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ABSTRACT 
 
 

Tropical cyclones (TCs) are among the most destructive and deadly natural phenomena on the 
planet. Using the historical Atlantic TC record, this thesis first examines the empirical 
relationships between climate state variables and Atlantic tropical cyclone (TC) counts. State 
variables considered as predictors include indices of the El Niño/Southern Oscillation (ENSO) 
and Northern Atlantic Oscillation (NAO), and both ñlocalò and ñrelativeò measures of main 
development region (MDR) sea surface temperature (SST). In addition, the considered 
predictors include indices measuring the so-called ñAtlantic Meridional Modeò (AMM) and the 
West African monsoon. Using these predictors in forward stepwise Poisson regression, this 
thesis examines the relationships between TC counts and climate state variables. As a further 
extension on past studies, both basin-wide named storm counts and cluster analysis time series 
representing distinct flavors of TCs, are also modeled. A wide variety of cross validation metrics 
reveal that total TC counts may be more skillfully modeled than the cluster series, and the most 
skillful models most commonly share three predictors: the MDR SST index, an index of ENSO, 
and the NAO index. 
 The observed record of Atlantic TCs is relatively short however, and is subject to 
potential biases owing to lack of observation platforms such as aircraft reconnaissance and 
satellite imagery in earlier decades. Studies of long-term trends in TC activity are thus hindered 
by the limitations and uncertainty within the historical data. Therefore, this thesis also examines 
TC activity over a longer time frame using results from a long-term simulation of the NCAR CSM 
1.4 coupled ocean-atmosphere climate model. The model has been forced with estimated 
natural and anthropogenic factors over the past millennium. Atmospheric variables from the 
model simulation are used to drive a recently developed downscaling relationship that simulates 
TC genesis and tracking over the course of the 1000-year simulation. This downscaling process 
generates a realistic long-term TC track dataset over an extended period of time, free of the 
observational record's many restrictions and biases.  The realistic track data was used to 
perform an objective analysis of long-term trends in Atlantic TCs and TC landfalls and the 
potential underlying climate drivers. Analysis of TC event time series reveal that counts of 
landfalling TCs and even landfalling hurricanes (i.e. the subset of relatively strong TCs) track 
relatively well with the total basin-wide TC activity on multidecadal and longer timescales. 
Statistical models driven with relevant climate predictors derived from the model fail to explain 
as much variance as those which have been developed and applied to modern historical TC 
counts, but they do demonstrate significant statistical skill over the long-term.   
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Chapter 1 
 

Introduction 
 

  

 The potential origins of systematic interannual and longer-term variability in North 

Atlantic Tropical Cyclones (TCs) have been investigated in numerous studies over the past 

decade. Anomalous recent levels of activity, and in particular the record-breaking 2005 Atlantic 

Hurricane Season, have invigorated interest within the scientific community on this topic. A 

number of recent studies use statistical regression models to examine the apparent impact of 

climate state variables on TC activity including recent trends. 

 The El Niño/Southern Oscillation (ENSO) has long been known to have an impact on 

Atlantic TC activity, with El Niño (La Niña) tending to diminish (enhance) season TC activity 

(e.g. Gray 1984). Indices of ENSO accordingly represent a primary predictor used in past 

studies attempting to statistically model Atlantic TC activity (e.g. Bove et al. 1998; Elsner 2003; 

Elsner and Jagger 2006; Mann et al. 2007). A number of studies also consider the role of the 

Northern Atlantic Oscillation (NAO) in Atlantic TC activity (e.g. Elsner et al. 2000b; Elsner 2003; 

Elsner and Jagger 2006; Mann et al. 2007), which influences seasonal TC activity through an 

influence on large-scale tracking of storms (e.g. Elsner 2003). Warm ocean surface favors the 

formation and development of TCs (e.g. Gray 1968), as it is closely tied to key thermodynamic 

quantities involved in the energetics of TCs, such as potential intensity (Emanuel 1995). 

Numerous studies modeling Atlantic TC activity thus incorporate sea surface temperatures 

(SST) over the Main Development Region (MDR) during the primary season (Aug-Oct) for 

Atlantic TC formation (e.g. Hoyos et al. 2006; Emanuel 2005; Sabbatelli and Mann 2007; Mann 

et al 2007). Recently, there has been some debate within the research community as to whether 

MDR SSTs themselves (e.g. Emanuel 2005) or some ñrelativeò measure of SST that measures 
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warmth of the MDR relative to the tropical mean (e.g. Vecchi et al. 2008; Ramsay and Sobel 

2010) is most appropriate. 

 A recent set of analyses (Sabbatelli and Mann, 2007; Mann et al, 2007) have modeled 

annual basin-wide TC counts on three predictors: ENSO, the NAO, and Aug-Oct MDR SSTs. 

These analyses employed Poisson regression, a tool that is appropriate for modeling a Poisson 

process with a rate of occurrence that is conditional on underlying state variables (e.g. Elsner et 

al. 2000b; Elsner 2003). The resulting statistical model displayed significant predictive skill, 

accounting in cross-validation for roughly half of the variance in annual Atlantic TC counts. 

However, it may be possible to enhance the skill in TC count statistical modeling exercises by 

exploring a wider range of potential climate predictors. 

 Additional potential predictors include rainfall in the Sahel region in Western Africa 

during the boreal summer. Studies have found that negative precipitation anomalies in this 

region coincide with an increase of dry African dust layers, which have the potential to inhibit TC 

genesis (Prospero and Lamb 2003). Moreover, an anomalously dry season has the potential to 

alter the characteristics of moist easterly waves that can eventually develop into TCs 

(Goldenberg and Shapiro 1996). Furthermore, previous studies hypothesize that droughts in 

Western Africa are consistent with stronger upper-level westerlies that can increase the amount 

of shear in the Atlantic basin (Landsea and Gray 1992). Recent studies use this information to 

correlate precipitation patterns from the African monsoon to Atlantic TC development, but this 

relationship is non-stationary (Bell and Chelliah 2006; Zhang and Delworth 2006; Fink et al. 

