
The Pennsylvania State University

The Graduate School

A FINE-GRAINED DATAFLOW LIBRARY FOR

RECONFIGURABLE STREAMING ACCELERATORS

A Thesis in

Electrical Engineering

by

Aarti Chandrashekhar

c⃝ 2011 Aarti Chandrashekhar

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

December 2011

The thesis of Aarti Chandrashekhar was reviewed and approved∗ by the following:

Vijaykrishnan Narayanan

Professor of Computer Science and Engineering

Thesis Advisor

Suman Datta

Professor of Electrical Engineering

Kultegin Aydin

Professor of Electrical Engineering and Interim Department Head

∗Signatures are on file in the Graduate School.

Abstract

In this thesis, a library of basic operators for accelerating complex algorithms on
an Field Programmable Gate Array (FPGA) is proposed. The components of this
custom Register Transfer Level (RTL) hardware library are specifically designed
to provide fine-grained control over resources while accelerating algorithms on an
FPGA. Furthermore, the library is extensible allowing designers to develop cus-
tom operators. A hardware framework to ease the composition of systems using
the components of this library is also presented. Such an approach facilitates the
use of dataflow programming at the application level for mapping an algorithm
to the hardware components. This framework is highly modular and configurable
in terms of hardware resources, bit-width allocation, and accuracy. In addition,
the hierarchical nature of this framework allows recursive definitions of custom
operators. This allows complex operators to be built using the library operators.
The framework is well-suited to image processing tasks since it takes into account
the streaming requirements of such applications. The initial architecture of this
framework and the associated drawbacks are discussed and a new improved archi-
tecture which overcomes these drawbacks is also presented. Biologically-inspired
vision processing algorithms with applications such as saliency detection and ob-
ject recognition are studied as a use case of the framework. In particular, the
implementation of a bio-inspired architecture of Retinal and Lateral Geniculate
Nucleus (LGN) processing stages using the proposed framework is detailed. All
the hardware examples are synthesized and verified on a Xilinx c⃝ Virtex-6 SX475T
FPGA. The FPGA implementation is also compared to a multi-core CPU imple-
mentation of the algorithm and it is shown that the FPGA-based implementation
outperforms the CPU-based implementation by an order of 10.

iii

Table of Contents

List of Figures vii

List of Tables ix

Acknowledgments x

Chapter 1
Introduction 1
1.1 Problem Statement . 2
1.2 Related Work . 3

1.2.1 Dataflow Programming . 3
1.2.2 Performance Studies on FPGAs 3

1.3 Research Contributions . 4
1.4 Organization of this Thesis . 5

Chapter 2
Dataflow Library 6
2.1 Dataflow Programming Concepts 6
2.2 Dataflow Operators . 8
2.3 Composition of Complex Systems 9

Chapter 3
Initial Framework for Composition of Complex Systems 10
3.1 SVP Wrapper . 12

3.1.1 Pipeline Components . 13
3.1.1.1 Control Unit . 13
3.1.1.2 Address Decoder 14
3.1.1.3 Datawidth Adaptor 15

iv

3.1.1.4 Prescaler . 15
3.1.1.5 Primary and Secondary Queues 15
3.1.1.6 Format Converter 16
3.1.1.7 Postscaler . 16
3.1.1.8 Output Queue . 16

3.1.2 Modes of Operation . 16
3.1.2.1 Vector-Vector Mode 16
3.1.2.2 Vector-Immediate Mode 17
3.1.2.3 Vector-Transform Mode 17

3.1.3 Opcodes . 17
3.2 Drawbacks . 17

Chapter 4
Optimized Framework for Composition of Complex Systems 20
4.1 Pipeline Components . 21

4.1.1 Input/Output Port . 21
4.1.2 Operator Link . 22

4.1.2.1 Modes of Operation 22
4.1.2.1.1 Multicast 22
4.1.2.1.2 Pack . 22
4.1.2.1.3 Unpack 22

4.1.2.2 Link Buffering . 23
4.1.3 Configurability of Links and Ports 25

Chapter 5
Case Study: Retinal and LGN Processing of Visual System 27
5.1 Biological Principles . 28

5.1.1 Retina . 28
5.1.2 Lateral Geniculate Nucleus 29
5.1.3 Receptive Fields of Retina and LGN 30

5.2 Bio-inspired Retinal-LGN Architecture 31
5.2.1 Shunting Image Operator 32

5.2.1.1 Implementation of Sigmoid Operator using Opti-
mized Framework 34

5.2.1.2 Implementation of Shunting Image Operator using
Optimized Framework 34

5.2.2 Retinal-LGN Architecture 34

v

Chapter 6
Experimental Setup and Results 39
6.1 Normalization and RGB to YIQ Conversion 39
6.2 Double Precision to Fixed-Point Precision Analysis 39
6.3 Validation on DiniGroup FPGA board 40

6.3.1 Introduction to DNV6F6PCIe board 40
6.3.2 Resource Utilization . 41

6.3.2.1 Sigmoid Operator 41
6.3.2.1.1 Implementation using initial framework . . 41
6.3.2.1.2 Implementation using optimized framework 41

6.3.2.2 Shunting Image Operator 42
6.3.2.2.1 Implementation using initial framework . . 42
6.3.2.2.2 Implementation using optimized framework 43

6.3.2.3 Retinal-LGN Processor 43
6.3.2.3.1 Implementation using initial framework . . 43
6.3.2.3.2 Implementation using optimized framework 43

6.3.3 Performance and frame-rate 44
6.4 Comparison with CPU . 44

Chapter 7
Conclusion 48
7.1 Future Work . 48

Bibliography 50

vi

List of Figures

2.1 Implementation of set of equations using dataflow graph 7

3.1 Modular system . 11
3.2 Cascade of SVPs . 12
3.3 Implementation of set of equations using framework 13
3.4 Block diagram of SVP wrapper . 14

4.1 Implementation of set of equations using optimized framework . . . 21
4.2 Multicast mode of operator link . 23
4.3 Pack mode of operator link . 23
4.4 Unpack mode of operator link . 24
4.5 Operator link with single buffer . 24
4.6 Operator link with double buffer . 25

5.1 Visual system of primates . 28
5.2 Retinal cells . 29
5.3 Receptive fields of ganglion cells . 30
5.4 Behavior of on-center and off-center cells with only center exposed

to light . 31
5.5 Behavior of on-center and off-center cells with only surround ex-

posed to light . 31
5.6 Behavior of on-center and off-center cells with both center and sur-

round not exposed to light . 32
5.7 Behavior of on-center and off-center cells with both center and sur-

round exposed to light . 32
5.8 Biologically-based retinal-LGN architecture 33
5.9 Implementation of sigmoid operator using optimized framework . . 35
5.10 Implementation of shunting image operator using optimized frame-

work . 37
5.11 Implementation of retinal-LGN processor using optimized framework 38

6.1 DiniGroup 6-FPGA board . 41

vii

6.2 Input YIQ image to retinal-LGN processor 44
6.3 LGN1 output of retinal-LGN processor 45
6.4 LGN2 output of retinal-LGN processor 46
6.5 LGN3 output of retinal-LGN processor 46
6.6 LGN4 output of retinal-LGN processor 47
6.7 Graph of CPU execution time vs image size for retinal-LGN processor 47

viii

List of Tables

3.1 Resource utilization of operators of sigmoid function 18
3.2 Resource utilization of operators and wrapper of sigmoid function . 18

4.1 Resource utilization of sigmoid function with pre-configured ports
and links . 25

4.2 Resource utilization of sigmoid function with run-time configured
ports and links . 25

6.1 Resource utilization of implementation of sigmoid operator using
initial framework . 42

6.2 Resource utilization of implementation of sigmoid operator using
optimized framework . 42

6.3 Resource utilization of implementation of shunting image operator
using initial framework . 42

6.4 Resource utilization of implementation of shunting image operator
using optimized framework . 43

6.5 Resource utilization of implementation of retinal-LGN processor
using initial framework . 43

6.6 Resource utilization of implementation of retinal-LGN processor
using optimized framework . 44

ix

Acknowledgments

I would like to express my sincere gratitude to my advisor, Dr. Vijaykrishnan
Narayanan, for his constant encouragement, unabated enthusiasm and effective
guidance throughout my research. I would also like to thank my committee mem-
ber, Dr. Suman Datta for his insightful comments and guidance. I express my
sincere appreciation to the staff of the Department of Electrical Engineering and
Department of Computer Sciences and Engineering for their constant support in
my administrative matters.

