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Abstract

In this thesis, we present radio frequency (RF) front-end nonlinearity estimators to per-
form joint specific emitter identification (SEI) and tracking. Our SEI systems discern
radio emitters of interest through the estimation of transmitter nonlinearities caused by
design and fabrication variations. These nonlinearity features provide unique signal sig-
natures for each emitter, and we extract those characteristics through the estimation of
transmitter nonlinearity coefficients. We first present a nonlinearity estimator which es-
timates the power series coefficients of nonlinear devices in the radio frequency (RF)
front end by observing the spectral regrowth in additive white Gaussian noise (AWGN)
channel. Then another robust algorithm is also provided by using alternative degrees
of nonlinearities associated with symbol amplitudes for initial estimation, and then iter-
atively estimating the channel coefficients and distorted transmit symbols to overcome
the inter-symbol interference (ISI) effect. The convergence and unbiasedness of the it-
erative estimator are demonstrated semi-analytically. Based on this analysis, we also
trade error performance for complexity reduction using the regularity of the estimation
process. The algorithm is applicable to a wide range of multi-amplitude modulation
schemes, and we present an SEI system designed for an orthogonal frequency division
multiplexing (OFDM) system over an empirical indoor channel model with associated
numerical results. This technology is then adapted to provide location tracking in multi-
path environments, which locates the mobile stations (MS) based on the transmit power
variation estimates. The method is simulated over a grid-based city map. In the last part
of the thesis, complexity reduction methods are introduced to balance the convergence
rate and identification performance.
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Chapter 1

Introduction

1.1 Motivation

The objective of this thesis is to research and develop algorithms capable of specific

emitter identification (SEI) and specific emitter tracking (SET) based on external signal

feature extraction which utilizes the information from transmitter nonlinearities esti-

mates to improve situation awareness. Our algorithms can be applied to multiple com-

munication systems of different modulation schemes with single or multiple antennas,

and are robust to operate in multipath environments. SEI techniques are used to recog-

nize individual electronic emitters through the precise measurement of selected signal

external features, while SET provides geolocation tracking of the target. This capability

leads to diverse applications such as cognitive radio [1], network intrusion detection,

battlefield management, electronic support measurement system, and intelligence gath-

ering [2–7].

In order to be identified by SEI technologies, a specific emitter must have one or

more of these signal external features that are stable and unique. The external signal fea-

ture used for identification in this thesis is transmitter nonlinearities which satisfied our

requirement in uniqueness and stability [4]. The main causes of this feature are different

designs in power amplifier and fabrication randomness. The estimation algorithms are

based on the measurement of power spectrum density and distorted signal constellation.

To enhance the robustness of estimation, the algorithm iteratively estimates the chan-

nel coefficients and transmit symbols to suppress inter-symbol interference (ISI) effects

which is new and can not be found in published research results. To complete the re-



2

connaissance ability, we utilize the relationship between the transmit power variation

and the transmitter nonlinearities to perform SET. Moreover, several algorithms were

developed to reduce the complexity for practical applications.

1.2 Contributions

A major issue for building SEI systems is to measure proper signal features that are

consistent from one transmission to another for a given emitter but different from one

emitter to another. The transmitter nonlinearities are introduced by alternative designs

and fabrication randomness which provide unique characteristics of the transmitter [4],

and this uniqueness is the base of the emitter identification. We first consider the transmit

symbols as a sequence of random variables, and estimate the nonlinearity coefficients

through the measurement of power spectrum density. This algorithm is presented in:

M.-W. Liu and J. F. Doherty, “Specific emitter identification using nonlinearity device

es- timation,” in IEEE 2008 Sarnoff Symposium, Princeton, NJ, 28-30 April 2008.

Another issue in SEI systems is that no research in the public arena is developed to

suppress inter-symbol interference (ISI) effects which affect the performance deleteri-

ously. In this dissertation, we develop iterative algorithms and utilize training sequences

to suppress this effect to maintain robust estimation, and they are shown in:

M.-W. Liu and J. F. Doherty, “Nonlinearity estimation for specific emitter identification

in multipath environment,” in IEEE 2009 Sarnoff Symposium, March 2009.

M.-W. Liu and J. F. Doherty, “Wireless device identification in MIMO channels,” in

IEEE Conference on Information Sciences and Systems 2009 , March 2009.

M.-W. Liu and J. F. Doherty, “Specific emitter identification in multipath channels,” To

appear in IEEE Transactions on Information Forensics and Security.

Moreover, the nonlinearity estimates also provide the information about the varia-

tion of transmit power. Since this information is location dependent, it is used to track

the location of the transmitter in:

M.-W. Liu and J. F. Doherty. “Joint Specific Emitter Identification and Location Track-

ing for OFDM Systems.” In Symposium and Summer School on Wireless Comm., Vir-

ginia Tech., June 2010.

M.-W. Liu and J. F. Doherty. “On Joint Specific Emitter Identification and Tracking”

Submitted to IEEE Transactions on Information Forensics and Security.
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Figure 1.1. The flowchart of emitter signal classification

The estimation of transmitter nonlinearities can also be extended to channel estima-

tion. In the majority of the channel estimation research, the transmitter nonlinearities

are not considered. We develop a channel estimation algorithm for frequency-selective

multiple-input multiple-output (MIMO) channel estimation including the transmitter

nonlinearities, and the results show that the performance improves substantially. The

results are published in:

M.-W. Liu and J. F. Doherty, “Frequency-selective multiple-input multiple-output chan-

nel estimation with transmitter non-linearities,” Signal Processing, IET, vol. 3, no. 6,

pp. 467 475, 2009.

1.3 Specific Emitter Identification Introduction

SEI systems recognize radio emitters of interest through only the measurement of ex-

ternal signal features. These features are selected based on the types of emitter sources,

which can be loosely divided into two categories: radar and communications signals.

In the scope of radar signals, there has been a great deal of research on performing SEI

by aggregating decisions made by estimating characteristics of interpulse features such

as pulse repetition interval (PRI) [8–10]. Another class of feature is intrapluse features

including pulse width, pulse shape, intentional modulation on pulse (IMOP), and unin-

tentional modulation on pulse (UMOP) [11].

Fig. 1.1 shows a typical SEI block diagram, where the radar signals from multiple

emitters are first deinterleaved; then the signal features are extracted and fed to the

classifier in the next stage. Many of these deinterleaving and estimation technologies

are based on the TOA difference histogram of the pulse train. If the potential PRI is

identified, the algorithm looks for a group of pulses that form a periodic pulse train.

Further development to detect the fundamental PRIs using the cumulative difference
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histogram (CDIF) is presented in [8] and the sequential difference histogram (SDIF)

is proposed in [9]. Fig. 1.2(a) shows a simple example where two interleaved stable

sequences with PRIs of I time units is presented or a two-level staggered signal with

stagger frame rate equal to the PRI. CDIF algorithm first counts the histogram of the

first difference of the signal as shown in 1.2(b). In this example, both stems are under

the threshold, and the algorithm searches the second difference as shown in Fig. 1.2(c).

Otherwise, if both stems are above the threshold, the algorithm determines the PRI and

treats the second stem as the harmonics. In Fig. 1.2(c), since the third stem is above the

threshold, it is considered as the PRI. By requiring the second harmonics, the algorithm

keeps searching until the fourth difference as shown in Fig. 1.2(d) and 1.2(e). Once the

PRI is determined, the algorithm removes the pulses of that PRI from the sample and

the histogram resets. SDIF histogram is similar to CDIF but only the current differences

exist. The purpose of this modification is to prevent the situation when many emitters

are present, the first difference will produce a few values exceeding the threshold, and

none of the corresponds to the correct PRI value.

These algorithms intend to avoid PRI harmonics by combining the histogram with

sequence search techniques. Another identification method that exploits the properties

of the matrix formed with the differences of TOA is presented in [10]. In addition, the

algorithm in [12] also suppresses the PRI harmonics using PRI spectrum analysis. Other

than signals with stable sequence intervals where a sharp narrow peak indicates a simple

PRI, a staggered PRI gives many separated peaks in the histogram [13].

Another category of signal features uses the parameters of intentional pulse modula-

tion (IMOP) found in pulse compression radars. Typical modulation on pulse includes

frequency modulation on pulse (FMOP) and phase modulation on pulse (PMOP). In

practice, linear frequency modulation (LFM) or chirp is used often, and the compres-

sor linearly changes the carrier frequency with time. Moreover, phase modulation on

pulse (PMOP) is also widely used. This technology broadens the bandwidth of the radar

pulse by modulating the signal with code sequences. Electronic intercept systems can

also distinguish the emitter of interest through the estimate of the frequency and the

phase parameters. Other than IMOP, unintentional modulation on pulse (UMOP) signal

features are widely used [3, 14]. UMOP introduced in the transmitted pulses is mainly

due to the individual characteristics of the transmitter components. For instance, the

envelope shape of a pulse depends on the interactions between the high voltage pulse
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Figure 1.3. Emitter identifier receives signal from multiple radars.

generated by the individual high voltage power supply applied to the magnetron. There-

fore, by analyzing the pulse shape generated by different transmitters as shown in Fig.

1.3, the SEI system can identify the transmitter of this pulse. Some common features

of the amplitude waveform are rise time, fall time, rise angle, and fall angle [5]. The

thermal condition of the amplifier also induces frequency shift, and thus the frequency

deviation around the carrier also provides a characteristic feature [11].

In cases when communication systems are emitter sources, many signal characteris-

tics have been investigated including channel-related and transmitter-specific features.

The basic assumption of channel-related features is that the channel of each transmit-

ter should represent unique characteristics of its location. In these location related

features, [15] utilized the receive signal strength indication (RSSI) vector as the sig-

nal fingerprint to distinguish transmitters in a wireless local area network (WLAN)

environment; [16] evaluated an approach that compares multipath coefficients of the

channel; [17] proposed a physical layer authentication based on parameters from chan-

nel estimates. In the category of transmitter-specific features, transient amplitude and

phase profiles of the radio frequency (RF) fingerprinting are the most researched type.

In [6, 18], the authors sampled the instant waveforms captured from wireless devices,

and the turn-on transients are determined when the receive signal power performs a sud-

den increase or is above a threshold. Then these samples are compared to the fingerprint
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Figure 1.4. An example of error vector definition in 16-QAM constellation

features stored in the database for identification. Other features such as clock skew are

studied in [19], while error vector magnitude (EVM) is used in [20, 21]. The definition

of EVM is

EV M(dB) = 20log10

(
Perror

P0

)
(1.1)

where Perror is the root mean square (RMS) power of the error vector and P0 is average

power of the ideal constellation as shown in Fig. 1.4. The error vector is produced by the

imperfect design and fabrication which is considered unique to each transmitter. A typ-

ical allowed EVM in IEEE 802.11a specification is between -5 dB to -25 dB according

to the data rate [22].

Another approach is to exploit frequency domain signal characteristics. For instance,

the main lobe shape symmetry of power spectrum density (PSD) [4] as well as spectral

correlation function [1] all provide device identification features.

1.3.1 Transmitter Nonlinearities Measurement

In this thesis, an SEI system is developed estimating the device nonlinearities of the

transmitter. One major source of this unique feature is that each system design generates

its own output response according to the input voltage, and another source comes from

the fabrication randomness which varies in each manufacturing process [4].
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Our first measurement approach is to observe the power spectrum density (PSD) esti-

mation [23]. It is known that transmitter nonlinearities change the shape of PSD [24,25],

and the nonlinearity coefficients are extracted through the observation. Another nonlin-

earity estimation approach is to observe the distorted symbol constellation in multipath

channels [26–28], and then the nonlinearities are extracted through the distortion results.

The algorithm suppresses the ISI effects which affects the estimator and has not yet been

researched in the open literature.

1.4 Specific Emitter Tracking Introduction

The capability of accurately performing emitter location has become a primary require-

ment for today’s reconnaissance systems. In practice, one or more platforms can be

used to perform geolocation using time and frequency information. These location sys-

tems can be classified into two broad categories: direction finding (DF) and range-based

position location (PL) systems. DF systems estimate the position location of a emit-

ter source by measuring the direction of arrival (DOA) or angle-of-arrival (AOA) of the

emitter, and then overlay the bearings to form an interaction region as the potential emit-

ter location. Range-based PL systems utilize the range between the emitter source and

sensors, or range difference between the signal source and different sensors. The range

difference measurement defines a hyperboloid of constant range, and the intersection of

multiple range differences provides the location of the emitter. Moreover, with the help

from terrain data, the receivers can estimate the range from the receive signal strength

(RSS). Some indoor applications record the RSS of each sensor according to the trans-

mitter location. Based on different terrain and channel condition, each emitter location

brings a unique RSS vector which is then used as the location reference. Once the RSS

is measured from each sensor, it is compared to the database to localize the emitter.

1.4.1 DF Measurements

The function of a DF receiver is to perform DOA measurement of the received sig-

nal which can be broadly classified into three categories: amplitude-comparison, phase

interferometry, and subspace-based methods. In the case where only a single moving

sensor is available as shown in Fig. 1.5(a), DF information is obtained through a se-
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(b) Multiple-sensor emitter location find-
ing using multiple stationary sensors.

Figure 1.5. Two emitter location finding schemes using AOA methods.

quence of observations which forms lines of bearings (LOBs) along which the emitter

lies; then the position of the target can be estimated. Fig. 1.5(b) demonstrates emitter

location finding with multiple cooperative platforms, where the LOBs from different

platforms can be integrated to derive the emitter location.

One of the difficulties in locating communications emitters is their relatively lower

frequencies which lead to longer wavelengths. For instance, very high frequency (VHF)

ranges from 30M to 300 MHz, while ultra high frequency (UHF) ranges from 300 MHz

to 3 GHz, and some wireless applications such as Bluetooth and wireless local area

network (WLAN) in industrial, scientific and medical band use 900MHz, 2.5GHz, and

5.8GHz. The associated wavelength could be several centimeters and up to 10 meters,

which increases the difficulty of design.
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Figure 1.6. Implementation of amplitude-comparison direction finder.

1.4.1.1 Amplitude-Comparison DF

One basic method in amplitude-comparison DF receiver is to use anisotropy in the re-

ception pattern of an antenna. The beam of antenna is then rotated electronically or

mechanically, and the direction corresponding to the maximum signal strength is taken

as the direction of the transmitter. Another approach is to use the minimum of two sta-

tionary antennas with known antenna patterns as illustrated in Fig. 1.6(a). A simple

way to implement the angle finder is to compare the signal strength received from each

antenna yielding the transmitter direction as presented in Fig. 1.6(b). The system then

knows the antennas with the strongest and next strongest receive signal strength. Direc-

tion finders with four antennas can provide a precision of 10 to 15 degree rms in 2-18

GHz band, while the precision improves to 4-6 degree rms with eight antennas [29].
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Figure 1.7. A phase-comparison DF implementation with two antennas.

1.4.1.2 Phase-Comparison DF

This technique derives the AOA measurements from the estimations of the phase dif-

ferences in the arrival of a wave front. It typically requires an antenna array, in which

the adjacent antenna elements are separated by a uniform distance. The principal of this

method is shown in Fig. 1.7, and assuming the phase shift is less than 360 degree, a

signal arriving from an off-axis direction a causes a phase shift

ϕ =
Lsina

λ
2π (1.2)

where λ is the wave length. Phase interferometry AOA measurements rely on line-of-

sight (LOS) path from the transmitter to the receiver. Multipath component may appear

as a signal arriving from an entirely different direction and can lead to very different

estimation results.

1.4.1.3 Subspace-Based Algorithms

The most well-known subspace-based algorithms are multiple signal classification (MU-

SIC) [30] and estimation of signal parameters by rotational invariance techniques (ES-

PRIT) [31, 32]. These eigenanalysis algorithms require multiple antennas to form a re-

ceive signal correlation matrix. After eigendecomposition of the correlation matrix, the

vector space is divided into two orthogonal spaces, signal and noise space, which con-
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tains the information of the direction. Then the algorithm then extracts the signal direc-

tion from these subspaces. These techniques can resolve signals with close frequencies;

hence, are often referred to as super-resolution methods. Usually these methods fail in

multipath environment. But using a spatially smoothed covariance matrix to replace the

conventional covariance matrix, the modified algorithm can solve this problem [33].

1.4.2 Distance Related Measurements

Ranging-based systems estimate the emitter location based on the estimates of range

related information between the transmitter and receivers. The range information comes

from time, frequency estimates, and receive power. In this section, several methods are

introduced such as time of arrival (TOA), time difference of arrival (TDOA), frequency

difference of arrival (FDOA), and receive signal strength (RSS).

1.4.2.1 TOA

One approach in this category is the one-way propagation time measurement which es-

timates the difference between the sending at the transmitter side and receiving at the

receiver side. It requires the synchronization of the local time at the receiver side and

transmitter side. Another approach measures the difference between the time when a

signal is sent to the receiver and returned to the transmitter. The advantage of this ap-

proach is that since the same clock is used, no synchronization is required. To illustrate

the TOA concept, consider a 2-dimension localization system using three sensors is

shown in Fig. 1.8. The time of arrival of a signal at each sensor is estimated by the

relationship

Ri = cdi =
√

(xi−X)2 +(yi−Y )2, ∀i = 1, 2, 3 (1.3)

where Ri is the distance between the emitter and sensor i, c is the signal propagation

speed, di is the TOA estimate, (xi,yi) is the location coordinate of the sensor, and (X ,Y )

is the location of the radio emitter.

1.4.2.2 Distance Estimation via RSS

In this method, the location estimator combines the propagation model and RSS mea-

surement to locate the emitter. A empirical propagation model of path loss and shadow-
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Figure 1.8. A ranging position location method example of one radio emitter and three sensors.

ing is

Pr(d) = P0−10nplog10
d
d0

+Xσ (1.4)

where the received power is Pr, Pt is the reference power, np is the path loss exponent, Xσ

is a zero mean Gaussian distributed random variable with standard deviation to account

for shadowing [34]. RSS is measured by the receive signal power. This measurement is

relatively inexpensive and simple to implement in hardware.

1.4.2.3 TDOA

TDOA measurements at multiple receivers are utilized with the knowledge of receiver

location to estimate the location of the transmitter. Suppose that a signal propagates from

a transmitter to receivers i and j where the local time is synchronized so that TDOA can

be estimated. The range difference between the two paths is

τi, j = (Ri−R j)/c (1.5)

where τi, j is the TDOA, Ri and R j are the distances between the transmitter and sensor

i and j, and c is the speed of propagation. For a given τi, j this equation becomes a
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Figure 1.9. A TDOA example with three sensors and one emitter source.

hyperboloid on which the emitter resides. Therefore, if multiple estimates are given

from more than three sensors, the intersection of the hyperboloid planes is the location

of the emitter. Fig. 1.9 demonstrates an example of TDOA method with one emitter

and three receivers. A major advantage of this TDOA method is that it does not require

knowledge of the transmit time. However, clock synchronization is required for all

sensors.

1.4.2.4 FDOA

FDOA methods involve the measurement of the difference between the received fre-

quency at sensors from a single radio emitter. Since no movement leads to no Doppler

shift, this method requires moving sensors or/and a moving transmitter. The difference

between the frequency measurements at the sensors provides a FDOA measurement,

and therefore the lack of carrier frequency information is not an issue. The difference

between two receivers provides a surface where the emitter lies. TDOA and FDOA are

sometimes combined to improve the accuracy since the estimates are uncorrelated [29].
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1.4.3 RSS Profiling Measurements

The RSS profiling-based approach uses pre-measured map of the signal strength be-

havior in the coverage area. The map is obtained by simulating signal model or field

measurement by a sniffing device at known location. This technique is attractive for

wireless sensor networks and mostly used in WLANs. Once the sensor network is es-

tablished, at each sample point, each sensor measures the RSS and the location estimator

saves the data from all sensors as a vector. The collection of all these vectors provides a

map of RSS profile. By referring to the RSS model, an emitter can be located using the

RSS measurements.