2010.) 

 Other climate state variables that have been argued to impact tropical Atlantic TC 

behavior include the Atlantic Meridional Mode or ñAMMò index (Vimont and Kossin 2007). 

Furthermore, there are several alternative metrics of ENSO (Barnston et al. 1997) that might be 

employed (see Figure 1.1). In addition to the Niño3.4 index favored by, for example, Mann et al  
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Figure 1.1 Locations of the four Niño regions. The indices measured in the Niño 3, 3.4, and 1+2 regions 

are used in this thesis. Source: NOAA/NWS/NCEP/CPC 2009. 

 

 (2007), one might alternatively employ the Niño3 or Niño1+2 indices of ENSO (e.g. Kossin et 

al. 2010). Finally, some researchers, as discussed earlier, argue that the influence of tropical 

Atlantic SSTs on Atlantic TC activity is best measured not by MDR SST itself, but through its 

value relative to global tropical mean SST, i.e. through a ñrelativeò MDR SST index (Vecchi et al. 

2008), the difference between the MDR and tropical mean SST. Incorporating all of these 

potential alternative climate state variables into a potential pool of candidate predictors allows 

for a more comprehensive and robust exploration of the appropriate statistical models relating 

climate and Atlantic TC counts.  

 Gray (1984) found a relationship between Atlantic tropical cyclone activity and the 

stratospheric Quasi-Biennial Oscillation (QBO). However, recent work of Camargo and Sobel 

(2010) shows that this relationship does not hold true any longer, therefore the QBO is not 

included as one of the potential predictors. 

 In addition to expanding the pool of potential predictors, it is worthwhile to decompose 

historical basin-wide TC counts into subgroups that cluster with respect to their path, location of 

genesis, and other track characteristics (Elsner et al. 1996; Nakamura et al., 2009; Kossin et al. 
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2010). In principle, the factors that govern different flavors of TCs may differ, and additional 

predictive skill, as well as insight, might arise from modeling them separately, rather than 

collectively.  

 Unfortunately, however, statistical modeling over the historical record of Atlantic TCs 

(Jarvinen et al. 1984) is not a perfect method for analyzing variability in tropical cyclones. The 

relatively short observed record only spans the past century and a half (1851-present), which 

makes understanding long-term trends in TC activity difficult. Recent studies have also argued 

that the observed record is subject to a potentially significant undercount bias in the earlier 

decades that has arisen from improved observation and measurement techniques such as 

aircraft reconnaissance and satellite imagery (e.g. Landsea 2007; Chang and Guo 2007; Mann 

et al. 2007).  As a result of this uncertainty over the observed record, the significance of 

statistical studies on long-term tropical cyclone variability through the observed historical record 

is limited even further. Studies on the most destructive tropical cyclone events are particularly 

troublesome, as intense hurricanes and TC landfalls represent only a small fraction of the 

observed record.   

 To account for the shortcomings of the observed record, an idealized millennium-long 

coupled ocean-atmosphere climate model is utilized to analyze long-term tropical cyclone 

landfall variability. A recently developed statistical and dynamical downscaling relationship 

(Emanuel et al. 2008; Emanuel et al. 2010) is employed to produce genesis, tracking, and 

intensification of synthetic tropical cyclones within the climate model simulation. Ultimately, this 

process produces an idealized, yet statistically realistic, database of TCs across the entire 

Atlantic basin over a millennial (AD 850-1999) period.  

 With these synthetic TC counts, it becomes possible to examine long-term trends in 

Atlantic TC activity without the limitations of the existing historical record. Once again, to 

accomplish an objectively analysis of basin-wide TC counts, model-based measurements of 

ENSO, the NAO, and MDR SSTs are calculated from the long-term climate simulation. Much in 
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the same way that the observed record is analyzed, these climate state variables are then used 

to develop a series of regression models for TC counts and other measures of TC activity. 

Another alternative set of regression models is also developed by using the regression 

coefficients from the most skillful model over the shorter observed record to back project TC 

counts over the duration of the long-term climate simulation. These long-term statistical models 

are ultimately used to objectively examine the apparent impact that climate cycles have upon 

interannual and longer-scale basin-wide tropical cyclone variability. 

 It is also desirable to understand better how TCs affect people and the landmasses that 

surround the Atlantic Basin. The millennium-long track dataset has a larger sample size of such 

events than does the relatively short historical best-track record, providing the groundwork for a 

more complete analysis of landfalling Atlantic storms, without the limitations set forth by the 

sparsely populated observed record. The tracks and intensities of each storm in the simulated 

long-term record are used to create time series of landfalling TCs, hurricanes (sustained winds 

> 33 m s-1), and major hurricanes (sustained winds > 50 m s-1). These time series are further 

subdivided by creating a time series of storms that make direct landfall along the coastline of the 

United States of America. Comparing of these landfall time series to the annual basin-wide 

counts, and various climate state variables, may lead to a better understanding of the most 

destructive Atlantic TCs. 
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Chapter 2  
 

Statistical Modeling of Observed Atlantic Tropical 
Cyclone Counts 

 
In this chapter, Poisson regression models are used to analyze the empirical relationships 
between climate state variables and Atlantic tropical cyclone (TC) counts in the observational 
record. These statistical models are created over three different periods of time within the 
historical record for both total TC counts and a cluster time series comprised of four different 
"flavors" of Atlantic TCs.  

