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ABSTRACT 
 

CHAPTER 1: Informational Control and Organizational Design 

This essay focuses on organizational issues of allocating authority between an 
uninformed principal and an informed expert. We show that the established result of 
Dessein (2002) that delegating decisions to a perfectly informed expert is generally better 
than communication is reversed if the principal can restrict the precision of the expert's 
information (without learning its content). We demonstrate that these organizational 
forms―informational control and delegation―can be either complements or substitutes, 
depending on the principal's ability to affect the expert's discretion about the set of 
allowed policies. 

 

CHAPTER 2: Dynamic Information Revelation in Cheap Talk 

This essay investigates a multi-stage version of Crawford and Sobel's (1982) 
communication game in which the principal can affect the quality of the expert's private 
information at each stage (without learning its content). We construct a mechanism of 
dynamic updating of expert's information, which refines the expert's information step-by-
step, preserving truth-telling communication at every stage. This allows the principal to 
reveal approximately full information in a large sub-interval of the state space. As a 
result, the payoff efficiency in multi-stage communication relative to one-stage 
communication and other organizational forms rises without a bound as the bias in 
preferences falls. 

 

CHAPTER 3: Information Revelation in Competitive Markets 

This essay analyzes a market with multiple sellers and differentiated products. We 
investigate the sellers' incentives to reveal product relevant information that affects the 
buyer's private valuations. The main finding is that when the number of sellers reaches 
some critical (but finite) number, this results in the unique symmetric equilibrium with 
full disclosure of information by all sellers. Thus, unlike the results by Lewis and 
Sappington (1994) and Johnson and Myatt (2006) for monopoly, which state that the 
monopolist reveals either full information or no information, competition refines the 
seller's dichotomic decisions to a single extreme only. Also, we show that the market 
efficiency is always bounded away from full efficiency, but the magnitude of inefficiency 
converges to zero at a high rate as competition intensifies. 
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Chapter 1. Informational Control and Organizational Design

1.1 Introduction

Situations in which principals do not have enough information and need to consult experts before

implementing a policy can be found almost everywhere. Investors consult investment bankers

about the value of securities, headquarters consult managers before making corporate decisions,

and politicians consult advisors on special subjects. However, the bene�ts of communication are

often impaired by a con�ict of interest. If the parties�interests di¤er, the expert may want to

strategically misrepresent information in an attempt to manipulate a principal�s decision.1

A potentially e¤ective solution to this communication problem is to delegate authority to

the expert herself and get the bene�ts of her informational advantage. Then, even though the

expert�s decision is biased, the trade-o¤ between the loss of authority in delegation and the

loss of information in communication often favors the former (Dessein, 2002). However, many

companies today still centralize authority at the upper level of the hierarchy.2 In this chapter,

we provide an argument in favor of such organizational form by analyzing the bene�ts of another

instrument, which is sometimes available to the principal� controlling the quality of the expert�s

private information without learning its content (hereafter, informational control).

Generally, informational control represents a situation in which the expert conducts an

experiment and reports its outcome to the principal, whereas the principal determines the

precision of the measurement device and makes a decision. In many situations, the principal can

directly a¤ect the quality of the expert�s information. For instance, top managers restrict access

to decision-relevant information for their subordinates. A typical example is the electric and

electronics business Emerson, which �looks like a company in which an organization man would

feel at home. �Planning and control are central to the way Emerson works,� according to the

head Charles Knight. Communication, says Mr. Knight, is kept to a minimum: �Our planning

and control cycle provides ample opportunity to communicate the most important business

1 In a survey by McKinsey & Company (2007), 36% of respondents (executives) say that managers hide, restrict,
or misrepresent information at least �somewhat�frequently when requesting funds.

2According to the Boston Consulting Group, centralization is still the most common type of organization.
Moreover, companies with decentralized decision making and accountability have sometimes opted to centralize
their structure. For example, Nestlé, a Swiss food and drinks group, initially was decentralized. This �was
seen as the best way to cater to local taste and to establish emotional links with clients in far-�ung places�.
Nevertheless, it recently centralized control over speci�c businesses and consolidated the management of its
factories in individual countries into regions, even though the company�s performance strongly depended on
local preferences of consumers, which are known better by local management (The Economist, Aug. 5th 2004).
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issues...we don�t burden our system with non-essential communications and information�(The

Economist, Jan. 21st 2006). Other similar examples can be found in medicine.3

In general, loss of information in communication implies that the expert possesses too much

information relative to the amount that she is ready to reveal to the principal. Thus, some

information is not essential for the principal�s decisions because it is never discovered. However,

properly restricting the expert�s information fosters her incentives to reveal it truthfully. That is,

the principal faces a trade-o¤ between the precision of the expert�s primary information and her

incentive to convey it in further communication. As we demonstrate below, he prefers to restrict

the expert�s information to only decision-relevant information, which can be fully revealed, and

to make this information as precise as possible.

As shown by Fischer and Stocken (2001) for some special cases, restricting the amount

of information available to the expert can be better for the principal.4 It is natural to ask

whether restricting the availability of the expert�s information does better than a more e¤ective

organizational form� full or partial delegation� and how the two modes of modifying the

communication game interact with each other. This chapter addresses these questions. The key

point of this chapter is a race between generalized versions of two instruments: informational

control and delegation.

Our major contributions are as follows. First, we demonstrate that controlling the expert�s

information before communication is generally bene�cial for the principal compared to both

communication with the perfectly informed expert and delegation. In particular, informational

control results in a higher payo¤ for the principal than optimal delegation if the bias in the

preferences of the players is not very large relative to the principal�s prior uncertainty about the

unknown information. For the leading uniform-quadratic speci�cation, informational control is

3Typically, doctors give advice on treatments of health problems, given results of the medical tests that
determine a condition of a patient. However, this involves a con�ict of interest, since the doctors� payment
frequently depends on a chosen method of treatment. Clearly, a surgeon stands to get considerably higher payo¤s
by recommending surgery than by prescribing a special therapy or a drug. As a result, doctors often recommend
unnecessary procedures. A study on surgery has found that for some procedures, the percentage of operations
that were unwarranted was more than 50% (Consumer Reports on Health, 1998). Incidentally, many medical
tests return results in a discrete form rather than by indicating, say, the exact concentration of some variable (a
chemical, bacteria, etc.) Consider, for instance, a litmus paper test for pH measurement, or a variety of diagnostic
tests, which return a �yes/no� answer, depending on whether a variable exceeds the cut-o¤ level. This limited
availability of information turns out to be a positive factor in mitigating the communication problem. Also, by
approving the standard techniques and types of the tests, the FDA can change the quality of information available
to doctors.

4Fischer and Stocken (2001) consider a particular uniform-quadratic case of the model and speci�c values of the
bias in the players�interests. We generalize this result by showing that the principal can elicit more information
from the expert in a wider class of environments as soon as communication is informative.
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payo¤ superior to optimal delegation if and only if informative communication is feasible.

Second, if the principal wants to restrict the expert�s information and delegate decision

making afterwards, then the e¢ ciency of a combined mechanism is purely determined by the

principal�s ability to a¤ect the set of allowed policies. If the principal cannot restrict this set,

then a combination of informational control and delegation cannot improve the more e¢ cient

instrument. In contrast, if the principal is able to a¤ect the expert�s discretion about decisions,

then an optimal combination of these tools performs strictly better than any separate instrument.

This result indicates that informational control is a universal incentive device that can e¤ectively

complement other mechanisms.

These �ndings have two implications which directly address the questions examined by

Dessein (2002), who compares the performance of full delegation versus Crawford�Sobel (1982)

communication. First, Dessein establishes that �the principal prefers to delegate control to a

better informed agent rather than to communicate with this agent as long as the incentive

con�ict is not too large relative to the principal�s uncertainty about the environment.� This

chapter shows that the �rst result is reversed as soon as the principal has the power to in�uence

the precision of the expert�s information. That is, as the divergence in preferences decreases,

the principal prefers controlling the expert�s information and keeping authority rather than

delegating decision making. The argument in favor of communication becomes even stronger

if one notices that full delegation is a special case of the restricted delegation. In the latter

case, the principal can delegate decision rights only partially by restricting policies that can be

chosen by the expert to prevent her from implementing, for example, extreme actions. Moreover,

recent papers by Goltsman et al. (2007) and Kovac and Mylovanov (2006) show that restricted

delegation is an optimal mechanism in a general space of arbitration mechanisms in which

players interact through a neutral mediator, who collects information from the expert and gives

enforceable recommendations to the principal. Thus, informational control allows the principal

to gain from the expert�s information and to keep full control over decisions without transferring

it to the expert in delegation or a third party in arbitration.

Second, comparing communication versus full delegation, Dessein (2002) argues that

�delegation is more likely when the amount of private information of the agent is large,�where

a measure of the informational advantage of the agent is the variance of the state. Since the

agent�s information is endogenous in our model, the variance of the state represents a measure

of potentially available information of the agent. Given this measure, we demonstrate that the

3



large variance extends the principal�s opportunities to a¤ect the agent�s information without

changing her incentives to reveal all observed information truthfully. Therefore, if the principal

chooses the optimal quality of the agent�s private information, then communication with the

agent dominates full delegation to the agent with any quality of private information.5 In other

words, delegation is less likely when the amount of potentially available information of the agent

is large.
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Figure 1: Payo¤ relations between instruments for small con�ict in preferences

Figure 1 compares the performance of three organizational forms for di¤erent qualities

of an expert�s information (arrows represent the payo¤ dominance). The �rst form is pure

communication, when the principal requests an expert�s advice, but can use the obtained

information to make an arbitrary decision. In the second case, the principal completely delegates

authority to the expert or commits to comply with any expert�s recommendation. Finally, the

third form is optimal delegation, which imposes the policy restrictions on the set of expert�s

actions that maximize the expected payo¤ of the principal.6

As this �gure shows, there is only one situation in which the principal prefers not to limit

the precision of the expert�s information. This is the case of full delegation, where the principal

cannot a¤ect the expert�s discretion about the set of delegated decisions, which implies full loss

of authority. However, even in this scenario, the principal can gain from in�uencing the expert�s

information and purely communicating with her afterwards.

Since our work contributes to the literature by comparing the bene�ts of di¤erent organi-

zational forms, it is related to two areas of the existing studies: that which deals with various

aspects of endogenous information in communication, and that which focuses on delegation.

5This results in a situation in which full delegation dominates communication in the case of the perfectly
informed agent, but performs worse in the case of the imperfectly informed one.

6For a detailed discussion of the optimal delegation, see Alonso and Matouschek (2007).
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With respect to the former topic, the �rst analysis of strategic communication is attributed to a

seminal paper by Crawford and Sobel (1982). They introduce a model of the interaction between

a perfectly informed expert and an uninformed principal whose payo¤s depend on a random state

of nature. After a private observation of the state, the expert sends a costless message to the

principal, who implements an action. Crawford and Sobel (1982) show that full information

revelation is never possible unless the players�interests are perfectly aligned. In addition, when

a con�ict of interest grows, the quality of the disclosed information falls, eventually resulting in

the babbling equilibrium with no useful information conveyed.

The fact that the imperfect quality of an expert�s information can be bene�cial to

the principal was �rst demonstrated by Fischer and Stocken (2001), who considered the

uniform-quadratic setup of the Crawford and Sobel (hereafter, CS) model. They, however,

restrict the set of possible biases in the players�preferences, introduced by Crawford and Sobel,

to that of the discrete form, and analyze pure-strategy equilibria only.7 Their main result is that

the optimal structure of the information partition is uniform of a �nite size, that is, equally

spaced. This is not a general feature of the model for other values of the bias. In this chapter,

we characterize the optimal partitional structure for an arbitrary bias. In general, non-uniform

partitions can result in a higher expected payo¤ to the principal than delegation. This outcome,

however, cannot be achieved with uniform partitions only.

Austen-Smith (1994) considers strategic communication with costly information acquisition.

In particular, the expert can observe the state at some privately known cost. Also, the expert

is able to prove that she has acquired information, but not the fact that she is uninformed.

Intuitively, positive costs of information acquisition decrease the expert�s incentives to acquire it

and, as a result, the average quality of her information. However, introducing partial veri�ability

of the quality of the expert�s information extends the range of biases for which informative

communication is possible. In contrast, there are no such veri�ability issues in our case since the

principal determines the expert�s information structure directly.

The issue of the endogenous quality of information has attracted a lot of attention in recent

years. Lewis and Sappington (1994) consider the monopoly market in which a seller can allow

buyers to acquire private information about the product. They demonstrate that the optimal

policy of the seller is either to let buyers acquire perfect information or learn nothing. Ivanov

(2007) applies that approach to a competitive setting with multiple sellers and di¤erentiated

7 In particular, they consider the bias b = 1=2N , where N is an integer.
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products. In this case, when the market becomes su¢ ciently competitive, the result is full

disclosure of information. Ganuza and Penalva (2006) extend the framework of Lewis and

Sappington (1994) to an auction setting, in which the seller can supply costly information to the

bidders. The result is that the auctioneer provides less than the e¢ cient level of information.

However, both the socially e¢ cient and the auctioneer�s optimal choice of precision increase

with the number of bidders, and both converge as the number of bidders goes to in�nity. In the

area of mechanism design, Bergemann and Pesendorfer (2006) consider an auction in which the

seller determines the precision of the valuations for each bidder and to whom to sell at what

price. That is, the seller speci�es the information structure for each bidder without learning

their private signals. In this case, the information structures in the optimal auction are coarse

and represented by the �nite number of monotone partitions.8

Alternatively, there is an established literature on delegation or communication with

commitment, where the principal commits to rubber-stamp any agent�s recommendations if

they belong to the speci�ed delegation set. Dessein (2002) studies the bene�ts of the special

forms of delegation� full delegation, delegating control to a biased intermediary, and delegation

with a veto-power� and compares them with the bene�ts of pure communication. Holmström

(1977), Melumad and Shibano (1991), and Alonso and Matouschek (2007) investigate the optimal

restrictions on the set of delegated policies, which maximize the principal�s expected payo¤.

Goltsman et al. (2007) and Kovac and Mylovanov (2006) extend that setup by introducing a

disinterested arbiter between the parties, or, equivalently, by allowing the principal to commit

to lotteries over actions as functions of the expert�s reports. Whereas these studies consider the

information structure of the expert as exogenous, this work connects the endogenous quality of

information with delegating control over decisions to the expert.

Bester and Strausz (2001) and Krishna and Morgan (2005) analyze a di¤erent instrument

to improve the quality of the conveyed information in communication� monetary transfers from

the principal to the expert as the functions of messages. Bester and Strausz (2001) extend the

revelation principle to the �nite type environment in which the principal can commit only to

some dimensions of the whole set of decisions. They show that any incentive e¢ cient outcome

(i.e., that which provides equilibrium payo¤s on the Pareto frontier) is payo¤-equivalent to the

equilibrium outcome in some direct mechanism. Krishna and Morgan (2005) extend this result to

8An interesting property of the optimal structure is that the partitions are asymmetric across bidders even for
symmetric distributions of the object�s values.
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the in�nite type space and characterize the optimal contracts under both perfect and imperfect

commitment. They demonstrate that the gains from contracting are highest for moderate values

of the bias in preferences. Similar to these studies, we establish a model-speci�c revelation

principle which narrows the set of the optimal information structures to only those in which the

expert reveals all available information.

1.2 Examples

We start with the uniform-quadratic variant of the communication model introduced by

Crawford and Sobel (1982). Two players, the uninformed principal (or the receiver) and the

better informed expert (or the sender), communicate on some state of nature. The state is

represented by a random variable �, uniformly distributed on the unit interval. We will refer

to the expert as �she� and the principal as �he�. The expert sends a costless message m to

the principal, who then implements an action a, which a¤ects the payo¤s of both players. The

players�utility functions are quadratic:

UR (a; �) = � (a� �)2 ; and US (a; b; �) = � (a� b� �)2 ; (1)

where parameter b > 0 re�ects the bias in the players�interests.

Suppose �rst that the expert is perfectly informed about the state. Crawford and Sobel (1982)

demonstrate that all of the equilibria are characterized by �nite monotone partitions. That is,

for any bias there are at most NCS (b) intervals on the state space so that the expert sends

one message for each interval, which is associated with a corresponding action.9 Also, there are

exactly NCS (b) equilibria with 1; 2; :::; NCS (b) intervals, where the equilibrium with NCS (b)

intervals is Pareto superior to all other equilibria.

Example 1. Let the bias be b = 1
5 . In the most informative equilibrium, the expert sends a

�low�message if the state is less than 1
10 , and a �high�message otherwise. Thus, if the principal

receives a high message (which occurs with the probability 9
10), his prior information is updated

insigni�cantly. A low message is more informative, but the probability of receiving it is just 1
10 .

The reason is that the principal knows the expert�s motives to exaggerate information and tries

to correct his actions correspondingly. As a result, if the principal gets a low message, he infers

9Formally, Crawford and Sobel (1982) de�ne equilibrium strategies in a slightly di¤erent way to avoid
probability zero messages. They require m (�) to be uniformly distributed on [wk; wk+1], if � 2 (wk; wk+1),
and a (m) = E [�j� 2Wk] for all m 2 (wk; wk+1).

7



that the expert�s type has to be very low, whereas a higher message is more expected and thus

is not very informative. That is, communication is e¤ective for low states only. This results in

the principal�s expected payo¤ UCSR ' � 1
16 , which only slightly exceeds his payo¤ �

1
12 in the

case of no communication.

However, if the principal controls the expert�s information in a such way that the expert

observes only whether the state is higher or lower than 1
2 , then there is an equilibrium in

which the expert truthfully reveals her information. This increases the principal�s expected

utility to � 1
48 . Moreover, there is an equilibrium with three messages� for a state less than 1

5 ,

between 1
5 and

4
5 , and higher than

4
5� which provides the expected payo¤ UR ' � 1

52 . A �ner

information structure violates the expert�s incentives to communicate truthfully, which results

in the distortion of information and lowers the principal�s payo¤s.10

The intuition for this result is that the preferences of a less-informed expert become closer

to those of the principal. In the CS case, the partitional structure is determined by marginal

types who are indi¤erent between two consequent actions. In the above example, it is a single

type �1 = 1
10 . Technically, because of the expert�s positive bias, the next higher action has to be

far from the marginal type. Given the principal�s decisions in response to received information

(the conditional means of the state in the intervals), this is possible only if the next interval

is su¢ ciently large. However, if the expert cannot distinguish among di¤erent states in a lower

interval, this decreases her incentives to induce a higher action, because for all states in the

interval the lower action is strictly better. That is, information imperfection replaces the marginal

CS type by the mean type in the lower interval. As a result, �ner partitions can be supported

as equilibria than in the CS case.

Moreover, the bene�cial e¤ect of controlling the expert�s information is so powerful that this

organizational form can bring higher payo¤s to the principal than delegation, as demonstrated

in the example below.

Example 2. Let the bias be b = 1
5 . As shown above, the most informative equilibrium in

the CS communication provides the principal�s ex-ante payo¤ of approximately � 1
16 . However,

if the principal delegates authority completely, that is, without restrictions on the set of expert�s

feasible policies, then for any state �, the expert implements her optimal policy �+ b, which has

10Like Crawford and Sobel (1982), we use the term ��ner�informally, implying a partition with a larger number
of elements.
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a constant bias b relative to the principal�s optimal policy �. That is, both ex-post and ex-ante

utilities to the principal are �b2 = � 1
25 . The optimal delegation set [0;

4
5 ] brings the expected

payo¤ �b2 + 4
3b
3 ' � 1

34 . Therefore, the principal�s expected payo¤ in delegation is higher than

that in CS communication. However, it is lower than his payo¤� 1
52 in the case of communication

with an imperfectly informed expert.

In this context it is important to note that full delegation is not necessarily optimal in the

space of all delegation sets, that is, sets of actions that can be delegated to the expert. Because

of the expert�s preferences toward higher actions, for high states she favors decisions that are

never optimal for the principal. Excluding these extreme actions from the delegation set forces

the expert to implement the highest possible action for the high states, which is close to the

principal�s optimal policies. Holmström (1977) proves that the optimal delegation set for the

uniform-quadratic settings is the single interval
�
0;max

�
1� b; 12

	�
. However, the rest of this

chapter will show that even optimal delegation performs worse than communication with the

imperfectly informed expert.

1.3 The Model

Consider the standard setup of the CS model, in which the principal takes control of the quality

of the expert�s information about the state without observing its content. The key extension

of our model is a preliminary stage in which the principal speci�es the expert�s information

structure at zero cost.

Information structure. Before the expert privately observes a signal s about an unknown

state of nature �, the principal de�nes an expert�s information structure, which is common

knowledge. An information structure is de�ned by a triplet hS;M; F (sj�)i, where S andM

are measurable spaces of expert�s signals and messages, respectively, and F (sj�) is a conditional

distribution function of a signal s for a given state �. The state is assumed to be drawn from a

twice di¤erentiable distribution F (�) with a density f (�), supported on the unit interval �.

After observing a signal, the expert estimates a true valuation of the state, which is given

by

!s = E [�js] =
Z
�

�dF (�js) ,

where F (�js) is a conditional distribution of the state � given a signal s.
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Thus, every information structure generates a prior distribution of posterior mean valuations

G (!) =

Z
fs:!s�!g

dF (s) ,

where F (s) is a marginal distribution of the joint distribution F (s; �) = F (�)F (sj�).

We say that the information structure is discrete if G (!) is supported on a �nite set 
.

Preferences. Throughout this chapter, we focus on the class of the quadratic utility

functions (1) as the standard preferences, used in the related literature.11 That is, the principal�s

payo¤ function UR (a; �) has a unique maximum for the action a = � and the expert�s payo¤

function US (a; b; �) has a maximum for a = � + b. Thus, the speci�cation of the model with

respect to a distribution of the state and the preferences is identical to that in Krishna and

Morgan (2001b).

Even though we restrict our attention to the case of quadratic preferences, we show that this

assumption is not crucial for general results and can be relaxed later when we consider the role

of risk aversion of the players.

The timing of the game. The game is played as follows. First, the principal speci�es an

information structure. Second, a realization of the state occurs, and the expert privately observes

a signal. Then, the expert transmits a costless message to the principal. In general, the expert

may mix over messages. After receiving the message, the principal updates his beliefs about the

state and implements an action that determines the players�payo¤s.

1.3.1 Equilibrium

Given an information structure hS;M; F (sj�)i, a perfect Bayesian equilibrium (hereafter,

equilibrium) consists of a signaling strategy � : S ! �M, which speci�es a probability

distribution � (mjs) over the space of messages for each signal; the principal�s action rule

a : M ! R; and a belief function G : M ! ��, which speci�es a probability distribution

over � for each message m, including messages that are not sent in the equilibrium.12 The belief

function is constructed on the basis of Bayes�rule where applicable.

11See, for example, Blume et al. (2007), Goltsman et al. (2007), Krishna and Morgan (2001a, 2001b, 2004,
2005), Melumad and Shibano (1991), Ottaviani and Squintani (2006).
12For all messages m =2 M , we de�ne the receiver�s beliefs in such a way that he interprets them as some

m0 2M .
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The action rule a (m) maximizes the principal�s utility given the belief function13

UR (ajm) = E� [UR (a; �) jm] =
Z
�

UR (a; �) dG (�jm) :

Given the action rule a (m), the signaling strategy maximizes the expert�s utility

US (a; bjs) = E� [US (a; b; �) js] =
Z
�

US (a; b; �) dF (�js) .

That is, the signaling strategy � (mjs) must satisfy

if �m 2 supp � (:js) , then �m 2 argmax
m2M

US (a (m) ; bjs) , and (2)Z
M

� (mjs) dm = 1; s 2 S.

Let M (�a) = fm : a (m) = �ag. We say that an action �a is induced by a signal s, ifR
M(�a)

� (mjs) dm > 0, and is purely induced if
R

M(�a)

� (mjs) dm = 1.

The principal�s expected utility is

UR =

Z
M

UR (a (m) jm) dF (m) ,

where F (m) is a distribution of the expert�s messages.

The following subsection provides the general analysis of the model.

1.4 Equilibrium Characterization

Before we proceed to the general analysis, it is helpful to outline the class of optimal information

structures and characterize the key properties of the players� strategies in optimal equilibria.

We start with an observation that, in our environment, information takes a simple form. In

particular, the players�preferences over policies are purely determined by the posterior values

of the state, which represent expert�s types. Then, we demonstrate that the ine¢ ciency of the

interaction with the fully informed expert is driven not only by the bias in players� interests,

but also by the uncountability of generated valuations. The excessive number of posterior values

13Due to the strict concavity of the principal�s utility function over actions, he never mixes between actions.
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gives the expert unlimited opportunities to distort her information in the attempt to imitate a

di¤erent type, which undermines the principal�s belief in the expert�s truth telling. Restricting

the expert�s information to a �nite number of types substantially restricts such possibility. This

forces all remaining types to reveal information truthfully and improves the e¢ ciency of the

communication between the parties as a whole. In fact, the optimal information structure does

not provide the expert any decision relevant information that she will not reveal to the principal.

1.4.1 Transformation of utilities

Given any signal, the expert�s utility function can be additively separated into two components:

US (a; bjs) = �
Z
�

(a� b� �)2 dF (�js) = � (a� b� !s)2 �
Z
�

(� � !s)2 dF (�js) (3)

= US (a; b; !s)�Ds,

where Ds =
R
�

(� � !s)2 dF (�js) is the conditional residual variance of the state. It represents

the informational losses of the expert, which always exist whenever the expert does not know

the state precisely.

Similarly, the principal�s utility function UR (ajs) can be written as

UR (ajs) = UR (a; !s)�Ds. (4)

From (3) and (4), it follows that given any expert�s information, the players�preferences over

actions are purely determined by the posterior valuations.14 In addition, new utility functions

(3) and (4) inherit all important properties of the initial ones (1): the strict concavity over

actions, the single-crossing, and the symmetry with respect to optimal actions aS (!s) = !s + b

and aR (!s) = !s. This also implies the no-crossing property: aS (!s) > aR (!s), 8! 2 
. Since

the posterior valuation !s is the only decision relevant information for both players, we denote

it as a type of the expert.

Given the preliminaries above, we can apply the same technique as that developed in Lemma

1 in Crawford and Sobel (1982) to show that the number of induced actions in any equilibrium

is �nite. All proofs can be found in the Appendix.

14That is, US (a; bjs) � US (a
0; bjs) if and only if US (a; b; !s) � US (a

0; b; !s), and UR (ajs) � UR (a
0js) if and

only if UR (a; !s) � UR (a0; !s).
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Lemma 1 In any equilibrium, the set of induced actions A is �nite. Further, the distance

between any two actions is not less than 2b.

If the information structure is �nite, then the number of actions is �nite also, due to the fact

that the strict concavity of the utility function (3) over actions guarantees that the expert of each

type induces at most two actions. However, this lemma demonstrates that the �niteness of the

number of actions comes from the bias in the players�interests rather than from the cardinality of

the type space. Thus, an increase in the �neness of the information structure through generating

a large number of posterior valuations does not eventually bring further informational bene�ts

to the principal, since the expert chooses among a �nite set of actions. Instead, this introduces

additional incentive-compatibility constraints for each type. As a result, for a substantially �ne

information structure, the expert�s signaling strategy is no longer invertible, which leads to losses

in conveyed information and the principal�s payo¤. The next subsubsection formalizes this logic.

1.4.2 Discrete information structures

The following two subsections focus on characterizing the class of the optimal information

structures and equilibria. We begin the analysis with the proof that an arbitrary information

structure that generates a non-�nite set of mean valuations is payo¤ equivalent to some discrete

information structure. Since the set of induced actions is �nite, the principal can collapse the

�nite number of the subsets of types that purely induce these actions. Because the number of

types that induce two actions is �nite as well, and each type induces the same action as in the

initial equilibrium, a new equilibrium with a modi�ed information structure does not change the

principal�s expected payo¤.

Moreover, if there is an uncountable interval of mean values that induces distinct actions,

then such an information structure is never optimal. The reason is that the information structure

inherits the main source of the ine¢ ciency of CS communication. Basically, this interval contains

an expert�s type, which is indi¤erent between two actions. Thus, a positive mass of types above

the indi¤erent type purely induces a higher action. Because of the expert�s positive bias, this

action is more distant from the principal�s optimal action than a lower one. The following lemma

demonstrates that the principal can eliminate this ine¢ ciency by linking these types to a lower

action and get a strictly higher expected payo¤ without violating the incentive-compatibility

constraints.
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Lemma 2 Any information structure is payo¤ equivalent to a discrete one. Also, if a type space

includes an interval with a continuous density that induces two actions, then such information

structure is strictly payo¤ inferior to some discrete one.

We remarked already that the principal can always modify any information structure to a

payo¤ equivalent discrete one. The transformation of the information structure for the second

part of the lemma above requires three steps. First, we derive all types that induce two actions

and modify their signaling strategies by attributing probability one to a lower action. Given a

new strategy, an expert of each type purely induces some action. Second, consider the interval

with a positive density that induces distinct actions, and extract a small subinterval above

the indi¤erent type. Then, link this subinterval to the lower action by switching from purely

inducing a higher action to a lower one. Finally, collapse all types that induce identical actions.

The resulting information structure sustains a truth-telling equilibrium, which provides a strictly

higher expected payo¤ than that in the initial equilibrium.

