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Abstract

The water produced with oil as a result of water coning is a serious problem as it
decreases well productivity and increases the cost of operation. The main cause of
water coning is the pressure drawdown near the wellbore. Producing a well in an
oil reservoir with a bottom water drive will cause the original oil-water contact to
rise towards the well in the shape of a cone. As production continues, the height of
the cone increases. Once the water reaches the wellbore, the water starts to be pro-
duced and water production increases with time while the oil production decreases.

The first part of this thesis is concerned with the analysis of pressure transient
data in an oil reservoir with edge water. A 3-D numerical model is used to gen-
erate pressure transient data for a vertical well. The reservoir is considered as a
composite reservoir where the inner zone contains the oil phase, and the outer zone
contains the water phase. Procedures are proposed to help estimate the distance to
the discontinuity under certain conditions. These procedures can be applied using
the derivative of the pressure buildup test data if the mobility ratio is less than
unity. Some of the parameters that control the accuracy of the proposed analysis
procedure are the producing time and the external reservoir radius.

The second part of this study is concerned with the water coning phenomena. Ar-
tificial neural networks are developed to predict water saturation around vertical
and horizontal wells with a good accuracy in oil reservoirs experiencing a bottom
water drive. The data used to develop the neural networks are from a numerical
simulation model for reservoirs created using synthetic data. The neural networks
have been found to effectively predict the change of water saturation over the time
and show the development of the water cone.
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Chapter 1
Introduction

Many hydrocarbon reservoirs contain an active water aquifer. The drilled wells

are always completed to produce hydrocarbon. As oil production continues, water

starts to appear in the wellbore. This water is undesirable as its presence around

the wellbore decreases the well productivity and needs more facilities to be handled,

treated and disposed of at the surface resulting in extra investments and operating

costs. Production of the hydrocarbon is initiated by the drawdown created at the

wellbore, which causes a force that pulls the hydrocarbon towards the wellbore.

This force also, with the capillary pressure, brings water in the aquifer upward

towards the wellbore. What controls the height of the water is the gravitational

force working in the opposite direction. The height of the water cone stops increas-

ing if the upward dynamic flow forces become equal to the downward gravitational

forces. The water will be produced once the height of the water reaches the well-

bore. By continuing to produce the hydrocarbon with water, formation around

the wellbore will be saturated with water in the shape of a cone, a phenomenon

that is referred to as water coning.

This study consists of two parts. The first part studied the pressure transient test

data for a vertical well in an oil reservoir with edge water (Fig 1.1). The reservoir

was considered as a composite reservoir. A reservoir is composite when there is a

difference in fluid properties or rock properties in two or more concentric zones in

the reservoirs. In this part, the inner zone contains the oil phase, and the outer

zone contains the water phase. This study will look into three cases of two-regions
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composite reservoirs:

1. Two different absolute permeabilities

2. Two different hydrocarbon liquids (low viscosity oil and high viscosity oil)

3. Two different fluids (oil and water)

Figure 1.1: Schematic representation of an oil reservoir exposed to edge
water encroachment.

The distance from the well to the interface that separates the two different zones

in a composite reservoir is called the distance to the discontinuity (rin), and it can

be estimated from proposed procedures. The proposed procedures use the pres-

sure derivative buildup data if the mobility ratio is less than unity. The main two

factors that affect the accuracy of the estimate are the producing time (tp) and the

reservoir radius (re). These procedures can be used for an oil reservoir with edge

water encroachment to monitor the distance to the edge water front over time to

help in the future water handling plans.

The approach for this problem is done by going through 3 stages. The 1st stage

is analyzing the pressure transient data for an oil composite reservoir with two

different absolute permeabilities. This simple case will assure that the value of rin

will not change during the life of the reservoir and limit the effects on the pressure
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transient data with the effect of the discontinuity.

The 2nd stage is more complex and involves analyzing a composite reservoir with

two different oil viscosities. The value of rin could change during the life of the

reservoir as the produced oil in the inner zone will be displaced by the oil in the

outer zone and this could change the value of rin.

The 3rd stage, which is the principal goal of this study, is analyzing a composite

reservoir with two different fluids, oil and water. In this stage, the difference is not

only for one property of a fluid, but instead, for two different fluids.

The second part analyzes the water coning phenomenon (Fig 1.2). The water

coning behavior is very important in hydrocarbon production and the ability to

predict its behavior will improve and help in better managing the reservoir. The

behavior of the water coning in an oil reservoir was predicted successfully using

artificial neural networks by predicting the change of the water saturation distri-

bution in reservoirs over time. The developed neural networks were designed to be

used for vertical and horizontal wells with a bottom water aquifer. These devel-

oped neural network can be useful in optimizing production to find the optimum

perforation interval or the optimum production rate to delay the water production.

Figure 1.2: Schematic representation of an oil reservoir experiences
water coning.



Chapter 2
Literature Review

2.1 Water Coning

The first paper which discussed the water coning phenomenon and its physics was

Muskat and Wyckoff (1935). In the paper it was indicated that some of the factors

that affect the water coning are production rate and length of perforated interval.

Byrne and Morse (1973), Mungan (1975) and Blades and Stright (1975) performed

a numerical study of the effects of various parameters on water coning in vertical

wells. Kuo and DesBrisay (1983) also studied the effects of various parameters on

water coning in vertical wells, and developed correlations to predict critical rate,

breakthrough time and watercut after water production. Yang and Wattenbarger

(1991) studied the water coning effects in vertical and horizontal wells and devel-

oped a method to calculate the critical rate, breakthrough time and the water-oil

ratio after breakthrough. Van Golf-Racht and Sonier (1994) investigated the wa-

ter coning behavior for a fractured reservoir in a vertical well and studied various

parameters and their effects on the water coning.

Helle and Bhatt (2002) developed artificial neural networks that predict the un-

derground fluids (water, oil and gas) from the well logs. Shokir (2004) presented

new artificial neural networks that predict water saturation in shaly formation us-

ing the well log data and the core data as the inputs. Al-Bulushi et al. (2009)

developed artificial neural networks models to predict water saturation from well

log data and core data.
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2.2 Composite Reservoirs

There have been many researchers interested in studying and analyzing compos-

ite reservoirs to understand their behavior and the flow performance under these

conditions and also to calculate important parameters. Hurst (1960) and Mortada

(1960) studied how the well performance is affected by the interference of two oil

reservoirs producing from the same aquifer. Carter (1966) presented an analytical

solution for a radial composite reservoir with a closed and no-flow outer boundary.

He only changed the permeability in the two zones. Satman et al. (1980) presented

another analytical solution for single phase systems with different fluid properties,

two different permeabilities and an infinite reservoir. The wellbore storage and

skin factors were taken into consideration. Regarding estimating the size and the

distance to discontinuity in a composite reservoir, Tang (1982) showed that the

intersection method can be used to determine the distance to the discontinuity

if the pressure data include two well-defined semi-log straight lines. Odeh (1969)

generated correlations to be used in trial and error to determine the mobility of

the two zones in a radial composite reservoir and the distance to the discontinuity.

Bixel and Van Poollen (1967) developed a method to calculate the distance to the

discontinuity using type curves and then locating the deviation point to calculate

the distance. Loucks and Guerrero (1961) found that under certain conditions,

the permeabilities in both zones and the size of the inner zone can be determined

from the pressure drawdown test. Brown (1985) presented graphical analysis to

determine the mobility of the inner and the outer zones as well as the distance to

the discontinuity. In using the semi-log plot to analyze pressure transient data,

existing flow regimes need to be identified first. Also it is known that the pressure

derivative response is more sensitive than the pressure data [Bourdet et al. (1983)

and Tiab and Kumar (1980)]. Issaka and Ambastha (1996) developed a gener-

alized pressure derivative formula for a composite reservoir to identify the flow

regimes in four flow geometries (radial, elliptical, linear and spherical). Olarewaju

and Lee (1989) found that the pressure derivative curves for a composite reservoir

show a different response from homogenous reservoirs.



Chapter 3
Composite Reservoir Model

3.1 Numerical Model Development

Four 3D numerical models were used for the composite reservoir model study; two

of the four models are single phase, oil models, and the other two are two-phase,

oil/water models. All of the models are radial models with a vertical well. The ra-

dial grid system was used. The reservoir properties are homogeneous and isotropic

and for the fluid properties, the reservoir conditions are assumed to be above bub-

blepoint pressure to ensure that no free gas is present in the reservoir. There is

a base case for each model, and then, for each parameter to be studied, its value

was changed to produce simulation runs for different values. The study domain

used by the numerical model is shown in Fig 3.1 for the composite reservoir study.

The model is populated by using homogeneous properties, isotropic permeability,

single fluid in some cases and different fluids in other cases in each region. The

reservoir is horizontal with uniform thickness. The model is verified against the

analytical solution. The reservoir properties are tabulated in Table 3.1.
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Table 3.1: Reservoir properties

thickness (h), ft 50

Porosity (φ) 0.25

Initial pressure (pi), psig 5000

Temperature, oF 130

Reservoir radius (re), ft 6,000

Figure 3.1: Schematic representation of a two-region radial composite
reservoir

The absolute permeability in the vertical direction (z-direction) and the angular

direction (θ-direction) are set equal to zero, so that the only component of the

flow in the radial direction is analyzed. The gravitational forces are ignored. The

model was run with two different scenarios (Fig 3.2) in order to gradually increase

the complexity of the problem.
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(a) (b)

Figure 3.2: Illustration of the reservoir characteristic for: a) First sce-
nario. b) Second scenario

The first scenario involves running the model as a single phase system with two

different absolute permeability zones. Analyzing the pressure transient data, a

unique behavior that identifies the response at the discontinuity is expected to be

observed. The second scenario involved running the model with two different fluids

for each zone, oil and water, and the formation absolute permeability is kept the

same in both zones. Two different cases are studied in the second scenario; i) oil

in the inner zone and water in the outer zone, and ii) water in the inner zone and

oil in the outer zone.

3.2 Numerical Model Validation

The first step after building the model was to validate it. The verification was

undertaken by comparing the numerical model with the analytical solution for

a composite reservoir. The analytical solution was developed by Satman et al.

(1980). The following assumptions were considered:

• The formation is horizontal, of uniform thickness, and homogeneous.

• The front is of infinitesimal thickness in the radial direction.
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• The region behind the front contains only gas, while there is restricted gas

flow in the region ahead of the front. However, the mobility of the gas is so

much greater than that of the liquid phases that only gas flow needs to be

considered.

• Flow is radial, and gravity and capillarity effects are negligible.

• The front can be considered stationary throughout the few hours of the

testing period.

• The fluids are slightly compressible.

