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Abstract  

We introduce the self-assembled monolayers (SAMs) of n-alkanethiols on Au{111} as 

a standard molecular assembly to understand the physical chemistry of organic molecules on 

solid surfaces. We apply these molecular assemblies to create new interfaces and to exert 

control over single molecules. Scanning tunneling microscopy (STM) is used to characterize 

the molecular orientations, structures, phases, and intermolecular interactions within 

molecular assemblies, in real space, at the sub-nanometer scale. We take advantage of the 

high spatial resolution of STM to obtain fundamental insight into molecular phenomena. 

Other surface characterization techniques, including infrared reflection absorption 

spectroscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry complement and 

support our STM measurements.  

Photon STM is used to investigate optical phenomena of single organic molecules 

with Ångström-scale precision. Evanescent wave coupling by total internal reflection adds 

chemical specificity to STM function. High quality, thin Au{111} film s deposited on c-cut 

sapphire prisms efficiently couple light to the tunneling junction. Annealing significantly 

improves substrate quality of both the sapphire and Au{111} surfaces, providing more stable 

tunneling junctions. Lock-in detection with light modulation improves the photoresponse 

registry in the photon STM. One promising candidate for efficient organic solar cells, C60-

tethered 2,5-dithienylpyrrole triads, was isolated within a well-ordered n-dodecanethiolate 

monolayer to measure the photocurrent on single triad molecules, which will determine the 

intrinsic photovoltaic efficiency at the molecular level. Increased photoconductivity of 
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isolated photovoltaic or photoconductive molecules demonstrates the function and potential of 

photon STM.      

Photoreactions of conjugated organic molecules may be allowed by selection rules but 

not observed in solution reactions because of unfavorable reaction geometries. We have used 

defect sites in self-assembled alkanethiolate monolayers on gold surfaces to direct 

geometrically unfavorable photochemical reactions between individual organic molecules. 

High conductivity and stochastic switching of anthracene-terminated phenylethynylthiolates 

within alkanethiolate monolayers, as well as in-situ photochemical transformations, have been 

observed and distinguished with the STM.  Ultraviolet light absorbed during imaging 

increases the apparent heights of excited molecules in STM images, evidence that we are 

probing electronically excited states.   

The formation of 2-adamantanethiolate SAMs on Au{111} and their displacement by 

n-dodecanethiol are investigated using STM, X-ray photoelectron spectroscopy, and infrared 

reflection absorption spectroscopy. Well-ordered 2-adamantanethiolate monolayers undergo 

rapid and significant molecular exchange upon exposure to n-dodecanethiol solutions, but 

their structures and intermolecular interactions template the growth of n-dodecanethiolate 

domains. Annealing 2-adamantanethiolate monolayers at 78 ºC decreases the density of 

vacancy islands, while increasing the overall order and the average domain sizes in the films. 

This results in slower displacement by n-dodecanethiol molecules, as compared to unannealed 

monolayers. The secondary sulfur position on the adamantyl cage alters the lattice structure 

and the exchange of 2-adamantanethiolate monolayers by alkanethiols relative to 

1-adamantanethiol monolayers. 
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We report the electrochemically driven phase transformation of a linear nanostructure 

in amide-containing alkanethiol, 3-mercapto-N-nonylpropionamide (1ATC9) SAMs. 

Hydrogen-bonding interactions between buried amide groups cause a multi-step 

electrochemical desorption, which involves an unusual phase change. This reaction can be 

exploited to produce a less dense, textured structure. Single-component 1ATC9 SAMs 

prepared in solution at room temperature for 24 hours consist of two phases with different 

apparent heights in STM images; these phases are readily manipulated by controlling solution 

temperature and deposition time. Intermolecular hydrogen-bonding interactions produce films 

with high thermal stability. The presence of two independent cathodic peaks in 1ATC9 

monolayer voltammograms indicates two-step reductive desorption. A monolayer phase 

transition occurs after the first cathodic peak, transforming a close-packed monolayer into a 

striped phase that is energetically favored at low surface-thiolate density. Scanning tunneling 

microscopy, cyclic voltammetry, infrared reflection absorption spectroscopy, and X-ray 

photoelectron spectroscopy reveal electrochemical nanostructuring, driven by partial 

reductive desorption and strong interchain hydrogen bonding. The resultant striped, low-

coverage phase is inaccessible by other synthetic preparations, except by controlled dosing in 

ultrahigh vacuum.  
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Chapter 1. Beyond Molecular Assemblies and Scanning Tunneling 

