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ABSTRACT

This thesis contains three essays on the formation of social networks. The first essay focuses on citation

networks while the second one proposes a general model of network formation. The third essay is an empirical

investigation of a person’s kinship network.

Chapter 1: Citations and the Diffusion of Knowledge: An Economic Analysis (with Kalyan
Chatterjee)
Citation patterns in many academic disciplines have displayed a pattern of connections similar to those

observed in many other different real-world contexts, such as links on the world-wide web. The various models

that have been proposed to generate such networks, generically called "preferential attachment models", rely

solely on random link formation and copying and do not take into account rational choice among authors in

an academic community, which would consider the competition for citations and ensuing professional success.

In this paper we construct such a model with rational agents to understand some aspects of citation patterns

and knowledge diffusion in a specific academic field .. We show that rivalry or competition in citations might

be an obstacle to diffusion, depending on behavioral rules specific to the field. Increased heterogeneity in the

quality of papers reduces this effect. After considering models with complete information, we analyse models

with private information about quality of one’s own paper and use the framework to consider the interaction

of this process with acquaintance networks and strategic entry. Superimposing the citation process on an

acquaintance network yields patterns different from preferential attachment. Strategic entry leads to cascades

of papers. Though we might have ex-ante efficiency in some equilibria, ex-post efficiency is not guaranteed.

Ex post efficiency cannot be guaranteed since it is always possible in equilibrium that a good paper “dies”

and a worse one survives, but ex ante efficiency is sometimes attainable.

Chapter 2: Competing to be a ‘Star’: A model of sequential network formation
This paper studies a sequential-move game of network formation with capacity constrained agents. The

sequential nature of the game allows us to focus on the the role played by foresight in the formation of

particular network configurations. We find that the equilibrium network structure depends crucially on the

rate of decreasing returns (decay) in the payoffs. With homogeneous agents and a capacity of one link, the

equilibrium network is a fully connected graph for extreme levels of decay. The architectures for very low

and very high levels of decay are a complete star and a graph similar to the hub-and-spoke architecture,

respectively. For intermediate levels of decay, however, the network configuration might have more than

one component. This occurs because agents have the incentive to reject a link in some subgame in order to

become central in the network at some future date. With heterogeneous agents, the equilibrium network for

both very high and very low levels of decay is a star with a high ability agent as the center. But it is possible

to have structures where the high ability agent is kept isolated by the rest of the society comprising of low

types. This depends on the decay factor and the difference in the abilities of agents. The equilibrium is, for

most values of decay, inefficient. Hence, we can possibly explain the existence of multiple small groups in

various social settings even when a single cohesive network would be more efficient.
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Chapter 3: Family Embeddedness: An Empirical Investigation
Using the Netherlands Kinship Panel Data, we investigate the relationship between an individual’s em-

beddedness in family ties, effort exerted on the job and social attitude. In particular, we want to explore

whether stronger familial ties are associated with any negative impact on personal incentives or on society.

We find that agents with a higher level of family ties at birth maintain a higher level of ties at a later stage.

They also have a higher involvement in volunteer work and are more tolerant of migrants. Moreover, the

level of inherited ties affect a person’s current work effort positively. This is possible due to peer effects or

due to a correlation with the occupational choice of individuals. Other factors which influence both ties and

effort have an opposite effect on the two. Hence, the level of initial embeddedness in family, by itself, does

not have negative effects on social attitude or effort. However, there possibly exists a negative relationship

between current ties and effort due to family obligations or time constraints. We also find that negative

social attitudes could be nurtured by higher income or wealth.
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Chapter 1

Citations and the Diffusion of Knowledge: An Economic
Analysis

1 Introduction

The aim of this paper is to model aspects of the process by which rational agents

engaged in research use and cite earlier related work in their field. Citations constitute

visible evidence of the diffusion of ideas and are therefore important in studying the

influence or impact of particular pieces of research. It is also possible to think of

citations as directed links in a network, so the nature of the diffusion of ideas also

endogenously generates a network whose properties can be studied.

It is natural to think of citations in academic research, since the academic en-

terprise is one with which we, engaged in it, are intimately familiar. Academic ad-

ministrators often ask for citation counts as evidence of the impact of an individual’s

research and this might translate into salary raises or external offers. Being cited by

one’s peers also gives us pleasure and not being cited, when one should have been,

is frequently cause for discomfort. Citations therefore have real consequences for an

academic’s utility.

We can also think of citations of patents in industrial research and development

in a similar way. An individual firm might have a project that could be facilitated

by using someone else’s idea. The firm could choose, however, to try to avoid having

to pay royalty fees for using the patent and develop its own original solution to its

problem. Such a new product or process could itself generate fees from future entrants

to the field.

We shall focus on academics for convenience, though sometimes keeping the in-

dustrial R&D context in mind could help motivate some of the assumptions.

As stated earlier, we shall not consider every aspect of the decision on whether

to cite a preceding paper. In particular, we abstract from issues relating to repeated

interactions, where reciprocity could play an important role. The basic tradeoff that
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we shall examine is that between investigating and using an existing good idea to

simplify one’s own task versus expending costly effort to come up with one’s own

solution to generate high future payoffs from others with similar projects.

The context we wish to model might be thought of as a research field progressing

by the solution of many related small problems. The person who solves one of these

problems puts in effort and gets an expected value commensurate with the effort put

in from her proposed solution to the problem. However, if other papers are known

to exist in related areas, an individual might read one or more of them to obtain

ideas that would simplify her task thereby reducing the cost of effort and increasing

the value of the solution to her. Any ideas from other papers so used would need

to be cited. (This is an assumption, but probably a good one for the vast majority

of researchers; it is certainly something that firms engaged in R&D have to do, to

avoid lawsuits) However, by citing a related paper, the individual who cites signals

to other future entrants that the cited paper has proved useful and therefore directs

other researchers to it rather than the academic’s own work, whose usefulness to

future entrants is uncertain. Note that in much of this paper, we assume that there

is perfect information about who has done relevant work, though whether the relevant

work is useful is unknown before someone investigates it. Survey papers and textbooks

often garner citations because they themselves cite large numbers of other papers and

books and serve to dispel lack of information about earlier research. With perfect

information, this motive for citing (or for writing textbooks) is absent.

There appear to be relatively few papers dealing with the endogenous formation

of citation networks. One exception is the paper by Mikhail V. Simkin and Vwani

P. Roychowdhury ([23]), which relies on random copying of citations in previous

papers.1In this model, an author randomly chooses some previous paper that appears

related and randomly copies some proportion of the references in that paper. The

randomness generates increasing returns; the more one is cited the more often one

will be cited. However, here the number of citations of a paper is independent of

that paper’s characteristics, which appears to suggest that administrators counting

citations are irrational. In the R&D context, random citation could lead to a high

1[9] has a sentence suggesting copying of citations might be rational: “Signalling by third parties:
The latter, when deciding whom or what to cite, may be concerned to demonstrate that they are
conversant with the reputational ranking of people in a specific area of science.”
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volume of lawsuits for patent infringement, though Simkin and RoyChowdhury do

not intend their paper to apply to this.

As a contrast to our view of the sequence of related small research problems

as constituting a field, the paper by Paul David [10] considers different scientists

pondering the truth or falsity of some major proposition or theory. They become

aware of the opinions of individuals they are connected to; since these opinions contain

information, Bayesian updating leads to their adopting the opinions of the majority in

their neighbourhood; the neighbourhood structure is given. The ultimate disposition

of the theory is then found by using techniques from probability theory, namely the

voter model discussed in Rick T. Durrett (1988). An individual cites the opinions

of others in his neighbourhood as justification for his own opinion. This explanation

has something in common with lawyers citing precedent and case law to justify a

particular argument. One can interpret the neighbourhood here as coming from a

social network. In a later section, we consider the interaction between the process we

model and the existing social network to see how the latter constrains the former in

situations where information about past work flows only through the social network

(as in David’s model).

Citation patterns have been used in empirical exploration of academic research

communities in physics by Sidney Redner([21]); C. Lee Giles and Isaac G. Councill

([14]) have used acknowledgements to trace a similar network of influence. These

various networks display some form of a "power law" structure in aggregate; that

is, the degrees of nodes in the network follow a power law distribution with a small

number of highly connected nodes2

One early empirical discussion of citations is contained in Derek S. Price [20]. He

looked at the patterns from 1862 to 1961 across many fields and did extensive analysis

of the empirical regularities of the network of scientific papers. Price calculated that

on average there were seven new papers a year for every hundred papers in that field,

and each new paper contained about fifteen references. Therefore, on average, each

paper is cited once per year. However,he found that in any given year, about 35%

of existing papers are not cited at all and 49% are cited only once. Of the others,

2The “power law” states that the probability that a randomly selected node in a network has r
links is r−γ . The parameter γ has been estimated to be between 2 and 4.1 for different networks
such as the web or the network of citations.
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the percentage of papers cited n times falls off rapidly with n (in the order of n2.5).

The data appears to fit the hypothesis, according to Price, that about 10 percent of

existing papers “die” each year. Also citations for a paper tend to occur in “capricious

bursts”.

The findings of Price regarding the rapidly decreasing proportion of papers with

higher citations has the same flavour as the “power law” mentioned earlier. The

models constructed to generate networks following such a power law, such as the

preferential attachment models of Albert-Laszlo Barabasi and Reka Albert ([4]) and

Bela Bollobas and Oliver Riordan ([5]), all rely on some exogenously specified process

by which links are formed in the network.

In these models new nodes are born each period and each of them links with a

existing one randomly but with a probability that is proportional to the number of

links the node already has. This results in a well-defined stochastic process and we

can calculate the properties of the network generated. Here, the older nodes would

tend to have more links than newer ones and the process implies that there is a

tendency of cumulation, which is similar to the observed cumulation of citations to a

small set of papers.

In our model we will try to address the ‘why’ of the preferential attachment model

in the specific context of academic citations by pinning down the possible economic

motivations at work.3

Our paper also relates to the literature of the spread of technology and infor-

mation among agents in a community.4The results we obtain illustrate the effects of

competition and strategic considerations on the diffusion of useful ideas. For effi-

cient dissemination of ideas, existing papers should be investigated immediately to

see if they have ideas that are broadly useful. To the extent that competition delays

such investigation, it creates some inefficiency. In some variants of our model, such

inefficiency occurs. We briefly summarize the qualitative features of our results below.

In the model with complete information we find an irreducible multiplicity of

3The nature of citations bears some resemblance to that discussion of “cumulative advantage”
presented by Robert K. Merton in the ‘Matthew effect’ papers. Small (2004) makes this connection
clear-“When a paper is cited, other authors can see that it is and this heightens their interest in the
paper and their likelihood of citing it as well at some later date. In this sense, citation acts like an
expert referral.”

4See [11] for economic models of such social dynamics and [6] for a discussion of social learning.
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equilibria. However, the multiplicity is caused by different agents using different rules

to identify past papers to investigate. If all agents use the same rule, corresponding

to norms in different fields,5we obtain a single equilibrium for each rule. The different

rules have different implications for how efficiently knowledge diffuses and give rise to

different patterns of investigation and citation. In particular, the norm that specifies

citing only the most recent paper in an area leads to inefficient delay and the pattern

of the expected number of citations oscillates with the age of a paper, whilst for the

other norms, earlier entrants (the pioneers) should expect to be cited more often.

These results are with a finite number of entrants. With an infinite horizon, the

unique stationary mixed strategy equilibrium does not display the oscillating pattern

We then assume each agent has a better idea about the usefulness of her own paper

than other agents. The private information leads to a combination of behavioural

norms-randomising among uncited individuals initially and then choosing the most

recent previous entrant.

We then consider strategic entry if the agents all have their ideas simultaneously.

We find there exists a “signalling” equilibrium, in which earlier entry implies higher

average quality. Once entry occurs, there is a cascade of related papers.

Finally, we constrain the directed citation graph by an undirected acquaintance

network. Now we relax the assumption that the existence of all previous papers is

known and assume instead that one learns about papers that acquaintances have

written or ones they have cited.6This gives rise to the closest analogue in our paper

to the preferential attachment models. The probability a paper is cited then depends

on two factors, one (the number of previous citations) arising from the (superposed)

network structure and the other (which is a probability itself and hence less than 1)

arising from the strategic incentives of players. The process is sublinear and therefore

does not give a power law (see Fan Chung, Shirin Handjani and Doug Jungreis (2003)).

We make several strong assumptions in our model, though it is not clear that

relaxing them would give any new insights. The two strongest ones are: (i) Once a

previous piece of work is found useful by someone, it will be found useful by everyone

following and if it is not useful, it remains not useful; (ii) Only one citation is allowed

5hese are: citing the most recent paper or the oldest one or citing all available papers with equal
probability

6This does not seem that far-fetched though whether reciprocity is at play here is hard to tell.
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per new paper. We discuss relaxing the first in the extensions section (section 7).

The second implicitly takes into account the time spent in investigating past work or

past patents. One could think of it as choosing to refer to one directly useful paper

and referring to survey articles or textbooks for the others.

The rest of the paper is organized as follows. In Section 2 we describe the basic

model while Section 3 deals with the analysis.In section 4 we introduce a model with

private information about types. In Section 5 we discuss strategic entry decisions.

Section 6 deals with social networks. Section 7 concludes with discussions on possible

efficiency issues and on introducing heterogeneous quality . All detailed proofs are

relegated to the appendices.

2 The benchmark model: single entrant per pe-

riod and two qualities

The set of players is denoted by N={1,2,...k,...,n}. Players are ex ante identical. In

each period, one player enters; the order of entry is predetermined. We shall denote by

Player k the individual who enters and writes a paper in period k. Agent k can write

on his own or use some existing paper, 1,2,...k − 1 before publishing (or “entering”).
A paper k can be "useful" or "not useful"7. If useful, the paper gives a value8 v > 0

to any player k + 1, ...N who cites it. The payoff to the paper being cited is w for

each citation it gets. We assume v > w. If not useful, the value is 0 and the paper

is not cited. The prior probability that any paper k is useful is p0.Paper k being

useful is independent of the usefulness of the sequence of papers 1, 2...k − 1. Any
entrant first observes the state of citations Cik, the number of citations received by

paper i till period k. We assume Cik ≥ 1,that is, writing a paper is, by convention,
a citation. Any paper with Cik ≥ 2 is revealed to be useful. After entry each agent
updates his beliefs about each agent/paper. Then he decides whether to incur cost

c to Investigate(read) some j = {1, 2, ..., k − 1} or not to investigate at all (NI). We
assume p0v > c. If investigated, it is revealed whether j0s paper is useful or not.

7This simplification is made for analytical tractability-clearly papers can be useful to different
degrees.

8This could be interpreted as the additional value obtained from a useful paper.
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Figure 1: Original Game

If useful, agent k decides whether to use (and cite) it or not. At the time agent k

enters, he observes the identities of all previous entrants and the citations each has,

including the virtual self-citation. But k does not observe the actions prior entrants

have taken with respect to reading or not reading previous papers. Therefore k is

unable to distinguish between the histories where Player i (1 < i < k) chooses NI and

where she chooses I but does not cite (because, perhaps, the investigated paper was

not useful). By choosing to cite(use the paper of a previous agent) agent k gets an

immediate payoff of v and some future payoff depending on whether he is ever cited,

which again depends on the state Ck+1 at t = k + 1. By choosing NI or not cite,

even after Investigation, he has to write on his own and gets a lower current payoff,

which is normalised to 0, and an expected payoff depending on the state next period.

After k0s decision, the next agent enters, observes state Ci,k+1 and takes decisions as

specified in the previous steps. All agents have the same discount factor δ ∈ (0, 1).
We can represent the actions of any player i in a schematic tree(Fig 1) where Ai

is the expected future benefit from not citing any previous player.

Note that after the uncertainty is resolved, the paper either gives a payoff of v or

0. As long as the cost of reading c is positive, an agent i would always use( cite) j0s

paper if he found it useful after reading (otherwise it would have been optimal not to

read it). Also, if not useful i has no choice but to write on his own as if he had not

read any other paper in the first place. So, this game can be reduced to an equivalent

7



Figure 2: Reduced Game

game, represented by Fig 2.

Note that both the nodes t2 and t3 involve no citation and are in the same

information set. Hence, if the equilibrium strategy of i is to I and he deviates, then

i+ 1 observes no citation and believes that i is at node t2, when he is actually at t3

and so not all deviations are detected.

Let us now consider the assumptions made in the specification of the model. The

payoff v can be interpreted as a private benefit an agent gets from writing a paper.

The payoff from a paper when it uses another’s idea (v) is higher than when it is

written solely by the agent, due to the fact that the agent writing a paper entirely on

his own has to put in a much higher effort to achieve the same quality than when he

is supplementing his idea with that of another agent. Hence the net benefit of writing

a paper(not taking the cost into account) is lower if the agent writes by himself. The

payoff w is the benefit from the fame and other associated consequences an agent gets

from being cited.

The assumption made for analytical tractability is that a paper is either always

useful (high quality) or never useful (low quality). First, note that the evolution of

the probabilities is now very simple. Following one success of an investigation, the

paper will be revealed to be of high quality and belief about its usefulness goes up

from p0 to 1. On the other hand, one failure does the opposite. If it is known that

a paper was investigated but not cited, it is revealed that the paper is of low quality

and it is never investigated again by any agent i.e. ps = 1 and pf = 0. In other words,

we have perfect signals regarding the quality of the papers investigated. As for papers

8



not investigated, the belief remains at the prior p0.9

The trade-off involved here is between investigation of some j0s paper with po-

tential current benefit v associated with lower future benefit (because by citing the

agent i is signalling that j0s idea is useful) or no investigation (and hence no citation

for sure), which has lower current payoff but a higher expected future payoff (since i

does not give anything away about j). We want to focus on the equilibrium pattern

of investigation and citation.

We also assume a version of private uncertainty in the basic model in that a par-

ticular agent does not know the quality of his own paper, that is, his belief about the

probability that his paper would be useful to somebody is also p0. This is sometimes

reasonable in the context of academic papers since the quality of a paper is deter-

mined by the judgement of one’s peers. Also, this implies that no agent knows his

own type (high or low), which helps us to abstract initially from signalling motives.10

9In the basic model, the probability that a paper is useful in any one instance, given it is of high
quality, is given by h and, given it is of low quality is given by l. For the sake of tractability we took
h = 1, l = 0, which implied that once a paper is found useful (or not useful), it remains so for all
future readers. If we relax one of the equalities then the tradeoff remains the same. For example, if
l = 0, h < 1 then one citation of a paper would reveal that it is of high quality as in the basic model.
A non-citation however does not reveal for sure that it will never be useful but the probability of
its usefulness goes below the prior. Hence an agent would not investigate that paper. Similarly,
for l > 0, h = 1 one non-citation reveals that it must be a low-quality paper and the probability of
it being useful later is less than the prior whereas a citation increases the proabability of another
sucess for that paper.
For general h and l, i.e. h > l > 0, we would get a non-degenerate distribution of citations.

Bayesian updating would then imply that the prior p0 goes up following one success but not to 1.
Generally, it is increasing in the number of successes and decreasing in failures. For a given (h, l),
agents follow the Bayesian updating rule and there will be a certain number of failures, xf , of a
paper after which the belief about its usefulness goes below p0. So, we might observe patterns of the
following sort: a paper is investigated for the first time and if it is a failure the belief goes below p0
and it is not chosen again. If it is a success it gets a citation, the belief increases to p1 > p0 and
it is chosen again. This second investigation might be a failure and hence the belief goes down to
p2 < p1. However, p2 might still be greater than p0, in which case, it is chosen again. Consecutive
failures will take the belief below p0. Once that happens this paper would not be chosen again and
papers whose quality is at the prior level will be chosen and the same process followed. Hence, we
might observe a group of papers with more than one citation, though the second paper was chosen
only when the first cited paper had enough consecutive failures. In fact, we can also make h and
l dependent on the number of citations of a paper. For example, when a paper has been used and
cited say m times, the probability that there is anything useful remaining in it decreases, which
implies that both h and l are decreasing in the number of citations a paper gets. This will also result
in a distribution of citations instead of a spike for only one paper .
10We do discuss possible effects of signalling in Sections 5-8
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2.1 Strategies, Payoffs and Equilibrium

We define strategies for the N players and the equilibrium of the game.

Strategies: Let the set of information sets where agent k has to move be ISk and
let z be an element of ISk.A strategy sk for the agent k is his choice of an element

from the set Sk = {NI/I0, I1, I2, ..., Ik−1} at each z, given his entire set of beliefs

µk = (µ1, µ2, ...µk−1) about the probability of usefulness of all earlier entrants at each

z.Thus a strategy sk = {(Izi )}Zz=1, where |ISk| = Z and i = 0, 1, ..., k − 1.
Agents choose their strategies to maximize their expected payoffs, where the ex-

pectation is with respect to the beliefs µ.

Equilibrium: A Perfect Bayes Equilibrium is a N-tuple of strategies for all N

players < s∗1, s
∗
2, ...s

∗
N > such that s∗k is a best response to s∗−k at every information

set of Player k,given beliefs µ,which are derived from the prior p0 and the history of

play using Bayes’ theorem, wherever possible.

To derive the beliefs, note that, at any history ht which has a citation other than

a self-citation, it is revealed that the paper was investigated and is of high quality and

will guarantee v if investigated. All papers with any citation will have this feature.

Other papers without any citation can belong to one of the two groups: a) the paper

has been investigated but not found useful, in which case p = 0 for sure; or b)the

paper has not been investigated in which case the ex-ante probability of it yielding

v is p0 < 1. So, if an agent wants to choose I at any node, he will choose the

paper with a citation since the expected payoff from so choosing is the highest. It

follows that once there is a revelation of a high quality paper k at time t, that paper

will be investigated (and cited) by all agents from time t + 1. This is true since the

person investigating paper k at time t, must have done so because the expected payoff

from investigation is more than that from not investigating a paper with usefulness

probability p0. Given this, investigation of a surely high-quality paper must have a

higher expected payoff for agent t+ 1 onwards. Moreover, once a paper is cited, any

paper without a citation (including the current entrant’s) ceases to be competitive

and the trade-off disappears. So, for any history with a citation of paper k0, the

equilibrium strategies of subsequent entrants will be investigation of paper k0 and

consequent citation for all periods hence. The trade-off between present and future

benefits mentioned is relevant only after a history with no citations.
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Let h0t denote any history with no successes (or equivalently citations). We have

to specify equilibrium strategies ( NI or Ik) for each agent k after such a history h0t.

We define an equilibrium string for this purpose.

An Equilibrium String is a N-dimensional array where the kth element is the
equilibrium decision of the kth agent from set Sk after a history of no citations. Since

the trade-off between current and future benefits kicks in at these histories, we have

to figure out what the equilibrium string is, which along with the decision s0k = Ij

whenever ∃j with Cj > 1 and the belief µ, will be the Perfect Bayesian Equilibrium.

To completely specify the equilibrium we have to specify the belief µik each agent

k has about i, i = 1, 2, ...k − 1. On the equilibrium path, µ is derived by Bayesian

updating. Information regarding the paper is revealed following one citation and

µik(ci > 1) = 1 while µik(Ci = 1) = p0 if i was investigated with probability 0 in

equilibrium. If i was investigated with some positive probability r in equilibrium, then

µik(Ci = 1) = (1 − r)p0 < p0. Histories off the equilibrium path involve deviations

that are revealed to be such. If some i deviates from Ij to NI , this is not observable

by k > i.If instead, i deviated from NI to citing some j not cited before, then this

deviation might be observed if j is useful. The out-of-equilibrium belief here can

naturally be set at µj = 1. If the deviation is not revealed to k > i then µkj(Cj = 1)

remains at p0 (this is on the equilibrium path).

3 Equilibrium Analysis

We first give a trivial lemma for the updated priors.

Lemma 1 If some previous agent is investigated with positive probability, then in
states of no citation, the belief regarding his usefulness is less than the prior p0.

After history ht with some Cjt > 1, the equilibrium behaviour is also trivial and

given by:

Lemma 2 After any history ht with Cjt > 1 for some j = 1, 2...t, agent t+1 chooses

to Investigate j∗ = argmaxCjt in equilibrium.

11



Proof. We prove this by backward induction. Suppose at time t, agent t enters

and observes Ci > 1(wlog).Consider the last agent, N. He chooses to investigate bj =
argmax Cj, j < N, since he only cares about the current benefit. Now, suppose agents

τ , τ + 1, ..., N follow this strategy. We need to show Player τ − 1 also follows this
strategy. (Note:If there is a Cj > 1, j < τ, then argmax Cj, j < τ is same as argmax

Cj, j < τ − 1, since no agent except agent τ can cite τ − 1, so this player cannot have
more than a self-citation). He knows that τ will choose bj and hence, the expected
future benefit of τ − 1 is 0. Given some Cbj > 1, τ − 1 obtains a payoff v − c from

investigating bj, p0v−c from investigating j with Cj = 1 and 0 from not investigating.

If there are multiple j with Cj > 1, τ − 1 chooses one of them randomly. (This last

case is off the equilibrium path.) Thus the hypothesis holds for all t.

Given the preceding lemmas, we will now focus on characterizing the equilibrium

decisions of agents after observing history h
0
t ( i.e. with Cj = 1,∀j ≤ t). Before

the characterization of an equilibrium string, we give some examples for purposes of

exposition. Let the total number of agents be N=6. Throughout we follow a common

tie-breaking rule: If an agent is indifferent between I and NI, he chooses to investigate.

Example 1 The equilibrium string is [NI, NI, I2, I1, I3 , I4 ] for some parameter

values.

To see whether this can be an equilibrium for some parameter values, we have to

check whether all six no-deviation conditions can be satisfied simultaneously. Note

that 1 gets future payoff only when 3’s investigation of 2 is a failure, which has a

probability of 1 − p0 and 4’s subsequent investigation of 1 is useful (probability p0).

The condition for 1 is irrelevant here since he has no choice effectively. His future

payoff is always higher than the current one which is 0.

0 < (1− p0)p0(δ
3w + δ4w + δ5w) = (1− p0)p0δ

3w(1 + δ + δ2)

The condition for 2 however is that the current net payoff be lower than the expected

future payoff i.e.

v − c

p0
< p0δw(1 + δ + δ2 + δ3)

Now if 3 deviates, no citation is observed for 2. Hence no future player would

investigate 2, but 4 investigates 1. 3 would be investigated by 5 only if 4’s investigation
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is not useful( probability 1 − p0). So, 3’s expected future payoff from deviating is

(1−p0)p0δ2w(1+δ) = Q(say) while his payoff from investigating is p0v+(1−p0)Q−c.
the condition needed for 3 not to deviate from I2 is

v − c

p0
≥ (1− p0)p0δ

2w(1 + δ)

For 4, the condition is

v − c

p0
≥ (1− p0)p0δ

2w

while for 5 and 6 it is simply v − c
p0

> 0.

So, the parameter values needed to sustain the specified equilibrium string should

satisfy

L0 = (1− p0)p0δ
2w(1 + δ) ≤ v − c

p0
< (1− p0)p0δ

3w(1 + δ + δ2) = H 0 (1)

We see this is possible for δ high enough.

Example 2 Now let us consider the equilibrium string [NI, I1, NI, I3, I4, I5]. We

will check if there exists some values of parameters such that no one deviates from

this equilibrium.

Conditions needed for this to be an equilibrium are:

1: 0 < p0δw(1 + δ + δ2 + δ3 + δ4)

2: v − c
p0
≥ 0

3: v − c
p0

< p0δw(1 + δ + δ2)

4: v − c
p0
≥ p0δw(1 + δ)

5: v − c
p0
≥ p0δw

6: v − c
p0
≥ 0

Hence the condition needed is

L = p0δw(1 + δ) ≤ v − c

p0
< p0δw(1 + δ + δ2) = H (2)

So we see from these two examples that both the strings can be equilibrium strings

depending on whether the values of parameters satisfy the respective conditions. Now

we can in fact show that the two ranges of v− c
p0
: [L,H] and [L’,H’] may not be disjoint.
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If they are not, then given that parameters satisfy (1), we cannot be sure that the

string is as in Example 1. So, for some parameter ranges, both (1) and (2) might be

satisfied and hence there can be multiple equilibria.

Hence we see that there is an irreducible multiplicity of equilibria, pure as well as

mixed and we cannot make any precise predictions regarding the pattern of investi-

gations by agents. Note that, crucial to this multiplicity is the behaviour of agents

when indifferent between investigating two or more agents. However, if we impose

some rules (corresponding perhaps to social norms in the fields concerned-see the

next subsection) on how agents behave if they are indifferent, we can obtain partial

characterisations of equilibrium behaviour. We now turn to these.

