WHICH CRIME DROP?

A Thesis in
Crime, Law, and Justice

by
Matthew VanEseltine

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Master of Arts

May 2009
This thesis was reviewed and approved* by the following:

Richard Felson
Professor of Crime, Law, & Justice and Sociology
Thesis Adviser

D. Wayne Osgood
Professor of Crime, Law, & Justice and Sociology

Eric Silver
Associate Professor of Crime, Law, & Justice and Sociology

John D. McCarthy
Department Head and Professor of Sociology

*Signatures are on file in the Graduate School.
Abstract

Two distinct decreasing homicide patterns constitute the 1990s homicide drop. I disaggregate, analyze, and discuss U.S. homicide rates between 1980 and 2000 to focus on these divergent trends. First, there is a sharp rise and a dramatic fall concentrated within one kind of homicide: handgun deaths among young urban men. Second, most other types of homicide show a steady decline through both decades. Empirical work on the crime drop has tended to conflate these two trends, leading to confusion over the causes of these patterns. I survey existing causal explanations with these distinctions in mind. Crack cocaine markets have been identified as the major factor in the rise of youth homicides in the late 1980s, and the subsequent fall in the 1990s rate was concentrated within the same kinds of homicide. Explanations for the reversal of the youth homicide wave are thereby most plausible when they directly or indirectly deal with drug markets: economic improvement, routine policing, or crack market stabilization. The broad decline in other kinds of homicide, widely overlooked until now, demands further inquiry and analysis. Plausible explanations for the general decline include the incarceration boom, changes in immigration and age composition, and evolving police practices.
Table of Contents

List of Tables ... v
List of Figures ... vi

Introduction .. 1

The Homicide Trends ... 3
 Age and Weapon ... 3
 Race and Sex .. 5
 Victim-Offender Relationship 5
 Place ... 6

A Statistical Complement 7
 Data and Methodology 7
 Results .. 11

Methodological Framing 14
 Control Construct Design 15

Causal Explanations .. 16
 Rising Homicide Rates 18
 Falling Homicide Rates 19

Discussion .. 26
 Absent Theories .. 28
 Expanding the Focus 29
 Conclusion .. 30

Appendix ... 32
 Regression Coding ... 32

References .. 34
List of Tables

1 Prais-Winsten Piecewise Regressions of Disaggregated Trends . . 12
2 Plausible Explanations for Key Homicide Patterns, 1980—2000 . 27
3 Variable Coding for Piecewise Regression 32
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U.S. Homicide Rate, 1950–2004</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Homicides by Age and Weapon, 1980–2000</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Homicides by Race and Sex, 1980–2000</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Homicides by Victim-Offender Relationship, 1980–2000</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Homicides by Urbanicity, 1980–2000</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Homicide Rate, 1950–2004, Hypothetical and Actual</td>
<td>17</td>
</tr>
</tbody>
</table>
The study of homicide trends in the United States at the end of the last century touches on several prominent public and political concerns. To name a handful, the 1980s and 1990s brought the incarceration boom, the crack cocaine epidemic, gang warfare, law-and-order policing, and three-strikes legislation. Existing academic investigations have yielded further connections to perennial policy debates, including the War on Drugs, gun control, and, improbably enough, abortion. Although such topics were prominent in turn-of-the-century media coverage about crime, relatively little criminological effort has been focused to find specific causes of the changes in U.S. homicide rates over the last few decades.

Figure 1: U.S. Homicide Rate, 1950–2004

The patterns themselves are dramatic, as Figure 1 shows in the overall trend of U.S. homicides. From 1980, the homicide rate steadily declined for several years, but turned around to rise starting around 1985. This climb peaked in 1991/1993, followed by a six-year uninterrupted drop. At 5.5 homicides per 100,000 population, the end of the drop yielded a national rate unseen since 1967 (Fox and Zawitz, 2007), hovering just above the lows of the ’50s and ’60s. The largest drop
in homicides since World War II (Gartner and Parker, 1990; Courtwright, 2001) would not, of course, escape the attention of criminologists. Even before the trend had completed its descent, the spring of 1998 saw a conference devoted to the decrease in violent crime. Articles collected from the conference constituted that summer’s issue of *The Journal of Criminal Law and Criminology*. Ten years later, however, many open questions remain. Indeed, the decrease in homicides of the 1990s continues to be popularly described as a “mystery” (Karmen, 2000; Rosenfeld, 2002; Zimring, 2007)

Understanding the homicide decline has proven to be a complicated task, and research in this area has suffered from inadequate quantification and qualification of the questions at hand. The present study represents an attempt to correct this fault as I (1) explore the key homicide patterns at the end of the 20th century; (2) identify features of these homicide patterns as first-step criteria for assessing causal explanations of homicide rates; (3) apply these criteria to explanations found in the criminological literature.

First, I survey existing studies, revealing that the overall homicide rate changes of 1980 to 2000 is a function of two different major trends. I further assess these trends with regression analyses as a complement to typical graphical displays of homicide trends. The patterns suggested by graphs are supported by the regression results. Disaggregated trends show quite distinctly one set of trends as a wave, rising in the late ’80s and falling in the ’90s, and the other set of trends as a general decline. The wave is composed of homicides committed by young men, particularly using guns, and the onset of this homicide wave is widely understood as related to the emergence of crack cocaine. Other types of homicide show a general decline, diminishing in number from 1980 onward. I consider these as three separate patterns to be explained: the rise, the fall, and the general decline.

Second, I discuss the theoretical and methodological implications of the differences in these trends. The phrase “the crime drop” is itself misleading: among three patterns of homicide, there are two crime drops. One “drop” is relatively short but involves only a few categories of homicide, young men with handguns, and appears as the downturn of a youth homicide wave. The other “drop” is the background to the first: a rather long decline involving most other kinds of homicide. Having identified the key homicide patterns in question, the specific types of homicide involved in each pattern can be used to sift through potential causal explanations. Using the methodological tool of control construct reasoning, the predictions made in an explanation can be matched to the reality of homicide trends. The ideas that criminologists have offered as causes of “the crime drop” should match the timing and characteristics of these patterns. Past research that has tried
to explain a singular 1990s “crime drop” has made the mistake of conflating two quite distinct patterns, and the result has been analytical confusion.

Finally, applying this reasoning, I revisit and reassess the range of causal explanations that have been used to discuss these homicides. Again, three fundamental patterns present themselves for explanation: the sharp rise in some homicides (young-male-gun-wielding homicides), the sharp fall in those same homicides, and the general decline in all other kinds of homicide. My assessment consists of the first step in analyzing these causal explanations: does the proposed relationship match up with the correct pattern of homicides? If a causal explanation is to successfully explain a homicide trend, the proposed mechanism must interact with an appropriate kind of homicide, in the correct direction, with appropriate timing. So, for example, if the claim is made that a particular policing strategy reduced homicide, but that strategy only existed in a limited number of cities, it cannot as easily be extended to explain any nationwide pattern. If the policing strategy would only reasonably affect schoolchildren, it would be difficult to explain changes in homicides among adults. By applying this technique as a vetting process to the existing explanations for “the crime drop,” we can avoid unnecessary pursuit of theories that do not actually match the historical trends.

The Homicide Trends

Disaggregation has been a useful strategy as researchers have examined and clarified the homicide drop. The following discussion draws on Supplemental Homicide Reports (SHR) data provided by the Federal Bureau of Investigation (FBI). The SHR carry incident-level information on homicides across the United States, as reported by local agencies. Information gathered on each homicide includes the offender’s age, race, and gender, the kind of weapon used, the relationship between victim and offender, and where the homicide took place. By disaggregating the overall homicide rate into separate rates based on one or more of these variables, and examining the separate patterns, we begin to get a clearer picture of how rates changed in the final two decades of the 20th century.

