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Abstract

Given a directed graph G = (V,E) and an integer k ≥ 1, a k-transitive-closure-spanner (k-TC-
spanner) of G is a directed graph H = (V,EH) that has (1) the same transitive-closure as G and
(2) diameter at most k. Transitive-closure spanners are a common abstraction for applications
in access control, property testing and data structures.

We show a connection between 2-TC-spanners and local monotonicity reconstructors. A local
monotonicity reconstructor, introduced by Saks and Seshadhri (SIAM Journal on Computing,
2010), is a randomized algorithm that, given access to an oracle for an almost monotone function
f : [m]d → R, can quickly evaluate a related function g : [m]d → R which is guaranteed to
be monotone. Furthermore, the reconstructor can be implemented in a distributed manner.
We show that an efficient local monotonicity reconstructor implies a sparse 2-TC-spanner of
the directed hypergrid (hypercube), providing a new technique for proving lower bounds for
local monotonicity reconstructors. Our connection is, in fact, more general: an efficient local
monotonicity reconstructor for functions on any partially ordered set (poset) implies a sparse
2-TC-spanner of the directed acyclic graph corresponding to the poset.

We present tight upper and lower bounds on the size of the sparsest 2-TC-spanners of the di-
rected hypercube and hypergrid. These bounds imply tighter lower bounds for local monotonicity
reconstructors that nearly match the known upper bounds.
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Chapter 1
Introduction

Graph spanners were introduced in the context of distributed computing [1], and since then have

found numerous applications, such as efficient routing [2, 3, 4, 5, 6], simulating synchronized

protocols in unsynchronized networks [7], parallel and distributed algorithms for approximating

shortest paths [8, 9, 10], and algorithms for distance oracles [11, 12]. Several variants on graph

spanners have been defined. In this work, we focus on transitive-closure spanners that were

introduced in [13] as a common abstraction for applications in access control, property testing

and data structures.

Definition 1.0.1 (TC-spanner). Given a directed graph G = (V,E) and an integer k ≥ 1, a

k-transitive-closure-spanner (k-TC-spanner) of G is a directed graph H = (V,EH) with

the following properties:

1. EH is a subset of the edges in the transitive closure of G.

2. For all vertices u, v ∈ V , if dG(u, v) <∞, then dH(u, v) ≤ k.

Thus, a k-transitive-closure-spanner (or k-TC-spanner) is a graph with small diameter that

preserves the connectivity of the original graph. In the applications above, the goal is to find the

sparsest k-TC-spanner for a given k and G. The number of edges in the sparsest k-TC-spanner

of G is denoted by Sk(G).

1.1 Our Contributions

The contributions of this work fall into two categories: (1) We show that an efficient local

monotonicity reconstructor implies a sparse 2-TC-spanner of the directed hypergrid (hypercube),

providing a new technique for proving lower bounds for local monotonicity reconstructors. (2) We

present tight upper and lower bounds on the size of the sparsest 2-TC-spanners of the directed

hypercube and hypergrid. These bounds imply tighter lower bounds for local monotonicity

reconstructors for these graphs that nearly match the upper bounds given in [14].
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1.2 Lower Bounds for Local Monotonicity Reconstruction

Property-preserving data reconstruction was introduced in [15]. In this model, a reconstruction

algorithm, called a filter, sits between a client and a dataset. A dataset is viewed as a function

f : D → R. The client accesses the dataset using queries of the form x ∈ D to the filter. The

filter looks up a small number of values in the dataset and outputs g(x), where g must satisfy

some fixed structural property P. Extending this notion, Saks and Seshadhri [14] defined local

reconstruction. A filter is local if it allows for a local (or distributed) implementation: namely, if

the output function g does not depend on the order of the queries.

Definition 1.2.1 (Local filter). A local filter for reconstructing property P is an algorithm A

that has oracle access to a function f : D → R, and to an auxiliary random string ρ (the

“random seed”), and takes as input x ∈ D. For fixed f and ρ, A runs deterministically on

input x to produce an output Af,ρ(x) ∈ R. (Note that a local filter has no internal state to

store previously made queries.) The function g(x) = Af,ρ(x) output by the filter must satisfy the

following conditions:

• For each f and ρ, the function g must satisfy P.

• If f satisfies P, then g must be identical to f with probability at least 1− δ, for some error

probability δ ≤ 1/3. The probability is taken over ρ.

In answering query x ∈ D, the filter A may ask for values of f at domain points of its choice

(possibly adaptively) using its oracle access to f . Each such access made to the oracle is called a

lookup to distinguish it from the client query x. A local filter is non-adaptive if the set of domain

points that the filter looks up to answer an input query x does not depend on answers given by

the oracle.

In [14], the authors also required that g must be sufficiently close to f : With high probability

(over the choice of ρ), Dist(g, f) ≤ B(n) · Dist(f,P), where B(n) is called the error blow-

up. (Dist(g, f) is the number of points in the domain on which f and g differ. Dist(f,P) is

ming∈P Dist(g, f).) If a local filter along with Definition 1.2.1 satisfies this condition, we call it

distance-respecting.

1.3 Local Monotonicity Reconstructors

The most studied property in the local reconstruction model is monotonicity of functions [14, 15].

To define monotonicity of functions, consider an n-element poset Vn and let Gn = (Vn, E) be

the relation graph, i.e., the Hasse diagram, for Vn. A function f : Vn → R is called monotone if

f(x) ≤ f(y) for all (x, y) ∈ E. We particularly focus on posets which have the directed hypergrid

graph as its relation graph. The directed hypergrid, denoted Hm,d, has vertex set {1, 2, . . . ,m}d

and edge set {(x, y) : ∃ unique i ∈ {1, . . . , d} such that yi − xi = 1 and for j 6= i, yj = xj}. For

the special case m = 2, H2,d is called a hypercube and is also denoted by Hd. A monotonicity
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filter needs to ensure that the output function g is monotone. For instance, if Gn is a directed

line, Hn,1, the filter needs to ensure that the output sequence specified by g is sorted.

To motivate monotonicity reconstructors for hypergrids, consider the scenario of rolling ad-

missions: An admissions office assigns d scores to each application, such as the applicant’s GPA,

SAT results, essay quality, etc. Based on these scores, some complicated (third-party) algorithm

outputs the probability that a given applicant should be accepted. The admissions office wants

to make sure “on the fly” that strictly better applicants are given higher probability, that is,

probabilities are monotone in scores. A hypergrid monotonicity filter may be used here. A lo-

cal filter can be implemented in a distributed manner with an additional guarantee that every

copy of the filter will correct to the same monotone function of the scores. This can be done by

supplying the same random seed to each copy of the filter.

[14] gives a distance-respecting local monotonicity filter for the directed hypergrid, Hm,d, that

makes (logm)O(d) lookups per query. No non-trivial monotonicity filter for the hypercube Hd
(performing o(2d) lookups per query) is known. One of the monotonicity filters in [15] is a local

filter for the directed line Hm,1 with O(logm) lookups per query (but a worse error blow up

than in [14]). As observed in [14], this upper bound is tight. A lower bound of 2αd, on the

number of lookups per query for a distance-respecting local monotonicity filter on Hd with error

blow-up 2βd, where α, β are sufficiently small constants, appeared in [14]. Notably, all known

local monotonicity filters are non-adaptive.

We show how to construct sparse 2-TC-spanners from local monotonicity reconstructors with

low lookup complexity. These constructions, together with our lower bounds on the size of 2-TC-

spanners of the hypergrid and hypercube (Section 1.5), imply lower bounds on lookup complexity

of local monotonicity reconstructors for these graphs with arbitrary error blow-up. We state our

transformations from non-adaptive and adaptive reconstructors separately.

Theorem 1.3.1 (Transformation from non-adaptive Local Monotonicity Reconstructors to

2-TC-spanners). Let Gn = (Vn, E) be a poset on n nodes. Suppose there is a non-adaptive local

monotonicity reconstructor A for Gn that looks up at most `(n) values on any query and has

error probability at most δ. Then there is a 2-TC-Spanner of Gn with O(n`(n) · dlog n/ log(1/δ)e)
edges.

Next theorem applies even to adaptive local monotonicity reconstuctors. It takes into account

how many lookups on query x are points incomparable to x. In particular, if there are no such

lookups, then constructed 2-TC-spanner is of the same size as in Theorem 1.3.1.

Theorem 1.3.2 (Transformation from adaptive Local Monotonicity Reconstructors to

2-TC-spanners). Let Gn = (Vn, E) be a poset on n nodes. Suppose there is an (adaptive) local

monotonicity reconstructor A for Gn that, for any query x ∈ Vn, looks up at most `1(n) vertices

comparable to x and at most `2(n) vertices incomparable to x, and has error probability at most

δ. Then there is a 2-TC-Spanner of Gn with O(n`1(n) · 2`2(n)dlog n/ log(1/δ)e) edges.

