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Abstract

Nanotechnology is a rapidly growing area of research. The ability to manipu-
late materials at the nanometer scale through lithographic techniques such as
electron-beam lithography has made it possible to generate higher density inte-
grated circuits. Nanoscale wires, known as nanowires, have also been created
using template-assisted synthesis and vapor-liquid-solid growth techniques. In or-
der to design devices using these nanoscale structures, methods for analyzing these
structures need to be developed. The methods developed for device analysis must
also incorporate the behavior of materials at the infrared and optical frequencies.
This thesis will develop models for analyzing nanowires in the infrared and optical
spectrum by examining scattering from semiconducting nanowires and developing
surface impedance models for inclusion to the method of moments.

The dispersive nature of metals and semiconductors at infrared and optical wave-
lengths is introduced into our modeling approaches using oscillator models. The
oscillator model that was used in this work is the Lorentz-Drude oscillator model.
The Lorentz-Drude oscillator model was used to represent the dielectric properties
of metals such as gold and silver in the infrared and optical spectrum. Oscillator
models do not exist for all materials. Particle swarm optimization was applied to
parameter fit a Lorentzian oscillator model for Gallium Phosphide material. The
particle swarm optimization approach is general so that other materials may be
parameterized to the Lorentzian model and incorporated into time-domain mod-
eling methods such as the finite-difference time-domain (FDTD).

Lord Rayleigh first investigated scattering from infinitely long dielectric cylinders
in 1918. The analytical solution technique developed by Rayleigh was used to
determine the electric fields inside and outside a long nanowire. A numeric code
was developed to calculate the electric field magnitude inside and outside the wire
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for a Gallium Phosphide nanowire excited at normal incidence by a transverse
magnetic and transverse electric wave. The intensity integral was introduced for
cylindrical geometry and applied to lossless and lossy dielectric nanowires for both
transverse magnetic and transverse electric polarizations. It was determined that
the transverse magnetic polarization is dominant for diameters below 125 nm.
The polarization dependence at normal incidence was also investigated by deriv-
ing the internal electric intensity as a function the transverse magnetic and electric
polarization intensities and the angle theta. For diameters where the transverse
magnetic intensity dominates, it was determined the intensity has a dipole-like
pattern. These properties agree with experimental data and discrete-dipole ap-
proximation calculations.

Surface impedance models are of great utility in electromagnetics because they
provide an efficient method for representing the material and geometrical proper-
ties of a structure without the need for fine meshing. Surface impedance models for
nanoslabs, nanowires and tubular nanowires were studied in this work. A surface
impedance for a variable thickness slab surrounded by free-space was derived. It
was shown that for slabs of large thickness, the surface impedance agrees with the
surface impedance of a half-space. A vanishingly small slab was shown to have the
surface impedance of free-space as expected. The surface impedance expression
for a nanowire was examined and it was shown that for larger radii nanowires the
surface impedance approaches that of a half-space. For the tubular nanowire, the
surface impedance was derived using modal analysis and compared to an expres-
sion developed by King. It was determined that King’s expression yields different
results that predict different surface impedance values for small thickness tubular
nanowires. Finally, a method of moments formulation for thin-wire dipole anten-
nas was modified to incorporate a surface impedance model. Results comparing a
perfectly conducting, gold, and silver nano-dipole show the importance of incor-
porating material properties at infrared and optical frequencies into the electro-
magnetic analysis of nanostructures. By developing modeling tools for nanowires,
devices may be designed for optical detection and bio-sensing.
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Chapter 1
Introduction

1.1 Motivation

Current state-of-the-art fabrication techniques have made it possible to fabricate

objects of diminishing size. These structures have enabled higher density inte-

grated circuits to be designed. Applying these fabrication techniques to nanoscale

metallic patches, nanowires and nanotubes, novel electromagnetic devices can be

envisioned. In order to design novel infrared and optical devices, new modeling

methods will have to be developed so that the properties of these structures can be

understood. In the development of models for electromagnetic analysis of nanos-

tructures, it is necessary to account for the behavior of materials at infrared and

optical frequencies. We will discuss oscillator models for describing the dielec-

tric properties of metals and semiconductors in the infrared and optical spectrum.

These models will be applied to the study of nanoscale wires known as nanowires.

Based on the solutions to the scattering from an infinitely long dielectric cylin-

der, the electric fields inside a nanowire will be calculated. The electromagnetic

intensity inside the wire will be defined and calculated to show the diameter and

polarization dependence of semiconducting nanowires. Surface impedance mod-

els for nanoslabs, nanowires and tubular nanowires will be derived for nanoslabs,

nanowires and tubular nanowires. These models will allow for efficient computa-

tion of nanoscale electromagnetic structures through the use of method of moment

calculations. By exploring these analysis techniques and developing models for

nanoscale devices, new devices such as optical antennas and infrared frequency se-
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lective surfaces (FSS) can be designed and optimized for applications in biosensing,

energy harvesting and infrared/optical metamaterials.

1.2 Literature Review

We will begin our development of models for studying nanowires by providing an

overview of recent work in the area of studying nanoscale electromagnetic devices.

Current research of nanoscale structures is focused on high-aspect ratio structures

such as nanoslabs, nanowires and nanotubes. Several methods have been developed

to realize nanostructures during the past 10 years. Closely spaced metallic patches

(nanoslabs), have also been fabricated at the micron and nanometer scale using

contact lithography and electron-beam lithography [1, 2]. Synthesis of large arrays

of carbon nanotubes have been demonstrated using a plasma-enhanced chemical

vapor deposition (PECVD) process [3]. Growth of nanowires is performed using

either vapor-liquid-solid (VLS) synthesis or template-assisted synthesis. The VLS

synthesis technique is mainly used for semiconducting wires while the template-

based synthesis technique may be used for metal nanowires [4, 5].

Optical properties of multi-walled carbon nanotubes (MWCNTs) were studied in

[6]. Wang et. al. measured the reflected light intensity from random arrays of

aligned carbon nanotubes. Based on their experimental measurements, a polar-

ization effect and length effect were demonstrated. The polarization effect demon-

strated shows that reflected light was suppressed when the incident electric field

polarization was perpendicular to the nanotube axis while the length of the nan-

otubes impacted the wavelength at which the reflected light was maximum. Based

on these experimental observations, Wang concluded that the random arrays of

carbon nanotubes have an analogous behavior to that of conventional dipole anten-

nas operating at radio frequencies [6]. The antenna properties of carbon nanotubes

have been studied in more detail by Hanson [7, 8, 9, 10]. In [7], the input impedance

of a single-wall carbon nanotube (SWNT) is determined and the efficiency calcu-

lated. Hanson utilizes the moment method and a surface impedance model for the

nanotube dipole. Carbon nanotube dipoles of lengths L = 1 µm, 10 µm and 1

mm with dipole radius a = 2.712 nm were simulated at microwave and infrared
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frequencies. Based on Hanson’s calculations, the efficiency er is on the order of

10−5 to 10−6 [7]. Similar results for input impedance and efficiency were found by

Burke et. al. Burke and co-authors used a transmission line model was developed

for a carbon nanotube dipole where the resistance, inductance and capacitance

along the line were determined by the geometry and nanotube material parame-

ters. The effect of objects near nanotube antennas is also of practical interest [11].

In [10], a resonant nanosphere was placed near a long carbon nanotube and the

current along the carbon nanotube was calculated. It was determined that placing

a nanosphere near the carbon nanotube significantly effects the current along the

carbon nanotube, but the backscattered electric field due to the carbon nanotube

and nanosphere is mainly attributed to the presence of the nanosphere [10].

Electromagnetic modeling of nanowires has been investigated using finite-difference

time-domain (FDTD), discrete-dipole approximation (DDA) and method of mo-

ment (MoM) techniques [12, 13, 14]. The absorption and scattering of an array of

silver nanowires is investigated using FDTD and a Drude model to represent the

dispersive material properties of silver at optical frequencies in [12]. Podolskiy et.

al. investigated silver nanowire systems using DDA. Based on their calculations,

nanowire systems were able to achieve simultaneously a negative permittivity and

permeability, hence generating a negative-index metamaterial. Their DDA model

also showed strong coupling between parallel wires allowing for light to propagate

in the array with strong field enhancements which may be used for spectroscopy

or lithography [14]. Silver nanowire resonators were studied in [15]. These silver

nanowire resonators were studied experimentally at optical wavelengths and also

show strong field enhancement at the nanowire tip [15]. A method of moment ap-

proach using a surface impedance model to incorporate material parameters was

used by Hanson to study copper dipoles at infrared and optical frequencies. The

efficiencies reported by Hanson are significantly higher than those of carbon nan-

otube dipoles and are on the order of 0.1 to 0.9 for nanowire radii varying from

10 nm to 60 nm at 396 THz [13]. A similar approach to the Hanson’s will be

used in Chapter 4 to calculate the input impedance of gold and silver nano-dipole

antennas. Raman scattering from semiconducting nanowires has been studied in

[16, 17, 18, 19] and will be discussed in greater detail in Chapter 2. Finally, a
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gold-nano-particle embedded nanowire was recently demonstrated by Hu and co-

authors which may be used as a nanoscale waveguide for optoelectronics [20].

Electron-beam fabrication techniques have also been used to fabricate planar opti-

cal antennas at the nanometer scale. These nano-scale optical antennas have been

shown experimentally to have resonant behavior associated with their physical

length [21, 22]. Chains of nanoholes fabricated in thin metallic films also exhibit

dipole-like behavior [23]. Planar nanoslabs have recently been coupled to diodes.

Using log-periodic and spiral antennas scaled to operate at the infrared, novel in-

frared detectors have been designed, fabricated and tested for room-temperature

operation [24, 25]. Modeling tools have been used to optimize planar structures

for infrared filter designs. This approach utilizes the genetic algorithm combined

with nano-fabrication constraints in order to generate realizable designs [1, 2].