3.1 Behavioural Assumptions

In case some entrant is indifferent investigating among a set of agents, he can choose

any one or mix between them. We impose some simple behavioural rules in these

cases. Suppose entrant k is indifferent between agents 1, 2, ...k−3. Some of the simpler
rules could be (1) k chooses the earliest i.e. 1 to investigate or (2) k chooses the most

recent agent i.e. k − 3 or (3) he mixes between all of them with equal probability.

Hence we focus on two types of pure strategies and one completely mixed strategy.

These could be thought of as extreme cases of some regularities observed in practice.

Price [20] observed that different subjects can be categorised into two classes: classical

or ephemeral. Subjects like Physics and Engineering are ephemeral i.e. recent papers

tend to be cited more often while Geology, Mathematics are classical ; they cite

more of the older papers. Some subjects, however, show no clear trend. We take

our cue from these observations and analyse the game with these three behavioural

assumptions.

Any new entrant:
BA1: If indifferent among r agents, investigates the earliest among

them.
BA2: If indifferent among r agents, investigates the most recent agent.
BA3: If indifferent, mixes among all r agents with equal probability.
Now, we focus on each of these at a time and characterise the equilibrium string

corresponding to each. The proofs are relegated to the Appendix.
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Behavioural Assumption 1: Any new entrant, if indifferent between r agents,

investigates the earliest among them.

Proposition 1 In any equilibrium string, for N > 4, ∃K∗ ≤ N−4
2

s.t.∀k ≤ K∗,the

kth entry is NI and ∀k > K∗, the kth entry is I. The exact value of K∗ depends on the

parameter values v, δ, p0, w.

Proof. The proof involves 2 steps. Step 1 shows that number of agents choosing NI is
less than that choosing I, in equilibrium. This is because we consider pure strategies

i.e. k agents investigating implies exactly k agents are investigated. So, no more

than k agents would like to choose NI in order to be investigated. In fact, it can be

shown that number of agents choosing NI is less than N−4
2
, given our assumptions on

parameters.

The next step involves showing that there will be no gaps. Suppose an agent i finds

it profitable to choose NI and let his payoff from doing so be Ui. Then the agent j

preceding him must also find it profitable to choose NI since Uj > Ui. This increase

is due to two things: one, i will be investigated later than j conditional on j being

not useful and hence the unconditional payoff is lower; second, conditional on being

useful, j would get one extra citation than i would potentially get on account of being

an earlier entrant. Hence j would also choose NI and so would any agent entering

before i.(See Appendix 1 for details)

Remark 1 This implies that there will be no gaps in equilibrium. That is, if, say,
agent 5 is the first one to investigate and his investigation is not useful so that agent

6 observes no citations, then in equilibrium, it cannot be that agent 6 chooses NI and

writes on his own. K∗ is the entrant who first starts investigating in equilibrium. i.e.

the first player for whom the expected current benefit outweighs the prospect of future

benefits from being cited. This agent is ready to forgo possible payoffs of w from each

future citer to get the current benefit v. Players before him, i.e. those who choose to

write on their own, do not want to investigate some earlier agent and cite him, since

in that case, they would never be cited.

Remark 2 Also, K∗ ≤ N−4
2
implies that the total number of agents not investigating

is strictly less than those investigating, in equilibrium. The number of citations though

would depend on the outcome of those investigations and is bounded above by the
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number of agents investigating. The exact value of agent K∗ depends on the parameter

values. For given w, p0, δ the higher the v the higher the incentive for earlier players

to Investigate and not wait, since the future payoff relative to v is not high enough.

So, higher the v, the lower the K∗ i.e. investigations start earlier.

Behavioural Assumption 2: Any new entrant, if indifferent between r agents,

investigates the most recent among them.

Proposition 2 In any equilibrium string, ∃K, s.t.∀i ≤ K,∀j ≤ K − 1, i: NI ⇒
i + 1 : I and j : I ⇒ j + 1 : NI and ∀i > K, i : I .The value of K depends on

parameter values and, for fixed w, p0,δ, is decreasing in v.

Proof. First note that two consecutive NI is not an equilibrium since the earlier agent
will not be investigated and hence would deviate to I. So, a NI must be followed by a I.

Also, two consecutive Is preceded and followed by NIs cannot be an equilibrium either.

Suppose i, i+1 chooses I and agents i−1 and i+2 choose NI.In this case, agent i finds

it profitable to investigate which implies that Ui(I) > Ui(NI). Now for agent i + 2,

Ui+2(NI) < Ui(NI) since there are less number of agents entering after him.Since

utility from investigating is same for all player and equal to v − c
p0
, given agent i is

choosing optimally, agent i + 2 should deviate since Ui+2(NI) < Ui(NI) < Ui(I).

Ruling out these patterns leaves the specified pattern as an equilibrium depending on

parameter values. (Appendix 1 for details)

Behavioural Assumption 3: Any new entrant, if indifferent between r agents,

investigates them with equal probability 1
r
.

Proposition 3 In any equilibrium string, ∃ eK ≤ 2, s.t.∀k < eK the kth entry is NI

and ∀k ≥ eK, the kth entry is I . In fact, eK = 2.

Proof. Note that if i, i + 1 chooses I and i − 1 chooses NI, then only i mixes (by

Lemma 1).

Let the ith1 , i
th
2 , ....i

th
k , i

th
k+1, i

th
k+2, ...N

th agents be the ones choosing I in equilibrium;

i1 < i2 < .. < ik.Hence ik is the agent after which there is no agent choosing

NI in equilibrium and i1 is the first agent to choose I. From the conditions for
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no unilateral deviation by agents ik and ik − 1 , the parameters should satisfy the
following condition:

p0wδ(1 + δ + ...+ δN−ik−1) ≤ v − c

p0
<

1

ik − ik−1
p0wδ(1 + δ + ...δN−ik)

the necessary condition for this to hold is

or, (1 + δ + ...+ δN−ik−1)(ik − ik−1) < (1 + δ + ...δN−ik)

which can hold only if ik − ik−1 = 1. Hence everyone after ik−1 investigates. We

can redefine ik now and do the same exercise which implies that there can be no gaps

in equilibrium.

Next we can show that the number of NIs, in fact, cannot be more than 2. (See

Appendix 1 for details).

Remark 3 In this case we see that investigations start very early, as implied by the
value of eK. Whatever be the value of v relative to the other parameters, only the

first entrant waits(since he has no choice) and investigation starts from the second

agent. This equilibrium entails the maximum number of investigations and expected

citations.The intuition behind the early investigations is that by the strategy of ran-

domising among agents when indifferent, each early entrant, say t faces elimination

from the race even when some other agent is investigated. If the investigated agent’s

idea was useful, then t will obviously get no future citations. But even when the idea

is not useful, the new entrant would not investigate t since the probability that t was

investigated is positive. This significantly reduces incentives to write on one’s own

and try to get future citations-payoffs resulting in investigation starting early in the

process.

Now, we can compare these different equilibria in terms of when investigations

start. BA3 obviously involves early investigations. We can compare K∗ and K for

given parameter values and this will tell us which type of behaviour entails early

investigations and hence early revelation of a high-quality (always useful) paper . We
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Figure 3: Expected number of citations

can show that for any set of parameter values, BA1 induces earlier revelation of the

quality of papers compared to BA2. i.e. eK ≤ K∗ < K for any given parameters.

Proposition 4 For any given set of parameters, (v, p0, w, δ), eK ≤ K∗ < K.

Proof. To show this we need to fix K∗ at a particular value, say Y. This corresponds

to some range of parameter values, set υ, say. Now each K corresponds to some set

of parameter values, say ω. For a K ≤ K∗, call the set ωl. We can show that ωl does

not intersect υ. Hence, given K∗ = Y i.e. given that parameters lie in υ, they cannot

belong to ωl which implies that K £ K∗.(See Appendix 1 for details).

Following the characteristics of the equilibria outlined in this section, we plot

the expected discounted number of citations for each entrant under the different

behavioural assumptions. The parameter values for Fig 3 are δ = 0.99, N = 20, p0 =

0.5 and v, w, c such that K∗ = 4, K = 7.

3.2 The infinite horizon model

In the previous section we considered a finite number of agents making decisions of

investigating and citing. One natural question that arises is what happens when there

18



is no known bound on the number of agents. In this section, we modify the basic

model by considering an infinite horizon game where one agent enters in each period.

The rest of the game is as before. After entry an agent observes the state of citations

for the existing agents and updates his priors regarding the usefulness of a paper.

Then he decides whether or not to investigate one of the existing papers. We will

focus on the stationary equilibria of this game where the strategy depends only on

the citations observed.

To characterize the equilibrium stationary strategy, one needs to define the history

at any time t, ht. At any time t, there could be two types of histories: (i) h1t = ht(Cτ >

1, for some τ < t) or (ii) h2t = ht(Cτ = 1,∀τ < t), i.e. a history with one or more

citations or one with no citations (apart from self-citations). The stationary strategy

of agent t can be denoted by st = {s1t , s2t} = {s(h1t ), s(h2t )}. The next proposition
characterizes the equilibrium stationary strategy, s∗.

Proposition 5 The unique stationary equilibrium is (i) s∗ = {I, I} for all t if p0δw
1−δ <

v − c
p0
and (ii) s∗ = {I, σ(λ)} if p0δw

1−δ > v − c
p0
where σ(λ) denotes the mixed strategy

with λ being the probability of investigating.

Proof. The proof proceeds by first characterizing the equilibrium strategy for ht =

h1t . From the previous analysis it is obvious that s
∗(h1t ) = I. Next, note that s∗(h2t ) 6=

NI. Suppose it is. Therefore, when agent t observes no citation, then he chooses

NI. This in turn implies that ht+1 = h2t+1 and since s
∗(h2) = NI, agent t+1 chooses

NI. Hence, agent t has no current or future payoff and is better off deviating to

investigating some τ < t and getting an expected payoff of at least p0v − c > 0.

The next claim is that s∗(h2) = I is an equilibrium for some parameter values.

Note that the given equilibrium strategy implies that agent 2 investigates 1, 3 inves-

tigates 2 at history h2 and so on. This also implies that at history h2t agent t knows

that the investigations of agents 2 through t − 1 have been unsuccessful and hence
the probability of usefulness of agents 1 through t − 2 is zero. Hence agent t would
investigate agent t− 1. Note that this also implies that in the event that t+ 1 faces
history h2t+2, he will investigate agent t. Therefore, the expected payoff of t from I
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can be written as

Eπt(I) = p0v − c+ (1− p0)p0(δw + δ2w + ......)

= p0v + (1− p0)
p0δw

1− δ
− c

If t deviates to NI, he gets

p0(δw + δ2w + ......)

=
p0δw

1− δ

So, if v− c
p0

> p0δw
1−δ , then agent t chooses I. Hence for this set of parameter values

the unique stationary equilibrium is to investigate the immediately preceding entrant

with probability 1.

If v− c
p0
≤ p0δw

1−δ , then the pure strategy s
∗ = {I, I} is not an equilibrium. Let the

mixed strategy σ be the following: When ht = h2t , investigate the previous entrant

with probability λ and choose NI with probability 1− λ. For σ to be an equilibrium

it must be the case that

Eπt(I) = Eπt(NI)

or

p0v − c+ (1− p0)λp0w(δ + δ2 + ....) = λp0w(δ + δ2 + ...)

This holds for λ = 1−δ
p0wδ

[v − c
p0
] ∈ (0, 1) for v − c

p0
≤ p0δw

1−δ .

Thus, each agent would choose to investigate with some probability λ until the

first time the investigation is successful, after which everyone would cite the successful

paper. Thus there would be a probabilistic “monopoly”with the ex ante probability

that the tth entrant is the monopolist being (1− λp0)
t−2λpo.
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4 Private Information

In this section we consider the case where each player receives a private signal about

the ‘quality’ of his paper before taking any decision11. We represent this signal as

an agent-specific probability of success and denote it by pi for the ith agent with

E(pi) = p0. Let the distribution of pi be denoted by F (.) and let pi be i.i.d across

agents. Now, consider the basic model with one entrant each period; if useful a paper

yields the same value v. The cost of investigation is c, as before. Let rt+1 be the

probability of agent i + 1 (entering at t + 1) investigating any of his predecessor(

which can be anything ∈ [0, 1]). The ith agent’s decision between investigating and
not at any time will depend on his type.

At any time t, he can choose one of the two and get the corresponding payoff.

Investigate: p0v+(1−p0)δpirt+1Wt+1−c whereWt+1 = (w+δw+ ...+δN−i−1w),

which represents future payoffs from being cited.

Not Investigate: δpirt+1Wt+1

Therefore NI is chosen when

p0v + (1− p0)δpirt+1Wt+1 − c < δpirt+1Wt+1

or, v − c

p0
< δpirt+1Wt+1

or, pi >
v − c

p0

δrt+1Wt+1
= p∗t . (10)

Then the probability that i investigates a predecessor is F (p∗t ) = rt.Hence for

every period there is some cutoff type p∗t such that all pi < p∗t entering at time t will

investigate some predecessor.

Let the cutoff levels of the types for each period be represented by p∗ = (p∗1, p
∗
2, .., p

∗
N−1, p

∗
N).

This sequence also defines the sequence of r∗0s by the relation F (p∗t ) = rt ∀t.If there
are N time periods ( or equivalently, N entrants), rN = 1. Likewise, depending on the

values of v, w, po, δ, c, all entrants from some k+1 ≤ N onwards will investigate with

11Baliga and Sjostrom ([2]) design a mechanism for self-assessment and peer review (in a different
context) based on a similar assumption.
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probability 1, and k is the last time period for which rk < 1. The rest of the sequence

is defined recursively by
v− c

p0

δF (p∗t+1)Wt+1
= p∗t .

Now given this sequence we can argue that in equilibrium, if an agent i investigates

a predecessor, it has to be i−1 whom he investigates. This is a direct consequence of
Lemma 1. Conditional on observing no citations, the probability that i− 1 is of type
pi is F (pi), so that ex-ante probability of i−1 being useful is E(pi) = p0. Some agent

j < i − 1 , on the other hand has been investigated by some agent pk < p∗j which

occurs with positive probability. Hence by Lemma 1, the probability of agent j being

useful < p0. So, if i investigates at all, he will investigate i− 1. This gives some some
justification for the behavioural assumption 2 that we imposed in the main analysis.

(Unfortunately, this was the least efficient one.)

One odd feature of this setup is that the sequence of cutoffs alternates in size-a

high probability of citing next period leads to a lower probability today, other things

being equal, and vice versa.

5 Private Information with Strategic Entry

In this section we further extend the model to include entry as a strategic decision. If

agents know their type and are free to choose when to enter, then we might observe

some sorting regarding timing of entry. Each agent receives a signal about his type

pi before the start of the game. He, agent i, has two decisions to make at every time

period t; to ’enter , E’ or ’Wait one period, W’. If he chooses E, he then chooses to

I(nvestigate) or NI, as before. If he chooses W, then at time t+ 1, he again has the

same choices. All agents make these choices simultaneously. So, the decisions are

functions of their types (and of course, the history at any time t ) only.

Let the distribution of pi be i.i.d uniform [0,1].12Let T be the fixed number of

periods and T > 2.

Proposition 6 Let N,w, v be such that (N − 1)w > v.Then there exists an equi-

librium described by the cutoffs αj, 1 > α1 > α2 > ...αT−1 > 0 with αt = αt
1 such

that:
12This is without much loss of generality and saves on notation.
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1. If pi ≥ α1, Player i enters in period 1. If there is at least one entrant in period

1, all other players enter in period 2.

2. If there are no entrants for periods t=1,2,..τ < T − 1, Player i enters if pi ≥
ατ+1.If there is at least one entrant in any period τ , all other players enter in

the following period.

3. The players who (simultaneously) enter first do not investigate. Those who

enter in the following period investigate.

4. If the first entry occurs at period τ , any player who has not entered by period

τ + 1 does so in τ + 2 .

5. In period T , everyone who has not entered, enters.

Proof. Note first that the histories in this game are characterised by the identities of
the players who enter in each period. The state of the game is given by (at, kτ , τ ≤ t)

where the distribution of pi after period t is uniform [0, at] and kτ is the number

who have entered at period τ .We shall limit ourselves to strategies that depend only

on the state and not on the identities of the players who have entered at different

periods.The only out-of-equilibrium moves we need to consider are given by point 4

above. The effect of such moves on beliefs is irrelevant for the equilibrium strategies.

Suppose no player has entered by period τ . Then the belief aτ = ατ . The proba-

bility that any player will enter is then γτ+1 =
ατ−ατ+1

ατ
.13 Let mτ+1 := 1−γτ+1. Also,

let bpτ+1 be the highest expected probability (entrants at different times might have
different probabilities of being useful) at time τ +1 that any of the earlier entrants is

useful. Consider Player i in period τ , conditional on no previous entry. If he enters

and k others out of N −1 enter then his expected payoff conditional on k is given by:

piδ
N − k − 1
k + 1

w. (11)

Here we are assuming each of the k+1 initial entrants is investigated by the others

in the following period with equal probability (a version of BA3 but possibly the only

reasonable assumption here). If Player i is found useful by anyone of these others

13If τ = 0, i.e. we are referring to the first period, we adopt the convention that α0 = 1.
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who investigates him, he will be found useful by all the others who also choose him

to investigate. This expression (11) is decreasing in k.

The unconditional expected payoff is therefore:

piδwEk(
N − k − 1
k + 1

| mτ+1).

Since the term to the right of the expectation operator is decreasing in k, the expec-

tation is decreasing in the probability of entry (by first-order stochastic dominance) and

therefore increasing in mτ+1. If Player i chooses to wait, his expected payoff, by the

equilibrium strategies, is

(mτ+1)
N−1piδ

2wEk(
N − k − 1
k + 1

| mτ+2) + (1−mN−1
τ+1 )δ(bpτ+1v − c), (12)

These last two expressions are equal for pi = ατ+1.Also, by Bayes’ Theorem,

mt+1 =
αt+1
αt

. The conditional probability bpτ+1 = αt+αt+1
2

. The cutoff ατ+1 is defined

by the following equality:

ατ+1δwEk(
N − k − 1
k + 1

| mτ+1) = (mτ+1)
N−1ατ+1δ

2wEk(
N − k − 1
k + 1

| mτ+2)

+(1−mN−1
τ+1 )δ(bpτ+1v − c)

If τ = T − 1, i.e. the current period is the last, mT = 0. (All remaining players

enter and everyone gets 0.) Suppose mt is defined for t = T, T − 1, ....τ + 2 and
suppose the belief in period τ + 1 is that pi is uniformly distributed between [0,aτ ].

We now show there exists a ατ+1�(0, 1) such that a player i will enter if and only if

pi�[ατ+1, aτ ].

Suppose, in the above equation, ατ+1 = 0. Then mτ+1 =
0
aτ
= 0. Also, bpτ+1 = aτ

2
.

The left-hand side of the expression above is 0 and the right-hand side is positive, so

the LHS<RHS. Now put ατ+1 = aτ . Now the LHS is greater than the RHS, (δ < 1

even if mτ+2 = 1 and stochastic dominance give us this inequality). But both the

LHS and the RHS are continuous in ατ+1. Therefore the LHS=the RHS for some

interior value of ατ+1.It is clear that if pi = ατ+1 is indifferent between entering and

waiting, every pi > ατ+1 will enter
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Therefore, in equilibrium, at = αt for all t.14

Example 3 Let the distribution of pi be i.i.d uniform [0,1]. Let T be infinite.Also,

let N,w, v be such that (N − 1)w > v, and let c = 0.Then there exists an equilibrium

described by the cutoffs αj, 1>α1 > α2 > ...αT−1 > 0 with αt = αt
1, which satisfies

the conditions of the previous proposition.15

Proof. This proceeds in the same way as the proof of the proposition except we are
able to show that mt is a constant if c = 0.

Now, we argue that non-monotonic equilibria are not possible.

Proposition 7 There cannot be an equilibrium in which there exist α and α0, α <

α0(say), such that all players with pi > α0 and some with pi < α enter in period 1,

while players with α ≤ pi ≤ α0 enter in period 2 with other players entering after

period 2.16

Proof. See Appendix 2.
Note that we have discussed t = 1, 2 and t > 2. There could be equilibria in which

no one moves before some τ > 1. This could be sustained by a belief that anyone who

enters before period τ has pi = 0 with probability 1. This seems an unreasonable

belief in that earlier entrants should have higher probabilities of usefulness, since by

being early entrants they are giving up the advantages of using other people’s work.

We assume therefore that players who enter earlier than τ have probability 1 of being

useful. This destroys equilibria with delay driven by beliefs.

All this is still not sufficient to claim uniqueness because the proof of the existence

of the αt did not claim the sequence was unique.

This result is similar to some results in the endogenous timing literature. Brian

Rogers (2005) and Jianbo Zhang (1997) also find that in an environment with private

signals about a state of the world, when actions and timing of actions of agents are

made endogenous, the agent with the most precise signals acts first and all other

14We are not claiming the sequence αt is unique.
15That is, once someone enters in a period, everyone else enters in the next period. The infinite

horizon is needed to keep mt constant.
16Using period 1 in the statement is without loss of generality-we can replace it by “period τ such

that there has been no entry up to τ − 1.00
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agents mimic his actions immediately. Thus there is an information cascade (with

possible initial delay). The information structure of their models differs from ours.

Apart from there being no imperfect monitoring in their model, the main difference

is that there is no competition, in the papers of Jianbo Zhang and Brian Rogers,

among agents entering at the same time . However, even with different setups and

information structures, the results have a qualitative resemblance.

6 Citations in a Random Social Network

In this section, we consider how the citation network interacts with the structure of

social acquaintance. One obvious way in which social connections influence citations

is that it is easier to learn of the existence of a paper through one’s colleagues and

friends. This might account for the frequency with which some colleagues cite each

other, though there might be other issues involved there as well.

Whilst this is certainly less important now than it was in the past because of the

easy accessibility of new work on the internet, it still plays a major role in pointing us

to papers that reduce our search costs. Of course, another way would be to consider

people who write in a given field and check whether a particular person (a “star”)

has worked on the specific topic, even if he or she is not an acquaintance. We shall

briefly consider a "star" network later.

Here the graph of social links is assumed to be random. The agent has an existing

social network in which each of the N − 1 possible links is open with probability q

and edges are open and closed independently of each other. The probability that the

agent is completely isolated is therefore (1− q)N−1 = 1− ρ, say.17. The process then

continues as follows:

1. Each period, one randomly chosen agent enters. (That is, any given agent has

a probability 1
N
of entering at any position in the order.)

2. Agent k upon entering realises his type pk which is the probability that k is

useful. One of the social links to the N − 1 other agents is then activated
randomly. Since each link is just as likely to be activated and just as likely to

17Recall that in Price’s work, 1% of the entering agents were completely isolated.
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be open as any other, the probability that any given other agent will be chosen

is 1
N−1 .

3. Agent k observes the agent he is linked to has or has not entered; if agent k is

linked to agent j and agent j has cited some j0, then k observes this and any

citations j might have received.

4. Agent k then decides whether or not to investigate j or j0, just as in the basic

model, if j has entered.

5. If investigation of j is successful, a citation for j results. Agents get their payoffs

just as in the basic model and the game reaches the next period.

There are therefore four possible states of information for k. He is completely

isolated (h0), linked to j who has not entered (hne), linked to j who has entered

and has not cited anyone (hj) or has cited j0 (hjj0). The number of citations that j

has received is also observable and is denoted by Cj. A strategy for k would specify

whether to investigate and whether to cite if found useful for each history. Note that

k can infer something about his relative position in the order of entry based on the

state of information for the last three states (hne shifts the probability attached to

possible entry times towards earlier periods and hj and hjj0 with Cj > 1 towards later

ones). The later the entry the lower the possible future benefits from being cited, so

the incentive to hold out is lowest in the last two types of states.

Since we have two kinds of networks here, let us denote the two by g and gc. The

social network is denoted by g and the directed graph of citations is gc. Note that g

is formed randomly while gc is formed by strategic decisions, which depend on the

subgraph of g at each period. We say ij ∈ g, if they are linked socially and ij ∈ gc if

i has cited j.18

Now we analyze i0s decision to investigate or not.

Suppose agent k enters at period k and the network at that time is given by the

pair (g, gkc ).Suppose, the number of agents who have entered is k − 1. Agent i0s type
is given by pi which is distributed with cdf F (.) with E(pi) = p0.

19 We consider the

18Note that gc is a directed graph and hence, ij ∈ gc is not the same as ji ∈ gc.
19The distribution is absolutely continuous.
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different cases that might arise. Let W k(Cj) denote the expected future payoff of the

kth− period entrant, as calculated by the entrant (conditional on his being useful for

sure) when his (social network) neighbour j has Cj citations,

Case I (occurs with probability 1− ρ): i remains isolated. In this case, i has no

option but to write on his own.

Case II: Agent k is connected to j, s.t. Cj = 1 and @c, s.t.jc ∈ gtc (i.e. j has not

cited anyone). Here, k has two options:

Investigate j and get p0v − c+ (1− p0)piW
k
0

Not Investigate and get piW k
0 where W

k
0 =W k(Cj = 1)

So, i will investigate if p0v − c+ (1− p0)piW
k
0 ≥ piW

k
0 or, pi ≤

v− c
p0

Wk
0

The probability that the new entrant investigates is denoted by r = F (
v− c

p0

Wk
0
)

So, the probability that j (with Cj = 1) gets a citation is ρ
N−1F (

v− c
p0

Wk
0
)pj

Case III: Agent i connects to j with Cj > 1 and/or ∃c s.t. jc ∈ gtc.

First note that, if ∃c s.t. jc ∈ gtc, then c must be the earlier entrant. So, the first

agent bj connecting to j observes c with Cc > 1 and Cj = 1. Agent bj0s decision is to
i) Investigate j : p0v − c+ (1− p0)pbjW τ

0

ii) Investigate c : v − c

iii) Not Investigate: pbjWbj
0

So, if bj does investigate, he will investigate agent c and not j.( To see this, note
that if p0v − c + (1 − p0)pbjWbj

0 ≥ pbjWbj
0 , i.e.v − c

p0
> pbjWbj

0 , then it is true that

v − c > v − c
p0

> pbjWbj
0 ). This implies that Cj > 1 and ∃k s.t. jc ∈ gtc cannot hold

together in equilibrium. Either Cj > 1 or ∃c s.t. jc ∈ gtc but not both. If jc ∈ gtc for

some c, then the probability of j getting a citation = 0.20 We look at the case where

Cj > 1. In such a situation, the new entrant i has two options again with the payoffs

as follows:.

Investigate j: v − c

Not Investigate : piW
k(Cj > 1)

So, the new entrant will investigate if pi ≤ v−c
Wk(Cj>1)

, which implies that the

20Of course this could occur off the equilibrium path. In this case, the new entrant believes that
all those who have cited J made mistakes and cites the person j has cited. (This is an assumption
on beliefs but a natural one.)
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probability of getting another citation for j, given Cj > 1 is

Pr(Citationj | k) =
ρ

N − 1F (
v − c

W k(Cj > 1)
) (A)

Note that W k is k0s future payoff if he does not investigate any agent. Agent k

cannot observe the whole graph (g, gc) but only the one he is connected to and anyone

this person has cited. So, k has some expectation of the period of his entry, which

determines W k. Observation of a higher Cj implies that more people have entered

and hence k has entered relatively late. This in turn implies that the W k is low.

Note that Player k + τ , τ ≥ 1,if she links to k and no one else has cited k, will be in

information state hj and will not assign a high probability to being late in the game.

Therefore k+ τ will cite with a relatively low probability independent of the value of

Cj. Therefore Cj does not affect the probability of citation for k but does affect the

expected number of citations, conditional on being cited. So, a higher Cj implies a

lower W k(Cj).
21 From expression A, we see that this implies a higher r = F ( v−c

Wk(Cj)
)

and a higher Pr(Citationj).

However, this is the probability of citation if k links directly with j. If k links

to someone who has linked to j, the probability k cites j is independent of Cj and

is lower. Note therefore that the probability of j being cited with Cj > 1 earlier

citations is proportional to CjF (.) < Cj. We write this as a proposition.

Proposition 8 Suppose Cj(t) denotes the number of citations j has received at time

t and Cj(t) > 1. Then

Cj(t+ 1) = Cj(t) + 1 with probability ϕ(Cj, t)

= Cj(t) otherwise.

