B) the energy gap between
the HOMO and the LUMO ofMPEA as the function of relative ring
orientations about the ethynyl bond................oooo e 80

Figure 3.8 Frontier molecular orbitals and corresponding energy levels (HOMO
HOMO, LUMO, LUMO+1) of the planar (0°) and ortponal (90°)
conformations oMPEA. The gap energy between the HOMO and LUMO of
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Figure 4.1 (A) The molecular structures ohdamantanethiol and-&lamantanethiol.
Sulfur attachments to the tertiary (3°) and secondary (2°) carbon on the
adamantyl cage in each thiol are shown by the arrows. (B) The- three
dimensional representation of the corresponding thiolates...................ccccce. 84

Figure 4.2 Scanning tunneling microscopy images-atl@mantanethiate QAD) selt
assembled monolayers (SAMs) on Au{l1l} fabricated by immersing
substrates in hM 2-adamantanethiol solution at room temperature for
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adatom islands with measured height of & 4consistent with the Au{111}
singleatom step height [14]......ooeeeeiiiiii e 91
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Figure 4.3 Scanning tunneling microscopy images-ati@mantanethiate QAD) selt
assembled monolayers (SAMs) on Au{l11} prepared by first placing Au
substrates in 1 mM-adamantanethiol solution at Y0 for 2 hours, then dry
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the same orientations as domains A and Cpeas/ely. Domain D is
disordered. The yellow arrows denote translational domain boundaries;
600A 3 600A; sample bias 0.89, tunneling current 2.pA. (B) The
proposed unit cell for theAD lattice on Au{111}. (C and D) The proposed
superlatticec(4 x 2) structures of alternating heights results from different
phases (b and..0).,...rf.es.p.ec.t.i.v.el.y. ... 93

Figure 4.5 (A and B) Scanning tunmg microscopy images of mixed SAMs containing
2-adamantanethiolat AD) andn-dodecanethiolate(q12) domains fabricated
by inserting2AD SAMs in 1 mM n-dodecanethiol solution for the specified
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Figure 4.8 Representative voltammograms showing the reductive desorption of (A) a
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2-adamantanethiolate 2AD) SAM, and (C) a singkeomponent
n-dodecanethiolated12) SAM. Baseline correction was applied to account for
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occur. The traces are offset for Clarity...............ooevviiiiiccciiieee s 102

Figure 4.9 The C 1s region of XPS spectra of a singtaponent Zadanantanethiolate
(2AD) SAM, a singlecomponenin-dodecanethiolateQ12) SAM, and binary
2AD/C12 SAMs created by displacement &FAD SAMs with 1mM
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Figure 4.11 (A) Infrared spectra of theHCstretch region of a-adamantanethiolate
(2AD) SAM and an-dodecanethiolateQ12) SAM, showing their spectral
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Figure 5.1 Scanning tunneling microscopy image$AfC9 selfassembled monolayers
(SAMs) on Au{ll1ll}. Samples were fabricated in solution either at room
temperature (A and BLATC9 RT SAMs) or at 7CC (C and D,1ATC9 70
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SAMSs) for 24hours; sample biaisl.0 V, tunneling current 1.0 pA. The round
features that gpear more protruding in (B and C) correspond to Au adatom
islands formed during asSemMbIY............eiiiiiiii e 122

Figure 5.2 A schematic illustratiasf the molecular orientation in (A)ATC9 RT SAMs

and (B)1ATC9 70 SAMs with difference in Hydrogehonding linearity............. 123

Figure 53 Sequential scanning tunneling microscopy imageBAGiC9 self-assembled

monolayers (SAMs) on Au{l111} prepared by placing Au substrates in 1 mM
1ATC9 solution at 7CC for 24hours LATC9 70 SAM); sample biasi 1.0V,
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Figure 5.4 Scanning tunneling microscopy image$AfC9 selfassembled monolayers

on Au{l111} after dryannealing at 128C for 18 hours. The samples were
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Figure 5.5 (A and B) Cyclic vaimmograms oflATC9 SAMs and (C)C12 SAMs on

Au{111} with (A) 0.5M KOH and (B and C) 0.M KCI (pH ~7) aqueous
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Chapter 1. Beyond Molecular Assemblies and Scanning Tunneling

Microscopy

1.1 Introduction

We haveapplied molecular selissemblyto tailor interfaces ando designorganic
reactiors on surfacesBy understandinghe chemistryf adsorbed moleculege can develop
a systematic design stratgedor the production ofdiverse interfacesStructural variation,
molecular orientationandchemicalfunctionalzation enable precise tuning of theecal and
ensembleinterfacial propertiesof supramolecular assembliend the creation ofnew

nanoscale patterns.