I would also like to take this opportunity to thank my mentor, Dr. Kevin Irick.
His enthusiasm, inspiration, and relentless effort to explain hardware and software
concepts simply and clearly has made me love hardware design. I would also like to
thank my project members and colleagues at the Microsystems Design Laboratory
(MDL), at Penn State, who have always been there to help me at every stage of
my research. Special thanks to our collaborators at Teledyne Technologies, Inc. I
would also like to acknowledge DARPA for funding this research work.

I thank my closest friends Anuj Jaiswal, Prasoon Joshi, and Shruti Gupta who
have constantly provided me encouragement, inspiration, support, and a push,
whenever I have been in need. Lastly, I am grateful to my family who have always
encouraged me to study further and supported me at every step of this journey.

x

Dedication

This thesis is dedicated to the loving memory of my beloved father, who taught
me to be a good engineer and a better human being.

xi

Chapter 1
Introduction

Reconfigurable accelerators such as Field Programmable Gate Arrays (FPGAs) are

popular due to their inherent massive parallelism [1], low power consumption [2, 3]

and high computational density [4]. Furthermore, FPGAs allow fine-grained con-

trol of device computational resources where each gate within an FPGA can be

independently controlled. Due to these advantages, computational-intensive algo-

rithms, especially image processing tasks, can be greatly accelerated when they

are off-loaded from general-purpose CPUs to FPGAs [5, 6, 7, 8]. However, devel-

oping efficient hardware implementations on FPGAs requires a significant effort

compared to other solutions [9] based on, e.g., General-Purpose Graphics Pro-

cessing Units (GPGPUs). Firstly, the designer is required to possess in-depth

knowledge of Hardware Description Languages (HDL), such as VHDL [10, 11] and

Verilog [12, 13], which are typically used to describe the behavior and structure

of systems and circuit designs for a given implementation. Secondly, a thorough

understanding of FPGA architecture allows the designer to create HDL code that

effectively uses FPGA system features. In addition, experience in dealing with the

intricacies of synthesis and place-and-route tools provides an added advantage in

generating an optimal solution. Lastly, verification of the implemented design on

FPGA is an important aspect in generating a correct solution. Such complexities

involved in the design and implementation of algorithms on an FPGA can be a de-

terrent to researchers from exploiting FPGAs for accelerating complex signal and

image processing applications [9]. Therefore, there is a need for design methodolo-

gies that ease the composition of systems - making the process accessible to those

2

working at the algorithm, application, and system levels.

All complex algorithms employ basic operations such as multiplication, con-

volution, histogram computation, data scaling and data binning. A significant

portion of the programming effort in the development of such algorithms, for an

FPGA, is spent on developing these basic operators and integrating them for a de-

sired solution. In case of hardware implementation of image processing algorithms,

real-time performance is desired. Therefore, additional complexities are introduced

when the design requires pipelining and worst-case buffering. Furthermore, it is

desirable that the hardware implementation on reconfigurable computing systems

be highly flexible. In case of image processing, the implementation must support

multiple image sizes, variable bit-widths, variable number of pixels per clock cycle

etc. While larger bit-widths in intermediate computation stages leads to better

accuracy, they come at the cost of increased resource utilization. Similarly, more

pipelined stages leads to better timing, and therefore, higher operating frequency

but at the cost of latency. Therefore, the availability of configurable basic mod-

ules having uniform interfaces simplifies the exploration and development of larger

systems. Frameworks that combine these basic modules effectively are required

to build complex solutions from these basic building blocks. In addition, software

frameworks can be used to combine these modules in a dataflow programming

manner, ultimately reducing the time and effort to build and modify such sys-

tems. Such an approach will encourage researchers who are not trained in HDL to

implement any algorithm in a short period of time.

1.1 Problem Statement

To reduce the effort in the implementation of complex algorithms on FPGAs, this

thesis proposes a hardware framework consisting of a library of basic arithmetic and

image processing modules. The proposed framework also provides the capability

to combine multiple operators efficiently to build large streaming systems.

3

1.2 Related Work

In this section, related work on dataflow programming and FPGA performance

are presented.

1.2.1 Dataflow Programming

Dataflow computers were proposed as an architecture offering massive parallelism.

Dataflow architectures [14, 15, 16, 17] maximize concurrent execution by utilizing

local memory and by executing instructions as soon as data operands are ready.

For an excellent review of the history of dataflow architecture, programming, issues

and dataflow future, please refer to [18].

In recent years, there have been numerous studies on design and implementation

of vision applications on FPGAs using dataflow. NeuFlow [19, 20, 21] is a dataflow

computer for vision processing which is suitable for convolutional neural networks.

Janneck et al. [22] illustrate hardware synthesis from dataflow programs to im-

plement a MPEG-4 simple profile decoder. Single Assignment C (SA-C) [23, 24]

is a high-level language for writing image processing algorithms that can then be

compiled and executed on an FPGA.

1.2.2 Performance Studies on FPGAs

Thomas et al [25] discuss the future of parallel computing by comparing CPU,

GPU, Massively Parallel Processor Array (MPAA) and FPGA performance for

random number generation. Their study shows that the performance per joule of

an FPGA was orders of magnitudes greater than any other platform for this task.

Cope et al [8] compared the performance of 2D convolution on FPGAs and GPUs.

Their results indicate that FPGA performance is much higher than GPUs. In

addition, their study shows that for 2D convolution of size 7x7, GPUs were inca-

pable of meeting their target throughput rates of 8MP/s and FPGAs were the only

current solution for this task. A second study [26], again, found that FGPA per-

formance was at least three times greater than GPUs. Both these studies [8, 26],

however, did not take into account other advantages offered by FPGAs such as

performance per joule which would have shown that FPGAs offer unrivalled per-

4

formance in addition to significantly lower power consumption. Chase et al [9]

similarly studied real-time optical flow calculations of FPGAs and GPUs. Their

experimental evaluation again showed that FPGAs have unmatched Input/Output

(I/O) and computation capabilities while GPUs are sensitive to compute to I/O

ratios. Secondly, their work shows that high performance for Multiple Input Mul-

tiple Output (MIMO) operations on GPUs is dependent on high data buffering

while FPGA implementations of MIMO modules had lower latency. Lastly, their

work highlighted that the drawbacks of using FPGAs was the greater development

time and skill level required. Che et al [5] undertook a performance study where

three applications (“Gaussian elimination”, “Data encryption standard (DES)”

and “Needleman-Wunch”) where evaluated on FPGA, GPU and multi-core CPU

platforms. Their study again show that FPGAs offer unmatched performance over

all other platforms for these applications.

1.3 Research Contributions

The primary contributions of this thesis are as follows:

• A novel hardware framework that accelerates implementation of complex al-

gorithms on FPGAs is introduced. The proposed framework can be used

to build FPGA solutions that either use minimal resources and/or provide

greater accuracy. In case of image processing applications, the framework

provides solutions that have high (real-time) processing rates. This frame-

work also provides the capability for a non-hardware designer to compose the

algorithm using dataflow programming at the application level, thus reducing

complexity of generating hardware implementations.

• The capabilities and effectiveness of the proposed framework architectures

are demonstrated by implementing the Retinal and LGN processing stages

of a neuromorphic vision algorithm. The first framework architecture is

highly modular with different operator modules having similar interfaces.

This framework architecture allows recursive definition of complex opera-

tors using the library operators. Moreover, the framework architecture is

5

highly configurable and enables a designer to choose between greater compu-

tation accuracy, resource minimization or high input data processing rates.

However, such a framework architecture results in hardware implementations

that have large resource overheads and operators do not exploit all features

provided. The second proposed framework architecture overcomes the large

resource overheads by optimizing operator modules to use only those features

that are essential.