 

2.1 Data 

 
 Sabbatelli and Mann (2007) and Mann et al. (2007) uses three specific predictors in 

modeling annual Atlantic basin-wide TCs: (1) the post-season boreal winter December-February 

(DJF) Niño 3.4 SST index, (2) the post-season boreal winter December-March (DJFM) NAO 

index (Jones et al. 1997) and (3) the in-season August-October (ASO) mean MDR SSTs (6°-

18°N, 20°-60°W). The SST data are based on a blend of three published SST products (Rayner 

et al. 2003; Smith and Reynolds 2003; Kaplan et al. 1998). The pool of candidate predictors 

also includes the additional series that are discussed in chapter 1: (4) the in-season June-

September (JJAS) Sahel precipitation index (from the Joint Institute for the Study of the 

Atmosphere and the Ocean1, "JISAO"; 2009), and alternative ENSO indices of the post-season 

boreal winter including the (5) Niño1+2 (from NOAA's Climate Prediction Center2) and (6) the 

Niño 3 SST indices. Also considered as a candidate predictor is the (7) ASO ñrelativeò MDR 

SST index, which is calculated by subtracting the global tropical SST (averaged across all 

latitudes from 23.5°N to 23.5°S) from the averaged North Atlantic MDR SST series. In addition 

the pool of candidate predictors includes, (8) the pre/in-season May-June (MJ) NAO index 

                                                           
1
 http://jisao.washington.edu/data/sahel/ 

2
 http://www.esrl.noaa.gov/psd/data/climateindices/list/ 
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(Jones et al. 1997) and (9) the in-season June-November (JJASON) AMM index (from NOAA's 

Climate Prediction Center3). These datasets are all available across various time periods, 

ranging as far back as 1870. Plots of the time series are shown in Figure 2.1, and further details 

are provided in Table 2.1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Time series (1870-2007) of potential predictors, indicating conditions that are favorable (red) 

and unfavorable (blue) for TC activity. 
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Candidate Predictor Information 
  Predictors Time Interval Used 

1 in-season Aug-Oct MDR SSTs 1870-2007 

2 in-season Aug-Oct relative MDR SST index 1870-2007 

3 pre/in-season May-June NAO index 1870-2007 

4 post-season Dec-Mar NAO index 1870-2007 

5 post-season Dec-Feb Niño3 index 1870-2007 

6 post-season Dec-Feb Niño3.4 index 1870-2007 

7 post-season Dec-Feb Niño1+2 index 1950-2007 

8 in-season Jun-Sep Sahel precipitation index 1900-2007 

9 in-season Jun-Nov AMM index 1950-2007 

   

 

Table 2.1 List of all state variables that are considered as candidate predictors in this chapter. The 

longest time interval of each predictor is also listed. 

 

 As previously stated, it may be desirable to subdivide the basin-wide TC best-track 

database ("HURDAT", Jarvinen et al. 1984) into smaller clusters of like storms. Grouping storm 

counts by storm track using a ñclusterò methodology has proven to be advantageous in several 

previous studies. The technique has been previously applied to Atlantic extratropical cyclones 

(Gaffney et al. 2007), western North Pacific typhoons (Camargo et al. 2007 a; b), eastern North 

Pacific hurricanes (Camargo et al. 2008), Fiji TCs (Chand and Walsh 2009) and most recently to 

Atlantic TCs (Kossin et al. 2010). This specific cluster technique is accomplished by utilizing a 

mixture model, in which every component consists of a quadratic regression curve of TC 

position versus time. As per Kossin et al. (2010), the model is then fit to the data by maximizing 

the likelihood of the parameters, given the data. Each TC track is then assigned to one of K 

different quadratic regression models, with each model being described by regression 

coefficients and a noise matrix. As is the case in the K-means method, the number of clusters 

used in this methodology is not uniquely determined in the cluster analysis. Therefore, in-

sample log-likelihood values are used to obtain the optimum number of clusters, just as in 

Camargo et al. (2007a; 2008), and Kossin et al. (2010).This analysis found that at least four 
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clusters are needed to examine the track types that appeared in all of the sub-samples. 

Consequently, our analysis uses the four-cluster decomposition of Atlantic TCs of Kossin et al. 

(2010), dating back to 1870, in addition to the basin-wide Atlantic TC series.  

 Due to improvements over time in the detection of TCs due to technological advances 

such as aircraft reconnaissance and satellites, there is likely a bias in estimates of basin-wide 

TC counts in earlier decades of HURDAT (see e.g. Landsea 2007; Chang and Guo 2007; Mann 

et al. 2007). Therefore, various published adjustments of the basin-wide TC series are taken 

into consideration to account for the potential undercount bias during the earlier years of the 

North Atlantic TC record. The considered adjusted time series include the TC count series of 

Mann et al. (2007), which is based on an estimated modest undercount of 1.2 TCs per year 

prior to the advent of aircraft reconnaissance in 1944 (referred to as the ñlightly adjustedò basin-

wide TC count series). Also considered is the adjusted series of Landsea (2007), which is based 

on a more substantial undercount bias of 3.0 storms annually in the pre-reconnaissance era 

(referred to as the ñheavily adjustedò basin-wide TC count series; see Mann et al. 2007 for 

further discussion). Cross-validation exercises discussed later favor the adoption of the ñlightly 

adjustedò series. 

 This leads to a total of five target seriesðthe lightly adjusted basin-wide TC counts 

described in Mann et al. (2007), and the four TC cluster series defined in Kossin et al. (2010)ð

for which we seek to derive objective, optimal statistical models in terms of the potential 

underlying climate factors (TC series shown in Figure 2.2). A potential downside of modeling the 

individual cluster TC series is that the sample size contributing to seasonal mean counts is often 

greatly diminished relative to basin-wide counts. In some cases, the sample sizes may be 

prohibitively small for establishing statistical skill or significance in any underlying statistical 

model. 
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Figure 2.2 Time series (1870-2007) of the primary TC predictands that are analyzed in this chapter. Red 

(blue) indicates positive (negative) TC count anomalies. Basin-wide TC counts have been adjusted as 
described in text. 
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2.2 Methods 
 
  

 Using the expanded pool of predictors discussed in section 2.2, and the set of target 

predictands that include both adjusted basin-wide TC counts and each of the four cluster TC 

count series, Poisson regression is applied to model climate influences on annual TC counts. 

