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Abstract

Autonomous mobile robots have many uses in both commercial and military ap-
plications. Creating the computer software that implements the autonomy of these
robots is a daunting task, which has resulted in the development of many tools across
both industry and academia to help mitigate development complexity and costs in the
form of software libraries, frameworks, and application programmer interfaces. This
thesis describes a new software framework, the Modular Planning Framework and Lan-
guage (MPFL), for developing the mission planning aspect of a mobile robot’s autonomy.
MPFL is unique in that it looks at the problem of vehicle planning as a programming
language with a corresponding runtime compiler that processes the language. This ap-
proach to autonomy development leverages concepts from programming language theory
to create a planning framework that supports component reuse, strong data type ver-
ification, and the ability to reason about complex autonomy solutions in a piecemeal
fashion.
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Chapter 1

Introduction and Roadmap

1.1 The Future is Autonomous

In our daily lives we take for granted countless tasks that are autonomously han-
dled by non-human entities. Computers autonomously control our financial transactions,
traffic lights, airline schedules, the amount of gasoline injected into our car’s engine, and
even the temperature of our homes. Everything from our home appliances to our break-
fast cereal are made by tireless robots in factories overseen only by a handful of people.
These computers and robots are all instances of autonomous systems. What qualifies
a system as being autonomous is subjective but in general it can be understood as some
entity that can operate on its own, with little or no outside intervention, in order to
accomplish some set of goals. Each living creature on this planet can be considered an
autonomous system with the base goals of survival and reproduction. However, in the
context of this thesis, autonomous system refers primarily to an artificial entity, such as
a computer or a robot. We have increasingly become dependent on autonomous systems
to do tasks for us because those tasks are simply too mundane, complex, time/energy
consuming, costly, and/or dangerous if performed by a human. The inevitability is that
in order for us to progress as a society, we will have to continuously delegate more work
to autonomous systems.

1.2 Autonomy and Robotics

One of the most common examples of autonomous systems are autonomous
mobile robots, also commonly referred to as autonomous vehicles. Autonomous
mobile robots are robots that are both self-governing (i.e. autonomous) and can move
around (i.e. mobile). These robots may operate aerially, on the ground, on water, and/or
underwater.

1.2.1 Commercial and Research Autonomous Robots

Many commercial autonomous mobile robots have become mainstream. Some of
the notable ones available in the market are iRobot Corporation’s Roomba vacuum clean-
ing robot (Figure 1.1), Friendly Robotics’ RoboMow lawnmower robot (Figure 1.2), Sony
Corporation’s AIBO robotic pet dog (Figure 1.3), and Adept MobileRobot’s PatrolBot
security guard robot (Figure 1.4).

Other robots, though not commercially available, are prototypes for potential
commercial products. The well-known Honda ASIMO (Figure 1.5) is a humanoid robot
that attempts to replicate human anatomy and movement. In 2003, history was made
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Fig. 1.1 iRobot’s Roomba autonomous robot for vacuum cleaning. In addition to vac-
uuming, the Roomba is a popular platform for robot hobbyists and researchers due to
its low price and hacker-friendly interface (Tribelhorn and Dodds 2007). (Courtesy of
iRobot Corporation)

Fig. 1.2 Friendly Robotics’ RoboMow autonomous lawn mowing robot. (Courtesy of
Friendly Robotics)
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Fig. 1.3 The Sony AIBO is a robotic pet designed to mimic a dog. (Courtesy of Sony
Corporation)

Fig. 1.4 Adept MobileRobots’ PatrolBot is an autonomous robot for surveillance and
security. Note the ultrasonic sensors (the copper mesh patches) circling the chassis and
camera on top. (Courtesy of Adept MobileRobots)
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Fig. 1.5 Honda’s ASIMO (Sakagami et al. 2002) is a humanoid robot; a robot meant to
mimic the anatomy of a human. (Courtesy of Honda)

Fig. 1.6 A depiction of one of the twin Mars rovers Spirit and Opportunity used in
NASA’s Mars Exploration Rover Mission. Courtesy of NASA
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during NASA’s Mars Exploration Rover Mission (MER) when the twin autonomous
rovers Spirit and Opportunity (Figure 1.6) landed on the surface of Mars and are still
operational till this day.1

1.2.2 Military Autonomous Robots

In the United States, autonomous and remote-controlled unmanned robotics are
heavily used in military applications. In the last two decades, the United States Depart-
ment of Defense (DoD) has become extremely interested in unmanned mobile robots
and have invested heavily in the area. In recent years, General Atomics’ Predator un-
manned aerial vehicle (UAV) (Figure 1.7) has been used heavily in combat in the U.S.
War on Terror. Autonomous underwater vehicles (AUV) such as iRobot’s Seaglider
(Figure 1.8) and Hydroid’s REMUS (Figure 1.9) have been utilized in applications such
as environmental monitoring, mine counter measures (MCM), and hydrographic sur-
veys. Boston Dynamics’ Big Dog (Figure 1.10), though not yet fielded, will eventually
act as a robotic mule that can carry heavy supplies in out and of a battlefield. Robots
such as iRobot’s PackBot (Figure 1.11) are used for explosive ordnance disposal appli-
cations(e.g. disabling a bomb), exploring dangerously damaged buildings for survivors,
and reconnaissance in urban warfare. Using unmanned robots is cheaper than using
manned vehicles, puts military personnel out of harm’s way, and allows reaching places
that humans cannot get to or safely navigate (e.g. collapsed building). DoD endeavors
such as the Defense Advanced Research Projects Agency’s (DARPA) Grand Challenge
and Urban Grand Challenge (Figure 1.12) contests were widely publicized events aiming
to push the state-of-the-art in autonomous vehicles. In fact, the United States Congress
has passed laws that have set a mandate for at least one-third of all aerial vehicles to
be unmanned by 2010 and at least one-third of all ground vehicles to be unmanned by
2015 (Laird 2009).

Fig. 1.7 General Atomics’ Predator aerial unmanned vehicle drone (Courtesy of General
Atomics)

1In 2010, Spirit’s wheels became stuck in soil, turning it into a stationary platform, though
it is still operational.
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Fig. 1.8 iRobot’s Seaglider autonomous underwater vehicle (Eriksen et al. 2001) utilizes
buoyancy changes to fly through the water in contrast to traditional propeller-based
thrust (Courtesy of iRobot Corporation)

1.3 How Autonomous Robots Work

Though autonomous robots differ greatly in their designs, their form factor, in-
tended use, payload configuration and computer software, the following high-level algo-
rithm describes the control loop followed by many autonomous robots:

1. Observe the world with onboard sensors

2. Perform data fusion on sensory data and update robot’s world perception

3. Decide what to do next based on robot’s goals and world perception, and issue
commands to robot’s actuators if necessary

4. Goto 1

This algorithm is not meant to be an accurate depiction for all robots, but gives the
reader a starting framework to reason about robot autonomy. In the robotics literature,
this algorithm represents what is sometimes referred to as a sense-plan-act or sense-
model-plan-act autonomy model (Alami et al. 1998; Brooks 1991)2. Human beings can
also be thought to follow this algorithm in the way we function.

2In military terminology, the concept of an OODA (Observe-Orient-Decide-Act) loop (Boyd
1987) is almost identical to the sense-model-plan-act concept. It is common amongst defense
contractors working in the realm of autonomous systems to utilize the OODA metaphor.
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Fig. 1.9 Hydroid’s REMUS 600 Autonomous Underwater Vehicle(Courtesy of Hydroid)

Fig. 1.10 Boston Dynamics’ Big Dog is an autonomous robot that helps carry heavy
supplies across rough terrain like a mule. (Courtesy of Boston Dynamics)
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Fig. 1.11 iRobot’s PackBot is extremely popular in explosive ordnance disposal and other
law enforcement/military applications. (Courtesy of iRobot Corporation)

Fig. 1.12 A contender from the DARPA Grand Challenge
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1.3.1 Sensors, Actuators, and Payloads

Robots have varying types of sensors mounted on them for perceiving their sur-
rounding world. Sensors for detecting objects includes infrared, ultrasonic (Figure 1.13),
laser, optical cameras, LIDAR (Figure 1.14), sonar, and radar. They act as the eyes of
a mobile robot. Other sensors are used for tracking the robot’s position and orientation,
such as global positional system (GPS), wheel encoders, magnetometers, accelerome-
ters, altimeters, and inertial navigational systems. Environmental sensors are used for
measuring properties of the environment, such as thermocouples for temperature and
barometers for pressure. Sensors can overlap in responsibility. For example a sensor for
pressure can be used to infer either the depth or altitude of the robot. Robots also may
carry other types of payloads, such as a robotic arm (Figure 1.15) or grapple to interact
with objects, or devices for communication such as a radio transmitter. Robots also have
actuators that are devices to control the mechanical movements of vehicle itself, such
as controlling a robotic arm, orienting an onboard camera, or controlling a servo that
determines its heading and speed.

Fig. 1.13 Small ultrasonic sensors commonly used in hobbyist robotics

Fig. 1.14 An autonomous robot with front mounted LIDAR
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Fig. 1.15 iRobot Create mobile robot with a robotic arm (Courtesy of iRobot Corporta-
tion)

1.3.2 Data Fusion, Reasoning, and Perception

The various data collected by the robot from its sensors are typically processed
by a higher-level entity that performs data fusion, such as a digital signal processing
(DSP) board and/or a general-purpose computer. Data fusion is the process of taking
the clues provided by the various onboard sensors of the robot to help create or update
a comprehensive, unified picture of the robot’s worldview. This worldview is known
as the robot’s perception. In artificial intelligence terminology, this is also sometimes
known as a knowledge base which is a place that holds all known facts. Likewise in
military terminology, the term situational awareness is often used. For example, say
the robot has two sensors for detecting an object. If both sensors suddenly indicate
there is an object bearing X degrees with a range of Y meters, it is a good indicator
there is something there. Sensors are not perfect, so sometimes one sensor may say
something is there, while another says something is not there or something is there but
at a different position. Sensor accuracy also depends on the distance from the object as
well as environmental factors. The job of data fusion algorithms is to perform analysis of
all sensor data while taking into consideration the accuracy of each sensor, cross-checking
facts with other sensors, as well as previous sensor readings in order to create a unified
picture of the world (hence the term fusion).

The implementation of the knowledge base is important in terms of how knowl-
edge is encoded, stored, indexed, queried, and modified. When human beings are in a
given situation, their minds automatically and instantly prefetch data that would be rel-
evant/useful in that moment of time. For example, if one is in a car accident, their mind
and body are flooded with thoughts and emotions that allow them to get out of that
situation and continue on with their life (so as to continue to survive and reproduce).
Thoughts may include experience from previous accidents, knowledge of what to do in a
car accident (e.g. make sure everyone is alright, call the police, do not admit any fault),
worries about how the car will be repaired or replaced, and tasks/meetings/obligations
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that are affected by the incident. Emotions, which themselves can be considered merely
data, may also be invoked by the release of bodily chemicals and neurotransmitters such
as adrenaline and dopamine. In the car accident analogy, emotions may include fear and
caution so as to create conditions that improve probability of success. The mind reacts
so quickly because of the way data is encoded within the brain; facts are not merely
stored but they have links between them. In a robot, we attempt to mimic this using
tools from computer science. Memory is our physical storage. Thoughts are encoded
in the form of programming language constructs and data structures (e.g. records, tu-
ples, abstract data types, classes/objects, linked lists, arrays, binary trees). Thoughts
can be cross-indexed via indexes (a common technique in databases) which themselves
are metadata in the form data structures (e.g. hash tables, B-trees). Data can also
be quickly recalled via data caching and exploiting data locality principles, which is of
course a deeply-studied subject in computer science.

The perception/knowledge base of a robot can contain more information than
what is processed by data fusion. Just like humans, robots can also infer/deduce other
facts with some level of certainty. This act of acquiring new information with already
known information via deduction and inference is known as reasoning. For example,
if a person sees that it is gray and cloudy outside, they can infer that there is a reason
chance of rainfall based on past experience. If thunder is heard, it increases the likelihood
even further as it is rare to have thunder without rain. Once drops of rain start falling,
a person can infer that it is indeed ‘actually raining’. The ability to draw new facts from
existing ones is important ability for both humans and autonomous robots in order to
interact with world.

1.3.3 Planning and Response

Even though human beings still ponder the purpose of their existence and lives,
the purpose of existence for an autonomous robot is very simple: do what is necessary
to achieve a set of goals desired by the robot’s user. A goal is a desired state the robot
attempts to achieve. For example, a robot may have the goal of reaching some position
X. The process of creating the necessary steps to achieve goals is known as planning,
and is represented by step 3 of the algorithm mentioned at the beginning of Section 1.3.
The result of planning is a schedule which is a timestamped series of steps needed to
be executed at the appropriate times to achieve a goal. For the example of “go to point
X”, the planning phase may involve determining what heading the robot would need to
take in order to get X from its present location. The schedule resulting from planning
would indicate the robot should move along the planned heading. The robot may need
to continuously replan the heading to take into account obstacles and navigational sensor
inaccuracy. When the robot eventually gets to point X, the robot’s planning system will
recognize the conditions for achieving the goal have been met, and mark it complete.
The act of executing the steps in the plan is know as the response of the vehicle. When
a robot completes all of its goals via its responses, it has served its purpose. Goals may
also be accompanied by constraints such as time or energy usage that the robot must
stay within when attempting to achieve its goals.
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Planning is difficult to develop in an autonomous robot as there are many things
to consider:

• What are the smaller steps that need to be taken by the robot to achieve a goal?
What steps have already been taken?

• If the robot has two or more goals that, if attempted, would overlap in some
resource usage (such as time), how does it interleave these tasks together? If they
cannot be interleaved because they conflict, how is that handled?

• How does the robot plan for goals that have interdependencies and require collab-
oration?

• If the robot does not think it can perform the tasks needed to achieve some goals,
for reasons such as hardware failures or resource constraints, how does it handle
that? What if later on it changes its mind and believes it can handle the task?

• If the robot plans on doing other things in the future, how does that affect its
decisions now? (e.g. if a certain amount of a resource is needed to do a future
task, will there be enough of that resource available when the task commences?)

• How does the robot plan when working with other robots each with its own goals
as well as shared goals across robots?

• How does the robot deal with incomplete or uncertain information when planning?

• Is the robot planning optimally? As there are often multiple ways to solve a
problem, one way may be better in terms of resource usage (e.g. takes less time,
uses less power).

1.3.3.1 Reactive versus Deliberative Planning

Some autonomous robots have extremely simple planning systems, such as iRobot
Corporation’s Roomba, whose main goal is to obtain clean carpets. It moves about a
room in straight lines and when it hits a wall, it moves in a random direction until it hits
another wall. Sensors underneath the robot measure dirt level of the carpet. If the sensor
detects nothing after a prolonged period of time, the carpet is considered clean. The
planning does not take into consideration what areas have been visited, which places are
likely to have dirt, etc. Even though the Roomba works in a fully autonomous fashion, its
simplistic planning system results in vacuuming times of hours for a single room, versus
the mere minutes it would take a human to do it. Other robots, such as the famous NASA
Mars exploration rovers, Spirit and Opportunity, can do more sophisticated things such
as path planning to avoid obstacles, as well as filtering of sensory input to send back only
the most interesting and relevant telemetry back to Earth (as bandwidth is a limited
resource). The planning system of a robot can be described as lying somewhere in a
continuous spectrum between being reactive or being deliberative (Figure 1.16). Even
though the definition is subjective, reactive systems are those that do not take into
account previous decisions or anticipate into the future what is to be done when making
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their next move, making the decision process very simple. Deliberative systems are those
that try to take into account information about past moves, as well as try to anticipate
what needs to be done in the future. Reactive systems are simpler to implement and
debug, but are limited in the scope of what their autonomy can do. The Roomba is
an excellent example of a reactive system. Likewise, the Mars rovers are comparatively
more deliberative than the Roomba as they put more thought into the way they make
their decisions.

Fig. 1.16 The reactive-deliberative spectrum of robotic planning. (Image recreated from
Arkin (1998))

1.3.4 Learning

Learning is the ability for a robot to reason about past experience (e.g. previous
sensor readings, current progress in achieving goals, etc) when attempting to achieve
goals in order to modify data fusion, reasoning, and planning/response algorithms to
increase the probability of achieving current and future goals. For example, a robot with
a robotic arm may know how to open doors with door knobs. However, if it encounters
a door with a latch, it may not know how to open it. If the robot could somehow
understand that not all doors open in the same way and figure out a way to open the
door, it could learn how to open it.

Learning is a difficult problem. Current techniques for learning typically involve
heavy use of probabilistic methods and are extremely limited in comparison to the learn-
ing abilities of a human being. Learning that is similar to that of humans almost requires
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the robot to have a “a sense of purpose” and an understanding of all the dynamics in
the world and the consequences of all its actions. Perhaps it requires some form of
metacognition and/or self-awareness.

1.3.5 Putting it all Together

Fig. 1.17 The sense-plan-model-act algorithm is implemented as a set of independent
agents communicating information.

A typical high-level software architecture used for robotics autonomy is shown
in Figure 1.17. It provides a graphical form of the control loop algorithm mentioned
at the beginning of Section 1.3. The arrows in the diagram indicate data flows and
each box can be thought of as an independent agent. These agents all run in parallel
and asynchronously send and receive information from the other agents. It is common
place in robotics to implement the software in a similar fashion as it takes advantage
of multiprocessing, is more robust because if an agent fails the other agents continue
running, and the design is more modular making it flexible to swap out agents.

1.4 The Development and Challenges of Mission Planning in Mobile
Robots

Sensors, data fusion, perception, and planning/response are what make up the
essential core autonomy of an autonomous robot. Though learning can improve perfor-
mance of an automous system, it is not necessary to create a useful robot, though the
robot will have limited creativity regarding how it can solve a problem and may give up
sooner than necessary.

The data fusion, perception, and planning/response components of an autonomous
robot’s autonomy tend to be realized in the form of computer software that runs onboard
the robot itself. The development of this software is a problem of not only computer sci-
ence, but of software engineering as well. In general, software complexity and size grows
with increasingly sophisticated robot autonomy. More sophisticated software engineering
techniques must be employed to manage all the complexity.

This complexity has motivated the development of a myriad of software tools,
libraries, frameworks, and application programmer interfaces (APIs) to help develop the
autonomy of the robot. This thesis describes a new software framework called the Mod-
ular Planning Framework and Language (MPFL) that focuses on the planning



15

aspect of autonomy development in mobile robots, particularly autonomous underwa-
ter vehicles (AUVs), even though the concept could be generalized to any autonomous
system. MPFL distinguishes itself from other autonomy frameworks as it looks at the
problem of planning as a programming language. The framework is tied closely to a
special domain-specific programming language for describing planning problems that
inherently provides many interesting features including:

• Strong static and runtime verification mechanisms for mission execution integrity

• A modular framework that allows component reuse across different robots

• Naturally supports the development of heavily deliberative systems

• Provides an elegant way of handling system and planning failures through exception
handling

1.5 Roadmap

Chapter 2 gives some high level background concepts from various disciplines that
inspired the design of MPFL. Chapter 3 gives an overview of MPFL. Chapter 4 describes
MPFL’s programming language: the Mission Specification Language (MSL). Chapter 5
explains how MPFL is utilized and how its works internally. Chapter 6 discusses a proof-
of-concept demonstration system that implements the complete autonomy of a simulated
robot that uses MPFL. Finally, Chapter 7 is an epilogue that provides analysis of the
strengths and weaknesses of MPFL and areas of future research to improve the concept.
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Chapter 2

Background Concepts

This chapter introduces some concepts that were used in implementing MPFL.
Connections are drawn between these concepts and will eventually be referenced in sub-
sequent chapters.

2.1 The Relationship Between Computation and Artificial Intelligence

The kernel of computer science lies in the theory of computation. No statement
summarizes the power and potential of computation more so than the Church-Turing
Thesis that roughly states any effectively calculable function can be computed by a
Turing machine, or one of its [Turing-equivalent] equivalents. An effectively calculable
function is a function that can be represented as a sequence of discrete steps, or in other
words, as an algorithm. A Turing machine is a hypothetical digital computer that
has infinite memory, and [supposedly] can compute any effectively calculable decidable
function using only a finite portion of its memory. A Turing-equivalent computer is a
computer that can compute the same set of functions as a Turing machine (Sipser 2006).
Typical everyday computers, such as a home personal computer, would be considered
Turing-equivalent if they had infinite amounts of memory. However, since any decidable
computation uses a finite, bounded amount of memory, one can assume that if we cannot
run an algorithm today because of memory or compute time constraints, we maybe able
to in the future due to technological advances in computer memory and speed. Even if
we cannot compute in the present day, there maybe suboptimal approximations that are
sufficient.

Even though there is no formal proof for the Church-Turing Thesis, all evidence to
date hints at it being true. Many believe that all processes in our universe are effectively
calculable, even though this a subject of debate. If this somehow turned out to be true,
it would imply (through the Church-Turing Thesis) that our universe may simply just
be a computer program in execution (as depicted by many works of science fiction)1 or
could even be simulated on a computer given sufficient amounts of memory and time. At
the same time, it is an exciting prospect that anything is possible through computation.
This includes being able to create intelligent and sentient beings in our own image as
mere computer algorithms.

Artificial intelligence (or AI ) is the branch of computer science dedicated to
creating such artificial beings. Though the idea of computing the universe may seem far

1Digital physics is the area of physics and cosmology that believes that the universe is de-
scribable as computable data. Pancomputationalism is the belief that the universe is simply a
digital computer in execution.
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out to many, the idea of at least being able to mimic the mind through computation seems
much more plausible. The idea that the mind is a computer has now spread to other
fields such as neuroscience, psychology, physics, philosophy, linguistics, and biology, and
has become a de facto abstraction for reasoning about intelligence. In fact, all of these
fields (including computer science and artificial intelligence) have merged into a single
field called cognitive science dedicated to studying the human brain and intelligence.

2.2 The Relationship Between AI and Autonomy

The focus of this thesis is not so much on AI, but rather on autonomous sys-
tems. A system that is autonomous is an entity that can operate with limited or no
intervention from another entity to achieve a set of goals. For example, automated as-
sembly robots in factories, self-driving cars, autonomous mobile robots (which are the
focus of this thesis), home security alarm systems, automatic thermostats, and even hu-
man beings are autonomous systems. It is not necessary for an autonomous system to
be sentient, intelligent, or even complex. However, as we want more complex autonomy,
we find that the system has to exhibit properties that are held only by intelligent2 be-
ings. Hence, creating autonomous systems can be thought of as an artificial intelligence
problem.

When developing the software and hardware that act as the mind of an au-
tonomous system, one needs to look at various aspects of intelligence that AI researchers
have attempted to model computationally. Key areas that are commonly highlighted in
the AI literature and depicted in Figure 2.1 are:

• Sensing - How does an intelligent entity perceive its environment and how it affects
it?

• Data Fusion - How does an intelligent entity interpret raw sensor data from multiple
sources? How does it merge together information when sensors agree as well as
contradict each other?

• Knowledge Representation - How does an intelligent entity store, relate, modify,
update, and query knowledge to do its tasks?

• Reasoning - Using what is already known to an intelligent entity, how can it infer
or deduce other facts?

• Learning - How can an intelligent entity adjust its behavior without intervention,
factoring in previous experience and knowledge, to handle situations unforeseen to
it?

• Planning and Response - How does an intelligent entity break down complex tasks
into simpler steps to accomplish those tasks, while taking into account other tasks

2The definition of intelligence is controversial in the fields of artificial intelligence and cognitive
science. The thesis purposely does not define this term. The reader is encourage to go with their
intuitive notion of the term.
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Fig. 2.1 Artifacts of Intelligence

that must be done concurrently or in the future, while managing resource alloca-
tion?

Even though to date AI researchers have failed to create strong AI (also known as
general AI ), such as sentient computers that parallel or exceed human intelligence (i.e.
the Singularity), many useful tools that we take for granted in computer science and
mathematics emerged from, were improved by, or were popularized by AI research. These
include expert systems, constraint solvers/automatic theorem provers, natural language
and symbolic processors, fuzzy logic, probabilistic logic, evolutionary computation (e.g.
genetic algorithms, particle swarm optimization), database query engines, and neural
networks (Russell and Norvig 2010).

2.3 The Relationship Between Intelligence, Natural Languages, and
Programming Languages

In linguistics, psychology, anthropology, and sociology, the Sapir-Whorf Hy-
pothesis (also known as the Linguistic Relativity Hypothesis) states that thought
and behavior are a function of language (Kay and Kempton 1984). Essentially it is
saying that a person’s thoughts and behavior are shaped by the expressive constructs
of the language in which they articulate said thoughts (the level to which this is true
remains controversial). For example, the Pirahã tribe of South America has no numeric
system, or even words for quantification such as each, many, some, etc. There was never
any need for any sort of quantification system in that tribe, hence it never evolved into
the language (Colapinto 2007; von Bredow 2006). At the same time, that tribe has
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not and will likely not discover the concepts and tools that come with more advanced
mathematics as it is difficult to reason about or express those concepts without some
sort of language (e.g. equations and variables). The extent to which the Sapir-Whorf
Hypothesis is true is a highly controversial topic along researchers. However, there is
a general consensus that language and thought are indeed intertwined; the controversy
lies in the extent to which language affects thought (Carruthers 2002). Another example
supporting the Sapir-Whorf Hypothesis is that multiple studies have shown people who
know more than one language have certain advantages in terms of intelligence such as
better problem solving abilities and longer information retention in the face of neurolog-
ical diseases such as Alzheimers (Bialystok 2010, 2007; Craik et al. 2010). Psychologists
suspect this is the case because people familiar with more than one language are able
to reason about the same concepts from multiple perspectives as well as have redundant
neural encodings of information sets.

The Sapir-Whorf Hypothesis applies to programming languages as well. Kenneth
Iverson indirectly asserted this in his Turing Lecture on the importance of mathematical
notation in reasoning about computation (Iverson 1980). The notion is quite obvious
to a person that has programmed in multiple programming language paradigms. Take
for example a computer program that takes as input an algebraic expression as a string
and then outputs a reduced expression. To a programmer familiar with logic-based
programming languages (such as Prolog), such a task is trivial; they would encode the
reduction rules of algebra as logical predicates, and they would be done. The same
problem in an imperative language such as C would likely baffle even the most adept
imperative programmers; a parser would have to be created to break the expression into
smaller subexpressions recursively, then each subexpression would have to be matched
against the known reduction rules and evaluated, and finally the result of each eval-
uated subexpression would have to be passed up during the recursive unwind to the
larger expression it constitutes to complete that expression’s evaluation. Even if the
programmer knew how to solve the problem, the amount of code it would take would
be significantly more than that of a logic-based language. Though the Church-Turing
Thesis implies that all Turing-equivalent models of computation are equivalent in what
they can compute, it says nothing about how easy it is to express an algorithm in one
type of computational model versus another. That is where the Sapir-Whorf Hypothesis
comes into play; the reason why the example above favors the logic-based language is be-
cause the computational model of logic-based languages maps naturally to the problem
of algebraic expression reduction, whereas the imperative computational model does not.
Like natural languages, it is common wisdom amongst programmers that learning more
programming languages, particularly those in a new programming language paradigm,
broadens one’s programming abilities. It allows one to tackle a wider variety of problems
more quickly. This is because it gives one multiple vantage points from which to view a
concept, just as those who can speak multiple natural languages.

2.4 The Relationship Between AI and Programming Languages

There is a rich history and relationship between artificial intelligence and pro-
gramming languages. In the early days of AI, a common approach was to look at
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intelligence as a symbolic processing problem. The concept came from Allen Newell
and Herbert Simon’s famous Physical Symbol System Hypothesis which theorized
that a physical symbol system (i.e. a closed formal system) is all that is really nec-
essary to create any type of intelligent agent (Newell and Simon 1976). What Newell
and Simon mean is that thinking is really just symbolic manipulation where thoughts
and actions can be encoded as a closed system of symbols and rules to manipulate said
symbols (where rules themselves can be encoded as symbols). AI researchers refer to
this symbolic approach to AI as classical AI, Good Old-Fashioned AI or simply
GOFAI (pronounced “go-fy”) (Russell and Norvig 2010). This is in contrast to other
paradigms such as the non-symbolic connectionist approach. Connectionists believe
that intelligence can be modelled from a set of interconnected simple computational units
that result in an emergent intelligence (e.g. neural networks). John McCarthy, another
major AI pioneer and the one who first coined the term artificial intelligence, was also
a believer in the symbolic approach. This is one of the main reasons why he developed
the famous programming language, Lisp, which is designed for list processing. Symbolic
expressions are just lists of symbols, hence Lisp is an excellent language for doing symbol
processing. Prolog, a logic-based language built years later, also was used heavily in AI
applications as it allowed the creation of physical symbol systems in the form of logic
rules (logic systems are an example of a physical symbol system). Lisp, its descendant
Scheme, and Prolog were among the most dominant languages for implementing GOFAI
algorithms for many years and are among the most common languages used to teach AI
in universities today.

2.4.1 Symbol Processing, Languages, and Semantics

The notion of physical symbol systems is another way of looking at computation.
In a sense, the physical symbol system hypothesis is restating the Church-Turing Thesis
in that any physical process can be encoded as an algorithm that is computable by a
Turing machine. The idea of symbol processing can be seen as creating a language inter-
preter, or in other words generating a programming language. Every symbolic expression
can be manipulated based on a rule that is pattern matched against the expression’s
symbolic structure, and result in a new output expression. The rules encapsulate the
meaning of each symbolic expression, and define what are known as the semantics of
a programming language. Essentially, creating a programming language is analogous to
creating a physical symbol system, such as an intelligent system.

2.4.2 Knowledge Representation as Types

As stated earlier, one of the challenging areas of artificial intelligence is knowledge
representation; how does one represent, organize, access, and modify knowledge in a
computer? One way to approach this problem is reasoning about knowledge in terms
of a programming language’s type system. Virtually every programming language
has a notion of types. Types are classifiers for values/objects/expressions encountered
in the language which restrict the operations that can be performed on or by those
values/objects/expressions. A type system is a closed formal system (i.e. a physical
symbol system) that defines all of those restrictions. An easier way to think about it
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is looking at types in our own world. When we look at objects, we distinguish them
by their properties. For example, when we see a chair, we assume certain things about
it; it has a seat for us to sit on, and some mechanism to support it (such as four legs),
and possibly a back to it. We can sit on it, stand on it, place other objects on it. We
cannot use it to drive to work or listen to music; such operations do not make sense. In
programming languages, types are valuable because they restrict invalid operations on
values (Pierce 2002). They also allow the user to reason about their program more easily
as types give structure and meaning to data, just as in the real world our mind ascribes
types to give objects structure and meaning. Some of the tools that type systems provide
which could be useful in implementing a knowledge representation scheme are listed in
the following subsections.

2.4.2.1 Composite types and abstract data types

Almost every programming language has the ability for users to define their own
types in the form of composite types. These types are typically constructed as a
composition of the basic, or primitive types, provided by the language. Some languages
take this a step further and allow the user to define a set of operations that can be
performed by/on values of that type. These types are called abstract data types
(Sethi 1996).

2.4.2.2 Hierarchical Knowledge Representation Through Subtyping

Many type systems allow the notion of subtyping, where data can be considered
to have more than one type through a type hierarchy (Pierce 2002). For example,
consider our real world example of the type chair. Each of us probably imagines a
different image when we think of a chair. Some may think of an office chair which
swivels and sits on wheels. Others may think of a lawn chair, a living room chair, or a
dining chair. Languages that support subtyping allow programmers to define a type such
as lawn chair as a subtype of chair. This means a lawn chair has all the properties of a
general chair (along with any operations if chair is an abstract data type), as well as any
additional properties unique to a lawn chair (e.g. being waterproof). What makes this
interesting is that in the course of the program, wherever a chair is expected, a value
of type lawn chair can be used because a lawn chair is a chair. However, a chair is not
necessarily a lawn chair. Subtyping allows users to define knowledge in a hierarchical
fashion, which turns out to be a valuable abstraction as cognitive scientists believe that
the mind stores and relates many concepts in this manner (Minsky 1986).

