STRATEGIES FOR LIPID IDENTIFICATION, PROFILING, AND QUANTIFICATION USING MASS SPECTROMETRY

A Dissertation in
Chemistry
by
Michael C. Stagliano

© 2010 Michael C. Stagliano

Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

December 2010
The dissertation of Michael C. Stagliano was reviewed and approved* by the following:

Mark P. Maroncelli
Professor of Chemistry
Chair of Committee

Alan J. Benesi
Lecturer in Chemistry

James B. Anderson
Evan Pugh Professor of Chemistry

Douglas D. Archibald
Research Associate
Department of Crop and Soil Sciences

A. Daniel Jones
Professor of Biochemistry & Molecular Biology
Professor of Chemistry
Special Member, Michigan State University
Dissertation Advisor

Barbara J. Garrison
Shapiro Professor of Chemistry
Head of the Department of Chemistry

*Signatures are on file in the Graduate School
ABSTRACT

As recognition of the importance of the role of lipids in human biology, chemical signaling, and plant defense mechanisms becomes more prevalent, new rapid methods for identification, detection, and quantification are needed. Chapter 2 reports a new method for filtering mass spectrometric data using the percent hydrogen of a compound. To demonstrate the utility of the data filter, it was used to accelerate bioactive compound discovery by directing biological assays toward anticipated neutral lipids. Through the use of accurate mass measurements from time-of-flight (TOF) mass spectrometry (MS) and fragment ion masses generated using nonselective collision-induced dissociation (CID), a previously unknown lipid activator of constitutive androstane receptor 2 (CAR2) was identified as di(2-ethylhexyl) phthalate (DEHP). Chapter 3 advances the ability of mass spectrometry to selectively detect isomers, using a rapid ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for distinguishing two dioctyl phthalate esters, di(2-ethylhexyl) phthalate and di-n-octyl phthalate (DNOP). Elution of the lipid standards is achieved in a 5 minute chromatography run and multiple reaction monitoring (MRM) tandem mass spectrometry methods yield data for quantification. In Chapter 4, a MS/MS method is developed upon existing technologies to determine the relative ratios of isomeric phosphatidylethanolamine (PE) lipids in Arabidopsis thaliana extracts. After demonstrating the ability of the method to distinguish between isomers, the fragmentation behavior of PE lipids was investigated. Commercially available PE standards, along with custom, in-house synthetic standards were subjected to collision-induced dissociation at various collision cell potentials to determine the effects of double bonds and head group
modification on \(sn-1 \) compared to \(sn-2 \) position fragmentation. Results indicate that PE lipid fragmentation can be directed by both of the aforementioned modifications, resulting in a shift from \(sn-1 \) to \(sn-2 \) position fragmentation and formation of the corresponding fatty acid ion.

The methods described in this dissertation serve to decrease the complexity of mass spectral data sets, increase the ability to discover and quantify novel small molecule metabolites, and enhance the understanding of lipid fragmentation behavior.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>PREFACE</td>
<td>xii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xiv</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1. The Quest to Discover Biological Functions of Genes</td>
<td>2</td>
</tr>
<tr>
<td>1.2. Structures and Functions of Lipids</td>
<td>6</td>
</tr>
<tr>
<td>1.2.1. The Role of Lipids in Human Health – Nuclear Receptors</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2. Functional Roles of Lipids in Plants</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3. Characteristics of Lipids</td>
<td>11</td>
</tr>
<tr>
<td>1.2.4. Nomenclature of Phospholipids</td>
<td>12</td>
</tr>
<tr>
<td>1.3. Lipidomic Analyses and Related Analytical Challenges</td>
<td>14</td>
</tr>
<tr>
<td>1.4. Current Methods of Lipid Analysis</td>
<td>17</td>
</tr>
<tr>
<td>1.4.1. Separation of Lipids</td>
<td>17</td>
</tr>
<tr>
<td>1.4.2. Lipid Detection</td>
<td>23</td>
</tr>
<tr>
<td>1.4.3. Contemporary Approaches to Lipidomics</td>
<td>27</td>
</tr>
<tr>
<td>1.5. Summary of Research Goals</td>
<td>30</td>
</tr>
<tr>
<td>1.6. References</td>
<td>31</td>
</tr>
<tr>
<td>Chapter 2: Bioassay-Directed Fractionation for Discovery of Bioactive Neutral Lipids Guided by Relative Mass Defect Filtering and Multiplexed Collision-Induced Dissociation</td>
<td>41</td>
</tr>
<tr>
<td>2.1. Introduction</td>
<td>43</td>
</tr>
<tr>
<td>2.2. Materials and Methods</td>
<td>47</td>
</tr>
<tr>
<td>2.2.1. Materials</td>
<td>47</td>
</tr>
<tr>
<td>2.2.2. Avoidance of Contamination</td>
<td>47</td>
</tr>
<tr>
<td>2.2.3. Extraction of Lipids for GC-MS Analysis</td>
<td>47</td>
</tr>
<tr>
<td>2.2.4. Extraction of Lipids for Discovery and Fractionation</td>
<td>48</td>
</tr>
<tr>
<td>2.2.5. Fractionation of Lipid Extracts (Process 1)</td>
<td>48</td>
</tr>
<tr>
<td>2.2.6. Reporter Assay</td>
<td>49</td>
</tr>
<tr>
<td>2.2.7. Flow Injection Analysis-MS and HPLC-MS of Serum Fractions</td>
<td>50</td>
</tr>
<tr>
<td>2.2.8. GC-MS of Phthalate Ester Standards and Extracts of Fetal Bovine Serum</td>
<td>51</td>
</tr>
<tr>
<td>2.3. Results and Discussion</td>
<td>52</td>
</tr>
<tr>
<td>2.3.1. Bioassay-Directed Fractionation</td>
<td>52</td>
</tr>
<tr>
<td>2.3.2. Identification of Bioactive Compound</td>
<td>60</td>
</tr>
<tr>
<td>2.4. Conclusions</td>
<td>65</td>
</tr>
<tr>
<td>2.5. References</td>
<td>66</td>
</tr>
</tbody>
</table>
Chapter 3: Rapid Isomer-Resolved Determination of Phthalate Ester Plasticizers using Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry

3.1. Introduction

3.2. Materials and Methods
 3.2.1. Materials
 3.2.2. Avoidance of Contamination
 3.2.3. Fetal Bovine Serum Extraction
 3.2.4. Chromatography and Mass Spectrometry Conditions
 3.2.4.1. Mobile Phase Composition
 3.2.4.2. Effect of Column Temperature on Phthalate Retention and Separation
 3.2.4.3. Collision-Induced Dissociation of Dioctyl Phthalate Isomers
 3.2.4.4. Quantification of Dioctyl Phthalate Isomers in Fetal Bovine Serum

3.3. Results and Discussion
 3.3.1. Optimization of Chromatographic Resolution of Isomeric Phthalate Esters
 3.3.1.1. Effect of Mobile Phase Composition on Retention
 3.3.1.2. Effect of Column Temperature on Retention
 3.3.2. Collision-Induced Dissociation of Dioctyl Phthalate Ions
 3.3.3. Quantification of DEHP in Fetal Bovine Serum

3.4. Conclusions

3.5. References

Chapter 4: Quantification of Target Phosphatidylethanolamine Plant Lipids using Flow Injection Analysis with Multiple Reaction Monitoring

4.1. Introduction

4.2. Materials and Methods
 4.2.1. Materials
 4.2.2. Synthesis of 1-Palmitoyl-2-Stearoyl-sn-Glycero-3-Phosphoethanolamine
 4.2.3. Flow Injection Analysis-Multiple Reaction Monitoring of PE Lipids
 4.2.4. Collision-Induced Dissociation of PE Lipid Standards
 4.2.5. Effect of Phosphoethanolamine Head Group Modification

4.3. Results and Discussion
 4.3.1. Development and Application of a MRM Method
 4.3.2. Collision-Induced Dissociation of PE Lipid Standards
 4.3.3. Effect of Phosphoethanolamine Head Group Modification

4.4. Conclusions

4.5. References

Chapter 5: Concluding Remarks

APPENDIX 1: List of Acronyms
LIST OF FIGURES

Figure 1-1: The structure of three lipids of different classes: cholesterol, a sterol; trilaurin, a triacylglycerol; and palmitic acid, a fatty acid ...12

Figure 1-2: Example of the structure of a phosphatidylethanolamine lipid13

Figure 1-3: Examples of different MS/MS scanning modes for a triple quadrupole mass spectrometer ...26

Figure 2-1: Work flow for the discovery and identification of bioactive compounds53

Figure 2-2: Total ion chromatogram from the LC separation of the active fraction from Process 1 (fraction 17), highlighting the retention time window selected for summation of mass spectra ...54

Figure 2-3: The relationship between relative mass defect and % hydrogen for an assortment of organic compounds. The dashed line indicates the range of interest, 600 to 1000 ppm ..56

Figure 2-4: Histogram representing the frequency of relative mass defects for the 1345 discrete m/z values obtained by summing all mass spectra from retention times 4-8 min. The range of RMD values of interest, 600-1000 ppm, which likely target neutral lipids, is highlighted in orange ...57

Figure 2-5: A summed spectrum obtained from the m/z values in the selected range of Figure 2-4, representing all m/z values from this range. Peak A = m/z 214, B = m/z 251, C = m/z 279, D = m/z 374, E = m/z 391, F = m/z 448, G = m/z 638, H = m/z 680 ..58

Figure 2-6: A summed spectrum obtained from the m/z values in the selected range of Figure 2-4, represents the 21 remaining m/z values after intensity filtering and deisotoping. Peak D = m/z 374, E = m/z 391, F = m/z 448, G = m/z 638, H = m/z 680 ..59

Figure 2-7: Extracted ion chromatograms depicting the second fractionation scheme (Process 2) in which the three m/z values of interest are distributed among two collected fractions ..60

Figure 2-8: Structures of three dioctyl phthalate isomers, the branched-chained isomers di(2-ethylhexyl) phthalate (DEHP) and di-isoctyl phthalate (DIOP), and the straight-chained di-n-octyl phthalate (DNOP) ..62
Figure 2-9: GC-MS extracted ion chromatogram for m/z 149 for 5 µM DEHP and 5 µM DNOP standards. The peaks eluting at 12.22 minutes and 13.92 minutes correspond to DEHP and DNOP, respectively ...63

Figure 2-10: GC-MS extracted ion chromatogram for m/z 149 for extract of 100 µL of fetal bovine serum. The peak eluting at 12.22 minutes corresponds to DEHP, confirming the presence of DEHP in extracts of fetal bovine serum64

Figure 3-1: Structures of two phthalate isomers, branched-chained di(2-ethylhexyl) phthalate (DEHP) and straight-chained di-n-octyl phthalate (DNOP).................................74

Figure 3-2: Relationship between mobile phase methanol content upon capacity factor showing mean k’ values (N = 3) for four different ammonium acetate concentrations (♦ 0 mM, ▲ 10 mM, ■ 50 mM, and ● 100 mM ammonium acetate). The inset groups of data represent a 5 fold magnification ..84

Figure 3-3: The relationship between the rate of change of k’ with the rate of change in mobile phase ammonium acetate concentration, at different millimolar methanol concentrations. The equation of the best exponential fit is y = 118000e⁻⁰.¹²⁹x ...86

Figure 3-4: A van’t Hoff plot comparing the effect of temperature on the capacity factor of the two phthalate standards. Each data point represents the mean of N = 3 analytical replicates...88

Figure 3-5: The proposed fragmentation pathway of protonated DNOP to a fragment ion with m/z 149...89

Figure 3-6: The proposed fragmentation pathway of protonated DEHP to a fragment ion at m/z 149, showing the two observed intermediate fragments that are specific to this branched-chain isomer ...90

Figure 3-7: Breakdown curves for two fragment ions (♦ m/z 149, ■ m/z 261) derived from CID of protonated DNOP at nine different collision cell potentials..............91

Figure 3-8: Breakdown curves for four fragment ions (♦ m/z 149, ■ m/z 261, ▲ m/z 279, and ● m/z 167) derived from CID of protonated DEHP at nine different collision cell potentials ..92

Figure 3-9: LC-MRM chromatogram of 5 µM each of DEHP and DNOP standards showing the transition from the molecular ion [M+H]^+ to a fragment ion common to both phthalates (m/z 149). Spectra were collected in ESI+ mode. Chromatograms were smoothed using the Savitzky-Golay method (3 scans, 3 smooths)...93
Figure 3-10: LC-MRM chromatogram of 5 µM each of DEHP and DNOP standards showing the transition from the molecular ion [M+H]+ to a fragment ion specific to DEHP (m/z 167). Spectra were collected in ESI+ mode. Chromatograms were smoothed using the Savitzky-Golay method (3 scans, 3 smooths).94

Figure 4-1: The structure of a PE 34:0 (16:0-18:0), 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphatidylethanolamine, and the corresponding acylium ions generated by CID...113

Figure 4-2: Mole percentage of Arabidopsis leaf fatty acids as determined using TLC followed by GC FID analysis of FAMEs blue bars), by FIA-MRM Method 1 (orange) and FIA-MRM Method 2 (orange shaded). The error bars represent the standard error of N = 4 biological replicates ...116

Figure 4-3: Relative amounts of fatty acid compositions for three isomers of PE 34:4 in an extract of Arabidopsis leaf tissue. The blue bar presents results obtained using FIA-MRM Method 1, monitoring the transition from sodiated 34:4 → 16:1 acylium fragment ion, and the maize bar presents results from FIA-MRM Method 2, monitoring the transition from sodiated 34:4 → 18:3 acylium ion. The peak areas for the two methods were normalized to the larger value ...118

Figure 4-4: Observed fragmentation products of collision-induced dissociation of protonated PE 34:1 (16:0-18:1) ..119

Figure 4-5: Breakdown curves for three fragment ions (♦ m/z 265, ■ m/z 239, ▲ m/z 577) derived from CID of protonated PE 34:1 (16:0-18:1) at 10 different collision cell potentials. At potentials of 5 V and below, only the protonated molecule was observed ..120

Figure 4-6: Breakdown curves for three fragment ions (♦ m/z 263, ■ m/z 239, ▲ m/z 575) derived from CID of protonated PE 34:2 (16:0-18:2) at 10 different collision cell potentials ..121

Figure 4-7: The fragmentation products for deprotonated PE 34:1 (16:0-18:1) in negative ion mode ..122

Figure 4-8: Breakdown curves for the two fatty acid anion fragments (♦ m/z 281, ■ m/z 255) derived from CID of deprotonated PE 34:1 (16:0-18:1) at 10 different collision cell potentials ...123

Figure 4-9: Breakdown curves for the two fatty acid anion fragments (♦ m/z 279, ■ m/z 255) derived from CID of deprotonated PE 34:2 (16:0-18:2) at 10 different collision cell potentials ...124
Figure 4-10: Product ion MS/MS spectrum for deprotonated BOC-protected PE 34:0 (sn-1 16:0-sn-2 18:0, at m/z 818). The peak at m/z 283 represents the C18:0 anion and the peak at m/z 255 represents the C16:0 anion. The structure of the lipid [M-H]⁻ anion is inset on the spectrum. Note that the sn-2 fatty acid anion is the dominant product ..126

Figure 4-11: Product ion MS/MS spectrum for deprotonated PE 34:0 (sn-1 16:0-sn-2 18:0, at m/z 718). The peak at m/z 283 represents C18:0 anion and the peak at m/z 255 represents the C16:0 anion. The structure of the lipid [M-H]⁻ anion is inset on the spectrum. Note that the sn-1 fatty acid anion is the dominant product............127
LIST OF TABLES

Table 3-1: Mobile Phase Composition of the Optimized UHPLC Gradient81

Table 3-2: Optimized Source Cone and Collision Cell Potentials for MRM Experiments ..82

Table 4-1: List of PE Lipids for MRM Method ...114
PREFACE

The research presented in Chapters 2 and 3 is the result of collaboration between the Jones laboratory, at Michigan State University, and the Omiecinski laboratory at the Pennsylvania State University. This work was supported, in part, by the National Institutes of Health National Institute of General Medical Sciences [Grant GM066411 to CJO]; by the Intramural Research program of the National Institutes of Health National Institute of Environmental Health Sciences; by the National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases [Contract N01-DK-7-0004/HHSN267200700004c]; by the Michigan Agricultural Experiment Station; and by Michigan State University. Chapter 2 reports the analytical method for discovery of DEHP as an activator of CAR2, while Chapter 3 investigates the effects of mobile phase composition and column temperature on analyte retention. The biological studies of CAR2 activation is discussed in a previous publication (DeKeyser, J. G.; Stagliano, M. C.; Auerbach, S. S.; Prabhu, K. S.; Jones, A. D.; Omiecinski, C. J., Di(2-ethylhexyl) Phthalate is a Highly Potent Agonist for the Human Constitutive Androstane Receptor Splice Variant CAR2. Molecular Pharmacology 2009, 75, (5), 1005-1013.) The reporter cell assays mentioned in Chapter 2 were conducted by Dr. Joshua G. DeKeyser (now at Amgen in Thousand Oaks, CA). He also provided the fetal bovine samples (FBS) and conducted the extraction and normal-phase liquid chromatography (LC) separation of lipids from fetal bovine serum. The research in Chapter 2 was submitted to Rapid Communications in Mass Spectrometry on June 7, 2010, and was accepted for publication on September 21, 2010. For Chapter 4, lipid extracts from Arabidopsis thaliana and the fatty acid methyl ester (FAME) gas chromatography (GC) flame ionization detector
(FID) data were collected by Terry M. Ball, a staff member in the laboratory of Dr. Robert L. Last at Michigan State University. Assistance with the PE lipid synthesis was obtained from Sarah E. Marshall, a graduate student in the research laboratory of Dr. Babak Borhan at Michigan State University. All other content of this dissertation represents the original contributions of the author.
ACKNOWLEDGEMENTS

As my long journey through graduate school comes to a close, there a number of people I must thank. First and foremost, I must acknowledge my advisor Dr. A. Daniel Jones. Over the last seven years, he has provided everything any graduate student could ask for in an advisor: promoting of an atmosphere conducive to success (and failure when needed), providing useful scientist discussions, and being a great mentor and friend. Second, I thank my parents Deanna and A. J., along with my sisters Christina and Angela for all their love, support, and encouragement along the way. I could not have made this journey without you.