In Theorem 1.3.1 and 1.3.2, when δ is sufficiently small, the bounds on the 2-TC-Spanner size

become O(n`(n)) and O(n`1(n) · 2`2(n)), respectively.
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As mentioned earlier, all known monotonicity reconstructors are non-adaptive. It is an open

question whether it is possible to give a transformation from adaptive local monotonicity re-

constructors to 2-TC-spanners without incurring an exponential dependence on the number of

lookups made to points incomparable to the query point. We do not know whether this depen-

dence is an artifact of the proof or an indication that lookups to incomparable points might be

helpful for adaptive local monotonicity reconstructors.

In Theorems 1.5.1 and 1.5.2 (Section 1.5), we present nearly tight bounds on the size of the

sparsest 2-TC-spanners of the hypercube and the hypergrid. Theorems 1.3.1 and 1.3.2, together

with the lower bounds in Theorems 1.5.1 and 1.5.2, imply the following lower bounds on the

lookup complexity of local monotonicity reconstructors for these graphs with arbitrary error

blow-up.

Corollary 1.3.3. Consider a nonadaptive local monotonicity filter with constant error probability

δ. If the filter is for functions f : Hm,d → R, it must perform Ω
(

logd−1m
dd(2 log logm)d−1

)
lookups per

query. If the filter is for functions f : Hd → R, it must perform Ω
(
2αd/d

)
lookups per query,

where α ≥ 0.1620.

Corollary 1.3.4. Consider an (adaptive) local monotonicity filter with constant error probability

δ, that for every query x ∈ Vn, looks up at most `2 vertices incomparable to x. If the filter is for

functions f : Hm,d → R, it must perform Ω
(

logd−1m
2`2dd(2 log logm)d−1

)
lookups to vertices comparable to

x per query x. If the filter is for functions f : Hd → R, it must perform Ω
(
2αd−`2/d

)
comparable

lookups, where α ≥ 0.1620.

Prior to this work, no lower bounds for monotonicity reconstructors on Hm,d with dependence

on both m and d were known. Unlike the bound in [14], our lower bounds hold for any error blow-

up and for non-distance-respecting filters. Our bounds are tight for non-adaptive reconstructors.

Specifically, for the hypergridHm,d of constant dimension d, the number of lookups is (logm)Θ(d),

and for the hypercube Hd, it is 2Θ(d) for any error blow-up.

1.4 Testers vs. Reconstructors

[13] obtained monotonicity testers from 2-TC-spanners. Unlike in the application to monotonicity

testing, here we use lower bounds on the size of 2-TC-spanners to prove lower bounds on com-

plexity of local monotonicity reconstuctors. Lower bounds on the size of 2-TC-spanners do not

imply corresponding lower bounds on monotonicity testers. E.g., the best monotonicity tester

on Hd runs in O(d2) time [16, 17], while, as shown in Theorem 1.5.2, every 2-TC-spanner of Hd
must have size exponential in d.
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1.5 Our Results on 2-TC-Spanners of the Hypercube and

Hypergrid

Our main theorem gives a set of explicit bounds on S2(Hm,d):

Theorem 1.5.1 (Hypergrid). Let S2(Hm,d) denote the number of edges in the sparsest 2-TC-

spanner of Hm,d. Then1 for m ≥ 3,

Ω

(
md logdm

(2d log logm)d−1

)
= S2(Hm,d) ≤ md logdm.

The upper bound in Theorem 1.5.1 follows from a general construction of k-TC-spanners

for graph products for arbitrary k ≥ 2, presented in Chapter 4. The lower bound is the most

technically difficult part of our work. It is proved by a reduction of the 2-TC-spanner construction

for [m]d to that for the 2× [m]d−1 grid and then directly analyzing the number of edges required

for a 2-TC-spanner of 2 × [m]d−1. We show a tradeoff between the number of edges in the

2-TC-spanner of the 2 × [m]d−1 grid that stay within the hyperplanes {1} × [m]d−1 and {2} ×
[m]d−1 versus the number of edges that cross from one hyperplane to the other. The proof

proceeds in multiple stages. Assuming an upper bound on the number of edges staying within

the hyperplanes, each stage is shown to contribute a substantial number of new edges crossing

between the hyperplanes.

While Theorem 1.5.1 is most useful when m is large and d is small, in Chapter 6 we

present bounds on S2(Hm,d) which are optimal up to a factor of d2m and, thus, supersede

the bounds from Theorem 1.5.1 when m is small. The general form of these bounds is a some-

what complicated combinatorial expression but they can be estimated numerically. Specifically,

S2(Hm,d) = 2cmd poly(d), where c2 ≈ 1.1620, c3 ≈ 2.03, c4 ≈ 2.82 and c5 ≈ 3.24, each signifi-

cantly smaller than the exponents corresponding to the transitive closure sizes for the different

m.

We first prove the special case of m = 2 (i.e., the hypercube) and then generalize the argu-

ments to general m. Specifically, we obtain the following theorem for the hypercube.

Theorem 1.5.2 (Hypercube). Let S2(Hd) be the number of edges in the sparsest 2-TC-spanner

of Hd. Then Ω(2cd) = S2(Hd) = O(d32cd), where c ≈ 1.1620.

As a comparison point for our bounds, note that the obvious bounds on S2(Hd) are the

number of edges in the d-dimensional hypercube, 2d−1d, and the number of edges in the transitive

closure of Hd, which is 3d − 2d. (An edge in the transitive closure of Hd has 3 possibilities for

each coordinate: both endpoints are 0, both endpoints are 1, or the first endpoint is 0 and the

second is 1. This includes self-loops, so we subtract the number of vertices in Hd to get the

desired quantity.) Thus, 2d−1d ≤ S2(Hd) ≤ 3d − 2d. Similarly, the straightforward bounds on

1Logarithms are always to base 2 unless otherwise indicated.



6

the number of edges in a 2-TC-spanner of Hm,d in terms of the number of edges in the directed

grid and in its transitive closure are dmd−1(m− 1) and
(
m2+m

2

)d
−md, respectively.

1.6 Previous work on bounding Sk for other families of

graphs

Thorup [18] considered a special case of TC-spanners of graphs G that have at most twice as

many edges as G, and conjectured that for all directed graphs G on n nodes there are such

k-TC-spanners with k polylogarithmic in n. He proved this for planar graphs [19], but Hesse [20]

gave a counterexample for general graphs by constructing a family for which all n
1
17 -TC-spanners

need n1+Ω(1) edges. TC-spanners were studied for directed trees: implicitly in [17, 21, 22, 23, 24]

and explicitly in [25]. For the directed line, [21] (and later, [22]) expressed Sk(Hn,1) in terms of

the inverse Ackermann function. (See Section 2.2 for a definition.)

Lemma 1.6.1 ([21, 22, 13]). Let Sk(Hn,1) denote the number of edges in the sparsest k-TC-

spanner of the directed line Hn,1. Then S2(Hn,1) = Θ(n log n), S3(Hn,1) = Θ(n log log n),

S4(Hn,1) = Θ(n log∗ n) and, more generally, Sk(Hn,1) = Θ(nλk(n)) where λk(n) is the inverse

Ackermann function.

The same bound holds for directed trees [21, 23, 25]. An O(n log n · λk(n)) bound on Sk for

H-minor-free graph families (e.g., bounded genus and bounded tree-width graphs) was given in

[13].



Chapter 2
Preliminaries

2.1 Notation

For a positive integer m, we denote {1, . . . ,m} by [m]. For x ∈ {0, 1}d, we use |x| to denote the

weight of x, that is, the number of non-zero coordinates in x. Level i in a hypercube contains

all vertices of weight i. The partial order � on the hypergrid Hm,d is defined as follows: x � y

for two vertices x, y ∈ [m]d iff xi ≤ yi for all i ∈ [d]. Similarly, x ≺ y, if x and y are distinct

vertices in [m]d satisfying x � y. Vertices x and y are comparable if either y is above x (that

is, x � y) or y is below x (that is, y � x). We denote a path from v1 to v`, consisting of edges

(v1, v2), (v2, v3), . . . , (v`−1, v`) by (v1, . . . , v`).

2.2 The Inverse Ackermann Hierarchy

Our definition of inverse Ackermann functions is derived from the discussion in [26]. For a given

function f : R≥0 → R≥0 such that f(x) < x for all x > 2, define the function f∗(x) : R≥0 → R≥0

to be the following:

f∗(x) = min{k ∈ Z≥0 : f (k)(x) ≤ 2}, where f (k) denotes f composed with itself k times

We note that the solution to the following recursion:

T (n) ≤

0 if n ≤ 2

a · n+ n
f(n) · T (f(n)) if n > 2

is T (n) = a · n · f∗(n). This follows from the fact that f∗(f(n)) = f∗(n)− 1 for n > 2.