1.3 Material Models

Materials in the infrared and optical region are dispersive. In order to accurately

calculate the field values of nanostructures at infrared and optical frequencies,

the material behavior must be included in the model. In particular, metals in

the infrared and optical spectrum do not exhibit the same behavior as in the

RF and microwave region. Metals in the infrared and optical region exhibit a

negative real part of the dielectric function. The real and imaginary part of metals

at infrared and optical frequencies also vary over several orders of magnitude.

Measured values for several metals were reported in the literature in the early 1970s

[26]. Infrared and optical material properties of semiconductors have also been

experimentally measured and reported in the literature [27, 28]. The experimental

values were reported in terms of a complex refractive index ie. n̂ = n − jk. The

relations relating the real and imaginary (ε̂r = ε′r− jε′′r) components of the relative

permittivity to the real and imaginary components of the refractive index as a

function of radial frequency are given by:

ε′r(ω) = n2(ω)− k2(ω) (1.1)



5

ε′′r(ω) = 2n(ω)k(ω) (1.2)

Similarly, the complex refractive can be expressed in terms of the complex permit-

tivity:

n(ω) =
1√
2

[((
ε′r(ω)

)2
+
(
ε′′r(ω)

)2) 1
2

+ ε′r(ω)

] 1
2

(1.3)

k(ω) =
1√
2

[((
ε′r(ω)

)2
+
(
ε′′r(ω)

)2) 1
2 − ε′r(ω)

] 1
2

(1.4)

As can be seen above, the convention for describing materials in the infrared and

optical spectrum is to use the complex permittivity instead of the conductivity of

a material. The convention used in the RF is to describe the property of a material

by its real permittivity and conductivity as shown in equation (1.5) where the DC

conductivity is scaled by the radial frequency ω.

ε̂(ω) = ε′(ω)− j σ

ε0ω
(1.5)

In the following sections, we will present oscillator models used to describe the com-

plex permittivity of real materials. These models are convenient repesentations of

the dielectric function. In addition, oscillator models are useful for implement-

ing dispersive materials in finite-difference time-domain (FDTD) codes [29]. The

Lorentz-Drude oscillator model for complex permittivity will be introduced. The

Particle Swarm Optimization (PSO) algorithm will also be applied to optimizing

parameters of a Lorentzian oscillator model for a semiconducting material.

1.3.1 Lorentz-Drude Model

A convenient method to parameterize a complex dielectric function is to use

damped harmonic oscillators. These models were constructed to represent the fre-

quency dependence of material characteristics . Two well-known oscillator models

are the Drude model and Lorentzian model. The Drude model may be used to

described the intraband effects while the Lorentzian oscillator is used to describe

interband effects. The Lorentz-Drude model is a superposition of a Drude model
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with the Lorentzian oscillators model as shown in equation (1.6).

ε̂r(ω) = ε̂r(Drude)
(ω) + ε̂r(Lorentz)

(ω) (1.6)

where the Drude and Lorentz portions of the complex permittivity are shown in

equations (1.7) and (1.8)

ε̂r(Drude)
(ω) = 1−

Ω2
p

ω
(
ω − jΓ0

) (1.7)

ε̂r(Lorentz)
(ω) =

N∑
n=1

fnω
2
p(

ω2
n − ω2

)
+ jωΓn

(1.8)

where ωp is the plasma frequency, N is the number of oscillators with frequency

ωn, strength fn, lifetime 1/Γn, plasma frequency Ωp =
√
f0ωp, oscillator strength

f0 and damping constant Γ0. The parameters for several common metals such as

Silver (Ag), Gold (Au), Copper (Cu), and Aluminum (Al) have been published

in [30]. The dielectric function for Gold and Silver based on the Lorentz-Drude

model parameters from the Rakic el. al were calculated and shown in Figure 1.1.

1.3.2 Particle Swarm Optimization for

Parameter Fitting Lorentzian Models

Swarm intelligence is a nature-based stochastic optimization technique which was

introduced by James Kennedy and Russel C. Eberhart [31]. Kennedy and Eber-

hart studied the behavior of animals in their groups, swarms, or schools. Based on

their studies, they parameterized core operators for the Particle Swarm Optimiza-

tion (PSO) algorithm. The goal of the PSO algorithm is to imitate the success

of individuals in optimization as a group. The Particle Swarm Optimization tech-

nique is a relatively simple, but flexible and robust optimization algorithm which

can be applied to many engineering problems where the problem can be multi-

dimensional, multi-objective, real-valued or discrete-valued. The algorithm also

allows additional restrictions to be set as required. Figure 1.2 illustrates the op-

eration of the PSO algorithm. An initial population is created and the fitness is

evaluated. Based on the fitness of the particle, the particle is evaluated to deter-
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(a) Gold (Au) dielectric function

(b) Silver (Ag) dielectric function

Figure 1.1: Dielectric functions of Gold and Silver calculated from Lorentz-Drude
models.
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mine if it meets the criteria for personal best and global best. Particle velocities

and positions are then updated and the sequence occurs again until the global

optimum is achieved or the maximum number of iterations is reached. The parti-

Figure 1.2: Particle Swarm Optimization (PSO) algorithm flowchart

cle swarm optimization algorithm has been used in electromagnetics to implement

the design of Yagi-Uda arrays and conformal array excitation amplitude synthesis

[32, 33]. The PSO technique has also been developed to optimize parameter values

for Debye functions [34]. Similar to the the Lorentz-Drude oscillator model, the

Debye function can be used to represent frequency dependent dielectric functions.

We will use a Lorentzian oscillator model of the form shown in equation (1.9) to

represent the complex dielectric function of a semiconducting material. The model

parameters are ε∞ (the high frequency permittivity), N (number of oscillators in

the model), εsn (low frequency permittivity for the nth oscillator), ωoεn (resonance
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frequency for the nth oscillator), and δεn (the damping factor for the nth oscillator).

ε̂r(ω) = ε∞ +
N∑
n=1

(
εsn − ε∞

)
ω2
oεn

ω2
oεn + j2δεnω − ω2

(1.9)

A Lorentzian model was developed for the semiconductor Gallium Phosphide

(GaP) at infrared and optical frequencies using a PSO algorithm with the number

of oscillators being fixed at 8. Experimental values for the GaP material at optical

frequencies were taken from [27, 28]. The fitness function used for the optimization

is shown in equation (1.10) and was minimized over the frequency range from 10

THz to 10000 THz. Figure 1.3 shows that the PSO determined Lorentzian model

parameter fit agrees well with the experimental data.

f =
∑
|ε̂r(PSO)

(ω)− ε̂r(Experimental)
(ω)|2 (1.10)

1.4 Summary

Novel fabrication techniques of nanometer scale structures have been discussed in

the literature. These fabrication techniques have been used to create nanoslabs,

nanowires and nanotubes. In order to understand the behavior of these structures,

the dispersive nature of the materials must be incorporated into the modeling

method. The Lorentz-Drude and Lorentzian oscillator models were presented for

metallic and semiconducting materials in the infrared and optical spectrum. A

particle swarm optimization technique was used to parameter fit a semiconducting

material to a Lorentzian oscillator model. The PSO technique is a general tech-

nique that can be used to generate an oscillator model for other materials given the

measured dielectric function. The electric fields inside nanowires will now be inves-

tigated by solving the classical scattering from infinitely long dielectric nanowires

and calculating the internal electric field intensity.
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Figure 1.3: Comparison of experimental GaP data and PSO Lorentzian model for
GaP.



Chapter 2
Internal Electromagnetic Intensity of

Dielectric Nanowires

2.1 Introduction

In this chapter we will examine the enhanced electric fields that develop inside

nanowires due to resonances that occur inside the wire. We will first begin by

applying analytical tools to study dielectric nanowires. Under the assumption that

the nanowire is long, an infinite cylinder may be used to examine the electric fields

inside the nanowire. Defining an intensity integral for the fields inside the wire we

may also determine the internal electromagnetic field intensity inside the nanowire

as a function of its diameter and material properties. The internal electromagnetic

field intensity integral can then be used to examine the resonant properties of

long nanowires. The internal electromagnetic intensity will be calculated for a

Gallium Phosphide nanowire in the optical spectrum. A method for examing

the polarization dependence at normal incidence of the internal electromagnetic

intensity will be applied to nanowires.

2.2 Scattering from Infinite Dielectric Cylinders

The derivation of scattering at normal incidence from an infinitely long dielectric

cylinder was first published by Lord Rayleigh in 1918 [35]. Rayleigh’s derivation
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has been re-examined several times in the literature [36, 37, 38]. Scattering at

oblique incidence from an infinitely long dielectric cylinder has been examined by

Wait in [39]. In this section, the derivation from scattering from an infinitely long

dielectric cylinder at normal incidence will be re-examined for the transverse mag-

netic and transverse electric polarizations. Based on these closed-form solutions,

calculations for the electric field magnitudes inside and outside the wire will be

shown for varying cylinder diameters using the dielectric properties of a semicon-

ducting material.

2.2.1 Transverse Magnetic (TMz) Polarization

The transverse magnetic (TMz) polarization will be examined first. The dielectric

cylinder axis is in the ẑ direction as shown in Figure 2.1.

Figure 2.1: Geometry for the TMz polarization.