I would also like to thank Dr. John C. Hanley, Jr., a former Jones lab member, for his friendship over the past six years, providing a forum for scientific discussion and companionship for many ASMS, Penn State football, and California adventures; I am sure there are many more to come! I am also grateful for the life-long friendships forged at Penn State, in my brief time there, especially those of Seth, Mike, Pat, TJ, and Lander. I also want to thank my friends at Michigan State: Nileena, Sue, Siobhan, Kris, Alex, Danielle, Aaron, Eric, and Sarah – you guys always made a tough day seem brighter. It truly has been a pleasure to get to know (and work with some of) you. You are the best graduate school companions and lifelong friends anyone could ask for; thank you. To my friends from U of M (Kevin, Dan, Mel, Kramer, Adam, and Jared) and from back home in Philadelphia (E. J. and Chris), thank you for your encouragement along the way. You ensured that I remained sane for the past seven years by visiting Michigan, and providing an ear for when I needed to vent. Thank you.
“A pessimist sees the difficulty in every opportunity; an optimist sees the opportunity in every difficulty.” – Winston Churchill
Chapter 1: Introduction
1.1. The Quest to Discover Biological Functions of Genes

Since prehistoric times, humankind has exploited the recognition that biological traits are passed along from parent to progeny, and this awareness served as the foundation for improvements in crop and other agricultural production. In the mid-19th century, the pioneering work of Gregor Mendel provided a mathematical analysis of inheritance suggesting that traits were inherited as discrete units. In the early 20th century, the Danish plant researcher Wilhelm Johansen first coined the term “gene” to describe these discrete units, but the chemical nature of genes remained elusive for years. In the 1940s, Oswald Avery and colleagues demonstrated that genetic information was encoded by deoxyribonucleic acid (DNA), and this discovery was soon followed by characterization of the chemical structure of DNA by Crick, Watson, Wilkins, and Franklin. The dawn of the 21st century has coincided with the emergence of whole genome DNA sequencing, and a complete draft of the human genome was released to the public in 2003.

The human genome consists of 2.9 billion base pairs that encode for an estimated 20,000-25,000 genes, but despite the explosion of genomic information, the functions of many genes remain unknown. While faster analytical technologies aim to make personal genome sequencing an affordable reality, what is missing are comparable advances capable of assessing biological phenotypes, which are the functional outcomes of the combined influences of genetics and environment. In the realm of human health, recent policy changes are shifting the emphasis of healthcare from standardized treatment of disease to preventive and personalized medicine. This will require analytical technologies that can better define an individual’s physiological state, and will rely on
cost-effective measurements of protein, nucleic acid, and metabolite biomarkers in accessible materials such as blood and urine. One such test, PreDxTM, recently developed by Tethys Corporation uses 7 biomarkers to determine the likelihood of developing Type II diabetes within 5 years.11

Over the past decade, numerous whole genomes have been sequenced for various microbes, plants, animals, and individual humans. While these results were awaited with anxious anticipation, the release of whole genome sequences was followed by realization that functions of most genes were not readily discerned from their DNA sequences. There were still many questions to be answered, including: are the genes expressed (is genetic information converted into protein synthesis), does a single gene encode for more than one protein (as a result of alternative messenger ribonucleic acid (mRNA) splicing), and how are gene expression and functions regulated by interactions with various small molecule metabolites. While the function of some genes can be inferred from those with similar DNA sequences and known functions, functions of a substantial fraction of genes remain unknown.

To address these issues, researchers used the tools of modern molecular biology to define phenotypes using an approach termed transcriptomics, or profiling of the set of mRNA molecules present in tissues or cells. The quantity of each mRNA serves as a measure of the levels of gene expression. Characterization of fragments of mRNA, known as expressed sequence tag sequencing, and mRNA profiling with either microarrays or serial analysis of gene expression, enables researchers to achieve comprehensive transcriptome analysis.12 However, it is well documented that changes in mRNA levels do not always correspond to changes in protein levels.13-15 Furthermore, a
change in protein expression does not guarantee a change in activity. As a result, profiling of mRNA or proteins often fails to reveal mechanisms that regulate cellular functions, and these approaches yield an incomplete view of the physiological state of cells, tissues, or organisms. Small molecule metabolites can fill many of these information gaps, as they are both end products and regulators of many protein functions. Therefore, the regulation of protein function is best determined by detection, identification, and quantification of the small molecule products, or metabolites, from these proteins.

Comprehensive analysis of metabolites in a system has been termed metabolomics. Metabolites, small molecules not directly encoded for by DNA, including lipids, sugars, and organic acids, are the end products of enzyme and transporter functions. Changes in the metabolome can serve as a marker of an organism’s physiological state, including responses to disease, environmental influences, or genetic differences, thus making the metabolome the most predictive of phenotype.16 Therefore, a powerful approach to understanding the functions of genes and the roles of proteins involves measuring all of the chemical constituents of tissues or biological fluids. By coupling information about the dynamics of metabolite levels with genomic DNA sequences and comprehensive measurements of protein and transcript abundances, a more complete understanding of the inner workings of living systems can be attained. One of the major foci of metabolomics involves the quest to identify functions of individual genes through studies of organisms with specific genes inactivated (knockout mutants) or silenced, and understand cellular responses to genetic and environmental factors, as well as discover new biomarkers for disease.
The “omics” revolution, which assesses genetic and phenotypic information in a global manner, has changed the approaches taken to elucidate the roles of proteins, metabolites, lipids, and other compounds in biological systems. Instead of focusing an analysis on one particular compound, a systems biology (global) approach is taken. Similar to proteomics, analysis of the entire complement of proteins, and metabolomics, analysis of the complete suite of metabolites, comprehensive analyses of all lipids, or lipidomics, deals with the lipid subset of the metabolome. Lipidomic analyses will simultaneously reveal the dynamics of thousands of lipids across multiple classes. Where older one-at-a-time methods yield limited information, lipidomics can provide information about dynamic changes in lipid levels, allowing conclusions to be drawn about relationships between specific lipids and various biological functions including chemical signaling and plant defense mechanisms. Lipidomic analyses have enabled a worldwide research community to comprehend the basic principles of biology across several biological kingdoms. However, one of the great challenges facing lipidomic research continues to involve how to process, manage, and interpret the large volumes of data generated by lipidomic analyses.
1.2. Structures and Functions of Lipids

1.2.1. The Role of Lipids in Human Health – Nuclear Receptors

Living things are exposed to numerous chemicals including reactive metabolic intermediates, hormones, and xenobiotics. All cell types respond to these chemicals in a variety of ways, with recent focus on the expression of a group of proteins known as nuclear receptors (NRs). NRs are activated by the binding of various endogenous and exogenous compounds followed by protein translocation to the cell nucleus. Once within the nucleus, these proteins can interact with other proteins and DNA, initiating gene transcription. Based on these functions, NRs are considered to make up a superfamily of transcription factors. Activated NRs regulate the expression of target genes, many of which control cell development, reproduction, and metabolism. Failure of these receptors to execute their physiological tasks often results in carcinogenesis, infertility, cancer, diabetes, inflammation, and obesity. Therefore, improving our understanding of the events that activate nuclear receptors provides an important step toward determining gene function. The roles of these receptors in various disease states also makes them excellent targets for pharmaceuticals, with current drugs, such as tamoxifen (breast cancer) and retinoids (skin disorders) targeting these receptors.

Although numerous nuclear receptors have been discovered, the endogenous ligands that activate many NRs remain unknown, as do their physiological functions. These NRs are termed orphan nuclear receptors. Studies have shown that many of these orphan NRs have a strong affinity for lipid binding, acting as a lipid sensor and protecting cells from lipid overload. Even more important is evidence that dietary lipids, fatty acids, bile acids, oxysterols, and xenobiotics bind to these receptors. Activation of
orphan nuclear receptors often triggers a metabolic cascade, maintaining lipid homeostasis by governing transcription of genes involved in the metabolism, storage, transport, and elimination of lipids. Discoveries of orphan nuclear receptors have enabled scientists to identify three families of proteins responsible for the auto-regulation of lipid homeostasis: cytochrome P450 enzymes responsible for oxidation of lipids to non-reactive metabolites, intracellular lipid-binding proteins responsible for buffering and transporting hydrophobic ligands within cells, and ATP-binding cassette transporters, which remove lipid ligand precursors from the cytosol to organelles or extracellular environment. Despite recent efforts, over half of the proposed orphan nuclear receptors are still without any identified ligands.

The discovery of endogenous ligands for orphan receptors involves an intensive process. Traditional approaches for discovery start with development of assays that can assess receptor activation, often using synthetic molecules, followed by purification of a ligand from biological fluids by continuous fractionation. After isolation and purification, the ligand’s activity is characterized, before receptor-coding circular DNA (cDNA) segments are “fished for” using either receptor purification or expression cloning. Amplification of the cDNA by polymerase chain reaction enables incorporation of the NR gene into cells for large-scale screening of compound libraries for antagonists and agonists.

In the last decade, numerous researchers have used a new method for NR discovery proposed by Sidney Brenner and popularized by Craig Venter. Named the reverse molecular pharmacology model, this method sequences random cDNA segments chosen from libraries before making the nuclear receptor. Then, extensive bioinformatic
analysis to predict structural characteristics of the coded protein is conducted. The cDNA is recombinantly expressed in cells, and then a bioassay is used to screen thousands of compounds for activity. In some cases, the libraries used have been selected for by computational modeling, and often companies will make or buy specific libraries of compounds for screening.24

Recent discoveries indicate lipids, only behind hormones, act as the largest group of nuclear receptor activators, playing an important role in cell, tissue, and organ physiology.28 In the form of fats, cholesterol, and phospholipids, lipids are present in most foods, and diet serves as the greatest source of lipids in the human body. In addition, science has demonstrated that cells recognize lipids with exquisite specificity, and that the roles of individual lipids depend on their local concentrations.29 Therefore, the identification of lipids that activate both known and orphan nuclear receptors will enable scientists to better probe and control physiological changes in an organism, thus bridging the current gap in knowledge between cellular response to environmental and dietary changes. The need to discover new bioactive compounds is not only beneficial to the pharmaceutical industry, but also to advancing the science of human health. To accomplish this goal, new high-throughput and low cost methods for lipid detection and quantification are needed.

\subsection*{1.2.2. Functional Roles of Lipids in Plants}

Lipids are also important components of plants, playing crucial roles in cell signaling, sequestration of molecules in various cellular compartments, and regulating
functions of membrane proteins. One example of the role of lipids in chemical signaling occurs when a cell is damaged, releasing calcium ions from inside the cell to the surroundings, activating phospholipases, enzymes that hydrolyze ester groups on phospholipids. Hydrolyzed phospholipids exert a vast range of regulatory functions ranging from membrane trafficking and lipid degradation to cell growth, survival, and cell signaling.30 In plants, phospholipids, sphingolipids, fatty acids, and sterols play roles in chemical signaling.31

Plants provide convenient model systems for investigating gene functions because genetic and genomic resources are plentiful, and genetic transformations are often easily performed. It is important to understand the effect of genetic modifications of plants on changes in mechanisms that respond to different stresses. In any organism, the benefit of expressing a desired trait is lost if its ability to protect itself from different stresses is weakened. This is especially true in plants because they are immobile, preventing them from escaping predators the way animals can. Instead, plants must rely on biochemical mechanisms to defend themselves and prevent further attack and wounding. Plants must have distinct chemical responses to different forms of environmental stress in order to thrive. Recent research has shown that plants can respond to a wide range of biotic and abiotic factors, including temperature, water, air, chemicals, light, touch, motion, insects, and pathogens, but a more thorough investigation in the chemical changes undergone during wounding is needed.32

The assortment of responses triggered in plants occurs through mechanisms that widely remain unknown. Research by Ted Farmer of the University of Lausanne has
shown that when a plant is stressed, either by injury or lack of nutrients, lipid-signaling enzymes are activated and oxylipins, which are oxidized lipids, are produced.33 In related work, Professor Xuemin Wang of the Danforth Center noted that when a plant experiences extreme temperature conditions or is wounded, there is an increase in concentration of phosphatidic acid in cells. Under similar conditions, the same is true for free fatty acids.30 Moreover, the effects of stress or wounding can be seen as a change of lipid membrane composition with incorporation of more lysophospholipids.34 Therefore, the change in levels of these signaling lipids can be measured to study chemical signaling using the model plant, \textit{Arabidopsis thaliana}.

Lipid profiles present information important for discerning how plants respond to mechanical wounding and herbivory by insects. When a plant is wounded by an insect, there are two marks left, one is the mechanical damage, and the other is the change in chemistry that results from stress-altered metabolic processes. Mayer and colleagues showed that plants exhibit different lipid profiles corresponding to attack by different insects, indicating a mechanism of recognition to a “specific chemical fingerprint” of the insect. The levels of different lipids can then be analyzed to explore mechanistic relationships between wounding and biochemical signaling. Such lipid profiles can be related to other changes in both plants and insects such as the expression of individual genes. For example, oxylipins mediate a plant’s response to wounding by an insect, while phospholipids signal for the plant to take appropriate action.33,35,36

Numerous plant lipids serve as phytohormones that regulate plant responses to stress. Profiling of plant signaling lipids provides a powerful approach toward
understanding the underlying chemistry that occurs between a wounded plant and an insect, and the genetic and biochemical basis for these interactions. Not only do plants respond to different types of wounding, but their responses are distinct for injuries from different species of insect, and it is presumed that lipid hormones regulate much of this response. Furthermore, development of more stress-resistant agricultural crops will require better understanding of the genes and biochemical pathways responsible for the molecular events that trigger specific responses and the mechanisms by which lipids and other metabolites transmit signals between cells and tissues. One of the most challenging aspects of lipid profiling lies in identifying which signaling lipids activate specific receptors and to elucidate the associated network of induced gene expression. While many current methods detect appreciable changes in many metabolites, it is often the changes in the levels of low concentration lipids that go undetected. The challenge of identifying these remaining unknown compounds requires the development of more robust LC-MS approaches for lipid analysis.

1.2.3. Characteristics of Lipids

Lipids consist of a broad class of structurally diverse compounds with biological origin, including fats, waxes, and fat soluble vitamins, sharing only common solubility properties. Some examples of lipid structures are depicted in Figure 1-1 and Figure 1-2. They are amphiphilic compounds with a hydrophobic tail, usually long carbon chains, and hydrophilic head groups. The characteristic that defines lipids is that they have limited solubility in water, but are soluble in organic solvents such as ether, chloroform, benzene, acetone, isopropanol, and methanol. The number of structural classes of lipids
is large. The most commonly studied lipids include fatty acids, sterols, glycerolipids, phospholipids (glycerophospholipids), and sphingolipids. Lipids can also be classified as neutral (glycerolipids and steroids) and lipids with more polar, sometimes ionic functional groups (fatty acids, sphingolipids, and phospholipids).³⁸

Figure 1-1: The structure of three lipids of different classes: cholesterol, a sterol; trilaurin, a triacylglycerol; and palmitic acid, a fatty acid.

1.2.4. Nomenclature of Phospholipids

The most common phospholipids are constructed of a glycerol backbone with fatty acids esterified in *sn*-1 and *sn*-2 positions, and a phosphate group at *sn*-3. Other groups may be attached to the phosphate group, and these confer different properties such as size and charge. For example, the phospholipid pictured in Figure 1-2 is 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphoethanolamine. In position 1 is a 16 carbon fatty acid with
no double bonds and in position 2 is an 18 carbon fatty acid with 1 double bond. Shorthand notation for phospholipids lists the number of carbons and double bonds in both sn-1 and sn-2 positions, followed by the type of lipid. Therefore, the lipid below is labeled PE 16:0-18:1. In cases where the position of the fatty acids is unknown, a generic name, PE 34:1, which lists the total number of carbon atoms and double bonds in the two fatty acyl chains, is used.

Figure 1-2: Example of the structure of a phosphatidylethanolamine lipid.
1.3. Lipidomic Analyses and Related Analytical Challenges

Comprehensive analyses of intact lipids are a recent advance that has been made possible by the development of LC-MS technologies. Previous lipid profiling consisted of fractionating lipids by their chemical classes, and in many cases, releasing fatty acids by solvolysis and analyzing them, usually by gas chromatography. In recent years, it has been suggested that comprehensive profiling of all lipids be termed lipidomics. The primary goal of lipidomics is to determine the effects of genetics and environment on biological functions, as revealed by using lipid profiles as biomarkers. As noted in the previous section, scientists are building a more complete understanding of the important role lipids play in regulation of gene expression and protein functions, and as indicators of physiological state. These distinctive biochemical roles and biophysical properties make lipids excellent targets for quantifying as biomarkers. For lipidomics to reach its full potential, researchers should strive for quantitative measurement of all lipids and identification of their functions at the cellular level.29 This requires knowledge of the localized lipid profile at a given time, the dynamics of lipid concentrations over multiple time points, and identification of other molecules with which lipids interact.