Age and Weapon

National trends in youth homicide caught the eye of criminologists before the “homicide drop” was obvious (Blumstein, 1995; Cook and Laub, 1998). Figure 2 shows the national homicide rate broken down by two categories of age and
whether or not the weapon was a gun. Homicides committed by fifteen to twenty-five-year-olds dramatically increased from the mid-'80s until the early '90s. This increase is most substantial among teenagers, whose overall rates doubled from 1985 to 1993. In contrast, homicides by offenders over age 30 continued a decline that began in 1980. Juvenile homicide reversed and fell—nearly as sharply as the rise—through the 1990s. Youth homicides, more than any other subset, have been addressed in their own right as the juvenile homicide “epidemic” or “wave” (Bernard, 1999; Blumstein and Cork, 1996; Cook and Laub, 1998, 2002; Moore and Tonry, 1998). It should be noted that victim ages do not share precisely the same pattern. Although youth offenders, especially those holding guns, were the ones to create the wave, their victims were spread more widely across age ranges (Rosenfeld, 2000; Wintemute, 2000).

![Figure 2: Homicides by Offender Age and Weapon, Relative to 1980 Rate](image)

Nearly equal attention has been paid to the role of handguns, and Figure 2 indicates that it is the combination of youth and handguns, not either separately, that produced the homicide wave. As with adults, homicides committed without guns continued their early eighties decline through the nineties. At the same time
gun homicides, especially incidents involving semiautomatic handguns, increased (Blumstein, 1995; Blumstein and Cork, 1996; Wintemute, 2000; Zimring, 2004). The turnaround in the youth-gun trend is noticeably absent in the other trends in Figure 2. The decline in older gun or young non-gun homicides might accelerate somewhat in the ’90s, but the changes in rate are nothing like the youth-gun pattern.

Race and Sex

Two other key demographic characteristics, race and gender, are included in the SHR. Nationally, black rates of homicide are much higher than white rates, typically by a factor of 8:1. To bring the rates to readily comparable levels, Figure 3 again plots each category relative to its respective 1980 rate, this time for race and gender. The homicide wave, was predominantly—though not overwhelmingly—a function of an increase and decrease of black male offenders (Cook and Laub, 1998; Fox, 2000). The “wave” pattern of youth gun homicides is repeated for black males, while white males show a more shallow increase. White and black female rates of homicide appear to take a linear decline.

Gender has received less attention than age or race, perhaps because homicide is a predominantly male pursuit. Without improbably huge swings in female homicide rates, the overall trend would be unaffected. When researchers seek to simply describe the changes in homicide trends, female homicide cannot play a large role in the overall pattern, because it only constitutes nine to fifteen percent of all homicides. Those who have looked at gender find that, as with youth and gun trends, the late ’80s rise and early ’90s fall is an overwhelmingly male phenomenon (Blumstein et al., 2000; Fox, 2000; Fox and Piquero, 2003; Parker, 2008).

Victim-Offender Relationship

The SHR includes a range of possible relationships between the victim and offender that, when known, are reported. Figure 4 plots four categories of victim-offender relationships: partner, family member, acquaintance, or stranger. As a

1The FBI began to gather ethnicity in addition to race in 1980, but soon abandoned analysis of the variable because too few agencies reported complete ethnicity data. Information about Hispanic origin is therefore unavailable for offenders through the SHR (Fox, 2004)
general statement, the late ’80s wave is characterized by more distant relationships. Few crime drop researchers have disaggregated the trend by relationship in this context, although the downward trend in partner homicide is already under consideration as a topic of inquiry in its own right (Wells and DeLeon-Granados, 2004). Notable exceptions include Rosenfeld’s (2000) discussion of the declining intimate partner homicide trend among older victims and Blumstein’s (1995) assessment that the late ’80s homicide increase involved strangers. Overall, most homicides are committed by strangers and acquaintances, but, on the other hand, family members do constitute a significant minority: 21–28% of all homicides during this time period. Homicides by strangers and acquaintances show the wave pattern, while homicides of partners and other family members show a more-or-less steady decline.

Place

As mentioned above, the decline was nationwide, occurring in every region and most major cities (Eck and Maguire, 2000). The wave also appeared across al-
most all urban boundaries, with all sizes of cities and suburban areas showing some amount of increase and decline, as shown in Figure 5. Only completely rural areas appear to show no rise in homicides during the late ’80s. A notable characteristic of this disaggregation by urbanicity is that the wave did not happen at the same time by city size. Large cities (over 500,000) show a distinctive peak in the wave first, followed by medium cities (100,000–499,999), followed by small cities (10,000–99,999). Unlike other factors described above (where the peaks appear approximately simultaneous), this suggests that an effect may have spread over space through time (Blumstein, 2000).

A Statistical Complement

Data and Methodology

Most of the present analyses, including some of the figures above, draw from the Supplemental Homicide Reports (SHR). Local law enforcement agencies around the United States submit information on each homicide in their jurisdictions to
the FBI each month. The particular data set used here is cumulative from 1976 through 2003 (Fox, 2005). As is standard of homicide statistics reporting, these data exclude negligent manslaughter, justified homicide, and deaths resulting from the terrorism of September 11, 2001.

Although a few years are available in the SHR from the late 1970s and early 2000s, I have further limited the scope of the project at hand to the years 1980 through 2000. The available incident-level homicide data before 1976 is of worse quality, though it is clear that 1980 is a peak in the overall homicide trend, as seen in Figure 1. As we gain more information, criminologists will take greater interest in the new puzzle of the post-2000 trend. If the '90s is characterized by the “drop,” the '00s are starting off as the “level,” or perhaps the “flat.” The shift from declining rates to the leveling off occurs right about at the year 2000 (5.7 per 100,000 population in 1999, 5.5 in 2000, 5.6 in 2001). With the year 1980 as a beginning and a low-water mark at 2000, the present study encompasses a (conveniently round-numbered) twenty years of U.S. homicides.

Earlier research in this area has presented the descriptions of homicide trend
data almost exclusively through graphs, as we have seen above. Researchers occasionally provide a table to list rates or changes in rates of homicides for each year. Usually, though, these tables are converted into graphs, a convention that I have followed with Figures 2 through 5. Plotting rates as a simple line graph puts them in a form where we can easily see changes over time and between trends. As a medium through which to estimate changes and differences in these trends, however, graphs are not perfect. Four major issues arise with the standard presentation of homicide rate graphs.

First, if rates are to be compared side by side, the relative differences in base rate matters. If a female homicide rate is graphed alongside the male homicide rate, changes in the female homicide rate appear much flatter than the male, by virtue of the fact that female homicide rate is much lower. Even when the female rate doubled, it will not move as much as a fifty percent shift in male rates. Some studies (e.g., Cook and Laub, 1998) present figures in which dissimilar rates are plotted without adjustment for substantial differences in the base rates. Rosenfeld (2004) graphs female rates alongside male, such that changes in the female rates are indistinguishable. This is not wrong, per se: it depends on what kinds of changes one wants to emphasize. For the graphs I plotted above, I standardized the rates to each category’s 1980 rate, so that baseline differences are removed. An alternate solution is to multiply the lower trend by an arbitrary factor (e.g., Blumstein and Rosenfeld, 1998). However rates are displayed, it is an important methodological choice whether the author chooses to emphasize baseline sizes or effect sizes.

Second, in a related point, the typical graph uses a linear scale to depict rates. Again, the benefit of using linear rates, rather than computing the natural logarithm, is in the simple and direct presentation. On the other hand, if we view significant waning and waxing in a trend over time, the linear rate may be misleading. If a rate falls from 10 homicides per 100,000 population to 5 homicides over ten years, it would be obviously unsustainable for the rate to fall more than another 5 in the next ten years. The estimated linear trend would lead to negative rates - but it also represents a 100% drop rather than the initial 50% drop. If the rate fell at a consistent 50% per decade, it would appear on a linear graph to be a slowing of the decline: from 10 to 5, from 5 to 2.5, from 2.5 to 1.25. Again, the problem is not that it is wrong to place homicide rates on a linear graph. Instead we should ask how best to present homicide rates, considering the kinds of change that may be significant.