• The performance results of the FPGA-based implementation are compared

to that of a CPU-based implementation to demonstrate the advantages of

using FPGAs over multi-core CPUs. The experimental evaluation demon-

strates that the FPGA-based implementation outperforms a CPU-based im-

plementation by an order of 10.

1.4 Organization of this Thesis

The rest of the thesis is organized as follows: Chapter 2 introduces dataflow pro-

gramming concepts and its application to the proposed framework design. Chap-

ter 3 presents a hardware framework for implementing complex algorithms on an

FPGA. The drawbacks of the initial framework are also outlined in this chapter.

Chapter 4 presents the optimized framework which was redesigned based on the

lessons learned after the design of the framework illustrated in Chapter 3. A bio-

inspired vision algorithm for image preprocessing is introduced in Chapter 5 and

forms the use case for both the frameworks. Experimental setup is discussed in

Chapter 6 along with a comparison of the accuracy of a fixed-point implementa-

tion on an FPGA to that of a double-precision implementation using Matlab. This

chapter also presents a comparison with the performance of the same algorithm

on a CPU. Finally, the conclusion and future work are discussed in Chapter 7.

Chapter 2
Dataflow Library

The current state-of-the-art FPGA devices contain high-speed I/Os, specialized

Digital Signal Processing (DSP) units, abundant on-chip memories, and embedded

processor cores [27, 28]. In addition, FPGAs allow massive parallelism as compared

to CPUs, thereby greatly accelerating tasks such as matrix multiplications [29, 30].

However, it is tedious for non-hardware algorithm developers to exploit in-built

processing cores of an FPGA for creating an optimal solution [9]. Therefore,

there is a need to create libraries of basic fine-grained processing units which can

then be connected together to implement a given task. Complex processing units

can be built using these basic processing units, thereby introducing hierarchy and

modularity in the design. Furthermore, at the application level, the algorithm

can be mapped to these basic processing units in hardware by using a dataflow

program or language. Such an approach accelerates the composition of systems

on reconfigurable accelerators. This chapter introduces dataflow concepts and a

hardware library of basic fine-grained dataflow nodes/operators.

2.1 Dataflow Programming Concepts

A dataflow program is a directed graph of data flowing between operations. The

graph consists of nodes which represent operations and edges which represent data

paths between the operations. Programming languages such as VHDL, Verilog,

Single Assignment C (SA-C), LabView, Simulink are some examples of dataflow

programming languages.

7

Consider a set of operations given in following equations

x <= a+ b; (2.1)

y <= (x− (a ∗ b))2; (2.2)

z <= (a ∗ b) + y; (2.3)

These equations can be represented using a dataflow graph as presented in Figure

2.1.

Figure 2.1. Implementation of set of equations using dataflow graph

To implement the above set of equations on a reconfigurable accelerator, a

library of optimized operators has been developed to represent each of the com-

putational nodes of the dataflow graph. Section 2.2 describes the features and

functionality of dataflow computational nodes in detail. Such a fine-grained li-

brary enables the developer to have greater control over the flexibility of the design

and resource utilization of an FPGA. Once the computational nodes are instanti-

8

ated, the connections between them are established using a framework discussed

in Chapter 3.

2.2 Dataflow Operators

A dataflow library consisting of basic arithmetic and logical operations/functions

such as addition, subtraction, multiplication, division, thresholding, etc., have been

developed. In addition, the library also provides image processing operators such

as convolution, histogram computation, logarithmic and hyperbolic tangent (tanh)

function, subsampler, etc. Furthermore, operators for computing image statistics

such as mean and standard deviation are also provided. All operators in the library

have a uniform streaming architecture and support parameterizable operand bit-

widths. Operators also support both signed and unsigned operations and have

the ability to operate on a single datum or multiple data simultaneously. The

amount of data processed per clock cycle is configurable at design-time. Lastly,

each operator has the ability to perform computations between either two vectors,

a vector and a scalar, or a vector and an unsized array.

Each operator uses the same XpressLink protocol at its interface allowing in-

creased consistency and modularity. Using the same protocol at the operator

interface also allows ease of automation when using a software framework, at the

application level, to combine multiple operators. Operators may also have a con-

figuration space that is accessed via a configuration interface at run-time. This

configuration space may be used to store operator-specific run-time parameters

such as constants, convolution kernels and image sizes.

A set of operators can be combined to generate more complex operators. For

example, a sigmoid operator can be generated using library operators such as tanh,

multiplier, subtractor, etc. Designers can also create custom operators that can

then be integrated with other library operators to develop a complex solution. To

simplify the development of custom operators, the operator interface consists of a

minimal set of signals that are required for the correct functioning of the operator.

Each operator processes only its inputs and is unaware of other operators that may

be connected to it. However, such an approach introduces additional complexities

which are discussed in section 2.3.

9

2.3 Composition of Complex Systems

Operators begin processing when both the operands become available at their in-

put. Therefore, when composing any algorithm using operators in the dataflow

library, developers often face issues such as synchronization of operands. The op-

erator may not function properly if both its operands are not available at the

input at the same time. In addition, when using fixed-point representation for

the operands, operators such as adders and subtractors output a correct computed

result only when both their operands have the same number of fractional bits.

Therefore, operands need to be properly scaled before they can be input to the

operator. The composition of complex systems using basic operators is, there-

fore, difficult due to issues discussed above. To ease the composition of systems,

a framework is presented in Chapter 3 where synchronization and scaling require-

ments at both the input and output are abstracted away from the operator. This

abstraction simplifies operator design since designers need not focus on scaling/

synchronization when building custom operators.

Chapter 3
Initial Framework for Composition of

Complex Systems

Complex algorithms usually consist of sequences of transformations such as mul-

tiplication, convolution, log and histogram computation. A modular framework

is proposed for implementing such complex algorithms on FPGAs, where the op-

erations or transformations are implemented by a set of modules. The input to

each module is a set of data while the output is a set of data on which a trans-

formation or operation has been performed. When such modules are connected

sequentially to solve a complex task, each module requires the previous data set

to be partially or completely available before its output can be generated. Such

modular architectures are sequential because some modules will be dependent on

the output of other connected modules. However, parallelism can be introduced in

such a framework because each module on an FPGA can operate on multiple data

of the input data set in a single clock cycle, e.g., multiple adjacent pixels of an

input image. Figure 3.1 illustrates a modular bio-inspired vision system consisting

of the Retinal and LGN processing stages followed by the Primary Visual Cortex

(V1) processing stage.

In this chapter, a configurable hardware framework that consists of process-

ing units named Streaming Vector Processors (SVPs) is introduced. In an SVP,

computation is performed on vectors at the data element level with bounded la-

tency from the input of a datum to its corresponding output. SVP processing is

similar to execution of Single Instruction Multiple Data (SIMD) instructions on

11

Figure 3.1. Modular system

microprocessors. For image processing applications, SVPs are ideal implementa-

tion modality for common pixel-level operations including numerical conversion,

color space conversion, coordinate system conversion, data scaling, histogram com-

putation, vector differencing, and data binning. Multiple cascaded SVPs can be

utilized to build very powerful systems where the output of one SVP serves as the

input to another SVP and so on. An example of a cascade of SVPs is illustrated

in Figure 3.2.

12

Figure 3.2. Cascade of SVPs

The SVP provides a configurable pipeline for performing Vector-Vector, Vector-

Immediate, and Vector-Transform operations on streaming data. These modes of

operations are discussed in detail in section 3.1.2. Each SVP is composed of a

custom operator and a common SVP wrapper. Operators within an SVP process

the input data received without using any buffers for synchronization of multiple

input operands. An SVP wrapper is a run-time configurable module that provides

buffering at the input and output of each operator. The advantage of such an

architecture is that the designer can create custom operators and integrate it with

an SVP wrapper to form a set of SVPs designed for an algorithm. An implemen-

tation of the set of operations described by equations 2.1, 2.2 and 2.3 using the

framework is depicted in Figure 3.3. Another advantage of this approach is that

the designer does not need to focus on synchronizing the operands of an operator

since synchronization is handled by the SVP wrapper. Lastly, the designer does

not need to scale operands of the operator (assuming the operands have fractional

bits) since the SVP wrapper contains in-built configurable scaling blocks. The

architecture and functioning of the SVP wrapper is described in section 3.1.