Accomplishing these goals presents a formidable challenge and provides the impetus for development of tools and protocols capable of providing complete information about lipids. Unlike comprehensive screening methods such as whole genome microarrays that can profile expression of all genes, there is no boxed kit or predetermined method that routinely measures all lipids. This is due, in part, to the structural diversity of lipids, our lack of knowledge about the structures of all lipids of biological relevance, and the wide and dynamic range of lipid concentrations within cells.
or tissue extracts. Researchers have suggested that there are more than 180,000 different phospholipid structures that could be present in any sample. Therefore, akin to other “omics” it is challenging to establish a link between levels of individual lipids and gene functions or physiological states because these lipids may act as part of complex networks that influence biological functions.

With such a daunting number of compounds to screen for and analyze, it is appropriate to begin by choosing a single analytical technique capable of providing the broadest coverage of the lipidome. Such a technique should provide reliable quantitative measurements for numerous lipids. For individual components, the dynamic range of the most powerful analytical techniques lies between 10^4 and 10^6 in terms of the range of concentrations that can be measured. The ideal technique would be free from matrix interferences that could mask measurement of specific compounds or yield false positive measurements. Modern mass spectrometric methods address many of these concerns, with the latest generation of instruments providing capabilities to detect and quantify substances at levels of less than 10^{-15} moles while providing molecular and fragment mass information that can distinguish many lipids. However, methodologies based on MS methods suffer from incomplete selectivity, as numerous substances may share a common nominal molecular mass. Furthermore, other compounds from the sample matrix may interfere with accurate quantification by suppressing ionization of target compounds.

Another challenge in lipidomics lies in the process of sampling biological tissues. Typical sampling of lipids from tissues is invasive, and often involves harvesting of tissues or biological fluids that perturb the organism by inflicting new stresses, and in
some cases, requires death of sample sources.41,42 Therefore, establishing the dynamics of lipids often requires study of model laboratory plants and animals.

The lack of many pure lipid standards presents an additional challenge to scientists performing lipidomics. Commercially available standards are often a mixture of isomers, having been extracted and purified from biological tissues. This makes method development for lipidomics rather difficult, and requires the use of model organisms with well documented metabolome and lipidome profiles. The unavailability of a wide range of lipid standards, especially isomeric lipid standards, make absolute quantification equally difficult.
1.4. Current Methods of Lipid Analysis

1.4.1. Separation of Lipids

The complexity of the lipidome often requires physical separation of individual lipid forms before detection. Many methods have been developed that achieve partial separation, but no single separation procedure can resolve all of the potential lipids present in biological tissues or fluids.

A separation is “the art and science of maximizing separative transport relative to dispersive transport”43 or more simply, the “unmixing” of a mixture into its components. The documented use of separations dates back to the late 1600s, indicating the importance of compound purification.38 Chromatography, the collective term for a group of analytical techniques for separating mixtures, involves passing a mixture of analytes dissolved in a mobile phase across a stationary phase, isolating analytes from other molecules in the mixture by partitioning based on differences in their relative affinities for the mobile and stationary phases.

Chromatographic methods commonly used for lipid separation include thin layer chromatography (TLC), GC-MS of FAMEs, and high performance liquid chromatography (HPLC). TLC is the simplest and most widely used chromatographic method for the separation of lipids, and is still popular today.44-47 The stationary phase is usually comprised of silica gel (or sometimes alumina) that presents a polar medium that is immobilized on a glass plate. The mobile phase usually consists of a mixture of solvents of varied polarity including chloroform, methanol, and water, although isopropanol, hexane, ethanol, acetone, toluene, and triethylamine are sometimes used. Small aliquots of sample are spotted 1-2 cm from the bottom of the plate, and the bottom
of the plate is placed in a small amount of mobile phase. Capillary action drives the liquid to move from the bottom of the plate toward the top. Analytes migrate towards the top at different rates, based on their partitioning between the mobile and stationary phases. After the mobile phase front has migrated to the top of the plate, the plate is removed. Different classes of lipids will have migrated different distances because their partition behavior is largely determined by the polarity of their most polar functional groups. Since many lipids lack useful visible or ultraviolet chromophores, visualization of lipids on the plate requires that the plates be stained: for UV detection berberine or rhodamine 6G is used, whereas for conversion of lipids to visible products, treatments are performed using sulfuric acid, phosphomolybdic acid, or copper sulfate in phosphoric acid, followed by heating at 180 °C for about an hour. Lipid classes are then identified based on comparing their retention factor (R_f), which is the ratio of the distance the analyte traveled to the total distance the solvent traveled, to R_f values for lipid standards. The spots can be quantified using densitometry, or scraped off the plate for subsequent identification using GC-MS. Improvements to TLC separations include attempts to better the resolution through addition of both organic and inorganic compounds to the silica gel and to obtain faster and more efficient separations using smaller particles or finer gel grades. Such improvements are known as high performance TLC.

The advantages of TLC separations include speed of analysis, low cost, little or no sample preparation, visualization of results, and simultaneous analysis of multiple samples in parallel. Inadequate resolution can be quickly improved. Modifying the solvent system or rotating the plate 90 degrees and use of a different solvent system (two-dimensional TLC) allow for additional separations on the same plate. However, TLC is
not easily automated, offers limited resolving power, and suffers from poor reproducibility in retention. Separated lipids on the silica coated plate are susceptible to oxidation and hydrolysis while exposed to the atmosphere. In addition, silica gel particles used for TLC are not uniform, creating uneven voids in the stationary phase that limit analyte resolution.

While TLC is useful for separating different classes of lipid based largely on their polar head group, silica TLC separations usually do not resolve variations within a class that involve changes in fatty acid composition. The most common method to analyze individual fatty acyl chains on phospholipids is GC-MS of fatty acids that have been converted to their methyl esters, conferring improved volatility and separation. Phospholipids are nonvolatile, and are derivatized for analysis by methyl esterification after they are removed from the glycerol backbone by hydrolysis, or in a single transesterification reaction. By using a nonpolar capillary column, FAMEs will elute based on their boiling point. This approach may separate some fatty acids, but improved separations based on the number of double bonds is achieved using columns with more polar constituents such as cyanopropyl groups, achieving greater retention of FAMEs with increasing unsaturation. A flame ionization detector or a mass spectrometer can be used to accurately quantify the sample constituents. The principal drawbacks of FAME GC analyses include the loss of information pertaining to the attachment of the fatty acyl chains to the glycerol backbone and lack of automation.

A few research groups have demonstrated phospholipid separations by class using capillary electrophoresis (CE) and have described experimental setup and operating conditions. Developed in 1981 by Jorgenson and Lukacs, CE separation is driven by
an electric field and flow through a capillary. Through the use of small diameter silica capillaries (10-100 μm) CE offers analysis of small (< 1 μl) sample volumes and a high number of theoretical plates (efficient separation). The drawbacks of CE include low throughput due to single sample analysis and the need for complex buffer systems, which can be incompatible with some lipids and the mode of sample detection. Since most lipids exhibit low solubility in electrically conducting solvents, because of the high water content, lipid separations that rely on CE instrumentation often employ micellar electrokinetic chromatography (MEKC) which incorporates detergents in the mobile phase at concentrations that form micelles. Lipid separations are then driven by partitioning between micelle and mobile phase. Since coupling MEKC to mass spectrometry is difficult because of the presence of detergents, some researchers have obtained similar separations using non-aqueous CE. However, more traditional liquid chromatographic methods are generally preferable for comprehensive lipid separations.

In 1900, Mikhail Tswett used a packed column of calcium carbonate to separate plant pigments. His findings, published in 1903, were dismissed by the scientific community, did not resurface until 1931, when Kuhn and coworkers conducted carotenoid studies. Their work re-introduced the scientific community to column chromatography (liquid chromatography). In the 1970s, improvements included pressurization of the column, use of smaller particle sizes for packing material, smaller column inner diameter, and shorter columns. This new technology, termed high performance liquid chromatography, led to reduced separation times and improved chromatographic resolution. Recent improvements include the use of sub-2μm particles and even shorter columns, leading to the coining of the term ultra high performance
liquid chromatography which has become the standard technique used for a wide range of separations.

High performance liquid chromatography offers many benefits for separations. A wide range of mobile phases can be tailored for the separation of multiple lipid classes and mobile phase gradients and temperature gradients are easily controlled to enhance separation selectivity. This latter feature is not feasible using CE, which is one of its great shortcomings.55 Also, unlike TLC, HPLC offers the ability to control the flow rate. Optimal liquid chromatographic separations require higher flow rates that are only delivered by high pressure pumps. Furthermore, HPLC methods can be fully automated and require minimal sample preparation. Research by Moreau,59 Christie,60 and Karlsson61 demonstrated that HPLC is a practical method for lipid separation by class, currently making HPLC the preferred method of separation.

Reversed-phase (RP) HPLC, which entails use of nonpolar columns and relatively polar mobile phases, has become the dominant approach to liquid chromatographic separations.62 There are two models to describe retention in reversed-phase HPLC. Solvophobic theory is the oldest accepted model, attributing retention to mobile phase characteristics.63 This theory assumes the stationary phase is a passive entity, and only provides a sorptive site for analyte retention. The driving force for retention is based on the differences in the Gibbs free energy of formation for the solvation sphere for the solute in the mobile phase compared to complexation of the solute to the stationary phase. Adsorption onto the stationary phase is described as being driven by unfavorable energetics of analyte solvation by the mobile phase. Recent studies64,65 of the shape and chain density of the bonded hydrocarbon stationary phase suggest that the solvophobic
theory is incomplete. The results indicate that controlling the two factors above can greatly affect retention in reversed-phase LC, concluding that the stationary phase does play an active thermodynamic role in retention, with solute molecules partitioning between the stationary and mobile phases.63

The second, more advanced model to describe RP retention was developed by Jaroniec in the late 1980s. His explanation of analyte retention invokes a combination of RP partitioning mechanisms and solute adsorption. Specifically, he attributes the distribution of solute molecules between the stationary and mobile phases as the direct result of two different molecular processes. The first is the difference between the adsorption potentials of the analyte of interest and other solute molecules to the surface of the mobile phase. The second is the differences in the interaction free energies of the analyte molecules with the stationary and mobile phases.66 Jaroniec and Martire verified their model by conducting a series of LC experiments on solute-solvent interactions using mixed mobile phases.67

Solution thermodynamic studies63 have determined that the driving forces for retention in reversed-phase liquid chromatography are solute partitioning between the two phases, with most of the free energy of retention coming from solute interactions with the stationary phase. In other words, retention is controlled through the interactions of the hydrophobic part of the solute molecule with the hydrophobic part of the stationary phase, while selectivity is controlled by interactions of the hydrophilic part of the solute with the mobile phase.

Retention and elution of solute compounds in reversed-phase liquid chromatography is a complex, yet controllable process. Research has shown that retention is directed by many factors, including the composition of the stationary phase and the solvent composition of the mobile phase. After selection of a column, the
thermodynamics of both solute-stationary phase and solute-solvent interactions can be further manipulated by adjustment of the column temperature, solvent selection, and addition of additives, such as ammonium acetate, to the mobile phase.

1.4.2. Lipid Detection

Lipids span a diverse group of structural classes, and many lack useful ultraviolet (UV) or visible chromophores that can be used for universal lipid detection. Moreau59 and Christie60 have demonstrated the use of UV-visible spectroscopy to detect some lipids. Drawbacks of this technique include the lack of detection of non-chromophore containing lipids and the lack of detection of low abundance lipids. Other researchers have employed nuclear magnetic resonance (NMR) for lipid detection,68,69 but this often requires high concentration (1 mg/mL) and relatively pure samples. Although both chromatographic and NMR methods have contributed to the advancement of lipidomics, “it is inarguably the recent advances in mass spectrometry that have propelled the field forward.”39 These advances make MS the analytical technique of choice for quantitative lipidomics because of its high sensitivity, wide mass range, and ability to offer structural data for compounds in low picomolar amounts.70

The preferred ionization method for lipid mass spectrometry would employ a “soft ionization” technique, one that ionizes molecules and causes minimal fragmentation. This is important because the resulting mass spectrum will offer accurate molecular weight of the analytes and will primarily display molecular mass information. Such mass spectra minimize chances that more abundant lipids will obscure those less abundant as long as the lipids do not have the same molecular mass.39 “Soft ionization”
techniques include field desorption, chemical ionization, fast atom bombardment, and electrospray ionization (ESI). Some problems with some of these ionization methods include poor reproducibility (field desorption), the need to derivatize samples to make them volatile (chemical ionization), and the presence of matrix background signal and moderate sensitivity (fast atom bombardment).71 ESI is a major breakthrough for the analysis of biological samples by mass spectrometry because this technique is applied directly to the analytes in solution, usually requires no derivatization, has high sensitivity, and provides reproducible results.72

For lipid analyses described in the following chapters, two kinds of mass spectrometers will be used. The first, a Waters LCT PremierTM, employs an orthogonal acceleration time-of-flight mass analyzer. A TOF mass analyzer employs a field-free drift tube to which all the ions are introduced at the same time and with minimal spread in kinetic energy. Since mass and velocity are inversely related for ions with the same kinetic energy, the lighter particles will have a greater velocity than the heavier ones and will arrive at the detector first.73,74 One advantage of this instrument is the precision and accuracy at which it measures ion masses. With mass accuracy of 5 ppm, the TOF-MS can not only distinguish between compounds with the same nominal mass, but can also accurately distinguish ions with the same nominal mass but different elemental formulas. The mass accuracy, fast processing of data signals, adequate dynamic range, and medium to high mass resolution75 make these analyzers excellent choices for unknown lipid identification. The second type of instrument is a triple quadrupole (QQQ) mass spectrometer, which enable tandem MS experiments in which fragmentation of a molecular ion is used to conduct a variety of scans.
For lipidomic analyses, three different MS/MS techniques can be employed with triple quadrupole mass spectrometers: daughter (also known as product) ion scans, parent (also known as precursor) ion scans, and neutral loss scans. The first, a daughter ion scan, uses the first quadrupole (Q1) as a mass filter allowing only a specific mass through. The second quadrupole (or sometimes a radio frequency hexapole) serves as a collision cell, where energetic argon gas collides with analyte molecules and induces fragmentation. The third quadrupole (Q3) scans over a user defined m/z range, producing a spectrum of fragment ions derived from the m/z selected for by Q1. A parent ion scan reverses the roles of Q1 and Q3, with Q1 now scanning over the user defined mass range and Q3 selecting for a specific m/z. For the third, a neutral loss scan, Q1 scans across a user defined m/z range, while Q3 scans across a m/z range that is offset for the mass of the neutral fragment. A special case of a daughter ion scan, called single reaction monitoring (SRM), uses Q1 to select for a specific m/z value, but instead of scanning Q3 over a specified m/z range, selects for a specific fragment m/z value. Selection of two or more specific m/z values is then termed multiple reaction monitoring, or MRM. Examples of the MS/MS scans described above are depicted in Figure 1-3.
Figure 1-3: Examples of different MS/MS scanning modes for a triple quadrupole mass spectrometer.
1.4.3. Contemporary Approaches to Lipidomics

Recent lipidomic methods utilizing mass spectrometry have taken two approaches: global lipidomics, in which the main goal is identification and quantification of all lipids in a cell or tissue sample, and targeted lipid profiling, which focuses on identifying and quantifying a large number of lipids within a single class.39

Han and Gross developed one of the first widely used methods for profiling cellular lipids using ESI-MS.76 For analysis, samples dissolved in chloroform were introduced into a quadrupole mass spectrometer without any chromatographic separation. Spectra were produced by scanning the spectrometer over a selected mass range and ionized lipids were identified by their masses. For isobaric lipids (lipids of different classes that have the same nominal mass) tandem mass spectrometry or MS/MS is used to perform product or daughter ion scans, using a triple quadrupole mass spectrometer.34,76 However, since some lipids present at low concentrations will not be detected due to suppression of ionization by high abundance lipids, physical separation of lipids using chromatography becomes valuable, if not essential, before introduction into the mass spectrometer. Therefore, lipids would enter the instrument presorted by chromatographic separation, reducing the interference from other compounds in the sample, and making low abundance lipids more readily detectable.

Brügger and colleagues expanded the use of tandem MS methods when developing a lipid analysis method that employs various scanning modes of a triple quadrupole mass spectrometer.72 Their method exploits the difference in fragmentation behavior conferred by different phospholipid head groups. When fragmentation occurs, a common fragment (either charged or neutral) for a specific phospholipid group is
produced. For example, characteristic fragmentation in ESI+ mode for phosphatidylethanolamine lipids is the loss of the neutral ethanolamine head group. Therefore, PE lipids are selectively detected for by performing neutral loss of 141 Da scans. For phosphatidylcholine lipids (PC), fragmentation causes the loss of the head group with a positive charge attached, so PC lipids are detected by parent ion scans for \(m/z \) 184. Unlike the Han and Gross method, spectra contain only lipids from a specific class. For each class, the number of carbon atoms and double bonds in the fatty acyl tail groups can be deduced from the molecular masses that undergo head group-specific fragmentation.

