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ABSTRACT 

Vibration-based structural damage identification has been quite popular in recent 

years.  Among all the vibration-based damage identification methods, the frequency-

shift-based method is more preferred due to its simplicity and reliability. However, the 

current practice of frequency-shift-based damage identification encounters two severe 

limitations, namely, deficiency of frequency measurement data and low sensitivity of 

frequency shift to damage effects.  Therefore, this thesis aims to advance the state-of-the-

art of the frequency-shift-based damage identification by addressing the aforementioned 

two limitations of this method. 

First, a novel approach utilizing tunable piezoelectric circuitry is proposed to 

address the issue of deficiency of frequency measurement data.  The key idea of this 

approach is to use the tunable piezoelectric circuitries coupled to the mechanical structure 

to favorably alter the dynamics of the electro-mechanical integrated system.  On one 

hand, the integration of piezoelectric circuitries can introduce additional resonant 

frequencies and vibration modes into the frequency response function.  On the other 

hand, tuning the circuitry elements (i.e., the inductors) may alter the dynamic 

characteristics of the electro-mechanical integrated system, and hence results in a family 

of frequency response function measurements.  Thus, by integrating tunable piezoelectric 

circuitries to the structure and appropriately tuning the circuitry elements, one can obtain 

a much enlarged dataset of natural frequency measurements for damage identification.  

Guidelines on favorable inductance tuning that can yield the optimal damage 

identification performance are also developed.  Analyses show that when the inductances 
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are tuned to accomplish eigenvalue curve veerings between system eigenvalue pairs, the 

enriched frequency measurement data can most effectively capture the damage 

information, and hence results in the most accurate damage identification.  An iterative 

second-order perturbation based algorithm is developed to identify the damage features 

(i.e., location and severity) from the measured frequency changes before and after 

damage occurrence.  Numerical analyses and case studies on benchmark beam and plate 

structures are carried out to demonstrate and verify the proposed new method.  Numerical 

results show that the damage identification performance can be significantly improved by 

using the proposed new approach with favorable inductance tuning. 

To address the second issue, low sensitivity of frequency shifts to damage effects, 

another new approach based on the concept of sensitivity-enhancing feedback control is 

proposed.  The key idea of this approach is to use active feedback control to appropriately 

assign the closed-loop eigenstructure (both eigenvalues and eigenvectors) to enhance the 

frequency sensitivity to mass/stiffness damage.  To achieve the best performance of 

frequency sensitivity enhancement, a constrained optimization problem is formulated to 

find the optimal eigenstructure assignment for the closed-loop system, which leads to the 

optimal sensitivity-enhancing control.  In addition, multiple closed-loop systems can be 

obtained from different sensitivity-enhancing controls, and these closed-loop systems 

provide a much enlarged dataset of natural frequency measurements for damage 

identification.  Therefore, by designing a series of sensitivity-enhancing controls and 

utilizing the natural frequencies of the resulting closed-loop systems for damage 

identification, both of the two major limitations of the frequency-shift-based damage 

identification are overcome.  Numerical analyses and case studies on a benchmark beam 
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structure are carried out to demonstrate and verify the proposed new method.  Results 

show that the frequency sensitivity to stiffness reduction in the beam can be significantly 

enhanced by applying sensitivity-enhancing control to the beam structure.  It is also 

demonstrated that the proposed method is effective in damage identification and is robust 

against uncertainties in frequency measurements. 

To fulfill the requirement of an accurate finite element model for the sensitivity-

enhancing control approach of damage identification, a frequency-based iterative model 

updating method is developed using the same concept of sensitivity-enhancing control.  

With this, the sensitivity-enhancing control approach can be used for dual functions of 

modeling updating and damage identification.  The effectiveness of this model updating 

method is verified through numerical analyses on an example beam structure. 

A laboratory experiment is designed and conducted to verify the sensitivity-

enhancing control approach for frequency-shift-based damage detection.  In the 

experiment, a system identification technique is utilized to identify a mathematical model 

for controller design and system analysis, and hence frees the requirement of having an 

analytical model as in the original approach.  The eigenstructure assignment-based 

constrained optimization scheme is used to design sensitivity-enhancing controls to 

enhance the frequency sensitivity to mass variations in the beam structure.  Experimental 

results show that the frequency sensitivity to mass variations can be significantly 

enhanced by applying the designed controller to the beam structure. 

Finally, future research work towards the improvement and implementation of the 

proposed damage identification approaches is recommended. 
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Chapter 1 
 

Introduction 

In recent years, structural health monitoring and damage identification have 

received more and more attention throughout the civil, mechanical and aerospace 

engineering communities.  On one hand, damage developed in the structure will 

adversely affect the current and/or future performance of the structural system, and may 

also reduce the expected service life of the system.  On the other hand, if the damage 

characteristics (e.g., damage type, damage location, and damage severity) are known, we 

can immediately change the operating procedure and environment to maintain the 

structural integrity, and future maintenance plans can be scheduled to elongate the service 

life of the structure.  Therefore, in order to guarantee the well-designed performance and 

the expected service life of the structural system, it is essential to monitor the state of the 

structure’s health, and in case of damage occurrence, identify the characteristics of the 

damage.  In recent years, extensive research work has been performed in the field of 

structural health monitoring and damage identification, Sohn et al. [1] presents a 

comprehensive literature review on the techniques developed in the field between 1996 

and 2001.  For more recent technical development in this discipline, one may refer to the 

proceedings of the International Workshop on Structural Health Monitoring at Stanford 

University [2-4], the Workshop on Structural Health Monitoring in Europe [5-7], the 

Asia-Pacific Workshop on Structural Health Monitoring [8], and the SPIE International 

Symposium on Non-Destructive Evaluation (NDE) for Health Monitoring and 
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Diagnostics [9-14], as well as journals such as the Journal of Structural Health 

Monitoring and the Journal of Nondestructive Evaluation. 

1.1 Structural Damage, Damage Identification, and Health Monitoring 

The definition of damage can be system dependent.  In general, damage can be 

defined as changes introduced into a system that adversely affects its current and/or 

future performance.  As implicitly indicated in this definition, a reference state, which 

represents the undamaged (healthy) state of the system, is required to characterize the 

occurrence of damage.  When the systems that we are concerned about are limited to the 

structural and mechanical systems, damage can be specifically defined as changes to the 

material and/or geometrical properties of these systems, including changes to the joint 

connections and boundary conditions.  Depending on the type of damage and the scenario 

of loading applied to the system, damage can occur and progress in different ways.  In 

terms of length scale, all damage begins at the material level, and then progresses to 

component and system level damage at various rates depending on the loading scenarios.  

In terms of time scale, some damage (e.g. fatigue, creep and corrosion) can accumulate 

gradually over a long period of time, while other damage may occur suddenly in either 

scheduled events or unexpected events, such as aircraft landings, earthquakes, and 

random impact on turbine blades. 

In general, damage will alter the stiffness, mass, or energy dissipation properties 

of a structural system, which in turn alter the dynamic response of the system.  A damage 

identification approach can be developed to detect the presence of damage and if 
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possible, characterize the damage features (e.g., damage type, damage location and 

damage severity) by using the measured dynamic responses of the system before and 

after damage occurrence.  During the normal operational period of the structural system, 

the damage identification process is periodically performed to capture the degradation of 

the structure’s health due to the inevitable aging and degradation resulting from 

operational environments.  When extreme events (e.g., earthquake, random impact and 

blast loading) happen, the damage identification process can be used to perform a real-

time evaluation of the integrity of the structure. 

The process of implementing a structural damage identification approach in an 

engineering structure involves the following steps [1]: (1) operational evaluation, (2) data 

acquisition and signal processing, (3) feature extraction and damage identification. 

Operational evaluation aims to provide preliminary information for the 

implementation of structural damage identification.  The main issues involved in 

operational evaluation include:  

 The economic and/or life safety motives for performing health monitoring and 

damage identification.  For example, the prohibitive cost of removing pipe 

insulation with visual inspection stimulated the research of using Lamb waves 

to detect pipeline corrosion for the oil, chemical and petrochemical industries 

[15], the intention to enhance the safety, reliability and durability of civil 

infrastructures such as bridges and highways motivated the development of 

structural health monitoring system for those infrastructures [16-18], and both 

the direct cost of carrying out preventive inspections and indirect cost 
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associated with the interrupted service stimulated the development of 

structural health monitoring systems for aircraft [19,20].   

 The type and features of the damage that is to be identified.  For example, the 

health monitoring of pipelines for the oil, chemical and petrochemical 

industries is concerned with corrosion under insulation [15], the health 

monitoring of reinforced laminated composites is mainly concerned with layer 

delamination that could substantially reduce the stiffness and the bulking load 

capacity [21,22], and multiple crack damages that causes reduction of bending 

stiffness are the common target when monitoring the health of beam structures 

[23-26].  

 The operational and environmental conditions under which the system being 

monitored is working.  For example, the measurement noise and 

environmental effects such as temperature variation may severely deteriorate 

the damage identification results when resonant frequencies are used as the 

information carrier [27], the detection of delamination in composite plate may 

be obscured by the performance variation of the piezoelectric sensors under 

temperature change and ambient vibration [28].   

 The limitations on acquiring data in the operational environment.  For 

example, Garibaldi et al. [29] demonstrated that the lack of sufficient 

instrument and limitations of measurement points of a bridge testing could 

deteriorate the reliability and credibility of damage identification results for 

the bridge. 
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Data acquisition for structural health monitoring process involves selecting an 

excitation mechanism for vibration testing, selecting the physical quantities to be 

measured as information carrier, choosing an appropriate type of the sensor and 

configuring the placement of sensory system on the structure being monitored, and the 

data acquisition/storage/processing hardware.  The most commonly used excitation 

methods include ambient excitation and forced excitation.  In terms of forced excitation 

for structural testing, a variety of forcing techniques, such as actuator, shaker and impact, 

has been utilized for different applications.  Those physical quantities, which are most 

relevant and sensitive to the structural properties that are being monitored to reflect the 

effect of damage, should be selected as the measurement quantities for the structural 

health monitoring process.  For example, the most commonly measured quantities in 

vibration-based damage identification include acceleration, strain and displacement.  In 

some cases, measurements of other quantities such as temperature, humidity, and wind 

are also required to quantify the environmental conditions of the structural system.  Based 

on the physical quantities selected for measurements and the geometrical configuration of 

the structural system, the type of sensor and the configuration of sensor placement can be 

subsequently determined. 

Feature extraction and damage identification is the part of structural health 

monitoring that receives the most attention in the technical literature.  The process of 

feature extraction aims at identifying damage-sensitive properties from the measured 

structural response, based on which one may distinguish the damaged state of a structure 

from the healthy (undamaged) state.  The best features for damage detection are typically 

application specific.  The most commonly used features for structural health monitoring 
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in the technical literature include vibration signature such as resonant frequencies, mode 

shapes, mode shape curvature, dynamic flexibility and damping properties [30,31],  

electro-mechanical impedance [32], wave propagation properties [33,34] and nonlinear 

dynamic features such as chaotic response and local attractors [35-38].  Structural health 

monitoring and damage identification based on vibration signature will be reviewed in 

detail in the next subsection.  The process of damage identification aims at determining 

the damage state of the structure based on the extracted features from the measurements.  

Different damage identification approaches have different levels of capability in 

characterizing the damage features.  According to the damage information that can be 

obtained through the process of damage identification, the methods can be roughly 

classified into four levels [39],  

Level 1: Determination of the presence of damage in the structure; 

Level 2: Level 1 plus determination of the damage location; 

Level 3: Level 2 plus quantification of the damage severity; 

Level 4: Level 3 plus prediction of the remaining service life of the structural   

              system. 

Most of the current damage identification methods developed in the literature 

belong to the first three levels, while very few methods cover the fourth level since the 

prediction of remaining service life is more related to the field of fracture mechanics and 

fatigue-life analysis, and it requires information about the loading scenario applied to the 

structural system in the future. 
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1.2 Literature Review on Vibration-Based Structural Damage Identification 

Structural damage identification using vibration test data has been quite popular 

in recent years and numerous schemes based on different vibration signature have been 

developed in the literature [1,30,31].  The overwhelming interest in vibration-based 

damage identification is due to its unique advantages as compared with those traditional 

nondestructive evaluation techniques.  The traditional nondestructive evaluation 

techniques such as ultrasonic methods, magnetic field methods, radiography, eddy-

current methods and thermal field methods [40], require that the damage location is 

known a priori and the vicinity of damage site is accessible for local measurement.  

Thus, these traditional techniques can only be utilized to detect damage on or near the 

surface of the structure.  On the other hand, the vibration-based methods utilize 

measurements of global structural response, and thus oftentimes do not require the direct 

accessibility to the damaged spot, which could be advantageous in many applications.  

The basic idea of vibration-based damage identification is that damage in the structure 

will change the structural properties (mass, stiffness and damping) and these changes will 

result in changes in the dynamic characteristics of the global structural response, such as 

natural frequencies, mode shapes, and damping ratios.   

There are several ways to classify the vibration-based damage identification 

approaches.  One of them is based on different types of vibration signatures used for 

damage identification, such as natural frequencies, mode shapes, mode shape curvature, 

frequency response functions, and dynamically measured flexibility.  Another way to 

characterize vibration-based approaches is whether the approach is model-based or non-
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model-based.  Non-model-based approaches simply compare the measured response of 

the potentially damaged structure with that of the healthy structure, and thus they only 

provide Level 1 damage identification and, in some cases, Level 1 and Level 2 damage 

identification.  On the other hand, model-based methods require not only the measured 

responses of the healthy and damaged structures, but also require an accurate model 

(usually finite element model) of the undamaged structure.  In general, model-based 

methods utilize a model updating process to solve for the damage-induced perturbations 

in structural model matrices to reproduce as closely as possible the measured response of 

the damaged structural system.  The most commonly used model updating methods 

include optimal matrix update method, sensitivity-based update method, and 

eigenstructure assignment method.  

1.2.1  Damage Identification Based on Changes in Vibration Signature 

Extensive research work has been performed to develop systematic schemes 

toward identifying structural damage based on changes in vibration signature [1,30,31].  

The most commonly used vibration signature for structural damage identification 

includes natural frequencies, mode shapes, mode shape curvature/strain mode shape, 

frequency response functions, and dynamically measured flexibility. 
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1.2.1.1 Natural Frequencies 

Natural frequency was the first modal property exploited in the field of damage 

identification, and extensive research work has been performed over the past several 

decades.  Salawu [41] presents an excellent review on utilizing changes in measured 

natural frequencies for structural damage identification.  Some representative research 

work performed at the early stage is briefly reviewed in the following. 

Cawley and Adams [42] presented a method based on measured frequency shifts 

to detect damage in composite materials.  For each potential damage location, the 

frequency shift ratios ( i jδω δω ) between a number of mode pairs are calculated from 

the analytic model by assuming a local stiffness reduction at that location.  To identify 

the damage location, an error term is used to correlate the measured frequency shits to 

those predicted from the analytic model.  By comparing the resulting errors for all 

potential damage locations, the actual location of damage is indicated by the lowest error.  

However, this method is only applicable for detection of a single damage location. 

Stubbs and Osegueda [43,44] developed a sensitivity-based method for damage 

identification using measured frequency changes.  A sensitivity-based equation is used to 

describe the relation between the normalized changes of squared frequencies { }δλ , the 

fractional elemental stiffness reduction { }δα  and the fractional elemental mass reduction 

{ }δβ , 

{ } [ ]{ } [ ]{ }k mS Sδλ δα δβ= −  (1.1)
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where [ ]kS  and [ ]mS  are the sensitivity matrices of eigenvalue change with respect to 

variation in elemental stiffness and mass parameters, respectively.  If the damage is only 

related to stiffness reduction in some structural elements while the mass properties are 

not affected, the damage-induced stiffness reduction can be identified by solving the 

general inverse problem, 

The authors demonstrated that this sensitivity-based equation may be significantly 

underdetermined when the number of measured frequencies is much smaller than that of 

the damage parameters.  The pseudo-inverse solution becomes ill-conditioned if the 

system is significantly underdetermined. 

An alternative sensitivity-based approach is proposed by Richardson and Mannan 

[45].  This method requires frequency and mode shape measurements before damage and 

frequency measurements after damage.  Following the same assumption that damage is 

limited to changes in stiffness, a sensitivity equation can be obtained for each mode by 

subtracting two orthogonality equations for the healthy and damaged structures, 

Neglecting the changes in mode shapes, the sensitivity equation reduces to  

This method has the same difficulty as pointed out by Stubbs and Osegueda [43].  

It typically leads to a set of underdetermined equations due to an insufficient number of 

{ } [ ] { }kSδα δλ+=  (1.2)

{ } [ ]{ } { } [ ]{ }
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frequency measurements, and a pseudo-inverse search routine is required for evaluating 

the changes in stiffness. 

Hearn and Testa [46] utilize the ratio of changes in squared natural frequency for 

various modes to identify damage.  Assuming that the damage results in only stiffness 

change and neglecting high-order terms, the relation between the ith natural frequency 

change and stiffness change can be described as 

For the case of single element damage in the nth structural element, the effects of 

damage on the natural frequency shifts of various modes can be reduced to a function of 

the damage location only as 

where e
nK⎡ ⎤⎣ ⎦  is the elemental stiffness matrix positioned in the global stiffness matrix 

[ ]K .  Based on this equation, a two-step procedure can be performed to correlate the 

ratios of the measured frequency changes with the damage location. 

Williams and Messina [47] introduced a new approach called Multiple Damage 

Location Assurance Criterion (MDLAC), which utilizes a correlation coefficient to 

identify the damage vector representing damage-induced stiffness reduction.  The 

correlation coefficient is formulated to match the patterns of two sets of frequency 

changes, { }fδ  and { }fΔ ,   
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where { }fδ  is the frequency changes predicted from a frequency-sensitivity model 

derived from a finite element model, and { }fΔ  is the actual frequency changes from 

experimental measurements.  This MDLAC is similar to the Modal Assurance Criterion 

(MAC) used for comparing mode shapes, and it takes the value of 1.0 for an exact pattern 

match and 0.0 for patterns that are uncorrelated.  From the experimental verification of 

MDLAC method, the authors found that 10 to 15 resonance frequencies are needed to 

provide sufficient information about damage and in practice, errors in frequency 

measurements can affect the ability of the MDLAC approach to give a correct prediction.  