A third problem with straightforward graphing, and the best reason to supplement the graphs above with the statistical analysis below, is that the eye cannot
always pick out meaningful changes in homicide trends. In particular, the lower the baseline of a rate, the harder it is to pick out the trend visually. The overall national rate is relatively steady. But once we split the overall rate into more and more exclusive categories of homicide, the noise begins to threaten to overwhelm the signal. So, for example, each year there are fewer than 100 homicides by women over the age of 49 not involving guns. The rate jumps up and down year-to-year simply due to variation that is, for our purposes, random. Furthermore, it is not always easy, especially when compounded with noisy rates, to see what constitutes a meaningful change on a graph. The end result of this aim is a measure of standard error and, thereby, statistical significance. When is a shift in the graph simply variation around an existing trend, and when does it show a change to a new trend?

Finally, graphs become prohibitively complicated, and harder to identify visually, as more combinations of variables are included. At a certain point, it can be more effective to keep the information in numerical form. Yet as more variables are included, we can piece out (analogously to controlling for confounding variables) which characteristics of homicide are most important for making distinctions in the trends. It takes separation by both youth and weapon to see that only youth with weapons, not one or the other, contributed to the wave (as seen in Figure 2). Via the regression coefficients I estimate below, what would be twenty-eight lines spread out over several graphs is instead rendered into one table. The more variables we consider, the more accurate our understanding of the patterns can be, but graphing discourages such an increase in complexity. Graphs encourage a focus on a select few lines, to the potential exclusion of the more complex set. These four issues are not, I think, arguments for the total superiority of tables to figures. Rather, we should accept these issues as balancing factors when we consider the presentation and comprehension of data.

To meet these deficiencies of the typical presentation, as a complement to the graphs presented here and in others’ work, I analyze these data using a piecewise regression (Ostrom, 1990). The overall homicide rate is disaggregated into categories of gender, weapon, and age, forming twenty-eight separate rates—more than readily fits on a graph or two. Each of these rates is transformed by the natural logarithm and tested for changes in trends between the time periods. The piecewise regression analyses estimate changes in the slope of homicide rates between four points in time. These years are identified as the beginning peak (1980), the point before the youth homicide rise (1985), the peak (1993), and the end of the drop (2000). The variables included in the regression each capture a period
of time via incremental coding. Three coefficients display increases or decreases in the angle of the trend over their respective time periods. Because the data are homicide rates measured during each of 21 years, the observations are not independent, violating assumptions of normal ordinary least-squares regression. The Prais-Winsten regression transformation, implemented via the Stata 9 prais procedure, adjusts standard errors for the year-to-year error autocorrelation.

Results

The results of the Prais-Winsten regressions on twenty-eight disaggregated homicide rates are presented in Table 1. In 1980, an initial rate of each category of homicide is estimated, displayed in the intercept β_0 (recall that these are logged rates, not raw linear rates). During the first time period, between 1980 and 1985, β_1 estimates the slope in the rate: a negative number indicates a reduction in that kind of homicide per 100,000 population, over that five-year period. As we can see, almost all the rates have negative point estimates, and all of the gun rates are statistically significant. A statistically significant β_1 suggests that the rate is different from zero. This is the state of affairs prior to 1985: gun homicides are on the decline, other kinds of homicide are perhaps on the decline slightly but closer to flat.

The first half of the homicide wave, the rise from 1985 to 1993, is estimated in β_2. It is key to note that for these trends in the regressions, the coefficients β_2 and β_3 are relative to the prior time periods. So while β_1 marked a non-zero trend (i.e. is the rate rising or falling), β_2 asks whether the 1985–1993 trend is statistically distinct from the 1980–1985 trend (i.e. has the rate changed its rising, falling, or level character). A statistically significant β_2 indicates some change in the rate—a bend in the line—at 1985. The heavy concentration of these changes is among young men with guns and, to a lesser extent, young women. This is a confirmation of what we saw in previous research and the above graphs: the rise in homicides is particularly a rise in gun killings by young men.

2 More detail on the coding of these variables is included in the Appendix.

3 The difference between testing against zero vs. testing against the prior time period is a function of the way that these variables are coded. More detail on the coding of these regressions is available in the Appendix.

4 Because this table includes $28 \times 3 = 84$ statistical hypothesis inference tests, there are likely to be several type I and type II errors in the table (Cohen, 1994). Accordingly, the significance of individual coefficients should not be relied upon: the pattern of results is a safer guide. We should not have great confidence, for example, that females ages 35–39 without guns made up part of the otherwise-youthful homicide wave.
<table>
<thead>
<tr>
<th>Type of Homicide</th>
<th>(\beta_0) (1980)</th>
<th>(\beta_1) (to 1985)</th>
<th>(\beta_2) (to 1993)</th>
<th>(\beta_3) (to 2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male Gun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15–19</td>
<td>2.622</td>
<td>-.047*</td>
<td>.235**</td>
<td>-.356**</td>
</tr>
<tr>
<td>20–24</td>
<td>2.995</td>
<td>-.067**</td>
<td>.174**</td>
<td>-.177**</td>
</tr>
<tr>
<td>25–29</td>
<td>2.870</td>
<td>-.072**</td>
<td>.098**</td>
<td>-.085**</td>
</tr>
<tr>
<td>30–34</td>
<td>2.675</td>
<td>-.072**</td>
<td>.049**</td>
<td>-.050**</td>
</tr>
<tr>
<td>35–39</td>
<td>2.543</td>
<td>-.076**</td>
<td>.029</td>
<td>-.039*</td>
</tr>
<tr>
<td>40–49</td>
<td>2.274</td>
<td>-.061**</td>
<td>.004</td>
<td>-.031**</td>
</tr>
<tr>
<td>50+</td>
<td>1.713</td>
<td>-.037*</td>
<td>.082**</td>
<td>-.112**</td>
</tr>
<tr>
<td>Male Non-Gun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15–19</td>
<td>2.316</td>
<td>-.035</td>
<td>.046</td>
<td>-.095**</td>
</tr>
<tr>
<td>20–24</td>
<td>2.561</td>
<td>-.016</td>
<td>-.003</td>
<td>-.025</td>
</tr>
<tr>
<td>25–29</td>
<td>2.316</td>
<td>-.003</td>
<td>-.023</td>
<td>-.034*</td>
</tr>
<tr>
<td>30–34</td>
<td>1.993</td>
<td>.000</td>
<td>-.020</td>
<td>-.041*</td>
</tr>
<tr>
<td>35–39</td>
<td>1.693</td>
<td>-.010</td>
<td>-.012</td>
<td>-.016</td>
</tr>
<tr>
<td>40–49</td>
<td>1.319</td>
<td>-.039**</td>
<td>.017</td>
<td>-.008</td>
</tr>
<tr>
<td>50+</td>
<td>.426</td>
<td>.003</td>
<td>-.019</td>
<td>-.039**</td>
</tr>
<tr>
<td>Female Gun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15–19</td>
<td>.150</td>
<td>-.092**</td>
<td>.160**</td>
<td>-.152**</td>
</tr>
<tr>
<td>20–24</td>
<td>.777</td>
<td>-.064**</td>
<td>.051*</td>
<td>-.057**</td>
</tr>
<tr>
<td>25–29</td>
<td>1.023</td>
<td>-.079**</td>
<td>.024</td>
<td>-.048**</td>
</tr>
<tr>
<td>30–34</td>
<td>.889</td>
<td>-.057**</td>
<td>-.007</td>
<td>-.018*</td>
</tr>
<tr>
<td>35–39</td>
<td>1.013</td>
<td>-.111**</td>
<td>.048*</td>
<td>-.030*</td>
</tr>
<tr>
<td>40–49</td>
<td>.650</td>
<td>-.079**</td>
<td>-.001</td>
<td>.000</td>
</tr>
<tr>
<td>50+</td>
<td>-.409</td>
<td>-.100**</td>
<td>.065**</td>
<td>-.053**</td>
</tr>
<tr>
<td>Female Non-Gun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15–19</td>
<td>.343</td>
<td>-.013</td>
<td>.027</td>
<td>-.053*</td>
</tr>
<tr>
<td>20–24</td>
<td>.889</td>
<td>-.023</td>
<td>.012</td>
<td>-.037</td>
</tr>
<tr>
<td>25–29</td>
<td>.772</td>
<td>-.026</td>
<td>.021</td>
<td>-.076**</td>
</tr>
<tr>
<td>30–34</td>
<td>.476</td>
<td>-.020</td>
<td>.009</td>
<td>-.047*</td>
</tr>
<tr>
<td>35–39</td>
<td>.278</td>
<td>-.062**</td>
<td>.066*</td>
<td>-.050*</td>
</tr>
<tr>
<td>40–49</td>
<td>-.227</td>
<td>-.037</td>
<td>.004</td>
<td>.026</td>
</tr>
<tr>
<td>50+</td>
<td>-1.471</td>
<td>-.015</td>
<td>-.015</td>
<td>-.019</td>
</tr>
</tbody>
</table>