Here

ϕ(Cj, t) =
ρ

N − 1[F (
v − c

W t(Cj > 1)
) + (Cj − 1)F (

v − c

W t
0

)]

Proof. See preceding discussion.
21Player i has a link with a player who has cited Player j who has Cj citations. Therefore Player

i has been preceded by at least Cj + 1 agents.
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Figure 4: Co-evolution of citation and social networks

Remark 4 The probability of an additional citation is therefore increasing in the
number of citations as in the preferential attachment models, but unlike these mod-

els is not directly proportional to the number of existing citations. The probability

has two factors, one arising from the social network and the other from the strate-

gic/competitive motives of the players. The sublinear nature of the dynamic does not

give a power law (as Chung et al have shown).

We have earlier referred to a star network. Suppose the network consists of “stars”,

who might be connected to each other, and “planets”, who revolve around particular

stars. In this case, if a star enters early, his paper will be likely to receive wide

dissemination. However, an idea generated from a planet can only diffuse if a star

decides to cite it. This can only happen if a star enters relatively late, so has no

incentive to seek her own citations. Thus ideas generated from the peripheries take

an inefficiently long period of time to diffuse.

We now give an example where the strategic aspect of network formation is absent,

so as to give a flavour of the effect of the acquaintance network on citations.

Example 4 Let N=10. Say, 1 and 2 entered sequentially but no social link was formed.
So, C1 = C2 = 1 at period 3. 3 enters and forms a link with 2, say. Suppose 3 chooses NI.

So, after period 3 the network is: <1(1) 2(1)—3(1) >

The numbers in the parentheses are the citations for each agent. Now 4 enters. Suppose

he links to 2 and investigates 2. Also suppose it is useful. Then the updated network is
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<1(1) 2(2)–3(1) 4(1) >.Now say 5 links to 1 and investigates and cites 1. 6 and 7 link

to 5 and he can observe C1 > 1 and hence cites 1 again. Hence at the end of period 7,

1 has 3 citations and is linked to 5,6,7 in g or gc. Say, 8,9, and 10 all link to 2 or 4. In

either case they can observe C2 > 1 and hence would cite 2. So, the final graph < gc(g) >

we end up with looks like figure 4. We could have the same gc with multiple g’s. Figure 4

includes only one of the possible g which is consistent with the gc.

7 Private information and heterogeneous quality

In this subsection we discuss heterogeneity in the qualities of papers with private

information. We explore whether greater heterogeneity in the quality of papers will

speed up or delay the revelation of information about quality. An individual’s paper

might be of quality 0 (not useful for related papers) with probability 1−pi;useful with
a value v, with probability pi(1 − q), or with value v, with probability piq.We still

maintain that h = 1, l = 0 i.e. once useful(non-useful), a paper is always useful(non-

useful).The quantity pi is, as in the preceding section, private information for Player i

and is drawn independently for each i from a commonly known, absolutely continuous

distribution on [0,1], with E(pi) = p0 . We assume

i) v> w

ii)v = qv + (1− q)v

iii)p0v > c (from the basic model)

Therefore the prior probability of a paper yielding v is p0q and that of it yielding

v is p0(1−q); while the probability of a paper not being useful or of value 0 is (1−p0)
as before. The difference comes from the fact that if both v and v types are cited if

used, a citation does not partition the two useful types though it does separate them

from a non-useful paper. So, there is partial information revelation, i.e. citations are

not perfect signals any more. In this setup, an agent might choose to incur cost c

and investigate a paper if the ex-ante net payoff from doing so is high enough. After

reading, the information is revealed and depending on the quality, he might or might

not cite that paper. We consider N entrants in a fixed order.

We now introduce some notation prior to outlining the result. Let rk be the

probability that Player k will investigate one of his predecessors. ( For k = N, the
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probability is 1). We consider a k < N , again such that there have been no citations

upto k0s entry. If Player k does not investigate or investigates and does not cite,

her expected value to others will be updated, since the players with higher values of

pk will be more likely not to investigate. (If pk = 1, the player knows his paper is

useful and therefore has a high expected future payoff from being cited). Suppose her

probability of being investigated is rk+122 and her expected payoff, if cited is Wk+1.

Note that if Player k is not found useful, she is not cited, but if she is found useful,

she is cited with probability r0k+1 if her value is v and with probability r00k+1 if her

value is v, where r
0
k+1 ≥ r

00
k+1.If cited once, her expected value to future entrants is

at least qv + (1 − q)v, which is always greater than the expected value of someone

who has never been cited. However, if she is cited again, her expected future value

increases and if she is not cited it decreases. This changes the investigation decision

for future entrants. This is all encapsulated in Wk+1. Thus rk,Wk are well-defined

(by backward induction) for all k.

Proposition 9 Suppose (v − v)p0q > c, where c is the cost of investigation. Then,

for every k, given no citations before k, there will exist cutoff values, α1 > α2 > α3
23, such that Player k will not cite if pk ≥ α1, will not investigate if pk ≥ α2, will

investigate and cite only v if pk�[α3, α2] and will investigate and cite both v, v if

pk�[0, α3].

Proof. Given investigation a player with private information pk will not cite v, if

pkrk+1δWk+1 ≥ v.This gives α1 = v
rk+1δWk+1

. Clearly, someone who is not going to

cite even v would never investigate. Similarly, if pk�[
v

rk+1δWk+1
, v
rk+1δWk+1

], Player k

would cite only v.For lower values of pk, she would cite both positive values. Let
v

rk+1δWk+1
= α3.

Consider now the player who would, if she investigates and finds a positive value,

cite only v. Her choice would be not to investigate if pkrk+1δWk+1 ≥ p0qv + (1 −
p0q)pkrk+1δWk+1 − c,or , pk ≥ v

rk+1δWk+1
− c

rk+1δWk+1p0q
= α2 < α1.For α2 > α3,(v −

v)p0q > c must be satisfied (and conversely). We now check the investigation decision

22Once again, the probability of citation will be shown to be positive in every period, so lemma 1
will in fact ensure that only the most recent paper is investigated, in the absence of a citation.
23These cutoffs depend on k; this dependence is suppressed for notational convenience.
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for a player who would cite both v and v, if he investigates. Such a person would not

investigate if pk ≥ qv+(1−q)v
rk+1δWk+1

− c
rk+1δWk+1p0

.

We check the difference between the right-hand side of the last expression and

α3.This difference is
qv+(1−q)v
rk+1δWk+1

− c
rk+1δWk+1p0

− v
rk+1δWk+1

= 1
p0rk+1δWk+1

(p0qv + p0v − p0qv − p0v − c)

= 1
p0rk+1δWk+1

(p0q(v − v)− c) > 0.

This implies that the player with pk ≤ α3 would always investigate, because as pk
rises, she would shift first to citing only v (after investigating) before choosing not to

investigate.

Note that, by lemma 1, in equilibrium, Player k, if he cites, will cite k − 1 if no
previous papers have citations other than self-citations. A paper that has received

a citation will be chosen by any future entrant who wishes to investigate (and the

cutoffs in the proposition will change to reflect the new expected value, obtained by

Bayesian updating). However, someone investigating who cites only v papers might

discover the cited paper is v and not cite it. Every non-citation will decrease the

expected value of the paper and it is possible this will go below the prior, in which

case the most recent paper will again start to be investigated. Thus it is possible that

several papers will obtain citations and then die out and be replaced by others. As a

cited paper adds citations, it will, of course, become more popular. As it accumulates

non-citations, the entrants who would wish to cite only v papers might switch more

to not investigate, so the information content of more non-citations would diminish.

This also depends of course on how close to the end of the game the field is, because

every type of agent has an incentive to investigate at the end of the game. We can

therefore conclude that, with heterogeneous quality, (i) a higher quality paper has a

higher probability of being cited and a higher expected number of citations; (ii) with

positive probability a lower quality paper will be cited first and obtain citations, while

a higher quality paper from a later entrant “dies”; (iii) some papers might enjoy a

vogue and then be replaced by other more recent ones.
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8 Efficiency

This paper is an attempt to model observed patterns of citation as a result of strate-

gic choice by rational agents and its implication on diffusion of knowledge. The

irreducible multiplicity of equilibria makes determinate predictions difficult. But we

can rank these equilibria with respect to a certain notion of ex-ante efficiency. Ef-

ficiency here relates to the idea that the earlier the investigations start, the earlier

the information about the quality of paper is revealed, probabilistically. Hence po-

tentially, the benefits of a good paper are available earlier. Consider a social planner

who wants to maximise the sum of expected payoffs of all N agents. Say, the planner

specifes that in states with no citations, agents 1,2,...i− 1 would not investigate and
all agents i, i+1, ...N investigate. Also, whenever a paper gets a citation, it gets cited

by all entrants thereafter. This allocation of decisions entails a payoff of v + w − c

for each citation (v − c to the one citing, w to the one cited). If agent i starts inves-

tigating, agents 1,2,...i− 1 get no benefit nor do they incur any cost. So, the sum of

expected payoffs of N agents is

U = Pr(i0s investigation is a success)[(v + w)(N − i− 1)]
+Pr(i0s investigation failure)Pr(i+ 10s investigation success)[(v + w)(N − i− 2)]
+.......

+Pr(investigations of i, i+ 1, ..N − 1 failures)Pr(N 0s investigationn success)[v + w]

−(N − i− 1)c

The expression is strictly decreasing in i, for small c (since the last term involves

the term +ic). So, a social planner would set i = 2 to maximize U. Hence we see that

earlier investigations entail higher aggregate payoffs. The equilibrium in Proposition

3 , therefore, is efficient, both ex-ante and ex-post. In fact, when citations are perfect

signals, as in the basic model, there is no difference between ex-ante and ex-post

efficiency.

With multiple qualities of papers, the ex-ante probability that the better paper

is cited and known is higher than the probability of the worse paper being known.24

24Compare this with the David-Simkin-Roychowdhury explanation, where there is no expected
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Note that existence of equilibria mentioned in section 4( with agent i choosing to

cite both types and i + 1 choosing to cite only the high type) implies that ex-post,

it might be the case that the low-quality paper gets citations before a high quality

one and potentially better papers do not get known. So, there are equilibria that are

ex-post inefficient.

9 Conclusion

We have looked at a specific stylised model on the effect of rivalry on the diffusion

of useful ideas. Whilst we have focused on academic citations, the model can be

interpreted without too much difficulty as one of firms engaged in R&D deciding

whether to use existing patents or to work around them.

Our basic findings are: (i) In a complete information model, the rule by which a

new entrant chooses to cite the work of earlier entrants among whom she is indifferent

determines the equilibrium. The most efficient case for dissemination of ideas is the

rule by which the new entrant chooses randomly. The structure of the equilibrium

often, but not always, has a cutoff entrant such that all who enter earlier decide not

to investigate earlier work and those who enter later do. (ii) WIth private information

and entrants deciding when to enter, the equilibrium structure is monotonic in that

players who believe their own ideas to be relatively good enter early and there is

then a cascade, similar to information cascades in the literature. (iii) With citations

superimposed on a simple social network (so that individuals find out about other

earlier work by direct acquaintance or simple word of mouth), the dynamic of citations

is shown to follow sublinear preferential attachment. (iv) In no case, do we get a

“power law”. We get either a monopoly or, with sublinear preferential attachment,

something involving the product of a power law with some other factor.

Our findings can also be related to the literature on diffusion of technology and

social norms, which point out that "local externalities" like conformity can be a

possible obstacle to the spread of optimal technology. Papers by Munshi [19] and

Banerjee-Duflo [3] deal with specific externalities. In our model, it is the rivalry or

difference in quality between highly cited and less cited papers, a somewhat counter-intuitive con-
clusion that would probably have some academic administrators worried.
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competition among agents that becomes the hindrance to speedy diffusion. This is in

contrast to existing literature where agents are usually assumed to be non-strategic.

(Diffusion in the case of partially rational players who do not compete with each other

is addressed in a different context by [1] and for non-rational players by [7].)

We can place our work in the network literature (citations being directed links),

but the flavour is different from many papers in that literature, since we do not rely

solely on exogenous randomness or on built-in network externalities. In the model

without private information, our result might be considered too extreme in that there

is one randomly chosen centre in a star network. In order to match the data, we

need to include other factors, which contribute to the decision of citation. In our

paper, private information about quality contributes substantially in matching model

results with the qualitative features of the data. Additional considerations arising

from repeated interactions and asymmetries in initial social connectedness among

agents might induce completely different strategic considerations. For example, the

presence of cliques or clusters in citation networks suggest that in a repeated game

framework, (some) citations might occur in the hope of getting favours returned.

In fact, it is most likely that both the competition (discussed in our paper) and

co-operation effects work together to determine actual citation networks.
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Appendix A Proofs of propositions, Section 3.1
Behavioural Assumption 1: Any new entrant, if indifferent between r agents,

investigates the earliest among them.

Proposition 1: In any equilibrium string, ∃K∗ ≤ N−4
2

s.t.∀k ≤ K∗,the k th entry

is NI and ∀k > K∗, the k th entry is I. The exact value of K ∗ depends on the parameter

values v, δ, p0, w.

Proof. We will prove this in three steps. First, let us number the agents from the

end,i.e. the last agent is number 1. Let, i be the position(from the end) of the first

entry of NI in a string i.e. no agent j < i chooses NI. Also, let there be kI entries of

I and kNI entries of NI after i ⇒ kI + kNI = N − i.

Step 1: We show that number of entries NI ≤ number of I’s in an equilibrium
string. Note that kI agents among N − i are investigating. Imposition of A1 re-

stricts us to pure strategies⇒ kI agents among N − i are investigated. ⇒ kNI

agents are not investigated. Now consider the decision of i. He knows that kNI

agents are not yet investigated. Given A1, this implies that the next kNI agents

will not choose to read i. He can only hope to get investigated by the agent num-

bered (i − 1 − kNI), that too, conditional on the fact that all investigations done

by agents i − 1 to i − kNI are failures. Now by definition of i, he is the first(

from end) to choose NI. i.e. agent i − 1, i − 2, ..., 2, 1 all chose I. The no-deviation

condition for i implies that v must be lower than his expected future payoff(A).

Expected future payoff from NI =

A = (1− p0)
kNIp0(δ

kNI+1w + δkNI+2w + ...+ δi−1w) (1’)

Payoff from deviating to I =

p0v + (1− p0)A − c (2’)

No profitable deviation from NI requires

v − c

p0
< A = (1− p0)

kNIp0(δ
kNI+1w + δkNI+2w + ...+ δi−1w) (3’)
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The first term in A is for the condition that investigation by agents i−1, ...1−kNI are

failures so that i is investigated, which happens with probability (1− p0)
kNI . Recall

that the quantity p0 is the probability that i is found useful. Also, δ
kNI (δw + .... +

δi−1−kNIw) is the discounted sum of payoffs if found useful. Now, note that if there

are fewer than kNI + 1 agents following i, then i is never investigated and hence i

deviates from NI. But by definition i is the first to choose NI in equilibrium. This

implies

i− 1 ≥ kNI + 1 (4’)

Total number of agents = N = (N − i) + i = (kI + kNI) + 1 + (i− 1) = (kNI + 1) +

(kI + i− 1). Therefore the number of agents choosing NI= kNI before i and i himself

= kNI + 1 and the number of agents choosing I=kI + i− 1 ≥ i− 1 ≥ kNI + 1 (by

equation 4’). Hence in any equilibrium string, No. of I entries ≥ No. of NI entries.
Step 2: Now, we will prove that in fact, i ≥ kNI + 4. The total number of NI=

kNI + 1 = k, say.The total number of I= N − k of which k are at the end. From

equation (4’) , i ≥ kNI+2 = k+1. Let i = k+1. He hopes to get investigated only by

the last agent . His expected future payoff from NI is (1− p0)
k−1p0δ

kw < w < v− c
p0

i.e. i cannot choose NI which implies the k + 1th entry in the equilibrium string is a

I .

Now, let i = k+2. The next k−1 out of k+1 agents would not choose i due to A1.
They would choose to investigate some agent j > i.Therefore i can get investigated by

the second last agent. Hence, his expected payoff is (1−p0)k−1p0δkw (1 + δ) = A0.For

i = k + 2, we need A0 > v − c
p0
, or (1 − p0)

k−1p0δ
kw (1 + δ) > v − c

p0
> w. So,

the necessary condition for such a case to exist is (1 − p0)
k−1p0δ

kw (1 + δ) > w or

(1−p0)
k−1p0δ

k (1 + δ) > 1 or (1−p0)
k−1p0 >

1
δk(1+δ)

. For this to be satisfied, we need

(1 − p0)
k−1p0 ≥ 1

2
. To see the last condition note that 1

δk(1+δ)
is decreasing in δ and

reaches a minimum at 1/2 whereas the maximum value of (1−p0)k−1p0 < 1
4
. Therefore

v− c
p0

< A0 is not possible⇒ i > k+2. Now, we check the same condition for i = k+3

and i = k + 4. The necessary conditions for these to happen are (1 − p0)
k−1p0 ≥ 1

3

and (1− p0)
k−1p0 ≥ 1

4
respectively, neither of which is possible . Hence, i ≥ k + 5.

Step 3: Suppose there exists an equilibrium string with gaps and with k agents

out of N choosing NI. Define i as before ,i.e. the first agent (from the end) choosing

NI. Let the agent i+ 1 choose I. Given s−i, the condition for no-deviation for i from
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NI is

v − c

p0
< (1− p0)

k−1p0δ
kw(1 + δ + ...+ δi−k−1).

Similarly given s−(i+1) the no-deviation condition for i+ 1 is

v − c

p0
≥ (1− p0)

k−2p0δ
kw(1 + δ + ...+ δi−k)

So the necessary condition for the two to hold simultaneously is

(1− p0)
k−2p0δ

kw(1 + δ + ...+ δi−k) < (1− p0)
k−1p0δ

kw(1 + δ + ...+ δi−k−1)

or

(1 + δ + ...+ δi−k) < (1− p0)(1 + δ + ...+ δi−k−1) (5’)

But

(1− p0)(1 + δ + ...+ δi−k−1) < (1 + δ + ...+ δi−k−1) < (1 + δ + ...+ δi−k)

So, (5’) cannot hold. So, given the definition of i, i + 1 must also choose NI. We

can apply the same logic to any j > i choosing I and will arrive at a contradiction.

Reversing the numbering of agents, we conclude that there cannot be any gaps i.e.

∃K∗ such that ∀j ≤ K∗ choose NI and ∀j > K∗ choose I. So, the number of agents

choosing NI is K∗ and choosing I is N − K∗. We also know that at least the last

K∗+4 agents have to choose I. So, N −K∗ ≥ K∗+4⇒ K∗ ≤ N−4
2
. The exact value

of K∗ is given by the following condition:

(1−p0)K
∗
p0δ

K∗w(1+δ+...+δN−2K
∗−1) ≤ v− c

p0
< (1−p0)K

∗ −1p0δ
K∗w(1+δ+...+δN−2K

∗
)

(6’)

Behavioural Assumption 2: Any new entrant, if indifferent between r agents,

investigates the most recent among them.

Proposition 2: In any equilibrium string, ∃K, s.t.∀i ≤ K,∀j ≤ K − 1, i : NI ⇒
i + 1 : I and j : I ⇒ j + 1 : NI and ∀i > K, i : I .The value of K depends on

parameter values and, for fixed w, p0,δ, is decreasing in v.
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Proof. First note that there cannot be 2 or more consecutive NI in any equilibrium

string. Suppose not. Let i and i + 1 both choose NI, with i + 2 choosing I. Then

i+ 2 is indifferent between investigating i and i+ 1. By BA2, he chooses i+ 1. This

implies that i has future payoff of zero no matter what he does. Hence, i will deviate

from NI.

Next we will show that @ 2 consecutive I entries preceded and followed by NI in

the array of the equilibrium string, i.e. @ a sequence i, i + 1, i + 2, i + 3 such that
i and i + 3 choose NI and i + 1, i + 2 choose I. By way of contradiction, suppose

there is. Since i, i+ 3 chooses NI, by the first argument, i− 1 and i+ 4 choose I in

equilibrium. We will now put down the no-deviation conditions for each of the agents

i to i+ 3.

i→ NI ⇒ v − c
p0

< A1 = p0w(δ + δ2 + ...+ δN−i)

i+ 1→ I ⇒ v − c
p0
≥ B = p0w(δ + δ2 + ...+ δN−i−1)

i+ 2→ I ⇒ v − c
p0
≥ 0

i+ 3→ NI ⇒ v − c
p0

< A3 = p0w(δ + δ2 + ...+ δN−i−3)

Note that A3 < A1. Hence the condition required is B ≤ v − c
p0
≤ A3. which is

impossible since B > A3.We can conclude that in equilibrium if ∃ some i, s.t. i, i+1

choose I,then s∗k = I ∀k > i + 1. Otherwise, the string has to be characterised by

alternating patterns ie. if i→ NI, then i+1→ I and if any j → I, then j+1→ NI.

More generally, ∃K such that ∀i < K,∀j < K − 1, i → NI ⇒ i + 1 → I and

j → I ⇒ j → NI and ∀i ≥ K, i→ I. The no-deviation condition for each agent is as

follows: i→ NI ⇒ v− c
p0

< A1 =

p0w(δ+δ
2+...+δN−i)

1→ I ⇒ v− c
p0
≥ B = 0

i+2→ NI ⇒ v− c
p0

< A2 = p0w(δ+δ
2+...+δN−i−2)

3→ I ⇒ v− c
p0
≥ 0

4→ NI ⇒ v− c
p0

< A4 = p0w(δ+δ2+ ...+δN−i−4) ...and so on. The lower v, more of

these conditions are satisfied i.e. v − c
p0

< Ay is true for higher values of y(since the

sequence A1,A2... is decreasing). Hence the alternating pattern can go on for longer

and K is higher.

Behavioural Assumption 3: Any new entrant, if indifferent between r agents,

investigates them with equal probability 1
r
.
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Proposition 3: In any equilibrium string, ∃ eK, s.t.∀k < eK the k th entry is NI

and ∀k ≥ eK, the k th entry is I . In fact, eK = 2.

Proof. First note that if any two entries i, i+1 are I, with i−1 being NI, then only

i mixes. Player i + 1 uses pure strategy of Ii, since the belief about all other past

entrants’ usefulness is less than p0( by Lemma 1). Now, we characterise the pattern

in equilibrium.

Let the ith1 , i
th
2 , ....i

th
k , i

th
k+1, i

th
k+2, ...N

th agents be the ones choosing I in equilibrium;

i1 < i2 < .. < ik. Hence by definition, i1 is the first one to choose I and everyone after

agent ik investigates some agent. We know that the last two agents would always

choose I . Hence the agent ik can be N-1 or smaller. Here, there are i1 − 1 agents
before i1 who have not been investigated.Agent i1 is indifferent between them and

reads each of their papers with equal probability, 1
i1−1 . Similarly, i2 investigates each

of i1, i1+1, ..., i2− 1 with probability 1
i2−i1 and so on. Given this equilibrium, we can

derive the updated beliefs of each agent whenever the state of no citations is reached

and hence calculate the no-deviation (unilateral) condition for each agent.

1 : 0 < 1
i1−1p0wδ

i1−1(1 + δ + δ2 + ...δN−i1)

2 : v − c
p0

< 1
i1−1p0wδ

i1−2(1 + δ + δ2 + ...δN−i1)

.

.

i1 − 1 : v − c
p0

< 1
i1−1p0wδ(1 + δ + δ2 + ...δN−i1)

i1 : v − c
p0
≥ 1

i2−i1p0wδ
i2−i1(1 + δ + δ2 + ...+ δN−i2)

i1 + 1 : v − c
p0

< 1
i2−i1p0wδ

i2−i1−1(1 + δ + δ2 + ...+ δN−i2)

.

.

.

ik − 1 : v − c
p0

< 1
ik−ik−1p0wδ(1 + δ + ...δN−ik)

ik : v − c
p0
≥ p0wδ(1 + δ + ...+ δN−ik−1)

ik + 1 : v − c
p0
≥ p0wδ(1 + δ + ...+ δN−ik−2)

.

.

N : v > 0
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Take the 2 equations for ik − 1 and ik.

p0wδ(1 + δ + ...+ δN−ik−1) ≤ v − c

p0
<

1

ik − ik−1
p0wδ(1 + δ + ...δN−ik)

A necessary condition for this to hold is

p0wδ(1 + δ + ...+ δN−ik−1) <
1

ik − ik−1
p0wδ(1 + δ + ...δN−ik)

or, (1 + δ + ...+ δN−ik−1) <
1

ik − ik−1
(1 + δ + ...δN−ik)

Call the LHS, A. Then the previous expressions can be rewritten as:

A(ik − ik−1) < A+ δN−ik

A(ik − ik−1 − 1) < δN−ik

But A > δN−ik . So this can hold only if

ik − ik−1 = 1

,which again implies that there is no gap between ik and ik−1.25 Hence everyone after

agent ik−1 investigates.

Similarly we can write out the new set of conditions where agents i1, i2, ..., ik−2,ik−1, ik−1+

1, ik−1 + 2, ..., N choose I and compare the conditions for agents ik−1 and ik−2. We

would arrive at a contradiction if ik−1−ik−2 > 1. Hence in any equilibrium string there
cannot be gaps. Such a string must be of the form [NI,NI,NI.....NI, I, I, I....I ],

where the I starts at period eK.

Now we can go on further and find the value of eK. We know that all the agents

before eK were not investigated. Hence eK investigates each of them with probabil-

ity 1eK−1 .If his investigation is not useful, eK + 1 investigates eK. The no-deviation

25Note the difference between ik−1 and ik − 1.
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conditions for agents eK − 1 and eK are

p0δw(1 + δ + δ2 + ...+ δN−
eK−1) ≤ v − c

p0
<

1eK − 1p0δw(1 + δ + δ2 + ...+ δN−
eK)

The necessary condition again is

(1 + δ + δ2 + ...+ δN−
eK−1) < 1eK − 1(1 + δ + δ2 + ...+ δN−

eK)

or, eK − 1 < 1 + δ + δ2 + ...+ δN−
eK

1 + δ + δ2 + ...+ δN−
eK−1 = 1 + δN−

eK
1 + δ + δ2 + ...+ δN−

eK−1 < 2
i.e. eK < 3

Since the first agent has no one to investigate his only choice is NI. So, eK < 3

implies that investigation would start from agent 2 and no later.

Proposition 4: For any given set of parameters, (v, p0, w, δ), eK ≤ K∗ < K.

Proof. From Proposition 3, we know that eK = 2. By way of contradiction, we assume

K∗ ≥ K and show that set of values of the parameters that satisfy this inequality is

empty.

>From Proposition 1, we know that given a K∗, the parameters should satisfy

equation (6’) [See Appendix].

LK∗ : = (1− p0)
K∗p0δ

K∗w(1 + δ + ...+ δN−2K
∗−1) (3)

≤ v − c

p0
< (1− p0)

K∗−1p0δ
K∗w(1 + δ + ...+ δN−2K

∗
) = HK∗.

>From Proposition 2, given a K, the conditions to be satisfied are

LK := p0δw(1+ δ+ ...+ δN−2−K) ≤ v− c

p0
< p0δw(1+ δ+ ....+ δN−1−K) = HK (4)

Now fix the value of K∗ = Y ≥ 2. Therefore parameters satisfy (3).
Now, we want to check whether K can be ≥ Y.

Let K = Y.
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HK∗=Y = (1− p0)
Y −1p0δ

Yw(1 + δ + ...+ δN−2Y )

< p0δ
Yw(1 + δ + ...+ δN−2Y )

< p0δw(1 + δ + ...+ δN−2Y )

= p0δw(1 + δ + ...+ δN−Y−Y )

= p0δw(1 + δ + ...+ δN−Y−K)

≤ p0δw(1 + δ + ...+ δN−2−K) = LK |K=Y

Given the fixed value of K∗ = Y, v− c
p0

< HK∗ < LK |K=Y . Hence v− c
p0
does not

lie in the range [LK , HK ]|K=Y .
Hence given (3), K. 6= Y.