Improving upon Brügger’s research, Ruth Welti, Xuemin Wang, and coworkers at Kansas State developed a “high-throughput” profiling method, to identify and quantify lipids in a plant sample, analyzing 140 lipid species in an hour. Specifically, this method is based on the precursor and neutral loss scanning ability of tandem MS/MS, which is used for selective detection of lipids with specific functional groups. Welti’s method can obtain a lipid profile for each class by continuous infusion of solvent extract into the mass spectrometer, conducting separate scans for each lipid class, and quantifying the lipids by comparison to two internal standards (for each head group) that have shorter and longer fatty acyl groups than the sample lipids. This method identifies the total number of carbons and double bonds in the fatty acyl chains, and can identify the fatty acyl chains present. Using this method relative amounts of isomeric lipids cannot be quantified because they do not give distinguishing fragment ions. Both Brügger and Welti demonstrated the ability of a triple quadrupole mass spectrometer to differentiate between fatty acyl chains and to quantify lipids by performing class-based analyses.
However, since these MS/MS methods require previous knowledge about the lipids to be detected, *i.e.* the mass of the parent and daughter ions must be known, targeted lipidomic analysis is useful for quantification of known lipids, but has limited utility for discovery and identification of novel lipids.
1.5. Summary of Research Goals

The aims of the research described in this dissertation have been to address two shortcomings of current methodologies for lipid discovery and analysis: the need for new data filtering techniques for detection and recognition of unknown lipids that often occur at low levels in complex mixtures, and the need for new mass spectrometric methods to detect and quantify neutral and steroidal based isomeric lipids and positional isomers of phospholipids. In Chapter 2, a new concept termed relative mass defect, (RMD), is introduced as a method for filtering mass spectrometric data based on the percent hydrogen content of m/z values. Filtering mass spectra using the mass defect is not a new idea, but is not always productive since fragment ions often have mass defects very different from their parent compounds. The application of this new filtering technique is demonstrated by its ability to identify an unknown neutral lipid activator of a nuclear receptor.

In Chapter 3, the chromatographic fundamentals for the separation of two phthalate isomers are explored. In addition, a new isomer-specific mass spectrometric technique is explained which allows for selective detection of one isomer. Chapter 4 presents investigations of the fragmentation of two pure positional isomeric PE lipid standards to develop a model for fragmentation at the sn-1 and sn-2 positions, with the intent of generating improved standardization of mass spectrometric analyses of phospholipids. The following chapters provide important analytical tools for moving the fields of lipidomics and lipid discovery forward.
1.6. References

Chapter 2: Bioassay-Directed Fractionation for Discovery of Bioactive Neutral Lipids Guided by Relative Mass Defect Filtering and Multiplexed Collision-Induced Dissociation
Abstract

In this chapter, I report a synergistic method using bioassay-directed liquid chromatography fractionation and time-of-flight mass spectrometry to guide and accelerate bioactive compound discovery. To steer purification and assays toward anticipated neutral lipid activators of a constitutive androstane receptor splice variant, a relative mass defect filter was calculated, based on the ratio of the mass defect to the measured ion mass, and used to reduce the number of candidate ion masses. When mass measurements are unable to provide unambiguous assignments of elemental compositions, the relative mass defect, largely reflective of fractional hydrogen content, can be used to relate a compound’s biosynthetic precursors. A relative mass defect window ranging from 600-1000 ppm, consistent with an assortment of lipids, was chosen to assess the number of candidate ions in fractions of fetal bovine serum. This filter reduced the number of candidate ion m/z values from 1345 to 892, which was further reduced to 21 by intensity and isotope filtering. Accurate mass measurements from time-of-flight mass spectrometry and fragment ion masses generated using nonselective collision-induced dissociation suggested dioctyl phthalate as one of few neutral lipid constituents in the active fraction. The identity of this compound was determined to be di(2-ethylhexyl) phthalate by GC-MS, and it was ranked as a promising candidate for reporter assay screening.
2.1. Introduction

Research in recent years has led to discoveries of numerous receptors and signaling mechanisms that regulate a wide variety of biological functions, but identification of potent bioactive compounds that activate these receptors involves lengthy and expensive efforts.1,2 Contributing to these costs is the need to screen an enormous number of compounds in both complex biological samples and combinatorial libraries for activity. Once a receptor ligand is identified, efforts to accelerate compound discovery often generate large libraries of compounds with structural similarity to known active substances, followed by activity screening.3,4 Complementary efforts have focused on reducing discovery time by improving technologies for bioactivity assays and compound fractionation, including development of high-throughput microfluidic assays,5 two-dimensional HPLC, and microdialysis-HPLC methods.6

Despite these advances, discoveries of ligands that activate newly discovered receptors still depend on exhaustive and challenging bioassay-guided purification of active ligands followed by their identification based on NMR and mass spectrometry.7-9 There is a need for a rapid screening tool to direct fractionation or exclude fractions by preselecting specific compounds to minimize the number of bioassays that must be performed. The aim in this study has been to develop and implement an efficient approach to use mass spectrometry data to guide bioassay-directed fractionation. In this specific case, efforts were focused on isolation of a previously unknown component of fetal bovine serum that activates a splice variant of constitutive androstane receptor, CAR2. My approach exploits accurate measurements of ion masses and calculations of ion mass defects to distinguish likely candidates and guide this fractionation.
The importance of accurate ion mass measurements was established in 1920 by F. W. Aston. Using an early form of mass spectrometry described as “positive-ray spectrography”, he determined the masses, within 1 part-per-thousand, of hydrogen, carbon, and oxygen to be 1.008, 12.000, and 16.000 Da, respectively. These measurements were the first to suggest that atomic masses could deviate from integer values. Aston and Eddington soon verified that the mass difference between two hydrogen atoms and one helium atom corresponded to a measurable value of energy release, and recognition of this deviation became the foundation of assessing nuclear binding energies. While accurate mass measurements are frequently used to confirm a suspected elemental composition, even measurements accurate to less than 1 ppm error often cannot provide unambiguous assignment of a unique elemental formula. Despite this shortcoming, accurate measurements of ion masses retain value even when mass measurement accuracy is insufficient to define elemental composition. One important concept, known as the mass defect, is defined as the deviation of an ion’s measured mass from its nominal mass, which is the truncated integer value. Most elements (oxygen and heavier) have a negative mass defect, or a mass deficiency, caused by increases of nuclear binding energy with increasing atomic number. Only the six elements preceding oxygen, except carbon, have a positive mass defect, or a mass sufficiency, but hydrogen’s is most notable at +7.825 mDa. Since many organic molecules have a multitude of hydrogen atoms, an ion’s mass defect is largely influenced by its hydrogen content.

Several precedents for the utility of mass defects have been reported, including the development of the Kendrick scale, based on the deviation in mass from –CH₂– groups, which were defined as “exactly 14 amu”. This approach has been particularly
useful in characterization of petroleum products where homologs differing by the number of –CH₂– groups are abundant.18 In a more recent development, Zhang and co-workers implemented an absolute mass defect filter to aid drug metabolite identification.19-21 Taking advantage of the observation that most modifications to a drug compound by metabolism change the mass defect by less than +/-0.050 Da relative to the parent compound, their software filter removes all \textit{m/z} values outside of this range, eliminating potentially interfering endogenous compounds from consideration. Since then, other researchers have used mass defect to aid identifications for other compound classes. Koulman and Volmer used mass defect to distinguish phosphatidylcholine and phosphatidylethanolamine lipids by assigning differences in \textit{m/z} values to addition of different two-carbon units (–C\textsubscript{2}–, –C\textsubscript{2}H\textsubscript{2}–, and –C\textsubscript{2}H\textsubscript{4}–) within each class.22 Mass defects have also been used to identify peptides from other compounds in biological extracts.23 The concept of fractional mass, which represents the mass defect, has also been used in proteomics to distinguish peptides from non-peptide ions in analyses of complex digestion mixtures, with utility for on-the-fly selection of ions for MS/MS analysis.24,25

While the Kendrick mass defect, mass defect filters, and fractional mass have provided important steps toward identifying many unknown compounds, mass measurement alone is often inadequate to provide unambiguous elemental formulae. With the Kendrick method, the difference between the nominal mass and the Kendrick mass defect becomes greater as the molecular weight increases, creating more potential molecular formulae. Also, this method is intended for simple organic compounds. The main disadvantage of mass defect filtering is that \textit{a priori} knowledge is essential for determining the mass window for filtering. The most useful data mining tool would not
require a specific \(m/z \) value to start from, nor would it require knowledge of what types of compounds are in a sample, but could still categorize all \(m/z \) values in a spectrum in terms of their similarity to a target range of elemental compositions. In this chapter, I exploit the notion that hydrogen atoms provide the major contribution to molecular mass defects, and suggest an approach based on filtering measured ion masses according to a relative mass defect in a manner that helps classify ions based upon the fraction of molecular mass accounted for by hydrogen atoms.
2.2. Materials and Methods

2.2.1. Materials

Fetal bovine serum was purchased from Invitrogen (Carlsbad, CA, USA). Activated charcoal/Dextran treated FBS was purchased from Hyclone (Logan, UT, USA). Di(2-ethylhexyl) phthalate (CAS No. 117-81-7) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Di-n-octyl phthalate (CAS No. 117-84-0) was purchased from Alfa Aesar (Ward Hill, MA, USA). Ammonium acetate was purchased from EMD Chemicals, Inc. (Gibbstown, NJ, USA). Methanol, 2-propanol, and chloroform were all HPLC grade.

2.2.2. Avoidance of Contamination

During sample preparation, glass containers were used whenever feasible, limiting exposure to plastics and minimizing contamination. In some cases, the availability of labware required the use of phthalate-free polypropylene plastics. All procedural blanks using polypropylene labware analyzed over six months yielded phthalate ester levels below our limit of detection (90 nM in extracts).

2.2.3. Extraction of Lipids for GC-MS Analysis

Lipids were extracted from 100 µL aliquots of serum samples in 15 mL polypropylene conical tubes using 3 mL of 2:1 methanol/chloroform (v/v). Tubes were vortexed for 15 seconds, then placed in a hot water bath (50-55 °C) for 15 minutes to inactivate and precipitate proteins. Afterwards, samples were centrifuged for 15 minutes at 3200 g and 25 °C. The supernatant was removed and washed twice with 1 mL of 1 M
aqueous KCl. The resulting lower organic layer (400 µL) was added to a clean glass autosampler vial. After evaporation to dryness under a stream of nitrogen gas, the residue was redissolved in 200 µL of 100 mM aqueous 1:1 ammonium acetate/2-propanol (v/v).

2.2.4. Extraction of Lipids for Discovery and Fractionation

Serum lipids were extracted from 50 mL of FBS using a method adapted from Frost and Wells.26 Briefly, 50 mL of serum was mixed with 310 mL of 1:2:0.1 chloroform/methanol/1 N aqueous H\textsubscript{2}SO\textsubscript{4} (v/v/v). This mixture was incubated for 1 hour at room temperature with mixing every 15 min, followed by addition of 1 volume of chloroform and 1 volume of 0.36 M aqueous H\textsubscript{2}SO\textsubscript{4} containing 15 mM NaCl. The sample was then centrifuged at 25 °C for 20 min at 4000 g. The lower organic phase was collected and the volume was reduced to about 17 mL using a rotary evaporator. The liquid residue was mixed 1:1 with chloroform, washed with water, and the lower organic phase was collected using a separatory funnel. The organic phase was transferred to a glass test tube and evaporated to approximately 3 mL under a stream of argon gas.

2.2.5. Fractionation of Lipid Extracts (Process 1)

From the extracts obtained by the first extraction protocol above, a neutral lipid fraction was generated using a 1000 mg BondElut Jr. NH\textsubscript{2} solid-phase extraction (SPE) column (Varian, Inc., Palo Alto, CA, USA) by sequential elution with various solvents as described.27 The hexane fraction was evaporated to dryness under argon gas and redissolved in 200 µL of hexane before the second stage of fractionation, which
employed a 1 mL Bakerbond SPE silica gel column (Mallinckrodt Baker, Inc., Phillipsburg, NJ, USA), eluting with an isocratic mobile phase of 95:5 hexane/2-propanol (v/v). A 10 mL volume of this mobile phase was used to elute the sample, which was further fractionated using a modified method developed by Murphy. In this third stage of fractionation, the silica SPE column eluant was evaporated to dryness under argon gas and dissolved in 1 mL of hexane. A 100 µL aliquot of this solution was then applied to a µPorasil silica analytical HPLC column (3.9 x 300 mm, 10 µm; Waters Corp., Milford, MA, USA) and fractionated by isocratic separation using a HPXL solvent delivery system (Rainin, Oakland, CA, USA). The mobile phase consisted of 1.08% 2-propanol and 0.09% acetic acid in hexane. Column temperature was maintained at 55 °C and the flow rate at 0.6 mL/min while fractions were collected every minute over 30 min. Fractions were then dried under nitrogen gas then dissolved in 200 µL of 1:1 100 mM aqueous ammonium acetate/2-propanol (v/v) for mass spectrometric analysis.

2.2.6. Reporter Assay

Bioassay-guided fractionation of substances with CAR2 ligand activity was guided through use of a cell-based luciferase reporter assay based on cytomegalovirus (CMV) promoter and human liver CAR2 as previously described. All DNA transfections were performed in a 48-well format using COS-1 cells and a CMV-CAR2 plasmid. Luciferase assays were performed using the Dual-Luciferase Reporter Assay System (Promega, Madison, WI, USA) and a Veritas Microplate Luminometer (Turner Biosystems, Sunnyvale, CA, USA).
2.2.7. Flow Injection Analysis-MS and HPLC-MS of Serum Fractions

Aliquots (10 µL) of individual fractions isolated from FBS were analyzed using flow injection analysis (FIA) on a LCT Premier™ time-of-flight mass spectrometer (Waters Corp.) employing ESI+ and ESI- with V mode ion path. The sample cone was held at 25 V, and the ESI capillary at 3200 V. Spectrum acquisition covered m/z 100-1500 with a spectrum accumulation time of 0.2 seconds. Multiplexed in-source CID was performed using quasi-simultaneous acquisition of spectra with three different aperture 1 settings: 15, 40, and 65 volts.30,31 FIA analyses of samples employed a 100% methanol mobile phase flowing at 0.2 mL/min supplied by Prominence LC-20AD high performance LC solvent delivery modules (Shimadzu Corp., Kyoto, Japan).

Individual fractions from fetal bovine serum from Process 1 showing activity in the reporter assay were fractionated further (Process 2) using a Hypersil GOLD C\textsubscript{18} column (2.1 x 50 mm, 1.9 µm particle size, Thermo Fisher Scientific, Waltham, MA, USA). Each FBS fraction was divided further into six new fractions (with collection times at 4.9, 5.5, 6.5, 10, 15, and 20 minutes) using a 20 minute ternary gradient with a flow of 0.2 mL/min. Solvent A (10 mM NH\textsubscript{4}OAc), solvent B (methanol) and solvent C (2-propanol) were programmed using linear gradients as follows: initial = 99% A/1% B, linear to 100% B at 1 min, then linear to 95% B/5% C at 11 min, then to 50% B/50% C at 13 min, and 100% C at 14 min. After holding at 100% C for 1 min the gradient was returned to initial conditions for the remaining 5 minutes.
2.2.8. GC-MS of Phthalate Ester Standards and Extracts of Fetal Bovine Serum

Gas chromatography-mass spectrometry analyses for phthalate esters were performed using a 6890 GC coupled to a model 5973 mass spectrometer (Agilent Technologies, Santa Clara, CA, USA). Samples were injected onto a DB-5-MS column (30 m x 0.25 mm, 0.25 µm film) using pulsed splitless mode, helium carrier gas at 43 cm/s, and an initial injector temperature of 280 °C. The column was held initially at 50 °C, then programmed to 240 °C (35 °C/min), then to 300 °C (6 °C/min) with a 5 minute hold. Electron ionization (EI) was employed (70 eV), and spectra were acquired over m/z 40-500 at 3.14 spectra per second.
2.3. Results and Discussion

2.3.1. Bioassay-Directed Fractionation

Previous experiments conducted in the Omiecinski laboratory at Penn State University discovered CAR2 activation when using cell culture media containing fetal bovine serum, but treatment of FBS with activated charcoal/Dextran to remove various low molecular weight compounds eliminated this activity. Fractionation of lipid extracts of untreated and treated FBS using isocratic elution HPLC on a normal-phase silica column generated two sets of 30 fractions per sample, all of which were assayed for CAR2 activity. Fraction 17 from untreated FBS exhibited CAR2 activity, while the corresponding fraction 17 from treated FBS remained inactive. Based on the retention characteristics of the normal-phase LC solvent system, it was proposed that an endogenous neutral lipid, suspected to be a steroid, based on known CAR ligands, was present in FBS and was responsible for CAR2 activation.

To identify constituents in the active fraction, flow injection analysis-MS was performed on active fraction 17 and inactive fractions 15, 16, 18, and 19. Each summed spectrum, in both positive and negative mode, contained between 975 and 1085 peaks. After background subtraction, between 298 and 408 peaks remained, with over 90% of the peaks falling below m/z 700. In the negative ion mode spectra, many peaks had a mass defect consistent with that of a lipid, and the two most prominent peaks, at m/z 255, and m/z 283, corresponded to hexadecanoate and octadecanoate, respectively. Comparisons of spectra for the various fractions failed to reveal distinguishable differences between biologically active and inactive fractions, suggesting the compound of interest was of low abundance relative to other inactive fraction constituents.
Therefore, a method was needed to distinguish bioactive substances from other compounds present in the sample by reducing spectrum complexity and accelerating recognition of neutral lipid candidates. The scheme employed in this study, as depicted in **Figure 2-1**, is driven by bioassay-directed LC fractionation of the active fractions, with fractions screened using mass spectrometry and ranked in priority in part using a relative mass defect data filter.

Figure 2-1: Work flow for the discovery and identification of bioactive compounds.
The untreated FBS fraction with greatest activity was fractionated further using reversed-phase LC on an ultra performance C\textsubscript{18} column with a ternary gradient. Owing to concerns that some neutral lipids might not yield protonated molecules during electrospray, ammonium acetate was added to the mobile phase to enhance the possibility of forming [M+NH\textsubscript{4}]+ ions for such compounds.