The diffusivity equations in dimensionless form for the two regions are:

For zone 1,

1

rD

∂

∂rD
[rD

∂PD1

∂rD
] =

∂PD1

∂tD
, 1 ≤ rD ≤ RD (3.1)

and for zone 2,

1

rD

∂

∂rD
[rD

∂PD2

∂rD
] = η

∂PD2

∂tD
, RD ≤ rD <∞. (3.2)

Inner boundary conditions are:

CD
dPwD

dtD
− [

∂PD1

∂rD
]rD=1 = 1 (3.3)

and

PwD = PD1 − S[
∂PD1

∂rD
]rD=1 = 1. (3.4)

Initial conditions are

PD1(rD, 0) = 0; 1 ≤ rD ≤ RD (3.5)
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and

PD2(rD, 0) = 0;RD ≤ rD <∞. (3.6)

Conditions at the interface are

PD1(RD, tD) = PD2(RD, tD) (3.7)

and
∂PD2

∂rD
= λ

∂PD1

∂rD
; rD = RD, and tD > 0. (3.8)

The outer boundary condition is given as:

lim
rD→∞

PD2(rD, tD) = 0. (3.9)

The solution in the Laplace space in terms of the Bessel functions is as follows,

P̄D1(rD, s) = C1I0(rD
√
s) + C2K0(rD

√
s), 1 ≤ rD ≤ RD (3.10)

P̄D2(rD, s) = C3K0(rD
√
sη), RD ≤ rD <∞ (3.11)

P̄wD(s) = C1[I0(
√
s)− S

√
sI1(
√
s)] + C2[K0(

√
s) + S

√
sK1(

√
s)]. (3.12)

The constants C1, C2, and C3 are obtained by solving the following system of

equations,

α11C1 + α12C2 =
1

2
(3.13)

α21C1 + α22C2 + α23C3 = 0 (3.14)
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α31C1 + α32C2 + α33C3 = 0 (3.15)

where

α11 = CDs[I0(
√
s)− S

√
sI1(
√
s)]−

√
sI1(
√
s) (3.16)

α12 = CDs[K0(
√
s)− S

√
sK1(

√
s)]−

√
sk1(
√
s) (3.17)

α21 = I0(RD

√
s) (3.18)

α22 = K0(RD

√
s) (3.19)

α23 = −K0(RD
√
sη) (3.20)

α31 = λ
√
sI0(RD

√
s) (3.21)

α32 = −λ
√
sK1(RD

√
s) (3.22)

α33 =
√
sηK1(RD

√
sη) (3.23)

η =
(k/φµct)1

(k/φµct)2

(3.24)

λ =
(k/µ)1

(k/µ)2

(3.25)

rD =
r

rw
(3.26)
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RD =
R

rw
(3.27)

tD = 0.0002637× k1t

φ1µ1ct1r2
w

(3.28)

CD = 5.615× C

2πφ1hct1r2
w

(3.29)

PD1 = 0.001127× 2πk1h

qBµ1

(pi − p1) (3.30)

PD2 = 0.001127× 2πk1h

qBµ1

(pi − p2) (3.31)

PwD = 0.001127× 2πk1h

qBµ1

(pi − pw). (3.32)

The solution in Laplace space is then brought to the real space by numerical

inversion using the Stehfest algorithm.

Fig 3.3 shows an excellent agreement between the analytical solution and the

numerical simulation.
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Figure 3.3: Comparison of the numerical model and the analytical so-
lution for a composite reservoir

3.3 Results and Discussion

3.3.1 First Scenario

The model is run for two cases. Case one is the study of low permeability in the

inner zone, while case two considers high permeability in the inner zone. For all

the runs, pressure vs. Horner time ratio and the pressure derivative vs. equivalent

time (∆te) were plotted.

The pressure derivative for pressure buildup is calculated using the algorithm sug-

gested by Bourdet et al. (1989),

d∆pws

d∆te
=
A+B

C
(3.33)



14

where

A = [
∆pws2 −∆pws1

log∆te2 − log∆te1
](log∆te3 − log∆te2) (3.34)

B = [
∆pws3 −∆pws2

log∆te3 − log∆te2
](log∆te2 − log∆te1) (3.35)

C = (log∆te3 − log∆te1) (3.36)

and ∆te is the equivalent time, and it is calculated as follows:

∆te =
tp∆t

tp + ∆t
=

∆t

1 + ∆t
tp

(3.37)

In the above equation, tp is the producing time prior to shut-in.

For the drawdown test, the pressure derivative is calculated by replacing ∆pws

with ∆pwf and replacing ∆te with t in Eq 3.33.

Pressure plots and pressure derivative plots for the composite system with different

inner and outer zone permeabilities are shown in Fig 3.4 and Fig 3.5, respectively.
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Figure 3.4: Horner plot for a composite reservoir with the smaller per-
meability in the inner zone
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Figure 3.5: Log-log plot of pressure derivative for a composite reservoir
with the smaller permeability in the inner zone

The plots of the pressure derivative for the buildup data exhibit a peak which is

displayed at the end of the horizontal line representing the infinite acting period.

This peak appears before the pressure derivative tends towards zero (Fig 3.5). The

peak reflects the transition period between the two zones. The reason for the pres-

sure derivative to exhibit a peak is that the pressure transient is traveling from the

low mobility zone to the high mobility zone at the discontinuity, and because the

flow rate is the same at the discontinuity, the pressure drop in the lower mobility

zone needs to increase to deliver the same flow rate that is delivered from the

higher mobility zone. On the higher mobility zone, the pressure drop needs to be

decreased to deliver the same flow rate which is delivered from the lower mobility

zone.
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The pressure derivative for a composite system should show two horizontal lines

representing characteristics of the two zones, but in Fig 3.5 there is only one hori-

zontal line representing the inner zone. The second horizontal line is not observed

or did not develop because of three reasons [Ambastha and Ramey (1989)]:

1. The reservoir is not large enough as the (re/rin ) ratio needs to be very large

(see Fig 3.6). Ambastha and Ramey (1989) suggested the following condition

to observe the second horizontal line in the pressure derivative:

re
rin

>
√

450[1 + log(FS)]FS (3.38)

where FS is the storativity ratio defined as

FS =
(φct)1

(φct)2

. (3.39)
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Figure 3.6: Effect of the composite reservoir’s size on the development
of the second horizontal line in pressure derivative plot

2. The outer boundary effects could mask the second horizontal line.

3. The transition period is so long which requires the well test to run for a long

enough time to observe the second line.

This peak in many plots takes place at a time which can be used in calculating

the distance to the discontinuity. The peak is clearly observed in most cases and

in some cases it is not easily recognizable (Fig 3.7).
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Figure 3.7: Pressure derivative for two cases and the peak is noted
explicitly

This study aims at verifying if there is a relation between rin and the peak. The

time at the peak (t(peak)) of the pressure derivative is used to calculate the radius

of investigation from the following equation:

rinv =

√
k∆t

948φµct
. (3.40)

In order to remove any confusion and to relate the names of the parameters to our

study, rinv will be changed to r(peak) and ∆t to t(peak). Then Eq (3.40) will change

to

r(peak) =

√
kt(peak)

948φµct
. (3.41)
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r(peak) was compared to rin by calculating the absolute error percentage as follows:

Error(%) =
|rin − r(peak)|

rin
× 100. (3.42)

Also, Eq (3.40) was re-arranged to solve for tin, as follows:

tin = 948
r2
inφµct
k

. (3.43)

The previous procedures were repeated for different permeability combinations and

the results are shown in Table 3.2.

Table 3.2: The different permeability combinations used with the cor-
respondening percentage error

rin k1 k2 t(peak) r(peak) Error

ft md md Hours ft %

1 59 0.01 1,000 528 47.2 20

2 59 0.05 100 109.13 47.98 18.67

3 59 1 100 5.5 48.17 18.40

4 59 1 1,000 5.5 48.17 18.40

5 59 10 1,000 0.18055 27.6 53.22

6 221 0.01 1,000 15,120 252.58 14.30

7 221 0.05 1,000 1,968 203.76 7.80

8 221 0.05 100 1,968 203.76 7.80

9 221 0.05 10 1,968 203.76 7.80

10 221 0.1 100 804 184.18 16.66

11 221 0.1 1,000 804 184.18 16.66

12 221 0.5 100 133.94 168.1 23.94

13 221 0.5 1,000 133.94 168.1 23.94

14 221 1 1,000 71.127 173.24 21.61

15 221 1 100 71.127 173.24 21.61

16 595 0.01 1,000 109,992 681.25 14.50

17 595 0.05 100 19,680 644.35 8.29

18 595 0.05 1,000 19,680 644.35 8.29
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Table 3.2: (Continued)

rin k1 k2 t(peak) r(peak) Error

ft md md Hours ft %

19 595 0.1 1,000 9,696 639.62 7.50

20 595 0.1 100 9,696 639.62 7.50

21 595 0.5 1,000 1,200 503.15 15.44

22 595 0.5 100 1,200 503.15 15.44

23 595 0.5 10 1,200 503.15 15.44

24 595 1 1,000 504 461 22

25 595 1 10 504 461 22

26 595 10 1,000 50.31 460.72 22.57

27 1,600 0.05 100 81,073.7 1,307.83 18.26

28 1,600 0.05 1,000 81,073.7 1,307.83 18.26

29 1,600 0.1 100 81,792 1,857.72 16.11

30 1,600 0.1 1,000 81,792 1,857.72 16.11

31 1,600 0.5 100 14,040 1,721 7.57

32 1,600 0.5 1,000 14,040 1,721 7.57

33 1,600 1 1,000 6,072 1,600.63 1.80

34 1,600 1 100 6,120 1,606.9 1.80

35 1,600 10 1,000 314.4 1,151.8 28

36 3,100 0.01 1,000 3,204,768 3,677.26 18.62

37 3,100 0.05 100 466,704 3,137.85 1.22

38 3,100 0.1 1,000 234,144 3,143.17 1.39

39 3,100 0.5 1,000 44,400 3,060.57 1.27

40 3,100 1 1,000 23,280 3,134.13 1.10

41 3,100 5 1,000 3,336 2,652.9 14.42

42 3,100 10 100 1,296 2,338.45 24.60

Table 3.2 shows that the percentage error for rin = 59 ft is always greater than 18%

unlike the other cases with longer distances, where the percentage error sometimes

is less than 10%. This observation is attributed to that short distance as the

pressure transient travels faster through smaller areas, and the time resolution to
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capture the pressure transient data is not fine enough to show the details of the

pressure transient behavior, and show the time for the peak accurately.

For all the rin values, the percentage error goes through a minimum (Fig 3.8). The

table also shows that chaning k2 does not affect the error . For rin = 3,100 ft, the

error goes through a minimum, but the minimum occurs for more than one value

of k1. In general, for all rin values for a given tp value, the error goes through a

minimum for all the different values of k1 as displayed in Fig 3.8.

Figure 3.8: Generated errors in calculating r(peak) for different rin and
different k1 using pressure buildup test data (tp = 184 days).

For all the previous simulation runs, the buildup test was performed after a pro-

ducing time (tp) of 184 days (4416 hours). A sensitivity test was run to study

the effect of tp on the estimated tin. Fig 3.9 and Fig 3.10 show the results of this

sensitivity study.
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Figure 3.9: Error resulting from changing the tp for the buildup test for
different rin.
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Figure 3.10: Error resulting from changing the tp for the buildup test
for different rin and re.

Fig 3.9 shows that the error goes through a minimum at a certain tp value. For

221 ft, 595 ft, 1,152 ft, and 1,600 ft, the minimum error occurs at a tp value close

to the value of tin.

In Fig 3.10, when rin is 2,229 ft or 3,100 ft for re equals 6,000 ft, the minimum

error is found to be at a time far from tin. When re was increased to 12,000 ft,

the minimum error was at a tp value close to tin (table 3.3). This indicates that

the value of tp required to achieve the minimum error in calculating r(peak), will be

close to tin if the (re/rin) ratio is greater than 3.

The effect of tp on the estimated r(peak) is tabulated in Table 3.3.
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Table 3.3: Effect of the reservoir radius (re) on the minimum error for
r(peak)

No. rin re re/rin tin tp with minimum error

ft ft days days

1 221 6,000 27 5 5

2 595 6,000 10 35 30

3 1,152 6,000 5.2 131 135

4 1,600 6,000 3.75 253 260

5 2,229 6,000 2.69 491 260

6 3,100 6,000 1.9 949 184

7 2,232 12,000 5.38 492 450

8 3,125 12,000 3.84 964 900

Note, tin in Table 3.3 was calculated using Eq (3.43).

The behavior in Fig 3.8 is difficult to be explained, because two parameters are

changing in the same time (k1, and tp), where for each k1 value, there is a single

value of tp that gives a minimum error for estimating rpeak. The behavior observed

in Fig 3.9 is due to the change in one parameter, tp, and the reason for such a be-

havior can be related to the distance to where the pressure transient has reached.