1.4.4 Transmit Power Variation Measurements

To achieve joint specific emitter identification and tracking, we developed a transmit

power variation estimator which derives the power variation through the observation of

the nonlinearity estimates. In communication systems with a power control mechanism,

the transmit power is location dependent. For instance, if the mobile station (MS) is

closer to the base station (BS), the MS reduces its transmit power to reduce interference

and save the power. On the other hand, once the MS is leaving the BS, it increases the

transmit power to maintain constant receive power on the BS side to control the signal

quality. To utilize this location dependent signature, our algorithm utilizes the transmit-

ter nonlinearity estimation related to the transmit signal power variation. Considering

the normalized transmitter nonlinearities, the amplitude of these features rises in propor-

tional to the transmit power level. Therefore, by observing a sequence of this variation

in time, the tracking system not only monitors the specific emitter but also obtains the

movement of the MS. Moreover, the transmit variation profile also provides unique pat-

tern of a route. By pre-measuring or software simulating the transmit power variation in

each route, this information can be used as a reference to the location of the emitter.

1.5 Complexity Reduction

The major computation of the transmitter nonlinearity algorithms introduced is to solve

a systems of linear equations. The complexity of the iterative algorithm grows with

the size of systems of linear equations. Therefore, for complexity reduction, several
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algorithms are introduced to increase the speed of convergence, reduce the hardware

requirement, and at the same time maintain the noise floor. To increase the convergence

rate, the algorithm segments the data matrix into smaller matrices and iterates among

the smaller matrixes. However, our analysis shows that the greater the size of the ma-

trix, the lower noise floor the algorithm achieves. Hence, we develop an algorithm that

uses smaller matrix segments for initial estimation to increase the convergence rate and

switch to larger matrix segments to reach lower noise floor results.

1.6 Organization

The rest of this thesis is organized as follows. In Chapter 2, we give a concise description

of the SEI problem and estimate the transmitter nonlinearities through the observation of

PSD. In Chapter 3, we consider the multipath channel scenario, and introduce an initial

nonlinearity estimator and iterative algorithm to suppress the ISI effects. In Chapter 4, a

MIMO channel estimator considering transmitter nonlinearities is presented. In Chapter

5, a location finding system is presented. In Chapter 6, several complexity reduction

algorithms are provided to reduce the complexity of our iterative algorithms. Chapter 7

summarize the thesis.



Chapter 2

Nonlinearity Estimation using
Bandwidth Regrowth

2.1 Introduction

In this chapter, a specific emitter identification method is proposed by estimating the

nonlinearity of transmitter devices. Our algorithm can extract and analyze the nonlin-

earity coefficients based on the observation of spectral regrowth. We also developed an

analytical model that could be used to study the detection method under AWGN chan-

nel environment. For different input power scenarios, we also obtained a model that can

predict the trajectory of the moving features. Based on IEEE 802.11a/g specification,

our simulation showed that by collecting data for a proper period of time, the proposed

method can correctly identify detectable radio emitters in a typical SNR environment.

Most of the work in this chapter is presented in [23].

2.2 On Baseband Representation of Bandpass Signal Non-

linearities

The response of memoryless nonlinearity can be modeled using the amplitude/amplitude

(AM/AM) and amplitude/phase (AM/PM) characteristics, and this assumption also holds

for wideband devices if the nonlinear response is not frequency dependent [35]. In

this case, a complex power series expansion can be used to describe the AM/AM and
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Figure 2.1. Block diagram of quadrature modulator and nonlinear devices.

AM/PM model [35]

Amp(dbp(t)) = Re
{

θ1dbp(t)+θ3d3
bp(t)+ . . .+θMdM

bp(t)
}

(2.1)

where dbp(t) is the bandpass input signal as shown in Fig. 2.1. For a bandpass signal,

odd terms are the most important as they introduce intermodulation distortion within the

usage band and produce spectral regrowth on the adjacent band, while even terms do not

contribute to this effect.

Supposed the quadrature-modulated bandpass signal dbp(t) could be characterized

by two independent zero-mean Gaussian processes as the following equation:

dbp(t) = i(t)cos(2π fct)−q(t)sin(2π fct)

=
1
2

[
d(t)e jwct +d∗(t)e− jwct] , (2.2)

where d(t) = i(t)+ jq(t), i(t) and q(t) represent the in-phase and quadrature baseband

signals as figure 2.1 and both signals are zero-mean Gaussian processes.

Gd p(d(t)) = BPF(Amp(dbp(t))

= Re




M−1
2

∑
k=0

θ2m+1

22m

(
2m+1
m+1

)
(d(t))m+1 (d∗(t))m e jωct


 (2.3)
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The baseband equivalent presentation of the nonlinear system is

G(d(t)) =

M−1
2

∑
m=0

θ2m+1

22m

(
2m+1
m+1

)
(d(t))m+1 (d∗(t))m

= a1ď +a3ď|ď|2 + . . .+aMď|ď|M−1

≡ z(t) (2.4)

where

a2m+1 =
θ2m+1

22m

(
2m+1
m+1

)
σ2m+1

d (2.5)

and ď(t) = d(t)/σd is the power normalized version of input signal with σ2
d as the power

of d(t). Typical input signal powers of a WLAN device are 3 mW to 10 mW and the

output powers are 25 mW to 35 mW , while the output signal power of a GSM device

can be up to 2W . Here we consider the actual input signal power as unknown; therefore

we normalize it by its estimated power.

Since we only consider the spectrum around carrier frequency, it is sufficient to use

d(t) instead of dbp(t). Its AM/AM relationship could be explicitly shown as

|z(t)|=
∣∣∣∣∣∣




M−1
2

∑
k=0

a2m+1d(t) |d(t)|2k




∣∣∣∣∣∣
, (2.6)

and the AM/PM could also be expressed as

∠z(t)−∠d(t) = ∠
M−1

2

∑
k=0

a2m+1 |d(t)|2k . (2.7)

Since we are interested in the nonlinearities and the derivation of the linear gain is

not in the scope of this research, we simply modified (2.4) as

z(t) = a1
(
ď(t)+b3ď(t)|ď(t)|2 + . . .+bMď(t)|ď(t)|M−1) . (2.8)

where b2m+1 = a2m+1/a1 and b1 = 1 by definition. In this dissertation we identify the

emitter utilizing these nonlinearity parameters {b3, b5, . . . , bM}.

This assumption is valid in most OFDM system since the baseband signal is the

combination of many frequencies and becomes a Gaussian process because of the central
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limit theorem [36].

2.2.1 Bandpass Signal Power Spectrum Modeling

In this section, we utilize the power spectrum density (PSD) of the input signal of the

transmitter to derive the device nonlinearities. The autocorrelation function of z(t) and

z(t + τ) is

Rzz(τ) =

M−1
2

∑
k=0

M−1
2

∑
m=0

a2k+1a∗2m+1E
[(

ď1
)k+1 (

ď∗1
)k (

ď∗2
)m+1 (

ď2
)m

]
(2.9)

where Rzz(τ) = E[z(t)z∗(t + τ)], ď1 = ď(t) and ď2 = ď(t + τ) and E[·] is the expected

value operator.

The analysis of power spectrum could be derived by applying (2.8) to (2.4) and some

extension work of [37] and [38]. As a result, a general expression of spectrum of the

bandpass signal is the Fourier transform of (2.9) and is derived in the following equation:

Szz( f ) =

M−1
2

∑
k=0

M−1
2

∑
m=0

a2k+1a∗2m+1FT
{

E
[
ď1ď∗2

(
ď1ď∗1

)k (
ď2ď∗2

)m
]}

, (2.10)

where FT {·} is the Fourier transform.

In case of complex Gaussian random process, [39] provides a result with different

moments

E
[
(ď1ď∗2)k

]
= k!Rk

ďď(τ) k ∈ odd integer. (2.11)

To associate the PSD with (2.10), we use the following equation

FT
{

R2k+1
ďď

(τ)
}

= Sďď( f )∗Sďď( f )∗ . . .Sďď( f )︸ ︷︷ ︸
2k+1 times

, (2.12)

where ∗ represents convolution [36]. Therefore the result from (2.10) can be extended

to

Szz( f ) =

K−1
2

∑
k=0

|a2k+1|2(2k +1)!FT
{

R2k+1
ďď

(τ)
}

. (2.13)

Here we consider odd terms only in the derivation because of their contribution to the
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Figure 2.2. Estimated PSD of ď in different harmonic terms.

intermodulation nonlinear distortion.

This circuit-dependent distortion increases the bandwidth of the PSD, and this phe-

nomenon is called spectral regrowth [38]. By extracting the features of the regrown

spectrum, the degree of nonlinearity of each odd harmonic terms could be derived di-

rectly. The estimated PSD of each harmonic term of ď based on IEEE 802.11a/g speci-

fication is depicted in Figure 2.2.

2.3 SEI based on nonlinearity estimation

Suppose (M− 1)/2 odd harmonic terms are sufficient enough to describe the nonlin-

earity model without significant loss of characters as in equation (2.4), we introduce

(M− 1)/2 features from the spectrum to estimate the coefficients. Instead of observ-

ing the amplitude of PSD at a particular frequency, we use total powers in different

frequency bands and obtain a more reliable estimation. The estimated powers in the

chosen frequency band can be noted as Pm, m = 1 . . .(M−1)/2. Assume additive white

Gaussian noise (AWGN) channel environment with amplitude attenuation by factor of

h, the receive signal is derived using (2.8) as

r(t) = hz(t)+n(t). (2.14)
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Figure 2.3. Receive signal PSD of an OFDM system is uniformly divided into four frequency
bands. The received power of each band is shown as Pr1, . . . ,Pr4

.

The PSD of receive signal is therfore

Srr( f ) = |h|2Szz( f )+σ2
n (2.15)

where Szz( f ) is defined in (2.10) and σ2
n is the additive noise power.

We uniformly divide the overall frequency band of overall bandwidth BW into (M +

1)/2 bands, {FB1, FB2, . . . , FB(M+1)/2}, and the estimated power in these bands is

derived by

pri =
∫

f∈FBi

Srr( f )d f , i = 1, 2, . . . , (M +1)/2

= |h|2
∫

f∈FBi

Szz( f )d f +σ2
n

BW
(M +1)/2

. (2.16)

An example of the definition in (2.16) is shown in Fig. 2.3.
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Combining (2.15) and (2.16), the following relationship is derived




pr1

pr2
...

pr M+1
2




=




C00 C01 · · · C0 M−1
2

C10 C11 · · · C0 M−1
2...

... . . . ...

CM−1
2 0 CM−1

2 1 · · · CM−1
2

M−1
2




M+1
2 ×M+1

2




|h|2 |a1|2
|h|2 |a3|2

...

|h|2 |aM|2




+




σ2
n BW 2

M+1

σ2
n BW 2

M+1
...

σ2
n BW 2

M+1




(2.17)

where Ci j is the power of i-th selected area contributed by j-th odd harmonic term, and

that is

Ci j = (2 j +1)!
∫

f∈FBi

Sďď( f )∗Sďď( f )∗ . . .Sďď( f )︸ ︷︷ ︸
2j+1 times

d f (2.18)

The above equation could be rewritten as

pr = Casq,h +n. (2.19)

Hence, the square of nonlinearity parameters asq =
[|a1|2, |a3|2, . . . , |aM|2

]T that char-

acterizes the emitter transmitter can be extracted from (2.19) given pr, C, |h|2, and n.

There are many power spectral density estimators [40] which can be utilized as the

power estimator p̂r, C is derived using (2.18) with Sďď( f ). Moreover, we assume the

noise power is known. Thus, a simple estimation âsq,h is defined as

âsq,h = C−1 · (p̂r−n) . (2.20)

In case of knowledge about path loss |h|, the above equation provides âsq directly. How-

ever, if the this information is not available, the estimation scaled by |h|2. Thus, we

provide a pseudo-estimation for the square of nonlinearity parameters bsq = [ |b3|2,
|b5|2, . . . , |bM|2 ]T defined in (2.8). Since all of the elements in âsq,h are factored by

|h|2, the estimator is derived by dividing the second to last elements of âsq,h by its first
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elements as

b̂sq =




âsq,h,2

âsq,h,3
...

âsq,h,((M+1)/2)




/âsq,h,1 (2.21)

where âsq,h,i is the ith element of âsq,h.

2.3.1 Estimator Properties

Since the nonlinearity estimation utilizes PSD estimation, we introduce the performance

of the PSD estimator first and use it to derive the nonlinearity estimator performance. In

the following derivation, we assume periodogram approach is used for PSD estimator

[40] as

Ŝ( f ) =
1
N

∣∣∣∣∣
N−1

∑
k=0

x[k]e− j2π f k

∣∣∣∣∣
2

. (2.22)

The expected value of the periodogram Ŝ( f ) is equal to the true PSD as N → ∞, but

it is not a consistent estimator, meaning its variance does not approach zero with the

increasing N. From [40], the expected value and covariance of periodogram are shown

in Table 2.1 [40]. In Table 2.1, the expected value of periodogram result is the power

Table 2.1. Periodogram Properties

Periodogram Properties

Expected Value E
{

Ŝper( f )
}

= S( f )∗WB( f )

Second-order moment E
{

Ŝper( f )Ŝper( f )
}≈ P( f )P( f )

{
1+

[
sin(Nπ( f1− f2))
N sin(π( f1− f2))

]2
}

Variance Var
{

Ŝper( f )
}≈ S2( f )

spectrum convolved with WB, which is defined as the discrete time Fourier transform

of a triangular window. Utilizing Table 2.1, the expected value of the estimated receive

power in band FBi is

E [pri] = E
[∫

f∈FBi

Ŝper( f )d f
]

=
∫

f∈FBi

E
[
Ŝper( f )

]
d f =

∫

f∈FBi

S( f )∗WB( f )d f ,(2.23)
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which is a biased estimator. Also, the variance is also expressed as

Var [pri] = E
[
p2

ri
]−E [pri]

2

= E
[∫

f1∈FBi

∫

f2∈FBi

Ŝ( f1)Ŝ( f2)d f1d f2

]
−

[∫

f∈FBi

S( f )∗WB( f )d f
]2

≈
∫

f1∈FBi

∫

f2∈FBi

S( f1)S( f2)

{
1+

[
sin(Nπ( f1− f2))
N sin(π( f1− f2))

]2
}

d f1d f2

−
∫

f∈ f1

∫

f∈ f2
S( f1)∗WB( f1)S( f2)∗WB( f2)d f1d f2 (2.24)

Considering the case when N →∞, WB converges to an impulse; hence, periodogram

approach is asymptotically unbiased meaning

lim
N→∞

E
{

Ŝ( f )
}

= S( f ). (2.25)

From the derivation in 2.25, (2.23) becomes

lim
N→∞

E [Pi] =
∫

f∈FBi

E
{

Ŝ( f )
}

d f =
∫

f∈FBi

S( f )∗WB( f )d f . (2.26)

This shows that the estimated receive signal power is unbiased.

Note that for large N, in Table 2.1,

[
sin(Nπ( f1− f2))
N sin(π( f1− f2))

]2

→ 0, when | f1− f2| À 1/N, (2.27)

which implies that there is little correlation between one frequency and another. At

f1 = f2, we apply L’Hopital’s rule to derive

sin(Nπ( f1− f2))
N sin(π( f1− f2))

=
∂

∂4 sin(Nπ4)
∂

∂4N sin(π4)

∣∣∣∣∣
4= f1− f2=0

=
(Nπ)cos(Nπ4)
(Nπ)cos(π4)

∣∣∣∣
4=0

= 1. (2.28)
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Substituting (2.26), (2.25), (2.27), and (2.28) into (2.24), the variance becomes

lim
N→∞

Var [Pi] ≈


2

∫

f∈ fi

S2( f )d f +
∫ ∫

f1, f2∈ fi∫
f1 6= f2

S( f1)S( f2)d f1d f2




−
∫ ∫

f1, f2∈ fi

S( f1)S( f2)d f1d f2

=
∫

f∈ fi
S2( f )d f . (2.29)

This result indicates that the variance of the estimate of received power does not con-

verge to zero with the increasing size of observation window.

Fast Fourier transform (FFT) is a practical way to implement a periodogram. By

using FFT, the estimation of the power within a frequency band becomes the summation

of the PSD estimator bins with some normalized factor. This leads to the conclusion that

p̂ri in (2.19) using FFT is a Gaussian random variable vector, and âsq,h is also a Gaussian

vector.

The distribution of the nonlinearity estimation b̂sq is therefore given by the ratio of

two Gaussian random variables. The precise PDF expression of the ratio of two Gaus-

sian random variables is complicated, and we thus approximate it by the fact that |a1|2 is

much greater than other nonlinearity parameters |ai|2, i 6= 1. This phenomenon is caused

by the fact that most communication systems bound the degree of nonlinearities in a cer-

tain level. For instance, in IEEE 802.11a/g, the nonlinearity is less than 18 dB when 16

QAM modulation scheme is used. Assume âsq,h ≈ |a1|2, which indicates the estimation

noise is relatively low. Though the denominator term of b̂sq,2i+1 = âsq,h,2i+1/âsq,h,1 is

not a constant, it is large compared to the numerator and thus the ratio distribution is ap-

proximately Gaussian. As a result, when the estimation noise is low, b̂sq can be modeled

as multivariate Gaussian with PDF of

p(bsq)≈ 1

(2π)d/2 |Σ|1/2
exp

[
−1

2
(bsq−µb)T Σ−1(bsq−µb)

]
, (2.30)

where the the element of ith row and jth column in Σ is

σi j = E
[
(bsq,i−µi)(bsq, j−µ j)

]
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= E
[
(gT

i ·p+gT
i ·n−gT

i ·p)(gT
j ·p+gT

j ·n−gT
j ·p)

]
/â2

1,sq,h

= gT
i g j ·

M−1
2

∑
k=1

σ2
nk/â2

sq,h,1 (2.31)

where bsq,i is the i-th element of bsq, gT
i is the i-th row of matrix G, and σ2

nk is the noise

variance of the k-th element in n.

2.3.2 Effects of Input Power Variation

In the above discuss, the power of target transmitters is assumed to be fixed, and in this

section the case about transmitters with variable powers would be analyzed. A com-

mon way to implement power control is to build an Automatic Gain Control (AGC)

before the power amplifier, and change the input power from AGC. Since the signal

suffers different degrees of nonlinearity when input power varies, the PSD would also

accordingly. Figure 2.4 shows the power spectral density of the signal through the same

nonlinear device with three different levels of input power. As can be seen, the spectral

regrowth phenomenon is not the same from one to another. The signal with the highest

output power has the highest spectral regrowth and suffers the highest degree of nonlin-

earity, while the signal with lowest output power has the lowest spectra regrowth. Figure

2.4 indicates that even for the same nonlinear device, its PSD will still change with the

variation of the input power.

In the following discussion, we model the PSD as a function of the input power and

show that the emitter is still identifiable when input power varies. From (2.4) and (2.8),

the relationship between the nonlinearity parameters and signal power is shown as

b2m+1 ∼ σ2m
d , m = 1, 2, . . . , (M−1)/2 (2.32)

where σ2
d is the power of output signal. As a result, if the transmit power increases, the

values of nonlinearity parameters increases accordingly. Besides, (2.32) also indicates

that nonlinearity parameters with higher degrees are more sensitive to the signal power.

Since the nonlinearity parameter is a known function of input power, the variation is

also predictable.