2.4.2.3 Reasoning Through Type Inferencing

The previously mentioned aspects of intelligence, reasoning and knowledge repre-
sentation are not disjoint concepts. One of the interesting features of some type systems
is type inferencing. With type inferencing, a user does not have to explicitly classify
data with a type. Rather the language interpreter/compiler can infer the type associated
with a value based on how the value is used (Sethi 1996; Pierce 2002). For example, if
someone was talking about baseball and said “He hit it way out of the park.”, one can
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infer it refers to a baseball. Programming languages with type inferencing work in a
similar way. For example, in the language Standard ML which has type inferencing, we
can define a function addthree that takes two values, and returns their sum plus 3:

fun addthree(a, b) = a + b + 3

The compiler infers that a, b, and the returned value of addthree must have type
int because of the “+ 3” at the end of the expression. Standard ML does not allow
arithmetic addition between different types of numbers and because the ‘3’ is an integer
the other operands must be integers. The way Standard ML is able to reason about the
structure of data (i.e. knowledge) through inferencing makes it a potentially useful way
to implement aspects of reasoning in an intelligent system.

2.4.3 Hierarchical Error Handling through Exceptions

Most computer programs of sufficient complexity require the programmer to han-
dle errors or unforeseen situations. For example, in most languages, attempting to divide
a number by zero will cause an error that may result in program termination. Some lan-
guages do not have any explicit or sophisticated form of error handling. For example,
in C, a typical approach to seeing if a function caused any errors during its invocation
is done by either checking the return value of the function or observing a global vari-
able that is manipulated via a side-effect (e.g. errno in C) caused by the function that
contains the latest error code. A more interesting and structured approach to error han-
dling that is found in many high-level languages is known as exception handling (Sethi
1996). Exception handling is a technique that separates the normal code from the error
handling code. Whenever the programmer wants to indicate an error, they can raise
(also called throw) an exception. Exceptions are entities in the language that represent
an exceptional situation, such as an error. Programmers can indicate in the language
which blocks of code they want to handle exceptions for by associating an exception
handler with them. When an exception is raised, the program stops its normal path of
execution and jumps to the nearest handler defined within the scope of the current call
stack. Exceptions are typically values in a language, so they have associated with them
data and/or a type. Not all handlers necessarily handle all errors, in which case the
type information is used to match the nearest handler for that type within scope. If no
handlers are found, the program will crash with some sort of unhandled exception error.
What is interesting about exception handling is that it creates a hierarchical way to
deal with errors. As an analogy, if you have a problem with a home appliance, you may
call the support line of the company that manufactures the appliance. If the customer
service representative cannot help you, they may contact their supervisor and pass the
problem up to them to handle. If they cannot help you, the problem will keep rippling
up, perhaps to the owner of the company. If nobody helps you, your problem is not
resolved like an unhandled exception. In a computer program, handling an error at the
place it occurs may not be the best place to do it as somebody higher up in the call
stack would have a better context of what to do.
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2.4.4 The Power of Abstraction - Sapir-Whorf Revisited

When John McCarthy created Lisp, he did so because there was something lacking
in then existing languages like FORTRAN. FORTRAN did not have the tools needed
to express certain types of computations; in this case it lacked facilities for symbolic
processing. Not having tools to deal with symbolic processing makes it difficult to create
complex symbolic processors. This relates back to the Sapir-Whorf Hypothesis which
argues that thought is a function of language. There are thousands of programming
languages in existence; each designed to look at computational problems from a particular
point of view. Some problems like the algebraic expression reduction example mentioned
in Section 2.3 is trivial in Prolog versus C, whereas some problems in C are trivial
compared to Prolog. Looking at computational problems as programming languages
gives one the ability to create natural abstractions to express problems for a particular
problem domain.

2.5 The Relationship Between AI and Domain-Specificity

In the early days of AI, researchers who took the symbolic approach to AI assumed
they could implement intelligence as a single, unified formal system. One of the famous
attempts at doing this was the General Problem Solver (GPS) program created by Newell
and Simon (Newell et al. 1959). GPS allowed a user to specify any problem in any
domain as a combination of a start state, state transformation rules, and goal states.
GPS attempts to then create a path, using means-ends analysis, from the start state to
the goal state via the state transformation rules. In other words, GPS builds a proof
tree by applying rules sequentially until it can conclude the goal state can be reached.
The problems with this concept were that 1) it was difficult to come up with all the rules
for a particular problem and more importantly 2) as soon as there were a significant
number of rules, the performance worsened. The reason the performance went down was
because of a phenomenon known as rule explosion that occurs in automated provers.
GPS performs a depth-first search when constructing its proof. It has to examine every
sequence of transformations from the start state that may lead to the goal state. If a
path proves to be unfruitful, the prover has to backtrack and explore another path. The
problem is that as more rules are added, the number of paths increases significantly. This
increase is known as rule explosion. Rule explosion is an instance of the search problem
in artificial intelligence: how does one efficiently examine the problem space to find a
solution? For example, if a person wants to infer whether it is going to rain outside, they
are going to check the sky to see if it is cloudy. However, another rule that person may
have in their head that has the same antecedents such as if the sky is cloudy, it’s a bad
day to go tanning would be completely irrelevant. GPS would not distinguish between if
cloudy, it’s going to rain and if cloudy, it’s bad to go tanning as it does not distinguish
between the relevance of rules and therefore does inefficient search. Examples like GPS
have led many AI researchers to believe that the fundamental notion of implementing
intelligence in a single, closed system is virtually impossible primarily because those
systems cannot inherently do efficient searches. However, many still believe that the



24

mind is implemented using a limited set of base constructs (i.e. a kernel) from which all
human cognitive abilities emerge.

However, cognitive science has found evidence that the mind is a set of domain-
specific entities interacting with each other. In other words, different portions of the brain
are dedicated to doing very specific tasks. For example, in recent years neuroscientists
isolated certain areas of the brain with neuron patches dedicated purely to facial recog-
nition (Buchen 2008). If these patches were manipulated, we would not recognize people
or perhaps recognize them as someone else. Evolutionary psychologists believe that ev-
erything the mind is stems from our basic instincts: to survive and reproduce through
the process of natural selection and evolution. Evolutionary psychologists predominantly
believe the human mind is a series of domain-specific entities dedicated to helping us
simply survive and reproduce and were formed through the process of natural selection
(Cosmides and Tooby 1994; Cosmides and Tooby). The idea of domain-specificity has
spread to AI as well, mainly through the study of agents. Agents are individual enti-
ties (usually in the form of a computer program) that are responsible for handling some
task, typically isolated to a narrow domain, on behalf of a user (Russell and Norvig
2010; Minsky 1986). Agents can talk to other agents to provide or receive services, and
may have the power to take actions autonomously. One of the advantages of isolating
problems to narrow domains is that the problem is much easier to reason about. Even
using a formal system like GPS in a domain-specific situation may not be a bad idea as
1) the rule set is reasonably small enough to avoid rule explosion and 2) the domain is
small enough to describe as a rule-based system. In general, by breaking up AI problems
into smaller, domain-specific problems (such as agents), it is easier to reason about and
create intelligent entities.

2.6 The Relationship Between AI and Domain-Specific Programming
Languages

The ideas of domain-specificity and programming languages can be combined
together to create a powerful approach to solving AI problems. Most mainstream pro-
gramming languages can be classified as being general-purpose programming languages.
These languages are designed to solve any general problem. Languages such as Ada,
FORTRAN, C, C++, Java, Smalltalk, StandardML, Ruby, Perl, PHP, Python, and
OCaml are classified as general-purpose languages. This is in contrast to domain-
specific programming languages or DSPLs which are meant to solve a problem
for a particular problem domain such as Standard Query Language (SQL), Make, VH-
SIC Hardware Specification Language (VHDL), A Mathematical Programming Language
(AMPL), regular expressions, LaTeX, and Unix Shell Scripts (e.g. Bash, Tsh). These
languages are not meant to solve every problem, but solve problems in their domain
well, even though they may be Turing-equivalent. Domain-specific languages are an
advantageous approach to computation problems because they:

• Provide language constructs that naturally fit to a domain and its experts in order to
make it easier to write programs for that domain. For example, researchers at MIT
designed a domain-specific programming language for microfluidic chips that could
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be programmed to perform chemical experiments for biology applications involving
the mixing of chemicals within the chip (Thies et al. 2008). The domain-specific
language is used to describe the experiment to be performed: which chemicals to
mix, which quantities and concentrations to use, and specifying which intermediate
products should be used as reagents in subsequent reactions. The compiler for the
language then generates a set of commands for a special microfluidic chip “printer”
that in turn fabricates a disposable, single-use microfluidic chip. The chip is then
connected to a special interface into which the chip inputs valves are connected
to a supply of reactants and the experiment commences. Output chambers fill
with final products as they are formed. The syntax of the language is tailored
to that of biologists so that it is easier for them to build and reason about their
experiments. A simple syntax that is specific to their domain does not require
them to understand a more complex general-purpose language.

• Provides verification at the domain-level to help better increase operational correct-
ness and reduce development costs. One form of this could be a domain-specific
type system which would likely be able to do more rigorous checking of values in
the language that could only be known at the domain level. For example, in the
future, a hypothetical domain-specific programming language that instructs a hy-
pothetical robot surgeon how to perform surgery may be able to find mistakes that
a surgeon might have forget such as Anesthetic X cannot be used on the patient
because they have an allergy to it according to their patient history. Mistakes like
this could be caught by the interpreter or compiler for the language.

• Increases reuse and better system-to-system interfacing through simplicity. When
a language is both expressive and simple to use, it will catch on faster and be more
timeless than its analog in the form of a library-based application programmer
interface. As the language stays relatively static, the implementation can change
freely as long as it complies with the syntax and semantics of that language. Ex-
amples of languages that exemplify simplicity, elegance, and notable flexibility and
ease in interfacing include:

– UNIX Shell Script - A typical UNIX shell scripting language, such as Bash, is
a language that is designed to control the operating system and the programs
it runs within an interpreter for that scripting language (e.g. the Bash shell
is the interpreter for the Bash scripting language). UNIX shell scripts have
a reputation to be able to do incredibly powerful things with very simple
programs and have been in mainstream computing for over 30 years.

– Standard Query Language (SQL) - Virtually every website on the Internet
that has a database backend uses a relational database management system or
RDBMS such as MySQL, Oracle, IBM DB/2, PostgreSQL or Microsoft SQL
Server. RDBMSs are databases that store and query data based on a formal
database model known as the relational model. SQL is a language designed
for performing data queries in RDMBSs by incorporating the relational model
in its underlying computational framework. Virtually every RDBMS utilizes
or can utilize SQL as the user interface to query data. The language allows
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a developer to communicate with any database, regardless of how it is imple-
mented, via an extremely simple language. Since 1979, relational databases
have dominated the database world and the SQL domain-specific language
takes a great role in that achievement.

• Decoupling from a General-Purpose Programming Language. A domain-specific
language does not need to be tied to a specific programming language. For example,
the most common way to talk to an SQL-based RDBMS from application code is
by forming SQL statements as strings and sending them to the database’s query
engine via a database-provided API. The database then processes the query using
the SQL interpreter/compiler within the query engine and returns the result.

2.6.1 Libraries versus Domain-Specific Languages

The purpose of domain-specific languages is to provide an interface to a user
to solve some problem in a domain. However, most domain-specific interfaces do not
come in the form of their own language, but rather more commonly come in the form of
libraries that have an application developer interface (API) defined as constructs
native and natural feeling to the language (such as a collection of classes in an object-
oriented language, or a collection of procedures for procedural languages). Libraries
provide a uniform and natural way for developers to utilize domain-specific tools in
their programs that fits in with their thinking when developing applications. Even
though libraries tend to be bound to a specific language, it is now common in modern
software development to create bindings for popular libraries across many languages,
making them even more accessible. Even without bindings, most languages provide a
means to utilize code from other programming languages. It is also typically cheaper to
develop software libraries versus languages as 1) creating programming languages is not
a skill typical to software developers, 2) developing a language that really encapsulates
the domain well is extremely difficult and 3) it is time consuming and burdensome to
implement features of a language, such as its type system, properly. When attempting
to build interfaces for a domain, deciding when to use a domain-specific language versus
a library is a subjective choice based on what solution fits the problem best (Heering
and Mernik 2002; Mernik et al. 2005). The following are some criteria from Mernik et al.
(2005) that would qualify a domain-specific language as a better approach to solving a
problem versus a software library:

• A relatively simple language can tightly encapsulate the essential aspects of the
domain.

• The primary users will be people that are not comfortable with learning a general-
purpose programming language to perform their desired tasks. The users are likely
experts in the domain the DSPL is designed for.

• Higher costs of developing a language instead of a library must be able to return
investment by making it easier, cheaper, and faster to build and maintain solutions
for a domain’s problems.
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2.6.2 Looking at Software Development as a Programming Language Design
Problem

Looking at problems as the implementation of a programming language may result
in better quality software. Programming language development is a rigorous process that
requires everything to be specified (either formally or informally) to guarantee that what
a programmer types in actually happens based on the semantics of the language (Mawu
et al. 2002). The language developer is required to define a syntax for the language as
well as static and runtime semantics. If these are not defined, then a programmer can-
not write a program in the language, either because it’s impossible or they cannot define
what an expression in the language does. In other words, developing a programming
language forces the language developer to think very hard about what the operational
meaning of every construct in their language is. In the software development world, it
is common when developing software (such as libraries) to ignore certain cases that the
application may come across either out of time constraint, laziness, or oversight. It is
common in the development world to see incomplete or frequently-changing APIs. These
ignored cases are what cause a vast portion of software bugs. Tools to aid in developing
software such as flow charts, block diagrams and the graphical Unified Modeling Lan-
guage (UML) provide vague specifications of how some software application is meant to
operate. The tools used by programming language developers have no such ambiguity.
The grammar (i.e. specification of the syntax) and the semantics of a programming
language can be formally specified in mathematical notation. Any person familiar with
those mathematical formalisms can then create an implementation of the language in
the form of an interpreter or compiler that behaves exactly as the specification says it
should. In contrast someone trying to describe the behavior of simple module of a pro-
gram in UML could create dozens of UML diagrams, but still end up with an ambiguous
specification.

2.7 The Relationship between Intelligence, Planning, and Scheduling

The specific focus of this thesis is on implementing a framework that focuses
around planning, mentioned briefly in Chapter 1. Planning is the process of creating
the steps necessary to achieve a set of goals. Goals are end states the autonomous
system would like to be in by affecting itself and its surrounding world. For example the
goal of being at some position X is achieved when the autonomous system is actually
located at position X. The resulting series of steps required by the autonomous system
in order to achieve its goals are called a schedule. The autonomous system can break up
a goal into several subgoals that may not be disjoint from each other in order to make
it easier to develop its final schedule. For example, when you wake up each morning,
you have a set of goals at hand that you would like to achieve. On a typical day, you
wake up, decide you need to get ready for work, eat breakfast, then go to work, and
eventually come home. You will think about what steps need to be taken to accomplish
these goals, focusing more closely on the near term goals (like getting ready) rather than
the long ones (like what to do when you get home), but keeping the long term ones in
the back of your mind. You will also take into account your time requirements, if you
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have to be at work by 9 am, you attempt to schedule the getting ready, breakfast, and
drive to work parts of your schedule to meet that requirements. If you’re in a hurry,
you may have to skip somethings, like eating breakfast which may have lower priority,
than say, taking a shower. You might find that even though you have planned things,
the situation around you changes as the environment is dynamic, so you have to replan,
and modify your schedule. For example, you may find your car does not start, so you
need to get an alternate ride, which causes you to be late for work. Being late for work
may alter your others plans as well, affecting the schedule you have laid out. You will
then again have to replan and rebuild your schedule.

Planning is an important part of intelligence. It allows human beings to make
decisions with care in order to maximize chances of successfully achieving goals. Any
interesting autonomous system needs to have some sort of mechanism to plan, whether
it is reactive, deliberative, or somewhere in between.

2.8 Planning as Processes

In English, the word process refers to a series of actions/occurrences that result
in some change and/or development in some environment. We use the term process to
describe how physical events play through their execution. The way steel is manufac-
tured, how rocks weather, how software is developed, why and how it rains, etc, can all
be described as processes. In a sense, a process is similar to the notion of an algorithm.

2.8.1 Processes and Operating Systems

The term process has special meaning in computing, particular in the realm of
operating systems. In a typical multitasking computer operating system, there are two
important concepts: programs and processes. A computer program typically comes
in the form of a binary file containing machine-level instructions that are executed by
the computer. Alternatively it may come in the form of files containing source code or
bytecode that is interpreted by a runtime interpreter. A process is an operating system
abstraction that represents a running instance of a particular program and its associated
execution context. This context comes in the form of a data structure, typically denoted
as the process control block (PCB), and contains data used by both the running pro-
gram and the operating system (Silberschatz et al. 2002). The PCB contains information
about the process such as the process identifier, data stack, page table, register contents,
stack pointer and program counter. When a user runs a program, the OS creates a new
process by creating a new PCB and putting it on the OS’ scheduler queue.

The purpose of having processes is two-fold. Having a context associated with
every running program allows the creation of multiple running instances of the same
program. One can run five instances of the same web browser; each is unique through
the contents of its PCB. The other purpose is to make running programs manipulatable
objects. The PCB captures the state of the entire machine for a running program, es-
sentially providing a “virtual machine environment” for that program. In a multitasking
operating system, processes do not realize they are sharing resources, such as the proces-
sor, with other processes. For example, in a single processor system, only one program
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can execute at a time on the processor. The OS allows many programs to run at the
same time by utilizing timesharing. When a process has run for its given timeslice, it
is put to sleep in order to allow another process to be revived and run. In order for
this to work, the OS saves the machine state for the process that is to be put to sleep
within its PCB. The OS then sets the real machine state (e.g. register contents, program
counter, virtual-to-physical page mappings) to that contained within the incoming pro-
cess’ last saved PCB. The revived process continues running where it left off previously,
not realizing that it was put to sleep and revived.

2.8.2 Modeling Planning in Terms of Processes

When developing planning systems, it can be helpful to think of concepts in
terms of processes in the operating system sense. There are several ways to do this.
For example, a goal can be thought of as a computer program, and an instance of an
attempt to achieve that goal can be thought of as a process associated with that goal. If
you have the goal of going to several waypoints, you can break each waypoint into its own
subgoal. A “program” designed to solve the get to waypoint problem can then be reused
by creating several instances of that program (i.e. each represented as a process). The
output of each process could represent part of the final schedule of what the vehicle is to
do in order to achieve its goals. The input represents the goal specification along with
the relevant pieces of perception information needed to solve the problem. Another way
of looking at it is thinking of programs as individual planning systems, where a running
instance of that program waits for goals to be input and outputs schedules to solve the
problems for those goals. Multiple types and instances of these planning systems could
communicate with each other to develop a final, cohesive schedule.3

The advantage in thinking about planning in terms of processes is the same as the
reason why multitasking operating systems reason about programs instances as processes:
a process is a manipulatable and inspectable entity that can exist in parallel with other
processes:

• The operating system can easily perform concurrent execution of several programs,
even if its simulated through timesharing.

• The operating system can provide certain degrees of validation, such as making
sure processes do not violate their address space or perform invalid operations.

• The operating system optimally schedules usage of limited system resources such
as memory and processor time.

• The operating system can provide a uniform and safe interface for processes to
access system features through standard libraries and system calls.

• The operating system can reason about concurrency more easily as each process
encapsulates an isolated system.

3This concept is an example of a multi-agent system. Agents were mentioned briefly earlier
and represent a popular approach to developing intelligent systems.
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If a planning system is thought of as an operating system that thinks of goal
achievement attempts as processes, the planning system can leverage these advantages.
The planning system can validate, to a certain extent, each goal achievement attempt,
depending on the richness of the content of the PCB-like context associated with that
attempt. It can make sure goals do not step on each other, provides a uniform interface to
reach perception information, validate schedules, error handling, etc. Many goal attempt
instances can be created from the same goal, reducing the amount of code needed.

2.8.3 Processes and Programming Language Semantics

Most mainstream languages encourage sequential, rather than concurrent, think-
ing — particularly imperative languages. This is one of the reasons why many pro-
grammers have difficulty implementing multi-threaded applications: the Sapir-Whorf
Hypothesis bites them as their language does not naturally incorporate concurrency into
its computational model and style.

One of the things that make it difficult to add constructs into a language for
concurrency is that the semantic models people use are inherently sequential. For exam-
ple, a popular type of semantics is operational semantics. This semantics describes
how expressions are evaluated in a language in a sequential manner. In pure functional
languages, any subexpression in an expression can be evaluated in any order4, meaning
all the subexpressions could be evaluated in parallel, but is not an inherent requirement
of the computational model. With certain types of operational semantics, such as big-
step operational semantics, you could imply that several subexpressions can be evaluated
concurrently, but there is no explicit way of doing this.

Several types of mathematical models have been created for modeling concurrent
systems, including programming languages with constructs for concurrent computation.
Examples include the Actor model and several process calculi also known as process
algebras (Baeten 2005). Process calculi are interesting in this context because semantics
are expressed in terms of processes and the communications and relationships (such as
sequential versus parallel execution) between those processes.

2.9 Segue: The Big Picture

This chapter has described several concepts; particularly intelligence, language,
computation, domain-specificity, and autonomy. What makes these concepts important
in this thesis is how they molded the thinking process in designing MPFL. The next
chapter will describe what MPFL really is and how combining many of these concepts
together can provide a powerful way to develop autonomous robots with sophisticated
planning capabilities.

4This is one of the consequences of the Church-Rosser Theorem.
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Chapter 3

Overview of the

Modular Planning Language and Framework

This chapter gives a high level overview of the central topic of this thesis, the
Modular Planning Language and Framework.

3.1 Redundancies in Autonomy Development

Developing sophisticated autonomy software for a robot is a very difficult and ex-
pensive task. One snag is that it is common practice for developers to create customized
autonomy software for each unique robot, its particular payload, and its intended pur-
pose. One cannot take the autonomy software that runs on mobile robot A and put it on
a completely different mobile robot B in a transparent manner, and expect B to behave
like A (or even to work at all). This is because B may have completely different sensors,
propulsion system, onboard computer, and/or payload from A.

To solve this problem, developers of autonomy development frameworks try to
create software abstractions that create a unified interface across multiple vehicles so
software can be reused. For example, rather than worry about the details of how the
drive system of a mobile robot works, one possible abstraction is to create an interface
that allows the user to control the heading and speed of the robot, perhaps in the form
of a software library. The developer of the drive system would be expected to provide
the underlying implementation that maps to this common interface. If this interface is
available across several different types of robots, higher level autonomy layers that utilize
the interface do not need to be changed and can be ported transparently across to other
robots. The concept is similar to the idea of system libraries and drivers in operating
systems. The operating system defines high-level abstractions for the various types of
devices that are expected to be used on the computer (e.g. mouse, video card). Hardware
developers are expected to write drivers that match the interface defined by the operating
system. Application developers can then utilize the device through the abstraction in
the form of a standardized API , such as sockets for network communication and file I/O
for non-volatile data storage.

Creating common abstractions is more difficult in robotics than with operating
systems. This is because robots are so varied in their design and application. Also un-
like computer components that are highly standardized (e.g. Intel x86 ISA, USB, PCI,
SCSI, VGA, Ethernet, etc), robotic hardware has not reached the same level of com-
moditization. However, on the other hand there is significant commonality across robots
particularly when one focuses on a specific class of robots. For example, there is a large
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amount of redundancy in the area of autonomous underwater vehicles (AUVs)1. Even
though AUVs differ greatly in design, payload configurations, and their applications,
their primitive functions are essentially the same: move around, sense things (primarily
with sonar), operate various onboard payloads, deploy things, and collect things. There
is even overlap with higher-level functionality. For example, it is typical to use AUVs
to search for and/or monitor objects of interest. Take for instance an undersea warfare
application where an AUV is searching for enemy submarines versus a marine biology
experiment that is tracking whale migration patterns. Both will likely use similar tech-
niques to detect, classify, and track those objects, whether it be a whale or an enemy
sub2. Another example is bottom floor mapping where an AUV is used to create a
detailed map of the ocean floor. In undersea warfare applications, this can be used to
give manned submarines detailed navigational information so that they do not collide
with the ocean floor, or perhaps to find more covert routes to traverse. In an energy
exploration application, bottom mapping is used to look for potential places to drill for
oil.

3.2 Overview of the Modular Planning Framework and Language

The Modular Planning Framework and Language (MPFL) is yet another
attempt to create a tool to address the redundancy in the area of autonomous robot
mission planning software. MPFL is a software framework that allows one to develop
sophisticated, deliberative planning capabilities for an autonomous mobile robot in a
straightforward, guided manner while providing guarantees regarding the operational
correctness of the robot. MPFL not only gives a framework for control software develop-
ers to build robot autonomy, but it has explicit focus on component reuse. For example,
if somebody wants to create a component for executing a search behavior in some au-
tonomous robot X, that component should have the ability to be reused transparently in
another autonomous robot Y, giving Y the ability to perform that search behavior. A
robot that utilizes MPFL can then be controlled via a special high-level, domain-specific
programming language used to specify the goals, operating constraints, and error han-
dling routines for the robot. This domain-specific programming language is known as
the MPFL Mission Specification Language (MSL) and is the foundation of the
entire framework.

3.2.1 Planning is to Schedules as Compiling is to Machine Code

The MSL is what makes MPFL powerful and unique. MPFL is a planning system
embodied in the form of a compiler for a programming language (the MSL). Utilizing an
artificial language to control the robot brings with it many of the advantages of domain-
specific programming languages mentioned in the previous chapter, including strong
domain-level verification and error handling mechanisms, an intuitive and natural way

1AUVs are a subset of unmanned underwater vehicles (UUVs), which can also include non-
autonomous vehicles primarily remotely-operated underwater vehicles (ROVs)

2In the example of a whale versus a submarine, both the whale and submarine emit a unique
sound signature that can be used to track them with passive sonar.
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to control the vehicle, decoupling from a specific general purpose programming language,
and a formal operational specification. MPFL’s design was influenced by thinking of
robotic planning as the compilation of code written in a high-level language (the MSL)
to a lower-level representation. Compilers for a high-level general purpose programming
languages (such as C or Java) typically compile to machine code for a particular machine
instruction set architecture (ISA)3. In contrast, MPFL translates a description of the
mission specified by the user in the MSL into a set of schedules (Figure 3.1). In
MPFL, a schedule is simply a table of fine-grained, timestamped commands intended for
a particular vehicle actuator or subsystem (e.g. sensors, drive system) (Figure 3.2). If
the robot follows the schedules, the result will be what the user specified in their MSL
program.

Fig. 3.1 High level view of MPFL.

Fig. 3.2 A typical MPFL schedule.

Unlike typical compilers which are standalone applications, MPFL comes in the
form of a software library where the compiler is invoked from an application that links
against the library. An application which utilizes MPFL is referred to as an MPFL
client application or simply client. The client is the glue between MPFL and the
other components of the robot’s autonomy software. The client is intended to run phys-
ically onboard the robot itself but may also run on a remote computer communicating
planning data with the robot via a network link if onboard processing resources are not

3Languages that compile to an intermediate representation (e.g. Java bytecode) that is to be
processed by a virtual machine (i.e. runtime interpreter) are also considered compiled.
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sufficient. The client may encompass all the autonomy of the vehicle or maybe one of
many operating system processes running onboard the vehicle that constitute the whole
autonomy software stack. Within the client, the user initializes the MPFL framework
via an API call passing the name of a single source file containing their mission descrip-
tion written in the MSL. MPFL then parses the specification while performing static
checks (e.g. type checking, enforcing scoping rules). If successful, the MPFL compil-
er/runtime (also can be referred to as the MPFL compiler or the MPFL runtime)
is loaded into memory which stays resident until the client application has ended. The
user can then ask MPFL to compile the mission specification code into a set of schedules.
The schedules that are returned by MPFL to the client can then be used to control the
vehicle. If the user follows the schedules carefully, the mission that was specified in the
MSL can be accomplished.

What makes MPFL different from a normal compiler is that the job is not com-
plete after a single compilation. The environment of robots is constantly changing and
information the robot has can be erroneous or incomplete requiring replanning as newer
and more complete information is acquired. For example, if a robot is asked to go to
some waypoint within some time constraint, it may initially think the task can be done.
However, halfway to the point the robot’s sensors may pick up an obstacle requiring
replanning so that the robot can move around the object. In MPFL, one can perform
replanning simply by reinvoking the compiler from within the client periodically. The
MPFL compiler/runtime is stateful so rescheduling takes into account partially and fully
completed goals. The control software developer writing the MPFL client can choose to
invoke the compiler as needed depending on their requirements.

3.2.2 Expressiveness of the Mission Specification Language

What makes MPFL unique is the MSL. The MSL is a highly declarative language
where one can specify problems that seem really difficult but can be solved in a straight-
forward manner by MPFL. For example, with the MSL one can specify a seemingly
complicated mission such as the following:

I have three physical regions A, B, and C. A and B are defined as a cubic region whereas
C is defined as a cylinder. I want the robot to search all three regions for objects of
interest while in parallel reporting what they find to base at least once a minute. The
robot can perform A and B in any order, but can only search C after finishing the former
two. After searching all three areas, the robot needs to return to one of several potential
pickup points, which one does not matter but the robot must get there before noon the
day after tomorrow and must not arrive at the pickup point before midnight of the
current day. In addition, region C must be searched before 8 pm tonight.

One can specify this mission in the MSL quite easily and MPFL will be able to
develop a set of schedules to solve it. In fact, it does not matter how complicated the
mission is, MPFL will try to solve it without violating constraints. In the event the task
is impossible or tasks conflict, MPFL provides constructs to handle the situation both
within the framework and within the MSL. In addition to being expressive, the MSL
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like other programming languages has a notion of types as well as exception handling.
These features help users create specifications that are both clear and correct.

3.2.3 Customization and Reusability Via Plugins

The core MPFL library is not a complete out-of-the-box solution for planning by
itself. To use MPFL, developers must build or acquire prebuilt plugin modules known as
planners that define and implement some of the primitive scheduling capabilities of the
robot. Planners are plugins for the compiler/runtime (Figure 3.3) that are responsible
for solving a set of problems of a specific type, and generating a schedule to solve all
those problems4. The planners are not provided with the compiler/runtime, but are
intended to be created by a third party, most likely the vehicle software developers. of
the language.

Fig. 3.3 Planners are plugins for the MPFL compiler/runtime that define primitive ca-
pabilities of the robot.

To implement a planner, MPFL provides an object-oriented application program-
mer interface API which requires subclassing from a set of provided base classes. Users
pass a set of planners (in the form of objects) to MPFL in addition to their mission spec-
ification when initializing the framework from the client. These planners are linked into
the MPFL runtime in an analogous fashion to how drivers are linked into an operating

4For those that have encountered the term planner in AI literature, the term has a different
connotation as used here. Chapter 7 talks about this more.
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system kernel on system bootup. Just as drivers provide the means for the kernel to com-
municate with the computer’s components and peripherals, planners provide a means to
the MPFL runtime for scheduling tasks. However by no means are building planners as
difficult as writing an operating system driver and requires only implementing a handful
of typed callback functions. MPFL’s API is designed to be easy to understand and use
while additionally providing safeguards to prevent the programmer from implementing
a faulty planner. It will be shown later that not only do planners allow one to customize
the underlying semantics of the MSL, but also to mix and match planners transparently
without having to recompile or relink code.

Planners are what give the MPFL framework its reusability feature. Once some-
one implements a planner, it can be reutilized in another vehicle (with certain restrictions
detailed in later chapters) in a transparent manner without recompiliation. The MPFL
framework isolates planners from each other as completely sandboxed systems; this is
what makes planners reusable across vehicles. Hence, once a sufficient collection of
planners has been created, a vehicle developer can mix and match previously developed
planners (even those made by other people), along with any new planners the vehicle
requires. Make no mistake, the MPFL compiler/runtime by itself really does not do
much in terms of planning. The planners do the hard work of solving the problem; the
compiler/runtime itself just provides a well-defined framework that create the bridge
between the MSL and planners, such as facilities for verification, error handling, and the
actual delegation of problems to planners. A planner developer does not have to worry
about the details of how the compiler/runtime works or how any other planners work.
All they are focused on is writing their specific planner.