We define the inverse Ackermann hierarchy to be a sequence of functions λk(·) for k ≥ 0. As

the base cases, we have λ0(n) = n/2 and λ1(n) =
√
n. For j ≥ 2, we define λj(n) = λ∗j−2(n).

Thus, λ2(n) = Θ(log n), λ3(n) = Θ(log log n) and λ4(n) = Θ(log∗ n). Note that the λk(·)
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functions defined here coincide (upto constant additive differences) with the λ(k, ·) functions in

[21] although they were formulated a bit differently there.

Finally, we define the inverse Ackermann function α(·) to be α(n) = min{k ∈ Z≥0 : λ2k(n) ≤
3}.



Chapter 3
From Monotonicity Reconstructors

to 2-TC-Spanners

In this chapter, we prove Theorems 1.3.1 and 1.3.2.

3.1 From non-adaptive Local Monotonicity Reconstructors

to 2-TC-Spanners

Proof of Theorem 1.3.1. Let A be a local reconstructor given by the statement of the theorem.

Let F be the set of pairs (x, y) with x, y in Vn such that x ≺ y. Then, F is of size at most
(
n
2

)
.

Given (x, y) ∈ F , let cube(x, y) be the set {z ∈ Vn : x � z � y}. Define function f (x,y)(v) to be

1 on all v � x and all v � y, and 0 everywhere else. Also, define function f (x,y)(v), which is

identical to f (x,y)(v) for all v /∈ cube(x, y) and 0 for v ∈ cube(x, y). Both, f (x,y) and f (x,y), are

monotone functions for all (x, y) ∈ F . Let Aρ be the deterministic algorithm which runs A with

the random seed fixed to ρ. We say a string ρ is good for (x, y) ∈ F if filter Aρ on input f (x,y)

returns g = f (x,y) and on input f (x,y) returns g = f (x,y).

Now we show that there exists a set S of size s ≤ d2 log n/ log(1/2δ)e, consisting of strings

used as random seeds by A, such that for every (x, y) ∈ F some string ρ ∈ S is good for (x, y).

We choose S by picking strings used as random seeds uniformly and independently at random.

Since A has error probability at most δ, we know that for every monotone f , with probability at

least 1 − δ (with respect to the choice of ρ), the function Af,ρ is identical to f . Then, for fixed

(x, y) ∈ F and uniformly random ρ,

Pr[ρ is not good for (x, y)] ≤ Pr[Aρ on input f (x,y) fails to output f (x,y)]

+ Pr[Aρ on input f (x,y) fails to output f (x,y)] ≤ 2δ.

Since strings in S are chosen independently, Pr[no ρ ∈ S is good for (x, y)] ≤ (2 · δ)s, which, for
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s = d2 log n/ log(1/2δ)e, is at most 1/n2 < 1/|F|. By a union bound over F ,

Pr[for some (x, y) ∈ F , no ρ ∈ S is good for (x, y)] < 1.

Thus, there exists a set S with required properties.

We construct our 2-TC-spanner H = (Vn, EH) of Gn using set S described above. Let Nρ(x)

be the set consisting of x and all vertices looked up by Aρ on query x. (Note that the set Nρ(x)

is well-defined since algorithm A is assumed to be non-adaptive). For each string ρ ∈ S and each

vertex x ∈ Vn, connect x to all comparable vertices in Nρ(x) (other than itself) and orient these

edges according to their direction in Gn.

We prove H is a 2-TC-Spanner as follows. Suppose not, i.e., there exists (x, y) ∈ F with no

path of length at most 2 in H from x to y. Consider ρ ∈ S which is good for (x, y). Define function

h by setting h(v) = f (x,y)(v) for all v /∈ cube(x, y). Then h(v) = f (x,y)(v) for all v /∈ cube(x, y),

by definition of f (x,y). For a v ∈ cube(x, y), set h(v) to 1 for v ∈ Nρ(x) and to 0 for v ∈ Nρ(y).

All unassigned points are set to 0. By the assumption above, Nρ(x) ∩ Nρ(y) does not contain

any points in cube(x, y). Therefore, h is well-defined. Since ρ is good for (x, y) and h is identical

to f (x,y) for all lookups made on query x, Aρ(x) = h(x) = 1. Similarly, Aρ(y) = h(y) = 0. But

x ≺ y, so Ah,ρ(v) is not monotone. Contradiction.

The number of edges in H is at most∑
x∈Vn,ρ∈S

|Nρ(x)| ≤ n · `(n) · s ≤ n`(n) · d2 log n/ log(1/2δ)e.

3.2 From adaptive Local Monotonicity Reconstructors to

2-TC-Spanners

The complication in the transformation from an adaptive filter is that the set of vertices looked

up by the filter depends on the oracle that the filter is invoked on.

Proof of Theorem 1.3.2. Define F , f (x,y), f (x,y), Aρ and S as in the proof of Theorem 1.3.1. As

before, for each x ∈ Vn, we define sets Nρ(x), and construct the 2-TC-Spanner H by connecting

each x to comparable points in Nρ(x) for all ρ ∈ S and orienting the edges according to Gn.

However, now Nρ(x) is a union of several sets N b,w
ρ (x), indexed by b ∈ {0, 1} and w ∈ {0, 1}`2(n).

(In addition, Nρ(x) contains x.) For each x ∈ Vn, b ∈ {0, 1} and w ∈ {0, 1}`2(n), let N b,w
ρ (x) ⊆ Vn

be the set of lookups performed by Aρ on query x, assuming that the oracle answers all lookups

as follows. When a lookup y is comparable to x, answer 0 if y ≺ x, b if y = x, 1 if x ≺ y.

Otherwise, if y is the i’th lookup made to an incomparable point for some i ∈ [`2], answer w[i].

Recall that we set Nρ(x) to be the union of N b,w
ρ for all b ∈ {0, 1} and all w ∈ {0, 1}`2(n). This

completes the description of Nρ(x) and construction of H.

The argument that H is a 2-TC-spanner proceeds similarly to that in the proof of Theorem

1.3.1. The caveat is that an adaptive local filter might choose lookups based on the answers to

previous lookups. The constructed function h sets h(x) = 1 and h(y) = 0. Further all points
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comparable to x are set to 0 if they are below x and 1 if they are above x. However, points

incomparable to x might be comparable to y and are set to 0 or 1, depending on whether they

are above or below y. Since we included sets of points queried under all these possibilities in

Nρ(x), we can now conclude that Aρ(x) = h(x) = 1. The same applies for y. So, Ah,ρ outputs a

non-monotone function, witnessed by the pair (x, y). Contradiction.

We proceed to bound the number of edges EH in H. For each ρ ∈ S, x ∈ Vn, b ∈ {0, 1}, and

w ∈ {0, 1}`2(n), the number of vertices in Nρ
b,w(x) comparable to x is at most `1(n). Therefore,

|EH | ≤ `1(n) · 2 · 2`2(n) · |S| ≤ O
(
n · `1(n) · 2`2(n)dlog n/ log(1/δ)e

)
.



Chapter 4
Construction of k-TC-Spanners of

Product Graphs

This chapter explains how to construct a TC-spanner of the Cartesian product of graphs G1

and G2 from TC-spanners of G1 and G2. Since the directed hypergrid is the Cartesian product

of directed lines, and optimal TC-spanner constructions are known for the directed line, our

construction yields sparse TC-spanners for the grid (Corollary 5.1.1). We start by defining two

graph products: Cartesian and strong.

Definition 4.0.1 (Graph products). Given graphs G1 = (V1, E1) and G2 = (V2, E2), a product

of G1 and G2 is a new graph G with vertex set V1 × V2. For the Cartesian graph product,

denoted by G1×G2, graph G contains an edge from (u1, u2) to (v1, v2) if and only if u1 = v1 and

(u2, v2) ∈ E2, or (u1, v1) ∈ E1 and u2 = v2. For the strong graph product, denoted by G1 ◦G2,

graph G contains an edge from (u1, u2) to (v1, v2) if and only if u1 = v1 and (u2, v2) ∈ E2, or

(u1, v1) ∈ E1 and u2 = v2, or (u1, v1) ∈ E1 and (u2, v2) ∈ E2.

For example, Hm,2 = Hm,1 × Hm,1 and TC(Hm,2) = TC(Hm,1) ◦ TC(Hm,1), where TC(G)

denotes the transitive closure of G.

Lemma 4.0.1. Let G1 and G2 be directed graphs with k-TC-spanners S1 and S2, respectively.

Then S1 ◦ S2 is a k-TC-spanner of G = G1 ×G2.