For this geometry the electric fields inside and outside the wire are ẑ-directed and

can be represented as an infinite summation of cylindrical harmonics shown below:

~ETM
i = âzE0

+∞∑
n=−∞

j−nJn(β0ρ)ejnφ (2.1)

~ETM
s = âzE0

+∞∑
n=−∞

aTMn H(2)
n (β0ρ)ejnφ (2.2)

~ETM
d = âzE0

+∞∑
n=−∞

[
bTMn Jn(β1ρ) + cTMn Yn(β1ρ)

]
ejnφ (2.3)



13

where

β0 = ω
√
µ0ε0 (2.4)

β1 = ω
√
µ1ε1 (2.5)

The incident, scattered and transmitted magnetic fields can be obtained from

Maxwell’s equations:

~H = − 1

jωµ
∇× ~E = − 1

jωµ

[
âρ

1

ρ

∂Ez
∂φ
− âφ

∂Ez
∂ρ

]
(2.6)

Yielding the following expressions for the magnetic fields:

~HTM
i = −âρ

E0

jωµ0

1

ρ

+∞∑
n=−∞

nj−n+1Jn(β0ρ)ejnφ+ âφ
E0β0

jωµ0

+∞∑
n=−∞

j−nJ ′n(β0ρ)ejnφ (2.7)

~HTM
s = −âρ

E0

jωµ0

1

ρ

+∞∑
n=−∞

(jn)aTMn H(2)
n (β0ρ)ejnφ + âφ

E0β0

jωµ0

+∞∑
n=−∞

aTMn H(2)′

n (β0ρ)ejnφ

(2.8)

~HTM
d = −âρ

E0

jωµ1

1

ρ

+∞∑
n=−∞

(jn)

[
bTMn Jn(β1ρ) + cTMn Yn(β1ρ)

]
ejnφ

+âφ
E0β1

jωµ1

+∞∑
n=−∞

[
bTMn J ′n(β1ρ) + cTMn Y ′n(β1ρ)

]
ejnφ (2.9)

where
′ =

∂

∂(βρ)
(2.10)

The coefficients aTMn , bTMn and cTMn can be solved by applying boundary conditions

are the interface between the two materials ρ = a. Physically, the fields everywhere

must be finite everywhere, therefore, cTMn must be zero due to the Bessel function

of the second kind having a singularity for βρ = 0. Assuming the materials are

non-magnetic (µ1 = µ0), the following two equations relate aTMn and bTMn .

j−nJn(β0a) + aTMn H(2)
n (β0a) = bTMn Jn(β1a) (2.11)

j−nJ ′n(β0a) + aTMn H(2)′

n (β0a) =
√
εr1b

TM
n J ′n(β1a) (2.12)
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Expressions for aTMn , bTMn and cTMn can be obtained from the above equations and

are shown below. The relative permittivity within the cylinder is defined as εr1.

aTMn = j−n
J ′n(β0a)Jn(β1a)−√εr1Jn(β0a)J ′n(β1a)
√
εr1J ′n(β1a)H

(2)
n (β0a)− Jn(β1a)H

(2)′
n (β0a)

(2.13)

bTMn = j−n
Jn(β0a)H

(2)′
n (β0a)− J ′n(β0a)H

(2)
n (β0a)

Jn(β1a)H
(2)′
n (β0a)−√εr1J ′n(β1a)H

(2)
n (β0a)

(2.14)

cTMn = 0 (2.15)

(a) d = 50 nm (b) d = 100 nm

(c) d = 150 nm (d) d = 200 nm

Figure 2.2: Electric field magnitude plots for TMz polarization incident wave on a
Gallium Phosphide nanowire excited at λ = 488 nm.

A computer program in MATLAB was developed to calculate the electric field
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magnitude inside and outside a GaP nanowire shown in Figure 2.2. The code

calculates the necessary Bessel and Hankel functions and their derivatives. Since

the fields are represented by an infinite series, the summation must be truncated

after N number of terms. It determined that taking the first 30 terms was sufficient

for convergence of the infinite series. The incident wave was TMz polarized and

traveling in the +x̂ direction with E0 = 1. The excitation wavelength chosen was

λ = 488 nm. At this wavelength the permittivity of GaP is εr1 = 13.2382−j0.0003.

It can be seen in Figure 2.2, that the electric field magnitude is continuous at the

boundary between free-space and the nanowire since only tangential ẑ directed

fields are present in the TMz polarization.

2.2.2 Transverse Electric (TEz) Polarization

The transverse electric (TEz) polarization assumes the magnetic fields inside and

outside the wire are ẑ-directed. The geometry for the TEz polarization is shown

in Figure 2.3.

Figure 2.3: Geometry for the TEz polarization.

An infinite summation of cylindrical harmonics can also be used to represent the

fields as shown in the following equations:

~HTE
i = âzH0

+∞∑
n=−∞

j−nJn(β0ρ)ejnφ (2.16)

~HTE
s = âzH0

+∞∑
n=−∞

aTEn H(2)
n (β0ρ)ejnφ (2.17)
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~HTE
d = âzH0

+∞∑
n=−∞

[
bTEn Jn(β1ρ) + cTEn Yn(β1ρ)

]
ejnφ (2.18)

The incident, scattered and transmitted electric fields are obtained from Maxwell’s

equations:

~E = − 1

jωε0
∇× ~H =

1

jωε

[
âρ

1

ρ

∂Hz

∂φ
− âφ

∂Hz

∂ρ

]
(2.19)

Yielding the following expressions for the magnetic fields:

~ETE
i = âρ

H0

jωε0

1

ρ

+∞∑
n=−∞

nj−n+1Jn(β0ρ)ejnφ − âφ
H0β0

jωε0

+∞∑
n=−∞

j−nJ ′n(β0ρ)ejnφ (2.20)

~ETE
s = âρ

H0

jωε0

1

ρ

+∞∑
n=−∞

(jn)aTEn H(2)
n (β0ρ)ejnφ − âφ

H0β0

jωε0

+∞∑
n=−∞

aTEn H(2)′

n (β0ρ)ejnφ

(2.21)

~ETE
d = âρ

H0

jωε1

1

ρ

+∞∑
n=−∞

(jn)

[
bTEn Jn(β1ρ) + cTEn Yn(β1ρ)

]
ejnφ

−âφ
H0β1

jωε1

+∞∑
n=−∞

[
bTEn J ′n(β1ρ) + cTEn Y ′n(β1ρ)

]
ejnφ (2.22)

The TEz field incident field magnitude H0 can be related to the incident electric

field magnitude E0 by the intrinsic impedance

η0 =
E0

H0

=

√
µ0

ε0
(2.23)

hence

H0 =
E0

η0

(2.24)

Rewriting the magnetic and electric fields in terms of the incident electric field

magnitude, we obtain the following expressions:

~HTE
i = âz

E0

η0

+∞∑
n=−∞

j−nJn(β0ρ)ejnφ (2.25)
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~HTE
s = âz

E0

η0

+∞∑
n=−∞

aTEn H(2)
n (β0ρ)ejnφ (2.26)

~HTE
d = âz

E0

η0

+∞∑
n=−∞

[
bTEn Jn(β1ρ) + cTEn Yn(β1ρ)

]
ejnφ (2.27)

~ETE
i = âρ

E0

jωε0η0

1

ρ

+∞∑
n=−∞

nj−n+1Jn(β0ρ)ejnφ − âφ
E0β0

jωε0η0

+∞∑
n=−∞

j−nJ ′n(β0ρ)ejnφ

(2.28)

~ETE
s = âρ

E0

jωε0η0

1

ρ

+∞∑
n=−∞

(jn)aTEn H(2)
n (β0ρ)ejnφ − âφ

E0β0

jωε0η0

+∞∑
n=−∞

aTEn H(2)′

n (β0ρ)ejnφ

(2.29)

~ETE
d = âρ

E0

jωε1η0

1

ρ

+∞∑
n=−∞

(jn)

[
bTEn Jn(β1ρ) + cTEn Yn(β1ρ)

]
ejnφ

−âφ
β1E0

jωε1η0

+∞∑
n=−∞

[
bTEn J ′n(β1ρ) + cTEn Y ′n(β1ρ)

]
ejnφ (2.30)

The coefficient, cTEn must be zero due to the Bessel function of the second kind

having a singularity for βρ = 0. The two coefficients aTEn and bTEn can be deter-

mined by applying boundary conditions at the interface between the two materials

ρ = a.

j−nJn(β0a) + aTEn H(2)
n (β0a) = bTEn Jn(β1a) (2.31)

j−nJ ′n(β0a) + aTEn H(2)′

n (β0a) =
1
√
εr1
bTEn J ′n(β1a) (2.32)

Solving the above two equations gives the following expressions for aTEn and bTEn as-

suming the materials are non-magnetic. The relative permittivity for the dielectric

material inside the cylinder is represented by εr1.

aTEn = j−n
J ′n(β0a)Jn(β1a)− 1√

εr1
Jn(β0a)J ′n(β1a)

1√
εr1
J ′n(β1a)H

(2)
n (β0a)− Jn(β1a)H

(2)′
n (β0a)

(2.33)

bTEn = j−n
Jn(β0a)H

(2)′
n (β0a)− J ′n(β0a)H

(2)
n (β0a)

Jn(β1a)H
(2)′
n (β0a)− 1√

εr1
J ′n(β1a)H

(2)
n (β0a)

(2.34)
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cTEn = 0 (2.35)

A computer code was used to calculate the electric field magnitude due to a

(a) d = 50 nm (b) d = 100 nm

(c) d = 150 nm (d) d = 200 nm

Figure 2.4: Electric field magnitude plots for TEz polarization incident wave on a
Gallium Phosphide nanowire excited at λ = 488 nm.

transverse electric incident wave propagating in the +x̂ direction upon a GaP

nanowire shown in Figure 2.4 with E0 = 1. The infinite summation was truncated

after 30 terms which provided sufficient convergence. The excitation wavelength

chosen was λ = 488 nm with permittivity of GaP equal to εr1 = 13.2382−j0.0003 at

this wavelength. In Figure 2.4, it should be noted that the electric field magnitude

is discontinuous at the boundary between free-space and the GaP nanowire due to

the TEz polarization containing both ρ̂ and φ̂ directed components.
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2.3 The Internal Electromagnetic Intensity Inte-

gral

Resonances of cylindrical dielectric wires are known to have enhanced internal

electric fields [40]. In order to study the enhanced internal electric field inside

cylinders, it was first proposed by Ruppin to use an internal electromagnetic field

intensity integral. The intensity integral may be used to examine resonances asso-

ciated with the size and material properties of the cylinder and is shown below in

equation (2.36) [41].