3.2.4 A Software Framework

The MPFL library implements a software framework in contrast to an ordinary
library which is typically a collection of types and functions that can be used by an
application. A software framework distinguishes itself from a normal library as it utilizes
inversion of control where control flow of the program is managed by the framework
rather than by the one dictated by the user. The client interacts with the framework
via callback functions/methods that are fired by the framework as necessary (triggered
by some event), but the framework dictates the thread of execution. For example,
most widget toolkits such as Qt, Gtk+, WinForms, WxWindows, and Swing used for
creating GUI applications follow this style; the programmer relinquishes control of their
application to the framework. As GUI events occur such as resizing the window or
clicking on a menu, the framework invokes callback functions/class methods to handle
the events. If a user does not provide a callback then typically a default version is used.
The advantage of frameworks is that they allow one to more rapidly develop software
as it provides guide rails for building an application and good defaults for unspecified
behavior.
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3.3 Segue: A Language of Planning

In order to understand how the MPFL compiler/runtime and planners work, the
first step is to understand the MPFL MSL. The next chapter describes the MPFL MSL
and informally explains the constructs in terms of language syntax and semantics, and
how they came to be. Later chapters will focus on how the MPFL runtime compiles user
specifications written in the MSL, and the significance of planners in the framework.
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Chapter 4

A Language of Planning

This chapter details the special language, the Mission Specification Language
(MSL), that not only composes the external interface of the framework, but is the foun-
dation of the framework internal implementation.

4.1 The Requirements of a Language for Planning

The MPFL framework focuses on a particular area of autonomy development:
planning. The other components of autonomy development, (e.g. data fusion, percep-
tion, reasoning) are largely ignored though there are hooks in the framework to help a
developer using MPFL integrate those components into their total autonomy solution.
In MPFL, planning is articulated and reasoned about via the MSL. Before looking at
the design of the MSL, it is useful to think about the requirements and features that
one would like in a language to describe and encode concepts pertaining to planning.
One approach is to introspectively reflect on how we humans perform and reason about
planning ourselves and how it is reflected in our own natural languages (e.g. English).

In the previous chapter, an example was given describing how a human being
might plan their tasks for some given day. When designing the MSL, examples like this
were analyzed to determine what sort of language constructs people use to plan. These
language constructs are useful in capturing the domain of autonomous robot planning
and helped shape the syntax of the MSL. Some of these observations were:

• Humans use phrases like “I have to shower before I go out”, “I have to do this
task by 3:00 pm”, “I need to go shopping for food, but cannot spend more than
40 dollars”, and “If I finish my homework, I can watch the game tonight or read
a book”. These phrases represent constraints on the way we set out to achieve
goals. Some of these constraints are resource constraints that limit a particular
resource, such as time, energy, or money. Other constraints are subordinate clauses
that explain relationship constraints between and across goals, such as A happens
after B, A can only happen if B happens, and A must occur while B is occurring.

• Humans break down complex goals into smaller subgoals to make it easier to reason
about solving problems.1 For example, the goal of making a cake can be broken
into goals such as create batter, place batter in baking pan, heat baking pan in oven,
remove baking pan from oven, and add icing to cake. Each of these subgoals can

1This is a feature that is common to many AI/autonomy techniques and discussed further in
Chapter 7.
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be broken down further to make it even easier to solve the problem. If one were to
graphically depict goals and subgoals, they would form a tree.

• When unexpected problems occur during planning, humans try to circumvent them
utilizing the path of least resistance while attempting to limit the involvement of
other entities in solving said problems. For example, if a person has a headache,
they do not immediately go to a neurologist to get an MRI, as that would be
premature and unnecessary; more likely they will take some aspirin. If the headache
persists, they may then go to their family doctor. If the family doctor cannot solve
the problem, the doctor may pass the problem on to a specialist, and so on. In other
words, we try to solve our problems on our own, and pass them onto outside entities
only when we cannot solve them in the case we do not have enough information,
skill, and/or other resources. When an outside entity cannot solve a problem, they
may in turn may pass on the problem to different entity further up the chain.

• Humans can immediately recognize syntactic and semantic errors in sentences allow
them to recognize nonsensical or ambiguous statements. Take for example the
following sentence: “There is a gas station ten hertz past the diner.” The sentence
does not make sense as hertz is not a measurement of distance, but rather of
frequency. As another example, take the sentence: “I am going to make some
motorcycle for lunch.” This sentence also does not make sense as motorcycle is not
a food item. Programming languages can enforce similar sanity checks enforced
during syntactic and semantic analysis stages of a compiler/interpreter.

These observations were important in designing MPFL’s language of planning and
are incorporated into the constructs the language provides.

4.2 The MPFL Mission Specification Language

The language that constitutes the foundation of the MPFL framework is known
as the MPFL Mission Specification Language (MSL). This language is what is
used to specify the missions the robot is to perform – hence the name. Users of the robot
encode the goals they want their robot to achieve along with any constraints in an MSL
program. The MPFL compiler/runtime will then process this specification and attempt
to help the robot achieve the specified goals.

4.2.1 Language Overview

The MSL is a strongly, statically typed domain-specific programming language en-
compassing the domain of mission planning in AUVs. The language is highly declarative
with very little imperative control. The concept of verification is extremely important in
the MPFL world; the compiler verifies as much as it can statically before runtime, and
whatever cannot be statically checked is continuously verified during runtime. Programs
written in the MSL are contained within a single file, though breaking up a specification
into multiple files could be achieved easily by employing a simple preprocessor such as
the one used in C compilers.
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The grammar of the language is defined by an LALR(1) grammar with a simple
and consistent syntax. Parentheses are used extensively and represent block constructs
in the language. White spaces, newlines, and tabs have no significance in the language
and are ignored. One will notice that the syntax of the language is heavily influenced by
variant types found in functional languages, namely ML. The grammar is specified later
in the chapter.

4.2.2 Plans and Plan Instances

The primary construct in the MSL is called a plan. A plan represents a set of
goals and their corresponding constraints. The MSL has a set of built-in plans called
primitive plans and allows users to create their own plans called user-defined plans.

The primitive plans represent the most basic capabilities of the robot; each en-
capsulating a singular goal. The MSL’s current set of primitive plans is built specifically
for autonomous underwater vehicles (AUVs) but can easily be extended to serve
a broader range of autonomous robots. The currently-available primitive plans in the
MSL are described in Table 4.1.

Primitive Plan Description

Search Searches a specified area using an onboard sensor

UseSonar Activates an onboard sonar device

UseModem Activates an onboard acoustic modem device

Transit Requests the vehicle to move through a set of waypoints

PhoneHome Sends status and sensory reports back to a command ship or station

Loiter Tells the vehicle to sit at a position and do nothing

UseAutopilot Requests the vehicle’s autopilot to move to a waypoint

UseAcoustic Requests allocation of the acoustic channel

Table 4.1 Primitive Plans in MPFL’s MSL

4.2.2.1 Plan is a Type

In the MSL, Plan is a built-in MSL type. Recall types are tags ascribed to values
in a language restricting the usage of those values primarily for the purpose of safety and
correctness (Pierce 2002). All of the primitive plans mentioned in Table 4.1 are values
which can be used in the MSL whereever a Plan is expected (i.e. Plan is a variant type2

which can take one of the values from Table 4.1). Values of type Plan are called plan
instances. Plans describe tasks, whereas plan instances refer to an actual instance of
a task. Another way of thinking about it is the difference between a class and an object
in an object-oriented language; an object is an instance of a class. Likewise in the MSL,

2A variant type (also known as a set type, tagged union or discriminated union), is
a value representing a value that could take on several different, but fixed types. The value is
typically represented as a tag along with some typed value.
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a plan instance is an instance of a plan. For example, if one wants the robot to move
to some waypoint using the MSL, it can be achieved by creating a plan instance of the
Plan variant type value UseAutopilot depicted by the following code segment:

UseAutopilot goToPoint(Destination = GeoPosition(Lat = Degrees(32.0),

Lon = Degrees(-122.0),

Depth = Meters(10.0)))

Example 1 - Declaration of a UseAutopilot plan instance

In Example 1, we create a plan instance representing the primitive plan UseAutopilot

with the identifier goToPoint. Following the identifier is a list of parameters enclosed in
parentheses. This is referred to as the plan instance constructor. This constructor
describes the input parameters for the task represented by the plan instance. In the
case of the example above, there is one parameter: Destination. Hence, the instance
goToPoint represents transiting to a geographical position of 32◦ N, 122◦ W, and a depth
of 10 meters.

4.2.2.2 Plan Instance Constructors and Other Types

Every type of primitive plan in MPFL has a constructor associated with it. Each
constructor is different for each primitive plan. For example, the Search plan takes
parameters such as the area to be searched and the sensor to utilize within the search.
Each type of plan may have more than one constructor, allowing several ways to define
the problem parameters. Table 4.2 gives the complete syntax for plan instances declara-
tions along with their constructors. Note that values with bars over them (e.g. integer)
refer to the metatypes used in the implementation language (typically referred to as
the metalanguage) for the MPFL compiler.

Every constructor requires each parameter to be named (in the case of Example
1 only one parameter called Destination is required for a UseAutopilot constructor)
followed by an ‘=’, followed by the value. Each parameter name/value pair separated
by a comma. The value in each pair has type associated with it. In Example 1, the
expected parameter type for the value of the field name Destination is the MSL type
Position.

Besides the Plan type, the MSL has many types built into it (such as Position).
The majority of these remaining types are used for encoding the parameter values in
plan instance constructors. All of these types are variant types, which can take one
value from a discrete set of differently-typed values described by their own constructors.
Table 4.3 describes the majority of types in the language along with the different values
they can take (either a constructor, an expression consisting of a binary operator, or
a primitive value such as an integer or string) without the constructor. Table 4.4 give
the complete syntax for these types in the language along with their corresponding type
constructors. Besides constructors, there are also operators that can be used to create
typed expressions. All of the MSL operators are binary and use infix notation. These
are also included in Table 4.4 and can be thought of as special constructors where the
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Value Type Syntax

Loiter Plan Loiter <string>(LoiterPosition = <Position>
LoiterDuration = <Duration>)

PhoneHome Plan PhoneHome <string>(CommDeviceName =

<String>, PhoneHomeRate = <Frequency>

Search Plan Search <string>(SonarName= <String>;
SearchArea = <Area>, LaneWidth =

<Length>)

Transit Plan Transit <string>(Waypoints = <Position>,
<Position>, ...)

UseAcoustic Plan UseAcoustic <string>(AcousticDeviceName =

<String>, StartTime = <Time>, EndTime =

<Time>, TaskDuration = <Duration>, MinGap

= <Duration>, MaxGap = <Duration>)

UseAutopilot Plan UseAutopilot <string>(Destination =

<Position>)

UseModem Plan UseModem <string>(ModemName = <String>,
ModemMessage = <String>)

UseSonar Plan UseSonar <string>(SonarName = <String>,
PingRate = <Frequency>)

Table 4.2 Declaring Plan Instances in MSL
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operator is the constructor tag and the two operands are parameters. The remaining
types in the language will be defined as needed.

A Position can take on several values such as the value GeoPosition which refers
to an absolute geographical position (i.e. latitude/longitude). GeoPosition, just like a
plan instance, has a constructor. The GeoPosition constructor consists of a latitude
(parameter name Lat), longitude (parameter name Lon), and a depth (parameter name
Depth), which must be passed into its constructor, where each of these parameters also
has to be named, following an ‘=’ with the respective value on the right. Lat and Lon

have to be defined as values of the MSL variant type Angle which can take a value of
Degrees. Depth requires a value of MSL variant type Length, which can take a value of
Meters. Notice the constructors Degrees and Meters simply take a number, indicating
a terminal type constructor.

Types Values

Angle Degrees, Radians

Area RectangularArea, CircularArea, PolygonalArea

Boolean boolean, >=,==,! =,<=,<,>, LookupBoolean

Constraint TimeConstraint, PowerConstraint

Duration Seconds, Minutes, Hours

Energy Joules, KilowattHours

Float float,+, −, /, ∗, LookupFloat

Frequency Hertz, Kilohertz

Integer integer, +, −, /, ∗, LookupInteger

Length Feet, Meters, Yards

Plan Loiter, PhoneHome, Search, UseAcoustic,

UseAutopilot, UseModem, UseSonar, ExecutePlan

Position GeoPosition, RelativePosition

Power Watts, Kilowatts, Horsepower

String string, LookupString

Time UnixTime, DHMSMTime

Table 4.3 Type Constructor Tags in MSL

4.2.2.3 Explicit Parameter Naming and Unit Specification

The reader may have noticed that the syntax in constructors is unusually verbose.
The MSL is designed to ensure there is no ambiguity in what the user wants to do and
accomplishes this through a very strong type system. Again one of the central tenets
of MPFL is providing as much automated verification as possible. When software is
running on an extremely expensive vehicle alone in the middle of the ocean potentially for
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Value Type Syntax

Degrees Angle Degrees(<Float>)

Radians Angle Radians(<Float>)

RectangularArea Area RectangularArea(TopLeft = <Position>,
BottomRight = <Position>)

CircularArea Area CircularArea(CenterOfArea = <Position>,
Radius = <Length>)

PolygonalArea Area PolygonalArea(BoundaryPoints = <Position>,
<Position>, ...)

TimeConstraint Constraint TimeConstraint <String>(<Time> <=
StartTime <= <Time>, <Time> <= EndTime

<= <Time>)

PowerConstraint Constraint PowerConstraint <String>(MaxPowerLevel =

<Power>, MaxEnergyToUse = <Energy>)

Seconds Duration Seconds(<Float>)

Minutes Duration Minutes(<Float>)

Hours Duration Hours(<Float>)

Joules Energy Joules(<Float>)

KilowattHours Energy KilowattHours(<Float>)

Hertz Frequency Hertz(<Float>)

Feet Length Feet(<Float>)

Meters Length Meters(<Float>)

Yards Length Yards(<Float>)

AbsolutePosition Position AbsolutePosition(Lat = <Angle>, Lon =

<Angle>, Depth = <Length>)

RelativePosition Position RelativePosition(Center =

<AbsolutePosition>, X = <Float>, Y =

<Float>, Z = <Float>)

Watts Power Watts(<Float>)

Horsepower Power Horsepower(<Float>)

ClockTime Time ClockTime(Day = <Integer;>, Time =

<Integer>::<Integer>::<Integer>)

UnixTime Time UnixTime(UTCSeconds = <Float>)

Table 4.4 Non-Plan Constructors in MSL
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months, a single incorrect value could cause severe problems such as mission failure or the
damaging/destruction of the vehicle. By specifying all parameters within a constructor
along with their units where applicable, trivial mistakes are avoided.

4.2.3 User-defined Plans

Plan instances have to be declared within an MSL language construct called a
user-defined plan. User-defined plans allow a user to extend the set of built-in primitive
Plans with their own. User-defined plans are similar to primitive plans in the sense that
they represent some sort of task/goal description. The difference is that primitive plans
represent a singular goal whereas user-defined plans are composed of several primitive
plan instances as well as plan instances of other user-defined plans. User-defined plans
are the primary construct for abstraction and encapsulation in the MSL and allow a user
to organize their missions in a logical way. User-defined plans, like primitive plans, have
the type Plan.

4.2.3.1 User-defined Plan Syntax

User-defined plans have the following basic syntax

Plan <plan identifier>

(

<plan instance declaration 1>

<plan instance declaration 2>

...

<plan instance declaration n>

Do(<plan expression>)

)

An example of a very simple user-defined plan taking from Example 1 is as follows:

Plan doStuff

(

UseAutopilot goToPoint(Destination = GeoPosition(Lat = Degrees(32.0),

Lon = Degrees(-122.0),

Depth = Meters(10.0)))

Do(goToPoint)

)

Example 2 - A user-defined plan in the MSL consisting of a single goal

Example 2 depicts a complete MSL program consisting of a singular goal (depicted
by the UseAutopilot plan instance goToPoint) to reach a waypoint. If one were to save
this plan to a text file and feed it to the MPFL runtime, the robot would go to the
waypoint specified.

The final part of the plan declaration is the keyword Do followed by some ex-
pression. This part of the plan is known as the Do Expression and contains within it
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an expression describing the temporal relationships and constraints for goals (i.e. plan
instances) defined within a user-defined plan. The example above is rather trivial so we
need to expand on the example.

4.2.3.2 Do Expression and Plan Operators

Example 3 expands Example 2 by adding in three more goals:

Plan doStuff

(

UseAutopilot goToPoint(Destination = GeoPosition(Lat = Degrees(32.0),

Lon = Degrees(-122.0),

Depth = Meters(10.0)))

Search lookForThreats(

SonarName = sideSonar,

SearchArea = RectangularArea(

TopLeft = GeoPosition(Lat = Degrees(32.231),

Lon = Degrees(-122.112),

Depth = Meters(0.0)),

BottomRight = GeoPosition(Lat = Degrees(32.231),

Lon = Degrees(-122.112),

Depth = Meters(0.0))),

LaneWidth = Meters(100))

PhoneHome reportStatus(CommDeviceName = benthos100, PhoneHomeRate = Hertz(0.01))

Loiter waitForPickup(LoiterPosition = GeoPosition(Lat = Degrees(-32.93),

Lon = Degrees(-121.991)

Depth = Meters(0.0)),

LoiterDuration = Hours(5.5))

Do(goToPoint > (lookforThreats || reportStatus) > waitforPickup)

)

Example 3 - A user-defined plan in the MSL consisting of multiple goals

The Do Expression in this plan is more complicated. The expression contained
within the Do constructor represents a relationship between various plan instances (i.e.
tasks). Each plan instance is referenced via its identifier. The angle bracket (>) rep-
resents a serial operator, meaning that the task on the left-hand side of the > must
finish before the task on the right-hand side can begin. In Example 3, the plan instance
goToPoint must complete before lookForThreats and reportStatus, which both in
turn must finish before waitForPickup can commence. The two bars (||) between
lookForThreats and reportStatus is known as the parallel operator indicating that
lookForThreats and reportStatus must execute in parallel. These operators are re-
ferred to in the MSL as planning operators. The MSL has several planning operators
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that can be used in the Do Expression depicted in Table 4.5. These operators are left
associative, but can be grouped using parentheses as well. The MPFL compiler verifies
that all references within the Do Expression are valid identifiers with corresponding plan
instance declarations within the user-defined plan. If the references are invalid it will
result in a compile-time error.

Plan Operator Meaning

Serial (a > b) Execute task b if and only if task a is complete.

Parallel (a || b) Execute task a and b in parallel. Once either task is started,
the other must be forced to start as well.

Group (a & b) Execute both tasks a and b, however there is no dependency
between the two (in contrast to the parallel operator), and
both do not need to run at the same time.

Exclusive Or (Xor)

(a ^ b)

Execute either task a or task b, but execute exactly only one
of them. Give task a priority over task b.

Table 4.5 Plan Operators in MSL

The Do Expression is a typed value in the language of type DoExpression. The
expression inside of the Do Expression has a different type PlanExpression. In Table 4.6,
we add to the list of types and type constructors from Table 4.3 and Table 4.4.

Value Type Syntax

Do DoExpression Do(<PlanExpression>)

operator > PlanExpression <PlanExpression> > <PlanExpression>)

operator || PlanExpression <PlanExpression> || <PlanExpression>)

operator & PlanExpression <PlanExpression> & <PlanExpression>)

operator ^ PlanExpression <PlanExpression> ^ <PlanExpression>)

plan instance

identifier

PlanExpression <string>

Table 4.6 DoExpression and PlanExpression Types MSL

Here are some examples of more complex Do Expressions using the operators from
Table 4.5:

1. Do(moveAround || sendStatusHome > goHome > stayPut) - This example wants
us to do the tasks moveAround and sendStatusHome in parallel, followed by the
task goHome, then followed by the task stayPut.

2. Do(((a > b) ^ (c || d)) || e) - This example wants us to either do the tasks
a followed by b, OR do the tasks c and d in parallel (only one or the other). While
it is doing all of that, it wants to do task e in parallel.
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3. Do(a & ((b & c) > d)) - This example wants to group the task a with the fol-
lowing task: do b and c together, not necessarily in parallel. Once b and c are
complete, then and only then, perform task d.

We can see from these examples that one can create significantly complex temporal
relationships between the tasks needed to be done by the AUV. An important note about
the Do Expression is that one is not allowed to reference a plan instance in the expression
more than once.

4.2.3.3 Creating Plan Instances from User-Defined Plans

The kind of plan instances we have created so far are instances of the various
primitive plans built into the language. Creating a user-defined plan results in extension
of the set of valid values constituting the variant type Plan. We can create instances
of user-defined plan types by using the special plan instance constructor: ExecutePlan

(see Table 4.7).

Value Type Syntax

ExecutePlan Plan ExecutePlan(UserPlanName = <String>)

Table 4.7 ExecutePlan Constructor in MSL

We can extend Example 3 with another plan that creates an instance of a user-
defined plan as shown here:

Plan doStuff

(

...

Do(goToPoint > (lookforThreats || reportStatus) > waitforPickup)

)

Plan master

(

Loiter waitForMissionStart(LoiterPosition = GeoPosition(Lat = Degrees(-32.44),

Lon = Degrees(-122.213)

Depth = Feet(0.0)),

LoiterDuration = Hours(5.5))

ExecutePlan primaryMission(UserPlanName = doStuff)

Do(waitForMissionStart > primaryMission)

)

Example 4 - Creating an Instance of a User-Defined Plan
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The ExecutePlan constructor takes the identifier of a previously declared (i.e.
higher up) user-defined plan. The plan instance created with ExecutePlan is an instance
of the user-defined plan and like all primitive plan instances also has the type Plan. In
Example 4, we create a plan instance with user-defined plan doStuff (which we declared
in Example 3), called primaryMission. Note that whenever the ‘...’ notation is used (as
in Plan doStuff), it refers to omitted, don’t care code that is not shown for the sake
of brevity. The plan instance primaryMission acts just like any primitive plan instance
now, but represents the aggregate of multiple plan instances.

4.2.3.4 The Sortie Plan Instance and Children Plan Instances

MPFL internally creates a single plan instance of the last user-defined plan in the
MSL program known as the sortie plan instance3. The ability to create plan instances
of user-defined plans results in the creation of a tree structure, which internally within
MPFL, is known as the plan instance tree with a root node of the sortie instance. In
the case of Example 4, think of it as having two additional imaginary lines of code after
the last user-defined plan:

ExecutePlan sortie(UserPlanName = master)

Do(sortie)

Fig. 4.1 Depiction of the plan instance tree for Example 4

Figure 4.1 graphically depicts the tree, also encoding the planning operators.
The plan instance tree contains within it all plan instances declared within the program.
In the example, the sortie plan instance has two children waitForMissionStart and
primaryMission. As waitForMissionStart is a primitive plan instance (Loiter), it
is a leaf node in the plan instance tree. However, primaryMission is an instance of
the doStuff user-defined plan, meaning that it is a non-leaf. As intuition suggests,
primaryMission has four leaf children: goToPoint, lookforThreats, reportStatus,

and waitForPickup.

3The term sortie comes from military terminology and refers to the deployment of a single
military unit. In the MSL, the sortie plan instance is a representation of what the robot is to do
during its deployment – hence the name.
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4.2.3.5 Multiple Instances of User-Defined Plans

User-defined plan types behave just like primitive plan types. Multiple plan in-
stances of these types can be created both within and across different plans. In Example
4, it would be perfectly acceptable to create more than one instance of a doStuff user-
defined plan with the caveat that the identifiers have to be unique within the enclosing
user-defined plan declaration.

4.2.3.6 Circular Dependencies

In order to create an instance of a user-defined plan, the MSL requires the user-
defined plan to already be declared. This means it is not possible to create a circular
dependency.

4.2.4 Run-time Value Lookups

Once MPFL commences, it is not possible to modify the mission specification
written in the MSL. This is extremely limiting as many of the parameters used within
various type constructors may not be known until runtime. To get around this limitation,
the MSL contains a set of built-in functions that can lookup external values from a
knowledge base (explained more in the next chapter) that can be substituted as needed
during runtime.

For example, we can modify Example 1 so that the latitude and longitude are
dynamically loaded from the knowledge base:

UseAutopilot goToPoint(Destination = GeoPosition(

Lat = Degrees(LookupFloat(myLatitude)),

Lon = Degrees(LookupFloat(myLongitude)),

Depth = Meters(10.0)))

Example 5 - A UseAutopilot plan instance with dynamic lookup

In this example, the Degrees constructors corresponding to the latitude and lon-
gitude takes a LookupFloat value instead of a hard-coded number. Internally within
MPFL, whenever the value is queried for goToPoint’s destination latitude or longitude,
it will be looked up. The parameters within parentheses following LookupFloat refers
to a key (which is simply a String value) that is used by MPFL to find the appropriate
value. The user must be aware of what keys are available while writing their specification
and their corresponding types. There are currently only four different Lookup* calls for
the most primitive types, but more will be added for all the types specified in Table 4.3.
The lookup calls are described in Table 4.8.

Note that the lookup calls are typed expression so wherever a value of one of the
types in Table 4.8 is needed, it can be substituted with the corresponding lookup call.
For example, because the parameter represented the key for all the lookup calls is of
type String, we can nest another LookupString within the original LookupFloat call we
issued to determine the key as shown in Example 6:
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MSL Type Lookup Callname

Boolean LookupBoolean

Integer LookupInteger

Float LookupFloat

String LookupString

Table 4.8 Lookup Calls in MPFL MSL

UseAutopilot goToPoint(Destination = GeoPosition(

Lat = Degrees(LookupFloat(LookupString(foobar))),

Lon = Degrees(LookupFloat(myLongitude)),

Depth = Meters(10.0)))

Example 6 - Nested dynamic lookup calls

4.2.4.1 An Important Note on the Safety of Lookup Calls

Even though lookup calls are type safe, their use can be dangerous for the following
reasons:

• Since the lookup is done in a lazy fashion, it is not evaluated until needed. This
means range checking cannot be performed on lookup values the way it can on
literal values. For example, a latitude of 800 does not make sense as the value
must fall between -90 and 90. The MPFL compiler verifies all literal values so such
an error would not occur if a latitude was hardcoded.

• Lookup calls do not necessarily refer to constant values, rather they typically refer
to dynamic values that change with time (as is their purpose). Hence the behavior
of the AUV maybe more difficult to predict.

• If the key is not defined in the knowledge base (described in the next chapter), it
will cause the MPFL runtime to throw an exception indicating error.

All-in-all, this issue really cannot be avoided in any [interesting] computer program
written in any language. The user is just advised to be careful when using lookup calls,
and to use them sparingly as possible.

4.2.5 Conditional Expressions

Besides the planning operators, users can use conditional expressions within
their Do Expression. This gives users more control over how the tasks they want their
AUV to accomplish are executed, in contrast to having the MPFL runtime make the
decisions. The conditional expression looks similar to the if-then-else-endif structure
found across many programming languages and has type PlanExpression so that it can
be used within a Do Expression. We can expand Table 4.6 with an additional entry
which is conveyed in Table 4.9.
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Value Type Syntax

If Then Else

Endif

PlanExpression if(<Boolean>) then (<PlanExpression>)
else (<PlanExpression>) endif

Table 4.9 Conditional expressions are of type TypePlanExpression

The subexpression for each branch can be any value of type PlanExpression in-
cluding another conditional expression or values of type PlanExpression in Table 4.6.
Unlike conditional expressions in most languages, the MSL conditional expression re-
quires the definition of both branches (i.e. each conditional expression has an else

block).

4.2.5.1 Meaning of Conditional Expression

The purpose of conditional expressions is to allow users to make decisions about
the makeup of their Do Expression. If the condition in the conditional expression is true,
the expression reduces to PlanExpression in the first branch, otherwise it reduces to the
expression in the second (i.e. else) branch. The unused branch is thrown away.

Example 7 below gives us a simple user-defined plan with a conditional expression:

Plan

(

Transit a(...)

Search b(...)

PhoneHome c(...)

Loiter d(...)

Loiter e(...)

Do(a > (if(LookupFloat(EnergyLeftInHours) > 20)(b || c) else (d ^ e) endif))

)

Example 7 - Example of a conditional expression within the Do expression

In Example 7, we have the plan instance a which refers to a Transit plan in-
stance on the left side of a serial (>) operator with a conditional expression on the
right-hand side. The condition determines if a looked up value of type float with key
EnergyLeftInHours is greater than 20. If during runtime the condition is true, the
entire expression reduces to:

Do(a > (b || c))

Likewise if the condition is false, the result is:

Do(a > (d ^ e))
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4.2.5.2 Fluctuation of Condition

Recall that lookup values are not necessarily constant and are lazily evaluated.
In the case that the condition in the expression changes between compilations, it may
result in a changing resulting Do Expression. In the case of Example 7, it may turn out
that in the beginning, the value of LookupFloat(EnergyLeftInHours) is indeed greater
than 20 causing b and c to occur in parallel after a is completed. However, it could turn
out that while b||c are being executed, the value of the lookup is less than or equal
to 20 (likely due to lack of residual energy as implied by the key). This causes d^e to
pop into the mix, even though b and c have partially been attempted or perhaps even
been completed already. The user of MPFL must be wary of this fluctuating condition
phenomenon and should plan for that in their mission specification.

4.2.5.3 Defining the Condition

As the condition within the conditional expression can be any expression of type
Boolean, any value of this type can be used for the condition. We saw in Table 4.3 that
values of the Boolean type can be defined in several ways. Table 4.10 shows the different
ways one can construct the condition of a conditional expression. Users can compare
values for equality, inequality, greater than, greater than and equal, less than, and less
than or equal to for the four core primitive types (Boolean, String, Integer, Float).

Value Type Syntax

boolean Boolean true, false

LookupBoolean Boolean LookupBoolean(String )

>= Boolean <X> >= <X>

> Boolean <X> > <X>

== Boolean <X> == <X>

! = Boolean <X> ! = <X>

<= Boolean <X> <= <X>

< Boolean <X> < <X>

Table 4.10 Boolean Type Values (note that X can be values of types Integer, String,
Float, or Boolean)

4.2.5.4 Pitfalls of Conditional Expressions

Even though conditional expressions are quite powerful and useful, their use
should be avoided. Conditional expressions are imperative (in contrast to declarative)
constructs that move responsibility away from the MPFL runtime into the hands of the
user. However, this deviates from the intention of the MSL. The goal of the MSL and
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MPFL runtime is to allow users to not focus too much on how the tasks are to be ex-
ecuted, but rather what tasks need to be executed. Regardless, conditional expressions
cannot be avoided all-together as fine-grained control maybe required, but keep in mind
that they might not be necessary in order to accomplish the robot’s goal. In the case of
Example 7, rather than using a conditional, an alternative might be to replace it instead
with with an exclusive or (ˆ):

Do(a > ((b || c) ^ (d ^ e)))

MPFL would figure out how to best execute the mission, attempting to accomplish
b||c, but resorting to (d^e) only if necessary. However, the user does not have
fine-grained control over how that exclusive or (i.e. d ^ e) decision is made.

4.2.6 Declaring and Binding Constraints

The MPFL language is a constraint-based language. Users define problems as a
series of declarative tasks that are bound by certain rules, namely the planning operators
specified in the Do Expression, as well as the problem definition that is passed in the
constructor of each plan instance. The language runtime is responsible for solving the
problems based on these constraints. The MPFL language takes this a step further by
creating stand-alone constraints that can be bound to plan instances referenced in the
Do Expression. To illustrate, here is an example:

Plan anExample

(

UseSonar a(...)

Search b(...)

Loiter c(...)

TimeConstraint timeLimit(ClockTime(Days=0, Time=19::00::00) <= StartTime <=

ClockTime(Days=0, Time=20::00::00),

ClockTime(Days=1, Time=19::00::00) <= EndTime <=

ClockTime(Days=1, Time=21::30::00))

Do(a & (b with timeLimit) > c)

)

Example 8 - Binding a constraint within the Do Expression

In this example, we construct a TimeConstraint value with identifier timeLimit.
This value has type Constraint and can now be bound to any expression of type Plan-
Expression within the Do Expression. In the example, the operator with is utilized to
bind timeLimit to the plan instance b. Table 4.11 extends the type system of the MSL
and defines the different values of type Constraint as well as defines the with operator.