Proof. Suppose (u, v) and (u′, v′) are comparable vertices in G1×G2. Then, by definition of the

Cartesian product, u � u′ in G1 and v � v′ in G2. Let (u1, u2, . . . , u`) be the shortest path in

S1 from u = u1 to u′ = u`, and (v1, v2, . . . , vt) the shortest path in S2 from v = v1 to v′ = vt.

Assume w.t.o.g. that l ≤ t. Then ((u1, v1), (u2, v2), . . . , (u`, v`) . . . , (u`, vt)) is a path in S1 ◦ S2

of length t ≤ k, from (u, v) to (u′, v′). Therefore, S1 ◦S2 is a k-TC-spanner of G = G1×G2.



Chapter 5
2-TC-Spanners for Low-Dimensional

Hypergrids

In this chapter, we describe the proof of Theorem 1.5.1 which gives explicit bounds on the size of

the sparsest 2-TC-spanner for Hm,d. The upper bound in Theorem 1.5.1 is proved in Section 5.1

and lower bound in Section 5.2.

5.1 Upper Bound

The upper bound in Theorem 1.5.1 follows straightforwardly from a more general statement about

TC-spanners of product graphs (Chapter 4). Specifically, Lemma 4.0.1 of Chapter 4 together

with previous results on the size of k-TC-spanners for the line Hm,1, summarized in Lemma 1.6.1,

imply an upper bound on the size of a k-TC-spanner of the directed hypergrid Hm,d:

Corollary 5.1.1. Let Sk(Hm,d) denote the number of edges in the sparsest k-TC-spanner of

the directed d-dimensional hypergrid Hm,d. Then Sk(Hm,d) = O(mdλk(m)dcd) for appropriate

constant c.

More precisely, S2(Hm,d) ≤ md logdm for m ≥ 3.

Proof. Let S be a k-TC-spanner for the line Hm,1. By Lemma 4.0.1, S ◦ · · · ◦S, where the strong

graph product is applied d times, is a k-TC-spanner for the directed grid Hm,d. By definition of

the strong graph product, the number of edges in the resulting spanner is (|E(S)| + m)d −md.

Since the number of edges in the spanner, |E(S)|, is at least m, the main statement follows.

The more precise statement for k = 2 follows from Claim 5.1.2 below which gives a more

careful analysis of the size of the sparsest 2-TC-spanner of the line: namely, S2(Hm,1) ≤ m logm−
m for m ≥ 3.

Claim 5.1.2. For all m ≥ 3, the directed line Hm,1 has a 2-TC-spanner with at most m logm−m
edges.
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Proof. Construct graph S on vertex set [m] recursively. First, define the middle node vmid = dm2 e.
Add edges (v, vmid) for all nodes v < vmid and edges (vmid, v) for all nodes v > vmid. Then recurse

on the two line segments resulting from removing vmid from the current line. Proceed until each

line segment contains exactly one node. This construction is implicit in, e.g., [17].

S is a 2-TC-spanner for the line Hm,1, since every pair of nodes u, v ∈ [m] is connected by a

path of length at most 2 via a middle node. This happens in the stage of the recursion where u

and v are separated into different line segments, or one of these two nodes is removed.

There are t = blogmc stages of the recursion, and in each stage i ∈ [t] each node that is not

removed by the end of the this stage connects to the middle node in its current line segment.

Since 2i−1 nodes are removed in the ith stage, exactly m− (2i−1) edges are added in that stage.

Thus, the total number of edges in S is m · t− (2t+1 − t− 2) ≤ m logm−m. The last inequality

holds for m ≥ 3.

5.2 Lower Bound

In this section, we show the lower bound on S2(Hm,d).
We first prove a lower bound on the size of a 2-TC-spanner of the 2-dimensional directed grid,

stated in Theorem 5.2.1. This is a special case of the lower bound in Theorem 1.5.1.

Theorem 5.2.1. Any 2-TC-spanner of the 2-dimensional grid Hm,2 must have Ω
(
m2 log2m
loglogm

)
edges.

One way to prove the Ω(m logm) lower bound on the size of a 2-TC-spanner for the directed

line Hm,1, stated in Lemma 1.6.1, is to observe that at least bm2 c edges are cut when the line is

halved: namely, at least one per vertex pair (v,m− v+ 1) for all v ∈
[
bm2 c

]
. Continuing to halve

the line recursively, we obtain the desired bound.

A natural extension of this approach to proving a lower for the grid is to recursively halve the

grid along both dimensions, hoping that each such operation on an m×m grid cuts Ω(m2 logm)

edges. This would imply that the size S(m) of a 2-TC-spanner of the m ×m grid satisfies the

recurrence S(m) = 4S(m/2) + Ω(m2 logm); that is, S(m) = Ω(m2 log2m), matching the upper

bound in Theorem 1.5.1.

An immediate problem with this approach is that in some 2-TC-spanners of the grid only

O(m2) edges connect vertices in different quarters. One example of such a 2-TC-spanner is the

graph containing the transitive closure of each quarter and only at most 3m2 edges crossing from

one quarter to another: namely, for each node u and each quarter q with vertices comparable to

u, this graph contains an edge (u, vq), where vq is the smallest node in q comparable to u.

The TC-spanner in the example above is not optimal because it has too many edges inside

the quarters. The first step in our proof of Theorem 5.2.1 is understanding the tradeoff between

the number of edges crossing the cut and the number of edges internal to the subgrids, resulting

from halving the grid along some dimension. The simplest manifestation of this tradeoff occurs

when a 2 ×m grid is halved into two lines. (In the case of one line, there is no trade off: the
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Figure 5.1. Illustration of the first stage in the proof of Lemma 5.2.2.

Ω(m) bound on the number of crossing edges holds even if each half-line contains all edges of its

transitive closure.) Lemma 5.2.2 formulates the tradeoff for the two-line case, while taking into

account only edges needed to connect comparable vertices on different lines by paths of length

at most 2:

Lemma 5.2.2 (Two-Lines Lemma). Let U be a graph with vertex set [2] × [m] that contains a

path of length at most 2 from u to v for every u ∈ {1} × [m] and v ∈ {2} × [m], where u � v.

An edge (u, v) in U is called internal if u1 = v1, and crossing otherwise. If U contains at most
m log2m

32 internal edges, it must contain at least m logm
16 log logm crossing edges.

Note that if the number of internal edges is unrestricted, a 2-TC-spanner of Hm,2 may have

only m crossing edges.

Proof. The proof proceeds in logm
2 log logm stages dealing with pairwise disjoint sets of crossing edges.

In each stage, we show that U contains at least m
8 crossing edges in the prescribed set.

In the first stage, divide U into log2m blocks, each of length m
log2m

: namely, a node (v1, v2) is

in block i if v2 ∈
[

(i−1)·m
log2m

+ 1, i·m
log2m

]
. Call an edge long if it starts and ends in different blocks,

and short otherwise. Assume, for contradiction, that U contains fewer than m
8 long crossing

edges.

Call a node (v1, v2) low if v1 = 1 (high if v1 = 2), and left if v2 ∈
[
m
2

]
(right otherwise). Also,

call an edge (u, v) low-internal if u1 = v1 = 1 and high-internal if u1 = v1 = 2. Let L be the

set of low left nodes that are not incident to long crossing edges. Similarly, let R be the set of

high right nodes that are not incident to long crossing edges. Since there are fewer than m
8 long

crossing edges, |L| > m
4 and |R| > m

4 .

A node u ∈ L can connect to a node v ∈ R via a path of length at most 2 only by using a

long internal edge. Observe that each long low-internal edge can be used by at most m
log2m

such

pairs (u, v): one low node u and high nodes v from one block. This is illustrated in Figure 5.1.

Analogously, every long high-internal edge can be used by at most m
log2m

such pairs. Since

|L| · |R| > m2

16 pairs in L×R connect via paths of length at most 2, graph U contains more than
m2

16 ·
log2m
m = m log2m

16 long internal edges, which is a contradiction.
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In each subsequent stage, call blocks used in the previous stage megablocks, and denote their

length by B. Subdivide each megablock into log2m blocks of equal size. Call an edge long if it

starts and ends in different blocks, but stays within one megablock. Assume, for contradiction,

that U contains fewer than m
8 long crossing edges.

Call a node (v1, v2) left if it is in the left half of its megablock, that is, if v2 ≤ `+r
2 whenever

(v1, v2) is in a megablock [2]×{`, . . . , r}. (Call it right otherwise). Consider megablocks contain-

ing fewer than B
4 long crossing edges each. By an averaging argument, at least m

2B megablocks

are of this type. (Recall that there are m
B megablocks in total). Within each such megablock

more than B
4 low left nodes and more than B

4 high right nodes have no incident long crossing

edges. By the argument from the first stage, each such megablock contributes more than B2

16b

long internal edges, where b = B
log2m

is the size of the blocks. Hence there must be more than
B2

16b ·
m
2B = m log2m

32 long internal edges, which is a contradiction to the fact that U contains at

most m log2m
32 internal edges.