For tp less than or greater than tin, the pressure transient, during the flow period,

moves to a distance less than rin, and stops there and creates somewhat a boundary

layer. The pressure buildup data will then capture this this kind of a boundary

layer effect as an irregular behavior which will affect the peak by changing the

time for its occurrence. If tp equals tin, the pressure drawdown stops at the same

distance to the discontinuity, and the response of both effects will be at the same

distance and at the same time, which will produce the most accurate estimation

for rpeak.

In the pressure drawdown tests for the case when the smaller permeability (or the

smaller mobility) is assigned for the inner zone, as shown in Fig 3.11, a unique

behavior in the drawdown plots was observed. Two straight lines can be clearly

seen for each case. The time when the pressure transient reaches rin is at the end
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of the first line and the beginning of the second line. tin is indicated by the three

vertical lines in the figure for the three cases.

Figure 3.11: Semi-log plot for pressure drawdown for composite reser-
voir with the lower permeability in the inner region.

Fig 3.11 shows 6 cases; The first 3 cases for reservoirs with re = 6,000 ft and rin

equals to 595 ft for the 1st case, 221 ft for the 2nd case and 59 ft for the 3rd case.

Each of the previous 3 cases were repeated but with re = 3,000 ft. The figure

shows a match between the cases with equal rin value, except that after t = 1,000

hours, which shows the effect of the outer boundary for the cases with re = 3,000

ft. This proves that the second straight line is related to the outer zone.

The pressure derivative plot (Fig 3.12) shows a horizontal line and at the end of the

horizontal line is the time when the pressure response reaches the discontinuity.

The vertical lines indicate the time at which the pressure response reaches rin.

Also, the plot shows that the outer boundary has been reached by identifying the

unit slope line.
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Figure 3.12: Semi-log plot for pressure derivative for composite reservoir
with the smaller permeability in the inner region.

3.3.2 Second Scenario

For this scenario, single permeability was assigned to the reservoir. The model is

run for four cases as follows:

Case (i) : Low viscosity oil is placed in the inner zone and high viscosity oil is

placed in the outer zone.

Case (ii) : High viscosity oil is placed in the inner zone and low viscosity oil

is placed in the outer zone.

Case (iii) : Water is placed in the inner zone and high viscosity oil is placed

in the outer zone.
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Case (iv) : High viscosity oil is placed in the inner zone and water is placed

in the outer zone.

Properties of the three fluids utilized in this exercise are shown in Table 3.4.

Table 3.4: Fluid properties for the second scenario.

water Low Viscosity High Viscosity

FVF (bbl/STB) 1.0 1.0 1.0

Viscosity (cp) 1.0 1.0 800

Compressibility (psi−1) 1×10−5 1×10−5 1×10−5

Density (lb/ft3) 62.4 48 48

The plot of the pressure and pressure derivative functions for cases (i) and (ii) are

shown in Fig 3.13 and Fig 3.14, respectively.
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Figure 3.13: Horner plot for the second scenario for cases (i) and (ii).
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Figure 3.14: Pressure derivative plot for the second scenario for cases
(i) and (ii).

For Case (i) (lower viscosity in inner zone), the behavior is different than Case (ii)

and the peak is not related to rin as it can be seen from Fig 3.14 where tin is 6.07

hours and t(peak) equals to 24,408 hours. The time indicated by t(peak) = 24,408

hours is more related to the outer boundary.

For Case (ii) (higher viscosity in inner zone), the behavior is similar to the first

scenario when the lower permeability was assigned to the inner zone. Both cases

have lower mobility in the inner zone. t(peak) was used to calculate r(peak) and

then the error percentage was calculated and found it to be 14.45%. Numbers of

additional cases were run for different permeability and viscosity values, and the

results are tabulated in Table 3.5
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Table 3.5: Simulation runs for different values of permeabilities and
viscosities for the second scenario (Case (ii)).

No. rin k µ1 µ2 t(peak) r(peak) Error

ft md cp cp hours ft (%)

1 1,600 10 800 1 45,984 1,557 2.67

2 1,600 50 800 1 6,960 1,355 15.33

3 1,600 50 800 0.5 6,960 1,355 15.33

4 1,600 100 800 1 3,552 1,369 14.45

5 1,600 100 800 2 3,288 1,317 17.69

6 1,600 200 800 1 1,368 1,201 24.92

7 1,600 500 800 1 440.4 1,078 32.65

8 1,600 1,600 800 1 114.5 983 38.56

9 1,600 50 1,600 1 16,968 1,496 6.51

10 1,600 100 1,600 1 7,680 1,423 11.05

11 1,600 100 1,600 2 6,960 1,355 15.33

12 1,600 200 1,600 2 6,960 1,916 19.75

13 1,600 50 3,000 1 34,400 1,555 2.79

14 1,600 100 3,000 1 18,900 1,630 1.90

15 1,600 500 12,800 1 13,440 1,488 6.98

16 1,600 1,600 12,800 1 3,456 1,350 15.62

17 221 100 800 1 28.15 122 44.87

18 595 100 800 1 274 380 36.11

19 595 100 3,000 1 1,560 468 21.28

20 595 100 8,000 1 5,160 522 12.32

21 595 100 12,800 1 9,000 545 8.46

22 3,100 100 800 1 14,280 2,744 11.47

Note that we observe that as permeability increases, error increases. Another

observation related to the viscosity, is that as µ1 increases, the error decreases.

In other words, as the mobility in the inner zone decreases, the error decreases.

Also, as rin increases, the error decreases. For cases (iii) and (iv), the results were

similar to the first two cases as the comparison shown in Fig 3.15 and Fig 3.16.
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Figure 3.15: Horner plot for the second scenario for all cases.
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Figure 3.16: Pressure derivative plot for the second scenario for all
cases.

Table 3.6 shows additional cases for reservoirs with the high viscosity oil in the

inner zone and the water in the outer zone.
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Table 3.6: Simulation runs for different values of permeabilities and
viscosities for the second scenario (Case (iv)).

No. rin k µ1 µ2 t(peak) r(peak) Error

ft md cp cp hours ft (%)

1 1,600 100 3,000 1 16,008 1,500 6.22

2 1,600 10 800 1 46,944 1,574 1.66

3 1,600 50 1,600 1 17,232 1,507 5.79

4 1,600 500 12,800 1 13,584 1,496 6.48

5 595 100 12,800 1 9,072 547 8.09

6 1,600 100 1,600 1 7,776 1,432 10.5

7 3,100 100 800 1 14,520 2,767 10.73

8 1,600 100 800 1 3,432 1,345 15.91

9 1,600 50 800 1 7,848 1,439 10.09

10 1,600 200 800 1 1,368 1,201 24.92

11 1,600 500 800 1 422 1,055 34.04

The results show that the distance to the discontinuity (rin) can be estimated

accurately with certain conditions. The three factors affecting the accuracy of this

estimations are; rin, (k/µ)1, and λ. For the reservoirs with rin = 1,600 ft, the

estimation is accurate if the value of (k/µ)1 is less than 0.06 and the value of λ is

less than 0.00125. But for an accurate estimation for the reservoirs with rin = 595

ft, the value of (k/µ)1 should be less than 0.007, which means as rin decreases, the

maximum value of (k/µ)1 ,which is required for accurate estimation, decreases.



Chapter 4
Water Coning Model

4.1 Models Development

4.1.1 Numerical Model

Data used to train the artificial neural networks were generated from a numerical

reservoir simulation model. Two reservoir numerical models were used: radial and

rectangular models. The reservoir properties are homogeneous and isotropic. In

terms of fluid properties, the reservoir conditions are assumed to be above bubble-

point pressure to ensure that no free gas is present in the reservoir. Furthermore,

the capillary pressure was not considered. The reservoirs are horizontal with uni-

form thicknesses. The radial reservoir model was used to generate data for the

vertical well, and the rectangular reservoir model was used to generate data for

the horizontal well. The gridding for the radial system was r-θ-z, where the num-

ber of grids were 30x1x25. The thickness of all the grid blocks are equal, and the

radial grids were designed according to the following equation:

ri = rw

(
re
rw

)(i/30)

. (4.1)

The rectangular reservoir gridding was 25x25x15 and ∆x = ∆y = 200 ft. The

reservoir properties for the radial and the rectangular systems are tabulated in the

following tables.
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Table 4.1: Reservoir properties for the radial system.

Porosity (φ) 0.25

kr, md 500

Reservoir radius (re), ft 6,000

Oil formation volume factor, RB/STB 1.0

Oil compressibility (co), psi−1 1x10−6

Initial pressure (pi), psi 5,000

Temperature, oF 130

Soi 1.00

Table 4.2: Reservoir properties for the rectangular system.

Porosity (φ) 0.25

kx, md 500

ky, md 500

Reservoir length, ft 5,000

Reservoir width, ft 5,000

Oil formation volume factor, RB/STB 1.0

Oil compressibility (co), psi−1 1x10−6

Initial pressure (pi), psi 5,000

Temperature, oF 130

Soi 1.00
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For the vertical well, 6 parameters were selected to be changed to create different

scenarios. The parameters with their ranges are tabulated in Table 4.3.

Table 4.3: The selected reservoir properties changed within their ranges
for the vertical well study.

No. Parameter Range

1 ρo, lb/ft
3 48 - 58

2 µo, cp 1 - 10

3 kv, md 5 - 500

4 qL, STB/Day 500 - 10,000

5 h, ft 25 - 250

6 hp, ft 0.04h - 0.96h

The parameters and their ranges for the horizontal well in the rectangular reservoir

are tabulated in Table 4.4.

Table 4.4: The selected reservoir properties changed within their ranges
for the horizontal well study.

No. Parameter Range

1 ρo, lb/ft
3 48 - 58

2 µo, cp 1 - 10

3 kv, md 5 - 500

4 qL, STB/Day 500 - 10,000

5 h, ft 15 - 240

6 hd, ft 0.067h - 0.53h

7 hL, ft 600 - 3400
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4.1.2 Artificial Neural Networks

4.1.2.1 Artificial Neural Networks

Artificial neural networks (ANN) are mathematical networks which are used to

simulate our understanding of the biological neural networks in the human brain.

When the human brain receives information from the outside environment, it will

learn from it, and then make its own decisions or predictions based on the received

information. The structure of the ANN is based on the structure of the neural

system in the human’s brain. The idea of the ANN is to have a network that can

change its structure based on information fed from the outside environment. The

network will learn from these information and change the structure accordingly.

The human brain contains billions of neurons that process and transmit informa-

tion by chemical and electrical signals. Each neuron can send signals to many

neurons and also can receive signals from many neurons and this is how the neu-

rons are interconnected and form a network.

A simple artificial neural network consists of nodes, which can be called neurons,

connected together and forming a network.

The basic structure of an artificial neural network can be explained by explaining

a simple neuron model (Fig 4.1) which is the basic element of an artificial neural

network.

Figure 4.1: A simple model of a neuron.
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Each input in Fig 4.1 is multiplied by a weighted factor, which can be adjusted ac-

cording to the received information. Then, the multiplied inputs with their weights

are processed through a processing element which is a transfer function, usually a

non-linear function, to produce the output. This process is repeated in a process

called ”training” to adjust the weights and to enable the network to produce the

desired output. At the beginning of the training process, the ANN will not be

able to produce the desired outputs accurately, but repeating the training process

results in changing the weights of the network to produce more accurate outputs,

which indicates that the ANN had learned how to improve its predictions for the

outputs, which is called ”learning”.

There are two main types of neural networks; supervised networks and unsuper-

vised networks. The supervised networks are provided with pairs of inputs and

outputs data in the training process. During the training process, the weights

will be adjusted to reduce the error between the desired outputs and the neural

network outputs. Unlike the supervised networks, only input data is provided for

unsupervised networks. The training process of unsupervised networks will try to

categorize the input data in a self-organizing behavior or try to find patterns in

the input data.