1.2.1.2 Mode Shapes 

The potential of using mode shape information to detect structural damage has 

been investigated by many researchers.  A classical approach of using mode shape 

information to localize the structural damage was presented by West [48].  In this 

approach, modal assurance criterion (MAC) is used to evaluate the level of correlation 

between the mode shapes of the healthy structure and the potentially damaged structure.  

Damage location can be identified by partitioning the mode shapes and observing 

changes in MAC over each partition. 

Later, this classical approach has been extended by several researchers.  Kim et al. 

[49] introduced the use of Partial MAC (PMAC) to compare the MAC values of 

( )
{ } { }

{ } { }( ) { } { }( )

2T

T T

f f
MDLAC D

f f f f

δ
δ

δ δ

Δ
=

Δ Δ
 (1.7)
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coordinate subsets of the modal vectors.  The Partial MAC (PMAC) is used in 

conjunction with the Coordinate MAC (COMAC) to isolate the damaged area of the 

structure.  Salawu and Williams [50] pointed out that the most important factor for 

damage detection using mode shape changes is the selection of the modes used in the 

analysis, and they show that the MAC values can be used to indicate which modes are 

being affected most by the damage.  Ko et al. [51] presented a method that uses a 

combination of MAC, COMAC and sensitivity analysis to detect damage in steel framed 

structures.  Sensitivity analysis is performed to determine the degrees of freedom (DOF) 

that are most relevant under particular damage condition, and the most relevant mode 

pairs are selected by analyzing the MAC between the measured modes of the undamaged 

and damaged structure.  The authors demonstrate that the most effective indicator of 

damage is the COMAC computed on the selected modes and degrees of freedom (DOF) 

that are most relevant to the damage condition. 

1.2.1.3 Mode Shape Curvature/Strain Mode Shape 

An alternative way of using mode shape information for structural damage 

identification is to use mode shape curvature or strain mode shape.  Pandey et al. [52] 

demonstrated that the absolute changes in mode shape curvature can be used as an 

effective indicator of damage for beam structures.  The central difference operator is used 

to compute the mode shape curvature based on the displacement mode shape. 

Stubbs et al. [53] presented a method based on the decrease in modal strain 

energy between two structural DOF, as defined by the curvature of the measured mode 
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shapes.  For a linear elastic beam structure, the damage index for one structural element 

is defined as the ratio of fractional strain energy stored in that element after and before 

damage occurs, and large value of damage index indicates possible damage in that 

element.  Based on the fractional strain energy term, a parameter representing the 

fractional change in bending stiffness can also be defined to quantify the damage 

severity.   

Chance et al. [54] found that numerical calculation of curvature from mode 

shapes resulted in unacceptable errors.  The authors show that the results can be 

dramatically improved by using the measured strains instead of using numerically 

calculated curvature for mode shapes.  Later, Ho and Ewins [55] proposed another 

effective way of computing mode shape derivative when the authors use the mode shape 

slope squared as a feature to identify damage.  To compute the derivative of the mode 

shape, a local polynomial is fit through every four consecutive measurement points and 

the obtained polynomial is then differentiated.  It has been shown that this way of 

computing mode shape derivatives is subject to smaller variations than those typical 

methods using finite difference approximation. 

1.2.1.4 Frequency Response Functions 

Instead of using basic modal properties extracted from the frequency response 

function (FRF) data for damage detection, the measured FRF data itself can be directly 

used for damage detection.  A typical FRF-based damage detection method involves 

minimizing the difference between the analytical and measured FRFs.  Wang et al. [56] 
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formulated a damage detection algorithm utilizing FRF data measured prior and posterior 

to damage occurrence as well as an original analytical model for structural damage 

detection.  The algorithm is derived based on so-called nonlinear perturbation equations 

of receptance FRF data.  The developed algorithm leads to a solution of the damage 

vector indicating both the location and severity of the damage.  The case of incomplete 

measurement on FRF data in terms of coordinates is also addressed by incorporating an 

iterative scheme with the proposed algorithm.   

Trendafilova [57] also used the receptance FRF as damage-sensitive feature for 

structural damage detection.  First, a feature vector is formed by calculating the 

differences between the FRFs of the healthy and the damaged structures at different 

frequency values.  Next, the dimension of this feature vector can be reduced by removing 

these degrees of freedom (DOFs) and frequency areas where the sensitivity of FRF to 

damage is below a certain threshold value.  Finally, the discriminant functions can be 

constructed to localize and quantify the damage.  

Agneni, Crema and Mastroddi [58] utilized the measured frequency response 

functions (FRFs) for both model updating and damage detection.  The measured FRFs are 

used to estimate the mass and stiffness matrices.  The authors also investigated the effects 

of truncation on FRF data and the time signal on the performance of the proposed 

damage detection method. 

Park and Park [59] proposed a method to identify damage locations using a 

reduced dynamic system, which is an inverse of the measured frequency responses.  The 

presented method only needs incompletely measured frequency responses, and more 

importantly, it does not need an accurate analytical mode.  Although an accurate 
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analytical model is not required, this method is very sensitive to the frequency data used.  

To overcome this limitation, the authors tested a weighting function idea for frequency 

selection. 

1.2.1.5 Dynamically Measured Flexibility 

Another class of damage identification methods uses the dynamically measured 

flexibility matrix to estimate changes in the static behavior of the structure.  The 

flexibility matrix, which is defined as the inverse of the static stiffness matrix, relates the 

applied static force and resulting structural displacement.  Each column of the flexibility 

matrix represents the displacement pattern of the structure subjected to a unit force 

applied at the corresponding degree of freedom.  An approximation of the measured 

flexibility matrix can be calculated from the mass-normalized measured mode shapes and 

frequencies. 

A typical approach of using flexibility matrix for damage identification is to 

compare the flexibility matrix synthesized using the modes of the damaged structure to 

the flexibility matrix synthesized using the modes of the undamaged structure or the 

flexibility matrix from a FEM [60-63].   

Alternative methods have also been developed by many researchers, such as the 

unity check method based on the pseudo-inverse relationship between the dynamically 

measured flexibility matrix and the structural stiffness matrix [64-66], the stiffness error 

matrix method based on an error matrix defined as a function of the flexibility change in 

the structure and the undamaged stiffness matrix [67-68], and methods based on changes 
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in the dynamically measured stiffness matrix (the pseudo-inverse of the dynamically 

measured flexibility matrix) and dynamically measured mass matrix [69-70]. 

1.2.2 Damage Identification Using Model Update Methods 

A significant part of research work in vibration-based damage identification is 

contributed to model updating methods, which normally use a finite element model.  The 

basic idea of model updating methods is to solve for the perturbations of structural model 

matrices such as mass, stiffness and damping to reproduce as closely as possible the 

measured response of the damaged system.  The perturbations of structural model 

matrices, as an indicator of damage, can be used to quantify the location and extent of the 

damage.   

The model updating methods are fundamentally optimization methods, since they 

normally use a constrained optimization scheme to solve for the updated model matrices 

or perturbations of the nominal model matrices.  The difference between various model 

update algorithms are from the objective function, the constraints, and the numerical 

scheme used to implement the optimization.  One common feature that can be used as 

both objective function and constraint for various methods is the modal force error or 

residual force, { }iE , which can be defined as  

( ) ( )( ){ } { }2d h d h h d
i i ii

M C K Eλ λ ϕ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (1.8)
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where d
iλ  and { }d

i
ϕ  are the ith eigenvalue and eigenvector of the damaged structure, 

respectively.  A physical meaning of this modal force error vector is that it represents the 

required harmonic force excitation applied to the healthy structure ( hM⎡ ⎤⎣ ⎦ , hC⎡ ⎤⎣ ⎦ , and 

hK⎡ ⎤⎣ ⎦ ) at the frequency of d
iλ  so that the structure would respond with mode shape [71]. 

The damage-induced matrix perturbations, [ ]MΔ , [ ]CΔ  and [ ]KΔ , can be obtained 

through solving the following equation 

Typical constraints for the optimization problem include preservation of the 

property matrix symmetry, preservation of the property matrix sparsity, and preservation 

of the matrix positivity.  

Various model update/damage detection methods have been developed, and they 

can be classified into three distinct groups: optimal matrix update method, sensitivity 

based method, and eigenstructure assignment method. 

1.2.2.1 Optimal Matrix Update Method 

The goal of optimal matrix update approach is to find a minimal perturbation to 

each of the original system matrix, or an updated matrix closest to the original one so that 

the updated matrices reproduce the measured modal properties.  The optimal matrix 

update methods use a closed-form direct solution to solve for the system matrices of the 

damaged structure or the matrix perturbations due to the damage.  One may refer to 

( ) [ ] ( )[ ] [ ]( ){ } { }2d d d
i i ii

M C K Eλ λ ϕΔ + Δ + Δ =  (1.9)
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Zimmerman and Smith [72], Hemez [73], and Kaouk [74] for reviews of this class of 

methods.  The problem of optimal matrix update is generally formulated as a Lagrange 

multiplier or penalty-based optimization, which can be written as 

where J  is the objective function, R  is the constraint function, and λ  is the Lagrange 

multiplier or penalty constant. 

The most common formulation of optimal matrix update problem, presented by 

Kabe [75] and Berman and Nagy [76], is to minimize the Frobenius norm of parameter 

matrix perturbations under the constraints of zero modal force error and preservation of 

property matrix symmetry.  Later, Smith and Beattie [77] extend this common 

formulation by including a sparsity preservation constraint, and reformulating the 

problem as minimizing both the perturbation matrix norm and the modal force error norm 

subject to the symmetry and sparsity constraints.  An alternative approach is presented by 

Kammer [78], where the optimization problem is formulated as minimization of modal 

force error with a constraint on property matrix symmetry. The symmetry constraint is 

used to preserve the reciprocity condition in the updated structural model. 

Another type of approach to the optimal matrix update problem is formulated as 

to minimize the rank of the perturbation matrix instead of the norm of the perturbation 

matrix.  The basic idea of this approach is that the perturbation matrices are in small rank 

since the damage is generally concentrated in a few structural members.  The solution of 

the perturbation matrices is based on the theory that there exists a unique minimum rank 

matrix solution for an underdetermined system if a symmetry constraint is applied. 

( ) ( ){ }
, ,

, , , ,
M C K

Minimize J M C K R M C Kλ
Δ Δ Δ

Δ Δ Δ + Δ Δ Δ  (1.10)
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This approach, called the minimum rank perturbation theory (MRPT), has been 

extensively studied.  First, Zimmerman and Kaouk [79] present the basic MRPT 

algorithm, where a nonzero entry in the damage vector is used as indicator of damage 

location.  Later this algorithm is further developed to simultaneously estimate the 

perturbations of two property matrices by using complex conjugates of the modal force 

error equation [80].  Kaouk and Zimmerman [81] further extend the MRPT algorithm to 

simultaneously estimate the mass, stiffness, and proportional damping perturbation 

matrices.  Kaouk and Zimmerman [82] introduce a partitioning scheme into the MRPT 

algorithm to reduce the rank of the unknown perturbation matrices, and thus reduce the 

number of modes required to successfully locate the damage.  Zimmerman et al. [83] 

extend the theory to determine matrix perturbations directly from measured FRFs.  The 

benefits of this enhanced theory include releasing the need to match modes between FEM 

and test, reducing the number of frequency measurements in the test, and releasing the 

need to perform modal parameter identification.  Zimmerman et al. [84] addressed some 

practical issues for implementing the MRPT techniques to detect damage, such as 

determining the number of measured modes, filtering of the eignvectors and the damage 

vector, and decomposition of the damage vector into contributions from individual 

property matrices.  

1.2.2.2 Sensitivity Based Model Update Method 

Sensitivity based model update methods are based on the solution of a first-order 

Taylor series that minimizes an error function of the matrix perturbations.  Reviews of 
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the various sensitivity-based model update techniques are given by Mottershead and 

Friswell [85], Firswell and Mottershead [86] and Link [87].  

One class of sensitivity based model update methods involves the eigen-

sensitivity, i.e., the derivative of eigenvalues and mode shapes with respect to physical 

design parameters.  The eigen-sensitivity can be calculated from either the experimental 

data [88] or the analytical modal data [89,90].  Ricles [91] presented a model update 

method based on a hybrid analytical/experimental sensitivity matrix, where the modal 

parameter sensitivities are computed from the experimental data, and the matrix 

sensitivities are computed from the analytical model.  Hemez [92] presented another 

update procedure based on sensitivity formulation at the element level, which 

significantly reduces the computational cost compared to formulation at the global matrix 

level.  Jung [93] developed an eigen-sensitivity based method for finite element (FE) 

model updating method, and the FE model are updated iteratively using pseudo-inverse 

of the sensitivity matrix, which is calculated using analytical modal data.  Later, Lin et al. 

[94] improved this eigen-sensitivity based model update method by addressing the issue 

of non-unique inverse solution of the sensitivity matrix, due to its underdetermined or ill-

conditioned nature.    

Another class of sensitivity based model update methods utilizes the sensitivity of 

frequency response function (FRF) with respect to physical parameters.  Lin and Ewins 

[95,96] developed an effective model update method, where a sensitivity-based equation 

is formulated by utilizing the correlation between analytical and measured frequency 

response function data.  Considering the practical difficulty of measuring FRF data at all 

the coordinates specified in the analytical model, the method is extended to the case of 
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incomplete measurement by introducing an iteration scheme in the update process.  It has 

been shown that the proposed method using FRF data outperforms the method using 

modal data, since the measured FRF data provides much more information in a desired 

frequency range than the modal data.  They also claim that the methods using modal data 

are discrete versions of the methods using FRF data.  

1.2.2.3 Eigenstructure Assignment Based Method 

Another class of model update methods is eigenstructure assignment based 

method.  The core of this type of methods is to design a fictitious/virtual feedback 

controller to produce the measured modal properties of the damaged structure, and then 

interpret the control gains as damage-induced matrix perturbations applied to the initial 

finite element model.  Inman and Minas [97] and Zimmerman and Widengren [98] used 

the eigenstructure assignment techniques for refinement/correction of an analytical 

model.  Later, Zimmerman and Kaouk [99] extended this eigenstructure assignment-

based model refinement/correction technique by introducing a subspace rotation 

algorithm to enhance eigenvector assignability and an iterative algorithm to enforce the 

load path preservation, and the extended technique was applied to the problem of 

structural damage detection. To avoid the additional step of identifying the damaged 

structural members from matrix coefficient changes, Lim [100] introduced a method 

based on the concept of best achievable eigenvector, which can directly identify the 

damaged structural members. Specifically, the Euclidean distance between the measured 

mode shape and the best achievable eigenvector is used to locate damage, and the 
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eigenstructure assignment technique is used to estimate the magnitude of the damage by 

requiring the best achievable eigenvectors, undamaged modal matrices, and the fictitious 

controller satisfying the modal force error equation.  Lim [101] applied a constrained 

eigenstructure technique experimentally to a 20-bay planar truss structure.  The concept 

of best achievable eigenvector is employed to perform the expansion of test mode shapes 

so that the measured mode shapes are not required to be comprehensive of all degree-of-

freedoms, and the burden of measurement instruments can be relieved.  

1.3 Problem Statement and Research Objective 

Vibration-based damage identification methods have been quite popular in recent 

years.  As a type of global damage detection method, the vibration-based methods do not 

require that the vicinity of the damage spot be known a priori or the damage site be 

accessible for inspection, and thus could be advantageous for many practical applications.  

In current practice of vibration-based damage identification, natural frequencies 

(eigenvalues) and mode shapes (eigenvectors) have been the most frequently used 

vibration signature to carry the damage information.  Most of the approaches developed 

in the literature, such as the model updating methods using modal data, require both 

natural frequency and mode shape measurements to update or reconstruct the mass and 

stiffness parameters.  However, mode shape measurement is usually incomplete since it 

requires a large number of sensors or a sensory network to approximate the infinite 

number of degrees of freedom (DOF) in real distributed parameter structures, and the 

mode expansion or model reduction techniques inevitably deteriorate the solution of the 
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eigenvalue equation through the inverse approaches [102,103].  Moreover, the mode 

shape measurement is very sensitive to noise and environmental uncertainty [104].  On 

the other hand, the measurement of natural frequencies is quite straight forward, and they 

are much less sensitive to measurement errors compared with mode shape measurement 

[105].  Thus, natural frequencies give more reliable evidence of damage in a structure, 

and these damage identification methods that require only measured natural frequencies 

(hereafter referred as frequency-shift-based methods [41]) are generally more preferred 

than those that require both measured natural frequencies and mode shapes. 

Although easy to implement and robust to measurement noise and uncertainty, the 

frequency-shift-based methods have severe practical limitations for real applications.  

One of the limitations is related to the deficiency of frequency measurement data, i.e., the 

number of measurable natural frequencies is usually much smaller than the number of 

physical parameters that are required to characterize the damage state.  This issue has 

been clearly demonstrated and verified by many researchers in different types of 

approaches.  Stubbs and Osegueda [43,44] demonstrated that the sensitivity equation may 

be severely underdetermined due to an insufficient number of frequency measurements, 

and the solution resulted from the pseudo-inverse search routine may be ill-conditioned.  

Richardsom and Mannan [45] also reported that the sensitivity equation may be 

underdetermined due to an insufficient number of frequency measurements when they 

use an alternative sensitivity based approach for damage detection.  The issue of an 

underdetermined problem also exists for the eigen-sensitivity based model update 

methods [93,94].  Due to an insufficient number of measured frequencies, the resulting 

sensitivity matrix may be underdetermined or ill-conditioned, and thus the inverse 
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operation on the sensitivity matrix that is critical for model parameter updating may not 

have a unique solution.  The number of frequency measurements required to avoid the 

underdetermined problem is generally much larger than the number of natural 

frequencies that can be accurately identified from the experimental modal analysis in real 

practice.  For example, Williams and Messina [47] found that 10 to 15 resonance 

frequencies are needed to provide sufficient information about damage, when they use 

Multiple Damage Location Assurance Criterion (MDLAC) to identify stiffness reduction 

due to damage.  Messina et al. [106] pointed out that more than 10 measured modal 

frequencies are required for detecting multiple damage locations, when they use a 

sensitivity-based method in combination with statistical correlation to detect damages in 

truss and three-beam test structures.  Therefore, the insufficient number of frequency 

measurements could be the severe bottleneck for the implementation of frequency-shift-

based damage identification method in real applications. 