* p < .05 ** p < .01
With the coefficient estimating 1993–2000, \(\beta_3 \), we turn to a key question: for which kinds of homicide does the 1985–1993 trend change? How general is the 1990s homicide drop? The answer is not black and white. Most of these categories of homicide do appear to have turned downward during the 1990s, but the downturn is more prevalent among those categories that were part of the wave. Downturns in rates are concentrated in males, youth, and gun homicides. Key, however, is not merely whether or not the rates changed but the size of those changes. And there can be no question that the downward shift of non-gun homicides pales in comparison to young gun homicides.

As the results confirm, the wave is most concentrated in homicides by fifteen to nineteen-year-old males using guns. With this approach, age is more easily divided into multiple categories than can readily be displayed in a graph. As a result, the youth effect is perhaps even more stark. The rise and fall captured in \(\beta_2 \) and \(\beta_3 \) substantially outstrip the other categories of homicide. This is not because young offenders make up a big category of homicides (although they do). We must be careful to keep in mind which size we believe to be important. In terms of moving the overall rate, it matters how many young male homicides there are. Because young men commit a great deal of crime, even if they increased and decreased by only 20% it would noticeably affect the overall rate, whereas homicides committed by women over the age of fifty, even if they rose and fell by 90%, would not. To understand what happened, we care how big the changes in the rates are over time; we already know that there are more male than female homicides.

So although the big rise and fall in the overall homicide rate is due almost entirely to young men, it is not only because there are so many: it is also because the change in their rates was so large. The coefficients here show that by 1993 the rate of young male gun homicides increased to four times its 1985 value. By the end of the century it was back down, not quite to its previous low, settling near the rate in 1987. During this period of 1993 to 2000, while some rates declined a little more quickly, the really big changes are concentrated in youth, males, and gun homicides. While everything declines in the ’90s, what shows the biggest falls are the same homicides that began to rise in the ’80s. So although the mid-to-late 1990s may initially appear as a homogeneous drop, a more nuanced assessment reveals that the turnaround in the youth homicide wave dominates the change from the ’80s to the ’90s.
Methodological Framing

Now that we have taken a look through the data, both through visual and statistical modes, we should return to the question of what we are looking for in the data to begin with. Between the graphs and regression analyses above, we know what the homicide patterns are. But the methodological issues to be considered are deeper than simple description. As is clear from the review above, there are two patterns: a wave and a general decline. Of course, not every trend falls perfectly along one of these two lines, and there is variation in the degree to which some homicide types match the wave, but they are distinguishable as two trends. All types of homicide declined from 1980, until in the middle of the decade, young men with guns began to kill more frequently, particularly targeting strangers or non-family acquaintances. This was especially the case for black men in non-rural areas. This trend peaked in the early 1990s (somewhat earlier in larger, later in smaller cities) and thereafter dropped as the rest of the homicides continued to decline.

Accounting for the homicide trend in this way, however, does not maximize the information that we can gather for causal analysis. It really tells us about patterns in only the most common forms of homicide. The homicide trend of, say, middle-aged rural offenders without guns could have done nearly anything during this time period and the description would remain accurate. Old white women could have increased their homicides ten-fold, but the national rate will still be dominated by the changes in homicides committed by young black men.

When we turn to causal explanations, rather than mere description, crime trend researchers face the challenge of analyzing outcomes with no randomization, little manipulation of causes, and, in some cases, few or no control groups. The homicide drop is a prime example of these difficulties due to its nationwide character. Every region of the country and almost every major US city experienced some drop in homicides in the 1990s (Blumstein et al., 2000; Blumstein and Rosenfeld, 1998; Eck and Maguire, 2000; Rosenfeld, 2002; Zimring, 2007) With little variation across geographical units, researchers cannot easily compare places that did have the drop to places that did not. 5 How, then, can criminologists sort through the possible range of causes for this event? Dividing the trends into different kinds of homicides, rather than homicides in different places, allows for comparison using the same kind of reasoning.

5 Although some attention has been paid to Canada as a comparison, the evidence as to whether or not U.S. trends are similar remains murky (Laub, 2001; Sprott and Cesaroni, 2002; Zimring, 2007).
Thus far, the value of disaggregation has simply been implied: it is helpful to know what we can gain from separating out the trends in this way. As it happens, we gain a great deal. With the appropriate approach, we can use disaggregation as a way to filter potential causal explanations. When researchers construct and evaluate explanations of the crime drop, disaggregation can be used as a form of control construct design. By taking our homicide patterns as a set of outcomes with defined characteristics, such as the age, weapon, and gender differences between the wave and the general decline, these features are criteria with which to judge possible matching causes. Knowing that male youth handgun homicides rose while other kinds of homicide kept declining, we can ask why that should be.

A control construct design strengthens causal inference by comparing the measured treatment effect to related outcomes that should not be affected by the treatment (McKillip and Baldwin, 1990; Shadish et al., 2002). A simple example would be an evaluation of a general cancer awareness program for which evaluators do not have the ability or resources to build an adequate control population. Researchers could gather repeated surveys of the population before and after the campaign to create a time series of cancer awareness. Even if cancer awareness increases at the right point in time, during the ad campaign, there is a historical threat to validity. Perhaps something else besides the ad campaign occurred at the same time, and that unrelated cause is the true source of increased awareness. A control construct design measures other, related outcomes along with the intended effect. Depending on how the other outcomes track, we can see whether the actual results align with what we expect the program to produce. Control construct design shares the core insight of what Felson (2008) calls discriminant prediction: “examining multiple dependent variables to determine whether a theory predicts all that it should, and not what it shouldn’t” (p. 1, emphasis in original).

Evaluators in this cancer program example could use two types of constructs, either narrow or parallel. A parallel construct could measure awareness of other health issues, such as heart disease, stress, and diabetes. They could also use narrow constructs by asking specifically about lung, colon, or breast cancer. To strengthen a conclusion that the ad campaign succeeded in raising general cancer awareness, analyses of the time series for each construct derived from the surveys should indicate that (relative to the parallel non-cancer constructs) awareness of all kinds of cancer increased. If the other health awareness measures increased similarly, or if there were gains in only one type of cancer awareness, it suggests that something else may have caused the apparent treatment effect. So, for example, if
the narrow constructs indicate that, while overall cancer awareness increased, that effect is actually only due to an increase in breast cancer awareness, it casts doubt on the efficacy of the program. Further investigation might reveal, for example, heavy media coverage of a local celebrity’s breast cancer diagnosis.

As researchers of historical crime trends, we are engaged in a different task than program evaluators. We know the trends, the three patterns of rise, fall, and general decline, are the outcomes. Now we are searching for the accurate treatment: years ago, what caused these patterns? Control construct reasoning can be fruitfully employed to try to specify what this effect is and therefore which hypotheses would predict the specific effect. Narrow constructs in this case entail disaggregating homicides. If all kinds of homicide showed a similar pattern of decline, then proposed hypotheses should predict decreases in all kinds of homicide. But if only homicides by women were dropping, we would need to offer explanations for why female but not male homicides were declining. If homicides and all other kinds of crime were dropping at the same time, we would want to propose causes for a general crime decline, not only homicide. Parallel constructs would be other kinds of crime; the homicide trend can be compared with those of burglary, auto theft, rape, robbery, aggravated assault, and so forth.