Though the lemma above narrows the set of optimal information structures to �nite ones, it

leaves much freedom in terms of the principal�s payo¤ as a function of an expert�s strategy. To

address this issue, we need to formulate a model-speci�c revelation principle, which is described

in the next subsubsection.

1.4.3 Equilibrium selection: revelation principle

The absence of the principal�s ability to commit to actions results in the failure of the

standard revelation principle, which restricts the set of all equilibrium outcomes to that of

incentive-compatible equilibria, in which the expert conveys all information that she possesses.

Two examples of contracting with imperfect commitment are due to Bester and Strausz (2001)

and Krishna and Morgan (2005). In both cases, the expert of a binary type transmits three

messages in equilibrium. No direct mechanism can replicate these equilibria in terms of induced

actions and outcomes.15

Nevertheless, in our setup without monetary transfers, among the set of all possible equilibria

with an arbitrary information structure, we can focus only on incentive-compatible infor-

mation structures, which sustain a truth-telling, or incentive-compatible, equilibrium.

15The positive result of Bester and Strausz (2001) is that for a �nite set of states any incentive-e¢ cient
mechanism (i.e., the one which provides equilibrium payo¤s on the Pareto frontier) is payo¤-equivalent to some
direct mechanism. Similarly, Krishna and Morgan (2005) demonstrate that in the case of a continuum of types,
any equilibrium outcome of an indirect mechanism can be replicated in a direct mechanism.
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In particular, we show that any equilibrium is payo¤ inferior to some incentive-compatible

equilibrium with a possibly di¤erent information structure. To prove this, we split the problem

into two parts. First, we establish that no information structure can sustain an indirect

equilibrium in which the cardinality of the action space exceeds that of the type space. Second,

for any equilibrium, the principal can construct an incentive-compatible information structure

that provides a (weakly) superior expected payo¤ in the incentive-compatible equilibrium.

Lemma 3 Any equilibrium is direct, that is, the cardinality of the action set does not exceed

that of the type space.

The result above is proved by contradiction. Formally, in any indirect equilibrium there

must be a type which induces two actions so that the higher action is induced by this type only.

Because of the principal�s best response, the higher action coincides with this type, and is less

than the expert�s optimal action. Hence, a lower action is even more distant from the expert�s

optimal one. The concavity of the expert�s utility function implies that the expert cannot be

indi¤erent between the induced actions.16

Now, we can constitute a model-speci�c revelation principle, which states that any optimal

equilibrium payo¤ can be replicated with an incentive-compatible information structure.

Lemma 4 Any equilibrium is payo¤ inferior to some incentive-compatible equilibrium.

The superior incentive-compatible equilibrium is constructed in two steps. First, we derive

all types that play mixed strategies and assign probability one to a lower action. Since for an

arbitrary expert�s type, a lower action is closer to the principal�s optimal policy, a new signaling

strategy provides higher ex-post payo¤s to the principal. However, this argument is incomplete

because of the di¤erent incentive-compatibility constraints of the expert, which stem from the

fact that the principal adjusts his best response to a new signaling strategy. To resolve this issue,

the principal has to collapse all types that induce identical actions. As a result, we obtain an

information structure, which is incentive-compatible and payo¤ superior to the initial one.17

16 In Krishna and Morgan�s (2005) example of an indirect equilibrium, the main incentive for an expert of
the higher type to induce a lower action is a higher payment for sending lower messages, which is su¢ cient
compensation for a less desirable policy implemented afterwards. The lack of such transfers in our setup narrows
the set of equilibria.
17Hereafter, by saying that the information structure is incentive-compatible and provides a payo¤ to the

principal, we imply a payo¤ in the incentive-compatible equilibrium.

15



The main implication of this result is that the principal never wants to provide the expert with

information that would still be her private knowledge after she sends a report to the principal.

However, the cost of truth-telling is the expert�s informational losses, which the principal needs

to minimize. In other words, the principal has to compromise between the losses of the expert�s

primary information and those in further communication. The next subsection estimates the

e¢ ciency of this trade-o¤.

1.5 The Value of Controlling Information

How powerful a tool is informational control? That is, when does the principal bene�t from

restricting the expert information? How does the value of controlling information depend on the

degree of commitment? In this subsection, we compare the e¢ ciency of informational control

versus two main forms of interaction between the principal and the perfectly informed expert:

CS communication and optimal delegation. In the next subsections, we analyze the interaction

between the quality of the expert�s information and the degree of commitment.

For these purposes, it is important to note that, although the results in the previous

subsection help characterize the class of the optimal information structures and equilibria, they

do not provide much information about the principal�s payo¤ as a function of the information

structure. Thus, before the formal analysis, it is helpful to specify a class of the information

structures which shares the properties of the optimal information structures, provides a simple

characterization of the principal�s expected payo¤, and is not di¢ cult to implement.

All of these requirements are satis�ed by the simplest form of discrete information structures:

partitional, in which the expert observes an interval of states that contains the true state, but

not the state itself. That is, the state space is partitioned into a �nite number N of intervals

f�kgN�1k=0 = (�k; �k+1]
N�1
k=0 . Equivalently, a partition can be described by a strictly increasing

sequence f�kgNk=0 of its boundary points, or a positive sequence of interval lengths f��kg
N�1
k=0 ,

where ��k = �k+1��k.18 Also, it generates a discrete type space 
 = f!kgN�1k=0 , where each type

!k = E [�j� 2 �k] is generated with a probability P (!k) = F (�k+1) � F (�k). Since the expert

observes only an element of the partition �k, but cannot distinguish among di¤erent states in

18Notice that the described partitional information structure assumes the monotonicity of partitions. That is,
� 2 �k; �0 2 �j ; j > k implies that � < �0. A monotone form of a partitional information structure is chosen for
convenience. Notice that all characterized equilibria in the CS model have a monotone partitional structure. Thus,
the monotonicity is useful for comparing, for example, the distribution of informational losses in the CS case and
that in our model through comparing the number and lengths of the intervals in the information partitions.
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an interval, her information is imperfect and determined by the informational losses

Dk =
1

P (!k)

�k+1Z
�k

(� � !k)2 dF (�) .

Intuitively, the principal cannot bene�t from introducing noise in the expert�s information in

an arbitrary way. For example, a natural �truth-or-noise�information structure in which, with

some probability, the expert observes a true state, and with a complement probability, observes

an indistinguishable random draw from the same distribution, results in an inferior payo¤

compared to that in CS communication.19 As we demonstrated above, the optimal information

structure must be of a discrete form. Though there are multiple ways to generate a discrete

structure, not all of them can be easily implemented. In general, the principal has to specify a

continuum of conditional probability distributions that map each state of nature into a set of

mean valuations, which can be a di¢ cult task. In contrast, a partitional structure requires only

attributing information to an element of a category.

Implementation of the information structure. As previously mentioned, informational

control represents a situation in which the expert conducts an experiment and submit a

report to the principal, whereas the principal is responsible for determining the precision

of the measurement device and making an action. Consider, for example, the management

information systems (MIS), which are broadly used in many organizations. These are typically

computer-based systems that collect, process, and convey information, which is used to support

managers�current decisions and provide reports to the principals.20

19The proof is available upon request. For additional information on the �truth-or-noise�information structures,
see Johnson and Myatt (2006).
20Most organizations are structured along functional lines, and the typical systems are �nancial MIS, which

provides �nancial information to all �nancial managers within an organization including the chief �nancial
o¢ cer (CFO); or marketing MIS, which supports managerial activity in the area of product development,
distribution, pricing decisions, promotional e¤ectiveness, and sales forecasting (Encyclopedia of Business, by
The Gale Group, Inc.) However, �nancial or marketing departments are not the highest hierarchical levels
of companies. For instance, CFOs report directly to the chief executive o¢ cers (CEO) and are responsible
for analyzing and reviewing �nancial data, reporting �nancial performance, preparing budgets and monitoring
expenditures and costs. The CFO is required to present this information to the board of directors at regular
intervals and provide this information to shareholders and regulatory bodies such as the Securities and Exchange
Commission (Investopedia.com). However, according to a survey by McKinsey & Company (2007), more than 80%
of respondents say that CEOs play an important role in investment decisions regarding R&D, capacity expansion,
or withdrawing funds from underperforming projects. Hence, the executives have to consult the associated division
managers before making decisions about, say, ful�lling current or future �nancial needs or production quantities.
The importance of this communication is highlighted by an example of the Enron, where the CFO was the key
�gure behind concealing massive losses and misleading investors, which eventually resulted in the collapse of the
whole company.
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However, the structure and the quality of informativeness of MIS are determined by top

management. Also, it is an easy task to design and program the system so that it represents

information in a discrete and partitional form, by rounding information to the required unit of

measurement or associating it with an element of a category. In the simplest case, it returns

a �yes/no� answer, which is similar to Example 1 above. For instance, it is known that the

interests of managers have systematic biases relative to those of the companies.21 Thus, if a

manager of a chain store has to prepare a report for headquarters about local market conditions

that can a¤ect the headquarters decision about his store, then an outcome of the information

system (e.g., the analysis of consumers�expenditures or a market survey) regarding the size of

a local market can take a partitional form: the system returns �large� if the size exceeds some

cut-o¤ level, and �small�otherwise.

There is another factor that is important for our choice of information structures. In

particular, focusing on the partitional setup does not a¤ect qualitative results about the e¢ ciency

of informational control. Using a simple characterization of the players� expected payo¤s, we

show below that informational control with monotone partitions dominates optimal delegation

if the players� interests do not di¤er signi�cantly. In contrast, if they are far apart, then any

incentive-compatible information structure generates no more than two types. We show that

any such structure is inferior to a partitional structure, which is, however, not necessarily better

than optimal delegation. Moreover, in the uniform-quadratic case, this assumption does not

play any role in identifying scenarios in which informational control is more bene�cial than

delegation. This follows from the fact that informational control dominates optimal delegation

if and only if there exists a partitional structure that is superior to optimal delegation. Thus,

expanding the class of information structures cannot qualitatively improve the result by showing

the unconditional dominance of informational control over delegation.

Given these preliminaries, the next subsubsection examines the performance of informational

control versus CS communication.

1.5.1 Informational control versus CS communication

In this part of the chapter, we establish the dominance of informational control over CS

communication. The only condition necessary to guarantee this result is that the divergence in

21See, for example, Alonso, Dessein, and Matouschek (2007) and Dessein (2002).
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the preferences must not be extremely large, that is, informative CS communication is feasible.

Theorem 1 If CS communication is informative, then informational control is payo¤ superior

to CS communication.

In general, any informative CS partition is characterized by an unequal distribution of the

informational losses across the state space. Intuitively, the expert with the preferences toward

high states of nature has incentives to exaggerate information, proportionally to the level of

her bias. Thus, the expert�s message that the state is high is more expected by the principal

than that the state is low. This weakens the principal�s trust to the messages about high states

and makes them less informative relative to those about low states. As a result, the quality of

communication decreases monotonically in the value of the state of nature. This intuition is

re�ected in unequal sizes of the associated partition elements in any CS equilibrium.

The argument above crucially relies on the fact that the expert has virtually unlimited

possibilities to distort her information by claiming a di¤erent state of nature since the set of

possible states is in�nite. However, the principal can limit this possibility by specifying a discrete

information structure in which the expert�s information is determined by only a few points.

Such an information structure makes slight exaggerating impossible. Since the principal knows

the set of expert�s valuations, he would not believe that the expert�s information is somewhere

between these points. On the other hand, substantial exaggerating by reporting another possible

value is very costly, as it induces an undesirable action that is far from the expert�s �rst best

decision. This does not leave the expert any choice but to communicate truthfully. Thus, if the

informational losses of the expert�s primary information are lower than those in communication

with a perfectly informed expert, then the overall e¤ect of informational control is positive.

The formalization of this intuition is as follows. The principal can take any CS partition as a

basic one and locally modify it in such a way that the variance in the intervals�lengths becomes

smaller. Note that for almost all states in each interval of a CS equilibrium, the associated action

is strictly preferred to all other actions. Therefore, it is strictly preferred by a mean type of the

interval. That is, a local modi�cation of the partition does not a¤ect the incentives of mean

types. However, a more e¤ective distribution of the informational losses relative to those in CS

interaction results in a strictly higher principal�s payo¤.
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1.5.2 Informational control versus optimal delegation

Delegation is broadly considered as an alternative to communication. Instead of relying on the

expert�s non-veri�able information, the principal can delegate his power to the expert and gain

from her superior information.22 However, the informational bene�ts are mitigated by losses

due to a bias in the expert�s decisions. Nevertheless, in a variety of situations, the aggregate

e¤ect leads to an ex-ante Pareto improvement compared to communication with a fully informed

expert. Another useful feature of delegation is its ease of implementation: generally, there are

no costs of empowering the expert with a right to carry out policies. Due to these factors, many

�rms push decision rights down in the hierarchy.23

Moreover, delegation can be a solution to the optimal mechanism in a general class of

stochastic mechanisms in which the principal commits to a lottery over actions as a function of

the expert�s report. In other words, this is a class of arbitration mechanisms in which the parties

interact through a disinterested mediator who collects information from the expert and uses it to

give (stochastic) recommendations about decisions to the principal. In addition, the mediator�s

choice is binding, since the principal commits to agree to a mediator�s advice. In a recent paper,

Kovac and Mylovanov (2006) show that for the quadratic preferences and a small bias in players�

interests, the optimal arbitration mechanism is restricted delegation with a delegation set, which

consists of a single interval.

Despite the seemingly obvious bene�ts of delegation, however, a surprising number of

companies today still have the centralized structure. In fact, it remains the most popular orga-

nizational form. Moreover, companies that do decentralize decision making and accountability

often centralize it again when they run into trouble.24 At least two factors may contribute to

explaining the popularity of centralized control. First, there is a commitment problem. It is

not clear through what means the principal can commit to rubberstamp the expert�s decisions.

Given the fact that the expert�s action reveals her information precisely, the attractiveness

of the �rst-best decision makes it di¢ cult for the principal to get rid of the incentives to

overrule the previous choice. Since the expert has reasons to anticipate such behavior, he never

reveals full information, which collapses all the bene�ts of delegation. Second, if the principal

22See, for example, Alonso and Matouschek (2005), Dessein (2002), Holmström (1997), and Melumad and
Shibano (1991).
23For examples, see Dessein (2002).
24For example, Motorola had a decentralized structure by the mid-1990s. However, then the company�s mobile-

phone business was growing so fast that decentralization made it impossible to control. In 1998, the company
repatriated control to the headquarters (The Economist, Jan. 21st 2006).
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optimizes over the set of delegated decisions, then the optimal delegation mechanism may take

a complicated form, making the clear description of the optimal contract between the parties

involved essentially di¢ cult.25

In addition, the example of Emerson, mentioned above, illustrates that keeping control

over decisions is generally not independent from keeping control over information. Thus, when

comparing the performance of di¤erent organizational forms, we have to consider the possibility

that the principal may restrict the expert�s information.

Technically, delegation and informational control utilize di¤erent factors for payo¤ im-

provement. Delegation allows the principal to acquire bene�ts from the expert�s informational

advantage at a cost of losing control over decisions, whereas controlling the expert�s knowledge

restricts her possibilities to misrepresent information at a cost of a lower quality of the expert�s

primary information. Thus, at �rst glance, there seems to be no clear intuition about which e¤ect

is generally stronger. The following result shows that informational control performs better

than optimal delegation, when the players� interests are not too far apart. This �nding is in

stark contrast to that of Dessein (2002), who demonstrates that delegation is more likely than

communication when the players�preferences are close.

Theorem 2 There exists a bias �b such that for all biases below �b, informational control is payo¤

superior to optimal delegation.

The intuition behind this result can be explained in two steps. First, compare informational

control with full delegation. By Lemma 1, incentive-compatibility requires that the distance

between any two actions is at least 2b. In any truth-telling equilibrium, however, the action space

coincides with the set of generated types. This implies that, as the bias declines, the distance

between adjacent mean values, and as a result, the size of the intervals in the �nest incentive-

compatible partition, falls also. That is, the variation of the density on each partition�s element

decreases with a size of this element. Hence, all mean values converge to the middle points of

the associated intervals. As a result, the size of the intervals in the �nest incentive-compatible

partition converges to 2b regardless of the distribution of states, and the principal�s expected

losses in the most informative equilibrium tend to � 1
12 (2b)

2 = � b2

3 . These are expected losses

in the case of a uniform distribution, which are three times lower than those in full delegation,

�b2.

25 Indeed, the optimal delegation mechanism can be stochastic (Kovac and Mylovanov, 2006). That is, the
contract has to specify all lotteries over decisions as a function of each possible expert�s message.
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Second, Kovac and Mylovanov (2006) show that when the bias falls, the principal�s incentives

to restrict the set of expert�s decisions decrease as well. This is re�ected in the behavior of the

optimal delegation set, which converges to the entire state space. That is, the bene�ts of restricted

delegation become negligible relative to that of full delegation, which implies that the previous

argument still holds.

Note that, instead of considering a �xed distribution of the state and a variable bias, we can

�x the bias and change the scale of the distribution.26 Then, using the variance of the state as a

measure of the informational advantage of the expert (see Dessein, 2002), a larger informational

advantage results in �ner incentive-compatible information structures. That is, even though the

principal�s uncertainty about the state grows, he obtains more possibilities to modify the initial

distribution without breaking truth-telling communication, which eventually results in the payo¤

dominance over delegation.

1.6 The Uniform-Quadratic Case

In this subsection, we focus on the particular uniform-quadratic setup of the model, which has

been a central framework for a signi�cant part of the related economic and political science

literature. This case with a uniform distribution of states and quadratic preferences is known for

its �exibility to modi�cations of the basic CS model and the possibility to obtain closed-form

solutions in various applications.27

Investigating the uniform-quadratic case allows us to sharpen the previous results. First,

we obtain an explicit characterization of the optimal partition. Second, we employ the exact

characterization of the optimal delegation set for an arbitrary value of the bias. Combining

these components, we demonstrate that controlling the expert�s information performs strictly

better than optimal delegation if and only if informative communication is feasible.

1.6.1 Optimal information structure

In this subsubsection, we characterize the optimal information partition. By the above argument

about the discrete nature of the optimal information structure, it is always bounded away

from perfect information as long as the player�s interests are imperfectly matched. Further, the

26That is, we can consider a family of random variables �L = L�, parametrized by the scale factor L.
27See, for example, Blume et al. (2007), Gilligan and Krehbiel (1987, 1989), Krishna and Morgan (2001a, 2004,

2005), Melumad and Shibano (1991), Ottaviani and Squintani (2006).
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structure of the optimal partition substantially di¤ers from the CS partitions in a few aspects.

First, the cardinality of the optimal partition grows much faster as the bias in preferences tends

to zero. Second, the optimal partition allocates informational losses more e¢ ciently, but not

necessarily uniformly, across the state space. Finally, the Pareto superior partition does not

necessarily have the largest number of elements, among all incentive-compatible ones.

Since, by Lemma 4, we can restrict attention to incentive-compatible equilibria only, one can

observe that the expert�s incentives have a simple form. In particular, an expert of any type !k

prefers to induce an action ak instead of ak+1 if and only if

!k + b �
ak + ak+1

2
;8k (5)

and never induces an action a < ak, since the principal�s best response implies a < ak = !k <

!k + b, and the strict concavity of the utility function results in US (a; bj!k) < US (ak; bj!k). In

addition, plugging ak = !k =
�k+�k+1

2 into (5) results in

�k+2 � �k = ��k+1 +��k � 4b; k = 0; 1; :::; N � 2. (6)

The family of inequalities (6) determines the incentive-compatibility (IC) constraints. These

conditions are an analogue of the CS no-arbitrage conditions �k+2 = 2�k+1� �k +4b, which can

be rewritten as

��k+1 = ��k + 4b:

Comparing the last two expressions, one can make a few observations. First, constraints (6)

are less restrictive, which implies that the principal can specify a �ner information structure

in the informational control model than in the CS setup.28 Second, the CS arbitrage condition

implies that the length of any interval in a CS partition must exceed that of the previous interval

by 4b. In contrast, (6) excludes the CS ine¢ ciency of communication for high values of the state.

To �nd the optimal incentive-compatible partition, we �rst determine the maximal size of

the incentive-compatible partition N (b). It can be shown that

N (b) = b 1
4b
c+ d 1

4b
e; (7)

28Actually, any CS partition satis�es (6).
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where bxc is the largest integer smaller than or equal to x, and dxe is the lowest integer bigger

or equal to x.

Notice that for b > 1
4 , informative communication is not feasible. However, for b =

1
4 , the

�nest partition is a uniform two-element one, where we say that a partition is uniform of size

N if it consists of N intervals of the same lengths, that is, ��k = 1
N ;8k. Thus, communication

is informative in contrast to the CS case. The next proposition describes the structure of the

optimal partition for an arbitrary bias in preferences.

Lemma 5 For any b, there exists bc 2 ( 12c ;
1

2(c�1)), where c = N (b), such that if b > bc, then

the optimal partition is uniform of size c � 1. For b � bc, the optimal partition is one of size

c such that: 1) if 1
2c < b � bc, then the IC constraints are binding for all f�kgN(b)k=0 , and 2) if

1
2(c+1) < b �

1
2c , then the optimal partition is uniform.

The stark di¤erence of the optimal information partition as compared to endogenous CS

partitions is that the principal does not always prefer the partition with the highest number of

elements. Basically, the optimal partition highlights a trade-o¤ between two di¤erent structures.

One of them is uniform, so that it e¢ ciently shares the informational losses of the risk averse

principal, whereas the other bene�ts him because of the possibility of better responding to

expert�s messages through a higher number of actions. Notice that the latter structure is never

optimal in the model of Fischer and Stocken (2001) due to a special choice of the bias in their

model. The cut-o¤ levels bc are exactly the biases, at which these information structures are

payo¤ equivalent.29

The structure of the optimal partition demonstrates that the cardinality of the optimal

partition and the distribution of the informational losses in it are both crucial factors that

determine a payo¤ dominance of informational control over delegation. The cardinality of the

�nest partition grows as 1=b in the information control model relative to 1=
p
b in the CS

case. As a result, the principal is able to respond to changes in the state more sensitively.

In addition, the variance in the lengths of the partition elements is essentially smaller than that

in CS case, since the incentive-compatibility constraints (6) impose fewer restrictions on the

29For instance, for the bias b = 1
5
, we have N( 1

5
) = 3 and the cuto¤ level b3 = 0:202. The principal�s expected

payo¤s under the three-element partition with the binding IC constraints f0; 0:2; 0:8; 1g and the two-element
uniform partition

�
0; 1

2
; 1
	
are � 1

52
and � 1

48
, respectively. However, as the bias grows to 0:22, the IC constraints

make the �nest incentive-compatible partition less uniform, so it becomes f0; 0:12; 0:88; 1g, which decreases the
payo¤ to approximately � 1

27
. In contrast, this change in the bias has no e¤ect on the uniform partition of a

smaller size, which is still incentive-compatible.
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functional relationship between lengths of di¤erent intervals. Hence, informational losses do not

vary signi�cantly with the value of the state.

1.6.2 Informational control versus optimal delegation

In the uniform-quadratic speci�cation, the optimal delegation set consists of a single interval

[0; 1�min fb; 1=2g] (Holmström, 1977). Moreover, it is an optimal solution among a more

general class of arbitration mechanisms for any level of bias (Goltsman et al., 2007; Kovac

and Mylovanov, 2006). Then, combining the exact solutions for optimal delegation and the

partitional structure results in a simple criterion that allows us to outline all scenarios, when

informational control is more attractive than delegation. In particular, a necessary and su¢ cient

condition for this is the feasibility of informative communication.

Theorem 3 In the class of all information structures, informational control is payo¤ superior

to optimal delegation if and only if informative communication is feasible.

The intuition behind this result relies on the same background as used in Theorem 2.

However, using the solutions to the optimal delegation set and information partition, we can

show that the critical level of the bias �b = 1=4 is exactly the one, which sustains informative

communication. In contrast, if the bias exceeds �b, then there is no an information structure with

informative communication, which brings the principal only the �uninformed�payo¤ given his

prior information. Moreover, expanding the class of information structures has no e¤ect on the

outcome of communication. Intuitively, the simplest feasible informative interaction involves just

two mean values that are associated with two actions. However, among all information structures

that generate two posterior valuations, the two-element partition has an important feature: it

maximizes the distance between the values. As a result, shifting a higher action too far from

the optimal point of a low type expert forces her to communicate truthfully, because of higher

punishment for claiming a higher value. That is, for a large bias in the preferences, interaction

is informative if and only if it is informative with the partitional information structure.

Thus, as soon as there is a scope for informative communication, the principal is better

o¤ controlling the expert�s information than delegating authority to the expert. Figure 2

demonstrates the principal�s expected payo¤ under the optimal partition in informational

control, optimal delegation, and CS communication.30

30A speci�c feature of our model is that the principal�s expected payo¤ is discontinuous in the bias due to the
�regime changing�e¤ect. When the bias falls, this e¤ect takes place at points b = 1

2N
, where N is an even integer.
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Figure 2: Payo¤s in informational control, optimal delegation, and CS communication

The above discussion raises a natural question of whether the result is driven by the speci�c

quadratic preferences of the players or it can be replicated in a more general speci�cation. The

next subsubsection illustrates that extending the class of utility functions generally does not

change the result.

1.6.3 The role of risk aversion

This part examines the robustness of the previous results to changes in the players�risk aversion.

These results generally hold whenever the di¤erence in players�interests is not too large relative

to the principal�s uncertainty about the environment.

To isolate the e¤ects of risk-aversion consider the symmetric form of the players�preferences

similar to that used by Dessein (2002):

UR (a; �) = U (ja� �j) ; (8)

where U (:) is twice di¤erentiable, U 0 (0) � 0, and U 00 (x) < 0.31 If U 0 (0) = 0, we additionally

At these points, the maximal size of the incentive-compatible partitions changes from N�1 to N and the uniform
partition of this size becomes incentive-compatible. As a result, the optimal partition switches from the uniform
of size N � 1 to the uniform partition of size N , and the expected payo¤ jumps from � 1

12(N�1)2 to �
1

12N2 . In
contrast, the incentive-compatibility of a partition of an odd size does not guarantee that the uniform partition of
the same size is incentive-compatible. Thus, the optimal partition of an odd size can be non-uniform and provide
an expected payo¤, which is continuous in b. Hence, the switch between a uniform partition of an even size N � 1
to a non-uniform partition of an odd size N at points bN is not accompanied by a discontinuous change in payo¤s.
31Formally, Dessein (2002) also speci�es normalization components in the players�utility functions, which do

not a¤ect the results.
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require U 000 (:) to be continuous in the neighborhood of 0.

Similarly, the expert�s utility function US (a; b; �) is

US (a; b; �) = V (ja� b� �j) ; (9)

where V 0 (x) � 0 and V 00 (x) < 0. For future references we will refer to (8) and (9) as symmetric

preferences.32

Given a partitional information structure, the players� type-relevant utility functions

US (a; bjs) and UR (ajs) are concave in a and symmetric around the optimal policies !s+b and !s,

respectively. This implies that the principal�s action rule in an incentive-compatible equilibrium

is the same as for quadratic preferences, and the expert�s incentives are not a¤ected either.33

That is, communication is informative only if b � 1=4. Similarly, the arbitrage condition in the

CS model is not a¤ected, which implies that CS equilibria are invariant to this modi�cation

in preferences. Based on these observations, the dominance of informational control over CS

communication can be proved straightforwardly.

Theorem 4 If the state is uniformly distributed and preferences are symmetric, then informa-

tional control is payo¤ superior to informative CS communication.

Since IC constraints are not a¤ected by the change in preferences, the optimal information

partition preserves all positive properties of that in the uniform-quadratic case, such as a �ner

structure and e¢ cient sharing of informational losses. In particular, given any CS partition, the

uniform partition of the same size is incentive-compatible in our model and provides strictly

higher expected payo¤.

Before we compare the principal�s payo¤s in informational control with that in delegation,

notice that the optimal delegation set is still of a form [0; 1�min fb; 1=2g] by Proposition 3 in

Alonso and Matouschek (2007). Then we can replicate the result of Theorem 2: informational

control performs better than the optimal delegation, when the bias in the players�interests is

not too large.

32Krishna and Morgan (2004) consider a special case of such preferences, namely, UR (a; �) = � ja� �j� and
US (a; b; �) = � ja� b� �j�, where � � 1.
33 In addition, the optimal partition is the same as that determined by Lemma 5 up to the values of the switching

points bc between uniform partitions of size c� 1 to non-uniform partitions of size c.
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Theorem 5 If the state is uniformly distributed and the preferences are symmetric, then there

exists a bias �b such that for all b < �b, informational control is payo¤ superior to optimal

delegation.

This result is weaker than Theorem 3 for the case of the quadratic preferences since it

does not guarantee that the controlling information performs better than delegation whenever

informative communication is feasible. Basically, this result cannot be strengthened because of

the risk aversion of the principal.34 In communication, an induced action is unbiased on average,

but there is a chance of making a wrong action (if a state is close to a boundary of a partition

element). This increases informational losses for highly concave utility functions. Delegation,

however, provides a permanent bias in the expert�s decision, which can be more preferable by

a very risk averse principal. Nevertheless, when the bias decreases, the optimal information

structure becomes su¢ ciently �ne to reduce the variance between optimal and induced actions,

which results in better performance of informational control over delegation.