This approach assumes TC counts can be represented by a Poisson process.  

   (1) 

In a Poisson distribution the mean occurrence rate, µ, is the sole free parameter, and the 

unconditional case has a maximum likelihood value of the mean annual count. The null 

hypothesis is that µ is constant, while Poisson regression tests the alternative hypothesis that µ 

is a function of other state variables, e.g. climate state variables.  

Some recent studies suggest that there are other modified or alternative forms of 

regression models that might also be suited to model the influence of climate state variables on 

TC activity (e.g. Villarini et al. 2010; Mestre and Hallegatte, 2007). That notwithstanding, 

Poisson regression is favored in these methods, given the rich body of work that exists over the 

past two decades applying this specific tool to modeling TC count data (e.g. Solow and Nicholls 

1990; Solow and Moore 2000; Solow and Moore 2002; Elsner et al. 2000b; 2001; Elsner 2003; 

Elsner and Jagger 2006, Tippett et al. 2010). 

 A standard forward stepwise (Poisson) regression is applied to each of the 5 available 

predictands (the 4 TC cluster series and the adjusted basin-wide TC series) using all possible 

combinations of n predictors (n=1,2,é,N, where N is the maximum available number of 

predictors available). Not all predictors extend back over the full interval (i.e. back to 1870; see 

Table 2.1), so models are tested over three possible time intervals, the shortest of which allows 
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testing of all predictors, and the longest of which has a smaller pool of candidate predictors: 

N=6 for the analyses from 1870, N = 7 for the analyses from 1900, and N = 9 for the analyses 

from 1950. To ensure independence among the predictors at most one instance of an ENSO 

index and one instance of an MDR SST index is used in any one given model. 

 The stepwise forward regression procedure is conducted as follows. A statistical model 

is constructed using all possible choices of a single predictor from the pool of N available 

predictors. The predictor that yields the lowest mean-squared error (MSE) is chosen. From the 

remaining pool of N-1 candidates, a second predictor is considered, again selecting the 

bivariate combination with the lowest MSE. This procedure is then repeated until all N predictors 

are used. Cross-validation statistics (see below) subsequently are used to select the optimal 

order of the statistical model M (which in general is substantially lower than N). The M variable 

statistical model that provided the lowest averaged cross-validated MSE is selected. 

 The goodness-of-fit of the resulting statistical models are measured by a suite of metrics, 

including the mean-squared error (MSE; defined in Wilks 2005), coefficient of determination (R2; 

defined in Wilks 2005) and ɢ2statistics measuring both the goodness of fit of the statistical 

model and the ñadequacyò of the fit (that is, the consistency of the residual variance with purely 

random Poisson statistical behavior). The ɢ2 statistics are defined as: 

  В В      ς                                        В
 
  σ , 

where P is the Poisson regression model for the observed TC count, Y is the observed 

(expected) TC counts, X is the number of years in the time interval, nij is the contingency table 

of model transition counts, and eij is the contingency table for the observed (expected) TC 

counts (Wilks 2005). 
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 In addition, cross-validation experiments independently evaluate the predictive skill of 

the underlying statistical models. In these experiments, the model is calibrated over one-half of 

the data set, and an independent prediction of TC counts is made for the other half, and the 

goodness of fit of the prediction is evaluated. The procedure is repeated alternatively using both 

the first and second half of the data for calibration/validation, and an average set of validation 

scores are obtained. A variety of statistical measures are favored in the climate literature for 

evaluating the cross-validation skill of statistical models. Among these are the validation MSE, 

and various forms of the coefficient of determination R2  (which measures the fraction of 

variance resolved by the statistical model). Calculating a validation R2 score adopting the 

outside-sample baseline mean yields what is referred to as the ñreduction of errorò (ñREò), while 

calculating a validation R2score adopting the out-of-sample baseline mean yields a somewhat 

more challenging metric, that is sometimes referred to as the ñcoefficient of efficiencyò or ñCEò. 

These two metrics are calculated as:  

ὙὉ ρ
ᴁ ᴁ

ᴁ  ᴁ
    τ               ὅὉ ρ

ᴁ  ᴁ

ᴁ ᴁ
   υ, 

where P is the Poisson regression model, Y is the TC time series predictand, and the subscripts 

designate the in-sample or out-of-sample half of the model or predictand data. Additionally, the 

squared linear correlation coefficient (r2; defined in Wilks 2005) can be used to measure the 

fraction of resolved variance, though it should be noted that it is insensitive to both the mean 

and variance of the estimate, and is in this sense a somewhat less rigorous validation measure. 

In principle, the most skillful models should out-perform the others with respect to most, if not 

all, of these alternative cross-validation skill metrics. 

 The principle behind our approach is to make as objective as possible the determination 

of statistical models linking climate and TCs. This goal is achieved by employing (a) a large pool 

of predictors that includes many, if not all predictors that have been suggested in previous 
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statistical modeling exercises, and (b) an objective stepwise screening process both for 

selecting predictors from a larger pool of candidate predictors, and for independently evaluating 

the skillfulness of competing statistical models. 

2.3 Results 

 

2.3.1 Basin-wide Tropical Cyclone Counts 

 

 The previously defined ñlightly adjustedò version of the basin-wide TC count series 

(Figure 2.2a) is used for all further analyses of basin-wide TC counts discussed in this chapter.  