3.1 SVP Wrapper

The proposed hardware framework consists of an SVP wrapper that encapsulates

library or custom operators to create an SVP. This allows designers to build new

operators, and removes the burden of providing buffering within each new operator

for operand synchronization. The wrapper provides buffering at both input and

output, data-width and format conversion to each operator, thereby simplifying

system composition using these operators. To enable the design to be configurable

at run-time, intermediate bit-widths within the SVP wrapper were fixed at 8-, 16-

or 32-bits. The architecture and components of the SVP wrapper are discussed in

section 3.1.1. A block diagram of the wrapper is presented in Figure 3.4.

13

Figure 3.3. Implementation of set of equations using framework

3.1.1 Pipeline Components

The need and functioning of the components of the SVP wrapper are discussed in

the following sections. The connections between these components are illustrated

in Figure 3.4.

3.1.1.1 Control Unit

The Control Unit orchestrates the flow of data from the input of the SVP through

the operators and finally into the output queue. The Control Unit grants access

to each of the input and output queues, configures the functional units based on

the opcodes, configures the data-path based on the opcode and arbitrates access

to the output interface. The Control Unit uses the opcodes that are provided

when the input queues are requested to determine the configuration of all pipeline

elements. The Control Unit is configured at run-time via a Configuration Interface.

The Configuration Interface exposes a memory mapped view of any configuration

registers that need to be externally visible.

14

Figure 3.4. Block diagram of SVP wrapper

3.1.1.2 Address Decoder

Each operator as well as its wrapper has its own configuration space. The opera-

tor configuration space can be used to store the constants in case of an operation

between a vector and a scalar, kernel values in case of a convolution etc. The wrap-

per configuration space, on the other hand, is used to describe the behavior of the

buffers for different modes of operations and for data scaling and format conversion

blocks. Each of these configurations can be accessed using an opcode discussed in

section 3.1.3. The Address Decoder transfers the run-time configuration parame-

ters sent through the configuration interface of the SVP to the configuration spaces

15

of the operator and the wrapper respectively. In a system of multiple SVPs, the

Address Decoder also manages configuration spaces of each SVP.

3.1.1.3 Datawidth Adaptor

The SVPWrapper provides an input interface of 128-bits or 256-bits. However, the

data-path width may be configured internally to meet performance requirements,

maintain resource constraints, and/or match output bandwidth. The Datawidth

Adaptor converts the SVP input 128/256-bit data-bus into the internal pipeline

data width.

3.1.1.4 Prescaler

The Prescaler is used to scale the input data when the two inputs have differ-

ent number of fractional bits. The Prescaler supports scaling of both signed and

unsigned numbers. The amount and direction of scaling is set at run-time by a

configuration parameter to the Prescaler.

3.1.1.5 Primary and Secondary Queues

The input queues consist of the Primary Queue and the two Secondary Queues.

In Vector-Vector mode, data is streamed into the Primary Queue and one of the

two Secondary Queues throughout the duration of the computation. In Vector-

Immediate mode, data is streamed into the Primary Queue throughout the dura-

tion of the computation. However, one of the Secondary Queues is streamed once

with data which is used throughout the duration of computation. In addition, the

loading of the Secondary Queue is performed before the Vector-Immediate com-

putation is started. In Vector-Transform mode, data is streamed into either the

Primary Queue or the Secondary Queue throughout the computation. Modes of

operation are discussed in more detail in section 3.1.2.

The Primary and Secondary Queues are accessed via dedicated XpressLink

interfaces. In Vector-Immediate mode, data enqueued in a Secondary Queue is

reused as the Secondary Queue supports non-destructive dequeueing. Dual Sec-

ondary Queues allows the overlap of enqueueing and dequeueing of either queue.

This is particularly useful when performing a Vector-Immediate operation between

16

the Primary Queue and one of the Secondary Queues as the unused Secondary

Queue can be simultaneously enqueued with data for another computation.

3.1.1.6 Format Converter

Image processing operators typically use full-precision in representing the com-

puted output data in fixed-point representation. However, there are cases where

the range of the computed data values from that operator may not be as large as

the bits reserved for representing the computed values. In such cases, the hardware

resources allocated for storing data values are greater than required. Format Con-

verter unit is used in such cases to scale the data bit-widths down by discarding a

fixed number of integer bits which are configured at run-time.

3.1.1.7 Postscaler

Each operator in the SVP pipeline has an associated Postscaler that performs

optional scaling of results output from the operator. The specific amount of scaling

performed is input as a run-time parameter.

3.1.1.8 Output Queue

The results of the computation after performing format conversion and scaling get

enqueued into an Output Queue. The width of the Output Queue is either 128-bits

or 256-bits.

3.1.2 Modes of Operation

There are three modes of operation - Vector-Vector, Vector-Immediate and Vector-

Transform which are described in the following sections.

3.1.2.1 Vector-Vector Mode

In Vector-Vector mode, operations are performed element-wise between operands

enqueued in the Primary Queue and either of the Secondary Queues. Operands

are fixed at 8-bits, 16-bits or 32-bits, though actual data width of an operand may

only consist of a subset of the bit width. For example, if the actual data is 24 bits

17

wide, a 32-bit register is used to store this data. The data occupies the lower 24

bits of the register and the upper 8 bits are set to zeros.

3.1.2.2 Vector-Immediate Mode

In Vector-Immediate mode, operations are performed element-wise between the

operands in the Primary Queue and either of the Secondary Queues. Unlike Vector-

Vector mode, data in the secondary queue is preloaded and consumed and re-

consumed in a circular fashion. Once the last operand in the secondary queue is

used, computation continues reusing the first operand in the secondary queue. In

this way, computation may continue indefinitely as long as there is data available

in the Primary Queue.

3.1.2.3 Vector-Transform Mode

In Vector-Transform mode operations are performed on each element in the Pri-

mary Queue. In this mode, outputs are a function of input from the Primary Queue

and any pre-configured parameters that are associated with the current operation

as defined by an opcode. Opcodes are discussed in detail in section 3.1.3.

3.1.3 Opcodes

To allow the SVP to be virtualized for many simultaneous computation contexts,

many sets of configurations for the wrapper and the operator can be set via the

configuration interface. To access a particular set of configurations during run-

time, an opcode is utilized. The opcode specifies the behavior of the queues, data-

path, and operator for the current operation. In addition, for operations requiring

data in both the Primary Queue and Secondary Queue, the opcode allows the

Control Unit to ensure that operands in either queue are matched and appropriate

for the given operation.

3.2 Drawbacks

While the framework architecture provided massive flexibility to a designer, how-

ever it had a few drawbacks. The first drawback of this architecture was that the

18

framework supported only two-input operators. Secondly, the resource overhead

of the SVP wrapper was significant as compared to the operators themselves. The

wrapper provided flexibility to the design and a variety of functionalities such as

scaling and data-width conversion, However, not all operators took advantage of

all the functionalities provided by the wrapper. Lastly, the necessity to maintain

fixed bit-widths at the intermediate stages to make the design completely config-

urable at run-time ultimately led to an increase in resource utilization. In addition,

this also led to a loss of accuracy when data was scaled down at the intermediate

stages.

As an example, the resource utilization of a sigmoid function implemented

using the proposed framework is presented in Tables 3.1 and 3.2. The sigmoid

function was implemented on a Xilinx Virtex-6 FPGA. Table 3.1 shows the resource

utilization of the operators that were used to build a sigmoid function. Table 3.2

presents the resource utilization of the operators and their wrappers that were used

to build the sigmoid function.

Table 3.1. Resource utilization of operators of sigmoid function
Logic Utilization Used Utilization
Slice Registers 3681 0%
Slice LUTs 2863 1%
Block RAM/FIFOs 2 0%

Table 3.2. Resource utilization of operators and wrapper of sigmoid function
Logic Utilization Used Utilization
Slice Registers 9812 1%
Slice LUTs 6557 2%
Block RAM/FIFOs 26 2%

The results presented in Tables 3.1 and 3.2 show that the resource overhead of

the SVP wrapper is significant even for simple functions, e.g., sigmoid. Moreover,

since these functions do not utilize many of the capabilities provided by the wrap-

per, such a framework design is inefficient. Thus when developing a solution, the

overhead of the framework may lead to the design requiring significant resources

19

that may be unavailable on an FPGA. The framework architecture was, there-

fore, revised and a new optimized architecture was developed that is presented in

Chapter 4.