From the above derivation, the estimated values are functions of input signal power
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Figure 2.4. Estimated PSD of the one nonlinear device with different levels of input power. The
maximum power of these three cases are normalized to the same level.

and we can obtain a general expression about the relationship between each feature as

|b2m+1|
|b2n+1| = cNLσ2(m−n)

d (2.33)

where cNL is a real value number describing the nonlinearities. Further expression of

any two parameters is given by

|b2m+1|= |b̂2m+1|
|b̂2k+1|m/k

|b2k+1|m/k. (2.34)

The first term on the right-hand-side is any of the parameter pair of this device which is

a constant that characterizes the nonlinear device. In short, the extracted features of a

particular emitter would change with power variations but the trajectory of the change

could be modeled in equation (2.33). In the following simulation, we will show the

trajectory and how the estimated features move with the variation of power.
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2.4 Simulation Results

In this section, simulation results are represented in two different cases. Firstly, the

input power of each emitter is assumed to be fixed, and then the case of various input

power levels will be shown. The simulation was based on WLAN IEEE 802.11a/g

specification.

2.4.1 Fixed Power Case

The complex power series coefficients of emitter Ken1 is derived from a class C power

amplifier in [35] p77, Ken2 from a class A power amplifier in [35] p76, and Gard1 from

[38]. Figure 2.5 depicts two extracted features of the three emitters when input power

of each device is fixed. As can be seen in the figure, three emitters can be distinguished

in different feature clusters.

Each estimated sample was obtained by observing 315,000 OFDM symbols. In

802.11a case, the symbol period is 4µ seconds and therefore the optimal observation

time is about 1.26 seconds for each sample. The subcarrier to noise power ratio is

10-dB, which is a typical required operation environment for BPSK mode, [41]. The

probability density function has already been derived in (2.30).

2.4.2 Multiple Power Levels Case

Figure 2.6 shows the simulation results of three emitters, Ken1 and Ken2 as well as

Gard1. The input power is stationary in each estimation but changes uniformly within

some quantized steps for each estimation. The power is quantized by 1dB; therefore,

the estimated samples even from the same emitter are clustered into groups along with

a trajectory.

When the power is increased, the nonlinear device output signal suffers more non-

linearity, while it suffers less when the input power decreases. In consequence, the

estimated sample might move to the more positive direction along with the line when

the power increases and reversely when the power is reduced.
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(|b3|2, |b5|2
)
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)
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)
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6.96×10−4,1.03×10−4
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2.5 Conclusion

In this chapter, a specific emitter identification method is proposed by estimating the

nonlinearity of transmitter devices. These features are unique from emitter to emitter

due to alternative circuit designs and fabrication randomness. Our algorithm can extract

and analyze the nonlinearity coefficients based on the observation of spectral regrowth.

Later on, we developed an analytical model that could be used to study the sensitivity

of the detection method under AWGN channel environment. For different input power

scenarios, we also obtained a model that can predict the trajectory of the moving fea-

tures. Based on IEEE 802.11a/g specification, our simulation showed that by collecting

data for a proper period of time, the proposed method can correctly identify detectable

radio emitters in a typical SNR environment.



Chapter 3

Specific Emitter Identification in
Multipath Environment

3.1 Introduction

Specific emitter identification (SEI) systems discern wireless radio emitters of interest

based only on the external signal feature measurements. This identification capability

is used in applications such as battlefield management, electronic support measurement

(ESM), intelligence gathering, cognitive radio, and network intrusion detection. This

paper presents a SEI algorithm that uses the emitter nonlinearities as the identification

features in multipath channels.

A major issue for building SEI systems is to measure proper signal features that are

consistent from one transmission to another for a given emitter but different from one

emitter to another. These features are selected based on the types of emitter sources,

which can be loosely divided into two categories: radar and communications signals.

Within the scope of radar signals, there has been a great deal of research on performing

SEI by aggregating decisions made by estimating characteristics such as pulse width,

the time of arrival (TOA), pulse shape, angle of arrival, carrier frequency, and pulse rep-

etition interval (PRI) [2]. A comprehensive overview of these techniques is presented

in [29]. In ESM applications, it is vital for the identification algorithm to estimate PRIs

of an interleaved pulse train. Many of these deinterleaving and estimation technologies

are based on the TOA difference histogram of the pulse train. For example, a sharp

narrow peak indicates a simple PRI, while a staggered PRI gives many separated peaks
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in the histogram [13]. Further development to detect the fundamental PRIs using cu-

mulative difference histogram (CDIF) is presented in [8] and a sequential difference

histogram (SDIF) approach is proposed in [9]. These algorithms intend to avoid PRI

harmonics by combining histograms with sequence search techniques. Another iden-

tification method, which exploits the properties of the matrix formed with the differ-

ences of TOA, is presented in [10]. In addition, the algorithm in [12] also suppresses

the PRI harmonics using PRI spectrum analysis. Other than PRI signal features, [3]

and [14] demonstrate SEI technology by exploiting the unintentional modulation on

pulse (UMOP) features. Also, the detailed structure in each pulse caused by both inten-

tional and unintentional modulations can be used for SEI, as presented in [5].

In cases when communication systems are emitter sources, many signal characteris-

tics have been investigated including transient amplitude and phase profiles of the radio

frequency (RF) waveform [6,18], clock skew [19], I/Q offset, and error vector magnitude

(EVM) [20,21]. Another approach is to exploit frequency domain signal characteristics.

For instance, the main lobe shape symmetry of the power spectrum density (PSD) [4]

as well as spectral correlation function [1] both provide useful identification features.

Other than these signal features, [42] utilizes the correlation between the channel re-

sponse and the emitter location to enhance the physical-layer authentication process in

wireless networks to provide spoofing attack detection. A broad analytical framework

for physical-layer authentication can also be found in [43]. This paper presents an ex-

tension of previous work, [23,26,27], in which the identification of radio emitters relies

on the estimation of RF front-end nonlinearities, and the transmitter nonlinearities are

unavoidable and unique due to alternative designs and fabrication variations [4].

In prior open SEI research, inter-symbol interference (ISI) has not been studied;

however, to achieve reliable estimation, this channel effect has to be suppressed. Most

prior results on equalization or channel estimation algorithms derive channel informa-

tion by either sending training sequences [44] or using a known constellation struc-

ture, such as constant modulus algorithm (CMA), multimodulus algorithm (MMA), and

reduced constellation algorithm (RCA) [45–48]. As a result, the referred knowledge

usually comes from an ideal linear transmission system, and the desired nonlinear char-

acteristics might be obscured when the received signal is forced to fit the referred linear

structure. Since our identification depends on the nonlinearity features, applying these

algorithms jeopardize the SEI process.
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In this chapter, we propose a data-aided time domain algorithm to overcome the

ISI problem for RF front-end nonlinearity estimation The estimator suppresses the ISI

phenomenon and moreover preserves the nature of the signal features used for emitter

identification. The algorithm first utilizes the different effect of the nonlinearity for each

signal symbol, ignoring the nonlinearity effect for the symbols with lower amplitudes for

the nonlinearity estimation based on symbols with higher amplitudes. After this initial

estimation, the accuracy is further improved by an iterative algorithm, which iteratively

estimates the transmitted symbol values and the channel coefficients to achieve asymp-

totically unbiased estimates. The main features of our approach can be summarized as

follows.

1. The algorithm provides robust identification by suppressing the ISI effect. In

our simulation, the algorithm discerned two transmitters over an empirical indoor

model using one packet header from a commercial OFDM system standard.

2. The estimator is asymptotically unbiased and thus guarantees the reliability of

identification under the assumption that the nonlinearity parameter set of an emit-

ter is unique.

3. The algorithm is flexible to operate under various communication systems when

multiple amplitude level schemes are used such as quadrature amplitude modu-

lation (QAM), pulse amplitude modulation (PAM), and OFDM. Our simulation

shows an example of an application on a widely used commercial OFDM system.

The rest of the chapter is organized as follows. In Section 3.2, we give a concise de-

scription of the SEI problem in the multipath channel setting. In Section 3.3, we develop

our linear approximation algorithm for SEI. In Section 3.4, the iterative estimation algo-

rithm is shown. In Section 3.5, a complexity reduction method is presented. In Section

3.6, numerical results using an OFDM system and a practical indoor channel model are

presented. Section 3.7 summarizes the chapter.

3.2 Problem Statement

The objective of SEI is to identify transmitters based on the estimation of the nonlinear

transmitter coefficients in the multipath environment. Throughout this paper, we as-
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sume that the transmit sequence is known, the transmitter nonlinearity is static, and the

channel is time invariant during the estimation.

Also, as a general convention, symbols for matrices are in uppercase bold letters, and

vectors are in lowercase bold letters. The notations (·)∗, (·)T,(·)†, (·)+, E {·}, || · ||, 0, and

Iq stand for conjugate, transpose, conjugate transpose, pseudo-inverse, expected value

operator, 2-norm operator, zero vector/matrix, and q×q identity matrix respectively.

3.2.1 Nonlinearity Model

We first introduce the nonlinear transmitter model in a power-series expansion for-

mat, which provides enough degrees of freedom to describe the instantaneous ampli-

tude/amplitude (AM/AM) and amplitude/phase (AM/PM) characteristics of a memory-

less nonlinear system [23,35,38]. The nonlinear system is described by the input signal

d, which is considered a random process in our case, and the nonlinearity coefficients

{a1, a3, . . . , aM}, where M is an odd number and (M + 1)/2 is the maximum number

of coefficients. The baseband equivalent nonlinearity distortion model is express as

G(d) = ∑
M+1

2
i=1 a2i−1di(d∗)i−1 where both d and ai are complex quantities, [35, 38]. It is

sufficient to consider only the odd terms in the model because the transmitter bandpass

filter removes the frequency components resulting from the even terms.

Since we are only interested in the nonlinearities, it is sufficient to use a normalized

model

x =

M+1
2

∑
i=1

b2i−1ďi(ď∗)i−1 (3.1)

where x is the output of the nonlinear system, b1 = 1 by definition, and ď = d/σd is

the normalized version of d with σd as the standard deviation of d. Each emitter should

contain a set of unique nonlinearity power series coefficients {b3, b5, . . . , bM} due to

variations in design, packaging, and fabrication. Our objective is to estimate the nonlin-

earity coefficients for emitter identification.

In cases where a known training sequence is used, the number of input symbols to

the nonlinear system and the number of output symbols in the signal constellation are

also determined. In other words, suppose the training sequence provides P different

input symbols,
{

ď1, ď2, . . . , ďP
}

, to the memoryless nonlinearity system, there will be a
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maximum of P types of output symbols associated with each symbol as {x1, x2, . . . , xP}.

For instance, in a 64-QAM modulation system, P can be a positive integer less than or

equal to 64. The relationship of these two symbol sets associated with the nonlinearity

coefficients can be derived from the nonlinearity model in (3.1):




x1

x2
...

xP




=




ď1

ď2
...

ďP




+




ď2
1 ď∗1 . . . ď

M+1
2

1 (ď∗1)
M−1

2

ď2
2 ď∗2 . . . ď

M+1
2

2 (ď∗2)
M−1

2

... . . . ...

ď2
Pď∗P . . . ď

M+1
2

P (ď∗P)
M−1

2







b3

b5
...

bM




(3.2)

which has an equivalent compact matrix form

x = ď+ Ďb. (3.3)

Therefore, once ď is known and x is measured, the nonlinearity coefficients can be

estimated from this relationship.

3.2.2 Nonlinearity Coefficients Derivation

The least-squares (LS) estimation of the nonlinearity coefficients in (3.3) is

b̂ = Ď+ (
x̂− ď

)
, (3.4)

where x̂ is the vector of estimated transmit symbols and Ď+ is the pseudo-inverse of Ď.

The criteria for a unique solution is that, P ≥ (M− 1)/2 and the matrix Ď is full

column rank [49]. Taking the null space of Ď into consideration, (3.3) could be re-

written x = ď + Ď(b+ c) where c is in the null space of Ď. If Ď is full rank, the null

space is empty and Ď+Ď = IP; hence a particular x maps to a unique b.

3.2.3 Channel Model

In this chapter, we assume a coherent, synchronized symbol-spaced receiver front-end,

such that the channel can be represented by an equivalent, discrete-time, baseband linear

model [46]: r[i] = ∑∞
k=−∞ x[k]h[i− k] + n[i] where x[·] ∈ {x1, x2, . . . , xP} is a sampled



37

transmit symbol, h[·] is the discrete-time channel impulse response, and and n[·] is zero

mean Gaussian independent and identically distributed (i.i.d.) complex noise sample.

Assuming a time invariant channel of length Lh with channel coefficients h = [h1,

h2, . . . , hLh]
T, r[i] is equivalent to




x[1] 0 . . . 0

x[2] x[1] . . . 0
...

...
...

x[Lts] x[Lts−1] . . . x[Lts−Lh +1]

0 x[Lts] . . . x[Lts−Lh]
...

...
...

0 0 . . . x[Lts]




h+n =




r[1]
...

r[Lr]


 (3.5)

where n = [n[1], n[2], . . . , n[Lr]]T, Lr = Lts +Lh−1 is the number of received symbols,

and Lts is the length of the training sequence, which is typically greater than or equal

to the size of the constellation, P ≤ Lts. Equation (3.5) could be rewritten in compact

matrix notation

Xh+n = r, (3.6)

where r = [r[1], r[2], . . . ,r[Lr]]T, and X is the convolution matrix. Straightforward rear-

rangement of the terms in (3.6) yields the alternate representation

Hx+n = r (3.7)

where H is the channel matrix populated by the channel coefficients corresponding to

the transmit symbols, and x is defined in (3.3).

In principle, we estimate b based on the estimation of x given only the received

signal r, and training sequences, as well as channel length Lh.

3.3 Linear Approximation Approach

As indicated in Section 4.2, once the transmit symbol values x are provided, the non-

linearity coefficients can be obtained. In this section, we introduce a method that first

derives the channel coefficients and then uses the result for transmit symbol estimation,
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called the linear approximation (LA) approach. The method is based on the fact that,

in multi-amplitude modulation schemes, symbols having lower amplitude levels usually

suffer relatively lower level of distortion compared to those at higher levels. As long as

the impact is small enough, these symbols with low-amplitude levels can be approxi-

mated by the corresponding part of the known training sequence. These approximated

symbols are then utilized to estimate the channel coefficients, and the result is used to

obtain the full transmit symbol values.

In practice the nonlinearity effects are limited in many communication systems, be-

cause of the constraints on power spectrum deviations and constellation errors. For

example, one realization of the RF front end output constellation of the short training

sequence symbols of IEEE 802.11a/g system [22] is shown in Fig. 3.1; the RF device

model is extracted from [38] which satisfies the EVM requirement in [22]. As shown
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Figure 3.1. The 9-level quantization constellation of short training sequence

in Fig. 3.1, signals with higher amplitudes, such as {x1, . . . , x4}, have higher non-

linear distortion, while symbols with low amplitudes have lower distortion and could

be approximated as linear symbols, meaning xp ≈ ďp, p = 5, . . . ,9 in this example.

This phenomenon can also be described by the nonlinearity multipliers, αp = xp/ďp =

1+b3|ď|2p +b5|ď|4p + ...+bM|ď|M−1
p . The multipliers deviate from 1 more if they repre-

sent higher nonlinearities, and the the multipliers of low-amplitude symbols can well be

approximated by αp = 1.
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Now consider that U of the P total possible symbols have higher nonlinear levels

represented by xU = [x1, x2, . . . , xU ]T, and the rest of the P−U possible symbols are

in lower nonlinear levels as xL = [xU+1, xU+2, . . . , xP]T which could be approximated

as ďL = [ďU+1, ďU+2, . . . , ďP]T. The above approximation also implies αi ≈ 1, i = U +

1, . . . , P. For example, in Fig. 3.1, we can choose U = 4 and P = 9.

To derive the channel estimate, we can extend the channel coefficient vector to a

new (U + 1)Lh× 1 vector: hLA =
[
hT| α1hT| . . . | αU hT]T, where Lh is the channel im-

pulse response length. By applying hLA and αi ≈ 1, i = U +1, . . . , P, we can use (3.6)

to approximate Xh by DLAhLA, where DLA consists of elements in ď only. Thus all

the elements in DLA are known and determined by the training sequence, and symbols

are filled in according to their corresponding multipliers. In other words, ďi should be

arranged to a column associated with αih when i ∈ {1, 2, . . . , U}, and ď j to h when

j ∈ {U +1, . . . , P} because α j ≈ 1. An example is provided in Appendix B.

The LS solution for hLA is found using pseudoinversion as ĥLA = D+
LAr [49]. The

estimate of the channel coefficients ĥ(0) is a Lh× 1 vector, obtained by extracting the

first Lh elements from ĥLA, i.e., ĥ(0) =
[

ILh 0
]

ĥLA, where ILh is a Lh× Lh identity

matrix and 0 is a Lh×ULh zero matrix. Once the channel coefficients are obtained, they

are used to populate the channel matrix of (3.7). Firstly, we divide Xh into two terms,

containing xU and xL separately, in which xL can be approximated by ď. Now (3.7)

can be rewritten as HU xU + HLxL + n = r, where HU is the channel matrix associated

with xU , and HL is the channel matrix associated with xL. Here, both HL and HU are

composed of the elements in ĥ(0). Based on this result, the LS estimator of xU is

x̂(0)
U = H(0)+

U (r−H(0)
L ďL), (3.8)

where the superscripts on HU and HL indicate that elements of the two matrices come

from ĥ(0). Also see Appendix B for an example.

The nonlinearity coefficients estimator is derived by modifying (3.4) and (3.8) as

follows

b̂(0) = Ď+
U (x̂(0)

U − ďU), (3.9)

where ĎU is the first U rows of matrix Ď. The result from (3.9) is used as the initial

estimate for the iterative estimation which will be discussed later.

We derive the performance of this approach as follows:
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Theorem 1: In high signal-to-noise ratio (SNR) environment with αU+1 = αU+2 =

. . . = αP = α , the LA estimate is

b̂(0) ≈ b+
(

1
α
−1

)(
b+ Ď+

U ďU
)
+

1
α

Ď+
U H+

U n. (3.10)

proof: See Appendix C.

The second term on the RHS of (3.10) is the estimation bias, which comes from

the structure of the symbol constellation and the nonlinearity, and the third term shows

the interference driven the additive noise. Furthermore, from the definition αp = 1 +

b3|ď|2p +b5|ď|4p + ...+bM|ď|M−1
p , we conclude that (3.10) not only provides the analysis

of one particular case, it could also be utilized to approximate the performance of other

situations, where low amplitude symbols have similar amplitudes.

3.4 Iterative Estimation Algorithm

In this section we will remove the bias in (3.10) using an iterative approach. The ob-

jective is to achieve an unbiased estimator, i.e., E[b̂(k)
] = b, as k → ∞ , where k is the

number of iterations. By removing the bias, the identification ambiguity is reduced;

hence, the reliability of identification is enhanced.

Our previous approach provides an estimate of the nonlinearity coefficients, and this

information is used to refine the transmit symbol estimation. This estimated symbol

vector is treated as initial value to re-estimate the channel condition by substitution into

(3.6), called the h-step. Then we use this new channel information to re-estimate the

symbol coefficients, called the x-step, by substituting the information from the h-step

into (3.7). This result provides new nonlinearity coefficient estimates by applying (3.4)

if the iteration stops, or it is sent to the h-step for the next iteration. A more detailed

description is discussed below.

3.4.1 Initial Value

Though the initial value of the nonlinearity outputs can be randomly assigned, we use

the result from Section 3.3 by substituting (3.9) into (3.3) to derive x̂(0) = ď + Ďb̂(0).

This estimate is then sent to the h-step as the first iteration.
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3.4.2 h-step

For the kth iteration, the algorithm uses the symbol estimates in the (k− 1)th iteration

to re-estimate channel coefficients as:

ĥ(k) = X(k−1)+r. (3.11)

Here r is the received signal in (3.6), and X(k−1)+ is the pesudoinverse of X but com-

posed of the estimated symbols from the (k− 1)th iteration, x̂(k−1), instead of x. This

new estimate is then used in the next estimation of the transmit symbol values.