The syntax of a user-defined plan declaration can be enhanced thus:
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Value Type Syntax

TimeConstraint Constraint TimeConstraint <string>(<Time> <=
StartTime <= <Time>, <Time> <=
EndTime <= <Time>)

PowerConstraint Constraint PowerConstraint <string>(String )

operator with PlanExpression <PlanExpression> with <Constraint
Identifier>

Table 4.11 Constraint Type Values

Plan <plan identifier>

(

<plan instance declaration 1>

<plan instance declaration 2>

...

<plan instance declaration n>

<constraint declaration 1>

<constraint declaration 2>

...

<constraint declaration n>

Do(<plan expression>)

)

4.2.6.1 Meaning of a Constraint

When a plan expression is bound to a constraint via the with operator, it means
that the MPFL runtime must plan to carry out the task represented by that plan in-
stance under the limitations of that constraint. The constraint in Example 8 is a time
constraint. The time constraint in Example 8 tells us that plan instance b must start
sometime between 7 PM and 8 PM of the current day and complete between 7 PM to
9:30 PM of the following day.

The other type of Constraint in the language is a power constraint which
enforces the amount of energy that can be used by a plan instance to accomplish it’s
task, along with the maximum energy usage rate (i.e. power) .

4.2.6.2 Binding to an Entire Subexpression

The with operator, as described in Table 4.11, allows binding a constraint to any
subexpression of type PlanExpression. Like all other operators in the language, it is
left-associative. For example, the Do Expression from Example 8 can be modified to
bind the constraint to both a and b in the expression:

Do(((a & b) with timeLimit)) > c)
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Equivalently one can just use the with operator twice and achieve the same result:

Do((a with timeLimit) & (b with timeLimit) > c)

4.2.6.3 Binding Multiple Constraints and Constraint Intersection

One can bind as many constraints to a PlanExpression as they would like. With
multiple constraints, MPFL takes the intersection of all constraints. A modified version
of Example 8 that has more than one TimeConstraint is as follows:

Plan anExample

(

UseSonar a(...)

Search b(...)

Loiter c(...)

TimeConstraint timeLimit1(ClockTime(Days=0, Time=19::00::00) <= StartTime <=

ClockTime(Days=0, Time=20::00::00),

ClockTime(Days=1, Time=19::00::00) <= EndTime <=

ClockTime(Days=1, Time=21::30::00))

TimeConstraint timeLimit2(ClockTime(Days=0, Time=15::00::00) <= StartTime <=

ClockTime(Days=0, Time=19::30::00),

ClockTime(Days=1, Time=19::30::00) <= EndTime <=

ClockTime(Days=1, Time=22::00::00))

Do(((a & b) with timeLimit1) > c) with timeLimit2)

)

Example 9 - Binding multiple constraints

In this case, a and b have both timeLimit1 and timeLimit2 bound to them.
Plan instance c has only timeLimit2 bound to it. The intersection of timeLimit1 and
timeLimit2 ends up in a new time constraint with a start time between 7 pm and 9:30
pm and an end time between 7:30 pm and 9:30 pm the following day. In the case the
intersection of time constraints is empty, it means the constraints do not overlap and
the task to which the constraint is bound will be infeasible (this is discussed in later
sections). For the case of power constraints, the intersection is simply the minimum
values for the maximum energy allowed and maximum power level.

4.2.6.4 Constraints are Hierarchical

When constraints are bound to instances of user-defined plans (i.e. instances that
are ExecutePlan values), those constraints are implicitly bound to all its descendants
in the plan instance tree. This is one of the interesting features of the MSL; allowing
constraints to be hierarchically arranged. This is a natural way to reason about resource
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allocation during planning; allocate large chunks of resources for the high-level goals
which are then broken into smaller chunks to be distributed to subgoals. It is likely when
creating the mission specification that higher-level (i.e. coarse) level plan instances that
are closer to the sortie plan instance will have the larger portion of resources than those
divvied up amongst the children plan instances. The children in turn can create tighter
constraints for their children and so on.

4.2.7 Handling Errors: Infeasibilities and Conflicts

One issue that arises is what MPFL does when it cannot achieve a goal or set
of goals defined within an MSL program. In the MPFL world, there are two types of
problems that can occur during planning respectively known as infeasibility errors
and conflict errors.

4.2.7.1 Infeasibility Errors

Infeasibility errors occur when a task the user requested is physically impossible
for the AUV to achieve. For example, if one was to create a UseAutopilot plan instance
requesting the vehicle move from the Chesapeake Bay to Hawaii with a time constraint
of an hour, it would be an impossible task. This task could be impossible for several
reasons. Obviously time is one of the issues. Another reason it could be infeasible is
that the vehicle does not have enough power to accomplish the mission.

4.2.7.2 Conflict Errors

Conflict errors, in contrast to infeasibility errors, come into play when the AUV
cannot do two or more requested tasks at the same time due to a resource scheduling
conflict between them. For example, the vehicle could have onboard both a sonar and
an acoustic modem, both require using a shared communication medium (the water). If
each device utilizes the same frequency band, it may not be possible to use them both
at the same time, causing a conflict error. At this point, a choice would have to be made
on which device gets to be used and when.

4.2.7.3 Graceful Degradation and Exception Handling

When humans encounter problems achieving our own infeasibilities and conflicts,
we make decisions to keep progressing even if it is in a suboptimal manner. This may
mean giving up on some of our goals for the time being so we can achieve others. Some-
times not achieving one or more goals in your set of goals can be a show stopper, causing
one to throw away the remainder of the goals. Essentially, humans continue to persevere
even though they fail in life. With robotics, it is no different. One of the problems
with design of autonomous robots, or any complex system for that matter, is dealing
with failures of subcomponents. Well-designed systems can keep functioning, albeit in a
potentially degraded mode, in the event of failures. This is known as graceful degra-
dation. For example, just because a sensor fails does not mean a robot cannot still
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continue its mission utilizing the remainder of its sensors and accounting for the amount
of error introduced by losing said sensor.

In the MSL we can support graceful degradation by replicating the decision mak-
ing capability humans use when having to dealing with their own infeasibilities and
conflicts. In many modern programming languages, the language provides the ability to
handle errors via exception handling. Exception handling allows programmers at any
point to signal an exceptional situation (known as raising or throwing an exception).
Programmers can catch errors by associating an exception handler to a block of code
that may raise an exception somewhere within its thread of execution. If an exception is
raised, the call stack is unwound until an exception handler in scope that can handle the
exception is found. Once the exception is handled, code execution returns to the first
line of code after the handler. Exceptions are useful because:

• They are typically typed values in the language that can store information about
the exceptional situation

• They can be handled in a hierarchical fashion at any level along the call stack.
Sometimes it makes more sense to handle the error nearer to the point where the
exception was raised and sometimes it makes more sense to deal with at a higher
level.

• They separate error handling code from the application logic of the program. Not
only does this make the code cleaner, but it is easy to add in new exceptions and
exception handlers as the code evolves without having to modify the application
logic.

4.2.7.4 Infeasible and Conflict Handlers

In the MSL, a form of exception handling is used to deal with infeasibilities and
conflicts. For each user-defined plan, one has the ability to specify up to two handlers,
one being an infeasibility handler and the other being a conflict handler. When
infeasibilities and conflicts occur within/between plan instances, the MPFL runtime
jumps to the nearest handler and attempts to resolve the issue.

To illustrate the use of infeasibility and conflict handling in the MSL, observe the
following example:

Plan meow

(

Search a(...)

Transit b(...)

UseSonar c(...)

PhoneHome d(...)

UseModem e(...)

Do(b > (a & c) || (d ^ e))

OnInfeasible
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(

Case(a) (Disable(a))

Case(b) (Disable(b))

Case(c)

(

if (LookupBoolean(GiveUpOnC)) then

Retract(c)

else

Disable(c)

endif

)

Case(d) (Retract(d))

Case(e) (Disable(e))

)

OnConflict

(

Case(a,c)(Disable(c))

Case(a,b,c,d,e) (Disable(a,d))

Case(b,d,e)(Retract(e))

)

)

Example 10 - A user-defined plan specifying both an infeasibility handler and conflict
handler

Example 10 illustrates the use of both an infeasibility handler and a conflict han-
dler. When MPFL cannot generate schedules that would lead to the completion of some
task due to a problem, the runtime generates either an infeasibility or conflict exception
depending on the type of problem that occurred. This event triggers MPFL to resolve
the infeasibility or conflict via the nearest exception handler. Infeasibility exceptions
are handled by the OnInfeasible handler and conflict exceptions are handled by the
OnConflict handler. Each handler consists of a set of case expressions. Each expres-
sion has two parts: a signature indicating which plan instance(s) caused the problem
(enclosed in parentheses after the keyword Case) and then a handler expression which
resolves the problem.

The signature indicates which plan instances caused the problem. In the case
of the infeasibility handler, each case signature can only have a single entry as each
infeasibility maps to a single plan instance. In contrast conflicts have a list of plan
instances in their signature indicating which tasks have a conflict between them. Within
the handler expression, the user must decide to either disable or retract one of the plan
instances referenced in the case signature. Disabling means to temporarily disable the
task for the current MPFL compilation cycle whereas retract means permanently remove
the task from consideration. The MPFL compiler forces the user to disable or retract
at least one plan instance referenced in the signature (in the case of infeasibilities, there
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is only one option) using the Disable and Retract functions respectively. Users can
also use conditional expressions to make their decision just like in the Do Expression.
Table 4.12 describes all the different valid handler expressions that can be used in an
infeasibility or conflict handler.

Value Type Syntax

If Then Else

Endif

HandlerExpression if <Boolean> then

<HandlerExpression> else

<HandlerExpression>

Disable HandlerExpression Disable(<HandlerExpression>)

Retract HandlerExpression Retract(<HandlerExpression>)

plan instance chain HandlerExpression <String>->...-><String>

Table 4.12 MSL handler expression types

We can now finalize the syntax of a user-defined plan declaration:

Plan <plan identifier>

(

<plan instance declaration 1>

<plan instance declaration 2>

...

<plan instance declaration n>

<constraint declaration 1>

<constraint declaration 2>

...

<constraint declaration n>

Do(<plan expression>)

<infeasible handler>

<conflict handler>

)

4.2.7.5 Handlers Are Hierarchical

Just like exceptions in most languages, when an exception is raised/thrown, the
execution path jumps to the nearest handler that can handle that particular type of
exception. If the nearest exception handler cannot handle the case, it jumps up to the
next one in the plan that contains the conflicting/infeasible instance(s) parent instance
declaration. Eventually, if no handlers are found in the sortie plan, the exception has
not been handled by the user and results in an unhandled exception error. This causes
the MPFL runtime to exit with an error. It is the responsibility of the user to handle
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all infeasibility and conflict cases. The MPFL compiler will warn the user when cases
are unhandled during compile time. The following example illustrates the hierarchical
nature of MSL handlers:

Plan makeNoise

(

UseModem a(...)

UseSonar b(...)

Do(a & b)

OnInfeasible

(

Case(a)(Retract(a))

)

)

Plan distractTarget

(

Transit x(...)

ExecutePlan y(UserPlanName = makeNoise)

Do(x > y)

OnInfeasible

(

Case(x)(Disable(x))

Case(y)(Disable(y))

)

)

Example 11 - Hierarchical exception handling

In Example 11, the user-defined plan makeNoise, plan instance b has no infeasible
handler. However, as b is a child of the instance y declared within distractTarget, when
the case is unmatched in makeNoise, it will jump to the handler in distractTarget for
y. When y is disabled, the child plan instance b (and children it may have) will be
disabled. The ability to handle errors at any level allows MSL programmers to handle
errors within the scope that is most appropriate.

4.2.7.6 Case Signature Matching and Plan Instance Chains

To take hierarchical exception handling further, MSL handler case signatures do
not necessarily have to reference plan instances within the same user-defined plan as the
infeasibility or conflict handler(s), but also any of those plan instances’ descendants (i.e.
children, grandchildren, and so forth).
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In each case expression, the case signature is actually not matching on the name of
a plan instance, but rather it is matching against its plan instance chain. Every plan
instance in the MPFL runtime can be uniquely identified as a sequence of plan instance
identifiers starting from the root instance in the plan instance tree, the sortie instance.
The notation for this involves sequentially naming the plan instances forming the chain
with arrows (->) delimiting the instances. Take for example the following code:

Plan pasta

(

PhoneHome pasta1(...)

Transit pasta2(...)

Do(...)

)

Plan bread

(

ExecutePlan bread1(UserPlanName = pasta)

ExecutePlan bread2(UserPlanName = pasta)

Search bread3(...)

Do(...)

)

Plan rice

(

UseAutopilot rice1(...)

Loiter rice2(...)

ExecutePlan rice3(UserPlanName = pasta)

ExecutePlan rice4(UserPlanName = bread)

Do(...)

)

Example 12 - Understanding plan instance chains

Example 12 shows multiple instances of the same user-defined plan. By having
multiple instances of the user-defined plans pasta and bread, there are multiple instances
of the plan instances declared within them. However, each plan instance can be uniquely
identified using its plan instance chain. For example, there are multiple instances of the
plan instance pasta1 declared within the plan pasta:

sortie->rice3->pasta1

sortie->rice4->bread1->pasta1

sortie->rice4->bread2->pasta1
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The plan instance chain is analogous to the process identifier in operating systems
such as Unix where each process has a unique integer identifier. Even though there may
be multiple processes of the same program, each one is unique with its own identifier.

What makes plan instance chains useful in the MSL is that they can be used in
the case signatures of handlers. This allows for fine grained error handling control by
allowing users to write handlers for problems caused by descendants of plan instances
declared within their user-defined plans. The intuitive reason for this feature is that it
sometimes may make sense to handle an error for a child at a higher level as there is
more contextual information there. To illustrate, Example 13 modifies Example 12 to
utilize the plan instance chain notation:

Plan makeNoise

(

UseModem a(...)

UseSonar b(...)

Do(a & b)

OnInfeasible

(

Case(a)(Retract(a))

)

)

Plan distractTarget

(

Transit x(...)

ExecutePlan y(UserPlanName = makeNoise)

Do(x > y)

OnInfeasible

(

Case(x)(Disable(x))

Case(y->b)(Disable(y->b)

Case(y)(Disable(y))

)

OnConflict

(

Case(y->a, y->b)

(

if (LookupFloat(energyLeftHours) > 500) then

(

Disable(y->b)

)
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else

(

Disable(y->a)

)

Case(x,y)(Disable(y))

)

)

Example 13 - Plan instance chain used in handlers

In Example 13, the infeasibility and conflict handlers utilize plan instance chains
to directly reference child instances y→a and y→b. In the infeasibility case, if b gives
problems, it will end up triggering the infeasibility handler in distractTarget with sig-
nature y→b causing it to be disabled. The last case in the same block (Case(y)(Disable(y)),
is actually unreachable. If y→a had an infeasibility, it would be handled directly in
makeNoise, and the latter case with y→b is handled in the previous case. This brings
up an interesting point about how case signature pattern matching works. If in Exam-
ple 12 the order of the infeasible cases matters; if Case(y→b) came after Case(y) in
distractTarget’s infeasibility handler, it would actually fire first. This is because y and
y→b are both valid matches for the case as they are in the same lineage. Matching is
therefore based on the first-matching signature rather than the one that matches most
closely in the structural sense.

Example 13 also demonstrates how conflicts can be handled in the same way by
adding a conflict handler to distractTarget. In this handler, if y→a and y→b were
to conflict, it will be handled there. However, with conflicts, the chains cannot be any
arbitrary tuple of plan instance chains; chains must be exactly the same except for the
last hop. The reason for this is because of a physical limitation of the MPFL compiler
and the difficulty in having the ability to compare arbitrary plan instances for conflict.

4.3 Segue: Making it Work

This concludes the chapter on the MPFL Mission Specification Language. Hope-
fully, it is evident how using a domain-specific programming language can be a powerful
means of control of an AUV. The language allows one to focus on the task at hand:
planning missions for AUVs. The syntax is simple, consistent, and can only be used to
express planning problems. The declarative nature of the language allows AUV oper-
ators to specify what they want to do and not how they want to do it. The language
brings with it strong static typing to prevent errors, a type system with dimensions
checking to prevent unit errors, the ability to handle system failures in a graceful and
hierarchical way through exceptions, and a uniform and intuitive way of reasoning about
the problem.

Those that work in robotics may think such a language is a great idea, but may
seem difficult or even infeasible to build. However, it is possible and a straightforward
approach is described in the next chapter. By using a simple model of planning, one can
implement an MPFL compiler that obeys the semantics informally described in this last
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chapter. The next chapter will describe an implementation of MPFL and how it relates
to concepts in Chapter 2. Understanding the MSL is important to understanding how
MPFL works and why the language was described first. The next chapter demonstrates
that the MSL is not only the external interface to a robot that uses MPFL, but also the
foundation of the MPFL compiler/runtime’s internal implementation.

MPFL is not a standalone compiler; it depends on plugins that define some of
the primitive capabilities of the robot. These plugins are defined through an simple API
which is tied closely to the implementation of the core MPFL compiler/runtime. The
next chapter will describe the API and describe how autonomy software developers can
harness MPFL in their autonomous robots.
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Chapter 5

Understanding and Utilizing MPFL

5.1 Overview

The previous chapter depicted how the MSL allows a user to describe complex
missions consisting of multiple goals and constraints in a logical manner. The MPFL
compiler ensures that either each goal that is attempted meets all constraints bound to
it or informs the user when constraints will be violated while giving them an opportunity
to handle the problem through exception handling. Though implementing a compiler
for such a language may seem difficult, the approach utilized to implement a prototype
compiler was quite straightforward and simple to reason about. This chapter describes
how the prototype compiler and API is implemented and how one utilizes it in their own
autonomous robot.

5.2 How MPFL is Meant to Be Used

As mentioned in Chapter 3, MPFL is not quite like compilers for typical high-level
languages where the compiler is an application that takes source files as input (often in
the form command line arguments) and then generates corresponding object files. Rather
MPFL is a library that a client application must link against and invoke from within
their application utilizing calls provided in the API (Figure 5.1). The application could
encompass all the autonomy software onboard a robot or represent one module/agent
in a larger system. The prototype reference implementation of MPFL is written in the
OCaml programming language and for the time being MPFL client applications must
utilize an OCaml API until other bindings are written. In addition to be invoked from a
client application, the MPFL compiler/runtime requires a set of plugins that define the
primitive scheduling abilities as well as hooks to perception/knowledge base information
to be fed to it. The way MPFL is utilized within a client application is described by the
following algorithm:

1. Initialize the MPFL compiler/runtime passing in path of the file containing the
mission specification written in the MSL along with with a set of plug-ins via the
function initialize mpfl.

2. Invoke the MPFL compiler from the client code which returns a set of schedules
via the function build schedules.

3. Use the schedules (i.e. parse and process them) to control actuators and subsystems
of the robot in order to accomplish goals specified in the mission specification.

4. Goto 2.
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Fig. 5.1 Relationship between MPFL core library and client application

Unlike a typical compiler, the MPFL compiler is meant to constantly be reinvoked,
hence the need for the last step in the algorithm. As a robot performs its mission, the
environment around it may change causing perception information to change. For
example, the compiler may generate a schedule for the navigational subsystem that
assumes a clear, obstruction-free path. However as the mission progresses, sensors
discover an obstacle is in the way. This means the current set of schedules is no longer
valid and replanning needs to occur. Replanning is carried out by simply reinvoking
the compiler and generating a new set of schedules. Due to this, the client application
must constantly reinvoke the compiler (as in step 2) and issue new commands to its
subsystems. One way to do this is as described in the above algorithm; reinvoke the
compiler in an infinite loop ensuring the freshest set of schedules available. A smarter,
less computationally-intensive MPFL client would only reinvoke the compiler when
environmental information has changed to some significant degree.

5.3 The Simplified MPFL Compiler/Runtime Engine

The mission specification just describes what the robot is to do. It is input by
the user in the form of a text file. It is up to the compiler to figure out either how
to accomplish the tasks in the specification or inform the user when something cannot
be done due to task infeasibilities/conflicts. The compiler’s job is to take a high-level
specification in the MSL and translate it to a series of low-level schedules (Figure 3.1)
Schedules are simply tables of timestamped commands for the low-level subsystems and
actuators, such as commands for the drive system or activating a payload such as a
camera or robotic arm.

This section describes the core stages of the MPFL compiler while omitting some
details for the sake of simplicity. The remaining details will be discussed in the next
section. The MPFL compiler is broken into the following stages that are also illustrated
in Figure 5.2:

• Parser

• Plan Instance Tree (PIT) Builder
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• Lifetime State Transition (LST) Evaluator

• Planner Invocation (PI) Evaluator

Fig. 5.2 Simplified MPFL Engine

5.4 Parser

The parser for most programming language interpreters/compilers has the re-
sponsibility of reading source code and generating an internal representation of the code
for subsequent interpreter/compiler stages. In other words, it transforms code specified
with a concrete syntax (i.e. the MSL) into an abstract representation, such as an ab-
stract syntax tree which a computer program (the compiler/runtime) can process more
easily. The MPFL parser takes the specification written in the MSL and generates a
simple abstract syntax tree encompassing the entire specification. If there are syntax er-
rors in the specification, the parser emits a description of the errors and their respective
line numbers to the console resulting in the termination of the MPFL compiler/runtime.

The grammar of the language is an LALR(1) grammar (a subset of context-free
grammars) for which a shift-reduce parser was generated utilizing the OCaml equiva-
lents of the popular lex lexer generator and yacc parser generator (called ocamllex and
ocamlyacc respectively).

5.4.1 Grammar Specification

The complete grammar specification is defined as follows using Backus-Naur
Form (BNF) notation.

(** Main Program **)

Program := PlanDeclarations

PlanDeclarations := PlanDeclarations PlanDeclaration

| PlanDeclaration

PlanDeclaration := ‘Plan’ <string> ‘(’ PlanInstDeclarations

ConstraintDeclarations DoExpDeclaration ‘)’

| ‘Plan’ <string> ‘(’ PlanInstDeclarations

ConstraintDeclarations DoExpDeclaration

InfeasibleHandler ‘)’
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| ‘Plan’ <string> ‘(’ PlanInstDeclarations

ConstraintDeclarations DoExpDeclaration

ConflictHandler ‘)’

| ‘Plan’ <string> ‘(’ PlanInstDeclarations

ConstraintDeclarations DoExpDeclaration

InfeasibleHandler ConflictHandler ‘)’

(** Error Handlers **)

InfeasibleHandler := ‘OnInfeasible’ ‘(’ InfeasibleCases‘)’

ConflictHandler := ‘OnConflict’ ‘(’ ConflictCases‘)’

InfeasibleCases := InfeasibleCases+

ConflictCases := ConflictCases+

InfeasibleCase := ‘Case’ ‘(’ PlanInstChain ‘)’ ‘(’ HandlerExp ‘)’

InfeasibleCase := ‘Case’ ‘(’ PlanInstChains ‘)’ ‘(’ HandlerExp ‘)’

PlanInstChains := PlanInstChain | PlanInstChain ‘,’ PlanInstChains

PlanInstChain := PlanInstChain ‘->’ <string> | <string>

HandlerExp := ‘Disable’ ‘(’ PlanInstChains ‘)’

| ‘Retract’ ‘(’ PlanInstChains ‘)’

| ‘if’ ‘(’ MPFLBool ‘)’ then

‘(’ HandlerExp ‘)’ else ‘(’ HandlerExp ‘)’

(** Primitive Types **)

MPFLString := ‘LookupString’ ‘(’ MPFLString ‘)’ | <string>

MPFLInteger := MPFLInteger ‘+’ MPFLIntegerTerm

| MPFLInteger ‘-’ MPFLIntegerTerm

| MPFLInteger ‘*’ MPFLIntegerTerm

| MPFLInteger ‘/’ MPFLIntegerTerm

| ‘(’ MPFLInteger ‘)’

| MPFLIntegerTerm

MPFLIntegerTerm := ‘LookupInteger’ ‘(’ MPFLString ‘)’ | <integer>

MPFLFloat := MPFLFloat ‘+’ MPFLFloatTerm

| MPFLFloat ‘-’ MPFLFloatTerm

| MPFLFloat ‘*’ MPFLFloatTerm

| MPFLFloat ‘/’ MPFLFloatTerm

| ‘(’ MPFLFloat ‘)’

| MPFLFloatTerm

MPFLFloatTerm := ‘LookupFloat’ ‘(’ MPFLString ‘)’ | <float>

MPFLBool := ‘LookupBool’ ‘(’ MPFLString ‘)’



70

| <bool>

| MPFLInteger ‘>=’ MPFLInteger

| MPFLInteger ‘>’ MPFLInteger

| MPFLInteger ‘==’ MPFLInteger

| MPFLInteger ‘<=’ MPFLInteger

| MPFLInteger ‘<’ MPFLInteger

| MPFLFloat ‘>=’ MPFLFloat

| MPFLFloat ‘>’ MPFLFloat

| MPFLFloat ‘==’ MPFLFloat

| MPFLFloat ‘<=’ MPFLFloat

| MPFLFloat ‘<’ MPFLFloat

| MPFLString ‘==’ MPFLString

(** Plan Instance Declarations **)

PlanInstDeclarations := PlanInstDeclarations PlanInstDeclaration

| PlanInstDeclaration

PlanInstDeclaration := ‘ExecutePlan’ <string> ‘(’ ExecutePlanParams ‘)’

| ‘Loiter’ <string> ‘(’ LoiterParams ‘)’

| ‘PhoneHome’ <string> ‘(’ PhoneHomeParams ‘)’

| ‘Search’ <string> ‘(’ SearchParams ‘)’

| ‘Transit’ <string> ‘(’ TransitParams ‘)’

| ‘UseAcoustic’ <string> ‘(’ UseAcousticParams ‘)’

| ‘UseAutopilot’ <string> ‘(’ UseAutopilotParams ‘)’

| ‘UseModem’ <string> ‘(’ UseModemParams ‘)’

| ‘UseSonar’ <string> ‘(’ UseSonarParams ‘)’

ExecutePlanParams := ‘UserPlanName’ ‘=’ <string>

LoiterParams := ‘LoiterPosition’ ‘=’ Position

PhoneHomeParams := ‘ModemName’ ‘=’ MPFLString ‘,’ ‘PhoneHomeRate’

‘=’ Frequency

SearchParams := ‘SonarName’ ‘=’ MPFLString ‘,’ ‘SearchArea’

‘=’ Area ‘,’ ‘LaneWidthToken’ ‘=’ Length

TransitParams := ‘Waypoints’ ‘=’ Positions

UseAcousticParams := ‘AcousticDevice’ ‘=’ MPFLString ‘,’ StartTime ‘=’ Time ‘,’

‘EndTime’ ‘=’ Time ‘,’ TaskDuration ‘=’ Duration ‘,’

‘MinGap’ ‘=’ Duration ‘,’ ‘MaxGap’ ‘=’ Duration

UseAutopilotParams := ‘Destination’ ‘=’ Position
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UseModemParam := ‘ModemName’ ‘=’ MPFLString ‘,’ ‘Message’ ‘=’ MPFLString

UseSonarParams := ‘SonarName’ ‘=’ MPFLString ‘,’ ‘PingRate’ ‘=’ Frequency

(** Constraint Declarations **)

ConstraintDeclarations := ConstraintDeclaration+

ConstraintDeclaration := ‘TimeConstraint’ <string> ‘(’ TimeConstraintParams ‘)’

| ‘PowerConstraint’ <string> ‘(’ PowerConstraintParams ‘)’

TimeConstraintParams := Time ‘<=’ ‘StartTime’ ‘<=’ Time ‘,’

Time ‘<=’ ‘EndTime’ ‘<=’ Time

PowerConstraintParams := ‘MaxLoad’ ‘=’ Power ‘,’ ‘MaxEnergy’ ‘=’ Energy

(** Do Expression Declaration **)

DoExpDeclaration : ‘Do’ ‘(’ PlanExp ‘)’

PlanExp := PlanExp ‘>’ PlanTerm

| PlanExp ‘||’ PlanTerm

| PlanExp ‘&’ PlanTerm

| PlanExp ‘^’ PlanTerm

| PlanExp ‘with’ PlanTerm

| ‘if’ ‘(’ MPFLBool ‘)’ ‘then’ ‘(’ PlanExp ‘)’

‘else’ ‘(’ PlanExp ‘)’

| PlanTerm

PlanTerm := ‘(’ PlanExp ‘)’ | <string>

(** Composite Primitive Types **)

Angle := ‘Degrees’ ‘(’ MPFLFloat ‘)’ | ‘Radians’ ‘(’ MPFLFloat ‘)’

Duration := ‘Seconds’ ‘(’ MPFLFloat ‘)’

| ‘Minutes’ ‘(’ MPFLFloat ‘)’

| ‘Hours’ ‘(’ MPFLFloat ‘)’

Length := ‘Meters’ ‘(’ MPFLFloat ‘)’ | ‘Feet’ ‘(’ MPFLFloat ‘)’

| ‘Yards’ ‘(’ MPFLFloat ‘)’

Frequency := ‘Hertz’ ‘(’ MPFLFloat ‘)’

Power := ‘Watts’ ‘(’ MPFLFloat ‘)’

| ‘Horsepower’ ‘(’ MPFLFloat ‘)’
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Energy := ‘Joules’ ‘(’ MPFLFloat ‘)’

| ‘KilowattHours’ ‘(’ MPFLFloat ‘)’

;

(** Positional Types **)

Positions := Positions ‘-’ Position | Position

Position := AbsolutePosition | RelativePosition

AbsolutePosition := ‘GeoPosition’ ‘(’ ‘Lat’ ‘=’ Angle ‘,’

‘Lon’ ‘=’ Angle ‘,’ ‘Depth’ ‘=’ Length ‘)’

CartesianPosition := ‘CartesianPosition’ ‘(’ ‘X’ ‘=’ Length ‘,’ ‘Y’

‘=’ Length ‘,’ ‘Z’ ‘=’ Length ‘)’

RelativePosition := ‘RelativePosition’ ‘(’ ‘Center’ ‘=’ AbsolutePosition

‘,’ ‘Offset’ ‘=’ CartesianPosition ‘)’

(** Area Types **)

Area := RectangularArea | CircularArea

RectangularArea := ‘RectangularArea’ ‘(’ TopLeftToken ‘=’

Position ‘,’ BottomRightToken ‘=’ Position ‘)’

CircularArea := ‘CircularArea’ ‘(’ ‘Center’ ‘=’

Position ‘,’ RadiusToken ‘=’ Length ‘)’

(** Time Types **)

Time := ClockTime | UnixTime

ClockTime := ‘ClockTime’ ‘(’ ‘Days’ ‘=’ MPFLInteger ‘,’

‘Time’ ‘=’ MPFLInteger ‘::’ MPFLInteger ‘::’ MPFLInteger ‘)’

UnixTime := ‘UnixTime’ ‘(’ ‘UTCSeconds’ ‘=’ MPFLInteger ‘)’

5.4.2 Syntactic Enforcement of Types

One interesting aspect of the design of the MSL grammar was encoding a big chunk
of the type system as production rules within the grammar itself. Most of the typed
constructs from the last chapter are encoded as production rules in the grammar. This
means that when one utilizes a value of the wrong type for a typed parameter, it results
often in a syntax error rather than a semantic error. If we look at the classical compiler
pipeline for a programming language, parsing is encompassed within the lexical analysis
and syntactic analysis stages whereas the majority of type checking is encompassed
within the subsequent semantic analysis stage. The reason MPFL can get away with
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this is because the syntax of the MSL is so limited compared to that of a general-
purpose language: the order of parameters in constructors is fixed, plan instances must
be declared before constraints, constraints must be declared before the Do Expression,
the Do Expression must be declared before the handlers. This strict ordering is easy to
implement in a context-free grammar. As a parser generator was used, it was easier to
enforce many of the type rules during parsing rather than in the semantic analysis stage,
hence the design. Regardless, the result is the same to the end user.

5.5 Plan Instance Tree (PIT) Builder

The output of the parser is a simple abstract tree representation of the mission
as specified in the MSL. Rather than being encoded now as mere text, the specification
is stored in the form of a traversable data structure that can be used by the next stage
of MPFL compiler/runtime: the Plan Instance Tree (PIT) Builder.