Also note that LK is decreasing in K. which implies that for values of K <

Y,HK∗ < LK . and hence (3) and (4) cannot hold together. So, given that parameter

values satisfy (3), which corresponds to a K∗, K > K∗.
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Appendix B: Proofs for Extensions
Proposition 8: There cannot be an equilibrium in which there exist α and α0, α <

α0(say), such that all players with pi > α0 and some with pi < α enter in period 1,

while players with α ≤ pi ≤ α0 enter in period 2 with other players entering after

period 2.26

Proof. Suppose, there exists α, α0, α00, with α > α0 > α00 such that pi > α and

α00 < pi < α0 enter in period 1, α0 < pi < α enter in period 2 and pi < α00 enter after

period 2. We will show that there will be a profitable deviation for some agent. Note

that, after observing the state in each period up to and including t the probabilities

of usefulness for any entrant in period s ≤ t are updated to bpst+1.
Case I : bp2t+1 < bp1t+1 In this case the agents entering after period 2 investigate and

get bp1t+1v − c. But if bp2t+1 < bp1t+1 , these agents would prefer to enter at period 1 and
get a less discounted payoff

Case II: bp1t+1 = bp1t+1 In this case again, agents entering after 2 would like to enter
in period 2 and get bp12v − c at period 2 .

Case III: bp2t+1 > bp1t+1 This is the only case when agents entering after 2 would not
want to enter earlier. We consider the following three subcases:

a) All α0 ≤ pi ≤ α enter at t = 2 and Investigate: If it is optimal for these agents

to do so it implies that

Utility from investigating = X = bp12v − c + (1 − bp12)piE2W2 > utility from

entering at time 1 = piE1W1 = Z where EtWt is the expected future payoff from

being cited after entering in period t.27 Agents at t=1 are potentially cited by agents

at 2 and later while agents at t=2 are potentially cited by agents after 2 only. The

decision is represented in Figure 5 a and 5b. Fig. 5a shows when function X is steeper

than Z and 5b is the opposite. We see that in both cases if some α0 ≤ pi ≤ α prefers

X, it must be the case that pi < α0 also prefers X. Therefore, if it is optimal for agents

entering at 2 to investigate and not enter in period 1, then agents α00 ≤ pi ≤ α0 cannot

find it profitable to enter at period 1.

b) All α0 ≤ pi ≤ α enter at t = 2 and choose Not Investigate: In this case, agents

26Using period 1 in the statement is without loss of generality-we can replace it by “period τ such
that there has been no entry up to τ − 1.00
27The inequality could be weak for a boundary type of pi.
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Figure 5: Proposition 8, Case a)

at t>2 investigate entrants in period 2 only because of their higher probability of

being useful. So, an agent entering at t=1 should deviate and wait to enter in period

2.

c) Some agents entering at t=2 investigate while some choose Not Investigate.

Since later entrants are not able to tell, given no citation, whether entrants in period

2 investigated or not, there will be two revisions of probability. The probability of

usefulness of period 1 entrants will drop to bp10 < bp1(from Lemma 1). The probability
of usefulness of period 2 entrants will go up, i.e. bp20 > bp2, given that within the set
of period 2 entrants the ones with higher pi choose Not Investigate (and hence have

a higher probability of not citing). Given the candidate equilibrium strategies for

other players, the choice between investigating or not for players who have entered

at t=2 entails comparison of bp12v − c + (1 − bp12)piEW2, where EW 0 is the expected

payoff from entrants at t>2 investigating second period entrants, and piEW1. This

gives a cutoff pi such that all pi > Y ∗ will choose NI, while others choose I. Suppose

such a Y ∗ exists. So, we have α00 ≤ pi ≤ α0 enter in period 1, α0 ≤ pi ≤ Y ∗ enter

in period 2 and investigate. Thus there is an agent with pi = α0 who is indifferent

between the two. The payoff from entering in period 1 = piE1W1 ( denoted by A)

and that from entering at t=2 and investigating is bp12v − c+ (1− bp12)piEW2 (B). We

need to compare these two payoffs as functions of pi. Two cases are possible: i) The

slope of A is less than slope of B ii) The slope of A is greater than that of B. The

two cases are represented in Fig 6 a,b. In (i) the two are not equal at any pi. So, this
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Figure 6: Proposition 8, Case b)

equilibrium is not possible. In (ii), they intersect at α0(say). Then from the graph we

can see that any pi > α0 will prefer A to B. i.e. will prefer entering in period 1. So,

for i, α0 < pi < Y ∗, entering in period 2 and investigating cannot be an equilibrium

strategy.
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Chapter 2
Competing to be a ‘Star’: A model of sequential network

formation

1 Introduction

Interpersonal networks, be it within one’s kin, among neighbours or among colleagues,

have been found to have a significant and persistent impact on economic and social

outcomes, both at the individual and the aggregate level. For example, on the ag-

gregate level, it influences adoption of new technologies (Conley and Udry 2001) and

sociological interactions such as social norms, status attainment and ethnic segrega-

tion1. In the context of firm strategy, in the presence of a consumer network, firms can

target few central agents order to promote their product at minimum cost2(Feick and

Price 1987; Ellison and Fudenberg 1995). On the individual level, there is substantial

evidence that one’s position in a network affects performance and central agents are

better off in most environments. For example, in an informal network, a person with

more friends is more likely to get information about relevant job vacancies or have

a higher chance of getting a job through referrals (Granovetter 1974, Montgomery

1991, Holzer 1987); a well-connected person gets more credit since his network can

be used as sanctions against default (McMillan and Woodruff 1999, Fafchamps and

Lund 2001, Banerjee and Munshi 2003). Similar advantages are observed in formal

networks like trade networks (Lazerson 1993, Nishiguchi 1994) and R&D alliances

among firms (Powell 1996, Delapierre and Mytelka 1998).

The above evidence suggests that there are incentives for agents to compete in

order to become central in a network. This paper studies such incentives through a

model of network formation with forward looking agents. In our model, networks are

formed through deliberate decisions of individuals who consider all the current and

future costs and benefits of establishing links with each other. Moreover, the benefits

1There exists a large literature in sociology on issues of family and kinship networks, ethnic
networks and their effects on income, labour market participation, social cohesion and ethnic inte-
gration. See, among others, Coleman (1988), Burt (1992). See Wasserman and Faust (1994) for an
introductory book on networks in sociology.

2These consumers are called ‘market mavens’ in the marketing literature.
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from a network consists of both direct benefits from one’s neighbours and indirect

benefits via the network of one’s neighbours. We model the benefit an agent gets from

others in the network as depending on the distance between agents in the network

and the cohesion level of the society, represented through the concept of ‘decay’. To

fix ideas, think of a highly cohesive society where agents enjoy high levels of trust

with each other. In network terminology, this implies a lower level of decay along

the network because in such an environment the benefit from an indirect friend is

only slightly less than that from a direct friend. Any positive level of decay, however,

drives a wedge between the payoffs of a central and not-so-central agent and creates

the incentive to compete for centrality. Hence, in a political environment the agents

are politicians forming ties with other such agents. A well-connected politician would

hope to be the leader of the group and have a higher payoff. In a pharmaceutical

industry, firms form research collaborations with each other and those with higher

number of collaborators have higher potentially gain from higher know-how. The

magnitude of these gains, however, depend on the spillover effects particular to the

industry.

To model forward looking behaviour, we propose a sequential-move game in which

a finite number of agents make link proposals. Initially, all the agents are isolated.

In the first period, one agent is randomly chosen to be the proposer and the game

begins. Thereon, each agent has the option of proposing a link at each period by

choosing one agent to link to. If an agent does propose a link, he has to bear a cost

c. Following a link proposal at any stage, the responder accepts or rejects the link.

Whatever be the decision, the responder becomes the proposer in the next period and

so on. The game ends when all agents have had the opportunity to propose a link

and benefits are exchanged.

We show that when agents are farsighted, then, whether they compete to become

the central agent or not, crucially depends on the rate of decay. This is because

any positive level of decay drives a wedge between payoffs of a central and not-so-

central agent since the former has a high proportion of direct connections. In our basic

model with homogeneous agents, we find that the unique subgame-perfect equilibrium

network architecture is a single connected component whenever the rate of decay is

very high or very low. In particular, it is a star when the extent of decay is close to
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Figure 1: Equilibrium networks

zero, i.e. one agent is the centre and all other agents are directly connected to him.

On the other hand, when there are very strong decreasing returns (or high decay) the

equilibrium network resembles a hub-and-spoke architecture. Figure 1 demonstrates

the equilibrium structures for the extreme values of decay.

The star network involves only one agent as the centre. The intuition for this

result is that when there is very little decay, the payoff from being a peripheral agent

is not too low compared to a that of a central agent and the incentive to compete

is weak. Hence, connecting to the central agents provides maximal acess to indirect

benefits. However, when the decay is high, the competition is strong and the earlier

agents form a ‘hub’ in the form of a wheel or circle while later agents connect to one

person in the hub. Hence, it explains the endogeneous emergence of highly central

agents or hubs with peripheral agents. This network of R&D collaborations among

pharmaceutical firms have been found to have a similar structure.

Moreover, we show that for some intermediate levels of decay the equilibrium

may not be connected and the network can consist of isolated groups of agents. We

observe such group formation in various political situtations such as the formation

of multiple parties with the same ideologies in India and other multiparty systems.

To give a specific example, politician Ram Manohar Lohia formed his own Socialist

Party with few others rather than join the existing Praja Socialist Party (which had

essentially the same idealogies) and share centrality with multiple leaders. As stated

in an article in New York Times, the rebels in Darfur lack a strong leadership due to
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the power struggle amongst the top leaders which has resulted in factionalisation even

though the formation of a single powerful group would arguably be beneficial to the

movement. In more recent times, sociologist Robert Putnam while commenting on

structural changes in American society notes that over the past three decades there

has been a decrease in general trustworthiness and a simultaneous increase in the

number of civic associations, each with a smaller membership. For a certain range

of values of the decay parameter, our model implies that such phenomena can be

explained in terms of the incentives of later agents to reject links in order to have a

higher probability of becoming the centre himself. Similar incentives might also work

among social groups of young adolescents or teenagers.

Equilibrium networks, in general, are inefficient, except for when the level of decay

is very low. With heterogeneous types of agents, the range of values of decay that

support the efficient structure as the equilibrium increases. The high ability agent

becomes the centre of the star. However, it is possible, for some parameter values, to

have the high ability agents isolated from a group of low ability agents. This happens

when the difference in abilities or the extent of heterogeneity is moderate and the

decay rate is at some intermediate level.

One feature of the model is that each agent has a capacity of one on the number

of link proposals. The underlying premise is that forming links takes up resources

in terms of time, money or effort. The capacity constraint is reasonable since link

formation in a network is only one among many sources of economic benefits. Agents

participating, say, in the labour market, can only invest upto a certain proportion of

their time in their social networks due to opportunity costs of social investment. In

the extension, we provide an example to show how relaxing the assumption would

affect the network configuration.

The literature in economics on network formation follows two main strands. The

first strand of literature on network formation follows Jackson andWolinsky (1996)(hence-

forth JW). Their work is closely related to the literature on coalition formation in

cooperative games (Myerson1977, Aumann and Myerson 1988) but the value of the

network depends on its exact structure. JW focus on individual incentives to form or

sever links and highlight the conflict between pairwise stable networks and socially
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efficient ones3. Bala and Goyal (2000, henceforth BG),on the other hand, model net-

work formation as a non cooperative game by introducing one-sided link costs. BG

propose a one-shot simultaneous move game where homogeneous agents form links

with each other at some exogenous cost, which is borne entirely by the intiator. They

consider both one-way (only the initiator getting the benefit) and two-way (benefits

accruing to both agents in the link) flow of benefits with and without decay4 and char-

acterise the set of strict Nash networks for the different specifications5. Hojman and

Szeidl (2004) use the model of BG to focus on the role of decay in network formation

and highlight periphery-sponsorship as a robust feature of the equilibrium network in

such settings. They however limit the access to the benefits from connectedness to a

finite distance in the network.

All these papers analyse network formation as a simultaneous-move game and

hence are myopic and static in nature. Watts (2001a) proposes an infinite horizon

dynamic model of network formation where a finite set of agents decide to form and

sever links to maximise their myopic payoff. Watts (2001b) focuses on a specific

model with forward looking agents that results in circle networks. Deroian (2006)

analyses a finite time sequential move game and shows a non-monotonic relationship

between the level of cost and the formation of a complete graph (specifically, a star).

In these models an agent can form as many links as she wants. There is no capacity

constraint. Another point to note is that the formation of a link is unilateral i.e.

it does not require consent from the agent being linked to. Of course, for a static,

myopic game there is no reason for not accepting a link. But, when agents are forward

looking an agent might reject a link for strategic reasons. The exact nature of such

strategic concerns will be clear later.

3For an excellent survey of the literature on various approaches to network formation see Jackson
(2003). For papers using the notion of pairwise stability, refer to Dutta and Mutuswami (1997),
Dutta, B., A. van den Nouweland and S. Tijs (1998), Johnson and Gilles (2000).

4 i.e. the benefit exchanged between two agents may or may not decline (decay) with the distance
between them.

5Following BG there have been a number of attempts to extend this basic model. Galeotti et al
(2005) and Galeotti (2006) extend their model to include heterogeneity in values and costs in both
one-way and two-way flow of benefits. The heterogeneity in these models is not partner specific,
i.e. the values and costs depend on the agent’s own type only. Kannan et al (2007) follow BG and
introduce costs of indirect links. Hence, the benefits from one’s indirect contacts (friends e.g.) are
not free, as was the case in BG. They look at different cost specifications and analyse how the cost
structure affects the network.
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The remainder of the paper proceeds as follows. Section 2 describes the basic

model followed by the analysis in Section 3. Section 4 discusses welfare and efficiency

issues. Sections 5 and 6 present extensions and examples. Section 7 discusses results

and concludes. All proofs are relegated to appendices A and B.

2 Model

This section introduces the basic model of network formation. We study a sequential

move game in which N players decide to form links with each other. We chose a

finite game, in which everyone makes one proposal, to bring out the dynamic aspects

of the problem in a simple yet interesting environment. Each link represents social

connections between the two players whereby they exchange some benefits. All the

links together define a network or a graph where the agents are represented as nodes

and the links as the edges of the graph. From now on, we will use the words graph

and network interchangeably.

2.1 The Environment

N = {10, 20, ...n0} is the set of agents forming a network. The network at time 0 is
empty i.e. each agent is isolated. Agents are budget constrained. We assume that

all agents have the same contraint and each can propose only one link. An agent

is randomly chosen to be the first proposer and is relabeled agent 1. He proposes

a link to some agent j0. The responder accepts or rejects the link and becomes the

next proposer and is relabeled agent 2. In general, the agent that proposes at time

period t is relabeled as agent t. If t proposes to k0 6= t, k0 rejects or accepts. If k0 had

already proposed, then an agent is randomly chosen from the set of agents who have

not proposed any link. Otherwise k0 is the next proposer and is relabelled as agent

t+1. Links once formed are not allowed to be severed. The proposals stop once every

agent has had the chance to propose6. Hence the game continues for N periods. If i

6Note that if everyone can make only one link, then in a model where agents have another chance
to propose after the first round and there is discounting, links will be added only if some agent
abstained in the first round, which in equilibrium would possibly be only agent 1. A model without
discounting, however, might involve some delay due to the incentive to free-ride.
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initiates a link and j accepts, they are linked and it is denoted by gij = 1, which is

represented by a directed arrow from i to j. This incorporates the information that i

is the one who proposed and j accepted. The collection of all such links make a graph

g. Let gt−1 denote the graph at time t before agent t makes a decision. At N , gN is

formed and payoffs are realised. The sequential nature of our model is similar to that

of the multiperson bargaining literature, the ‘offer’ here being a social link. Similar

to a bargaining situation, different orders of play could be relevant. For example, it

could be a pre-determined order as in Shaked (1986) or random proposers like Okada

(1996). The order of play considered here is similar to that of Selten (1981) and

Chatterjee et al (1993).

We also define a path between agents. There exists a path connecting i and j if

gij = 1 or gji = 1, i.e. i and j are directly connected or ∃j1, j2, ...jK such that all of
the following holds: i) gij1 or gj1i = 1 (ii), gjKj or gjjK = 1, (iii) gjkjk−1 or gjk−1jk = 1

for all k = 2, 3, ...K

Also define Nd
i (g) = {j 6= i : gij = 1 or gji = 1}, i.e. the set of agents to whom i

is directly linked and Ni(g) = {j : there exists a path between i and j}

2.2 The Strategy

At any time t, the agent i who moves could have two decisions to make. First, he

accepts or rejects if he has been proposed to at t − 1 which is denoted by action
at ∈ {A,R}. If he is isolated, then he has no such decision to make which is denoted
by φ. The second decision is that of initiating a link to some agent lt ∈ N\{i} or
abstaining, denoted by φl. The history at any time t, is gt−1, the graph formed till

stage t− 1 and the history of acceptance/rejections, i.e. history ht = {aτ , lτ}t−1τ=0.

Hence, the strategy of an agent i who moves at time t is a mapping from the history

at time t to the action set. We represent the strategy by si : ht → {A,R, φ}X{{φl}UN\{i}}.

2.3 The Payoffs

A link in a network represents the channel of exchange of both direct and indirect

benefits between agents. In particular, the benefit exchanged between agents depend

on the distance between them in the network. Formally, define d(i, j, g), the geodesic
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distance between i and j as the length of the shortest path between the two in g. If i

and j are directly linked, d(i, j, g) = 1. By convention, if two agents are not connected

then d(i, j, g) = ∞. Given the distance between two agents i and j, the value of the

benefits exchanged between them is pij(g).uij = pd(i,j,g)−1uij where p ∈ (0, 1) and uij

is the value of the benefit. The formation of a link is costly and the cost c is borne

entirely by the initiator of the link. This assumption tries to capture the fact that

there are significant asymmetries in effort even in relationships that require reciprocal

investment.

Given a network g, the total payoff to agent i in g , can be written as

πi(g) =
X
j 6=i
{pd(i,j,g)−1(uij)− cI(gij = 1)}

where uij is the value of the benefit i gets from j. Since agents can form only one

link, the link formation cost is c, if i initiates a link and 0 otherwise. We also assume

that uij = u = 1 for all i, j i.e. agents are homogeneous and give a direct benefit of 1.

In the payoff structure defined above, the benefits exchanged between two agents

decrease with the distance between them at a geometric rate p. One interpretation

of this decay rate p is the probability of meeting indirect connections. Consider,

for example, friendship networks. A direct link between i and j represents a direct

friendship. If, on the other hand, i is a (direct) friend of k who is also a friend

of j, but i and j are not directly linked, then i is indirectly connected to of j and

d(i, j, g) = 2. We could think of situations where benefits are exchanged only when

two agents meet and that direct friends meet each other with probability 1. An agent

i, however, meets a friend’s friend with probability p and a friend’s friend’s friend with

probability p2 and so on. Hence the ex[ected benefit i gets from j is p.u. Alternatively,

in most social environments, it is the case that agents get benefits, for sure, from their

direct friends while the benefits from a friend’s friend are obtained only with some

probability. This probability depends on characteristics of the society like levels of

trust and social activity which are indicators of the social cohesion of a community.

Hence, p is, in some sense, a measure of social cohesion of a society. This geometric

decay structure is less general than that of Hojman and Szeidl (2004) who consider a

general form of decreasing returns. They, however, restrict the benefits from indirect
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connections to be positive only upto a fixed finite distance in the network after which

it is zero.

Before we proceed to the analysis we introduce some standard network architec-

tures. Given a graph g, a set C ⊂ N is called a component of g if for a pair of

agents i and j in C, j ∈ Ni(g) and there is no strict superset C 0 of C for which this is

true. A component is minimal if C is no longer a component if gij = 1 is replaced by

gij = 0. A network g is said to be connected if it has a unique component. A network

is an empty network ge if Ni(g) = {i} and is a complete network gc is Ni(g) = N\{i}
for all i ∈ N. A wheel network, gw(or just W ) is one where agents are arranged as

i1, i2, ..., in with gi1i2 = gi2i3 = ... = gini1 = 1 and there are no other links. A star

network gs has a central agent i such that Nd
j (g) = {i} for all j ∈ N\{i} and there

are no other links. A wheel with l agents is denoted byWl. A star is centre sponsored

if gij = 1 and gji = 0 for all j and periphery-sponsored if gij = 0 and gji = 1 for all j

in gs. A mixed star is a combination of the two. We call a graph a wheel with local

stars if the graph contains both a wheel and a star. Let us denote it by WSk, when

the wheel has k agents and the local star has the N − k spoke agents. A connected

acyclic component with exactly one path is called a chain. Let us denote it by Chl,

where the subindex is the length of the chain. These architectures are illustrated in

Figure 2.

3 Analysis

The network formation game of our model is a finite horizon problem and the equi-

librium concept is that of subgame perfect equilibrium. We assume that when a

proposer of a link is indifferent between multiple agents, he chooses one randomly

and with equal probability.

Assumption (A1): When indifferent between a set of agents to link to, the
proposer randomises between them with equal probability.

Note that givenA1 rejections cannot occur on the equilibrium path since no agent
i would incur the cost of intitating a link which will be rejected and would yield no

myopic benefit7. Hence, the relevant history is the current graph (which influences the

7However, this could still be beneficial if this would lead some future agent to choose agent
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Figure 2: Network architectures
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myopic payoff) and not the past actions of acceptance and rejection. This also allows

us to abstract from possible reputation issues involved in rejection. Hereafter, we

confine ourselves to strategies that depend only on the graph formed till the current

stage.

We also assume that if indifferent between accepting or rejecting a link, an agent

always accepts the link. This, however would not be the case for generic values of

parameters.

A2: Accept if indifferent between accepting or rejecting a link proposal.
Note that since c < u = 1 agents always get net positive benefit from meeting

some agent. The responder of time t − 1 is the proposer at time t which gives the
responder some power. The agents in this model have perfect foresight and realise

the implications of their strategies on future action by players. We use backward

induction to analyse the actions of each player.

Before we proceed let us introduce some more notations.

πt(gt−1) : Total payoff agent t is assured to get given the graph gt−1.

πmyo
t (j, gt−1) : Total payoff t receives from agents k < t, after {tj} link is formed

and is equal to
P

j<t ptj(gt−1+{tj}).1. This is the myopic payoff since t does not take
into account the payoff from meeting the future entrants.

πft (j, gt−1) : Payoff t receives from all future entrants if he links to j. It is deter-

mined by the equilibrium strategies of future players given that the state at t+1 will

be the graph gt = gt−1 + {tj}
vt(gt−1) = argmaxj<t π

myo
t (j, gt−1)

Πt(j, gt−1) : Total payoff to agent t from linking to j, when the graph is gt−1.

Note that Π is determined by the equilibrium strategy of all other agents. Note that

Πt(j, gt−1) = πmyo
t (j, gt−1) + πft (j, gt−1).

Remark 1: πt(gt−1) =
P

j<t ptj(gt−1).1 = 0 if t is isolated and > 0 if t is linked.

Also, we distinguish between vt(gt−1) when t is isolated and when he is not since

the agent v that maximises t0s payoff in the 2 cases is potentially different. Let the

i (whose proposal was rejected earlier) with higher probability. This cannot happen since (i) if
indifferent, the future agent randomises and does not choose i with higher probability and (ii) if not
indifferent, then agent i would have been chosen even if he had not made a rejected offer (for his
"centrality").
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optimal agent in the case when t is isolated and when he is not be visot (gt−1) and

vcont (gt−1) respectively. By defining π
myo
t (j, gt−1) and π

f
t (j, gt−1) separately we will try

to disentangle the two types of incentives an agent has when he considers linking to an

agent j : (i) t wants to maximise his payoff from meeting all earlier entrants. but (ii)

t0s choice would change the graph gt and future entrants would link according to their

equilibrium strategies which affects t0s payoff from agents k > t through d(t, k, gn).

Remark 2: The payoffs are functions of ptj which in turn is a function of distances
between agents d(t, j, g). In particular, the final payoff to agent t will be functions of

d(t, j, gn) where gn is determined by the equilibrium strategy profile of all n agents.

So, when deciding whom to link to, t considers both current and future payoffs and

links to a j such that Πt(j, gt−1) = πmyo
t (j, gt−1) + πft (j, gt−1) is maximised.

Before we state the main propositions of this section, note that due to the assump-

tion of u > 0, no agent would reject a proposal unless the graph is such that following

a rejection of a link he has a positive probability of being chosen as the centre of a

star by the following agents. In other words, if the graph is such that this incentive is

not at work, an agent would accept a proposed link since he is not incurring any cost

and the net benefit from the link is u = 1 which is positive. We first give an example

to illustrate the incentives of agent t when the graph is gt−1.

Example 1 Suppose, N = 8. Also, suppose the graph at beginning of t = 3 is as

follows: 1 and 2 are linked. 3 is isolated and have to propose a link. Note that 3 is

indifferent between 1 and 2. Agent 3 has the following options:

(i) 3 could link to 1 (or equivalently 2)

(ii) 3 could link to some other agent 4 (after the renumbering)

If 3 links to 1, then note that the proposer of t = 4 is isolated. Also, suppose that

the parameters are such that following this subgame, the equilibrium strategy of all

future players is to link to 1. In this case, a complete star with 1 as the centre is formed

and 3 is a peripheral agent. The payoff to 3 can be written as π3(l3 = 1) = 1− c+6p.

Alternatively, suppose 3 links to some new agent j0 (who is then renumbered as 4)

and j0 or 4 accepts. Also, suppose 4 abstains and hence the proposer at t = 5 is

isolated and his equilibrium strategy is to link to one of 1,2,3,48. Moreover, let the

equilibrium strategy profile be such that all future agents link to 5’s choice. In this

85 is indifferent between the first four agents and chooses each with probability 1/4.
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Figure 3: Example 1

case, the network formed is as depicted in fig 3 where the centre of the star could

be any one of 1,2,3 and 4. In this case, 3 becomes the centre with probability 1/4

and with probability 1/4.he is a peripheral node in a star of N − 2 agents. Also,
with probability 1/2, agent 5 links to 1 or 2 and agent 3 is isolated from the star

and hence gets a much lower payoff. The expected payoff of agent 3 can be written

as π3(l3 = 4) = 1 − c + 1
4
[4] + 1

4
[4p] = 1 − c + 1 + p. Hence linking to 4 makes 3

disconnected from 1 and 2 but makes him central with some probability while linking

to 1 maximises 3’s myopic payoff but lowers his probability of being the central agent

to 0 and hence his future payoff. Which payoff is higher and hence which incentive

domiantes depends on the value of p. In this case, p has to be higher than 1
5
for 3 to

give up future payoff considerations and link to 1. Hence, if p > 1/5 then 3 will link

to 1 or 2. Now, if 1 abstains at t = 1 then at t = 2, the proposer is isolated. We can

analyse,as above, agent 2’s incentive to link to 1 or some other agent 3. The payoffs

for 2 can be written as π2(l2 = 1) = 1 − c + 1
2
[6] + 1

2
[6p] and the maximum payoff

if 2 links to 3 is π2(l2 = 3) = 1 − c + 1
2
[5] + 1

2
[5p]. Hence 2 would always choose 1,

if p > 1/5, since in that case, 3 would choose one of 1 or 2. Therefore, at t = 1,

the proposer would abstain and save c since 2 would choose 1. So, for p > 1/5, the

equilibrium will be a complete star: one where 7 agents would be directly linked to 1

agent, the centre.

The following Lemmas gives some properties of the equilibrium network configu-
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ration.

Denote the graph at the beginning of time t, i.e. before t makes a decision, by

gt−1.

Lemma 1 If t ∈ C 0 ⊆ gt−1, then C 0 must be a chain.

Proof: Suppose not. Let agents {k0, ....t }∈ C 0. Since C 0 is not a chain there

must be an agent k1, k0 < k1 < t who proposed to agent j < k1. Let k1 be the first

such agent. Hence k1+1 is isolated at time k1+1 and since k1+1 ∈ C 0, he connects to

j < k1 + 1 in equilibrium which implies that k1 + 2 is isolated and so on. Continuing

the argument it implies that t is isolated at the beginning of period t. Therefore,

t 6∈ C 0 and we have a contradiction. Hence C 0 must be a chain.

Let there be l + 1 agents in the chain i.e.the length of the chain is l. (distance

between t and the farthest agent ∈ C 0).

Lemma 2 If, for any isolated t, s∗t = j < t, then j = visot (gt−1) i.e. if an isolated

agent t is linking to some agent j who has already moved, then he will choose the

myopic payoff maximiser.

Proof: See Appendix A.
The intuition is that when any agent t chooses an agent j < t, he is making j

more central and hence making himself non-central at the same time. This implies

that the incentive to be central if not at work. This implies a lower future payoff and

it is best for agent to maximise his myopic payoff by connecting to visot .