Chapter 4
Optimized Framework for

Composition of Complex Systems

To overcome the drawbacks of the SVP wrapper discussed in the section 3.2, the

framework architecture was modified to reduce resource utilization while providing

the same flexibility and functionalities of the previous archtecture. In addition to

the basic operators present in the library, new operators were introduced for data

scaling and format conversion. However, unlike the previous implementation where

data-width conversion features were provided to each operator, a new format con-

verter operator is provided which abstracts data-width conversion away from each

operator. The format converter operator can be introduced in a pipeline whereever

it is required, thus reducing resource utilization. Furthermore, to efficiently com-

bine multiple operators, another component called Operator Link is introduced

which is capable of concatenating incoming data from multiple sources, broadcast-

ing incoming data to multiple destinations while providing buffering. The new

framework architecture is also capable of supporting multiple input operators, un-

like the initial architecture which only supported two-input operators. Moreover,

the optimized framework is not constrained to maintaining fixed intermediate bit-

widths (i.e., 8, 16 or 32-bits) and can operate on any bit-width. Such an approach

leads to a significant reduction in the resource utilization and also prevents loss

of accuracy as compared to the previous framework architecture. An SVP imple-

mentation of the set of operations described by equations 2.1, 2.2 and 2.3 using

the optimized framework is depicted in Figure 4.1.

21

Figure 4.1. Implementation of set of equations using optimized framework

4.1 Pipeline Components

Some of the components from the previous design such as the operator library,

control unit and address decoder are modified in the new framework. The new

components in the revised framework are presented below.

4.1.1 Input/Output Port

Input and Output ports facilitate the flow of data from the input to the output of

each SVP. They provide a range of functionalities such as data-width conversion,

22

synchronization and broadcast of incoming data to multiple targets and conver-

gence of data from multiple sources to a single target. These ports can be config-

ured at run-time via a configuration interface. The configuration space provided

within each port facilitates multiple configurations to be stored and selection of

a specific configuration at run-time by using an opcode. These ports are also

responsible for keeping track of the amount of data flowing in and out of the SVP.

4.1.2 Operator Link

The Operator Link facilitates connections in the intermediate stages of the pipeline

between the streaming operators. The Operator Link provides functionalities es-

sential for streaming operations such as convergence and divergence of incoming

data and synchronization of data through buffering. Links are configurable to

support different modes of operation as presented in the following sections.

4.1.2.1 Modes of Operation

Operator links can function in three modes namely multicast, pack and unpack.

4.1.2.1.1 Multicast An Operator Link can multicast an incoming datum to

many different modules connected at its output. This is useful in applications

where the output data from one operator flows to multiple connected operators.

An example of an Operator Link operating in multicast mode is shown in Figure

4.2. The Operator Link also synchronizes incoming data when it is broadcasting

to all targets.

4.1.2.1.2 Pack An Operator Link can also pack data received from multiple

sources to a single target. An example of an Operator Link operating in pack mode

is shown in Figure 4.3.

4.1.2.1.3 Unpack When the input to the operator link is a packed array of

data, the link can work in a segment mode where it unpacks the input and sends

each datum to a different target as shown in Figure 4.4.

23

Figure 4.2. Multicast mode of operator link

Figure 4.3. Pack mode of operator link

4.1.2.2 Link Buffering

To enable synchronization of data between operators, the Operator Link has an

in-built buffer with a parameterizable depth. The depth of the buffer in the link

can be set at design-time or the buffer can be completely disabled if not required.

Links can also be configured to perform double-buffering as shown in Figure 4.6.

Consider a case where it is required to compute streaming statistics such as mean

or standard deviation for an image processing algorithm. The mean of an image

can be computed only when the mean operator processes the entire input image.

This introduces a latency of at least one image frame during the processing. This

latency is greatly increased in a pipelined design especially when there are many

24

Figure 4.4. Unpack mode of operator link

Figure 4.5. Operator link with single buffer

such statistics that must be computed in order to generate the required output. In

a completely streaming architecture, the computed statistics of the previous image

frame can be used for processing the current frame. Such an approach reduces

the latency in computing the mean statistics thereby making the implementation

completely streaming. However, in such cases, double buffering must be performed

by the link where the computed statistic of the last frame is enqueued in one buffer

and utilized in the current frame. At the same time, the computed statistic for

the current frame must be enqueued in a second buffer which can then be used for

processing the next image frame.

25

Figure 4.6. Operator link with double buffer

4.1.3 Configurability of Links and Ports

The Input/Output Port and Operator link can be either pre-configured or con-

figured at run-time. For example, the resource utilization of a sigmoid function

implemented on a Xilinx Virtex-6 FPGA with pre-configured ports and links is

compared to that of an implementation with run-time configured ports and links

in Tables 4.1 and 4.2 respectively.

Table 4.1. Resource utilization of sigmoid function with pre-configured ports and links
Logic Utilization Used Utilization
Slice Registers 4290 0%
Slice LUTs 3705 1%
Block RAM/FIFOs 3 0%
DSP48Es 14 0%

Table 4.2. Resource utilization of sigmoid function with run-time configured ports and
links

Logic Utilization Used Utilization
Slice Registers 3397 0%
Slice LUTs 3789 1%
Block RAM/FIFOs 3 0%
DSP48Es 14 0%

When the ports and links are pre-configured, the utilization of look-up tables

26

(LUTs) on an FPGA is decreased in comparison to when they are configured at

run-time. However, the utilization of registers on an FPGA is increased. This

allows fine-grained control of the resource utilization of an FPGA along with the

ability to change the degree of configurability of a design.

The framework architecture discussed in this chapter is utilized to implement

a bio-inspired vision processing algorithm. Chapter 5 introduces the biological

principles behind the algorithm. A bio-inspired vision processing architecture is

also presented. The basic processing units of the algorithm are implemented using

the operator library and the framework and are new additions to the operator

library. The entire vision processing algorithm is implemented by recursively using

these custom operators with the framework.

Chapter 5
Case Study: Retinal and LGN

Processing of Visual System

In this chapter, the retinal and LGN processing of the visual system is discussed.

Vision processing is one of the most complex functions performed by primates. In

the human visual system, the retina, lateral geniculate nucleus (LGN), and primary

visual cortex (V1) stages perform image preprocessing for various high-level vision

tasks such as salient region extraction and object recognition [31]. A part of the

vision processing is performed in the retina, which is the tissue lining the back of the

eye. The axons of the retinal ganglion cells forms the optic nerve which transmits

the visual information through the optic chiasm to the Lateral Geniculate Nucleus

(LGN) which is located in the thalamus of the brain. The LGN not only relays

the information received from the retina to the Primary visual cortex (V1), but

also performs some vision processing on the received data [31, 32]. Finally, the

messages are sent to the brain where they get analyzed and interpreted, thereby

leading to object recognition. The visual system of primates is shown in Figure

5.1.

28

Figure 5.1. Visual system of primates

5.1 Biological Principles

5.1.1 Retina

The retina of primates and humans is the tissue lining the back of the eye. It

contains two basic photoreceptor cells - rods and cones. Rods are extremely sen-

sitive and active even at low light levels and support black-and-white vision while

cones are active at higher light levels and are responsible for color vision. Cones

are further sub-divided into three classes - short, medium and long wavelength

sensitive cones. Humans achieve perception of color through the combinations of

these three sensors sets [33, 34].

When light falls on the photoreceptors, they send their response to the bipo-

lar cells, which in turn signal the retinal ganglion cells. The photoreceptors are

connected to the bipolar cells by the horizontal cells, which run parallel to the

retinal layers. Similarly, the amacrine cells connect the bipolar cells to the retinal

ganglion cells [31, 32] as illustrated in Figure 5.2.