Causal Explanations

The approach I take here follows much of the existing research on the crime drop, using narrow constructs of different kinds of homicides. The use of other crimes as parallel constructs is a complementary, possibly underrated approach, but keeping to categories of homicides alone carries two strong advantages. First, we stay within one fairly reliable source of data: crimes resulting in death are relatively well-reported in the SHR. Less serious kinds of crime face challenges including underreporting and changing quality of reporting in official data. Serious kinds of crime (particularly robbery) have very low frequencies in survey data. Second, as described above, homicide trends can be usefully disaggregated on a national level by several victim, offender, and incident characteristics. Limiting the scope of this study to homicides will keep the advantages of homicide data, though further research using parallel constructs, such as other kinds of crime, is complementary (e.g., Baumer et al., 1998; Steffensmeier and Harer, 1999).

The 1990s has often been characterized as one homogeneous decline. This kind of error only sets further causal analysis up for failure, as the causes to be considered depend on what section of the time trend one examines. Researchers
who ostensibly examine “the homicide drop” or “the crime drop” have often, as I have here, picked a time close to the homicide peak of 1980 (e.g., Blumstein, 2000; Cook and Laub, 1998; Fox, 2000; Rosenfeld, 2000). Others, however, have ignored the 1980s. By limiting the period of analysis to the 1990s, the entire wave effect is decontextualized and thereby misunderstood. Levitt (2004) divided up explanations into which explained what percent of the ’90s crime drop, but without reference to trends of the ’80s. Rennison and Planty (2006) found that “size does matter” in arguing that the most populous homicides drove the rate down (the pure description discussed above), but they were not able to consider the heterogeneity that distinguishes the general decline from the wave’s fall. Zimring (2007) focuses his inquiry solely on the 1990s, subsuming the fall and the general decline into what he perceives as a single ’90s drop.

Figure 6: Homicide Rate, 1950–2004, Hypothetical and Actual

Figure 6 presents the real trend after 1985 alongside a hypothetical trend based on the pattern of all homicides other than those committed by young men with guns. We can clearly identify the essential downtrend of most homicides compared to the rise and fall among young men. With control construct reasoning, we
are interested in the pattern of every trend, not only the most prominent or largest categories. Finding the kinds of homicide “responsible” for a given rise or fall is only a description. Whichever direction homicide rates of young men with guns take from year to year, the overall rate will usually follow, as Figure 6 shows. But as we have used the graphs and analyses above to precisely characterize the rise, fall, and general decline in homicides, we can precisely set criteria for causal explanations that may explain those patterns.

With the analytic division of the twenty-year homicide trend into a general decline and a wave, the scope of causal explanations that researchers should consider is limited. We should not ask “why did homicides decrease?” without asking about one of the three basic patterns: (1) the rise in homicides by youth, particularly men, with guns; (2) the fall of the same; (3) the general decline in other kinds of homicides. Whenever researchers have conflated (2) and (3) in the past, we can do our best to separate them out based on the criteria of which homicides were part of the wave and which were part of the decline.

Rising Homicide Rates

Crack Essentially only one explanation has been offered for the mid-'80s to early-'90s increase in homicides: crack cocaine. Crack as a form of easily dividable, portable, cheap cocaine was invented around 1984 and quickly spread through major US cities, filtering out into small cities and suburban areas (Johnson et al., 2000). Booming drug markets and high availability of handguns among dealers and users led to greater conflict and higher lethality in conflict (Blumstein, 1995; Blumstein and Cork, 1996). This explanation of the increase has received substantial empirical scrutiny and has garnered strong support. The pattern of diffusion of homicides matches the crack explanation both in time and space and the crack’s arrival in a city predicts an increase in homicide rates (Baumer et al., 1998; Cork, 1999; Fryer et al., 2005; Grogger and Willis, 2000; Messner et al., 2005). There is little if any disagreement among researchers that the rise in youth homicides is, at its root, a result of crack cocaine.

6The spread of crack and the rise in handgun use are probably not causally independent. As a veteran gang member observed, gangs would steal weapons before crack, but “when the cocaine thing came around—shit, just go buy a gun.” (Bing 1991, p. 223, cited in Courtwright 2001).
Falling Homicide Rates

Explanations that pertain to the other two patterns of the homicide trend—the fall in the wave and the general decline—have not been nearly as easy to assess as the wave’s rise. Distinctions between the longer-term decline and short-term fall have been at times conflated or confused. With control construct reasoning, we can assess the predictions of plausible explanations.

Crack

With crack emerging as such a useful explanation of the rise in homicides, the inverse has proved to be a tempting explanation of the ’90s decline in homicides. Since the spread of crack instigated violence, a decline of crack could just as readily reduce violence. This explanation is popular, simple, and elegant. Complications arise in attempting to define or assess the degree to which crack as gone away. Evidence is mixed that there is any substantial decline in crack use since the peak in youth homicides.

Some data indicates that crack cocaine use has not gone away, and the crack markets have not disappeared. Monitoring the Future (MTF), the authoritative study on high-school-age drug use, has shown a substantial increase in crack cocaine use (Johnston et al., 2005). Through the 1990s, crack use went up among 8th grade, 10th grade, and 12th grade students, in measures of lifetime prevalence as well as recent usage. The perceived availability of crack cocaine also increased during the ’90s among these students, suggesting that the markets became no less visible. MTF does have the weakness of measuring only children in school. In a paper estimating the effect of crack on various social problems, Fryer et al. (2005) estimate an overall city-level “crack index” based on five proxies: local cocaine arrests, cocaine-related hospital visits, cocaine-related deaths, newspaper mentions of crack, and cocaine arrests or seizures by the Drug Enforcement Agency (DEA). As expected, all five of these proxies increase between the early and late 1980s. After that, in the ’90s, newspaper citations and DEA busts drop somewhat. Other arrests and emergency room visits are steady, while cocaine-related deaths actually rise substantially. The overall crack index is flat from about 1990 to 1998, causing Fryer and colleagues to note their surprise that crack did not go away (they charitably ascribe that idea to “casual observers,” p. 18, rather than the more accurate “criminological observers”).

Opposing data come from two major sources. Andrew Golub and Bruce D. Johnson released a report from the National Institute of Justice (NIJ) titled “Crack’s Decline: Some Surprises Across U.S. Cities” (1997). Using the NIJ’s Drug Use Forecasting program data, sampling urine from arrestees in twenty-four
major cities across the country, they find some evidence for a decline in crack cocaine. Naturally, the trends vary by city, but they indicate that many cities showed a substantial—defined as at least ten percent—drop between 1990 and 1996. Still, these declines, especially taken at the national level, are not large; ten percent is slight compared to the size of the homicide drop. The other indication of crack on the decline comes from qualitative research in New York (Golub et al., 2004; Johnson et al., 2000, 1995). As the account goes, particular drugs tend to be generation-specific, as each generation (for various reasons) goes in a different direction from their predecessors. The crack generation was followed, in Johnson and Golubs’ estimation, by the “blunts” marijuana-using generation. The marijuana users are less violent than crack users, leading to a reduction in homicides. It is this set of studies that Karmen (2000) refers to in his story, and the NIJ report appears to be an ultimate source for much of the discussion of “crack’s decline.”

If crack use did indeed decline among the youth of America, a direct reversal of the wave is a potential explanation. Even if crack consumption and distribution remains high, however, crack could become decoupled from violence. This idea finds its explanation in the hypothetical “stabilization” of crack markets. Fryer et al. (2005) offer a brief summary of this idea, first attributing the rise in violence to the rapid changes in drug distribution from the “technological shock” that crack cocaine represented. As for the decline in homicides, they write: “After property rights were established and crack prices fell sharply reducing the profitability of the business, competition-related violence among drug dealers declined” (p. 27). Grogger (2000) has proposed a somewhat more detailed hypothetical economic model, suggesting that violence within markets reached a standoff. With credible retaliatory threats, violence of drug market participants against each other becomes inefficient. Savvy business-oriented drug dealers are interested most in profits, not revenge or petty disputes. Coupled with a stronger legitimate labor market in the 1990s, youth may have been influenced to leave drug markets. The second proposition is, by Grogger’s own admission, relatively weak considering the very slight increase in real wages during that time period. But merit remains for his account of how drug markets composed of self-interested rational drug dealers might minimize homicides. Even with the apparent inconsistencies of crack’s decline, then, we have a crack-related explanation from economists for the reduction of violence due to stabilizing crack markets.