This decision is based on the fact that the cross-validation exercises consistently indicated 

inferior skill for statistical models based either on unadjusted or ñheavily adjustedò versions of 

the basin-wide TC count series (see supplementary information in the appendix for statistical 

results using unadjusted and heavily-adjusted versions of the basin-wide TC count series).   

 The results of the modeling exercises involving the adjusted (as discussed above) basin-

wide TC counts are shown in Figure 2.3a, while Table 2.2 summarizes the main statistical 

results from both calibration and cross-validation exercises. The cross-validation results appear 

to provide some degree of support for recent work by Mann et al. (2007) favoring the use of 

absolute (rather than ñrelativeò) MDR SST, and the use of ENSO and NAO indices as additional 

predictors. The Niño 3.4 index is statistically favored over the other two (Niño 3 and Niño 1+2) 

ENSO indices considered. On the other hand, the particular NAO index used, or whether the 

NAO should even be used as an additional predictor shows less robustness, with some degree 

of sensitivity to the calibration interval used (winter NAO is favored for the full 1870-2007 

interval, while no NAO index is favored over 1900-2007, and the MJ NAO index is favored for 

1950-2007). Using the full interval, ɢ2 tests (see Table 2.2) indicate that the statistical model is 
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highly significant (afit<< 0.05) and that there is little evidence of unresolved structure in the 

residual variance (aadequacy> 0.95). For shorter training intervals, the adequacy tests are less 

decisive, but certainly do not provide obvious evidence for unresolved structure (aadequacy ~ 0.85-

0.9). 

 
Figure 2.3 Statistical models for Atlantic basin-wide and cluster TC count series using the predictors 

specified in Table 2.1. Shown are the TC counts (blackðadjusted as discussed in text), the models trained 
on the interval 1870-2007 (red), the models trained on the interval 1900-2007 (blue), and the models trained 
on the interval 1950-2007 (green).  
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Table 2.2 Results of calibration and cross validation tests employed in the statistical modeling exercises. 

The various statistics are tabulated as defined in the text. Predictors are indicated in the order they are 
selected in the forward stepwise screening regression. The results of the ɢ

2
 tests are measured with 

respect to the probability (a) of rejecting the relevant null hypothesis. As values of afit approach 0, the 
probability that such a skillful model would arise from chance alone becomes increasingly low. As values 

of aadequacy approach 1, the probability that residual unresolved variance is consistent with purely random 
Poisson process behavior becomes increasingly high.  

 

 As in Mann et al. (2007), roughly half of the total variance in annual basin-wide TC 

counts is resolved in calibration and validation using the full available period (1870-2007), with 

modestly lower levels of skill for the shorter training intervals (1900-2007 and 1950-2007). 

Somewhat surprisingly, the use of other predictors that have been motivated in previous work, 

such as the AMM index and Sahel precipitation, cannot be objectively supported by the forward 

regression approach. It is possible that the shorter training intervals that are available for using 

these predictors (Sahel rainfall extends only back to 1900, and the AMM series extends only 

back to 1950) are simply not sufficient to identify potential additional useful informational content 

in these series. It is also possible that the useful information within these unsupported predictors 

is redundant with the more significant ENSO, NAO, and/or SST indices. Indeed, one 

complication in comparing the relative merit of competing predictors over relatively short (i.e. 
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less than 60 year) time intervals is the fact that the competing predictors differ substantially in 

their frequency-domain attributes (see e.g. Mann and Emanuel, 2006). For example, the AMM is 

closely correlated with Atlantic TC activity on both interannual and decadal timescales (Kossin 

and Vimont 2007; Vimont and Kossin 2007) while MDR SST is most strongly correlated with 

Atlantic TC activity on decadal and longer timescales (e.g. Mann and Emanuel, 2006).  

 

2.3.2 Tropical Cyclone Cluster Time Series 

 

 The statistical results for the model of the four individual TC cluster counts (Figures 2.3b-

e) are more mixed than those obtained for models of basin-wide TC counts. The tracks of the 

TCs within each individual cluster are plotted in Figure 2.4. Overall, a larger mix of predictors 

emerge in the forward stepwise screening regression approach, but in most cases either the 

statistical skill, regression adequacy, or both are called into question by the statistical results 

obtained.  

 The first cluster (Figure 2.3b) contains TCs that originate primarily over the north and 

eastern parts of the basin; these storms tend to have significant curvature in their paths due to 

baroclinic influences (Kossin et al. 2010). Overall, this cluster is the most populated of the four 

clusters, as it accounts for 31% of all basin-wide TCs.  The tracks of the TCs represented in this 

cluster from 1950-2007 are shown in Figure 2.4a. The models trained on this cluster (Figure 

2.3b) tend to be less skillful than those found above for basin-wide TC counts, though 

interestingly the same three predictors (MDR SST, Niño 3.4, and winter NAO) are nonetheless 

chosen in the forward stepwise screening regression procedure using the full (1870-2004) 

interval. The calibration and cross-validation results suggest that roughly 20% of the interannual 

variance is resolved by the statistical model, though CE scores are close to zero, indicating that 
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much of the out-of-sample skill comes from predicting the changes in mean counts. The level of 

skill in the statistical models is less clear using shorter training intervals, and there is substantial 

 

Figure 2.4 TC tracks from 1950-2007 for each of the four clusters, as separated by the cluster analysis 

methods detailed within the text. (Source: Kossin et al. 2010) 

 

evidence (i.e. low values of aadequacy) for unresolved structure. For the shortest training interval 

(1950-2007) the selected model does not pass statistical significance (afit> 0.05). Interestingly, 

the first cluster is the only one for which there is some hint of the predictive value of Sahel 

rainfall, as this predictor is one of the three predictors selected using the 1900-2007 interval (the 

longest interval that includes this predictor). However, the cross-validation results in this case 

indicate limited statistical skill. 