Thus, if the bias is moderate, then the relationship between the principal�s payo¤s in di¤erent

organizational forms strongly depends on the structure of the information partition. For instance,

for b = 3
17 and U (ja� �j) = � ja� �j

4, the optimal information structure is the three-element

partition
�
0; 517 ;

12
17 ; 1

	
. It provides the expected payo¤ �2:03 � 10�4, which exceeds that in

optimal delegation �6:96 � 10�4. However, restricting information structures to only uniform

partitions gives a lower payo¤�7:81� 10�4, because the three-element uniform partition is not

incentive-compatible, whereas two-element partitions are too coarse.

1.6.4 Delegation to an Imperfectly Informed Expert

This part investigates the situation, in which the principal can use both of the analyzed

instruments� delegating control over decisions and restricting the quality of the expert�s

information� if a combined e¤ect from utilizing them is positive. For example, a top manager

can restrict the employee�s access to information and delegate a task afterwards. Moreover, he

can determine the set of policies from which the employee is allowed to choose.

The analysis above shows that delegation can outperform informational control, if the players�

interests signi�cantly diverge or the principal is highly risk averse. However, even in this case, the

34Consider the principal�s utility function U2 (ja� �j) = � ja� �j7, and the bias b = 0:126. Then the optimal
partition in the informational control model is the uniform three-element one. It is informative and provides
expected payo¤ UR ' �4:5 � 10�7. However, optimal delegation gives UDR ' �3:9 � 10�7, which is superior to that
in informational control.
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principal may have incentives to deteriorate the expert�s information. Our main �nding is that

the total e¤ect from using both instruments simultaneously purely depends on the principal�s

ability to restrict the set of delegated policies. An example below illustrates this argument.

Example 3. Consider the uniform-quadratic setup with the bias b = 1
5 . If the expert is

perfectly informed, then the principal�s payo¤s in the cases of full and optimal delegation are

�b2 = � 1
25 and �b

2 + 4
3b
3 = � 1

34 , respectively. Thus, the principal�s losses from choosing the

delegation set optimally decrease by 36%. Remember that CS communication and informational

control provide the payo¤s � 1
16 and �

1
52 , respectively.

On the other hand, if the expert�s information structure is a three-element partition�
0; 310 ;

7
10 ; 1

	
, then full delegation brings the principal a payo¤of approximately � 1

20 . In contrast,

the three-action delegation set f0:17; 0:53; 0:87g results in a payo¤of � 1
96 . That is, the principal�s

losses fall by almost �ve times.

1.6.5 Full delegation

The example above illustrates that in the case of full delegation, the perfectly informed expert

performs better than the imperfectly informed one. This is true in general. If there are no

restrictions on the delegation set, then controlling the expert�s information before delegating

authority is always detrimental. Intuitively, given any precision of the expert�s information, full

delegation implies that the bias between the expert�s decision and the principal�s optimal policy

will be the same as in the case of the perfectly informed expert. In addition to this bias, reducing

the quality of information only introduces extra losses of information.

The immediate corollary of this fact is that a combination of informational control and full

delegation cannot improve the better instrument of these two. For the quadratic preferences,

the above logic is shaped into the following lemma.

Lemma 6 A combination of informational control and full delegation is payo¤ inferior to the

more e¢ cient instrument.

That is, in the principal�s choice about controlling the expert�s information and transferring

decision rights simultaneously, he has to use only one of these organizational forms. A question

about which form is a better one, given the degree of a con�ict between the players, is not di¢ cult.

From the previous results, it is clear that the second instrument can be more bene�cial only if

the bias is su¢ ciently large, but not extreme. If the players�interests are closely aligned, then
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informational control dominates optimal delegation, which is superior to unrestricted delegation.

Moreover, if the preferences are far apart, then very biased expert�s decisions in delegation

cannot improve an uninformed payo¤. Therefore, the principal gains from delegating rights to

the perfectly informed expert only if the players�interests are moderately close.35

To summarize, the results above put some restrictions on the area of applications of

informational control. If the principal cannot restrict the expert�s discretion because of limited

monitoring or enforcement possibilities, then he should never decrease the precision of the

expert�s information before delegating authority to her. In contrast, having the ability to a¤ect

the set of delegated decisions completely reverses the e¤ect of interaction of these two incentive

instruments.

1.6.6 Restricted delegation

Given the �nding above, controlling the expert�s information before delegating power to her

can be bene�cial only if the principal is able to restrict the set of expert�s decisions. In this

case, controlling both information and the delegation set cannot perform worse than pure

communication with the imperfectly informed expert, since the principal can always specify an

information structure and a set of actions as those in a communication equilibrium. However, this

observation raises two natural questions. Can a combination of the instruments bring a strictly

higher payo¤ than any separate organizational form? If yes, then under what circumstances is

it pro�table to combine these tools?

The answer to the �rst question is not obvious because of the following argument. Along all

lines of the analysis of informational control, we relied on the derived model-speci�c revelation

principle, which states that the optimal payo¤ is provided in a truth-telling equilibrium.

Moreover, if a positive measure of the expert�s types mix over decision-relevant information,

then such equilibrium is strictly inferior to some incentive-compatible one. However, in

incentive-compatible equilibria, commitment is useless, since the expert reveals her information

without any commitment on the part of the principal. Thus, it is not clear how commitment to

actions can improve the principal�s payo¤ in such a situation, where there seems to be no value

of commitment.

The above intuition misses one issue. Even if it is true that commitment to actions cannot

35For example, in the uniform-quadratic framework, full delegation dominates informational control if and only
if b 2

�
1=4; 1=

p
12
�
= (0:25; 0:289).
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increase the e¢ ciency of interaction for a given incentive-compatible information structure, it

can expand the set of such structures. This is because the principal has more possibilities for

specifying the expert�s information and aligning it with associated actions. Therefore, if the

space of the information structures that are incentive-compatible with commitment, contains a

payo¤ superior equilibrium, a combination of the discussed tools can bene�t the principal.

Thus, to answer the above questions, it is helpful to characterize general properties of the

optimal mechanism, which consists of the information structure, the delegation set, and the

action rule that maps the expert�s messages into a set of actions. For these purposes, we focus

on the tractable uniform-quadratic case with partitional information structures and restrict

attention to deterministic mechanisms, in which the principal makes a particular decision after

receiving a message from the expert. Given these speci�cations, the following lemma outlines

the features of the optimal combination of informational control and delegation.

Lemma 7 Any mechanism is payo¤ inferior to the mechanism, in which each expert�s type

induces a separate action. Also, the optimal mechanism has the following properties: given the

expert�s information that � 2 [�k; �k+1], the induced action is ak 2
h
�k+�k
2 ; �k+1

i
;8k; no expert�s

type induces her optimal action; ��k+2 = ��k for all k; and the number of actions N � b1b c+1.

In general, the information structure of the optimal mechanism inherits the major features

of the information structure in the communication game. First, the cardinality of the type space

is bounded from above by 1=b. Thus, even though commitment to actions can generate �ner

incentive-compatible structures than those in the communication game, the cardinality of the

information structures has the same order as a function of the bias in preferences. Intuitively,

a very �ne information structure requires a large number of actions in the delegation set.36

This creates di¢ culties with separating actions apart from each other to satisfy the expert�s

incentive-compatibility constraints. Second, the relationship between the interval sizes ��k+2 =

��k;8k implies that the expert�s informational losses are distributed more or less uniformly

across the state space. Finally, given the expert�s information that the state is in some interval,

the associated action belongs to this interval as well. Equivalently, each action is the �rst-best

decision for some state in the interval.

In contrast, comparing the combined mechanism to the case of optimal delegation with the

fully informed expert, one can see that the delegation set and the action rule substantially

36This is due the fact that the expert of each type induces a separate action. Otherwise, if several types induce
the same action, the principal can collapse them into one type.
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di¤er from those in the case of the perfectly informed expert. First, each mechanism is either

payo¤ equivalent or inferior to the mechanism, in which each expert�s type induces a distinct

action. Second, all actions are located between the optimal actions of the expert and those of

the principal. Thus, there is no expert�s type which is allowed to choose her optimal action. Such

behavior is consistent with the above argument for the case of informational control with full

delegation.

Relying on the properties of the optimal mechanism, it is straightforward to prove the

following result.

Theorem 6 For b < 1
2 , a combination of informational control and restricted delegation is

strictly payo¤ superior to each separate instrument.

In a combined mechanism, the principal faces a trade-o¤ between providing the expert with

more information to reduce her informational losses and creating incentives for the expert of each

type to take an action su¢ ciently close to the principal�s optimal policy. Thus, even though the

principal may not react to the expert�s information optimally, a more �exible choice over actions

allows him to specify a �ner information structure than that in communication, and, hence,

reduce the expert�s informational losses. This is a main factor that determines the e¢ ciency

of the combination of the incentive tools relative to each separate instrument. In particular, it

dominates informational control with communication because of a better informed expert. On

the other hand, it dominates delegation to the fully informed expert, since the expert always

makes a decision, which is closer to the principal�s optimal action. In the case of the fully

informed expert, this is true for high states only.

1.7 Concluding Remarks

The main contribution of this chapter is as follows: if the principal is able to control the precision

of the expert�s information (without knowing its content), he can do better than by optimally

delegating decisions to the expert. This �nding reverses the result about the payo¤ dominance of

delegation over pure communication. This might be one of the factors that explain the fact that,

despite seemingly clear bene�ts of delegation, many companies do not decentralize decision-

making, and even often recentralise their structures after decentralization.

We deliberately did not address the case, in which the person who determines the quality

of the expert�s information is the expert herself, because the answer is straightforward. As
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demonstrated by Crawford and Sobel (1982) for the leading uniform-quadratic example, the

principal�s expected utility is equal to the residual variance of the state in any communication

equilibrium, since the principal�s decisions are, on average, unbiased. As a result, the expert�s

expected utility di¤ers from that of the principal by a constant term.37 This argument holds for

any communication equilibrium unconditionally on the quality of the expert�s information. Thus,

if there is a credible mechanism of the expert�s commitment to the precision of information, in

which the expert commits �not to know too much�or her competence of the subject is veri�able,

then the expert�s choice of the optimal information partition will be the same.

Another issue which we left behind, is a comparison of controlling information to other

organizational forms such as delegating authority to a biased intermediary or delegation with

a veto power, when the principal has a choice between only two decisions: recommended by

the expert and some default option. These institutions are special cases of restricted delegation,

which implies that they cannot perform more e¤ectively than optimal delegation. Therefore, as

soon as controlling information is preferred by the principal to optimal delegation, it is strictly

preferred to all discussed forms of interaction.

A natural question to ask is whether informational control is a universal tool. In other

words, can it work jointly with other incentive devices, such as monetary transfers between the

players, or communicating through a mediator? A partial answer to these questions is provided

by the analysis above, which shows that a combination of informational control and restricted

delegation is su¢ ciently powerful to strictly dominate each separate instrument. Also, there is

another subtlety which is worth observing. The main bene�t of informational control is limiting

the expert�s possibilities to distort her information by providing less information to her. In

general, this factor can interfere with other instruments that extract more information from

the expert, since informational control damages the expert�s primary information. Nevertheless,

other incentive devices have a common feature that can be used as a complement to informational

control. In particular, they provide the expert incentives to convey the information that she

is reluctant to reveal, that is, when the state is low, for example, by paying for reporting

such information. However, they are less e¢ cient for high states. In contrast, the e¢ ciency

of informational control does no depend on the value of the state, since the informational losses

are shared approximately equally across the state space. Thus, the optimal combination of

informational control and other tools should provide more information to the expert for low

37 In particular, US = UR � b2.
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states along with incentives to reveal that information, and less information without additional

incentives for high states. For example, applying this intuition to informational control and

monetary transfers shows that a combination works better than each tool.38 Another positive

factor that would play a role in an optimal combination is the di¤erent e¢ ciency of separate

instruments as a function of the divergence in players� interests. For instance, informational

control is e¤ective for small values of the bias, but loses the e¢ ciency if the bias becomes

very large. In contrast, an optimal combination of delegation and monetary transfers provides

insigni�cant bene�ts over delegation, if the bias is small. However, it is especially e¤ective for

extreme biases (Krishna and Morgan, 2005), when delegation itself is useless and cannot improve

a single decision of the uninformed principal.

An important aspect of the considered model is the number of equilibria that signi�cantly

exceeds that in Crawford and Sobel communication. In addition to pure-strategy equilibria, there

exist multiple mixed-strategy equilibria even with the same information structure. Thus, we need

to take care about ranking equilibria in terms of the principal�s expected payo¤. However, despite

the fact that all mixed-strategy equilibria are payo¤ inferior to pure-strategy ones, they can still

be superior to equilibria in the CS model and delegation.

38Consider the uniform-quadratic setup with the bias 0:22. The principal determines the information structure
that reveals perfect information to the expert if the state is below z = 0:03, and partitions the rest of the state
space [z; 1] into two uniform intervals. Also, given the expert�s message that the state is � � z, the principal pays
the transfer T (�) = 153

2500
� 11

25
�. Using the analysis by Krishna and Morgan (2005), this transfer scheme results

in full separation for states below z. Also, the information structure is incentive-compatible for states above z.
Moreover, the combination of the two instruments results in the principal�s expected payo¤ �1=48:4, which is
higher than that �1=48 in the case of informational control and �1=18:4 in the case of communication with
transfers only.
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Chapter 2. Dynamic Information Revelation in Cheap Talk

2.1 Introduction

This chapter focuses on the standard problem of communication between an expert who has

some private information and an uninformed principal who has the authority to make decisions

that a¤ect both players� payo¤s. In general, communication between the involved parties is

characterized by two features. The �rst feature is a con�ict of interest. The divergence in

preferences creates the incentives for the expert to strategically misrepresent information in

her favor, which results in losses of disclosed information. The second feature is the imperfect

primary information of the expert. Even the most knowledgeable expert may have only noisy or

insu¢ cient information.

However, while the di¤erence in players�preferences is generally exogenous, the quality of the

expert�s information can sometimes be endogenized by the principal. Moreover, if communication

is conducted through multiple stages, the principal may have the possibility to a¤ect the precision

of the expert�s information without learning its content before every round of communication,

whereas the expert can update her report afterwards.39 In other words, the principal can ask

for more information rather than make the decision at the end of the �rst stage.

Our major contribution is that we show how the principal can use these instruments�

controlling the quality of the expert�s private information (hereafter, informational control) and

dynamic interaction� to e¤ectively extract all expert�s information about an unknown state of

nature in each round of communication. As a result, he is able to obtain (almost) full information

over a large interval of states, which converges to the whole state space as the divergence

in preferences tends to zero. An immediate implication of this �nding is that the principal�s

payo¤s in multi-stage interaction relative to one-stage communication rise in�nitely as the bias

in preferences falls. This results becomes even stronger, given that informational control with

one-stage communication is payo¤ superior to many existing mechanisms, such as delegation,

in which the principal delegates decision making to the expert, or mediation, in which parties

communicate through a disinterested mediator.40

In particular, the revealing mechanism is similar to sequential sampling, that is, testing

39That is, the expert�s information is still completely private at each moment of time.
40For a detailed discussion of delegation, see, for example, Dessein (2002). The problem of optimal mediation is

analyzed by Goltsman et al. (2007). For comparison of the performance of these organizational forms to one-stage
information control, see Ivanov (2007).
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a hypothesis when a sample size is not �xed (see, for instance, Feldman and Fox, 1991). For

example, if a test turns out to be negative for the current sample, then the hypothesis is rejected,

and no other analysis is conducted. Otherwise, if the test�s outcome is positive, then the sample

size increases and a better test is being conducted.41 In our situation, multi-stage interaction

can be considered as follows: the principal allows the expert to conduct a sequence of tests, and

requests a new report about each result. The key feature of this sequence is that, from stage

to stage, tests become less accurate for high values of the unknown state of nature and more

accurate for low values. We show that such updating of the expert�s information is consistent

with her positively biased interests, which results in a truth-telling communication in all rounds

of communication. Moreover, the principal bases his decision given only the information at the

stage when the expert�s report on the test is positive.

As an economic example, it is well recognized that the interests of managers (experts) are

biased relative to those of shareholders (principals), which creates losses in e¢ ciency. According

to Jensen (1986), managers have incentives to cause their �rms to grow beyond the optimal

size or undertake excessive and/or low-return investment projects. On the other hand, if the

outcome of a risky project depends on the amount of investment, then a lot of information has

to be collected prior making to a decision. In this case, data analysis is often delegated to a

special company (e.g., marketing, �nancial, or geological) that collects and analyzes the data,

which is then used by the manager to give a recommendation for the optimal size of investment.

Thus, if the collection of data is outsourced and the information is updated over time, then

the manager is unable to obtain all the information at once and at each moment in time her

information is incomplete.42 Given this, shareholders can request an additional report from the

manager after each period of time and make a decision only after all reports have been submitted.

This chapter shows that such a combination of the dynamic updating information by the expert

and updating reports by the principal results in a Pareto improvement compared to both the

static and dynamic cases when the expert knows all available information from the beginning.

Moreover, the bene�ts of multistage communication relative to the one-stage increase at a higher

rate when the divergence in the players�preferences falls.

41For instance, a variety of medical tests have a form of sequential sampling. If, say, a strip pregnancy test shows
a negative result, then most people interpret this result as �nal. However, if it is positive, then a professional
conducts a more precise test.
42The expert�s information can be updated exogenously when new data and estimates become available over

time, or it can be organized endogenously through a contract between the initial and outsourcing companies,
given when the latter releases its data step by step.

38



Our analysis is based on a simple extension of the classical model of Crawford and Sobel

(1982), which incorporates the discussed features: communication through multiple stages and

imperfect information of the expert, the quality of which is controlled by the principal at every

stage. In particular, we introduce a mechanism of information updating through which the

expert truthfully discloses all available information at each stage of communication. As a result,

if the state exceeds some cut-o¤ level, it can be revealed with an arbitrary precision when the

number of communication stages is su¢ ciently large. The result relies on the following intuition:

step-by-step updating of the expert�s information at every stage can be organized in such a way

that the expert has a possibility of inducing only those actions that are either optimal for the

principal or substantially di¤erent from the expert�s ideal policy, given her current information.

The �rst analysis of strategic communication is attributed to Crawford and Sobel (1982) in

their seminal paper. They introduce a model of a perfectly informed expert and an uninformed

principal whose payo¤s depend on a random state of nature. After privately observing the true

state, the expert sends a costless message to the principal. The principal can use this information

to implement an action, which determines both parties�payo¤s. Crawford and Sobel (hereafter,

CS) show that full information revelation is never possible unless the players�interests perfectly

match. In addition, when a con�ict of interest arises, the quality of the disclosed information

falls, eventually resulting in an equilibrium with no useful information conveyed.

Crawford and Sobel�s characterization of the equilibria is predicated upon two assumptions.

First, the expert is perfectly informed about the realization of the state of nature. Second, the

communication process consists of one stage only. There is an established literature that deals

with relaxing both of these assumptions.

Fischer and Stocken (2001) �rst recognized the fact that the quality of information of

the principal is not monotone in that of the expert. Ivanov (2007) extends this result by

demonstrating that restricting the expert�s information generally performs better than delegating

authority to the expert whenever informative CS communication is feasible. Austen-Smith (1994)

considers the situation in which the expert can observe the state at some privately known cost.

In addition, the expert is able to prove the fact of information acquisition, but not the fact

that she is uninformed. Since information is costly, this decreases the expert�s incentives to

acquire it and, as a result, the average quality of her information. However, introduction of the

partial veri�ability of the expert�s knowledge extends the range of biases, for which informative

communication is possible.
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Another approach to disclosing more information from the expert is to organize commu-

nication through multiple stages. Aumann and Hart (2003) consider two-person games with

two-sided cheap talk in which one side is better informed than the other, and the players

can communicate without time constraints. They completely characterize the equilibria and

demonstrate that the set of equilibrium outcomes can be signi�cantly expanded. Their general

analysis is restricted to the class of games with incomplete information with discrete types and

a bimatrix structure of players�strategies and payo¤s. Krishna and Morgan (2004) investigate

multi-stage communication with the active participation of the principal in the communication

process. In particular, players interact through face-to-face meetings, that is, the expert and the

decision maker meet face to face in the �rst stage and simultaneously send messages to each

other. In the second stage, the expert can be allowed to send a further message conditional on

the outcome of the �rst meeting. Krishna and Morgan demonstrate that with only two stages

there exists an equilibrium that almost always ex-ante Pareto dominates all of the CS equilibria.

Moreover, it is possible to sustain informative multi-stage communication even if the bias in the

players�interests is so large that no informative equilibria exist in the CS model.43 Our setup

di¤ers from the environments considered by Aumann and Hart (2003) and Krishna and Morgan

(2004) in a crucial aspect. In these works, the quality of the expert�s information is exogenously

determined before communication starts, and is not a¤ected by the players� interaction. In

our model, the expert�s information is being updated over time. This modi�cation results in

two e¤ects, which suppress the expert�s incentives to distort her information. First, the future

informational bene�ts can enforce the expert to reveal more information in a current stage, since

the process of informational update depends on the expert�s messages. Second, the principal can

use the expert�s messages in previous stages to partially verify the expert�s current report.

Battaglini (2004) considers a model with multi-dimensional signals and multiple imperfectly

informed experts. He shows that when experts have di¤erent preferences, the number of experts

is large, and the principal has a limited ability to commit, then it is possible to construct

an equilibrium in which the quality of extracted information is arbitrarily close to complete

information.44 While the discussed studies in the literature separate the e¤ects of the expert�s

informativeness and multi-stage communication, this chapter combines the discussed approaches

43These equilibria have a non-monotonic structure, that is, a sender of a high type can be associated with a
lower action.
44The assumption of the principal�s limited ability to commit can be omitted, if the game is played through an

arbitrary, but �nite number of periods, where a new state of nature and new experts�signals are drawn in each
period.
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and demonstrates their complementarity.

2.2 The Model

We focus on the particular uniform-quadratic setup of the CS model, which has been a central

speci�cation for a large part of the related literature. This case with a uniform distribution

of states and quadratic preferences is known for its tractability and the possibility to obtain

closed-form solutions in various modi�cations of the basic CS model.45

2.2.1 The Crawford-Sobel model

The expert privately knows the state of nature �, which is uniformly distributed on the unit

interval, whereas the principal has authority to make a decision a that a¤ects both players. To

make an action, the principal can take into account the expert�s costless message m about the

state. The players�preferences are represented by the payo¤ functions

U (a; �) = � (a� �)2

for the principal and

V (a; b; �) = � (a� � � b)2 (10)

for the expert, where a bias parameter b > 0 re�ects the divergence in the players�interests.

Crawford and Sobel (1982) prove that all equilibria have the form of the �nite monotone

partitions. That is, for any bias b, the state space is partitioned into at most N (b) intervals,

which are determined by

N (b) = d�1
2
+
1

2

r
1 +

2

b
e,

where dxe is the smallest integer larger than or equal to x.

Then, for large values of the bias b � 1=4, we have N (b) = 1, which implies that informative

communication is not feasible. For b < 1=4, there are exactly N (b) > 1 equilibria with

1; 2; :::; N (b) intervals so that the expert sends one message for all states within the interval

45See, for example, Blume et al. (2007), Gilligan and Krehbiel (1987, 1989), Goltsman et al. (2007), Krishna
and Morgan (2001a, 2004, 2005), Melumad and Shibano (1991), Ottaviani and Squintani (2006).
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Wk = [�k; �k+1], which is associated with a corresponding action46

ak = E [�j� 2Wk] =
�k + �k+1

2
.

Crawford and Sobel (1982) show that the players� payo¤s are monotone in the number of

partition elements, that is, the equilibrium with N (b) intervals is Pareto superior to all other

equilibria. On the other hand, the perfectly precise information of the expert is not optimal for

the players�payo¤s, which is the focus of the next subsection.

2.2.2 Static informational control

As demonstrated by Fischer and Stocken (2001) for the bias b = 1=2n, where n in an integer, and

extended by Ivanov (2007) for any value of the bias, the principal can improve communication by

controlling the quality of the expert�s primary information. In particular, the principal partitions

the state space� = [0; 1] into a collection of intervalsWk = [�k; �k+1], k = 0; 1; :::; n�1. Then, the

expert privately observes the element of the partition that contains the state. Thus, she cannot

distinguish among states in the same subinterval. In all other components, the environment

is the same as the standard CS model. However, this modi�cation of the expert�s information

structure improves her incentives to communicate truthfully, which leads to the higher principal�s

expected payo¤. The following example illustrates how a less informed expert can result in a

better informed principal.

Example 1. Let the bias b = 3=14. Then, the most informative CS equilibrium is

characterized by two messages. Namely, the expert sends a �low�message if the state is below

�1 = 1=14, and a �high� message otherwise. This communication is not very informative,

since the principal receives a �high� message with a probability of 13=14 that updates his

prior information insigni�cantly. As a result, the gains from communication with the perfectly

informative expert are small (the principal�s expected payo¤ is approximately �1=15 versus

�1=12 in the case of no communication).

However, if the expert knows only whether the state is lower or higher than 1=2, then there is

an equilibrium, in which she reveals this information truthfully, so that the principal�s expected

payo¤ rises to �1=48. That is, even though communication with the imperfectly informed expert

46Formally, Crawford and Sobel (1982) require that m (�) is uniformly distributed on [�k; �k+1], if � 2 (�k; �k+1),
and a (m) = E [�j� 2Wk] for all m 2 (�k; �k+1). This, however, does not a¤ect the principal�s beliefs and actions.
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Figure 3: Communication in CS model

is less informative for very small values of the state, its overall e¤ect on the principal�s expected

payo¤ is positive.

Intuitively, the preferences of the less informed expert are more closely aligned with those

of the principal. In the CS case, displayed in Fig.1, the partitional structure is determined by

the experts of marginal types who are indi¤erent between two consecutive actions. In the above

example, it is the single type �1, which is quite low because the expert has the incentives to

exaggerate her information to manipulate the principal�s decision. That is, the indi¤erent type

must be closer to the lower action, which implies that communication can be informative only

for low states.

On the other hand, if the expert cannot distinguish among di¤erent states in a lower interval,

this shifts her preferences toward the lower action, since for all states in the interval (except this

marginal type) the lower action is strictly better. In other words, the partitional information

structure replaces the marginal CS type by the mean type in the lower interval. As a result, the

principal can specify a �ner information structure than in the CS case, without breaking the

expert�s incentives to communicate truthfully.

In general, communication between players may not be restricted to a single stage, because

the principal can a¤ect the precision of the expert�s information in every round, and request a

new report afterwards. The next subsection investigates the bene�ts of this instrument.

2.2.3 Dynamic informational control

Consider a situation in which the expert is allowed to acquire additional information between

rounds of communication and send a new report afterwards. In this environment, we derive our

central result, which states that by proper updating of the expert�s information from stage to

stage, the principal can learn approximately full information in a large interval of the state space

due to the expert�s truth-telling communication in all stages. In addition, this interval converges

to the whole state space when the divergence in the players�preferences converges to zero.

Before proceeding with dynamic information updating, consider �rst the multi-stage version
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of the CS model, which implies that the expert knows all information at the beginning. Krishna

and Morgan (2004) illustrate that simply extending the model to the multi-stage case does not

improve communication, since the set of equilibrium outcomes is identical to that in the one-stage

communication game. Because the expert knows all the information before the communication

starts, she sends the sequence of messages that induces the most preferable action. As a result,

the principal infers the same information about the state as in the one-stage case. Thus, the

set of induced actions is also not a¤ected, and any equilibrium in the multi-stage game is

payo¤ equivalent to that in the one-stage game. This argument can be directly reapplied to

the case of the imperfectly informed expert without information updating. In contrast, if the

expert�s information is even slightly updated at every stage, the outcome of the multi-stage

communication di¤ers signi�cantly from the one-stage case.

To introduce such updating into the model, the principal speci�es a communication

schedule: a family of intervals fW s
kg
ns�1;T
k=0;s=1, where ns intervals fW

s
kg
ns�1
k=0 form a partition of

the state space at each round of communication s = 1; :::; T <1. Once chosen, a communication

schedule becomes common knowledge.

In every stage s, the expert observes an index is of the partition�s element W s
is
that contains

the state, which is assumed the same in all periods. That is, the imprecision of the expert�s

information about the state is determined by a measure of the set Ms =
sT
�=1

W �
i�
. Then, the

expert transmits a message ms 2 �M to the principal. The expert�s signaling strategy � is a

mapping from the space of all sequences fisgTs=1 to a probability distribution over the message

set �
s=1;:::;T

M . After receiving a sequence of messages fmsgTs=1, the principal updates his posterior

beliefs about the state and implements an action a.

Then, if the expert knows that the state is in the set Wk, her payo¤ function is represented

by

V (a; bjWk) = E� [V (a; b; �) j� 2Wk] =
1

P (Wk)

Z
Wk

V (a; b; �) d�,

where P (Wk) = Pr (� 2Wk). From (10), V (a; bjWk) can be expressed as

V (a; bjWk) = V (a; b; !k)�D (Wk) ,

where !k = E [�j� 2Wk] is the mean of the set and D (Wk) =
1

P (Wk)

R
Wk

(� � !k)2 d� is the
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residual variance of the state, which represents the informational losses of the expert. Similarly,

U (ajWk) = U (a; !k)�D (Wk) .