The PIT Builder has two responsibilities:

• Verify and enforce static semantics that parsing stage could not handle.

• Build an intermediate representation in the form of a plan instance tree (the same
concept as from Chapter 4) used for subsequent engine stages.

5.5.1 Static Semantics

As mentioned earlier, many of the type rules of the language are enforced syn-
tactically via the parser. However, there are other static semantics of the language that
are not handled when parsing. This is because an LALR(1) grammar is not sufficiently
powerful enough due to the context sensitivity of the remaining static semantics:

• Reference scoping rules - In the MSL, references are used for values in the language,
such as the names of plan instances and constraints within a Do Expression, the
plan instance chains in infeasibility and conflict handler cases, and the names of
user-defined plans referenced in the constructors of ExecutePlan plan instances.
The PIT builder checks the validity of references by makes sure they refer to values
actually declared within the scope of the user-defined plan where they are used.

• Literal value ranging checking - Values which are literal values (i.e. explicitly stated
in the code and not Lookup* calls) have their range checked by the PIT Builder. For
example, when values of type Angle are used to specify geographical coordinates
(latitude/longitude), when specified using the Degrees constructor, the range of
the latitude must be between -90.0 and 90.0 and the longitude must be between
-180.0 and 180.0. Likewise if Radians are used, latitude must be between −π/2
and π/2 and longitude must be between −π and π.

• Lookup key checking - The keys used within Lookup* calls are defined through the
plug-ins passed by the client application to MPFL during initialization. Before
compiling, the PIT Builder making sure keys used in Lookup* calls in the mission
specification exist by performing test lookups on all those key values.
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• Additional type rules - Certain static type rules could not be enforced in the gram-
mar so the PIT Builder contains additional logic to enforce the remainder.

5.5.2 Intermediate Representation - Plan Instance Tree

The static semantics are enforced as the PIT Builder builds an intermediate rep-
resentation (a different abstract syntax) to be used for subsequent MPFL engine stages.
This intermediate representation comes in the form of a plan instance tree. Recall in
the last chapter, the plan instances specified in the mission specification form a tree
structure called the plan instance tree. The root of this tree is called the sortie plan
instance with identifier sortie. The sortie instance is an instance of the last user-defined
plan in the mission specification.

To reason about the static and runtime semantics of the MSL and how MPFL
works, we define the abstract syntax in the form of a grammar. This grammar is de-
scribed as a set of variant type definitions in the OCaml language which was used as the
metalanguage to implement MPFL. This notation not only specifies the abstract syntax
but it also encodes aspects of the type system. The syntax of variant types in OCaml is
quite simple to understand and closely resembles the form of BNF production rules used
earlier to specify the MSL grammar. The OCaml syntax for a variant type is as follows:

type <identifier> = valueConstructor1 | ... | valueConstructorN

Each possible value the variant type can take is separated by vertical bars and is
defined by a constructor. A constructor is simply a string identifier (in OCaml it must
start with an uppercase later) followed by a tuple of arguments enclosed in parentheses
that encode the value. The constructor does not necessarily have to take arguments in
which case it is simply works as an enumeration. Constructors have the following syntax:

<constructor identifier> of (type1 * type2 * ... * typeN)

A complete example of a variant type is as follows. For example:

type point = Point of float*float;;

type shape = Circle of float | Rectangle of point*float*float;;

let myCircle = Circle(4.5);;

let mySquare = Rectangle(Point(0,0), 40.0,40.0);;

Example 1 - Defining variant types in OCaml

In OCaml, the variables myCircle and mySquare would both have type shape.

The types used in constructors can be recursive meaning that the type that is being
declared on the left-hand side can be used as a constructor argument. The use of as-
terisks (*) refers to tuple types in OCaml. The arguments to constructors in OCaml
constructors are actually a single argument of a tuple type. Tuple values are enclosed
within parentheses with arguments separated by commas. In addition to variant types,
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OCaml allows defining record types which are similar to a tuple, but each argument
has to be named. Values of record types are enclosed within curly braces rather than
parentheses like tuples and parameters are separated by semicolons instead of commas.

The abstract syntax specification for MPFL is given with the following OCaml
code:

(**Basic [atomic] types**)

type mpflString = String of string | LookupString of mpflString;;

type mpflInteger = Integer of int | LookupInteger of mpflString

| AddInt of mpflInteger * mpflInteger

| SubInt of mpflInteger * mpflInteger

| MultInt of mpflInteger * mpflInteger

| DivInt of mpflInteger * mpflInteger;;

type mpflFloat = Float of float | LookupFloat of mpflString

| AddFloat of mpflFloat * mpflFloat

| SubFloat of mpflFloat * mpflFloat

| MultFloat of mpflFloat * mpflFloat

| DivFloat of mpflFloat * mpflFloat;;

type mpflBool = Bool of bool | LookupBool of mpflString

| StrEqual of mpflString * mpflString

| NegateBool of mpflBool

| IntGTE of mpflInteger * mpflInteger

| IntGT of mpflInteger * mpflInteger

| IntEQ of mpflInteger * mpflInteger

| IntLT of mpflInteger * mpflInteger

| IntLTE of mpflInteger * mpflInteger

| FloatGTE of mpflFloat * mpflFloat

| FloatGT of mpflFloat * mpflFloat

| FloatEQ of mpflFloat * mpflFloat

| FloatLT of mpflFloat * mpflFloat

| FloatLTE of mpflFloat * mpflFloat;;

type angle = Degrees of mpflFloat | Radians of mpflFloat;;

type duration = Seconds of mpflFloat | Minutes of mpflFloat

| Hours of mpflFloat;;

type length = Meters of mpflFloat | Feet of mpflFloat

| Yards of mpflFloat;;

type frequency = Hertz of mpflFloat;;

type power = Watts of mpflFloat | Horsepower of mpflFloat;;

type energy = Joules of mpflFloat | KilowattHours of mpflFloat;;

(**Positional types**)

type absolutePosition = {lat:angle; lon:angle; depth:length};;

type cartesianPosition = {x:length; y:length; z:length};;

type relativePosition = {center:absolutePosition; offset:cartesianPosition};;
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type position = AbsolutePosition of absolutePosition

| CartesianPosition of cartesianPosition

| RelativePosition of relativePosition;;

(**Area types**)

type rectangularArea = {tl:position; br:position};;

type circularArea = {centerOfArea: position; radius: length};;

type area = RectangularArea of rectangularArea

| CircularArea of circularArea;;

(**Time types**)

type clockTime = {day:mpflInteger; hour:mpflInteger; minute:mpflInteger;

second:mpflInteger};;

type unixTime = {utcSeconds:mpflInteger};;

type time = ClockTime of clockTime | UnixTime of unixTime;;

type timeWindow = {beginTime:time; finishTime:time};;

(** Constraint types**)

type timeConstraint = {startWindow : timeWindow; endWindow : timeWindow};;

type powerConstraint = {maxPowerLevel : power; maxEnergyToUse : energy};;

type constraintImp = TimeConstraint of (string * timeConstraint)

| PowerConstraint of (string * powerConstraint);;

(** Different primitive plan instance task types **)

type executeUserProblem = {userPlanName:string};;

type loiterProblem = {loiterPosition:position};;

type phoneHomeProblem = {commDeviceName:string; phoneHomeRate:frequency};;

type searchProblem = {searchSonarName:string; searchArea:area;

laneWidth:length};;

type transitProblem = {waypoints:position list};;

type useAcousticProblem = {acousticDeviceName:string; startTime:time;

endTime:time; taskDuration:duration;

minGap:duration; maxGap:duration};;

type useAutopilotProblem = {destination:position};;

type useModemProblem = {modemName:string; modemMessage:mpflString};;

type useSonarProblem = {sonarName:string; pingRate:frequency};;

type problem = ExecutePlan of executeUserProblem

| Loiter of loiterProblem

| PhoneHome of phoneHomeProblem

| Search of searchProblem

| Transit of transitProblem

| UseAcoustic of useAcousticProblem

| UseAutopilot of useAutopilotProblem

| UseModem of useModemProblem
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| UseSonar of useSonarProblem;;

(** Lifetime states **)

type offState = INIT | DISABLE | SYS_RETRACT | BLOCK;;

type onState = READY | RUN | FORCE_RUN;;

type endState = RETRACT | COMPLETE;;

type ltState = On of onState | Off of offState | End of endState;;

(** Error handlers**)

type planInstChain = string list;;

type handlerExp = Disable of planInstChain list

| Retract of planInstChain list

| HandlerIfThenElse of (mpflBool * handlerExp

* handlerExp);;

type infeasibleCase = InfeasibleCase of planInstChain * handlerExp;;

type conflictCase = ConflictCase of planInstChain list * handlerExp;;

type infeasibleHandler = InfeasibleHandler of infeasibleCase list;;

type conflictHandler = ConflictHandler of conflictCase list;;

(** Plan Instance Tree (PIT) (DoExpression and PlanExpression) **)

type opType = SERIAL | PARALLEL | GROUP | XOR;;

type planExp = PlanInst of string * ltState * doExp

* problem * constraintImp list

* infeasibleHandler

* conflictHandler

| Op of opType * planExp * planExp

| IfThenElse of (mpflBool * planExp * planExp)

and doExp = NIL | Do of planExp;;

The PlanInst constructor has type planExp. A PlanInst constructor represents
a plan instance and any children it may have. This constructor is used to define the plan
instance tree the PIT Builder generates. The entire plan instance tree is encoded as a
single PlanInst value representing the sortie plan instance. Each PlanInst value con-
tains within it the name of the instance, the plan type with plan constructor, constraints
bound to the plan instance, a Do Expression, infeasibility handler, conflict handler, and
other contextual information. The Do Expression itself is also of type planExp and can
represent another plan instance, conditional expression, or planning operator. In user-
defined plan instances, the Do Expression is where children nodes are encoded which
is the means to building the tree. Primitive plan instances are leaves so their Do Ex-
pressions are empty (i.e. NIL). Plan instances which are instances of user-defined plans
(such as the sortie instance) have non-empty infeasibility and conflict handlers if those
handlers are defined within their corresponding user-defined plan.
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5.5.3 Formal Specification of Type Rules

It was mentioned that the reason the abstract syntax is specified in OCaml is
because it implicitly also defines the majority of the MSL type system. All of the
variant types used in the metalanguage (OCaml) map almost exactly to the types in the
MSL. It is a common practice for language implementors to map the types of the language
they are implementing as closely as possible to native types in the metalanguage. This
makes it easier for the implementor as they do not have to write the logic to enforce the
type rules as the metalanguage’s compiler already handles it.

In the study of programming languages, these rules tend to be formally specified
using inference rules, which are logical statements denoting antecedent (i.e. premise)
and conclusion pairs. Take for example the type mpflInteger :

type mpflInteger = Integer of int | LookupInteger of mpflString

| AddInt of mpflInteger * mpflInteger

| SubInt of mpflInteger * mpflInteger

| MultInt of mpflInteger * mpflInteger

| DivInt of mpflInteger * mpflInteger;;

We can encode this using the following set of inference rules:

v : int
Integer(v) : mpflInteger

(1)
e : mpflString

LookupInteger(e) : mpflInteger
(2)

e1 : mpflInteger e2 : mpflInteger

AddInt(e1, e2) : mpflInteger
(3)

e1 : mpflInteger e2 : mpflInteger

SubInt(e1, e2) : mpflInteger
(4)

e1 : mpflInteger e2 : mpflInteger

MultInt(e1, e2) : mpflInteger
(5)

e1 : mpflInteger e2 : mpflInteger

DivInt(e1, e2) : mpflInteger
(6)

The rules fully specify the integer type in the language. Each rule states that
if the antecedent (the statements on the top of the bar) can be proven true, then the
conclusion (the statements on the bottom of the bar) can be considered true. Rule 1
specifies literal integer values, rule 2 specifies the LookupInteger function, and rules
3 to 6 specify basic arithmetic expressions. Specifying type rules in this manner can
be useful when formally proving properties about the language, particularly its runtime
semantics.1 It is not necessary to specify the remainder of the type rules above as they
can easily be derived using the mpflInteger example.

1The type rules do not utilize a type environment, commonly denoted as Γ in programming
language literature. Type environments are used to resolve the types of free variables in the
language. In the MSL, a type environment is not needed as there are no free variables and types
can be determined syntactically.
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5.5.4 Formal Specification of Run-time Type Rules

The OCaml variant types define the static semantics of the system, but there are
aspects of the type constraints that cannot be verified at compile time. This requires
runtime checks by the MPFL runtime in order to verify the validity of the mission
specification. We can add additional rules and enhance the type rules implied by the
OCaml abstract syntax to handle those semantics. However, these rules are different from
the previous inference rules as they are runtime rules and require invoking a runtime
evaluator. For example, it was mentioned that the latitude and longitude for values
representing geographical positions (represented by record type absolutePosition in the
abstract syntax) have type angle. However their value must fall additionally within
a particular range depending on whether the value was specified using the Degrees

constructor or the Radians constructor. We can specify these checks as runtime rules
using a semantics model called operational semantics. Operational semantics are a
means of formally specifying the meaning of a program2 as it is executed. In other words,
the operational semantics describe how an evaluator (i.e. interpreter) for a language
operates as it encounters expressions defined in terms of the abstract syntax. The runtime
type checking semantics of an absolutePosition value are specified by the following rules:

e ↪→
V alue

Degrees(Float(v)),−90 ≤ v ≤ 90

V alidLatitude(e)
(7)

e ↪→
V alue

Radians(Float(v)),−π/2 ≤ v ≤ π/2

V alidLatitude(e)
(8)

e ↪→
V alue

Degrees(Float(v)),−180 ≤ v ≤ 180

V alidLongitude(e)
(9)

e ↪→
V alue

Radians(Float(v)),−π ≤ v ≤ π

V alidLongitude(e)
(10)

V alidLatitude(e1) V alidLongitude(e2)

V alidAbsolutePosition({lat = e1; lon = e2; depth = e3}) (11)

In rules 7 to 11, we specify properties that we would like certain expressions
to have (ValidLatitude, ValidLongitude, ValidAbsolutePosition). These properties are
metaconstructs used by the MPFL compiler/runtime to ensure validity of typed expres-
sions. Whenever these values are used, we can ensure that those values meet their range
constraints (or any other constraints) by having one of these Valid* properties. In other
words, the MPFL compiler/runtime ensures that the Valid* property exists for each

2Operational semantics are only one type of runtime semantics model. Other popular semantic
models include axiomatic semantics and denotational semantics.
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value specified checked right before its usage. Note that expressions that hold the Valid*
property during an MPFL compilation cycle may not hold the property later on (e.g.
Lookup* call) causing a runtime error. As an example, rule 11 states an expression of
type absolutePosition is valid when its latitude and longitude subexpressions have the
ValidLatitude and ValidLongitude properties respectively. These in turn are expressed
in rules 7 through 10. Each of these rules call an evaluator (the arrow) that reduces a
typed expression to a value representing each angle to its reduced form3 (i.e. simplest
form): a Degrees or Radians constructor following by a floating-point value. If the value
falls within the correct range, the respective property holds. If these properties do not
hold, it means a runtime type error causing the MPFL runtime to raise an exception.

Notice that the arrow representing the evaluator has the word Value subscripted
on it. MPFL has multiple evaluators that are used to express its complete runtime
semantics. In this case, Value refers to the Value Evaluator. This evaluator can take
any typed expression in the language and return a version of it where all primitive typed
(boolean, integer, float, and string) expressions have been reduced to their simplest
values. For example, AddInt(Integer(3),AddInt(Integer(4),Integer(2))) would
evaluate to Integer(9) with the Value Evaluator. The Value Evaluator is discussed in
more detail later in the chapter when the remainder of runtime rules are described.

The remainder of runtime type checks are ignored due to the sheer quantity of
rules. However, Rules 7-11 demonstrate how the remaining runtime checks could be
described in a more formal manner.

5.5.5 The Next Step

The output of the PIT Builder is a well-formed plan instance tree where all static
semantics have been verified. The Parser and PIT Builder are no longer needed after
this point and are never called again. In fact, the Parser and PIT Builder are only called
when the user initializes the MPFL compiler/runtime within their client application.
Initialization will fail if there are syntactic or type errors and return to the user a list of
errors with corresponding line numbers. After the plan instance tree is created, the actual
compilation of schedules begins. The subsequent MPFL engine stages are responsible
for this and utilize the generated plan instance tree to do so.

5.6 Lifetime State Transition (LST) Evaluator

The plan instance tree is more than just a representation of what the user wants
the robot to do and the various parameters, constraints, and error handlers they specified
in their mission specification. Rather each plan instance in the tree represents a runtime
context used by MPFL for managing each task the user wants to perform from beginning
to end. Figure 5.3 illustrates the kind of information that is contained in a particular
plan instance in some arbritrary plan instance tree. Plan instances are analogous to
process control blocks (PCBs) for operating system processes, as described in Chapter 2.

3The type of operational semantics used here are big-step operational semantics. The an-
tecedents in each rule always assume that the expression reduces to its simplest possible form in
a single ‘big step’.
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Just as PCBs hold the runtime context of the respective processes they represent, plan
instances are also in-memory structures that are used by MPFL to manage tasks. MPFL
manages tasks through plan instances the way an operating system scheduler manages
processes through PCBs.

Fig. 5.3 Each node in the plan instance tree is a context for a task

5.6.1 Lifetime State

The MPFL runtime borrows the idea of process states from operating system
scheduler implementations to help it manage all the tasks it is to plan. In Chapter
2, it was mentioned that the scheduler of an operating system associates a state for
each process (typically contained within the PCB itself) that indicates the status of the
process. A process goes through many states in its existence: it can be in a state where
it has just been created (INIT), it can be on the ready queue of the OS scheduler waiting
to be executed (READY), it can be actually running on a processor (RUNNING), it can
be paused as it is waiting for some I/O operation (BLOCKED), and it can be in its end
state waiting to have its PCB destroyed and relinquished by the OS (TERMINATE).

Each plan instance also maintains a similar state known as the lifetime state.
Each lifetime state is defined by a macrostate and a microstate. Each plan instance can
be in one of three macrostates: Off, On, or End.

• Off - The task(s) represented by the plan instance is not currently being executed

• On - The task(s) represented by the plan instance is either being executed or is
ready to be executed
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• End - The task(s) represented by the plan instance have been terminated.

Each of these macrostates contains a microstate within that gives more detail
about the nature of the macrostate. These are described in Table 5.1. Figure 5.4 shows
the transitions that the lifetime state can take.

Fig. 5.4 State transition diagram of lifetime state at macrolevel

5.6.2 Usage of Lifetime State and the MPFL Model of Planning

The lifetime state is the key to implementing MPFL’s model of planning. By
model of planning we mean the logic that MPFL uses to plan and manage tasks in order
to achieve goals without violating constraints. When a user writes a mission specification
in the MSL, they expect the robot to do exactly what is specified in their program. The
MPFL compiler/runtime utilizes the lifetime state to enforce this. The lifetime state is
primarily manipulated by the Lifetime State Transition (LST) Evaluator which
is a module that follows the PIT Builder in the MPFL engine. This module manipulates
the lifetime states in a way that enforces MPFL’s model of planning.

5.6.3 The Lifetime State Transition Evaluator

The LST Evaluator has the responsibility of changing the lifetime state of plan
instances in a way that helps the MPFL runtime enforce the semantics of the language,
particularly the planning operators, by providing metainformation about the tasks that
are to be executed. This metainformation is also used in the next MPFL compiler stage
(described later in Section 5.7) in order to perform scheduling.

The LST Evaluator has the ability to take the plan instance tree, or any subtree
within it, and attempt to apply a lifetime state to it. By apply it is meant that the
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Macrostate Microstate Meaning

Off INIT The task is in initial state

Off DISABLE The task has been temporarily removed from
consideration for planning

Off SYS RETRACT The task is not considered for planning, but may
go into an active state later

Off BLOCK The task is waiting for another task(s) to com-
plete before it can be scheduled

On READY The task is ready to be scheduled

On RUN The task is currently running

On FORCE RUN The task needs to run immediately

End COMPLETE The task successfully completed

End RETRACT The task was not completed and permanently
removed from consideration for planning

Table 5.1 Meaning of lifetime states in MPFL

LST Evaluator attempts to transition as many plan instances in the tree to the specified
state. The MPFL runtime always holds on to the plan instance tree in the form of an
expression of the aforementioned type planExp. The LST Evaluator is simply a function
that takes a value of type planExp and a lifetime state (defined as OCaml variant type
ltState) to be applied and returns a new version of the planExp expression where the
lifetime states of each plan instance has potentially been changed. We can refer to the
LST Evaluator function as LST with the following type signature4:

LST : planExp → ltState → planExp

The MPFL runtime invokes the LST Evaluator passing in the sortie plan instance
in the form of a planExp and applies the particular state On(READY) meaning a lifetime
state where the macrostate is On and the microstate is READY. The goal of the LST
Evaluator is to get as many plan instances into a ready state as possible so that they
can be scheduled. However, not all plan instances will transition to the On(READY) state
because it would violate the semantics of the language.

5.6.4 LST Transition Rules

The LST Evaluator encompasses over 600 rules that define how the lifetime state
of the plan instances in a plan instance tree are manipulated. The choice of rule is
decided exclusively by what the current lifetime state of each plan instance is and the
operators used within each Do Expression. To give a gentle introduction, let us take a
hypothetical example with the following MSL code that utilizes a serial operator:

4All function type notations in this thesis use curried notation. There is no technical reason
for this use but rather stems from the use of OCaml as the implementation language where all
function types are presented to the programmer in curried form.
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Plan ltDemo

(

Transit a(...)

Loiter b(...)

Do(a > b)

)

Example 1 - A simple plan to demonstrate lifetime states

Fig. 5.5 A freshly created plan instance tree representing Example 1

Given this specification in Example 1, the PIT Builder will emit a plan instance
tree that is graphically depicted in Figure 5.5. In the figure, each plan instance is denoted
by its name and current lifetime state. On startup, each instance is initialized in the
Off(INIT) state. If we were to pass this tree to the LST Evaluator and apply the state
On(READY) the LST Evaluator would return a tree as depicted in Figure 5.6.

Fig. 5.6 The plan instance tree from Figure 5.5 after the LST Evaluator applies an
On(READY) state to it

The tree depicted in Figure 5.6 shows that the lifetime state of each plan instance
has changed. sortie and sortie→a have gone into the On(READY) state and sortie→b

has gone into the Off(BLOCK) state. The reason that this happened is because of the
meaning of the serial (>) operator; nothing on the right hand side can be attempted
until everything on the left hand side has completed. By assigning a blocked state to
sortie→b, MPFL can ensure that the task represented by sortie→b is not attempted
before sortie→a terminates. Also note that plan instance sortie has a lifetime state
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of On(READY). The lifetime state of a user-defined plan instance represents an overall
lifetime state of its children, which is also determined by the planning operators used in
the instance’s Do Expression and the current lifetime state of each child instance.

Every compilation cycle, the MPFL runtime uses the LST Evaluator to apply
the On(READY) state to the sortie plan instance. The evaluator returns a new copy of
the plan instance tree with the lifetime state of the plan instances potentially changed.
The runtime throws away the old tree and replaces it with the new one. From an
imperative perspective, the LST Evaluator is producing side-effects on the plan instance
tree. However, as a functional approach was used this metaphor will not be used. The
reason to think of MPFL in a functional sense is not only because the metalanguage
(OCaml) is functional, but because it is easier to reason about the semantics due to the
difficulty of modeling side-effects in known semantic models.

5.6.5 Formal Semantics of LST Evaluator

There are over 600 rules that describe how the LST Evaluator shifts the lifetime
state of the plan instances it processes. The overall evaluator (LST) utilizes additional
evaluators which in turn utilize each other. Each evaluator can be represented as a typed
function described as followed:

• Value : α→ α - This evaluator takes any typed expression in the language and
returns the expression where any subexpressions that have a primitive type (i.e.
mpflInteger, mpflString, mpflBoolean, mpflFloat) are evaluated and reduced to a
single value. This evaluator was briefly mentioned earlier in Section 5.5.4.

• ChangeOnState : planExp → ltState → planExp - This evaluator is used when
plan instances are being switched to an On(*) state. The LST evaluator is not al-
lowed to change certain states to the On state, so this evaluator enforces that.

• CurrentGroup : ltState → ltState → ltState - This evaluator is used to
determine the overall lifetime state of two expressions bound by a group operator
based on their respective lifetime states.

• CurrentParallel : ltState → ltState → ltState - This evaluator is used
to determine the overall lifetime state of two expressions bound by a parallel op-
erator based on their respective lifetime states.

• CurrentSerial : ltState → ltState → ltState - This evaluator is used to
determine the overall lifetime state of two expressions bound by a serial operator
based on their respective lifetime states.

• CurrentXor : ltState → ltState → ltState - This evaluator is used to de-
termine the overall lifetime state of two expressions bound by an xor operator
based on their respective lifetime states.

• Current : planExp → ltState - This gives us the current overall lifetime state
of a planExp. Not only do plan instances have a current lifetime state, but all
expressions of type planExp have an overall current lifetime state determined by
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the current lifetime state of each plan instance contained within the expression
along with any planning operators used.

• NextGroup : planExp → planExp → ltState → (ltState * ltState) - This
evaluator takes two planExp bound by the group operator and a lifetime state that
is to be applied that expression, and returns a lifetime state to apply to each
subexpression based on the semantics of the group operator.

• NextParallel : planExp → planExp → ltState → (ltState * ltState) -
This evaluator takes two planExp expressions bound by the parallel operator and
a lifetime state that is to be applied to that expression, and returns a lifetime state
to apply to each subexpression based on the semantics of the parallel operator.

• NextSerial : planExp → planExp → ltState → (ltState * ltState) - This
evaluator takes two planExp expressions bound by the serial operator and a life-
time state that is to be applied to that expression, and returns a lifetime state to
apply to each subexpression based on the semantics of the serial operator.

• NextXor : planExp → planExp → ltState → (ltState * ltState) - This
evaluator takes two planExp expressions bound by the xor operator and a lifetime
state that is to be applied to that expression, and returns a lifetime state to apply
to each subexpression based on the semantics of the xor operator.

• LST : planExp → ltState → planExp - This is the evaluator that represents
the entire LST Evaluator. It takes a planExp expression, a lifetime state to apply
to the expression and in turn returns an updated plan expression with new lifetime
states.

We can describe the runtime semantics of the LST Evaluator as a series of
inference rules that utilize the other evaluators. The other evaluators can similarly be
described using inference rules. Unlike the static semantics in Section 5.5, these rules
describe how the abstract syntax (the plan instance tree) is manipulated during runtime.
Due to the sheer number of rules, only a small subset of rules will be shown to give the
flavor of the concept. Also, we will simplify the abstract syntax to be more minimal as all
that is needed by the LST Evaluator is the name, lifetime state, and the Do Expression
contained within each plan instance. The ignored parameters can be assumed to be
immutable. The reduced abstract syntax is as follows:

type planExp = PlanInst of string * ltState * doExp

| Op of opType * planExp * planExp

| IfThenElse of (mpflBool * planExp * planExp)

and doExp = NIL | Do of planExp;;

The following subsections describe the rules that compose the various evaluators
described above.5

5Just as type rules can use a type environment (typically denoted as Γ), runtime evaluators
can also utilize a runtime environment (typically denoted as ρ). The purpose of the runtime
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5.6.5.1 Value Evaluator (Partial Set of Rules)

The Value Evaluator’s purpose is to take any typed expression and reduce any
primitive typed (integer, float, string, and boolean) subexpressions to their simplest
form. Not all rules are shown because of the sheer quantity, but a small subset is given
to give the idea.

e ↪→
V alue

v

Integer(e) ↪→
V alue

Integer(v)
(12)

e ↪→
V alue

v

F loat(e) ↪→
V alue

Float(v)
(13)

e1 ↪→
V alue

v1 e2 ↪→
V alue

v2 v = v1 + v2

AddInt(e1, e2) ↪→
V alue

v
(14)

e1 ↪→
V alue

v1 e2 ↪→
V alue

v2 v = v1/v2

DivF loat(e1, e2) ↪→
V alue

v
(15)

e1 ↪→
V alue

v1 e2 ↪→
V alue

v2 v1 == v2

StrEq(e1, e2) ↪→
V alue

Bool(true)
(16)

e1 ↪→
V alue

v1 e2 ↪→
V alue

v2 v1 6= v2

StrEq(e1, e2) ↪→
V alue

Bool(false)
((17)

e ↪→
V alue

v

Meters(e) ↪→
V alue

Meters(v)
(18)

e ↪→
V alue

v

Feet(e) ↪→
V alue

Feet(v)
(19)

e ↪→
V alue

v

Y ards(e) ↪→
V alue

Y ards(v)
(20)

5.6.5.2 ChangeOnState Evaluator (Complete Set of Rules)

The ChangeOnState Evaluator is utilized when applying the On state to an ex-
pression. The only purpose of this evaluator is to ensure that plan instances already in
the On(RUN) state are not demoted to an On(READY) state.

OnMicroStates = {READY,RUN,FORCE RUN}

OnMacroStates = {On(READY ), On(RUN), On(FORCE RUN)}

cs ↪→
V alue

On(v1) v1 = RUN |FORCE RUN app ↪→
V alue

On(v2) v2 ∈ {OnMicroStates\RUN}

< cs, app > ↪→
ChangeOnState

On(v1)
(21)

environment is to lookup the values bound to variables and to substitute them into expressions
as the evaluator encounters them. Just as the type environment was not necessary as types can
be determined solely by abstract syntax structure, a runtime environment is not necessary as
the MSL has no real concept of variables. Though the concept of Lookup* calls is similar to
a variable, it will later be shown that Lookup* expressions are reduced via substitution in the
Value Evaluator.



88

cs ↪→
V alue

On(RUN) app ↪→
V alue

On(s) s ∈ OnMicroStates

< cs, app > ↪→
ChangeOnState

On(RUN)
(22)

cs ↪→
V alue

lst lst ∈ onMacroStates app ↪→
V alue

v v 6∈ OnMacroStates

< cs, app > ↪→
ChangeOnState

v (23)

5.6.5.3 CurrentSerial Evaluator (Complete Set of Rules)

The CurrentSerial Evaluator determines the overall lifetime state of a serial
expression based on the lifetime states of each respective expression.

e1 ↪→
V alue

Off(v1) e2 ↪→
V alue

Off(v2)

< e1, e2 > ↪→
CurrentSerial

Off(v1)
(24)

e1 ↪→
V alue

On(v1) e2 ↪→
V alue

On(v2)

< e1, e2 > ↪→
CurrentSerial

On(v1)
(25)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

Off(v2)

< e1, e2 > ↪→
CurrentSerial

Off(v2)
(26)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

On(v2)

< e1, e2 > ↪→
CurrentSerial

On(v2)
(27)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

End(v2)

< e1, e2 > ↪→
CurrentSerial

End(v2)
(28)

5.6.5.4 CurrentXor Evaluator (Complete Set of Rules)

The CurrentXor Evaluator determines the overall lifetime state of an xor expres-
sion based on the lifetime states of each respective expression.

e1 ↪→
V alue

Off(v1) e2 ↪→
V alue

Off(v2)

< e1, e2 > ↪→
CurrentXor

Off(v1)
(29)

e1 ↪→
V alue

On(v1) e2 ↪→
V alue

Off(v2)

< e1, e2 > ↪→
CurrentXor

On(v1)
(30)

e1 ↪→
V alue

End(v1) v1 = RETRACT e2 ↪→
V alue

Off(v2)

< e1, e2 > ↪→
CurrentXor

Off(v2)
(31)

e1 ↪→
V alue

End(v1) v1 6= RETRACT e2 ↪→
V alue

End(v2)

< e1, e2 > ↪→
CurrentXor

End(v2)
(32)

e1 ↪→
V alue

End(v1) v1 = RETRACT e2 ↪→
V alue

On(v2)

< e1, e2 > ↪→
CurrentXor

On(v2)
(33)



89

e1 ↪→
V alue

End(v1) v1 = RETRACT e2 ↪→
V alue

End(v2) v2 = RETRACT

< e1, e2 > ↪→
CurrentXor

End(RETRACT )
(34)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

End(v2) v1 6= v2 v1 = COMPLETE|v2 = COMPLETE

< e1, e2 > ↪→
CurrentXor

End(COMPLETE)
(35)

5.6.5.5 Current Evaluator (Complete Set of Rules)

The Current Evaluator determines the overall lifetime state of any planExp. Note
that this evaluator turns around and calls the various Current* evaluators in its opera-
tion.