Lemma 3 If Wl,Wl0 ∈ gt−1, l > l0, then agent t if isolated will not choose j ∈Wl0.

Proof: This obtains directly from comparing the payoffs of an isolated agent.

Suppose, t is isolated and s∗t = j < t. Then from Lemma 2, we know that j = visot .

His myopic payoff from connecting to an agent in a Wl is

πt(st = j ∈Wl) = [1 + 2p+ 2p
2 + ...+ 2p

l−1
2 ]

Since the payoff is increasing in the size of the wheel l, the lemma follows.
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Lemma 4 If agents {k + 1, k + 2, ..., k + l1} form a wheel, then agents {k + l1 +

1, ...., k + l1 + l2} will not form a wheel if l1 > l2.

Lemma 4 says that at any time t, if Wl1 ∈ gt−1, then agents j ≥ t will not form a

wheel of length l2 < l1.

Proof: Suppose not. Let l1 ≥ l2 + 1 and let agents {k + 1, k + 2, ..., k + l1} form
Wl1 and agents {k+ l1+1, ...., k+ l1+ l2} formWl2 . Also let x be the first agent such

that s∗x = j < x. By Lemma 3, we know that s∗x = j ∈ gx−1\Wl2 . This implies that

πj∈Wl2
(s∗j = j + 1) = πmyo

j + πfj = 2 + 2p+ 2p
2 + ...+ 2p

l2−3
2 + [0]

Now consider agent k+ l1+ l2. This agent is connected to a chain {k+ l1+1, ...}.
He can link to k + l1 + 1 and form Wl2 or link to some j ∈ Wl1. His payoff from

s∗ = j ∈Wl1 is

πk+l1+l2(s
∗ = j ∈Wl1) = 1 + p+ p2 + ...+ pl2−2 + 1 + 2p+ 2p2 + ...+ 2p

l1−1
2 + πf

≥ p+ p2 + ...+ pl2−2 + 2 + 2p+ 2p2 + ...+ 2p
l1−3
2 + 2p

l1−1
2

> 2 + 2p+ 2p2 + .........+ 2p
l1−3
2 + 2p

l1−1
2

> 2 + 2p+ 2p2 + ...+ 2p
l1−3
2

> 2 + 2p+ 2p2 + ...+ 2p
l2−3
2 = πj∈Wl2

(s∗j = j + 1)

Hence, k + l1 + l2 deviates to link to some j ∈Wl1 .

Lemma 5 For any t, @Wl1 ,Wl2 ∈ gt with l1 = l2.

Proof : Suppose not. Say ∃2 wheels of length y and no wheel of length of length

l > y. Suppose, wlog, given a gt−1 agents t + 1, ....t + 2y formed the two wheels

and agents j ≥ t + 2y + 1 chooses some agent j0 < j. By Lemma 3, we know agent

j = t + 2y + 1 is indifferent between agents t + 1, ...t + 2y. Therefore the payoff of

t ∈Wy is

πt∈Wy(.) = 2 + 2p+ ...+ 2p
y−3
2 +

N − t− 2y
2y

[1 + 2p+ ...+ 2p
y−1
2 ]
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Now, given gt−1, if the two wheels merge and forms W2y, then j = t + 2y + 1

choooses t ∈W2y. In this case the payoff of agent t is

πt∈W2y(.) = 2 + 2p+ ...+ 2p
2y−3
2 +

N − t− 2y
2y

[1 + 2p+ ...+ 2p
2y−1
2 ]

> πt∈Wy

Hence in equilibrium, all agents belonging to the two wheels of size y are better

off by offering to the next agent and accepting offers to form a wheel of size 2y.

3.1 Special Cases

We first consider extreme values of the decay factor p and characterize the equilibrium

networks in those cases.

Proposition 1 There exists a p∗ < 1 such that for p ∈ [p∗, 1],the unique subgame-
perfect equilibrium structure is a complete star.

Proof. See Appendix A.
Proposition 1 characterises the subgame perfect equilibrium network structure for

p high enough. When p is very high, the loss in benefit from an indirect source is not

too much. In this case, the payoff from being a direct neighbour of the central agent

is not too different from that of the central agent himself. The gain in payoff and

hence, the incentive to become the central agent (i.e. centre) is not strong. It is still

true, though, that as long as p < 1 an agent would prefer to be the centre. But in

order to do so he has to compete with the agent before him and this might be risky.

Consider Example 1. Agent 3 could link to 4 making sure that some future agent,

say 5, will be indifferent between 1,2,3, and 4 but with probability 1/2, agent 3 is

isolated from N − 2 agents who form the star and 3 gets a much lower payoff. When
p ' 1 this loss is too high and hence 3 would prefer linking to 1 or 2 even though he
will be a peripheral node.

We use backward induction to show first, that given any graph at time t an isolated

agent would either abstain or choose some agent j < t who had already moved. This

implies that no agent starting from time 1 would choose to link to an agent who has

not moved yet. Hence agent 2 either abstains or links to 1. The same holds for agent
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3,4,5,....n. Also, an agent will abstain provided all agents before him have abstained

and the cost c is higher than their expected gain from not linking. This is so because

the payoff from being the centre of a star is higher than any other position. The

expected gain from abstaining will be positive only when there is positive probability

of being the centre of a star which obtains only when agent t is symmetric with all

agent k < t with respect to his links. If agent k < t have links, then an isolated agent

t has zero probability of being the centre of a star if he abstains. Hence, he would

not abstain and will choose some j < t.

The next proposition characterizes the equilibrium network structure for p low

enough.

Proposition 2 There exists a p∗∗ such that for p < p∗∗, the unique equilibrium net-

work structure is a wheel of length L < N with a local star where L = bN+1
2
c.

Proof. See Appendix A
The intuition for this result is that when p ≈ 0, the difference in payoffs from

being the centre and the peripheral node is very high. For a low p, each agent has the

incentive to compete with already connected agents and hence become the centre with

positive probability by forming a wheel. This incentive decreases for agents moving

later since the payoff from becoming the centre decreases. This is so because the

number of future entrants decreases. For p close to 0,however, even agent N − 1 has
such an incentive, provided the play reaches such a subgame. This subgame will not,

however, be reached on the equilibrium path. The proof of proposition 2 identifies

the condition under which agent N − 1 would have such an incentive. It goes on to
use Lemma 4 and 5 to argue that in equilibrium agent N/2 would link to 1 thereby

forming a wheel of length N/2.

Note that for p close to 1, we get a periphery sponsored or a mixed star with equal

probability. Even in the mixed star, only one link is sponsored by the centre. This

is consistent with Hojman and Szeidl (2004) who highlight periphery sponsorship as

a robust feature in models with decay. Goyal and Vega-Redondo (2007) refers to

this structure as the ‘hybrid cycle-star’. They present a simultaneous move model

of network formation without decay where agents compete for intermediation rents.

However, in equilibrium, the hybrid cycle-star is ruled out due to deviations by agents
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wanting lesser number of intermediaries and hence, more rent. This architecture for

p ' 0 is also interesting since it is similar to the hub-and-spoke architecture which is
observed in real-life networks of biotech firms.

3.2 General p

For general levels of decay, all the afore mentioned incentives will be at play and to

various degrees. Note that as p increases, the agents at the end of the play will have

less incentive to form a wheel since expected gain from being the centre decreases

as p increases. This in turn will increase the potential future payoff from being the

centre for the earlier players. This increase in incentives might result in some link

rejection at the beginning of the order since the rejector expects to form a smaller

wheel (hence probability of being centre higher) with larger number of agents as

spokes. This increase in such incentives has to be high enough to compensate for

the loss in myopic payoff from a smaller wheel. When p is high enough, however,

the number of agents at the end of play who do not have incentive to form a wheel

increases and in the limit as p→ 1, even agent 2 has no such incentive and the star

obtains as the equilibrium structure.

Note that the magnitude of the two opposing incentives of maximising current

payoff by connecting to the most connected agent and maximising future payoff for a

single agent depends on the value of p. It also depends on the history and the number

of agents.yet to move. Either one of the incentives might dominate for an arbitrary

value of p. The following example, however, shows that the equilibrium network is not

necessarily connected, i.e. agents might form disconnected groups. This is so because

an agent might have the incentive to reject a link in some subgame if it increases his

probability of being the centre. The rejection does not occur on the equilibrium path

since no agent would propose a link if it would be rejected.

Example 2 Possibility of two components in equilibrium.
Consider the equilibrium as depicted in figure 4. In equilibrium, 2 is rejecting 1’s

link and forming a W3 with 3 and 4 while agents 5-8 choose one agent in the wheel.

Now for this to be equilibrium p has to be such that no agent t has the incentive to

deviate given the graph at time t. Using backward induction, this translates into the

68



Figure 4: Two Components

following conditions:

(i) For t > 5,given gt−1, agent t does not deviate

(ii) Given g4, agent 5, 6, 7 does not form W3

(iii) Given g4, agent 5, 6, 7, 8 does not form W4.

(iv) If 2 accepts 1’s link and 1, 2, 3 forms W3, then either

a) 4, 5, 6 forms W3 or b) 4, 5, 6, 7 forms W4.

(v) 2 prefers W3 with 3,4 to W4 with 1,3,4.

Condition (i) is self-explanatory. Condition (iii) holds for all p since the last agent

8 will not complete the wheel. Lemma 4 implies that condition (ii) must hold since if

5,6,7 does form W3, then agent 4 will not close the first wheel but will propose to 5.

Now, by way of contradiction, suppose condition (iv) does not hold. In that case, if

1,2,3 form W3, future agents cannot form another competing wheel since some agent

before 8 will deviate. Since this implies that 2 shares the probability of being centre

with 2 others AND gets an extra agent (4) as a spoke, 2 is better off accepting 1’s

link. Condition (iv) (either one of (a) or (b) ) ensures no such deviation by 2. Even

if condition (iv) holds, agent 2 has yet another possible deviation of accepting 1’s

link and forming W4 with 1,3 and 4. Condition (v) says that such a deviation is not

profitable since 2 prefers rejecting 1’s link to form the smaller wheel (and have a 1
3

probability of being the centre instead of 1
4
).

The conditions imply bounds on p. The weakest necessary conditions on p are given

by:

(i) 0 < p < 1
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(ii) p > 1/4 or p > 1/22

(iii) 0 < p < 1

(iv).a) p < 1
13
; b) p(1 + p) < 1 and 14p− p2 < 1

(v) p+ 3p2 < 1

Any one condition of (ii) and (iv) along with (v) would qualify for equilibrium

conditions. It can be verified that any p ∈ [ 1
22
, 1
13
] satisfies (v). Hence the given

network is an equilibrium for all such p. Also note that given the mixing rule A1 and

the tie-breaking rule A2, there is a unique best response at any subgame which ensures

that equilibrium is unique for a given set of parameters. So, the given structure is the

unique equilibrium for N = 8, p ∈ [ 1
22
, 1
13
].

The conditions in Example 2, however, need not be satisfied for a N higher or

lower. For example, with p fixed at 0.3, the conditions do not hold for N = 20 or

N = 6 and this is not the equilibrium network. Also, it is instructive to see that the

equilibrium conditions for a network with 2 agents in the first component involves

different constraints. For example, let us consider a similar example but with N = 9

where agents 1 and 2 form the first component with the others forming the same

architecture as the 2nd component of example 1. In this case, the necessary and

sufficient conditions are p < 1
13
, p > 1

22
, 10p+15p2 < 1. In this case, for all p ∈ [ 1

22
, 1
13
]

and N = 9 the equilibrium is 1-2; 3-4-5 in a W3, 6-9 as spokes.

Proposition 3 Let there be M ≥ 1 components (C1, C2, ..., CM) in the equilibrium

structure, formed in that specific order. Let the number of agents in each component

be n1, n2, ..., nM respectively with
MP
y=1

nm = N. Then,

(P1) Each component Cm is a wheel with a local star Cm = Wm + Sm with

#Wm ≤ #Sm.
(P2) For m > m0, #Wm > nm0

P1 says that any equilibrium component must be a wheel with a local star with

the number of agents in the wheel weakly smaller than the number of spoke agents.

Note that the wheel size may be 1, which is a star. This obtains when p' 1, in

which case we get M = 1 with only 1 agent in the wheel. For p ' 0, M = 1 with
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#WM = N/2 = #SM . For M > 1, it must be the case that on some off-equilibrium

path some agent k would reject a link. This rejector would have some incentive to do

so only when in the subgame following a rejection ( and for a strategy that leads to

the equivalent graph) he has a positive probability of being chosen as the centre for

future agents. This will be the case only when the rejector k along with agents τ > k

form a wheel of some size d. Also, if the number of agents connecting as spoke agents

are smaller than number of agents in the wheel, the expected payoff of k is low. In

such a case, k could deviate to accept the link and form a wheel of the same size d

one period earlier.

The first step of proof of P1 is to show that the last component must be a wheel

with a local star (Lemma 6). Then using backward induction, it proceeds to show

that the second last component should also be a WS and so on (Lemma 7).

Lemma 6 Suppose there areM components in equilibrium. Let them be C1, C2, ...CM ,

formed in that specific order. The last component CM is a wheel with a local star.

Proof: The proof is by contradiction. If the last component is not a wheel with
star then it implies that the agent who started this component, say, t is not chosen

as the centre with a positive probability at any subgame following his move. Note

that if t is the agent who started the last component then his strategy is to link to

t+ 1. Lemma 6 shows that if t cannot be the centre with a positive probability then

the same is true for any isolated agent moving in any subsequent period. Hence the

best strategy for such an agent j > t is not to form a new component. This in turn

would imply that some agent k > t who belong to the chain starting from t would

benefit from linking to t, thereby forming a wheel. Sunsequent agent would then link

to someone in the wheel. (See Appendix A for a formal proof).

Lemma 7 Suppose there areM > 1 components in equilibrium. Let them be C1, C2, ...CM ,

formed in that specific order with CM = WS. Then CM−1 is also a wheel with local

star.

The proof of Lemma 7 is very similar to that of Lemma 6.

P2 says that the number of agents forming the wheel of each component must be

greater than the total number of agents in the previous component. This is due to
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Lemma 2 and 3. By P1, each components is a wheel with a star. Now, in order for

this to form, the first spoke agent in Cm, say km1, must find it profitable to connect

to an agent k0 ∈ Wm and not to the centre of Cm−1, say k00. Now if Wj ⊂ Cj, then

there are agents in Cj connected as spoke agents, which implies that distance to these

spoke agents through k00 is the smallest possible i.e. 1. If km1 connects to k0 ∈ Wm,

then the number of agents in Wm has to be large enough so that it gives a higher

payoff than the payoff from k00. (If not, then the first spoke agent connecting to Wm

will deviate to connecting to the central agent of Cm−1 since the myopic payoff in

that case is higher). A necessary condition for that is nj < #Wm. Note that lower

the p, the greater the required difference between #Wm and nj. In the extreme case

of p ' 0, the difference is so high that two components are not possible.

Corollary: Each subsequent components are increasing in size; i.e.if m > m0,

then nm > nm0

P1 impliesWm ≤ nm. Combining with P2, we get nm0 < #Wm ≤ nm, form0 < m.

4 Welfare and Inequality

In this section we focus on the efficient network architectures for different values of

the decay factor. An efficient network architecture is defined as one that maximises

the sum of payoffs of all agents. Note that when there is decay i.e.p < 1, increasing

distances between agent reduce their payoffs. Hence, the efficient structure should

minimize the distances between agents.

Proposition 4 The efficient network architecture is (i) a star if p > 2−c
2
and (ii) a

wheel of length 3 with a local star if p < 2−c
2
.

Proof. (See Appendix A).
Note that when c < 1, all agents must be connected (in a single component) in an

efficient network since the net benefit from connecting an isolated agent to some other

agent is always positive. Now, N agents have to be connected with at least N − 1
links, Also, given the capacity, the maximum number of total links in a network with

N agents is N where all agents initiate a link. Note that a single component with N
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agents connected with N links must have theWS architecture. The proof proceeds to

show that the aggregate payoff in aWSk architecture is higher than that in a WSk+1

architecture for k ≥ 3 which implies that among networks with N links, the efficient

one is WS3. This involves a cost of Nc. On the other hand, among networks with

N − 1 links, the star network minimizes distances between agents through the centre
who has the most links. Any redistribution of links from the center to a peripheral

nodes would only increase the distances between all the agents in the network and

hence lower aggregate payoff. Note that the star involves a total cost of (N −1)c and
is the efficient one among networks with N − 1 links. Also note that the condition
p < 2−c

2
can be rewritten as c < 2−2p. The two expressions represent the gain (2−2p)

and the cost c of an additional link between any two peripheral nodes. If p < 2−c
2
,

WS3 obtains as the efficient structure since it does not increase the distances between

agents (as compared to a star) but gives a positive net benefit to the two peripheral

agents connected by the N th link.

This also shows the tension between efficiency and the equilibrium. The conflict

disappears for p ' 1, particularly p > ep = Max{2−c
2
, p∗}, since the equilibrium is a

star which is also efficient. But for lower values of p, the equilibrium is inefficient

as seen from the equilibrium for p ' 0. The equilibrium might also be effcient for a

range of p below ep. This happens if there is a p < 2−c
2
, for which the equilibrium

structure is WS3. In general, the relationship between equilibrium efficiency and p is

non-monotonic.

Another issue that arises when thinking about welfare is that of inequality among

the agents in the network. The individual payoffs in a network depends both on

the structure and the decay factor. When the structure is a star, it is true that the

centre is asymmetric with all other players because of his direct links but the extreme

inequality in connections does not translate to an equivalent inequality in payoffs

because this architecture is formed when p is close to 1. In this case, the maximum

possible payoffs to the centre and a peripheral player are (N−1) and 1+(N−2)p−c
respectively. Hence the highest possible inequality, measured by the difference, is of

the order of the cost level c. For small p however, the inequality is high. Consider the

example with N = 8 and p ' 0. The equilibrium network, in this case, is a wheel of

length 4 with agents 5-8 as spoke agents. In this case, the highest payoff is obtained
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by the centre of the local star and is equal to 6 + p while the the spoke agent get

the least payoff of 1 + 5p + p2. For p ' 0, the maximum difference is of the order

of 5 − ε which is far greater than c. As with the connectedness of the network, the

inequality in payoffs is not monotonic in p. Using Example 2, we see that the least

payoff, in this case, is zero (for the isolated agent) and the maximum payoff is 6− c

obtained by agent 4. Hence the inequality in this case is greater than the case of

p ' 0. Note that the first agent is worst off in this example followed by the end

agents. The middle-ranked agents get the most payoff. Hence, the value of decay

not only determines the network structure but also the relative payoff advantages of

agents moving at different stages of the game.

5 Heterogeneous Agents

In most networks agents are not likely to be symmetric and identical. Individuals

differ in their ability to provide favours as well as in the time they spend on social

relationships. In this section we consider the first type of heterogeneity by making

the benefit an agent provides to the network, individual-specific. In particular, we

consider two types of agents according to whether they provide a high benefit θh or

a low one θl. The high (low) type could represent those agents in an ethnic network

who are (not so) well-placed in the labour market. Examples include a manager of a

local bank who can help in obtaining credit and a labourer who can lend a hand in

farm-work for a friend. Introducing heterogeneity, therefore, brings forth the issue of

whether to connect to an isolated high type agent or a well-connected low type agent.

This of course, would depend on the difference θh − θl. Also, the proportion of high

types is likely to matter since low types may not be succeed to become well-connected

in presence of a high proportion of θh-agents. In this section, we analyse the same

game when there is a single high type in the population. We also assume θl = 1 < θh.

Proposition 5 With one θh in the population and p ' 1, the equilibrium network

structure is a complete star or a WS3 with the θh as the centre if θh > 1 + p.

Proof. See Appendix B.
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The intuition for this result is similar to that of Proposition 1 with, the incentive

to compete to become the central agent, even lower in this case due to the presence

of θh. This is so firstly because a direct connection to the high type is worth more

than to a low type or an indirect connection to θh. Moreover, in presence of a high

type, it is harder for a low type to compete, since, given the value of θh, the relative

number of direct links a low type needs to become the central agent at any stage is

very large. The two effects work in lowering the incentive to compete and for p ' 1,
the incentive to directly connect to θh dominates and a θhcentred star obtains. The

proof, however, needs to consider all possible subgames that can arise and is lengthy.

Readers can see Appendix B for the detailed analysis of relevant subgames.

When the rate of decay is very high, however, the network is starkly different

from the one in the homogeneous case. In fact, the equilibrium architecture is again,

a complete star with θh as the centre. The intuition is quite simple. When there is

a very high level of decay, a high type agent, even if isolated, is valued more than

a highly connected low type since indirect connections give a benefit close to zero.

Agent N would always connect to θh even when the latter is isolated and low types

proposing in earlier stages know they would not be chosen as centres. Hence, earlier

agents maximise their myopic payoffs by connecting to the high type agent resulting

in a θh − centered star.

Proposition 6 When p < ep, the equilibrium network is a complete θh−centered star.
For intermediate levels of the decay factor, it is possible for low types to form

a group to compete with the high type agent who is kept isolated. This incentive

depends on the values of p and θh.Intuitively, the value of θh should not be too high

for a low type to compete. A not-so-obvious observation is that low types might not

succeed to keep the high type isolated even when θh is too low. This is because when

θh is very low, some connected low type agent l might deviate to connect to θh and

become the central agent himself. This cannot happen with a high θh since in the

case of a deviation, it is the high type who becomes the central agent. For example,

with N = 8, and p = 0.2 if θh ∈ [1.24, 1.866], then the equilibrium network is such

that the high ability agent θh remains isolated with the seven low type forming a

separate component similar to Example 2. If θh is higher than 1.866 the opportunity
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cost of keeping him isolated is too high for some agent and he deviates. This effect

unravels and all agents connect to θh. Surprisingly, θh cannot remain isolated even

when θh is lower than 1.24. This is because at the subgame where 2 connects to 3 and

3 to 4, say, agent 4 will have the incentive to link to θh, because in that case, agent 5

onwards would link to agent 4! We need θh to be low for a low type agent to be the

centre in the presence of a connected high type. Hence, when θh is too low, agent 4

would deviate and hence agent 2 will too.

6 Robustness

6.1 Random Proposers

One restrictive feature of our model is the specific order of moves of players. In

particular the fact that period t’s responder becomes next period’s proposer does have

some implications on the equilibrium architecture. This order reduces the possible

types of histories that agent t faces at any stage t and simplifies the analysis for

p ' 1 and p ' 0. It is also responsible for possible rejection by a responder in a

subgame (leading to 2 components in equilibrium) since the order gives some power

to the responder by making him the proposer of the in the next stage. If the order

of proposers is made completely random at each stage, then for p ' 1 however, our
result will not change and a complete star network would form with either the 1st

or 2nd mover as the centre since it is still the case that the incentive to become the

centre is very small for each agent.

Proposition 7 With the order of proposers completely random in each period, the

equilibrium network is a complete star for p ' 1.

Proof. The proof is similar to the proof of proposition 1. The difference is that the
payoff functions in this case are expected payoffs, the expectation taken with respect

to the random order. The payoffs in proposition 1 are valid for a unique realisation of

the order which chooses the responder of a period as the next proposer. For all other

realisations of draws for proposers each period, the payoff functions are modified but

the inequalities still hold. We will point out the differences in the payoffs and show

that the inequalities hold in each case. See Appendix B for the details.
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Figure 5: Random proposers, p ' 0

The difficulty with random proposers arises in analysing the case for lower p. For

p ' 0, the order considered in the model facilitates formation of the wheel since

there is no randomness in the future play at any stage. With random proposers, the

responder of stage t might not be the proposer at t + 1 in which case the wheel of

size N/2 might not be formed. We have an example with 8 agents which shows that

when p is very low, then with random proposers, the outcome is not deterministic.

With positive probability the architecture could be any of WSN/2 and WSk>N/2. For

example, it could be as in Fig 5 with positive probability. From Fig 5, notice that 2

proposed to an agent who accepted the link but did not get the chance to propose

in period 3. Some other isolated agent was chosen as the proposer and since the

incentive to form a wheel dominates for p ' 0, agent 3 linked to 1 and 4 linked to 3
and so on. The agent 2 proposed to was chosen as the proposer in period 6 and she

closed the wheel so that agents 7 and 8 are spoke agents. The architecture could also

not have a wheel if an agent connected in the chain gets to propose only in the last

period. For a general p, the order of random proposers would take away power from

the responder since he might be chosen to propose only at the end of play. In this

case, we might not see rejections in any subgame and a single equilibrium component

unlike example 1. See Appendix B for the details of the example (Example 4).

6.2 Increased Capacity

A second feature of our model is the capacity constraint, which by itself is reasonable

in most social environments. For example, consider a community of agents of the
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same ethnic group where agents participate in the formal labour market as well as

in their ethnic network. They earn a market wage and get some non-market benefits

from their ethnic network. The benefits from their network could be information

about better job prospects, a favour done by a friend or simply dinner invitations

from neighbours. In order to form friends, however, a person has to put effort in

terms of time or money. Given the agent’s participation in the labour market, he

probably would not want to spend too much time on such effort and hence have a

capacity on the number of network links he himself initiates. Of course, different

agents might have different opportunity costs and hence invest different amounts in

social networking. This heterogeneity in capacity might be potentially related to

heterogeneities in agents’ abilities. Agents could be of two types as in section 5 and

a high(low) type agent with a well placed job could earn more(less) in the labour

market and also provide higher(lower) benefits to his friends in the network. In the

basic model, the capacity is a single link, which is albeit, an extreme one. This

restriction, though not realistic, does allow us to get clear patterns and architectures

for some decay factors. The extreme level of constraint is particularly important to

reinforce the strategic concerns when agents are non-myopic. With an increase in

capacity agents still face the same tradeoff but the conflict between the current and

the future reduces. For example, if we remove the constraint altogether i.e. agents

can initiate any number of links, then for c < 1 the complete network obtains in

equilibrium with the earlier agents having the advantage of some level of free-riding.

We present here an example which shows how the network structure is modified when

the capacity is increased to two and p is close to 0.

Example 3 Let N = 10 and p ' 0. Let the capacity be two links, each at a cost c.
Suppose the graph at the end of t = 4, g4 is as depicted in Fig 6. Denote the structure

by GW4 (a generalised wheel). Hence agents 1-4 are symmetric with 3 direct links

each. Since p is close to 0, we know that agents 5-9 have the incentive to compete

with 1-4 in order to be chosen by the last agent 10. First note that we cannot have

a component of 5 agents where all five are symmetric. Hence if agents following 4

want to compete they can do so only by forming another component exactly like g4.

Suppose agents 5-7 have such an incentive and hence propose links such that the graph

is g7 in Fig 6. Agent 8, in this case, can propose to 5 and 6 to form another GW4 or
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Figure 6: Smaller ‘hub’ for p ' 0

link to any two agents from among 1,2,3,4. The payoff to 8 from the former choice is

3− 2c+ 2
8
(1 + 3p). To obtain the payoff of 8 from linking to1 and 4 (say) we need to

know the equilibrium outcome following such a strategy. If 8 links to 1 and 4, then it

can be verified that for the isolated agent 9 the strategy of linking to 8 and either one

of 1 and 4.strictly dominates all other strategies. Hence, agent 8 is definitely chosen

by 9 and 10. This implies that the payoff to 8 from linking to 1 and 4 is 5 + 4p− 2c
which is strictly greater than 3−2c+ 2

8
(1+3p). Hence agent 8 facing g7 will not form

a GW4. This implies that 5-8 cannot compete and form another GW4 and by backward

induction, agent 7,6,5 will deviate and choose two of 1„2,3,4 at the state g4. Hence,

agents 1-4 form GW4 and agents 5-10 connect to 2 of the first four agents as centres

and themselves remain peripheral. So, when p ' 0, an increased capacity results in

a configuration with a smaller and denser ‘hub’ with higher spokes as compared to a

capacity of one.

The network structure for p close to 1 is easier to characterize. When decay is

low, then incentive to become central is very weak and the proof of Proposition 1

goes through in exactly the same way. Any isolated agent in this case would want

to maximise his myopic payoff and connect to the most central agent of the current

stage. This would lead to the formation of a generalised star with two centres. The
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Figure 7: A star with two centres

network is depicted in Fig 7. The initial agents would enjoy some level of free-rising

in the sense of not using full capacity. For example, with N = 10 and p ' 1, agent 1
would abstain followed by agent 2 who would propose only one link to 1. At t = 3,

agent 3 would propose to both 1 and 2 and hence at t = 4, agents 1,2 and 3 would

be symmetric. The isolated agent 4 would choose two of these three agents since the

incentive to compete is weak. So would all other agents resulting in the generalised

star.