Abortion In a controversial paper, Donohue and Levitt (2001) proposed that the legalization of abortion was a cause of the break in the wave from a rise to
a fall. As the hypothesis goes, mothers used to give birth to and bring up at-risk youth, who would later be more likely than other (non-at-risk) youth to be involved in crime. After *Roe v. Wade* was handed down in 1973, however, more of such would-be at-risk youth are instead aborted. Now mothers who would have raised unwanted, and therefore disproportionately criminal, children instead preemptively and permanently incapacitate these would-be felons. Eighteen years later, we find the homicide rate falling. Levitt has elaborated twice on the idea (Donohue and Levitt, 2001; Levitt and Dubner, 2005; Levitt, 2004), along with spirited debate among critics and pundits in the media as well as academia. The reasoned evidence appears to be less sensational than the original claims.

From the evidence here, in light of the character of the ’90s fall and the general decline, it is readily apparent that abortion could not account for a substantial drop in homicides. The general decline is incompatible with the time frame, beginning when post-*Roe* children were seven. So abortion could only apply to the ’90s drop from the homicide wave. But that means that abortion must account not for merely young offender homicides but uniquely for young, predominantly male offenders attacking with guns. It is not clear how abortion could be so exclusive in its effect on homicides, since it is hypothetically excluding offenders prior to birth. There would be no reason to think that they would be particularly gun-using would-be-felons. Indeed, we certainly would not expect that the female rate would be affected less than the male rate, without sex-selective abortions. Even making a liberal estimating of the effect, the most that we would expect abortions could affect homicides would be as high as the change in the young female rate. A more conservative estimate would take into account the lack of change on non-gun-using criminals. We can take the smallest decline among the affected population (post-*Roe* children) as evidence of a more conservative estimate. That is, since the abortion effect should be seen in homicides among young women without guns, the change in that sub-group of homicides should be the maximum possible abortion effect. Looking at this trend (in the bottom panel of Table 1), the abortion effect must be quite small. Furthermore, an analysis tailored to this explanation should take into account the age-specific rates so as to match the *Roe*-affected cohorts. Oddly, despite the paramount importance of age, Donohue and Levitt failed to disaggregate the state crime outcomes at all. Their conclusions about crime, ostensibly about youth crime, were drawn from the entire crime trend.

Moving beyond these prima facie considerations, other researchers have raised a host of questions about an abortion-crime connection. Fox (2000) catalogs some of the more serious omissions and errors. Donohue and Levitt never tested the supposed mediating effect of birth rates among at-risk individuals, instead assum-
ing that the overall association between abortion and crime should be valid. Their outcome is constructed as the difference, per state, in homicide rates from 1985 to 1997, blending together both pre- and post-Roe populations. This means that their conclusion that as much as half of the decline could be abortion-related is undermined by the bulk of the homicides coming from other age groups. Hay and Evans (2006) conducted individual-level tests of mother’s pregnancy intentions on child’s later youthful delinquency, finding a statistically significant but substantively tiny effect. While their results suggested that children who were unwanted pregnancies are slightly more likely to be delinquent, the small effects already fade to zero by the age of 17: just when, in 1990, post-Roe teens are supposed to be contributing to the homicide drop. Further sparring over model constraints and specification call Donohue and Levitt’s conclusions into further question (Joyce, 2006; Lott and Whitley, 2007). To date, Zimring (2007) has conducted the most comprehensive review of the state of the abortion-crime debate, including his own presentation of international data. Zimring concludes that Donohue and Levitt are, at a minimum, far too loose with their analyses; more likely, he finds, they are wrong. While the original article made a provocative splash, the novelty of the abortion-crime proposition does not make up for the fundamental flaws and ultimate lack of evidence.

Policing Police departments and local governments—most vocally in New York City—were quick to claim credit for the drop in homicides. Through today, the role of police in the ’90s crime drop is likely the most contentious topic in this literature. The most direct argument against a large policing role is the widespread character of the decline; the policing strategies were as varied as ever, and yet most cities and all regions of the country had a homicide drop (Bowling, 1999; Eck and Maguire, 2000). Nevertheless, the then-Mayor Giuliani and then-Police Commissioner Bratton, as well as some academics and evaluators (Kelling and Bratton, 1998; Kelling and Sousa, 2001; Zimring, 2007) insist on the efficacy of New York’s police programs, especially via its implementation of broken windows policing. Partly, they rely on the size of New York’s decrease. As was well known, New York was a very violent place in the late 1980s; perhaps it took an extraordinary effort to turn it around.

On the other hand, the very fact that New York was so violent might make the opposite point. If the youth homicide fall does represent a direct turnaround to the crack-fueled homicide rise, it might simply be that New York could get so much better _precisely because_ it was so bad to begin with. After all, for a sports team
to have an excellent comeback, they have to be losing to begin with. New York’s exceptional decline in homicides might simply be a result of its drug markets being so exceptionally violent to begin with. Without a deeper understanding of the extent of the degree of its crack market problems, we cannot assess whether that took exceptional policing to reverse or whether, as the market stabilized, the wave simply broke.

More generally, however, policing could potentially play a double role in the full explanation of recent homicide trends. As Eck and Maguire (2000) suggest, there is evidence for some policing effects on crime (for example, in hot spots patrols and firearms enforcement) and these improvements, coupled with greater experimentation of police, could help to explain the general decline. As for the homicide wave, police obviously interact with drug markets, but programs and initiatives that could claim credit for a turnaround are many and varied. Disaggregation could help to shed light on specific city-wide programs, but it is clear that most cities managed to turn around the homicide wave. Programs that claim to have a universal effect—like New York’s—face the challenge of the specificity of the homicide wave. If only young male gun homicides were reduced compared to previous years (the same kind that increased), the police effort could not have been successfully general. Only targeted efforts, such as programs specifically aimed at young men with handguns (Ludwig, 2005; Ousey and Lee, 2007), could stake a reasonable claim for a wave-only effect. Policing strategies that focus on the specific population of youth homicides, or on drug market violence in particular, could have played a role in directly combatting the violence rising from crack markets. Other programs, however, such as order maintenance or broken windows policing, do not target serious drug violence in the same way, and so one would expect a broader effect on homicides.

Economy Economic improvement has received relatively little attention as an explanation for declining homicide rates. Although the crack market stabilization hypothesis offered by Grogger (2000) includes improvements in legitimate wages, the effect of the economy is indirect via its influence on drug markets. Moreover, as he points out himself, the actual increase in wages was, at 4%, too little to reasonably expect a significant effect. Zimring (2007) notes that although there was a decrease in unemployment during the same time period, criminological research in general has found the effect of unemployment on crime to be rather weak. Here he echoes Messner and Rosenfeld (1994) who pointed out that although connections between economic conditions and crime are a standby of
criminological research, such hypotheses have generally not fared well as predictors of aggregate homicide trends. Zimring argues that, accordingly, the swing in the unemployment rate or in wages would need to be much stronger during the ’90s to account for the size of the crime drop. Moreover, while national unemployment figures do generally follow the 20-year overall homicide trend, unemployment is expected to be most strongly correlated with property crime, not homicide.

Beyond these simple associations with unemployment rates or wages, Karen F. Parker (2008) has introduced an explanation centered around the nationwide industrial restructuring of the 1980s and ’90s. She targets black men as key to the rise and fall in homicides, and deindustrialization affected black men much more than other racial or gender groups. She argues that the loss of urban industrial labor markets led to material inequality and job and family instability. Improvements in inner-city employment rates with the spread of the service economy served to reverse the trend. Parker’s arguments are consistent with the separation of homicide patterns into the fall and general decline, although she puts the comparison in terms of inequalities in the racial gap of homicides. Although her focus on a widening and closing gap obscures the three patterns of rise, fall, and decline, the causal explanation still fits the trends.