PlanInst(n, cs,NIL) ↪→
Current

cs
(36)

e ↪→
Current

v

P lanInst(n, cs,Do(e)) ↪→
Current

v
(37)

< e1, e2 > ↪→
CurrentSerial

v

Op(SERIAL, e1, e2) ↪→
Current

v
(38)

< e1, e2 > ↪→
CurrentXor

v

Op(XOR, e1, e2) ↪→
Current

v
(39)

< e1, e2 > ↪→
CurrentGroup

v

Op(GROUP, e1, e2) ↪→
Current

v
(40)

< e1, e2 > ↪→
CurrentParallel

v

Op(PARALLEL, e1, e2) ↪→
Current

v
(41)

cond ↪→
V alue

Bool(true) e1 ↪→
Current

v

IfThenElse(cond, e1, e2) ↪→
Current

v
(42)

cond ↪→
V alue

Bool(false) e2 ↪→
Current

v

IfThenElse(cond, e1, e2) ↪→
Current

v
(43)

5.6.5.6 NextSerial Evaluator (Complete Set of Rules)

The NextSerial Evaluator determines the state to apply to each operand in a
serial expression during state transitioning based on the lifetime state that is to be
applied to the complete expression. The return value is a pair of lifetime states where
the first is to be applied to the first operand and the second to the second operand.

e1 ↪→
V alue

Off(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

Off(v3)

< e1, e2, app > ↪→
NextSerial

< Off(v3), Off(v3) >
(44)
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e1 ↪→
V alue

Off(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

On(v3)

< e1, e2, app > ↪→
NextSerial

< On(v3), Off(BLOCK) >
(45)

e1 ↪→
V alue

Off(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

End(v3)

< e1, e2, app > ↪→
NextSerial

< End(v3), End(v3) >
(46)

e1 ↪→
V alue

On(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

On(v3) < On(v1), On(v3) > ↪→
ChangeOnState

v4

< e1, e2, app > ↪→
NextSerial

< v4, Off(BLOCK) >
(47)

e1 ↪→
V alue

On(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

End(v3)

< e1, e2, app > ↪→
NextSerial

< End(v3), End(v3) >
(48)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

Off(v3)

< e1, e2, app > ↪→
NextSerial

< End(v1), Off(v3) >
(49)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

On(v3)

< e1, e2, app > ↪→
NextSerial

< End(v1), On(v3) >
(50)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

End(v3)

< e1, e2, app > ↪→
NextSerial

< End(v1), End(v3) >
(51)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

On(v2) app ↪→
V alue

Off(v3)

< e1, e2, app > ↪→
NextSerial

< End(v1), Off(v3) >
(52)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

On(v2) app ↪→
V alue

On(v3) < On(v2), On(v3) > ↪→
ChangeOnState

v4

< e1, e2, app > ↪→
NextSerial

< End(v1), v4) >
(53)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

On(v2) app ↪→
V alue

End(v3)

< e1, e2, app > ↪→
NextSerial

< End(v1), End(v3) >
(54)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

End(v2) app ↪→
V alue

Off(v3)

< e1, e2, app > ↪→
NextSerial

< End(v1), End(v2) >
(55)
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e1 ↪→
V alue

End(v1) e2 ↪→
V alue

End(v2) app ↪→
V alue

On(v3)

< e1, e2, app > ↪→
NextSerial

< End(v1), End(v2) >
(56)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

End(v2) app ↪→
V alue

End(v3)

< e1, e2, app > ↪→
NextSerial

< End(v1), End(v2) >
(57)

5.6.5.7 NextXor Evaluator (Complete Set of Rules)

The NextXor Evaluator determines the state to apply to each operand in an xor
expression during state transitioning based on the lifetime state that is to be applied to
the complete expression. The return value is a pair of lifetime states where the first is
to be applied to the first operand and the second to the second operand.

e1 ↪→
V alue

Off(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

Off(v3)

< e1, e2, app > ↪→
NextXor

< Off(v3), Off(v3) >
(58)

e1 ↪→
V alue

Off(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

On(v3)

< e1, e2, app > ↪→
NextXor

< On(v3), Off(SY S RETRACT ) >
(59)

e1 ↪→
V alue

Off(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

End(v3)

< e1, e2, app > ↪→
NextXor

< End(v3), End(RETRACT ) >
(60)

e1 ↪→
V alue

On(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

Off(v3)

< e1, e2, app > ↪→
NextXor

< Off(v3), Off(v3) >
(61)

e1 ↪→
V alue

On(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

On(v3) < On(v1), On(v3) > ↪→
ChangeOnState

v4

< e1, e2, app > ↪→
NextXor

< v4, Off(SY S RETRACT )) >
(62)

e1 ↪→
V alue

On(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

End(v3) v3 = RETRACT

< e1, e2, app > ↪→
NextXor

< End(v3), On(READY ) >
(63)

e1 ↪→
V alue

On(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

End(v3) v3 6= RETRACT

< e1, e2, app > ↪→
NextXor

< End(v3), End(RETRACT ) >
(64)
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e1 ↪→
V alue

End(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

Off(v3) v1 = RETRACT

< e1, e2, app > ↪→
NextXor

< End(v1), Off(v3) >
(65)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

Off(v3) v1 6= RETRACT

< e1, e2, app > ↪→
NextXor

< End(v1), End(RETRACT ) >
(66)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

On(v3) v1 = RETRACT

< e1, e2, app > ↪→
NextXor

< End(v1), On(v3) >
(67)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

On(v3) v1 6= RETRACT

< e1, e2, app > ↪→
NextXor

< End(v1), On(v3) >
(68)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

End(v3) v1 = RETRACT

< e1, e2, app > ↪→
NextXor

< End(v1), End(v3) >
(69)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

Off(v2) app ↪→
V alue

End(v3) v1 6= RETRACT

< e1, e2, app > ↪→
NextXor

< End(v1), End(RETRACT ) >
(70)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

On(v2) app ↪→
V alue

Off(v3) v1 = RETRACT

< e1, e2, app > ↪→
NextXor

< End(v1), Off(v3) >
(71)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

On(v2) app ↪→
V alue

On(v3) v1 = RETRACT

< e1, e2, app > ↪→
NextXor

< End(v1), On(v3) >
(72)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

On(v2) app ↪→
V alue

End(v3) v1 = RETRACT

< e1, e2, app > ↪→
NextXor

< End(v1), End(v3) >
(73)
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e1 ↪→
V alue

End(v1) e2 ↪→
V alue

End(v2) app ↪→
V alue

Off(v3)

< e1, e2, app > ↪→
NextXor

< End(v1), End(v2) >
(74)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

End(v2) app ↪→
V alue

On(v3)

< e1, e2, app > ↪→
NextXor

< End(v1), End(v2) >
(75)

e1 ↪→
V alue

End(v1) e2 ↪→
V alue

End(v2) app ↪→
V alue

End(v3)

< e1, e2, app > ↪→
NextXor

< End(v1), End(v2) >
(76)

5.6.5.8 LST Evaluator (Complete Set of Rules)

The LST Evaluator is the master evaluator that we are trying to describe. This
evaluator takes a planExp and applies some desired ltState value to it. The end result is
copy of the passed planExp with lifetime states of some of the plan instances potentially
changed.

cs ↪→
V alue

ns ns ∈ OnMacroStates < cs, app > ↪→
ChangeOnState

ns

< PlanInst(n, cs,NIL), app > ↪→
LST

PlanInst(n, ns,NIL))
(77)

cs ↪→
V alue

ns ns 6∈ OnMacroStates

< PlanInst(n, cs,NIL), app > ↪→
LST

PlanInst(n, app,NIL))
(78)

< e, app > ↪→
LST

e′ e′ ↪→
Current

ns

< PlanInst(n, cs,Do(e)), app > ↪→
LST

PlanInst(n, ns,Do(e′))
(79)

e2 ↪→
Current

cs2 e1 ↪→
Current

cs1

< cs1, cs2, app > ↪→
NextSerial

< ns1, ns2 >

< e1, ns1 > ↪→
LST

v1

< e2, ns2 > ↪→
LST

v2

< Serial(e1, e2), app > ↪→
LST

Serial(v1, v2)
(80)

e2 ↪→
Current

cs2 e1 ↪→
Current

cs1

< cs1, cs2, app > ↪→
NextGroup

< ns1, ns2 >

< e1, ns1 > ↪→
LST

v1

< e2, ns2 > ↪→
LST

v2

< Group(e1, e2), app > ↪→
LST

Group(v1, v2)
(81)
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e2 ↪→
Current

cs2 e1 ↪→
Current

cs1

< cs1, cs2, app > ↪→
NextParallel

< ns1, ns2 >

< e1, ns1 > ↪→
LST

v1

< e2, ns2 > ↪→
LST

v2

< Parallel(e1, e2), app > ↪→
LST

Parallel(v1, v2)
(82)

e2 ↪→
Current

cs2 e1 ↪→
Current

cs1

< cs1, cs2, app > ↪→
NextXor

< ns1, ns2 >

< e1, ns1 > ↪→
LST

v1

< e2, ns2 > ↪→
LST

v2

< Xor(e1, e2), app > ↪→
LST

Xor(v1, v2)
(83)

cond ↪→
V alue

Bool(true) < e1, app > ↪→
LST

v1 < e2, Off(SY S RETRACT ) > ↪→
LST

v2

< IfThenElse(cond, e1, e2), app > ↪→
LST

IfThenElse(cond, v1, v2)
(84)

cond ↪→
V alue

Bool(false) < e1, Off(SY S RETRACT ) > ↪→
LST

v1 < e2, app > ↪→
LST

v2

< IfThenElse(cond, e1, e2), app > ↪→
LST

IfThenElse(cond, v1, v2)
(85)

5.6.6 Purpose of Formal Specification

In programming language theory, the purpose of defining a language formally
serves two purposes. The first is to describe precisely what a program in the language
means so that somebody creating a compiler or interpreter for the language can im-
plement it. The second is to be able to prove properties about the language, mainly
those that show its correctness. What defines correctness depends on the language, but
one of the typical properties language designers want to prove is if their language is
well-typed. To show that a language is well-typed, we must prove that the evaluation
semantics (the operational semantics in this case) exhibit two properties: type preser-
vation and evaluation progress (Pierce 2002). Type preservation means that if we
take any typed expression in the language and evaluate it, each new expression that is
created during the evaluation leading up to the final reduced expression has the same
type. Evaluation progress means that for every valid expression in the language, the
evaluator will be able to process it and produce another valid expression in the lan-
guage (which in turn exhibits the progress property and so on). Proving these properties
typically requires looking at every possible expression in the language via a proof by
structural induction. If a language is shown to be well-typed, it is an extremely powerful
statement about the language as it guarantees that a valid program will never end up
in an invalid state. Unsafe languages such as C and C++ are not well-typed because
they allow users to circumvent the type system by being able to cast any value in the
language to any type, even if it is not valid. This is also why use of such languages result
in programs that have a much higher tendency for bugs, memory leaks, and security
vulnerabilities.

In this thesis, no proof is given to show the correctness of the language as it is
beyond the scope of the thesis. It would be wise in the future to create such a proof.
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For example, if one looks at the rules for one of the evaluators specified above, they
may notice that even for evaluators where all rules are given, rules are not specified for
all possible expressions. This is because not all expressions are valid in the language,
even if they can be expressed by the abstract syntax (just as with the static semantics).
By showing a proof of the language being well-typed, there is a guarantee that none of
those invalid expressions can ever be reached. It is also interesting to note that because
the MSL is not as powerful as a general-purpose language, one maybe able to prove
more interesting properties than just being well-typed, such as “every MSL program is
decidable.”

Setting up such a proof requires a complete set of type and runtime rules that
describes the entire compiler as a single evaluator function. For each possible expres-
sion in the language, one has to show inductively that both types are preserved during
evaluation (preservation) and that indeed the evaluation can proceed by a single step to
another valid expression (progress). Practically this is difficult because not only is the
number of rules large, but only a subset of the semantics have been formalized.

The subsequent section discusses the MPFL runtime stage that follows the LST
Evaluator. Unlike the LST Evaluator, the runtime semantics will be described informally.

5.7 Planner Invocation (PI) Evaluator

After the LST Evaluator completes its execution, the plan instance tree has been
updated with new lifetime states for each plan instance. Up to this point, it is understood
that the lifetime state is important in MPFL to enforce the semantics of the language.
but how it uses that state has yet to be explained. The lifetime state is used extensively
in the next component of the MPFL engine, the Planner Invocation (PI) Evaluator,
where the bulk of system computation occurs. The PI Evaluator is the final stage in the
MPFL engine and the point where schedules are generated for the robot’s actuators and
subsystems.

5.7.1 Plugins and Initialization

When a user initializes the MPFL runtime/compiler in their client application,
in addition to passing in a mission specification file written in the MSL, the user also
must pass in a set of plugins. These plugins are used almost exclusively by the PI
Evaluator. One of the plugins is called the Knowledge Base and the remainder are
called Planners. These plugins are implemented through an object-oriented API by
subclassing from a set of provided base classes and then passing in instances of those
classes (i.e. objects) into the MPFL initialization function. We can now define the type
signature of the initialization function, initialize mpfl:

initialize mpfl: string -> knowledgeBase -> planner list -> unit

The function initialize mpfl takes a string representing the path and name of
the MSL mission specification file, an object of the class knowledgeBase and a list of
objects of the class planner. The base classes that MPFL provides define an abstract
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interface that forces implementors of the plugins to implement a set of callback meth-
ods needed by the runtime. During initialization, the specification is verified within
the Parser and PIT Builder stages. If there are any problems, an exception is raised
indicating the system could not be bootstrapped.

5.7.2 Knowledge Base

The purpose of the knowledge base is to provide perception information to MPFL
and the various planners that are passed into the system. The knowledge base is what
drives the Lookup* calls that users can utilize in the MSL. Users define a knowledge
base by subclassing from the MPFL-provided base class knowledgeBase which requires
overriding four abstract methods with the following type signatures:

• lookup string : string -> string

• lookup float : string -> float

• lookup integer: string -> int

• lookup bool: string -> bool

The first argument to each function corresponds to the set of valid keys that one
can utilize with the various lookup calls. The implementor of the knowledge base must
return a value based on the key passed to the method. If not found, they should call
the base class version of the method which will raise an exception likely terminating the
MPFL runtime. Users can also add additional methods to the knowledge base which can
then be accessed by the various planners in the system.

5.7.2.1 Formal Semantics of Lookup Calls

The operational semantics of the Value Evaluator when dealing with Lookup* calls
can now be specified formally. Note that the ‘#’ notation below indicates invocation of
a method on on object (i.e. object#method ) in OCaml.

key ↪→
V alue

keyV al KnowledgeBase#lookup string keyVal ↪→
OCaml

v

LookupString(key) ↪→
V alue

v
(86)

key ↪→
V alue

keyV al KnowledgeBase#lookup float keyVal ↪→
OCaml

v

LookupF loat(key) ↪→
V alue

v
(87)

key ↪→
V alue

keyV al KnowledgeBase#lookup bool keyVal ↪→
OCaml

v

LookupBool(key) ↪→
V alue

v
(88)
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key ↪→
V alue

keyV al KnowledgeBase#lookup int keyVal ↪→
OCaml

v

LookupInteger(key) ↪→
V alue

v
(89)

5.7.3 Planners

Planners are the modules that actually perform scheduling in the system. Each
primitive plan in the MSL has a corresponding planner associated with it. For exam-
ple, there is a Search Planner for the Search type, a UseAutopilot Planner for the
UseAutopilot type, and so on. Planners are implemented by subclassing from a set of
MPFL-provided base classes, one for each primitive plan type. Each planner is simply
a scheduler for the tasks represented by plan instances of a certain primitive plan type.
Recall that each plan instance is a representation of a living instance of a plan (i.e. task).
The PI Evaluator extracts from the plan instance tree each set of primitive plan instances
of a certain primitive plan type and then feeds them to the corresponding planner of the
same plan type and requests the planner to schedule the tasks. For example, all the
Loiter plan instances in the tree, regardless of where they are in the tree, are fed to
the Loiter planner. The Loiter planner can then build a schedule for all Loiter plan
instances via a callback method implemented by the designer of that particular Loiter

planner. The planner can utilize the metadata contained within the plan instance (name,
constraints, lifetime state, task parameters, etc) then to build a valid schedule for each
one.

5.7.4 Planners and the MSL

One of the interesting things about MPFL’s Planner API is that planners have
the features of the MSL integrated into the API. Planners have the ability to create
additional primitive plan instances that can be attached as children to the plan instances
it is scheduling, just as one can in the MSL by creating plan instances of a user-defined
plan. For example, performing a search operation requires use of both the vehicle’s
navigation system as well as its sensors. In this case, an implementation of a Search

planner could create a Transit plan instance for performing the search movement and
a UseSonar plan instance for utilizing the sensor for each of its Search plan instances.
These children plan instances can be attached to each Search plan instance and end up
extending the plan instance tree. Additionally, the Planner API allows users to describe
temporal relations between these new plan instances just as in the MSL using a Do
Expression with all available planning operators. In the example of the Search planner,
the planner implementation not only wants to create a Transit and UseSonar plan
instance for each Search plan instance, but also to describe the relationship through a
parallel (||) operator. The API also allows the user to create additional constraints (i.e.
time, power) as in the MSL and bind them to the newly created children.
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5.7.5 Planner Graph

The ability for planners to create new problems (i.e. plan instances) is imple-
mented by arranging planners in a hierarchy, specifically a directed acyclic graph called
the planner graph. In the example with the Search planner, the Transit and UseSonar

planners would be children of the Search planner as the Search planner can create sub-
problems for the Transit and UseSonar problems. When a planner designer creates
a planner, they must pass which types of children plan instances they intend to create
in the constructor specifying the planner dependencies. Dependencies of planners
cannot be circular, hence why the planner graph is a directed acyclic graph. Having
circular dependencies would make the PI Evaluator algorithm undecidable, hence the
restriction. When initialize mpfl is called to bootstrap the system, MPFL creates
a topographical sorting of the planners to guarantee this property. If a topographical
sorting does not exist, initialize mpfl will raise an exception.

5.7.6 Planner Isolation and Component Reusability

MPFL was designed to make it easy to reuse components. Those components
refer primarily to planners where most of the application-specific code sits. MPFL is
able to achieve this by making planners independent entities which can be built without
having any understanding of implementation details of any other planners or the MPFL
compiler/runtime itself. Though planners can create additional plan instances for their
children planners, they do not have nor should have an understanding of how those
children planners operate. This makes it easy to swap out one planner with another
of the same type transparently and potentially even allowing for hot swapping. The
caveat is that 1) the swapped-in planner’s dependencies do not create cycles in the
planner graph and 2) the swapped-in planner has all the information it needs within
the existing knowledge base. When a person implements a specific planner, they focus
exclusively on that problem and do not worry about any of the other planners in the
system. This makes it easier for autonomy developers as they can focus completely
on building schedulers for a particular type of task without worrying about how other
planners are implemented. This also makes designing the system easier as it breaks the
entire planning autonomy system into piecemeal chunks which can be reasoned about
individually. It is also not necessary for users to provide a planner for each type of
primitive plan in the language but rather only the subset that the user uses in their
mission specification. For example, if one does not create Loiter plan instances in their
mission specification, it is not necessary to create a Loiter planner. However if one were
to declare Loiter plan instances and no Loiter planner was provided, it would result
in an exception during initialization.

5.7.7 The Planner API

Each kind of primitive plan in the language has a corresponding base class that
users must subclass in order to implement that planner. Each of the bases class has
a common base class of type planner. Each class defines five methods that the user
must override in the same manner as they would with the knowledgeBase. The methods
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require an additional set of OCaml types not defined in the abstract syntax that are
exclusively part of the MPFL API.

type userPlanExp = PlanInst of (string * problem)

| Op of opType * userPlanExp * userPlanExp

| IfThenElse of (mpflBool * userPlanExp * userPlanExp)

| With of (constraintImp);;

type errorReason = string;;

type planInstName = string;;

type planInstChain = string;;

type scheduleRecord = ScheduleRecord of (time * time * planInstChain * string);;

type schedule = Schedule of scheduleRecord list

| ScheduleInfeasible of (errorReason * planInstChain) list

| ScheduleConflict of (errorReason * (planInstChain list)) list

| ScheduleNoUpdate

| ScheduleAutobuild of string;;

The type userPlanExp is a simplified version of the type planExp which is utilized
by planners to build children plan instances. The type scheduleRecord encodes a single
row of a schedule where the first parameter refers to the time at which the command
encoded within the row should be issued, the second indicates the time when the task
associated with the command is expected to complete, the third parameter indicates
the plan instance the row is associated with as a string in chain notation (e.g. a →
b → c), and the last in a string encoding the actual command that should be issued.
The schedule itself is encoded with type schedule using the constructor Schedule which
takes a list of scheduleRecords as a parameter. The schedule type is a variant type, in
the event a schedule cannot be formed it also can take the value of an infeasibility error
or conflict error utilizing the ScheduleInfeasible and ScheduleConflict constructors
respectively. For infeasibilities, the constructor takes a list of pairs, each one containing
a reason for the infeasibility and the name of the plan instance (again in chain notation)
that is infeasible. For conflicts, the constructor is similar, but takes a list of plan instance
names as the second argument in the constructor indicating conflicting instances. The
constructor ScheduleNoUpdate is utilized when no updates are made to last schedule
created. Finally, the ScheduleAutobuild constructor is a convenient way for planners
to automatically build their schedule based on the way their children plan instances
are scheduled in child planners. For each plan instance the planner is scheduling for,
MPFL will determine the earliest start time and latest end time amongst all its children
instances according to their corresponding schedules. A row is automatically built in the
schedule with the corresponding minimum start time and maximum end times for each
plan instance in the automatically built schedule. The string constructor argument is
used to populate the command field for each row.

5.7.7.1 The Class planInstance

In addition to the new abstract types, we must also define class planInstance
before defining the class planner. Plan instances are fed to each planner in the form of
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objects of this class. Each type of primitive plan in addition to having its own planner
base class has a representative subclass of planInstance (e.g. loiterPlanInstance is a
subclass of planInstance and represents a Loiter plan instance). The use of objects
instead of simple variant type values is useful for plan instances because it provides a
means of extracting information about the plan instance via methods. Though the same
could be achieved with functions and closures, methods take functions further as they are
a means of encapsulating those functions within the realm of the object and its internal
state. For example, it is typical in modern software engineering to utilize an interactive
developer environment (IDE) to help manage and ease development (e.g. Eclipse,
Microsoft Visual Studio, NetBeans). IDEs for object-oriented languages like OCaml pop
up a list of methods applicable to an object based on its class type when one tries to
invoke a method on that object. Internally MPFL uses a functional style, but externally
it utilizes an object-oriented approach to make it easier for developers to reason about
and discover the API. The base class planInstance has the following methods:

• get lifetime state : unit -> ltState - Gets the current lifetime state of the
plan instance

• get constraints : unit -> constraintImp list - Gets all the constraints bound
to the plan instance

• get all time constraints : unit -> timeConstraint list - Gets all time
constraints bound to the plan instance

• get all power constraints : unit -> powerConstraint list - Gets all power
constraints bound to the plan instance

• get overall time constraint : unit -> timeConstraint - Gets the set in-
tersection of all time constraints as a single time constraint

• get overall power constraint : unit -> powerConstraint - Gets the set in-
teresection of power constraints as a single power constraint

• get problem : unit -> problem - Gets the underlying problem based on the
specific primitive plan type the plan instance represents (e.g. Loiter, Search,

UseModem, etc)

There is a subclass of planInstance for each specific primitive plan. These sub-
classes provide additional methods that allow API users to access information about the
specific problem the plan instance represents. For example, the class searchPlanInstance
provides a set of methods to access information about the search area, lane width, sensor
to use, etc. Each subclass provides methods to access information contained within the
plan instance constructor for the respective type of primitive plan it represents. The
MPFL API also provides an additional module which allows users to easily convert val-
ues returned by these methods into different units and representations. For example,
when one gets the lane width for the search problem, they can get it back in any unit of
length they want; it does not matter how it was specified. Additionally, useful calcula-
tions applicable to specific types are encoded as functions in this module. For example,
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if one has two values of type position, the API provides a method to get the distance
between the two even though the underlying representation of one position maybe as a
geographical (i.e. lat/lon) position and the other a Cartesian position relative to some
fixed geographical point. API users do not worry about how the user specified the units
in the MSL — in fact they have no idea. All they can do is ask for the value in the units
that are most convenient to them.

5.7.7.2 The Class planner

Using these types, we can now define the class planner. The class planner is a
type polymorphic class, meaning that it requires a type parameter α. α is constrained to
be a subclass of another class planInstance (i.e. α <: planInstance). The class methods
are defined as follows:

• on ready to running: α list -> (planInstChain * bool) list - Callback
method that is invoked when asking the planner to specify which plan instances to
switch from a On(READY) state to an On(RUN) state.

• on forcerun to running: α list -> (planInstChain * bool) list - Callback
method that is invoked when asking the planner to specify which plan instances to
switch from a On(FORCE RUN) state to an On(RUN) state.

• on running to complete: α list -> (planInstChain * bool) list - Callback
method that is invoked when asking the planner to specify which plan instances to
switch from a On(RUN) state to an End(COMPLETE) state.

• on ask for subproblems: α list -> (planInstChain * userPlanExp) list

- Callback method that is invoked when asking the planner to create subproblems
(i.e. child plan instances) in the form of userPlanExp.

• build schedule: α list -> schedule - Callback method that is invoked when
asking the planner to build its final schedule .

The MPFL API provides a subclass of planner for each primitive plan type.
These subclasses are all virtually identical. The only thing that differentiates them is
the value of α which is the corresponding planInstance subclass. For example, the class
useModemPlanner is simply an alias for a useModemPlanInstance planner, meaning the
type variable α has been instantiated with type useModemPlanInstance.

5.7.8 The PI Evaluator Algorithm

Now that the class planner has been defined, the PI Evaluator’s interaction with
planners can be examined. The methods defined in planner are callback methods that are
fired by the PI Evaluator at different stages throughout its execution. The PI Evaluator
performs two traversals of the planner graph in order to do this: the first being a top-
down, breadth-first traversal and the second being a bottom-up traversal in the reverse
order of the first traversal as depicted in Figure 5.7.
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Fig. 5.7 The two traversals performed by PI Evaluator on the planning graph

5.7.8.1 Top-Down Traversal

In the top-down traversal, the callback methods on ready to running,
on forcerun to running, on running to complete, and on ask for subproblems are
fired for each planner in the order listed. For the first three in the list, the PI Evaluator
is asking each planner to make a decision about transitioning a set of plan instances
that are in some state into another state. In the previous MPFL stage, the LST Eval-
uator attempted to transition as many plan instances as it could into the On(READY)

state. Planners now must decide if they want to move those instances into a running
(On(RUN)) state so that they can plan for them via the on ready to running callback.
The method is passed a list of planInstance objects as a callback parameter which are
plan instances for that specific planner in the On(READY) state. To indicate to the run-
time that they want to switch the state, the planner returns a list of (planInstChain

* bool) pairs. The first entry in the pair refers to the plan instance (as a string in
plan instance chain notation) to potentially be switched and the second a boolean set
to true if the planner implementor wants to switch states. If not, the parameter is
set to false and the plan instance remains in an On(READY) state. The same applies
to on forcerun to running and on running to complete but from On(FORCE RUN) to
On(RUN) and On(RUN) to End(COMPLETE) respectively. For the forced-running to run-
ning callback, if the user indicates that the plan instance cannot go into a running
state, the plan instance will be disabled as will any plan instances which caused the
plan instance to go into the forced-to-run state. The running to complete callback is
used to indicate to the MPFL runtime that a plan instance is complete means that the
goal represented by the plan instance has been achieved. The final callback method
on ask for subproblems is invoked to give the planner an opportunity to create sub-
problems for its plan instances by forming an expression similar to the Do Expression
in the MSL for each plan instance. The callback is passed all plan instances for the
planner and must return a list of (planInstChain * userPlanExp) pairs. Each pair
indicates the plan instance (in chain notation) to which to attach children and the second
represents the children plan instances along with any planning operators, constraints,
and conditional expressions encoded within a userPlanExp. If the planner returns an
empty list, it indicates that the user either has no children plan instances or does not
want to make a change to children attached in a previous compiler cycle. If previous
children exist and the user creates new children, the old ones are detached from the
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plan instance tree, destroyed, and replaced by the new children. All return values of the
callback methods are verified using the following rules:

• All plan instances referenced in the return values of each method are verified im-
mediately and will raise an exception if not valid.

• The callback method can only refer to plan instances passed to it during invocation.

• For the first three callbacks that perform lifetime state changes, the planner must
make a decision for each passed plan instance otherwise it will result in an exception
being raised.

5.7.8.2 Bottom-Up Traversal

After the top-down traversal, the PI Evaluator invokes the final callback method
for each planner in the exact reverse order of the top-down traversal (i.e. bottom-
up). The method build schedule asks the planner to build a schedule for all the
plan instances it has in a running state. The planning algorithm is decided by the
implementor of the planner and is the most difficult aspect of building a planner. There
is no restriction to the algorithm, however it must have the following properties:

• It must be able to schedule tasks accounting for start time and end time.

• The start time and end time are described as a window of time rather than an
exact time. The algorithm must make sure to obey these rules.

• The algorithm must be able to provide feedback when it fails giving indication of
why something is not possible in terms of infeasibilities and/or conflicts.

• The algorithm must be decidable and take a limited amount of time, otherwise it
will cause the MPFL engine to stall. Currently the compiler is implemented in a
single thread of execution so a planner could potentially jam the system if any of
its callbacks block.

• The algorithm only needs to return feasible schedules, but it is useful if the algo-
rithm gives back optimal or suboptimal solutions that minimize resource usage. Al-
gorithms that are designed to improve robot performance with each build schedule

invocation are ideal.

The planners are meant to build a schedule for the tasks in an running (i.e.
On(RUN)) state. The planner can and should account for other plan instances, such
as those in blocked (Off(BLOCK)) state, but does not necessarily have to as the bare
minimum requirement is just to look at those in On(RUN). Planners which are more
deliberative versus reactive will take into account plan instances that will eventually
be unblocked in the future or may be reactivated such as those in an Off(DISABLE) or
Off(SYS RETRACT) state. Planners have the ability to look at schedules for child planners
in order to build their own schedules to take into account how children plan instances have
been scheduled. Planners form their schedules by creating a list of scheduleRow values
and enclosing them within a Schedule constructor. In the event there is an infeasibility
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or conflict, the constructors ScheduleInfeasible and ScheduleConflict can be used
respectively passing error information in the constructor as mentioned earlier. If the
user does not want to update the schedule in the case when nothing has changed, they
can use the special ScheduleNoUpdate constructor which takes no parameters.

5.7.9 Schedules and Verification

The schedule generated by each planner consists of four entries: a time to issue
the command, a time the command is expected to finish, the name of the plan instance
associated with the command, and the actual command itself. The PI Evaluator verifies
that each row in the schedule has the following properties:

• Each plan instance in each schedule row actually exists and is of the same primitive
plan type as the planner.

• Each row has a start and end time that is within the overall time constraint of the
plan instance.

• Each row refers to a plan instance that is in an On(RUN) state.

Failure to not meet these criteria results in raising an exception that will terminate
MPFL. The last entry in each row represents a command which is simply a character
string. MPFL does not dictate nor enforce any particular encoding of the command; the
only requirement is that it is a string of characters. The client application must have an
understanding of how the command is encoded and how it should be parsed. This was
done to give planner implementors flexibility in their overall autonomy solution at the
cost of not having any verification from the MPFL runtime.