Another severe limitation of the frequency-shift-based damage identification 

methods is related to the low sensitivity of natural frequency shift with respect to damage 

effects.  This issue has been demonstrated both analytically and experimentally.  For 

example, Swamidas and Chen [107] use finite element method to study the resonant 

frequencies of a cracked cantilevered plate, and results show that a surface crack near the 

root of the plate with a width of 40% of plate width and depth of 70% of plate thickness 

produces frequency shifts in the first two bending modes of 0.68% and 0.27%, 

respectively.  The low sensitivity of frequency shift to damage effect has also been 

experimental illustrated.  Adams et al. [108] studied the shifts in resonant frequencies of 

an aluminum bar under axial loading when it is artificially damaged by two saw cuts on 
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opposite sides of the bar.  When damage is located at the center of the bar and thirty 

percent of the cross-sectional area is removed, the resonant frequencies of the first three 

modes are only reduced by 0.8%, 0.0%, and 0.8%, respectively.  With the same level of 

damage located at the end of the bar, frequency shifts of the first three modes are still as 

low as 0.7%, 1.3% and 1.0%, respectively.   Experimental tests conducted on the I-40 

bridge over the Rio Grande by Farrar et al. [109] also demonstrate this point.  No 

significant changes in the modal frequencies were observed even when the cross-

sectional stiffness at the center of a main plate girder had been reduced 96.4%, which 

leads to a 21% reduction on the bending stiffness of the overall bridge cross-section.  Due 

to the low sensitivity of frequency shifts to damage effects, it requires either very precise 

measurement or a large level of damage to make the frequency shifts observable.  Since 

measurement noise is inevitable in real situations, the measured frequency shifts for small 

levels of damage may be severely distorted by the effects of measurement noise, or even 

can not be observed in some cases.  Therefore, either the mission of detecting damage at 

its early stage becomes impossible, or if possible, the obtained damage detection results 

may not be reliable due to the noise effects on the measured natural frequency changes. 

From reviewing the previous practice and findings, the objective of this thesis is 

to advance the state-of-the-art of the frequency-shift-based damage identification by 

addressing the aforementioned two limitations of this method, i.e., the deficiency of 

frequency measurement data and low sensitivity of frequency shifts to damage effects. 

First, a novel approach utilizing piezoelectric transducer circuitry with tunable 

inductance is developed to address the issue of deficiency of frequency measurement data 

for damage identification.  The key idea is to use a tunable piezoelectric circuitry coupled 
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to the mechanical structure to favorably alter the dynamics of the electro-mechanical 

integrated system. First, the circuitry can be tailored to change the system 

frequency/modal distribution by introducing additional resonant frequencies and 

vibration modes.  Second, through tuning the circuitry elements (i.e., the inductors), one 

can obtain a much enlarged dataset consisting of a family of frequency response functions 

(under different circuitry tunings) as compared to the original single frequency response 

of the mechanical structure without circuit.  Therefore, by integrating tunable 

piezoelectric circuitry to the structure and favorably tuning the circuitry elements, we can 

obtain a much enlarged dataset of natural frequency measurements for damage 

identification. 

To address the sensitivity issue, another new approach utilizing sensitivity-

enhancing feedback control is then proposed.  This new approach has the potential of 

simultaneously solving the two major limitations of the frequency-shift-based damage 

identification.  The basic idea of this approach is to use active feedback control to 

appropriately assign the closed-loop eigenvalues and eigenvectors so that the sensitivity 

of frequency shift to damage effects can be enhanced.  Meanwhile, multiple closed-loop 

systems can be obtained from different sensitivity-enhancing controls, and these closed-

loop systems provide a much enlarged dataset of natural frequency measurements for 

damage identification.  Therefore, by designing a series of sensitivity-enhancing controls 

and utilizing the natural frequencies of the resulting closed-loop systems for damage 

identification, both of the aforementioned limitations of the frequency-shift-based 

damage identification can be overcome. 
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The major issue of implementing the above two enhanced damage identification 

methods is that they require an accurate finite element model for circuit/controller design 

and system analysis.  There are two ways to address this issue: (1) one way is to use 

model updating techniques to obtain an accurate finite element model, and hence satisfy 

this requirement; (2) the other way is to use system identification techniques to identify a 

model directly from experimental data, and hence frees the requirement of having an 

analytical model.   

In fact, both of the proposed two damage identification methods can be extended 

for the application of structural model updating.  With this, we can use the same set of 

hardware setup and measure the same physical quantity (i.e., natural frequency) for both 

functions of model updating and damage identification.  Without loss of generality, this 

thesis only focuses on extending the sensitivity-enhancing control approach for structural 

model updating.  

A laboratory experiment is designed and conducted to verify the sensitivity-

enhancing control approach for frequency-shift-based damage detection.  In the 

experiment, a system identification technique is utilized to identify a mathematical model 

directly from test data for controller design and system analysis, and hence does not need 

an analytical model as in the original approach. 

1.4 Organization of the Thesis 

This thesis consists of six chapters, and they are organized as follows: 
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Chapter 1 introduces the background and motivation for the research presented in 

this thesis.  A comprehensive review of the literature related to the research topics in this 

thesis is provided, problems of the current approaches are described, and the research 

objective of this thesis is stated.  

Chapter 2 presents the enhanced frequency-shift-based damage identification 

method using tunable piezoelectric circuitry.  The fundamental mechanism of using 

tunable piezoelectric circuitry to enhance frequency measurement data for damage 

identification is described.  Guidelines on how to tune the circuitry elements (i.e., 

inductors) to achieve the best performance of damage identification are developed.  An 

iterative second-order perturbation based damage identification algorithm is developed to 

identify the damage features from the measured frequency changes before and after 

damage occurrence.  Numerical analyses and case studies are carried out to demonstrate 

and verify the proposed method. 

Chapter 3 presents another enhanced frequency-shift-based damage identification 

method using sensitivity-enhancing feedback control.  The original concept of sensitivity-

enhancing control is extended through eigen-sensitivity analysis of a multi-DOF system. 

An eigenstructure assignment based constrained optimization scheme is developed to 

design the optimal sensitivity-enhancing control to achieve the best performance of 

sensitivity enhancement.  Numerical analyses and case studies are carried out to verify 

the concept of sensitivity-enhancing control, and demonstrate the effectiveness of the 

associated damage identification method.   

Chapter 4 presents a model updating method to fulfill the requirement of an 

accurate finite element model for the sensitivity-enhancing control approach of damage 
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identification.  A frequency-based model updating method is developed using the same 

concept of sensitivity-enhancing control as used for damage identification.  With this, the 

sensitivity-enhancing control approach can be used for dual functions of model updating 

and damage identification. 

In Chapter 5, a laboratory experiment is designed and carried out to verify the 

sensitivity-enhancing control approach for damage detection. The experiment uses a 

system identification technique to identify a mathematical model for controller design 

and system analysis, and hence does not require an analytical finite element model 

(which is needed in the original approach).   

Finally, Chapter 6 concludes the research work presented in this thesis and 

recommends future directions towards the improvement and implementation of the 

damage identification methods developed in this thesis. 



 

Chapter 2 
 

An Enhanced Frequency-Shift-Based Damage Identification Method Using Tunable 
Piezoelectric Transducer Circuitry Network 

2.1 Introduction 

Although the frequency-shift-based damage identification methods have been 

quite popular in recent years, the current practice of frequency-shift-based damage 

identification methods, nevertheless, has severe limitations.  One common limitation for 

most frequency-shift-based methods, either inverse approach or model update approach, 

is the deficiency of frequency measurement data for the process of damage identification.  

When the number of measured natural frequencies is much smaller than the number of 

physical parameters required to completely characterize the damage, the sensitivity based 

equation becomes severely underdetermined and the pseudo-inverse approach may lead 

to an ill-conditioned solution.  Therefore, the deficiency of frequency measurement data 

could be the severe bottleneck for the implementation of frequency-shift-based damage 

identification method in real applications. 

To address this issue, several methods aiming to enrich frequency measurement 

data have been proposed in the literature.  For example, Trivailo et al. [110] proposed the 

use of “Twin” structures, where an auxiliary structure is attached to the test structure, to 

generate more modal information.  Cha and Gu [111] explored a mass addition technique 

to enrich the modal data for structural parameter updating.  They show that the mass 

matrix can be corrected by adding known masses to a multi-spring-mass system and 
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measuring its new eigendata, and subsequently, the stiffness matrix can also be updated 

by constructing a new mass-added system and equating the associated eigenvalue 

equations.  Nalitolela et al. [112] studied the feasibility of adding a mass or stiffness to 

extract additional resonant frequencies.  However, it is worth mentioning that the direct 

addition of mass/stiffness to a structure might be difficult to implement for many 

applications and encounter physical restrictions.  To overcome this difficulty, Lew and 

Juang [113] introduced a new concept of using virtual passive controller to enrich the 

modal frequency measurement.  They show that both output and dynamic feedback 

controllers can be incorporated to the original structure to generate additional closed-loop 

modal frequencies.  In this approach, while no physical mass or stiffness are attached to 

the structure, it requires a complex sensor-actuator-controller architecture and a certain 

amount of external input energy as controller source. 

In this chapter, a novel approach utilizing piezoelectric transducer circuitry with 

tunable inductance to enrich frequency measurement data is proposed.  The key idea is to 

use a tunable piezoelectric circuitry coupled to the mechanical structure to favorably alter 

the dynamics of the electro-mechanical integrated system.  First, the circuitry can be 

tailored to change the system frequency/modal distribution by introducing additional 

resonant frequencies and vibration modes.  Second, through tuning the circuitry elements 

(i.e., the inductors), one can obtain a much enlarged dataset consisting of a family of 

frequency response functions (under different circuitry tunings) as compared to the 

original single frequency response of the mechanical structure without circuit.  This 

approach is analogous to adding extra mechanical spring-mass elements to the structure 

[111,112].  However, electrical tailoring with variable circuitry is much easier to 
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implement than mechanical tailoring in real systems.  On the other hand, compared with 

the schemes based on active feedback control [113], while the proposed approach also 

requires attachment of additional physical element (i.e., piezoelectric transducers) to the 

structure, it does not require a complex sensor-actuator-controller architecture and 

significant external energy source.   

The organization of this chapter is as follows.  First, the new idea of integrating 

tunable piezoelectric transducer circuitry is described.  The fundamental mechanism of 

using piezoelectric transducer circuitry with tunable inductance to enrich frequency 

measurement data is illustrated.  Second, an iterative second-order perturbation based 

damage identification algorithm is formulated.  This algorithm takes into account the 

damage-induced mode shape changes by including high order terms into the eigenvalue 

perturbation formulation, and actual measurements of mode shapes before and after 

damage are not required for this algorithm.  Third, guidelines on favorable inductance 

tuning that can yield optimal damage identification performance are developed.  The 

enrichment of frequency measurement data can most effectively capture the damage 

information when the inductances are tuned to accomplish eigenvalue curve veerings 

between system eigenvalue pairs.  Finally, numerical analyses on benchmark beam and 

plate structures are carried out to verify the improvement of damage identification 

performance by using the proposed approach. 
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2.2 New Idea of Integrating Tunable Piezoelectric Circuitry 

Piezoelectric materials have been explored extensively for structural dynamics 

applications because of their electro-mechanical coupling characteristics.  The direct 

effect of producing an electrical charge when stressed mechanically has been often used 

in sensors to sense structural deformation, while the converse effect of producing a 

mechanical strain under electrical field has been used in actuators to alter the dynamic 

response of the structural system.  Due to such two-way electro-mechanical coupling, 

piezoelectric materials have been widely used for both active and passive vibration 

control applications.  In a purely active arrangement, electrical field or charge is applied 

to the piezoelectric actuators (either surface bonded to or embedded in the host structure) 

to generate control force/moment.  In a passive situation, an external shunt circuit is 

usually integrated to the piezoelectric material [114-116].  Shunting the piezoelectric 

materials, on the other hand, does not preclude the simultaneous use of the shunted 

piezoelectric materials as active actuators [117].  In fact, a well designed active-passive 

hybrid piezoelectric actuator network [118-121] not only could enhance the active control 

authority, but also could increase the system passive damping.  

While previous work in this area was mostly limited to actuation improvement 

and damping augmentation for vibration control applications, in this paper we will 

develop a new paradigm for damage identification using piezoelectric transducers 

integrated with tunable inductance circuitry.  The tunable inductance can be easily 

achieved by utilizing synthetic inductors [122-126].  The synthetic inductors are normally 

designed as small-size electronic devices, and they can provide a wide range of 
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inductance tuning up to thousands of Henries, with high accuracy and high robustness 

against system and environmental variations.  As explained in the following paragraphs, 

this new idea will effectively address the limitations of current frequency-shift based 

damage identification approaches.   

A schematic of the electro-mechanical integrated system with piezoelectric 

transducer circuitries is shown in Figure 2.1(a), where each transducer is connected with 

a circuit consisting of a tunable inductor.  Figure 2.1(b) shows the circuit diagram of an 

op-amp based synthetic inductor, where the inductance can be varied by adjusting the 

resistance RT.  The equation of motion for a general electro-mechanical integrated system 

shown in Figure 2.1(a) can be written as [118-121] 

 

                         (a)  
 

(b)            
Figure 2.1. (a) Structure integrated with piezoelectric transducer circuitry with tunable
inductance (b) Op-amp based circuit realization of tunable inductance, where inductance 
can be varied by adjusting RT. 



36 

where q  is the displacement vector of the structure, Q  is the electrical charge flow 

vector in the circuit, sM , C , and sK  are the mass, damping and stiffness matrices of the 

mechanical structure, respectively, L , R , and pK  are the inductance, resistance, and 

inverse capacitance matrices of the circuit, cK  is the coupling term between the 

mechanical and electrical fields, dF  is the excitation input. 

In this research we use the shifts of natural frequencies as the information carrier 

for structural damage identification.  The key concept of the proposed approach is to use 

the tunable piezoelectric circuitry to enrich the modal frequency measurement.  First, the 

circuitry can be tailored to change the system frequency/modal distribution by 

introducing additional resonant frequencies and vibration modes.  Second, through tuning 

the circuitry elements (e.g., inductors), one can further obtain a much enlarged data set 

consisting of a family of frequency response functions (under different circuitry tunings) 

as compared to the original single frequency response of the structure without circuit.  

These features are clearly illustrated in Figure 2.2 and Figure 2.3, where the frequency 

response functions of the pure mechanical structures and the associated electro-

mechanical integrated systems are compared.   

 First, we study the effect of integrating single tunable piezoelectric circuitry on 

the frequency response function of the resulting integrated system.  A cantilevered beam 

integrated with single tunable piezoelectric circuitry (this system, as shown in Figure 2.5, 

will be analyzed in detail in Section 2.4.1) is used as an example system.   

s cs d
T
c p

⎡ ⎤⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
+ + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦

K KM 0 q C 0 q q F
K K0 L Q 0 R Q Q 0
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Figure 2.2 compares the frequency response functions of the pure beam structure 

and the integrated system with single piezoelectric circuitry.  For the pure beam structure, 

the input excitation is a nodal force at the fourth node, and output measurement is the 

transverse displacement at the free-end of the beam. For the electro-mechanical 

integrated system, the same output measurement is used, while a voltage source in the 

 

(a)  

(b)  
Figure 2.2. Frequency response comparisons between the pure beam structure and the
electro-mechanical integrated system with single tunable piezoelectric circuitry:
(a) 6.5HL = ; (b) 1.5HL = . 
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circuit is used as the input excitation.  Observing Figure 2.2(a), we can clearly see that an 

additional resonant peak contributed by the circuitry dynamics is introduced into the 

frequency response function near the second structural resonant frequency.  The 

frequency response function of the integrated system with a different inductance value is 

shown in Figure 2.2(b), where the additional resonant peak shifts to the neighborhood of 

the third structural resonant frequency.   

In order to illustrate the effect of integrating multiple tunable piezoelectric 

circuitries on the frequency response function of the resulting integrated system, a 

cantilevered plate structure integrated with three tunable piezoelectric circuitries (this 

system, as shown in Figure 2.11, will be analyzed in detail in Section 2.4.2) is used as an 

example system.  The frequency response functions of the pure plate structure and the 

resulting integrated system are compared in Figure 2.3.  As shown in Figure 2.3(a), three 

additional resonant peaks contributed by the dynamics of three piezoelectric circuitries, 

respectively, are introduced into the frequency response function near the third, fourth, 

and fifth resonant frequencies of the original plate structure, respectively.  The frequency 

response function of the integrated system with a different set of inductance values is 

shown in Figure 2.3(b), where the additional three peaks shift to the neighborhood of 

first, second and third structural resonant frequencies, respectively.   

  In current practices, damage identification using frequency-shift information is 

usually a severely under-determined problem.  Since it is generally difficult to measure 

the resonant frequencies at high-frequency band, in current approaches the number of 

measurable resonant frequencies is much smaller than the number of degrees of freedom 

required to accurately characterize the structural damage.  Clearly, the proposed method 



39 

of using tunable piezoelectric circuitry can significantly enlarge the data set and address 

this issue.  As will be shown later, this new idea, when coupled with an identification 

algorithm presented in what follows, will yield much more accurate damage detection 

results. 

 

(a)  

(b)  
Figure 2.3: Frequency response comparisons between the pure plate structure and the
electro-mechanical integrated system with multiple tunable piezoelectric circuitries:
(a) 1 0.91HL = , 2 1.25HL = , 3 1.96HL = ; (b) 1 84.6HL = , 2 1.7 HL = , 3 14.3HL = . 
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2.3 Iterative Second-Order Perturbation Based Damage Identification Algorithm 

In this section, the concept of integrating tunable piezoelectric transducer circuitry 

is incorporated into a sensitivity-based model updating scheme to form the damage 

identification algorithm, which is used to identify both the locations and severities of the 

structural damages.  From Eq. (2.1), the generalized mass and stiffness matrices of the 

electro-mechanical integrated system as shown in Figure 2.1(a) are given as  

Neglecting damping, we can obtain the eigenvalue problem of the integrated 

system associated with the undamaged (healthy) structure, 

where iλ  and iφ  are the ith  eigenvalue and eigenvector of the undamaged system, 

respectively. 