Demographics As we have seen repeatedly, the homicide wave was a youth phenomenon, and crime trends will always be partly driven by demographics. The age-crime curve is one of the most well-established findings in criminology, and the percentage of teenagers and young adults was on the decline in the 1990s in the US. Fewer young folks relative to the rest of the population means a lower homicide rate, simply because those age groups routinely have a higher homicide rate. As Fox (2000) found, applying these principles to these homicide data, the demographic shifts alone would predict a decline of 10–15%. However, as he continues, the demographic trend has been operating since 1980. There is no jump in the percentage of young adults that would account for a dramatically changing age effect in the ’90s. Without any special demographic character in the 1990s, age composition can be a likely contributor to the general decline—but not the turnaround of the wave in the nineties.

Incarceration The incarceration boom started in the late ’70s, and the incarceration rate tripled between 1980 and 1996 (Sabol et al., 2007). The rising rate through 2000 pushed the incarcerated population toward its present-day 1.5 mil-
lion imprisoned and nearly 800,000 jailed. The most detailed analysis of national incarceration trends with regard to the crime drop was conducted by Spelman (2000). As he concluded, incarceration may account for some of the drop seen in the 1990s (a point estimate of 27%, to be exact), but only insofar as we would expect a higher rate without incarceration overall. That is, there was nothing special about the ’90s as the incarceration rate goes: it steadily climbed through the ’80s and ’90s. The pattern is therefore much like the population age composition: the trend does predict declining rates, but it should be in effect since 1980. With the present disaggregation in mind, as with demographics, incarceration makes a good candidate for explaining the general decline but not the turnaround of the homicide wave.

Alcohol In one of the earlier homicide drop studies, Robert Nash Parker and Randi S. Cartmill (1998) suggested that alcohol might play a role in declining rates of homicide. Alcohol has been strongly linked to violence both in aggregate observational and individual-level experimental research. Parker and Cartmill find a decrease in alcohol consumption, particularly spirits, since approximately 1970. This could, as they indicate, account for part of the general decline. It appears that no researchers have since revisited this idea.

Civilizing There is an additional notable hypothesis that has been offered for the general decline: the “civilizing process.” Through his analysis of adult homicides, Rosenfeld (2000) effectively assesses patterns within the general decline. He does discuss the lessening intimate partner homicide trend and declining marriage rates, but the decline is not merely limited to partners only. He suggests a cultural explanation may be at play, citing Elias’s (1994) civilizing process. Steffensmeier and Harer (1999) mention a similar potential cause, a “collective conscience shift toward greater civility and mediation” (p. 263). In brief, this hypothesis suggests that people in this country may be getting nicer. Norms of safety, zero tolerance, and rights to freedom from harm may simply be making our country a less harmful place.

Immigration Robert J. Sampson has recently offered a new connection to the ’90s homicide trend: immigration. In contributions to the *New York Times* (2006) and *Contexts* (2008), he argues against the popular idea that immigrants are more criminal than native-born Americans. The evidence, as he explains, shows exactly the opposite. First-generation Hispanic immigrants are much less violent
than second-generation immigrants. As generations continue, the protective effect begins to wear off: the second generation is more violent than the third, until later generations are indistinguishable in their level of violence from the rest of the American population. Hispanic immigrants are, in spite of their poor socioeconomic conditions and high-risk neighborhoods, less criminal, not more. Sampson pairs this insight with a graph of the overall immigration and homicide patterns from 1990 onward. We see a roughly negative correlation (2008, p. 29): immigration falls as homicides rise and immigration rises while homicides fall. It is unclear from the article how directly he intends to connect immigration to the national homicide trends. To take the suggestion directly implies a stronger claim. The weak claim is that, since immigrants are themselves less criminal, the homicide rate decreases as immigrants entered the country. More immigrants means a larger denominator (population) without raising the numerator (homicides) as much. The strong claim is that swings in homicide counts could be the result of year-to-year immigration changes. That suggests that immigrants are not only personally less criminal, but also that they spread non-violence (through, for example, higher collective efficacy) in an actual reduction in the baseline number of homicides per year. The correlation may be spurious or coincidental with the Democratic and Republican administration policies on immigration, as immigration declines during the Bush family’s terms and increases during Clinton’s. Still, as with the overall demographic shifts, there may be enough long-term influence that, in the form of the weak claim, immigration from 1980 to 2000 is part of the general decline in homicides.

Discussion

Table 2 summarizes some of the basic assessments discussed above. Many of these hypotheses have had relatively little testing to date, but even before serious statistical analysis we should be clear about which offered explanations can possibly explain which patterns. An "X" is marked for each cell where the idea seems to offer a plausible explanation for the given pattern under the first-step criteria presented here. Considering the categories of homicide involved and the three patterns to be explained, does the explanation look like a qualifying candidate?

Again, as Table 2 shows, the invention and spread of crack cocaine is the single major plausible hypothesis to match to the rise in homicides starting in the mid 1980s. Unlike the rise, however, no single factor has yet shown a convincing, dominating causal effect in the ’90s downturn of young male gun homicides.
Table 2: Plausible Explanations for Key Homicide Patterns, 1980—2000

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Wave: Rise</th>
<th>Wave: Fall</th>
<th>General Decline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abortion</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alcohol</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Civilizing</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Crack</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Demographics</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Economy</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Immigration</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Incarceration</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Policing</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Based on the specificity of the turnaround, the stabilization of crack markets appears to be a good start at an explanation, but the descriptions of that process are preliminary at best. The economy and changes in policing are also plausible due to their direct interaction with crack markets and crack market participants. Because of this contact, economic and justice forces have the potential to counteract some aspects of the crack market. Other explanations, when applied to the fall of the homicide wave, suffer from their inability to specifically target young homicides with guns, especially among men.

This is not to say, of course, that explanations not marked in Table 2 must have an effect of zero. Rather, because of the small expected effect, or an effect counter to what appears in the data, these explanations do not appear to explain the historical patterns. So, for example, without a plausible reason why abortion should not limit gun homicides more than non-gun homicides, it is hard to see how the abortion effect could be much larger than the non-gun homicide decline. As that suggests that the abortion effect would be small indeed, it is left unmarked in the table. The assessments in Table 2 are not judgments about the explanations in general, but only about these explanations as applied to the homicide patterns of the United States from 1980 to 2000.

Roe aside, some of the other causal explanations intended for “the drop”—indeed, most of them—turn out better suited to the general decline than the homi-

7Perhaps there is someone who can make the argument that abortion should have led to effects on gun homicides and not other homicides, but the attempt has not been made. At this point such a hypothesis begs for further evidence before being added to the empirically shaky explanation.
cide wave. Demographic shifts to fewer youth, the incarceration boom, decreases in hard alcohol consumption, a civilizing process, immigration trends, and piece-meal improvements in policing all line up to explain some amount of the general decline. This slow decrease in homicides has not received as much attention as the rise and fall of youth homicide, no doubt in part because some researchers operate unaware of or uninterested in its existence. Without disaggregating the homicide trend or noting patterns in other crimes (Steffensmeier and Harer, 1999), the two-decade pattern is obscured. Discussion of the general decline has lacked any statistical analysis of the kind applied to the 1990s drop (e.g., Cork, 1999; Fryer et al., 2005; Ousey and Lee, 2007).

Absent Theories

It is worth considering, as Sampson (2001) argues, that few hypotheses from our canon of criminological theories (either individual-level or macro-level) have much success in explaining historical trends. As Sampson points out, the youth homicide wave:

casts doubt on many of our most cherished explanations, such as those that would rely on individual or ‘dispositional’ theories. To be sure, sociological theories that emphasize structural constraints (e.g. poverty, segregation) fare no better. There is something about the historical and societal dynamics of crime that extant theories of all disciplinary stripes seem ill equipped to predict or explain. (p. 140)

Seven further years of research have done nothing to counter his argument. Indeed, as long as the arguments about self-correction are plausible causes of the turnaround of crack markets, we might go a step further. Not only are our theories inadequate, they are going in the wrong direction.