5.8 Putting it All Together - The Basic MPFL Compiler engine

After the schedules are verified, they are passed back to the client application
where the user can process them in order to issue commands to subsystems at the
appropriate times. At this point, a single compilation cycle of the basic MPFL engine
has completed. Now that the basic pieces of the MPFL compiler engine have been
described, it can be summarized by the following algorithm.

1. Write a mission specification in the MSL as a text file.

2. Initialize the MPFL framework with a set of planners and the name of the text
file.

3. The framework feeds the mission specification to the parser.

4. The Parser builds an abstract representation of the mission specification and hands
it to the PIT Builder.

5. The PIT Builder validates the specification and generates the initial plan instance
tree. The plan instance tree is then handed off to the LST Evaluator.
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6. The LST Evaluator transitions the lifetime state of all the plan instances in the
tree based on MPFL’s internal transitioning rules. The plan instance tree is then
passed off to the PI Evaluator.

7. (a) The PI Evaluator does a breadth-first, top-down traversal of the planners.
For each planner:

i. The planner is asked to transition On(READY) instances to On(RUN), On(FORCE RUN)

instances to On(RUN), and On(RUN) instances to On(COMPLETE)

ii. The planner is asked for subproblems for its children. The subproblems
must be of the same primitive plan type as the planner’s dependency
planners.

(b) The PI Evaluator traverses all the planners in the reverse order and asks them
to build a schedule and verifies the correctness of the schedules.

8. The schedules are passed back to the client application where they can be used to
control the robot.

9. Goto 6.

5.9 The Complete MPFL Compiler/Runtime Engine

The previous section described the core stages of the MPFL compiler. However
the issue of exception handling was not discussed which adds slightly more complexity.
Figure 5.8 depicts the complete engine and an additional evaluator module called the
Exception Handler (EH) Evaluator.

Fig. 5.8 Complete MPFL Engine

5.9.1 Planners Raise Exceptions

Recall in the MSL there are exception handlers for infeasibilities (OnInfeasible)
and conflicts (OnConflict). How these handlers are invoked by the MPFL compiler has
not yet been discussed. The presentation begins with the schedule OCaml variant type:
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type schedule = Schedule of scheduleRecord list

| ScheduleInfeasible of (errorReason * planInstChain) list

| ScheduleConflict of (errorReason * (planInstChain list)) list

| ScheduleNoUpdate

| ScheduleAutobuild;;

Infeasibilites and conflicts are determined by individual planners. If planners are
given a set of plan instances to schedule for, and the planner cannot create a schedule,
it can inform the MPFL compiler via the return value of the build schedule callback
method. If the problem is caused by a task(s) being infeasible (i.e. the task(s) are
impossible to perform) then the planner informs the MPFL compiler of which plan
instances are causing infeasibility. Sometimes the problem is not an infeasibility, but
rather a scheduling conflict. For example, if a UseSonar planner has two plan instances
that want to use the sonar at the same time and the two requests cannot be interlaced or
separated, then the UseSonar planner can inform the compiler of the conflict via an API
call. The planner is not limited to just two plan instances conflicting, if many instances
are conflicting, the planner can inform the compiler of all of them. For the callback
method build schedule, the planner can indicate an infeasibility or conflict by using
the ScheduleInfeasible and ScheduleConflict constructors respectively.

When building infeasibility or conflict errors with these constructors, planners
have the ability to provide trace information by indicating not only the plan instances
that caused the problem, but also why the error occurred in a natural language such
as English. This enables one to have a high-level explanation of why problems occured
when reviewing the robot’s mission logs to see why it was not able to accomplish certain
tasks. For example, a UseAutopilot planner may deem a particular UseAutopilot

plan instance infeasible because it cannot make it to the destination within its time
constraints. The planner implementor, when informing the compiler of the infeasibility,
can also pass a string that says something along the lines of “Infeasible because planner
cannot make it to destination within specified time constraint”. This is extremely useful
in debugging and also gives insight into how the robot thinks.

5.9.2 Handling Errors via the Exception Handler (EH) Evaluator

When the build schedule function returns a value of ScheduleInfeasible or
ScheduleConflict, the PI evaluator is aborted and a special evaluator, the Exception
Handler (EH) Evaluator is invoked with the error as a parameter. The handler does
the following:

• The plan instances returned in the error must refer to valid plan instances and are
validated by the EH Handler.

• The EH Handler checks for the nearest handler within scope. The handlers are
encoded within each ExecutePlan plan instance. Each handler’s case signature
is matched against the plan instance name based on the rules from Chapter 4
traversing from the erroneous plan instance up to the root sortie plan instance. If
a match occurs, the handler code is extracted. With conflict handlers, handlers are
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searched for each conflicting plan instance. The handlers are searched in breadth-
first fashion with the first matching handler returned.

• The EH Handler evaluates the handler code, which is encoded as a handlerExp
mentioned earlier in the chapter. The result of the evaluation is the application
of a lifetime state of Off(DISABLE) or Off(RETRACT) to a subtree within the plan
instance tree via an invocation of the LST Evaluator. The subtree root is the
plan instance containing the matched handler. Control is then returned to the PI
Evaluator which reattempts the bottom-up traversal starting at the lowest planner
in the planner graph which has had a change in one of its plan instances. It may
take several invocations of the EH Handler to create a schedule, but eventually the
PI Evaluator will finish. In the worst case, all plan instances may end up being
either disabled or retracted (i.e. nothing can be scheduled) before the PI Evaluator
can finish.

5.10 Replanning As Recompilation

The MPFL engine is intended to be constantly reinvoked via the build schedule

call which results in a new set of schedules. The lifetime state is all the dynamic in-
formation the runtime requires to manage plan instances. This simple state allows the
compiler to mark tasks throughout their lifetimes and allows planners to have metainfor-
mation about the tasks for its scheduling algorithms. One analogy is to think of airline
departure and arrival schedules at an airport. Periodically the schedules refresh with
updated information. Planes that were once in an On Time state can quickly switch to
a Delayed status and then back again.

5.11 Segue: Building an Autonomous Robot with MPFL

This chapter described the inner-workings of the MPFL compiler/runtime while
simultaneously showing how the API is utilized. One can now see that the core MPFL
compiler/runtime really does not perform the actual planning, but rather provides guide
rails for implementing a distributed hierarchical scheduling system with lots of verifica-
tion, a powerful language to express problems, and metainformation to help schedule.
Though the internals of MPFL may be a bit confusing, the ease of use of MPFL is
made much clearer with an example. The next chapter details an example system that
implements both a knowledge base and a set of planners in order to provide a complete
example of an autonomous system robot MPFL.
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Chapter 6

A Complete Demonstration System

In order to demonstrate how to use MPFL and to test the prototype framework,
a demonstration system was created using MPFL. A demonstration set of planners and
a knowledge base were created. A simple MPFL client application was created which
controls a simulated robot. One can see what the robot is doing in real-time on a map
display.

6.1 Demonstration System Architecture

The system consists of 3 components:

• Demo Client - The application that uses MPFL to autonomously control a robot.

• AUV Simulator - A simple, real-time simulator for an autonomous underwater
robot.

• Map Display - A geographical map display showing the autonomous vehicle position
and orientation as well as other mission data.

Figure 6.1 shows a system data flow diagram between these components. The
following sections describe the implementations of these components.

Fig. 6.1 Data flow block diagram of MPFL demo

6.2 Demo Client Application

MPFL requires a client application to link against and call the MPFL compiler.
The client application bootstraps the system with a set of planners and a knowledge
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base. Figure 6.2 depicts the internals of the demo client as a system block diagram. The
planners and knowledge base are subclassed from the API provided base classes. The
demo client is very simple and described the following algorithm:

1. Initialize MPFL with the initialize mpfl API call passing in the MSL file, knowl-
edge base, and planners.

2. Invoke the build schedules API call.

3. Parse returned schedules and issue commands as dictated by the schedule.

4. Goto 2.

Fig. 6.2 Internals of MPFL demo client

6.3 AUV Simulator and Map Display

To demonstrate MPFL, a simple simulator of an AUV was created encompassing
basic kinematics, sensing, and power usage. A map display is used to show what the AUV
is doing as well as portraying additional information about what the AUV is thinking
based on its current set of schedules.
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6.4 The Planner Hierarchy

Fig. 6.3 Example planner hierarchy

Figure 6.3 depicts the planner graph for the demonstration system. Recall that
the purpose of the hierarchy is to allow planners to break its own problems (encoded as
plan instances) into smaller problems for its children planners. The subsequent sections
will describe the implementation of each demonstration planner and define the following
planner aspects:

• Callback on ready to running

• Callback on forcerun to running

• Callback on running to complete

• Callback on ask for subproblems

• Schedule Encoding

• Callback build schedule

6.5 Demo UseAutopilot Planner

The UseAutopilot planner poses a difficult problem where each plan instance
represents a single waypoint. The waypoint must be reached within the end window and
must not be attempted at any time outside the start window. The scheduling algorithm
must choose a sequence of waypoints, calculating when to leave and when to arrive. A
valid solution to the problem must not violate these constraints otherwise it should cause
an infeasibility or conflict error. This problem is very similar to the traveling salesman
problem, meaning that the best known algorithm to find the most optimal path is in
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computational complexity class NP . However we do not require the optimal path, but
rather just a feasible path that meets all constraints. It would be ideal if the feasible
path was optimal or as close to optimal as possible so as to reduce resource usage. A
simple genetic algorithm that runs in worst-case O(n2) time was employed to search for
a feasible path that can meet all constraints. The algorithm iteratively improves the
best known solution, even if currently infeasible. This is ideal as the planner is able
to schedule once a feasible solution is found, but can continue to improve the schedule
quality as the robot’s mission progresses.

6.5.1 Callback on ready to running

The example planner has all the ready plan instances go into a running state.
The scheduler attempts to schedule all problems immediately so it makes sense to do
this.

6.5.2 Callback on forcerun to running

All plan instances that were forced to run (likely due to a parallel (||) operator in
the mission specification) are also switched to a running state. If the time constraints
for each of these instances is within their start window, they are marked to go into a
running state. Those that violate the constraint are not changed and will be disabled by
the framework.

6.5.3 Callback on running to complete

As each plan instance represents a waypoint, the first waypoint in the last gener-
ated schedule is the one that is currently active as visiting waypoints is a serial operation
(i.e. you must visit one waypoint before going to the next). If the current vehicle po-
sition (taken from the knowledge base) is within an acceptable threshold distance of
the waypoint and the current time is within the end window, it is marked as complete
indicating a goal has been achieved. Otherwise the plan instance remains in the running
state as do the remainder of plan instances.

6.5.4 Callback on ask for subproblems

As the UseAutopilot planner is a leaf in the planner hierarchy, cannot produce
any subproblems, so the return value of this call is always an empty list.

6.5.5 Schedule Encoding

The schedule is encoded as follows:

• Start Time - The time to start heading for the waypoint.

• End Time - The time the robot is expected to arrive at the waypoint.

• Name - The name of the plan instance associated with the waypoint.



112

• Command - A simple string indicating a latitude, longitude, and depth (e.g. "Lat
= 32.0, Lon = -122.0, DepthMeters = 10.0").

6.5.6 Callback build schedule

This callback implements the genetic algorithm that performs scheduling. The
goal of the algorithm is to create an ordering of all waypoints specified by each plan
instance in the On(RUN) state. The algorithm must calculate not only an order, but
determine the time at which the robot leaves the waypoint and goes to the next while
staying within its time constraint. In order to do this, it must also predict when it
expects to leave each waypoint and go to the next.

6.5.6.1 Representing and Rating a Solution

Each potential solution to the problem is an order of waypoints < w1, w2, ..., wn >.
We also introduce a special waypoint w0 that represents the current position. In addition
to the ordering, the solution must encode what time to leave from each waypoint to arrive
at the next and at which speed. A simple way to reason about the problem is to build a
table like the one depicted by Table 6.1. Each row represents a waypoint. The table is
built row by row, each row depending on the previous. The first row refers to the current
position, so the arrival time is whatever the current time is. The departure time is then
calculated based on the start time constraint of the subsequent waypoint. If the start
window for the next waypoint has not yet arrived, the AUV waits at its current position
and heads for the waypoint at the start time of that window. If the start window is
happening now, the departure time is set to the current time. If the window was in the
past, the departure time is set to the current time as well (i.e. leave immediately even
though we are running late). The arrival time for the next row is represented by the
following function:

arrivalT imei = departureT imei−1 + distanceToNextPointi−1/maxSpeedOfRobot

Waypoint Arrival
Time

Distance to
Next Point

Departure
Time

Departure
Speed

Slack/Tardy

w0 10:00 PM 1000.0 10:00 PM 0.5 0

w1 10:30 PM 500.0 10:45 PM 0.5 60

w2 11:00 PM 1500.0 11:10 PM 0.5 100

w3 11:55 PM 250.0 1:00 AM 0.5 -50

w4 1:08 AM 0.0 ∞ 0 30

Table 6.1 Determining Solution Fitness

The table also contains fields for departure time and departure speed. The algo-
rithm always attempts to have the robot depart as soon as possible: the maximum of
the current time and the beginning of the start window of the next waypoint. The robot
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then heads at maximum speed towards the next waypoint. If the robot arrives within
the end window of the next waypoint, the slack/tardy value in the table is filled with the
time remaining in the window indicating how early the robot is (i.e. the slack). If the
robot is late and missed the end of the end window, it is assigned a negative value with
the amount of time it late by (i.e. tardiness). If the robot arrives before the beginning
of the next time window, the speed is reduced so that the AUV arrives at the beginning
of the end window of the target waypoint.

The table can then be used to calculate the fitness of the solution. In other
words, the table tells us a lot about the ordering of waypoints. Anywhere there is a
negative value in the slack/tardy box, it means the solution is infeasible. If all are
greater than or equal to zero, it means the solution is feasible.

6.5.6.2 Comparing Solutions

However, some feasible solutions are better than others. This also holds for in-
feasible solutions, some are worse than others. The slack/tardy value can be utilized to
give a goodness of the solution by calculating the total slack and total tardy values as
defined by the following equations where i refers to the slack/tardy value:

TotalSlack =
∑
i,∀i > 0

TotalTardy =
∑
i,∀i < 0

A solution which has a total tardy less than 0 means it is infeasible, whereas
all the remaining are feasible. For feasible solutions, the ones with more slack can be
considered better than the others, whereas with infeasible solutions, the lower number
(i.e. less negative) solutions are not as bad as the ones lower than it.

6.5.6.3 Finding the Solution - Genetic Algorithm

There are n! ways to arrange the waypoints, so in the worst case any algorithm
would be O(n!). However this is very bad and would not work very well beyond a dozen
or so waypoints. What is worse is that if all solutions are infeasible, we might need to
remove waypoints, giving a total complexity of O(nCn +n Cn−1 + ... +n C0) which is
≤ O(3n!) = O(n!). A simple genetic algorithm to perform a heuristic base search can be
employed to get around this.

A genetic algorithm works by representing each solution as a member of a pop-
ulation of solutions. The algorithm is bootstrapped by creating a population of some
size n where the solutions are randomly generated, in this case random orderings of
waypoints. The fitness of each solution is based on the algorithm mentioned earlier. All
solutions have their fitness rated. The fittest members of the population are chosen to
live and reproduce whereas the others are killed off. The percentage that gets to live
is an empirically determined number (10-15% is a good starting point). The remainder
of the population is then regenerated in a process called breeding by randomly pick-
ing members of the surviving population and mutating a copy of them to form a new
offspring. The mutation in this algorithm simply swaps two random waypoints. The
breeding continues until the population is restored to its original size. Typical genetic
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algorithms also employ a crossover operation which have breeding solutions exchange
parts of themselves to create members of the new population, but that is not utilized as
that is difficult to employ with this problem and not really necessary.

6.5.6.4 Performance

The genetic algorithm runs in O(n2) time. After generating a population, for each
solution the fitness information can be determined in linear time (O(n)). The solutions
then have to be sorted by fitness scores which we know in the worst case can be (O(n2)).
Regenerating the next population from the remainder is also a O(n) operation resulting
in an overall complexity of O(n2). Genetic algorithms can quickly converge to a feasible
solution if the feasible space is large. The smaller it gets, the more time it will likely take
to find the solution, eventually to the point where it is as poor as brute force. However,
in practice if the plan specification in the MSL is reasonable, the algorithm does quite
well.

6.5.6.5 Failure to Converge

As mentioned in the previous chapter, the callback functions should not block
the MPFL engine. The algorithm should run either in a thread or run for some number
of generations and then stop. In the actual implementation, the latter is chosen. The
algorithm runs for a set number of generations and if it does not converge, it means there’s
an infeasibility somewhere. One waypoint is thrown away from the set of waypoints based
on the tardy information (i.e. the waypoint with the worst tardy value is thrown away)
and the algorithm runs again. The algorithm keeps removing waypoints till a solution is
found or all waypoints are removed. Once a solution is found, the build schedule call
returns a schedule infeasibility passing the names of the instances that were removed
to get a feasible solution. This will invoke the error handling potentially disabling or
retracting plan instances.

6.5.6.6 Accounting for Blocked Instances

The genetic algorithm is performed not only on instances in the On(RUN) state,
but also those in the Off(BLOCK) state. When a schedule is formed, all the Off(BLOCK)

states are removed from the schedule and the On(RUN) instances are bumped up the list.
The idea is that if any of the instances become unblocked, there is a good chance that it
will be able to achieve the goal as the detour for the newly unblocked instances will be
minimal. This may not necessarily hold true, but in practice it was found this heuristic
works quite well. The ability to account for blocked instances means that the planning
is more deliberative and the planner can handle scheduling operations well, especially
for heavy uses of the serial (>) operator which causes blocking.

6.5.6.7 Improvement over Time and Solution Caching

As genetic algorithms retain the best solutions, the schedule chosen can only
improve. The best solution is chosen for each potential length of the waypoint list of
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sizes n down to those of size 1 and are included as members of the initial population for
the next build schedule in addition to the randomized solutions. Even if waypoints
are added and removed, the algorithm will continue to work.

6.6 Demo Transit Planner

The Transit planner differs from the UseAutopilot planner as each of its plan
instances represents a list of waypoints that are visited sequentially rather than a single
waypoint. This can easily be implemented by utilizing the UseAutopilot planner defined
before which is a child planner in the planner graph.

6.6.1 Callback on ready to running

This callback leaves plan instances as On(READY). The UseAutopilot planner will
handle switching lifetime state.

6.6.2 Callback on forcerun to running

In this callback, the planner opts to set the plan instances to an On(RUNNING)

state. If there is any infeasibility it will occur in the child planner.

6.6.3 Callback on running to complete

The plan instance will automatically turn to complete when all the UseAutopilot
children instances complete.

6.6.4 Callback on ask for subproblems

One can create a set of UseAutopilot plan instances to represent each waypoint
in the list of waypoints. The userPlanExp for each Transit plan instance with waypoints
< w1, ..., wn > can be formed by using the serial operator on each UseAutopilot plan
instance as follows:

w1 > w2 > ... > wn

Below is the equivalent code in OCaml code using the MPFL API. The Destination
value is omitted but should contain the respective position in practice. One can keep
nesting Op constructors with the SERIAL value as the operator type.

Op(SERIAL, Op(SERIAL, PlanInst("w_1", UseAutopilot(Destination = ...),

PlanInst("w_2", UseAutopilot(Destination = ...))),

...

PlanInst("w_n", UseAutopilot(Destination = ...)))

The planner should only create these children problems on bootstrap or if during
runtime the set of UseAutopilot plan instances changes. The latter can be detected
easily via an API call.
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6.6.5 Schedule Encoding

The schedule encoding is as follows:

• Start Time - The time to start heading to the first waypoint.

• End Time - The time the robot arrives at the last waypoint.

• Name - The name of the plan instance associated with the waypoint list.

• Command - A command is not needed here, the value is just set as “Perform
Transit”. However encoding the list of waypoints may be useful.

6.6.6 Callback build schedule

As all the work is done by the UseAutopilot planner. The Transit planner can
access the schedule returned by the UseAutopilot planner to build its own schedule. For
each Transit plan instance, one can look at the smallest start time and largest end time
of all its children instances in the UseAutopilot schedule. For each Transit instance a
row can be added to the schedule. This can be automated using the ScheduleAutobuild
return value.

6.6.7 Performance

The performance is based on that of the UseAutopilot planner, the complexity
of the path, and the tightness of all constraints. Most of the plan instances will be
blocked because of the user of the serial (>) operator. However, as the UseAutopilot

planner accounts for blocked instances, the planner performs reasonably well. In fact it
can intertwine two paths if they overlap.

6.7 Demo Loiter Planner

The Loiter planner also utilizes the UseAutopilot planner like the Transit

planner. A Loiter is simply going to a waypoint with a departure constraint.

6.7.1 Callback on ready to running

All are activated to be in the On(RUN) state

6.7.2 Callback on forcerun to running

All are activated to be in the On(RUN) state

6.7.3 Callback on running to complete

The UseAutopilot planner will implicitly complete the loiter once the waypoint
is completed.
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6.7.4 Callback on ask for subproblems

For each Loiter plan instance, we need to create a single UseAutopilot plan
instance. A loiter problem not only has a destination, but a loiter duration. The Loiter

planner has access to the UseAutopilot planner’s schedule, so it simply looks at the
arrival time for the plan instances it created and creates a time constraint adding the
loiter duration time to it.

6.7.5 Schedule Encoding

The schedule encoding is as follows:

• Start Time - The time to start heading to the loiter point.

• End Time - The time the robot leaves the loiter point.

• Name - The name of the plan instance associated with the loiter task.

• Command - A command is not needed here, the value is just set as “Perform
Loiter”.

6.7.6 Callback build schedule

The schedule for the Loiter plan instance is based on the start and end time
of each UseAutopilot plan instance. One extracts all entries from the child planner’s
schedule and maps each child instances start and end times to the ones used in each
Loiter schedule row. Each row uses the parent Loiter plan instance name as the
identifier for each row. Again, the ScheduleAutobuild option can be used to do this
automatically.

6.8 Demo UseAcoustic Planner

The UseAcoustic planner has the responsibility of scheduling use of the acoustic
communication medium (i.e. the water) for acoustic devices such as sonars and acoustic
modems. Each UseAcoustic plan instances defines the acoustic problem as a frequency
band, the duration of time required for an acoustic pulse (i.e. a chunk of acoustic time),
the minimum spacing gap between the pulses as a duration, the maximum spacing gap
between pulses, and the total number of pulses needed.

6.8.1 Callback on ready to running

All instances are set to a running state.

6.8.2 Callback on forcerun to running

All force running tasks are set to running as well.
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6.8.3 Callback on running to complete

The plan instance will automatically turn to complete when all the UseAutopilot
children instances complete.

6.8.4 Callback on ask for subproblems

This is a leaf planner so no subproblems are generated.

6.8.5 Schedule Encoding

The schedule encoding is as follows:

• Start Time - The time the first acoustic pulse is issued

• End Time - The time the last acoustic pulse is issued

• Name - The name of the UseAcoustic plan instance associated with the row

• Command - The command encodes a frequency band, the start time of the first
pulse, the start time of the last pulse, the spacing between pulses, and the duration
of each pulse

6.8.6 Callback build schedule

A simple linear program can be used to build the schedule. A linear program is
an optimization technique for an optimization problem with a single objective function
and a set of constraints which are defined as a set of inequalities. The constraints must
be linear. The program can then be solved utilizing a linear program solver, such as
the simplex method. For sake of brevity, the algorithm is not defined. However, the
approach is quite straightforward: model each discrete block of acoustic time as a set of
variables in the linear program. Each block can be defined by variables indicating start
time and end time. Constraints can then be developed around these variables to ensure
constraints are met (e.g. minimum and maximum gap constraints).

Additionaly a similar approach to the UseAutopilot planner can be used where
a genetic algorithm searches for a feasible schedule. Other evolutionary algorithms such
as swarm optimization and simulated annealing would also likely work.

6.9 Demo UseSonar Planner

The UseSonar planner activates an active sonar device or polls a passive sonar
for sensing. Active sonar determines how far away objects are by emitting a sound pulse
(called a ping) and measuring the amount of time it takes for the sound to return in
order to determine range. The further an object is, the more time it takes to receive the
reflected ping. The ping rate of a UseSonar instance determines how quickly the user
wants to ping. As the sonar is competing with other acoustic devices such as additional
sonar sensors or an acoustic modem, it must make sure not to interfere with those devices.
The UseAcoustic planner can be used by acoustic devices to allocate chunks of acoustic
bandwidth for such a purpose.
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6.9.1 Callback on ready to running

All instances are set to a running state.

6.9.2 Callback on forcerun to running

All force running tasks are set to running as well.

6.9.3 Callback on running to complete

The plan instance will automatically turn to complete when all the UseAcoustic

children instances complete.

6.9.4 Callback on ask for subproblems

For each UseSonar instance, we want to create a UseAcoustic instance where
the acoustic band matches that of the sonar, the block duration size is however long
the sonar needs to ping and receive (active case) or to poll the sensor (passive case),
and the spacing between blocks (min gap and max gap) are set to appropriate values
depending on sonar type. The number of pulses is based on how long the search needs
to be conducted for.

6.9.5 Schedule Encoding

The schedule encoding is as follows:

• Start Time - The time to issue the first ping or poll

• End Time - The time the last ping or poll is finished

• Name - The name of the plan instance associated with the UseSonar request

• Command - The command encodes a frequency band, the start time of the first
ping/poll, the start time of the last ping/poll, the spacing between pings/polls,
and the duration of each ping/poll

6.9.6 Callback build schedule

Building the schedule is quite easy. As the UseSonar planner has access to the
UseAcoustic schedule, it can inspect that schedule and determine at which times the
acoustic channel is allocated to it under what conditions. The command within the
UseAcoustic schedule is almost identical to that in the UseSonar schedule with the only
difference being terminology (e.g. calling it a ping/poll instead of a pulse). Again the
ScheduleAutobuild option may be used to automate this.
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6.10 Demo UseModem Planner

The UseModem planner is used for scheduling the use of an acoustic modem. An
acoustic modem is similar to a dial-up modem found commonly in personal computers,
rather than modulating electromagnetic frequencies over the voice channel of a telephone
line, it creates pulses of sound encoding digital data that travel through water. The
UseModem planner is very similar in operation to the UseSonar planner in that it requires
the use of the UseAcoustic planner as well so as not to interfere with any other acoustic
devices. Each UseModem plan instance encodes the name of the modem to use (in the
event multiple modems exist) and message which is a simple string of text (8-bit ASCII
encoded).

6.10.1 Callback on ready to running

All instances are set to a running state.

6.10.2 Callback on forcerun to running

All force running tasks are set to running as well.

6.10.3 Callback on running to complete

The plan instance will automatically turn to complete when all the UseAcoustic

children instances complete.

6.10.4 Callback on ask for subproblems

For each UseModem instance, we want to create a UseAcoustic instance where
the acoustic band matches that of the modem. The block duration size is however long
the modem needs to transmit its message and receive acknowledgment. Calculating the
one-way transmit time is based on the size of the message in bits divided by the predicted
bit rate of the modem1. The min gap is set to zero and the max gap is set to whatever
tolerance is appropriate for the UseModem planner. The number of pulses is equal to the
number of retries the user is willing to go for in the event one fails.

6.10.5 Schedule Encoding

The schedule encoding is as follows:

• Start Time - The time of the first message send attempt.

• End Time - The time the last message send attempt finishes.

• Name - The name of the plan instance associated with the UseModem request.

1The predicted bit rate is a function of several variables including distance to receiver, envi-
ronmental noise, concentration of impurities in the water, and depth.



121

• Command - The command encodes a frequency band, the start time of the first
message transmit attempt, the start time of the last retransmission attempt, the
spacing between retransmission attempts, and the duration of time available for
each transmission attempt.

6.10.6 Callback build schedule

Building the schedule is quite easy and similar to the way the UseSonar schedule
is built. As the UseModem planner has access to the UseAcoustic schedule, it can inspect
that schedule and determine at which times the acoustic channel is allocated to it under
what conditions. The command within the UseAcoustic schedule is almost identical to
that in the UseModem schedule with the only difference being terminology (e.g. calling it
a transmission attempt instead of a pulse). Again the ScheduleAutobuild option can
be used to automate this.

6.11 Demo PhoneHome Planner

The PhoneHome planner is a way to send status and sensory information of the
vehicle back to some operating platform (e.g. the launch platform or an onshore com-
mand center). In our planner hierarchy, the PhoneHome planner utilizes the UseModem

child planner to achieve this.

6.11.1 Callback on ready to running

All instances are set to a running state.

6.11.2 Callback on forcerun to running

All force running tasks are set to running as well.

6.11.3 Callback on running to complete

The plan instance will automatically turn to complete when all the UseModem

children instances complete.

6.11.4 Callback on ask for subproblems

The PhoneHome planner creates a child UseModem plan instance for each of its own
plan instances. Each plan instance encodes the name of the modem to use and the rate
at which to report home.

6.11.5 Schedule Encoding

The schedule encoding is as follows:

• Start Time - The time to start phoning home

• End Time - The time the phoning home operation ends
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• Name - The name of the plan instance associated with the PhoneHome request

• Command - No command is needed, so each entry just says “Performing Phone-
Home operation”

6.11.6 Callback build schedule

The PhoneHome planner schedule is built from the UseModem planner’s schedule.
The start time and end time correspond to the start time of the first entry referencing
the child UseModem instance in the UseModem schedule. The end time similarly refers to
the last schedule entry’s end time. Again the ScheduleAutobuild option can be used
to automate this.

6.12 Demo Search Planner

The final example planner in the system is the Search planner. What makes this
planner more interesting than the others is that it is the only one to use more than
one child planner, in this case Transit and UseSonar. The search planner’s duty is
to traverse some giving area and look for objects of interests. Objects of interest may
include other vessels, mines, surface ships, or the seabed (e.g. bottom mapping). The
traversal is done via the use of child Transit plan instances and the scanning is done
with child UseSonar plan instances.

6.12.1 Callback on ready to running

All instances are set to a running state.

6.12.2 Callback on forcerun to running

All force running tasks are set to running as well.

6.12.3 Callback on running to complete

The plan instance will automatically turn to complete when all the UseSonar and
Transit children instances complete.

6.12.4 Callback on ask for subproblems

The Search problem is specified as an area, a lane width, and sensor. The example
planner assumes the area to be a rectangle. If it is not specified as such in the MSL,
a rectangular hull is calculated using the MPFL API. The rectangle is broken up into
strips. The strips are oriented horizontally if the width of the rectangle is longer than
the height, and vertically in the reverse case. If the area is square, the strip orientation
can be chosen arbitrarily. A set of waypoints is calculated that represent a lawnmower
search path, where each strip is traversed down the center from end to end, then the
robot turns, moves into the next strip, and starts moving in the reverse direction (i.e.
like a lawnmower) (Figure 6.4). These waypoints are encoded within a single Transit
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plan instance, where each Search plan instance has a Transit instance encoding the
search path. As for sensing, for each Search plan instance we also create a UseSonar

plan instance specifying parameters appropriate to the type of search the planner is built
for.

Fig. 6.4 Demo Search planner creates waypoints for Transit planner

The two tasks depicted by each Transit and corresponding UseSonar plan in-
stance must happen in parallel. Hence the subproblem for each Search plan instance is
represented as:

t || us

where t is the name of the Transit plan instance and us is the name of the UseSonar

plan instance.

6.12.5 Schedule Encoding

The schedule encoding is as follows:

• Start Time - The time the search commences.

• End Time - The time the search ends.

• Name - The name of the plan instance associated with the Search request.

• Command - No command is needed, so each entry just says “Performing search
operation”.

6.12.6 Callback build schedule

The Search schedule row entries map to the rows referecing the children Transit

instances within the Transit schedule. Each entry in the Search schedule has a start
time/end time corresponding to the start time/end time of the transit operation. Again
the ScheduleAutobuild option can be used to automate this.



124

6.13 Segue: Results, Performance, and Related work

This chapter concludes a description of the planners that constitute a demonstra-
tion of a total planning autonomy solution for an AUV. Unfortunately due to time, not
all of the planners could be implemented fully, though they will be implemented in the
future. However, algorithms were given for each planner.
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Chapter 7

Results, Related Work, Future Work

This final chapter discusses the outcomes of this research.