An example below illustrates how just a two-stage interaction can reveal more information

compared to a one-stage communication.

Example 2. Let the bias b = 3=14. In the one-stage game, the most informative

communication is reached under the two-element partition f0; 1=2; 1g, which provides the

expected payo¤ to the principal �1=48 (Ivanov, 2007). Fig. 2 displays communication in two

rounds with the communication schedule

W 1
0 = [0; �1] = [0; 6=7] , W

1
1 = [6=7; 1] ,

W 2
0 = [0; �2] = [0; 3=7] , W

2
1 = [3=7; 1] .

The principal�s action rule is determined by

a (m0;m0) = a00 = 3=14, a (m0;m1) = a01 = 9=14, and a (m1; :) = a1 = 13=14:

s = 2
W 2
0 W 2

1

�2

s = 1

W 1
0 W 1

1

�1

? ? ?
a00 a01 a1

Figure 4: Two-stage communication

Suppose that at the �rst stage the expert observes i1 = 1, which implies that the state

is in the interval [6=7; 1]. Given this information, the expert�s payo¤ function V
�
a; bjW 1

1

�
is

maximized at a0 = 8=7. In addition, the sender infers that her current information will not be

updated in the next stage since W 1
1 belongs to W

2
1 . Then, the message m1 induces the action a1

unconditionally on the expert�s report in the next round. An interpretation of this action rule is

that communication stops as the principal receives this message. In contrast, the messagem0 can

induce two actions, a00 and a01, depending on the message in the next stage. Since V
�
:; bjW 1

1

�
is increasing for all actions less than a0 and max fa00; a01g < a1 < a0, then the expert strictly

prefers the message m1 to m0.
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If i1 = 0, then the state is in the interval [0; 6=7]. Moreover, the expert infers that her current

information will be updated in the next stage. If the expert lies by sending the message m1,

the principal immediately implements the action a1, which provides the expected payo¤ to the

expert V
�
a1; bjW 1

0

�
= �1=7. In contrast, the truthful reporting in this and the next stages

results in a higher expected payo¤

E[V
�
a (m0;mk) ; b; �)jW 1

0

�
=
1

�1

0@ �2Z
0

V (a00; b; �) d� +

�1Z
�2

V (a01; b; �) d�

1A = � 3
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Thus, the expert still has no incentives to distort information.

In the second round, �rst let i2 = 1. If the expert observed i1 = 1 in the �rst stage, then the

analysis above shows that she induced the action a1 at that stage by sending the message m1. If

i1 = 0, then the expert infers that the state is in the set W 1
0 \W 2

1 = [3=7; 6=7], and her optimal

action becomes a00 = (�2 + �1) =2 + b = 6=7. Then, only actions a01 and a00 are feasible in the

second round, conditional on truth-telling in the �rst stage. Because a00 < a01 < a00, it follows

that sending message m1 is strictly preferable to m0.

If i2 = 0, then the expert deduces that the state is in the interval [0; 3=7]. Given this

information, the expert is indi¤erent between the feasible actions a00 and a01, since they are

equidistant from the expert�s optimal policy a000 = �2=2 + b = 3=7. Thus, the expert still cannot

deviate from revealing her information. Finally, it can be easily seen that induced actions are

the principal�s best-response to the expert�s signaling strategy.

The expected payo¤ of the principal in the two-stage interaction is approximately �1=75,

which signi�cantly exceeds that in the most informative one-stage equilibrium.

The discussion above raises a natural question� whether the principal can replicate this

information structure in the one-stage game through specifying the partition f0; 3=7; 6=7; 1g

and reacting to the expert�s messages as if they are honest. Then, the truthful communication

fails. The reason is that if the expert infers that the state is in the interval [3=7; 6=7], she prefers

to send the message m1 and induce the action a1 instead of a01, since it is closer to her optimal

action. In contrast, in the two-stage game the expert can obtain this information only in the

second round. However, at that time the action a1 is not feasible, which does not leave her any

choice but to provide the truth and induce the action a01. On the other hand, if the state belongs

to the set [3=7; 6=7], then the expert can observe only the interval [0; 6=7] in the �rst period.

Given such imprecise information, distorting information in the �rst period is strictly dominated
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by the strategy of being truthful at this and all future stages. The following subsection applies

this logic to the general case.

2.3 The Revealing Mechanism

In this subsection, we present our major result for the multi-stage communication. Namely,

we construct the communication schedule, through which the principal can reveal (almost) all

information in the interval [4b; 1] and partial information in the interval [0; 4b]. In particular,

the principal�s decisions in the revealing equilibrium are of the trigger form. That is, at any

stage, some messages serve as the �trigger� signals that induce the actions unconditionally on

the expert�s future messages. Through sending other messages, the expert has the possibility of

inducing more than one action, but only those actions that are no �trigger�in the previous stages.

Thus, as the expert�s information is being updated, the set of feasible actions shrinks. In other

words, at each moment, the expert faces the trade-o¤ between the bigger choice over actions at

this stage or the informational bene�ts in the future.47 The key property of the communication

mechanism is that the trigger actions are bene�cial only if the sender�s information becomes

precise at the current stage. Then, the expert provides this information to the principal by

sending the trigger message, which signi�cantly improves the principal�s information as well. In

contrast, if the available information of the risk-averse expert is not precise, then tomorrow�s

informational gains exceed the possibility of inducing more actions today, which results in sending

a di¤erent signal.

We start the construction by restricting attention to two-element partitions W s
0 = [0; �s] and

W s
1 = [�s; 1] at each stage s = 1; :::; T . Equivalently, such communication schedule is determined

by a sequence of the boundary points f�sgT+1s=0 , where we let �0 = 1 and �T+1 = 0. In addition,

consider a decreasing communication schedule, that is, such schedule that a sequence f�sgT+1s=0

is decreasing.

In general, any decreasing communication schedule is characterized by two properties, which

are crucial for our analysis. First, the expert�s information in each round is either very precise

or very imprecise. As soon as the expert observes the higher interval [�s; 1], she deduces that

47Otherwise, if all actions were available at the last stage, the game would be equivalent to the one-stage game
with the �nest information structure, which consists of the collection of intersections of the information structures

across all stages

( T
s=1;:::;T;

W s
ks

)
k1;:::;kT

. This would result in less information revealed because of the larger

number of the incentive-compatibility constraints.
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the state is in the set W s�1
0 \W s

1 = [�s; �s�1], that substantially updates her information. In

contrast, observing the lower interval updates the expert�s information insigni�cantly. Namely,

the set of possible states shrinks from [0; �s�1] to [0; �s]. Second, if the expert�s information

is precise, she knows that her current information will not be improved in future rounds. In

contrast, if her information is vague, then it will surely be updated in the future.

Given a particular state �, de�ne ~s = min fs : is = 1g to be the �rst round, in which the

expert observes a higher interval. If is = 0 for all s, then put ~s = T + 1. For a decreasing

communication schedule, we have is = 1 if s � ~s, since W s
1 � W s+1

1 for all s. That is, the

expert�s information is not updated after the stage ~s. Thus, the space of all sequences fisgTs=1
consists of T + 1 non-decreasing sequences I0 = f0gTs=1 and Ik = ffisgTs=1 : is = 1 for s � k;

is = 0 for s < kg, k = 1; :::; T .

Then, consider a decreasing communication schedule, depicted in Fig. 3, such that

�T�1 � 4b; 0 < �T < �T�1, �0 = 1, and �T+1 = 0. (11)

This implies that the sequence f!sgT+1s=1 , where !s =
�s+�s�1

2 , s = 1; :::; T + 1, is decreasing.

-s = T

W T
0 W T

1

�T
�

s = T � 1
W T�1
0 W T�1

1

�T�1 � 4b

s = 2
W 2
0 W 2

1

�2

s = 1

W 1
0 W 1

1

�1

: : :

0 1

Figure 5: A decreasing communication schedule

De�ne �i = [�i; �i�1], i = 1; :::; T+1. At the end of the communication process, the principal�s

beliefs about � can be expressed as �(�ij fmsgTs=1), which denotes a belief that � is uniformly

distributed on �i with the probability � (�ij:).

Given this setup, the main result is characterized by the following theorem. All proofs can

be found in the Appendix.
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Theorem 1 For any decreasing communication schedule f�sgT+1s=0 , which satis�es (11), there

exists an equilibrium such that:

1) the expert reports truthfully at each stage, so that ms fIsg = is, s = 1; :::; T ,

2) the principal implements an action a
�
fmsgTs=1

�
= !j, where j = T +1, if ms = 0 for all

s, and j = min fs : ms = 1g otherwise, and

3) beliefs are consistent, so that �(�j j fmsgTs=1) = 1 and �(�ij fmsgTs=1) = 0, i 6= j.48

Thus, if there are no exogenous time limits on communication, the principal can disclose the

information about any state in the interval [4b; 1] as precisely as he wants.

Corollary 1 By choosing a decreasing communication schedule f�sgTs=1 such that �T�1 = 4b,

0 < �T < 4b, and max
s=1;:::;T�1

j�s � �s�1j ! 0 as T !1, the principal discloses approximately full

information in the interval [4b; 1] in the above equilibrium.

By slight updating information at all stages except the last two, the expert seems to get a

small piece of information at every stage. This argument is true only partially, however. If the

expert observes is�1 = 0 in stage s � 1 and is = 1 in stage s, then she infers that the state

belongs to the set W s�1
0 \ W s

1 = [�s; �s�1]. Hence, her information about the state becomes very

precise. The intuition here is that given this updated information and the principal�s beliefs, the

expert�s best feasible action is the one that will be implemented after revealing her information

truthfully. In contrast, if the expert observes the lower interval, her information is still vague and

will be improved in the future. Due to the combination of the risk-aversion and the imprecise

information, the expert�s expected payo¤ from sending the message m1 (and inducing the action

a = !s) is low and strictly dominated by providing truthful information at this and all future

stages. The condition crucial for this result is that, given is = 0, the quality of the expert�s

information must be su¢ ciently imperfect, which is achieved by choosing coarse partitions in

the last two stages (�T�1 � 4b).

2.4 The Value of Multi-stage Communication

The central question of this subsection is how valuable for the principal to control the process

of learning information by the expert over time? In other words, what are the payo¤ bene�ts in

48Notice that the principal�s posterior beliefs are consistent for both equilibrium and out-of-equilibrium messages
of the expert. That is, if the expert sends, say, a sequence fm1;m0g, which corresponds to the event �� 2 [�1; 1]\
[0; �0] = ?�, the principal unambiguously interprets this information as if the state is in [�1; 1].
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dynamic interaction versus those in one-stage communication and other known organizational

forms. Before answering this question, it is useful to calculate the upper limit for the principal�s

expected payo¤, which is reached as the number of communication stages increases in�nitively.

2.4.1 The limit of disclosed information

When max
s=1;:::;T�1

j�s � �s�1j ! 0 as T ! 1, approximately full information is revealed in the

interval [�T�1; 1]. Thus, the principal�s expected utility in the described equilibrium is determined

by boundary points �T�1 and �T in the last two stages:

U lim (�T�1; �T ) = �
TX

�=T�1

��Z
��+1

�
��+1 + ��

2
� �
�2
d� = � 1

12
�3T �

1

12
(�T�1 � �T )3.

Given constraint (11), U lim (�T�1; �T ) is maximized at �T�1 = 4b and �T = 2b, which results in

the limiting expected payo¤

U lim = �4
3
b3.

The full disclosure of information in the interval [4b; 1] requires in�nitely many stages of

communication. Given the principal�s utility UT in the game with T stages, a relative di¤erence

between UT and U lim, that is,

" =

����U lim � UTU lim

���� ,
can serve as the measure of imperfection of disclosed information.

Referring to the above example of b = 3=14, the limit of the principal�s expected payo¤ in the

multi-stage equilibrium is approximately �1=76. However, Example 2 demonstrates that only

two stages of communication provide the expected payo¤ �1=75, so that " =
���U lim�U2U lim

��� ' 2%.
In general, the number of communication stages T , which guaranties that the ine¢ ciency does

no exceed ", increases as "�1=2.49 Thus, to decrease ", say, from 4% to 1%, the number of rounds

of communication must be doubled.

49Since conveyed information in the multi-stage equilibrium under a communication schedule f�sgT+1s=0 is
equivalent to the truthful communication in the one-stage game with the partition f�sgT+1s=0 , the most informative
communication schedule is such that �T�1 = 4b, �T = 2b, and �s = 1 � 1�4b

T�1 s, s = 0; :::; T � 2, which results in
the receiver�s expected utility UT = U lim � 1

12
(1�4b)3
(T�1)2 . From this expression, the result follows immediately.
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2.4.2 The e¢ ciency of multi-stage communication

Given the expression for the limiting utility of the principal, we can compare the performance

of the multi-state communication versus the one-shot game. As shown by Ivanov (2007), the

incentive-compatibility (IC) constraints in the one-stage game can be written as

��k+1 +��k � 4b, 8k, (12)

where ��k = �k+1��k is the length of the interval Wk in the information partition. In addition,

the feasibility constraint requires
P
k

��k = 1. From (12) and (11), there exist informative

equilibria in both one-stage and multi-stage versions of the game if b < 1=4. The optimal

partition, which maximizes the principal�s expected payo¤, satis�es the IC constraints (12) and

provides the expected payo¤

U = �
n(b)X
k=1

�k+1Z
�k

�
�k + �k+1

2
� �
�2
d� = � 1

12

n(b)X
k=1

��3k.

In the multi-stage communication, however, the information cannot be fully revealed only

if the state is smaller than 4b, since ��T + ��T�1 � 4b for the last two stages only, and the

distance between the cut-o¤ points in other stages can be chosen arbitrarily small. Hence, it

directly follows that

Theorem 2 If communication is informative, then there exists an equilibrium in the multi-

stage communication game, which is Pareto superior to all equilibria in the model of one-stage

communication.

The implication of this result is that if the bias is not very large, so that there exists an

informative equilibrium the multi-stage game, then multi-stage informational control is payo¤

superior to such organizational forms as optimal delegation (to the fully informed expert) and

communication through a disinterested mediator, since these mechanisms are dominated by a

one-stage informational control (Ivanov, 2007).50 Moreover, as the bias in players�preferences

b tends to zero, the number of intervals n (b) in the optimal partition in the one-stage

50Due to Goltsman et al. (2007), optimal delegation is a solution to an optimal arbitration mechanism, in which
players communicate through an neutral arbiter, who can enforce his decision. In addition, mediation is a special
case of arbitration, and hence, is payo¤ inferior to optimal delegation.
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communication grows as 1=2b, and the length of intervals ��k decreases as 2b.51 Thus, the

principal�s expected payo¤ grows as �n (b) ��
3
k

12 or � b2

3 . In contrast, the principal�s expected

utility in multi-stage interaction, which is characterized by the residual variance of the state in

the interval [0; 4b], multiplied by the probability that the state is in this interval, increases as

�4
3b
3. As a result,

Theorem 3 The performance of multi-stage communication relative to one-stage communica-

tion rises without a bound as the bias in preferences falls.

Even though dynamic updating information is a powerful tool that allows the principal to

extract a lot of information from the expert, the following subsection demonstrates that there is

a possibility for reveal even more information if the principal can partially commit to decisions

in some stages. However, in contrast to a common argument for one-stage games that delegation

allows the principal to bene�t from the expert�s informational advantage, our result relies on a

di¤erent argument.

2.5 Extensions and Discussion

In this part, we discuss two issues that address to di¤erent aspects of principal�s commitment.

First, we investigate the possibility for the principal to commit to actions. Second, we consider

the situation, in which the principal cannot commit to a particular communication schedule

before communication starts.

2.5.1 Commitment to actions

In the previous analysis, the principal extracted information from the expert without any

commitment to decisions. However, the principal can partially delegate authority over actions

to the expert in some stages or, equivalently, rubber-stamp any expert�s recommendation, if it

belongs to some set of allowed decisions. Here, we introduce an extension of the model to a

combination of communication in some stages with partial delegation in others. We show that

such a combination extends the set of biases, for which informative communication is feasible,

to b < 3=5. As a result, the interval, in which approximately full information can be revealed,

expands from [4b; 1] to
�
5
3b; 1

�
, which increases the principal�s limiting expected payo¤ from

�4
3b
3 to �b3.

51See Lemma 5 in Ivanov (2007).
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In particular, we modify the setup as follows. The principal speci�es a communication

schedule such that

f�sgTs=1 is decreasing, �T >
5

3
b, and (13)

the full information in the interval [0; �T ] after stage T .

Also, he implements an action a
�
fmsgTs=1

�
=

�j+�j�1
2 , where j = min fs : ms = 1g. If the expert

sends the message ms = 0 in all stages except the last one, then in the last stage the principal

delegates authority to the expert. The authority is restricted since the expert is allowed to choose

policies only from the delegation set [0; �T ]. That is, if the state is in the delegation set and the

expert truthfully reveals her information in stages s = 1; :::; T , then in the last stage T + 1 the

expert knows the state precisely and can implement any policy from this interval. Using the

same approach as in Theorem 1, we obtain the following result:

Lemma 1 For any communication schedule which satis�es (13), there exists an equilibrium

such that the expert truthfully reveals information in all communication stages.

Thus, approximately full information can be revealed in the interval
�
5
3b; 1

�
, which increases

the principal�s expected utility to �b3. This implies that it is possible to sustain informative

communication even when the bias is extremely large (up to 3=5) so that no informative

communication is achievable in the cheap-talk game. Nevertheless, given that the uniformed

decision provides the payo¤ �1=12 to the principal, the considered mechanism is bene�cial

only if b < (1=12)1=3 ' 0:437. The main reason for this is that, as the bias in preferences

rises, informational bene�ts in communication stages fall, since the interval
�
5
3b; 1

�
shrinks. In

addition, losses due of the biased decision of the expert in the last stage grow and, eventually,

exceed informational gains.

In this context it is interesting to note that partial commitment raises bene�ts the principal

not because of the expert�s informational advantage, but through a di¤erent channel. If the state

� < �T , then it will be imperfectly revealed in the last stage of the multi-stage cheap-talk game.

However, communication in the last stage is equivalent to the one-shot communication with the

imperfectly informed expert, which performs better than delegation.52 Mainly, the possibility of

implementing the expert�s favorite policy at the last stage plays a role of an attractive �carrot�,

52See Theorem 2 in Ivanov (2006).
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which enforces her incentives to communicate truthfully in all previous stages and, thus, provides

the overall gain over the pure communication.

2.5.2 Commitment to communication schedule

In the above settings, the principal speci�es the communication schedule at the beginning of

the communication process, so that in each round, the sender can predict whether her current

information will be updated in the future or not. Thus, it is natural to ask whether the result

about information disclosure still holds if the principal cannot commit to the initially speci�ed

communication schedule, even though at some period before the last stage he believes that there

will be no improvement in the expert�s information.53

The answer to this question is positive. More precisely, any revealing equilibrium with a

predetermined communication schedule can be replicated in the game in which the principal

can change the quality of the expert�s information at any moment. The intuition for this

result is most easily gained from the following observations. First, in any communication game,

there exists the babbling equilibrium with no information revealed. Second, in the revealing

equilibrium, the parties� beliefs about the state are the same at any stage, since the expert

truthfully reports all available information.54 Finally, in any equilibrium with no commitment

to the quality of information, the expert knows the equilibrium communication schedule as soon

as it is deterministic.

Given these preliminaries, we can modify the out-of-equilibrium beliefs and strategies in the

game with no predetermined communication schedule as follows: if the principal deviates from

the predetermined communication schedule at some stage, then the sender starts babbling in

the current and all future stages. The principal�s best-response to this is to ignore the sender�s

messages from now on and to base his decision only on the information in the previous periods.

Given this rule, the babbling strategy is the sender�s best-response, since all her messages

between today and the �nal stage are ignored. However, the principal�s expected payo¤ due to

deviating cannot exceed the equilibrium one, since the strategy of ignoring the future expert�s

messages was initially feasible.

53 I am thankful to Kalyan Chatterjee and Dirk Bergemann for asking this question.
54 In other words, any subgame from the period s becomes equivalent to the communication game with T � s

stages and the state space, determined by the available information at this period.
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2.6 Conclusion

We have demonstrated that through communication with an imperfectly informed expert in

multiple rounds, where the principal controls the precision of the expert�s information in every

round without learning its content, the principal can elicit almost all information for a large

interval of the state space. This results in an ex-ante Pareto-improvement compared to one-

stage communication. Moreover, as the divergence in players�preferences decreases, the relative

performance of multi-stage interaction versus one-stage game rises in�nitely.

In general, updating the expert�s information and many stages of communication result in

multiple equilibria, compared to the CS case, because there exist, for example, mixed-strategy

equilibria. Also, there exist other less informative babbling and semi-babbling equilibria such

that the sender does not reveal information in some stages of the communication process. Finally,

through sending the same sequences of messages for di¤erent histories of updated information,

the expert can generate the principal�s beliefs of the non-monotone form and, as a result,

associate higher states with a lower action.55

A possible argument against the suggested mechanism is that it can be di¢ cult to implement

in practice, since information systems in organizations are usually rigid. However, even if the

expert�s access to information is determined only once, new information can arrive over time

exogenously so that the principal may request new reports. Second, the collecting of information

can be delegated to a third party, which commits to releasing available information to the expert

step-by-step, according to, say, a contract between this party and the principal.

55The non-monotonicity of beliefs implies that at the end of the communication process, the principal would
believe that the state belongs to, say, [0; �1] or [�2; �3], where �2 > �1.
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Chapter 3. Information Revelation in Competitive Markets

3.1 Introduction

There are multiple situations, which can serve as vivid illustrations of the strategic information

disclosure in a market with several goods, where sellers strategically reveal information about

their products to potential buyers. In general, examples of voluntary revelation of information

by sellers can be found almost everywhere and take a variety of di¤erent forms. Consider, for

instance, movie trailers, informative commercials on TV, screen shots of computer games, free

trial versions of products, etc. That is, in addition to providing a good, the supplier serves as a

signi�cant source of information about it, especially if the product is new or highly sophisticated.

Despite the fact that information about products is controlled by suppliers, it is typically

more precisely assessed by consumers, who know better how closely the speci�c characteristics

of the product match their preferences. In other words, an important feature of information is

that it often re�ects a valuation of the product by the particular buyer, but does not characterize

the product quality. For example, valuations of movies or computer games vary substantially

across di¤erent consumers. Similarly, some characteristics of cars cannot be measured on the

quality scale. For instance, heavy cars are generally safer, but they consume more gas. Thus, by

releasing the product relevant information, the supplier a¤ects the consumers�private values, but

he cannot precisely predict its impact on the buyers�willingness to purchase the product. That

is, revealing information creates a lottery over di¤erent types of buyers, depending on whether

the properties of the product match their needs or not. In general, if the buyer privately updates

her valuation after obtaining information from the seller, then the role of information is dual: it

helps the seller to segment the market and, at the same time, it provides the informational rent

to consumers. In addition to this trade-o¤, if the market is not monopolistic, then each seller

must take into account the role of information in winning competition against rivals, which is

also a¤ected by their information disclosure decisions.

These observations raise several questions that form the central focus of our chapter. How

much information is released by sellers in oligopolistic markets? How are the sellers�disclosure

and pricing policies a¤ected by the intensity of competition? What happens to the structure of

the market if it becomes more competitive? Is it possible to reach full e¢ ciency in the market,

and if not, what is the source and the magnitude of ine¢ ciency?

In this chapter, we address the above questions. For these purposes, we analyze a price-setting
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model of competition with a representative consumer and multiple sellers, who o¤er distinct

and substitutable products. Each seller determines the precision of the signal about his product,

which is privately observed by the consumer, and sets the price of his product. The consumer

wants to purchase an indivisible unit of any good.56 After observing signals and prices from all

sellers, the consumer rationally estimates valuations of the products and purchases the product

that brings her the highest expected payo¤ net of the price. The model is equivalent to common

values situations with multiple consumers, when either di¤erent consumers observe the same

signal or a continuum of consumers observe conditionally independent realizations of the signals.

Also, the model is equally applicable to other situations such as the job search, where employers

play a role of sellers, who possess information about characteristic of their jobs and compete for

a candidate by o¤ering the wage.

Our results can be summarized as follows. First, we identify scenarios, in which all sellers in

the market fully reveal available information to the buyer. In particular, we demonstrate that if

the market becomes su¢ ciently competitive, this results in full disclosure of information by all

suppliers. Second, we show that full information revelation does not guarantee the full market

e¢ ciency. However, as competition intensi�es, the magnitude of the ine¢ ciency converges to

zero at the rate, which is faster than exponential. Thus, even though our environment di¤ers

from the standard model of Bertrand competition, the market structure converges to the fully

revealing competition with the unique symmetric price that tends to the marginal cost as the

number of sellers goes up. Finally, in order to apply the results derived in the chapter to a

given market, we provide criteria to see whether competition is su¢ ciently tense to ensure full

information disclosure.

Our framework is closely related to the paper by Lewis and Sappington (1994), who �rst

investigate the incentives of a monopolist to reveal the product relevant information. They

consider the situation, in which the monopolist controls the quality of the buyer�s information

by choosing the probabilities, with which the buyer receives an informative signal or pure noise.

Lewis and Sappington (1994) demonstrate that the trade-o¤ between two di¤erent e¤ects of

information disclosure� segmenting the market and endowing the buyer with the informational

rent� usually strictly favors one of them. That is, the optimal policy of the seller is either to

disclose full information or reveal nothing.57 We depart from Lewis and Sappington (1994) in

56For example, the products can be viewed as di¤erent brands, and the buyer needs just one unit of any brand.
57This trade-o¤ crucially depends on the willingness of the average consumer to purchase the product and on
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that we allow for multiple sellers and products. In addition, we allow each seller to determine

the quality of information about his product, which is supplied to the buyer. By analyzing the

role of competition among sellers, we show that this additional factor magni�es the bene�ts of

segmenting the market relative to the costs of providing the informational rent to the buyer. As

a result, only the perfectly informative structure survives as competition becomes su¢ ciently

�erce.

Johnson and Myatt (2006) consider the problem of the monopolist with a wider class of

buyer�s information structures. In particular, they introduce the rotation order to rank the

quality of the buyer�s information, which we also use in this chapter. Johnson and Myatt

(2006) characterize the su¢ ciently mild conditions that guarantee the monopolist�s preference

for extreme qualities of information. They also analyze the case of Cournot oligopoly and study

the e¤ects of increased competition on the relationship between demand dispersion (which is

given exogenously) and �rm pro�tability. Our model di¤ers from their in two respects. First, we

consider the price-setting model similar to Shaked and Sutton (1982, 1983) and Moscarini and

Ottaviani (2001), in which sellers produce distinct and substitutable products. Second, in our

model each seller is able to strategically a¤ect the distribution of the buyer�s valuations and,

hence, the demand dispersion for his product by changing the precision of information, which

is observed by the buyer. A combination of these di¤erences allows to get insight into strategic

interactions between sellers through varying the quality of their information. As a result, our

�ndings are in stark contrast with those by Johnson and Myatt (2006). In particular, it is the case

in their model that �if a �rm dislikes any local increase in dispersion, that �rm will continue to

dislike increased dispersion when the number of competitors rises,�which is exactly the opposite

to the results we obtain. As a starting point, we consider the situation, in which the monopolist

dislikes any dispersion in demand. However, when competition intensi�es, all sellers eventually

prefer the highest possible dispersion in demand.

Moscarini and Ottaviani (2001) investigate price competition in the duopoly market with

private information of the buyer. They analyze the in�uence of prior common and buyer�s private

information on pricing decisions of the sellers. Damiano and Li (2007) extend the model of

Moscarini and Ottaviani (2001) by allowing the sellers to control the precision of the buyer�s

the variance of buyers� valuations. The demand function with a high variance of buyers� values increases the
attractiveness of segmenting the market by releasing information and serving only high-value consumers. In a
recent paper, Saak (2006) demonstrates that if the monopolist can control the precision of the buyer�s private
valuations in an arbitrary way, then he prefers to let the buyer know only whether her valuation is above or below
the unit production cost.
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private information about their products. These models di¤er from ours in two regards. First,

we do not limit the number of sellers by two. As a result, we are able to estimate the relationship

between the intensity of competition and the sellers�disclosure and pricing policies. Second, the

state space in the mentioned works is binary, as is the signal space for the buyer. Together, these

imply that full information disclosure is possible even with two sellers (Damiano and Li, 2007), a

property that does not generally hold with a richer signal space. Moreover, even a bigger number

of sellers does not necessarily result in the perfectly informative structures. We demonstrate that

the particular properties of the distribution of states crucially a¤ect the number of sellers that

guarantees full disclosure.

The issue of the endogenous quality of information has also acquired attention in the auction

design literature. Bergemann and Pesendorfer (2007) consider an auction, in which the seller

maximizes the expected revenue by specifying the information structure and the price for each

bidder. They show that the bidders�information structures in the optimal auction are coarse, that

is, the perfectly informative information structures are never optimal. However, as the number

of bidders goes up, the optimal information structures converges to the fully informative ones.