3.4.3 x-step

Analogous to the h-step, the estimated channel coefficients, ĥ(k), are then used to popu-

late matrix H of (3.7) to derive a new symbol estimate:

x̂(k) = H(k)+r. (3.12)

At the kth iteration the nonlinearity coefficients may be computed from (3.4) and

(3.12)

b̂(k) = Ď+(x̂(k)− ď). (3.13)

Otherwise, the estimated symbols are sent to the h-step and the iterative process is re-

peated.

3.4.4 Estimation Bias and Error Convergence

There are two sources of error in the iterative estimator, one is the initial values error,

and the other is driven by the additive noise which aggregates as the number of iter-

ations increases. Since we are interested in an unbiased estimate, the additive noise

is first assumed to have no effect on the expected value of (3.13), when analyzing the

convergence criterion. This assumption is valid and proved in Appendix D.

For analysis, we set x̂(k) = x+e(k)
x , and ĥ(k) = h+e(k)

h , where e(k)
x is the error vector

of the kth iteration in x-step, and e(k)
h is that of h-step. At k = 0, the error vector e(0)

x is

inherited from the initial estimation, and our objective is to reduce e(0)
x after a sufficient
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number of iterations.

The evolution of the error vectors between two steps could be expressed as e(k)
h =

Rxe(k−1)
x , and e(k)

x = Rhe(k)
h , where Rx and Rh are error transfer functions (see details

in Appendix D). Based on this notation, the error vectors in kth iteration could be

written as e(k)
x = (RhRx)e

(k−1)
x = (RhRx)ke(0)

x . Using eigenvalue decomposition [49],

(RhRx) = V∑V−1, where matrix V contains eigenvectors and eigenvalue matrix ∑ =

diag(λ1, λ2, . . . , λr, 0, . . . ,0). Furthermore, for the kth iteration, (RhRx)k = V∑kV−1.

Thus we have limk→∞(RhRx)k = 0 if ρ(RhRx) = max{|λ1|, . . . , |λr|}< 1, [50]. Once the

symbol estimator is unbiased, meaning E[x̂(k)] = x,k→∞ , the nonlinearity estimation is

also unbiased. This could be easily proved by simply substituting the estimated symbols

into (3.13).

As a result, once the condition ρ(RhRx) < 1 is satisfied, the nonlinearity estimator

is asymptotically unbiased.

3.4.5 i- step

Whenever ρ(RhRx) = 1, the error vector e(k)
x will saturate at an equilibrium state which

is related to the initial value. To solve this problem, we add an intermediate step after h-

and x-step that reduces the maximum eigenvalue of the overall system and satisfies the

convergence requirement.

A natural augmentation is to constrain the estimation result by utilizing the nonlin-

earity model in (3.3). Suppose we have more symbols, x, than necessary to estimate the

nonlinearity coefficients, then the estimated symbol values are projected to the solution

plane of b, removing the error perpendicular to the plane. Intuitively, if this projection

provides a more accurate result, then the corresponding transmit symbol values provide

a better channel estimation in the h-step and the procedure can be repeated. That is, af-

ter the h- and x-step are executed, x̂(k) is substituted into (3.4) and b̂(k) is calculated and

substituted into (3.3), the projected result is x̆(k) = ď+PĎ

(
x̂(k)− ď

)
where PĎ = ĎĎ+

is the projection matrix of Ď [49]. This estimate is sent to the h-step instead of the result

from the x-step and the iteration is repeated.

After a sufficient number of iterations is taken, the estimator derives an estimate of

distorted transmit symbol vector x̂(k) from (3.12), which is then used to obtain the trans-

mitter nonlinearity coefficients using (3.13). If we replace x̂(k) by x̌(k), the nonlinearity
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estimates are identical (see Theorem D.1 in Appendix D). Hence, considering complex-

ity, instead of x̌(k), the estimator uses x̂(k) to derive the nonlinearity coefficients to save

one i− step operation.

To investigate the behavior of the nonlinearity estimator, the estimation error is given

by (see Theorem D.2 in Appendix D):

b̂(k)−b = Q(k)
b e(0)

x +W(k)
b n. (3.14)

The first term on the RHS of (3.14) is contributed by the initial estimation error, which

results in the estimation bias, and the second term on the RHS is caused by additive

noise. Moreover, to achieve the unbiased estimator requirement E[b̂(∞)
] = b, the initial

estimation error term in (3.14) must converge to a zero vector. As a result, the estimator

is asymptotically unbiased if the spectral norm of R is less than 1, i.e., ρ(R) < 1, where

R = PĎRhRx. Once ρ(R) < 1 is satisfied, the first term on the RHS of (3.14) converges

to a zero vector, and the second term on the RHS of the same equation approaches a

fixed vector (see Theorem D.3 in Appendix D). We note that from our experimental

observations, the required number of symbols of different amplitudes usually has to be

greater than M to satisfy the spectral norm criterion.

3.4.6 Stopping Criterion

In this section, we provide a stopping criterion to achieve an acceptable misclassification

rate. Our stopping criterion is to stop the iteration when the difference of two estimation

results is below a threshold. This threshold stops the iteration when the bias is small and

the estimator nears the noise floor. It does not guarantee unbiased estimation, since it is

an asymptotically unbiased estimator.

This criterion is based on the assumption that the initial estimation error is larger

than the additive noise term at the beginning of the iteration. From (3.14) we know that

the bias term is reduced with iteration number, while the additive noise term increases

and then saturates (see Remarks of Theorem D.3 in Appendix D). Hence, once the

difference is below a certain threshold, we expect the bias is sufficiently suppressed and

the noise floor is also met.

We summarize the estimation procedure in Algorithm 1 , where the linear approx-

imation approach is used as the initial estimation and the result is then utilized in the
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iterative estimation.

Algorithm 1 Transmitter Nonlinearity Estimation
1: Initialization: Set the iteration number k = 0, the maximum number of iterations

kmax, the stopping threshold ε > 0.
2: Initial Estimation: x̂(0) = ď+ Ďb̂(0)

3: repeat
4: k ← k +1
5: h-step: ĥ(k) = X(k−1)+r
6: x-step: x̂(k) = H(k)+r
7: i-step: x̆(k) = ď+PĎ

(
x̂(k)− ď

)

8: until k = kmax or
∥∥∥x̆(k)− x̆(k−1)

∥∥∥ < ε

9: Output: b̂(k) = Ď+(x̂(k)− ď)

3.5 Complexity Reduction

We introduce a complexity reduction in the form of a gear-shifting method for high SNR

conditions. The method first observes the trajectory of the previous estimated features,

then predicts the next iteration result. After the prediction, the algorithm simply moves

the current estimation to the prediction result. The reason that the feature trajectory is

predictable is based on the following theorem.

Theorem: Assume the eigenvalues of R are {λ1, λ2, . . . , λr} with ρ(R) < 1, and

the kth power of the unique maximum eigenvalue is much greater than that of other

eigenvalues, λ k
max À λ k

i and λmax 6= λi. Moreover, consider a high SNR environment

with Q(k)
b e(0)

x ÀW(k)
b n, then

b̂(k+2)− b̂(k+1) ≈ λmax(b̂(k+1)− b̂(k)). (3.15)

Proof: Based on the same assumptions, we derive the kth power of the matrix Rk ≈
λ k

maxVΛΛΛV−1 where V is the eigenvector of matrix R, and ΛΛΛ is the diagonal eigenvalue

matrix with a 1 in the location of the maximum eigenvalue of eigenvalue matrix ΣΣΣ while

the rest of the elements are zero. In the high SNR environment, the additive noise

is weak, meaning Q(k)
b e(0)

x À W(k)
b n; then, the difference of two estimated results is

obtained by using (3.14): b̂(k+2)− b̂(k+1) ≈ (
λ k+1

max −λ k
max

)(
Ď+RhRxVΛΛΛV−1e(0)

x

)
.
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Similar to the above equation, the difference between (k + 3)th and (k + 2)th iter-

ation is b̂(k+3)− b̂(k+2) ≈ λmax(b̂(k+2)− b̂(k+1)). The ratio of these two differences is

proportional to λmax, and thus provides the predictability of the next estimation.

As the number of iterations increases, the Q(k)
b e(0)

x À W(k)
b n assumption might not

hold, since Q(k)
b → 0 when k is large.

To determine the starting iteration of prediction kp that satisfies the above require-

ments, we observe the estimates trajectory. When (3.15) is satisfied, the ratio of the

difference of two estimates is approximately λmax; therefore, we can determine the start-

ing iteration by checking if
∥∥∥ b̂(kp−1)−b̂(kp−2)

b̂(kp−2)−b̂(kp−3) − b̂(kp)−b̂(kp−1)

b̂(kp−1)−b̂(kp−2)

∥∥∥ < δ , where δ is a positive

small value.

Suppose the above requirement is satisfied at kpth iteration, then the prediction of

the features is

b̂(k) := b̂(k) + µλ̂max

(
b̂(k)− b̂(k−1)

)
, k > kp (3.16)

where the positive real number µ < 1 is the step size and λ̂max is the estimated eigenvalue

using the ratio of estimation differences described previously. This prediction is then

used to derive the i-step result x̆(k) = ď + Ďb̂(k). When µ = 0, the algorithm is the

same as our original iterative algorithm using only a single step size (SSS). When µ
varies in different iterations this is referred to as multiple step size algorithm (MSS). In

other words, the algorithm sets µ = 0 before the feature trajectory is stable, and assigns

another value to µ afterwards.

3.6 Numerical Results

In the simulation, a practical example using an OFDM system, IEEE 802.11a/g Speci-

fication [22], with the RF front-end device models from [38] as transmitter 1, and [35]

as transmitter 2, which were used in our previous research [23] is shown. We apply an

empirical indoor channel model, h[n] = 0.9960δ [n]+0.0628δ [n−1]+0.0079δ [n−2],

extracted from an experimental result in [51]. The degree of nonlinearity is -16 dB EVM

satisfying the specification [22] when operating in 16-QAM scheme. The output power

is set to 25 dBm for each emitter, which is a typical average transmit power value in

commercial market products, and the nonlinearity coefficients are shown in Table 3.1.

Also, one metric we are interested in is the normalized mean squared error (NMSE) of
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Table 3.1. Nonlinearity parameters of two transmitters

Transmitter 1 Transmitter 2
b3 −0.0735−0.0114i −0.0910+0.1580i
b5 −0.0986+0.0590i 0.2503+0.0286i
b7 −0.0547−0.0055i 0.0155+0.0025i

the nonlinearity coefficients, which is defined as

NMSE of b≡ 10log
(

E
[∥∥∥b̂(k)−b

∥∥∥
2
/‖b‖2

])
(dB) . (3.17)

The simulation shows the performance of NMSE and misclassification rate under dif-

ferent conditions such as SNR and number of iterations.

Our algorithm initially estimates transmit symbols using the LA approach based on

the long training sequence [22] of length 160 samples containing 64 different transmit

symbols where the nonlinearities of the 52 lowest amplitude symbols are considered

insignificant and those symbols are approximated by linear symbols. After the initial

estimation, the same training sequence is utilized for the iterative estimation. Based on

this simulation environment, we assign parameters as M = 7, Lh = 3, Lts = 160, P = 64,

and U = 64−52 = 12.

Fig. 3.2 shows the evolution of NMSE with number of iterations. The simulation

result shows that the NMSE decreases for the first several iterations and then either

slowly rises or saturates to a noise floor. The decrease of NMSE is mainly due to the

reduction of initial estimation error; the aggregation of the additive noise increases the

noise level and forms the noise floor as described in in Remarks of Theorem D.3 in

Appendix D.

Also, as expected, the performance improves as the number of packet headers ac-

cumulates. From the simulation results, the minimum NMSE improves approximately

3 dB when the headers used are doubled, as shown in Fig. 3.3. Since the OFDM sys-

tem operates using a 16QAM scheme, a general operating environment is 12 to 16 dB

Eb/N0 [41]. Fig. 3.3 depicts the minimum NMSE for different Eb/N0 conditions, using

an ensemble average of the 1000 realizations. To show the 3 dB improvement when the

data used is doubled, we first use linear fit for 1 header experiment result and move the
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Figure 3.2. NMSE of the nonlinearity coefficients under Eb/N0 of 10 dB environment with
different number of packet headers used.

line 3 dB away to draw the linear fit for 2 headers case, then 3 dB lower for the 4 headers

case, and then another 3 dB for the 8 and 16 headers case. Fig. 3.4 depicts the estimated
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Figure 3.3. NMSE of the nonlinearity coefficients versus Eb/N0 with different number of head-
ers.

feature, b3 from (3.1), for two different RF front-end models after 80 iterations, and the
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results also show that the two emitters are identifiable.
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Figure 3.4. One of the estimated features observed from two transmitters in Table 3.1, with 30
dB Eb/N0 and 16 packet headers for each sample.

Fig. 3.5 shows the misclassification rate versus number of iterations when Eb/N0 =

10 dB and 4 headers are used. Compared with Fig. 3.2, both misclassification rate

and NMSE saturate at approximately the same number of iterations. In Fig. 3.5, we

assumed the nonlinearity coefficients of both transmitters are known, and the NMSE at

each iteration is given. Furthermore, the decision is determined simply by the minimum

Euclidean distance between the estimated sample and nonlinearity coefficients. As a

result, we stop the iterative process when NMSE meets the noise floor, and then classify

the transmitter.

Fig. 3.6 presents the misclassification rates of a minimum error rate classifier [52].

Due to the correlation between estimate coefficients, a minimum distance classifier per-

forms worse than a minimum error rate classifier. Thus we only show the numerical

results of the minimum error rate classifier, which utilizes the covariance matrices and

Bayes decision rule. The numerical results show that it requires 2 headers to achieve

30% misclassification rate when Eb/N0 is 10 dB, while 16 headers are necessary for 10

percent misclassification rate. Also, to achieve 1% misclassification rate, each doubling

of the headers provides 3 dB gain as shown in Fig. 3.6. For further evaluation, the

Chernoff error Bound could be derived [52], and our simulation result satisfies this error
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bound.

As described in Section 6, both SSS and MSS scenarios are presented in the fol-

lowing simulation. Fig. 3.7 shows an example of using single and multiple step size

results in Eb/N0 of 10 dB environment with four headers data. SSS approach sets µ = 0

from (3.16) throughout the estimation while the MSS approach uses µ = 0 in the first

6 iterations and then switches to µ = 0.99 afterwards. This example demonstrates the

iteration result is predictable due to its regularity of the trajectory after the first several

iterations. Also, the figure shows the reduction of complexity by depicting that MSS

uses 12 iterations to achieve a similar result instead of 18 iterations. The comparison

of the performance using alternative µ is shown in Fig. 3.8. After 300 iterations, the

NMSE results of all three scenarios are within one dB difference, however the scenarios

using MSS algorithm require less iterations to reach the lowest NMSE than using SSS.

3.7 Conclusion

In this chapter, we have presented an RF front-end nonlinearity estimator for SEI sys-

tems when multilevel modulation schemes are used. Our method overcomes the ISI

effect and reduces the initial estimation error to arbitrarily small levels. The algorithm

first utilizes the partitioning of symbol levels and assumes some of them are linear to
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Figure 3.6. Misclassification rate in different Eb/N0 situations. The classification is determined
when the minimum NMSE iteration is achieved.
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estimate the nonlinearity; further improvement is achieved by iterative estimation of the

transmit symbol values and the channel coefficients, and the over-fitting of estimated

nonlinearity coefficients to the model. We also provide a complexity reduction method

which predicts the trajectory of signal features to reduce the number of iterations. Sim-

ulations have shown that the proposed method could utilize the time domain samples of

an OFDM system as a multilevel modulation scheme, and two alternative emitters are

identifiable with a 95% correct classification rate using 16 headers under an empirical

indoor channel model.



Chapter 4

MIMO Channel Estimation with
Transmitter Nonlinearities

4.1 Introduction

The demand for increasing capacity and quality of service in wireless communication

has drawn extensive research on multiple-input multiple output (MIMO) systems that

involves multiple antennas on the transmitter or/and receiver sides. Several related tech-

nologies such as space-time coding and beamforming are effective in improving the

performance; however, the improvement depends highly on the precision of channel

estimation available at both the transmitter and receiver side [24, 53–55]. While many

channel estimators have been proposed, most analysis methods consider linear transmit-

ter design under the assumption that the nonlinear properties are negligible. Though a

highly linear Radio Frequency (RF) front-end is desirable, the design methods used in

practice give rise to imperfections [35, 38, 56–58]. For example, a typical power am-

plifier affects both amplitude (AM) as AM/AM conversion and phase (PM) as AM/PM

conversion in a wide range of operational environments [35]. As a result, various com-

munication specifications mention upper limits of nonlinearity in terms of the Error-

Vector-Measurement (EVM) and spectrum mask as the upper linearity limits [22,59]. It

is therefore relevant to study the nonlinear channel estimation caused by the RF front-

end nonlinearity. Several techniques that combat the effects at the transmitter side have

been proposed, and they consider either single input single output (SISO) systems, or

flat fading MIMO systems [60–62].
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In this chapter, we propose a data-aided asymptotically unbiased nonlinear chan-

nel estimator operating in frequency selective fading MIMO channels involving inter-

symbol interference (ISI) effects, and SISO channel is a special case for our algorithm.

We assume that the channel is stationary during the estimation interval, and the transmit-

ter nonlinearity is memoryless and static. Our method first exploits the differentiation of

nonlinearity in each signal symbol, and ignores the nonlinearity of those symbols with

lower amplitudes to derive our initial channel estimation. To accomplish asymptoti-

cally unbiased estimation, the accuracy is improved by an iterative estimation algorithm,

which iteratively estimates the transmitted symbol values and the channel coefficients.

The proposed algorithm, which overcomes the ISI phenomenon, is designed to oper-

ate under multiple amplitude level modulation schemes such as Quadrature Amplitude

Modulation (QAM), Orthogonal Frequency Division Multiplexing (OFDM), and Pulse

Amplitude Modulation (PAM).

The chapter is organized as follows. Section 4.2 gives the concise description of

the problem including the nonlinearity and channel model. We then present the linear

approximation algorithm in Section 4.3, and the iterative estimation algorithm in Section

4.4. In Section 4.5, numerical results using an MIMO OFDM system and a practical

indoor MIMO channel model are shown. Section 4.6 gives the summary of the chapter.

4.2 Problem Statement

As indicated in the previous section, while the receiver is assumed linear, the descrip-

tion of the nonlinear channel in this chapter is composed of the linear channel model

and the nonlinearity coefficients of the transmitter RF front-end. In this section, the

memoryless nonlinear model used in the transmit side and linear MIMO channel model

are introduced. Also, since, from the same transmitter set, the RF front-ends of all the

antennas likely share the same design [63, 64], we assume the nonlinear properties are

identical throughout this chapter. Further extensions using different nonlinear properties

are possible.
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4.2.1 Memoryless Nonlinear Model

The input signal, d, of the nonlinear system is assumed a random process, and then

by applying the nonlinearity distortion analysis from [35], [38], [23], the memoryless

nonlinear system could be described by its coefficients as:

G(d) =

M+1
2

∑
i=1

a2i−1di(d∗)i−1 (4.1)

where both d and ai are complex numbers with their normalized forms ď and ǎi. The

normalization is set to a reference structure with standard deviation of σd , and hence

ǎi = ai · (σd)i and ď = d/σd . In this chapter M is assumed the maximum number of

nonlinearity coefficients.

Our main concern in this chapter is the nonlinearities of the transmitters, and the

linear gain is not in the scope of this research. Hence, the model of (4.1) is simpli-

fied by normalizing it as x = ∑
M+1

2
i=1 b2i−1ďi(ď∗)i−1 which is also shown in (3.1). where

b2 j−1, j = 1, . . . ,(M +1)/2 are the normalized nonlinearity coefficients in complex for-

mat, and b1 is set to 1 by definition.