Following the common assumption used in literature, the structural damage is 

assumed to be only related to the structure stiffness.  Therefore, the stiffness matrix of the 

integrated system has a change of δK  after the structure is damaged, while the mass 

matrix of the integrated system remains the same, i.e.,  

s⎡ ⎤
= ⎢ ⎥
⎣ ⎦

M 0
M

0 L
 (2.2)

s c
T
c p

⎡ ⎤
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K K
K

K K
 (2.3)

( ) 0i iλ− + =M K φ ,     where 1, ,i N=  (2.4)

d =M M  (2.5)

d δ= +K K K  (2.6)
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The eigenvalue problem of the integrated system associated with the damaged 

structure can be written as 

where d
iλ  and d

iφ  are the ith eigenvalue and eigenvector of the damaged system, 

respectively, and can be expressed as 

2.3.1 First-Order Approximation-Based Damage Identification Algorithm  

Substituting Eqs. (2.5), (2.6), (2.8) and (2.9) into Eq. (2.7), and neglecting the 

high order terms, we may obtain the first-order approximation of the eigenvalue change, 

In a finite element model (FEM), the global stiffness matrix of the mechanical 

structure can be expressed as the direct summation of all elemental stiffness matrices 

where e
jK  is the elemental stiffness matrix of the jth element positioned within the global 

stiffness matrix sK , en  is the number of elements used to discretize the structure,  and 

jα  is the associated elemental stiffness parameter, which is defined as such that 1jα =  

indicates no damage.  Assuming that the unknown damage inside the structure causes 

( ) 0d d d
i iλ− + =M K φ ,       where 1, ,i N=  (2.7)

d
i i iλ λ δλ= +  (2.8)

d
i i iδ= +φ φ φ  (2.9)

T
i i iδλ δ= φ Kφ  (2.10)
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s j j
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α
=

=∑K K  (2.11)



42 

variations of elemental stiffness parameter by ( )1, ,j ej nδα = , we may express the 

global stiffness matrix of the damaged mechanical structure as 

Observe Eq. (2.3) which is the expression of the generalized stiffness matrix of 

the integrated system, clearly, the inverse capacitance matrix of the inductive circuit pK  

and the coupling term cK  both remain the same after the structural damage occurs.   

Therefore, the change of the generalized stiffness matrix of the integrated system is only 

caused by the change of the global stiffness matrix of the mechanical structure, and can 

be expressed as 

where e
jK  is the elemental stiffness matrix of the jth element positioned within the 

generalized stiffness matrix of the integrated system K .  Substituting Eq. (2.13) into 

Eq. (2.10), we can obtain the following relation, 

Eq. (2.14) is the relation for the ith eigenvalue change.  Collecting the available changes 

of respective eigenvalues, we may obtain,  

where 
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Which, respectively, are the vector of the damage-induced eigenvalue changes and the 

vector of damage-induced stiffness parameter variations.  Here S  is the sensitivity 

matrix whose elements can be expressed as  

In above expressions, m  is the number of measured (available) resonant frequencies of 

the integrated system, and en  is the number of elements used in the finite element model 

of the structure.  

At this point, it is obvious that the identification of the location and severity of the 

unknown structural damage is equivalent to solving for δα , the vector of elemental 

stiffness parameter variations.  Because the number of measured frequencies m  is in 

general much smaller than the total number of structural elements en , Eq. (2.15) is 

usually a significantly underdetermined problem and one normally resort to approximate 

solutions through a pseudo inverse search routine [43-45].   

One of the key features of integrating tunable piezoelectric transducer circuitry to 

the structure is that we will be able to obtain multiple frequency response functions (with 

different inductances) and their changes due to (the same) damage.  Note that Eq. (2.15) 

is derived for a single set of inductance values, we may obtain a series of such equations 

corresponding to different sets of inductance values, which leads to a much enlarged 

1 2

T

mδ δλ δλ δλ⎡ ⎤= ⎣ ⎦λ  (2.16)

1 2 e

T
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T e
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dataset for damage identification.  Let the inductances in the piezoelectric transducer 

circuitry network be tuned to form a sequence ( )( ) 1,2, ,i i n=L  

where the number of columns, p , represents the number of tunable piezoelectric 

transducer circuitries integrated to the mechanical structure, and the number of rows, n , 

represents the number of inductance tuning sets.  A set of simultaneous equations similar 

to Eq. (2.15) can then be obtained and these equations can be written in the matrix form 

as follows 

This formulation clearly illustrates the advantage of using tunable piezoelectric circuitry.  

We can now significantly increase the number of measurements in eigenvalue changes 

(or frequency shifts) and thus increase the number of simultaneous equations that 

characterize the damage features.  In other words, we can make the problem much less 

underdetermined. 
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2.3.2 Iterative Perturbation-Based Damage Identification Algorithm 

The main limitation of the first-order approximation-based algorithm is that the 

information regarding the change in eigenvectors (mode shapes) is not included.  

Although mode shape changes can be neglected in some cases, it deteriorates the 

accuracy of damage identification when the damage level is high or when the mode 

shapes are sensitive to the damage.  Therefore, an improved algorithm which includes the 

information about the change in mode shape is highly desirable.  Wong et al. [127] 

developed a general high-order perturbation expression for the eigenvalue problem with 

changes in stiffness, and the perturbation method is used iteratively in conjunction with 

an optimization method to identify the stiffness parameters of the structure.  In what 

follows, we use a second-order perturbation to describe the changes of eigenvalues, 

which leads to the inclusion of the information of damage-induced mode shape changes.  

The changes of the kth eigenvalue of the integrated system after damage occurrence can 

be expressed as 

where (1)
kS , (2)

kS are the first and second order perturbation coefficients for the kth 

eigenvalue, respectively.  They can be expressed as 

where ( )(1)
k iD  is the coefficient vector of the first-order perturbation for the kth mass- 
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normalized eigenvector 

and can be calculated as follows, 

For a given set of inductance values, (0) (0) (0) (0)
1 2 pL L L⎡ ⎤= ⎣ ⎦L , a second-order 

perturbation based equation can be obtained as  

When we tune the inductances to form a sequence as ( )( ) 1,2, ,i i n=L  and 

perform frequency (eigenvalue) measurements, correspondingly we may obtain a series 

of eigenvalue change equations, which, collectively, lead to a set of equations in the 

following form, 
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For the nonlinear equation, Eq. (2.28), a constrained optimization method is 

needed to find the approximate solution of δα .  The constrained optimization problem is 

formulated to minimize the norm of the difference between the actual eigenvalue change 

( actualδ λ ) from the frequency response measurement, and ( )δ δλ α , the eigenvalue 

change produced by the estimated stiffness parameter variation δα , in the following 

manner: 

In order to further improve the performance of damage identification, the 

perturbation method is used iteratively in conjunction with a constrained optimization 

scheme, namely, an iterative second-order perturbation based damage identification 

algorithm.  A detailed flow chart of this algorithm is shown in Figure 2.4. 

From the measurements of frequency response functions of the integrated system 

with actual structural damage, system eigenvalues corresponding to different inductance 

values, (1) (2) ( )( ), ( ), , ( )d d d nλ L λ L λ L , are obtained.  In the first iteration, the baseline 

system is set to be the integrated system with no structural damage, i.e., (1) 0jδα = , where 

1, 2, , ej n= .  

In each iteration, the eigenvalues of the baseline system corresponding to different 

inductance values ( ) (1) ( ) (2) ( ) ( )( ), ( ), , ( )k k k nλ L λ L λ L , where k  denotes the iteration 

number, can be calculated from the formulated eigenvalue problem based on the finite 

element model that has been developed before damage occurred.  Then the eigenvalue 

differences between the actual damaged system and the baseline system can be easily 

Minimize          ( ) actualδ δ δ−λ α λ  

                            subject to        1 0jδα− < ≤ , where 1,2, , ej n=                
(2.29)
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found through the equation ( ) ( ) ( ) ( ) ( )( ) ( ) ( )k i d i k iδ = −λ L λ L λ L , where 1, 2, ,i n= .  In the 

next step, the stiffness parameter variation ( )kδα  is found by using the constrained 

optimization scheme, which is realized by the standard constrained minimum subroutine 

FMINCON provided by MATLAB.  Then the estimated stiffness parameter variation is 

updated by using ( 1) ( ) ( )k k kδ δ δ+ = +α α α  under the constraint ( 1)1 0k
jδα +− < ≤ , and the 

baseline system is also updated to represent the system with the new estimated stiffness 

 

Figure 2.4: Flowchart of the iterative second-order perturbation based damage 
identification algorithm 
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parameter variation ( 1)kδ +α . This process continues until the termination criterion, 

( )kδ ε<α , is satisfied, where ε  is a sufficiently small constant. 

2.4 Formulation of Favorable Inductance Tuning 

A fundamental issue of the proposed tunable piezoelectric circuitry concept is 

how to tune the inductances to best enhance the performance of damage identification.  In 

this section, we present the guidelines of forming a favorable inductance tuning sequence 

based on the analysis on how the inductance tuning affects the characteristics of system 

dynamics and the damage-induced eigenvalue changes.  First, a benchmark beam 

structure integrated with a single tunable piezoelectric transducer circuitry is used to 

obtain the fundamental understandings of the effects of inductance tuning.  Then, a more 

complicated plate structure integrated with multiple piezoelectric transducer circuitries is 

studied to verify and extend the observations to multiple inductance tunings. 

2.4.1 Integrated System With Single Tunable Piezoelectric Circuitry 

We first study a benchmark example of a cantilevered beam integrated with a 

single tunable piezoelectric transducer circuitry (Figure 2.5).  A circuit with tunable 

inductor is integrated to a homogenous cantilevered beam through the piezoelectric 

transducer, which is bonded on the upper surface of the beam from 1x  to 2x .  Using 

Galerkin’s method to discretize the partial differential equations, we can obtain a set of 

ordinary differential equations in the form of Eq. (2.1)   [119]. 
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2.4.1.1 Simplified Two-DOF System Analysis 

If only the first mode is used in the Galerkin’s method, the integrated system can 

be modeled as a 2-DOF system and the eigenvalue problem of this simplified system is 

given as 

which yields two eigenvalues, 

The difference between these two eigenvalues is 

 From Eq. (2.32) we can derive and conclude that the difference of the two 

eigenvalues reaches its minimum or, in other words, the two eigenvalues are the closest, 

when the inductance takes the value of  

 

  
Figure 2.5: Configuration of a cantilevered beam integrated with a single tunable
piezoelectric transducer circuitry 
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Hereafter this is referred to as the “critical” inductance value.  If we assume that 2
11c pk k k≤ , 

Eq. (2.33) can be simplified as 

  

 Let the left and right ends of the piezoelectric transducer be 1 0.04184 mx =  and 

2 0.08368mx = .  All other system parameters of this illustrative case are specified in Table 2.1.  

The variation of the two system eigenvalues with respect to the inductance tuning is plotted in 

Figure 2.6.  In this figure, the horizontal axis denotes the normalized inductance ξ , which is 

defined as the ratio between the actual inductance to the critical inductance *L  given in 

Eq. (2.33), 

( )
11*

2
11 11

1
1 2

p

c p

k m
L

k k k k

⎛ ⎞
⎜ ⎟=
⎜ ⎟−⎝ ⎠

 (2.33)

11*

11

pk m
L

k
≈  (2.34)

Table 2.1: System parameters for the integrated system of beam structure 

Beam structure Piezoelectric material 

Density:                 32700kg/mbρ =  Density:                       37800kg/mpρ =  

Length:                  0.4184mbL =  Young’s modulus:       10 26.6 10 N/mpE = ×  

Thickness:             3.175mmbh =  Thickness:                    0.191mmph =  

Width:                    0.0381mb =  Dielectric constant:      7
33 7.1445 10 V m/Cβ = × ⋅  

Young’s modulus: 10 27.1 10 N/mbE = ×  Piezoelectric constant: 9
31 1.0707 10 N/Ch = ×  

 
 

( )*
11 11p

L L
L k m k

ξ = =
⋅

 (2.35) 
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From Figure 2.6, we can see that the loci of the two eigenvalues approach each 

other in the first stage, and then diverge abruptly when we continuously increase the 

inductance.  This phenomenon of rapid changes of system eigenvalues with respect to the 

system parameter (inductance L ) indicates the occurrence of eigenvalue curve veering 

[128-131]. 

Liu [132] examined the derivatives of the eigenvalues and eigenvectors for the 

phenomena of eigenvalue curve veering and mode localization.  In this paper, we are 

concerned with the sensitivity of damage-induced eigenvalue change with respect to 

inductance tuning, since a favorable tuning of the inductance value should yield a system 

in which the eigenvalue change is very sensitive to the damage occurrence (causing 

stiffness parameter change).  This sensitivity can be expressed as the second-order 

derivatives of the system eigenvalues with respect to stiffness parameter ( b bG E I= ) and 

inductance ( L ), 

 

  
Figure 2.6: System eigenvalues versus the normalized inductance when using the
simplified 2-DOF system model for the integrated beam system.  1λ ,  2λ .            
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The derivatives of the eigenvalues with respect to stiffness parameter change can 

be solved as 

Substituting Eq. (2.37)  into Eq. (2.36), we can obtain the derivative of damage-induced 

eigenvalue changes ( 1δλ  and 2δλ ) with respect to inductance ( L ) as 

For a specific damage scenario, ( )11k G Gδ∂ ∂  on the right hand side of Eq. (2.38) is 

fixed, and the inductance value which yields the maximum of  1,2( ) Lδλ∂ ∂  can be easily 

solved by letting the derivative of the fractional part on the right hand side of Eq. (2.38) 

with respect to the inductance ( L )  be zero, 

If we assume that 2
11c pk k k≤ , Eq. (2.39) can be simplified as 

 

2
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Assuming that the damage-induced stiffness reduction is 0.15G Gδ = − , we can 

plot the derivative of the damage-induced eigenvalue changes ( 1δλ  and 2δλ ) with respect 

to inductance ( L ), as shown in Figure 2.7.  From this figure, we can see that the 

sensitivities of the two eigenvalue changes with respect to inductance reach their 

maximal absolute values when the inductance is tuned near the critical value, 

*
11 11pL k m k= ⋅ ,  and the sensitivities decreases dramatically when the inductance is 

tuned away from this critical value.  Recall Eq. (2.34) and note that eigenvalue curve 

veering occurs when the inductance is tuned around *
11 11pL k m k= ⋅  (Figure 2.6).  We 

can conclude that the occurrence of eigenvalue curve veering not only suggests rapid 

changes of system eigenvalues (characteristics of system dynamics) with respect to 

inductance tuning, but also produces an inductance tuning range in which high sensitivity 

of damaged-induced eigenvalue changes with respect to inductance tuning can be 

 

  
Figure 2.7: Sensitivities of the damage-induced eigenvalue changes with respect to the 
normalized inductance when using the simplified 2-DOF system model for the integrated 
beam system.   ( )1 Lδλ∂ ∂ ,  ( )2 Lδλ∂ ∂ . 
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expected.  Therefore, when the inductance is tuned around *L , multiple sets of frequency-

shift measurements with different sensitivity relations to the potential damage can be 

obtained.  This can greatly enrich the frequency data available for damage identification 

and help to more completely capture the information about the damage occurrence. 

2.4.1.2 Multiple-DOF System Analysis 

The above observations for the 2-DOF system are based on the analytical 

sensitivity analysis of the damage-induced eigenvalue changes with respect to inductance 

tuning.  In this sub-section we extend this sensitivity analysis to multi-DOF systems.  The 

cantilevered beam shown in Figure 2.5 is now analyzed using the finite element method.  

As shown in Figure 2.16, the beam is evenly discretized into 10 elements, and the 

piezoelectric transducer is bonded on the upper surface of the beam from the second 

element to the fourth element.  The relevant system parameters are the same as specified 

in Table 2.1. 

First, we examine how the inductance tuning alters the characteristics of system 

dynamics (i.e., system eigenvalues).  Figure 2.8 shows the variations of the first four 

system eigenvalues with respect to inductance tuning.  From this figure, we can see that 

eigenvalue curve veering occurs between each two consecutive system eigenvalues from 

low mode to high mode when the inductance is tuned from 1500H  down to 0.3H .  In 

each eigenvalue curve veering, only the two associated system eigenvalues change 

dramatically with respect to inductance tuning, while other system eigenvalues are hardly 

affected.  Meanwhile, as a well-known phenomenon associated with the curve veering, 
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during the eigenvalue curve veering the eigenvectors corresponding to the veering 

eigenvalues will interchange in a rapid but continuous way [128-131].  

It has been shown that for the 2-DOF system (Figure 2.6 and Figure 2.7) the 

occurrence of eigenvalue curve veering is realized by an inductance tuning range with 

high sensitivity of damage-induced eigenvalue changes.  In order to examine the case of a 

multiple-DOF system, we calculate the sensitivities of the damage-induced eigenvalue 

changes with respect to inductance L , as plotted in Figure 2.9 where (a)-(c) correspond 

to the first, second and third eigenvalue changes, respectively.  The structural damage is 

assumed to be on the second beam element and the damage causes a 25% stiffness 

reduction.  As shown in Figure 2.9(a), there is only one peak region indicating high 

sensitivity of the first eigenvalue change with respect to inductance tuning, and this 

region corresponds to eigenvalue curve veering between the first and second system 

eigenvalues.  In Figure 2.9(b), two peak regions with high sensitivity of eigenvalue  

 

 
Figure 2.8:  System eigenvalues versus inductance when using the multiple-DOF system 
model for the integrated beam system.   1λ ,  2λ ,  3λ ,  4λ . 
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(a)  

(b)  

(c)  

Figure 2.9: Sensitivities of the damage-induced eigenvalue changes with respect to 
inductance when using the multiple-DOF system model for the integrated beam system:
(a) Sensitivity of the first eigenvalue change; (b) Sensitivity of the second eigenvalue
change; (c) Sensitivity of the third eigenvalue change. 
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change with respect to inductance tuning are found, and it is easy to verify that these two 

regions correspond to the eigenvalue curve veering between two pairs of system 

eigenvalues (the first and second, and the second and third), respectively.  Similar 

conclusion can be drawn in Figure 2.9(c), where two peak regions with high sensitivity 

are achieved when the third system eigenvalue has curve veering with the second and 

fourth system eigenvalues. 