I =
1

πa2

∫ a

0

∫ 2π

0

| ~E|2ρdρdφ (2.36)

The intensity integral has been recently used to the study of nanowires by Cao and

co-authors. Cao used the internal electromagnetic intensity integral to study the

Raman enhancement of Silicon nanowires [16]. In Cao’s paper, only the lossless

case for the intensity integral is discussed for the two normal incidence polariza-

tions. Solutions for the intensity integral will be calculated in the following sections

for the case where the material has purely real dielectric function (lossless) and also

for the case when the material has a complex permittivity (lossy). These solutions

will then be applied to the study of Gallium Phosphide nanowires.

2.3.1 Closed-form Solution for Lossless Case

2.3.1.1 Solution for TMz Polarization

We first examine the TMz case for a lossless medium. For the lossless case, we

apply the following integral:

ITM =
1

πa2

∫ a

0

∫ 2π

0

| ~ETM
d |2ρdρdφ (2.37)

In order to calculate the intensity, the magnitude of the electric field inside the

wire must be calculated.

| ~ETM
d |2 = |E0|2


+∞∑

n=−∞

bTMn Jn(β1ρ)ejnφ


2

(2.38)
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| ~ETM
d |2 = |E0|2

+∞∑
n=−∞

bTMn Jn(β1ρ)ejnφ
+∞∑

n=−∞

bTM∗n J∗n(β1ρ)e−jnφ (2.39)

| ~ETM
d |2 = |E0|2

+∞∑
n=−∞

+∞∑
m=−∞

bTMn bTM∗m Jn(β1ρ)J∗m(β1ρ)ej(n−m)φ (2.40)

but J∗n(β1ρ) = Jn(β∗1ρ) for β1 ∈ C and ρ ∈ R. Since β1 = β∗1 for lossless material

(ie. β1 ∈ R), then J∗n(β1ρ) = Jn(β1ρ) and equation (2.32) becomes

| ~ETM
d |2 = |E0|2

+∞∑
n=−∞

+∞∑
m=−∞

bTMn bTM∗m Jn(β1ρ)Jm(β1ρ)ej(n−m)φ (2.41)

Substituting equation (2.33) into equation (2.30), we obtain

ITM =
1

πa2
|E0|2

+∞∑
n=−∞

+∞∑
m=−∞

∫ 2π

0

ej(n−m)φdφ

∫ a

0

ρJn(β1ρ)Jm(β1ρ)dρ (2.42)

but we know that ∫ 2π

0

ej(n−m)φdφ =

{
2π n = m

0 n 6= m
(2.43)

thus,

ITM =
2

a2
|E0|2

+∞∑
n=−∞

|bTMn |2
∫ a

0

ρJ2
n(β1ρ)dρ (2.44)

Using the following integral found in [42]:∫ a

0

ρJ2
n(β1ρ)dρ =

a2

2

[
Jn(β1a)− Jn−1(β1a)Jn+1(β1a)

]
(2.45)

Hence, the closed-form solution for the intensity integral for the lossless TMz case

is

ITM = |E0|2
+∞∑

n=−∞

|bTMn |2
[
J2
n(β1a)− Jn−1(β1a)Jn+1(β1a)

]
(2.46)

2.3.1.2 Solution for TEz Polarization

For the TEz case, we apply a similar integral shown below to determine the internal

electric field intensity. In this case, the form for the internal electric field for the
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TEz case is given by equation (2.22)

ITE =
1

πa2

∫ a

0

∫ 2π

0

| ~ETE
d |2ρdρdφ (2.47)

The magnitude of the internal electric field must be calculated. Since there are

both ρ̂ and φ̂ components, the magnitude squared is given by:

| ~ETE
d |2 = | ~ETE

dρ |2 + | ~ETE
dφ |2 (2.48)

Substituting equation (2.48) into (2.47), we obtain

ITE =
1

πa2

∫ a

0

∫ 2π

0

{
| ~ETE

dρ |2 + | ~ETE
dφ |2

}
ρdρdφ (2.49)

Next, we calculate the magnitudes for each of the components

| ~ETE
dρ |2 =

|E0|2

ω2ε1ε∗1η
2
0

1

ρ2

+∞∑
n=−∞

(jn)bTEn Jn(β1ρ)ejnφ
+∞∑

n=−∞

(−jn)bTE∗n J∗n(β1ρ)e−jnφ

=
|E0|2

ω2ε1ε∗1η
2
0

1

ρ2

+∞∑
n=−∞

+∞∑
m=−∞

(nm)bTEn bTE∗m Jn(β1ρ)J∗m(β1ρ)ej(n−m)φ (2.50)

| ~ETE
dφ |

2 =
|E0|2β1β

∗
1

ω2ε1ε∗1η
2
0

+∞∑
n=−∞

bTEn J ′n(β1ρ)ejnφ
+∞∑

n=−∞

bTE∗n J ′∗n (β1ρ)e−jnφ

=
|E0|2β1β

∗
1

ω2ε1ε∗1η
2
0

+∞∑
n=−∞

+∞∑
m=−∞

bTEn bTE∗m J ′n(β1ρ)J ′∗m(β1ρ)ej(n−m)φ (2.51)

but for lossless materials there is no imaginary part of the permittivity, hence

ε1 ∈ R and β1 ∈ R which implies ε∗1 = ε1 and β∗1 = β1. The above equations can

then be simplified to

| ~ETE
dρ |2 =

|E0|2

ω2|ε1|2η2
0

1

ρ2

+∞∑
n=−∞

+∞∑
m=−∞

(nm)bTEn bTE∗m Jn(β1ρ)Jm(β1ρ)ej(n−m)φ (2.52)
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| ~ETE
dφ |2 =

|E0|2|β1|2

ω2|ε1|2η2
0

+∞∑
n=−∞

+∞∑
m=−∞

bTEn bTE∗m J ′n(β1ρ)J ′m(β1ρ)ej(n−m)φ (2.53)

The magnitudes for the ρ̂ and φ̂ components can now be substituted into equation

(2.49). Using the result from equation (2.43) the following integral is obtain.

ITE =
2|E0|2|β1|2

ω2|ε1|2η2
0a

2

{ +∞∑
n=−∞

|bTEn |2
∫ a

0

[
n2

|β1|2ρ2
J2
n(β1ρ) + J ′2n (β1ρ)

]
ρdρ

}
(2.54)

The following Bessel function recursion relations may be used to simplify the above

integral:
2n

β1ρ
Jn(β1ρ) = Jn−1(β1ρ) + Jn+1(β1ρ) (2.55)

2J ′n(β1ρ) = Jn−1(β1ρ)− Jn+1(β1ρ) (2.56)

Therefore,

n2

|β2
1 |ρ2

J2
n(β1ρ) =

1

4

[
J2
n−1(β1ρ) + 2Jn−1(β1ρ)Jn+1(β1ρ) + J2

n+1(β1ρ)

]
(2.57)

J ′2n (β1ρ) =
1

4

[
J2
n−1(β1ρ)− 2Jn−1(β1ρ)Jn+1(β1ρ) + J2

n+1(β1ρ)

]
(2.58)

Substituting equations (2.57) and (2.58) into equation (2.54), the following integral

is obtain

ITE =
|E0|2|β1|2

ω2|ε1|2η2
0a

2

{ +∞∑
n=−∞

|bTEn |2
∫ a

0

[
J2
n−1(β1ρ) + J2

n+1(β1ρ)

]
ρdρ

}
(2.59)

Applying the integral from equation (2.45), we obtain the following closed-form

solution for the TEz polarization assuming a lossless medium.

ITE =
|E0|2|β1|2

2ω2|ε1|2η2
0

{ +∞∑
n=−∞

|bTEn |2
[
J2
n−1(β1a) + J2

n+1(β1a)

−Jn(β1a)
[
Jn−2(β1a) + Jn+2(β1a)

]]}
(2.60)
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2.3.2 Closed-form Solution for Lossy Case

2.3.2.1 Solution for (TMz) Polarization

Similar for the lossless case, we use equation (2.37) to compute the intensity for

the TMz polarization. The magnitude of the electric field inside the wire must be

calculated. Since epsilon is complex for a lossy material, the propagation constant

inside the nanowire will also be complex. Using the fact that J∗n(β1ρ) = Jn(β∗1ρ),

the electric field magnitude for the lossy case can be written as:

| ~ETM
d |2 = |E0|2

+∞∑
n=−∞

+∞∑
m=−∞

bTMn bTM∗m Jn(β1ρ)Jm(β∗1ρ)ej(n−m)φ (2.61)

Substituting equation (2.61) into equation (2.37) and making use of the result

shown in equation (2.43), we obtain:

ITM =
2

a2
|E0|2

+∞∑
n=−∞

|bTMn |2
∫ a

0

ρJn(β1ρ)Jn(β∗1ρ)dρ (2.62)

Using the following integral from [42]:∫ a

0

ρJn(β1ρ)Jn(β∗1ρ)dρ =
(β1a)Jn+1(β1a)Jn(β∗1a)− (β∗1a)Jn(β1a)Jn+1(β

∗
1a)

β2
1 − β2∗

1

(2.63)

Hence, the closed-form solution for the intensity integral in a lossy material for the

TMz polarization is

ITM = 2|E0|2
+∞∑

n=−∞

|bTMn |2
(β1a)Jn+1(β1a)Jn(β∗1a)− (β∗1a)Jn(β1a)Jn+1(β

∗
1a)

(β1a)2 − (β∗1a)2

(2.64)