Ganuza and Penalva (2006) consider the environment, in which the auctioneer can choose the

accuracy of the bidders� information about their private values at some cost. The quality of

information is costly, identical for all bidders, and ordered according to a special criterion. In

this case, the auctioneer provides less than the e¢ cient level of information. However, both the

socially e¢ cient and the auctioneer�s optimal choice of precision increase with the number of

bidders, and both converge as the number of bidders increases in�nitely. Contrary to these

�ndings in the auction setting, we demonstrate that in the market setup, full information

revelation can be reached with a �nite number of players. Nevertheless, the fact that the

buyer obtains perfectly precise information does not imply that the market is fully e¢ cient.

In particular, the source of ine¢ ciency is the price level, which is symmetric across sellers and

bounded away from the unit production cost.

Finally, our work relates to, but is separated from a large strand of the literature that is

concerned with environments, in which the products are characterized by some quality, which is

known to the seller(s).58 This di¤erence in the nature of information crucially a¤ects the seller�s

58The �rst papers that investigated the seller�s incentives to reveal the product�s quality are due to Grossman
and Hart (1980), Grossman (1981), and Milgrom (1981). Recent papers on the quality disclosure include, for
example, Levin, Peck and Ye (2005), who consider costly information signaling with horizontally di¤erentiated
products under duopoly and monopoly. Cheong and Kim (2004) examine the e¤ect of competition on the �rms�
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motives to change the buyer�s valuations via information disclosure. In particular, the sellers�

incentives to let buyers know the information about the product quality and that of consumer�s

private value can be exactly opposite, even in the simplest case of a single seller.59

3.2 The Model

Consider a market with a �nite number N of sellers, who compete for a single representative

consumer (she) through selling N di¤erentiated and indivisible products, where each seller

(he) produces one product. The consumer makes a mutually exclusive purchase among these

substitutable goods in the sense that she either buys exactly one unit from one of the sellers or

makes no purchase.

The consumer�s private valuations of the products fvigNi=1 are drawn independently from a

distribution G (v), which has a positive and di¤erentiable density g (v), supported on [0; 1]. All

consumer�s valuations are net of the sellers�values, which are identical for all sellers. However,

each seller has full control over information about his product, which implies that the buyer does

not possess any private information prior to interactions with the sellers. That is, all products

are ex-ante identical with expected values ve = E [v].

Sellers compete for a buyer over two dimensions. First, a seller i o¤ers a price pi for his

product. Second, he covertly decides on how much information about his product to reveal to

the buyer.60 In particular, a seller i chooses the quality �i of the signal s�i about the product

characteristics, which is privately observed by the buyer. For example, if the signal s�i = vi+ "i

is a sum of the true value vi and the noisy component "i, then the quality of the signal can be

represented by �i = 1=�2"i , where �
2
"i is the variance of noise. As a matter of notation, we use s

�
i

incentives to disclose quality when information disclosure is costly. Dye and Sridhar (1995) investigate the role of
competition in disclosure of information about the expected pro�tability of company�s cash �ows. Other studies
consider extended information structures, in which sellers can have information about products of their competitors
(Board, 2006) or when each market participant possesses some private information (Daughety and Reinganum,
2007). Daughety and Reinganum (2007, 2008) investigate markets, in which the product quality may be signaled
via prices. Stivers (2004) considers oligopolistic competition with vertically di¤erentiated products, when buyers
can be unaware of the existence of that information.
59For example, consider a random variable v distributed uniformly over the unit interval. If v represents the

product quality for consumers, then the seller (whose value is assumed to be zero) would disclose it almost surely.
If he does not disclose it, then he cannot charge more than the expected value E [v] = 1=2. However, if v > E [v],
then the seller would reveal this information. Thus, the seller could potentially hide information only if v � E [v],
which, in turn, would decrease the consumer�s expected value. Repeating this argument iteratively results in the
full information disclosure for any positive value. On the other hand, if v represents the buyer�s private value,
then revealing information and setting the optimal monopoly price pM = 1=2 brings the seller expected payo¤
1=2 � 1=2 = 1=4, since the buyer would buy the product only if v > pM . In contrast, the seller can extract the
total surplus 1=2 by not revealing information and setting the price at the expected value.
60That is, the seller�s decisions are not observed by its competitors.
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instead of s�i .

After observing all signals s�i and prices pi, i = 1; 2; :::; N , all decision relevant information

for the buyer is contained in the posterior valuations of the products !�i = ! (s�i ) = E [vjs�i ].

Thus, she buys the product j that gives her the highest non-negative expected payo¤!
�
s�j

�
�pj .

Otherwise, the buyer does not make a purchase.

3.2.1 Information structure.

For simplicity, suppose that the signal quality �i 2 [0; 1] ;8i, where �i = 0 and �i = 1 imply the

perfectly uninformative and perfectly informative signals, respectively. By choosing the signal

quality, a seller i a¤ects the distribution function of posterior values of his product

G�i (!) =

Z
fs�i :!(s�i )�!g

dF�i (s
�
i ) ;

where F�i (:) is the marginal distribution of the signal s
�
i .

We assume that G�i (!) is twice continuously di¤erentiable in �i and !, and has a positive

and di¤erential density on the support [!�i ; �!
�
i ]. To rank the family of distributions G�i (!i) with

respect to the quality of signals, notice �rst that by partially revealing or distorting information,

a seller cannot shift the buyer�s taste toward his product, since the average valuation of a product

is the same:

E [!�i ] = Es�i [E [vjs
�
i ]] = E [v] = v

e;8�i. (14)

However, by changing the signal quality �i, the seller a¤ects the spread of the buyer�s posterior

valuations. In order to capture the e¤ect of a change in the spread of G�i (!) due to varying the

signal�s quality, we apply the rotation order introduced recently by Johnson and Myatt (2006)

for the monopolistic setup.61

De�nition 1 The family of distributions G� (!) is rotation-ordered if, for each �, there exists

a rotation point !0�, such that ! ? !0� ()
@G�(!)
@� 7 0.62

61Johnson and Myatt (2006) provide two examples of the information structures that can be ranked according
to this order. The �rst example is the �truth-or-noise� technology that returns a signal, which is equal to the
true value with a probability � or a random indistinguishable draw from G (v) with a probability 1 � �. In the
other example, the value v is drawn from the normal distribution N

�
�; �2

�
. However, the consumer observes the

conditionally unbiased signal x from the distribution N
�
v; 1

�2

�
.

62Formally, Johnson and Myatt (2006) determine the rotation order as ! ? !0� () @G�(!)
@�

? 0. However, in
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Figure 6: Concentration of the density g� (!) Rotation of the distribution G� (!)

The main idea behind this ordering is that a less informative signal has a smaller in�uence on

updating the buyer�s prior information and, hence, stochastically shifts her posterior valuations

toward prior expected value. More precisely, suppose �rst that the buyer observes a completely

informative signal s = v. Then, the ex-post value of the product ! (s) is equal to the value of the

signal s, and the distribution of posterior valuations coincides with the distribution of the prior

values, or G� (!) � G (!). However, if the signal contains a noisy component, the buyer does not

purely rely on the value of the signal when she estimates the product valuation. Moreover, she

corrects for this noise by taking into account the prior information. Since prior valuation of the

product is characterized by its expected value, the buyer�s posterior valuations stochastically

shift toward ve. That is, the density of posterior valuations g� (!) becomes more concentrated

around ve relative to the case of the more informative information structure. In general, this

implies that the slope of the distribution G� (!) locally rotates around some point within the

support of the distribution (see Fig. 6).

Rotating distributions implies that any two distribution functions G� (!) and G�0 (!)

intersect only once. Equivalently, for a �xed �, the function @G�(!)
@� possesses the single-crossing

property, that is, it intersects the horizontal axis only once (from above) for all ! 2 (0; 1). Also,

since � = 0 implies that the buyer does not get any useful information, so that her valuation is

ve, it follows that !00 = v
e.

Before starting the analysis, we �rst consider a few motivating examples that demonstrate

their paper, an increase in � results in a less informative signal s�, which is opposite to our case. Thus, these
de�nitions are equivalent, if we put � = 1� �.
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the role of competition in the sellers�decisions regarding information disclosure and highlight

the general intuition behind the main results below.

3.3 Examples

In three examples below, we look at the suppliers�incentives to reveal information about their

products in markets with di¤erent magnitudes of competition. By considering situations with

one, two, and three sellers, we demonstrate that the sellers� incentives to reveal information

increase monotonically as competition becomes more tense, and change from one extreme to

another in terms of the quality of provided information. In particular, the examples will show

that the monopolist never reveals any useful information. In the case of duopoly, the sellers

reveal information partially. Finally, the market with three sellers results in full information

revelation.

For simplicity, we assume that the buyer�s valuations are distributed uniformly on the unit

interval. Also, the quality of signals is binary, i.e., the buyer either learns a product�s value

precisely or gets a fully uninformative signal.

First, consider the case of the monopolist. If the seller discloses information, then in any

incentive-compatible mechanism, the seller cannot extract more than the virtual value of a good

v � 1�G(v)
g(v) , which is less than the true value v (Myerson, 1981). Hence, the seller�s expected

pro�t is strictly below the expected value of the good ve. In contrast, not revealing information

deprives the buyer of any informational rent, which allows the seller to get all social surplus ve

by setting the price pM = ve.

Introducing the second seller in the market dramatically a¤ects the sellers�decisions about

information disclosure. To see this, suppose �rst that both sellers reveal information about their

products. Then, there exists a unique symmetric equilibrium price p =
p
2 � 1 ' 0:414, which

results in the expected pro�t � ' 0:172 for each seller. In contrast, if one of the sellers does not

disclose information about his product and charges the same price, his expected pro�t increases

to 0:207. Thus, full information revelation is not a part of the equilibrium strategy.

However, there is no equilibrium, in which both sellers hide information. By contradiction, if

both sellers do not disclose information, then their products are ex-ante identical to the buyer.

That is, the market transforms into the classic Bertrand competition with the unique equilibrium

price at zero, which results in the zero expected pro�ts for both sellers. However, each seller can

guarantee a positive expected pro�t by revealing information and charging a small positive price
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p". In this case, the buyer will prefer the product of this seller if v � p" > ve, which occurs with

a positive probability.

Finally, consider a market with three sellers. In this case, there exists an equilibrium such

that all sellers reveal information, charge the price p ' 0:322, and receive the expected pro�t

� ' 0:104. In contrast to the previous situation, hiding information by any seller and adjusting

the price optimally results in a lower expected pro�t of 0:082.

To explain the intuition behind these examples, we start with a simple case of the duopolistic

market. Suppose that both sellers reveal information. This market has several important features.

First, revealing information by sellers implies that the buyer�s posterior valuations are more

dispersed across products compared to the case of non-disclosure. In other words, the fully

revealing market is characterized by substantial product di¤erentiation that relaxes competition.

A combination of product di¤erentiation and a small number of competitors provides signi�cant

market power to each seller. This is re�ected in a high probability that the buyer would prefer

the product of a particular seller to those of competitors.63 At the same time, it allows sellers to

set high prices. However, to sell the product, its valuation must be also above the price. Since

market power enforces sellers to set high prices, the sellers�bene�ts are damaged by the fact

that the buyer is fully informed about products, so that she does not make a purchase if the

product�s value is below its price. We refer to this as the informational rent e¤ect. For example,

for the seller 1 this e¤ect is graphically represented by area C in the left part of Fig. 7.

Given these observations, each seller may increase the overall probability of selling the

product by not revealing information and leaving the buyer with the expected valuation

regarding his product. For example, for seller 1, the new probability is determined by the mass

of points in area A0 in the right part of Fig. 7. The reason is that a small number of competitors

implies that, with a su¢ ciently high probability, the buyer would still prefer the product of

this seller if the net value of the competing product is below the net expected value. At the

same time, hiding information eliminates the risk of not selling the product if its true value is

below the price. In other words, it removes the informational rent e¤ect, while keeping product

di¤erentiation. Together, these two factors enforce sellers to hide information, which breaks full

information revelation in the market.

However, if competition becomes �ercer, then choosing the non-revealing policy by some

63For, say, seller 1, this probability is determined by the mass of points in the area above line v2 = v1� p1+ p2
in the left part of Fig. 7.
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Figure 7: Disclosure of information by seller 1 Non-disclosure of information by seller 1

seller signi�cantly reduces the chance of selling his product. To see this, notice �rst that the

market with multiple products is equivalent to a duopolistic market, which consists of the product

of this seller and the most valuable product o¤ered by competitors. In this environment, the

expected value of seller 1�s product is much lower than that of the best competitor�s. Under these

circumstances, even though not revealing information expands the set of values that results in

selling seller 1�s product (areaA0 is bigger thanA), the total mass of values is mainly concentrated

in the complement area B0. That is, hiding information results in a loss of the possibility of

serving the high-value consumer, who would prefer seller 1�s product to all others (area A\B0).

In contrast, revealing information and, thus, increasing the variance of ex-post values of the

product is the only possibility to attract the buyer with a high realization of the product�s value

and sell the product. In this situation, the role of the buyers�informational rent is minor.

The above intuition can be reinterpreted for the case of a continuum of buyers as follows.

A fully revealing market is characterized by high segmentation, since each seller serves only the

share of high-value consumers who prefer his product to those of competitors. If competition

is not �erce, then each seller controls a large segment of the market. Moreover, this segment

does not change signi�cantly if some seller decides to hide information about his product. The

reason is that a large share of consumers always prefer the product with the expected value to

others with known valuations. In other words, the trade-o¤ between the bene�ts of segmenting

the market and the losses due to providing the informational rent to the buyer is essentially
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not a¤ected by the presence of competitors. Thus, each seller has incentives to hide information

without loosing his market segment.

However, tense competition essentially in�uences the above trade-o¤ via the market

segmentation. In particular, hiding information results in a loss of the most attractive share of

buyers, who would prefer this product to all others if they were informed about it. In addition,

the share of consumers who prefer the product with the expected value to all others, signi�cantly

shrinks because of a variety of other products. That is, hiding information cuts a large piece of

the seller�s segment of the market in favor of the rivals. Thus, lack of information moves the

product into a �low value�niche of the market relative to the best product among competing

ones.

While considering strategic interaction among the sellers in the example above, one can see

that the informational component in the sellers�decisions cannot be isolated from the prices.

The reason is that prices play a dual role. First, they in�uence market segmentation by changing

the net value of each product relative to those o¤ered by competitors. Second, they determine

the magnitude of the informational rent e¤ect.64 Thus, in order to isolate the pricing e¤ects, we

start the general analysis by investigating the seller�s decisions over this dimension.

3.4 Pricing

In this subsection, we analyze the sellers�pricing policies. Since our primary goal is to focus on

the existence of fully revealing equilibria, we start with a situation in which sellers disclose all

available information.65 In this case, we characterize the regularity condition that guarantees the

existence of the unique symmetric price across sellers. In general, this condition is not restrictive

and holds for a large class of standard distributions.

3.4.1 Monopoly

First, consider the case of the monopolist, who sells the product to the buyer with a valuation

v � G [0; 1]. Let pM be the monopoly price, i.e., it is the solution to the pro�t-maximization

problem

max
x
� (x) = max

x
(1�G (x))x (15)

64Graphically, a change in prices shifts the �market segmenting�line v2 = v1 � p1 + p2 in Fig. 7. In addition, a
change in prices a¤ects low-value areas below them (e.g., area C), which re�ects the informational rent e¤ect.
65 If sellers disclose information completely, then G�i (!) , G (!) for all i.
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The �rst-order condition for this problem is

1�G (x)� xg (x) = (1�G (x)) (1� x� (x)) = 0,

where � (x) = g(x)
1�G(x) is the hazard rate function of the distribution G (:). Thus, the monopoly

price must satisfy

pM� (pM ) = 1. (16)

To guarantee that the monopoly pro�t is quasi-concave in x, so that the monopoly price is

uniquely determined and characterized by (16), we impose the following regularity condition on

the distribution of posterior values.

Condition 1 The density function g (v) is log-concave.

Given this condition, the distribution possesses two useful properties: the increasing hazard

rate (IHR) property (or, equivalently, the log-concavity of the survival function 1 � G (:)) and

the log-concavity of the distribution function G (:).

Lemma 1 (Bagnoli and Bergstrom, 2005) If g (:) is continuously di¤erentiable and log-concave

on (a; b), then G (:) is log-concave on (a; b), and the hazard rate � (:) is monotone increasing on

(a; b).

Even though Condition 1 is generally more restrictive than the IHR property, it holds for a

large class of standard distributions in the subspace of parameters that imply the IHR property

(e.g., beta, gamma, Weibull, power, and other distributions).66

In addition, we require that

Condition 2 G� (!) has an increasing hazard rate �� (!) for all �.

Notice that the log-concavity of the density for an arbitrary � is not required for our purposes,

since we are mainly interested in the behavior of G� (!) around the fully informative quality

of information. However, the increasing hazard rate of G� (!) is the standard condition that

guarantees the uniqueness of the monopoly price, when the buyer�s valuations are distributed

according to this distribution. In the case of competition, we show that this property implies

that the price in the competitive market is lower than the monopoly price.

66For other examples, see Bagnoli and Bergstrom (2005).
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3.4.2 Competition

If the number of sellers exceeds one, the IHR property may be insu¢ cient to prove the existence

of a symmetric price pSN . In order to resolve this issue, we employ Condition 1. In particular,

consider the problem of, say, seller 1, who sets the price x, given that the other sellers set the

price p. In this case, the expected pro�t of seller 1 is

� (x; p) = P (x; p)x,

where P (:; :) is the probability of selling the product. It is determined by

P (x; p) = GY (p) (1�G (x)) +
1Z
p

(1�G (y � p+ x)) dGY (y) , (17)

where GY (y) = GN�1 (y) is the distribution of the maximal value y = max fv2; :::; vNg across

the products of competitors j = 2; :::; N .

Intuitively, the �rst component in (17) re�ects the fact that seller 1 may become the

monopolist if the values of all other products are below p, which occurs with the probability

GY (p). With the complement probability, seller 1 has to compete against the most valuable

product o¤ered by competitors. Hence, he sells the product only if v�x � y�p, or v � y�p+x.

Taking the average over all possible values of y gives the expected pro�t.

Notice that the seller�s expected pro�t is a convex combination of the quasi-concave functions,

which is generally not quasi-concave. However, the following lemma demonstrates that the

regularity condition resolves this problem. In particular, Condition 1 guarantees that there is a

unique symmetric equilibrium price in the fully revealing market, and outlines some properties

of this price.67

Lemma 2 For any number of sellers N , there exists a unique symmetric equilibrium price pSN ,

which is (1) less than the monopoly price, (2) strictly positive, and (3) converges to zero as N

increases.

The proof of the existence of the price consists of four steps. First, the log-concavity of g (:)

implies that the density gY (y) is also log-concave. Second, it also implies that the function

67With minor abuse, we call a price an equilibrium one, if it constitutes an equilibrium for a given quality of
information revealed.
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min f1�G (x) ; 1�G (y � p+ x)g is log-concave in (x; y). Third, we can represent P (x; p) as

P (x; p) =

1Z
0

min f1�G (x) ; 1�G (y � p+ x)g gY (y) dy.

Finally, using Prékopa�s theorem on the preservation of the log-concavity by integration over a

convex set gives the desired result.

In order to characterize the asymptotic properties of the price, we demonstrate that it has

the rate of convergence 1=N as the number of sellers grows. Moreover, the rate of convergence

does not depend on the distribution of consumer�s values.

An important implication of the above lemma is that �ercer competition reduces the

magnitude of the informational rent e¤ect due to two factors. First, a lower price directly

reduces the chance of not selling a product to the buyer if its value is low. Second, before

making a decision about a purchase, the buyer always prefers the product, which gives her the

highest net value, and buys this product if this value is non-negative. In the case of a symmetric

price, it is equivalent to preferring the product with the highest value. However, the distribution

function of the best product shifts toward higher values as competition becomes tenser, which

additionally decreases the probability of not selling the product to the informed buyer. This

is reminiscent of the �winner curse� e¤ect in the auction theory. Since a seller of a particular

product cannot observe the buyer�s signal, then the fact that his product wins against competing

ones raises the product�s expected value.68

Given these preliminaries, we are ready to explore the sellers�decisions about the quality of

provided information.

3.5 Information Disclosure

In this subsection, we investigate the sellers� incentive to reveal information and provide the

main results about information disclosure. The examples above demonstrate that if the number

of sellers in the market is small, then full information disclosure is not feasible. The reason is that

in the market with few suppliers the magnitude of the informational rent e¤ect is unambiguously

bigger. First, the fully revealing market is characterized by a high equilibrium price, which

decreases the chance of selling the product. Second, each seller cannot sell his product if one of

68Graphically, this means that for a given area C in Fig. 2, the mass of points in the area falls as the number
of sellers goes up.

71



the following events occurs: the product�s value is below the price or the buyer�s payo¤ is lower

than that from another product. Thus, if one seller, for instance, hides information completely,

then the buyer will value his product at the mean. This eliminates the risk of the �rst event

without raising signi�cantly the risk of the second event. As a result, the chance of selling the

product increases.

However, if there are many competitors in the market, then the above logic does not work.

Generating the expected valuation by hiding information gives a small chance of selling the

product, since there is a high probability that the maximal valuation across other products

is large.69 That is, the probability of the second event increases enormously. Moreover, tense

competition pushes the prices down, which leaves even less freedom for a potential deviator to

attract the consumer by o¤ering her a lower price. In other words, it is better to reveal the

information in a hope that the value will be high.

Before formalizing the intuition above, we characterize �rst the necessary conditions for full

revelation. These conditions allow us to get insight into the main properties of the distributions of

consumer�s values, which determine the trade-o¤ between the bene�ts of segmenting the market

and providing the informational rent to the buyer. All proofs can be found in the Appendix.

Lemma 3 If GN�1 (ve) � 1
N max

�pM
ve ; 1

	
, there is no fully revealing symmetric equilibrium in

the market with N sellers.

The above lemma relates the properties of distribution of values to the magnitude of the

informational rent e¤ect. In general, given a �xed number of sellers, the condition in the lemma

is likely to hold if the distribution of values shifts toward low values. Intuitively, if the value is

likely to be low, then not revealing any information increases the chance of selling the product to

the buyer, since it generates a deterministic valuation as compared to the random value v.70 At

the same time, there are no incentives to reveal information in a hope that the value of product

will exceed the best competing product, since the values of competing products are also likely

to be low. In contrast, if the density is skewed to the right, then the magnitude of these two

factors becomes smaller. As a results, it is possible to obtain the fully revealing market with two

69 Instead of hiding information completely, revealing information only partially forms a distribution of expected
valuations that is concentrated around the mean more than the prior distribution of values. Thus, the argument
is still true.
70Consider, for instance, the truncated exponential distribution with the density g (v) = � exp(��v)

1�exp(��) , v 2 [0; 1],
parameterized by �. Then, for � = �2, the condition in Lemma 3 is satis�ed only for the monopolistic market.
However, for � = 8, the density shifts towards zero, and even three sellers are not enough guarantee full disclosure.
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sellers only.

Also, for a given distribution, as the number of sellers increases, the condition in Lemma 3

is violated for sure, since the left-hand side of the inequality declines at the exponential rate,

whereas the right-hand side has the rate of convergence 1=N . This implies that �erce competition

reduces the sellers�incentives to hide information.

The interpretation of the lemma above may be seen more clearly in the duopoly market.

Corollary 2 If ve is no less than both the median value and the monopoly price, then there is

no fully revealing symmetric equilibrium in the market with two sellers.

Corollary 1 implies that for the duopoly market, there is no fully revealing equilibrium for

all symmetric distributions. For this class of distributions, the expected value is equal to the

median. Moreover, it can be shown that Condition 1 guarantees that the monopoly price is

below the expected value.

Lemma 4 If g (v) is symmetric, then there is no fully revealing equilibrium in the market with

two sellers.

Intuitively, for any distribution, the mass of points below the mean value can serve as an

approximate measure of the informational rent e¤ect. At the same time, the mass of points above

the mean measures the attractiveness of the competing product in the case of hiding information.

This is because by not disclosing information, the seller guarantees that the valuation of his

product is equal to the mean value. Given the fact that the competitor reveals information, the

mass of points above the mean determines the probability of the competing product having a

higher value than that of seller 1. Following this logic, the above result demonstrates that if

weights of these two factors are the same, the informational rent e¤ect on the sellers�incentives

dominates that of competition with the other seller. In other words, by hiding information, the

probability of selling the product to an uninformed consumer dominates the probability of losing

her to the seller with a better product.

The discussions above lead to the following major result.

Theorem 1 There is a critical number of sellers N 0 such that for all N � N 0, there exists a

unique symmetric equilibrium, in which all sellers disclose full information.

In addition to the intuition for the examples above, a decrease in the sellers�incentives to

hide the information in response to �ercer competition can be explained from a di¤erent angle.
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Consider the monopoly that sells the product to a buyer, who has an outside option. If the value

of this option is small, then the monopolist has no incentives to disclose information, since it

just endows the buyer with the informational rent. However, when the outside option becomes

more attractive (in particular, if it exceeds the mean value), the monopolist has to reveal his

information in a hope that the buyer would like his product more than the outside option. Now,

if we consider a particular seller in the competitive market, then the maximal value across the

products of competitors is the buyer�s outside option. In other words, all sellers play a role of

a buyer�s outside option for each other. Thus, as competition becomes tenser, the value of an

outside option (stochastically) grows, thereby, enforcing the sellers to reveal full information.71

3.6 Information and Market E¢ ciency

In this subsection, we relate the quality of information that is endogenously determined by the

market to the market e¢ ciency. The market e¢ ciency is measured by the relative di¤erence

between the total surplus, i.e., a sum of the consumer surplus and the sellers�expected pro�ts,

and social welfare measured by the expected value of the best product in the market. Full

e¢ ciency can be reached if we introduce the central planner, who makes all sellers reveal full

information and set the price at the unit cost level.

In the case of the monopoly, equilibrium is socially optimal. Even though the expected payo¤

of the buyer is zero, the monopolist�s pro�t is equal to the expected value of the good, which

coincides with social welfare.

If the number of sellers exceeds one, the market is not e¢ cient. First, if competition is not

tense, so that sellers do not reveal information precisely, then the buyer loses because of the

possibility of not buying the most valuable product. Second, if the market is highly competitive

and sellers disclose all information, the product di¤erentiation allows the sellers to sustain a

positive price for an arbitrary number of competitors. This, however, creates ine¢ ciency, since

there is a chance that the buyer would not purchase the best product, if its value is below the

price. This raises a natural question of how fast the market converges to the social optimum as

71Technically, by decreasing the quality of information about his product, the seller rotates the distribution
of expected valuations so that the density becomes concentrated around the mean. This decreases the degree of
di¤erentiation among products. In particular, it reduces the chance of selling the object by making the tail of
the distribution G� (:) thinner. Since the product has to compete against a product with a value Y , which is
likely to be high, the chance of selling the product falls. Notice that this intuition holds true, even when all other
competitors disclose information only partially. In this case, it is still pro�table for any seller to reveal information
completely, which guarantees the uniqueness of the symmetric equilibrium.
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the number of sellers grows. The following lemma addresses this issue. In particular, we show

that the welfare losses due to the decision of an unsatis�ed buyer to leave the market decrease

faster than exponentially.

Lemma 5 As the number of sellers goes up, the ine¢ ciency of the market converges to zero at

the rate 1=NN .

Thus, the magnitude of ine¢ ciency goes down at a very fast rate as the number of the

sellers grows. This is because of two factors. First, the higher number of sellers implies the

highest value across products stochastically grows. Second, competition decreases the market

price, which tends to the marginal cost at the rate 1=N .

Finally, consider the asymptotic properties of the market structure. An implication of the

above result is that more severe competition results in the convergence of the market structure

to the standard Bertrand competition not only in terms of the symmetry of the price and the

perfect quality of buyer�s information, but also in terms of the e¢ ciency, even though the model�s

settings are essentially di¤erent from the classic setup.

3.7 Conclusion

In this chapter, we provide a possible explanation of di¤erent behavior of �rms with respect to

unraveling information that can a¤ect buyers�private valuations of products. We demonstrate

that the �rms� incentives to provide such information crucially depend on the �erceness of

competition in the market. Starting with the analysis of the non-disclosure case of a monopoly,

we show that �rms never reveal full information in low-competitive markets, and eventually

disclose full information as the market becomes su¢ ciently competitive. Thus, full information

revelation is an endogenously determined attribute of su¢ ciently competitive markets only. This

result demonstrates that competition re�nes the extreme choices of the monopolist, which prefers

to reveal either full information or no information (Lewis and Sappington, 1994; Johnson and

Myatt, 2006).

Second, as competitive becomes �ercer, the market structure becomes similar to Bertrand

competition. That is, even though all products are ex-ante di¤erent, sellers charge the symmetric

price that converges to the marginal cost as the number of sellers goes up. Since there are no

informational losses, the price is the only source of ine¢ ciency, the magnitude of which, however,

virtually disappears as competition intensi�es.
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Appendix A

Proofs to Chapter 1.

Denote by S (!) = fs : !s = !g the set and by F (sj!) = F (sjs 2 S (!)) the distribution of signals

that generate a type !. Also, let US (a; bj!) be the utility function of an expert�s type !:

US (a; bj!) =
Z

S(!)