Figure 2.10 shows the variation of the damage-induced eigenvalue changes with 

respect to inductance tuning when the second element is damaged with a 25% stiffness 

reduction.  If the inductance is tuned around each of the eigenvalue curve veering value, 

the damage-induced changes of the two system eigenvalues associated with the two loci 

in that curve veering vary significantly with respect to inductance.  Therefore, if the 

inductance is tuned around values corresponding to eigenvalue curve veering, multiple 

sets of frequency-shift measurement with dramatically different sensitivity relations to 

 

 
Figure 2.10: Variation of the damage-induced eigenvalue changes with respect to 
inductance when using the multiple-DOF system model for the integrated beam system.

 1δλ ,  2δλ ,  3δλ ,  4δλ . 
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the damage can be obtained.  Again, this will greatly enrich the modal data measurement 

available for damage identification. 

2.4.2 Integrated System With Multiple Tunable Piezoelectric Circuitries 

The previous example concerns the integration of a single tunable piezoelectric 

circuitry onto a homogeneous beam structure.  For more complicated structures, it can be 

envisioned that multiple tunable circuitries could be more beneficial for damage 

identification.  In this sub-section, we use a plate structure, as shown in Figure 2.11, to 

explore the tuning of multiple tunable piezoelectric transducer circuitries.  For this 

benchmark plate, the left edge of the plate is clamped and the other three edges have free 

boundary conditions.  The plate is discretized into 25 elements, and the element numbers 

are labeled as shown in the figure.  Three piezoelectric transducers are bonded onto the 

7th, 13th and 19th elements, respectively.  Each piezoelectric transducer patch has a size 

of 5 cm x 5 cm.  Three piezoelectric circuitries with tunable inductances ( 1L , 2L  and 3L ) 

are integrated to the plate structure through three piezoelectric transducers, respectively.  

The parameters of the system including the plate structure and piezoelectric material are 

listed in Table 2.2.  

In the case of single piezoelectric circuitry, only one eigenvalue curve veering can 

be achieved under certain inductance tuning, and all other eigenvalues are much less 

affected.  On the other hand, multiple piezoelectric transducer circuitries make it possible 

for multiple pairs of system eigenvalues to achieve curve veering simultaneously.  Such 

multiple curve-veering phenomena could further enhance the system response sensitivity 
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with respect to inductance tunings.  When multiple piezoelectric circuitries are integrated 

with the mechanical structure, these circuitries are not only directly coupled with the 

mechanical structure, but also coupled indirectly with other circuitries through energy 

exchange within the entire electro-mechanical integrated system.  In other words, when 

tuning the inductance in one electric circuit, the interactions between the mechanical 

structure and other electric circuitries are also affected even if the inductances in those 

circuitries remain the same.  Therefore, it is not feasible to tune each of the inductances 

separately.  We need to tune these inductances simultaneously to achieve the desired set 

of eigenvalue curve veering concurrently.  Since there are three tunable piezoelectric 

transducer circuitries in this plate example, these circuits can be tuned to accomplish at 

least three eigenvalue curve veerings.  In each curve veering, one additional resonance 

frequency, due to the dynamics of one piezoelectric circuitry, is introduced into the 

frequency response function near the structural resonance frequency corresponding to 

that veering. 

 

 
 

 
Figure 2.11: Configuration of a cantilevered plate integrated with multiple tunable
piezoelectric transducer circuitries. 
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Typically, clustered eigenvalues or close natural frequencies in a dynamic system 

are related to eigenvalue curve veering [128-132].  Indeed, the occurrence of close 

eigenvalues is an indication of eigenvalue curve veering and thus can be used as the 

criterion for tuning the inductances to realize multiple eigenvalue curve-veering 

phenomena.  In this research, an optimization scheme is formulated to find the critical 

values of three inductances * * *
1 2 3, ,L L L  which yield three pairs of close eigenvalues.  

That is, three eigenvalue curve veerings are realized simultaneously when the inductances 

are tuned around their respective critical values.  The objective function to be minimized 

is defined as the summation of the difference between each pair of system eigenvalues 

that are targeted for eigenvalue curve veering.  

2.4.2.1 Option 1 of Inductance Tuning 

The integrated system has a large number of eigenvalues/natural frequencies, 

which can all be potential candidates for eigenvalue curve veering.  We first formulate an 

Table 2.2: System parameters for the integrated system of plate structure 

Plate structure Piezoelectric material 

  Density:                   32700kg/msρ =   Density:                         37800kg/mpρ =  

  Length:                    0.25ma =   Young’s modulus:         10 26.9 10 N/mpE = ×  

  Width:                     0.25mb =   Thickness                      0.25mmph =  

  Thickness:               5mmsh =   Dielectric constant:       7
33 7.1445 10 V m/Cβ = × ⋅  

  Young’s modulus:  9 230 10 N/msE = ×   Piezoelectric constant:  8
31 7.664 10 N/Ch = ×  

  Element size:          5cm 5cm×   Patch size:                     5cm 5cm×  
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optimization problem to find the critical values of three inductances to achieve 

eigenvalue curve veerings between the 1st and 2nd eigenvalues, the 3rd and 4th 

eigenvalues, and the 5th and 6th eigenvalues respectively and simultaneously.  The 

objective function is defined as 

By using the standard constrained minimum subroutine, FMINCON, provided by 

MATLAB, the minimization of the above objective function yields the following critical 

inductance values 

Utilizing the above critical values as center values and expanding the inductance 

on both sides by 20.0 H , 0.5H  and 4.0 H , respectively, the tuning ranges for the three 

inductances can be formulated as 

Figure 2.12 shows the variation of the first six eigenvalues with respect to 

inductance tuning.  The horizontal axis only shows the change of the inductance 3L , 

while it should be noted that inductances 1L  and 2L  are actually tuned synchronously 

when tuning 3L  (This statement holds for all the following figures in the same category).  

It is shown in this figure that three eigenvalue curve veerings occur between the 1st and 

2nd eigenvalues, the 3rd and 4th eigenvalues, and the 5th and 6th eigenvalues, 

respectively and simultaneously.   
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1 84.6 HL = , *

2 1.91HL = , *
3 14.5HL =                              (2.42)

[ ]1 64.6 H, 104.6HL ∈ ,  [ ]2 1.41H, 2.41HL ∈ ,  [ ]3 10.5H, 18.5HL ∈  (2.43)
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Figure 2.12: System eigenvalues versus inductance L3 for the integrated plate system 
when using option 1 of inductance tuning.  1λ ,  2λ ,  3λ ,  4λ ,  5λ , 

 6λ . 

 

 
Figure 2.13: Variation of the damage-induced eigenvalue changes with respect to 
inductance L3 for the integrated plate system when using option 1 of inductance tuning.

 ( 1δλ− ),  ( 2δλ− ),  ( 3δλ− ),  ( 4δλ− ),  ( 5δλ− ),  ( 6δλ− ). 
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Figure 2.13 shows the variation of the damage-induced eigenvalue changes with 

respect to inductance tuning inside the proposed inductance tuning ranges.  The structural 

damages are assumed to result in 20%, 30%, 10%, and 20% of stiffness parameter 

reductions on the 6th, 11th, 12th, and 16th elements, respectively.  It can be easily 

observed from the figure that the damage-induced changes of the three eigenvalue pairs 

vary significantly around the curve veering values of the inductances.  

2.4.2.2 Option 2 of Inductance Tuning 

In order to examine the general effect of eigenvalue curve veering, here we 

investigate an alternative option of inductance tuning, i.e., we aim at achieving 

eigenvalue curve veering between the 3rd and 4th eigenvalues, the 5th and 6th 

eigenvalues, and the 7th and 8th eigenvalues, respectively and simultaneously.  The 

objective function is then defined as 

The minimization of the above objective function yields 

The tuning ranges for three inductances can be determined as 

The variation of the 3rd, 4th, 5th, 6th, 7th and 8th system eigenvalues with respect 

to inductance tuning inside the proposed tuning ranges are shown in Figure 2.14.  It can 

3
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= −∑  (2.44)

*
1 0.96 HL = ,   *

2 1.25HL = ,   *
3 1.91HL =  (2.45)

[ ]1 0.51H, 1.41HL ∈ ,    [ ]2 0.65H, 1.85HL ∈ ,    [ ]3 1.16H, 2.66HL ∈  (2.46)
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be observed from this figure that the eigenvalue curve veerings are achieved not only 

between those desired pairs of system eigenvalues (the 3rd and 4th, the 5th and 6th, and 

the 7th and 8th), but also between the 4th and 5th, and the 6th and 7th system 

eigenvalues.  The reason for this phenomenon is that the three circuitry modes are tuned 

to accomplish curve veerings with three twisting-bending modes (3rd-5th) of the plate 

structure, and the resonance frequencies of these twisting-bending modes are close to 

each other, which makes the veering more sensitive to inductance tuning.  As a result, it 

now becomes possible for one eigenvalue to veer with its two adjacent eigenvalues 

successively inside the inductance tuning ranges. 

For the same damage scenario as used in Figure 2.13, the variations of the 

damage-induced eigenvalue changes with respect to inductance tuning inside the tuning 

ranges are plotted in Figure 2.15.  It can be easily seen that the variation of the damage-

 

  
Figure 2.14: System eigenvalues versus inductance L3 for the integrated plate system 
when using option 2 of inductance tuning.  3λ ,  4λ ,  5λ ,  6λ ,  7λ , 

 8λ . 
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induced eigenvalue changes is more noticeable than that in Figure 2.13 produced (under 

tuning option 1), and the reason for this is that additional eigenvalue veerings occur under 

tuning option 2, as shown in Figure 2.14.  Overall, we can conclude that by integrating 

multiple tunable piezoelectric transducer circuitries to the mechanical structure being 

inspected, the frequency measurement data available for damage identification can be 

further enriched by formulating inductance tuning sequence to accomplish eigenvalue 

curve veering between different pairs of system eigenvalues.   

2.5 Damage Identification Analyses and Case Studies 

 The preceding sections have outlined the basis of eigenvalue curve veerings under 

inductance tuning and illustrated such phenomena.  In this section, we perform analyses 

on damage identification in beam and plate structures to demonstrate the performance 

 

  
Figure 2.15: Variation of the damage-induced eigenvalue changes with respect to 
inductance L3 for the integrated plate system when using option 2 of inductance tuning.

 ( 3δλ− ),  ( 4δλ− ),  ( 5δλ− ),  ( 6δλ− ),  ( 7δλ− ),  ( 8δλ− ). 
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improvement with the proposed new methodology.  Specifically, we will directly utilize 

the favorable inductance tuning results obtained in Section 2.4. 

2.5.1 Damage Identification in Beam Structure With Single Tunable Piezoelectric 
Circuitry 

The configuration of the integrated example system is shown in Figure 2.16.  The 

cantilever beam is evenly divided into 10 elements.  The piezoelectric transducer is 

bonded onto the upper surface of the beam from the second to the fourth element, and the 

piezoelectric transducer is connected in series to a tunable inductive circuit, a schematic 

of which is shown in Figure 2.1(b).  All system parameters of the beam structure and 

piezoelectric material are listed in Table 2.1.   

The Young’s modulus is assumed to be constant over each beam element and the 

elemental stiffness parameter of each beam element can be expressed as 

where bE  and bI  are the Young’s modulus and moment of inertia of the undamaged 

beam element,  and iδα  denotes the damage-induced stiffness parameter reduction of the  

ith element.  

 

 
Figure 2.16: Cantilevered beam structure integrated with tunable piezoelectric transducer
circuitry 

(1 )i b b iG E I δα= − , where 1,2, ,10i =   (2.47)
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The standard assembly process is used to construct the global mass and stiffness 

matrices of the beam structure, 20 20
s

×∈M R  and 20 20
s

×∈K R .  Based on these global 

matrices, the first three modal frequencies of the cantilever beam without the tunable 

piezoelectric transducer circuitry are 

After the integration of tunable piezoelectric transducer circuitry to the structure, one 

additional degree-of-freedom resulted from the charge flow in the circuit is added to the 

system, the electro-mechanical integrated system yields generalized mass and stiffness 

matrices, 21 21×∈M R  and 21 21×∈K R .  

 
 

1 96.51 rad sω = , 2 578.58 rad sω = , 3 1616.1 rad sω =  (2.48)

Table 2.3: First three resonant frequencies of the integrated system with respect to
inductance 

Inductance: 
L  ( Henry ) 

1st modal frequency: 
1ω  ( rad s ) 

2nd modal frequency: 
2ω  ( rad s ) 

3rd modal frequency: 
3ω  ( rad s ) 

7.50 95.45 581.40 611.99 

7.75 95.45 580.55 602.94 

8.00 95.45 578.81 595.25 

8.25 95.45 575.20 589.87 

8.50 95.45 569.37 587.10 

225 93.05 114.33 583.40 

250 92.13 109.54 583.40 

275 90.85 105.91 583.40 

300 89.18 103.31 583.40 

325 87.17 101.54 583.40  
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According to the analysis and results obtained in section 3.1, a favorable 

inductance tuning sequence can be selected as follows: 

In the above tuning sequence, the first 5 values are selected from the curve veering 

between the second and third system eigenvalues, and the last 5 values are selected from 

the curve veering between the first and second system eigenvalues.  The first three 

resonant frequencies of the integrated system with respect to these inductance values are 

given in Table 2.3.  From the table, it can be easily seen that the second and third modal 

frequencies of the integrated system vary significantly when the inductance is tuned 

around 8.0H, and the 1st and 2nd modal frequencies vary significantly when the 

inductance is tuned around 275H.  Since the same structural damage will result in 

different frequency shifts for systems with different dynamic characteristics, clearly, 

much enriched information about frequency shifts can be expected with such tunable 

piezoelectric circuitry. 

In order to illustrate the performance improvement of using tunable piezoelectric 

transducer circuitry network and verify the guidelines on favorable inductance tuning 

obtained in Section 2.4.1, here we compare the damage identification results under three 

different approaches: (1) traditional method (iterative second-order perturbation based 

algorithm without integration of tunable piezoelectric circuitry); (2) the proposed new 

method (iterative second-order perturbation based algorithm with integration of tunable 

piezoelectric circuitry) with ad hoc inductance tuning; and (3) the proposed new method 

with favorable inductance tuning.  For a fair comparison, we assume that only the 

[ ]7.50 7.75 8.00 8.25 8.50 225 250 275 300 325 H=L  (2.49)
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frequencies below 1000 rad/sec are available for accurate measurement.  This means that 

only the first two natural frequencies can be measured for damage identification when we 

use the traditional method without tunable piezoelectric circuitry, and only the first three 

modal frequencies, of which the additional one comes from the dynamics of the 

piezoelectric circuitry, are available when using the proposed new method. 

 

The first case we examine is to identify single element damage.  The damage in 

the beam is assumed to be on the second element and results in a 25% stiffness reduction.  

The damage-induced natural frequency-shifts under 10 different inductance values 

specified in Eq. (2.49) are listed in Table 2.4.  From this table, we can see that the 

changes of the second and third natural frequencies vary significantly when the 

inductance is tuned at around 8.0H .  Meanwhile, when the inductance is tuned at around 

Table 2.4: Damage-induced modal frequency changes under inductance tuning 

Inductance 
L  ( H ) 

1st modal frequency 
change: 1δω  ( rad s ) 

2nd modal frequency 
change: 2δω  ( rad s ) 

3rd modal frequency 
change: 3δω  ( rad s ) 

7.50 -3.42 -2.52 -0.69 

7.75 -3.42 -2.27 -0.93 

8.00 -3.42 -1.75 -1.44 

8.25 -3.42 -0.90 -2.29 

8.50 -3.42 -0.28 -2.90 

225 -3.21 -0.19 -2.99 

250 -3.02 -0.38 -2.99 

275 -2.72 -0.68 -2.99 

300 -2.32 -1.08 -2.99 

325 -1.88 -1.51 -2.99  
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275.0 H , the changes of the first and second natural frequencies vary significantly.  

Compared to only one set of frequency-shifts when using the traditional method without 

tunable piezoelectric circuitry, we can now obtain as many sets of frequency-shift 

measurement as the number of tuned inductance sequence.   

Figure 2.17 shows the predictions of structural damage by using the traditional 

method and the proposed new method with ad hoc and favorable inductance tuning.  

From this figure, we can see that the prediction using the traditional method has 

significant error because the major damage is predicted to be on the third element and the 

predicted damage severity of the second element is much less than the actual value.  

When the proposed new method with tunable piezoelectric circuitry is used, no obvious 

improvement is observed in the case of ad hoc inductance tuning ( 100 10iL i= + × , where 

1,2, ,10i = ), while a quite accurate prediction is achieved when using the favorable 

inductance tuning.  This clearly demonstrates the necessity of employing the proposed 

tuning methodology. 

 

 
Figure 2.17: Identification of structural damage on the second element of the beam
structure 
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Another example of identifying single element damage is given in Figure 2.18, 

where the actual structural damage is on the fifth element and causes 25% reduction of 

the elemental stiffness.  As can be seen from the figure, the traditional method predicts 

major stiffness reductions on the fifth, sixth, seventh and eighth structural elements, and 

the prediction is not acceptable.  When the proposed new method with ad hoc inductance 

tuning is used, a major damage is predicted on the fifth element and the prediction is 

much better than that of the traditional method; however, the predicted severity of the 

damage on the fifth element is much lower then the actual one, and a false damage is 

predicted on the seventh element.  Finally, when we use the favorable inductance tuning 

given in Eq. (2.49), both the location and severity of the structural damage are accurately 

predicted. 