 The second cluster (Figure 2.3c) contains TCs that typically originate in the Gulf of 

Mexico or the westernmost part of the Caribbean and have a northward component in their 

tracks. TCs within this cluster are strongly modulated in intraseasonal time-scales by the 

Madden-Julian Oscillation (Kossin et al. 2010). These storms account for 29% of total basin-
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wide TCs and their tracks are shown in Figure 2.4b. The cross-validation results, however, are 

uniformly poor with this particular cluster, suggesting the possibility that the standard climate 

factors generally considered in modeling annual TC counts simply do not have any decisive 

relationship with this particular family of Atlantic TCs. 

 The third cluster (counts: Figure 2.3d; tracks: Figure 2.4c) includes many of the more 

intense TCs and ones that largely form in the eastern part of the North Atlantic Basin. TCs in 

this cluster also tend to recurve back to the east towards the end of their path, as they interact 

with other synoptic weather features (Kossin et al. 2010). From 1870-2007, this cluster contains 

21% of all storms in the basin. The statistical models for this particular cluster show among the 

greatest apparent skill of all four clusters considered, though the results are quite variable with 

respect to the time interval considered. Over the recent interval (1950-2007), the cross-

validation results indicate skill that is competitive with that obtained above for basin-wide 

storms, suggesting that 40-50% or so of the interannual variance can be skillfully resolved. The 

chosen predictors are again similarðMDR SST, ENSO, and NAO, though the flavors of the 

indices chosen are different (Nino1+2 for ENSO and the pre/within-season MJ NAO). The 

adequacy tests fail over the longer intervals, however, (aadequacy<< 0.05) suggesting that there is 

substantial unresolved structure in the residuals. Moreover, the cross-validation results are both 

inferior and highly variable with respect to the particular metric used for the two longer training 

intervals. 

 The fourth cluster of TCs (counts: Figure 2.3e; tracks: Figure 2.4d) correspond to storms 

that develop primarily in the southern part of the basin and typically have relatively east to west 

tracks. Of the four clusters, this cluster is comprised of the fewest number of storms, accounting 

for only 18% of the total storm counts from 1870-2007. As with the first cluster, cross-validation 

scores generally success that the statistical model can skillfully resolve roughly 20% of the 

interannual variance, though the precise skill varies with the time interval considered. The most 

skillful model is derived for the most recent (1950-2007) interval, where, unlikely any other 
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cluster, the AMM (only available back to 1950) is chosen as one of the three predictors (the 

other two are MDR SST and Nino 1+2). For the 1950-2007 interval, the adequacy test gives an 

indeterminate result (aadequacy ~ 0.3) suggesting the possibility of unresolved residual structure. 

For the two longer intervals (1900-2007 and 1870-2007) a different set of predictors are chosen, 

including in both cases the ñrelativeò MDR SST series, a series that is not selected for any of the 

other cluster series or for basin-wide TC counts. In both cases, there is substantial unresolved 

structure in the residuals, as suggested by the adequacy test results (aadequacy<<0.05). 
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Chapter 3  
 

Atlantic Tropical Cyclones in a Simulation of the Past 
Millennium: Statistical Modeling of Counts with 

Climate Predictors 
 

The modern historical record is too short to test relationships between variations in TC activity 
and underlying climate factors that may drive those variations, on multidecadal and longer 
timescales. In this chapter, the test bed afforded by a very long synthetic TC dataset derived by 
downscaling a forced millennial-length GCM simulation is used to test hypotheses regarding the 
long-term relationships between key climate state variables and basin-wide Atlantic TC activity. 

 

3.1 Data and Methods 

 

 The climate model used to generate a synthetic climate of the past millennium  is the 

National Center for Atmospheric Research's (NCAR) Climate Simulation Model, version 1.4 

(CSM 1.4), which employs NCAR's Community Climate Model, version 3.0 (CCM 3.0) run at 

T31 resolution (3.75° x 3.75°). The CSM 1.4 simulation that is used spans the past millennium 

(AD 850-1999), with the model having been driven by both estimated natural (solar and 

volcanic) and anthropogenic (greenhouse gas and sulphate aerosol) forcings (Ammann et al. 

2007). Noteworthy caveats with regard to the performance of this particular model over the 

Atlantic basin  included a climatological bias toward too much vertical wind shear in the region 

which tends to depress Atlantic TC activity (Vecchi and Soden 2007)ðartificially in this case, 

and the absence of a cooling lower  stratosphere as seen in modern observations. 

 Tropical cyclones are generated within the context of the model simulation history using 

a downscaling method based on boundary conditions prescribed from the monthly mean 

atmospheric state variables of the model, including interpolated 250 hPa and 850 hPa 

meridional and zonal winds, the vertical profile of temperature, and the vertical profile of 

humidity.  The downscaling method (Emanuel et al. 2008; Emanuel et al. 2010) uses these 
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atmospheric variables to produce tropical cyclone genesis, intensities, and tracks. Tropical 

cyclone genesis is initiated first in this method by random seeding in space and time across the 

Atlantic Basin, excluding areas poleward of 75° N or equatorward of 3° N. These storms are 

tracked subsequently through time using a beta-and-advection model, driven by the variances 

and covariances of the 250 hPa and 850 hPa wind components derived from the CSM 1.4. 

Lastly, storm intensities are generated along the lifetime of the storm by inputting ocean SSTs, 

present day climatology of the upper ocean thermal structure, atmospheric wind shear, 

temperatures, and humidity into the Coupled Hurricane Intensity Prediction System (CHIPS). 

Many of the storms, however, suffer from waning intensities at genesis and fail to ever reach 

maximum sustained winds greater than 20 ms-1 because of high wind shear and/or low potential 

intensities. The storms that fail to develop, as noted, are not considered as TCs and as a result, 

are discarded from the synthetic TC dataset.  