Microscopy  

1.1 Introduction  

We have applied molecular self-assembly to tailor interfaces and to design organic 

reactions on surfaces. By understanding the chemistry of adsorbed molecules, we can develop 

a systematic design strategy for the production of diverse interfaces. Structural variation, 

molecular orientation, and chemical functionalization enable precise tuning of the local and 

ensemble interfacial properties of supramolecular assemblies and the creation of new 

nanoscale patterns.  

Scanning tunneling microscopy (STM) has been a powerful tool for nanoscience, used 

to characterize nanoscale features with high resolution in real space. However, this excellent 

resolution without chemical specificity limits the capabilities of STM. Development of STM 

with chemical specificity is thus an important goal in science especially chemistry. Although 

many achievements have been made, it will still be a long journey to accomplish definitive 

chemical identification with STM.  

In this thesis, we emphasize the importance of chemical principles to help elucidate 

the chemistry of supramolecular assembled systems. We also use these assemblies to conduct 

chemical reactions of individual organic molecules on surfaces. We observe the underlying 

physical chemistry of self-assembled monolayers (SAMs) and bimolecular organic reactions 

with STM. Our newly designed photon STM provides fresh opportunities for the study of 
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functional molecular candidates for molecular optoelectronics and organic solar cell 

applications.  

1.2 Self-Assembled Monolayers  

Organic thiols spontaneously assemble into one-molecule thick layers (monolayers) on 

diverse substrates such as metals and semiconductors [1-7]. The reaction is spontaneous, 

driven first by highly strong adsorbate-substrate interactions (the Au-S bond is ~128 kJ/mol) 

[8,9]. n-Alkanethiolate SAMs on Au{111} have been studied extensively because they are 

easy to prepare, stable, and are well-ordered [3,10]. Nanoscale ordering is driven by the 

substrate lattice and the attractive van der Waals interactions between alkyl chains (~4 ï

 8 kcal/mol) and is improved by the diffusion of a Au-S complex during assembly [9-11].  

When the Au{111} surface is exposed to n-alkanethiols, the thiol head group attaches 

to the Au surface, achieving nearly complete coverage within seconds. The alkanethiolate 

molecules tilt with respect to the surface normal by 30º to maximize the van der Waals 

interactions between neighboring alkyl chains (Figure 1.1A). Molecules assemble to a 

hexagonally close-packed lattice with nearest neighbor distances of 5.0 Å (Figure 1.1B) [10]. 

The monolayer lattice is described by a Ѝσ    ЍσὙσπÁunit cell with respect to the 

underlying (1 × 1) Au{111} lattice. A primitive c(4 × 2) superlattice is also observed, which 

has been explained by an alternating azimuthal orientation of one molecule with respect to its 

neighbors [10,12]. Figure 1.2 illustrates both Ѝσ   ЍσὙσπÁ and c(4 × 2) superlattice 

structures of n-alkanethiolate monolayers. A hexagonally closed-packed n-dodecanethiolate 

(C12) monolayer and its c(4 × 2) superlattice structure can be resolved in molecular 

resolution STM images of C12 SAMs, as shown in Figure 1.3. 
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A representative STM image of a C12 SAM on Au{111} displays the characteristic 

features, including vacancy islands, domain boundaries, and step edges that are normally 

observed in n-alkanethiolate monolayers (Figure 1.4A). During self-assembly, the 

herringbone structure of the Au{111} substrate (Figure 1.4B) reconstructs by Au atom 

ejection, resulting in one-Au-atom deep (2.35 Å) substrate vacancy islands (red arrow in 

Figure 1.4A) [11,13,14]. Adjacent domains with different translation, rotation, or tilt are 

separated by characteristic domain boundaries (yellow arrow in Figure 1.4A) [15-18]. Domain 

boundaries can appear as protrusions or depressions in SAMs. Each Au{111} terrace is 

separated by substrate step edges, 2.35 Å higher or lower (green arrow in Figure 1.4A). We 

define any disorder, pinholes, domain boundaries, and vacancy islands as SAM defects that 

direct the physical, chemical and electrical properties of monolayers.  