Based on previous experiments, the retention time range from 4 to 8 minutes in the reversed-phase HPLC separation corresponds to compounds that elute in high methanol concentration (Figure 2-2). Spectra were then summed over this retention time range using a 25 mDa mass window and a 0.1% intensity filter followed by lock

![Figure 2-2: Total ion chromatogram from the LC separation of the active fraction from Process 1 (fraction 17), highlighting the retention time window selected for summation of mass spectra.](image-url)
mass correction using m/z 214.0896 (protonated N-butyl benzenesulfonamide, a common source contaminant). This process generated a list of 1345 discrete m/z values.

To narrow the list of m/z values to those candidates most consistent with an expected neutral lipid, my attention was focused on compounds rich in hydrogen content. Hydrogen is unusual among elements in having a large positive mass defect. For quick recognition of ions with high hydrogen content, one can calculate a relative mass defect as follows:

$$\text{RMD} = \frac{\text{mass defect}}{\text{measured monoisotopic mass}} \times 10^6, \text{measured in ppm}$$

Values of RMD provide a measure of elemental composition analogous to % H determined by combustion and gravimetric analysis, long established techniques for structure confirmation. The RMD shows substantial correlation with % H, and the former can be useful for grouping ions of similar structural classes because they share similar % H content. Compounds with large RMD values have a greater percent of hydrogen and a smaller percent of heavier elements with negative or neutral mass defects such as phosphorus and oxygen. For example, alkanes have relative mass defects greater than 1000 ppm, membrane lipids and steroids often lie between 600-1000 ppm, sugars such as sucrose between 300-400 ppm, and organic acids such as citric acid have RMDs less than 300 ppm. Examples are shown in Figure 3-3. As per the Kendrick mass defect, no heteroatom-containing organic compound should yield a RMD value much greater than 1200 ppm. In these cases, the mass defect should be treated as negative, or arising from multiple charging.
Figure 2-3: The relationship between relative mass defect and % hydrogen for an assortment of organic compounds. The dashed line indicates the range of interest, 600 to 1000 ppm.

Since a relative mass defect filter can narrow the list of candidate ions to those with targeted hydrogen content, lipids were selected by eliminating all m/z values except those with a RMD between 600 and 1000 ppm. Figure 2-4 depicts a histogram of the calculated RMDs for all 1345 m/z values and Figure 2-5 the corresponding mass spectrum. Ions with mass defects outside this range, including those introduced during the preparative HPLC steps in Process 1, were judged to be unlikely neutral lipid candidates and were excluded from further consideration.
Figure 2-4: Histogram representing the frequency of relative mass defects for the 1345 discrete m/z values obtained by summing all mass spectra from retention times 4-8 min. The range of RMD values of interest, 600-1000 ppm, which likely target neutral lipids, is highlighted in orange.
Figure 2-5: A summed spectrum obtained from the m/z values in the selected range of Figure 2-4, representing all m/z values from this range. Peak A = m/z 214, B = m/z 251, C = m/z 279, D = m/z 374, E = m/z 391, F = m/z 448, G = m/z 638, H = m/z 680.

The remaining m/z values were filtered by relative ion abundance, with the highest 10% selected, before a final filtering to remove m/z values corresponding to 13C isotopes. The resulting spectrum list contained 21 candidate ion m/z values (Figure 2-6). Of these values, three represented extracted ion chromatograms (XICs) with well defined peaks, m/z 391, m/z 448, and m/z 680. The other 18 values were excluded because their extracted ion chromatograms had a similar profile to the total ion chromatogram, suggesting their presence was from the HPLC solvent system or the column, not the FBS sample.
Figure 2-6: A summed spectrum obtained from the m/z values in the selected range of Figure 2-4, represents the 21 remaining m/z values after intensity filtering and deisotoping. Peak D = m/z 374, E = m/z 391, F = m/z 448, G = m/z 638, H = m/z 680.

Further fractionation (Process 2) of the active fraction, fraction 17, from Process 1 allowed for the m/z value candidates to be collected among different fractions. A total of six fractions were collected using reversed-phase fractionation with an ultra performance C$_{18}$ column and the ternary gradient described earlier, yielding candidates m/z 391 and m/z 448 in fraction 2 and m/z 680 in fraction 3 (Figure 2-7). All Process 2 fractions were divided in half, with one aliquot used for FIA-MS analysis and the other used for bioassay analysis towards CAR2, finding fractions 2 and 3 active.
2.3.2. Identification of Bioactive Compound

Positive mode ESI FIA-MS analysis was conducted for each of the six \(C_{18} \) Process 2 fractions. Comparison of spectra from the active fractions (2 and 3) to spectra from inactive fractions (1, 4, 5, and 6) discovered a dominant ion, at \(m/z \) 391, present only in the active fractions. To identify this compound, the accurate mass, \(m/z \) 391.2836 was selected from the mass spectrum (fraction 2) and submitted to an elemental composition calculator. With the tolerance set to 10 ppm, the range of double bond equivalents set to -1.5 to 20, and the range of potential elements set to 0-50 carbon, 0-200
hydrogen, 0-4 nitrogen, and 0-25 oxygen, three potential formulae were displayed, two of which were eliminated owing to the low likelihood that this neutral lipid would contain nitrogen atoms. The only non-nitrogen containing formula, \(\text{C}_{24}\text{H}_{39}\text{O}_4^+ \) (\(m/z \) 391.2843, 1.8 ppm error) was present in fractions 2 and 3, and was selected as the most likely candidate based on both mass measurement and isotope pattern matching.

The use of multiplexed in-source CID allows for analyses as an extension of MSE (generating separate mass spectra with two collision induced dissociation conditions) on a time-of-flight mass spectrometer32,33, which is advantageous over common MS/MS experiments in that varying degrees of fragmentation are generated without the need for predetermined or data-dependent selection of the precursor ion mass. This technique is performed by switching the voltage on aperture 1, a focusing lens in the transit region between the source and analyzer. For fraction 2, at the low voltage setting of 15 V, the ion at \(m/z \) 391 dominates the spectrum, but at 65 V, fragment ions at \(m/z \) 279, 167, and 149 dominate the spectrum. Follow-up LC-MS analyses of the active fraction confirmed that these three fragments co-eluted with \(m/z \) 391. These fragment ion masses are consistent with published EI spectra of dioctyl phthalate suggesting that \(m/z \) 391 is protonated dioctyl phthalate34.

Three dioctyl phthalate isomers, differing only in the aliphatic ester group, are commonly used as plasticizers (Figure 2-8); branched-chain isomers di(2-ethylhexyl) phthalate and di-isooctyl phthalate (DIOP), and the straight-chained di-\(n \)-octyl phthalate. However, similarities in the physical properties of the isomers, as well as expected similarities in fragmentation, the initial LC-MS analyses did not distinguish which isomer
was present. Therefore, established GC-MS techniques were used to determine the isomer content.35,36

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Structures of three dioctyl phthalate isomers, the branched-chained isomers di(2-ethylhexyl) phthalate (DEHP) and di-isoocyt phthalate (DIOP), and the straight-chained di-\textit{n}-octyl phthalate (DNOP).}
\end{figure}

A standard solution of both DEHP and DNOP was tested and compared to a sample of untreated FBS. Figure 2-9 and Figure 2-10 depict the GC-MS results for the analysis, showing that only DEHP is present in the fetal bovine serum sample, confirming it as the bioactive compound since it is present in both chromatograms and DNOP is absent from the serum extract sample. These results were confirmed by bioassay testing of the individual isomers with a cell-based reporter assay, yielding an EC\textsubscript{50} value of 0.21 µM DEHP and no DNOP activity.37
Figure 2-9: GC-MS extracted ion chromatogram for *m/z* 149 for 5 µM DEHP and 5 µM DNOP standards. The peaks eluting at 12.22 minutes and 13.92 minutes correspond to DEHP and DNOP, respectively.
Figure 2-10: GC-MS extracted ion chromatogram for m/z 149 for extract of 100 µL of fetal bovine serum. The peak eluting at 12.22 minutes corresponds to DEHP, confirming the presence of DEHP in extracts of fetal bovine serum.
2.4. Conclusions

Relative mass defect filtering offers a rapid way to screen lists of ion masses for compounds with fractional hydrogen content characteristic of specific compound classes or common biosynthetic origins. This approach accelerates processing of ion mass information and allows grouping of compounds based upon hydrogen content even when their absolute mass defects differ. Such is the case when the molecular masses within a class span a wide range. Coupling the use of relative mass defects with bioassay-directed LC fractionation offers a quick alternative to traditional bioactive compound discovery, focusing on targeted compound classes, and requiring fewer processing steps compared to the traditional cycle of fractionation, bioassay, and characterization. Calculations of relative mass defects could be performed on-the-fly to guide data-dependent MS/MS analyses, if implemented in instrument control software. Furthermore, this approach facilitates mining of LC-MS or GC-MS data for nontarget metabolite analyses, where a substantial fraction of detected signals are often unassigned to compound classes or elemental formulae.
2.5. References

Chapter 3: Rapid Isomer-Resolved Determination of Phthalate Ester Plasticizers using Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry
Abstract

Phthalate esters are common contaminants of blood products, but various phthalate derivatives exhibit differing biological activities. In this chapter, I report a rapid ultra high performance liquid chromatography-tandem mass spectrometry method for distinguishing two dioctyl phthalate esters, di(2-ethylhexyl) phthalate and di-n-octylphthalate, and quantifying them in serum extracts. The procedure achieves separation of both phthalate isomers with elution in less than 3 minutes by employing a binary gradient of 10 mM aqueous ammonium acetate and methanol. Empirical dependence of analyte retention selectivity upon column temperature and mobile phase composition served as the basis for optimization of the chromatographic separation. Both isomeric phthalates were detected by multiple reaction monitoring mass spectrometric detection using the common transition from \([M+H]^+\) at \(m/z\) 391 to the dominant fragment ion at \(m/z\) 149. Isomer-selective detection of DEHP was accomplished by monitoring the two transitions \(m/z\) 391 \(\rightarrow\) \(m/z\) 279 and \(m/z\) 391 \(\rightarrow\) \(m/z\) 167. This protocol allowed identification and quantification of DEHP as the exclusive isomer of dioctyl phthalate in untreated serum, and validated the efficacy of activated charcoal/Dextran treatment for removal of DEHP.
3.1. Introduction

Phthalates (Figure 3-1) consist of a diverse family of esters of 1,2-benzenedicarboxylic acid that confer flexibility, mechanical strength, and other improved characteristics to an assortment of plastic materials.1,2 Owing to their abundance in industrial and consumer products, medical devices, and food packaging, phthalates are ubiquitous in the environment.1,3,4 Human exposures to phthalates may be universal, with the National Health and Nutrition Examination Survey of the U.S. population reporting median urinary levels of phthalate ester metabolites around 200 μg/L for adults.5

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3-1.png}
\caption{Structures of two phthalate isomers, branched-chained di(2-ethylhexyl) phthalate (DEHP) and straight-chained di-n-octyl phthalate (DNOP).}
\end{figure}

Though phthalates exhibit low acute toxicity and are not genotoxic, the most common phthalate plasticizer, di(2-ethylhexyl) phthalate,1,3,4,6-9 attracted attention following rodent studies that showed dosing with DEHP led to assorted adverse effects including hepatocellular carcinoma, proliferation of peroxisomes,10 decreased testicular weights in male rats, and the formation of cysts on ovaries of female rats.11 In addition, Gray and colleagues demonstrated that prenatal exposure inhibited reproductive development and led to reproductive deformation in adult male rats.12 Studies of
phthalate exposures in humans drew correlations between phthalate exposure and changes in the levels of reproductive hormones in males, reduced sperm quality and damaged sperm DNA. In addition, altered thyroid hormone levels in men and a higher incidence of asthma in premature infants were observed. Concerns about human exposures to DEHP have also focused on children because the greatest effects are predicted for premature infants including those cared for in neonatal intensive care units, where prolonged exposure to developing bodies can cause the most damage.

Screening of human biological fluids for phthalates and their metabolites can document the extent of an individual’s exposure to phthalates, and offers the potential for prediction of the effects on the subject’s health. For screening of large populations to become feasible, the analytical costs and analysis times must be kept to a minimum without sacrificing data quality. Furthermore, phthalate esters are near-ubiquitous laboratory contaminants that can be introduced into blood products when blood is drawn through plastic devices, and their presence may exert effects on cell-based bioassays. As a result, there is a need for rapid and inexpensive screening of research and clinical products for bioactive phthalates. Such assays should provide capability for distinguishing phthalate isomers, particularly following the discovery that DEHP (and not its straight-chain isomer, DNOP) is a potent activator of constitutive androstan receptor 2, a receptor capable of regulating metabolism of endogenous and exogenous substances. Common practice of phthalate analysis has employed gas chromatography-mass spectrometry, offering baseline separation of isomeric phthalates, but sample analysis times often exceed 20 minutes. Newer methods for phthalate ester analysis have coupled high performance liquid chromatography to UV and diode-array detectors.
or mass spectrometry24-28 yielding decreased analysis times. While initial HPLC methods did not address whether DEHP is distinguished from other phthalate ester isomers,29 newer HPLC methods demonstrated the ability to resolve phthalate isomers.30,31 With the advent of LC columns with sub-2 \(\mu \)m particles and ultra high performance liquid chromatography pumps capable of 15,000 psi, phthalate isomers can be separated in under 5 minutes.31 Therefore, my aim has been to design and implement efficient UHPLC-MS/MS procedures to selectively detect and quantify the bioactive phthalate, DEHP, in mixtures containing two common dioctyl phthalate isomers, using fetal bovine serum as a documented source of phthalate contamination.32

The primary objective of UHPLC separations is often not increased speed, but increased resolving power. When converting a HPLC method to an UHPLC method, the challenge for the chromatographer is to decide whether to keep the analysis time the same and maximize resolution, keep the resolution the same and minimize analysis time, or choose a compromise.33 An equation for chromatographic resolution of two peaks is given below,34 where \(R \) is resolution, \(N \) is the number of theoretical plates, \(\alpha \) is selectivity factor, \(k' \) is capacity factor (B is the more retained compound, A is the less retained compound), \(t_R \) is compound elution time, and \(t_M \) is dead time (dead volume). To improve resolution, any of the three components of the equation below may be adjusted.

\[
R = \frac{\sqrt{N}}{4} \left(\frac{\alpha - 1}{\alpha} \right) \left(\frac{k_B'}{1 + k_A'} \right), \quad N = \frac{L}{H}, \quad \alpha = \frac{k_B'}{k_A'}, \quad k' = \frac{t_R - t_M}{t_M}
\]

The first term, dependent on \(N \), is improved by increasing column length, \(L \), or decreasing theoretical plate height, \(H \). Plate height is decreased by adjusting the flow rate toward the minimum value of \(H \) along the van Deemter curve. In addition, one can
increase the column temperature to shift the van Deemter curve. Increasing the
temperature will have minimal effects on eddy diffusion and longitudinal diffusion,
respectively, but rates of mass transfer will increase. This in turn will shift the minima of
the van Deemter curves down (lower plate height) and towards the right (increased
mobile phase velocity), yielding an increased optimum flow rate with smaller plate
heights. The second and third terms in the equation above, α and k', are related to one
another, and can be adjusted for a specific column by changing mobile phase
composition. The results from experiments, altering column temperature, k', and α, are
described in the following two sub-sections.
3.2. Materials and Methods

3.2.1. Materials

Fetal bovine serum was purchased from Invitrogen (Carlsbad, CA, USA). Activated charcoal/Dextran treated FBS was purchased from Hyclone (Logan, UT, USA). Di(2-ethylhexyl) phthalate (CAS No. 117-81-7) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Di-n-octyl phthalate (CAS No. 117-84-0) was purchased from Alfa Aesar (Ward Hill, MA, USA). Ammonium acetate was purchased from EMD Chemicals, Inc. (Gibbstown, NJ, USA). Methanol, 2-propanol, and chloroform were all HPLC grade.

3.2.2. Avoidance of Contamination

To prevent contamination, whenever possible, labware made of soft plastics was avoided except for use of batches made of polypropylene, determined to be free of detectable phthalate esters. To minimize sample-to-sample carry over of DEHP in the UHPLC system when doing quantitative experiments (section 3.2.4.4.), the autosampler needle and injector were washed with 20 mL of 2-propanol prior to each batch of samples analyzed. UHPLC-MS/MS analysis of Milli-Q® water blanks after each sample monitored phthalate carryover levels.

3.2.3. Fetal Bovine Serum Extraction

Lipids were extracted from 100 µL aliquots of serum samples in 15 mL polypropylene conical tubes using 3 mL of 2:1 methanol/chloroform (v/v). Tubes were vortexed for 15 seconds, then placed in a hot water bath (50-55 °C) for 15 minutes to
inactivate and precipitate proteins. Afterwards, samples were centrifuged for 15 minutes at 3200 g and 25 °C. The supernatant was removed and washed twice with 1 mL of 1 M aqueous KCl. The resulting lower organic layer (400 µL) was added to a clean glass autosampler vial. After evaporation to dryness under a stream of nitrogen gas, the residue was redissolved in 200 µL of 100 mM aqueous 1:1 ammonium acetate/2-propanol (v/v). The performance of the analytical method was evaluated by replacing part of the extraction solvent, 1 mL chloroform, with 1 mL of 1 µM DEHP in chloroform, supplementing extracts with an additional 1 nmol DEHP. Contamination from the extraction process was monitored with extraction blanks, extracting 100 µL of Milli-Q® water in place of the serum aliquot.