7 Discussion and Conclusion

This paper focuses on the network architectures that arise in equilibrium when agents

are farsighted and capacity constrained and there are decreasing returns (represented

by the decay factor p). Our first result of a mixed or periphery-sponsored star for p

close to 1 is consistent with the results of Bala and Goyal (2000), Galeotti et al. (2006)

and Kannan et al (2007) who show the emergence of mixed and periphery sponsored

stars in models with no or a small amount of decay. Most of the work in the literature

do not have a characterisation for a general p with the possible exception of Hojman

and Szeidl (2004) who highlight the emergence of a periphery-sponsored star in a one-

shot game whenever there is decay. The result of a wheel with local star for p close

to 0 has some similarity to the flower networks in the one-way flow model with decay
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in BG (2000). Galeotti (2006) also finds a wheel with a (multiple) centre-sponsored

star(s) as the equilibrium network for some parameters in a one-way flow model with

heterogeneous values and costs and without decay. The higher value agents belong to

the wheel and become the centres of the stars. The formation of wheels is similar to

Watts (2001b) who proposes a dynamic model of network formation and shows that

circle networks may be formed by a strategy similar to trigger strategy. For a general

level of p we show that there might be two components in equilibrium. The reason for

this is that an agent wants a positive probability of being the centre and also share

this probability with the least number of agents possible. This incentive to share with

less agents might cause a rejection of a link in some (off-equilibrium) subgame. Watts

(2001a) also points out in a discussion that one might expect rejections in some off-

equilibrium path because of the forward looking behaviour of agents. This rejection

decreases the probability of the formation of a star when agents are not myopic in her

model since the payoff from being a central agent is lower than being non-central and

hence no agent wants to be the centre. This, however, is just a conjecture in Watts

(2001a). The other papers abstain from this issue of consent altogether by looking at

one-shot games of network formation. Another point to note is that, in addition to a

standard disadvantage from being too late in the order, there is also the possibility

of disadvantages of being too early, as seen in Example 2.

In conclusion, we stress that the types of networks that form under different

economic and social environments is important since the exact structure of these net-

works significantly affect economic outcomes. We find that the shapes of equilibrium

networks depend crucially on the rate of decay in the payoff function. With a low

decay a complete star network is formed while with high levels of decay the equilib-

rium architecture involves a wheel with a local star. This incidentally resembles the

hub-and-spoke architecture observed in studies of R&D firms and social groups. For

intermediate levels of decay, we have an example where some agents might be isolated

from a bigger component, which can explain segregation among ex-ante homogeneous

agents into different groups.

A promising area of further work is to analyse the effect of a changing marginal

cost of link formation when agents have a capacity of r links, 1 < r < N−1. One could
also analyse a form of heterogeneity encompassing both one’s value in the network and
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one’s capacity. For example, suppose an agent is of some particular ability θ which is

also the value of benefits he provides to the network. One situation could be that a

high θ agent has a higher wage in the labour market and hence a higher opportunity

cost of investing in social links. This implies that the optimal level of social links

that a high type intiates would be less than a low type. Hence the heterogeneity

in innate ability determines both one’s value in the network and his capacity which

are, in this case, negatively related. The other possibility is that a high type agent is

overall more efficient in the market and hence has more time available for his social

network which implies a positive correlation between one’s level of human capital and

his social investment. This would be useful to explore what kind of networks emerge

with both types of heterogeneity among agents. It could possibly throw some light on

why agents in different societies with different norms and cohesion invest differently

in their social connections.
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Appendix A: Proofs for section 3
Lemma 2 If, for any isolated t, s∗t = j∗ < t, then j = visot (gt−1) i.e. if an isolated

agent t is linking to some agent j∗ who has already moved, then he will choose the

myopic payoff maximiser.

Proof: Note that the statement is true for agentN. SinceN is the last agent, if iso-

lated he chooses an agent j = argmaxj 6=N Π(j∗, gN−1) = argmaxj 6=N πmyo(j, gN−1) =

visoN (gN−1). Suppose that the statement is true for all agent k > t.

Also assume that it is not true for agent t and s∗t = j∗ < t, j∗ 6= visot (gt−1). This im-

plies thatΠt(j
∗, gt−1) > Πt(v

iso
t , gt−1).But we know that by definition, π

myo
t (j∗, gt−1) <

πmyo
t (visot , gt−1). Therefore, it must be the case that π

f
t (j

∗, gt−1) > πft (v
iso
t , gt−1) ≥ 0.

Also since t is isolated, we know that from t+ 1 onwards he is not the myopic payoff

maximiser and hence cannot be the centre. Hence, πft (j
∗, gt−1) ≤ xp, where x is the

number of future agents who link to this component. Note that since, πft (j
∗, gt−1) > 0,

there must be some agent j > t who connects to the component gt−1. Suppose, x such

future agents connects to j. Hence, πft (j
∗, gt−1) = xp. Take k to be the first of such

future agents. Since k connects to j∗ < k it must be that Π(j∗) > Π(j0 > k) and

j∗ = visok . Now, suppose agent t links to visot (gt−1) instead. Then the additional link

to visot (gt−1) ensures that v
iso
t (gt−1) = visot+1(gt). In particular consider agent k. Since

he is the first agent to connect to the component gt−1, and he connects to the myopic

payoff maximiser in the component, k must connect to visot (gt−1) = visot+1(gt). Hence

the future payoff to agent t, πft (v
iso
t , gt−1) is xp which is not less than πft (j

∗, gt−1).

Hence, Πt(j
∗, gt−1) > Πt(v

iso
t , gt−1) cannot hold.

Hence the statement is also true for agent t.

Proposition 1 There exists a p∗ such that for p ∈ [p∗, 1],the unique subgame-
perfect equilibrium structure is a (complete or incomplete) star.

Proof: Step 1: We claim that any agent t > 1, if isolated chooses visot .

This statement is obviously true for t = N.

Suppose that the statement is true for agent τ ∈ {k + 1, k + 2, ..., N}. We will
prove it true for agent τ = k.

Agent k has two options:

i) sk = k + 1

ii) sk = j < k
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Note that if sk = j < k, then sk = visok since in that case the myopic payoff πmyo
k is

maximised and visok = visoτ , τ > k and hence all future agent choose visok . This implies

that the future payoff is p(N − k) which is the maximum possible future payoff given

that k is isolated. (i.e. if k chooses some j < k, then k 6= visok+1 and πf ≤ (N − k)p).

We can write the payoff from (ii) explicitly as

πk(v
iso
k ) = Vk−1 + p(N − k)

where Vk−1 = 1 + [a] denotes the maximum total payoff from agents 1, 2, .., k − 1
(i.e. through visok ).

Now the payoff from (i) depends on the equilibrium strategy of the players starting

this subgame. Denote the subgame by Gk.

Case I: On the equilibrium path, let j0 be defined as the first player such that

sjo = j < k; j0 ∈ {k + 1, k + 2, ..., N}9

Hence, j0 + 1 is isolated and chooses visoj0+1 6= k. In this case

πk(k + 1) = 1 + p+ p2 + ...+ pj0−k−1 + pj0−kVk−1 + (N − j0)p
d0

= 1 + p+ p2 + ...+ pj0−k−1 + pj0−k(1 + [a]) + (N − j0)p
d0

= 1 + (p+ p2 + ...+ pj0−k−1 + pj0−k) + pj0−k[a] + (N − j0)p
d0

< 1 + (j0 − k)p+ [a] + (N − j0)p = πk(v
iso
k )

where d0 = d(visoj0+1, k, g).

QED

Case II: As before, define j1 as the first player who chooses some agent j0, k < j0

< j1−1 on the equilibrium path. Since, j0 6= k, k 6= visoj1+1
. The maximum payoff for k

is when all agents {j1+1, ..., N} connect to some agent j00 such that d(k, j00) = d0 = 1.

In this case,

πk(k + 1) = 1 + r1p+ r2p
2 + ...+ rqp

q

where 1 + r1 + r2 + ...+ rq = N − k

9j0 exists since agent N would link to some player j < N.
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Now, it is immediate that

πk(k + 1) = 1 + r1p+ r2p
2 + ...+ rqp

q

≤ 1 + (N − k − 1)p
< 1 + (N − k)p

≤ 1 + [a] + (N − k)p

= πk(v
iso
k )

Case III : Suppose agent k + l chooses k, hence forming a wheel. The best

situation for k is when the probability of being chosen by agents τ > k+ l is positive.

Let us focus on that situation. In equilibrium the wheel contains (l +1) agents and

N − k − l agents choose j ∈Wl randomly.

Then

πk(k + 1) = [2 + 2p+ .....
l

2
terms]+

N − k − l

l + 1
(1 + p+ p+ p2 + p2 + .....l + 1 terms)

Recall that

πk(v
iso
k ) = 1 + [a] + p(N − k)

Now, both payoffs are monotone increasing in p.

For p = 0, πk(k + 1) > πk(v
iso
k )

For p = 1, πk(k + 1) = N − k < 1 + [a]|p=1 +N − k = πk(v
iso
k )

Hence there exists a p∗k < 1, such that for p > p∗k, πk(v
iso
k ) > πk(k + 1) and hence

s∗k = visok .

Since this is for a general k, we can conclude that for p > p∗ =Max{p∗N , p∗N−1, ...., p∗2},
any isolated agent t > 1 would connect to visot .

Step 2 : We argue that agent 1 would abstain so that 2 is isolated and 2 chooses
1 by Step 1.

Given a p high enough, 1 knows that if 1 abstains then 2 is isolated and chooses

1. In that subgame, 3 is isolated and chooses one of {1, 2}. Hence the expected payoff

89



of 1 from the strategy φ is

Eπ1(φ) =
1

2
[N − 1 + 1 + (N − 1)p]

If 1 chooses 2, then following that subgame, any equilibrium network involves one

of the following

(i) 2 abstains.

(ii) 2 chooses 3.

In case (i), 2 and 1 are symmetric and hence equal probability of being chosen as

the centre (decided by the choice of 3). The payoff of 1 in this case if

1

2
[N − 1 + 1 + (N − 1)p]− c = Eπ1(φ)− c

In case (ii), 3 could abstain, choose 1 or choose 4. If 3 abstains then 2 becomes the

most central agent and 1 the peripheral node for sure. Agent 1’s payoff is therefore

1+(N−1)p−c which is less than Eπ1(φ). If 3 chooses 1, then 4 is indifferent between
1, 2 and 3. In this case 1’s probability of being centre is lower at 1/3 and thus gets a

lower payoff, that too at a cost. The same argument can be applied when 3 links to

4.

Hence, 1’s payoff by the strategy s1(2) < s1(φ). So, 1 abstains and 2 links to 1

followed by agent 3 who chooses one of 1 or 2 randomly.

Proposition 2: There exists a p∗∗ such that for p ≤ p∗∗, the unique equilibrium

network structure is a wheel of length L < N with a local star. Also, L = N/2 or

(N + 1)/2 if N is even or odd respectively.

Proof: Consider a subgame where agent N−1 is connected and hence by Lemma
1 belong to a chain of length l denoted by Chl. Suppose there is another component

C 00 with C 00 ∩ Chl = φ. Let the maximum value of C 00 to any agent connecting to

C 00 be denoted by V (C 00). This will depend on the number of agents in C 00 and its

architecture.In general it is of the form r1p+ r2p
2+ ...+ rqp

q where r1+ r2+ ...+ rq =

#C 00.

We know by Lemma 4 and 5 that if Wl0 ∈ gN−l−1, l
0 > l, then N − 1 will not

choose to form a wheel since probability of being chosen by N is 0. Now say l0 ≤ l.
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Hence we focus on subgames such that, if sN−1 = N − l,i.e. N − 1 forms a Wl, then

s∗N = j ∈ Wl. Hence, N − 1 might form the wheel for the precise reason that N will

link to N − 1 with positive probability.
Now, among this type of subgames N − 1 has the following options:
i) s = N − l(wheel)

ii) s = j 6∈ {N,N − l}
iii) s = N

Step 1: We rule out strategy (iii) for p low enough.

Suppose, sN−1 = N . In the subgame following sN−1 = N, agent N has 2 options

a) sN = j ∈ Cl

b) sN = j ∈ C 00

Note that if N chooses j ∈ Cl, he will choose j=argmaxj∈Cl π
myo
N = j∗. Similarly,

b) implies j = j∗∗ ∈ C 00.

Now, if (a) Â (b)⇒ πN(a) > πN(b) i.e.

πN(a) = πN(j
∗) = 2 + 2p+ ...+ 2p

l+1
3 + [p+ p2 + ...+ p

l+1
3 ] (@)

> πN(b) = [1 + p+ p2 + ...+ pl−1] + V (C 00)

In this case,

πN−1(iii) = 2 + 2p+ ...+ 2p
l+1
3 + [p2 + p3 + ...+ p

l+4
3 ]

Suppose N − 1 deviates to sN−1 = j∗. Now in this (deviation) subgame, say, gd,

N is isolated and can choose between j∗ and j∗∗.

It is simple to verify that πN(j∗, gd) > πN(j
∗∗, gd) given @.

[πN(j∗, gd) = 1 + [p+ p2 + ...+ p
l+1
3 ] + [2p+ 2p2 + ...+ 2p

l+1
3
−1 + p

l+1
3 ]

= 2 + 2p+ ...+ 2p
l+1
3 + [p+ p2 + ...+ p

l+1
3 ]− 1− p

l+1
3

> [1 + p+ p2 + ...+ pl−1] + V (C 00)− 1− p
l+1
3

= V (C 00) + p− p
l+1
3 + [p2 + ...+ pl−1]

> V (C 00) = πN(j
∗∗, gd)]
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Therefore

πN−1(j
∗) = [2 + 2p+ ...+ 2p

l+1
3
−1 + p

l+1
3 ] + [p+ p2 + ...+ p

l+1
3 ] + πf

= [2 + 2p+ ...+ 2p
l+1
3 ]− p

l+1
3 + [p+ p2 + p3 + ...+ p

l+1
3 ] + p

> [2 + 2p+ ...+ 2p
l+1
3 ] + [p− p

l+1
3 ] + [p2 + p3 + ...+ p

l+4
3 ]

> 2 + 2p+ ...+ 2p
l+1
3 + [p2 + p3 + ...+ p

l+4
3 ]

= πN−1(iii)

Hence, N − 1 will deviate and sN−1 6= N

If (b) Â(a), then

πN−1(iii) = [1 + p+ p2 + ...+ pl−2] + 1 + pV (C 00) (P(iii))

If N − 1 chooses s = N − l, i.e.(i)

πN−1(i) = 2 + 2p+ ...+ 2p
l−2
2 +

1

l
[1 + 2p+ ...+ 2p

l
2 ] (P(i))

Now compare P(i) and P(iii).Both are monotone in p. At p = 1, P (iii) > P (i). At

p = 0, P (iii) < P (i).

So, there exists a epN−1 > 0, s.t.for p < epN−1, sN−1 = N is dominated by sN−1 =

N − l(sw).

Step 2: To rule out strategy (ii).

Consider the strategies s = sw and s = j < N − l.

The payoffs to N − 1 from the two strategies are:

πN−1(Wl) = 2 + 2p+ ...+ 2p
l−3
2 + 1

l
(1 + 2p+ 2p2 + ...+ 2p

l−1
2 )

πN−1(j < N − l) = 1 + p+ p2 + ...+ pl−2 + 1 + k1p+ k2p
2 + ...+ krp

r

πN−1(Wl) > πN−1(j < N − l)

⇔ 2 + 2p + ... + 2p
l−3
2 + 1

l
(1 + 2p + 2p2 + ... + 2p

l−1
2 ) > 1 + p + p2 + ... + pl−2 +

1 + k1p+ k2p
2 + ...+ krp

r

⇔ 2 + 2p + ... + 2p
l−3
2 + 1

l
(1 + 2p + 2p2 + ... + 2p

l−1
2 ) > 2 + p + p2 + ... + pl−2 +

k1p+ k2p
2 + ...+ krp

r

Both LHS and RHS are monotone in p.
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Also for p = 0, LHS > RHS

and for p = 1, RHS > l = LHS

Hence ∃a bpN−1 ∈ (0, 1), such that LHS > RHS for p < bpN−1 and agent N − 1
prefers to form the wheel.

Now consider s = sw and s = j0 ∈ intCl.

If sN−1 = j ∈ Cl and N chooses j ∈ V (C 00) in this subgame, the maximum N − 1
can get is

πN−1(j0) = 2 + 2p+ ...+ 2p
l
3
−1 + [p+ p2 + ...+ p

l
3 ]

which is < π(sw) for all p.

If N does not choose j ∈ V (C 00), then he chooses j0 and

πN−1(j0) = 2 + 2p+ ...+ 2p
l
3
−1 + [p+ p2 + ...+ p

l
3 ] + p

which is < π(sw) for any p < 1.

So, sN−1 = sw strictly dominates s = s0 6= sw for p < pN−1 =Min{bpN−1, epN−1}.10
For agent N − 2 similarly we can get the threshold value of p such that for any

p < bpN−2, agent N − 2 would prefer to form the wheel. It is fairly simple to show

that bpN−1 ≤ bpN−2 ≤ .. ≤ bpN−l.
Hence for p < bpN−1, an agent at time t, given graph gt−1 would prefer to form a

wheel if the probability of being chosen by any future agent is positive. This implies

that if agent t completes a wheel of length l and the number of remaining agents

N − t ≥ l + 2, then agents {t + 1, t + 2, ..., t + l + 1} would form a wheel of length

l + 1.Hence in equilibrium no agent t would complete Wl if N − t ≥ l + 2. Let the

number of remaining agents be xt for agent t. Hence if t forms aWl, the upper bound

for xt for getting any future payoff is l. Hence

πt(Wl) = 2 + 2p+ ...+ 2p
l−3
2 +

xt
l
(1 + 2p+ ...+ 2p

l−1
2 )

=
xt
l
+ [2 + 2p+ ...+ 2p

l−3
2 ]

pxt
l

≤ 1 + [2 + 2p+ ...+ 2p
l−3
2 ]p

10If the graph gN−1 is such that there are two distinct components C00, C 000 with C00 ∩ Chl =
φ,C000 ∩ Chl = φ, then the more valuable component would matter and the same proof applies.
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Note that the payoff πt(Wl) of any agent belonging to Wl is increasing in x but

may increase of decrease with l. It is in fact increasing in the ratio x
l
. The agents

want to maximise πt(Wl) with x
l
≤ 1. At the optimum, x

l
should be the maximum

i.e. 1. Fixing x
l
= 1, the payoff is increasing in l. This implies that agents would

want to form the largest wheel possible with x = l. This is possible only when N/2

agents form a wheel with N/2 agents remaining who link to an agent in W randomly

to form a local star.

(it is easy to see that no agent will reject any link to create 2 components. E.g.

say N=20. Consider the subgame where2 proposes to 3. 3 could accept and go on to

form a wheel of 10 with last 10 agents as spokes. or 3 could reject in order to form a

smaller wheel. But for p low enough, if 3-11 forms a wheel of 9, agents 12-20 become

spokes but the max value of x
l
= 1 which is same as accepting 2 and forming W10.

But rejecting 2, implies loss of payoff from 2 (and possibly 1) for any p > 0. Hence

agents will form the largest wheel possible (i.e. with x ≤ l) in equilibrium. It can

also be shown that W10 entails a higher payoff than W11, since in that case x
l
< 1

and the loss due to the fall in x
l
is higher than the gain due to the extra agent in the

wheel for any p > 0).

Proof of Proposition 3
Lemma 6 Suppose there areM components in equilibrium. Let them beC1, C2, ...CM ,

formed in that specific order. The last component CM is a wheel with a local star.

Proof: Suppose not. Let t be the first agent in CM . If CM is not a wheel with a

local star, it must be that agent t proposes to t+ 1 but no agent j > t links back to

t. Hence, the probability of t being centre is zero. Suppose that, in equilibrium agent

t + k links back to some agent t + r, r < k. We claim that this is not possible. We

use the following steps:

Step 1: FIrst we will argue that if agent t cannot be the centre in the subgame
following the link {t,t+1}, then an isolated agent j > t cannot be the centre in the

subgame following the strategy lj = j + 1.

Proof : Step 1 A: If agent t cannot be the centre in the subgame following
lt = t+ 1 it is because some agent t+ k prefers to link to t+ r(say), r > 0, r < k − 1
and agents t + k + 1 onwards link to t + r11. In this case, t + k is the neighbour of
11Let SG1 be the subgame faced by t+ k + 1 on this path.
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the centre with probability 1. Let this structure lead to a wheel of w + 1 agents and

a tail of d agents with x agents as spoke agents, x = N − (t+ k) Agent t+ k gets a

payoff of

[2 + 2p+ .....w terms] + [p+ p2 + ...dterms] + xp

Alternatively, t + k could have linked to t and the highest payoff t + k could have

achieved is when he had a positive probability of being centre of x future players.

The payoff in that case would be

2 + 2p+ ......(w + d)terms+
x

w + d
(1 + 2p+ 2p2 + ...(w + d+ 1)term)

If in equilibrium, t is not centre, then t+k chooses t+ r and hence it must be the

case that

[2 + 2p+ .....w terms] + [p+ p2 + ...d terms] + xp

> 2 + 2p+ ......(w + d)terms+
x

w + d
(1 + 2p+ 2p2 + ...(w + d+ 1)term)

or, x[
1

w + d
(1 + 2p+ 2p2 + ...(w + d+ 1)term)− p] (E)

< [2 + 2p+ .....w terms] + (1)

[p+ p2 + ...d terms] − [2 + 2p+ ......(w + d)terms]

In this equilibrium, the payoff of t+ k − 1 is

[2 + 2p+ .....w terms] + p{[p+ p2 + ...dterms] + xp}

Step 1B Now consider a deviation by t+ k − 1 to t+ r. In this case, the myopic

payoff is more and equal to

[2 + 2p+ .....w − 1terms] + [p+ p2 + ...dterms]

To figure out the future payoff of t+k− 1, we need to know what happens in this
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subgame.

Claim 1B: We claim that in this subgame where t + k is isolated, t + k would

link to t+ r.

Suppose not. Suppose the following holds:

t+ k links to t+ k + 1 and t+ k is the centre with some probbability.

First note that agents t to t+ k − 1 have formed a component with w + d agents

and agent t+ r is the central agent in this architecture.

Hence if agent t+k wants to be the centre with positive probability, the component

must be a wheel and it must be large enough to be more valuable than t+r. By Lemma

4 and 5, this implies that there has to be at least w + d+ 1 agents in the wheel. Let

there be w + d+ 1 agents in the wheel. Note that this implies that number of spoke

agents = N − (t+ k + w + d) = x0 < x = N − (t+ k).

Suppose, k00 is the agents closing the wheel with t+ k.The payoff to agent k00 by

forming a wheel is

πk00(t+ k)

= 2 + 2p+ ...(w + d)terms+
x0

w + d
(1 + 2p+ ....(w + d+ 1)terms)

If agent k00 links to t + k + r instead, then, all agents k00 + 1 onwards link to

t+ k + r12. Then payoff to k00 is

πk00(t+ r) = [2 + 2p+ ....w terms] + [p+ p2 + ...d terms] + x0p

Now it can be verified that πk00(t+ r) > πk00(t+ k) given the inequality E.

E is : (2)

x[
1

w + d
(1 + 2p+ 2p2 + ...(w + d+ 1)term)− p] < [2 + 2p+ .....w terms] +(3)

[p+ p2 + ...d terms]− [2 + 2p+ ......(w + d)terms] = RHS (4)

12This is so because, if facing SG1, the isolated agent t+k+1 links to the central agent t+r, then
in this subgame at time k00 > t + k + 1, the isolated agent k00 + 1 would link to the corresponding
central agent t+ k + r.

96



or,
1

w + d
(1 + 2p+ 2p2 + ...(w + d+ 1)term)− p <

1

x
[RHS]

<
1

x0
[RHS]

or, x0[
1

w + d
(1 + 2p+ 2p2 + ...(w + d+ 1)term)− p]

< RHS = [2 + 2p+ .....w terms] + [p+ p2 + ...d terms]

−[2 + 2p+ ......(w + d)terms]

Rearranging we get,

πk00(t+ k) = [2 + 2p+ ......(w + d)terms] + x0.
1

w + d
(1 + 2p+ 2p2 + ...(w + d+ 1)term)

< [2 + 2p+ .....w terms] + [p+ p2 + ...d terms] + x0p = πk00(t+ r)

Q.E.D.

Hence we showed that an isolated agent j > t cannot be the centre if t is not the

centre.

Step 2 : We show that if agent t+ k− 1 deviates to link to t+ r, then all agents

j ≥ t+ k links to t+ r.

Proof: If agent t+ k − 1 links to t+ r, then t+ k is isolated and hence, by step

1 cannot be the centre. If t + k is not the centre then, the best structure for him

is when he is the neighbour of the centre. If t + k links to t + k + 1, then the best

possible situation for t+k is if t+k+1 becomes the centre. Hence the payoff to t+k

is the payoff from (N − (t+ k)) agents and is of the form

1 + p(2 + 2p+ ...w0terms) + x00p

If, t+ k linked to t+ r, we know that n− (t+ k) agents would link to t+ r Hence

payoff of t+k from future agents is p(N−t−k). Also, t+k gets a direct payoff of 1 from
t+ r and indirect payoff from all agents in the set S = {t, t+1, ..., t+ k− 1}\{t+ r}.
Hence the total payoff is 1+p(N−t−k)+π(S) > 1+p(2+2p+ ...w0terms)+x00p.

Therefore, agent t+ k would link to t+ r in the subgame where t+ k− 1 deviated to
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t+ r.

Step 3: Agent t+ k − 1 would deviate to link to t+ r.

Proof: Given Steps 1 and 2, we can see that t+ k− 1 has a weakly higher payoff
if he deviates to t+ r. This is because, this strategy weakly reduces his distance from

agents t, t + 1, ..t + k − 2, t + k and strictly decreases his distance from all agents

j > t+ k.

Since this holds for any structure with a wheel and a tail (of any length), we claim

that the component CM has to be such that the 1st isolated agent who starts the

component .i.e. t has positive probability of being the centre. This would be the case

when CM is a wheel with a .local star.

Lemma 7 Suppose there are M > 1 components in equilibrium. Let them be

C1, C2, ...CM , formed in that specific order with CM = WS. Then CM−1 is also a

wheel with local star.

Proof: Note that M > 1 implies that the number of components in CM−1 is

positive. Let agents t0+1 to t0+n belong to CM−1 and agents t0+n+1 to N belong

to CM . Let t = t0 + n+ 1. Following steps similar to Lemma 6, suppose that CM−1 is

not a wheel with star, i.e. t0 has 0 probability of chosen as the centre. Let t0 + r0

be the agent who is the centre in this component. Let t0 + k0 − 1 be the agent who
chooses t0 + r0, r0 < k0 − 1 and agents t0 + k0 to t0 + n chooses t0 + r0. Since agent t

onwards belong to a different components it implies that t0 + n does not propose to

t. This must be due to either one of the following reason:

(i) Agent t0 + n would get a higher payoff from linking to t but t does not accept

such a link

(ii) Agent t0 + n gets a higher total payoff from linking to t0 + r0 (We will show

that (ii) cannot hold)

Suppose case (i) is true. In this case, agent t would reject links because it is not

optimal to do so, i.e. if t does accept then he has to form a bigger wheel which reduces

the probability of being the centre ( it must be the case that t cannot form a wheel

of same size one period earlier, because if he could then he would have done so in

order to get a higher number of spoke agents). Hence agent t0+n links to t0+r0. Now

suppose, as in step 2 of Lemma 6, agent t0+k0−2 deviates to t0+r0. In this subgame,
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agent t0+ k0− 1 is isolated and by the logic of Step 1 and 2 (lemma 6) we argue that
the optimal strategy of t0 + k0 − 1 is to link to t0 + r0.Hence such deviation would be

profitable for t0 + k0 − 2. Hence the component CM−1 has to be a wheel with local

star.

For case (ii), the logic is simpler. We will show that case (ii) is not possible.