1.2.1 Self-assembly in solution vs. vapor deposition  

n-Alkanethiolate SAMs on gold are commonly prepared by the immersion of freshly 

prepared, clean substrates, typically 150-nm-thick bare Au{111} film on cleaved mica, into a 

dilute (~1 mM) ethanolic solution of related thiols at room temperature. During self-assembly 

at room temperature, the Au substrate is quickly covered with n-alkanethiolates from solution 

within milliseconds to minutes, but the slow reorganization process takes a minimum of 

several hours to maximize coverage density and to minimize the defect sites (Figure 1.5A and 

B) [19]. However, the solvent, temperature, concentration, immersion time, purity, cleanliness 

of the substrate, and the alkyl chain length can affect the overall SAM structure and quality 

[4].  
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Solution deposition at somewhat elevated temperature (~70 ºC) substantially improves 

SAM quality. Even with short assembly times (70 ºC for 1 hour, Figure 1.5C), we observe 

lower defect densities with increased overall order and average domain sizes. The extra 

thermal energy speeds up the self-assembly process [20]. Alkanethiolate-Au complexes 

diffuse faster at elevated temperatures and are able to overcome the barrier for the 

reorganization of kinetically trapped molecules, which enables them to maximize their 

intermolecular interactions. Noticeably, self-assembly in the vapor phase (~78 ºC) promotes 

self-exchange [21], substantially improving monolayer order. Vapor deposition accelerates 

both assembly and ordering, resulting in high-quality SAMs (Figure 1.5D) [19,22]. Figure 1.5 

displays STM images of C12 SAMs prepared in solution and vapor phase at room 

temperature (A and B) and mildly elevated temperatures (70 and 78 ºC, in C and D, 

respectively). Longer time, higher temperature, and vapor phase thiols increase domain sizes 

and decrease the numbers of vacancy islands. 

1.2.2 Single-molecule insertion  

Ensemble averaging samples from all configurations molecules. Single-molecule 

spectroscopy allows us to monitor variations in the configurations of single molecules. It 

provides details of underlying distributions that can be critically important for understanding 

heterogeneous systems [23,24]. Measurements of time-dependent processes and stochastic 

behavior, including single-molecule fluctuations or ñflickeringò have grown to understand 

unprecedented insight into single-molecule behavior obscured by traditional ensemble 

averaging [23,25-27].  
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Figure 1.1 Schematics of n-dodecanethiolate (C12) SAM structure on Au{111}. (A) A side 

view along the nearest neighbor direction showing the 30º tilt to maximize van der Waals 

interactions. (B) A top view showing hexagonal close packing of C12 molecules.  
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Figure 1.2 A schematic top-down view of the unit cells, (ã3 Ĭ ã3)R30º (top) and c(4 × 2) 

superlattice (bottom) on underlying (1 × 1) Au{111} substrate.  
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Figure 1.3 Molecular-resolution STM images of C12 SAMs, displaying hexagonally close-

packed lattice (red dot in A, and B) and c(4 × 2) superlattice  (blue dot in A, and C). Imaging 

conditions were sample bias voltage ï1.0 V and tunneling current 1.0 pA.   
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Figure 1.4 (A) A representative STM image of a C12 SAM showing domain boundaries (red 

arrow), vacancy islands (yellow arrow), and substrate step edges (green arrow). Imaging 

conditions were sample bias voltage ï1.0 V and tunneling current 1.0 pA. (B) A STM image 

of a bare Au{111} substrate displaying the herringbone structure [28]. Imaging conditions 

were sample bias voltage ï1.0 V and tunneling current 10.0 pA.   
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Figure 1.5 Scanning tunneling microscopy images of C12 SAMs prepared in solution (A) at 

room temperature for 1 hour and (B) for 24 hours, (C) at 70 ºC for 1 hour, and (D) via vapor 

deposition at 78 ºC for 24 hours. The SAM quality (larger domains, fewer defect sites, and 

better order) can be improved substantially by using increased temperature in solution or 

vapor deposition. Imaging conditions were sample bias voltage ï1.0 V and tunneling current 

1.0 pA.   

  


































































































































































































































































