7.1 Results

The implementation of MPFL yielded some very interesting results and some fresh
perspectives on autonomy software development. During the course of the research,
a prototype MPFL compiler was developed in OCaml along with a set of prototype
planners and knowledge base as described in the previous chapter.

7.1.1 Mission Performance

This prototype system demonstrated deliberative autonomous control of a simu-
lated AUV via a specification written in the MSL without violation of constraints, even
in complex scenarios. In general, the AUV not only did not violate any constraints, but
performed optimally (or at least close to it) by minimizing use of resources (time and
power) thanks to the heuristics implemented in the planners. In the cases of failures to
find feasible schedules, MPFL’s exception handling mechanisms gracefully allowed the
engine to continue. It was interesting to watch the virtual robot do its best to complete
tasks and the decisions it had to make when it could not attempt certain tasks.

7.1.2 Computational Performance

The simplicity of MPFL results in negligible performance overhead from the
framework itself. The computational burden is primarily dictated by the performance
of each planner’s scheduling algorithms. The algorithms used in the prototype example
planners all run in worst case polynomial time. The most complex algorithms reside
in the UseAcoustic and UseAutopilot planners where planners iteratively solve their
problems, where the number of iterations per compilation cycle are limited.

7.1.3 Ease and Quality of API and Framework

In software engineering, developing good software frameworks and their corre-
sponding APIs can be extremely difficult. Though what makes an API and framework
good is subjective, generally desirable features are:

• Simplicity - Minimizing the set of functions/methods, classes, and types the user
has to learn so as not to confuse or overwhelm them.



126

• Consistency - The API should have a consistent feel so that once the user starts
learning a part it, they can intuitively figure out the rest as it ‘follows the same
formula’.

• Match Implementation Language Style - If the API is implemented in a
functional language, the API should have functional style versus another style
such as imperative.

• Use Implementation Language Well - The API should take advantage of the
features of its implementation language. For example, if the language is statically
typed, the API should use types extensively in API functions and callbacks to
provide static verification.

• Modular - The API and framwork should be broken into pieces that can be
reasoned about in a piecemeal fashion so as to make it easier for the end user
to learn and understand. These pieces can come through the abstraction and
encapsulation constructs provided by the implementation language such as files,
classes, functions, and abstract data types.

• Documentation - A good API should be well documented, with descriptions for
all types and functions, preconditions, and caveats. The names of functions/meth-
ods and types should be simple and self-documenting, meaning that the name
implies what the function/method/types does.

• Verification and Feedback - All user interactions with the framework should be
verified, with static verification preferred over runtime verification. In the event
of errors, the user should be informed in the simplest and clearest way possible
without sacrificing crucial details.

• Default Behavior - Good software frameworks allow users to take off quickly by
providing default behavior with good presets. For example, in most widget toolkits,
the user does not have to define the behavior of what clicking the close button on
a window does — it simply exits the program. However, the user can override
this behavior by providing an alternative handler callback function to change that
behavior.

• Isolation of API/Framework and End User Application - A good software
framework hides its implementation details from the user so that they do not have
to understand how it works when building their application, nor can they modify
the code of the framework and API.

MPFL was designed with all these qualities in mind. The extent to which the pro-
totype implementation bears these qualities is subjective. However, each one is discussed
below and the approach taken to incorporate those ideals into MPFL.

7.1.3.1 Simplicity

The end user only has to learn the MSL and two global functions (initialize mpfl

and build schedules) assuming that they are not building any of the planners or
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knowledge base themselves. The MSL itself was designed to be minimal as can be
seen from previous chapters. For users that have to write the planners and knowledge
base, they additionally have to know three class hierarchies (α planner, knowledgeBase,
planInstance, and a little over a dozen variant types used to encode plan instance in-
formation such as problem specification and lifetime state.

7.1.3.2 Consistency

The constructs in the API follow a consistent style in naming conventions. The
MSL itself uses a consistent style everywhere, most notably the arguments to constructors
which follow the <fieldName> = <value> formula. The types and values in the MSL
match those found in the API. For example, plan instances in the MSL map one-to-one to
the plan instances used in the planner API defined by the planInstance class hierarchy.

7.1.3.3 Match Implementation Language Style

The MPFL compiler internals were implemented in a functional style as OCaml
is primarily a functional language. The API uses functional style, but also incorporates
object-oriented constructs which does not break the style as OCaml is also an object-
oriented language. The imperative features of OCaml were rarely used and the majority
of the code is written in a pure functional style (i.e. no side-effects) making it easier
to reason about semantics and code correctness. The API is purely functional meaning
that the user cannot corrupt system state via side-effect unlike languages such as C.

7.1.3.4 Modular

One of the key goals of MPFL was to make it highly modular with as few depen-
dencies as possible between modules. This allows for reusability of components as well
as making it easier to reason about system design as it can be done in a more piecemeal
fashion. The components that users build are planners and knowledge bases. These
modules are decoupled from each other. Though planners may create subproblems for
other planners, the implementation of those planners does not matter. The user is free
to couple modules together if their application requires it, though coupling should be
minimized.

7.1.3.5 Documentation

It is difficult to use any API without documentation. In MPFL, the implementa-
tion and API source code have all functions and types annotated with documentation.
The documentation uses OCaml’s documentation system enabling interactive help with
IDEs that can pop up help information as functions, methods, and classes are used.

7.1.3.6 Verification and Feedback

If there is any philosophy that is at the core of MPFL’s design, it is that everything
must be verified and the user must be given meaningful feedback when problems occur.
Every level of MPFL – the MSL, the compiler/runtime, and the API – verify as much
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information as possible to ensure correct operation of the robot. Missions described with
MSL are guaranteed to be sensible to the robot thanks to the static and runtime checks
performed by the compiler. If there are errors in the specification, MPFL will return
detailed information with line number containing the violating code. The compiler/run-
time is also constantly checking its own internal state to ensure that the implementation
is correct and will inform the user if there is a bug in the implementation. Finally, when
users build planners and knowledge bases, they have to follow a design contract dictated
by the abstract base class definitions and enforced by the OCaml type system.

7.1.3.7 Default Behavior

It is quite easy to immediately start writing code with MPFL as there are default
implementations of all callback methods the user has the ability to override. One can
start with a set of empty planners where callbacks return empty values and slowly build
up their components.

7.1.3.8 Isolation of API/Framework and End User Application

It is important for a good API to hide its internals from the user as well as stop
the user from corrupting internal state of the compiler/runtime. In MPFL, the user
does not have to have an understanding of how the internals of the compiler/runtime
(i.e. Parser, LST Evaluator, PI Evaluator, etc) work. All they have to understand is the
planner and knowledge base API. The pure functional style of the implementation makes
it impossible for the user to corrupt system state as they cannot create a side-effect on
the system.

7.2 Issues and Future Work

MPFL is a prototype system of a new software architecture for robotics planning,
so it has its issues as well as plenty of potential interesting areas of further study.

7.2.1 Incomplete Features

The current implementation of the MPFL compiler is a complete working system,
but to date not all features were implemented due to a lack of time.

7.2.1.1 Power Constraint Enforcement

The astute reader may have noticed that power constraints were not enforced
along with the time constraints in the PI Evaluator. Implementing power constraints
is straight forward and similar to the way time constraints are enforced. Each schedule
has additional columns for power and energy used by each command. Planners have
the responsibility of determining an estimate for peak power and total energy. The PI
evaluator validates that power and energy usages is within the constraints, if so the
schedule is valid, otherwise the runtime raises an exception indicating the planner is
faulty.
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7.2.1.2 Easily Swappable Planners

One of the intentions of MPFL is to allow users to swap out planners and knowl-
edge bases without the need for recompilation. For example, one could login to the
robot’s computer running an MPFL client, shut it down, transfer a new planner in the
form of a binary blob to the robot, restart the client, and the robot would now be using
the new planner. Currently, one can do this by building their individual planners/-
knowledge bases as runtime libraries (i.e. shared objects in Unix/Linux, dynamical link
libraries in Windows) which can be dynamically linked when the client application is
loaded. OCaml supports this feature as does every OS it runs on. The user however
needs to be responsible for unloading the library from memory using whatever means
the OS provides before running the program again so as to make sure the OS runtime
linker chooses the newer version. This can be a bit painful, so in the future it would
be helpful if MPFL could provide additional abstractions to make swappable planners
easier. Note that there is no intent to ever make hot swappable planners as it does not
make too much sense in the MPFL thought process and would likely make the system
unnecessarily complex.

7.2.2 Problems with Distributed Planning

The modularity and component isolation afforded by planners and knowledge
bases comes at a cost. MPFL is a distributed planning system, where each planner
independently schedules its own problems. Though there is coordination between parent
and children planners through the planner graph, there is no way to finely coordinate
the actions created by one planner with the actions created by another. For example,
the example Search planner from the previous chapter creates problems for the Transit
and UseSonar planners. The only coordination between the two comes through the
use of the parallel (||) operator. The parallel operator switches either the Transit or
UseSonar plan instances into an On(FORCE RUN) state as soon as the other goes into an
On(RUN) state. There is no fine-grained coordination between the two tasks, which may
be desired. Users can get around this by coupling planners when they implement them.
Though this breaks the spirit of the MPFL concept and the independence of planners,
it is a reasonable way to approach the problem if needed.

Additionally, a planner in MPFL only creates a single schedule though multiple
schedule options may be available (i.e. there is more than one way to accomplish the
same set of tasks). When a planner creates subproblems for its children planners, the
scheduling algorithms of the children maybe able to generate multiple scheduling solu-
tions. This could mean that the parent planner may have a preference for one schedule
over the other, though any schedule that does not violate its constraints will do. This is
a slightly more difficult feature to enable as now the planner implementor has to think
about the possibility of creating multiple schedules, and also deciding which schedule
from its children planners work best. What is more problematic is if a planner has mul-
tiple parents, in which case they must arbitrate over which planner is the best. One
solution to implement this feature is utilize cost functions, where planners can feed
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their children a higher-order function that can return a score of goodness that the plan-
ner can use to choose the best schedule that optimally meets the requirements of all the
parents.

7.2.3 The Use of OCaml and Bindings for Other Languages

An early prototype of MPFL was written in the C++ programming language. The
reasoning behind that decision was that C++ would provide not only better performance
than other high-level languages, but that an object-oriented API in C++ would be
more appealing to roboticists as it is a highly used language in the robotics field, is
supported on a large number of platforms including many microcontrollers, and can
be easily mixed with C code which is also highly used. This approach was abandoned
as C++ proved to be a burdensome metalanguage for language development, primarily
because of the amount of boilerplate code required, the lack of garbage collection, the lack
of pattern matching, and clunky versions of common data structures such as dynamic
arrays (vectors), linked lists, and hash tables. The compiler in its completed state along
with the API took around 50,000 lines of C++ code when completed.

The prototype proved difficult to debug or alter due to its sheer complexity. It
could be blamed on poor design, though a lot of effort went into it. Eventually the
compiler was reimplemented in OCaml, where it took fewer than 1500 lines of code and
is much easier to read. This is not surprising as the ML family of languages is excellent
for prototyping languages1. The use of pure functional style allows for code to be flexible
as one does not need to worry about side-effects so pieces can be moved around without
worry as the code develops. The strong type system, rich standard library, garbage
collection, higher order functions/closures, variant types, easily manipulatable linked
lists, and pattern matching on variant types and lists also made OCaml the perfect
choice. The OCaml compiler also generates good quality code in terms of performance
and is considered one of the best in the functional language world. According to OCaml’s
creator, Xavier Leroy, the OCaml compiler generates code that will typically run no worse
than 50% the speed of an equivalent C program utilizing a decent compiler (Schmitt
and Leroy 2003). In the end, it turned out that even unoptimized debug code with
OCaml’s bytecode compiler (rather than its native compiler) ends up providing sufficient
performance anyway as the overhead of the MPFL framework is minimal.

Though OCaml was a great choice to implement MPFL, having an API in OCaml
is not a good practical choice. This is due to its lack of popularity along with the general
lack of experience in the functional programming paradigm in non-academic settings.
This is unfortunate as the planners implemented for the demonstration were extremely
simple – the most complex being the UseAutopilot planner with 300 lines of code.
However, we must deal with reality. Therefore we propose to utilize OCaml’s C foreign
function interface to implement a C binding for the API. The interface is already being
utilized to link in some basic C libraries required for the demonstration planners and
it is quite straightforward. Once the C binding is written, bindings for other popular
languages can be written as virtually every programming language has a way to call

1ML is an acronym for ‘metalanguage’, implicative of its intended use.
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C functions, including Java, Python, Matlab, and C#. C++ can inherently call C
functions. By creating a variety of bindings for MPFL, the framework becomes accessible
to a much wider audience. The compiler/runtime is still implemented in OCaml and the
benefits provided by it remain.

7.2.4 Metalanguage

The original intent of MPFL was to be specific to autonomous underwater vehi-
cles. However, during its development it was realized that it could be applied to any
autonomous system. All that ties MPFL specifically to AUVs is the various primitive
plans provided by it (e.g. Loiter, Search, UseAutopilot). The primitive plans are
not inherently tied to MPFL, in fact the compiler/runtime has no understanding of the
problems its managing other than the time and power resources they use and are con-
strainted to. In other words, MPFL treats all plan instances equivalently, it just uses
the type of plan instance to route it to the correct planner when the PI Evaluator is
invoked.

The set of primitive plans and their plan instance constructors that currently exist
are not completely realistic or finalized. However, rather than attempting to define those
primitives, it would make more sense to allow users to add and remove their own primitive
plan types with corresponding constructors. The concept is simply a generalization of
the current implementation. For example, if one wanted to add a new primitive plan
such as UseWeapon which allowed the robot to fire a weapon, they would now have the
ability to do so along with naming the fields and their corresponding types that go into
the new plan’s plan instance constructor.

Implementing this feature is quite straightforward and requires implementing a
metalanguage that allows users to define all the primitive plans that their MPFL
compiler/runtime understands along with their constructor definition. A compiler for
the metalanguage will then generate the OCaml code for all the appropriate class types
(i.e. customized planner API) and build a custom version of the MPFL compiler/runtime
for the MPFL client to link against.

7.2.5 Graphical Tool

Though the use of a programming language to control the robot (the MSL) is
powerful and appealing, it is likely that many end users will not want to control their
robot via a programming language. For example, a researcher may develop a robot that
uses MPFL in military applications, but a soldier or sailor will not want to write a
program when in the field. The intent of the MSL was never to be used by non-technical
people, but rather as a middleware layer to communicate with a robot. Instead, what
is proposed is creating a graphical tool where users can describe the tasks they want
to do as a tree (Figure 7.1). Nodes in the tree represent tasks and children nodes are
subtasks. Sibling nodes can be related using a planning operator (e.g. >, ||, ˆ, &) or via
a condition. Users can also bind constraints to a branch of the tree. Essentially the user
would be visually creating the plan instance tree, which itself can directly be translated
into an autogenerated yet easy to read MSL program. This program can then be fed
into the MPFL compiler manually or directly through the GUI tool.
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Fig. 7.1 Mockup of a potential MPFL Graphical Tool

7.2.6 Enhancing MSL

There is much to be desired from the MSL in terms of features.

7.2.6.1 Syntax

The syntax of the language is a bit verbose and can make it difficult to read code,
so it may make sense to reevalutate it. The heavy use of parentheses can also become
frustrating.

7.2.6.2 Primitive Plan Types

As mentioned earlier, a metalanguage should be created to encode different types
of primitive plans and their corresponding plan instance constructors. However, until
such a feature is added, the current set of primitive plans are not completely desirable
for a real AUV. For example, there are many types of searches an AUV can perform and
additional parameters that define the search besides an area, a sensor, and a lanewidth.
It is quite easy to add in new primitive plan types, however it requires modifying the
implementation code which the end user should not touch.

7.2.6.3 Better Lookup Calls and More Built in Functions

The current set of Lookup* calls in the MSL only cover the four primitive types:
boolean, integer, floating point, and string. In addition to these types, there should be
lookup calls for all MSL types, such as position and angle. This is an easy extension
to add and just requires the user to add more lookup calls to their knowledge base
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implementation. In addition to being able to lookup values, it would be handy to be
able to perform some common functions with them. Just as one can perform basic
arithmetic with floating points and integers in the MSL and can compare equality of the
string, calls for calculating the distance between two position values or getting the value
of a duration value in minutes can be useful in the MSL, particularly with conditional
expressions.

7.2.6.4 Variables and Functions

Adding variables and functions to a language, as found in most high-level lan-
guages, is quite straightforward. However, this feature was never added into the MSL as
the point was to make it as narrow in scope as possible. Adding functions and variables
would make the MSL look more like a general-purpose programming language than a
domain-specific one, diluting its purpose and making MSL programs unnecessarily com-
plex. However, adding these features may not necessarily be a bad idea; if the MSL
becomes powerful enough to be used in general programming, there may come a point
where the MPFL client application is no longer needed or at least much smaller in size.
Though it is unlikely the MSL will ever add these features, it is interesting to ponder
what effects it could have.

7.2.7 Real Usage and System Tuning

Though this thesis puts MPFL in a positive light, the system has only been tested
in simulation and to a limited extent. To prove its worthiness, MPFL needs to be used on
a variety of robots, by a variety of different people. This real life usage will help provide
feedback about its usefulness. If there are shortcomings, they should be addressed as
found.

7.3 Related Work

MPFL is one of countless architectures for autonomous planning and not the
first to use a domain-specific programming language. The approach however was unique
in that the focus was on a very practical and simple software tool where a robotics
software engineer could learn the MSL and MPFL API in a few hours and generate
highly-verified and deliberative autonomy in contrast to other tools which often can be
a bit overwhelming or only applicable to a set of toy problems. However, MPFL was
inspired by many of these alternative architectures, and it is prudent to take a look at
the other approaches, their advantages, and their shortfalls.

7.3.1 Planners

Those that come from an AI background will likely have a different association
with the term planner than the way it is used in MPFL. In the AI world, ‘planners’ are
similar to the notion of a planner in MPFL in that they are entities that take a set of
tasks and a set of constraints and output a schedule of actions. The difference is that
in AI, planners usually also take with them a start state, a set of end states, and a set
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of valid actions similar to those in a finite state machine. In the AI world, planners
are algorithms which figure out a schedule of actions to get from the start state to the
end (i.e. goal) state. In other words, planners are simply general purpose constraint
solvers where the user encodes the problem, the goals, and the valid actions that can
be taken by the entity for which the schedule is being generated (e.g. a robot) (Russell
and Norvig 2010). MPFL does none of this. Rather it just tells the user to implement
a scheduling algorithm for each particular task within the domain. MPFL just provides
you with the information needed to schedule, but does not figure out how to schedule
the task. Though this may seem like a lacking in MPFL, it was done on purpose because
attempting to generalize planning is not a fruitful endeavor in the opinion of the author.
Though it is interesting and potentially more useful, in practice general purpose planners
have only been able to solve toy problems efficiently. Though more complex problems can
be solved, they typically become intractable due to the inefficiency of the solver which
is essentially building a proof tree to get from the start state to the goal state. The
author thinks it makes more sense to write scheduling algorithms for specific scheduling
problems as they occur, which is exuded by the various types of planners that one can
create in MPFL. As an example, the way the demo UseAutopilot scheduler works with a
genetic algorithm is much different than the way the demo UseAcoustic planner utilizes
a linear program.

7.3.2 Languages for Planning and Robotic Control

Though MPFL takes a different and more limited approach to planning than the
generalized planners that are the focus of AI research, there is one thing in common:
the use of a domain specific programming language. Many popular planners utilize
a language which allows users to describe the tasks they want to perform along with
constraints, but also allowing constructs for encoding valid actions, start states, and goal
state. The use of languages to encode and reason about plans has been prevalent since the
days of PLANNER (Hewitt 1971). Popular languages include STRIPS (Fikes and Nilsson
1971, 1994) and PDDL (Mcdermott 1998). Simmons and Apfelbaum (1998) describes an
extension to the C++ language called TDL that enables specification of robotic tasks.
Gat (1997) describes ESL which is a planning language for embedded autonomous agents.
Likewise, numerous languages specifically for reactive robotic control/planning have also
been created such as COLBERT (Konolige 1997) and RPL (Mcdermott 1993). Peterson
et al. (1999) describes a declarative language for robotic control which is the most similar
concept to MPFL found in the literature. Eberbach et al. (2003) describes a common
control language with emphasis on the control of multiple autonomous vehicles.

7.3.3 Robotic Software Architectures

A software architecture is a “methodology for structuring algorithms” (Russell
and Norvig 2010). An architecture encompasses the building blocks for building systems
following a common design philosophy. These building blocks can be in the form of
software tools, frameworks, APIs, and languages. A robotic software architecture is
a software architecture for the software that runs onboard a robot, what we have referred
to as the robot’s autonomy software stack. A robotic software architecture can be used
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to help build robotics software more rapidly. MPFL can be considered one piece of a
robotic software architecture with a focus on mission planning and resource allocation.

7.3.3.1 Design Philosphy: Reactive, Deliberative, Hybrid

Robotic software architectures can be described as being, reactive, deliberative, or
a mix of the two (hybrid). The first chapter described the terms reactive and deliberative.
The more reactive a robot is, the less analysis it makes about its next decision. In other
words, it thinks less about the long-term consequences of its actions and does not think
much about its past experiences. The model is essentially a simple stimulus-response
mechanism. The more deliberative a robot is, the more it thinks about its actions based
on past information and predictions of the future. Hybrid systems are ones that utilize
both philosophies where appropriate for the robot’s application (Alami et al. 1998; Gat
1998). Planners (both in the traditional AI sense and MPFL planners) tend to follow
a deliberative philosophy. On the other end of the spectrum, one of the best examples
of a reactive system is the Subsumption Architecture created by MIT researcher
Rodney Brooks (Brooks 1986, 1991). The premise in Subsumption Architecture is to
create an N -level tree of behaviors (which are analogous to the planners in MPFL). The
behaviors higher up in the tree represent high-level aspects of the robot’s intelligence
(such as performing a search) whereas the lowest levels represent the most primitive
abilities of the robot (e.g. sending power to the servo to move the robot). The higher
level behaviors are performed by breaking up the problem into a series of input for the
children behaviors (i.e. higher level behaviors subsume children behaviors). For example,
if we think of the task of driving a car in terms of Subsumption Architecture, the highest
level behaviors could pertain to managing the high level goal of getting to a particular
destination and the lower level behaviors deal with the actual impulsive movements that
must be made to the steering wheel and accelerator to accomplish the higher level goals.
Subsumption Architecture and its variants are sometimes referred to as behavior-based
autonomous control systems (Arkin 1998).

What makes the Subsumption Architecture reactive is that the behaviors in the
tree are simple functions that take an input from higher level behaviors indicating what
needs to be done and in turn causes those behaviors to create further input for its
children. The behaviors are stateless and simply reacting to input. The idea is that if one
combines enough of these simple behaviors together, a more complex overall emergent
behavior will be exuded by the robot. For example, if you look at the way a flock
of birds flies, the exhibit complex behavior as they fly together in perfect formations
without explicit communication. Each bird is following a simple set of rules: stay a
certain distance to the bird to your left, to your right, and the one in front of you.
Robots can also follow simple rules like this and exhibit complex control. In fact this is
the very approach used in iRobot’s Roomba vacuum cleaner robots, and it is no surprise
that Chief Technology Officer (CTO) of iRobot happens be Rodney Brooks. Brooks’
philosophy has been controversial, many agree, many do not. It has been found in
practice though when more and more complex behavior is required, simplistic reactive
control systems are limited and more complex logic is needed.
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In practice, robots tend to use a hybrid approach such as the three layer ar-
chitecture. In this model, three abstraction layers are used: reactive, executive, and
deliberative. The reactive layer sits closest to the hardware and performs the more im-
pulsive tasks, such as orienting a wheel to face a certain direction. This layer needs to be
really fast and typically implemented using concepts from the field of control theory. The
deliberative layer focuses on the high level mission and tasks it composes and sending
commands to the reactive layer to perform the mission. The executive layer is simply a
glue layer between the two which does the mediation. MPFL is not a complete autonomy
solution, but works well as the deliberative layer in a robot using a three-layer robotic
architecture.

Though MPFL is a deliberative system, it was ironically inspired by Subsumption
Architecture. The planner graph in MPFL is based off the idea of Subsumption Archi-
tecture’s N -level behavior tree. Planners are analogous to behaviors, but rather than
being simple stimulus-response objects, they are deliberative schedulers. However, the
notion of breaking down the problem and delegating it to lower level entities remains.
This idea is nothing revolutionary, rather it is just another instance of layering as is
found throughout all of computer science. MPFL was also not the first planning system
to think of this, as many planners and scheduling systems use this. The technical term
is hierarchical planning system as the system is broken into many layers where high
level tasks are broken into smaller ones for lower layers. As each planner operates inde-
pendently of each other, MPFL is also a distributed planning system or equivalently
a multi-agent planning system.

7.3.3.2 Robotic “Operating Systems”

It was implied in previous chapters that MPFL itself can be thought of almost as
an operating system for a robot. The idea of thinking about creating an abstraction layer
for robots which provides services to robotic software developers the way an operating
system provides abstractions to its application developers is nothing new. Virtually every
sufficiently complex robotic software architecture can be interpreted as being a robotic
operating system. There are however robotic software architectures out there that at-
tempt to be robotic operating systems. These systems act as an intermediary between
the application-specific code and the robot, providing APIs for commonly needed tasks
in robotics including message passing, navigational calculations, data fusion algorithms,
device driver-style hardware abstractions,and data logging and playback. Examples in-
clude:

• Mission Oriented Operating Suite (MOOS) - MOOS is a set of simple tools
written in C++ at Oxford University and MIT for autonomous robot applications
(Newman 2003). MOOS allows one to break up their autonomy software stack into
several processes, each one able to communicate with each other by publishing and
subscribing to data feeds available to all other processes. Each process is synony-
mous with an agent in a multi-agent system. MOOS comes with a set of prebuilt
agents for data logging, navigation, debugging, and talking to various hardware
devices. MOOS is free, open-source software with comprehensive documentation.
The MPFL demo system utilizes MOOS for interprocess communication.
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• Robot Operating System (ROS) - ROS, maintained by Willow Garage, is
a similar concept to MOOS, but goes beyond it by trying to provide not only
the basics, but additional tools used in modern robotics such as computer vision
algorithms, robot simulators, and motion planning for robotic arms (Quigley et al.
2009). ROS is free, open-source software and well documented.

• Microsoft Robotics Studio (MRS) - MRS is a robotics development tool cre-
ated in 2006 by Microsoft Corporation. Robotics Studio provides a framework for
building individual services where each service is an agent in a multi-agent system.
For example, a robot can have a service for managing the camera, one for controlling
speed, one for managing the mission, and one for a wireless Bluetooth connection.
A message passing system with standardized messages allows users to write the
glue code in any .NET-based language. In addition to the framework for building
the robot’s autonomy, MRS comes with a simulator and real-time 3D visualization
tool for mapping the robot’s movements. Microsoft’s goal with Robotics Studio
is to standardize robotics software leveraging their influence in the information
technology world (Jackson 2007). Though a great idea, Microsoft’s development
efforts are focused on their Windows operating system platform, as consistent with
their philosophy. This is limiting as it creates proprietary lock-in and excludes
the efforts of the open source software community. The latter is very problem-
atic as open source software such as Linux-based operating systems and the GNU
compiler collection (gcc) are ubiquitous in the robotics world. On the other hand,
MRS’ development tools are very well-designed and easy to use allowing software
developers familiar with Microsoft’s .NET framework to quickly take off.

• Coupled Layer Architecture for Robotic Autonomy (CLARAty) - CLARAty
is a robotics architecture developed through a collaboration between Jet Propul-
sion Laboratory, NASA Ames Research Center, Carnegie Mellon University, and
the University of Minnesota (Volpe et al. 2001). CLARAty also utilizes a multi-
agent approach like MOOS, ROS, and MRS. A limited subset of the CLARAty
code is available to the public under a limited open source license.

7.3.4 Cognitive Architectures

Cognitive architectures are software architectures that attempt to model the
human mind or an equivalent there of. These architectures are not developed with the
focus of controlling an autonomous robot, but rather to understand the nature of the
human mind and human intelligence. The design of these systems is based on theories of
how the mind works from cognitive science. As mentioned in the first chapter, cognitive
science is a relatively new field that incorporates many disciplines including computer
science, artificial intelligence, biology, neuroscience, and psychology. Though cognitive
architectures were not meant to run on robots, many of the problem solving capabilities
that have emerged from the development of these architectures have crossed over into
the autonomous robotics realm. As mentioned in chapter 2, better autonomy implies
more intelligence, so it is not surprising that successful cognitive architectures have
been applied to autonomy problems. Vernon et al. (2007) presents a fairly thorough
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history and comparison of various cognitive architectures. Three of the most well known
cognitive architectures are:

• Soar - Soar is a cognitive architecture, created by John Laird, Allen Newell, and
Paul Rosenbloom at Carnegie Mellon University and now maintained by John
Laird’s research group a the University of Michigan. Soar is the successor to Her-
bert Simon and Allen Newell’s General Problem Solver (GPS), and meant to be a
software implementation of the cognitive model Newell described in his book Uni-
fied Theories of Cognition (Newell 1990). Soar utilizes a programming language
based approach where users encode both the intelligent agent’s knowledge repre-
sentation and reasoning through the use of production rules similar to those in a
logic based language. Soar is similar to the notion of the classical AI planner men-
tioned earlier, but attempts to avoid problems like rule explosion by introducing
metarules that allow the system to cache and stereotype information. (Lehman
et al. 1996; Laird 2008; Laird and Congdon 2009)

• ACT-R (Adaptive Control of Thought - Rational) - ACT-R is a cognitive
architecture created by John Anderson at Carnegie-Mellon University and also
uses the rule based approach of Soar. It was inspired heavily by Soar and Newell’s
book Unified Theories of Cognition (Newell 1990). Unlike Soar though, rather
than using its own programming language, ACT-R is simply a big collection of
Lisp functions that the user utilizes in their client application. (Anderson 1996;
Anderson et al. 1997)

• EPIC (Executive Process - Interactive Control - EPIC is a cognitive ar-
chitecture developed by David E. Kieras and David E. Meyer at the University
of Michigan. EPIC is different from other cognitive architectures as it has a fo-
cus on perceptual and motor capabilities making it particularly useful in Human-
Computer Interaction (HCI) applications. EPIC is similar to ACT-R in that it
is both a rule-based system and is presented a collection of Lisp functions.(Kieras
and Meyer 1997)

7.4 Conclusion

In practice, the high-level tools such as classical planners and cognitive architec-
tures have only been able to solve problems in a niche area as they either fail to scale
to a more general set of problems or do not have the means of solving problems rele-
vant to autonomous robots. Tools such as the ROS and MOOS fall on the other end of
the spectrum and are used quite heavily in practice, but the burden of implementing the
high-level intelligence is put on the user of the tools. What makes MPFL unique however
is that it tries to find a sweet spot between the practical and the theoretical. MPFL was
meant to help robotic software developers move up another level of abstraction from the
facilities that ROS and MOOS provide, yet build their planning software in a way that is
consistent, correct, fast, easy to reason about, and reusable. Classical approaches have
failed because their goals are too lofty: creating a general-purpose planning algorithm.
It makes more sense to allow users to build several simple, yet smarter and more efficient
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domain specific schedulers (i.e. MPFL planners). Though the idea of distributed and hi-
erarchical schedulers is not new, MPFL provides a common framework for building these
schedulers which allows for verification at every level along with an extremely powerful
and declarative language for controlling the robot. The language is what makes MPFL
shine; one can specify the most convoluted and complex mission they can think of, and
MPFL will attempt it without violating any constraints. This is remarkable given that
from the robotic software developer’s perspective they are building simple isolated com-
ponents, but then are able to get a complex, emergent behavior out of it through the
language.

MPFL is not meant to be a silver bullet for solving all problems pertaining to
planning in autonomous robots. It does not contain in it anything that the robotics
and artificial intelligence communities have not yet seen. However, it tries to take ex-
isting concepts and structure them in a particular way using the discipline of software
engineering in order to create a tool that is useful in real-life robotics applications to
real-life software engineers. At the very least, MPFL creates a fresh perspective on the
implementation of robotic autonomy.
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