There are many neural network structures, and in the petroleum industry, two

types of neural networks are mainly used: 1) Feedforward multilayer perceptron

network with back-propagation learning algorithm. This is the most heavily used,

and 2) The self-organising network (Ali (1994)).

A feedforward multilayer perceptron basic structure consists of an input layer, a

hidden layer and an output layer. It’s called feedforward because all information

flows in one direction from the input layer through the hidden layers to the output

layer. Fig 4.2 shows a basic structure of a multilayer neural network with one

hidden layer.
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Figure 4.2: Basic structure of a multilayer neural network.

The backpropagation learning algorithm is an iterative algorithm which tries to

minimize the error between the desired output and the neural network output by

adjusting the weights of the network.

4.1.2.2 Vertical Well

A total of 233 combinations were generated randomly (Table A.1). Each combina-

tion was used to create a reservoir model. All the reservoir models were run using

numerical simulation for 10 years. The water saturation data for all the blocks

which was generated from the simulation runs was collected and prepared for the

artificial neural networks training process. The artificial neural network used for

training is a feedforward network, which needs inputs and outputs. The inputs are

the 6 parameters in Table A.1 and the outputs are the water saturation values for

all the blocks in the reservoir model at the end of each year for 10 years. The 233

reservoirs were divided into three sets; 210 reservoirs for training, 11 reservoirs for

validation, and 12 reservoirs for testing. Training and validation data are used in

the training of the neural network, and the testing data are only introduced to the

network after the end of training process to test the new neural network.
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Training the neural network started with including all water saturation values for

all the blocks of each reservoir, which will produce a single network to predict the

water saturation for the whole reservoir. This did not result in a good network that

can predict the water saturation values with good accuracy. The next trial was

to reduce the amount of data to simplify the problem for the neural network, and

at the same time not produce too many neural networks. The water saturation

data considered was only for one year to be used for training; if it works, this

means we will have 10 different neural networks for each year. This also didn’t

result in a good network that can predict water saturation with good accuracy.

Therefore, the amount of data was reduced more to simplify the problem by taking

the data for only one layer instead of the 25 layers, but this didn’t result in a good

network. Then again, the data was reduced by taking the data of a single layer

and considering only the 16 blocks that are closer to the wellbore. Also, with this

simplification, the resulting network was not able to predict the water saturation

accurately. Then, again, the number of blocks were reduced from 16 to 6 blocks.

This time, a good network was generated, and the absolute error was less than

10% for all the predicted water saturation values. The absolute error is calculated

using the following equation,

Error = |Sw − Sw(ANN)|. (4.2)

After succeeding in designing a good network, the goal now is to increase the com-

plexity of the problem, and reduce the number of the networks needed to predict

the water saturation for the reservoir. The complexity was increased by including

the data for the 10 years, and not only for one year. The produced network was

good. Increasing the number of blocks to 16 blocks was tried, but did not produce

a good network. The results are 25 networks, where each network predicts the

water saturation for each layer at the end of each year for 10 years.
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4.1.2.3 Horizontal Well

A total of 314 combinations were generated randomly (Table A.2), and for each

combination, a reservoir was created. The horizontal section was always in the

center in the j-direction for all the reservoirs. This created a symmetry, which will

reduce the amount of data to be considered, and in return, will reduce the time

needed to train the neural network. Fig 4.3 shows the x-z plane for the rectangular

reservoir system for j = 13. The water saturation of the blocks in the center column

will be included in the output data, and the water saturation for the blocks on

both sides will be identical, and either one can be considered.

Figure 4.3: x-z plane of the rectangular reservoir system for j=13 and
showing the horizontal well.

After running the numerical simulation for all the reservoirs for 10 years, water

saturation data was collected and prepared for training the neural network. The

data collected was only from the vertical plane which contains the horizontal well

(Fig 4.3). This is done to reduce the amount of data, and hence reduce the time

for training the neural network.

The water saturation for each block at the end of each year was collected. This

was done for all the blocks in Fig 4.4. At the end, we had 375 blocks (25×15) to
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be considered. Because of the symmetry of the reservoir, we only took the first

13 columns. Training the neural network using the water saturation values for

the blocks in a single column, produced 13 different neural networks. All neural

networks have the same inputs, but the difference is in the values of the water

saturation, where the first neural network used the water saturation values of all

the blocks in the first column for the 10 years, and the second neural network used

the data for the second column, etc.

The data from the 314 reservoirs were divided into 3 sets: 284 for training, 15

for validation, and 15 for testing. The training and validation set were used in

the training process, but the testing set was not introduced to the network during

training process. The ANN is considered good when the predicted water saturation

of the testing data has an absolute error of less than 10% for all values. Fig 4.4

shows the x-z plane of the reservoir and the numbering of the rows and columns.

Figure 4.4: x-z plane of the reservoir for j=13 and showing the horizontal
well with numbering of rows and columns.
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Three approaches were used to select the best data to train the neural network:

1. Considering the water saturation data for the whole vertical plain (because

of the symmetry, half of the plane was considered).

2. Considering the water saturation data for each layer.

3. Considering the water saturation data for each column. (because of the

symmetry, only 13 columns were considered out of 25 columns).

Considering columns for training the neural network gave the lowest absolute error.

The first trial to train the neural network was done by using the water saturation

data of the blocks in columns 1 - 13. Water saturation values of blocks in columns

14 - 25 were not included because they are identical to the values in columns 1 -

12. No good network was produced. The data then was reduced by selecting the

data of a single layer to train a neural network. Starting with the first layer at

the top of the reservoir, the error was very small. Moving to the second layer, the

error slightly increased, but was still good, because all the predicted values had an

absolute error of less than 10%. At Layer 6, some of the blocks showed an error

above 10%. Moving to the next layers, the error was increasing until Layer 14.

The error for Layer 15 was lower than the previous 5 layers, but not good enough,

because many blocks had an absolute error above 10%.

Then, a different approach was followed to see if better results can be produced.

Instead of taking the blocks in each layer and use their water saturation values to

train a neural network, the blocks in each column were considered. The columns

which were considered are columns 1-13 because of the symmetry (see Fig 4.4).

Training the neural network started with using the water saturation values in the

blocks in Column 13, because it is the most complicated column. The greatest

change in water saturation is happening in Column 13. Then moving to Column

12, until Column 1. The average absolute error of Column 1 was the minimum

error, and the error increased from Column 2 to Column 13.
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The structure of the artificial neural network was selected after trial and error.

The network with the lowest error found was the feedforward network. The learn-

ing function with lowest error was the gradient descent with momentum weight and

bias learning function. The training function with the lowest error was the conju-

gate gradient backpropagation with Polak-Ribiére updates. The transfer functions

which showed the lowest error was the hyperbolic tangent sigmoid transfer function.

The neural network structure consists of the input and the output layers and

two or more hidden layers. In each layer (input, output and hidden), the number

of neurons must be specified. The number of neurons in the input layer are 7,

which are the parameters in Table A.2. The number of neurons in the output layer

are 150. 150 neurons are required because each column has 15 blocks, and the wa-

ter saturation value for a single block was taken at the end of each year for 10 years.

Determining the number of hidden layers and neurons in a hidden layer is a trial

and error process. Several training processes need to be performed with different

numbers of hidden layers and neurons to reach the best structure that gives the

lowest average absolute error.

4.2 Results and Discussion

4.2.1 Vertical Well

In this case, 25 artificial neural networks were created. They were tested using

data from the 12 reservoirs. The average absolute error was less than 10% for the

data of the layers for all 12 reservoirs. The structure of all the networks consists

of one input layer, one output layer and two hidden layers. For each network, the

outputs were the water saturation values for the blocks at the end of the year for

the 10 years, and the inputs are 6 parameters, they are:

1. Oil density.

2. total liquid flow rate.
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3. Oil viscosity.

4. Reservoir thickness.

5. Vertical permeability.

6. Open interval to the flow.

Fig 4.5 shows the structure of the generated ANN for the first layer. The network

has 6 inputs in the input layer, 46 neurons in the first hidden layer, 37 neurons in

the second hidden layer, and 60 outputs in the output layer.

Figure 4.5: ANN structure generated for the first layer for the vertical
well.

Table 4.5 shows the average absolute error for each layer for the 12 reservoirs used

for testing the generated neural networks.
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Table 4.5: Average absolute error for the predicted water saturation for
the 12 testing reservoirs by ANN for each layer for the vertical well.

Layer Average absolute Layer Average absolute

No. Error No. Error

1 0.07% 14 1.03%

2 0.15% 15 1.15%

3 0.36% 16 1.67%

4 0.76% 17 1.29%

5 0.32% 18 1.52%

6 0.56% 19 1.13%

7 0.73% 20 0.95%

8 0.53% 21 0.97%

9 0.54% 22 1.04%

10 0.49% 23 0.81%

11 0.64% 24 0.80%

12 0.86% 25 0.57%

13 0.97%

Two reservoirs (reservoir # 230 and #233) were selected, from the 12 reservoirs

used to test the generated neural network, to show the behavior of the ANN in

predicting the water saturation. Reservoir # 230 has the highest average absolute

error, among the 12 tested reservoirs, for the predicted water saturation values,

and reservoir # 233 was randomly selected. Table 4.6 shows the input parameters

for the two selected reservoirs.

Table 4.6: input parameters for reservoirs # 230 and # 233.

res. # ρo, lb/ft
3 qL, STB/D µo, cp kv, md hp, ft h, ft

230 52.9 5,290 8.9 399 3.6 22.5

233 53.05 5,305 9.05 401 4.2 26.25

Fig 4.6 (a) shows the surface map of the water saturation for reservoir # 233

with numerical simulation data. Fig 4.6 (b) shows the same reservoir but with

predicted data from ANN. The prediction has a very low error, and the cone shape
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is developed very clearly. Fig 4.6 (c) shows the absolute error on a surface map

to give a better way of visualizing the error and its location. The highest error is

5.9% and it is in a very small area. Fig 4.7 shows progress of saturation maps for

the reservoir # 233 with predicted ANN data over a period of 10 years.

(a) Numerical simulation (b) Artificial neural network

(c) Absolute error

Figure 4.6: Surface map of Sw for reservoir # 233 at the end of the 6th
year.
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(a) year 1 (b) year 2 (c) year 3

(d) year 4 (e) year 5 (f) year 6

(g) year 7 (h) year 8 (i) year 9

(j) year 10

Figure 4.7: Water saturation map for reservoir # 233 using ANN data.

Fig 4.8 (a) is for the surface map for reservoir # 230 for the water saturation using

the data from the numerical simulation. Fig 4.8 (b) is the surface map for the
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same reservoir using data predicted with the ANN. Fig 4.8 (c) shows the absolute

error. Prediction for this reservoir has the highest error among the 12 reservoirs

used for testing, but the shape of the cone has developed is clearly visible.

(a) Numerical simulation (b) Artificial neural network

(c) Absolute error

Figure 4.8: Surface map of Sw for reservoir # 230 at the end of the 5th
year.

The results for the previous two reservoirs show good predictions. The ANN show

a good prediction at the areas where the water saturation is not changing, or the

change is very small. The error is almost zero at the top of the reservoir, because

the water saturation is not changing. Also, at the bottom of the reservoir, the

error is very low, because the change of water saturation is very small. The results

also show that the high values of error occur around the wellbore and in the areas
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of transition saturation, because the saturation is changing at a faster rate than

other locations, and it’s more challenging for the ANN to predict the change in

water saturation over a shorter period of time compared to other locations of the

reservoir. In Appendix C, for comparison purposes, two additional case study

results are presented for slow and medium moving saturation fronts.