U (a; bjs) dF (sj!) =

R
S(!)

U (a; bjs) dF (s)R
S(!)

dF (s)
(18)

= US (a; b; !)�D!;

where D! =

R
S(!)

DsdF (s)R
S(!)

dF (s)
are informational losses of a type !. Similarly, de�ne UR (aj!) = US (a; 0j!).

Proof of Lemma 1. Let a and a0 be two induced actions, where a0 > a. Consider types ! and

!0, which induce corresponding actions, that is, US (a; bj!) � US (a0; bj!) and US (a0; bj!0) � US (a; bj!0).

Then, it follows from (18) that US (a; b; !) � US (a0; b; !) and US (a0; b; !0) � US (a; b; !0).

The single-crossing property of the expert�s utility function d2

dad�US (a; b; �) > 0 implies that there

exists a state � 2 (!s; !
0
s) such that US (a

0; b; �) = US (a; b; �). Also, this property leads to (i) a <

aS (�) < a0, where aS (�) = � + b, (ii) a is not induced by any type ! > �, and (iii) a0 is not induced

by any type ! < �. The last two properties along with the single-crossing property of UR (a; �) imply

a � aR (�) = � � a0.

In addition, the symmetry of US (a; b; �) with respect to aS (�) implies that a0 � � � b = � + b � a,

or aS (�) = � + b = a+a0

2 . This means that both aS (�) and aR (�) belong to the interval [a; a+a
0

2 ]. Since

aS (�) � aR (�) = b, it follows that a+a0

2 � a � b, or a0 � a � 2b. To complete the proof, notice that the

set of induced actions is bounded by aR (0) and aR (1).

Denote by �a (!) the probability of inducing an action a by the expert of type !. Since the set of

actions A is �nite, we can put A = faigNi=1, where ai+1 > ai;8i. For simplicity, we use �i (!) for the

probability of inducing an action ai by the type !. That is,

�i (!) =

Z
S(!)

Z
M(ai)

� (mjs) dmdF (sj!) .

Given a message m, the principal�s best response is

a (m) = E [E [�js] jm] = E [!sjm] . (19)
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Then, the principal�s expected payo¤ can be represented as

UR =
NP
i=1

Z



�i (!)UR (aij!) dG (!) :

The following lemma outlines the properties of f�i (!)gNi=1.

Lemma 6 In any equilibrium, f�i (!)gNi=1 satis�es the following conditions:

(A) �i (!) > 0 implies �j (!) = 0; for all j < i� 1 and j > i+ 1,

(B) the expert of the highest type �! purely induces the highest action,

(C) �i (!0) > 0 implies that �j (!) = 0, for all j < i; ! > !0, and j > i; ! < !0,

(D) �i (!0) > 0; �i (!00) > 0 imply �i (!) = 1; ! 2 (!0; !00), and

(E) if �i (!0) > 0; �i+1 (!
0) > 0, then there exists !00 > !0 such that �i+1 (!00) > 0 and �i+1 (!) =

1; ! 2 (!0; !00).

Proof (A) This property follows from the strict concavity of US (a; bj!) in a: By contradiction,

let �i (!) > 0 and �j (!) > 0, where j > i + 1, for some ! 2 
. This implies that US (ai; bj!) =

US (aj ; bj!) �US (a; bj!) ;8a 2 A. Since ai+1 can be represented as a convex combination of ai and aj ,

ai+1 = �ai+(1� �) aj for some � 2 (0; 1), this results in a contradiction: US (ai+1; bj!) > �US (ai; bj!)+

(1� �)US (aj ; bj!) = US (ai; bj!).

(B) From (19), the highest induced action aN � �! < �! + b. Since US (a; b; !) is strictly increasing in

a, for all a � ! + b, the type �! cannot be indi¤erent between �a and any a < �a.

(C) By contradiction, let �i (!0) > 0 and �j (!) > 0 for some j < i; ! > !0. Then, �i (!0) > 0 implies

U (ai; b; !
0) � US (aj ; b; !0) and �j (!)> 0 implies U (aj ; b; !) � U (ai; b; !). Combining these inequalities

results in U (aj ; b; !0)� U (ai; b; !0) � 0 � U (aj ; b; !)� U (ai; b; !), which contradicts the single-crossing

property U (ai; b; !)� U (aj ; b; !) > U (ai; b; !0)� U (aj ; b; !0).

(D) For any ! 2 (!0; !00), applying property (C) to both �i (!0) and �i (!00) implies that �j (!) = 0

for all j 6= i that gives the desired result.

(E) By contradiction, let �i (!0) > 0; �i+1 (!
0) > 0, and �i+1 (!) = 0 for all ! > !0. Since !0 is

indi¤erent between ai and ai+1, then !0 + b < ai+1. Property (C) for �i (!0) implies �i+1 (!) = 0 for all

! < !0. That is, �i+1 (!) = 0 for all ! 6= !0. Hence, ai+1 is induced by the type !0 only, which means

ai+1 = !
0. This results in a contradiction ai+1 = !0 > !0+b. Thus, there exists a type !00 > !0 that induces

an action ai+1, or, equivalently, �i+1 (!00) > 0. Then, property (D) implies that �i+1 (!) = 1; ! 2 (!0; !00).

The �rst condition states that the expert of each type can mix between two adjacent actions only.

The second condition requires the expert of the highest type to purely induce the highest action. The
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third condition is the single-crossing property, which implies that if an expert of some type induces an

action, then no expert of a higher type induces a lower action, and vice versa. Condition (D) argues that

the set of types that induce the same action is an interval. Finally, the last condition states that if some

type induces two actions, then there exists a higher type that induces the higher action also.

Using the lemma above, the expert�s signaling strategy can be described by a pair of functions

fj (!) ; �!g ; ! 2 
, which means that a type ! induces a lower action aj(!) with a probability �!. With

a complement probability, this type induces aj(!)+1.

Proof of Lemma 2. In any equilibrium with an information structure hS;M; F (�js)i and an action

set A = faigNi=1, denote W � 
 the set of types that induces two actions. That is, W � fyigN�1i=1 , where

yi =
ai+ai+1

2 � b; i = 1; :::; N � 1, and yi 2 W implies �yi 2 (0; 1).

Split the set 
nW into a �nite collection of subsets fWigNi=1 of types that purely induce an action

ai.72 By property (C) of Lemma 6, these sets are strictly monotone in the sense that i > j implies !0 > !

for all !0 2 Wi; ! 2 Wj .

Modify the initial information structure as follows. For each action ai, collapse all types ! 2 Wi into

a single type

!i =

R
Wi

!dG (!)R
Wi

dG (!)
(20)

by, for instance, collapsing all signals s 2 [
!2Wi

S (!) that generates these types. Thus, a type !i is

generated with a probability P (!i) =
R
Wi

dG (!).

Notice that W \ f!igNi=1 = ?. Since yi 2 W induces actions ai and ai+1, then by property (C) of

Lemma 6, we have ! > yi for all ! 2 Wj ; j � i+ 1. Hence, !j = E[!j! 2 Wj ] > yi;j � i+ 1. Similarly,

!j = E[!j! 2 Wj ] < yi; j � i, since ! < yi for all ! 2 Wj ; j � i.

Given that the expert�s strategy on a modi�ed type space is not a¤ected by the modi�cation in the

information structure, the principal�s best response is not a¤ected either.73

Since each !i is bounded by the set Wi, property (D) of Lemma 6 implies that �i (!i) = 1;8i.

Similarly, all types yi 2 W cannot bene�cially deviate from mixing between ai and ai+1. Finally, the

72Notice that Wi can be empty for some ai, but not for all actions, since the expert of the highest type
purely induces the highest action.
73That is, if each type !i; i = 1; :::; N; purely induces an action ai, and each type yi 2 W induces ai

and ai+1 with the same probabilities as in the initial equilibrium.
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principal�s expected payo¤ U 0R is equal to that in the initial equilibrium, since

UR =

Z



�!UR
�
aj(!)j!

�
+ (1� �!)UR

�
aj(!)+1j!

�
dG (!)

=
N�1P
i=1

P (yi) (�yiUR (aijyi) + (1� �yi)UR (ai+1jyi)) +
NP
i=1

Z
Wi

UR (aij!) dG (!)

=
N�1P
i=1

P (yi) (�yiUR (aijyi) + (1� �yi)UR (ai+1jyi)) +
NP
i=1

P (!i)UR (aij!i) = U 0R,

where P (!) =
R

S(!)

dF (s) is a probability of generating a type !.

Now, we prove �rst Lemma 3 and Lemma 4, and use them to compete the second part of the this

lemma.

Proof of Lemma 3. By contradiction, suppose that there exists an equilibrium, in which the �nite

number of induced actions #A exceeds the number of types #
. This implies that there exists a type

yi 2 W, such that �i+1 (!) = 0 for all ! > yi. However, this violates property (E) of Lemma 6, which

completes the proof.

Now, we identify the necessary and su¢ cient conditions for an information structure to be incentive-

compatible.

A type !i prefers an action ai to ai+1 > ai if and only if ai is closer to her optimal action !i+ b; that

is, if

!i + b �
ai + ai+1

2
; i = 1; :::; N � 1: (21)

Since the principal�s best response is ai = !i and ai+1 = !i+1, (21) can be transformed into

!i+1 � !i � 2b; i = 1; :::; N � 1: (22)

Notice that the expert of a type !i never induces an action a < ai, since a < ai = !i < !i + b

means UR (aj!i) < UR (aij!i). That is, (22) is su¢ cient to guarantee that an information structure is

incentive-compatible.

Also, consider a type !, which induces two actions, ai and ai+1. That is, ! + b =
ai+ai+1

2 < a
i+1
, or

��ai+1 � !�� = ai+1 � ! = ! � ai + 2b > jai � !j ;
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where the last inequality follows from the fact that a
i+1
� ! > ai�! and !�ai + 2b > ! � ai .74

Because UR (a; !) = U (ja� !j), it follows that UR (ai ; !)� UR
�
ai+1 ; !

�
> 0. Thus,

UR (ai j!)� UR
�
a
i+1
j!
�
> 0; (23)

and

UR (ai j!) > �!UR (aij!) + (1� �!)UR (ai+1j!) ; (24)

since U 0 (x) � 0 and U 00 (x) < 0; x � 0 result in U 0 (x) < 0; x > 0.

Proof of Lemma 4. Let W be the set of types that induce two actions. For each i2#A, denote

by 
i the set of types that induces an action ai, that is, ! 2 
i implies �i (!) > 0. By property (D) of

Lemma 6, each 
i is an interval that includes Wi. Also, if there exist yi�1; yi 2 W, then yi�1 and yi are

the lower and the upper boundary points of 
i, respectively. Thus, two intervals 
i and 
i+1 have at

most one common point yi 2 W. Then, the principal�s best response can be described by

ai =

�
1� �yi�1

�
P (yi�1) yi�1 + P (!i)!i + �yiP (yi) yi�

1� �yi�1
�
P (yi�1) + P (!i) + �yiP (yi)

;8i; (25)

where !i is determined by (20).

Consider a modi�ed expert�s signaling strategy f�oi (!)g
N
i=1, which is derived from f�i (!)gNi=1 as

follows. For any type yi 2 W, assign probability one to a lower action; that is, �oyi = 1. Therefore, W
o
i =

Wi[yi+1 is a new set of types that purely induce an action ai. Denote by faoi g
N
i=1 the action set, adjusted

to this signaling strategy.

Given f�oi (!)g
N
i=1 and faoi g

N
i=1, the principal�s expected payo¤ is

UoR =
N�1P
i=1

P (yi)UR (a
o
i jyi) +

NP
i=1

Z
Wi

UR (a
o
i j!) dG (!)

�
N�1P
i=1

P (yi)UR (aijyi) +
NP
i=1

Z
Wi

UR (aij!) dG (!)

�
N�1P
i=1

P (yi) (�yiUR (aijyi) + (1� �yi)UR (ai+1jyi))

+
NP
i=1

Z
Wi

UR (aij!) dG (!) = UR,

where the �rst inequality follows from the fact that faoi g
N
i=1 is a best response to f�oi (!)g

N
i=1, and the

second inequality follows from (24) by summing across yi 2 W.

74Formally, we need to consider the case !�ai � 0 only, since an action ai is not induced by any type
above !. However, the above argument does not depend on the allocation of ai and !.
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Finally, modify the information structure by collapsing each Wo
i into a single type

!oi =

R
Wo

i

!dG (!)R
Wo

i

dG (!)
=
P (!i)!i + P (yi) yi
P (!i) + P (yi)

;8i;

and consider a new expert�s strategy, such that a type !oi purely induces a
o
i . This modi�cation of the

information structure and an expert�s strategy preserves inducing an action aoi by all ! 2 Wo
i . That is,

the principal�s best response is the same and is determined by aoi = !
o
i ;8i. Thus, the principal�s expected

payo¤ is UoR.

We complete the proof by showing that each new type !oi ; i = 1; :::; N cannot bene�cially deviate from

inducing aoi . First, notice that a
o
i � ai;8i. By construction, aoi = aij�yi�1=1;�yi=1. Taking the derivative

of ai with respect to �yi�1 results in

@ai
@�yi�1

= P (yi�1)
(!i � yi�1)P (!i) + (yi � yi�1)�yiP (yi)��
1� �yi�1

�
P (yi�1) + P (!i) + �yiP (yi)

�2 � 0;
since yi�1 < !i < yi by the same argument as used in the proof of Lemma 2. Similarly, @ai

@�yi
� 0, which

implies that aoi � ai;8i.

For any i, consider the highest type �!i that weakly prefers ai to ai+1. Since inducing an action ai by

a type ! 2 
i means that it is weakly preferred to ai+1, we have �!i � sup
i = supWo
i .
75 Thus,

!oi + b � �!i + b �
ai + ai+1

2
�
aoi + a

o
i+1

2
=
!oi + !

o
i+1

2
;

which means that (22) holds for f!oi g
N
i=1.

Proof of Lemma 2 (cont.) Suppose that there exists an interval of types W 0 with a positive and

continuous density g (!), which induces two actions, ak and ak+1.76 That is, there is a type !s, such that

all types in W 0 below !s purely induce an action ak, and all types in W 0 above !s purely induce ak+1.

First, transform this equilibrium into an incentive-compatible one, using the same technique as that

developed in the proof of Lemma 4. That is, for all types y 2 W, attribute 1 to the probability of inducing

a lower action. Then, collapse each set of types Wo
i that purely induce an action ai, into a single type

!oi . The resulting information structure is incentive-compatible and provides a payo¤ U
o
R to the principal

that is (weakly) superior to that in the initial equilibrium. Denote by faoi g
N
i=1 the action set in the

incentive-compatible equilibrium.

Now, we modify the initial information structure as follows. As previously, put �y = 1; y 2 W. In

addition, consider a type !� = !s + �, where � # 0, and put �! = 1; ! 2 W� = [!s; !�]. Finally, collapse

75Notice that �!i may be out of 
i, if �!i is indi¤erent between ai and ai+1, and purely induces ai+1.
76An example of such an information structure is CS communication.
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all types W�
i that induce an action ai. Thus, for � > 0, we reallocate a positive mass of types from !ok+1

to !ok. We prove now that the resulting information structure is incentive-compatible, and provides an

expected payo¤ U�R > U
o
R.

Let
�
a�i
	N
i=1

be the principal�s best response to the truth-telling strategy �i
�
!�i
�
= 1;8i. That is,

a�i = !
�
i =

R
W�

i

!dG (!)R
W�

i

dG (!)
;8i;

where W�
i =Wo

i , and, thus, a
�
i = a

o
i for all i 6= k; k + 1.

The principal�s expected payo¤ is

U�R =

Z
W�

k

UR
�
a�kj!

�
dG (!) +

Z
W�

k+1

UR
�
a�k+1j!

�
dG (!) +

Z

nfW�

k[W�
k+1g

UR

�
aoj(!)j!

�
dG (!) :

The continuity of g (!) around !s guarantees that
@a�k
@� and

@a�k+1
@� are continuous in � around 0. Since

!� is the upper bound of W�
k and the lower bound of W�

k+1, we have

d

d�
U�Rj�=0 = UR (aok; !s) g (!s)� UR

�
aok+1; !s

�
g (!s)

+

Z
Wo

k

@

@a
UR (a

o
k; !)

@a�k
@�
j�=0dG (!) +

Z
Wo

k+1

@

@a
UR
�
aok+1; !

� @a�k+1
@�

j�=0dG (!)

=
�
UR (a

o
k; !s)� UR

�
aok+1; !s

��
g (!s) (26)

+
@a�k
@�
j�=0

Z
Wo

k

@

@a
UR (a

o
k; !) dG (!) +

@a�k+1
@�

j�=0
Z

Wo
k+1

@

@a
UR
�
aok+1; !

�
dG (!) :

By the principal�s best response,
R
Wo

k

@
@aUR (a

o
k; !) dG (!) = 0;8k. That is, the last two components

in (26) are equal to 0. Since type !s is indi¤erent between ak and ak+1, then ak+1 � !s = !s � ak + 2b.

Since aok � ak and aok+1 � ak+1, we have

���ao
k+1

� !s
��� = ao

k+1
� !s � ak+1 � !s = !s � ak + 2b > !s � aok + 2b >

��ao
k
� !s

�� ;
and d

d�U
�
Rj�=0 > 0.

To complete the proof, we need to show that the truth-telling strategy �i
�
!�i
�
= 1;8i; is incentive-

compatible. That is, it is su¢ cient to show that

!�i+1 � !�i � 2b;8i: (27)
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By construction,

!�k =
P (!ok)!

o
k + P (!�)!�

P (!ok) + P (!�)
and !�k+1 =

P
�
!ok+1

�
!ok+1 � P (!�)!�

P (!ok)� P (!�)
;

where !� =

!s+�R
!s

!g(!)d!

!s+�R
!s

g(!)d!

and P (!�) =
!s+�R
!s

g (!) d!.

Since !ok < !� < !
o
k+1, and P (!�) > 0, we have !

�
k > !

o
k and !

�
k+1 > !

o
k+1.

Now, for i < k � 1 and i > k + 1, (27) is satis�ed, since !�i = !oi and (22) holds for f!oi g
N
i=1. For

i = k � 1, we have

!�k � !�k�1 > !ok � !�k�1 = !ok � !ok�1 � 2b:

For i = k, since g (!) > 0 around !s, then Wo
k is not a singleton. Hence, !s = supWo

k > !
o
k. Then,

!ok + b < !s + b =
ak + ak+1

2
�
aok + a

o
k+1

2
=
!ok + !

o
k+1

2

means that !ok+1 � !ok > 2b: Since !�k and !�k+1 are continuous in � around 0, then !�k+1 � !�k > 2b, for

� # 0.

Similarly,Wo
k+1 is not a singleton. That is, if �!k+1 is the highest type that prefers ak+1 to ak+2, then

�!k+1 > !
o
k+1. Hence,

!ok+1 + b < �!k+1 + b �
ak+1 + ak+2

2
�
aok+1 + a

o
k+2

2
=
!ok+1 + !

o
k+2

2
,

and !ok+2�!ok+1 > 2b: Since !�k+2 = !ok+2, and !�k+1 is continuous in � around 0, then !�k+2�!�k+1 > 2b,

for � # 0.

Proof of Theorem 1. Consider any CS equilibrium, which contains more than one partition element.

In this case, the arbitrage condition for a type �k+1, which is indi¤erent between actions ak and ak+1, is

�k+1 + b� ak = ak+1 � �k+1 � b, (28)

where akis determined by the principal�s best response:

ak = !k = E [�j� 2 (�k; �k+1]] =
1

F (�k+1)� F (�k)

�k+1Z
�k

�dF (�) . (29)
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Then, (28) can be expressed as !k+1 � !k = 2 (�k+1 � !k) + 2b > 2b;8k, since f (�) > 0; � 2 �; implies

�k+1 > ak = E [�j� 2 (�k; �k+1]]. Thus, any CS partition f�kgNk=0 generates the information structure

f!kgN�1k=0 that satis�es (22). Moreover, (22) are satis�ed for all �0k # �k; k = 1; :::; N , since each !k is

continuous in �k and �k+1.

The principal�s expected payo¤ in the incentive-compatible equilibrium is

UR =
N�1X
k=0

UkR =
N�1X
k=0

�k+1Z
�k

UR (ak; �) dF (�) : (30)

Then,

dUR
d�1

= UR (a0; �1) f (�1)� UR (a1; �1) f (�1)

+
@a0
@�1

�1Z
0

@

@a
UR (a0; �) dF (�) +

@a1
@�1

�2Z
�1

@

@a
UR (a1; �) dF (�) .

From (29), the last two terms in the expression above are equal to 0. Also, (23) implies

dUR
d�1

= (UR (a0; �1)� UR (a1; �1)) f (�1) > 0.

Thus, the partition f0; �01; �2; :::; 1g, where �01#�1, is incentive-compatible and provides a strictly higher

expected payo¤.77

Proof of Theorem 2. First, notice that f (�), f 0 (�), and f 0(�)
f(�) are bounded, since f (�) and f

0 (�)

are continuous, and f (�) > 0 for all � 2 �. That is, f (�) � �f and jf 0 (�)j � �.

If ��k = �k+1 � �k is the length of a partition�s element �k, then the principal�s best response (29)

can be represented by Taylor�s formula around �k as

ak (��k) = �k +
1

2
��k + �

�
~�k

�
��2k;

where ~�k 2 [�k; �k+1], and �
�
~�k

�
= 1

12

f 0(~�k)
f(~�k)

. Similarly, we can represent ak�1 around �k as

ak�1 (��k�1) = �k �
1

2
��k�1 + �

�
~�k�1

�
��2k�1;

where ~�k�1 2 [�k�1; �k]. Then, (22) becomes

��k�1 +��k + 2�
�
~�k

�
��2k � 2�

�
~�k�1

�
��2k�1 � 4b. (31)

77This argument can be reapplied to all boundary points �k; 0 < k < N � 1:
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Taking the length of the partition�s element ��k = � = cbb, where cb 2(2; 3) is such that cbbN = 1

for some integer N , transforms (31) into

(2cb � 4) b+ 2c2bb2
�
�
�
~�k

�
� �

�
~�k�1

��
� 0,

which is satis�ed for b # 0, since � (�) is bounded.

Because f (�) � f (�k) + � (� � �k), the sum�s element UkR in (30) is bounded from below by

UkR = �
�k+1Z
�k

(ak � �)2 f (�) d� = �
�k+1Z
�k

�
�k +

1

2
� + �

�
~�k

�
�2 � �

�2
f (�) d�

� �
�k+1Z
�k

�
�k +

1

2
� + �

�
~�k

�
�2 � �

�2
(f (�k) + � (� � �k)) d�

= � 1

12
f (�k)�

3 � 1

24
��4 �

�
�
�
~�k

�2
f (�k)�

1

6
��
�
~�k

��
�5 � 1

2
��
�
~�k

�2
�6

= � 1

12
f (�k)�

3 +O
�
�4
�
= � 1

12
f (�k) c

3
bb
3 +O

�
b4
�
;

where O (x) has an order x.

Kovac and Mylovanov (2006, Proposition 4) show that when b is small, the optimal mechanism is

delegation, restricted on an interval [�b; �b] � [b; 1 + b], where �b !
b!0

0 and �b !
b!0

1.78

The principal�s expected payo¤ in the optimal delegation is

UD =

�b�bZ
0

UR (�b; �) dF (�) +

�b�bZ
�b�b

UR (� + b; �) dF (�) +

1Z
�b�b

UR (�b; �) dF (�)

=

1Z
0

UR (� + b; �) dF (�) +

�b�bZ
0

UR (�b; �)� UR (� + b; �) dF (�)

+

1Z
�b�b

UR (�b; �)� UR (� + b; �) dF (�)

= �b2 +
�b�bZ
0

b2 � (�b � �)2 dF (�) +
1Z

�b�b

b2 � (�b � �)2 dF (�) :

78 In their setup, the expert�s bias is 0. Hence, to guarantee that the expert�s bias is positive relative to the
principal�s one, we put the principal�s bias �b. Proposition 4 states that if b ! 0, then the optimal mechanism
is delegation on the interval [�0; �0] � [0; 1], where �0 ! 0 and �0 ! 1. Shifting actions by b adjusts their
coordinates to our model. Hence, [�b; �b] � [b; 1 + b]. Then, lim

b!0
�b = lim

b!0
�0 = 0, and lim

b!0
�b = lim�0

b!0
= 1.
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Then, it follows that �b = b. Since � (�) = b2 � (� � �b)2 is increasing in � for � � �b, it leads to

� (�) < � (�b � b) = 0; if � < �b� b. Hence, ' (�b) =
�b�bR
0

b2� (�b � �)2 dF (�) < 0 = ' (b) ; �b > b. Thus,

UD = �b2 +
1Z

�b�b

b2 � (�b � �)2 dF (�) � �b2 + b2 (1 + b� �b) �f = �b2 (1� "b) ;

where "b = (1 + b� �b) �f is an upper bound on the gains from the restricted delegation relative to the

full delegation.

This results in UDR � �b2 (1� "b)
N�1P
k=0

(F (�k+1)� F (�k)) =
N�1P
k=0

UkD, where

UkD = �b2 (1� "b) (F (�k+1)� F (�k)) � �b2 (1� "b)
�
f (�k)�� ��2

�
� � (1� "b)

�
f (�k) cbb

3 � �c2bb4
�
= � (1� "b) f (�k) cbb3 +O

�
b4
�
;8k:

Since cb 2 (2; 3) and "b ! 0 as b # 0, it follows that

UkR � UkD � f (�k)
�
1� "b �

c2b
12

�
cbb

3 +O
�
b4
�
> 0;8k:

Finally, summing across all k = 0; :::; N � 1; results in UR > UDR .

Lemma 7 In the uniform-quadratic case, if the uniform partition of size N is incentive-compatible, then

it is payo¤ superior to all partitions of the same size.

Proof The expected utility of the principal in an incentive-compatible equilibrium is

UR = �
N�1P
k=0

�k+1Z
�k

(ak � �)2d� =
N�1P
k=0

P (!k) (UR (!k; !k)�Dk) =

= �
N�1P
k=0

P (!k)Dk = �
N�1P
k=0

��3k
12

=
N�1P
k=0

� (��k) , (32)

where ��k = �k+1 � �k > 0 and �(x) = � 1
12x

3.

Clearly, �(x) is strictly concave for x > 0 and
N�1P
k=0

��k = 1. For the uniform partition of size N , we

have ��0k =
1
N for all k. For any other partition of the same size, the Jensen�s inequality results in

UR =
N�1P
k=0

� (��k) < N�

�
1

N

N�1P
k=0

��k

�
= N�

�
1

N

�
=

N�1P
k=0

� (��0k) = U
0
R.
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Lemma 8 If a partition of size N is incentive-compatible, then the uniform partition of size N � 1 is

incentive-compatible as well.

Proof A su¢ cient condition for the uniform partition f�0kg
N�1
k=0 to be incentive-compatible is �

0
j+2 �

�0j =
j+2
N�1 �

j
N�1 =

2
N�1 � 4b. Since a partition f�kgNk=0 is incentive-compatible, we have �N = 1 �

�N�2+4b � ::: � �1+ N�1
2 4b � N�1

2 4b for odd N , and �N = 1 � �N�2+4b � ::: � �0+ N�1
2 4b = N�1

2 4b

for even N . In both cases, we obtain 2
N�1 � 4b.

Lemma 9 Among all partitions of an odd size N such that 1
2N < b � 1

2(N�1) , the highest expected payo¤

in the incentive-compatible equilibrium is reached under the partition with all binding IC constraints (6).

Proof We prove the lemma using Karamata�s inequality.79 Let sequences fxkgNk=1 and fykg
N
k=1 be

non-increasing, that is, x1 � x2 � ::: � xN and y1 � y2 � ::: � yN . If all the following conditions are

satis�ed: x1 � y1; x1+x2 � y1+y2; x1+x2+x3 � y1+y2+y3; :::; x1+x2+:::+xN�1 � y1+y2+:::+yN�1,

and x1+x2+ :::+xN = y1+y2+ :::+yN , then we say that fxkgNk=1 majorizes fykg
N
k=1. The Karamata�s

inequality states that if fxkgNk=1 majorizes fykg
N
k=1, and a function �(x) is continuous and concave, then

NP
k=1

� (xk) �
NP
k=1

� (yk).

From (32), the principal�s expected payo¤ in the incentive-compatible equilibrium is UR
�
f�kgNk=0

�
=

N�1P
k=0

� (��k), where ��k = �k+1 � �k > 0, and � (x) = � 1
12x

3, which is continuous and strictly concave

for x > 0.

Consider the partition fykgNk=0, for which the IC constraints are binding, hence, yk = 2kb for even

k, and yk = 1� 2b (N � k) for odd k. We need to show that if 1
2N < b � 1

2(N�1) , then UR
�
fykgNk=0

�
�

UR

�
f�kgNk=0

�
for any partition f�kgNk=0, which satis�es (6).