3.2.4. Chromatography and Mass Spectrometry Conditions

3.2.4.1. Mobile Phase Composition

DEHP and DNOP standards were dissolved in 3:2 methanol/water (v/v) to make separate 10 µM stock solutions. Injections (10 µL) of each stock solution were analyzed using a Hypersil GOLD® reversed-phase C₁₈ column (2.1 x 50 mm, 1.9 µm particle size, Thermo Fisher Scientific, Waltham, MA, USA) maintained at 60 °C in a column oven, and coupled to a LCT Premier™ time-of-flight mass spectrometer (Waters Corp., Milford, MA, USA). Isocratic elution was performed with mobile phase compositions ranging from 95:5 methanol/water (v/v) to 80:20 methanol/water (v/v) in 5 percent steps. For each methanol/water ratio five different concentrations of ammonium acetate were added (0, 2, 10, 50, 100 mM), yielding 20 different isocratic gradients. All solvents were delivered by LC-20AD pumps (Shimadzu Corp., Kyoto, Japan) at a total flow rate of 0.3
mL/min. Mass spectra were collected from m/z 100 to 1000 at 2 spectra per second using positive mode electrospray ionization (ESI+). Using MassLynx software (Waters Corp.), chromatographic retention times for peak tops were obtained from smoothed (Savitzky-Golay, 5 scans, 5 smooths) extracted ion chromatograms for the protonated phthalate esters ([M+H]) at m/z 391.

3.2.4.2. Effect of Column Temperature on Phthalate Retention and Separation

DEHP and DNOP standards were dissolved in 1:1 2-propanol/100 mM ammonium acetate (v/v) to make a solution with final concentrations of 5 µM each. Aliquots (10 µL) of this solution were injected on the LC-MS instrument and were analyzed using a binary gradient (Table 3-1) of 10 mM aqueous ammonium acetate and methanol on the same column from above with positive mode electrospray ionization. All solvents were delivered by an Acquity™ Ultra Performance LC (Waters Corp.) at a total flow rate of 0.5 mL/min, coupled to a Quattro Premier™ XE triple quadrupole mass spectrometer (Waters Corp.) operated in full scan mode over m/z 50 to 500, with spectra collection at 4 spectra per second. The column temperature was varied from 30-60 °C in 5 °C increments. Retention times were obtained from the smoothed (Savitzky-Golay, 4 scans, 5 smooths) extracted ion chromatogram for the molecular ion, [M+H]$, at m/z 391.
Table 3-1: Mobile Phase Composition of the Optimized UHPLC Gradient.

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>% 10 mM Ammonium Acetate</th>
<th>% Methanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>0.50</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>4.00</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>4.01</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>5.00</td>
<td>99</td>
<td>1</td>
</tr>
</tbody>
</table>

3.2.4.3. Collision-Induced Dissociation of Dioctyl Phthalate Isomers

DEHP and DNOP standards were dissolved in 1:1 2-propanol/100 mM ammonium acetate (v/v) to make 10 µM solutions. Injections (10 µL) were made using the binary gradient in Table 3-1 on the same column from above coupled to a Quattro Premier™ XE triple quadrupole mass spectrometer. Using a cone potential of 20 V, product ion spectra were generated for the protonated molecules, [M+H]⁺, at ten collision cell energies (5, 10, 15, 20, 25, 30, 45, 60, 75, and 90 V). Spectra were collected over a mass range of m/z 50 to 400 at 2 spectra per second. All solvents were delivered by an Acquity™ Ultra Performance LC at a flow rate of 0.5 mL/min, and the column temperature was held at 60 °C.

3.2.4.4. Quantification of Dioctyl Phthalate Isomers in Fetal Bovine Serum

The source cone voltage and collision cell were optimized using QuanOptimize routines within Waters MassLynx software v.4.1 as follows. To optimize the cone voltage, separate 10 µM solutions of DEHP and DNOP in chloroform, were introduced by flow injection analysis, with the target ion mass set to m/z 391 ([M+H]⁺). The
instrument collected mass spectra over a range of cone voltages from 10-70 V at 10 volt increments by scanning the first quadrupole analyzer. Extracted ion chromatograms for m/z 391 were generated for each cone voltage, returning the voltage that yielded the greatest peak area. For both DEHP and DNOP, the optimized source cone voltage was 20 V. To optimize the collision cell potential, separate 10 µM solutions of DEHP and DNOP were injected and the cone voltage was set to 20 volts. Automated optimization of collision energy for the transition from m/z 391 to m/z 149 was performed by quasi-simultaneous acquisition of product ion spectra, using collision potentials stepped in 5 V increments from 5 to 40 V. The optimized collision potential for the transition from m/z 391 to m/z 167 was established by manual processing of the product ion spectra described above. The optimized collision cell energy voltages are in Table 3-2.

Aliquots of 10 µL of fetal bovine serum extracts and 2.5 µL of spiked fetal bovine serum extracts were injected for LC-MS/MS analysis of both phthalate esters using multiple reaction monitoring in ESI positive mode. The sample cone was set at 20 volts and the collision cell at 27 volts while monitoring transitions from the protonated molecule ([M+H]^+) at m/z 391 to a fragment at m/z 149. Chromatograms for this transition were integrated using QuanLynx, part of the MassLynx software package.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>m/z Transition</th>
<th>Source Cone Potential (V)</th>
<th>Collision Cell Potential (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEHP</td>
<td>391 → 167</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>391 → 149</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>DNOP</td>
<td>391 → 149</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>
3.3. Results and Discussion

3.3.1. Optimization of Chromatographic Resolution of Isomeric Phthalate Esters

3.3.1.1. Effect of Mobile Phase Composition on Retention

Two components of the aqueous mobile phase, methanol/water ratio and concentration of ammonium acetate, were independently altered to determine their effect on DEHP retention. Figure 3-2 shows that when the ammonium acetate concentration is held constant at 0, 10, 50, or 100 mM, the capacity factor decreases exponentially with increasing methanol content. In fact, the capacity factor decreases by almost 50% with each 5% increase in methanol. As the methanol component of the mobile phase increases, the solvation of ions becomes less favorable, changing the polarizability of the mobile phase and allowing it to more easily solvate phthalate molecules, making them less retained.35,36

A contrasting effect is observed when the percent methanol component of the mobile phase is constant and the ammonium acetate concentration is increased. The inset data points in Figure 3-2 depict at each percent methanol composition, incremental increases in ammonium acetate concentration, from 0 mM to 100 mM, yield an increase in \(k' \). However, the effect of changing ammonium acetate concentration has a larger relative effect at higher methanol concentrations, demonstrated by the calculated \(k' \) values, which increase 10% from 0 mM to 100 mM ammonium acetate at 90% methanol, but only 6.2% at 75% methanol. The larger relative effect of ammonium acetate at higher percent methanol compositions is due to fewer water molecules being present to solvate the ammonium acetate, causing methanol to aid in salt solvation. This results in a disruption of methanol/water interactions and alters the bulk solvent.
Figure 3-2: Relationship between mobile phase methanol content upon capacity factor showing mean k' values ($N = 3$) for four different ammonium acetate concentrations (♦ 0 mM, ▲ 10 mM, ■ 50 mM, and ● 100 mM ammonium acetate). The inset groups of data represent a 5 fold magnification.

The possibility of ammonium ions binding to the column and changing the surface properties to affect phthalate retention was excluded because the k' values for a given percent methanol composition were linearly related. Since the observed relationships between retention and mobile phase composition indicate that a limit at which increasing the ammonium acetate concentration has no effect on k' has not been reached, it is concluded that ammonium acetate is affecting the mobile phase’s ability to solvate phthalate molecules.

I hypothesize that the increase in retention as a function of increasing ammonium acetate concentration, at constant percent methanol composition, is due to the decrease in
solubility of phthalates in the mobile phase. For example, at 75 percent methanol composition, the effect of ammonium acetate on phthalate retention at 100 mM is greater than at 10 mM. This is attributed to disruption of methanol-water interactions by ammonium acetate, thus decreasing solvation of phthalate esters by the mobile phase and increasing k'.

As seen in Figure 3-2 and Figure 3-3, phthalate partitioning into the mobile phase increases as either the percent methanol increases or the ammonium acetate concentration decreases. While changing both ammonium acetate concentration and percent methanol composition affects the solvation of phthalate molecules by the mobile phase, changes in methanol content of the mobile phase provide a more practical option than massive changes in mobile phase electrolyte content, particularly when mass spectrometric detection is employed. Therefore, the gradient in Table 3-1 was developed so that the mobile phase composition would correspond to $k' > 10$ at time 0, a fast jump to $k' \sim 4$ at 0.5 min, corresponding to 80% methanol, and $k' \sim 2$ (85% methanol) at the end of the gradient (Figure 3-3).
Figure 3-3: The relationship between the rate of change of \(k' \) with the rate of change in mobile phase ammonium acetate concentration, at different millimolar methanol concentrations. The equation of the best exponential fit is \(y = 118000e^{-0.129x} \).

3.3.1.2. Effect of Column Temperature on Retention

The relationship between (column) temperature and the equilibrium constant, \(K_{eq} \), can be described by the van’t Hoff equation.\(^{37}\) Substitution of \(k' \) for the equilibrium constant, \(K_{eq} \), yields a modified van’t Hoff equation for phthalate partitioning between the stationary and mobile phases (below), where \(\Delta H^\circ \) and \(\Delta S^\circ \) are the changes in enthalpy and entropy, respectively, \(T \) is temperature, and \(R \) is the universal gas constant.

\[
\ln k' = -\frac{\Delta H^\circ}{RT} + \frac{\Delta S^\circ}{R}
\]
The relationship between k' and temperature, plotted in **Figure 3-4**, indicates that increased temperature decreases the k' values for both phthalate isomers, with the slopes being similar for the two isomers. The calculated values for ΔH° for transfer of DNOP and DEHP from the mobile to the stationary phase are -11.5 KJ/mol and -10.6 KJ/mol, respectively, and are comparable to values reported for a series of arylalkanoic acids which ranged from -13 to -25 KJ/mol using 40% acetonitrile in water and between -6 to -14 KJ/mol using 40% tetrahydrofuran in water. The small (~1 KJ/mol) difference in ΔH° values for the phthalate isomers can be attributed to the small difference (12 cm3/mol greater for DNOP) in critical volume (calculated using ChemBioDraw Ultra, v. 12.0, CambridgeSoft, Cambridge, MA, USA) and associated differences in energy costs of accommodating space for the two solutes. The difference in entropy, ΔS°, for the two phthalates is ~1.5 KJ/mol·K, indicating a major contribution to selectivity of partitioning from entropy. Since elevated temperatures provide faster mass transport, particularly at high flow rates, separations were conducted using a column temperature of 60 °C to achieve rapid elution times.
Figure 3-4: A van’t Hoff plot comparing the effect of temperature on the capacity factor of the two phthalate standards. Each data point represents the mean of $N = 3$ analytical replicates.

3.3.2. Collision-Induced Dissociation of Dioctyl Phthalate Ions

Resolution of close-eluting compounds can be challenging when one compound is present in large excess relative to the other. Fortunately, the selectivity of tandem mass spectrometry provides a mechanism for selective detection even in the presence of an abundant interfering substance, but this approach requires differences in analyte masses or fragmentation. The CID product ion MS/MS spectra of protonated molecules for both phthalate isomers revealed a dominant fragment ion at m/z 149. DEHP, however, yielded two isomer-specific fragment ions at m/z 279 and m/z 167. DNOP fragmentation, Figure
3-5, is directed by the formation of the isobenzofuran-1,3-dione fragment at \(m/z \) 149, while DEHP fragmentation, Figure 3-6, is directed by the loss of the acyl chains to form protonated phthalic acid (\(m/z \) 167), followed by dehydration to form the isobenzofuran-1,3-dione ion.

Figure 3-5: The proposed fragmentation pathway of protonated DNOP to a fragment ion with \(m/z \) 149.
Figure 3-6: The proposed fragmentation pathway of protonated DEHP to a fragment ion at \(m/z \) 149, showing the two observed intermediate fragments that are specific to this branched-chain isomer.

The fragmentation behavior of DEHP is attributed to migration of the tertiary hydrogen at the C2 position to one of the carbonyl oxygens. The positive charge on the tertiary carbon at the C2 position is stable relative to the corresponding ion from the linear alkyl phthalate ester. This is because the tertiary carbon in DEHP has three
carbon-carbon bonds from which electron density can be drawn to stabilize the positive charge, while the secondary carbon in DNOP only has two carbon-carbon bonds.

Figure 3-7: Breakdown curves for two fragment ions (♦ m/z 149, ■ m/z 261) derived from CID of protonated DNOP at nine different collision cell potentials.

Figure 3-7 and Figure 3-8 depict the collision energy dependence of fragment ion abundances for the two phthalate isomers DNOP and DEHP, respectively, leading to the optimized MRM conditions in Table 3-2. At a collision cell potential of 10 volts, both protonated compounds fragment to give m/z 149 and m/z 261, but DEHP also yields m/z 279, 18 Da greater than m/z 261, corresponding to the mass of water. For DNOP, as the collision cell potential is increased from 10 volts, the abundance of m/z 261 decreases while the abundance of m/z 149 increases. For DEHP, as the collision cell potential is increased from 10 volts, the abundance of m/z 149 increases, and the abundance of m/z
261 decreases, as in DNOP. The abundance of \(m/z \) 279 also decreases after 10 volts, coinciding with the increase in abundance of \(m/z \) 167. This demonstrates that two different fragmentation pathways are available for DEHP: the formation of the furan ring, as in DNOP, and the loss of the acyl chain with ring formation. The second pathway is possible in DEHP and not DNOP because the branched-chain phthalate can form a stable tertiary carbocation, while the straight-chained isomer can only form a secondary carbocation.

Figure 3-8: Breakdown curves for four fragment ions (♦ \(m/z \) 149, ■ \(m/z \) 261, ▲ \(m/z \) 279, and ● \(m/z \) 167) derived from CID of protonated DEHP at nine different collision cell potentials.

Selective detection of DEHP can be achieved by monitoring the transition from the protonated molecule to an isomer-selective fragment formed upon collision-induced
dissociation. To test this idea, a MRM method was developed to monitor a transition common to both DEHP and DNOP (m/z 391 → 149) as well as a DEHP-selective transition (m/z 391 → 167). As seen in Figure 3-9 the extracted ion chromatogram for an equimolar mixture of the two isomers shows two peaks for the transition to the common fragment at m/z 149 corresponding to DEHP and DNOP. However, as seen in Figure 3-10, the XIC for the transition to the DEHP-selective fragment at m/z 167 shows only a single chromatographic peak corresponding to DEHP. This approach yielded greater than 100-fold improvement in selectivity of detection of the DEHP isomer relative to DNOP.

Figure 3-9: LC-MRM chromatogram of 5 µM each of DEHP and DNOP standards showing the transition from the molecular ion [M+H]$^+$ to a fragment ion common to both phthalates (m/z 149). Spectra were collected in ESI$^+$ mode. Chromatograms were smoothed using the Savitzky-Golay method (3 scans, 3 smooths).
While m/z 149 is the predominant fragment ion for both isomers, the relative abundance from DNOP is greater than that of DEHP. DNOP yields greater signal intensity at low collision energies because DEHP forms other fragments, m/z 167 and m/z 279. These lower energy fragments from DEHP causes the optimum collision cell energy for m/z 149 to be around 30 volts, while it is 25 volts for DNOP.

Figure 3-10: LC-MRM chromatogram of 5 µM each of DEHP and DNOP standards showing the transition from the molecular ion [M+H]$^+$ to a fragment ion specific to DEHP (m/z 167). Spectra were collected in ESI+ mode. Chromatograms were smoothed using the Savitzky-Golay method (3 scans, 3 smooths).

3.3.3. Quantification of DEHP in Fetal Bovine Serum

To validate the protocol, the method of standard addition was employed to determine the concentration of DEHP in fetal bovine serum. A standard addition curve
was constructed using various concentrations of DEHP from stock solutions; and the DEHP concentration was calculated by spiking a FBS sample with a known amount of DEHP. The calculated level of DEHP in FBS was 5.7 µM with a standard deviation of 0.7 µM, almost 4 times higher than the previously reported value of 1.5 µM.32 DEHP was not detectable in the activated charcoal/Dextran treated FBS. The propagation of error method was used to determine the error in our final DEHP concentration calculation.39 The limit of detection, three times the standard deviation, was 0.09 µM and limit of quantification, ten times the standard deviation was 0.3 µM.
3.4. Conclusions

This work demonstrates the performance of a triple quadrupole mass spectrometer as a filter for selective detection and quantification of specific isomers. Employing a multiple reaction monitoring tandem mass spectrometry method that was developed to take advantage of isomer-specific fragmentation, incorporating a 5 minute UHPLC gradient, phthalate isomers were separated, detected, and quantified. This procedure can be used as a high-throughput screen for phthalates in blood products.

The optimized chromatographic conditions were determined by varying column temperature and mobile phase composition (water, methanol, and ammonium acetate), so that the phthalates would elute when the capacity factor was decreasing from 4 to 2. The retention times of phthalates decrease as the percent methanol in the mobile phase increases, while the addition of ammonium acetate has a smaller, but opposite effect, enhancing phthalate retention. Increasing the percent methanol in the mobile phase had a larger effect on the capacity factor than decreasing the ammonium acetate concentration. While this change signifies that there are multiple ways to control retention and thus alter k', changing the methanol composition of the mobile phase is more direct.