There are about 125 times more photoreceptor cells than ganglion cells, thus

implying that each photoreceptor is not necessarily connected directly to a bipolar

cell and each bipolar cell is not directly connected to a ganglion cell [31]. The pit of

the retina, called the fovea, is the region responsible for maximum acuity of vision.

It is in this region that there is a one-to-one connection between the receptors,

29

Figure 5.2. Retinal cells

bipolars and ganglion cells. As we further outwards from the fovea towards the

periphery of the retina, more receptors converge on bipolars and more bipolars

converge on ganglion cells [31].

5.1.2 Lateral Geniculate Nucleus

The LGN is located in the thalamus of the brain and is the the primary relay

station for the visual data received from the retina of the eye [35]. There is an

LGN in both, the right and left hemispheres of the brain of primates, each having

six distinctive layers of neurons. The axons from the LGN travel to the primary

visual cortex through the optic radiation. Both the LGNs receive input from the

retinas of both eyes, however, each LGN processes information from only one half

of the visual field. The LGN also receives input back from the primary visual

cortex [31, 32].

30

Figure 5.3. Receptive fields of ganglion cells

5.1.3 Receptive Fields of Retina and LGN

It is well-known that the retinal ganglion cells fire action potentials at a steady rate

even in the absence of any stimulation [36]. Around 1950, Stephen Kuffler studied

the activity of these cells under stimulation by light. Kuffler noticed that when

light falls on the receptive fields of these cells, the firing rate is either increased

or decreased depending on where the light fell [36]. This led to the discovery of

two distinct types of the retinal ganglion cells - on-center cells and off-center cells.

On-center cells have a receptive field with an on center and inhibitory surround

while off-center cells have an off center with excitatory surround as shown in Figure

5.3. Therefore, on-center cells get stimulated when the center is exposed to light

and inhibited when the surround is exposed to light, and vice-versa for off-center

cells as shown in Figures 5.4 and 5.5. When both the center and the surround of

these cells are not stimulated by light, both the on center and off center cells do

not fire as depicted in Figure 5.6. On the other hand, the response from both cells

is weak when both center and surround are exposed to light and this is shown in

Figure 5.7. During the firing of action potentials by a retinal ganglion cell, the

firing of nearby or surround ganglion cells are inhibited [36]. Such center-surround

inhibition leads to edge or contrast enhancement. The center-surround structure

of the retinal ganglion cells leads to contrast enhancement and edge detection of

objects within the visual field of the retina. The image that is spatially encoded

by the center-surround structures is then sent out the optical nerve through the

optic chiasm to the LGN [31].

The receptive fields of lateral geniculate cells have the same center-surround

organization as the retinal ganglion cells that feed into them. While the retina

31

Figure 5.4. Behavior of on-center and off-center cells with only center exposed to light

Figure 5.5. Behavior of on-center and off-center cells with only surround exposed to
light

accomplishes spatial de-correlation through center surround inhibition, the LGN

accomplishes temporal de-correlation [37].

5.2 Bio-inspired Retinal-LGN Architecture

The input image is first converted from RGB color space to a biologically plausible

color space such as YIQ color space. The luminance i.e. Y and chrominance chan-

nels i.e. I and Q channels are then processed individually. The basic architecture

for the Retinal and LGN processing consists of three distinct processing stages

as shown in Figure 5.8. In the first processing stage which is the retina, within-

band image enhancement and normalization is performed by utilizing a non-linear

neural network or a shunting image operator. This produces contrast enhance-

ment, dynamic range calibration, and normalization of input images. The second

stage which is sigmoid performs a normalization on the output of retina. The

third stage which is LGN adopts the use of the same shunting image operator to

produce between-band de-correlation, information enhancement and fusion. The

32

Figure 5.6. Behavior of on-center and off-center cells with both center and surround
not exposed to light

Figure 5.7. Behavior of on-center and off-center cells with both center and surround
exposed to light

shunt combinations of the third stage provides four unique sets of information rich

images.

5.2.1 Shunting Image Operator

The shunting operator basically performs Difference of Gaussians (DoG) which is

a contrast enhancement algorithm. The input image is smoothed by convolving

the original image with Gaussian kernels having differing standard deviations. The

difference of the two Gaussian smoothed images is used for contrast enhancement

and edge detection in an image. However, in neuro-physiological systems and in

the algorithm, the non-linear operator has a very narrow spatial window providing

a better-tuned de-correlation. In addition, the operator is modulated by more

globally defined statistical characteristics of the input that produce normalization,

smoothing, and between-band calibration.

There are two basic stages within the shunting image operator. The first stage

performs contrast enhancement operation by Difference of Gaussians method. The

33

Figure 5.8. Biologically-based retinal-LGN architecture

second stage normalizes and re-maps the resulting contrast enhanced values to the

target range by employing a sigmoid operator with a relatively steep slope. In

effect, the combination of these two stages leads to the dynamic range compression

of the input image in conjunction with contrast enhancement.

34

5.2.1.1 Implementation of Sigmoid Operator using Optimized Frame-

work

Figure 5.9 shows the implementation of a sigmoid operator using library operators

such as tanh, multiplier, adder from the dataflow library along with the connec-

tivity framework.

5.2.1.2 Implementation of Shunting Image Operator using Optimized

Framework

Figure 5.10 presents the shunting image operator which basically consists of two

processing stages. The first stage performs a Difference of Gaussians using the

convolution and multiplication operators from the dataflow library, along with

some clipping and clamping operators for thresholding. The second stage is the

sigmoid operator which was a custom operator created using the library operators

and is used for normalization of the output from the first stage to the required

range. In the case where the shunting operator is used for within-band image

enhancement, both the center and the surround inputs are derived from the same

band. In the case in which the operator is used to combine two bands, the inputs

mapped to the center and surround are derived from each of the input images.

Here, band 1 is mapped to the center and each of the pixels from band 1 are used

to drive the excitatory input of their corresponding shunting operator. Then, a

corresponding area of the image for band 2 is used as the surround input that

is fed into the same shunt operator. The result is the contrast enhancement of

information in band 1 as matched against band 2.

5.2.2 Retinal-LGN Architecture

The sigmoid operator was first created using the library operators and framework.

This new custom operator for sigmoid function was then utilized to build the

shunting image operator along with other library operators and the framework.

Finally, the retinal-LGN processor was implemented using the same framework

and the shunting image operator as well as the sigmoid operator as shown in

Figure 5.11.

The results of the implementation of the bio-inspired retinal-LGN architecture

35

Figure 5.9. Implementation of sigmoid operator using optimized framework

36

on an FPGA are presented in Chapter 6. To compare the performance of the

FPGA-based implementation to that on a CPU, the algorithm was also imple-

mented on a multi-core CPU. The accuracy of the fixed-point implementation on

the FPGA with respect to a double-precision implementation in Matlab is also

presented in Chapter 6.

37

Figure 5.10. Implementation of shunting image operator using optimized framework

38

Figure 5.11. Implementation of retinal-LGN processor using optimized framework

Chapter 6
Experimental Setup and Results

The Retinal-LGN processing architecture was implemented in Verilog HDL and

synthesized using Xilinx ISE 13.2 design tools. Simulation was carried out us-

ing Mentor Graphics ModelSim simulation suite. Software simulation, used for

accuracy comparison purposes, was implemented in Matlab.

6.1 Normalization and RGB to YIQ Conversion

The input image is normalized between 0 to 1 and changed to a biologically plau-

sible color space. A color space conversion from RGB to YIQ is performed on

the image and the individual Y, I and Q channels are extracted and input to the

Retinal-LGN processing architecture. The formulae for RGB to YIQ conversion is

given in Equation (6.1).
Y

I

Q

 =

0.299 0.587 0.114

0.595716 −0.274453 −0.321263

0.211456 −0.522591 0.311135

R

G

B

 (6.1)

6.2 Double Precision to Fixed-Point Precision

Analysis

While CPUs and GPUs can only handle 8-, 16-, 32-, and 64-bit variables, FPGAs

support arbitrary bit-widths for each variable in the design. By adjusting the bit

40

widths according to the precision requirement, significant reduction in the silicon

area cost of arithmetic units and bandwidth requirement between different hard-

ware modules can be achieved. Thus, this approach improves overall throughput of

the entire system. The image input to the retinal-LGN implementation was fixed

to be 16-bit fixed-point unsigned numbers in the range from 0 to 1. Although the

range of the input image pixels was fixed, intermediate and final pixel values in the

system can have a larger range. Therefore, conversion from a floating-point for-

mat to fixed-point format was carried out using the fixed-point toolbox in Matlab.