2.3.2.2 Solution for (TEz) Polarization

In order to find a closed-form solution for the intensity integral when the wire is

composed of a lossy material, we will need to calculate the integral in equation
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(2.49) where the magnitudes of the ρ̂ and φ̂ components are given below

| ~ETE
dρ |2 =

|E0|2

ω2|ε1|2η2
0

1

ρ2

+∞∑
n=−∞

+∞∑
m=−∞

(nm)bTEn bTE∗m Jn(β1ρ)Jm(β∗1ρ)ej(n−m)φ (2.65)

| ~ETE
dφ |2 =

|E0|2|β1|2

ω2|ε1|2η2
0

+∞∑
n=−∞

+∞∑
m=−∞

bTEn bTE∗m J ′n(β1ρ)J ′m(β∗1ρ)ej(n−m)φ (2.66)

After substituting the magnitudes for ρ̂ and φ̂ components into the intensity inte-

gral in equation (2.49) and applying the result in equation from equation (2.43),

we obtain

ITE =
2|E0|2|β1|2

ω2|ε1|2η2
0a

2
×{ +∞∑

n=−∞

|bTEn |2
∫ a

0

[
n2

|β1|2ρ2
Jn(β1ρ)Jn(β∗1ρ) + J ′n(β1ρ)J ′n(β∗1ρ)

]
ρdρ

}
(2.67)

The following Bessel function recursion relations may be used to simplify the above

integral:
2n

β1ρ
Jn(β1ρ) = Jn−1(β1ρ) + Jn+1(β1ρ) (2.68)

2n

β∗1ρ
Jn(β∗1ρ) = Jn−1(β

∗
1ρ) + Jn+1(β

∗
1ρ) (2.69)

2J ′n(β1ρ) = Jn−1(β1ρ)− Jn+1(β1ρ) (2.70)

2J ′n(β∗1ρ) = Jn−1(β
∗
1ρ)− Jn+1(β

∗
1ρ) (2.71)

Multiplying equation (2.68) with (2.69) yields equation (2.72), while multiplying

equation (2.70) with (2.71) we obtain equation (2.73)

n2

|β2
1 |ρ2

Jn(β1ρ)Jn(β∗1ρ) =
1

4

[
Jn−1(β1ρ)Jn−1(β

∗
1ρ) + Jn−1(β1ρ)Jn+1(β

∗
1ρ)

+Jn+1(β1ρ)Jn−1(β
∗
1ρ) + Jn+1(β1ρ)Jn+1(β

∗
1ρ)

]
(2.72)

J ′n(β1ρ)J ′n(β∗1ρ) =
1

4

[
Jn−1(β1ρ)Jn−1(β

∗
1ρ)− Jn−1(β1ρ)Jn+1(β

∗
1ρ)
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−Jn+1(β1ρ)Jn−1(β
∗
1ρ) + Jn+1(β1ρ)Jn+1(β

∗
1ρ)

]
(2.73)

Substituting equations (2.72) and (2.73) into equation (2.67), the following integral

is obtained

ITE =
|E0|2|β1|2

ω2|ε1|2η2
0a

2
×{ +∞∑

n=−∞

|bTEn |2
∫ a

0

[
Jn−1(β1ρ)Jn−1(β

∗
1ρ) + Jn+1(β1ρ)Jn+1(β

∗
1ρ)

]
ρdρ

}
(2.74)

Applying the integral from equation (2.63), the expression for the lossy intensity

integral for TEz polarization is:

ITE =
|E0|2|β1|2

ω2|ε1|2η2
0

×{ +∞∑
n=−∞

|bTEn |2
[

(β1a)Jn(β1a)Jn−1(β
∗
1a)− (β∗1a)Jn−1(β1a)Jn(β∗1a)

(β1a)2 − (β∗1a)2

+
(β1a)Jn+2(β1a)Jn+1(β

∗
1a)− (β∗1a)Jn+1(β1a)Jn+2(β

∗
1a)

(β1a)2 − (β∗1a)2

]}
(2.75)

2.3.3 The Internal Electromagnetic Intensity for a Gallium

Phosphide (GaP) Nanowire

The internal electromagnetic intensity for a Gallium Phosphide nanowire will now

be calculated. The expressions in the previous section for the internal field in-

tensity were input into a computer program in MATLAB. The computer program

was used to calculate the intensity inside a GaP nanowire as a function of the

nanowire diameter by calculating the required Bessel functions. In order to cal-

culate the internal electromagnetic intensity numerically, the summation must be

truncated to a finite number of terms. For the calculations in this section, we

kept the first 30 terms in the summation. Two excitation wavelengths were chosen

for this study. The two wavelengths to study were λ = 488 nm and λ = 514.5

nm. At these wavelengths the permittivity of GaP is εr1 = 13.2382− j0.0003 and

εr1 = 12.5568 respectively. We plot the ratio of the TMz to TEz intensity as a

function of diameter in Figure 2.5. It can be seen for diameters under 125 nm,
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the intensity for the TMz is dominant over the TEz polarization. This observation

agrees well with experimental and Discrete Dipole Approximation (DDA) calcu-

lations recently published in [19], where Raman scattering from nanowires was

measured and the internal electromagnetic intensity calculated for finite length

nanowires. Based on our analytical calculations for infinitely long nanowires, we

can see that higher order resonant diameters are predicted. A technique for cal-

culating the angular dependence of the electric field intensity for infinitely long

nanowires will be discussed in the next section.
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Figure 2.5: ITM / ITE ratio for a GaP nanowire for λ = 418 nm and λ = 514.5 nm

2.3.4 Polarization Dependence of Nanowire Intensity

The polarization dependence of a dielectric nanowire at normal incidence exhibits

a dependence on both the TMz and TEz polarizations. Figure 2.6 shows the

geometry for a normally incident wave upon a nanowire at an arbitrary angle θ.

In order to consider a normally incident wave at an arbitrary angle, we first recall
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Figure 2.6: Geometry for a normally incident wave upon a nanowire at angle θ

the form of the incident electric field for the TMz and TEz polarizations.

~ETM
i = âzEize

−jβx (2.76)

~ETE
i = âyEiye

−jβx (2.77)

As shown in Figure 2.6, an electric field may be incident at an arbitrary angle θ

with respect to the wire axis (the ẑ axis). Assuming wave propagation along the

positive x̂ direction, then we may rewrite the incident electric field vector as:

~Ei =

[
| ~Ei|sinθây + | ~Ei|cosθâz

]
e−jβx (2.78)

If we assume that | ~Ei| = E0 = 1, then

~Ei =

[
sinθây + cosθâz

]
e−jβx (2.79)

This can be considered to be a superposition of the TMz and TEz fields, where

E0 = cos θ for the TMz case and E0 = sin θ for the TEz case. Next we consider

the fields inside the cylinder, which may be expressed in the form

~Etotal
d = ~ETM ′

d + ~ETE′

d = ETM ′

dz âz + ETE′

dρ âρ + ETE′

dφ âφ (2.80)

where

~ETM ′

d = ~ETM
d |E0=cosθ (2.81)
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~ETE′

d = ~ETE
d |E0=sinθ (2.82)

The expressions for ~ETM
d and ~ETE

d are given by equation (2.3) and equation (2.30)

respectively. The expression for the intensity due to the contribution of both

polarizations may be written from the intensity integral:

Itotal =
1

πa2

∫ a

0

∫ 2π

0

| ~Etotal
d |2ρdρdφ (2.83)

We next substitute equation (2.80) into equation (2.83) and obtain

Itotal =
1

πa2

∫ a

0

∫ 2π

0

| ~ETM ′

dz |2 + | ~ETE′

dρ |2 + | ~ETE′

dφ |2ρdρdφ (2.84)

Examining equation (2.84), we realize this integral can be split into the two in-

tensity integrals (equations (2.37) and (2.49)) evaluated with the appropriate E0

term from equations (2.81) and (2.82). Thus we obtain

Itotal = ITM ′ + ITE′ = ITM cos2θ + ITE sin2θ (2.85)

where ITM and ITE are the expressions for the TMz and TEz intensities that we

derived previously in sections assuming E0 = 1. Figure 2.7 shows Itotal calculations

for various wire diameters at excitation wavelength λ = 488 nm. It can be seen

for wire diameters below 125 nm, the Itotal exhibits a cos2θ angular dependence.

2.4 Summary

The classical problem of scattering from an infinitely long dielectric nanowire at

normal incidence was solved for the TMz and TEz polarizations. The electric

field magnitude was calculated for an infinitely long GaP nanowire. The diameter

dependence on the internal fields of a dielectric nanowire for lossless and lossy

dielectrics was studied based on closed-form analytical solutions to the internal

electromagnetic field intensity integral. A computer code was used to calculate

the internal electric field intensity for GaP nanowires at optical wavelengths using

experimental GaP dielectric properties at these frequencies. The ratio of the ITM

to ITE plot versus diameter shows that GaP nanowires have a larger internal



29

electric field for the TMz polarization in comparison to the TEz polarization. This

phenomenon was further explored by developing a technique to determine the

polarization dependence of the intensity integral at normal incidence. For nanowire

diameters where ITM is larger than ITE, GaP nanowires exhibit a cos2θ dependence.

These analytical calculations for GaP nanowires at λ = 418 nm agree well with

recently reported experimental data and DDA calculations.
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Figure 2.7: Normalized polar intensity plots (Itotal) for a Gallium Phosphide
nanowire of various diameters with λ = 488 nm excitation.



Chapter 3
Surface Impedance Models for

Nanoscale Structures

3.1 Introduction

Nanoscale structures such as nanoslabs, nanowires and tubular nanowires have

recently become physically realizable due to advances in nano-fabrication tech-

nologies. These nanoscale structures are currently being investigated as terahertz

devices such as frequency selective surfaces (FSS) and optical antennas. In order to

carry out efficient simulation and design of these devices, appropriate electromag-

netic models must be developed. These models must include material parameters

which account for the dielectric dispersion and losses. In addition, most metals in

the infrared and optical frequency regime (e.g. gold and silver) exhibit a negative

real part of the dielectric function which must also be included in the model. The

use of surface impedance boundary conditions requires that an appropriate surface

impedance model be developed, which incorporates both material and geometrical

parameters. Surface impedance boundary conditions have recently been applied

in the analysis of copper dipoles in the near-infrared [13]. In order to effectively

analyze other structures such as nanoslabs and nanotubular wires, appropriate

models must be developed and examined for their applicability to various materi-

als and wavelength regimes. Surface impedance models for nanoslabs, nanowires

and tubular nanowires will be presented in this chapter. The expressions for sur-
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face impedance developed here will incorporate properties of metals in the infrared

and optical spectrum based on Lorentz-Drude oscillator models. The asymptotic

limits for the surface impedance expressions will be examined in order to show

the relationship between each type of structure as well as test the validity of the

model. The material models will be incorporated into the surface impedance for

each case.