 

In order to quantitatively evaluate the performance of damage identification using 

different methods, the root-mean-square deviation (RMSD) between the predicted 

 

 
Figure 2.18: Identification of structural damage on the fifth element of the beam structure
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stiffness parameter reduction using one specific method ( pδα ) and the actual damage-

induced stiffness parameter reduction ( aδα ), is used as a metric to quantify the prediction 

 

A comparison of RMSD for identifying single element damage by using the 

traditional method and the proposed new method with favorable inductance tuning is 

provided in Figure 2.19.  The horizontal axis indicates the index of the structural element 

that has damage, and it is assumed that the damage cause a 25% stiffness reduction of the 

corresponding element.  That is, successively we let an element in the beam structure 

have a 25% stiffness loss damage in each case studied.  The vertical axis indicates the 

RMSD between the predicted and actual stiffness parameter reduction.  We can see that 

the RMSD of the predictions obtained from the traditional method has a maximum value 

( ) ( )2 2

1 1

(%) 100
e eN N

p a a
i i i

i i

RMSD δα δα δα
= =

= − ×∑ ∑  (2.50)

 

 
Figure 2.19: Comparison of RMSD for identifying single element damage in beam
structure by using the tradition method and the proposed new method with favorable
inductance tuning 
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of 141% when identifying damage on the 7th element, and even the minimum value is 

larger than 24%.  On the other hand, when the proposed new method with favorable 

inductance tuning is used, the RMSD of the obtained predictions are greatly reduced, 

with a maximum value 16% when identifying damage on the 7th element.  It can be 

concluded that the proposed new method with favorable inductance tuning significantly 

outperforms the traditional method when it is used to identify single element damage. 

The proposed method can be also used to detect multiple element damages in the 

beam structure.  An example of damage identification is given in Figure 2.20, where the 

actual structural damages are assumed to be on the 2nd and 5th elements with 25% and 

15% damage-induced stiffness reductions, respectively.  Neither the traditional method 

nor the new method with ad hoc inductance tuning gives an accurate prediction of the 

actual damage situation.  When the proposed new method with the favorable inductance 

tuning is used, both the locations and severities of the two damages are accurately 

 

   
Figure 2.20: Identification of structural damages on the second and fifth elements of the
beam structure 
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predicted.  In terms of the RMSD of the different methods, the prediction obtained from 

the traditional method results in a RMSD of 60%, and the predictions obtained from the 

proposed new method with ad hoc inductance tuning and favorable inductance tuning 

have RMSD errors of 45% and 5%, respectively. 

2.5.2 Damage Identification in Plate Structure with Multiple Tunable Piezoelectric 
Circuitries 

In this second case study, we will examine the performance improvement of using 

multiple tunable piezoelectric circuitries to detect damages in a more complicated plate 

structure, and we also compare the damage detection performance by using different 

tuning options.  In this example, we assume that only the frequencies under 4000rad/sec 

are available for accurate measurement.  Therefore, only the first five natural frequencies 

can be used for damage identification when we use the traditional method without 

tunable piezoelectric circuitry, and only the first eight modal frequencies, of which the 

additional three come from the inductance circuit connected to the piezoelectric 

transducer, are available when using the enhanced method with integration of tunable 

piezoelectric circuitry.  According to the two tuning options derived in the previous 

section, the first set of inductance tuning sequence can be selected from the inductance 

tuning ranges obtained for tuning option 1, 

(1) (1) (1)(1)
1 2 3
(2) (2) (2)(2)
1 2 3
(3) (3) (3)(3)
1 2 3
(4) (4) (4)(4)
1 2 3
(5) (5) (5)(5)
1 2 3

78.6 1.51 14.00
81.6 1.61 14.15
84.6 1.71 14.30
87.6 1.81 14.45
90.6 1.91 14.60

L L L
L L L
L L L
L L L
L L L

⎡ ⎤⎧ ⎫ ⎡
⎢ ⎥⎪ ⎪ ⎢
⎢ ⎥⎪ ⎪ ⎢⎪ ⎪ ⎢ ⎥= =⎨ ⎬
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪ ⎣⎩ ⎭ ⎣ ⎦

L
L
L
L
L

H

⎤
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 (2.51)
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A second set of inductance tuning sequence is selected from the inductance tuning ranges 

obtained for tuning option 2 

As shown in Figure 2.12 and Figure 2.14, respectively, each set of the inductance 

tuning sequence formulated above achieves one set of eigenvalue curve veerings between 

different pairs of system eigenvalues, and the ability of accomplishing multiple sets of 

eigenvalue curve veering is exactly the additional benefit offered by integrating multiple 

piezoelectric circuitries.  Therefore, to utilize multiple sets of eigenvalue curve veering to 

further enrich the frequency measurement data for damage detection, the inductances 

should be tuned according to a combined inductance tuning sequence, which can be 

obtained by assembling the two sets of inductance tuning sequences in Eq. (2.51) and 

Eq. (2.52), 

Unless otherwise specified, hereafter this combined inductance tuning sequence is used 

as the favorable tuning sequence in the proposed new method for damage identification. 

The variation of the first eight natural frequencies with respect to inductance 

tuning sequence in Eq. (2.53) is shown in Table 2.5.  In the first 5 rows in this table, the 

(1) (1) (1)(1)
1 2 3
(2) (2) (2)(2)
1 2 3
(3) (3) (3)(3)
1 2 3
(4) (4) (4)(4)
1 2 3
(5) (5) (5)(5)
1 2 3

0.51 0.65 1.16
0.71 0.95 1.56
0.91 1.25 1.96
1.16 1.55 2.36
1.41 1.85 2.66

L L L
L L L
L L L
L L L
L L L

⎡ ⎤⎧ ⎫ ⎡ ⎤
⎢ ⎥⎪ ⎪ ⎢
⎢ ⎥⎪ ⎪ ⎢⎪ ⎪ ⎢ ⎥ ⎢= =⎨ ⎬
⎢ ⎥ ⎢⎪ ⎪
⎢ ⎥ ⎢⎪ ⎪
⎢ ⎥ ⎢⎪ ⎪ ⎣⎩ ⎭ ⎣ ⎦

L
L
L
L
L

H

⎥
⎥
⎥
⎥
⎥
⎥⎦

 (2.52)

(1) (2) (10)
1 1 1
(1) (2) (10)
2 2 2
(1) (2) (10)
3 3 3

78.6 81.6 84.6 87.6 90.6 0.51 0.71 0.91 1.16 1.41
1.51 1.61 1.71 1.81 1.91 0.65 0.95 1.25 1.55 1.85 H

14.00 14.15 14.30 14.45 14.60 1.16 1.56 1.96 2.36 2.66

L L L
L L L
L L L

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.53)
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first 6 natural frequencies vary significantly with respect to inductance tuning.  This is 

because the corresponding inductance tuning sequence is selected from tuning option 1 

where eigenvalue curve veering occur between the 1st and 2nd, the 3rd and 4th, and the 

5th and 6th system eigenvalues.  In the last 5 rows, the 3rd through the 8th natural 

frequencies vary significantly with respect to inductance tuning because the inductance 

tuning sequence is selected from tuning option 2 where eigenvalue curve veering occur 

between the 3rd through the 8th system eigenvalues.  

 

The first example of damage detection is shown in Figure 2.21.  The actual 

structural damages, denoted by the solid black bars in this figure, are assumed to be on 

the 11th, 16th, and 21st elements with 10%, 15%, and 20% stiffness reductions, 

respectively.  The variation of damage-induced frequency shift with respect to inductance 

Table 2.5:  Natural frequencies of the integrated plate system with respect to inductance 
tuning 

Inductance 
(Henry) 

 System natural frequencies (rad/s) 

1L  2L  3L   
1ω  2ω  3ω  4ω  5ω  6ω  7ω  8ω  

78.6 1.51 14.00 281.46 299.38 698.57 704.98 1900.0 2132.4 2385.8 2700.2 

81.6 1.61 14.15 280.70 294.64 697.85 702.14 1898.9 2070.5 2381.2 2700.2 

84.6 1.71 14.30 279.34 290.76 694.98 701.43 1896.6 2014.0 2378.4 2700.0 

87.6 1.81 14.45 277.11 288.05 692.10 700.71 1891.0 1964.7 2376.8 2700.0 

90.6 1.91 14.60 273.99 286.44 688.48 700.71 1874.8 1930.3 2375.3 2700.0 

0.51 0.65 1.16 283.23 699.86 1901.6 2331.1 2471.8 2700.9 3279.3 3689.9 

0.71 0.95 1.56 283.23 699.86 1900.0 2101.9 2358.0 2698.3 2725.6 3130.8 

0.91 1.25 1.96 283.23 699.86 1866.8 1912.1 2295.4 2434.7 2695.7 2771.6 

1.16 1.55 2.36 283.23 699.86 1710.6 1901.1 2107.1 2373.0 2460.3 2701.5 

1.41 1.85 2.66 283.23 699.86 1612.5 1887.1 1948.6 2215.6 2383.3 2700.7  
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tuning sequence is shown in Table 2.6.  Compared to only one set of frequency-shifts 

when using the traditional method without tunable piezoelectric circuitry, we can now 

obtain as many sets of frequency-shift measurement as the number of tuned inductance 

sequence.  As shown in Figure 2.21, the prediction by using the traditional method has a 

significant RMSD error of 86%, which is not acceptable.  Although the new method with 

ad hoc inductance tuning ( ( )( )
1 HiL i= , ( )( )

2 2 1 HiL i= × − , ( )( )
3 3 2 HiL i= × − , where 

1,2, ,10i = ) successfully locates all three damaged elements, the predicted damage 

severities are not accurate and have a RMSD error of 28%.  When the new method with 

favorable inductance tuning is used, the three locations of the structural damages are 

exactly identified, and the predicted damage severities are very close to the actual 

stiffness parameter reductions.  The RMSD error of the prediction by using the favorable 

inductance tuning is only 2%. 

A second example of detecting damages in the plate structure is given in 

Figure 2.22, where the actual structural damages are assumed to be on the first, seventh 

and thirteenth elements with 25%, 15% and 10% stiffness reduction, respectively.  The 

prediction obtained from the traditional method, which yield a RMSD error of 90.5%, is 

not acceptable.  Although the new method with ad hoc inductance tuning gives better 

prediction, the associated RMSD error of the prediction is still as high as 77.7%.  When 

the proposed new method with favorable inductance tuning is used, both of the locations 

and severities of all three element damages are accurately identified. The RMSD error of 

the prediction by the proposed new method with favorable inductance tuning is as low as 

1.2%.  
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Table 2.6:  Damage-induced natural frequency changes of the integrated plate system 
with respect to inductance tuning.  The damages are assumed to cause 10%, 15% and
20% stiffness reductions on the 11th, 16th and 21st elements, respectively. 

Inductance 
(Henry) 

 Damage-induced natural frequency changes (rad/s) 

1L  2L  3L   
1δω  2δω  3δω  4δω  5δω  6δω  7δω  8δω  

78.6 1.51 14.00 -7.62 -0.67 -8.64 -0.71 -23.57 -0.94 -7.56 -24.55 

81.6 1.61 14.15 -7.18 -1.12 -7.93 -1.43 -23.58 -0.97 -7.78 -24.55 

84.6 1.71 14.30 -6.34 -1.95 -5.05 -4.29 -23.08 -1.49 -7.79 -24.37 

87.6 1.81 14.45 -4.97 -3.35 -2.89 -6.45 -21.00 -3.06 -8.22 -24.37 

90.6 1.91 14.60 -3.29 -5.00 -0.73 -8.62 -14.46 -9.87 -8.01 -24.56 

0.51 0.65 1.16 -8.28 -9.28 -24.08 -6.66 -1.62 -24.55 -0.15 -0.27 

0.71 0.95 1.56 -8.28 -9.28 -23.83 -0.48 -7.65 -23.82 -1.28 -0.32 

0.91 1.25 1.96 -8.28 -9.28 -8.86 -14.96 -4.36 -4.11 -23.85 -1.08 

1.16 1.55 2.36 -8.28 -9.28 -0.29 -23.29 -0.95 -6.75 -1.22 -24.36 

1.41 1.85 2.66 -8.28 -9.27 -0.31 -19.17 -5.14 -0.68 -7.78 -24.55  
 

 

 
Figure 2.21:  Identification of damages on the 11th, 16th and 21st elements of the plate
structure with 10%, 15% and 20% stiffness parameter reductions, respectively.  Actual 
stiffness parameter reduction,  Prediction using the traditional method,  Prediction 
using the new method with ad hoc inductance tuning, Prediction using the new method 
with favorable inductance tuning. 



80 

 

In order to further examine the effects of inductance tuning sequence on the 

performance of damage detection, the predictions using three different sets of inductance 

tuning sequences are compared in Figure 2.23.  The first set of inductance tuning 

sequence is selected from tuning option 1, as shown in Eq. (2.51), the second set of 

tuning sequence is selected from tuning option 2, as shown in Eq. (2.52), and the third set 

is the combination of the first two sets, as given by Eq. (2.53).  As shown in the 

Figure 2.23, the locations of the three damaged elements are accurately predicted by 

using any set of the inductance tuning sequence. However, the predicted severities of the 

three damages have a RMSD error of 22% when using the tuning option 1.  When tuning 

option 2 is used, the predicted severities are much more accurate and the prediction error 

in terms of RMSD decreases to 7%.  The performance improvement is not only because 

the eigenvalue curve veering is achieved for high order system eigenvalues which are 

 

 
Figure 2.22:  Identification of damages on the 1st, 7th and 13th elements of the plate
structure with 20%, 15% and 10% stiffness parameter reductions, respectively.  Actual 
stiffness parameter reduction,  Prediction using the traditional method,  Prediction 
using the new method with ad hoc inductance tuning, Prediction using the new method 
with favorable inductance tuning. 
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usually more sensitive to structural damage than low eigenvalues, but also because of the 

more noticeable variation of damage-induced eigenvalue change with respect to 

inductance tuning as shown in Figure 2.15.   Finally, when the combined tuning sequence 

is used, the accuracy of the predicted damage severity is further improved with a 

prediction error of 2%.  

The above case study clearly demonstrates the merits of using multiple 

piezoelectric transducer circuitries to detect damage.  To best benefit the damage 

identification process, the favorable inductance tuning sequence for the tunable 

piezoelectric circuitry network can be formed by accomplishing a “comprehensive” set of 

eigenvalue curve veering in the sense that each of the measurable modal frequencies is 

under curve veering at least once. 

 

 
Figure 2.23:  Effects of different inductance tuning sequences on the performance of
damage identification for the plate structure.   Actual stiffness parameter reduction, 
Prediction using tuning option 1,  Prediction using tuning option 2,  Prediction using 
the combined tuning option. 
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2.6 Summary 

In this chapter, an enhanced frequency-shift-based damage identification method 

using tunable piezoelectric transducer circuitry is developed.  The key idea is to use 

tunable piezoelectric circuitries coupled to the mechanical structure to favorably alter the 

dynamics of the electro-mechanical integrated system.  First, the circuitry can be tailored 

to change the system frequency/modal distribution by introducing additional resonant 

frequencies and vibration modes.  Second, through tuning the circuitry elements (i.e., the 

inductors), one can obtain a much enlarged dataset consisting of a family of frequency 

response functions (under different circuitry tunings) as compared to the original single 

frequency response of the mechanical structure without circuit.  Guidelines on favorable 

inductance tuning that can yield the optimal damage identification performance are also 

developed.  Analyses show that when the inductances are tuned to accomplish eigenvalue 

curve veerings between system eigenvalue pairs, the enriched frequency measurement 

data can most effectively capture the damage information.  An iterative second-order 

perturbation based algorithm is developed to find the damaged-induced stiffness 

parameter reduction based on the system eigenvalue changes (frequency shift) before and 

after the structural damage occurred.  The major advantage of using this algorithm is that 

it takes into account the damage-induced mode shape changes without the actual 

measurement of the modes. Numerical analyses and case studies on benchmark beam and 

plate structures are carried out to demonstrate and verify the proposed new method.  

Numerical results show that the damage identification performance can be significantly 

improved by using the proposed new approach with favorable inductance tuning. 



 

Chapter 3 
 

 Optimal Sensitivity-Enhancing Feedback Control via Eigenstructure Assignment 
for Structural Damage Identification 

3.1 Introduction 

As described in the section of problem statement in Chapter 1, the frequency-

shift-based damage identification methods encounter two major limitations: deficiency of 

frequency measurement data and low sensitivity of frequency shift to damage effects 

[105].  To tackle the issue of insufficient number of frequency measurement data, various 

techniques such as “twin” structure technique [110], mass/stiffness addition technique 

[111,112], and virtual passive controller approach [113], have been proposed in the 

literature.  In Chapter 2, a new concept of integrating tunable piezoelectric transducer 

circuitry to the original structure to enrich frequency measurement data has been 

proposed.  Compared with other techniques proposed in the literature, this new technique 

has certain advantages toward the implementation in real applications.  For example, the 

electrical tailoring used in this approach is much easier to realize than the mechanical 

tailoring used in mass/stiffness addition technique [111,112], and it does not require a 

complicated sensor-actuator-controller architecture and significant external power source 

that are necessary for the virtual passive controller approach [113].  However, similar to 

those previous techniques in the literature, although this approach can effectively solve 

the problem of insufficient frequency measurement data, it has not explicitly addressed 

another severe issue of frequency-shift-based damage identification methods, namely, 
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low sensitivity of frequency shift to damage effects.  Therefore, this chapter aims to 

develop a new approach that can simultaneously overcome the aforementioned two 

limitations of frequency-shift-based damage identification methods.  

To address the sensitivity issue of frequency-shift-based damage identification 

methods, a new concept of sensitivity-enhancing control (SEC) was introduced by Ray 

and Tian [133].  The basic idea is to use feedback control to place the closed-loop natural 

frequencies at appropriate locations such that their sensitivities toward mass/stiffness 

damage can be enhanced.  Using a cantilevered beam example, they developed a control 

law to enhance the detection sensitivity by reducing the first three natural frequencies 

using a single point force actuator.  Later, this concept was validated through a laboratory 

experiment [134].  More recently, Koh and Ray [135] advanced this concept by applying 

sensitivity-enhancing control to multi-input systems.  A minimum-gain eigenstructure 

assignment method is used to design the multi-input control laws.  In that study, it has 

also been shown that multiple independent closed-loop systems can be obtained by 

developing a series of sensitivity-enhancing controls, and these multiple closed-loop 

systems will lead to a much enlarged dataset of frequency measurement, which will 

significantly improve the performance of frequency-shift-based damage identification. 