4.2.2 Horizontal Well

13 artificial neural networks were generated. Each network predicts the water

saturation for each column. The structure of all the networks consists of one input

layer, one output layer and 2 or 3 or 4 hidden layers. For the output layer, the

outputs were the water saturation values for the blocks at the end of the year for

the 10 years. The inputs are 7 parameters, they are:

1. Oil density.

2. Total liquid flow rate.

3. Oil viscosity.

4. Reservoir thickness.

5. Vertical permeability.

6. Depth of the horizontal well.

7. Length of the horizontal well.

Fig 4.9 shows the structure of the generated ANN for the first column. The network

has 7 inputs in the input layer, 31 neurons in the first hidden layer, 37 neurons in

the second hidden layer, and 150 neurons in the output layer.
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Figure 4.9: ANN structure generated for the first column for the hori-
zontal well.

Table 4.7 shows the average absolute error for the 15 reservoirs used for testing

the generated neural networks.
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Table 4.7: Average absolute error for the predicted water saturation
for the 15 testing reservoirs by ANN for each column for the horizontal
well.

Column Average absolute

No. Error

1 0.366%

2 0.343%

3 0.341%

4 0.385%

5 0.467%

6 0.941%

7 1.072%

8 1.916%

9 2.369%

10 2.587%

11 2.403%

12 2.716%

13 1.985%

15 reservoirs were tested with the generated neural networks and two reservoirs

were selected to illustrate the results of the neural network predictions. The two

selected reservoirs are reservoirs # 8 and # 10 and Table 4.8 shows their input

parameters.

Table 4.8: input parameters for reservoirs # 8 and # 10.

res. # ρo, lb/ft
3 qL, STB/D µo, cp kv, md h, ft hL, ft hd, ft

8 51.766 6,286 9.9006 253 136.47 3,400 40.942

10 50.898 5,319 2.0525 192 210.79 2,600 105.40

Fig 4.10 (a) shows the surface map for reservoir # 8 of water saturation from

numerical simulation. The horizontal well is at a depth of 41 ft and the horizontal

section is 3,400 ft long extending from 800 ft to 4,200 ft. Fig 4.10 (b) shows the

surface map for the same reservoir with water saturation data predicted from ANN.
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Fig 4.10 (c) shows the absolute error of the ANN predicted water saturation for

reservoir # 8. Fig 4.11 shows progress of saturation maps for the reservoir #8

with predicted ANN data over a period of 10 years.

(a) Numerical simulation (b) Artificial neural network

(c) Absolute error

Figure 4.10: Surface map of Sw for reservoir # 8 at the end of the 10th
year.
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(a) year 1 (b) year 2 (c) year 3

(d) year 4 (e) year 5 (f) year 6

(g) year 7 (h) year 8 (i) year 9

(j) year 10

Figure 4.11: Water saturation map for reservoir # 8 using ANN data.

The ANN was able to predict the shape of the cone. There are areas which show an

absolute error larger than 10%, but they are at the bottom of the water cone which
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is less important (Fig 4.10 (c)). The more important areas are those which show

where the water front has reached. The high error zones occurs at the transition

zones, similar to results for the vertical wells. The high error occurs at the transi-

tion zones because saturation gradients are high over a small area, which creates

a greater challenge to the ANN to predict the water saturation values accurately.

The second example to illustrate the ability of the ANN to predict the water

coning phenomena is for reservoir # 10. Fig 4.12 (a) shows the surface map of

water saturation for the reservoir with the numerical simulation data, and Fig 4.12

(b) shows the surface map for the same reservoir with the ANN predicted data.

The ANN was able to predict the cone shape and also to predict the sharp decrease

of water saturation at the bottom sides of the cone.
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(a) Water saturation from numerical

simulation

(b) Water saturation from artificial neu-

ral network

(c) Absolute error

Figure 4.12: Surface map of Sw for reservoir # 10 at the end of the 10th
year.

Fig 4.12 (b) shows two identical peaks. This is an overestimate for the water

saturation values and this is because the horizontal section of the well, which is off

the center, is having more flow than the center section. The ANN was successful

in predicting this behavior but the values for water saturation were overestimated.

In Appendix D, for comparison purposes, two additional case study results are

presented for slow and medium moving saturation fronts.



Chapter 5
Conclusions

This study consisted of two parts. The first parts is concerned with the use of

the pressure transient data to determine the distance to the discontinuity in an

oil reservoir with edge water. The reservoir is considered as a composite reservoir

with the oil phase in the inner zone and the water phase in the outer zone. Some

of the parameters that affect the determination of the distance to the discontinu-

ity were studied. A procedure is proposed to help estimate the distance to the

discontinuity under certain conditions. The procedure can be applied using the

pressure derivative for buildup test data if the mobility ratio is less than unity. A

peak must be observed in the pressure derivative curve. Looking at the highest

value of the pressure derivative in the peak, and then taking the corresponding

time for it and using it to calculate the radius of investigation which in this case

is the distance to the discontinuity.

For a peak to be observed in a reservoir with rin = 1,600 ft, the mobility of the

inner zone has to be very small (less than 0.06), and also the mobility ratio has

to be small (preferably less than 0.00125). Considering the previous conditions

given for the mobility in the inner zone and the mobility ratio, the procedures will

accurately predict the distance to the discontinuity for large distances (1,600 ft or

larger), but for shorter distances, the error can be high. For the error to be low

for shorter distances, the mobility for the inner zone has to be less than what it

should be for rin = 1,600 ft.
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The second part is concerned with predicting water saturation distribution in oil

reservoirs using artificial neural networks. The developed ANN are for two systems

with a bottom water aquifer: vertical well in a radial system, and a horizontal well

in a rectangular system. A total of 6 input parameters are needed for the ANN

to predict the water saturation distribution for 10 years. The predicted values for

the vertical well represent the water saturation distribution around the wellbore

at the end of each year for the 10 years. For the horizontal well, the predictions

are for the vertical plane that contains the horizontal well.

The examples in this study showed that the accuracy of the prediction is good

and matching the numerical simulation results. The high error occurs in the tran-

sition zones, because at these zones, the water saturation is changing at a faster

rate compared to the water saturation change at zones where the water saturation

change is small.

The developed ANN can be used to optimize production, by running the ANN

for different scenarios to find the optimum production rate that delay water pro-

duction and increase oil production. Also, it can be used to select the optimum

perforation interval that will increase production of water-free oil and delay water

production or reduce it.

This study proposed a solution for water encroachment problems caused by two

different boundary conditions. The first part proposed a procedure to estimate the

distance to the edge water encroachment front for an oil reservoir. In the second

part, an artificial expert system is predicted to understand the water saturation

distribution for an oil reservoir with a strong bottom water aquifer. Although,

these two proposed solutions are aimed for two different problems, they could

be combined to predict water saturation distribution in an oil reservoir that is

simultaneously exposed to bottom water drive, and edge water encroachment due

to peripheral injection (Fig 5.1).
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Figure 5.1: Schematic representation of an oil reservoir exposed to bot-
tom water aquifer and edge water encroachment.



Appendix A
Properties used in designing the

simulation models for different

scenarios for vertical and horizontal

wells

Table A.1: Properties used in designing the simulation models for dif-
ferent scenarios for vertical wells

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md hp, ft h, ft

1 53.76 1,212 3.81 74 24.49 87.46

2 55.07 7,019 9.64 20 117.4 163.1

3 53.02 9,065 6.88 141 86.37 239.9

4 50.82 2,087 2.32 296 26.09 72.48

5 54.21 9,794 1.39 374 43.83 156.5

6 55.28 4,390 8.69 35 38.46 73.96

7 54.48 3,222 9.60 54 22.11 42.53

8 51.44 7,691 6.00 192 15.58 194.7

9 48.06 4,782 5.60 22 50.82 158.8

10 53.35 6,259 7.83 200 30.98 59.59

11 49.92 1,691 2.12 170 56.90 109.4

continue on next page
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Table A.1: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md hp, ft h, ft

12 49.24 4,894 3.73 234 74.84 233.8

13 55.73 9,821 8.96 279 54.26 71.39

14 51.92 10,000 5.62 352 22.12 39.50

15 51.54 7,133 2.51 97 49.12 64.63

16 49.85 6,603 2.76 450 139.6 218.2

17 51.34 7,423 4.50 245 22.42 186.9

18 49.43 4,214 2.21 451 167.5 246.4

19 56.57 8,551 9.42 223 165.6 207.0

20 55.47 552 9.60 498 99.75 226.7

21 56.31 4,330 3.20 229 99.11 145.7

22 57.97 6,456 3.83 92 170.2 193.5

23 53.99 1,935 9.86 129 131.3 172.8

24 48.45 2,640 3.31 63 205.1 223.0

25 49.53 5,573 8.60 120 23.13 144.5

26 54.18 8,259 6.94 128 128.2 213.6

27 57.16 9,002 1.28 31 121.2 202.0

28 50.04 8,291 2.52 401 125.1 208.5

29 48.52 1,325 6.59 246 154.4 241.3

30 50.46 9,374 2.90 398 13.36 55.69

31 50.70 6,989 6.55 397 20.84 27.43

32 57.65 8,521 5.33 186 15.33 191.6

33 52.86 2,565 4.84 350 37.36 155.6

34 48.76 2,563 2.72 404 11.47 71.69

35 52.15 9,032 2.19 207 80.93 224.8

36 51.03 3,910 7.51 358 15.67 195.9

37 55.37 2,689 7.26 409 85.09 163.6

38 55.67 5,660 5.62 193 3.005 37.57

39 53.37 3,278 3.39 394 16.55 25.87

continue on next page
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Table A.1: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md hp, ft h, ft