Since our proposed approaches are data-aided and the training sequence is known,

the outcome of the nonlinear system is assumed finite. The input symbols belong to{
ď1, ď2, . . . , ďP

}
, and their one-to-one mapped outputs belong to {x1,x2, . . . ,xP}, where

P is dimensionality of the transmit symbols. For instance, P≤ 64 in a 64QAM scheme,

and P ≤ 8 in an 8PAM scheme. Our approach will estimate the nonlinear coefficients

{b3,b5, . . . ,bM} which are identical for all the RF front-ends through the estimation of

{x1,x2, . . . ,xP}. The relationship between the input and output can further be expressed

as (3.3) in matrix format x = ď+ Ď(b+ c) where c is in the null space of Ď.

Assume there are more symbols than unknown nonlinearity coefficients, P > M−1
2 ,

and the estimated symbols contain error as x̂ = x + ex, the least-squared estimation of

nonlinearity coefficient vector b̂ is

b̂ = Ď+(x̂− ď)− c = b+ Ď+ex− c. (4.2)

As long as matrix Ď is full rank, the null space c is empty; hence a set of x̂ only maps to

one unique b̂.



55

4.2.2 MIMO Channel Model

Consider wide-band linear MIMO channel model with nT transmit antennas and nR

receive antennas. The signal at the receive antenna array are denoted r[τ] = [r(1)[τ],

. . . ,r(nR)[τ]]T, where r( j)[τ] is the signal at the j-th receive antenna and τ is the time

index. Also, the signal from transmit array is denoted as x[τ] = [x(1)[τ], . . . ,x(nT )[τ]]T,

where x(i)[τ] ∈ {x1, x2, . . . , xP} is the signal at the i-th transmit antenna.

The linear dispersive channel can be represented by a baseband discrete-time equiv-

alent model as [65–68]

H̃[τ] =
Lh−1

∑
τl=0

H̄[τl]δ [τ− τl] (4.3)

where Lh is the channel length, and H̃[τ] ∈ CnR×nT . Here H̄ ∈ CnR×nT describes the

linear transformation between the transmit antennas and receive antennas at delay τl ,

and is defined as

H̄[τl] =




h11[τl] h12[τl] . . . h1nT [τl]

h21[τl] h22[τl] . . . h2nT [τl]
...

... . . . ...

hnR1[τl] hnR2[τl] . . . hnRnT [τl]




, (4.4)

where h ji is the complex transmission coefficient from i-th transmit antenna to j-th

receive antenna.

The relationship between the j-th receive element and the transmit symbols can be

written as

r( j)[τ] =
nT

∑
i=1

L−1

∑
τl=0

h ji[τl]x(i)[τ− τl]+n( j)[τ], (4.5)

where n( j)[τ] is the additive zero mean white Gaussian noise. Furthermore, consider

the input and output relationship of the MIMO system, (4.5) can be extended to

r[τ] = H̃[τ]∗x[τ]+n[τ] =
L−1

∑
τl=0

H̄[τl] ·x[τ− τl]+n[τ] (4.6)

where ∗ denotes convolution, and n[τ] = [n(1)[τ], . . . , n(nR)[τ]]T.

We set the overall channel coefficients as h =
[
hT

11 . . .hT
1nT

hT
21 . . .hT

2nT
. . . hT

nR1 . . .

hT
nRnT

]T where h ji = [ h ji[0], . . . , h ji[L− 1] ]T. Moreover, the training sequence is as-
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sumed given and of length Lts, and it shall be greater or equal to the dimensionality

of transmit symbol set, Lts ≥ P. As defined in (3.3), the training sequence symbol be-

longs to {x1, x2, . . . , xP}, and therefore we set x = [x1, x2, . . . , xP]T for convenience,

where P is the dimensionality. From the above description, coefficient Lts is greater or

equal to P. The received symbol vector is constructed as r = [r[1]T, . . . , r[Lr]T]T where

Lr = Lts +Lh−1 and r[τ] is defined in (4.6). Then (4.6) is unfolded to equation:

r = Hx+n = Xh+n (4.7)

where H is a LrnR×P matrix populated by channel coefficients corresponding to x, X is

a LrnR×LnRnT matrix populated by transmit symbols corresponding to h, and n is the

additive white Gaussian noise vector. Matrix X is obtained by combining the transmit

symbols from all antennas, and the antennas do not necessarily transmit the same symbol

at a given time index. Appendix E shows the details and examples of composing (4.7).

In principle, we seek to estimate the nonlinear symbols at the transmitter to improve

the channel estimation given only the received signal, r, and training sequences from

each antenna.

4.2.3 Basic Least Squares (BLS) Channel Estimation

Here, a basic least squares channel estimator is introduced and will be used throughout

this chapter. Given the training sequence, the BLS channel estimation of (4.7) can be

derived by [68],

ĥ = argmin
h
‖r−Xh‖2 (4.8)

where X is a function of known training sequence. Since Gaussian noise is our premise,

the solution is simply ĥ = X+r, where superscript + denotes the pseudo-inverse operator.

Unfortunately the training sequence suffers nonlinearity from the RF front-end, and thus

the channel estimation result is degraded.

4.3 Linear Approximation Approach

The difficulty of parameter estimation here is that, all transmit symbols are affected by

the nonlinear system and they are associated with each other due to the ISI effects, while
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the nonlinearity coefficient estimation of the RF-front end requires the transmit symbol

values x. Since both x and h in (4.7) are unknown, it is not feasible to use the BLS

approach, ĥ = X+r, for channel estimation. One the other hand, if we can provide suf-

ficiently accurate approximation of some of the elements in x, then this partial training

sequence could be used to estimate the channel coefficients, h.

Though vector x contains nonlinearity properties, the portion of the symbols con-

taining less nonlinearities could be approximated to known symbols. In other words,

in multi-amplitude modulation schemes, symbols having lower amplitude levels usually

suffer relatively lower degree of nonlinearity compared to those at higher levels. As a re-

sult, those lower-amplitude symbols suffering small nonlinearity could be approximated

as linear. This premise is based on the fact that the nonlinearity effects are constrained

in many communication specifications, because of the power spectrum mask limitation

and Relative Constellation Errors (RCE). For instance, Fig 3.1 shows one realization

of a RF-front end output constellation of the short training sequence symbols of IEEE

802.11a/g system and some proposed 802.11n draft [22, 69]. In this example, signal

{x5,x6, . . . ,x9} can be approximated to
{

ď5, ď6, . . . , ď9
}

, where ďi, i = 5∼ 9 is defined in

(3.3). In this chapter, the nonlinearity model is extracted from [38] and coefficients are

adjusted to meet the EVM or RCE requirement in [22]. Since the problem is generalized

to Eq. (4.5) which is similar to Eq. (3.6) and (3.7), the linear approximation developed

in Chapter 3 Section 3.3 applies.

4.4 Iterative Estimation Approach

The previous approach assumes the symbols in lower amplitudes as linear signals, and

thus derives both the initial channel estimation and nonlinear transmit symbol estima-

tion. In this section, we will further remove this approximation and improve the ac-

curacy by an iterative algorithm. The initial nonlinear transmit symbol estimation de-

rived from the linear approximation could be combined with (4.7) to estimate the linear

channel coefficients, h, called h-step. Then under the premise this newly estimated in-

formation is more accurate than the previous estimation, the new data can be utilized

to re-estimate the transmit symbols by applying (4.7), called x-step. The result can be

again sent to h-step and then x-step for a new iteration or stop to output the results. The

iterative approach is based on the assumption that the new estimation supports more
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accurate knowledge about the nonlinear channel than the previous one, and therefore

improves the next estimation. When this premise holds, the accuracy will increase with

the iterative procedure. The solution provided in Chapter 3 Section 3.3 is applied here.

4.5 Simulation Results

In this simulation, a practical example applying training sequences used by IEEE 802.11n

standard proposals [69, 70] with RF front-end device models from [38], and a 2 × 2 in-

door MIMO channel model extracted from [51,71,72] using correlation matrices will be

shown. Here the indoor MIMO channel model utilizes the correlation matrices from Ped

B model in [71] and the delay profile δ [τ]+0.063δ [τ−1]+0.01δ [τ−2], obtained from

[51]. The degree of nonlinearity is set by -17.5dB EVM satisfying the specification [22]

when operating in 16-QAM scheme. Also, we use a common definition of SNR as the

average power at the output of each receive antenna to the noise power ratio as in [55].

The SNR region is set between 15dB and 35dB which is a typical operation environment

for 16-QAM scheme [41]. Furthermore, the Normalized Mean Squared Error (NMSE)

of parameter vector h is defined by: NMSE of h≡ 10logE(|ĥ(k)−h|2/|h|2)(dB) .

Our algorithm initially uses the long training sequence of the one packet header

from [22, 70] for linear approximation approach and then utilizes the same sequence

for the iterative estimation. Here, channel estimation results using linear approximation

(LA), LA and iterative estimation (LE), and Basic Least Squares (BLS) algorithms are

compared. BLS in our example simply treats the transmitter as linear, and uses the LS

algorithm as mentioned in Section 4.2.3. Figure 4.1 and 4.2 show the NMSE of linear

channel coefficients, h, and nonlinear symbols, x. Figure 4.1 also indicates that the

performance of a BLS estimator is limited by the nonlinearity effect even in high SNR

situation, while our proposed method reduces the nonlinearity effect and increases the

precision especially in high SNR environment. Moreover, our method not only estimates

the wideband channel model, but achieves a precise estimation of transmit symbols as

depicted in Fig 4.2.

To show the potential improvement on system performance, a simple equalizer that

uses the estimated channel coefficients to reduce the ISI will be utilized. Three different

scenarios are presented. The first situation is a linear transmitter, b = [1,0,0]T, with

BLS equalizer, and it provides the performance in absence of transmitter nonlinearities.
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Figure 4.1. NMSE of the estimated channel coefficient ĥ versus SNR.
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Figure 4.2. NMSE of the estimated nonlinear symbol vector x̆ versus SNR.
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The second situation is to use only BLS with nonlinear transmitters. The decreased per-

formance, compared to the first situation, shows the effect of transmitter nonlinearities.

The third situation is our proposed channel estimation algorithm with a simple nonlin-

earity compensator when nonlinear transmitter is used. Though the compensation of

nonlinearity is not our focus in this chapter, a first order compensation method is ap-

plied for a basic comparison. Since the actual linear transmit symbols are unknown, the

compensator merely utilizes the estimated transmit symbols of iteration k to construct

Ď in (3.3) and estimate the linear symbols, d̂, by inserting the estimated b̂ from (3.3)

as d̂ = x̂(k)− Ď(x̂(k))b̂(k), where the elements in Ď are substituted by x̂(k). In Fig 4.3,

Bit Error Rate (BER) is derived for a 16-QAM scheme in a 64-bin FFT OFDM system.

The simulation results show that in high SNR situation, using a simple compensation

method can improve the performance by several dB. The noise floor in Fig 4.3 is caused

by the nonlinearity which can be compared to the linear transmitter simulation result.

Therefore, the difference between the noise floor and linear transmitter result provides

an improvement margin for the nonlinearity compensator.

Figure 4.4 shows the improvement between BLS and the compensator. The differ-

ence between BLS and the compensator is provided, and also this difference is normal-

ized to the BER of BLS to show the ratio of improvement. Here, EVM is introduced to

show the degree of nonlinearity. For example, the nonlinearity is lower when EVM is

lower. The BER improvement increases as the nonlinearity decreases, while the in the

low nonlinearity region this improvement decreases due to the low BER rate in this re-

gion. The figure indicates that high nonlinearity degrades the compensator performance,

and in region of -12.5 to -15dB the compensator removes the most error. As the figure

illustrates, the normalized improvement increases as the nonlinearity decreases, mean-

ing the compensator reduces the higher portion of the bit error in lower nonlinearity

scenario.

4.6 Conclusion

In this chapter, we have proposed a channel estimator that estimates the linear MIMO

channels and the nonlinearity caused by imperfect transmitter design at the same time.

The algorithm first utilizes the differentiation of all symbol levels and assumes some of

them are linear to estimate the nonlinearity; further improvement is achieved by itera-
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tive estimation of the transmit symbol values and the channel coefficients. The semi-

analytical results of the performance in each iteration were presented. The numerical

results show that the nonlinearity is a major limiting factor to channel estimation when

using a basic LS estimator, while our approach can both overcome this limitation and

improve the system performance.



Chapter 5

Emitter Tracking

5.1 Introduction

Transmitter nonlinearity estimates also provide the information about the change of

transmit power, and we utilize this information to estimate the location of the transmit-

ter. Since in most modern communication systems, power control is used to maintain

the quality of the connection, it usually requires constant received power on the base

station (BS) side. For instance, while the mobile station (MS) is moving away from

BS, the MS might increase its transmit power to maintain constant received power on

BS side. The transmit power is location dependent, and thus provides transmit power

patterns for each possible MS route. Therefore, by estimating the nonlinearities, the

location of the mobile station can be estimated. One of the advantages of this method is

that the location tracking can be achieved using one single sensor.

5.2 Nonlinearity Model

Recall from (3.1) that the baseband equivalent nonlinearity distortion model is

z(d) = a1d +a3d2d∗+ . . .aMd
M+1

2 (d∗)
M−1

2 (5.1)

= (a1σd)
[
b1ď +b3ď2ď∗+ . . .+bMď

M+1
2 (ď∗)

M−1
2

]

︸ ︷︷ ︸
x
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where ď = d/σd ,

b j =
a j

a1
σ j−1

d , j ∈ {1, 3, . . . , M} . (5.2)

Our goal is to use the nonlinearities for SEI and thus only the nonlinearity terms

b j, j = 1, 3, . . . , M are considered in the identification procedure and the linear gain

a1 is ignored. Moreover, (5.2) shows that the normalized nonlinearity coefficients are

proportional to the input signal power. As a result, as the transmit power increases

(decreases), the estimate values should increase (decreases) accordingly.

The objective of SEI is to identify transmitters based on the estimation of the nonlin-

ear transmitter coefficients in the multipath environment. Throughout this chapter, we

assume that the transmit sequence is known, the transmitter nonlinearity is static, and

the channel is time invariant during the estimation.

5.2.1 Channel Model

In this chapter, we assume a coherent, symbol-spaced receiver front-end and precise

knowledge of the symbol timing, such that the channel can be represented by an equiv-

alent, discrete-time, baseband linear model [46]:

r[i] =
∞

∑
k=−∞

z[k]h′[i− k]+n[i] (5.3)

where z[·] is a sampled transmit symbol based on (5.2), h′[·] is the discrete-time channel

impulse response, and and n[·] is zero mean Gaussian i.i.d. complex noise sample. Since

we are interested in the nonlinearity of the system, the above equation is revised as

r[i] =
∞

∑
k=−∞

x[k]h[i− k]+n[i] (5.4)

where x[·] = z[·]/(a1σd) ∈ {x1, x2, . . . , xP}, and h[·] = a1σdh′[·].
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5.3 Location Tracking

Radio emitter identification and location tracking has various applications and extensive

researches have been conducted in this area. In particular, specific emitter identification

(SEI) systems discern wireless radio emitters of interest based only on the external signal

feature measurement. This identification capability leads to diverse applications such as

cognitive radio [1], network intrusion detection, battlefield management, electronic sup-

port measurement system, and intelligence gathering [2–6]. Our previous research uses

the transmitter nonlinearity estimation for SEI [23,26–28] and in this chapter, we extend

this approach for a mobile station location tracking method that enables joint SEI and

location tracking. The major advantage of this algorithm is that the radio emitter identi-

fication and tracking are completed simultaneously on the same signal feature; therefore,

the ambiguity of signals from different emitters are removed. Other advantages are that

only one sensor is required and multipath mitigation capability.

There are various approaches to mobile station direction finding such as amplitude

comparison, phase comparison, time-of-arrival, difference-time-of-arrival, and frequency-

difference-of-arrival [73]. Locating the target mobile station usually requires another

degree in spatial diversity which could be achieved by multiple observation sensors. In

this chapter, we develop a single-sensor location finding technology utilizing the esti-

mation of the transmitter nonlinearities cooperating with a pre-measured transmit power

map.

The signal nonlinearities vary with changes of transmit power, and we connect these

phenomena with location of the transmitter. Since in most modern wireless communica-

tion systems, power control is used to maintain the quality of the connection, resulting

in constant receive power on base station (BS) side [34]. For instance, while the mobile

station (MS) is moving away from the BS, the MS might increase its transmit power

to maintain constant receive power on BS side. Moreover, the channel path-loss is also

associated with distance, terrain features, and obstacles between the transmitter and the

receiver. As a result, characteristics about the surrounding environment can be found in

the propagation channel [74–81], and to compensate the channel, the power control also

reflects this aspect [82]. As the mobile station moves along a particular path, its transmit

power variation along the path contributes a location dependent pattern. To estimate the

variation of transmit power, we utilize the transmitter nonlinearities estimation using
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the fact that the increase or decay of normalized transmitter nonlinearities is associated

with the transmit power. Therefore, by estimating the nonlinearities, the location of the

mobile station can be estimated.

5.3.1 Estimator Properties

The performance of this iterative estimator is discussed in detail in [28], and we present

some important conclusions in this section. At kth iteration, the nonlinearity estimation

error is represented as (Appendix F.1)

b̂(k)−b = Q(k)
b e(0)

x +W(k)
b n(0) (5.5)

where Q(k)
b and W(k)

b are the error transform matrix, e(0)
x is the initial estimation error,

and n(0) is additive zero mean Gaussian noise. Two important remarks on (5.5) are (see

details in Appendix D):

Remark 1 If ρ(R) < 1, then Q(k)
b e(0)

x in (5.5) converges to a zero vector.

Remark 2 If ρ(R) < 1, then W(k)
b n in (5.5) converges to a fixed vector.

Here, R = PĎRhRx, ρ(R) = max{|λ1|, . . . , |λr|} is the maximum eigenvalues of R. As

a result, the first term on RHS of (5.5) associated the initial estimation error which

asymptotically converges to zero, and the second term on the RHS contains Gaussian

noise.

In the rest of the chapter, we consider a sufficient number of iterations such that

Q(∞)
b → 0 and only the Gaussian noise term is left. W(∞)

b is associated with the noise

floor, and it asymptotically converges to a fixed matrix.

5.3.2 Effects on Transmit Power Variation

In modern communication systems, power control is a commonly used technology;

therefore of that it is crucial to study the effects of transmit power variation on the

nonlinearity estimator. According to Remarks mentioned the nonlinearity estimates are

zero mean Gaussian variables after sufficient iterations, and therefore we discuss the

expected value and variance as following.
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The expected value of the estimates also varies with the variation of transmit power

based on (5.2) (see Appendix F.1). For instance, as the transmit power increases (de-

creases), the expected values of the transmitter nonlinearities also increase (decrease)

accordingly. This result is concluded as

E[b̂ j(i)]
E[b̂ j(i−1)]

=
σ j−1

d (i)

σ j−1
d (i−1)

, j ∈ {1, 3, . . . , M} (5.6)

where i is the sample index. As a result, given a set of nonlinearity coefficients, the

identifier is able to expect the possible estimates variation.

As far as the variance, using the definition in (5.4) the change of transmit power also

affects the amplitude of channel coefficients h = σdh′ as in (5.4); hence the estimator

variance is also proportional to the transmit power

σ2
b̂ ∼ σ−2

d (5.7)

where the definition of estimator variance is

σ2
b̂ = E

{∥∥b̂−b
∥∥2

}
=

M−1
2

∑
i=1

E[|b̂2i+1−b2i+1|2]. (5.8)

This result indicates that when the transmit power increases, the accuracy of the estima-

tion improves (see Appendix F.1).

Fig. 5.1 shows the simulation results of NMSE versus different transmit power, and

as the transmit power increases, NMSE decreases as expected. In this simulation, eight

training sequences from 32 packet headers of an OFDM system IEEE 802.11g [22] with

20 dB Eb/N0 are used, the linear gain of the amplifier is set a1 = 1, and the normalized

mean squared error (MSE) is defined as

NMSE of b≡ 10log
(

E
[∥∥∥b̂(k)−b

∥∥∥
2
])

(dB) . (5.9)
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Figure 5.1. Normalized MSE of nonlinearity estimates as ◦ versus transmit power.