 From the synthetic TC database resulting from application of the downscaling approach, 

it is possible to create histories of basin-wide TCs for each year. As discussed later (Chapter 4), 

it may be possible to compare various categories of storms (TCs versus hurricanes and major 

hurricanes) as well as landfalling versus basin-wide storms. Instead, here the focus is placed on 

the relationship between variations in TC counts and the various underlying climate state 

variables known to impact basin-wide TC counts from analyses of the modern historical record 

(Chapter 2). These state variables are calculated directly from the CSM 1.4 climate fields and 

include the three indices found to provide the maximum cross-validated explanatory variance in 

application to the actual observations:  (1) the post-season boreal winter DJF Niño 3 index (for 

the observations, the slightly different Niño3.4 index was used), (2) the post-season boreal 

winter DJFM NAO (3) the in-season ASO mean MDR (6°-18°N, 20°-60°W) SSTs. In addition, 

possible alternative indices discussed in chapter 2 are considered, including (4) the in-season 

ASO global relative MDR SSTs, calculated, as with historical data, by subtracting the averaged 

global tropical SST (averaged across all latitudes from 23.5°N to 23.5°S) from the North Atlantic 
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MDR SST series, and (5) an alternative index of ENSO that measures anomalies of mean 

boreal winter DJF linear zonal SST gradients across the equatorial Pacific (10°S-10°N, 120°E-

90°W), hereby referred to as "Niñograd.", which removes the impact of mean domain-wide 

warming on the measure of ENSO. Anomalies of these predictors are defined with respect to 

the same climatologically base period used for historical observations (1961-1990).  All five of 

these model derived predictors share similar statisticsðsuch as mean, standard deviation, 

extreme valuesðas their observational counterparts (A comparison of these statistics is 

available in a supplementary table in the appendix).   

 The same Poisson regression method detailed in chapter 2 is employed to relate TC 

counts to the underlying climate indices. However, in this case there are two possible ways of 

applying the approach. The first utilizes the Poisson regression models already developed 

based on relating historical TC counts to historical climate indices (as in chapter 2 the results 

are based on use of the ñlightly adjustedò TC series; Mann et al. 2007). The regression 

coefficients from those previous analyses are simply applied to the long-term CSM-derived 

climate state variables to back-project TC counts for the duration of the 1150-year simulation, 

using all possible combinations of the five indices discussed above. As there is an offset bias 

mean annual TC counts over the historical (1870-2007) period in the simulated climate (8.8 TCs 

per year) relative to actual climate (9.6 TCs per year), the statistical model trained on actual 

observations also has a mean offset bias of -0.8 TCs per year. This mean offset has been 

subtracted for the purpose of all subsequent comparisons.  

  The alternative approach to applying Poisson regression to the problem involves simply 

repeating the procedure applied to develop a regression model from actual observations of both 

climate and TC counts, as in chapter 2), but instead using both the simulated climate state 

variables and simulated TC counts.  In other words, the simulated TCs are trained on the 

simulated climate indices (using a training interval beginning in 1870 just as with modern 

observations) and the resulting regression coefficients are used to once again back-project TC 
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counts for the full 1150-year period. In this case, Poisson regression models are generated in 

this manner using the stepwise forward regression approach using all possible combinations of 

the five simulated climate indices discussed above.  

 In an effort to also study interannual TC variability over our long-term TC record (as was 

done in chapter 2 with the observational record), we will closely examine three significant 

epochs in our long-term synthetic TC record: the observational period (1850-1999), the Little Ice 

Age ("LIA"; 1400-1700; Mann et al. 2009b), and the Medieval Climate Anomaly ("MCA; 950-

1250; Mann et al. 2009b). These specific epochs are selected in order to account for periods of 

above average, average, and below average TC activity. Once again, Poisson regression will be 

utilized to evaluate how the model-derived climate predictors relate to the (unsmoothed) annual 

TC counts on these shorter time scales. To relate the results of these models back to the 

models created in chapter 2, the skillfulness of these models is evaluated with the same suite of 

calibration (MSE, R2, Ŭfit, Ŭadequacy)  and cross validation metrics (MSE, RE, CE, r2). 

 

3.2 Results  

 

 The annual TC series is shown along with its smoothed counterpart in Figure 3.1. For 

the purpose of further discussion and comparisons, this and other long-term series have been 

smoothed to highlight multidecadal and longer timescales using a lowpass filter (Mann. 2008; 

using a half-power cutoff at f=0.025 cycles/year, corresponding to a 40 year period). Substantial 

multidecadal and centennial-scale variability is observed throughout the millennial-length record, 

including the modern observational era. Unlike the actual observations (and the results from 

applying the same downscaling procedure over the Atlantic to most other historical climate 

model simulationsðsee Emanuel et al. 2008), simulated basin-wide TC activity in this thesis 

shows a substantial decline over the 20th century. Indeed, the decline begins in the early 19th 
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Figure 3.1 A plot of tropical cyclone counts over the duration of the climate simulation. The annual TC 

counts created within the CSM 1.4 by the downscaling methods described in the text are shown by a thin 
blue line. The thick red line represents the same TC time series smoothed to emphasize multidecadal and 
longer timescales as described in the text. 

 

century and continues through the late 20th century, inversely following the path of 

anthropogenic greenhouse gas forcing in the model simulation.  

 The various climate index time series are shown in Figure 3.2.  Much of the structure in 

the climate indices (e.g. the long-term cooling from Medieval time through the 19th century and 

subsequent warming in both ASO MDR SST and DJF Niño3) can be related to the impact of 

long-term natural and anthropogenic forcing on surface temperatures (Ammann et al. 2007). 