3.2 Surface Impedance Model for a Nanoslab

The most basic surface we can study is a flat surface of a finite thickness. Figure

3.1 depicts the geometry that will be considered for a nanoslab of thickness d. We

Figure 3.1: Geometry of a nanoslab of thickness d.

may define the surface impedance as

Zin(z) =
Etotal(z)

H total(z)
(3.1)
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Calculating the surface impedance at the interface of Region 1 and Region 2 (ie.

at z = −d+), the impedance can be expressed mathematically as

Zin(z = −d+) = η2

[
1 + Γin(z = 0−)e−2γ2d

1− Γin(z = 0−)e−2γ2d

]
(3.2)

where

γ2 =
√
jωµ2(jωε2) =

√
−ω2µ2ε2 = jω

√
µ0ε0

√
ε′r2 − jε′′r2 (3.3)

and

Γin(z = 0−) =
Zin(z = 0+)− η2

Zin(z = 0+) + η2

=
η3 − η2

η3 + η2

(3.4)

Assuming that Region 1 and Region 3 are both free-space, then

η1 = η3 = Z0 =

√
µ0

ε0
(3.5)

and the wave impedance of Region 2 is given by

η2 =

√
µ2

ε2
=

Z0√
ε′r2 − jε′′r2

(3.6)

After substituting equations (3.5) and (3.6) into (3.4) and substituting equation

(3.4) into equation (3.2) and simplifying, the following expression is obtained for

the surface impedance of a nanoslab:

Zs = Zin(z = −d) =
Z0√

ε′r2 − jε′′r2

[√
ε′r2 − jε′′r2 + 1 +

(√
ε′r2 − jε′′r2 − 1

)
e−2γ2d√

ε′r2 − jε′′r2 + 1−
(√

ε′r2 − jε′′r2 − 1
)
e−2γ2d

]
(3.7)

We note that equation (3.7) accounts for the thickness of the material, while the

surface impedance for a half-space (equation (3.8)) in Balanis and Munk does not

account for material thickness in Region 2 [38, 43].

Zs =
Z0√

ε′r2 − jε′′r2
(3.8)

In Figure 3.2, we compare numerically the results using the surface impedance

models from equations (3.7) and (3.8). A Lorentz-Drude model is used in the nu-

merical computation to determine the complex permittivity of the material. As
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Figure 3.2: Surface impedance Zs for a gold nanoslab of varying thickness.

can be seen for a gold nanoslab of thickness d = 25 nm and d = 50 nm, the surface

impedance varies significantly between the thin slab surface impedance and the
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half-space surface impedance value. Equation (3.7) can be examined asymptoti-

cally to determine if the result agrees with the expected value. When the thickness

of Region 2 becomes large, it appears as if there is only an interface between Re-

gion 1 and Region 2. Hence we expect to obtain the half-space when the thickness

(d) of Region 2 becomes large. From equation (3.7), we can see that the e−2γ2d

term will decay rapidly when the thickness d becomes large and reduce to the half-

space surface impedance expression equation (3.8). Figure 3.3 shows numerically

for a gold slab of thickness d = 500 nm, the nanoslab surface impedance model

and half-space impedance model agree. For a very thin nanoslab, the exponential

term in equation (3.7) may be approximated using a Taylor series expansion and

retaining the first term only show below:

e−2γ2d ≈ 1− 2γ2d (3.9)

Substituting this approximation into equation (3.7) and simplifying we obtain the

following surface impedance expression for a vanishingly thin nanoslab:

Zs = Z0

[
1− jβ0d

(√
ε′r2 − jε′′r2 − 1

)
1− jβ0d

√
ε′r2 − jε′′r2

(√
ε′r2 − jε′′r2 − 1

)] (3.10)

where β0 = ω
√
µ0ε0. Examining equation (3.10), it can be seen that for vanishingly

thin nanoslab the surface impedance will approach the impedance of free-space Z0.

3.3 Surface Impedance for a Nanowire

A cylindrical wire is another surface of interest in electromagnetics since it may be

used to study nanowires. In order to solve for the surface impedance, there are two

approaches that can be considered. The first approach that can be used is to solve

for the scattered electric and magnetic fields for an infinite dielectric cylinder. The

ratio of the tangential electric and magnetic fields at the surface of the wire will

determine the surface impedance. Another method is to solve the homogeneous

wave equation for the electric fields inside an infinite wire. The magnetic field can

be determined from the electric field using Maxwell’s equations. The geometry

to be considered for this problem is shown in Figure 3.4. We will use the later
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Figure 3.3: Comparison of surface impedance Zs values using the half-space ex-
pression and the equation (3.7) with thickness d = 500 nm.
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Figure 3.4: Geometry of a nanowire with radius ρ = a.

approach to solve for electric field. Assuming the fields exist only along the wire

axis and the material outside the wire is free-space, the fields obey the following

wave equation [44]:

∇2Ez + ω2µεEz = 0 (3.11)

where

ε = ε0εr = ε0
(
ε′r − jε′′r

)
(3.12)

In cylindrical coordinates, equation (3.11) becomes

d2Ez
dρ2

+
1

ρ

dEz
dρ

+ ω2µε′Ez = 0 (3.13)

A solution to a wave equation of this form exists and has the form

Ez(βρ) = AJ0(βρ) +BY0(βρ) (3.14)

and

β =
√
ω2µε = ω

√
µ0ε0

√
ε′r − jε′′r (3.15)

where only the zero order modes are retained [44]. In order to solve for the unknown

coefficients A and B, we must specify boundary conditions. The coefficients B is

set to zero due to a singularity occurring with the Neumann function as the radius

ρ approaches zero. The coefficient A can be determined by setting the current



38

density equal to a constant value at the surface of the wire (ρ = a). Hence,

A =
Ez0

J0(βa)
(3.16)

Ez(βρ) =
Ez0J0(βρ)

J0(βa)
(3.17)

With the expression for the electric field known as a function of the radius, the

magnetic fields can now be calculated from:

Hφ(βρ) =
1

jωµ

dEz
dρ

(3.18)

Yielding the following expression for the magnetic field:

Hφ(βρ) =
β

jωµ0

Ez0J
′
0(βρ)

J0(βa)
(3.19)

The surface impedance for a nanowire can be calculated from

Zs =
Ez|ρ=a
Hφ|ρ=a

=
jωµ

β

J0(βa)

J ′0(βa)
= j

Z0√
ε′r − jε′′r

J0(βa)

J ′0(βa)
(3.20)

where Z0 is the impedance of free-space given in equation (3.5). Letting βa = jx,

the surface impedance expression in equation (3.20) can be rewritten in terms

of the modified Bessel functions using the following relations listed in equations

(3.21)-(3.23) [45].

Jn(jx) = (j)nIn(x) (3.21)

J0(jx) = I0(x) (3.22)

d

d
(
jx
)J0(jx) =

dx

d
(
jx
) d
dx
J0(jx) =

dx

d
(
jx
) d
dx
I0(x) =

dx

d
(
jx
)I ′0(x) = −jI ′0(x)

(3.23)

The surface impedance in terms of modified Bessel functions is then

Zs(x) =
−ωµ0

β

βI0(x)

I ′0(x)
(3.24)
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Equation (3.29) can be simplified one step further using the recursion relation for

the modified Bessel function derivative shown below [45]

I ′n(x) =
n

x
In(x) + In−1(x) (3.25)

with n = 0, then

I ′0(x) = I−1(x) = I1(x) (3.26)

The final expression for the surface impedance in terms of modified Bessel functions

is given in equation (3.27) with argument x = −jβa

Zs(x) =
ωµ0

β

I0(x)

I1(x)
=

Z0√
ε′r − jε′′r

I0(x)

I1(x)
(3.27)

Figure 3.5 illustrates how the geometry impacts the surface impedance value. As

can be seen there is a large discrepancy between the surface impedance of a half-

space and a nanowire. These variations if not accounted for appropriately in the

electromagnetic modeling with give large errors between the predicted (simulated)

result and the measured result. We next examine the large and small argument

approximations to the surface impedance expression in equation (3.27). For the

large argument approximation we make use of the following large argument ap-

proximation for the modified Bessel function [45]:

In(x) ≈ ex√
2πx

(3.28)

Substituting the above large argument approximation into equation (3.27), we

obtain

Zs(x) ≈ Z0√
ε′r − jε′′r

(3.29)

which is the same as the expression for the surface impedance of a half-space

shown in equation (3.8). We use gold material properties and a nanowire of radius

a = 5000 nm to calculate the results shown in Figure 3.6. Figure 3.6 shows that

numerically, equation (3.27) approaches the Balanis expression for the half-space

surface impedance as expected for large radii nanowires.
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Figure 3.5: Surface impedance Zs for a gold nanowire of varying radii.
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Figure 3.6: Comparison of surface impedance Zs values using the half-space ex-
pression and the equation (3.27) with radius a = 5000 nm.
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For a wire of small radius, we may use the small argument approximation for

the modified Bessel functions shown below:

In(x) ≈
(
x
2

)2
Γ(n+ 1)

(3.30)

for n = 0 and n = 1 we have

I0(x) ≈ 1 (3.31)

I1(x) ≈ x

2
(3.32)

Substituting equations (3.31) and (3.32) into equation (3.27), we obtain

Zs(x) ≈ 2Z0√
ε′r − jε′′rx

(3.33)

where x = −jβa

3.4 Surface Impedance Model for a Tubular

Nanowire

Tubular nanowires are another class of nanoscale structures that are of interest

for electromagnetic devices. The surface impedance of a tubular nanowire is of

use for examining the properties of coated nanowire structures. The geometry for

an infinitely long tubular wire is shown in Figure 3.7. We will also assume that

Regions 1 and 3 are free-space (ie. ε1 = ε3 = ε0 and µ1 = µ3 = µ0). The electric

fields inside the tubular wire satisfy the wave equation:

∇2Ezn + ω2µnεnEzn = 0 (3.34)

where we assume the electric fields inside the tubular nanowire are ẑ-directed only

and the permittivity in region n is given by

εn = ε0εr = ε0
(
ε′rn − jε′′rn

)
(3.35)
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Figure 3.7: Geometry for a tubular nanowire with inner radius ρ = a and outer
radius ρ = b.