5.4 Location Tracking

The transmit power of MS is location dependent as described in Section 1, and each

MS route contains a transmit power pattern. In general, MS adjusts its transmit power

to maintain constant BS receive power to support consistent communication quality. If

MS is moving away from BS, it raises its power to compensate for the increasing path

loss, and similarly, while MS is approaching BS, its transmit power is decreased [82].

Then the MS locator compares the power variation estimate with candidate patterns of

all routes, and find the most likely one. One advantage of this method is that the location

tracking can be achieved using one single sensor. Assuming a moving MS with constant

speed is observed, the variation of its transmit power estimates is defined as a series of

transmit power ratio between two adjacent observations as

4P = [4P(i),4P(i+1), . . . ,4P(i+N)]T (5.10)

where 4P(i) = σ2
d (i)/σ2

d (i−1) is the ratio of transmit power between ith and (i−1)th

observation. For each route this vehicle takes, the observed transmit power ratio should

be different from others. By comparing 4P with pre-measured map data, the location

of the MS is then estimated.
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5.4.1 Power Control

The simplest form of power control is to adjust the powers so that the received signal is

at a constant level. A special case is when the power in the next power control interval

can be increased or decreased by a fixed power control step size. For example, updated

European telecommunication standard institute (ETSI) standard specifies 15 levels of

power control for global system for mobile communication (GSM) 900 handset from 33

to 5 dBm with step size of 2 dB [82]. The emitter power can be as low as 5 dBm when

it is close to the BS, while the maximum power is achieved when it is far away. Another

example in WiMAX IEEE 802.16 standard is that the transmitter is required to provide

a dynamic power control range of at least 50 dB in no less than -1 dB steps [83].

To obtain an estimate of 4P(i), transmitter nonlinearity estimation is utilized, be-

cause the nonlinearities vary due to the change of transmit power. Based on (5.2), the

expected value of the estimates are in proportion to the transmit signal variance σ2
d as

(5.6). In another words, as the transmit power increases, the expected value of nonlin-

earity estimates also increase. Therefore, by recording the variation of the nonlinearity

estimates, the changes of transmit power is also observed.

Therefore, the transmit power ratio of two adjacent observations is derived using the

ratio of two estimated third-order nonlinearity estimates as

4P̂(i) =
b̂3(i)

b̂3(i−1)
(5.11)

where b̂3(i) is the ith estimate using the iterative nonlinearity estimator.

5.4.2 Location Tracking Estimator Properties

Based on (5.5), the nonlinearity estimates are Gaussian distributed, and therefore the

transmit power variation in (5.11) is then the ratio of two Gaussian random variables.

The ratio of two Gaussian random variables is a Cauchy-like distribution [84, 85]. In

some cases, the probability density function (PDF) of this ratio is approximately a Gaus-

sian distribution based on the coefficients of variation of the numerator and denomina-

tor [86]. This conclusion is modified to apply to the transmit power estimator in (5.11)

as shown in Fig. 5.2(a) where the critical values of K.-S. Lilliefors Test [87] is presented.

K.-S. Lilliefors Test is used to test the normality of data without specifying the expected
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value and variance [87]. Fig. 5.2(a) shows the critical value of the test results using

the ratio of two Gaussian distribution variables. The expected values of both the Gaus-

sian variables are set to 0.04. Fig. 5.2(a), if the value is less than 0.886, then the data

is accepted as normal distribution with 95% confidence interval. Fig. 5.2(a) suggests

that when the NMSE of the estimation is less than −14dB, the estimates are normally

distributed with expected value as [86]

E[4P̂]≈ σ2
d (i)

σ2
d (i−1)

+Var[b̂3(i−1)]
E[b̂3(i)]

E[b̂3(i−1)]3
(5.12)

and variance as

Var[4P̂]≈Var[b̂3(i−1)]
E[b̂3(i)]2

E[b̂3(i−1)]4
+

Var[b̂3(i)]
E[b̂3(i−1)]2

. (5.13)

Two histograms are also presented in Fig. 5.2(b) based on two scenarios in 5.2(a):

acceptance and rejection region. Both numerical results are derived using Gaussian

distributed variables with unit mean and ten thousand samples. The distribution derived

from the acceptance region in Fig. 5.2(a) shows a Gaussian-like distribution while a

Cauchy-like distribution is obtained in the rejection region.

5.4.3 Effects on Channel Gain

To clarify the relationship between channel gain and the estimation result, a simple

example using a 1-tap channel model is presented. In this example, it can be shown

that the estimation variance defined in (5.8) is inversely proportional to the amplitude of

channel as (see Appendix F.2)

σ2
b̂ ∼ |h|−2. (5.14)

Therefore, as the channel gain increases, the estimation variance decreases. Considering

the results from (5.7) and (5.14) as the estimation variance decreases, the bias term in

the expected value in (5.12) shrinks, and similarly, the estimation variance in (5.13) also

reduces.

Fig. 5.3 shows the simulation results of NMSE versus different channel gains as

(5.14). In this simulation, eight packet headers are used and linear gain of the amplifier

is set a1 = 1.
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Figure 5.3. Normalized MSE of nonlinearity estimates as ◦ versus channel gain.

5.5 Numerical Results

In the simulations, an OFDM system, IEEE 802.11a/g Specification [22], using RF

front-end device models from [38], which were used in our previous research [23, 26]

is shown. We apply a one tap FIR channel model whose amplitude is a function of

distance between MS and the receiver [75]. The maximum degree of nonlinearity is

-16 dB EVM satisfying the specification [22] when operating in 16-QAM scheme. The

maximum output power is set to 30 dBm for each emitter, which is a typical maximum

transmit power value in commercial market products, and the nonlinearity coefficients

are b3 = −0.0474 + 0.0823i, b5 = 0.0678 + 0.0078i, and b7 = 0.0022 + 0.0004i. The

simulation shows the misclassification rate improves as the number of headers used

increases.

Our algorithm initially estimates transmit symbols using the LA approach [26] based

on the long training sequence from [22] of length 160 samples containing 64 different

transmit symbols, where the nonlinearities of the 52 lowest amplitude symbols are con-

sidered insignificant and those symbols are approximated by linear symbols in the LA

method. After the initial estimation, the same training sequence is utilized for the it-

erative estimation. Based on this simulation environment, we can assign parameters as

M = 7, Lh = 3, Lts = 160, P = 64, and H = 64−52 = 12.
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The contours in Fig. 5.4 show the power control contour in a finite grid-based city

map, and the blocks in the figure indicate buildings. Two possible routes are considered

in this simulation. The speed of MS is considered a known constant, and we show the

transmit power of each route based on the power control in Fig. 5.5. As can be seen in

Fig. 5.5 (a), the transmit power is reduced when MS is approaching BS, while in Fig.

5.5 (b) the zig-zag route shows a different pattern. The estimation error variances are

shown in error bars in Fig. 5.5 (a) and (b). The variance at the beginning 10 meters of

Route 1 is higher than that from 10 to 20 meters because the MS is further to the sensor

at the beginning. This result is consistent to (5.14).

The accuracy at the beginning of Route 1 is higher than later on because the sensor

is close to the MS for those measurements and therefore the channel gain is high. Thus

based on (5.14), the estimation error variance is lower. Moreover, the transmit power is

also higher at those measurements providing better signal strength as shown in (5.7).
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Figure 5.4. The ∗ in the figure shows the location of single sensor scenario.

Based on simulations shown above, the misclassification rate of two routes is cal-

culated using different number of headers as shown in Fig. 5.6. In our simulation, the

thermal noise variance of each sensor is assumed identical. MS is measured in eight of

the spots uniformly distributed on both Route 1 and 2, where 16, 64, and 256 headers

are used with minimum Eb/N0 10 dB [22]. The sensors are placed in positions that
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Figure 5.5. Transmit power on Route 1 and 2. The error bars show the variance of transmitter
nonlinearity estimates.

minimize the expected value of nonlinearity estimation error variance. The simulation

shows that to achieve 30% misclassification rate, headers with one sensor are required.

To obtain 5% misclassification rate, more than 256 headers are required.

5.6 Conclusion

In this chapter, we have proposed a transmitter nonlinearity estimator for joint SEI and

tracking systems. Also we have provided an unbiased linear minimum variance esti-

mation fusion rule which outperforms selection combining estimation fusion. We dis-

cussed the impact of channel amplitude and showed that the estimation error variance

is inversely proportional to the square of the channel amplitude. The effect of trans-

mit power variation on nonlinearity estimation is also presented, and the result shows

that the expected values of nonlinearity estimates are proportional to the transmit power.

Since the transmit power is location dependent, its variation is compared to transmitter

power profile of possible MS routes to identify the location of MS. Simulation results

have shown that the proposed method provides less than 5% misclassification rate given

two candidate routes when 32 headers in Eb/N0 10 dB environment.
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5.7 Centralized Fusion

In this section, multiple-sensor scenario is considered. The assumption is that all dis-

tributed sensors receive signals from one emitter and send the receive information back

to a data fusion center (DFC). DFC receives data from its sensors, and after data re-

arrangement, it processes the SEI algorithm by iteratively estimating the channel coef-

ficients and the transmit symbols. After sufficient number of iterations, the estimator

utilizes the distorted transmit symbol constellation to derive the transmitter nonlineari-

ties. In this section, we introduce the signal models which are later used for the iterative

estimation.

We first derive the equation for channel coefficient estimation as follows. The re-

ceive data rk could be rearranged as r = [rT
1 rT

2 . . .rT
Ns

]T, and h =
[
hT

1 ,hT
2 , . . . ,hT

Ns

]T is

the channel coefficient vector, n is zero mean additive white Gaussian noise. (3.6) can

be modified to Xhi + ni = ri to estimate hi, ∀i individually, where Xi is composed by

the estimated distorted transmit symbols from the ith sensor.

After the channel coefficients are derived from Eq. (3.6), this information is used to

obtain the next estimation. Lets consider the multiple sensor case; Eq. (3.6) is further
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rearranged as 


H1

H2
...

HNs




x+




n1

n2
...

nNs




=




r1

r2
...

rNs




(5.15)

where Hk is the channel matrix, x = [x1, . . . , xP]T is defined in Eq. (3.3), and nk is the

additive noise of sensor k. For instance, if x is a 4×1 vector, and the first few transmit

symbols are {x[1], x[2], x[3], . . . ,x[Lt ]}= {x2, x3, x2, . . . , x1}. Then the channel matrix

of sensor k is

H1 =




0 h11 0 0

0 h12 h11 0

0 h13 +h11 h12 0
...

...
...

...

h13 0 0 0




. (5.16)

A compact format for Eq. (5.15) is similar to (3.6) as Hx+n = r.

5.7.1 Variable Step-Size LMS Algorithms

One major issue in this thesis is system identification, or solving a system of linear

equations of the general form

Uw∗+n = d. (5.17)

A major concern is the complexity of solving Eq. (5.17), which depends on the size of

the matrices. When the number of sensors increases, the size of matrices in Eq. (3.6)

and (3.7) also rises. In this section, we introduce an adaptive filter using LMS algorithm

to solve systems of linear equations for its low computational complexity.

Athough other approaches such as pseudo-inverse or total least square (TLS) [49,50]

are also efficient, the computational complexity is prohibitive when the size of the ma-

trices grows. The SEI algorithm has to calculate the inverse of huge matrices if pseudo-

inverse is considered or the singular value decomposition (SVD) for TLS algorithm.

Instead of computing the whole matrix, the family of LMS algorithms sequentially op-

erates on one input vector at a time and requires less computational complexity and it is

also capable to output intermediate results if necessary.
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Table 5.1. LS Algorithm Complexity Comparison

LS Algorithm Flop Count
Normal Equation mn2 +n3/3
Householder Orthogonalization 2mn2−2n3/3
Modified Gram Schmidt 2mn2

Given Orthogonalization 3mn2−n3

Householder Bidiagonalization 4mn2−4n3/2
Golub-Reinsch SVD 4mn2 +8n3

R-SVD 2mn2 +11n3

The adaptive filtering is to try to adjust a set of filter weights so that the system

output tracks a set of desired signals. Let the input vector to the system be denoted by

uk, the filter weight vector is w(k) and the desired signal is a scalar dk. The process is

assumed to relate to

dk = w(k)†uk + e(k), ∀k (5.18)

where e(k) is the error between the adaptive filter output and the desired signal. The

LMS algorithm sequentially updates the estimate w based on the estimation result of

each input vector. The weight update recursion is given by

w(k +1) = w(k)+ µkuke(k)∗, ∀k (5.19)

where e(k) = d j−w(k)†uk is the disturbance mentioned above and µ(k) is the step size.

The determination of step size is somewhat of an art, and a variety of methods have been

developed to select the proper step sizes [44, 88–90].

To solve the system of equations in Algorithm 1 , the adaptive filter uses the row

vector of U as input vector, and the desired signal is the corresponding element in d.

After the algorithm processes from the first row to the last row, it starts from the first row

again until sufficient number of iterations are completed. This algorithm is summarized

in Algorithm 2 where d j is the jth element of d and u j is the jth row of U in Eq. (5.17).

To further explain this process, we show a special case in Fig. 5.7 assuming a two-

row matrix U = [u1 u2]T, a two-element vector d = [d1 d2]T, and µ(k) = 1, ∀k. If prior

knowledge about w is available, use that knowledge to select an appropriate initial value
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Algorithm 2 Variable Step Size LMS Algorithm
1: Initialization: Set N as the number of rows in U, w(0) and step size µ̃
2: Computation:

For i = 0, 1, . . . , compute
For j = 1, 2, . . . , N
e(iN + j) = d j−w†(iN + j−1)u j

w(iN + j) = w(iN + j−1)+ µ( j)u je∗(iN + j)

3: Output: The last estimation w

for w(0). Otherwise, set w(0)= 0. Then add a new vector to w(0) as an updated estimate

w(1) that moves towards the estimation that best fits the first row of the observed data

u1 and d1.Then the algorithm exploits u2 and d2 for w(2) update, and then the first

row to update w(3). The algorithm sequentially applies the same principal to modify

the estimation based on the following rows until the last row, and it repeats the same

procedure from the first row using the estimate from the last row if required. Iteratively,

this algorithm approaches the optimal estimation wopt .

The selection of step size is a state of art, and some discussion can be found in

[44, 88–90]. In [88], the step size is updated by sign changes of successive samples of

the gradient; [89] proposes the use of squared instantaneous errors to adapt the step-size

of the algorithm to achieve faster tracking; [90] updates the filter through the squared

autocorrelation of errors at adjacent time. Due to the fact that data might have very

different power levels or noise levels from multiple sensors, variable step sizes can be

utilized to fuse the heterogeneous data.

5.7.2 Normalized LMS Algorithm

Since the receive signal power of each sensor might vary substantially, the deviation of

the filter update using LMS algorithm could be large. The classic normalized LMS

(NLMS) algorithm is a modified LMS algorithm which minimizes the squared Eu-

clidean norm of the filter parameter change:

minimize ‖w(i+1)−w(i)‖2 ,

subject to d j−wH(i+1)u j = 0 (5.20)
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Figure 5.7. An example of data reusing algorithm.

where i is the current number of iteration and j is the current observation data used

[44,91]. Besides, the NLMS algorithm also provides potentially-faster convergence rate

for both correlated and whitened input data [91, 92].

The time variant step size is then derived as

µ(i) =
µ̃

‖ui‖2 (5.21)

where µ̃ is a user-specified convergence parameter and ei is the estimation error [44].

5.7.3 Iterative Estimation

Based on Eq. (3.3), the transmitter nonlinearities are extracted from the distorted symbol

constellation; hence we derive a robust iterative nonlinearity estimator which removes

the ISI caused by the channel effects [26]. The Iterative Estimation (IE) algorithm first

derives the channel coefficients as h-step, and then uses this result to obtain the transmit

symbols under the constrain of the nonlinearity model as x-step and i-step step. This

transmit symbol estimation is utilized to derive the transmit symbol matrix in h-step and

begins the new iteration procedure. The iterative estimation is based on the assumption
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that the new estimation provides a more accurate result, and it could furthermore im-

prove the accuracy of the next estimation. Under this premise, the accuracy increases

with the iterative procedure.

5.7.3.1 Initialization

In the initial step, set the iteration count k = 0. If prior knowledge about the transmit

symbols is available, use this information to select initial values, otherwise set x̌(0) =

ď and ĥ(0) = 0. Since the values of transmit symbols are affected by the transmitter

nonlinearities, the range of these values are specified by the specification such as Error

Vector Measurement (EVM) in [22]. The requirement of the degree of nonlinearities is

common in most of the commercial specifications in order to control the transmission

quality. The initial value ĥ(0) = 0 is then used as the initial value of the filter coefficients.

5.7.3.2 h-step

In this kth iteration, the algorithm uses x̌(k−1) to compose transmit symbol matrix X(k) =

diag(X̃(k)
1 , X̃(k)

2 , . . . , X̃(k)
Ns

) in Eq. (3.6). In other words, the elements of x̌(k−1) are used

to compose X̃(k)
i , i = 1, . . . ,Ns. For the first iteration, the value of x̌(0) comes from the

initialization setup. The solution of this new system of equation is derived using the

variable step size LMS filter mentioned in Algorithm 2. The new estimation is denoted

as ĥ(k) and we simplify this operation as

ĥ(k) = LMS
(

X(k−1), r, ĥ(k−1)∗
)∗

(5.22)

where LMS(·) denotes the LMS algorithm, X(k−1) is the input matrix, r is the desired

signal vector, and ĥ(k−1)∗ is the initial value for the filter coefficients. We should notice

that the conjugate operator (·)∗ is involved in this equation due to the difference between

the architecture of LMS algorithm and Eq. (3.6). The approach used to derive the step

size is based on NLMS or WLMS mentioned above.

5.7.3.3 x-step

In this step, the transmit symbols are derived based on the knowledge of h-step. Sim-

ilar to h− step, the algorithm utilizes ĥ(k) to compose the channel coefficient matrix
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H(k) where the index k denotes the number of iteration. Therefore, the transmit symbol

estimator could be written in a simple form as

x̂(k) = LMS
(

H(k), r, x̌(k−1)∗
)∗

. (5.23)

This estimator is not constrained by the nonlinearity model in Eq. (3.3), and it is further

refined by the next step.

5.7.3.4 i-step

In this step, the algorithm can either output the nonlinearity estimation result or refine the

estimation for the next iteration. To derive the nonlinearity coefficients, the estimation

result from x− step is sent to Eq. (3.3) and could be written as

b̂(k) = LMS
(

D, x̂(k)− ď, b̂(k−1)∗
)∗

. (5.24)

If not outputing the nonlinearity estimation result, the algorithm can derive the dis-

torted transmit symbols based on the new information as

x̆(k) = ď+Db̂(k). (5.25)

Then the index increases by one as k → k + 1 and x̆(k) is sent to h− step for the next

iteration.

The above iterative algorithm is summarized in the following table.

5.7.4 Simulation Results

Simulation results of iterative nonlinearity estimator are presented using both NLMS

and WLMS algorithms for a practical example. The device is assumed to be an OFDM

system following IEEE 802.11a/g specification [22], with the RF front-end device mod-

els from [35], used in our previous research [23, 26]. The range of nonlinearities is -16

dB EVM satisfying the specification [22] when operating in 16-QAM scheme. The out-

put power is 25 dBm for the emitter, which is a typical average transmit power value

in commercial market products, and the nonlinearity coefficients are obtained as shown

in Table 5.2 In our simulation, long training sequence given in [22] is utilized, and it
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Algorithm 3 Iterative Nonlinearity Estimation

1: Initialization: Set x̌(0) and ĥ(0)

2: Computation:

For k = 1, 2, . . . compute

ĥ(k) = LMS
(

X(k−1), r, ĥ(k−1)∗
)∗

x̂(k) = LMS
(

H(k), r, x̌(k−1)∗
)∗

b̂(k) = LMS
(

D, x̂(k)− ď, b̂(k−1)∗
)∗

x̆(k) = ď+Db̂(k)

3: Output: b̂(k)

Table 5.2. Nonlinearity coefficients

nonlinearity coe f f icients numberical values
b3 −0.0910+0.1580i
b5 0.2503+0.0286i
b7 0.0155+0.0025i

contains two OFDM symbols with total period of 8 µs. After matched filtering and

sampling at the symbol rate, the training sequence provides 122 samples of 64 different

symbols.