We proceed to the next stage until each block is of length 1. Therefore, the number of stages,

t, satisfies m
log2t m

= 1. That is, t = logm
2 log logm , and each stage contributes m

8 new crossing edges,

as desired.

Next we generalize Lemma 5.2.2 to understand the tradeoff between the number of internal

edges and crossing edges resulting from halving a 2-TC-spanner of a 2`×m grid with the usual

partial order.

Lemma 5.2.3. Let S be a 2-TC-spanner of the directed [2`] × [m] grid. An edge (u, v) in S is

called internal if u1, v1 ∈ [`] or u1, v1 ∈ {`+ 1, . . . , 2`}, and crossing otherwise. If S contains at

most `m log2m
64 internal edges, it must contain at least `m logm

32 log logm crossing edges.

Proof. For each i ∈ [`], we match the lines {i} × [m] and {2` − i + 1} × [m]. Observe that a

path of length at most 2 between the matched lines cannot use any edges with both endpoints in

{i+ 1, . . . , 2`− i} × [m]. We modify S to ensure that there are no edges with only one endpoint

in {i + 1, . . . , 2` − i} × [m] for all i ∈ [`], and then apply Lemma 5.2.2 to the matched pairs of

lines.

Call the [`] × [m] subgrid and all vertices and edges it contains low, and the remaining

{`+1, . . . , 2`}×[m] subgrid and its vertices and edges high. Transform S into S′ as follows: change

each low internal edge (u, v) to (u, (u1, v2)), change each high internal edge (u, v) to ((v1, u2), v),

and finally change each crossing edge ((i1, j1), (2`− i2 + 1, j2)) to ((i, j1), (2`− i+ 1, j2)), where

i = min(i1, i2). Intuitively, we are projecting the edges in S to be fully contained in one of the

matched pairs of lines, while preserving whether the edge is internal or crossing. Crossing edges

are projected onto the outer matched pair of lines chosen from the two pairs that contain the

endpoints of a given edge.

Clearly, S′ contains at most the number of internal (crossing) edges as S. Observe that S′

contains a path of length at most 2 from u to v for every comparable pair (u, v) where u is low, v

is high, and u and v belong to the same pair of matched lines. Indeed, since S is a 2-TC-spanner,

it contains either the edge (u, v) or a path (u,w, v). In the first case, S′ also contains (u, v). In
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the second case, if (u,w) is a crossing edge S′ contains (u, (v1, w2), v), and if (u,w) is an internal

edge S′ contains (u, (u1, w2), v). As claimed, each edge in S′ belongs to one of the matched pairs

of lines.

Finally, we apply Lemma 5.2.2. If S contains at most `m log2m
64 internal edges, then so does

S′, and so at least half
(
i.e., `

2

)
of the matched line pairs each contain at most m log2m

32 internal

edges. By Lemma 5.2.2, each of these pairs contributes at least m logm
16 log logm crossing edges. Thus

S′ must contain at least `m logm
32 log logm crossing edges. Since S contains as many crossing edges as

S′, the lemma follows.

Now we prove Theorem 5.2.1 by recursively halving Hm,2 along the horizontal dimension.

Some resulting `×m subgrids may violate Lemma 5.2.3, but we can guarantee that the lemma

holds for a constant fraction of the recursive steps for which ` ≥
√
m. This is sufficient for

obtaining the lower bound in the theorem.

Proof of Theorem 5.2.1. Assume m is a power of 2 for simplicity.

For each step i ∈ {1, . . . , 1
2 logm}, partition Hm,2 into the following 2i−1 equal-sized subgrids:

{1, . . . , li} ×[m], {li + 1, . . . , 2li} × [m], . . . , {m − li + 1, . . . ,m} × [m] where li = m/2i−1. For

each of these subgrids, define internal and crossing edges as in Lemma 5.2.3. Now, suppose that

there exists a step i such that at least half of the 2i−1 subgrids have > lim log2m
64 internal edges.

Since at a fixed i, the subgrids are disjoint, there are 2i−1Ω(lim log2m) = Ω(m2 log2m) edges

in S, proving the theorem. On the other hand, suppose that for every i ∈ {1, . . . , 1
2 logm},

at least half of the 2i−1 subgrids have ≤ lim log2m
64 internal edges. Then, applying Lemma

5.2.3, the number of crossing edges in those subgrids is ≥ lim logm
32 log logm . Counting over all steps

i and for all appropriate subgrids from those steps, the number of edges in S is bounded by

Ω
(
m2 logm logm

log logm

)
= Ω

(
m2 log2m

log logm

)
.

Now, we extend the above proof to establish lower bounds on S2(Hm,d) for arbitrary d ≥ 2.

The main technical result is a tradeoff lemma between internal and crossing edges with respect to

two (d− 1)-dimensional hyperplanes. An important part of the generalization is the appropriate

definition of the notions of blocks and megablocks, so that the iterative argument in the proof of

Lemma 5.2.2 applies in the high-dimensional setting.

The following theorem implies the lower bound expression in Theorem 1.5.1:

Theorem 5.2.4. Any 2-TC-spanner of Hm,d has at least md

32
logd m

(2d log logm)d−1 edges.

The main ingredient in the proof is the Two-Hyperplanes Lemma, an analogue of the Two-

Lines Lemma (Lemma 5.2.2) for d dimensions. The main difficulty in extending the proof of

the Two-Lines lemma to work for two hyperplanes is in generalizing the definitions of blocks

and megablocks, so that, on one hand, each stage in the proof contributes a substantial number

of crossing edges and, on the other hand, the crossing edges contributed in separate stages are

pairwise disjoint.
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Lemma 5.2.5 (Two-Hyperplanes Lemma). Let U be a graph with vertex set [2] × [m]d−1 that

contains a path of length at most 2 from u to v for every u ∈ {1} × [m]d−1 and v ∈ {2} ×
[m]d−1, where u � v. As in Lemma 5.2.2, an edge (u, v) in U is called internal if u1 = v1,

and crossing otherwise. Then, if U contains less than md−1 logd m
(d−1)22d+3 internal edges, it must contain

≥ md−1

8

(
logm

2d log logm

)d−1

crossing edges.

Proof. As for Lemma 5.2.2, the proof proceeds in several stages. The stages are indexed by

(d−1)-tuples i in {0, 1, . . . , logm
d log logm −1}d−1. Then, the number of stages is

(
logm

d log logm

)d−1

. We

show below that each stage contributes at least md−1

2d+2 separate edges to the set of crossing edges,

thus proving our lemma.

As in the proof of Lemma 5.2.2, at each stage vertices are partitioned into megablocks and

blocks. In stage i = (i1, . . . , id−1), we partition U into (logm)d(i1+···+id−1) equal-sized megablocks

indexed by b = (b1, . . . , bd−1), where bj ∈ [logd·ij m] for all j ∈ [d− 1].

A vertex v is in a megablock b if vj+1 ∈
[
(bj − 1) m

logdij m
+ 1, bj m

logdij m

]
for each j ∈ [d− 1].

So, initially when i = ~0, there is only one megablock, and each time i increases by 1 in one

coordinate, the volume of the megablocks shrinks by a factor of logdm.

Each megablock b is further partitioned into (logm)d(d−1) equal-sized blocks indexed by c ∈
[logdm]d−1.

A vertex v in a megablock b lies in block c if (v−bmin)j+1 ∈
[
(cj − 1) `j

logd m
+ 1, cj

`j
logd m

]
for

each j ∈ [d−1], where bmin denotes the smallest vertex contained in megablock b and `j denotes

the length of b in the the j’th dimension. Note that vertices (1, v2, . . . , vd) and (2, v2, . . . , vd)

belong to the same (mega)block. At the last stage, each block contains only two vertices (differing

by the first coordinate).

Next, we specify the set of crossing edges contributed at each stage. A crossing edge (u, v) in

U is said to be long in stage i if:

(i) u and v lie in the same megablock, and

(ii) If u lies in block (c1, . . . , cd−1) and v lies in block (c′1, . . . , c
′
d−1), then cj < c′j for all

j ∈ [d− 1].

We claim that if i 6= i′, the sets of long crossing edges in stages i and i′ are disjoint. To see this,

let j be an index such that ij 6= i′j ; suppose without loss of generality that ij < i′j . Then, the

length of the megablocks in the j’th dimension for stage i′ is at most the length of the blocks

in the j’th dimension for stage i. Hence, condition (ii) above implies that long crossing edges in

stage i must have endpoints in different megablocks of stage i′, and so violate condition (i) for

being a long crossing edge in stage i′.