Although the aforementioned studies have shown promising features for 

improving the performance of frequency-shift-based methods, certain important issues 

have not been addressed.  While it has been theoretically shown that reducing/increasing 

the closed-loop natural frequency can enhance the sensitivity toward stiffness/mass 

damage in a single DOF system [133], it becomes less obvious in a multiple-DOF 

system.  In previous studies, either a pole placement technique or a minimum-gain 
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eigenstructure assignment technique is used to design the feedback controller with the 

purpose of reducing the closed-loop eigenvalues to desired positions, whereas the role of 

the closed-loop eigenvectors has not been considered.  On the other hand, it is well-

known that, with multiple control inputs/actuators, one may have the freedom of 

assigning closed-loop eigenvalues and eigenvectors simultaneously.  The possibility of 

using eigenvector assignment to further enhance the frequency-shift sensitivity has not 

been explored.   

The objective of this research is to advance the state-of-the-art of sensitivity-

enhancing feedback control for damage identification by developing a new eigenstructure 

assignment based approach.  Eigenvalue sensitivity analysis of a multi-DOF system 

indicates that the closed-loop eigenvalue sensitivity depends on both the closed-loop 

eigenvalues and eigenvectors.  Therefore, optimal assignment of eigenvalues and 

eigenvectors need to be performed to achieve the best sensitivity enhancement result.  In 

this research, the classical eigenvector assignment via the singular value decomposition 

(SVD) technique is utilized for the process of eigenstructure assignment, and a 

constrained optimization problem is formulated to find the closed-loop control law.  On 

the other hand, similar to the strategy presented in Ref. [135], different feedback control 

gains designed by activating different combinations of actuators result in a series of 

sensitivity enhanced closed-loop systems, which lead to a much enlarged dataset of 

frequency measurement for damage identification.  The effectiveness of the methodology 

is demonstrated through numerical studies on a beam structure example.  The importance 

of closed-loop eigenvector assignment to the sensitivity enhancement is demonstrated.  
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The improvement of damage identification performance by using the proposed approach 

is verified, and the effect of measurement noise is examined. 

3.2 Concept of Sensitivity-Enhancing Feedback Control 

In this section, the underlying mechanism of sensitivity-enhancing feedback 

control is outlined using a single degree-of-freedom (DOF) system and then expanded to 

a multiple-DOF system based on eigenvalue sensitivity analysis of the closed-loop 

system. 

3.2.1 Sensitivity-Enhancing Feedback Control for Single DOF System 

The concept of sensitivity-enhancing feedback control for structural damage 

identification was initially introduced by Ray and Tian [133].  The key idea is to enhance 

the sensitivity of (closed-loop) natural frequencies with respect to changes in structural 

parameters by using feedback control.  In Ref. [133], a single DOF system is used to 

illustrate this concept.  Consider a lightly-damped second-order system, 

For the original structure, the sensitivity of the natural frequency nω  to changes in 

stiffness parameter ( k ) and mass parameter ( m ) are, respectively, 

 

0 1 0
/ / 1/

x x
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Applying feedback control with control input [ ][ ]1 2
Tu K K x x= −  to the 

original structure, we then obtain a closed-loop system.  The natural frequency of the 

closed-loop system is 1( )c
n k K mω = + , and its sensitivities with respect to stiffness and 

mass changes can be solved as, respectively, 

Comparing Eq. (3.4)  with Eq. (3.2) and Eq. (3.5) with Eq. (3.3), we may readily 

conclude that the sensitivity of the closed-loop natural frequency to the stiffness change 

can be enhanced by letting the control gain 1K  be negative ( 1 0k K− < < ), thus reducing 

the natural frequency, and one should increase the natural frequency (let 1K  be positive) 

to enhance the sensitivity to the mass change. 

3.2.2 Sensitivity-Enhancing Feedback Control for Multi-DOF System 

While the illustration of sensitivity-enhancing feedback control in a single DOF 

system is straightforward, applying this idea to a multiple-DOF system with multiple 

inputs is more intriguing.  In what follows, we will extend the concept of sensitivity-

enhancing feedback control to a multiple-DOF system with multiple inputs based on 

32 2
n n k

m m m
ω ω∂

= − = −
∂
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c c
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eigen-solution sensitivity analysis of the corresponding closed-loop system.  For such a 

system, the equation of motion can be written as  

where n n×∈ℜM , n n×∈ℜC  and n n×∈ℜK  are the mass, damping, and stiffness matrices, 

respectively, and 1
n r×∈ℜB  and 0

n p×∈ℜB  are the input matrices of control action u  and 

the external disturbance f , respectively.  For the open-loop system without control, the 

eigenvalue problem is given as 

where jλ  and ju  are the jth eigenvalue and eigenvector of the open-loop system.  If we 

assume that the damping is sufficiently small and thus can be neglected, the sensitivity of 

the open-loop eigenvalue jλ  with respect to a structural parameter α  can be expressed as 

Let the control input be 

where 1
r n

c
×∈ℜK  and 2

r n
c

×∈ℜK  are the control gain matrices corresponding to the 

displacement and velocity vectors, respectively.  The equation of motion of the closed-

loop system is given as 

1 0+ + = +Mx Cx Kx B u B f  (3.6)

( )2
j j jλ λ+ + =M C K u 0  (3.7)

2 2

T T
j j j j j

j
T T
j j j j j

λλ α α
α λ

∂ ∂
∂ ∂ ∂= − −
∂

M Ku u u u

u Mu u Mu
 (3.8)

1 2c c= +u K x K x  (3.9)

0+ + =Mx Cx Kx B f  (3.10)
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where the closed-loop damping and stiffness matrices are, respectively, 

Clearly, these closed-loop matrices may no longer be symmetric.  Due to this asymmetric 

property, both the right and left eigenvectors will be involved in the eigen-solution 

sensitivity analysis [136-138].  The right and left eigenvalue problems of the closed-loop 

damped system can be written as, respectively, 

where c
jλ , c

ju  and c
jυ  are the jth eigenvalue and the corresponding right and left 

eigenvectors of the closed-loop system.  Taking the derivative of Eq. (3.13) with respect 

to structural parameter α  and utilizing Eq. (3.14), we may obtain the sensitivity of the 

closed-loop eigenvalue c
jλ  with respect to α  as 

Note that for a given feedback controller, the control input matrix ( 1B ) and 

control gain matrices ( 1cK  and 2cK ) in Eqs. (3.11) and (3.12) do not change with the 

variation of α .  Therefore, we have  

1 2c⎡ ⎤= −⎣ ⎦C C B K  (3.11)

1 1c⎡ ⎤= −⎣ ⎦K K B K  (3.12)

( )2c c c
j j jλ λ⎡ ⎤+ + =⎢ ⎥⎣ ⎦

M C K u 0  (3.13)

( ) ( )2Tc c c
j j jλ λ⎡ ⎤+ + =⎢ ⎥⎣ ⎦

υ M C K 0  (3.14)

( ) ( )

( )

2

2

Tc c c c
j j j jc

j
Tc c c

j j j

λ λ
λ α α α
α λ

⎡ ⎤∂ ∂ ∂+ +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦= −
∂ ⎡ ⎤+⎣ ⎦

M C Kυ u

υ M C u
 (3.15)
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Thus, Eq. (3.15) can be rewritten as 

Since the system eigenvalue is usually complex, we may have c c c
j j jiλ σ ω= − + , with the 

real part indicting the damping effect and the imaginary part indicating the modal/natural 

frequency ( c c
j jσ ω  for a lightly-damped system).  The imaginary part of Eq. (3.18) 

represents the sensitivity of modal frequency c
jω  to structural parameter α , 

while the real part Re c
jλ α⎡ ⎤∂ ∂⎣ ⎦  represents the sensitivity of closed-loop damping effect 

to the variation of α . 

From Eqs. (3.18) and (3.19), we can see that for a multiple-DOF system, the 

sensitivity of the closed-loop natural frequency change with respect to the mass or 

stiffness parameter variation not only depends on the closed-loop eigenvalue ( c
jλ ), but 

also depends on the eigenvectors of the closed-loop system ( c
ju  and c

jυ ).  In other words, 

the sensitivity of natural frequency change to structural parameter variation can be 

enhanced by appropriately assigning the closed-loop eigenvalues and eigenvectors.  Note 

α α
∂ ∂

=
∂ ∂
C C  (3.16)

α α
∂ ∂

=
∂ ∂
K K  (3.17)
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c j j j j
j

Tc c c
j j j

λ λλ α α α
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∂ ∂ ∂⎡ ⎤+ +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦= −
∂ ⎡ ⎤+⎣ ⎦

M C Kυ u

υ M C u
 (3.18)
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that with this observation, we have extended beyond the conclusions from previous 

investigations on single DOF structures [133].  If we assume that the damping is 

sufficiently small so that the contribution of the damping matrix to eigenvalue sensitivity 

can be neglected, Eq. (3.18) can be approximated as 

Compare Eq. (3.20) with Eq. (3.8).  If we assume that the closed-loop eigenvectors are 

kept the same (or as close as possible) as those of the open-loop system, the sensitivity of 

the closed-loop natural frequency with respect to stiffness change can be enhanced by 

reducing the closed-loop eigenvalue c
jλ , while increasing the closed-loop eigenvalue c

jλ  

results in enhancement of sensitivity with respect to mass change.  Under such a 

condition, the observation coincides with conclusions from previous studies [133].  

3.3 Sensitivity-Based Damage Identification Using Closed-Loop Natural Frequency 
Measurements 

In general, damage occurring in the structure will change the mass or stiffness 

properties and hence the dynamic characteristics of the global structural response.  Given 

a healthy structure with equation of motion shown in Eq. (3.6), we may assume that the 

structural damage induces the following structural parameter variation 

where h
iα  and d

iα  are the structure parameter values before and after damage occurrence,  

( )
( )

( )
( )

, ,
,

2 2

T Tc c c c c
j j j j jc

j T Tc c c c c
j j j j j

α α
α

λ
λ

λ
≈ − −

ν M u ν K u

ν Mu ν Mu
 (3.20)

d h
i i iδα α α= −     ( 1, 2, , )ei n=  (3.21)
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and en  represents the number of structural parameters required to characterize the 

damage occurrence.  The mass and stiffness matrices of the damaged structure can then 

be expressed as the summation of their corresponding model matrices of the undamaged 

(healthy) structure and first-order perturbations with respect to structural parameters ( iα ) 

For a given closed-loop control applied to the structure, the damage-induced 

changes of the closed-loop natural frequencies can be denoted as 

where h c
jω  and d c

jω  are measured natural frequencies of the closed-loop systems 

associated with the healthy and damaged structures, respectively, and q  represents the 

number of measurable natural frequencies from the frequency response functions.  A 

first-order approximation can be used to linearize the nonlinear relation between c
jδω  and 

iδα ( 1, 2, , )ei n= , 

By collecting the equations for all measurable natural frequencies of the closed-loop 

system, a first-order sensitivity-based equation in the matrix form can be obtained as 

follows: 

1

en h
d h

i
i i

δα
α=

∂
= +

∂∑ MM M  (3.22)

1

en h
d h

i
i i

δα
α=

∂
= +

∂∑ KK K  (3.23)

c d c h c
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δω δα
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∂
=
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where c
jδω  represents the damage-induced change of the jth closed-loop natural 

frequency, iδα  represents the damage-induced variation of the ith structural parameter 

iα , cS  is the so-called sensitivity matrix which has dimension of eq n× .  Using 

Eqs. (3.18) and (3.19) we may calculate the elements of the sensitivity matrix cS  as, 

Even though the sensitivity of frequency change to structural damage can be 

enhanced by incorporating appropriately designed feedback control (a design approach 

will be described in the next section), the number of natural frequencies available from 

the frequency response measurement of single closed-loop system is still usually much 

smaller than the number of structural parameters needed to characterize the damage 

occurrence.  Therefore, Eq. (3.26) is generally an under-determined problem, and the 

damage-induced structural parameter variations ( 1, 2, , )i ei nδα =  cannot be accurately 

determined through that equation.  However, this issue can actually be improved by 

collecting frequency measurements from multiple closed-loop systems.  That is, we may 

activate different combinations of the actuators in the control system to design a series of 

closed-loop controls, which lead to a series of closed-loop systems.  The frequency 

measurements from these multiple closed-loop systems for the same structure (with 

damage) will significantly enrich the frequency measurement data available for damage 
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identification.  For each designed feedback controller, an equation relating the measured 

frequency changes to structure parameter variation, as shown in Eq. (3.26), can be 

obtained, and the equations for all designed controllers can be combined together as 

follows 

where ciS  and ciδω  ( 1,2, ,i t= ) are the sensitivity matrix and measured frequency 

changes under the ith closed-loop system design.  It can be clearly seen that the number 

of frequency measurement data increases from the original q  to qt , whereas the number 

of system parameters being determined does not change.  In addition, the combined 

sensitivity matrix totS  has dimension of eqt n× , and the original problem can be 

improved into a much less undetermined problem by increasing the number of rows 

(constraint equations) in Eq. (3.28).  To achieve this goal, the sensitivity-enhancing 

feedback controllers should be properly designed in the sense that each feedback 

controller produces different pattern of sensitivity enhancement so that the condition 

number of the combined sensitivity matrix totS  can be improved. 

The damage-induced structural parameter variation δα  can be estimated by using 

the following performance index 

where cδω  represents the actual measured frequency changes.   
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95 

3.4 Optimal Design of Sensitivity-Enhancing Feedback Control 

The proposed optimal sensitivity-enhancing feedback control is built upon the 

simultaneous placement/assignment of the closed-loop eigenvalues and eigenvectors.  In 

this section, the classical eigenstructure assignment via SVD (singular value 

decomposition) technique is summarized at first, and then a constrained optimization 

problem is formulated to find the optimal eigenstructure assignment for the closed-loop 

system to achieve the best performance of sensitivity enhancement.  

3.4.1 Eigenstructure Assignment via SVD  

The eigenstructure assignment via SVD technique has been extensively explored 

and previously utilized to achieve modal control [139], mode localization [140,141], 

vibration confinement [142], and vibration isolation [143].  A brief review of the SVD 

based eigenstructure assignment technique is provided in the following.  A state space 

form of the closed-loop system given in Eq. (3.10) can be written as 

where 1N×⎡ ⎤
= ∈ℜ⎢ ⎥
⎣ ⎦

x
z

x
 ( 2N n= ) is the state vector, 1p×∈ℜf  is the excitation input vector, 

and 1 1
n n n n N N× × ×
− −

⎡ ⎤
= ∈ℜ⎢ ⎥− −⎣ ⎦

0 I
A

M K M C
, 1

1 1
1

n N r× ×
−

⎡ ⎤
= ∈ℜ⎢ ⎥
⎣ ⎦

0
B

M B
, 1

2

c r N
c

c

R ×−⎡ ⎤
= ∈⎢ ⎥−⎣ ⎦

K
K

K
 and 

1
0 1

0

n N p× ×
−

⎡ ⎤
= ∈ℜ⎢ ⎥
⎣ ⎦

0
B

M B
 are the system matrix, control input matrix, control gain matrix and 

excitation input matrix, respectively.  

1 0( ) ( )c t= + +z A B K z B f  (3.30)
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 The eigenvalue equation of the closed-loop system can be written as 

where jφ  represents the jth eigenvector corresponding to the assigned or desired closed-

loop eigenvalue c
jλ .  Eq. (3.31) can be written in an alternative form as 

which means j

c j

⎧ ⎫
⎨ ⎬
⎩ ⎭

φ
K φ

 must fall into the null space of the matrix 1|c
j Nλ⎡ ⎤−⎣ ⎦A I B .   

We define 

Applying singular value decomposition (SVD) to c
jλ

S  leads to 

where jD  is a positive definite diagonal matrix containing all the singular values of c
jλ

S , 

the columns of jU  contain the set of orthonormal left singular vectors, and the columns 

of jV  contain the set of orthonormal right singular vectors. The right singular vector 

matrix jV  can be partitioned in the following form 

where ( )
11

jV , ( )
12

jV , ( )
21

jV  and ( )
22

jV  are N N× , N r× , r N× , and r r×  sub-matrices,  
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respectively.  Post-multiplying Eq. (3.34) by 
( )

12
( )

22

j

j

⎡ ⎤
⎢ ⎥
⎣ ⎦

V
V

 and utilizing the unitary condition 

for the singular vector matrices, one obtains 

Obviously the linearly independent column vectors of matrix 
( )

12
( )

22

j

j

⎡ ⎤
⎢ ⎥
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V
V

 span the null space 

of c
jλ

S , hence any achievable closed-loop eigenvector must be a linear combination of 

the column vectors of ( )
12

jV .  Therefore, within the admissible subspace, we may assign an 

eigenvector by properly choosing the linear combination coefficient vector.  In other 

words, the assigned right eigenvector of the closed-loop system can be expressed as 

where jβ  is the coefficient vector used to span the column vectors of ( )
12

jV  to achieve a
jφ , 

and the following equation holds 

By collecting Eq. (3.38) for all desired right eigen-solutions, finally we have 

where 
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Thus the gain matrix can be obtained as 

3.4.2 Constrained Optimization for Optimal Sensitivity-Enhancing Control Design 

Assume that the closed-loop eigenvalues are assigned as follows: 

where o
jλ  is the jth eigenvalue of the open-loop system and q  is the total number of 

eigenvalues to be placed/adjusted during eigenstructure assignment (or the total number 

of the measurable natural frequencies).  Thus, the closed-loop eigenvectors can also be 

assigned in their corresponding admissible space 

where the column vectors of ( )
12

jV  span the admissible space for the jth eigenvector 

assignment, and jβ  or jβ  is the corresponding coefficient vector to express c
jφ  in the 

column space of  ( )
12

jV .  Here jβ  ( 1, 2, ,j q= ) are the design variables in the 

optimization procedure to achieve sensitivity enhancement, whereas jβ  

( 1, 2, ,j q q n= + + ) are selected so that the actual closed-loop eigenvectors c
jφ  

( 1, 2, ,j q q n= + + ) are as close as possible to their corresponding open-loop 

eigenvectors o
jφ .  The coefficient vectors, jβ ( 1, 2, ,j q q n= + + ), can be determined by 
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minimizing the following performance index 

By letting 0
jf jdJ dβ = , jβ  ( 1, 2, ,j q q n= + + ) can be solved as 

Therefore, the “closest” achievable closed-loop eigenvector is  

At this point, it is clear that the design of the optimal feedback controller for sensitivity 

enhancement is equivalent to finding the optimal values of eigenvalue reducing ratios jγ  

( 1, 2, ,j q= ) and those coefficient vectors for closed-loop eigenvector assignment jβ  

( 1, 2, ,j q= ) to best enhance the sensitivity of the targeted natural frequency changes to 

the specified type of structural damages.  The overall control objective is to achieve the 

best performance of sensitivity enhancement with minimum control effort required for 

the corresponding feedback control. 