For the sequence fykgNk=0, we have �yk = yk+1 � yk = 1 � 2b (N � k � 1) � 2bk = 1 � 2b (N � 1)

for even k. The condition b < 1
2(N�1) implies �yk > 0. Similarly, we have �yk = 4b � �yk�1 =

2b (N + 1) � 1 for odd k, and b > 1
2N > 1

2(N+1) implies �yk > 0. In addition, for odd k, we obtain

�yk � �yk�1 = 2 (2bN � 1) > 0. Thus, by permuting f�ykgN�1k=0 , we obtain a non-increasing sequence

fYkgNk=1 = fY1; Y2; :::; YN�1
2
; YN+1

2
; :::; YNg, where Yk = 2b (N + 1) � 1 for k 2 S1 = 1; 2; :::; N�12 , and

Yk = 1� 2b (N � 1) for k 2 S2 = N+1
2 ; :::; N . Note that S1 has one element less than S2, since N is odd.

Also, (6) implies Yk + Yj = 4b, k 2 S1, j 2 S2.

Now, consider a sequence f�kgNk=0, which satis�es (6). We need to show that a non-increasing

permutation fXkgNk=1 of f��kg
N�1
k=0 majorizes fYkg

N
k=1.

First, for even k, we have �k � �k�2 + 4b � ::: � �0 +
k
24b = 2kb = yk. Similarly, for odd k,

we have �k � yk. Therefore, ��k = �k+1 � �k � yk+1 � yk = �yk for odd k and ��k � �yk for

79See, for example, Hardy, Littlewood and Polya (1988).
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even k. Thus, a non-increasing permutation fXkgNk=1 of f��kg
N�1
k=0 can be represented as fXkgNk=1 =

fX1; X2; :::; XN�1
2
; XN+1

2
; :::; XNg, where Xj � Yk for all j; k 2 S1, and Xj � Yk for all j; k 2 S2. This

means
P
k2S01

Xk �
P
k2S01

Yk for any S01 � S1 and
P
k2S02

Xk �
P
k2S02

Yk for any S02 � S2.

Also, the IC constraints require that for any k 2 ~S2 = S2 � fNg = N+1
2 ; :::; N � 1, there must

exist q (k) 2 S1 such that Xq(k) + Xk � 4b, which we de�ne as follows. Let iN be the index of the

smallest element ��iN of the sequence f��kg
N�1
k=0 , which implies ��iN = XN . Then, for all Xk, k 2 ~S2, if

Xk = ��i, then Xq(k) = ��i+1 for i < iN and Xq(k) = ��i�1 for i > iN . Note that k 6= k0 for k; k0 2 S2;

implies q (k) 6= q (k0).

Clearly, X1 � Y1; X1 +X2 � Y1+Y2; :::; X1+:::+XN�1
2
� Y1 + :::+ YN�1

2
. Also, we obtain

X1 + :::+XN�1
2
+XN+1

2
=

P
k2S1�q(N+1

2 )
Xk +Xq(N+1

2 )
+XN+1

2
�

P
k2S1�q(N+1

2 )
Xk + 4b

�
P

k2S1�q(N+1
2 )
Yk + 4b =

P
k2S1�q(N+1

2 )
Yk + Yq(N+1

2 )
+ YN+1

2
= Y1 + :::+ YN�1

2
+ YN+1

2
:

This argument can be reapplied iteratively for all k 2 ~S2. Since
NP
k=1

Xk =
NP
k=1

Yk = 1, this completes

the proof.

Proof of Lemma 5. We can rewrite N (b) as follows: if 1
2(c+1) < b <

1
2(c�1) for some odd c, then

N (b) = c, otherwise, for b = 1
2(c�1) , we have N (b) = c� 1. Then, by Lemma (8), the uniform partition

of size c� 1 = N (b)� 1 is incentive-compatible, and provides the expected payo¤

U c�1R = �
c�2P
k=0

(�k+1 � �k)3

12
= �

c�2P
k=0

1

12 (c� 1)3
= � 1

12 (c� 1)2
.

By Lemma 7, this partition is payo¤ superior to all partitions of the same size. In addition, it is superior

to partitions of a smaller size.

Now, consider two cases: 1
2(c+1) < b �

1
2c and

1
2c < b �

1
2(c�1) . In the �rst case, the uniform partition

of size c is incentive-compatible, thus, it is optimal and brings the expected payo¤ UR = � 1
12c2 . In the

second case, Lemma (9) implies that among all partitions of size c = N (b), the superior partition is that

with the binding IC constraints (6). It provides the expected payo¤

U cR = �
1

12

�
4b2
�
c2 � 1

�
(4bc� 3) + 1

�
. (33)

For b = 1
2c , we obtain U

c
R = � 1

12c2 , which is equal to the expected payo¤ with the uniform partition of

size c. For b = 1
2(c�1) , we obtain U

c
R = � 1

3(c�1)2 = �
1

12( c�12 )
2 , which is equal to the expected payo¤ with

the uniform partition of size c�1
2 .
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Notice that N (b) = c for all b 2
�
1
2c ;

1
2(c�1)

�
. Taking the derivative of (33) with respect to b gives

@

@b
U cR (b) = �2b

�
c2 � 1

�
(2bc� 1) ;

which is negative for b > 1
2c . Finally, U

c
R

�
1
2c

�
= � 1

12c2 > U
c�1
R = � 1

12(c�1)2 > �
1

3(c�1)2 = U
c
R

�
1

2(c�1)

�
implies that there exists a unique bc 2 ( 12c ;

1
2(c�1) ), such that U

c
R (bc) = U

c�1
R .

Now, we prove the following claim.

Claim 1 Any incentive-compatible information structure that generates a two-point type space is payo¤

inferior to some partitional information structure.

Proof For a two-point type space 
 = f!1; !2g, denote �1 (�) =
R

S(!1)

dF (sj�) the probability of

generating a mean value !1 by a state �. With a complement probability �2 (�) = 1� �1 (�), � generates

!2. Given �1 (�), the values of !1 and !2 are given by

!1 =

R
�

��1 (�) dF (�)R
�

�1 (�) dF (�)
and !2 =

R
�

��2 (�) dF (�)R
�

�2 (�) dF (�)
:

Denote by S1 (�) =
�R
0

�1 (t) dF (t)and S2 (�) =
�R
0

�2 (t) dF (t) = F (�) � S1 (�). Since �1 (t) 2 [0; 1],

S1 (�) is non-decreasing in �, S1 (0) = 0, and S1 (�) � F (�). Thus,

!1 =

R
�

��1 (�) dF (�)R
�

�1 (�) dF (�)
=

1R
0

��1 (�) dF (�)

S1 (1)
=

�S1 (�) j10 �
1R
0

S1 (�) d�

S1 (1)
= 1�

1R
0

S1 (�) d�

S1 (1)
:

Similarly,

!2 = 1�

1R
0

S2 (�) d�

S2 (1)
= 1�

1R
0

F (�)� S1 (�) d�

1� S1 (1)
: (34)
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Then,

!2 � !1 =

1R
0

S1 (�) d�

S1 (1)
�

1R
0

F (�)� S1 (�) d�

1� S1 (1)

=

(1� S1 (1))
1R
0

S1 (�) d� � S1 (1)
1R
0

F (�)� S1 (�) d�

S1 (1) (1� S1 (1))
(35)

=

1R
0

S1 (�) d� � S1 (1)
1R
0

F (�) d�

S1 (1) (1� S1 (1))
,

where S1 (1) 2(0; 1), since each type is generated by a positive mass of states.

The principal�s expected payo¤ in the incentive-compatible equilibrium is

U = �
2X
i=1

Z
�

�i (�) (� � !i)2 dF (�)

= �
2X
i=1

!2i

Z
�

�i (�) dF (�) + 2

2X
i=1

!i

Z
�

��i (�) dF (�)�
Z
�

2X
i=1

�i (�) �
2dF (�)

=

2X
i=1

!2i

Z
�

�i (�) dF (�)�
Z
�

�2dF (�) =

2X
i=1

!2i Si (1)�
Z
�

�2dF (�) :

Now, consider a two-element partition f0; �1; 1g which generates 
o = f!o1; !o2g. That is, �o1 (�) = 1,

if � � �1; and �o1 (�) = 0 otherwise. Choose �1, such that So1 (1) =
�1R
0

dF (�) = F (�1) = S1 (1). From (35),

we have

!o2 � !o1 =

1R
0

So1 (�) d� � S1 (1)
1R
0

F (�) d�

S1 (1) (1� S1 (1))

�

1R
0

S1 (�) d� � S1 (1)
1R
0

F (�) d�

S1 (1) (1� S1 (1))
= !2 � !; (36)

where the inequality holds, because So1 (�) = min fF (�) ; S1 (1)g � S1 (�). That is, (36) implies that 
o

is incentive-compatible. It provides the expected payo¤

Uo =
2X
i=1

(!oi )
2
Si (1)�

Z
�

�2dF (�) :

From (34), S2 (1) (!o2 � !2) =
1R
0

So1 (�) d� �
1R
0

S1 (�) d� � 0. Also, since
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2P
i=1

!oi Si (1) =
2P
i=1

!iSi (1) = E (�), and � (x) = x2 is convex, then the weighted Karamata�s inequality

implies
2P
i=1

(!oi )
2
Si (1) �

2P
i=1

(!i)
2
Si (1), or Uo � U .

Proof of Theorem 3. Informative communication is feasible, if b � 1
4 . Melumad and Shibano (1991)

prove that the optimal delegation set is the interval [0; 1�min fb; 1=2g]. For b � 1=2, the expert�s actions

are

aS (�) = min f� + b; 1� bg ; (37)

which results in

UDR (b) =

1Z
0

UR
�
aS (�) ; �

�
d� = �

1�2bZ
0

(� + b� �)2d� �
1Z

1�2b

(1� b� �)2d� = �b2 + 4
3
b3; (38)

and UDR (b) = � 1
12 ; b > 1=2.

From Lemma (8), a uniform partition of size N (b)�1 = b 14bc+d
1
4be�1 =2b

1
4bc is incentive-compatible

and provides the expected payo¤ UR (b) = � 1

12�(2b 1
4b c)

2 = � 1
48�b 1

4b c2
. Since b 14bc �

1
4b � 1, we have

UR (b) � � 1

48( 1
4b�1)

2 = � b2

3(1�4b)2 , and

UR (b)� UDR (b) � �
b2

3 (1� 4b)2
+ b2 � 4

3
b3 =

2

3
b2
1� 14b+ 40b2 � 32b3

(1� 4b)2
.

The function A (b) = 1�14b+40b2�32b3 has three roots. Only one of them, namely, b0 = 1
8

�
3�

p
5
�
' 1

11

is in the interval
�
0; 14
�
. Since A (0) = 1, it follows that UR�UDR > 0 for all b < b0. For b 2 [b0; 14 ], consider

three cases. If b 2 [ 16 ;
1
4 ], then the uniform partition of size 2 is incentive-compatible, and provides the

expected payo¤ UR = � 1
48 . Then, D (b) = UR (b) � UDR (b) = � 1

48 + b
2 � 4

3b
3. Since D0(b) > 0 for

b < 1
2 , and D

�
1
6

�
= 1

1296 , this implies UR (b) � U
D
R (b) > 0 for all b 2 [b0;

1
4 ]. For b 2 [ 18 ;

1
6 ), the

uniform three-element partition is incentive-compatible, and brings the expected payo¤ � 1
108 . Then,

D (b) = UR (b)�UDR (b) = � 1
108+b

2� 4
3b
3 > 0 for all b 2 [ 18 ;

1
6 ), since D

�
1
8

�
= 13

3456 . Finally, for b 2 [b0;
1
8 ),

the uniform 4-element partition is incentive-compatible, which results in the payo¤ UR = � 1
192 . Using

the same technique as for b � 1
6 , it gives D (b) > D

�
1
12

�
= 5

5184 , which completes the su¢ cient part of

the proof.

To prove the necessary part, we show that for b > 1
4 , there is no information structure that sustains

informative communication. First, there is no incentive-compatible information structure with more than

two types. By contradiction, if !1 < !2 < !3 2 
 � [0; 1], then (22) results in !3�!1 = !3�!2+!2�!1 �

4b > 1. In addition, (6) means that there is no incentive-compatible partition. Thus, by Claim 1, there

is no two-element incentive-compatible information structure, so that informational control provides the

uninformed payo¤� 1
12 , whereas the optimal delegation provides the payo¤max

�
� 1
12 ;�b

2 + 4
3b
3
	
� � 1

12 ,
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this completes the second part of the proof.

Proof of Theorem 4. For the symmetric preferences, the CS arbitrage condition and the IC

constraints (6) do not change. Given b � 1=4 and any informative CS equilibrium with an N�element

partition f��kgNk=1, the uniform partition of size N is incentive-compatible in the informational control

model. This is because

1 =
NX
k=1

��k =
NX
k=1

(��1 + 4b (k � 1)) � ��1N + 4bN � 4b

> 2bN + 2bN � 4b � 2bN ,

or ��k+1 +��k = 2 1N > 4b.

The principal�s expected payo¤ in the CS equilibrium is

UCSR =
NX
k=1

�k+1Z
�k

U

������k + �k+12
� �
����� d� = 2 NX

k=1

�k+1��k
2Z
0

U (t) dt =
NX
k=1

� (��k) ;

where �(x) = 2

x
2R
0

U (t) dt. Then, for x > 0, we have �0 (x) = U
�
x
2

�
, and �00 (x) = 1

2U
0 �x

2

�
< 0.

Informational control with the uniform partition of size N results in the payo¤

UR =

NX
k=1

�k+1Z
�k

U

������k + �k+12
� �
����� d� = 2 NX

k=1

�k+1��k
2Z
0

U (t) dt (39)

= 2N

1
2NZ
0

U (t) dt = N�

�
1

N

�
= N�

 
1

N

NX
k=1

��k

!
:

Since � (x) is strictly concave and ��k+1 = ��k + 4b > ��k, then Jensen�s inequality implies

�

�
1
N

NP
k=1

��k

�
> 1

N

NP
k=1

� (��k) or UR > UCSR .

Proof of Theorem 5. If the preferences are symmetric, then, by Proposition 3 in Alonso and

Matouschek (2007), the optimal delegation set is the same as for quadratic preferences, hence, it is the

interval [0; 1�min fb; 1=2g]. Similarly, the expert�s choice over actions is determined by (37). This results
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in the principal�s ex-ante payo¤

UDR =

1Z
0

U
���aS (�)� ���� d� = 1�2bZ

0

U (b) d� +

1Z
1�2b

U (j1� b� �j) d�

= U (b) (1� 2b) + 2
bZ
0

U (�) d�.

Now, consider the informational control. The partition of size N (b) = b 14bc + d
1
4be is incentive-

compatible. From Lemma 8, the uniform partition of size c = N (b) � 1 = 2b 14bc �
1
2b � 1 is incentive-

compatible also, and provides the principal�s expected payo¤

UR (c) = c

1
2cZ

� 1
2c

U (�) d� = 2c

1
2cZ
0

U (�) d� = E

�
U (�) j� < 1

2c

�
:

Since U (:) is decreasing, it follows that UR is increasing in c. Then,

UR (c) � UR
�
1

2b
� 1
�
= 2

�
1

2b
� 1
� 1

2( 1
2b

�1)Z
0

U (�) d� =
1� 2b
b

b
1�2bZ
0

U (�) d�:

Thus,
�
UR � UDR

�
b

1�2b �
b

1�2bR
0

U (�) d� � U (b) b � 2b
1�2b

bR
0

U (�) d� = � (b). Clearly, � (0) = 0. Taking a

derivative of � (b) with respect to b gives

�0 (b) = U

�
b

1� 2b

�
1

(1� 2b)2
� U 0 (b) b� U (b)� 2

(1� 2b)2

bZ
0

U (�) d� � 2b

1� 2bU (b) :

From the last expression, �0 (0) = 0. Taking the second derivative results in �00 (0) = �U 0 (0) � 0. If

U 0 (0) < 0, then by Taylor�s formula � (b) = � (0) + �0 (0) b + 1
2�

00
�
~b
�
b2 = 1

2�
00
�
~b
�
b2, where ~b 2 [0; b].

Since �00 (0) > 0 and �00 (b) is continuous, then there exists b� such that �00 (b) > 0, and hence, � (b) > 0

for all b 2 (0; b�). If U 0 (0) = 0, then �00 (0) = 0. Taking the third derivative gives �000 (0) = �2U 00 (0) > 0.

By Taylor�s formula, � (b) = � (0) + �0 (0) b + 1
2�

00 (0) b2 + 1
6�

000 (b�) b3 = 1
6�

000 (b�) b3, where b� 2 [0; b].

Since �000 (0) > 0 and �000 (b) is continuous, then � (b) > 0 for all b in the neighborhood of 0.

Proof of Lemma 6. If the expert receives a signal s, then she implements the action

a0s = argmax
a

�
Z
�

US (a; b; �) dF (�js) = !s + b.
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This results in the principal�s payo¤

UR (s) =

Z
�

UR (a
0
s; �) dF (�js) :

By Jensen�s inequality,

UR (s) = E� [UR (a
0
s; �) js] < UR (a0s; E [�js]) = UR (!s + b; !s) = �b2,

where the right part is the expected payo¤ of the principal in the case of the perfectly informed expert.

To complete the proof, it is su¢ cient to integrate over S according to a distribution F (s).

For the type space 
 and the delegation set A, the incentive-compatible choice aS (!k) of the expert�s

type !k =
�k+�k+1

2 over actions a 2 A is determined by (21). Without loss of generality, we can restrict

attention to the class of mechanisms, in which each expert�s type induces a separate action in the optimal

mechanism. To demonstrate this, suppose that a type ! 2 W mixes between actions a0 and a00 > a0, that

is, US (a00; bj!) = US (a
0; bj!), we assign 1 to the probability of inducing a lower action. Then, by (23),

it follows that US (a00; bj!)� US (a0; bj!) > 0. Reapplying this argument to all mixing types, we obtain a

pure-strategy action rule, which is payo¤ superior to the initial one. Thus, the cardinality of the optimal

delegation set does not exceed that of the type set. However, if the number of types strictly exceeds that

of actions, then the principal can collapse all types that induce identical actions, without a¤ecting the

expert�s incentives for the initial and the modi�ed types. Hence, in the payo¤ superior mechanism, the

number of types is equal to the number of actions.

Also, property (C) of Lemma 6 guarantees that induced actions are monotone in types, that is, the

delegation set A = fakgN�1k=0 = faS (!k)g
N�1
k=0 is a strictly increasing sequence. Thus, the expert of a type

!k prefers an action ak to all a 2Anfakg if and only if

ak + ak+1 � �k + �k+1 + 2b and ak + ak�1 � �k + �k+1 + 2b; 8k. (40)

Now, consider two sequences, f�kgN�1k=0 = fak � �kg
N�1
k=0 and f�kg

N�1
k=0 = f�k+1 � akg

N�1
k=0 . Note that

�k+1 � �k > 0 results in

�k + �k > 0, (41)

and ak+1 � ak > 0 results in

�k+1 + �k > 0. (42)
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In addition, the condition
N�1P
k=0

(�k+1 � �k) = 1 implies

N�1P
k=0

�k +
N�1P
k=0

�k = 1. (43)

Conversely, any sequences, that satisfy the properties above, determine the information structure f�kgN�1k=0

and the delegation set fakgN�1k=0 by �k+1 = �k+�k + �k and ak = �k +�k, where �0 = 0.

Then, we can rewrite (40) as

�k +�k+1 � 2b, and (44)

�k�1 + �k + 2b � 0. (45)

Similarly, the expected utility of the principal can be expressed as

UR = �
N�1P
k=0

�k+1R
�k

(ak � �)2d� = �
1

3

N�1P
k=0

h
(ak � �k)3 + (�k+1 � ak)3

i
= �1

3

N�1P
k=0

�
�3k + �

3
k

�
.

The optimal communication structure and the delegation set are the solution to the problem:

max
f�kgN�1

k=0 ;f�kg
N�1
k=0

UR

�
f�kgN�1k=0 ; f�kg

N�1
k=0

�
= max

f�kgN�1
k=0 ;f�kg

N�1
k=0

� 1
3

N�1P
k=0

�
�3k + �

3
k

�
, (46)

given constraints (41)�(45).

Proof of Lemma 7. We have already proved that each expert�s type induces a separate action. To

prove the other statements, we prove �rst several facts.

F1) Constraints (45) are never binding. By contradiction, let �k + �k+1 + 2b = 0 for some k. First,

�k+1 + �k > 0, �k+1 + �k+1 > 0 and �k + �k+1 = �2b < 0 imply that min f�k; �k+1g < 0 and �k+1 >

maxfj�kj ; j�k+1jg.

If �k+1 < 0, then put ~�k+1 = �k+1 � � and ~�k+1 = �k+1 + �, where, here and below, � # 0. This

results in the higher expected payo¤ to the principal, since

3�U = 3UR

�n
~�k

oN�1
k=0

;
n
~�k

oN�1
k=0

�
� 3UR

�
f�kgN�1k=0 ; f�kg

N�1
k=0

�
= � ~�3k+1 � ~�3k+1 +�3k+1 + �3k+1 = � (�k+1 � �)

3 � (�k+1 + �)3 +�3k+1 + �3k+1

= 3�
�
�2k+1 � �2k+1 � ��k+1 � ��k+1

�
> 0.

Since ~�k+1 > �k+1 and ~�k+1 + ~�k+1 =�k+1 +�k+1, the constraints (43) and (45) hold.
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Similarly, if �k < 0, then put ~�k+1 = �k+1 � � and ~�k = �k + �. This results in

3�U = � ~�3k+1 � ~�3k +�3k+1 + �3k = 3�
�
�2k+1 � �2k � ��k+1 � ��k

�
> 0.

Since ~�k > �k and ~�k + ~�k+1 =�k +�k+1, the constraints (43) and (45) hold.

To show that (44) is satis�ed also, notice �rst that �k +�k+1 > 2b. Otherwise, if �k +�k+1 = 2b,

then �k + �k+1 + �k + �k+1 = (�k +�k) + (�k+1 +�k+1) = 0, which contradicts (41). In addition,

�k+2 + �k+1 > 0, �k+1 + �k > 0, and �k + �k+1 + 2b = 0 lead to �k+2 +�k+1 + �k + �k+1 + 2b > 2b or

�k+2 +�k+1 > 2b. Thus, constraints (41), (42), and (45) are not a¤ected by ��perturbations in �k or

�k;8k.

F2) �k > 0;8k. By contradiction, let �k � 0 for some k. Then, �k + �k > 0 implies �k > j�kj. Put
~�k = �k + � and ~�k = �k � �. Then,

3�U = � ~�3k � ~�3k +�3k + �3k = 3�
�
�2k ��2k � ��k � ��k

�
> 0,

and (44) holds, because ~�k > �k.

F3) j�kj= �;8k. If there are �j and �k, such that j�j j > j�kj, then put ~�k = �k + � and ~�j = �j � �.

Then,

3�U = �~�3k � ~�3j + �3k + �3j = 3�
�
�2j � �2k � ��j � ��k

�
> 0.

Thus, we must have j�kj= �;8k.

F4) �k � 0;8k: First, if �k= �� < 0;8k, then consider the mechanism
n
~�k

oN�2
k=0

;
n
~�k

oN�2
k=0

, which

is constructed from the initial ones by eliminating the elements �s and �s, where �s = min
k
f�kg, and

putting ~�j = �j+�s + �s = �2�+�s for some j 6= s. Since �s + �s > 0, it follows that ~�j > �j .

This implies that (41) and (45) hold. Also, �s+1 � �s results in �s+1 + ~�s�1 � �s + �s�1 > 0 and

�s�1 +�s+1 � �s�1 +�s � 2b. Thus, (42) and (44) hold. Finally, (43) holds by construction. Then,

3�U = �~�3j +�3s + �3s + �3j = � (�2� +�s)
3
+�3s � 2�3 = 6� (�s + �)

2
> 0.

Hence, there is j, such that �j =� > 0. Moreover, if �k < 0 for some k, and there are types between j

and k, then there must be a type i, such that �i = ��i+1. If there are no other types, put i = min fj; kg.

If �i+1 > �i, consider the mechanism
n
~�k

oN�2
k=0

;
n
~�k

oN�2
k=0

, constructed from the initial ones by

eliminating the elements �i and �i, and putting ~�i+1 = �i+1+�i + �i = �i. Since �i + �i > 0, it follows

that ~�i+1 > �i+1. That is, (41) holds. Also, �i�1 + ~�i+1 + 2b = �i�1 + �i + 2b � 2b > 0, which means

that (45) holds. In addition, we have �i+2 + ~�i+1 = �i+2 + �i > 0;�i+1 + �i�1 > �i + �i�1 > 0, and

�i�1 +�i+1 > �i�1 +�i � 2b. Thus, (42) holds and (44) is not binding for i� 1. Finally, (43) holds by
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construction. Thus, we obtain

3�U = �~�3i+1 +�3i + �3i + �3i+1 = ��3i +�3i � �3 + �3 = 0.

If �i+1 = �, then �i + �i > 0 implies ~�i+1 > �, which contradicts the condition j�kj = �;8k. If

�i+1 = ��;�i = �, and �i 6= �, we again obtain ~�i+1 = �i 6= �. If �i = �, then �i+2 + �i+1 > 0

requires �i+2 > �, or �i+2 > �i. Then, the conditions �i+1 + �i � 2b, �i+1 + �i+2 � 2b, and

�i+2 > �i imply that �i+1 + �i+2 > 2b, or (44) is not binding for i + 1. Finally, modifying the

mechanism
n
~�k

oN�2
k=0

;
n
~�k

oN�2
k=0

by putting �0i+1 = �i+1�� and �0i+1 = ~�i+1+� = �i+�, and using the

fact that �i+1 > �i, we obtain the mechanism f�0kg
N�2
k=0 ; f�0kg

N�2
k=0 that satis�es all necessary constraints

and provides the higher payo¤ to the principal.

Similarly, if �i+1 � �i, consider the mechanism
n
~�k

oN�2
k=0

;
n
~�k

oN�2
k=0

, constructed from the initial

one by eliminating�i+1 and �i+1, and putting ~�i = �i+�i+1+�i+1 = �i+1, which results in�U = 0. Since

�i+�i > 0, it follows that ~�i+1 > �i+1. This implies that (41) holds. Also, ~�i+�i+2+2b =�i+1+�i+2+2b.

If �i+2 > 0, then �i+1+�i+2+2b > 0. If �i+2 = �� < 0 and �i+1 = ��, it follows from �i+1+�i+2+2b > 0

that �2�+2b > 0, or � < b. Hence, ~�i+�i+2+2b = �i+1��+2b > �i+1+b > 0. Finally, if �i+2 = �� < 0

and �i+1 = � > 0, it follows that �i = ��i+1 = �� and ~�i + �i+2 + 2b = �i+1 + �i + 2b > 2b. Thus, (45)

holds. In addition, we have �i+2+ ~�i = �i+2+�i+1 > 0 and �i+2+�i � �i+2+�i+1 � 2b. Thus, (42)

and (44) hold. Finally, (43) holds by construction. However, it contradicts (F4), since �i+1 + �i+1 > 0

and �i+1 + �i > 0 imply ~�i = �i+1 > �. Thus,
n
~�k

oN�2
k=0

;
n
~�k

oN�2
k=0

is feasible, but not optimal.

F5) � � �s = min
k
f�kg. If � > �s, then consider a modi�ed mechanism, such that ~�s = �s + � and

~�s = ~� � �, which results in a strictly higher expected payo¤.

F6) �k+2 = �k;8k. If, say, �k+2 > �k, then �k+2 + �k+1 > �k + �k+1 � 2b. Then, a modi�ed

mechanism, in which ~�k = �k+� and ~�k+2 = �k+2�� results in a strictly higher payo¤ to the principal.

Given these facts, ak 2 (�k; �k+1] because of (F2) and (F4). Also, � � �s implies �k+1�ak � ak��k;8k

or ak � �k+�k+1
2 .

To prove that there is no a type k, which induces her optimal action ak =
�k+�k+1

2 + b, we show that

ak <
�k+�k+1

2 +b;8k: By contradiction, let ak � �k+�k+1
2 +b for some k. It is equivalent to�k � �k+2b > �k,

which implies �k � 2b. This, along with �k > 0;8k, means �k�1 +�k > 2b and �k +�k+1 > 2b, that

is, (44) is not binding. Then, perturbing the initial mechanism by putting ~�k = �k � � and ~�k = �k + �,

we obtain

3�U = � ~�3k � ~�3k +�3k + �3k = � (�k � �)
3 � (�k + �)3 +�3k + �3k

= 3�
�
�2k � �2k � ��k � ��k

�
> 0.

Also, constraints (41)�(43) and (45) hold, since ~�k > �k and ~�k+1 + ~�k+1 =�k+1 +�k+1.
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To show that N � b 1b c+ 1, notice that (43), (F2) and (F4) lead to

2
N�1P
k=0

�k + 2
N�1P
k=0

�k = �1 +�N +
N�1X
k=1

(�k +�k+1) + 2�N = 2 � 2b (N � 1) ,

which gives the desired inequality. Finally, since �k+2 = �k;8k and �k = �;8k, it follows that ��k+2 =

��k;8k.

Proof of Theorem 6. First, show that a combination is better than the optimal delegation. By

Theorem 3, it is su¢ cient to show that there exists the information structure and the delegation set,

which provide the superior payo¤ for b 2
�
1
4 ;

1
2

�
.