Solutions to the above wave equation inside Region 1 have the form shown below

in equation (3.36) where only the zero order modes are retained:

Ez1(β1ρ) = A1J0(β1ρ) (3.36)

In Region 2, the solution for the electric field is a superposition of inward and

outward traveling Hankel functions.

Ez2(β2ρ) = A2H
(1)
0 (β2ρ) +B2H

(2)
0 (β2ρ) (3.37)

where

β1 = ω
√
µ0ε0 (3.38)

and

β2 = ω
√
µ0ε0

√
ε′r2 − jε′′r2 (3.39)

The tangential magnetic fields in Region n can be calculated from

Hφn(βnρ) =
1

jωµ0

dEzn
dρ

(3.40)

Hence, the magnetic fields in Regions 1 and 2 are given by:

Hφ1(β1ρ) =
1

jωµ0

dEz1
dρ

=
β1A1

jωµ0

J ′0(β1ρ) (3.41)
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and

Hφ2(β2ρ) =
1

jωµ0

dEz2
dρ

=
β2

jωµ0

[
A2H

(1)′

0 (β2ρ) +B2H
(2)′

0 (β2ρ)

]
(3.42)

We next apply boundary conditions at the boundary between Region 1 and Region

2 (ie. ρ = a) to solve for the unknown coefficients. The tangential electric and

magnetic fields must be continuous at the boundary, hence

Ez1|ρ=a = Ez2|ρ=a (3.43)

Hφ1|ρ=a = Hφ2|ρ=a (3.44)

Substituting in equations (3.36)-(3.37) into (3.43) and (3.41)-(3.42) into (3.44), we

obtain the following two equations:

A1J0(β1a) = A2H
(0)
0 (β2a) +B2H

(2)
0 (β2a) (3.45)

β1A1J
′
0(β1a) = β2

[
A2H

(1)′

0 (β2a) +B2H
(2)′

0 (β2a)

]
(3.46)

The surface impedance is given for a tubular wire is given by the ratio of the

tangential electric and magnetic fields at the outer boundary (ρ = b). In equation

form, this may be expressed as

Zs =
Ez2|ρ=b
Hφ2|ρ=b

(3.47)

The coefficient A1 can be expressed in terms of the coefficients A2 and B2 by using

equation (3.46). Substituting the expression for A1 in terms of A2 and B2 into

equation (3.45), B2 may be determined in terms of A2. This relation is shown

below:

B2 =

[
β2H

(1)′

0 (β2a)J0(β1a)− β1H
(0)
0 (β2a)J ′0(β1a)

β1H
(2)
0 (β2a)J ′0(β1a)− β2J0(β1a)H

(1)′

0 (β2a)

]
A2 (3.48)

Equation (3.48) may be substituted into the expressions for the electric and mag-

netic fields in Region 2. The surface impedance is determined by using (3.47) where

the unknown coefficients cancel in the quotient and yield the following expression
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for the surface impedance:

Zs =
jωµ0

β2

H
(1)
0 (β2b)X1 +H

(2)
0 (β2b)X2

H
(1)′

0 (β2b)X1 +H
(2)′

0 (β2b)X2

(3.49)

After applying the Hankel function recursion relations for the derivative, the coef-

ficients X1 and X2 may be written as

X1 = β2J0(β1a)H
(2)
1 (β2a)− β1J1(β1a)H

(2)
0 (β2a) (3.50)

X2 = β1J1(β1a)H
(1)
0 (β2a)− β2J0(β1a)H

(1)
1 (β2a) (3.51)

and the surface impedance for a tubular nanowire is given by:

Zs = −jωµ0

β2

H
(1)
0 (β2b)X1 +H

(2)
0 (β2b)X2

H
(1)
1 (β2b)X1 +H

(2)
1 (β2b)X2

(3.52)

The surface impedance for a tubular wire was first developed by King. King’s

expression differs from the above expression and is shown below [46]:

Zs =
jωµ0

β2

J0(β2a)Y1(β2b)− Y0(β2a)J1(β2b)

J1(β2a)Y1(β2b)− Y1(β2a)J1(β2b)
(3.53)

Using the Lorentz-Drude model for gold to generate the complex permittivity, the

surface impedance expression for a tubular nanowire and the King expression for

the surface impedance may be computed. Figure 3.8 shows a numerical comparison

of the tubular nanowire surface impedance formulation with King’s formulation.

It can be seen that the two formulations give different results for a thin shell tubu-

lar nanowires. This difference is due to the a different boundary condition being

applied at the inner radius (ρ = a). In King’s formulation the electric field van-

ishes at the inner radius, however in the formulation in this work no conditions are

placed on the electric field value at the inner radius.

We now consider the case of a tubular nanowire as the inner radius a becomes

small. For small radius a, we must apply the small argument approximations for
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Figure 3.8: Surface impedance Zs for a gold tubular nanowire of varying inner radii
and constant outer radius.
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Bessel and Hankel functions in equations (3.50) and (3.51) shown below [38]:

J0(x) ≈ 1 (3.54)

Y0(x) ≈ 2

π
ln
(γx

2

)
(3.55)

J1(x) ≈ x

2
(3.56)

Y1(x) ≈ − 2

πx
(3.57)

Therefore,

H
(1)
0 (x) ≈ 1 + j

2

π
ln
(γx

2

)
(3.58)

H
(2)
0 (x) ≈ 1− j 2

π
ln
(γx

2

)
(3.59)

H
(1)
1 (x) ≈ x

2
− j 2

πx
(3.60)

H
(2)
1 (x) ≈ x

2
+ j

2

πx
(3.61)

Substituting equations (3.54), (3.56) and (3.58)-(3.61) into (3.50)-(3.51) and taking

the limit as a goes to zero, equation (3.52) becomes

Zs =
jωµ0

β2

J0(β2b)

J ′0(β2b)
= j

Z0√
ε′r2 − jε′′r2

J0(β2b)

J ′0(β2b)
(3.62)

which is the same expression as the surface impedance for a nanowire (equation

(3.20)). It can also be shown that by taking the limit of the above expression for

the surface impedance as b becomes large, we will obtain the surface impedance

expression for a half-space.

3.5 Summary

We have developed surface impedance expressions for three types of nanostruc-

tures in this chapter: nanoslabs, nanowires and tubular nanowires. The surface

impedance was calculated by taking the ratio of the electric field and magnetic

field at the boundary of the structure. The dispersive nature of materials at the
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infrared and optical spectrum are incorporated into the surface impedance models

through the permittivity. Asymptotic analysis of these surface impedance ex-

pressions provide expected results for the three nanostructures considered. These

surface impedance models can be used to efficiently analyze nanoscale structures

efficiently. The application of surface impedance models for studying nanowire

dipoles will be discussed in the Chapter 4 and the required modification to the

integral equation will be explained.



Chapter 4
Modeling of Nanoscale Dipole

Antennas

4.1 Introduction

The dipole is the most basic antenna element. In order to study properties of

dipole antennas, it is necessary to determine the current distribution on the dipole.

The current distribution on a dipole can be determined by solving an integral

equation. In this chapter, the moment method for solving the integral equation

for the current distribution on a dipole will be explained. Modifications to the

moment method formulation will be discussed in order to accommodate the non-

idealities of nanoscale dipole antennas at infrared and optical frequencies. The

method of moments will be applied to gold and silver nanowire dipole antennas

and a nanoscale perfectly electrically conducting (PEC) dipole. Comparisons will

be made between the moment method code and commercially available codes for

gold and silver nano-dipole antennas.

4.2 Method of Moment Formulation

The method of moments technique was first applied to antenna analysis by Har-

rington in the late 1960s [47, 48]. The moment method is useful technique for

solving electromagnetics problems because it reduces an integral equation into a
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system of linear equations. For dipole antennas, we wish to solve the integral

equation for the current distribution along the wire. Once the current distribution

is known, useful antenna parameters such as the impedance and radiation pattern

may be determined. For a perfectly conducting dipole antenna, we wish to solve

the following integral equation for the current on surface of the wire [49]:∫
I(z′)K(z, z′)dz′ = Et(z)− Ei(z) (4.1)

where I(z′) represents the current along the wire, K(z, z′) is the kernel, Et(z) is

the tangential field, and Ei(z) is the incident electric field. However for a perfectly

conducting dipole antenna, the tangential electric field must be zero on the surface

of the dipole, hence equation (4.1) becomes∫
I(z′)K(z, z′)dz′ = −Ei(z) (4.2)

In order to accurately model nanowire antennas in the infrared and optical range,

the material’s dispersive properties must be included into the modeling approach.

The method of moments technique allows for the lossy nature of materials to be

accounted for by using a surface impedance model. In Chapter 3, we developed a

surface impedance model for nanowires in the infrared and optical spectrum. To

account for losses, integral equation in equation (4.1) must be modified since the

tangential fields containing a surface impedance loss model is shown in equation

(4.3). ∫
I(z′)K(z, z′)dz′ = −Ei(z) + ZsI(z) (4.3)

where Zs is the surface impedance. The current in the above integral equation is

expressed in terms of a set of known weighting functions with unknown coefficients.