A fixed-point analysis was performed to determine appropriate data bit-width for

sufficient computation accuracy for the algorithm. The result of such optimizations

was smaller, faster functional units and reduced data storage requirements. The

accuracy of the fixed-point implementation as compared to the double-precision

equivalent implementation was in the range of 10−05 to 10−06.

6.3 Validation on DiniGroup FPGA board

The bio-inspired algorithm studied in Chapter 5 was synthesized and implemented

on a FPGA board. The features of the selected FPGA board are described in

section 6.3.1.

6.3.1 Introduction to DNV6F6PCIe board

The DNV6F6PCIe is configured with 6 Xilinx Virtex-6, SX475Ts. Each SX475T

contains 2,016, multipliers, each 25x18, per FPGA. The DNV6F6PCIe contains

12,096 multipliers in addition to more than 21 million gates of ASIC logic, making

this FPGA board ideal for heavy DSP-based algorithmic acceleration and High Per-

formance Computing (HPC) applications. There is an on-board Marvell MV78200

CPU from the Discovery Innovation CPU family. The DNV6F6PCIe can be hosted

via PCIe, USB, or Ethernet where FPGA configuration occurs via the host under

the control of one of the Marvell CPUs. If the board is used stand-alone, the

FPGA configuration files are copied onto a USB stick and FPGA configuration

occurs at power up after the Marvell processors have booted.

41

Figure 6.1. DiniGroup 6-FPGA board

6.3.2 Resource Utilization

The resource utilization of the hardware implementations synthesized on a Virtex-6

SX475T FPGA is presented in the following sections.

6.3.2.1 Sigmoid Operator

The utilization of slice registers, LUTs, block RAMs and DSP48Es on a single

FPGA by the sigmoid implementation using the initial and optimized frameworks

are presented in Tables 6.1 and 6.2 respectively. The optimized framework utilizes

about half of the logic and block RAMs used by the initial framework and takes

advantage of in-built DSP units on the FPGA.

6.3.2.1.1 Implementation using initial framework The utilization of re-

sources by the sigmoid implementation using the initial framework is presented in

Table 6.1.

6.3.2.1.2 Implementation using optimized framework The utilization of

resources by the sigmoid implementation using the optimized framework is pre-

42

Table 6.1. Resource utilization of implementation of sigmoid operator using initial
framework

Logic Utilization Used Utilization
Slice Registers 9812 1%
Slice LUTs 6557 2%
Block RAM/FIFOs 26 2%
DSP48Es 0 0%

sented in Table 6.2.

Table 6.2. Resource utilization of implementation of sigmoid operator using optimized
framework

Logic Utilization Used Utilization
Slice Registers 4290 0%
Slice LUTs 3705 1%
Block RAM/FIFOs 3 0%
DSP48Es 14 0%

6.3.2.2 Shunting Image Operator

While maintaining the same level of flexibility offered by the initial framework,

the implementation of shunting image operator using the optimized framework

requires significantly lesser FPGA resources as compared to the implementation

using the initial framework. Tables 6.3 and 6.4 show that the implementation

using the optimized framework requires less than one-fifth of the logic utilized by

the initial framework.

6.3.2.2.1 Implementation using initial framework The utilization of re-

sources by the shunting image operator implementation using the initial framework

is presented in Table 6.3.

Table 6.3. Resource utilization of implementation of shunting image operator using
initial framework

Logic Utilization Used Utilization
Slice Registers 59863 10%
Slice LUTs 56588 19%
Block RAM/FIFOs 52 4%
DSP48Es 14 0%

43

6.3.2.2.2 Implementation using optimized framework The utilization of

resources by the shunting image operator implementation using the optimized

framework is presented in Table 6.4.

Table 6.4. Resource utilization of implementation of shunting image operator using
optimized framework

Logic Utilization Used Utilization
Slice Registers 12892 2%
Slice LUTs 9221 3%
Block RAM/FIFOs 27 2%
DSP48Es 26 1%

6.3.2.3 Retinal-LGN Processor

The logic utilization of the implementation of the biologically-inspired retinal-

LGN architecture using both frameworks is presented in Tables 6.5 and 6.6. The

implementation using the initial framework requires more resources than what

are available on a single FPGA, whereas, the implementation using the optimized

framework requires less than 50% of the resources of one FPGA.

6.3.2.3.1 Implementation using initial framework The utilization of re-

sources by the retinal-LGN implementation using the initial framework is presented

in Table 6.5.

Table 6.5. Resource utilization of implementation of retinal-LGN processor using initial
framework

Logic Utilization Used Utilization
Slice Registers 480828 81%
Slice LUTs 516325 173%
Block RAM/FIFOs 598 56%
DSP48Es 140 7%

6.3.2.3.2 Implementation using optimized framework The utilization of

resources by the retinal-LGN implementation using the optimized framework is

presented in Table 6.6.

44

Table 6.6. Resource utilization of implementation of retinal-LGN processor using opti-
mized framework

Logic Utilization Used Utilization
Slice Registers 116656 19%
Slice LUTs 120425 40%
Block RAM/FIFOs 434 40%
DSP48Es 390 19%

6.3.3 Performance and frame-rate

The total execution time of Retinal-LGN processor for an image size of 2048×1536

on a Xilinx Virtex-6 SX475T FPGA operating at 100 MHz was 31.45 ms, which

translates to approximately 31 frames per second.

For the input image shown in Figure 6.2, the output images from the FPGA

implementation are shown in Figures 6.3, 6.4, 6.5 and 6.6.

Figure 6.2. Input YIQ image to retinal-LGN processor

6.4 Comparison with CPU

The bio-inspired algorithm was implemented using C and OpenCV 2.3.1 on a

Intel Core 2 Quad 2.4Ghz CPU based workstation with 4GB RAM. The total

45

Figure 6.3. LGN1 output of retinal-LGN processor

execution time for an image of size 2048×1536 pixels was 435 ms, which is over 10

times greater then the execution time of the same image on an FPGA. A graph

depicting the execution time of the algorithm on a CPU for different image sizes

is shown in Figure 6.7.

46

Figure 6.4. LGN2 output of retinal-LGN processor

Figure 6.5. LGN3 output of retinal-LGN processor

47

Figure 6.6. LGN4 output of retinal-LGN processor

Figure 6.7. Graph of CPU execution time vs image size for retinal-LGN processor

Chapter 7
Conclusion

In this thesis, a fine-grained dataflow framework for complex processing tasks on

reconfigurable streaming accelerators has been proposed. A dataflow library has

been created to provide basic arithmetic and logical operators such as adders,

subtractors and multipliers. In addition, the library also provides image processing

operators such as convolution, scaling and histogram computation. Furthermore,

the proposed framework also provides the capability to combine these operators

effectively for a solution. Such an approach has allowed recursive definitions of

custom operators using the library operators and the framework. A bio-inspired

vision processing algorithm was been implemented on an FPGA as a use-case for

the framework and experimental results have been presented. The algorithm was

also implemented on a multi-core CPU and experimental results show that the

FPGA-based implementation outperforms the CPU-based implementation by an

order of 10.

7.1 Future Work

The scope of future work based on this thesis is immense. Possible avenues are as

follows:

• A software framework that maps algorithms to the hardware library using

dataflow programming is one area for research. Such a software framework

will allow non-hardware developers to effectively utilize the hardware frame-

49

work to implement complex algorithms on FPGAs.

• Another area for future research is optimizing the hardware framework to

minimize power consumption. For example, in this thesis, all computational

operators in an algorithm are constantly consuming power. However, there

exist algorithms where some operators are unused during part of the compu-

tation and can thus be shut off. Optimizing the framework architecture to

power down unused operators for a particular period of computation would

allow fine-grained control over the power consumption of the design.