In the case of the perfectly informed expert, the optimal delegation set [0; 1� b] provides the payo¤

UPIR = �b2 + 4
3b
3. Consider the two-element information structure and the delegation set, such that

�0 = �1 = b and �0 = �1 =
1
2 � b. The sequences f�0;�1g and f�0; �0g satisfy (41)�(45) and provide

the expected payo¤

UR = �
1

3

"
2b3 + 2

�
1� 2b
2

�3#
= �b2 + 1

2
b� 1

12
.

Then, UR � UPIR = 1
2b �

4
3b
3 � 1

12 =
1
12 (1� 2b)

�
8b2 + 4b� 1

�
. The last term is increasing in b and is

equal to 1
2 for b =

1
4 . Thus, UR � U

PI
R > 0 for b 2

�
1
4 ;

1
2

�
; which completes the �rst part of the proof.

Then, in any incentive-compatible communication equilibrium, we have �k= �k;8k, because of the

principal�s best response. Also, any non-uniform partition is not optimal, since �k is di¤erent for odd

and even k. Thus, it is su¢ cient to show that any uniform partition in the communication game is not

optimal.

Plugging ��k = 1
N ;8k; into (6) gives 2bN � 1. Among all uniform partitions that satisfy this

condition, the highest payo¤ UR = � 1
12N2 is reached for N = b 12bc. Then, 2b (N + 1) > 1, and N

is the same for all b 2 ( 1
2(N+1) ;

1
2N ]. Consider the mechanism with the information structure and the

delegation set of size N +1, such that �k = b; �k =
1�b(N+1)
N+1 ;8k. This mechanism satis�es (41)�(45), and

provides the expected payo¤

3UDR = � (N + 1) b3 � (N + 1)

�
1� b (N + 1)

N + 1

�3
=

1

(N + 1)
2 (1� 3b (N + 1) (1� b (N + 1))) .

This results in

3�U = 3
�
UDR � UR

�
=

1

4N2
� 1

(N + 1)
2 (1� 3b (N + 1) (1� b (N + 1))) .

For b = 1
2N , it follows that �U = 1

2
N�1

N2(N+1)2
> 0. Since �U 0b = � 3

N+1 (2b (N + 1)� 1) < 0, we have

�U > 0 for all b 2 ( 1
2(N+1) ;

1
2N ], which completes the proof.
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Appendix B

Proofs to Chapter 2.

Proof of Theorem 1.We prove the statement by induction. That is, we show that the expert cannot

bene�t by distorting information in any stage, conditional on the truth-telling at all previous stages.

1) For s = ~s, we have is = 1 and i� = 0 for � < s (the last condition is omitted for ~s = 1). The expert

infers that � 2 �s = [�s; �s�1], and the optimal action for her becomes aS (�s) = !s + b. Truth-telling in

the previous stages implies m� = 0, � < s. Then, if ms = 1, due to the principal�s beliefs, we have j = s,

and the induced action is as = !s. On the other hand, if ms = 0, then j > s, and any feasible action

aj = !j < as < !s+ b, which results in V (aj ; bj�s) < V (as; bj�s). Hence, m~s = 1. Also, for all s > ~s, we

have is = 1. Since m~s = 1, the induced action is a~s = !~s for any ms, s > ~s. Thus, the expert still cannot

bene�cially deviate from ms = 1, s > ~s.

2) For is = 0, we have i� = 0 for � < s. Given this information, the expert infers that � belongs to

Ms = [0; �s]. Assuming m� = 0 for � < s, the message ms = 1 induces the action as = !s =
�s+�s�1

2 , for

any m� , � > s. This brings the expected utility to the expert

V (as; bjMs) =
1

�s

�sZ
0

V (as; b; �) d� = �
1

�s

�sZ
0

�
�s + �s�1

2
� b� �

�2
d� (47)

= �
�
�2s
12
+
�2s�1
4

� b�s�1 + b2
�
.

Now, consider the expert�s expected payo¤ from sending fi�gT�=s. If s = T , then � is in MT = [0; �T ].

The message mT = 0 induces the action aT+1 = !T+1 =
�T
2 , and the message mT = 1 induces aT =

�T+�T�1
2 � �T+4b

2 = �T
2 +2b. Then, we obtain aT + aT+1 =

�T+�T�1
2 + �T

2 �
�T
2 +2b+

�T
2 = �T +2b. This

results in
�� �T
2 + b� aT+1

�� = �T
2 + b� aT+1 � aT �

�T
2 � b =

��aT � �T
2 � b

��, which implies that the action
aT+1 is closer to the expert�s optimal policy �T

2 + b than aT , or V (aT+1; bjMT ) �V (aT ; bjMT ).

For s < T , the expert�s expected payo¤ from playing fi�gT�=s is

V
�
a
�
fi�gT�=s

�
; bjMs

�
=
1

�s

TX
�=s

��Z
��+1

V (!�+1; b; �) d� = �
1

�s

TX
�=s

��3�
12

� b2,

where ��� = �� � ��+1 > 0. Then,

� 1

12�s

TX
�=s

��3� � b2 > �
1

12�s

 
TX
�=s

���

!3
� b2 = � �3s

12�s
� b2 = � �

2
s

12
� b2.
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In addition, �s�1 � 4b implies

� �
2
s

12
� b2 � V (as; bjMs) = �

�2s
12
� b2 � (�1)

�
�2s
12
+
�2s�1
4

� b�s�1 + b2
�

=
1

4
�s�1 (�s�1 � 4b) � 0,

which leads to V
�
a
�
fi�gT�=s

�
; bjMs

�
> � �2s

12 � b
2 �V (as; bjMs). Hence, the expert is worse o¤ by sending

ms = 1 instead of ms = 0, s = 1; :::; T .

To complete the proof, it easily follows that the described truthful strategy generates beliefs that � is

uniformly distributed on �j = [�j ; �j�1], and a
�
fmsgTs=1

�
= !j is the best-response of the principal.

Proof of Lemma 1. The �rst part of the proof, namely, for is = 1, is identical to that in the

Theorem 1.

For is = 0, distorting information by sending the message ms = 1 induces the action as = !s, which

results in the expert�s expected payo¤ V (as; bjMs), determined by (47). In contrast, sending fi�gT�=s in

communication stages if � � �T and inducing the action a (�) = min f� + b; �T g in stage T + 1 if � < �T
results in the expected payo¤

V
�
a
�
fi�gT�=s

�
; bjMs

�
=
1

�s

T�1X
�=s

��Z
��+1

V (!�+1; b; �) d� +
1

�s

�TZ
maxf�T�b;0g

V (�T ; b; �) d�.

Here, the �rst term is the expert�s payo¤ in communication stages and the second term is the payo¤ in

stage T + 1, if � 2[�T � b; �T ]. (If � < �T � b, the expert implements her best policy � + b, which gives

her zero utility). For �T > 5
3b > b, we can rewrite V

�
a
�
fi�gT�=s

�
; bjMs

�
as

V
�
a
�
fi�gT�=s

�
; bjMs

�
= � 1

�s

T�1X
�=s

��3�
12

� �s � �T
�s

b2 � 1

3�s
b3,

where ��� = �� � ��+1.

Then, �V = V
�
a
�
fi�gT�=s

�
; bjMs

�
� V (as; bjMs) can be written as

�V = � 1
�s

T�1X
�=s

��3�
12

� �s � �T
�s

b2 � 1

3�s
b3 +

�
�2s
12
+
�2s�1
4

� b�s�1 + b2
�
. (48)

As T !1 and max
s=1;:::;T

j�s � �s�1j ! 0, the �rst component in (48) disappears and �s�1 ! �s. Thus,

�V can be represented by

�V =
1

�s
D (�s; �T ) + " (T ) ,
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where lim
T!1

" (T ) = 0 and

D (�s; �T ) = � (�s � �T ) b2 �
1

3
b3 + �s

�
�2s
3
� b�s + b2

�
=
1

3
�3s � b�2s + b2�T �

1

3
b3.

For a given �T , D0
1 (�s; �T ) = �s (�s � 2b). For �s > 0, we have D0

1 (�s; �T ) ? 0 conditional on �s ? 2b,
which implies that D (�s; �T ) reaches its minimum at �s = 2b. Then, D (2b; �T ) = 1

3b
2 (3�T � 5b), which

is positive for �T > 5
3b.

Also, given the truth-telling sender�s strategy, a
�
fmsgTs=1

�
= !j , where j = min fs : ms = 1g is the

best-response of the principal.

The principal�s expected payo¤ in the constructed equilibrium is

UD (�T ) =

�T�bZ
0

U (� + b; �) d� +

�TZ
�T�b

U (�T ; �) d� +

TX
�=1

���1Z
��

U (!� ; �) d�

= � (�T � b) b2 �
1

3
b3 �

TX
�=1

��3��1
12

.

Thus, the principal�s limiting expected utility for �T = 5
3b is U

lim
D = �b3.
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4 Appendix C

Proofs to Chapter 3.

In the fully revealing market, the FOC for the seller�s problem with respect to price is

	(x; p) = �01 (x; p) = P (x; p) + xP
0 (x; p) = 0.

From (17), we obtain

	(x; p) = GY (p) (1�G (x)� xg (x)) (49)

+

1Z
p

1�G (y � p+ x)� xg (y � p+ x) dGY (y)

=

1Z
0

1�G (max fx; y � p+ xg)� xg (max fx; y � p+ xg) dGY (y)

=

1Z
0

(1�G (max fx; y � p+ xg)) (1� x� (max fx; y � p+ xg)) dGY (y) :

In the symmetric equilibrium, x = p, which implies

	(p; p) = 0. (50)

Then, we can obtain the following results.

Claim 1 . 	(0; p) > 0, 8p.

Proof

	(0; p) = GY (p) +

1Z
p

(1�G (y � p)) dGY (y)

= GY (p) + 1�GY (p)�
1Z
p

G (y � p) dGY (y)

= 1�
1Z
p

G (y � p) dGY (y) > 0:

Claim 2 . 	(x; p) < 0 for x > pM , 8p.
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Proof Notice that �0 (x) � 0 implies

1� x� (max fx; y � p+ xg) < 1� pM� (pM ) = 0; x > pM ;

which results in

	(x; p) =

1Z
0

(1�G (max fx; y � p+ xg)) (1� x� (max fx; y � p+ xg)) dGY (y) < 0; x > pM .

Claim 3 . There exists at least one pSN < pM , such that 	
�
pSN ; p

S
N

�
= 0.

Proof First,

	(0; 0) =

1Z
0

(1�G (y)) dGY (y) = (1�G (y))GY (y) j10 +
1Z
0

GY (y) dG (y) (51)

=

1Z
0

GN�1 (y) dG (y) =
GN (y) j10
N

=
1

N
> 0.

Second, 	(pM ; pM ) < 0 by Claim 2, which gives the desired result.

Claim 4 . If �0 (x) � 0;8x, then pSN is unique.

Proof We prove the statement for a weaker condition, namely, for an arbitrary distribution F (x)

instead of GY (x), where F (x) has a positive density f (x) and is supported on a bounded interval.

First, �0 (x) =
�

g(x)
1�G(x)

�0
= g0(x)(1�G(x))+g(x)2

(1�G(x))2 � 0 gives

g0 (x)

g (x)
x+ � (x)x � 0, for x > 0: (52)

Now, rewrite 	(p; p) as

	(p; p) = F (p) (1�G (p)� pg (p)) +
1Z
p

(1�G (y)� pg (y)) dF (y)

= F (p) (1�G (p)� pg (p)) +
1Z
p

(1�G (y)� yg (y) + yg (y)� pg (y)) dF (y) (53)

= F (p) (1�G (p)� pg (p)) +
1Z
p

(1�G (y)� yg (y)) dF (y) +
1Z
p

(y � p) g (y) dF (y) .
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Then,

d

dp
	(p; p) = f (p) (1�G (p)� pg (p))� F (p) (g (p) + pg0 (p) + g (p))

� f (p) (1�G (p)� yg (p))�
1Z
p

g (y) dF (y)

= �F (p) g (p)� F (p) g (p)
�
p
g0 (p)

g (p)
+ 1

�
�

1Z
p

g (y) dF (y) . (54)

Since pSN � pM , we have pSN�
�
pSN
�
� pM� (pM ) = 1. Then,

g0
�
pSN
�

g
�
pSN
� pSN + 1 � g0

�
pSN
�

g
�
pSN
� pSN + � �pSN� pSN � 0

means that d
dp	

�
pSN ; p

S
N

�
< 0. That is, the function 	(p; p) can intersect the line p = 0 only from above.

Claim 5 . If �0 (x) � 0;8x, then x � pM for any x, such that 	(x; p) = 0;8p.

Proof This is a corollary of Claim 2. Since 	(x; p) < 0 for all x > pM , 8p, the result follows

immediately.

Proof of Lemma 2. Note �rst that by Claim 4, there is a unique symmetric price pSN , which satis�es

the necessary condition (50). To prove that pSN is the best response for each seller in the fully revealing

market, it is su¢ cient to show that P (x; p) is log-concave for x > 0, because in this case, the function

	(x; p) = P (x; p)x

�
1

x
+
P 0 (x; p)

P (x; p)

�

intersects the x�axis only once.

To prove this claim, we employ Prékopa�s theorem (Prékopa, 1973) about the preservation of the

log-concavity by integration. In particular, let f(x; y) be a function of n + m variables, where x is an

n�component and y is an m�component vector. Suppose that f is log-concave in Rn+m and let A be a

convex subset of Rm. Then, the function h (x) =
R
A
f (x; y) dy is log-concave in Rn.
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From (17), P (x; p) can be written as

P (x; p) =

1Z
0

1�G (max fx; y � p+ xg) dGY (y)

=

1Z
0

min f1�G (x) ; 1�G (y � p+ x)g gY (y) dy,

where gY (y) = G0Y (y) = (N � 1)GN�2 (y) g (y). Note that g (y) is log-concave by assumption and G (y)

is log-concave by Lemma 1. Thus, gY (y) is log-concave, since it is a product of two log-concave functions.

In addition, the IHR property of G (:) implies that 1 � G (x) and 1 � G (y � p+ x) are log-concave

in (x; y). Finally, the minimum of log-concave functions is log-concave. This implies that f (x; y) =

min f1�G (x) ; 1�G (y � p+ x)g gY (y) is log-concave in (x; y) and so is P (x; p) as a function of x.

To characterize the asymptotic properties of pSN , note �rst that from (53), we can rewrite 	(p; p) as

	(p; p) = L1 (p) + L2 (p) + L3 (p) ,

where

L1 (p) = G
N�1 (p) (1�G (p)� pg (p)) ;

L2 (p) =

1Z
p

1�G (y) dGN�1 (y) = 1�GN�1 (p)�GN (y) j1p +
1Z
p

GN�1 (y) dG (y)

= GN (p)�GN�1 (p) + 1�G
N (p)

N
;

L3 (p) = �p
1Z
p

g (y) dGN�1 (y) = �p (N � 1)
1Z
p

g (y)
2
GN�2 (y) dy:

Combining all components of 	(p; p), we obtain

	(p; p) =
1�GN (p)

N
� p� (p) ,

where

� (p) = g (p)GN�1 (p) + (N � 1)
1Z
p

g2 (y)GN�2 (y) dy.

Then, 	
�
pSN ; p

S
N

�
= 0, that is, pSN is a solution to the equation

pSN =
1�GN

�
pSN
�

N

1

�
�
pSN
� .
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Note that � (p) can be written as

� (p) =

1Z
0

g (max fy; pg) dGY (y) .

Then, we have � (p) � ginf = inf
!2[0;1]

g (!) and

pSN �
1�GN

�
pSN
�

Nginf
<

1

Nginf
.

By the same argument, � (p) � gsup = sup
!2[0;1]

g (!). Also, for any b 2 (0; 1), we have 1�GN
�
pSN
�
> 1�b

for su¢ ciently large N . This leads to

pSN >
1� b
Ngsup

,

which completes the proof.

Proof of Lemma 3. By contradiction, suppose that there is a fully revealing symmetric equilibrium,

in which the sellers charge the price p. By Claim 5, we have p � pM . The pro�t of each seller is

� (p; p) = P (p; p) p =
1�GN (p)

N
p <

1

N
p.

First, consider the case pM � ve. If, say, seller 1 does not reveal information and charges the price x1 � ve,

his pro�ts become

�d = GY (v
e � x1 + p)x1, (55)

since he sells the product, if Y � p < ve � x1, or if Y < ve � x1 + p. For x1 = p < pM � ve, his expected

pro�t becomes �d = GY (ve) p. Then, GY (ve) = GN�1 (ve) � 1
N implies

�d = GY (v
e) p � 1

N
p > � (p; p) .

Second, if pM > ve, the seller cannot charge the price x1 = p only if p > ve. Then, for x1 = ve, his

expected pro�t is

�d = GN�1 (p) ve > GN�1 (ve) ve � 1

N
pM >

1

N
p > � (p; p) ,

which means that the seller can bene�cially deviate from the revealing policy.

Proof of Lemma 4. If g (:) is symmetric on the bounded support [0; 1], then ve = vmed = 1=2,

where vmed is the median value vmed = G�1 (1=2). Thus, it is su¢ cient to show that pM � ve.

Log-concavity of g (v) implies that it is unimodal, so that it reaches its supremum gsup = sup
x
g (x) at
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1=2. In addition, gsup = sup
x
g (x) � 1. Otherwise, we have the contradiction:

1R
0

g (v) dv �
1R
0

gsupdv < 1.

The FOC function for the monopoly�s pro�t �M (x) = (1�G (x))x is

	M (x) = �
0
M (x) = 1�G (x)� xg (x) = (1�G (x)) (1� x� (x)) ,

which intersects the x�axis exactly once, because � (x) = x� (x) is strictly increasing, � (0) = 0, and

lim
x!1

x� (x) =1. Then,

	M (v
e) = 1�G (ve)� veg (ve) = 1

2
� 1
2
gsup � 1

2
� 1
2
= 0,

which implies that pM � ve.

To proceed to other results, we need to prove the following lemma �rst.

Lemma 10 Consider a continuous function ' (v; x) ; (x; v) 2 [0; 1]2 and a distribution function G (v),

such that:

1) there exists an interval [a; b] � [0; 1], such that, for any x; ' (v; x) > 0, for v 2 (a; b); and

' (v; x) � 0, for v 2 [b; 1], and

2) G (v) has a continuous density, which is positive on [a; b].

Then there exists �N , such that
1R
0

' (v; x) dGN (v) > 0 for all x and N � �N .

Proof of Lemma 10. Note that q (v; x) = ' (v; x) g (v) is continuous, that is, there exists q1 =

� max
x2[0;1], v2[0;a]

jq (v; x)j.

Take an interval [c1; c2], such that a < c1 < c2 < b and let q2 = min
x2[0;1], v2[c1;c2]

q (v; x). Clearly, q2 > 0.

Now, the integral can be written as

1Z
0

' (v; x) dGN (v) =

1Z
0

' (v; x) g (v)GN�1 (v) dv = N

1Z
0

q (v; x)GN�1 (v) dv

= N

aZ
0

q (v; x)GN�1 (v) dv +N

1Z
a

q (v; x)GN�1 (v) dv:

Then,

I1 (N) = q1G
N�1 (a) a <

aZ
0

q1G
N�1 (v) dv �

aZ
0

q (v; x)GN�1 (v) dv.

Similarly,

I2 (N) = q2G
N�1 (c1) (c2 � c1) <

c2Z
c1

q2G
N�1 (v) dv �

1Z
a

q (v; x)GN�1 (v) dv
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Thus, as N increases, I1 (N) converges to zero at a faster rate than I2 (N). Since I2 (N) > 0, this

implies I1 (N) + I2 (N) > 0 for su¢ ciently large N , which completes the proof.

Proof of Theorem 1.

Consider the general problem of seller 1, when N �1 competitors reveal information and charge price

pSN . The seller maximizes the pro�t function

R (x; �) = x

1Z
0

1�G�
�
max

�
x; y � pSN + x

	�
dGN�1 (y)

with respect to the quality of information � and price x.

Now, we will prove that for an arbitrary � > 0, the optimal price x�N ! 0 as N !1. To prove it, it

is su¢ cient to show that for a �xed x > 0, 	x (x; �) = @R (x; �) =@x < 0 for a su¢ ciently large N .

First, the expression for 	x (x; �) is

	x (x; �) =

1Z
0

1�G�
�
max

�
x; y � pSN + x

	�
� xg�

�
max

�
x; y � pSN + x

	�
dGN�1 (y) .

Second, let x�M be the price of the monopolist, who faces the demand function 1�G� (:). Since G� (x)

has the increasing hazard rate, then, for x � x�M and y > pSN , we obtain

1�G�
�
max

�
x; y � pSN + x

	�
� xg�

�
max

�
x; y � pSN + x

	�
< 1�G� (x�M )� x

�
Mg� (x

�
M ) = 0.

For x � x�M and y � pSN , we have max
�
x; y � pSN + x

	
= x and

1�G� (x)� xg� (x) � 1�G� (x�M )� x
�
Mg� (x

�
M ) = 0.

Hence, 	x (x; �) < 0 for x � x�M .

Consider the function

'1 (y; x) = �
�
1�G�

�
max

�
x; y � pSN + x

	�
� xg�

�
max

�
x; y � pSN + x

	��
,

which is continuous in y.

If x < x�M , then notice �rst that p
S
N ! 0 as N increases. That is, there exist a su¢ ciently small � > 0

and a su¢ ciently large N1, such that y� pSN + x > x
�
M if y > x�M � x+ � and N > N1. This implies that

'1 (y; x) > 0 for y 2 (x�M � x+ �; �!� � x) and '1 (y; x) � 0 for y 2 [�!� � x; �!�]. Thus, all conditions of
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Lemma 10 are satis�ed that results in �	x (x; �) > 0.80

Now, consider the FOC function with respect to �:

	� (x; �) =
@R (x; �)

@�
= �x

1Z
0

@

@�
G�
�
max

�
x; y � pSN + x

	�
dGN�1 (y) :

Notice that both the optimal price x�N and p
S
N tend to zero as N grows. Also, we have !0� < �!�; � > 0.

Otherwise, if !0� = �!�, then @G�(!)
@� < 0 for all ! < �!�. That is, G�0 (!) > G� (!) if �0 < �, which

contradicts (14).

Thus, for an arbitrarily small " > 0, there is N2, such that y � pSN + x
�
N > !0� for y > !0� + " and

N � N2. This implies that for x � x�N2
, we have � @

@�G�
�
y � pSN + x

�
> 0, y 2

�
!0� + "; �!

� � "
�
and

� @
@�G�

�
y � pSN + x

�
� 0, y 2 [�!� � "; �!�]. Applying Lemma 10 results in 	� (x�N ; �) > 0, N � N2, which

means that releasing incomplete information reduces the seller�s pro�t.

Finally, R (x; �) is continuous in (x; �) that rules out � = 0 from the set of optimal solutions to the

seller�s problem. Thus, since no seller can deviate when all competitors reveal information completely,

and x = pSN is the best response to the market price pSN , it follows that the fully revealing market with

the symmetric price pSN is an equilibrium.

To see that the identi�ed equilibrium is unique in the class of symmetric equilibria as N !1, notice

that all proofs above still hold if the distribution G (y) is replaced by G� (y) as soon as G� (y) has a

positive density on a non-degenerated interval. Thus, for any other symmetric strategy of competitors�
�pSN ; ��N

�
, where ��N > 0, the partial derivatives of the pro�t function are represented as integrals over

GN�1�� (y). That is, even though other sellers do not reveal information completely, one seller can strictly

bene�t by fully revealing information. In addition, ��N = 0 cannot be an equilibrium, since it implies

that all products are ex-ante identical, i.e., both the equilibrium price level �pSN and pro�ts must be zero.

This is clearly not an equilibrium, since each seller can guarantee positive expected pro�ts by revealing

information completely and charging a su¢ ciently small price ".

Proof of Lemma 5. By Theorem 1, as the number of sellers N increases, it results in full information

disclosure. Thus, the market ine¢ ciency is determined by

MEN =
SWN � TSN

SWN
=

1R
0

vdGN (v)�
1R
pSN

vdGN (v)

1R
0

vdGN (v)

=

pSNR
0

vdGN (v)

1R
0

vdGN (v)

;

where TSN =
1R
pSN

vdGN (v) is the total surplus, and SWN =
1R
0

vdGN (v) is the social welfare. Then, we

80Since x is �xed, we consider the function ' (v; x) in Lemma 10 as a function of a single variable.
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have
pSNZ
0

vdGN (v) = pSNG
N
�
pSN
�
�

pSNZ
0

GN (v) dv < pSNG
N
�
pSN
�
;

and
1Z
0

vdGN (v) � ve.

Expanding G (v) by Taylor�s formula results in

G
�
pSN
�
= g0v +

g0 (~pN )

2

�
pSN
�2 � g0pSN + gs2 �pSN�2 ,

where g0 = G (0), ~pN 2
�
0; pSN

�
; and gs = sup jg0 (v)j. Thus,

MEN =
pSN
�
g0p

S
N

�N
ve

+O
��
pSN
�2�

,

where O(x) has an order x. Since pSN 2
�

1�b
Ngsup

; 1
Nginf

�
, it follows that MEN converges to zero at the rate�

1
N

�N
.

112



Maxim Ivanov

ADDRESS: Department of Economics

608 Kern Graduate Building

Pennsylvania State University

University Park, PA 16802

Phone:   (319) 335-0848 (Office)

(319) 400-1412 (Cell)

E-mail: mgi103@psu.edu    

Web: www.econ.psu.edu/~mgi103  

Curriculum Vitae

EDUCATION Ph.D., Economics, Penn State University, expected August 2008

M.A., Economics, New Economic School, Russia, 2002

M.S. (cum laude), Electrical Engineering, Tomsk University of Control Systems 
and Radio Electronics (TUCSR), Russia, 2000

CURRENT 
POSITION

Visiting  Lecturer,  Economics  Department,  Tippie  College  of  Business, 
University of Iowa (2007|present)

CITIZENSHIP Russia (F1 visa)

PH.D. THESIS “Essays on Theory of Information”
Thesis Advisors:  Professors Kalyan Chatterjee and Vijay Krishna 

FIELDS Primary: Microeconomics, Game Theory

Secondary: Industrial Organization

PAPERS “Informational  Control  and  Organizational  Design  (2007),”  revised  and 
resubmitted to Review of Economic Studies

“Dynamic Information Revelation in Cheap Talk” (2006)

“Information Disclosure in Competitive Markets” (2007)

“Communication through a Biased Mediator  (in progress)”

TEACHING 
EXPERIENCE

Instructor: Intermediate Macroeconomics, Money and Banking

Teaching Assistant: Principles of Micro and Macroeconomics, International 
Finance  and  Open  Economy  Macroeconomics,  Economics  of  Transition, 
Intermediate Macroeconomics

RESEARCH 
EXPERIENCE

Research Assistant, Summer 2005, 2006 for Vijay Krishna

PRESENTATIONS

& OTHER 
PROFESSIONAL 
ACTIVITIES

2008:  Northwestern  University,  Ohio  State  University,  Carnegie  Mellon 
University, McMaster  University, University of Iowa

2007: University of Western Ontario, University of Iowa

2006: North  American  Summer  Meeting  of  the  Econometric  Society, 
Minneapolis;  17th International  Conference  on Game Theory,  Stony  Brook; 
Cornell|Penn  State  Workshop;  Royal  Economic  Society  Conference, 
Nottingham

REFERENCE 
EXPERIENCE

Journal of Economic Theory

HONORS AND 
FELLOWSHIPS

Liberal Arts College Dissertation Support Grant, Penn State University, 2006; 
Full Scholarship, New Economic School, 2000-2002; Full Scholarship, TUCSR, 

1994-2000; Research Support Award, TUCSR, 1998-1999

REFERENCES Professor Kalyan Chatterjee, Penn State University (kchatterjee@psu.edu) 

Professor Edward Green, Penn State University (eug2@psu.edu)

Professor Vijay Krishna, Penn State University (vkrishna@psu.edu)

mailto:mgi103@psu.edu
mailto:vkrishna@psu.edu
mailto:eug2@psu.edu
mailto:kchatterjee@psu.edu
http://www.econ.psu.edu/~mgi103

	Maxim Ivanov - CV.pdf
	June 2008
	ADDRESS:
	Department of Economics

	608 Kern Graduate Building
	Phone:   (319) 335-0848 (Office)

	(319) 400-1412 (Cell)
	Curriculum Vitae
	Ph.D., Economics, Penn State University, expected August 2008
	M.A., Economics, New Economic School, Russia, 2002
	M.S. (cum laude), Electrical Engineering, Tomsk University of Control Systems and Radio Electronics (TUCSR), Russia, 2000
	Thesis Abstract

	Maxim Ivanov - CV.pdf
	ADDRESS:
	Department of Economics
	608 Kern Graduate Building
	Phone:   (319) 335-0848 (Office)

	(319) 400-1412 (Cell)
	Curriculum Vitae
	Ph.D., Economics, Penn State University, expected August 2008
	M.A., Economics, New Economic School, Russia, 2002
	M.S. (cum laude), Electrical Engineering, Tomsk University of Control Systems and Radio Electronics (TUCSR), Russia, 2000
	Thesis Abstract