40 53.10 3,187 2.34 244 43.24 120.1

41 53.31 4,384 1.32 455 40.19 200.9

42 51.84 2,013 9.71 354 153.6 202.1

43 56.49 4,001 2.59 373 77.03 106.9

44 50.01 8,405 7.12 243 44.50 48.37

45 52.09 9,571 9.57 482 111.5 174.3

46 50.54 9,556 8.21 487 12.62 45.10

47 53.40 3,902 8.00 427 26.78 223.1

48 55.72 5,266 4.26 490 120.0 187.5

49 50.63 7,592 5.59 467 77.54 193.8

50 51.03 4,082 2.75 114 220.9 230.1

51 57.16 5,963 4.40 259 19.56 40.76

52 51.34 8,598 2.95 280 93.28 179.3

53 56.89 3,915 8.72 307 47.78 199.1

54 52.62 3,866 1.70 365 79.22 198.0

55 50.15 5,510 3.24 55 142.8 238.0

56 51.71 7,868 4.38 229 55.77 82.01

57 53.23 2,198 4.95 119 28.53 39.63

58 53.68 5,335 9.12 420 5.356 26.78

59 49.79 6,945 6.93 301 117.8 173.3

60 56.05 3,960 3.18 299 10.58 66.15

61 49.40 4,983 5.03 256 141.6 221.3

62 56.37 8,945 1.84 339 10.95 30.42

63 52.95 2,832 4.38 68 115.4 160.4

64 48.65 7,659 8.91 200 20.52 171.0

65 51.49 9,660 5.49 324 90.48 205.6

66 57.80 1,577 4.95 389 37.00 71.16

67 53.02 4,129 3.33 370 24.56 55.82

continue on next page



64

Table A.1: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md hp, ft h, ft

68 53.31 752 2.57 345 9.541 79.51

69 57.20 2,401 6.62 260 17.70 27.66

70 52.21 5,129 6.36 10 38.24 159.3

71 52.87 7,097 7.50 365 24.48 47.09

72 52.29 8,012 5.62 254 57.54 110.6

73 54.35 6,689 4.20 83 59.51 92.98

74 50.46 8,031 6.59 231 17.70 221.3

75 51.79 5,378 8.76 221 88.25 200.5

76 55.92 5,982 3.59 367 60.72 138.0

77 50.85 3,240 3.09 56 49.54 112.6

78 51.79 1,307 3.42 273 97.43 221.4

79 52.54 7,189 1.96 175 121.8 145.0

80 48.37 9,551 8.36 248 29.28 40.67

81 49.22 5,185 8.48 399 65.13 108.5

82 53.69 3,054 4.06 425 61.13 152.8

83 51.99 9,174 4.22 405 18.93 157.8

84 52.36 9,116 8.18 63 44.90 102.0

85 50.91 8,849 5.89 189 36.86 230.4

86 56 3,950 8.5 290 37.5 187.5

87 57 3,900 9 310 58.8 210

88 52 3,816 1.6 360 69.3 192.5

89 53 3,916 1.8 370 88 200

90 52.4 3,846 1.65 363 78.7 196.7

91 52.8 3,886 1.75 367 79.7 199.2

92 52.5 3,856 1.69 364 79 197.5

93 52.7 3,876 1.71 366 79.4 198.5

94 50 5,500 3.1 40 126 225

95 51 5,550 3.3 60 160 250

continue on next page



65

Table A.1: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md hp, ft h, ft

96 50.05 5,508 3.1 54 141 235

97 50.25 5,512 3.3 56 144 240

98 51.6 7,866 4.28 227 52.7 77.5

99 51.8 7,870 4.48 231 56.1 82.5

100 53.13 2,196 4.86 118 26.82 37.25

101 53.33 2,200 5.06 120 30.42 42.25

102 53 5,300 9 400 4 25

103 54 5,400 9.3 440 6.6 27.5

104 49 6,900 6.8 290 104 162.5

105 50 7,000 7.1 310 135 187.5

106 56.14 2,041 6.79 35 68.64 156.0

107 57.05 8,046 4.40 343 17.59 146.6

108 49.26 3,457 8.30 26 132.4 220.7

109 57.13 5,521 5.79 40 40.59 84.57

110 54.32 2,074 4.15 263 65.66 96.56

111 48.97 6,219 9.45 53 35.23 51.82

112 50.78 2,998 8.88 410 151.3 236.4

113 53.46 6,714 5.95 410 13.61 170.2

114 57.57 7,048 6.60 363 15.94 132.8

115 57.64 7,607 6.28 79 54.03 168.8

116 49.57 4,780 2.86 332 76.73 147.5

117 57.70 1,296 3.71 262 109.2 170.6

118 57.57 2,675 5.23 487 58.94 147.3

119 52.85 9,177 3.07 326 149.7 187.2

120 56.00 1,948 8.59 401 102.6 142.5

121 49.41 8,345 2.75 230 228.6 248.5

122 52.21 5,614 3.03 219 38.58 74.20

123 57.15 9,963 2.53 414 15.61 48.80

continue on next page
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Table A.1: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md hp, ft h, ft

124 55.92 1,243 3.04 46 5.961 49.68

125 57.59 4,705 4.92 71 23.58 39.30

126 54.55 1,513 3.79 91 88.18 116.0

127 48.35 9,638 9.31 199 55.38 125.8

128 56.49 544 4.87 417 12.87 107.3

129 57.33 7,862 2.66 403 55.10 196.7

130 54.78 8,264 9.14 35 33.25 166.2

131 55.57 8,753 9.81 203 55.63 198.6

132 55.43 1,302 4.94 266 103.3 234.8

133 51.92 4,298 2.00 211 126.8 243.8

134 54.55 2,969 3.32 330 32.73 68.20

135 49.71 8,101 4.67 316 47.24 56.24

136 55.06 4,598 6.35 150 94.46 181.6

137 48.31 9,151 3.35 219 42.42 46.10

138 50.76 2,228 6.42 13 91.65 143.2

139 48.46 3,006 7.40 492 132.7 144.3

140 48.97 1,883 2.99 88 61.25 218.7

141 56.23 1,793 2.05 58 91.18 134.0

142 54.94 8,758 3.67 189 36.32 113.5

143 51.17 6,007 3.86 103 112.6 176.0

144 57.50 5,724 4.81 247 130.4 191.7

145 48.34 1,877 5.57 173 17.04 142.0

146 52.38 8,604 1.76 476 28.90 103.2

147 51.81 6,410 3.36 461 14.09 58.74

148 55.65 3,834 8.20 31 100.3 156.8

149 55.95 5,376 1.26 370 67.18 83.98

150 49.86 4,317 9.35 138 12.60 35.00

151 52.89 1,222 7.57 214 148.0 194.8

continue on next page
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Table A.1: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md hp, ft h, ft

152 52.45 2,779 5.39 276 54.14 79.62

153 54.46 1,672 6.20 472 4.981 124.5

154 55.09 2,247 3.13 212 107.8 179.7

155 55.54 2,780 5.12 492 42.33 105.8

156 50.76 4,464 9.66 154 167.7 190.6

157 54.79 972 5.92 352 4.552 113.8

158 54.55 9,076 5.69 335 85.80 178.7

159 49.62 9,475 3.08 272 80.70 183.4

160 49.18 5,163 5.40 351 59.76 124.5

161 52.98 5,148 6.61 335 22.34 29.40

162 57.59 3,708 7.11 93 31.82 99.44

163 51.40 9,051 4.55 68 91.55 120.4

164 53.85 4,008 4.30 500 41.18 85.81

165 50.23 1,556 9.89 90 5.546 69.33

166 55.51 7,912 1.33 21 41.97 209.8

167 50.55 4,203 8.96 283 87.64 121.7

168 53.05 2,796 9.21 442 107.8 224.7

169 54.99 4,337 8.16 336 22.60 113.0

170 56.90 1,416 1.88 99 71.29 198.0

171 57.59 1,754 3.35 188 68.56 114.2

172 53.47 9,449 4.01 233 41.38 206.9

173 49.38 9,583 7.11 491 140.3 194.8

174 49.49 5,964 2.22 82 30.77 109.9

175 50.57 1,068 7.49 428 64.77 73.60

176 56.40 2,730 1.96 324 56.79 202.8

177 50.54 3,855 6.88 191 181.3 238.5

178 56.14 8,301 5.44 100 19.74 98.70

179 50.43 646 8.01 217 56.33 176.0
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Table A.1: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md hp, ft h, ft

180 57.29 909 7.43 244 14.84 123.6

181 51.49 2,105 9.13 65 119.0 212.5

182 49.96 6,667 9.01 297 134.6 197.9

183 50.51 7,451 4.00 117 35.07 62.63

184 54.16 6,654 7.28 195 96.33 218.9

185 52.73 4,784 2.78 294 158.5 247.7

186 51.51 5,697 1.27 130 90.07 140.7

187 56.30 3,315 7.69 149 152.2 223.9

188 53.85 7,575 5.50 310 100.6 157.3

189 53.49 2,295 5.31 136 55.03 59.81

190 57.17 7,024 9.14 413 16.79 69.96

191 50.85 2,243 6.48 491 79.26 116.5

192 55.57 4,001 6.55 366 46.43 193.4

193 55.53 6,443 8.73 175 33.72 210.7

194 51.80 7,912 8.24 294 121.6 202.7

195 53.67 1,271 6.19 58 42.53 96.66

196 48.75 9,329 2.64 454 69.67 145.1

197 48.53 7,869 3.15 440 28.95 45.23

198 53.30 5,125 8.97 410 38.10 50.13

199 55.79 4,641 1.25 134 20.03 55.66

200 57.34 4,744 5.40 299 113.7 177.6

201 49.29 3,410 2.51 16 60.02 136.4

202 53.68 5,331 9.80 216 54.14 67.68

203 52.69 5,352 7.41 160 109.1 136.3

204 48.11 8,267 5.50 85 16.29 58.21

205 51.37 8,051 5.23 93 22.42 37.36

206 49.9 6,990 7 309 133.2 185

207 50.1 7,010 7.2 311 136.8 190
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Table A.1: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md hp, ft h, ft

208 49.95 6,995 7.05 309 134.1 186.2

209 50.05 7,005 7.15 311 135.9 188.7

210 48.95 6,890 6.75 289 102.4 160

211 48.9 6,895 6.7 291 103.2 161.2

212 49.05 6,905 6.85 289 105.6 165

213 49.1 6,910 6.9 291 104.8 163.7

214 53.23 2,190 4.96 119 28.62 39.75

215 53.3 2,195 5.01 121 29.52 41

216 53.43 2,210 5.16 119 32.22 44.75

217 53.36 2,205 5.11 121 31.32 43.5

218 53.03 2,186 4.76 117 25.02 34.75

219 53.08 2,191 4.81 119 25.92 36

220 53.23 2,206 4.96 117 28.62 39.75

221 53.18 2,201 4.91 119 27.72 38.5

222 51.5 7,856 4.18 226 51 75

223 51.55 7,861 4.23 228 51.85 76.25

224 51.7 7,876 4.38 226 54.4 80

225 51.65 7,871 4.33 228 53.55 78.75

226 50.15 5,502 3.2 55 142.5 237.5

227 50.2 5,507 3.25 57 143.2 238.7

228 50.35 5,522 3.4 55 145.5 242.5

229 50.3 5,517 3.35 57 144.7 241.2

230 52.9 5,290 8.9 399 3.6 22.5

231 52.95 5,295 8.95 401 3.8 23.75

232 53.1 5,310 9.1 399 4.4 27.5

233 53.05 5,305 9.05 401 4.2 26.25
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Table A.2: Properties used in designing the simulation models for dif-
ferent scenarios for horizontal wells

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md h, ft hL, ft hd, ft

1 52.92 2,672 7.72 16 111.38 1,000 40.84

2 52.28 4,962 2.35 229 156.71 3,400 15.67

3 50.78 4,685 3.62 75 143.37 3,400 43.01

4 49.47 6,963 9.25 8 99.74 2,200 29.92

5 54.22 6,195 5.84 382 206.22 1,800 34.37

6 54.48 3,353 1.01 390 164.35 1,800 38.35

7 57.09 6,172 5.88 404 79.37 1,400 13.23

8 51.76 6,286 9.90 253 136.47 3,400 40.94

9 51.67 8,357 5.86 464 131.24 1,000 39.37

10 50.89 5,319 2.05 192 210.79 2,600 105.4

11 54.15 3,606 1.50 209 219 1,800 7.3

12 54.17 5,989 8.33 291 191.47 3,000 19.15

13 52.91 6,637 6.81 384 38.33 1,000 3.83

14 50.32 5,418 5.91 115 208.04 1,400 48.54

15 56.39 2,776 7.59 233 119.66 3,000 27.92

16 50.06 6,704 4.83 278 200.93 1,000 33.49

17 57.08 4,787 8.71 296 155.35 2,600 46.61

18 54.00 1,329 1.91 360 138.41 2,200 59.98

19 57.45 5,238 2.29 425 25.98 2,200 7.79

20 51.43 1,692 1.36 176 61.57 1,400 2.05

21 56.43 7,423 3.53 38 69.51 2,200 25.49

22 54.31 6,869 9.14 279 34.07 3,000 1.14

23 50.58 8,313 5.28 200 56.36 2,600 13.15

24 51.85 6,814 6.83 286 134.74 1,800 4.49

25 50.53 7,580 2.18 152 37.37 1,000 16.19

26 55.09 2,826 4.24 189 218.75 600 36.46

27 53.99 2,465 3.70 219 41.73 3,400 9.74

28 52.27 2,246 5.78 232 121.03 1,000 12.1
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Table A.2: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md h, ft hL, ft hd, ft