This research will guide development of future rapid UHPLC-MS/MS screening methods for detection and quantification of isomeric compounds, especially in instances when baseline resolution is unattainable. The use of isomer-specific fragmentation to develop a MRM MS/MS method will still yield quantitative data even in cases when baseline chromatographic resolution cannot be achieved.
3.5. References

Chapter 4: Quantification of Target Phosphatidylethanolamine Plant Lipids using Flow Injection Analysis with Multiple Reaction Monitoring
4.1. Introduction

Plant chloroplasts have complex membranes which play important roles in lipid biosynthesis, transport, and degradation, a process regulated by various enzymes. Alterations in membrane composition have potential to influence numerous cellular functions. While the roles of many chloroplast genes remain unclear, many enzymes have high specificity to lipid substrates with a specific head group, number of fatty acyl carbons, and units of unsaturation. Extensive resources of Arabidopsis knockout mutants allow gene functions to be explored through comprehensive screening of metabolic phenotypes for thousands of mutant lines, using an approach termed reverse genetics. Using these mutant lines in combination with environmental or pathogen stresses, researchers have begun to measure the relationship between genes, and the enzymes they code for, and phenotypic behavior, including changes in abundance of different lipids. Often, the change in fatty acid composition of lipids correlates to specific stresses.1-5

In Arabidopsis, the major classes of chloroplast lipids are phospholipids (phosphatidic acid, PA, phosphatidylcholine, PC, and phosphatidylethanolamine) and galactolipids (e.g. monogalactosyldiacylglycerol, MGDG). Fatty acids, synthesized in the chloroplast, can be exported to other organelles including the endoplasmic reticulum for incorporation into PA lipids, or can remain in the chloroplast to become PA lipids or diacylglycerols (DAG). PA lipids that are assembled outside the chloroplast are used in the synthesis of other phospholipids via attachment of various groups (e.g. ethanolamine) and diacylglycerols which are produced by removal of the phosphate group. The diacylglycerols can serve as precursors of other lipids including triacylglycerols (triglycerides), which are of increasing interest because of their potential use as biofuels.
Many of these lipids, including PA, that are assembled outside the chloroplast undergo either chain length modification or desaturation (or both) before transport back into the chloroplast.6-8 All of these modifications have potential importance to cellular functions and as end products with potential economic value.

The synthesis of PA, the building block of all plant lipids, is also highly regulated. The substrate specificities of the acyltransferases expressed inside the chloroplast and outside, in the endoplasmic reticulum (ER), lead to very different lipid products. In the chloroplast, phosphatidic acid is formed with a 16:0 fatty acid at the \textit{sn}-2 position and an 18 carbon fatty acid, usually 18:1, at the \textit{sn}-1 position. However, outside the chloroplast, PA is always synthesized with an 18:1 fatty acid attached at the \textit{sn}-2 position and only has 18:1 at the \textit{sn}-1 position when 16:0 is not available.9 Many of the PA lipids and their downstream products inside the chloroplast will be structural isomers of the PA lipids outside in the ER. To understand the contributions of lipid biosynthetic pathways that occur in different parts of the plant cell, there is a need to quantify complex lipids in plants, including discrimination of isomeric lipids that differ in the positions of fatty acid substitution. Current mass spectrometry methods are powerful tools that can use molecular mass to assign the number of carbon atoms in the fatty acyl groups within some phospholipids, but mass spectrometry usually has difficulty distinguishing isomers.

Identification of plant lipids is still accomplished by TLC.10-12 While this is an inexpensive way to identify large changes in levels of lipids within specific chemical classes, more subtle changes in lipid composition often go undetected. In addition to TLC, gas chromatography-mass spectrometry of FAMEs, which analyzes the fatty acid methyl esters derived from lipids present, has been employed, but in releasing fatty acids
from the complex lipid, structural information about positions of attachment is lost.13-15 Another approach pioneered by Welti and Wang,2 and Han and Gross,16 has been to use direct-infusion MS/MS, where lipid classes are selected for by a characteristic fragmentation ion or neutral loss, and then fragmented to measure the relative amounts of fatty acids. One of the drawbacks of these lipid analyses is that no information on the relative ratios of positional isomers is reported. Han and Gross even state that, “Lipidomics at its current stage is unable to accurately discriminate the sn-1 and sn-2 acyl moieties present in a diacyl phospholipid species…”16

The challenge of performing isomer-specific lipid quantification is magnified when lipids are extracted from whole plant leaves, which contain lipids from all organelles including the ER as well as the chloroplast. An extract now contains an isomeric mixture of the very lipids nature had intentionally segregated. One approach to avoid this problem is to physically separate the chloroplasts from the ER based on differential densities, and extract each separately.17 While this keeps the chloroplast contents separate, it is a time consuming procedure.

The above methods are approaches that help build understanding of the connections between gene functions, tissue lipid composition, and environmental factors. One issue remaining to be resolved is that a change in isomeric composition of lipids may be an important biological marker of the efficiency of biosynthesis and transport of lipids in and between subcellular compartments, and may lead to identification of new roles for existing genes and new lipid transporters. It remains clear that a method to determine the relative ratios of positional isomers is required to identify bottlenecks in accumulation of lipids by plant tissues. Therefore, the aim of this chapter is two-fold: to improve upon
current MS/MS technologies and develop rapid FIA-MRM MS quantification methods for PE lipids, and to probe the fragmentation of PE lipids by examining the effects of the number of double bonds, and the effect of modifying the head group.
4.2. Materials and Methods

4.2.1. Materials

Lipid standards, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (PE 16:0-18:1), 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine (PE 16:0-18:2), and 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine (lyso PE 16:0) were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). Di-tert-butyl dicarbonate (CAS No. 24424-99-5), triethylamine (CAS No. 121-44-8), and reagent grade trifluoroacetic acid (CAS No. 76-05-1) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Stearoyl chloride (CAS No. 112-76-5) was purchased from Alfa Aesar (Ward Hill, MA, USA). Sodium chloride was purchased from EMD Chemicals, Inc. (Gibbstown, NJ, USA) and sodium acetate from Mallinckrodt Baker, Inc. (Phillipsburg, NJ, USA). Methanol, 2-propanol, THF, and chloroform were all HPLC grade.

4.2.2. Synthesis of 1-Palmitoyl-2-Stearoyl-sn-Glycero-3-Phosphoethanolamine

The following procedure was developed after a literature search into PE lipid synthesis.18,19 Lyso PE 16:0, 25 mg, was dissolved in 10 mL of 1:1 THF/chloroform (v/v) and stored at -4 °C. A 2 mL aliquot containing 5 mg of the lyso PE lipid was added to a 25 mL round bottom flask along with 15 µL of triethylamine and 12 µL of di-tert-butyl dicarbonate (amine protecting group). An additional 3 mL of chloroform was added to the reaction vessel, which was capped and stirred for 45 minutes. The liquid was then washed three times with 1 M NaCl and the organic layer was collected and dried under nitrogen gas. After dissolving the solid in 5 mL of chloroform, 8 µL of
triethylamine and 5 µL of stearoyl chloride were added and the reaction vessel was capped and stirred for 45 minutes. The chloroform layer was washed three times with 10 mL of Milli-Q® water, collected, and transferred to a clean 25 mL round bottom flask. The protecting group was removed by reaction with 1 µL of trifluoroacetic acid for 45 minutes, followed by three Milli-Q® water washes. The resulting 5 mL of chloroform was stored at -4 °C. Flow injection analysis and negative mode electrospray ionization mass spectrometry were used to monitor the reaction progress.

4.2.3. Flow Injection Analysis-Multiple Reaction Monitoring of PE Lipids

Aliquots (10 µL) of individual plant extracts in 2:1 methanol/chloroform containing 5 mM sodium acetate were analyzed using flow injection analysis on a Quattro Micro™ triple quadrupole mass spectrometer (Waters Corp., Milford, MA, USA), employing ESI+. The sample cone was held at 40 V, and the ESI capillary at 3500 V. Spectrum acquisition covered the 20 m/z transitions listed in Table 4-1, with a spectrum accumulation time of 0.038 seconds per transition. FIA analyses of samples employed a 2:1 methanol/chloroform (v/v) mobile phase flowing at 0.1 mL/min supplied by Prominence LC-20AD high performance LC solvent delivery modules (Shimadzu Corp., Kyoto, Japan).

4.2.4. Collision-Induced Dissociation of PE Lipid Standards

Aliquots (10 µL) of two PE lipid standards, 100 µM in 2-propanol, were analyzed using flow injection analysis on a Quattro Premier™ XE triple quadrupole mass spectrometer (Waters Corp.). Using a cone potential of 20 V and an ESI capillary
voltage of 3330 V, daughter ion spectra were generated for the protonated molecules, \([M+H]^+\), and the deprotonated molecules \([M-H]^-\) at twelve collision cell energies (5, 10, 15, 20, 25, 30, 35, 40, 45, 60, 75, and 90 V). Spectra were collected over a mass range of \(m/z\) 50 to 800 at 2 spectra per second. A 100% methanol mobile phase was delivered by an AcquityTM Ultra Performance LC (Waters Corp.) at a flow rate of 0.2 mL/min. Spectra (scans 10-50) were summed and background subtracted before the peak intensity list was exported to Microsoft Excel for data analysis.

4.2.5. Effect of Phosphoethanolamine Head Group Modification

Aliquots (50 µL in chloroform) of two lipids, tert-butyl carbamate (BOC)-PE 16:0-18:0 and PE 16:0-18:0, were added to 500 µL 2-propanol. Injections (10 µL) were analyzed using flow injection analysis on a Q-TOF UltimaTM mass spectrometer (Waters Corp.). Using a cone potential of 45 V and an ESI capillary voltage of 3000 V, daughter ion spectra were generated for the protonated molecules, \([M+H]^+\) using a collision cell energies of 40. Spectra were collected over a mass range of \(m/z\) 50 to 1000 at 2 spectra per second. A 100% methanol mobile phase was delivered by a Waters 2795 Separation Module at a flow rate of 0.2 mL/min.
4.3. Results and Discussion

4.3.1. Development and Application of a MRM Method

Unlike the genome, the metabolome is not static, responding over time to stresses, pathogens, and chemical signals. Therefore, to conduct a full-scale metabolomics or lipidomics study, thousands of samples from different time points, chronicling different metabolome states, are collected. The demand for analysis of large sample sets mandates rapid, high-throughput methods. While the methods developed by Welti and colleagues are powerful, they involve continuous infusion of tissue extracts over periods ranging from 25 minutes to nearly 1 hour per sample. Since reverse genetics studies of mutant plant lines often require profiling of thousands of samples per study, the needs of such studies propel efforts to accelerate the speed of mass spectrometric lipid analyses.

The lipid species in *Arabidopsis thaliana* have been well cataloged,2,20,21 making it possible to generate a table of all lipids and their molecular masses likely to be present in a tissue extract. Complex lipids, such as phosphatidylethanolamines (Figure 4-1), contain two fatty acyl chains, each of which can fragment in the mass spectrometer under collision-induced dissociation to yield the corresponding acylium ions in positive ion mode.
Exploiting the knowledge about which PE lipid species are present in *Arabidopsis thaliana* leaves and what fatty acyl chains are likely to be attached, a table was constructed containing masses of all sodiated PE lipids and their acylium fragment ions (Table 4-1). By monitoring specific mass transitions, instrumental signals are generated for each PE lipid isomer, and the relative amounts of each lipid can be determined. Lipids that contain fatty acyl chains of different masses are detected by measuring either transition of precursor to product ion. For example, PE 34:1 can be made up of two different combinations of fatty acids (16:0 plus 18:1, and 16:1 plus 18:0). For lipids
containing two of the same fatty acyl chains, only one transition can be measured. Therefore, two complementary methods were used, the first measuring the transition from the sodiated lipid to acylium ion 1 (Method 1) and the second to the complementary acylium ion 2 (Method 2). Using the ion transitions in Table 4-1, 20 PE lipids are detected and quantified in a single 3 minute analysis using flow injection analysis (FIA).

<table>
<thead>
<tr>
<th>Lipid</th>
<th>Chain 1 fatty acid</th>
<th>Chain 2 fatty acid</th>
<th>[M+Na]⁺ (m/z)</th>
<th>Acylium Ion 1 (m/z)</th>
<th>Acylium Ion 2 (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE (34:1)</td>
<td>16:0</td>
<td>18:1</td>
<td>740.52</td>
<td>239.24</td>
<td>265.25</td>
</tr>
<tr>
<td></td>
<td>16:1</td>
<td>18:0</td>
<td></td>
<td>237.22</td>
<td>267.27</td>
</tr>
<tr>
<td>PE (34:2)</td>
<td>16:0</td>
<td>18:2</td>
<td>738.50</td>
<td>239.24</td>
<td>263.24</td>
</tr>
<tr>
<td></td>
<td>16:1</td>
<td>18:1</td>
<td></td>
<td>237.22</td>
<td>265.25</td>
</tr>
<tr>
<td></td>
<td>16:2</td>
<td>18:0</td>
<td></td>
<td>235.21</td>
<td>267.27</td>
</tr>
<tr>
<td>PE (34:3)</td>
<td>16:0</td>
<td>18:3</td>
<td>736.49</td>
<td>239.24</td>
<td>261.22</td>
</tr>
<tr>
<td></td>
<td>16:1</td>
<td>18:2</td>
<td></td>
<td>237.22</td>
<td>263.24</td>
</tr>
<tr>
<td></td>
<td>16:2</td>
<td>18:1</td>
<td></td>
<td>235.21</td>
<td>265.25</td>
</tr>
<tr>
<td></td>
<td>16:3</td>
<td>18:0</td>
<td></td>
<td>233.19</td>
<td>267.27</td>
</tr>
<tr>
<td>PE (34:4)</td>
<td>16:1</td>
<td>18:3</td>
<td>734.47</td>
<td>237.22</td>
<td>261.22</td>
</tr>
<tr>
<td></td>
<td>16:2</td>
<td>18:2</td>
<td></td>
<td>235.21</td>
<td>263.24</td>
</tr>
<tr>
<td></td>
<td>16:3</td>
<td>18:1</td>
<td></td>
<td>233.19</td>
<td>265.25</td>
</tr>
<tr>
<td>PE (36:2)</td>
<td>18:0</td>
<td>18:2</td>
<td>766.54</td>
<td>267.27</td>
<td>263.24</td>
</tr>
<tr>
<td></td>
<td>18:1</td>
<td>18:1</td>
<td></td>
<td>265.25</td>
<td>265.25</td>
</tr>
<tr>
<td>PE (36:3)</td>
<td>18:0</td>
<td>18:3</td>
<td>764.52</td>
<td>267.27</td>
<td>261.22</td>
</tr>
<tr>
<td></td>
<td>18:1</td>
<td>18:2</td>
<td></td>
<td>265.25</td>
<td>263.24</td>
</tr>
<tr>
<td>PE (36:4)</td>
<td>18:1</td>
<td>18:3</td>
<td>762.50</td>
<td>265.25</td>
<td>261.22</td>
</tr>
<tr>
<td></td>
<td>18:2</td>
<td>18:2</td>
<td></td>
<td>263.24</td>
<td>263.24</td>
</tr>
<tr>
<td>PE (36:5)</td>
<td>18:2</td>
<td>18:3</td>
<td>760.49</td>
<td>263.24</td>
<td>261.22</td>
</tr>
<tr>
<td>PE (36:6)</td>
<td>18:3</td>
<td>18:3</td>
<td>758.47</td>
<td>261.22</td>
<td>261.22</td>
</tr>
</tbody>
</table>

To compare the performance of the FIA-MRM method to traditional lipid analysis methods, PE lipids were extracted from leaves of Arabidopsis thaliana (Col-0) and were quantified using two methods: the FIA-MRM method and the TLC method followed by
analysis of FAMEs using GC FID. The FIA-MRM method generates separate profiles of signal intensity for each MRM channel. Peak areas for each MRM transition from Method 1 and Method 2 were determined by integration using QuanLynx software. To determine the relative amounts of fatty acids present, a relative response factor of 0.5 was used for all lipids with differing fatty acyl chains, and a value of 1 was used for all lipids with the same fatty acyl chains because both chains will yield the same fragment ion. For example, the peak area for 18:0 from PE 36:0 was not adjusted, but the peak area for 18:0 from 36:1 was doubled to calculate the number of moles of each lipid. This is based on the fragmentation of 36:1 to 18:0 and 18:1, with only the transition 36:1 \(\rightarrow \) 18:0 being monitored, while the fragmentation of 36:0 always leads to 18:0. The amounts of each fatty acid chain were totaled and are displayed in Figure 4-2.
Comparison of the GC FID measurements, obtained from collaborators Terry Ball and Rob Last, to the FIA-MRM data for both MRM methods, reveals a few notable differences. First, the GC method does not detect 16:2 or 16:3 fatty acids whereas as they are detected, in some cases in significant levels (up to ~ 10 mol%) using both MRM methods. Second, the relative amount of palmitic acid, 16:0, is greater for the FAME GC method, suggesting contamination, possibly stemming from handling the TLC plate or from reagent contamination, as palmitic acid is a common contaminant of inorganic reagents and labware and is also common in fingerprint residue. Since the results are
presented as mole %, an increase in C16:0 in the FAME results would also be reflected in decreased mole % of all other fatty acids.

The three greatest drawbacks of FAME GC are: (1) a substantial amount of sample handling occurs, which increases likelihood of contamination; (2) separation of lipid classes by TLC may be incomplete, leading to cross-contamination by other lipid classes, and (3) all information about positions of fatty acyl substitution on the glycerol backbone is lost after transesterification, as seen in Figure 4-2. Two primary advantages of the MRM method are that handling of the extracts is minimal, and detection is more selective because it is based on both the lipid molecular mass and a characteristic fragment ion.