5.7.4.1 Comparison of NLMS and WLMS

In this simulation, we intend to show the performance comparison of two different vari-

able step-size LMS algorithms. Eq. (3.7) is selected as the system of linear equations to

identify. Assuming eight sensors are involved with their channel models hi, i = 1, . . . ,8

shown in Table 5.3, and without loss of generality, channel lengths of each sensor are

set to three taps.

The channel vector in Table 5.3 is distributed as

hi ∼ NLhi, 1(0Lhi×1,σhILhi), ∀i. (5.26)

In Eq. (3.7), the channel matrix H is constructed using the channel models in Table 5.3
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Table 5.3. Channel coefficients of four different channels

δ [n] δ [n−1] δ [n−2]
h1 2.342 0.072 −1.231
h2 −0.601 0.038 0.014
h3 2.077 −0.673 0.001
h4 −0.018 0.503 −0.036
h5 −0.214 1.251 0.011
h6 0.008 −0.394 −1.358
h7 2.324 −0.429 1.110
h8 −0.906 0.716 0.050

with no error. However, the receive signal r is corrupted by additive white Gaussian

noise with same variance to each sample as

n∼ NLr, 1(0Lr×1,σnILr), (5.27)

where Lr = 496 and the standard deviation of noise σn is calculated by setting SNR

of r 25 dB. The quantization noise is negligible in our simulation because the number

of quantization levels is assumed high. Therefore, while additive white Gaussian noise

(AWGN) is high, quantization noise could be ignored in the simulation. Here, SNR

is defined as the ratio between the receive signal power and the noise power. In this

scenario, the SNR in each sensor is different from that of another sensor.

Fig. 5.8 shows the convergence of the each algorithm based on Eq. (3.7) using eight

sensors with channel vectors from Table 5.3 after fifty realizations. The result shows

that WLMS algorithm outperforms NLMS algorithm in the final NMSE of x in this

simulation. As can be seen, the WLMS algorithm actually converges to lower NMSE

than the NLMS algorithm. Hence, the WLMS algorithm shows better result than NLMS.

5.7.5 Iterative Estimator

In this simulation, the performance of the iterative estimator is presented. The channel

vector of sensor i is distributed as Eq. (5.26). In Fig. 5.9, eight sensors are involved

in the simulation with SNR 20 dB, and the number of iterations in the figure indicates



84

0 2 4 6 8 10

x 10
4

−40

−38

−36

−34

−32

−30

−28

−26

−24

−22

Number of iterations

N
M

S
E

 o
f x

 

 

NLMS
WLMS

Figure 5.8. Comparison of NLMS and Weighted LMS algorithms with SNR 25 dB. The initial
values are selected close to the true values.

the iteration of the IE algorithm. For each h- and x-step, the LMS algorithm executed

40000 iterations, and 640 iterations for i-step. As shown in the simulation, the NMSE

of nonlinearity b decreases as the number of iterations increases, and then it meets the

noise floor. Comparison of the NLMS and WLMS algorithm shows that 3 dB gain is

derived using WLMS.

As the number of sensors increases, the performance is expected to improve. Figure

5.10 shows the simulation result when a different number of sensors are involved with

SNR 10 dB and 20 dB cases. The simulation of SNR 10 dB shows that as the number of

sensors increases, the nonlinearity estimation remains valid even with low SNR. Also,

NMSE improves approximately about 3 dB if the number of sensors doubles.

Fig. 5.11 shows the result of iterative estimation using NLMS in different SNR of

50 realization. A linear fit to the data from the sixteen-sensor case is shown, and this

line is shifted up 3 dB to fit the data from the eight-sensor case. This line is also shifted

4 dB and 8 dB to four-sensor and two-sensor cases. The results are also compared with

the case when only data from the highest SNR sensor is utilized as Optimal SNR sensor

(OptSr) algorithm. This algorithm performs better than two and four-sensor scenarios.

In both Fig. 5.12 and 5.11, the performance of the two-sensor scenario in a low SNR
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Figure 5.11. Performance of iterative estimation using NLMS with different number of sensors.
In the figure, ? denotes the data from OptSr algorithm, and the solid line is the linear fit of it. ◦
denotes 2-sensor case, 4 is 4-sensor case, 5 is 8-sensor case, and ¤ is 16-sensor case.

environment deteriorates fast.

Fig. 5.12 shows the result of iterative estimation using WLMS for different SNR. In

high SNR situation, the NMSE decreases approximately 3 dB as the number of sensors

double. A linear fit for the four-sensor case is shown, and this line is shifted 3 dB higher

and also 3 dB and 6 dB lower as the linear fit for two-, eight- and sixteen-sensor cases.

The perofrmance of this algorithm is also shown to be better than OptSr algorithm.

5.8 Estimate-and-Forward Fusion

In this section, we develop a unbiased linear minimum variance estimation fusion rule

to improve the accuracy of the estimates.
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Figure 5.12. Performance of iterative estimation using WLMS with different number of sensors.
? denotes the data from OptSr algorithm. In the figure, ? denotes the data from OptSr algorithm,
and the solid line is the linear fit of it. ◦ denotes 2-sensor case,4 is 4-sensor case,5 is 8-sensor
case, and ¤ is 16-sensor case.

5.8.1 Unbiased Linear Minimum Variance (ULMV) Estimation Fu-
sion

To obtain linear unbiased estimation fusion rule, we consider the following estimation

fusion

b̂ =
Ns

∑
q=1

Θ(q)b̂(q) (5.28)

where Ns is the number of sensors, Θ(q) = diag(θ3(q),θ5(q), . . . ,θM(q)) is the weight-

ing matrix and b̂(q) is the estimates of sensor q.

Our objective is to obtain the optimal weighting to minimize the estimation error

variance while keeping the estimation results unbiased, and this objective is presented

as

min{Θ(1),...,Θ(Ns)}σ2
b̂ , s.t. E

{
b̂
}

= b, (5.29)
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where σ2
b̂ is defined in (5.8). Since the expected values of nonlinearities are

E
{

b̂2i+1
}

=
Ns

∑
q=1

θ2i+1(q)b̂2i+1(q), ∀i, q, (5.30)

the summation of weighting coefficients is constrained as ∑Ns
q=1 θ2i+1(q) = 1. Using the

method of Lagrangian multiplier, we thus derive the Lagrangian as

f =




Ns

∑
q=1

M−1
2

∑
i=1

θ2i+1(q)2σ2
2i+1(q)


+

M−1
2

∑
i=1

λi

(
Ns

∑
q=1

θ2i+1(q)−1

)
.

After further derivation, the optimal weights are

θ2i+1(q) =
σ−2

b̂2i+1
(q)

∑Ns
q=1 σ−2

b̂2i+1
(q)

, ∀i,q. (5.31)

Also, the estimation error variance after combining is

σ2
b̂ =

M−1
2

∑
i=1

Ns

∑
q=1

θ 2
2i+1(q)σ2

b̂2i+1
(q)

=

M−1
2

∑
i=1




Ns

∑
q=1




σ−2
b̂2i+1

(q)

∑Ns
m=1 σ−2

b̂2i+1
(m)




2

σ2
b̂2i+1

(q)




=

M−1
2

∑
i=1

(
Ns

∑
m=1

σ−2
b̂2i+1

(m)

)−1

. (5.32)

5.8.2 Comparison with Selection Combining

In this section, we prove that multi-sensor ULMV fusion rule performs better than using

one sensor. Without loss of generality, assuming 0 < σ2
b̂(1) ≤ . . . ≤ σ2

b̂(Ns), selection

combining (SC) selects the branch that provides the maximum output signal power to

error variance ratio [93] [94]. Hence the minimum error variance of the combiner output

is σ2
b̂(1). Since the signal power of ULMV output and SC are the same, the performance

depends on the error variance. Using (5.8) and (5.32), the performance of ULMV is
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better than SC if

σ2
b̂2i+1

(1)
(

∑Ns
m=1 σ−2

b̂2i+1
(m)

)−1 > 1,∀i, (5.33)

and this is true since the LHS equals
(

1+σ2
b̂2i+1

(1)
(

∑Ns
m=2 σ−2

b̂2i+1
(m)

))
which is always

greater than 1.

5.8.3 Diversity Gain using ULMV Estimation Fusion

In this section, we show the relationship between the diversity gain and the number of

sensors. Channel coefficients can be deterministic or random variables, and we now

consider the channel amplitude Rayleigh distributed. In case when the Gaussian noise

for each sensor is the same, we assign the Gaussian error variance as σ2
n , the pdf of chan-

nel power becomes a exponential distributed random variable. As a result, set random

variable, of sensor q, α1 = σ−2
b̂3

(q) = |hi|2/(cσ2
n ), its pdf becomes

fα1 =
1

2σ2 e−
α1

2σ2 (5.34)

where both c and σ are constant parameters.

From Eq. (5.32), the estimation error variance of ULMV estimation fusion is

σ2
b̂2i+1

=

(
Ns

∑
q=1

σ−2
b̂2i+1(q)

)−1

, ∀i. (5.35)

When channel amplitudes are Rayleigh distributed random variables, from Eq.(5.34),

∑Ns
q=1 σ−2

b̂3
(q) is a gamma distributed random variable G(Ns,2σ2). Set α2 = ∑Ns

q=1 σ−2
b̂2i+1

(q)

then α3 = 1/α2 is inverse-gamma distribution

fα3(α3, Ns, β ) =
β Ns

Γ(Ns)

(
1

α3

)Ns+1

e−
β

α3 (5.36)

where β = 1/(2σ2) is a channel model coefficient.
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The expected value of inverse-gamma distribution is

E
{

σ2
b̂2i+1

}
=

β
Ns−1

, for Ns > 1. (5.37)

The diversity gain increases as the number of sensors increases. The above discussion

shows that with the number of sensor increases, the performance also improves.

To place the sensors in proper positions, we consider sensor positions that minimize

the expected value of estimation error variance as

min
{v1,..., vNs}

Nms

∑
m=1

Pr(um)σ2
b̂({v1, . . . , vNs} ,um) (5.38)

where Ns is the number of sensors, {v1, . . . ,vNs} is the sensor positions, Nms is the

number of possible locations of the MS, um is the location of MS with probability

Pr(um), and σ2
b̂({v1, . . . , vNs} ,um) is the estimation error variance given sensor posi-

tions {v1, . . . , vNs} and MS position um. Since the estimation error variance depends

channel coefficients which can be derived through field measurements or simulations,

the optimal sensor positions using (5.38) can be generating through numerical methods.

Based on simulation shown above, the misclassification rate of two routes is calcu-

lated using different number of sensors as shown in Fig. 5.13. In our simulation, the

thermal noise variance of each sensor is assumed identical. MS is measured in eight of

the spots uniformly distributed on both Route 1 and 2, where 16, 64, and 256 headers

are used with minimum Eb/N0 10 dB [22]. The simulation shows that to achieve 30%

misclassification rate, 16 headers with two sensors or 64 headers with one sensor are re-

quired. To obtain 5% misclassification rate, 256 headers with two sensors are required.

5.9 Conclusion

We have proposed specific emitter location tracking algorithm in this chapter. This

algorithm utilizes the variation of transmit power and track the emitter to the best can-

didate route. The effect of transmit power variation on nonlinearity estimation is also

presented, and the result shows that the expected values of nonlinearity estimates are

proportional to the transmit power. Since the transmit power is location dependent,
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Figure 5.13. Misclassification rate between Route 1 and 2 in Fig. 5.4. ULMV is used as the
estimation fusion rule.

its variation is compared to transmitter power profile of possible MS routes to identify

the location of MS. Also we have provided a centralized data fusion algorithm and an

estimate-and-forward algorithm. The fusion in the estimate-and-forward algorithm a

uses unbiased linear minimum variance estimation fusion rule which outperforms selec-

tion combining estimation fusion. We discussed the impact of channel amplitude and

showed that the estimation error variance is inversely proportional to the square of the

channel amplitude. Simulation results have shown that the proposed method provides

less than 5% misclassification rate given two candidate routes when there are 32 headers

in Eb/N0 10 dB environment in a single sensor scenario. While simulation results have

shown that in the estimate-and-forward algorithm, the proposed method provides less

than 5% misclassification rate given two candidate routes when 256 headers and two

sensors are utilized.



Chapter 6

Complexity Reduction

6.1 Introduction

The major complexity of the iterative estimator is in proportional to the number of it-

erations required and the complexity of the inverse operation. In this chapter, both the

number of iterations and complexity of the inverse operator are reduced. The complexity

of the iterative algorithm is presented by the number of multipliers used. An example in

Fig. 3.2 shows that under Eb/N0 of 10 dB environment with sixty four transmit packet

headers, approximate seventy five iterations are required to reach the noise floor. In the

iterative algorithm, the major complexity is mainly in the pseudoinverse operations, and

the matrices sizes in the pseudoinverse operations are Lr×P, Lr×Lh and P×P where

Lr is the length of receive symbols, Lh is the length of channel, and P is the constellation

size. Therefore, based on Table 5.1 the total number of multipliers using Golub-Reinsch

SVD is

Nm,pinv = Ni(4LrP2 +8P3 +4LrL2
h +8L3

h +12P3) (6.1)

where Ni is the number of iterations and in this case (6.2) is equal to 1.19× 109. In

Chapter 3 Section 6 a Ni reduction method is presented and the tradeoff between Ni and

noise floor was discussed. In this chapter, other methods using different data sizes to

process the iterative algorithm are shown. Also, LMS algorithms are also used in this

chapter providing the complexity in order of

Nm,LMS = Ni(LrP+LrLh +P2) (6.2)
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which equal to 3.5×106 in this example.

6.2 Convergence Rate Improvement

(3.15) implies that the speed of the convergence is inversely proportional to the maxi-

mum eigenvalue of the error transform matrix. Q(k)
b ≈ λ k−1

max Ď+RhRxVΛV−1. Therefore,

we utilize the structure of the receive data to decrease the λmax coefficient.

Matrices X and H are separated by XT = [XT
1 | . . . |XT

Z], HT = [HT
1 | . . . |HT

Z ], and vector

rT = [rT
1 | . . . |rT

Z] according to the size of each segment. The iterative algorithm is then

modified to estimate the first segment X1, H1 and r1 using the algorithm in Table 3 with

only one iteration, and then this result is used as the initial value to process X2, H2 and

r2. This process is continued until the last segment, and the result is used as the initial

value for the first segment to repeat the same process again until the stopping decision

is made. Semi-analytical results are shown in Appendix G.1 and the conclusion shows

that the behavior of this new process in terms of NMSE can be presented as

ě(k)
x,Z = (RZ,1)

k ě(0)
x +

k−1

∑
j=0

R j
Z,1

(
Z

∑
j=2

RZ, jF
(k−i)
j−1 n j−1 +F(k−i)

Z nZ

)
(6.3)

where ě(k)
x,Z is the error of kth iterations from segment 1 to Z, RZ,1 = RZRZ−1 . . .R1, Ri

is the error transfer matrix of segment i, and F(k)
i = PD

[
Rh,iX

(k−1)+
i +H(k)+

i

]
. The first

term on the RHS of (6.3) converges while the second term increases as the iteration

process. Comparing Eq. (6.3) and (3.14), the convergence behavior is similar, but the

convergence rate of (3.14) is determined by ρ(R) while that of (3.14) is determine by

ρ(RZ,1). As a result, by decreasing ρ(RZ,1) the number of iterations might be reduced.

Since our algorithm collects data from multiple headers, matrices H and X have

repeated structures. For instance, Appendix B is a one-header example, while X in a

two-header example should be modified as

X =

[
x1 x2 x3 x4 0 x1 x2 x3 x4 0

0 x1 x2 x3 x4 0 x1 x2 x3 x4

]T

. (6.4)

In this example, the first half of the matrix, from the first to the fifth row, is identical

to the latter half, from the sixth row to the last row, and similar situation can be seen
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Figure 6.1. Comparison of different segment sizes using pseudoinverse and LMS algorithms.

in matrix H. Based on this observation, if both matrices are separated by half, the the

estimator processes the first half and the error transfer matrix is identical to that of pro-

cessing the full block. As proved in Appendix G.2, R2,1 = R2R1 where R2 = R1; hence

R(k)
1 ≈ λ k

maxVΛV−1 and R(k)
2,1 ≈ λ 2k

maxVΛV−1 if λmax À λ j, λ j 6= λmax. Fig. 6.1 shows the

comparison of different segment sizes using both pseudoinverse and LMS algorithms.

The result indicates that the algorithm using four smaller segments converges faster than

that of one bigger segment using both pseudoinverse (Pinv) and LMS algorithm. The

noise floor of four segments is higher than one segment in the pseudoinverse case but

the LMS algorithm provides a lower noise floor. In Fig. 6.2 and 6.3, the number of itera-

tions and multipliers required by using alternative segment sizes are shown. As a result,

the more segments used, the less number of multipliers is required. Fig. 6.4 shows

the NMSE performance using both pseudoinverse and LMS algorithms with different

Eb/N0 environments. As the number of segments increases, the NMSE performance

worsens using pseudoinverse while the NMSE is better using the LMS algorithm.
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6.3 Variable Segment Size Algorithm

Once the segment size is reduced, the convergence rate improves but the noise floor

also rises. Therefore, we utilize the advantage of using smaller segment sizes at the

beginning of the algorithm and then use larger segment sizes afterwards.

Figure 6.5 shows the number of multipliers using full-segment size, one eighth-

segment size, and variable-segment size. In the variable-segment size algorithm, the

estimator starts as one eighth-segment size and switches to full-segment size after 108

multipliers. The number of iterations required is presented in Fig. 6.6. In this variable-

segment-size example, the number of iterations used for each segment size is pre-

determined based on simulation results. Once the algorithm reaches the noise floor,

it switches to another segment size.

However, in Fig. 6.7, LMS algorithm results show that simply using smaller segment

sizes is sufficient to reach a better NMSE floor. Figure 6.8 also shows the number of

multipliers required for the algorithm.
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6.4 Conclusion

In this section, we presented complexity reduction algorithms that segment the data into

smaller sizes instead of using the whole data segment. The results show that using

smaller segments increase the convergent rate. In terms of NMSE noise floor, smaller

segment sizes though increases the rate but also rises the noise floor when pseudoinverse

is used. While using classic LMS algorithms, the convergence rate is slower than that of

pseudoinverse but the noise floor is lower in small-segment cases. In the last part of this

chapter, variable-segment-size algorithm is also presented to utilize the fast convergent

rate properties of small segment and the low noise floor of bigger segment.



Chapter 7

Summary

In this thesis, join SEI and SET algorithms were presented and simulations were con-

ducted in practical scenarios. One major contribution in this thesis is to provide a robust

transmitter nonlinearity estimator considering both stochastic signals or deterministic

signals in multipath environments. Semi-analytical results of the algorithm performance

were also provided for further investigation 1. The nonlinearity estimator is also applied

to channel estimation when transmitter nonlinearities are considered. The result shows

BER saturates at a noise floor caused by nonlinear signal distortion and our channel es-

timator can provide more accurate estimates 2. Another main contribution is the emitter

tracking algorithms which jointly identify the emitter of interest and locate its current

position. The algorithms utilize the power control profiles of the emitter and reduces

inter-symbol interference effects. Several complexity reduction methods are provided

in the last part to complete the thesis. The algorithms first reduce the number of it-

erations required in the iterative algorithm. Instead of processing the whole segment

of data, smaller segment sizes are used to increase the convergent rate and therefore

the number of iterations are reduced. Also, LMS algorithms are also explored, which

change the complexity by one order compared to pseudo-inverse algorithms.