Suppose, it is the case that agent t0 + n + 1 would accept if t0 + n did propose

to him. Hence agents t0 + n to N would form the last component which would be

a wheel with local star. Hence the expected payoffs of t0 + n and t0 + n + 1 are the

same. Now, denote the payoff of t0 + n from proposing to t0 + n + 1 and the latter

accepting as πt0+n(t0 + n+ 1|A). Since t0 + n chooses t0 + r0 in equilibrium, it implies

that π∗t0+n(t
0 + r0) ≥ πt0+n(t

0 + n + 1|A). Also, the fact that t0 + n + 1 accepts the

link implies that πt0+n+1 = πt0+n(t
0 + n + 1|A) ≥ πt0+n+1(reject t

0 + n and link to

t0 + n+ 2) = π∗t0+n+1.

We will show that π∗t0+n(t
0 + r0) ≥ πt0+n(t

0 + n+ 1|A) is not possible hence ruling
out the possibility of case (ii). To see this, let the component formed by agents t0 to

t0 + n− 1 be denoted as C 0 = CM−1\{t0 + n}. Also note that π∗t0+n(t0 + r0) be written

as the sum of payoff from t0 + r0 and that from all other agents when t0 + n connects

to t0 + r0. 0i.e. π∗t0+n(t
0 + r0) = 1 + π(C 0\{t0 + r0}). In the other case when t0+ n+ 1

accepts the offer of t0 + n, let the agents form a wheel with z + 1 agents (say) with a

local star with x spoke agents with x ≥ z. The payoff of t0 + n, πt0+n(t
0 + n+ 1|A) is

of the form

(2 + 2p+ 2p2 + ...z terms) +
x

z
(1 + 2p+ ...z + 1 terms)

= π(Wz) +
x

z
(1 + 2p+ ...z + 1 terms)

We know from Lemma 2and 3 that size of Wz has to be large enough such that

the first spoke agent of CM will connect to j ∈Wz and not t0 + r0. This implies that

1 + pπ(Wz) > 1 + π(C 0\{t0 + r0})
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But

πt0+n(t
0 + n+ 1|A) = π(Wz) +

x

z
(1 + 2p+ ...z + 1terms)

≥ π(Wz) + (1 + 2p+ ...z + 1terms), since x ≥ z

> 1 + π(Wz)

> 1 + pπ(Wz)

> 1 + π(C 0\{t0 + r0}) = π∗t0+n(t
0 + r0) Q.E.D.

Hence an isolated agent t0 + n will prefer belonging to the wheel with t0 + n+ 1,

is such a link is accepted. Hence, if agent t0+n links to t0+ r in equilibrium, it must

be because agent t0 + n+ 1 would reject a link from t0 + n as in case (i).

Proposition 4: The efficient network architecture is (i) a star if p > 2−c
2
and

(ii) a wheel of length 3 with a local star if p < 2−c
2
.

Proof: First note that due to the capacity constraints of agents, the maximum
number of links in any architecture is N. Also, for c < 1, each agent would prefer

forming a link unless it is redundant (e.g. linking to a person who has already made

the link with the agent).

Step 1: The first step of the proof is a direct result from Jackson and Wolinsky

(1996)((Proposition 1 section 3.1.1) which shows that for any c, p the star is the

efficient structure among all networks with N − 1 links. Step 2 of the proof shows
that WS3 is the efficient structure among all networks with N links.

Step 2 : We show that for any p, the aggregate payoff in a connected network with

a wheel of length k, k > 3 is less than that in a wheel of length 3 with a local star.

For this purpose, we compare the aggregate payoffs for a WSk and WSk+1 for any

k > 3. Let us assume that k is odd.

Note that the payoff to an agent belonging to the wheel from other agents in the

wheel is (2 + 2p+ 2p2 + ...+ 2p
k−3
2 ) = zw(say).

Also, the payoff to any spoke agent from the agents in the wheel is (1+2p+2p2+

...+ 2p
k−1
2 ) = zs(say).

The other part of the payoffs are those from the spoke agents. The payoff of each

spoke agent from other spoke agents is (N−k−1)p. The payoff of a wheel agent from
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a spoke agent varies according to his position in the wheel. The aggregate payoff of

the wheel agents (except the sentre) from the spoke agents can be calculated as

2[(N − k)p+ (N − k)p2 + ...+ (N − k)p
k−1
2 ] = 2z0

while the payoff of the centre from the spoke agents is simply (N − k). Hence the

aggregate payoff P (WSk) is

P (WSk) = k(2 + 2p+ 2p2 + ...+ 2p
k−3
2 )

+(N − k)(1 + 2p+ ...+ 2p
k−1
2 )

+(N − k)(N − k − 1)p
+2[(N − k)p+ (N − k)p2 + ...+ (N − k)p

k−1
2 ]

+(N − k)

= kzw + (N − k)zs + 2z
0 + (N − k)(N − k − 1)p+ (N − k)

Similarly, we can write out the aggregate payoff from WSk+1 as

P (WSk+1) = (k + 1)(2 + 2p+ ...+ 2p
k−3
2 + p

k−1
2 )

+(N − k − 1)(1 + 2p+ ...+ 2p
k−1
2 + p

k+1
2 )

+(N − k − 1)(N − k − 2)p
+2(N − k − 1)[p+ p2 + ...p

k−1
2 ] + (N − k − 1)pk+1

2

+(N − k − 1)

We can show that P (WSk)− P (WSk+1) > 0 for any p,N and k > 3.

A similar exercise can be done for k even.

Step 3: Comparing the payoffs from the star and the WS3, we see that

101



Star Âeff WS3 iff

P (star) > P (WS3)

2(N − 1) + (N − 1)(N − 2)p− (N − 1)c > (N − 1) + 2(2 + (N − 3)p)
+(N − 3)(1 + (N − 2)p)−Nc

(N − 1) + (N − 1)(N − 2)p+ c > 4 + 2Np− 6p+N − 3
+(N − 3)(N − 2)p

c > 2 + 2Np− 6p− (N − 2)2p
c > 2− 2p

p >
2− c

2
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Appendix B: Extensions
Proposition 5: With one h− type in the population and p ' 1, the equilibrium

network structure is a complete star or a WS3 with the θh as the centre if θh > 1+p.

Proof. The proof obtains from a series of lemmas.

Lemma B.1: Consider a history ht such that θh has moved and gt 6= ge. Then

an (low type) isolated agent at t would choose visot for p ' 1.
Proof: The proof proceeds as that of Proposition 1 with the term Vk−1 weakly

larger due to the presence of θh. Hence, πk(visok ) is larger for any p and any isolated

agent at t > 1 will choose visot to maximise the myopic payoff for p ' 1. This implies
that the threshold value of p for agent k is weakly lower. i.e.p > epk, πk(visok ) > πk(k+1)

and epk < p∗k for any k. This in turn implies that ep = Max{epN , epN−1, ..., ep2} < p∗ =

Max{p∗N , p∗N−1, ...., p∗2}.

Lemma B.2: Consider a subgame where an isolated low-type agent at t−1, t > 2,
links to the high type agent. Then at time t, θh will link to some agent j < t− 1.
Proof: Let the component with agents 1, 2, ..., t − 2 be denoted by eC. Let the

payoff from linking to j ∈ eC be denoted by V ( eC, j) = 1 + [a(j)].Define j∗ =

argmaxj∈ eC V ( eC, j). We could be in one of the following 3 cases, given this subgraph
gt = eC + {θl,t−1θht}.
Case I: sht = j∗ and visot+1(gt + {θhtj∗} = θh

In this case, θh is maximising myopic payoff V ( eC, j) and future payoff πf =

N − t. No other strategy sht would increase his payoffs. Hence, if gt is such that

visot+1(gt + {θhtj∗} = θh, s
∗
ht = j∗.

Case IIa: sht = j∗ and visot+1(gt + {θhtj∗} = j∗

In this case, πh(sht = j∗) = 1 + V ( eC, j∗) + (N − t)p = 2 + [a(j∗)] + (N − t)p.

Now, if θh deviates to link to some agent j > t then in the subgame that follows

there are additional agents towards eC with respect to θh. If j∗ is more central than

θh at the subgame with graph gt + {θhtj∗, then for the graph g = gt + {θhtθl,t+1} +
{θl,t+1, θl,t+2}... + {θl,t+l, j∗}, θh cannot be the central agent at any time τ > t + 1.
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Hence the maximum payoff for sh = j 6< t is

πh(sht = t+ 1) = 1 + 1 + pV ( eC, j∗) + (N − t− 1)p
= 2 + p+ p[a(j∗)]− p+ (N − t)p

< πh(sht = j∗)

Hence, θht will not link to j 6< t− 1.
(Note that Case IIa is impossible if eC contains no link since θh > 1).

Case IIb: Suppose it is the case that if sht = j∗, then visot+1(gt + {θhtj∗} = j∗.

Also suppose, ∃j0 6= j∗, j0 ∈ eC such that if sht = j0, then visot+1(gt + {θhtj0} = θh.and

θht prefers j0 to j∗, i.e.

1 + 1 + [a(j0)] + (N − t) > 1 + 1 + [a(j∗)] + (N − t)p

Hence,

πh(sht = j0) = 1 + 1 + [a(j0)] + (N − t)

If θh links to some agent j 6< t− 1, then in the subgame that follows, either he is
still the centre but only one link further away from the component eC or he is not the
centre anymore and also further away from eC which implies a strictly lower payoff

for θht.

Hence θht will link to some agent j ∈ {1, 2, ..., t− 1}.

Lemma B.3: Consider a subgame where θh has not moved. Then at time t an
isolated low type agent θlt will link to j ∈ L = {1, 2, ...t− 1, θh}.
Proof: Suppose at time t, an isolated low-type agent is selected to move. Let the

subgraph at time t be eC and the value of eC through agent j is V ( eC, j) = 1 + [a(j)].
As before, define j∗ = argmaxj∈ eC V ( eC, j). Also, note that if θlt links to θh, we have
the 3 situations as in Lemma B.2. In each case, θh links to some agent j < t and θlt

cannot be the centre.

In case I, πl(slt = θh) = θh + p(1 + [a(j∗)]) + (N − t)p. Alternatively, linking to

an agent outside set L, will not make θlt the centre and increases his distance from
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other players. The associated payoff is

πl(slt = j 6∈ L) = 1 + p+ p2 + ..pl−2 + pl−1(1 + [a(j∗)]) + pl
0
(N − t− l) + pdθh

where l is the chain length that follows the subgame,l ≥ 1; d i sthe distance to
θh, d > 1; l0 is the distance to the central agent to which isolated end agents connect

to,l0 ≥ 1. It can easily be shown that for any θh > 1, this payoff is strictly less than

πl(slt = θh).

However, if V ( eC, j) = 1, then θlt could link to j < t and have some positive

probability of being the centre, depending on the value of θh. Let the payoff in that

case be denoted by πl(slt = j < t). If πl(slt = j < t) < πl(slt = θh), then slt = θh

dominates strategies s0lt ∈ {j < t, j 6∈ L}. If πl(slt = j < t) > πl(slt = θh), then the

previous analysis implies that πl(slt = j < t) > πl(slt = j 6∈ L). Hence, slt = j 6∈ L is

always dominated by slt = j ∈ L.

Similarly, we can show that for cases IIa and IIb too, πl(slt = j 6∈ L) < πl(slt = θh).

Lemma B.4: Consider a subgame where θh has not moved and gt is such that

V ( eC, j∗) ≥ 1 + p.Then at time t an isolated low type agent θlt will link to θh if

θh > V ( eC, j∗).
Proof: For the first part we need to show that if θh > V ( eC, j∗), then visot+2(g) = θh

for g = gt + {θltθh} + {θhj∗} and in that case, the optimal choice for θlt is s∗lt =
θh.Suppose θh > V ( eC, j∗). Also suppose, gt+1 = gt + {θltθh}+ {θhj∗}. Now, consider
an isolated agent t+ 1 who is chosen to propose a link. For t+ 1,

πmyo
t+1 (θh) = θh + p+ p(1 + [a(j∗)])

and

πmyo
t+1 (j

∗) = (1 + [a(j∗)]) + pθh + p2

Hence πmyo
t+1 (θh) > πmyo

t+1 (j
∗) according as

θh + p+ p(1 + [a(j∗)]) > (1 + [a(j∗)]) + pθh + p2

⇔ (1− p)θh > (1− p)(1 + [a(j∗)])− (1− p)p
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⇔ θh > V ( eC, j∗)− p

which holds. Hence, t+ 1 chooses θh, for p ' 1.In this case, payoff to θlt is

πlt(θh) = θh + pV ( eC, j∗) + (N − t− 1)p

If θlt deviates to j∗, the maximum possible payoff is when all future players link to

j∗ and is

πlt(j
∗) = pθh + V ( eC, j∗) + (N − t− 1)p

< πlt(θh) for θh > V ( eC, j∗).
Hence, θlt will link to θh if θh > V ( eC, j∗).
Proof of Proposition 5 (contd)
Consider agent 1. If agent 1 is the high type then given Lemma B.1, the optimal

strategy is for θh to abstain and agent 2 connects to θh, agent 3 connects to θh and

so on.

Suppose agent 1 is a θl. He has 3 choices:

i)s1 = φ

ii)s1 = θl

iii)s1 = θh

If s1 = θh, then given Lemma B.1, the optimal strategy for θh is to abstain since

then agent 3 will link to θh and the equilibrium structure is a complete star with θh

as the center. Hence, π1(s1 = θh) = θh + (N − 2)p− c.

If s1 = φ, then with probability 1
N−1 , θh is chosen as the 2nd proposer and we are

in a case similar to Case I of Lemma B.2. Hence it is optimal for him to link to 1,

since from period 3 agents would link to θh and π1 = θh+ (N − 2)p.With probability
N−2
N−1 however, some θl is chosen as the proposer. Now, θl,2 can link to θh who by Case

I, Lemma B.2, will choose θl,1 and the network will be a θh − star. In this case,

πl,2 = θh + (N − 2)p− c

θl,2 can also link to 1. In this case, with probability N−3
N−2 , the 3rd agent is θl. By
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Lemma B.4, for θh > 1+ p, θl3 links to θh. By Lemma B.2, θh links to 1 or 2 (chooses

randomly) and from period 5 onwards agents link to θh. The payoff to 2, therefore, is

π2|agent3=θl = 1− c+
1 + p

2
(θh + (N − 3)p)

With 1
N−2 probability the 3rd agent is θh. Since θh > 1 + p, the high type knows

that even if sh3 = 1/2, viso4 = θh. Hence, θh3 links to 1 or 2 and agent 4 onwards links

to viso4 = θh. In this case, π2|agent3=θh = π2|agent3=θl = 1− c+ 1+p
2
(θh + (N − 3)p).

Hence the payoff to θl,2 from s2 = 1 is

πl,2(s2 = 1) = 1− c+
1 + p

2
(θh + (N − 3)p)

Hence if s1 = φ, then θh Â2 1 iff

θh + (N − 2)p− c > 1− c+
1 + p

2
(θh + (N − 3)p)

or, 2θh + 2(N − 2)p > 2 + (1 + p)(θh + (N − 3)p)

or, (1− p)θh > 2 + p(N − 3− 2N + 4) + (N − 3)p2

or, (1− p)θh > 2− p(N − 1) + (N − 3)p2

= 2− 2p2 + (N − 1)(p2 − p)

= 2(1− p)(1 + p)− (1− p)p(N − 1)
= (1− p)(2− p(N − 3))

or, θh > 2− p(N − 3)

which holds for p ' 1. Hence if s1 = φ, 2 chooses θh who in turn chooses agent 1.

Hence,

π1(s1 = φ) = θh + (N − 2)p

If s1 = θl, then in this subgame, 2 can choose φ or to link to some other agent.
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If s2 = φ, then the next agent, if θl chooses θh and if θh, he chooses one of 1 or

2. In either case, θh becomes the central agent for all future agents and π1(θl) =

1− c+ 1+p
2
(θh + (N − 3)p) < π1(φ).

It could be the case that s2 = θh, In this case θh links to 1 and becomes the

centre and hence, π1(θl) = 1 − c + θh + (N − 3)p. For p > 1 − c, π1(φ) > π1(θl)

and vice versa. If s2 = θl, then on the path we could have either of the 2 cases.

One where some agent j > 2 links to θh who then would link to k > 1 and π1(θl) =

1 + r1p+ r2p
2 + ...+ rqp

q + pdθh + (N − l − 1)pd+1 < θh + (N − 2)p = π1(φ). In the

other case, suppose l low types form a wheel so that probability of centre is positive.

Hence, π1(θl) = (2+2p+ ...(l−1)terms)+ 1
l
(1+2p+ ...lterms)(θh+N − l−1). Its is

easily shown that for p = 1, π1(θl) = θh+ (N − 2)− c < π1(φ)|p=1 and the inequality
holds for p ' 1.
Hence, for p ' 1, agent 1 would either abstain and hence θh − star obtains for

any θh > 1 + p or agent 1 links to 2 who then links to θh, hence forming a WS3 with

the centre being the high type agent.

Example 4
Let N = 8. Consider the subgame at the beginning of period 4 where agents

1, 2, 3, 40 are connected in a chain. With the particular order we have in our model,

40 is the next proposer for sure and and hence proposes to 1 to complete the wheel.

But suppose the proposer chosen at t = 4 is some other (isolated) agent j0, then the

wheel cannot be completed. In this case, j0 can connect to 1, can connect to 4 or

connect to some central agent (2 or 3 in this case). For p ' 0, j0 s optimal choice

would be agent 1. To see this consider the following subgame G. G = {12}+ {23}+
{340}+ {41}+ {54}+ {65}. Hence there are two periods remaining and 2 agents, 40

and 80 left to propose. With probability 1/2 agent 40 is chosen as the proposer. He

has 3 options.

(i) s = 6

(ii) s = vcon

(iii) s = 80.

If agent 40 who is now renumbered as 7 chooses 6, a wheel of length 7 is formed

and the last agent 80 ≡ 8 links to one of them with equal probability. Hence, π(s =

108



6) = 2 + 2p+ 2p2 + 1
7
(1 + 2p+ ...+ 2p3).

If s = j = vcon, then the last agent chooses j and π(s = vcon) = 1 + r1p+ r2p
2 +

..+ rqp
q

If s = 80, then agent 80 in the last period chooses vcon and π(s = 80) = 2 + r01p+

...+ r0qp
q

For p ' 0, strategy s = 6 dominates the others and 40 will choose 6.
After period 6 however, with probability 1/2 agent 80 is chosen as the proposer at

t = 7. In that case, 7 knows that the last agent 40 will choose vcon and hence agent 7

cannot be the centre (since he is one the extreme end agents). Hence 7 chooses viso.

Now, at t = 6, when an isolated agent is chosen and faces the graph G−{65}, his
payoff from linking to 5 is

π6(s = 5, G) =
1

2
[2 + 2p+ 2p2 +

1

7
(1 + 2p+ ...+ 2p3)] +

1

2
[1 + r1p+ ...rqp

q]

His payoff from s = viso is

π6(v
iso, G) = 1 + r01p+ ...+ r0qp

q

For p ' 0, π6(s = 5, G) > π6(v
iso, G) and agent 6 links to agent 5.

The same incentive works for any isolated agent chosen as the proposer. But the

exact network formed depends on the realisations of the orders of prposers. If, at some

stage, the responder at stage t is not chosen as the proposer at any τ , t < τ < N, then

the structure contains no wheel. If the responder of stage t is chosen as the proposer

as any time before the last period, then a wheel forms and the remaining agents link

to one of the agents in the wheel. The wheel size in this case is weakly bigger since

the responder at time 4, could be chosen to propose at time 6, say, resulting in a

wheel of size 6.

Proposition 7With the order of proposers completely random in each period, the
equilibrium network is a complete star for p ' 1.
Proof The Proof is similar to the proof of proposition 1. The difference is that the

payoff functions in this case are expected payoffs, the expectation taken with respect

to the random order. The payoffs in proposition 1 are valid for a unique realisation of
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the order which chooses the responder of a period as the next proposer. For all other

realisations of draws for proposers each period, the payoff functions are modified but

the inequalities still hold. We will point out the differences in the payoffs and show

that the inequalities hold in each case. Denote a particular realisation of the order

by r and the set of all possible orders by R.

Step 1: Any agent t > 1, if isolated chooses visot .

This statement is true for the last agent moving, t = N. Now consider k with the

statement true for all τ > k.

Consider the payoff for strategy sk = k + 1.

For Case I, the payoff is Eπk(k + 1) =
P

r∈R πk(k + 1|order r).Pr ob(order r).
Now, πk(k + 1) for each order r is of the form

1 + p+ p2 + ...+ pj0−k−y−1 + pj0−k−y(1 + [a] + p ∗ y) + +(N − jo)p
d0

where the order r is such that y agents between k and j0 were isolated when chosen

as proposers and chose visok since statement if true for all τ > k. It is easy to see that

πk(k + 1|order r)
= 1 + p+ p2 + ...+ pj0−k−y−1 + pj0−k−y(1 + [a] + p ∗ y) + +(N − jo)p

d0

< 1 + (j0 − k − y)p+ [a] + py + (N − j0)p

= 1 + [a] + (N − k)p = πk(v
iso
k )

Hence, Eπk(k + 1) < πk(v
iso
k ). Case II is similar.

For Case III, due to the random order, the wheel length that can form following

sk = k+1, is random and hence the payoff is Eπk(k+1), the expection taken over the

length l of the wheel which in turn depends on the order r. Note again that expected

number of agents in the wheel El ≤ l since with positive probability a positive number

y of isolated agent is chosen as the proposer and he chooses viso which implies that

he cannot belong to the wheel component. (It could also be the case that no wheel

forms). Hence

Eπk(k + 1) = [2 + 2p+ ..
El

2
terms] +E[

N − k − l − y

l + 1
(1 + p+ ..l + 1terms)]

110



As before, πk(visok ) = 1 + [a] + (N − k)p

For p = 1, Eπk(k+1) = N − k− y ≤ N − k < 1+ [a]|p=1+(N − k) = πk(v
iso
k )|p=1

By similar logic, for p ' 1, Eπk(k + 1) < πk(v
iso
k ) and hence s

∗
k = visok .

The rest of the proof is exactly same as that of proposition 1.
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Chapter 3

Family Embeddedness: An Empirical Investigation

1 Introduction

Since the studies of Loury (1977) and Coleman (1988), social capital has been men-

tioned and studied in a variety of contexts across various fields in the social sciences.

The recent surge in studies on social capital followed Putnam’s work on American

society (1993). Like other forms of capital, the term ‘social capital’ has a broad set of

interpretations. It varies from club-memberships to trust in government to the net-

work of family and friends1. In effect, social capital implies some form of externality

arising from social interactions between agents. For example, a person’s network of

friends gives him better information regarding jobs or provides financial credit when

required. It is important to stress, however, that the externality is not necessarily pos-

itive. It has been pointed out by Coleman (1988), Dasgupta (2005), Glaeser (2002),

among others, that social capital can also create negative social worth. The social

capital particular to a network, while benefitting the ‘insiders’ can have negative ef-

fects on ‘outsiders’2. Communatarian relationships can be impediments to personal

advancements too. As Dasgupta (2005, pp 13), while talking about kinship ties, says:

"..there is a functional side to kinship ties. ..offers a way to pool individual risks.

However, there is a bad side of the coin..they dilute personal incentives to invest for

prosperity because of kinship obligations.". Austen-Smith and Fryer (2005), in fact,

proposes a model which relies on this inhibitive nature of community ties to explain

1Coleman (1988) defined social capital as "social organisations" facilitating "the achievment of
goals that could not be achieved in its absence or could be achieved only at a higher cost". Putnam
et al (1993) defines it as "trust, norms and networks that can improve the efficiency of the society".
Ostrom (2000) claims that social capital is the "shared knowledge, understandings, norms, rules
and expectations" about how people interact in recurrent interactions. Lin (2001) describes it as
"resources embedded in social networks and accessed and used by actors for actions"

2Gambetta (1990) shows how Sicilian mafia families trust only family members and not out-
siders. High ‘insider’ trust also allows the mafia to function more efficiently and imposes a negative
externality on society
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inner-city behaviour3. It is, therefore, best to interpret social capital as a network of

relationships which may have positive and negative externalities on agents inside and

outside the network.

In this paper we focus on a specific form of social capital, namely, the level of

family ties and explore its relationship with two things: first, the personal incentives

to succeed in one’s job; second, one’s attitude towards ‘outsiders’ i.e. people outside

the family network. We use the term family ties to refer to the strength of ties with

the extended family or alternatively, a person’s embeddedness in his extended family.

Embeddedness is a multidimensional concept and can be measured by the frequency

and quality of interaction with family members, feeling of closeness with family or

assurance of monetary or non-monetary help from family members. Moreover, the

level of family ties of a person has both inherited and acquired components. When

young, a person has a certain level of ties which is given to him by birth. However, he

might choose to strengthen, break or change these ties at a later stage4. This choice

can be affected by family circumstances, societal norms, his ability and/or his belief

about his income potential. A person also chooses the level of effort to exert in his

career and his attitude towards agents outside the kin. The effort exerted on the job

is representative of how much importance one gives to personal advancement and is

driven by personal incentives while social attitude reflects his behaviour outside of his

‘network’, i.e. family. In fact, there might be a systematic relationship between these

choices. For example, if having strong family ties necessitates extending considerable

monetary help to family members, then it might dilute personal incentives to earn

more and hence reduce work effort. The negative correlation could also be due to time

constraints when maintaining ties requires spending a lot of time with family. On the

other hand, if it is the case that an agent has altruistic utility from helping family

members monetarily then a higher effort and higher income increases the marginal

utility of ties and he would maintain a higher level of current ties. Similarly, the values

imbibed in a person when young can cause him to choose a higher level of involvement

in both society and family. It is equally possible that an individual’s embeddededness

3In the model, the family punishes agents acquiring high education since it is interpreted as an
attempt to move away from family.

4Note that we use the word ‘family ties’ for ties with the extended family and not just immediate
family.
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in his kin network nurtures strong ‘insider’ attitudes and at the same time, negative

attitudes towards people outside the kin. If so, strong ties though beneficial to the

individual and his kin, imposes a negative externality on society and is not necessarily

desirable.

Our empirical analysis of the choices of family ties, work effort and social attitude

is carried out using data from the Netherlands Kinship Panel Study (NKPS). This

dataset has detailed questions aimed at capturing the strength of family ties along

with detailed information on work, attitude about different social and family values.

A special feature of the dataset is a set of questions regarding family interaction when

the respondent was young along with the current level of interaction. This feature

allows us to distinguish between inherited or initial ties and those chosen at a later

stage. We refer to the latter as acquired ties or current ties. We construct measures

of the levels of initial and current family ties using individual responses to questions

about the frequency of interaction among family members and/or his opinion about

the strength of ties within his family. To capture personal motivation to succeed,

we use effort exerted on the job which we proxy by the actual number of hours a

person works at his job. We represent social attitude by two different proxies: the

level of volunteering activity and attitude towards migrants. Our empirical model

involves regressing the three choice variables on the level of inherited ties and other

exogenous factors using the Seemingly Unrelated Regression (SUR) method. The set

of exogenous factors include demographic variables and other factors that affects one

or all of the three variables.

We find that the level of inherited family ties affects current ties and the extent

of volunteering. This effect is positive for both i.e. agents born with a higher level of

ties have more ties at a later stage in life and are also more involved in volunteering

activity. The level of inherited ties, however, does not affect current work effort. Work

effort is mainly determined by occupation, income, sex and age. Moreover, whether

one’s parents are divorced or not influences current ties negatively and work effort

positively. This may be due to a lower amount of time spent with family following

parents’ divorce and consequently, a higher availability of time for work. It might

also be preference-driven. Parents’ divorce presumably decreases the cost of severing

ties and results in a lower level of current ties. If it is the case that strong ties
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with the family dilutes personal incentives to work, then the lower current ties would

increase the marginal utility of effort resulting in higher work effort. We also find

life-cycle effects on work effort and family ties. Work effort increases upto a certain

age and then falls. The effect of age is the opposite for family ties. Females maintain

a higher level of current ties and exert less effort on their jobs. Overall, most of the

regressors have opposite signs for effort and current ties. This suggests a negative

relationship between the two. Alesina and Guiliano (2007) also find that in countries

with stronger family ties market participation is lower, particularly for women. To

summarise, we find that in the Netherlands stronger familial ties when young have

positive effects on the level of ties maintained a later stage and also on volunteering

for a social cause and tolerance towards migrants. Agents with stronger current ties

however, exert less work effort. These results are, of course, specific to the society

we are looking at. Casual observation suggests that the tradeoff between family ties

and effort is likely to be stronger in developing countries since the reliance on family

is higher. The relationship between strong kin ties and good social attitude in these

countries, however, is not so obvious.