It remains to show that every stage contributes at least md−1

2d+2 long crossing edges. For the

sake of contradiction, suppose that the number of long crossing edges at some stage i is < md−1

2d+2 .

Let B = md−1/(logm)d(i1+···+id−1) be the volume of the megablocks restricted to one of the two

hyperplanes. By an averaging argument, at least md−1

2B megablocks contain < B
2d+1 long crossing

edges (otherwise, there would be at least md−1

2d+2 long crossing edges). But we show next that if a
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megablock contains < B
2d+1 long crossing edges, then there are ≥ B logd m

(d−1)22d+2 internal edges with

both endpoints inside the megablock. This would imply that the total number of internal edges

is ≥ md−1

2B · B logd m
(d−1)22d+2 = md−1 logd m

(d−1)22d+3 , a contradiction.

Suppose then that a megablock contains < B
2d+1 long crossing edges. Let Low be the set of

vertices in the megablock with each coordinate at most the average value of that coordinate in

the megablock, and High the set of vertices with each coordinate greater than the average value

of that coordinate. Then |Low| ≥ B
2d , |High| ≥ B

2d , and each vertex in Low is comparable to each

vertex in High. By the bound on the number of long crossing edges, there must exist a set L of

at least B
2d+1 vertices in Low not incident to any long crossing edge, and a set R of at least B

2d+1

vertices in High not incident to any long crossing edges. L lies in the lower hyperplane, R in the

upper hyperplane, and each vertex in L is comparable to each vertex in R. Call a crossing edge

short if it satisfies condition (i), but violates condition (ii) above. A path in U of length at most

2 from a vertex in L to a vertex in R must consist of one internal edge and one short crossing

edge. The number of short crossing edges incident to a given vertex v is at most (d−1) B
logd m

, by

counting, for each of the d− 1 block indices, the number of vertices in the megablock that share

the value of that block index with v. So, each internal edge helps connect at most (d− 1) B
logd m

pairs of vertices. Since B2

22d+2 pairs of vertices need to be connected by a path, there must exist

at least B2

22d+2 · logd m
(d−1)B = B logd m

(d−1)22d+2 internal edges.

The analogue of Lemma 5.2.3 in d dimensions (Lemma 5.2.6) and the rest of the proof of

Theorem 5.2.4 are straightforward generalizations of the 2-dimensional case.

Lemma 5.2.6. Let S be a 2-TC-spanner of the directed [2`]× [m]d−1 grid. An edge (u, v) in S

is called internal if u1, v1 ∈ [`] or u1, v1 ∈ {`+ 1, . . . , 2`}, and crossing otherwise. If S contains

less than `md−1 logd m
(d−1)22d+3 internal edges, it must contain at least ≥ `m

d−1

8

(
logm

2d log logm

)d−1

crossing

edges.

Proof sketch. We can generalize the proof of Lemma 5.2.3 in a straightforward way. For each

i ∈ [`], instead of matching the lines, we match the hyperplanes {i} × [m]d−1 and {2`− i+ 1} ×
[m]d−1.

Proof of Theorem 5.2.4. Assume m is a power of 2 for simplicity.

For each step i ∈ {1, . . . , 1
2 logm}, partition Hm,d into the following 2i−1 equal-sized subgrids:

{1, . . . , li} ×[m]d−1, {li+1, . . . , 2li} × [m]d−1, . . . , {m− li+1, . . . ,m}× [m]d where li = m/2i−1.

For each of these subgrids, define internal and crossing edges as in Lemma 5.2.6. Now, suppose

that there exists a step i such that at least half of the 2i−1 subgrids have ≥ lim
d−1 logd m

(d−1)22d+3 internal

edges. Since at a fixed i, the subgrids are disjoint, there are at least 2i−2 lim
d−1 logd m

(d−1)22d+3 = md logd m
(d−1)22d+4

edges in S, which is enough to prove the theorem. On the other hand, suppose that for every i ∈
{1, . . . , 1

2 logm}, at least half of the 2i−1 subgrids have < lim
d−1 logd m

(d−1)22d+3 internal edges. Then, ap-

plying Lemma 5.2.6, the number of crossing edges in those subgrids is ≥ lim
d−1

8

(
logm

2d log logm

)d−1

.

Counting over all steps i and for all appropriate subgrids from those steps, the number of edges

in S is lower-bounded by logm
2 · 2i−2 · lim

d−1

8

(
logm

2d log logm

)d−1

= md

32
logd m

(2d log logm)d−1 .



Chapter 6
2-TC-spanners for High-Dimensional

Hypergrids

Theorem 6.3.1 gives matching upper and lower bounds up to a d2m factor in terms of an expression

involving binomial coefficients. This result supersedes the results of the previous chapter when, for

instance, m is constant and d is growing. The expression we obtain can be evaluated numerically

for small m using standard approximations of binomial coefficients. See Lemma 6.1.5 for an

example where this is done for the case m = 2. We first present the results for the case when

m = 2 (i.e., for the hypercube) and then generalize these results to the directed hypergrid, Hm,d.

6.1 2-TC-Spanners of the Hypercube

In this section we prove Theorem 1.5.2, namely, we analyze the size of the sparsest 2-TC-

spanner of the d-dimensional hypercube Hd. Lemma 6.1.1 presents the upper bound on S2(Hd).
Lemma 6.1.3 presents the lower bound. The upper and lower bounds differ only by a factor of

O(d3), and are dominated by the same combinatorial expression. A numerical approximation to

this expression is given in Lemma 6.1.5. Remark 6.2 at the end of the section explains why our

randomized construction in Lemma 6.1.1 yields a 2-TC-spanner of Hd of size within O(d2) of the

optimal.

6.1.1 Upper Bound

Lemma 6.1.1. There is a 2-TC-spanner of Hd with O
(
d3 max

i,j:i<j
min

k:i≤k≤j

(d
k)

(j−i
k−i)

max
{(

k
i

)
,
(
d−k
d−j
)})

edges.

Proof. Consider the following probabilistic construction that connects all comparable vertices at

levels i and j of Hd by paths of length at most 2:
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Given levels i, j ∈ {0, 1, ..., d}, i < j,

1. Initialize the set Ei,j to ∅.

2. Let ki,j = argmin
k:i≤k≤j

(
(d

k)
(j−i

k−i)
max

{(
k
i

)
,
(
d−k
d−j
)})

.

3. Let Si,j be a set of 3d (d
k)

(j−i
k−i)

vertices chosen uniformly at random from

the set of
(
d
k

)
vertices that are in weight level k = ki,j .

4. For each vertex v ∈ Si,j , set Ei,j to Ei,j ∪ {(x, v) : |x| = i ∧ x ≺
v} ∪ {(v, y) : |y| = j ∧ v ≺ y}. That is, connect v to all comparable

vertices in levels i and j.

5. Output Ei,j .

Claim 6.1.2. For all 0 ≤ i < j ≤ d, with probability at least 1
2 , Ei,j contains a path of length at

most 2 between any pair of vertices (x, y) such that x ≺ y, |x| = i, and |y| = j.

Proof. Consider any particular pair of vertices (x, y) such that x ≺ y, |x| = i, and |y| = j. The

number of vertices in level k that are greater than x and less than y is exactly
(
j−i
k−i
)
. So, the

probability that Si,j does not contain such a vertex is:
(

1−
(
j−i
k−i
)
/
(
d
k

))3d
(d

k)
(j−i

k−i) ≤ e−3d. The

number of comparable pairs (x, y) is
(
d
i

)(
d−i
d−j
)
. So, by the union bound, the probability that

there exists an (x, y) such that no vertex v ∈ Si,j satisfies x ≺ v ≺ y is at most
(
d
i

)(
d−i
d−j
)
e−3d ≤

22de−3d < 1
2 .

So, for every i and j, there exists a choice of Si,j such that comparable pairs from the two

weight levels are connected by a path of length at most 2. Let E∗i,j be the set of edges returned by

the algorithm when this Si,j is chosen. We set E =
⋃

0≤i<j≤dE
∗
i,j . By Claim 6.1.2, ({0, 1}d, E)

is a 2-TC-spanner of Hd.
Now, we show that the size of E is as claimed in the lemma statement. The main observation

is that in step (4), for any specific v ∈ Si,j , |{(x, v) : |x| = i ∧ x ≺ v} ∪ {(v, y) : |y| = j ∧ v ≺ y}|
is exactly

(
ki,j

i

)
+
(
d−ki,j

d−j
)
. Therefore, for all 0 ≤ i < j ≤ d,

|E∗i,j | ≤ 3d min
k:i≤k≤j

(
d
k

)(
j−i
k−i
) ((k

i

)
+
(
d− k
d− j

))
≤ 6d min

k:i≤k≤j

(
d
k

)(
j−i
k−i
) max

{(
k

i

)
,

(
d− k
d− j

)}
.