The economists’ speculation about the crack markets indicates a possibility that, due to the falling profits of crack, establishment and recognition of turf, and other characteristics of settling markets, drug dealers, buyers, and neighbors may have calmed down all on their own (Fryer et al., 2005; Grogger, 2000). We are left to consider internal self-reduction of violence in drug markets as a potential causal explanation. If we recall that, as seen in Monitoring the Future data, the drug markets themselves became no less effective at providing crack cocaine, we arrive at a relatively radical conclusion for criminology. The 1990s fall in homicides may not have been due to the economic or the political, nor a matter of justice intervention. Instead the idea is of an autonomous negative feedback loop:
that criminals *make each other* less criminal. Due to the business interest in reducing risk and maximizing profit, the economists suggest, it is in the interest of semi-organized criminals to settle out turf and act as a retaliator but not an aggressor. Karmen (2000) contributes the idea of attrition: drug overdoses, suicides, homicides, and prison together may have helped to both raise the stakes in drug violence and remove from the general population the most dangerous offenders.

This would seem to counter one of the most fundamental driving tenets of most, perhaps all, of the dominant criminological theories. Consider the most popular theories: self-control, social bonds, social learning, disorganization, strain. In each case, involvement with or contact with criminals is expected to lead to more crime. Crime produces crime; whatever the presumed mechanisms, none of the dominant theories expects any turnaround from serious criminality. Ethnographies of criminals or inner cities, even those conducted around this very set of homicides, describe positive feedback in a cycle of violence: violence breeds violence. Criminologists appear to expect any possible solutions from the outside. Whether through community or government, criminologists adhere to the idea that only the law-abiding can intervene to prevent law breaking.8

Expanding the Focus

Two further points about research on homicide trends are in order. As this study argues strongly that researchers must take the 1980s into account, one might ask how far we should go. As seen in Figure 1, U.S. homicide rates are near (but not as low as) those of the 1950s. If understanding the youth homicide wave assists our research on the ’90s drop in crime, it may also be that the recent general decline is best understood in light of the mid-’60s to mid-’70s rise in homicides. It is regrettable that the Supplemental Homicide Reports only provide the most consistent information beginning in 1976, as without good incident-level data, disaggregation of the kind presented here is impossible. Still, longer-term historical research can help to provide valuable context to more recent trends.

There is an additional issue with how criminological researchers appear to treat the crack market, that is, as an outside force. At the least, “crime drop” researchers appear content to treat the crack epidemic as a wholly exogenous variable. It is not uncommon, in other areas of criminological research, to treat drug use as a control variable (not a “real crime”) or as a crime only when more se-

8One might expect criminologists to take a routine point of view from which to propose and provide community or governmental solutions to crime, simply by virtue of our typical social and professional location.
rious or interpersonal kinds of illegal activity (theft or violence) are absent in a given study. It must be said, however, that no other field is as suited to treating the crack market as an outcome as are criminologists. Our story on crack should not begin when crack homicides rage in the late ’80s. The entire crack enterprise, import, creation, distribution, and usage, is criminal. The drug trade may not be as amenable to statistical analyses, but it is no less important to the discipline to understand the historical and social environments that created such a deadly combination. Crack did not simply come out of nowhere to produce homicides: it is a combination of the demand instilled for such a drug in the poorest of American communities along with the supply provided by illicit foreign trade. Both of these are subject, at the state level, to domestic and foreign policy. If we are to really understand why crack could lead to such a homicidal environment, it will take engagement not only with individuals who encounter the crack market, but with the historical circumstances that produced such markets in the first place.

Conclusion

As Zimring and Hawkins (1998) sagely observed, the cry for further research is “the last refuge of social science scoundrels” (p. 1180). This call nevertheless has its places. Despite the initial steps that have been taken to study recent homicide trends over the last decade, there is much more yet to be done. After ten years of research on the 1990s US homicide drop, substantial confusion remains over the basic character of the trend. Despite early work that more-or-less consistently disaggregated the overall trend to reveal dramatic age and weapon differences, researchers have continued to use overall homicide rates in causal analyses. Worse yet, some studies have left out pre-1990 figures or disaggregations altogether, causing the very first steps to be missteps.

From both a review of existing descriptive analyses and a new assessment of adjusted disaggregated trends, the present piece is intended to help clear up persistent misconceptions among criminological research. The overall homicide trend from 1980–2000 shows three segments separated by time: a decline (to around 1985) changing to a dramatic rise (to 1993) followed by an equally sharp fall (to 2000). A more careful look reveals that this wave is composed almost entirely of changes in the rate of homicides by young men using guns. The remaining categories began their moderate decline around 1980 and continued in the same steady fashion through 2000. The difference between the type and slopes of these two trends suggests that a monolithic view of the homicide rate is inappropriate.

Causal explanations should be aimed at explaining either the general decline,
the rise in youth homicides, or the fall in youth homicides. Moreover, researchers
who test these causal explanations should disaggregate their outcome accordingly.
From solid existing research, we can be confident in concluding that the increase
in the homicide wave is a function of the spread of crack cocaine and an accom-
panying influx of guns. Work on the subsequent fall, however, has taken missteps
in assumptions made about the homicide trends. This has allowed some argu-
ments that are questionable by these initial criteria, such as *Roe v. Wade* or New
York broken windows, to nevertheless carry a great deal of weight both inside and
outside the discipline. No one theory has gained strong empirical support for the
turnaround of the homicide wave, and the most direct hypothesis—the stabiliza-
tion of the crack market—appears difficult to measure or test, primarily due to
a lack of contemporary data. Although less research has focused on the general
decline, some of the hypotheses originally offered for the ’90s drop might ap-
ply: changes in demographics, incarceration, the economy, and police practices.
Thus far, however, few empirical studies exist that can be said to cover the general
decline in homicides. These patterns will continue to be an important source of
analysis as we move on to the crime trends of the new millenium.
Appendix

Regression Coding

The coding of variables used in the regression analyses is displayed in Table 3. The three time variables are coded incrementally from their first point onward. We can think about these variables as layering three trends: first the 1980–2000 overall trend, then 1985–2000 as an adjustment to that trend, then 1993–2000 as an adjustment to that trend. So β_2, which covers 1985–1993, is best understood as a modification to the increase or decrease in the rate as established by β_1.

<table>
<thead>
<tr>
<th>Variables</th>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1981</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1982</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1983</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1984</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1985</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1986</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1987</td>
<td>7</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1988</td>
<td>8</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1989</td>
<td>9</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1990</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>11</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>12</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>13</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>14</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>1995</td>
<td>15</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>1996</td>
<td>16</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>1997</td>
<td>17</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>1998</td>
<td>18</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>1999</td>
<td>19</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>2000</td>
<td>20</td>
<td>15</td>
<td>7</td>
</tr>
</tbody>
</table>

Although adjusted for autocorrelation through the Prais-Winsten transformation, the equations are otherwise standard ordinary least-squares regression, con-
ducted on logged homicide rates. The point estimate of the logged rate for any given year can therefore be calculated as:

\[\ln(rate) = \beta_0 + (\beta_1 \times t_1) + (\beta_2 \times t_2) + (\beta_3 \times t_3) \]

One major alternate coding plan could stop the increments at the next time point of interest. In that case, increments of \(t_1 \) would stop at 5 and \(t_1 \) would hold the value of 5 from 1985 through 2000. Likewise, \(t_2 \) would stop at 8 for the year 1993. Under that system, only one variable would be changing through any one time period. The coefficients would therefore separately estimate the slope for each time period, instead of layering the effects. The significance test would therefore test the difference between that slope and zero. Because we are particularly interested in the changes in rates from period to period, I used the full incremental coding instead.
References