This paper is related to the literature on social capital. One strand of work in this

field studies the effect of social capital on various outcomes, both at the aggregate and

at the individual level5. The measures of social capital typically used vary from trust

levels to memberships in associations and are taken as exogenous. For example, a few

studies (Furstenburg and Hughes 1995, Mcneal 1999, Sandefur, Meier and Hernandez

1999) take the number of family moves as a measure of social capital and study its

effect on academic performance, college enrollment etc. But the number of moves

itself is possibly endogenous and determined by the parents’ embeddedness in the

society. Families with high levels of social capital might be less likely to move and

hence such studies might suffer from endogeneity problems. Studies which take club

memberships as a measure of social capital also suffer from the same problem since

the decision of being a member of a club is endogenous. We address this problem

5Knack and Keefer (1997), LaPorta et al (1997) conduct a cross-country analysis of the effect
of trust on corruption levels and growth differences. Individual-level studies include Fafchamps and
Lund (2003), Fafchamps and Minten (1999), Narayan and Pritchett (1999) which focus on effect of
social capital on some income measure. For an excellent survey of the literature on social capital,
see Durlauf (2002).
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explicitly by investigating the choices of family ties, work effort and social attitude

together and not looking at social attitude or effort in isolation6.

This paper also relates to studies that analyse the determinants of social capital

in some specific form. Rahn and Rudolph (2005) focus on the determinants of trust

in local governments; Sampson, Morenoff and Earls (1999) analyse factors that affect

behaviour among neighbours. Others have analysed the determinants of social capital

in the form of carpooling (Charles and Kline 2002), volunteering (Costa and Kahn

2003a) and citizenship (DiPasquale and Glaeser 1999). One feature of these studies

is that the forms of social capital considered are inherently positive in nature. By

focusing on volunteering, carpooling etc they have completely ignored the possibility

of the ‘negative worth’ of social capital. In this paper, we focus on social capital in

the form of kin networks which could have positive or negative effects on work effort

and social attitude. More specifically, our paper relates to studies by sociologists and

some economists on the socioeconomic role of family. For example, LaFerrara (2003)

shows how extended family ties substitute for credit markets or provide risk-sharing7.

Alesina and Guiliano (2007) conducts a cross-country analysis of the effect of family

ties on home production, household labour allocation, fertility and mobility.

The paper is organised as follows. Section 2 presents the empirical strategy fol-

lowed by a discussion of the data in Section 3. Section 4 presents the estimation

results. Section 5 concludes.

2 Family ties, work effort and social attitude

As mentioned before, the relationship between a person’s social capital, his personal

incentive to succeed in the market and his social attitude could be positive or negative.

We measure personal incentive through the amount of effort exerted in the job. A

person is born with a certain level of social capital which, in this case, is the level of

inherited family ties. Let this be denoted by f0. The person chooses a new level of

ties, f1 along with work effort e and social attitude sa. If an agent chooses to sever

some of his initial ties then he bears some psychological cost proportional to the level

6Most of these studies look at the effect on income. In our case, we look at work effort which is
expected to be positively correlated with income, controlling for factors like occupation.

7For more, see La Porta et al (1999), Prez-Gonzales (2004), Bentolilla and Ichino (2006).
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of severance. This cost might depend on the level of f0. A higher f0 implies that

the person will find it harder to sever ties. This cost can also be affected by other

factors like parents’ divorce or family values in the society. If a person is born in a

highly cohesive society which values family ties a lot, then the cost of the same level

of severance will be higher. On the other hand, if parents’ are divorced, then this cost

is likely to be lower and hence the level of f1 lower. This lower level of f1 can, in turn,

change one’s personal incentive to work and his social attitude. The decisions could

also be influenced by other factors like wage and social values. Hence, an agent makes

three decisions (f1, e, sa) based on his individual and family characteristics and past

history.

Our model for the decisions of individual i is as follows:

ei = α0 + α1f0i + α2Xi + ε1i (1)

f1i = β0 + β1f0i + β2Xi + ε2i (2)

sai = γ0 + γ1f0i + γ2Xi + ε3i (3)

whereXi is the set of exogenous variables. We assume that the errors εji, j = 1, 2, 3

are correlated for each i but independent across i. The set Xi includes demographic

and other factors that influence any one the dependent variables. For example, it

could contain variables that capture a person’s earning potential and affect work

hours; social values imbibed when a person is young, which influences his involvement

in society at a later stage. We estimate the system of equations (1)-(3) as a Seemingly

Unrelated Regressions (SUR) model. This allows for the errors to be correlated across

the equations in an unrestricted way. Errors in each equation includes factors which

influence a person’s choice of ties, effort and attitude but are unobserved. In fact, the

same observables can be part of the errors of each equation. For example, a person’s

motivation level or peer influence within the family could affect both work effort and

current ties. Similarly, both effort and social attitude is influenced by how a person

feels about personal gain vis-à-vis doing something for society. Allowing for such

correlation gives efficient estimates and correct variances which are used in inference.

In the next section, we describe the dataset used in the analysis along with the

empirical proxies.
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3 The NKPS Data

One reason most of the existing work has not focused on the choice of social capital

at the individual level is the lack of detailed information regarding such ties. The

existing studies have analysed the determinants of social capital but have not distin-

guished between the level of social capital one is endowed with i.e. inherited and that

which is a choice or acquired. In this paper, we can distinguish between the two by

the use of a unique dataset, the Netherlands Kinship Panel Study (NKPS) collected

by the Netherlands Interdisciplinary Demographic Institute. The sample covers in-

dividuals between age 18 and 79 living in the Netherlands. The respondents were

chosen through random sampling of addresses from the population registers. The

sample size is 8161. The dataset is aimed at collecting detailed information regarding

interaction with family and friends over three waves. The second wave of the study is

in the process of being completed. We use only the first wave (conducted in 2002/03)

in this analysis. In addition to questions about the current family ties (e.g. going on

vacations with extended family, going to family reunions, opinion about the strength

of family ties), it also contains information about interaction with family at age 15

which is a potential proxy for inherited ties. In addition, it also contains other demo-

graphic, individual and family level variables to capture other types of heterogeneity

in the population. The data was collected both by interviews with the respondent

and through self-completion questionnaires. We will use relevant information from

both. For the purpose of our analysis, we select respondents between age 18 and 60

who are employed The sample size in this group is 4986.

3.1 Empirical Proxies

3.1.1 Family Ties

To represent family ties we need proxies for two types of ties: 1. Inherited ties f0 and 2.

Acquired ties f1. Tomeasure f0, we construct a multidimensional measure, F0 by using

five variables that reflect the extent of interaction with family at age 15. The questions

that we use are a & b) "Did you ever go and stay with your mother’s (father’s) family

when you were young?" c&d) "Did members of your mother’s (father’s) family ever

come and stay with you when you were young?" e) "Did you ever go on holiday with
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relatives (other than your immediate family) in those years?". The responses are one

of "never’, ’occasionally’ or ’frequently’ and are coded 1-3. We attach equal weights

to each of these questions. To deal with missing values of one variable, we take only

a subset of the questions and adjust the weight accordingly. This index reflects the

level of embeddedness the respondent had with the extended family when he/she was

age 15. We think that this is a good proxy for initial ties f0 since presumably, a child

of age 15 does not take independent decisions regarding visits to or vacations with

family. To assess the quality of the index , we calculate the Cronbach’s α which is

0.61 implying that there is sufficient consistency between the variables8

In order to measure the level of current ties f1, we use multiple proxies. The first

proxy F11 is constructed from responses to the question "Have you gone for a holiday

with extended family in the past twelve months?". The responses were either "never",

"once or twice" or "several times" and were coded 1-3 respectively. Since the question

specifically asks for responses in the context of the last 1 year, it is possible that such

a proxy is not capturing current level of embeddedness for the respondent. Certain

circumstances specific to the past year may prevent or reduce the ease of staying with

family for some respondents. To account for such cases we use another proxy F21.

The second proxy F21 is a multidimensional measure but reflecting the respondent’s

opinion about solidarity in his family. The respondents were asked whether they

agreed or disagreed and if so, strongly or not, with statements: "The ties between

members of my extended family are tightly knit" and "Should I need help, I can

always turn to my family". The Cronbach’s α for this index is 0.63. We use the

logarithms of f0 and f1 for our analysis.

3.1.2 Effort

To represent the effort e we use the actual number of hours worked in a week. This is

constructed from the responses to the question "How many hours a week on average

do you actually work?". We use the logarithm of work-hours in the analysis.

The data also has variables capturing the type of employment which is either Paid

employment, Self employment or Help in family business. We combine the last two

8Cronbach’s α is an average measure calculated from the correlation coefficients between each
pair of variables in an index.
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into the same category of Self-employed.

Table 1: Inherited and Acquired Family Ties
f0 Components f1 Components

F10 i)Stay with mom’s family F11 Holiday with family in last 1 year?

ii)Mom’s family stay with you

iii)Stay with dad’s family?

iv)Dad’s family stay w you?

v)Holiday with relatives?

F21 (i) Ties b/w family strong

(ii) Can always turn to family

3.1.3 Social Attitude

Social attitude sa can be captured in multiple ways. In particular, we want to analyse

an individual’s attitude towards people outside his family. It could be his behaviour

with neighbours, attitude toward ethnic integration, involvement in volunteer work

etc. In this paper, we proxy social attitude by the level of volunteering (v)9. The

self-completion questionnaire asks the respondent several questions regarding his in-

volvement in various activities. The question asked is "Did you participate in any

of the following activities in your free time in the past 12 months? If so, about how

often?" along with the following list "A Sports; B. Participate in school association,

parent-teacher association or other activity for school ; C Provide unpaid help to sick

or handicapped acquaintances or neighbors (not family); D Volunteer work for associ-

ation, church or other organization (not for school); E Visit neighbors, have neighbors

visit you; F Cultural activities, such as theatre, concert or museum; G Going out to

a restaurant, café, movie or party". The responses to the questions were one of the

following choices: a. Not at all; b. 1-2 times; c. 3-11 times; d. 12 times or more;

and were coded 1 through 4. Of these, some activities pertain to private consumption

while some are related to one’s civic engagement. We use the response to C and D

above to construct our measure of volunteering.

9We also use attitude towards migrants as another proxy later.
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3.1.4 Other controls

In order to capture individual-specific heterogeneity, we use standard controls in our

regressions. We use demographic variables like age, sex, marital status along with

variables like employment type and whether parents are divorced or not. The variable

‘sex’ takes the value 1 for female and 0 for male; ‘marstat’ representing marital status

is 1 for married, 0 otherwise; ‘pardivorce’ is 1 if parents were divorced, 0 if not. We

also include dummies for household size in the set of controls. We create dummies,

one each for each household size starting from one to seven.

We also include a proxy for hourly earnings as a control, since this affects the

incentive to put more or less effort. We use a direct measure of income as a proxy. This

measure, though, has a high possibility of measurement error. It has been documented

that people tend to understate their income. Moreover, for agents without a fixed

pay every month there is likely to be an error in recalling or averaging his income.

We do, however, use homeownership as an alternative measure of income to check

for the robustness of our results. Table 2 presents the summary statistics of some

of the variables used. Table 3 includes some simple correlations between variables.

We see that F0 is positively correlated with current ties F1 while it’s correlation with

work-hours, although small, is negative. Volunteering has a negative correlation with

work effort and positive ones with F0 and F1.

3.2 Data Limitations

As with most survey data, this dataset suffers from certain limitations. As mentioned

before, the reported income level of respondents potentially suffers from measurement

error. Another limitation is the presence of unobserved heterogeneity. For example,

a person’s motivation level and aspirations affect his behaviour with regard to work

effort and/or family ties. This characteristic of the individual is probably determined

by his innate ability or if he observes someone in his family or neighbourhood with

similar ability and highly successful. The problem of innate ability is usual in most

studies. Unfortunately, we cannot control for peer effects due to lack of suitable data.

Another problem might be that number of hours worked does not represent all of

the market effort. Agents might be engaging in professional networking which affects
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their market success but is not taken into account in work hours. Here we assume

that work hours reflect an agent’s market activity to a large extent. There might also

be a selection problem if agents choose particular occupations and the level of family

ties systematically.

Table 2: Summary Statistics
Mean Std. D Min Max

age 40.732 10.893 18 60

sex 0.583 0.493 0 1

marstat 0.539 0.498 0 1

pardivorce 0.123 0.328 0 1

household size 2.508 1.359 1 13

F10 0.489 0.270 0 1.1

F11 0.219 0.351 0 1.1

F21 -.739 0.376 -1.6 0

effort 3.401 0.551 0 4.49

volunteering v 1.637 .976 1 4

income 7.066 1.015 0 11.69

Table 3: Correlations
Correlations F0 F21 work-hours

F11 0.116

F21 0.173 1

work-hours -.046 -.042 1

volunteering .084 .033 -0.128

4 Estimation Results

We present the results of the SUR estimation of our model as represented by equations

(1)-(3) in Table 410. The Breusch-Pagan test of independence11 gives a p− value of

0.002 and the hypothesis that the errors from the three equations are independent is

10The proxy used for f1 in Table 4 is the family solidarity proxy F21. The results for F11 are
similar with minor changes in the significance levels of some variables.
11This test computes the correlation matrix of the errors and tests the hypothesis that the corre-

lations are jointly zero.
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rejected. In the set Xi we include age, age-squared, sex and marital status. We also

include income, household size dummies, employment type and parents’ divorce. The

variable ‘Income’ acts as a proxy of hourly earnings which influences the incentive to

exert effort. We also include a variable reflecting the respondent’s parents’ experience

at war. We include the latter since a person’s experience at war probably influences

how he values social work and this is imbibed in his children through the upbringing,

even if partially.

The first three columns of Table 4 report the coefficients for each decision variable.

For current ties, we find that both initial ties and whether parents are divorced or

not, are significant. A higher level of initial ties implies a higher level of current ties

while parent’s divorce affects current ties negatively. The former could be because of

a higher psychological cost of severing ties if one has been brought up in a tighly-knit

family. Moreover, family ties possibly provide some benefit, monetary or otherwise,

and severing ties implies forgoing those benefits. The negative effect of parent’s

divorce is not surprising. Ties with the extended family operates mainly through

one’s parents and a divorce between the parents reduces the strength of the initial

ties at an interim stage. This in turn reduces the psychological cost of severing ties

further. Older individuals have a lower level of ties. Note that we use the proxy F21
in these regressions. The negative sign might be because older generations’ family

consists predominantly of the younger generation and the former feels that there is

less family solidarity relative to their youth. The other determinants of current ties

are sex and parents’ war experience. Women maintain a higher level of ties. Income

is significant only at a 20% confidence level and the effect is positive.

With regard to work effort, we find that the coefficient of f0 is positive and signifi-

cant. This could be possible due to multiple reasons. One is that higher f0 facilitates

peer effects since the respondent observes family members more closely. This peer

effects might motivate him to work. Alternatively, a higher f0 could result in a higher

sense of responsibility for family which in turn affects his effort. Yet another reason

might be through the selection effect. Initial level of embeddedness and the choice of

occupation at a later stage could be related and it is the occupation that affects work

effort. Since we have not controlled for the occupation, the significance of f0 could be

the due to this correlation with occupational choice. The other variables determin-
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ing effort is age, sex, marital status, income and parents’ divorce. The coefficient of

income is as expected and positive since an agent with higher earnings has a higher

incentive to put effort. We also find some life cycle effects on work effort. It increases

with age upto a point and then falls. Moreover, an individual is likely to put more

effort if parents’ are divorced. This might be because of a lower family interaction

and the consequent increase in the time available for work.

The third column reports the results of the regression for the extent of involvement

in volunteer work. We find that the level of volunteering is mainly determined by

initial ties, parents’ war experience, sex and income. Agents whose parents’ life

was highly influenced by war are more involved in volunteering. This is possibly

because values taught by the parents when the respondents were young differ with

this experience. But note that this variable is possibly correlated with age of the

respondent. Parents who were affected by the war would be of the age group 75 or

above and hence their children are likely to be 40 or more years of age. To check

that the significance of the war experience is not due to its correlation with age, we

run the same regressions without the war-experience variable. This is included in

the 4th column of Table 4. We find that age does become significant now but only

at the 10% level. Hence, part of the effect of war-experience might be due to its

correlation with age but not entirely. Parents’ war-experience does influence the level

of civic engagement. The level of initial ties f0 is also significant and higher f0 has a

positive effect on civic engagement. Higher income agents, however, are less involved

in volunteering.

Note that initial ties f0 affect both current family ties and volunteering positively.

That higher initial embeddedness in family would imply a higher f1 is not surprising.

But stronger initial family ties also imply a better social attitude. This might be

because stronger ties when young help develop certain social values that affect an

individual’s level of volunteering. This is in contrast to Alesina and Guiliano (2007)

who find that societies with strong family ties harbour a strong “inside" attitude.

Stronger ties are associated with a lower level of trust and a lower inclination to

accept new ideas.
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Table 4: Seemingly Unrelated Regression

family ties effort volunteering volunteering

f0 .262093*** .027459* .198405*** .18043***

(.000) (.075) (.000) (.000)

age -.030861*** .053876*** .010965 .018813*

(.001) (.000) (.296) (.074)

age squared .0002865** -.000684*** -.000085 -.00096

(.015) (.000) (.853) (.454)

sex .097614*** -.328629*** .238562*** .25135***

(.002) (.000) (.000) (.000)

marital status .009941 -.028994 .042322* .02603

(.656) (.013) (.083) (.249)

parent’s divorce -.26342*** .052290*** .018527 .02502

(.000) (.011) (.667) (.539)

income .017059 .208657*** -.028183** .01956

(.208) (.000) (.057) (.205)

self-employed -.001205 .008627 .013027 .03238

(.208) (.722) (.798) (.501)

war experience -.05589*** .005821 .0328504**

(.000) (.394) (.022)

No. of observations N = 3724
-p-values reported in the parentheses

-*** significant at 1% level, ** at 5% level, * at 10% level

- includes household dummies

With regard to family ties and work effort, all regressors except f0 and income

have opposite signs for the two variables. The variable parents’ divorce is significant

in both equations. Parents’ divorce reduces current ties and increases work effort.

There is possibly no reason for parent’s divorce to directly increase the incentives

to work. However, as parents’ divorce decreases f1, work effort could increase due

to increased availability of time. It could also be preference-driven. For example,

a factor like parents’ divorce that decreases the cost of severing ties would result in

a lower level of current ties. It will be accompanied by a higher level of effort if a
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lower f1 increases the marginal utility of effort. We would expect that to be the

case when stronger ties with the family dilutes personal incentives to work due to

financial obligation towards family. The effect of age on the two variables is also

opposite. Work effort increases with age up to a point while family ties fall. Females

maintain a higher level of family ties and exert less effort.

Note that one of the right hand side variables is the variable ‘self-employed’. This

variable could possibly be endogenous if agents systematically choose to be self em-

ployed and maintain higher level of family ties. This might happen because self

employment involves a higher risk relative to paid employment and stronger ties

might provide higher financial support to pool the risk. To test for the endogene-

ity of self-employed, we instrument it with father’s employment type and estimate

the IVSUR coefficients of our model. The variable takes value 1 when father is self-

employed. Tsukahara (2007) in a study with Japanese data finds that the variable

‘father’s occupation’ is highly significant in the employment choice of respondents12.

The Hausman test for endogeneity yields a p-value of 0.30 and we cannot reject the

hypothesis that the SUR and IV SUR estimates are similar. Hence, self-employed is

not endogenous. The results are included in Table 5.

4.1 Robustness

Since the reports of income might not be so reliable, we also carry out the analysis

with homeownership as a proxy for income (See Table 6). The coefficients of the

other exogenous variables have the same sign as in the Table 4. Homeownership is

significant in all the three equations. Owning a home increases effort, increases f1
and reduces volunteering v. Hence richer individuals are less involved in volunteering.

This might be because a higher level of income or wealth increases the access to social

interactions like memberships in elite clubs and other forms of entertainment and in

the process, active volunteering is given a low priority. It is also true, however, that

richer individuals can make donations without actively participating in social work.

In order to investigate whether higher wealth does have a negative impact on

social attitude, we carry out our analysis with a different proxy for social attitude.

12Using our data, a regression of employment choice on age, sex, marital status, f0, father’s
occupation and father’s education yields highly significant coefficients for father’s occupation.
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We use a question regarding the respondent’s attitude toward intermarriage with mi-

grants as another dimension of social attitude. The four largest migrant groups in

Netherlands are the Turks, Moroccans, Surinamese and Dutch Antilleans.The specific

questions asked is: "What are your views about your children’s choice of partner?

Would it bother you if one of your children decided to marry someone of Turk-

ish/Moroccan/Surinamese/Antillean descent? (The question is NOT about the ac-

tual situation)". The options for the answers were: Bother me a lot; Bother me a

little; neutral; Not bother me; Not bother me at all, and were coded 1-5. We use this

variable to create the proxy ‘Attitude towards migrants’ represented by a. A higher

value of this variable reflects a higher tolerance and openness towards migrants and

hence a higher a. Unlike volunteering, this proxy should not suffer from the problem

mentioned in the previous paragraph.

Table 7 includes the results of our estimation for (f1, e, a). As before, f0 is signifi-

cant for f1 and a with a positive coefficient in both. The coefficients of homeownership

are also of the same sign as those of Table 10. Respondents belonging to a higher

income group are less open to intermarriage. This could be because the average in-

come of migrants are much lower and this aversion to intermarriage is not so much

an aversion to migrants per se as to a lower income13. Hence, it seems that negative

social attitudes outside one’s kin arise not due to higher kinship ties but rather due

to higher wealth or income. Initial ties have a positive impact on social attitude.

5 Conclusion

In this paper we investigate how an individual’s social capital in the form of his

embeddedness in his kin network affects his attitude towards market activity and his

attitude towards society in general. The fact that strong ties within one’s network,

in addition to benefits, can have negative impacts on both personal incentives and on

individuals outside the network, has been stressed by sociologists (Coleman) as well

as economists (Dasgupta, Glaeser). In modelling the decisions of agents, we treat

the choices of family ties, market effort and social attitude as endogenous since these

13Table 8 reports some comparisons between the migrant and the native populations. The average
incoem for migrants are indeed much lower than that of the main sample.
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decisions are often taken at the same time. Part of one’s ties, however, are inherited

and hence exogenous. The use of the unique dataset, the Netherlands Kinship Panel

Data, allows us to distinguish between inherited and acquired ties. First, we find

that embeddedness in one’s family does not have a negative impact on one’s social

attitude. In fact, higher initial ties imply a higher level of family ties and a higher

level of volunteering activity at a later stage in life. With regard to work effort, we

find that one’s inherited ties affect work effort positively . However, most of the other

factors affect effort in a direction opposite to the level of current ties. This maybe

due to the inhibitive nature of family ties or simply due to time constraints.

It would be interesting to conduct the same investigation with data from a de-

veloping country and compare it with this study. The lack of well-developed credit

markets in such countries make familial ties more valuable in terms of financial as-

sistance by alleviating effects of negative shocks. Casual observation suggests that

these ties also hinder mobility and efficient allocation of human capital. Whether it

imposes any negative externality on society is not so clear. We leave this study for

future work.

Additional acknowledgment: The Netherlands Kinship Panel Study is funded by

grant 480-10-009 from the Major Investments Fund of the Netherlands Organization

for Scientific Research (NWO), and by the Netherlands Interdisciplinary Demographic

Institute (NIDI), Utrecht University, the University of Amsterdam and Tilburg Uni-

versity.
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Appendix A: Regression tables

Table 5: IVSUR with father’s occupation

family ties work effort volunteering

f0 .27042*** .00727 .18523***

(.000) (.624) (.000)

age -.02684*** .028165*** .018136*

(.006) (.000) (.089)

age-squared .000269** -.000423*** -.000113

(.023) (.000) (.384)

sex .06543*** -.471215*** .255065***

(.007) (.000) (.000)

marital status .00422 -.02368** .03197

(.839) (.035) (.161)

parent’s divorce -.26133*** (.000) .03589* (.077) .026116(.526)

father’s employment .0000847 .0514 .01285

(.594) (.110) (.694)

income -.00133 (.597) .002917** (.031) .00625 (.819)

household size .01821** (.050) -.066359*** (.000) .00309 (.762)

war experience -.05617*** (.000) .005853 (.371) -.034277*** (.010)

No. of observations 4224
-p-values reported in the parentheses

-*** significant at 1% level, ** significant at 5% level, * significant at 10% level

- includes household dummies
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Table 6: Effect of Homeownership

family ties effort volunteering

f0 .27357*** .02613* .19344***

(.000) (.097) (.000)

age -.03104*** .06486*** .01504

(.001) (.000) (.329)

age squared .00029*** -.00081*** -.00006

(.011) (.000) (.993)

sex .07384*** -.45716*** .25510***

(.003) (.000) (.000)

marital status -.0084 -.02029* .03627

(.684) (.087) (.035)

parents’ divorce -.24385*** .03378* .00911

(.000) (.090) (.722)

homeowner .10342*** .07439*** -.07239***

(.008) (.000) (.008)

self-employed -.01931 .0159 .03599

(.668) (.509) (.403)

war experience -.05826*** .00850 .02846**

(.000) (.243) (.021)

No. of observations 4349
p-values reported in the parentheses

-*** significant at 1% level, ** significant at 5% level, * significant at 10% level

- includes household dummies
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Table 7: Attitude towards Migrants

family ties effort attitude a

f0 .26019*** -.02109 .14980***

(.000) (.179) (.000)

age -.02909*** .06963*** .03806***

(.002) (.000) (.002)

age squared .00026** -.00075*** -.00052***

(.046) (.000) (.001)

sex .09633*** -.48071*** .02893

(.002) (.000) (.373)

marital status -.00784 -.04428*** -.11767***

(.627) (.000) (.000)

parents’ divorce -.277975*** .0409** .08705**

(.000) (.013) (.043)

homeowner .10252*** .08219** -.0652*

(.000) (.047) (.069)

self-employed -.02341 .00375 -.05294

(.541) (.865) (.288)

father’s education -.00475 -.00454** .02351***

(.254) (.054) (.000)

No. of observations N = 4501
p-values reported in the parentheses

-*** significant at 1% level, ** significant at 5% level, * significant at 10% level

- includes household dummies
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Appendix B: Migrants and Natives
The NKPS dataset also includes a separate sample for the four largest migrant groups

in Netherlands, namely the Turks, Moroccans, Surinamese and Dutch Antilleans. Unfortu-

nately, we cannot carry out the same analysis for this group due to unavailability of crucial

variables. But it would be interesting to see how these migrant groups differ in terms of

their family ties and work effort relative to the native Dutch population. All the ethinic

groups in the migrant sample are from non-western cultures with traditionally stronger

family ties. Alesina (2007) in his cross-country study of family ties classifies all these 4

groups as having very strong family ties whereas Netherlands belongs to a lower level of

family ties on average. Hence we would expect some systematic difference between the

two samples. However, it should be noted that the respondents of the migrant sample are

not in their home countries. They are either 1st generation or 2nd generation migrants

and presumably most of their family members do not live in Netherlands. Due to the ge-

ographical distance from their families, it is natural that their interaction with extended

family would be biased downwards to a considerable extent. Hence, we consider interaction

between family members only if they live in Netherlands. We do not differentiate between

different locations in Netherlands since the travel costs are not too high within the country.

Table 8 gives the average level of interaction with family members among migrants and

natives. The variable ‘mother contact’ and ‘sibling contact’ gives the number of times in

a week respondents are in face-to-face contact with their mother and siblings, respectively.

We find that the frequency is, on average, higher for the migrant sample. It is possible that

mothers or siblings of migrant respondents are more likely to stay in the same household or

same neighbourhood and hence face-to-face contact is higher. But the variable is still higher

for migrants when we use ’sibling phone’ which is the the frequency of contact with sibling

via phone or email. Table 8 also includes the average correlation between effort and family

solidarity. The value is much more negative for the migrants.
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Table 8: Comparison : Migrants and Dutch
Variables Main Sample Migrants

mother contact (mean) 4.729 5.436

sibling contact (mean) 3.617 4.495

sibling phone (mean) 3.543 4.65

e (mean) 33.70 36.30

corr (e, F21) -0.041 -0.128

monthly income 7.066 0.536
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