Scanning tunneling microsco@$ TM) hasbeen a powerful tool for nanoscience, used
to characterize nanoscale features with high resolutisaahspaceHowever, this excellent
resolution without chemical specificity limits the capabilities of STM. Development of STM
with chemical specificity is thus an important goal in science especially chemistry. Although
many achievements have been mateiill still be a long journey to accomplish definitive

chemical identification with STM.

In this thesiswe emphasizéhe importance o€hemtal principles tohelp elucidate
the chemistry oSupramolecular assembled systelVe alsouse these assembligsconduct
chemical reactionsf individual organic molecules on surfaces. We observe the underlying
physical chemistry of sedissembled monolayers (SAMs) and bimolecular organic reactions

with STM. Our rewly designed photon STMrovides fresh opportumés for the study of



functional molecular candidates for molecular optoelectronics and organic solar cell

applications
1.2 Self-Assembled Monolayers

Organic thiols spontaneously assemble intomaéecule thick layex(monolayes) on
diverse substratesush asmetalsand semiconductorfl-7]. The reaction is spontaneous,
driven first by hghly strong adsorbatsubstrate interactian(the Au-S bond is ~128 kJ/mol)
[8,9]. n-Alkanethiolate SAMs on Al 11} have been studied extensivelyecausehey are
easy to prepare, stable, aack well-ordered[3,10]. Nanoscale ordering is driven by the
substrate lattice anché attractive van der Waals interactions between alkyl cHaihs

8 kcal/mol) ands improved bythe diffusion & a Au-S complexduring assemblj9-11].

When the Au{111} surface is exposaan-alkanethiolsthethiol head group attaels
to the Au surface achieving nearly complete coveragithin secondsThe alkanethiolate
molecules tilt with respect to the surface normal by 30° to maximize the van der Waals
interactions between neighbaginalkyl chains (Figure 1.1A). blecules assemble to a
hexagonally clos@acled lattice with nearest neighbor distances of 5.0 A (Figure 1118)
The monolayer lattice is described by o Vo 'Yo funit cell with respect to the
underlying (1x 1) Au{111} lattice. A primitivec(4 x 2) superlattice is also observed, which
has ben explained by an alternating azimuthal orientation of one molecule with respect to its
neighbors[10,12] Figure 1.2 illustrates both/ic Vo 'Yo frand ¢(4 x 2) superlattice
structures ofn-alkanethiolate monolayers. A hexagonally clepadkedn-dodecanethiolate
(C12 monolayer and itsc(4 x 2) superldice structure can be resolved in molecular

resolution STM images @12 SAMs, as shown in Figure 1.3.



A representative STM image of@Gl2 SAM on Au{111} displays the characteristic
features, including vacancy islands, domain boundaries, and step edgesetmormally
observed in n-alkanethiolate monolayers (Figure 1.4A). During -sei$embly, e
herringbone structure othe Au{111} substrate (Figure 1.4Bdeconstruct by Au atom
ejection resulting inoneAu-atom deep(2.35A) subsrate vacancy islandged arrow in
Figure 1.4A)[11,13,14] Adjacent domains with different translation, rotation, or tilt are
separated by characteristic domain boundaries (yellow arrow in Rigi#4¢[15-18]. Domain
boundaries aa appear as protrusions or depressions in SAMs. Each Au{ll11} terrace is
separated by substrate step edges, R.B§her or lower (green arrow in Figure 1.4AYe
define any disordempinholes domain boundariesand vacancy islands as SAM defects that

direct thephysical chemical anelectrical properties of monolayers.