The relative explanatory variance of the various alternative regression models was evaluated by 

calculating MSE and the squared Pearson linear correlation coefficient from the smoothed 

statistical models and the smoothed TC counts over the duration of the simulation (Tables 3.1 

and 3.2). It should be noted that strictly speaking, such variance-based statistics assume an 

underlying null hypothesis of Gaussian-distributed data. This assumption is not appropriate for, 
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 Figure 3.2 The five climate predictors calculated from fields within the CSM over a millennial time scale. 

The predictors shown are (a) Aug-Oct MDR SST anomalies, (b) Aug-Oct relative MDR SST anomalies, 
(c) the mean Dec-Feb Niño 3 index, (d) the Dec-Feb Niñograd index, and (e) the Dec-Mar NAO index. 
The raw indices are represented by the blue lines, and the smoothed indices are represented by the 
thicker red lines. 
 

say, annual landfalling hurricane counts which reflect discrete counts of rare events best 

modeled as Poisson distributed. However, as the counts become larger, and sample sizes 

increase, the central limit theorem insures that the null distribution will increasingly resemble a 

Gaussian distribution.  Thus, the assumption is reasonable for total basin-wide TC counts, and 

in addition is appropriate for e.g. 40 year averages of landfalling hurricanes and other quantities 

which reflect rare events at the annual timescale, but less so over 40 year averaging periods. 

These statistical evaluations can be viewed as long-term statistical validation tests, in the sense 

that the statistical model predictions of TC counts and actual downscaled TC counts are based 

on fundamentally different approaches (statistical modeling vs. dynamical modeling), and to the 

extent that they agree one can deduce that both approaches are capturing fundamental features 

of the climate governing long-term TC behavior. 
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 Somewhat surprisingly, training simulated TC counts against climate indices diagnosed 

directly from the CSM 1.4 simulation itself yields a model with less explanatory variance than 

using the historically-derived regression coefficients (compare Tables 3.2 and 3.1 respectively). 

The best model using historically-derived coefficients resolves nearly a third (31%) of the 

multidecadal variance in TC counts over the full millennial time frame. This is a statistically 

significant (p<0.01 level), but more modest share of variance than the 40-50% variance 

resolved in applications to observed TC counts (i.e. Chapter 2). Similar to those applications, 

the statistical models favor the use one measure of ENSO-related variability, and one measure 

of MDR SST. Use of the NAO, however, does not lead to an improvement in explanatory 

variance with the historical regression coefficients; it actually degrades the agreement. Niño 3 

appears to be favored, albeit only slightly, over the Ninograd.  

 The greatest surprise is that the "relative" MDR SST index, in stark contrast to results 

from similar exercises applied to historical data (i.e. Chapter 2), is heavily favored over absolute 

MDR SST in these tests. Indeed, predictions using models trained with absolute MDR SST only 

show essentially no correspondence with simulated TC counts. Among other features, rising 

MDR SST cannot explain the simulated decrease in TC counts. By contrast, the decreasing 

trend in relative Atlantic SST over the past two centuries in this model simulation does account 

for the long-term decrease in TC counts over this time frame. This inconsistency may reflect 

some of the caveats expressed earlier with regard to the ability of this particular model to 

faithfully reproduce key climatological attributes of the tropical Atlantic basin, but it may also 

point to a limited universality of the predictors tested, which are based on modern climatological 

relationships. One worthwhile extension of this work would involve examining other potential 

climate indicators derived from the model-simulated atmospheric and ocean fields. 

 Figure 3.3 compares the smoothed downscaled TC count time series with the optimal 

(as determined) above statistical models based on both approaches described earlier (observed 

historical relationships versus diagnosed relationships based on model-simulated climate 
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indices and TCs). The optimal models, as noted earlier, both utilize the relative SST index and 

Niño 3 as predictors, and capture slightly less than a third of the variance within the synthetic 

TC counts. Visually, one can see that the observationally-trained statistical model captures the 

overall amplitude of variation (roughly 2.0-2.5 TC peak-to-peak variations on multidecadal 

timescales), many of the individual peaks (e.g. around AD 880, AD 1600, AD 1830), and some 

of the longer-term variations, e.g. relatively high levels early and during the 15th/16th centuries, 

low levels during 11th century mid 12th century, and decreasing trend since the early 19th 

century). The CSM-trained statistical model shows a similar pattern of variation over time, but 

the variance is underestimated, as is expected for any regression-based model that is trained 

within sample. 

 

 

Table 3.1 Explanatory variance (over full AD 850-1999 interval) for statistical models of simulated annual 

TC counts using regression coefficients based on historical relationships. Every univariate, bivariate, and 
trivariate predictor combination (left column) is tested to determine the model with maximum explanatory 
long-term variance. The single statistical model with the greatest explanatory variance is highlighted in 
red. Results are provided for smoothed data. 
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Table 3.2 Explanatory variance (over full AD 850-1999 interval) for statistical models of simulated annual 

TC counts using regression coefficients based on training simulated TCs against simulated climate 
indices. Every univariate, bivariate, and trivariate predictor combination (left column) is tested to 
determine the model with maximum explanatory long-term variance. The single statistical model with the 
greatest explanatory variance is highlighted in red. Results are provided for smoothed data. 

Figure 3.3 Tropical Cyclone counts within the CSM 1.4 (blue line) and various long-term statistical 

models. The red curve represents the statistical model that utilizes the short-term observed Poisson 
regression coefficents (r

2
 = 0.31), and the green curve represents the statistical model that uses the 

CSM-derived climate variables as predictors (r
2
 = 0.30). Only the most skillful version of each model is 

shown, both of which use the niño 3 index and the "relative" MDR SST index. As detailed in the methods 
section, the model trained on the observed predictors (red curve) was adjusted downward by 0.7574 TCs 
per year to account for a modest mean bias in simulated TC counts. 

 