Figure 4-3 documents how well the FIA-MRM approach determines which fatty acid groups are present for a specific PE lipid. Both FIA-MRM Method 1 and Method 2 successfully identified 16:1-18:3 as the only detected isomer of PE 34:4, with neither method detecting 16:2-18:2 or 16:3-18:1. In addition, the difference in detected peak areas from the two MRM methods was 6%. This demonstrates that the MRM method provides a rapid and quantitative alternative to GC-MS of FAMEs and yields information about intact lipids rather than their transesterification products. One drawback of the MRM method is that the relative amounts of positional isomers are unavailable (16:3 in position sn-1 and 18:1 at position sn-2 vs. 18:1 at position sn-1 and 16:3 at position sn-2). Having fatty acyl chains of differing length and different number of double bonds may influence the fragmentation efficiency at the sn-1 and sn-2 positions, but the lack of isomer-specific standards to date has hindered testing of this hypothesis.
4.3.2. Collision-Induced Dissociation of PE Lipid Standards

Traditional analysis of PE lipids using positive mode electrospray and MS/MS employs neutral loss of 141 Da, corresponding to the ethanolamine head group being released from the glycerol backbone as a neutral fragment. Since the two fatty acyl chains are part of the fragment that retains charge and is detected by the mass spectrometer, measurement of the mass of the fragments that arise from neutral loss of 141 Da is an excellent way to distinguish PE lipids in a sample (i.e., PE 34:1 vs. PE 34:2)
Unfortunately, this approach does not allow the position of the fatty acyl chains on the glycerol backbone to be deduced. To determine the positional isomeric content, focus must be directed towards ions derived from the fatty acyl chains at the \(sn-1 \) and \(sn-2 \) positions, in the hope that the yields of fragment ions will display some dependence on the position of attachment. The fragmentation products for one of the examined lipid standards, PE 34:1 (16:0-18:1) are depicted in Figure 4-4.

Figure 4-4: Observed fragmentation products of collision-induced dissociation of protonated PE 34:1 (16:0-18:1).

Figure 4-5 and **Figure 4-6** depict the collision energy dependence of abundances of fragment ions derived from protonated PE 34:1 (16:0-18:1) and PE 34:2 (16:0-18:2), respectively. Both figures show that the dominant fragment ions, \(m/z \) 577 and \(m/z \) 575,
which correspond to the neutral loss of phosphoethanolamine (141 Da) from the precursor ions, increase in abundance as collision cell potential is increased to 25 volts. As the voltage is increased beyond 25 volts, the abundances of \textit{m/z} 577 and \textit{m/z} 575 decrease, and acylium ions are observed. Since their appearance is concomitant with the disappearance of the fragment ions at \textit{m/z} 577 and \textit{m/z} 575, it is suggested that they may form from \textit{m/z} 577 and \textit{m/z} 575.

![Figure 4-5: Breakdown curves for three fragment ions (♦ \textit{m/z} 265, ■ \textit{m/z} 239, ▲ \textit{m/z} 577) derived from CID of protonated PE 34:1 (16:0-18:1) at 10 different collision cell potentials. At potentials of 5 V and below, only the protonated molecule was observed.](image)

Further comparison of Figure 4-5 and Figure 4-6 indicate that the two PE lipid standards have almost identical fragmentation behavior. Both fragment to yield acylium ions derived from the fatty acyl groups substituted at both \textit{sn}-1 and \textit{sn}-2 positions, with
about the same efficiency, suggesting the length (number of carbons) of the fatty acyl chain and the number of double bonds has minimal effect on yields of acylium fragment ions. In addition, the formation of the acylium ions never surpasses 10% of the TIC, indicating that the fragments leading to differentiation of sn-1 and sn-2 substitution require monitoring of a low-yielding fragmentation pathway. As demonstrated in Figure 4-3, monitoring the transition from \([M+Na]^+ \rightarrow\) acylium ions is successful, but the low yields of these fragment ions will hinder low levels of lipids from being detected. Therefore, for accurate detection and quantification high yielding fragment ions with sn-1 and sn-2 specificity are needed.

Figure 4-6: Breakdown curves for three fragment ions (♦ m/z 263, □ m/z 239, ▲ m/z 575) derived from CID of protonated PE 34:2 (16:0-18:2) at 10 different collision cell potentials.
Depicted in Figure 4-7 is the fragmentation of deprotonated PE 34:1 in negative ion mode. Fragmentation can be directed by backside nucleophilic substitution, or S_N2 reaction of the negatively charged oxygen on the phosphate group with the sn-1 and sn-2 position carbon in the glycerol backbone. The resulting, high-yield fragment ions are the anions corresponding to deprotonated fatty acids, in this case at m/z 255 (C16:0) and m/z 281 (C18:1) for PE 34:1 and m/z 255 and m/z 279 (C18:2) for PE 34:2. The analysis of PE lipids in ESI- mode allows for the monitoring of the transition of $[\text{M-H}]^-$ to the dominant fragment ions.

![Diagram of fragmentation products]

Figure 4-7: The fragmentation products for deprotonated PE 34:1 (16:0-18:1) in negative ion mode.

Figure 4-8 and **Figure 4-9** show the collision energy dependence of fragment ion abundances generated from CID of deprotonated PE 34:1 (16:0-18:1) and PE 34:2 (16:0-18:2), respectively. Both figures show that the fragment ions corresponding to the fatty acid anions are the dominant fragment ions. As the collision potential is increased, the abundance of the fatty acid anion derived from the sn-2 position increases until it reaches
a maximum at a potential of 35 volts. The abundance of the C16:0 fatty acid anion from PE 34:1 increases sharply from 15 to 30 volts, then gradually increases until it reaches the maximum at 60 volts. However, for the formation of the fatty acid anion of C16:0 from PE 34:2, the slope from 30 to 60 volts (Figure 4-9) is steeper. This suggests that the addition of a second double bond to the sn-2 position fatty acid requires more collision energy to drive the fragmentation of C16:0. This may be due to the double bonds interacting with the amine piece of the head group, requiring more vibration energy for the negatively charged oxygen in the phosphate group to approach and interact with the glycerol backbone and drive fragmentation.\(^{22}\)

Figure 4-8: Breakdown curves for the two fatty acid anion fragments (♦ m/z 281, ■ m/z 255) derived from CID of deprotonated PE 34:1 (16:0-18:1) at 10 different collision cell potentials.
Figure 4-9: Breakdown curves for the two fatty acid anion fragments (♦ m/z 279, ■ m/z 255) derived from CID of deprotonated PE 34:2 (16:0-18:2) at 10 different collision cell potentials.

Additionally, examination of the two figures indicates that at a collision cell potential of 35 volts, the two PE lipids generate the two fragment ions with different efficiencies. For PE 34:1, Figure 4-8 shows that the fragmentation of the C18:1 is a little more than twice the abundance of the fragmentation leading to C16:0. But, Figure 4-9 indicates that the abundance of the C18:2 fragment ion is almost three times the abundance of C16:0, again suggesting that the number of double bonds affects fragmentation efficiency. Furthermore, comparison of the two sets of breakdown curves shows that the ratio of the two fragment ions is not a constant value, but changes as a function of the collision cell potential. This indicates that a ratio to describe the
fragmentation of the two fatty acyl chains is only relevant for one specific voltage, and development of a more complete set of fragmentation ratios is needed.

4.3.3. Effect of Phosphoethanolamine Head Group Modification

Recent experiments23,24 have indicated that different head groups, along with head group modification have a greater effect on fragmentation than fatty acid chain length. The central issue is the efficiency of fragmentation, the relative ratios of the sn-1 versus sn-2 position fragments observed, and mechanisms that could explain observed behavior. To address these important issues, in-house custom synthesis of a pure PE 34:0 standard, with palmitic acid exclusively at the sn-1 position and stearic acid exclusively at the sn-2 position was performed. After the second step of the reaction, the PE lipid has been synthesized but still has a BOC protecting group on the nitrogen atom of its ethanolamine head group (Figure 4-10). This protecting group is removed in the third synthetic step, resulting in the desired isomer of PE 34:0 (Figure 4-11). This provided an authentic standard of a PE lipid with position-specific fatty acid substitution to investigate whether head group modification provided any difference in fragmentation for PE lipids in ESI-mode.

Comparison of Figure 4-10 and Figure 4-11 reveals a dramatic difference in PE lipid fragmentation when the amino group is modified by the BOC protecting group. For the BOC-PE 34:0 lipid (Figure 4-10), formation of the fragment by substitution at the sn-2 position (formation of C18:0 anion at m/z 283) yields 7 times more product than the corresponding displacement at the sn-1 position (m/z 255). For the unmodified PE 34:0 lipid specifically substituted as (sn-1 16:0-sn-2 18:0) (Figure 4-11), the fragmentation is
reversed, with the yield of the sn-1 displacement product (m/z 255) being 25 times greater than the yield of the sn-2 displacement product (m/z 283).

Figure 4-10: Product ion MS/MS spectrum for deprotonated BOC-protected PE 34:0 (sn-1 16:0-sn-2 18:0, at m/z 818). The peak at m/z 283 represents the C18:0 anion and the peak at m/z 255 represents the C16:0 anion. The structure of the lipid [M-H] anion is inset on the spectrum. Note that the sn-2 fatty acid anion is the dominant product.
Figure 4-11: Product ion MS/MS spectrum for deprotonated PE 34:0 (sn-1 16:0-sn-2 18:0, at m/z 718). The peak at m/z 283 represents C18:0 anion and the peak at m/z 255 represents the C16:0 anion. The structure of the lipid [M-H]⁻ anion is inset on the spectrum. Note that the sn-1 fatty acid anion is the dominant product.

Detailed mechanistic interpretation of this result will undoubtedly require more extensive studies of other PE analogs synthesized with specific fatty acyl substitution positions. Since standards of these compounds are not available, they are beyond the scope of the current work. However, the principal finding of these results suggests that displacements of fatty acids from PE lipids to generate fatty acid anions will be influenced by many structural factors. Because a comprehensive assessment of instrument response factors will require a better understanding of the factors that govern yields of fragment ions, future efforts should be directed toward synthesis of isomer-specific reference standards for all PE lipid compositions and substitution patterns.
4.4. Conclusions

The utility of a flow injection analysis-multiple reaction monitoring protocol, as demonstrated in this chapter expands well beyond PE lipid analysis. The benefit of a MRM method is that instead of performing neutral loss scans which spend a tiny fraction of data acquisition on any single mass transition, the duty cycle of the instrument can be more completely devoted to detection of anticipated lipids. The FIA-MRM protocol provides a rapid procedure with minimal sample handling that is capable of quantifying low level lipids in a biological extract. Using the MRM protocol to probe the exact makeup of specific PE lipid isomers takes advantage of the position-selective displacement of fatty acids to yield their deprotonated ions.

To quantify all PE lipids in an isomer-specific manner, more information is needed about fragmentation behavior of specific PE isomers. Unfortunately, these are not commercially available.
4.5. References

23. Pulfer, M.; Murphy, R. C., Electrospray Mass Spectrometry of Phospholipids.

24. Kim, H.-Y.; Wang, T.-C. L.; Ma, Y.-C., Liquid Chromatography/Mass
 Spectrometry of Phospholipids using Electrospray Ionization. *Analytical
Chapter 5: Concluding Remarks
In the modern era of systems biology, new high-throughput technologies that define an organism’s behavior, or phenotype, are central to efforts to link genetics and environment to biological traits. Within the last decade, these “omics” technologies have begun to revolutionize analytical chemistry, replacing the one compound at-a-time approach with comprehensive measurements of many metabolites that can link gene expression to metabolic phenotypes in humans, plants, and other organisms. One class of metabolites, lipids, has been discovered to play important roles in both activation of nuclear receptors in humans and animal model organisms, and in biochemical defense mechanisms used by plants. For an individual organism, the lipidome is not static like the genome, and temporal changes in the physiological state of an organism resulting from stress, environmental changes, and xenobiotics must be measured over many time points, and preferably, in multiple tissues or cell types, to fully assess the dynamics of the physiological state. Such studies, when applied to genetically diverse populations, have potential to generate thousands of samples that must be analyzed, which is a daunting task, considering many of the lipids responsible for these changes have yet to be identified and quantified. To move the state-of-the-art toward such capabilities, the research presented in this dissertation has developed mass spectrometry concepts and protocols that enhance the rate at which new lipid species are detected and quantified, while using relatively low cost time-of-flight and triple quadrupole mass spectrometers.

Technologies for the identification of bioactive lipids have lagged behind other systems biology methods such as genomics and proteomics, in large part because metabolite structures cannot be predicted from DNA sequences, and identification of previously unknown metabolites remains a substantial bottleneck to the discovery
process. To this end, Chapter 2 introduced the development of a new MS data filtering technique called relative mass defect, which when coupled with traditional biological assay screens offers rapid assistance for annotation of metabolites that share hydrogen content with compounds within selected classes. For any metabolite screening method, metabolite profiling may generate mass measurements for hundreds to thousands of compounds. Though this information alone will usually not be sufficient to provide unambiguous compound identification, assessment of the hydrogen content from the relative mass defect can help assign unknown masses to specific compound classes. In an era where data mining from metabolite databases will become more commonplace, such assignments help researchers group compounds based on biosynthetic precursors of known hydrogen content. While this approach has been developed for bioactive lipid discovery, other efforts in the Jones laboratory are already applying RMD filtering to mining of plant metabolomic data.

In Chapter 3, the fragmentation of isomeric lipids resulted in a new tandem mass spectrometry protocol for selective detection of phthalate isomers. Based on the hypothesis that straight-chain and branched-chain isomeric phthalates would undergo different fragmentation reactions, a tandem mass spectrometer served as a separation tool, minimizing the need for chromatographic resolution of isomers. The net result is faster quantitative procedures capable of distinguishing a bioactive isomer from an inactive isomer. Since my research indicates that the presence of a branch point on an alkyl chain affects fragmentation, this research may serve as a foundation for development of isomer discrimination methods employing mass spectrometry. Having a rapid and quantitative method is important for screening a large number of samples,
reducing cost and analysis time, while using a relatively inexpensive triple quadrupole mass spectrometer.

In Chapter 4, lipid fragmentation is discussed for a different class of lipids, phosphatidyethanolamines. Here, a protocol is presented that extends the performance of a triple quadrupole mass spectrometer to quantification of lipids using short analysis times. The information obtained by traditional GC FID analysis of FAMEs from phospholipids is limited to the relative amounts of each fatty acid present. The developed method discussed in Chapter 4 can quantify the amounts of isomeric phospholipids present (16:1-18:3, 16:2-18:2, 16:3-18:1). Other results in Chapter 4 suggest that fragmentation of phospholipids can be altered by head group modification or by a change in the number of units of unsaturation in the fatty acyl chains.

In a fast-paced world where time and cost are important, acceleration of the analytical workflow is necessary to solve important biological problems. The use of inexpensive time-of-flight and triple quadrupole mass spectrometers to address these challenges will help advance the field of lipidomics, leading to the development of rapid and cost effective screens for lipids from human and plant specimens.
APPENDIX 1: List of Acronyms

BOC – tert-butyl carbamate

cDNA – circular DNA

CAR – constitutive androstane receptor

CAR2 – constitutive androstane receptor 2

CE – capillary electrophoresis

CID – collision-induced dissociation

CMV – cytomegalovirus

DEHP – di(2-ethylhexyl) phthalate

DNA – deoxyribonucleic acid

DNOP – di-\(n\)-octyl phthalate

DIOP – di-isoctyl phthalate

DAG – diacylglycerol

EI – electron ionization

ER – endoplasmic reticulum

ESI – electrospray ionization

FAME – fatty acid methyl ester

FBS – fetal bovine serum

FIA – flow injection analysis

FID – flame ionization detector

GC – gas chromatography

HPLC – high performance liquid chromatography

LC – liquid chromatography
mRNA – messenger ribonucleic acid
MEKC – micellar electrokinetic chromatography
MRM – multiple reaction monitoring
MS – mass spectrometry
MS/MS – tandem mass spectrometry
NMR – nuclear magnetic resonance
NR – nuclear receptor
PA – phosphatidic acid
PC – phosphatidylcholine
PE – phosphatidylethanolamine
QQQ – triple quadrupole
R_f – retention factor
RMD – relative mass defect
RP – reversed-phase
SPE – solid-phase extraction
SRM – single reaction monitoring
TIC – total ion current
TLC – thin layer chromatography
TOF – time-of-flight
UHPLC – ultra high performance liquid chromatography
UV – ultraviolet
XIC – extracted ion chromatogram
VITA

Michael C. Stagliano

Michael C. Stagliano was born in Silver Spring, Maryland on October 12, 1981 to Deanna L. Stagliano and Dr. A. J. Stagliano. At age 4 he moved to Broomall, Pennsylvania, where his parents still reside. It was there, while attending Marple-Newtown Senior High School that Michael developed his passion for chemistry. After graduation in June 1999, Michael attended the University of Michigan in Ann Arbor. There he had the opportunity to interact with many faculty, including his undergraduate research advisor, Dr. Vincent L. Pecoraro. After graduating in April 2003 with a Bachelor of Science in Chemistry degree, majoring in both chemistry and biochemistry, Michael began pursuing his Ph.D. in analytical chemistry at the Pennsylvania State University. During his time at Penn State, Michael served as a TA and Super-TA under the direction of Dr. Joseph T. Keiser, and in May 2004 joined the research group of Dr. A. Daniel Jones. In August 2005, as the sole member of the Jones’ group, Michael and Dan relocated to Michigan State University.

When not in the lab, Michael enjoys going to Michigan football games, both at the Big House in Ann Arbor, as well as the occasional road venue. He also enjoys traveling and cooking. Michael is also an avid hockey fan, cheering for the Flyers, and tries to visit Yost Ice Arena at least once each season for a Michigan hockey game.