Bibliography

[1] Guo, Z., W. Najjar, F. Vahid, and K. Vissers (2004) “A quantitative
analysis of the speedup factors of FPGAs over processors,” in Proceedings of
the 2004 ACM/SIGDA 12th international symposium on Field programmable
gate arrays, ACM, pp. 162–170.

[2] George, V. and J. Rabaey (2001) Low-energy FPGAs: architecture and
design, Springer Netherlands.

[3] Shang, L., A. Kaviani, and K. Bathala (2002) “Dynamic power con-
sumption in Virtex-II FPGA family,” in Proceedings of the 2002 ACM/SIGDA
tenth international symposium on Field-programmable gate arrays, ACM, pp.
157–164.

[4] DeHon, A. (2000) “The density advantage of configurable computing,” Com-
puter, 33(4), pp. 41–49.

[5] Che, S., J. Li, J. Sheaffer, K. Skadron, and J. Lach (2008) “Accelerat-
ing Compute-Intensive Applications with GPUs and FPGAs,” in Application
Specific Processors, 2008. SASP 2008. Symposium on, IEEE, pp. 101–107.

[6] Asano, S., T. Maruyama, and Y. Yamaguchi (2009) “Performance com-
parison of FPGA, GPU and CPU in image processing,” in Field Programmable
Logic and Applications, 2009. FPL 2009. International Conference on, IEEE,
pp. 126–131.

[7] Gac, N., S. Mancini, M. Desvignes, and D. Houzet (2008) “High speed
3D tomography on CPU, GPU, and FPGA,” EURASIP Journal on Embedded
systems, 2008, p. 5.

[8] Cope, B., P. Cheung, W. Luk, and S. Witt (2005) “Have GPUs made
FPGAs redundant in the field of Video Processing?” in Field-Programmable
Technology, 2005. Proceedings. 2005 IEEE International Conference on,
IEEE, pp. 111–118.

51

[9] Chase, J., B. Nelson, J. Bodily, Z. Wei, and D. Lee (2009) “Real-
time optical flow calculations on FPGA and GPU architectures: A com-
parison study,” in Field-Programmable Custom Computing Machines, 2008.
FCCM’08. 16th International Symposium on, IEEE, pp. 173–182.

[10] Ashenden, P. (2008) The designer’s guide to VHDL, vol. 3, Morgan Kauf-
mann.

[11] Skahill, K. (1996) VHDL for programmable logic, Addison-Wesley Longman
Publishing Co., Inc.

[12] Palnitkar, S. (2003) Verilog HDL: a guide to digital design and synthesis,
vol. 1, Prentice Hall PTR.

[13] Thomas, D. and P. Moorby (2002) The Verilog hardware description lan-
guage, vol. 1, Springer Netherlands.

[14] Dennis, J. and D. Misunas (1975) “A preliminary architecture for a basic
data-flow processor,” in Proceedings of the 2nd annual symposium on Com-
puter architecture, ACM, pp. 126–132.

[15] Davis, A. (1978) “The architecture and system method of DDM1: A re-
cursively structured Data Driven Machine,” in Proceedings of the 5th annual
symposium on Computer architecture, ACM, pp. 210–215.

[16] Dennis, J. (1980) “Data flow supercomputers,” Computer, 13(11), pp. 48–
56.

[17] Watson, I. and J. Gurd (1982) “A practical data flow computer,” Com-
puter, 15(2), pp. 51–57.

[18] Johnston, W., J. Hanna, and R. Millar (2004) “Advances in dataflow
programming languages,” ACM Computing Surveys (CSUR), 36(1), pp. 1–34.

[19] Farabet, C., B. Martini, P. Akselrod, S. Talay, Y. LeCun, and
E. Culurciello (2010) “Hardware accelerated convolutional neural net-
works for synthetic vision systems,” in Circuits and Systems (ISCAS), Pro-
ceedings of 2010 IEEE International Symposium on, IEEE, pp. 257–260.

[20] Farabet, C., C. Poulet, J. Han, and Y. LeCun (2009) “Cnp: An fpga-
based processor for convolutional networks,” in Field Programmable Logic and
Applications, 2009. FPL 2009. International Conference on, IEEE, pp. 32–37.

[21] Farabet, C., C. Poulet, and Y. LeCun (2009) “An FPGA-based stream
processor for embedded real-time vision with convolutional networks,” in
Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th Interna-
tional Conference on, IEEE, pp. 878–885.

52

[22] Janneck, J., I. Miller, D. Parlour, G. Roquier, M. Wipliez, and
M. Raulet (2008) “Synthesizing hardware from dataflow programs: An
MPEG-4 simple profile decoder case study,” in Signal Processing Systems,
2008. SiPS 2008. IEEE Workshop on, IEEE, pp. 287–292.

[23] Draper, B., J. Beveridge, A. Bohm, C. Ross, and M. Chawathe
(2002) “Implementing image applications on FPGAs,” in Pattern Recognition,
2002. Proceedings. 16th International Conference on, vol. 3, IEEE, pp. 265–
268.

[24] Rinker, R.,M. Carter,A. Patel,M. Chawathe, C. Ross, J. Hammes,
W. Najjar, and W. Bohm (2001) “An automated process for compiling
dataflow graphs into reconfigurable hardware,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 9(1), pp. 130–139.

[25] Thomas, D., L. Howes, and W. Luk (2009) “A comparison of CPUs,
GPUs, FPGAs, and massively parallel processor arrays for random number
generation,” in Proceeding of the ACM/SIGDA international symposium on
Field programmable gate arrays, ACM, pp. 63–72.

[26] Cope, B., P. Cheung, and W. Luk (2007) “Bridging the gap between
FPGAs and multi-processor architectures: A video processing perspective,”
in Application-specific Systems, Architectures and Processors, 2007. ASAP.
IEEE International Conf. on, IEEE, pp. 308–313.

[27] Kuon, I., R. Tessier, and J. Rose (2008) “Fpga architecture: Survey
and challenges,” Foundations and Trends R⃝ in Electronic Design Automation,
2(2), pp. 135–253.

[28] Ahmed, T., P. D. Kundarewich, J. H. Anderson, B. L. Taylor, and
R. Aggarwal (2008) “Architecture-specific packing for virtex-5 FPGAs,”
in Proceedings of the 16th international ACM/SIGDA symposium on Field
programmable gate arrays, FPGA ’08, ACM, New York, NY, USA, pp. 5–13.
URL http://doi.acm.org/10.1145/1344671.1344675

[29] Dou, Y., S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydadjiev
(2005) “64-bit floating-point FPGA matrix multiplication,” in Proceedings of
the 2005 ACM/SIGDA 13th international symposium on Field-programmable
gate arrays, FPGA ’05, ACM, New York, NY, USA, pp. 86–95.
URL http://doi.acm.org/10.1145/1046192.1046204

[30] Jiang, J., V. Mirian, K. P. Tang, P. Chow, and Z. Xing (2009) “Matrix
Multiplication Based on Scalable Macro-Pipelined FPGA Accelerator Archi-
tecture,” Reconfigurable Computing and FPGAs, International Conference on,
0, pp. 48–53.

53

[31] Hubel, D., J. Wensveen, and B. Wick (1988) Eye, brain, and vision,
Scientific American Library New York.

[32] Hubel, D. (1963) “The visual cortex of the brain.” Scientific American.

[33] Martin, P. (1998) “Colour processing in the primate retina: recent
progress,” The Journal of physiology, 513(3), pp. 631–638.

[34] Roorda, A. and D. Williams (1988) “The arrangement of the three cone
classes in the living human eye,” Acoust. Soc. Am, 83, pp. 1102–1116.

[35] Grossberg, S. (1995) “The attentive brain,” American Scientist, 83(5), pp.
438–449.

[36] Kuffler, S. (1953) “Discharge patterns and functional organization of mam-
malian retina,” Journal of Neurophysiology, 16(1), p. 37.

[37] Dong, D. and J. Atick (1995) “Temporal decorrelation: a theory of lagged
and nonlagged responses in the lateral geniculate nucleus,” Network: Compu-
tation in Neural Systems, 6(2), pp. 159–178.