1M.-W. Liu and John F. Doherty, ”Specific emitter identification in multipath channels,” IEEE Trans.
Inf. Forensics Security, Accepted for publication.

2M.-W. Liu and J. F. Doherty, ”Frequency-selective multiple-input multiple-output channel estimation
with transmitter non-linearities,”Signal Processing, IET, vol. 3, no. 6, pp. 467 475, 2009.



Appendix A

Periodogram Performance

The variance of the estimated spectra determines the performance and formulation of a

classifier. The overall variance contains several sources such as the channel noise and

the variance introduced in the spectra estimation procedure. The later factor depends

on the methods of implementation. Spectrum estimation is a well developed area, some

common used methods are periodogram, information theory approach, autocorrelation

method etc.

E
{

R̂zz(k)
}

=
1
N

N−1−k

∑
n=0

E {z(n+ k)z∗(n)}=
1
N

N−1−k

∑
n=0

rzz(k) =
N− k

N
rzz(k)(A.1)

for k ≥ N.

E
{

R̂zz(k)
}

=

{
N−|k|

N rzz(k), |k| ≤ N

0, |k|> N
(A.2)

In this section we consider methods based on periodogram due to the computa-

tional efficiency of Fast Fourier transform (FFT). Supposed r(t) is one realization of

the stochastic process. Its periodogram can be easily computed using discrete Fourier

Transform (DFT) or FFT as follows, [40]:

P̂per(l) =
1
N
|RN(l)|2 (A.3)
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where RN(l) is the DFT of of N-point data sequence rN(n) as defined in (2.14).



Appendix B

Example for Linear Approximation
Approach

In this appendix, we introduce a simplified example of the LA method. Using the no-

tations in Section 3.3, parameters are assigned as U = 2 and P = 4. Furthermore, the

transmitter transmits 4 symbols from the alphabet {x1, x2, x3, x4} through channel h =

[h1, h2]T. The number of received signal symbols is Lr = Lts +Lh−1 = 4+2−1 = 5.

Therefore, the 5×2 convolution matrix X is composed as

X =

[
x1 x2 x3 x4 0

0 x1 x2 x3 x4

]T

, (B.1)

while the 5×4 channel matrix H and a 5×6 matrix DLA are composed as

H =




h1 0 0 0

h2 h1 0 0

0 h2 h1 0

0 0 h2 h1

0 0 0 h2




DLA =




0 0 ď1 0 0 0

0 0 0 ď1 ď2 0

ď3 0 0 0 0 ď2

ď4 ď3 0 0 0 0

0 ď4 0 0 0 0




.

The estimation result is assumed to be ĥ(0) = [ĥ(0)[1], ĥ(0)[2]]T. Based on the same

assumption, xU = [x1, x2]T and xL = [x3, x4]T. Moreover, H(0)
U is a 5× 2 matrix and
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H(0)
L is also are 5×2 constructed as

H(0)
U =




ĥ(0)[1] 0

ĥ(0)[2] ĥ(0)[1]

0 ĥ(0)[2]

0 0

0 0




, and H(0)
L =




0 0

0 0

ĥ(0)[1] 0

ĥ(0)[2] ĥ(0)[1]

0 ĥ(0)[2]




.



Appendix C

Proof for Theorem 1 in Chapter 3
Section 3.3

proof: From Section 3.3, the nonlinearity multiplier of the “nonlinear symbols” is de-

fined as αi = xi/ďi, i = {1,2, . . . ,P}. Hence, in the case when the amplitudes of low-

amplitude symbols are identical; their nonlinearity multipliers are the same. Assuming

αi = α, i = {U +1,U +2, . . . ,P}, the following equation is derived using ĥLA = D+
LAr:

DLAhLA +DLA

[
(α−1)h

0

]
+n = r, (C.1)

where 0 is a LhU × 1 zero vector, and therefore the estimated channel coefficient is

derived as: ĥ(0) =
[

ILh 0
]

ĥLA = h + (α − 1)h +
[

ILh 0
]

D+
LAn. In the high SNR

case, the additive noise is weak, which means ĥ(0) ≈ αh. Substituting into (3.8),

x̂(0)
U ≈ (

1
α

H+
U )

[
r− (αHL)ďL

]

≈ 1
α

H+
U

[
HU xU +HLxL +n−HL(αďL)

]

≈ 1
α

(
xU +H+

U n
)
, (C.2)

where xL = αďL. This result is substituted into (3.9),

b̂(0) ≈ Ď+
U

[
1
α

(
xU +H+

U n
)− ďU

]
. (C.3)
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After simple manipulation, (C.3) results in (3.10).



Appendix D

Proofs for Theorems in Chapter 3
Section 3.4

D.1

Theorem: The nonlinearity estimates before and after the i-step are identical.

Proof: Suppose the nonlinearity estimation after the i-step is b̆(k) at kth iteration,

then b̆(k) = Ď+(x̆(k)− ď). Then using Algorithm 3, we have x̆(k) = ď + PĎ(x + e(k)
x −

ď) = x+PĎe(k)
x . Substituting this equation into the previous equation, we obtain b̆(k) =

Ď+(x + PĎe(k)
x − ď) = b + Ď+e(k)

x . This is the same result when substituting x̂(k) = x +

e(k)
x into (3.13).

D.2

Theorem: The nonlinearity estimation error at the kth iteration is shown in (3.14) and

Q(k)
b = Ď+RhRxRk−1, (D.1)

, where e(0)
x is the initial estimation error, and

W(k)
b = Ď+

{
RhRx

[
k−1

∑
i=0

RiPĎRhX(k−i−1)++
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k−1

∑
i=0

RiPĎH(k−i)+

]
+RhX(k−1)+ +H(k)+

}
. (D.2)

proof: Assign ĥ(k) = h + e(k)
h , x̂(k) = x + e(k)

x , and x̆(k) = x + ĕ(k)
x , where e(k)

h , e(k)
x ,

and ĕ(k)
x are the error vector containing both the estimator error and error driven by the

additive noise in the kth step. Similar to the error vectors, we assign X(k) = X + E(k)
x

and H(k) = H+E(k)
h in the kth step. In the following proof, Lr is the number of receive

symbols, P is the length of vector x, and Lh is the channel length as defined in Section

4.2.

For the kth h-step, the estimation is written in terms of error vector as

ĥ(k) = X(k−1)+r = X(k−1)+(X(k−1)h+E(k−1)
x h+n)

= X(k−1)+X(k−1)h+X+E(k−1)
x h

+(X(k−1)+−X+)E(k−1)
x h+X(k−1)+n

≈ h+(X+E(k−1)
x h+X(k−1)+n). (D.3)

Here we assume both
∥∥∥X(k−1)+−X+

∥∥∥ and
∥∥∥E(k−1)

x

∥∥∥ are small; hence (X(k−1)+−X+)E(k−1)
x →

0. To further extract the error vector from (D.3), we expand the error matrix E(k−1)
x

E(k−1)
x =

P

∑
i=1

(ĕ(k−1)
xi ILr)Sx,i =

P

∑
i=1

[
Lr

∑
j=1

ψLr, jĕ
(k−1)T
x Ψx,i, j

]
Sx,i.

Here Sx,i ∈ RLr×Lh is a selection matrix for xi, i ∈ {1, . . . ,P}, in which the elements of

Sx,i are set to 1 only when xi has contribution to X corresponding to those positions

and the rest of the elements are set to zero. Also ILr ∈ RLr×Lr is an identity matrix,

ψLr, j ∈ RLr×1 sets only the jth element to 1 and the remaining elements zero, ĕ(k−1)
x =

[ĕ(k−1)
x1 , ĕ(k−1)

x2 , . . . , ĕ(k−1)
xP ]T is the error vector from i-step when k > 1 and ĕ(0) = e(0)

from LA approach when k = 1, and Ψx,i, j ∈ RP×Lr assigns 1 to the ith row and jth

column while other elements of the matrix are set to zero. Then we can derive

X+E(k−1)
x h = X+

{
P

∑
i=1

[
Lr

∑
j=1

ψLr, jĕ
(k−1)T
x Ψx,i, j

]
Sx,i

}
h

=

{
P

∑
i=1

Lr

∑
j=1

[
X+ψLr, j

][
Ψx,i, jSx,ih

]T

}
ĕ(k−1)

x . (D.4)
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We further represent this equation by X+E(k−1)
x h≡Rxĕ(k−1)

x , where Rx ∈CLh×P. Com-

bining (D.3) and (F.2) , we have e(k)
h = Rxĕ(k−1)

x +X(k−1)+n.

For the x-step, similar strategy is used to obtain x̂(k)−x = e(k)
x ≈H+E(k)

h x+H(k)+n.

And the following result is also derived as:

H+E(k)
h x =

[
Lh

∑
i=1

Lr

∑
j=1

(
H+ψLr, j

)(
Ψh,i, jSh,ix

)T

]
e(k)

h , (D.5)

where Ψh,i, j ∈ RLh×Lr provides similar function assigning 1 to the ith row and jth col-

umn component while others set zero, and Sh,i ∈ RLr×P is the selection matrix for

hi, i ∈ {1, . . . , Lh}. For convenience, we rewrite (F.3) as H+E(k)
h x ≡ Rh · e(k)

h , where

Rh ∈ CP×Lh .

In conclusion, the error vectors of h- and x-step are approximated as e(k)
h ≈Rxe(k−1)

x +

X(k−1)+n, and e(k)
x ≈ Rhe(k)

h +H(k)+n. Then using Theorem D.1, the i− step error vec-

tor is ĕ(k)
x = PĎe(k)

x and that of the nonlinearity estimate is e(k)
b = Ď+e(k)

x . After inductive

reasoning based on the above error vectors, this theorem is derived.

D.3

Theorem: The nonlinearity coefficients estimator is asymptotically unbiased if the

spectral norm of R is less than 1, ρ(R) < 1 where R = PĎRhRx. By replacing PĎ

by IP, this principal is also valid when the i-step is not used.

Proof: From (3.14) with ρ(R) < 1, the bias term is Q(k)
b e(0)

x = D+RhRxRk−1e(0)
x →

0 as k → ∞. Once ρ(R) < 1, matrix R will converge to a zero matrix asymptotically

after sufficient number of iterations and thus the error caused by initial estimation will

approach zero.

Remark: If ρ(R) < 1, then Q(k)
b e(0)

x in (3.14) converges to a zero vector.

Remark: If ρ(R) < 1, then W(k)
b n in (3.14) converges to a fixed vector.

Proof: Assuming ρ(R) < 1 and Rk → 0 ∀k > v, the summations in (D.2) become

fixed matrices when k > v. Therefore, as long as the spectral norm assumption holds,

these terms will saturate after a sufficient number of iterations.

The MSE of the nonlinearity estimator also saturates under the same assumption.

Assuming zero mean Gaussian noise and e(0)
x = εεε(0)

x + n(0)
x where εεε(0)

x is the bias term



110

and n(0)
x is the additive noise term as described in Theorem 3.3. the following is obtained

from (3.14):

E
[
e(k)†

b e(k)
b

]
= εεε(0)†

x Q(k)†
b Q(k)

b εεε(0)
x +

E
[
n(0)†

x Q(k)†
b Q(k)

b n(0)
x

]
+E

[
n†W(k)†

b W(k)
b n

]
(D.6)

where e(k)
b = b̂(k)− b. Furthermore, when ρ(R) < 1, Q(∞)

b → 0 and W(∞)
b converges

to a fixed matrix. As a result, as k → ∞, the first and the second terms on the RHS

of (D.6) asymptotically approach zero; the MSE of nonlinearity coefficient estimate is

independent of the initial estimation value, and converges to a noise floor.



Appendix E

Generation of matrices X and H

To describe the details of generating matrices X and H, several definitions are assigned

for convenience. Define vector x(i)[τ] = [x(i)[τ], x(i)[τ − 2], . . . , x(i)[τ − Lh + 1]]T,

where x(i)[ j] = 0 when j≤ 0. Furthermore, aCnR×LhnT matrix X̄(i)[τ] in (4.7) is defined

as following

X̄(i)[τ] =




x(i)[τ] 0 . . . 0
0 x(i)[τ] . . . 0
...

... . . . 0
0 0 . . . x(i)[τ]




, (E.1)

where 0 is a 1×Lh zero vector. Therefore, we can define X as a CLrnR×LhnRnT matrix:

X =




X̄(1)[1] X̄(2)[1] . . . X̄(nT )[1]

X̄(1)[2] X̄(2)[2] . . . X̄(nT )[2]
...

... . . . ...

X̄(1)[Lr] X̄(2)[Lr] . . . X̄(nT )[Lr]




. (E.2)

where Lr = Lts +Lh−1 is number of the receive symbols, Lts is the number of training

sequence symbols, and Lh is the number of channel taps.

Here we provide an example to explain the composition of matrix H ∈ CLrnR×P in

(4.7). Given a 2×2 MIMO system, channel length Lh = 3, number of possible transmit

symbols P = 9, and length of training sequence Lts = 160. Hence, x = [x1, . . . , x9]T, and

H ∈ C324×9. Suppose the first transmit element sends x(1)[1], x(1)[2], . . . , x(1)[160],



112

and assume they correspond to x2, x2, . . . , x9. While the second transmit element sends

x(2)[1], x(2)[2], . . . , x(2)[160] corresponding to x1, x3, . . . , x3. Therefore, H in (4.7)

becomes

H =




h12[0] h11[0] 0 . . . 0

h22[0] h21[0] 0 . . . 0

h12[1] h11[0]+h11[1] h12[0] . . . 0

h22[1] h21[0]+h21[1] h22[0] . . . 0
...

...
...

...
...

0 0 h12[2] . . . h11[2]

0 0 h22[2] . . . h21[2]




. (E.3)

From the above discussion, the population of channel coefficients in this matrix are

related to the linear combination of channel coefficients and the transmit symbols.



Appendix F

Proofs for Chapter 5

F.1 Impact on the Transmit Power

This appendix shows the variation of the transmit power influences the estimation ac-

curacy. The nonlinearity estimator error can be decomposed by the error caused by

the initial estimation error and the additive white Gaussian noise. The result from [28]

shows that the estimator error at kth iteration is

b̂(k)−b = Q(k)
b e(0)

x +W(k)
b n, (F.1)

where Q(k)
b and W(k)

b are defined in (D.1) and (D.2). Here, R = PĎRhRx, PĎ = ĎĎ+,

Rx =
P

∑
i=1

Lr

∑
j=1

[
X+ψLr, j

][
Ψx,i, jSx,ih

]T
, (F.2)

and

Rh =
Lh

∑
i=1

Lr

∑
j=1

[
H+ψLh, j

][
Ψh,i, jSh,ix

]T (F.3)

where Sx,i ∈ RLr×Lh is a selection matrix for xi, i ∈ {1, . . . ,P}, in which the elements

of Sx,i are set to 1 only when xi has contribution to X corresponding to those positions

and the rest of the elements are set to zero. Sh,i ∈ RLr×P is a selection matrix for h,

ψLr, j ∈RLr×1 sets only the jth element to 1 and the remaining elements zero, and e(k−1)
x

is the error vector of x at (k−1)th iteration. Ψx,i, j ∈ RP×Lr assigns 1 to the ith row and

jth column while other elements of the matrix are set to zero.
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Therefore, if the maximum eigenvalue of R is less than 1, R(∞) → 0 and Q(∞)
b → 0.

This indicates that the estimate is asymptotically unbiased. The estimator variance as

k → ∞ is

σb̂2 = diag(W(∞)†
b W(∞)

b )σ2
n , (F.4)

where σb̂2 is defined in (5.8). Here we consider the scenario where the transmit power

varies from σ2
d to γσ2

d where γ is the ratio of the power variation and the channel h′ in

(5.3) is stationary in the observation time. Though the increase in transmit power effects

the transmit symbol constellation, the variation in the nonlinearities is limited because

most specifications of communication systems specify the upper limits of nonlinear-

ity effects on transmit symbol constellation. For instance, the error vector magnitude

requirement (EVM) in [22] is -16 dB and -21 dB in [83]. Compared to the limited non-

linearity variations, the degree of freedom in transmit power is higher. For example, the

transmitter is required to provide dynamic power control range of at least 50 dB in no

less than -1 dB steps in [83].

As a result, we assume that the transmit power constellation in (3.7) is approximately

the same, namely xγ ≈ x, and we focus on the effects on the equivalent channel hγ =
√γh from (5.3). The performance of the nonlinearity estimation is derived in (F.4). The

channel matrix with new transmit power is Hγ =
√γH, and the pseudoinverse becomes

H+
γ = H+/

√γ . The relationship between the original and new error transform matrixes

are also derived as Rh,γ = Rh/
√γ , Rx,γ =

√γRx, and Rγ = R. Based on the above

derivation and (F.4), Qb is identical even the transmit power changes which leads to

k → ∞ Q(∞)
b → 0, and therefore σ2(∞)

b,γ = σ2(∞)
b /γ2.

F.2 Impact on Channel Gain

From (D.1), we know the estimation error variance is a function of H, Rx Rh and R
where Rx and Rh are the error transform matrices of x- and h-step, and R = PĎRhRx.

Given h = h, we can show that ‖H‖2 ∼ |h| and ‖H+‖2 ∼ |h|−1. Using (F.2) and (F.3),

we obtain that Rx ∼ h and Rh ∼ h−1. Furthermore, since PĎ is fixed, then R is not a

function of h. For the same transmitter, suppose as the number of iteration approaches

infinity x(∞)→ x̂ and ĥ(∞)→ h, then W(∞)
b ∼ h−1. Therefore, the variance of nonlinearity

estimation is in inversely proportional to the power of channel amplitude.



Appendix G

Proofs for Chapter 6

G.1 Proof for Error Accumulation

Assuming there are Z segments in a block, and Z≥ 2. In the iteration of the first segment

generate the result as

ě(1)
x,1 = R1ě(0)

x +F(1)
1 n1 (G.1)

ě(1)
x,2 = (R2R1)ě

(0)
x +R2F(1)

1 n1 +F(1)
2 n2

...

ě(1)
x,Z = (RZ . . .R2R1)ě

(0)
x +(RZ . . .R2)F

(1)
1 n1 +(RZ . . .R3)F

(1)
2 n2 + . . .

+RZF(1)
Z−1nZ−1 +F(1)

Z nZ

where F(k)
i = PD

[
Rh,iX

(k−1)+
i +H(k)+

i

]
, and Ri is the error transfer function of segment

i. The summation of the above equation is

ě(k)
x,Z = (R1,Z)k ě(0)

x +
k−1

∑
j=0

R j
Z,1

(
Z

∑
j=2

RZ, jF
(k−i)
j−1 n j−1 +F(k−i)

Z nZ

)
(G.2)

where RZ,1 = RZRZ−1 . . .R1‘.
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G.2 Proofs Error Transfer Matrices

The error transfer function of XT
2 = [XT|XT] is

Rx2 =
P

∑
i=1

2Lr

∑
j=1

[
[
1
2

X+|1
2

X+]ψ2Lr, j

][
[Ψx,i, j|Ψx,i, j]

[
Sx,i

Sx,i

]
h
]T

=
Lr

∑
j=1

P

∑
i=1

[
1
2

X+ψLr, j

][
Ψx,i, jSx,ih

]T

+
2Lr

∑
j=Lr+1

P

∑
i=1

[
1
2

X+ψLr, j

][
Ψx,i, jSx,ih

]T

= Rx. (G.3)

Similarly, the error transfer function of HT
2 = [HT|HT] is also derived as Rh2 = Rh.
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