29 49.99 3,596 3.51 349 179.45 1,800 89.73

30 56.72 9,958 5.41 27 22.79 2,200 6.84

31 56.81 5,462 4.42 8 57.81 2,600 9.63

32 49.29 7,447 2.43 110 99.31 2,200 16.55

33 56.83 6,688 7.52 133 32.3 3,000 5.38

34 51.22 4,356 6.56 87 205.46 2,200 75.34

35 56.88 1,511 8.06 234 66.61 1,800 15.54

36 49.52 2,871 9.28 19 65.78 3,000 6.58

37 48.76 6,962 7.86 454 131.71 600 48.29

38 56.36 8,193 3.46 25 75.02 1,000 27.51

39 51.96 3,682 2.74 384 99.71 600 9.97

40 49.27 5,510 8.35 320 110.32 2,200 40.45

41 49.55 8,853 6.85 71 23.29 1,000 11.64

42 51.28 1,609 1.68 385 52.84 3,400 22.9

43 55.26 7,767 1.76 333 98.03 3,000 9.8

44 48.33 9,970 9.08 144 34.23 3,000 3.42

45 52.29 6,561 8.06 155 74.77 1,400 7.48

46 56.94 2,782 8.27 396 48.79 1,400 14.64

47 54.96 1,350 3.69 436 133.83 1,000 31.23

48 50.49 6,766 2.65 117 87.6 1,400 2.92

49 53.42 9,940 7.65 445 151.3 600 75.65

50 50.31 2,727 4.45 468 152.61 1,800 55.96

51 54.41 4,100 2.71 86 235.29 1,800 39.21

52 52.63 9,993 9.02 383 194.11 1,000 19.41

53 53.26 5,353 2.58 479 230.63 3,400 99.94

54 56.80 2,003 9.48 212 149.75 2,200 34.94

55 55.65 9,294 7.84 332 101.45 1,400 30.43

56 54.31 1,580 4.06 173 172.7 2,600 28.78
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Table A.2: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md h, ft hL, ft hd, ft

57 50.80 7,096 8.44 232 130.74 3,400 65.37

58 48.36 3,808 6.24 130 50.6 2,200 5.06

59 53.97 1,438 9.49 418 184.89 3,000 67.79

60 56.88 2,698 7.25 314 178.97 1,800 5.97

61 48.85 6,584 3.74 97 110.41 600 11.04

62 56.45 9,738 4.49 337 95.22 1,400 15.87

63 54.71 1,743 6.81 224 118.23 600 43.35

64 51.38 8,498 2.70 344 146.47 3,400 34.18

65 55.73 2,215 8.76 59 37.49 1,000 6.25

66 55.53 7,587 6.01 137 25.29 3,000 9.27

67 52.06 4,896 2.41 331 127.33 1,800 21.22

68 55.97 5,549 6.88 72 23.29 3,000 10.09

69 50.59 5,573 8.01 395 85.5 1,400 8.55

70 49.57 4,780 4.00 401 223.57 2,200 81.98

71 56.99 8,201 1.27 464 207.34 2,200 34.56

72 52.99 1,410 9.83 87 20.41 1,400 2.04

73 52.80 3,300 1.69 226 33.1 2,200 3.31

74 51.54 7,201 6.48 352 54.83 3,000 5.48

75 48.26 8,480 4.01 321 200.79 1,400 20.08

76 54.50 6,684 6.08 254 58.07 1,000 9.68

77 57.75 9,930 1.46 29 138.33 1,800 23.05

78 49.57 8,274 6.09 38 148 3,000 24.67

79 49.74 3,068 7.42 198 180.02 1,000 54.01

80 57.24 6,440 3.31 276 52.27 2,200 5.23

81 57.94 9,793 2.63 339 159.87 1,400 15.99

82 48.26 5,770 4.45 134 36.01 1,400 15.6

83 55.11 6,521 9.69 404 43.85 1,800 19

84 57.09 6,071 5.07 453 56.79 3,400 5.68
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Table A.2: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md h, ft hL, ft hd, ft

85 54.25 9,413 4.39 95 87.81 2,600 32.2

86 48.84 5,208 4.91 127 110.06 1,400 11.01

87 52.35 6,051 5.37 485 139.28 2,600 32.5

88 54.78 7,790 3.66 474 24.32 2,600 10.54

89 54.77 8,216 4.11 454 91.24 3,400 3.04

90 56.94 1,229 2.07 321 85.26 600 19.9

91 51.80 9,421 3.42 401 119.89 1,000 11.99

92 54.51 4,572 2.04 305 132.62 2,200 4.42

93 57.15 8,817 6.43 105 229.9 2,600 68.97

94 55.83 6,179 6.13 359 93.7 1,800 28.11

95 52.26 4,672 4.05 201 74.05 3,000 7.41

96 50.30 4,177 3.00 331 129.84 2,200 38.95

97 57.42 3,505 5.53 124 68.53 1,400 29.7

98 55.79 6,461 6.26 170 150.45 3,000 45.13

99 50.55 9,719 5.64 228 16.25 2,200 2.71

100 56.69 9,014 8.23 322 199.53 3,000 86.46

101 53.39 4,300 6.05 45 175.09 3,000 75.87

102 57.43 5,586 6.32 377 100.02 3,000 16.67

103 55.15 8,518 7.66 374 110.9 2,200 33.27

104 55.98 8,913 8.91 262 118.34 1,800 27.61

105 53.22 9,356 6.64 196 86.99 1,400 26.1

106 54.04 9,290 1.52 292 146.17 3,400 63.34

107 52.63 8,097 1.15 379 180.03 2,600 66.01

108 51.83 9,559 2.22 147 90.96 1,400 21.22

109 48.35 1,583 4.28 208 22.6 1,400 6.78

110 48.92 8,496 9.95 466 147.83 2,600 73.91

111 50.02 2,481 1.35 151 199.83 3,400 86.59

112 48.36 5,470 2.52 293 225.04 3,400 82.51
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Table A.2: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md h, ft hL, ft hd, ft

113 56.86 4,796 7.15 430 54.93 2,600 20.14

114 48.23 5,596 6.09 109 160.54 600 80.27

115 55.56 9,041 9.23 393 133.77 1,400 40.13

116 48.52 2,297 1.03 221 47.9 1,400 11.18

117 53.67 8,229 3.48 32 43.19 1,800 15.84

118 51.22 5,179 6.67 429 185.06 3,000 43.18

119 57.31 1,050 2.23 115 206.5 1,800 48.18

120 48.03 1,754 9.73 453 91.57 1,400 21.37

121 52.26 1,478 9.35 86 15.45 2,200 6.7

122 55.80 4,487 8.47 435 102.32 1,000 10.23

123 50.35 1,090 6.74 81 32.8 2,600 14.21

124 52.43 5,159 3.40 367 143.49 1,000 33.48

125 55.04 8,675 5.23 374 40.92 2,200 12.28

126 57.37 8,373 2.81 282 27.41 3,000 2.74

127 51.98 1,168 8.14 145 56.57 600 9.43

128 48.79 5,838 3.57 258 182.3 1,000 30.38

129 56.29 9,002 4.36 166 54.3 2,200 12.67

130 51.35 5,579 4.10 264 164.96 3,400 38.49

131 52.47 2,747 7.02 276 55.25 1,400 12.89

132 53.54 5,462 8.46 58 28.41 1,400 2.84

133 49.04 2,673 7.81 492 198.38 2,200 33.06

134 53.32 2,353 5.92 182 32.98 2,200 12.09

135 49.94 7,647 7.89 256 17.51 1,400 4.09

136 56.25 8,920 8.12 494 136.63 2,200 31.88

137 54.84 1,045 1.34 169 228.8 3,000 83.89

138 49.49 8,238 6.01 113 62.95 3,400 23.08

139 48.09 4,523 4.64 482 223.58 1,800 52.17

140 54.79 2,792 4.13 241 54.65 1,400 9.11
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Table A.2: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md h, ft hL, ft hd, ft

141 48.66 3,625 7.92 192 211.28 1,000 77.47

142 55.62 5,583 2.98 165 107.41 1,800 53.7

143 52.32 3,361 2.40 54 106.73 2,200 24.9

144 48.32 4,752 5.28 361 21.54 3,400 7.9

145 53.67 2,313 2.88 148 133.24 2,200 22.21

146 54.31 5,703 3.45 290 127.72 2,600 38.32

147 48.93 2,110 5.29 71 66.95 600 11.16

148 55.29 5,559 5.40 210 58.75 1,800 13.71

149 50.44 7,168 1.81 272 143.88 1,000 23.98

150 53.06 7,462 4.23 156 64.18 2,600 23.53

151 53.11 5,337 5.43 395 59.96 2,600 6

152 48.66 4,780 3.23 300 118.98 3,000 27.76

153 52.99 7,775 6.74 409 33.61 2,200 5.6

154 51.32 9,593 1.54 416 173.85 1,000 40.57

155 48.59 3,099 7.31 335 191.43 3,000 19.14

156 51.62 2,231 5.19 63 82.27 1,400 24.68

157 48.39 1,876 2.15 322 224.28 2,200 22.43

158 50.93 4,755 2.51 222 116.27 2,200 19.38

159 53.98 1,855 5.54 142 199.91 3,000 59.97

160 48.11 7,891 2.19 288 136.74 1,000 41.02

161 57.76 7,453 3.25 445 46.69 1,800 7.78

162 48.27 8,328 5.83 466 154.46 2,200 36.04

163 57.29 3,910 8.65 133 131.42 1,000 56.95

164 57.43 5,460 4.04 367 20.02 3,000 7.34

165 52.62 7,646 4.82 168 104.95 3,000 31.49

166 49.52 3,349 3.22 108 96.32 1,800 28.9

167 51.47 8,706 3.72 157 156.4 3,000 5.21

168 50.95 5,159 1.33 37 235.5 1,400 102.05
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Table A.2: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md h, ft hL, ft hd, ft

169 57.27 9,442 6.75 311 220.36 600 80.8

170 51.70 5,990 4.30 332 165.63 3,400 27.6

171 50.80 7,534 7.82 374 104.73 600 10.47

172 53.39 6,339 7.59 447 163.18 1,400 16.32

173 56.99 3,040 3.91 438 28.02 1,400 0.93

174 53.50 9,710 9.55 200 57.27 1,400 5.73

175 57.09 1,376 1.26 184 123.55 2,600 12.36

176 53.62 2,844 9.70 485 70.81 3,400 35.41

177 52.33 8,471 9.33 237 185.43 3,000 80.35

178 56.99 9,715 7.78 243 185.87 600 43.37

179 57.69 8,024 8.35 113 24.1 1,400 4.02

180 55.16 2,953 8.49 310 77.22 1,800 28.31

181 55.83 6,634 3.81 265 88.42 1,800 44.21

182 56.59 1,626 9.34 364 163.99 600 49.2

183 48.90 1,342 2.58 485 15.2 1,400 0.51

184 51.71 3,692 9.92 337 196.94 1,400 19.69

185 51.65 9,577 8.63 187 211.62 600 21.16

186 55.39 1,087 5.95 106 175.85 1,000 52.75

187 56.33 5,800 8.35 213 104.25 3,400 38.22

188 52.11 5,937 6.45 39 133.13 1,400 66.56

189 52.77 1,780 9.85 451 144.54 3,000 72.27

190 56.39 1,762 7.53 193 134.15 2,200 31.3

191 54.23 4,969 1.68 472 70.44 1,400 16.44

192 55.70 9,061 2.92 279 118.51 1,800 19.75

193 55.24 5,924 4.84 344 220.4 3,400 80.81

194 53.31 5,570 3.87 149 142.9 2,600 52.4

195 54.03 2,875 6.43 55 165.23 1,400 38.55

196 54.57 4,500 1.75 84 45.47 600 10.61
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Table A.2: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md h, ft hL, ft hd, ft