1.2.1 Self-assembly in solution vs.vapor deposition

n-Alkanethiolate SAMs on gold are commonly prepared by the immersion of freshly
prepared, clean substrates, typically -ti@thick bae Au{111} film on cleaved mica, into a
dilute (~1mM) ethanolic solution of related thiols at room temperature. Duringaseémbly
at room temperature, the Au substrate is quickly coveredmnatkanethiolates from solution
within milliseconds to minutg but the slow reorganization process takes a minimum of
several hours to maximize coverage density and to minimize the defect sites (Figure 1.5A and
B) [19]. However, the solvent, temperature, concentration, immersion time, purity, cleanliness

of the substrate, and the alkyl chain length can affect the overall SAM structure and quality

[4].



Solution deposition at somewhat elevated temperature®GjMubstantially improves
SAM quality. Even with short assembly times (F® for 1 hour, Figure 1.5C), we observe
lower defectdensites with increagd overall order and avage domain sizesThe extra
thermal energy speeds up the sm$embly procesf20]. AlkanethiolateAu complexes
diffuse faster at elevated temperatures and are able e¢ocamwe the barrier for the
reorganization of kinetically trapped molecules, which enables them to maximize their
intermolecular interactions. Noticeably, safsembly in the vapor phase (T3 promotes
selfexchange[21], substantiall improving monolayer order. Vapor deposition accelerates
both assembly and ordering, resulting in heglality SAMs (Figure 1.5D)19,22] Figurel.5
displays STM images ofc12 SAMs prepared in solution and vapor phase at room
temperature (A and B) and mildly elevated temperatures (70 aneC,7/&h C and D,
respectively). Longer time, higher temperature, and vapor phase thiols increase domain sizes

and decrease the numbers ofaacy islands.

1.2.2 Single-molecule insertion

Ensemble averagingamples fromall configurationsmolecules. Singkenolecule
spectroscopy allows us to monitor variations in the configurations of single maslektule
provides details of underlying distribons that can be critically important for understanding
heterogeneous systen23,24] Measurements of tim@ependent processes and stochastic
behavior, including singleno |l ecul e fl uctuati ons or Afl i cke:
unprecedented insight into singtelecule behavior obscured by traditional ensemble

averaging23,2527].



A
2L
A A
v V \ ‘ ' |

\ /
ORI N
AN LN ‘ .

> ‘ v.v -

\\

y e

\ /

Y Y v v
REXA
Figure 11 Schematics ofi-dodecanethiolateqQ12) SAM structure orAu{111}. (A) A side

view along the nearest neighbor direction showing tHetiB&ko maximize van der Waals
interactions. (B) A top view showing hexagonal close packingl@&molecules.
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Figure 12 A schematic tomlown view of the unit cells{ & 3  R30°%td) andc(4 x 2)
superlattice (bottom) on underlying ¥11) Au{111} substrate.



Figure 13 Molecularresolution STM images o£12 SAMs, displaying hexagonally ate
packed lattice (red dot in A, and Bidc(4 x 2) superlattice (blue dot in A, and @naging
conditions were sample bias voltageOV and tunneling current 1 QA.



Figure 14 (A) A representative STM image ofGl2 SAM showing domain boundaries (red
arrow), vacancy islands (yellow arrow), and substrate step edges (green é&meaging
conditions were sample bias voltageOV and tunneling current 18A. (B) A STM image
of a bare Au{111} substrate displayinget herringbone structuf@8]. Imaging conditions
were sample bias voltagé.0V and tunneling current 10j8A.



Figure 15 Scanning tunneling microscopy imagesC#f2 SAMs prepared in solution (A) at
room temperature for Aour and (B) for 24ours, (C) at 76C for 1hour, and (D) via vapor
deposition at 78C for 24hours. The SAM quality (larger domains, fewer defect sites, and
better order) can be improved subsiht by using increased temperature in solution or
vapor deposition. Imaging conditions were sample bias voith@gd/ and tunneling current
1.0pA.



















































































































































































































































































































































































































