Since |E| =
∑

0≤i<j≤d |E∗i,j |, where the sum has O(d2) terms, the claimed bound follows.

6.1.2 Lower Bound

Lemma 6.1.3. Any 2-TC-spanner of Hd has Ω
(

max
i,j:i<j

min
k:i≤k≤j

(d
k)

(j−i
k−i)

max
{(

k
i

)
,
(
d−k
d−j
)})

edges.
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Proof. Let S be a 2-TC-spanner for Hd. We will count the edges in S that occur on paths

connecting two particular weight levels of Hd. Let Pi,j be the pairs {(v1, v2) : |v1| = i, |v2| =

j, v1 ≺ v2}. We will lower bound e∗i,j , the number of edges in the paths of length at most 2 in

S that connect the pairs Pi,j . Let ek,` denote the number of edges in S that connect vertices in

level k to vertices in level `. Then e∗i,j = ei,j +
∑j−1
k=i+1(ei,k + ek,j).

We say that a vertex v covers a pair of vertices (v1, v2) if S contains the edges (v1, v) and

(v, v2) or, for the special case v = v1, if S contains (v1, v2). Let V (k)
i,j be the set of vertices

of weight k that cover pairs in Pi,j . Let αk be the fraction of pairs in Pi,j that are covered

by a vertex in V
(k)
i,j . Since each pair in Pi,j must be covered by a vertex in levels i to j − 1,∑j−1

k=i αk ≥ 1.

For any vertex v ∈ V (k)
i,j , let inv be the number of incoming edges from vertices of weight i

incident to v and let outv be the number of outgoing edges to vertices of weight j incident to v.

For each k ∈ {i+ 1, ..., j − 1}, since each vertex v ∈ V (k)
i,j covers inv · outv pairs,

∑
v∈V (k)

i,j

inv · outv ≥ αk|Pi,j | = αk

(
d

i

)(
d− i
d− j

)
. (6.1)

We upper bound
∑
v∈V (k)

i,j
inv · outv as a function of ei,k + ek,j , and then use Equation (6.1) to

lower bound ei,k + ek,j .

For all k ∈ {i+ 1, ..., j − 1}, variables inv and outv satisfy the following constraints:∑
v∈V (k)

i,j

inv ≤ ei,k + ek,j ,
∑

v∈V (k)
i,j

outv ≤ ei,k + ek,j .

inv ≤
(
k

i

)
∀v ∈ V (k)

i,j , outv ≤
(
d− k
d− j

)
∀v ∈ V (k)

i,j .

The last two constraints hold because inv and outv count the number of edges to a vertex of

weight k from from vertices of weight i and from a vertex of weight k to vertices of weight j,

respectively. Using these bounds we obtain

∑
v∈V (k)

i,j

inv · outv ≤
∑

v∈V (k)
i,j

(
k

i

)
· outv =

(
k

i

)
·
∑

v∈V (k)
i,j

outv ≤
(
k

i

)
· (ei,k + ek,j).

Similarly,
∑
v∈V (k)

i,j
inv · outv ≤

(
d−k
d−j
)
· (ei,k + ek,j). Therefore, for all k ∈ {i+ 1, ..., j − 1}:

∑
v∈V (k)

i,j

inv · outv ≤ (ei,k + ek,j) min
{(

k

i

)
,

(
d− k
d− j

)}
.

Let si,k,j = (d
i)(d−i

d−j)
min{(k

i),(d−k
d−j)}

. From Equation (6.1), ei,k+ek,j ≥ αksi,k,j for all k ∈ {i+1, ..., j−
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1}. Therefore,

e∗i,j = ei,j +
j−1∑
k=i+1

(ei,k + ek,j) ≥ αi
(
d

i

)(
d− i
d− j

)
+

j−1∑
k=i+1

αksi,k,j ≥
j−1∑
k=i

αksi,k,j ≥ min
k:i≤k≤j

si,k,j

Since this holds for arbitrary i and j, the number of edges in the 2-TC-spanner

|S| ≥ max
i,j:i<j

min
k:i≤k≤j

si,k,j .

Finally, a simple algebraic manipulation finishes the proof.

Claim 6.1.4. si,k,j = (d
k)

(j−i
k−i)

max
{(

k
i

)
,
(
d−k
d−j
)}

.

Proof. Take the ratio of the two sides:

si,k,j
(d

k)
(j−i

k−i)
max

{(
k
i

)
,
(
d−k
d−j
)} =

(
d
i

)(
d−i
d−j
)(
j−i
k−i
)(

d
k

)(
k
i

)(
d−k
d−j
) =

(
d
i

)(
d−i
j−i
)(
j−i
k−i
)(

d
k

)(
k
i

)(
d−k
j−k
) = 1.

The first equality follows from the fact that max(x, y) ·min(x, y) = x · y. The last equality can

be proved either by expanding the binomial coefficients into factorials, or by realizing that both(
d
i

)(
d−i
j−i
)(
j−i
k−i
)

and
(
d
k

)(
k
i

)(
d−k
j−k
)

count the number of ways i red balls, j − k blue balls, and k − i
green balls can be placed into d slots, each of which can hold one ball at most. This completes

the proof of the claim.

This completes the proof of the lemma.

The following lemma gives a handle on the expression capturing the size of a 2-TC-Spanner.

Lemma 6.1.5. Let s = max
i,j:i<j

min
k:i≤k≤j

(d
k)

(j−i
k−i)

max
{(

k
i

)
,
(
d−k
d−j
)}

. Then s = 2cd, where c ≈ 1.1620.

Proof. We use the fact that
(
n
cn

)
= 2(Hb(c)−on(1))n, where “on(1)” is a function of n that tends

to zero as n tends to infinity, and Hb(p) = −p log p − (1 − p) log(1 − p) is the binary entropy

function. Substituting i = αd, j = βd and k = γd in the resulting expression for s, and taking

the logarithm of both sides, we get

log2 s = max
0≤α<β≤1

min
α≤γ≤β

[
Hb(γ)−Hb

(
γ − α
β − α

)
(β − α) + max

(
Hb

(
α

γ

)
γ,Hb

(
1− β
1− γ

)
(1− γ)

)]
d

In other words, log2 s = cd where c is a constant. We can check numerically that c ≈ 1.1620.

Remark 6.2. We note that if the first maximum in the expression for s is replaced with the sum

then Lemma 6.1.1 holds for O(d·s) instead of O(d3 ·s) while Lemma 6.1.3 holds for Ω(d/s) instead

of Ω(s). The proofs of these modified statements are similar. (We do not have an analogue of

Lemma 6.1.5 for the modified expression for s.) Observe that the modified bounds differ by a

factor of O(d2) instead of O(d3). This demonstrates that our randomized construction yields a

2-TC-spanner of Hd of size within O(d2) of the optimal.
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6.3 2-TC-Spanners of the Hypergrid

In this section, we generalize the arguments for the hypercube to the directed hypergrid, Hm,d.
Before stating Theorem 6.3.1, we introduce some notation.

Definition 6.3.1. For the hypergrid Hm,d , define a level to be a set of vertices, indexed by

vector i ∈ [d]m with i1 + · · ·+ im = d, that consists of vertices x = (x1, . . . , xd) ∈ [m]d containing

i1 positions of value 1, i2 positions of value 2, . . . , and im positions of value m.

Notice that the number of vertices in level i = (i1, i2, . . . , im) is the multinomial coefficient(
d

i

)
=
(

d

i1, ..., id

)
=
(
d

i1

)(
d− i1
i2

)(
d− i1 − i2

i3

)
. . .

(
d−

∑m−1
l=1 il
im

)
.

Indeed, there are
(
d
i1

)
choices for the coordinates of value 1. For each such choice there are(

d−i1
i2

)
choices for the coordinates of value 2, and repeating this argument one obtains the above

expression.

For levels i, j ∈ [d]m, say j majorizes i, denoted j � i, if j contains a vertex which is above

some vertex in i, i.e., , if
m∑
`=t

j` ≥
m∑
`=t

i` for all t ∈ {m,m− 1, ..., 1}.

For j � i, the number of vertices y at level i comparable to a fixed vertex x at level j is

M(i, j):

(
jm
im

)(
jm + jm−1 − im

im−1

)(
jm + jm−1 + jm−2 − im − im−1

im−2

)
. . .

( m∑
l=1

jl −
m∑
l=2

il

i1

)
.

Indeed, there are
(
jm
im

)
choices for the coordinates of value m in y. For each such choice, there are(

jm+jm−1−im
im−1

)
choices for the coordinates of value m− 1 in y, and one can repeat this argument

to obtain the claimed expression.