197 52.16 8,223 7.88 300 223 3,000 66.9

198 50.71 5,994 6.48 179 190.92 2,600 82.73

199 53.58 9,157 9.18 161 183.34 3,000 6.11

200 54.49 9,418 8.18 98 103.75 1,000 31.13

201 52.10 9,216 7.94 487 60.03 1,800 18.01

202 56.01 8,390 8.10 192 18.7 1,800 1.87

203 52.87 8,344 6.59 424 180.36 1,000 54.11

204 57.92 8,798 2.44 361 214.64 3,000 50.08

205 52.12 8,348 9.65 91 71 3,400 30.77

206 54.19 4,162 7.33 140 182.93 3,000 30.49

207 49.57 4,955 2.64 346 84.03 600 36.41

208 50.89 6,166 3.92 396 130.7 1,000 56.64

209 52.52 5,866 5.67 61 224.82 2,200 97.42

210 54.07 4,881 1.88 30 174.69 1,400 29.12

211 56.80 9,528 2.38 137 88.03 2,600 44.01

212 50.14 3,867 8.97 215 45.45 3,400 1.51

213 54.41 2,551 4.05 455 44.47 600 7.41

214 57.30 9,240 8.18 412 58.01 2,200 21.27

215 57.02 7,165 9.49 422 113.94 600 3.8

216 52.00 7,638 5.82 466 122.3 1,400 53

217 50.63 1,515 5.53 177 108.54 2,600 25.33

218 48.87 2,819 9.03 283 222.66 1,400 81.64

219 50.25 4,074 8.00 497 224.21 2,600 37.37

220 50.47 4,406 4.93 380 77.9 2,200 2.6

221 49.13 9,230 2.10 280 62.03 1,800 22.74

222 49.47 9,919 4.81 354 190.21 2,200 57.06

223 48.62 2,548 2.60 401 185.08 3,000 92.54

224 57.74 2,072 3.34 106 138.66 1,000 50.84

continue on next page



78

Table A.2: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md h, ft hL, ft hd, ft

225 51.90 3,203 6.72 473 104 600 24.27

226 52.95 3,788 2.46 122 94.9 600 3.16

227 49.42 2,939 1.19 64 33.28 600 9.98

228 56.62 1,211 8.15 262 210.85 2,200 77.31

229 50.34 3,988 3.34 162 96.28 2,600 35.3

230 53.62 6,581 1.66 402 122.59 1,400 53.12

231 54.25 3,350 5.51 39 145.54 3,000 24.26

232 51.10 6,960 9.75 134 98.2 600 29.46

233 54.40 1,322 1.67 469 31.72 3,400 13.75

234 56.33 4,254 2.53 15 58.89 600 13.74

235 53.15 1,172 8.13 264 25.08 2,200 10.87

236 53.23 7,413 7.82 82 27.57 2,200 4.6

237 50.70 4,284 6.97 291 64.63 1,000 19.39

238 52.05 4,704 6.26 189 74.87 1,400 32.45

239 48.96 7,942 7.91 9 121.83 1,400 28.43

240 51.58 4,237 3.56 273 86.78 1,000 2.89

241 56.43 5,676 9.10 128 65.44 3,400 19.63

242 54.98 5,503 8.39 290 65.47 2,200 19.64

243 48.63 8,975 7.05 54 180.61 3,000 54.18

244 54.68 5,369 1.07 137 150.54 1,800 75.27

245 54.50 1,197 7.02 477 42.01 600 12.6

246 54.34 3,359 7.54 467 218.14 2,600 79.99

247 49.11 8,182 8.06 8 85.16 2,200 8.52

248 54.84 9,931 5.28 94 70.94 2,600 11.82

249 51.04 6,359 2.64 332 40.14 2,600 12.04

250 52.96 9,113 4.39 265 20.27 1,400 6.08

251 55.44 2,883 4.88 306 54.88 1,400 12.8

252 54.54 8,958 9.12 14 230.62 1,400 84.56
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Table A.2: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md h, ft hL, ft hd, ft

253 55.80 7,824 9.03 283 180.96 2,200 42.22

254 53.97 7,584 8.73 443 164.44 2,200 16.44

255 53.78 5,392 6.44 30 105.36 2,200 38.63

256 51.22 4,723 6.08 364 151.26 2,200 75.63

257 56.25 2,151 1.28 200 102.28 2,200 3.41

258 55.34 1,960 3.54 398 107.09 1,800 53.54

259 51.98 3,590 1.97 424 129.78 2,600 47.59

260 57.98 8,689 5.53 44 161.37 3,400 48.41

261 55.81 1,122 8.08 91 143.13 1,400 62.02

262 55.86 5,680 7.31 435 91.63 600 9.16

263 50.53 1,307 9.36 483 89.51 1,000 20.89

264 57.45 9,087 6.98 419 99.24 1,400 29.77

265 55.34 3,314 7.74 301 29.83 2,600 2.98

266 50.80 4,415 5.71 295 163.03 2,200 70.65

267 49.35 6,298 4.80 316 143.68 1,400 43.1

268 52.20 9,171 3.08 131 174.07 1,000 63.83

269 48.87 6,659 4.69 6 183.9 3,000 55.17

270 56.66 3,476 1.45 315 227.82 3,400 98.72

271 49.07 7,016 2.21 269 149.06 1,800 4.97

272 56.76 2,795 6.91 371 182.68 2,200 54.81

273 54.79 7,924 9.58 379 117.84 1,000 43.21

274 53.98 4,150 7.79 484 237.73 1,400 39.62

275 48.47 1,357 7.63 204 168.63 3,400 5.62

276 56.55 1,441 8.00 338 153.07 3,000 76.53

277 48.26 6,687 7.70 164 80.77 3,000 24.23

278 55.17 2,997 8.02 483 164.26 1,400 16.43

279 57.78 9,992 5.92 119 37.69 1,800 3.77

280 50.89 1,560 1.01 257 66.93 2,200 11.16

continue on next page
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Table A.2: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md h, ft hL, ft hd, ft

281 52.60 4,723 1.67 271 157.83 3,000 78.91

282 53.15 9,830 9.70 456 190.64 1,000 19.06

283 49.41 5,456 8.85 127 170.67 1,800 62.58

284 48.98 6,242 1.06 56 177.34 3,000 29.56

285 57.64 7,469 7.62 317 80.65 3,000 8.07

286 52.06 6,520 9.88 203 163.54 2,600 5.45

287 49.70 1,401 7.66 77 158.03 1,800 26.34

288 49.06 8,649 2.71 37 195.07 3,000 32.51

289 53.21 3,481 1.23 101 198.03 600 85.81

290 54.22 3,065 8.35 167 52.98 2,200 12.36

291 48.58 2,568 6.27 71 166.65 3,400 72.22

292 53.75 4,285 8.72 359 78.98 3,000 34.23

293 56.84 2,047 7.25 409 116.37 1,000 3.88

294 53.34 3,703 7.29 280 68.83 3,000 16.06

295 50.91 7,982 7.92 207 149.58 1,000 14.96

296 48.04 3,351 3.91 320 49.07 2,600 4.91

297 48.37 7,240 2.17 232 121.63 1,400 44.6

298 50.46 5,864 4.74 42 204.72 3,400 102.36

299 56.94 9,733 9.27 117 175.93 2,600 41.05

300 49.47 9,576 3.68 458 27.58 1,800 11.95

301 52.81 6,627 6.72 383 36.9 1,000 3.69

302 52.86 6,632 6.77 385 37.65 1,000 3.77

303 52.96 6,642 6.87 383 39.15 1,000 3.92

304 53.01 6,647 6.92 385 39.9 1,000 3.99

305 51 5,400 2 190 240 2,600 104

306 53 5,600 2.1 195 240 3,000 120

307 52.9 6,636 6.81 383 38.31 1,000 3.83

308 52.92 6,638 6.82 385 38.33 1,000 3.83

continue on next page
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Table A.2: (Continued)

No. ρo, lb/ft
3 qL, STB/D µo, cp kv, md h, ft hL, ft hd, ft

309 52.23 4,960 2.31 228 156 3,400 15.6

310 52.33 4,964 2.41 230 157.35 3,400 15.74

311 50.73 4,683 3.58 74 142.65 3,400 42.8

312 50.83 4,687 3.64 76 144 3,400 43.2

313 51.71 6,281 9.85 252 135.75 3,400 40.73

314 51.8 6,290 9.95 254 137.25 3,400 41.18



Appendix B
MATLAB code for training the

Neural Network

clear

close all

clc

format long

load input

load output

P = input’;

T = output’;

[m,n] = size(P);

[m1,n1] = size(T);

[P2,ps2] = removeconstantrows(P);

%normalising the data

[Pn,ps] = mapminmax(P2,-1,1); gives all values between -1 and 1

[Tn,ts] = mapminmax(T,-1,1); gives all values between -1 and 1

[mi,ni] = size(Pn);

[mo,no] = size(Tn);

%The following five lines specify the data for training, validation and testing

trainInd = [1:81,106:233];

valInd = [82:96];

testInd = [97:105];
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[Pn train,Pn val,Pn test,trainInd,valInd,testInd] = divideind(Pn,trainInd,valInd,testInd);

[Tn train,Tn val,Tn test] = divideind(Tn,trainInd,valInd,testInd);

val.T = Tn val;

val.P = Pn val;

test.T = Tn test;

test.P = Pn test;

%Initiating network parameters

HL1 = 43; state number of neurons in first hidden layer

HL2 = 90; state number of neurons in second hidden layer

net = newff(Pn,Tn,[HL1,HL2],{’tansig’},’traincgp’,’learngdm’,’msereg’);

%setting training parameters for the network

net.trainParam.goal = 0.0001; accuracy within this range

net.trainParam.epochs = 100; number of iteration sets

net.trainParam.show = 1;

net.trainParam.max fail = 10000;

%starting training the network

[net,tr] = train(net,Pn train,Tn train,[],[],test,val);

%————————————————————————–

%———–getting data from the trained network ————————-

%————————————————————————–

Tn train ann = sim(net,Pn train);

Tn test ann = sim(net,Pn test);

Tn val ann = sim(net,Pn val);

[m Te,n Te] = size(Tn test);

NP test = 1:n Te;

————————————————————————

%denormalising the data sets obtained

%output reversal

T train = mapminmax(’reverse’,Tn train,ts);

T test = mapminmax(’reverse’,Tn test,ts);

T train ann = mapminmax(’reverse’,Tn train ann,ts);

T test ann = mapminmax(’reverse’,Tn test ann,ts);

T val = mapminmax(’reverse’,Tn val,ts);
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T val ann = mapminmax(’reverse’,Tn val ann,ts);

%input reversal

P train = mapminmax(’reverse’,Pn train,ps);

P val = mapminmax(’reverse’,Pn val,ps);

P test = mapminmax(’reverse’,Pn test,ps);



Appendix C
Water Saturation Maps for Two

different reservoirs for Vertical Wells

Using ANN
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(a) year 1 (b) year 2 (c) year 3

(d) year 4 (e) year 5 (f) year 6

(g) year 7 (h) year 8 (i) year 9

(j) year 10

Figure C.1: Water saturation map for reservoir # 228 using predicted
ANN data (Note: vertical permeability for this reservoir is 55 md).
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(a) year 1 (b) year 2 (c) year 3

(d) year 4 (e) year 5 (f) year 6

(g) year 7 (h) year 8 (i) year 9

(j) year 10

Figure C.2: Water saturation map for reservoir # 223 using predicted
ANN data (Note: vertical permeability for this reservoir is 228 md).



Appendix D
Water Saturation Maps for Two

different reservoirs for Horizontal

Wells Using ANN
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(a) year 1 (b) year 2 (c) year 3

(d) year 4 (e) year 5 (f) year 6

(g) year 7 (h) year 8 (i) year 9

(j) year 10

Figure D.1: Water saturation map for reservoir # 11 using predicted
ANN data (Note: vertical permeability for this reservoir is 209 md).
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(a) year 1 (b) year 2 (c) year 3

(d) year 4 (e) year 5 (f) year 6

(g) year 7 (h) year 8 (i) year 9

(j) year 10

Figure D.2: Water saturation map for reservoir # 7 using predicted
ANN data (Note: vertical permeability for this reservoir is 404 md).
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