The selection of the weighting functions is important in order to generate a com-

putational efficient code. Since it is anticipated that the current on a nanowire will

be similar to that of a perfectly conducting dipole, sinusoidal weighting functions

will be used in the moment method approach. A linear set of algebraic equations

is formed by evaluating the inner product of the weighting functions with testing

functions and enforcing the integral equation at each segment location. The testing

functions can differ from the basis functions, but in our implementation a Galerkin
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method was selected where both the weighting and testing function are sinusoidal.

The moment method using a surface impedance model will result in the equations

[49]:
N∑
n=1

Z ′mnIn = Vm (4.4)

where

Z ′mn = Zmn −
Zs

2πa

∫
(m,n)

In(z)Im(z)dz (4.5)

In equation (4.5), In(z) and Im(z) represent the weighting and testing functions

respectively. The region (m,n) indicates the portion of the wire surface shared

by testing function m and weighting function n. The term Zmn is inner product

of the testing and weighting function integrated over a segment. The number of

segments along the wire is determine by the parameter N . The excitation of the

antenna Vm is

Vm = Ei
z(zm) (4.6)

We may write equation (4.4) in matrix form as

[
Zmn

][
In
]

=
[
Vm
]

(4.7)

Hence, the current can be determined using matrix inversion

[
In
]

=
[
Zmn

]−1[
Vm
]

(4.8)

Based on the above equations, a moment code has been developed for studying

nanowires. Recall the surface impedance expression for nanowires derived in Chap-

ter 3 shown in equation (4.9). The surface impedance for nanowires will utilize a

Lorentz-Drude model to describe the material parameters of the non-ideal nano-

dipole.

Zs = − jZ0√
ε′r − jε′′r

J0(ω
√
µ0ε0
√
ε′r − jε′′ra)

J1(ω
√
µ0ε0
√
ε′r − jε′′ra)

(4.9)
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4.3 Simulation of Nano-Dipole Antennas

In this section we will calculate the input impedance for a nanowire dipole made

of Gold and Silver. The geometry of the dipole is shown in Figure 4.1 where the

diameter of the wire is 2a, the length is L and the feed gap size is g. Since the

Figure 4.1: Nanowire dipole dimensions.

thin-wire kernel is used in the method of moments implementation, the wire ra-

dius must be kept to be less than 0.01 λ (a < 0.01λ). We will examine a dipole

at infrared frequencies ranging from 25 THz - 300 THz which correspond to wave-

lengths from 1.2 µm to 6 µm. The dipole has length L = 1.5µm and radius a = 10

nm. In the method of moments formulation discussed in the previous section the

number of segments along the wire is chosen by the parameter N . It was deter-

mined that results in the method of moments converge when setting the number of

segments to 100. The gap size in the dipole was chosen to be equal to one segment

length or 15 nm. The method of moment formulation was compared to FEKO,

a commercial based method of moment code [50]. The results of this comparison

are shown in Figure 4.2 which shows very good agreement between the method

of moments calculations and FEKO. The resonant frequency and real part of the

input impedance at these frequencies for PEC, Gold and Silver nano-dipoles is
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shown in Tables 4.1-4.3.

Table 4.1: Resonant frequencies and input impedance for a PEC nano-dipole using
FEKO and MoM.

FEKO MoM
Frequency (THz) Re{Zin} (Ω) Frequency (THz) Re{Zin} (Ω)

93.1 70.9 93.1 72.2
157 857 163 877
292 109 291 106

Table 4.2: Resonant frequencies and input impedance for a Gold nano-dipole using
FEKO and MoM.

FEKO MoM
Frequency (THz) Re{Zin} (Ω) Frequency (THz) Re{Zin} (Ω)

46.4 193 44.9 185
75.6 2645 76.3 2687
129 229 126 221
153 1718 154 1846
199 285 194 272
218 1000 219 1122
261 303 253 278
274 807 273 931

Table 4.3: Resonant frequencies and input impedance for a Silver nano-dipole
using FEKO and MoM.

FEKO MoM
Frequency (THz) Re{Zin} (Ω) Frequency (THz) Re{Zin} (Ω)

46.4 148 46.6 154
78.5 2942 80.3 3103
132 150 130 148
159 2257 160 2420
207 184 201 172
229 1423 229 1539
271 215 263 208
288 942 288 1104
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The non-idealities of gold and silver in the infrared impact the resonance frequency

of the dipole and the real and imaginary components of the input impedance. Un-

like a dipole in the RF, the PEC model of a nanoscale dipole will not provide a

good approximation of a nanowire dipole composed of real materials. This is due

to the fact that metals at infrared and optical frequencies no longer exhibit “good

conductor” properties and act more like lossy dielectrics. Applying the surface

impedance model to nanowire dipoles is important in order to account for this

effects.

4.4 Summary

An overview of the moment method technique for solving electromagnetic problems

was presented. For nanowire dipoles, a nanowire surface impedance containing the

material properties of the nanowire must be used. The nanowire surface impedance

model was applied to studying gold and silver nanowire dipoles using a Galerkin

method of moments code and FEKO. The method of moments and FEKO results

show good agreement for PEC, gold and silver nanoscale dipoles. It was determined

that gold and silver nanowire dipoles exhibit behavior very different from the PEC

nanodipole behavior which differs from our knowledge of dipole antennas in the

RF and microwave spectrum.
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Chapter 5
Conclusions

5.1 Summary and Conclusions

In this thesis, nanowires made of semiconducting and metallic materials were stud-

ied. The dielectric properties of semiconducting and metals in the infrared and

optical spectrum were studied using experimental data and oscillator models such

as the Lorentz-Drude model. The particle swarm optimization algorithm was intro-

duced and applied to parameter fitting of a Lorentzian oscillator model which may

be used to input dispersive material properties into a finite-difference time-domain

electromagnetic modeling code. The PSO technique was used to parameter fit a

Lorentzian model for Gallium Phosphide, but may be used to fit parameters for

other materials given experimental data. Scattering from infinitely long dielectric

wire was applied to a Gallium Phosphide nanowire using the well-known analytical

solution.

The electric field magnitude was calculate for GaP nanowires of varying radii for

transverse magnetic and transverse electric polarizations. Closed-form solutions

for the electromagnetic intensity inside lossless and lossy nanowires were derived

and applied to GaP nanowires. The ratio of the intensity for TMz to TEz was ex-

amined as a function of diameter and it was determined that for diameters under

125 nm, the electric fields in TMz gave a resonant response. Additional resonances

occur within the nanowire for larger diameter wire depending on the product of

the wavenumber and wire diameter. The polarization dependence at normal inci-
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dence of the electric fields inside the wire was calculated from the contributions of

transverse magnetic and transverse electric polarizations and the incidence angle.

For diameters where the ITM to ITE ratio is large, a dipole-like pattern (cos2θ) was

observed when the intensity is plotted as a function of angle. This polarization

dependence agrees very well with experimental analysis performed by Professor

Peter Eklund’s group.

Surface impedance models were examined for simulating nanostructures. Surface

impedance models are of interest because they provide a computationally efficient

means of simulating a nanoscale structure without the need for fine meshing. In this

thesis, surface impedance models for nanoslabs, nanowires and tubular nanowires

were derived. In the case of the nanoslab, we examined a dielectric material with

variable thickness surrounded by free-space on both sides. This surface impedance

model incorporates slab thickness which can be used in the design and optimiza-

tion of thin metallic patches for infrared and optical frequency selective surfaces.

Nanowire and tubular nanowire surface impedance models were derived and ex-

amined asymptotically. The nanowire surface impedance model was incorporated

into a method of moments code and FEKO. Due to the properties of metals in the

infrared and optical, the input impedance for a nanowire dipole varies dramatically

from that of a perfectly conducting dipole.

5.2 Future Work

We have examined the properties of nanowires in the infrared and optical spec-

trum using analytical solutions for scattering from cylinders and surface impedance

models. Nanowire modeling using other methods such as finite-element and finite-

difference time-domain also should be studied to validate the surface impedance

models. Electromagnetic modelings tools which are able to finely grid metallic

structures at infrared and optical wavelengths are still underdevelopment. These

models can then be used to develop novel infrared and optical devices.

One hypothetical device to be studied infrared or optical detector coupled to a

high-frequency diode for solar energy harvesting and light detection. A nanoscale
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dipole may be attached to a high-frequency diode. The length of the dipole con-

trols the operating frequency of the detector. Using the surface impedance model,

the input impedance can be predicted such that a matching structure to the high-

frequency diode can be designed for maximum power transfer. More complex

antenna elements with wider bandwidth such as an open-sleeve dipole may be

considered for use as infrared and optical detectors. Nanowire modeling tech-

niques can also be used to design optical bio-detection devices. The large fields

that occur due to light excitation on nanoscale metallic structures is well known.

Exploiting these large fields, molecules may be excited and fluoresce. Due to their

small size, nanoscale structures are optimal devices for selectively exciting small

molecules for bio-sensing application. Further development in nanoscale electro-

magnetic modeling methods will enable the design and optimization of nanoscale

structures for infrared and bio-detectors to occur prior to fabrication.

In this work, only a few metals (Ag and Au) and semiconductors (GaP) were

considered. Several other metals and semiconductors may be studied for their use

in nanoscale electromagnetic devices. In addition, the doping of semiconductors

can provide additional flexibility when designing novel infrared and optical elec-

tromagnetic devices. Using the particle swarm optimization algorithm discussed

in this work, parameters for material models may be determined for incorpora-

tion into FDTD modeling codes. Investigating other metallic and semiconducting

materials through electromagnetic modeling can lead to a better understanding of

which materials provide good performance for infrared and optical electromagnetic

devices. Using this library of materials, optimization methods such as the genetic

algorithm or particle swarm optimization algorithm may be used to optimize the

material selection and device dimensions for enhancing device performance.
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