For j � i, the number of vertices y at level j comparable to a fixed vertex x at level i is

N (i, j) =
M(i, j)

(
d
j

)(
d
i

) .

Indeed, there are M(i, j)
(
d
j

)
comparable pairs of vertices in levels i and j, and level i contains(

d
i

)
vertices. Since, by symmetry, each vertex in i is comparable to the same number of vertices

in level j, we get the desired expression.

Theorem 6.3.1. Let

B(m, d) = max
i,j:j�i

min
k:i≺k≺j

M(i, j)
(
d
j

)
M(i,k)N (k, j)

max {M(i,k),N (k, j)} .

Then the number of edges in the sparsest 2-TC-spanner of the directed hypergrid Hm,d is

O
(
d2mB(m, d)

)
and Ω (B(m, d)).
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The bounds stated in Theorem 6.3.1 are presented separately as Lemma 6.3.2 (upper bound)

and Lemma 6.3.4 (lower bound) below.

6.3.1 Upper Bound

Lemma 6.3.2. There is a 2-TC-spanner of Hm,d with

O

(
d2m max

i,j:j�i
min

k:i≺k≺j

M(i, j)
(
d
j

)
M(i,k)N (k, j)

max {M(i,k),N (k, j)}

)
edges.

Proof. Let v ∈ i denote that vertex v belongs to level i. Consider the following probabilistic

construction that connects comparable vertices at levels i and j of Hm,d by paths of length at

most 2:

Given levels i, j ∈ [m]d, j � i,

1. Initialize the set Ei,j to ∅.

2. Let ki,j = argmin
k:i≺k≺j

(
M(i,j)(d

j)
M(i,k)N (k,j) max {M(i,k),N (k, j)}

)
.

3. Let Si,j be a set of dm
M(i,j)(d

j)
M(i,k)N (k,j) vertices chosen uniformly at random

from the set of
(
d
k

)
vertices that are in weight level k = ki,j.

4. For each vertex v ∈ Si,j, set Ei,j to Ei,j∪{(x, v) : x ∈ i∧x ≺ v}∪{(v, y) :

y ∈ j ∧ v ≺ y}. That is, connect v to all comparable vertices in levels i

and j.

5. Output Ei,j.

Claim 6.3.3. For all i ≺ j, with probability at least 1
2 , Ei,j contains a path of length at most 2

between any pair of vertices (x, y) such that x ≺ y, x ∈ i, and y ∈ j.

Proof. Fix x, y with x ≺ y, and assume x ∈ i, and y ∈ j. We will first show that Prv∈k[x ≺ v ≺
y] ≥ p, where p = M(i,k)N (k,j)

M(i,j)(d
j)

.

Toward that end, notice that there are M(i, j)
(
d
j

)
pairs of comparable vertices (u,w) with

u ∈ i, w ∈ j. Each vertex in Si,j connects exactly M(i,k)N (k, j) pairs of nodes from levels i

and j. It is enough to show that for any such pair (u,w), the number of vertices at level k

that are comparable to both u and v is independent of u,w, i.e., that number only depends on

the levels i,k, j and it is therefore the same for all such pairs. To see that, for a vertex u ∈ z,

denote by Tl(u) the set of positions of value l in u. Notice that |Tl(u)| = zl. For x ≺ v ≺ y it

is the case that Tm(x) ⊆ Tm(v) ⊆ Tm(y). Hence there are
(
jm−im
km−im

)
choices for the m-values in

the vector v. Similarly, we must have Tm−1(x) ⊆ Tm−1(v) ⊆ Tm(y) ∪ Tm−1(y). Hence there are(
jm+jm−1−km−im−1

km−1−im−1

)
choices for the values m− 1 in v. Repeating this process, we obtain that the

number of possible v’s does not depend on the particular choice of x and y.
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Thus the probability that Si,j does not contain such a vertex v with x ≺ v ≺ y is (1−p)dm/p ≤
e−d

m

.

The number of comparable pairs (x, y) is at mostm2d, and by the union bound, the probability

that there exists (x, y) such that there is no v ∈ Si,j with x ≺ v ≺ y is at mostm2de−d
m

< 1/2.

So, for every i and j, there exists a choice of Si,j such that comparable pairs from the two

weight levels are connected by a path of length at most 2. Let E∗i,j be the set of edges returned

by the algorithm when this Si,j is chosen. We set E =
⋃
i<j E

∗
i,j. By Claim 6.3.3, ([m]d, E) is a

2-TC-spanner of Hm,d.
Now, we show that the size of E is as claimed in the lemma statement. The main observation

is that in step (4), for any specific v ∈ Si,j, |{(x, v) : x ∈ i ∧ x ≺ v} ∪ {(v, y) : y ∈ j ∧ v ≺ y}| is

exactly M(i,k) +N (k, j).

The claimed bound follows since |E| =
∑

j�i |E∗i,j|, where the sum has dm terms.

6.3.2 Lower Bound

Lemma 6.3.4. Any 2-TC-spanner of Hm,d has at least Ω(B(m, d)) many edges, where B(m, d)

is defined as in Theorem 6.3.1.

Proof. Let S be a 2-TC-spanner forHm,d. We count the edges in S that occur on paths connecting

two particular levels of Hm,d. Let Pi,j = {(v1, v2) : v1 ∈ i, v2 ∈ j, v1 ≺ v2}. We will lower bound

e∗i,j, the number of edges in the paths of length at most 2 in S, that connect the pairs Pi,j. Notice

that |P (i, j)| =
(
d
j

)
M(i, j).

Let ek,` denote the number of edges in S that connect vertices in level k to vertices in level

`. Then

e∗i,j = ei,j +
∑

i≺k≺j

(ei,k + ek,j). (6.2)

We say that a vertex v covers a pair of vertices (v1, v2) if S contains the edges (v1, v) and

(v, v2) or, for the special case v = v1, if S contains (v1, v2). Let V (k)
i,j be the set of vertices in

level k that cover pairs in Pi,j. Let αk be the fraction of pairs in Pi,j that are covered by the

vertices in V
(k)
i,j . Since each pair in Pi,j must be covered by a vertex in levels k with i ≺ k ≺ j,

we must have
∑

i≺k≺j αk ≥ 1.

For any vertex v ∈ V
(k)
i,j , let inv be the number of incoming edges from vertices of level i

incident to v and let outv be the number of outgoing edges to vertices of level j incident to v.

For each level k with i ≺ k ≺ j, since each vertex v ∈ V (k)
i,j covers inv · outv pairs,

∑
v∈V (k)

i,j

inv · outv ≥ αk|Pi,j| ≥ αkM(i, j)
(
d

j

)
. (6.3)

We upper bound
∑
v∈V (k)

i,j

inv · outv as a function of ei,k + ek,j, and then use Equation (6.3)

to lower bound ei,k + ek,j. For all k with i ≺ k ≺ j, variables inv and outv satisfy the following
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constraints: ∑
v∈V (k)

i,j

inv ≤ ei,k ≤ ei,k + ek,j,
∑

v∈V (k)
i,j

outv ≤ ek,j ≤ ei,k + ek,j,

inv ≤M(i,k) ∀v ∈ V (k)
i,j , outv ≤ N (k, j) ∀v ∈ V (k)

i,j .

The last two constraints hold because inv and outv count the number of edges to a vertex of level

k from vertices of level i, and from a vertex of level k to vertices of level j, respectively. Using

these bounds we obtain∑
v∈V (k)

i,j

inv · outv ≤
∑

v∈V (k)
i,j

M(i,k) · outv =M(i,k) ·
∑

v∈V (k)
i,j

outv ≤M(i,k) · (ei,k + ek,j).

Similarly,
∑
v∈V (k)

i,j

inv · outv ≤ N (k, j) · (ei,k + ek,j). Therefore,

∑
v∈V (k)

i,j

inv · outv ≤ (ei,k + ek,j) min {M(i,k),N (k, j)} .

From Equation (6.3), ei,k + ek,j ≥ αkM(i, j)
(
d

j

)
1

min {M(i,k),N (k, j)}
for all i ≺ k ≺ j. Ap-

plying Equation (6.2) and the fact that
∑

i≺k≺j αk ≥ 1, we get

e∗i,j = ei,j +
∑

i≺k≺j

(ei,k + ek,j) ≥
∑
k

αk
1

min {M(i,k),N (k, j)}
M(i, j)

(
d

j

)

≥ min
k

1
min {M(i,k),N (k, j)}

M(i, j)
(
d

j

)
= min

k

1
M(i,k)N (k, j)

M(i, j)
(
d

j

)
max {M(i,k),N (k, j)}.

Since this holds for arbitrary i and j, the size of the 2-TC-spanner is |S| ≥ B(m, d).
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