The total control effort required for the feedback control can be calculated by 

where cK  is the control gain matrix, and lP  is the solution to the following Lyapunov 

equation 

in which Z  is the variance matrix of the excitation input.  And the performance index of  

2( )
12j

o j
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the sensitivity enhancement for a closed-loop system can be defined as the summation of 

the element-to-element ratios between the closed-loop sensitivity matrix and the open-

loop sensitivity matrix 

where cS  and oS  are the sensitivity matrices of the closed-loop and open-loop systems, 

respectively, and jw  is the weight factor on the sensitivity enhancement of the jth natural 

frequency change. 

Finally, the optimization problem is formulated as follows: we want to find the 

optimal values of the design variables 

that can minimize the following fitness function: 

under the constraints of 

where jε  is a small negative number and 0C  in the fitness function is a constant to adjust 

the relative weighting between the performance of sensitivity enhancement and the 

required control effort.  The purpose of these constraints is to guarantee the stability of 

the closed-loop system as long as the damage occurred is under some specified level, in 
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other words, we do not want the closed-loop system to be so sensitive that even small 

damages lead to an unstable system.   

In this research, an elite-based simplex-GA hybrid approach developed by Yen et 

al. [144] is used to find the solution for the constrained optimization problem formulated 

above.  This is a hybrid approach by combining a concurrent probabilistic simplex 

method with simple GA, thus offering a better trade-off between computation cost, 

convergence rate and the optimality of the solution found. 

3.5 Numerical Analysis and Results 

In this section, a cantilevered beam is used as the illustrative structure to 

demonstrate the performance of sensitivity-enhancing feedback control.  The feasibility 

and effectiveness of using multiple closed-loop systems with different sensitivity-

enhancing controls to identify structural damage are examined, and the effect of 

measurement noise on the damage identification performance is evaluated. 

A schematic of the system model used for numerical analysis is given in 

Figure 3.1.  The aluminum cantilevered beam is assumed to be homogenous, and evenly 

discretized into 10 elements.  The piezoelectric actuators bonded on the upper surface of 

the second, fourth, sixth and eighth beam elements are used as control input actuators, 

and are actuated by the control voltage sources 1V , 2V , 3V  and 4V , respectively.  The 

piezoelectric actuator bonded on the bottom surface of the second element is used as an 

input actuator to excite the structure for frequency response measurement, where 0V  is 

the excitation input voltage.  0V  is in the form of Gaussian white noise with zero mean 
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and 50V standard deviation.  The values of key system parameters are specified as shown 

in Table 3.1. 

 

Without loss of generality, we will consider the type of damages that cause only 

stiffness change to the structure.  We also assume that a high-fidelity finite element 

model (FEM) of the structure has been developed before damage occurrence. The 

structural parameter ( 1, 2, ,10)i iα =  is defined as the stiffness parameter of the ith 

structural element such that ( )i iEIα  denotes the actual elemental stiffness and 

100%iδα ×  represents the damage-induced stiffness parameter variation in percentage of 

 

 
Figure 3.1:  Schematic of the system model 

Table 3.1:  System parameters 

Beam structure Piezoelectric material 

Density:                  32410 /b kg mρ =  Density:                       37600 /p kg mρ =  

Length:                   0.40bL m=  Young’s modulus:       10 25.9 10 /pE N m= ×  

Thickness:              3.4bh mm=  Thickness:                    0.3ph mm=  

Width:                    0.026b m=  Width:                          0.02pb m=  

Young’s modulus: 10 26.6 10 /bE N m= ×  Piezoelectric constant: 12
31 276 10 /d m V−= − ×  
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the corresponding element.  For example, 1.0iα =  means that the ith element is 

undamaged while 0.95iα =  indicates a 5% stiffness reduction on that element. 

3.5.1 Sensitivity-Enhancing Control Design 

Assuming that only the first 3 natural frequencies can be accurately measured 

from the frequency responses, we are therefore concerned about the sensitivities of these 

three frequencies to possible damage in any of the structural elements.  For this specific 

example, we assign the first three closed-loop eigenvalues and their corresponding 

eigenvectors to design the feedback controller for the sensitivity enhancement of these 

first three natural frequencies.  Combining the frequency reduction ratios and the 

coefficient vectors for the eigenvector assignment, we have 15 design variables in total 

The optimal values of these design variables can be found by using the 

constrained optimization process formulated in Section 3.4.  The GA parameters in the 

optimization process are set as follows: population size 80, crossover rate 0.6, and 

mutation rate 0.01.  The optimization process returns the optimal values of the design 

variables, *γ , *
1β , *

2β  and *
3β , which are given in the first row of Table 3.2.  Based on 

these values, the gain matrix for the closed-loop control can be obtained by using 

Eq. (3.42).  For the resulting optimal closed-loop system, the first three natural 

frequencies are reduced by 5%, 11%, and 33% respectively when compared with their 

corresponding open-loop values, as given by *γ .  The coefficient vectors for the optimal 

{ }4 1 4 1 4 1
1 2 3 1 2 3, , , , ,γ γ γ × × ×= ∈ℜ ∈ℜ ∈ℜp β β β  (3.54)
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eigenvector assignment are given by *
1β , *

2β  and *
3β , and the first three left and right 

eigenvectors of the optimal closed-loop system are plotted and compared with their 

corresponding open-loop ones, as shown in Figure 3.2. 

To evaluate the performance of sensitivity enhancement by incorporating the 

optimal feedback controller with the original open-loop system, we compare the 

frequency shift of the open-loop and closed-loop systems induced by the same damage, 

as shown in Figure 3.3.  The subplots (a), (b) and (c) compare the first, second and third 

natural frequency shifts, respectively, due to a 5% stiffness reduction in each structural 

element.  For example, the bars in subplot (a) represent the first natural frequency shift of 

the open-loop or closed-loop systems due to a 5% stiffness reduction on each structural 

element shown as the horizontal-axis label.  From the figures, we can see that: (1) the 

structural damage may induce either an increase or decrease in the natural frequencies of 

the closed-loop system, while the frequencies of the open-loop system are always 

reduced; and (2) the damage-induced frequency changes of the closed-loop system are 

much larger than those of the open-loop system.  For example, a maximum enhancement 

ratio of 4026 is achieved for the first frequency shift when the eighth structural element is 

damaged, a maximum ratio of 61 is obtained for the second frequency shift by damage on 

the fourth element, and the third frequency shift achieves a maximum enhancement ratio 

of 83 when the damage occurs on the sixth element.  Moreover, by incorporating the 

optimal sensitivity-enhancing feedback control with the original structure, not only the 

sensitivity of frequency shift to structural damage can be greatly enhanced, but also the 

condition of the sensitivity matrix is improved given that the condition number of the 
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closed-loop sensitivity matrix is much smaller that of the open-loop sensitivity matrix, 

i.e., ( ) 8.7cCOND =S  and ( ) 20.1oCOND =S . 

 

(a1) (b1)  

(a2) (b2)  

(a3) (b3)  

Figure 3.2: Comparison of the left and right eigenvectors of the open-loop and closed-
loop systems: (a1-a3) Comparison of the first, second and third left eigenvectors,
respectively; (b1-b3) Comparison of the first, second and third right eigenvectors,
respectively 
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In order to highlight the importance of optimal eigenvector assignment to the 

sensitivity enhancement performance, we compare the first three natural frequency shifts 

of the above optimal closed-loop system with those of the two ad hoc closed-loop 

systems for the same damage.  The ad hoc closed-loop system (a) has the same 

eigenvalues as those of the optimal closed-loop system, while its eigenvectors are 

assigned as the “closest” achievable eigenvectors to their corresponding open-loop ones.  

This type of eigenvector assignment can be achieved by using Eq. (3.46) and Eq. (3.47).  

In the ad hoc closed-loop system (b), the first three natural frequencies are further 

reduced to 40% of their corresponding open-loop values, and its eigenvectors are also 

assigned as the “closest” achievable eigenvectors to their corresponding open-loop ones.  

Therefore, these ad hoc closed-loop systems are designed by only reducing the closed-

loop eigenvalues while maintaining the open-loop eigenvectors as much as possible. 

Figure 3.4 shows the comparison results.  Similar to Figure 3.3, each bar in the 

figure represents the corresponding natural frequency shift due to 5% stiffness reduction 

on the element as specified by the horizontal-axis label.  From the figure, we can see that 

the ad hoc closed-loop system (a) achieves much less sensitivity enhancement, although 

its eigenvalues are reduced to the same values as the optimally designed closed-loop 

system.  Even if we further reduce the closed-loop eigenvalues to the ratio of 0.4 in the 

ad hoc closed-loop system (b), the performance of sensitivity enhancement is still not 

comparable to that of the optimal closed-loop system.  Therefore, one may conclude that, 

in order to achieve the best performance of sensitivity enhancement, both the closed-loop 

eigenvalues and eigenvectors should be simultaneously optimized (optimal eigenstructure 

assignment) instead of only reducing the eigenvalues of the closed-loop system. 
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(a)     
 

(b)  
 

(c)  
 

Figure 3.3:  Comparison of the damage-induced natural frequency shifts of the open-loop 
and closed-loop systems: (a) Comparison of the first natural frequency shift; (b)
Comparison of the second natural frequency shift; (c) Comparison of the third natural
frequency shift. 
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(a)  

 (b)  

   (c)  

Figure 3.4:  Comparison of the damage-induced natural frequency shifts of the optimal 
closed-loop system and the ad hoc closed-loop systems: (a) Comparison of the first 
natural frequency shift; (b) Comparison of the second natural frequency shift; (c) 
Comparison of the third natural frequency shift. 



109 

3.5.2 Damage Identification Using Measured Natural Frequencies of the Sensitivity- 
Enhanced Closed-Loop Systems 

In the previous subsection, it has been demonstrated that the sensitivity of natural 

frequency shift to stiffness reduction can be significantly enhanced by using the optimal 

sensitivity-enhancing feedback control. In this subsection we will examine the damage 

identification performance by using natural frequency measurements of the sensitivity 

enhanced closed-loop systems.  It is worth emphasizing that, for this problem, a single 

closed-loop system only provides 3 measurable natural frequencies; hence the number of 

frequency measurements is still highly deficient for sensitivity-based damage 

identification.  In order to tackle this issue, multiple closed-loop systems with different 

feedback controllers are designed to enrich the frequency measurement data as proposed 

in Section 3.3. 

3.5.2.1 Design of Multiple Sensitivity-Enhanced Closed-Loop Systems 

In addition to the optimal sensitivity enhanced closed-loop system presented in 

last subsection (CLS-1), three alternative optimally-designed closed-loop systems (CLS-

2, CLS-3, CLS-4) are obtained by activating different combinations of actuators in the 

given hardware setup.  As shown in Table 3.2, CLS-2 uses actuators on the second, 

fourth and sixth structural elements, CLS-3 uses actuators on the second, fourth and 

eighth elements, and only the actuators on the second and fourth elements are used in 

designing CLS-4.  The optimal closed-loop eigenvalues and coefficient vectors of the 
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optimal closed-loop eigenvectors for each closed-loop system are obtained as given in 

Table 3.2. 

 

In order to show the sensitivity enhancement performance of these alternative 

closed-loop systems (CLS-2, CLS-3, CLS-4), the first three natural frequency changes of 

these closed-loop systems are compared with the frequency changes of the open-loop 

system (OLS) induced by the same damage, as given in Table 3.3.  In this table, each row 

gives the first three natural frequency changes of the OLS (open-loop system), CLS-2, 

CLS-3 and CLS-4, induced by 5% stiffness reduction on one structural element as 

indicated in the first column of the table.  From the table, we can clearly see that the 

Table 3.2: Design parameters and optimization results of multiple sensitivity-enhancing
feedback controllers 

System 
index 

Actuator 
locations 

Optimization 
setting 

Optimal closed-loop 
eigenvalues 

Coefficient vectors of the optimal   
closed-loop eigenvectors 

CLS-1 2,4,6,8 
0 1.0 15C e=  

1.0jw =  

1 10.95c oλ λ=        

2 20.89c oλ λ=        

3 30.67c oλ λ=  

[ ]*
1 -0.42    -0.29     0.94     0.64=β  

[ ]*
2 0.13     0.55     0.23    -0.09=β  

[ ]*
3 -0.26    -0.09    -0.45     0.09=β  

CLS-2 2,4,6 
0 1.0 14C e=  

1.0jw =  

1 10.99c oλ λ=        

2 20.87c oλ λ=        

3 30.62c oλ λ=  

[ ]*
1 -0.48     0.73     0.53=β  

[ ]*
2 -0.07    -0.33     0.01=β  

[ ]*
3 -0.96    -0.17    -0.68=β  

CLS-3 2,4,8 
0 1.0 14C e=  

1.0jw =  

1 10.91c oλ λ=        

2 20.85c oλ λ=        

3 30.83c oλ λ=  

[ ]*
1 0.14     0.09    -0.69=β  

[ ]*
2 -0.93    -0.90     0.51=β  

[ ]*
3 -0.59    -0.69    -0.44=β  

CLS-4 2,4 
0 5.0 13C e=  

1.0jw =  

1 11.00c oλ λ=        

2 20.93c oλ λ=        

3 30.76c oλ λ=  

[ ]*
1 0.56    -0.85=β  

[ ]*
2 1.00     0.45=β  

[ ]*
3 0.94    -0.28=β  
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damage-induced frequency changes of these alternative closed-loop systems are generally 

much larger than those of the open-loop system, and thus these alternative closed-loop 

systems also achieve significant enhancement of frequency-shift sensitivity to stiffness 

reduction. 

 

3.5.2.2 Numerical Results and Case Studies of Damage Identification 

As assumed, each of the optimal sensitivity-enhanced closed-loop systems given 

in Table 3.2 provides 3 measurable natural frequencies; hence by using these four closed-

loop systems, we have 12 natural frequency measurements in total for sensitivity based 

damage identification process formulated in Section 3.3.  In order to illustrate the 

performance improvement, the damage identification results are compared to those using 

Table 3.3: Natural frequency changes of the open-loop and closed-loop systems due to single
element damage 

First natural frequency change  
(rad/s) 

Second natural frequency 
change (rad/s) 

Third natural frequency change 
(rad/s) Damaged 

element 
OLS CLS-2 CLS-3 CLS-4 OLS CLS-2 CLS-3 CLS-4 OLS CLS-2 CLS-3 CLS-4 

1 -1.175 32.04 14.61 45.37 -4.672 -106.2 -90.40 -166.7 -8.340 -94.11 20.87 -94.76 

2 -0.412 -2.843 -0.503 -2.382 -0.367 0.373 3.186 -27.76 -0.604 -65.19 -6.102 -8.097 

3 -0.586 -14.14 -5.628 -14.28 -0.276 6.897 29.19 71.67 -7.586 142.2 -2.469 23.02 

4 -0.250 -18.31 -13.92 -11.29 -1.272 -94.12 -89.42 -65.19 -5.313 36.87 20.46 61.55 

5 -0.214 -3.567 -3.313 -5.446 -3.613 -8.544 20.79 30.27 -1.487 47.88 -17.53 -2.485 

6 -0.072 3.243 -0.472 1.422 -2.732 7.309 4.332 -12.06 -1.780 111.5 -14.62 1.098 

7 -0.043 5.858 0.499 4.572 -2.970 41.40 -2.754 -36.61 -10.29 -140.6 -16.08 14.98 

8 -0.008 2.127 -21.42 1.791 -0.917 16.63 -25.18 -16.67 -7.524 -60.77 7.740 11.04 

9 -0.002 0.746 0.120 0.649 -0.305 6.611 -1.449 -6.82 -4.078 -25.24 -1.496 5.840 

10 -0.000 0.033 0.006 0.029 -0.013 0.322 -0.080 -0.337 -0.024 -1.273 -0.06 0.335 
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frequency measurements from the open-loop system and frequency measurements from a 

set of ad hoc closed-loop systems (AHCLS-1, AHCLS-2, AHCLS-3, AHCLS-4).  The ad 

hoc closed-loop system, AHCLS-i (i=1,2,3,4), has the same closed-loop eigenvalues as 

those of the optimal closed-loop system, CLS-i, while its eigenvectors are not optimally 

assigned (assigned as the “closest” achievable eigenvectors to their corresponding open-

loop ones).  It is worth mentioning that this set of ad hoc closed-loop systems also 

provides 12 natural frequency measurements (3 from each system) for damage 

identification.  However, we only have three natural frequency measurements available 

for damage identification when the open-loop system is utilized. 

Figure 3.5(a-h) shows the results of damage identification by using noise-free 

natural frequencies of the open-loop system, ad hoc closed-loop systems, and the optimal 

closed-loop systems.  Each subplot in the figure compares the damage identification 

results for one case of detecting single element damage.  The horizontal axis and vertical 

axis indicate the index of structural element and its associated stiffness reduction in 

percentage, respectively.  As shown in the figure, when the three frequency 

measurements of the open-loop system are used for damage identification, the predicted 

stiffness reductions generally do not match with the actual stiffness reduction, and the 

obtained predictions have significant errors.  When the twelve frequency measurements 

from the ad hoc closed-loop systems or optimal closed-loop systems are used for damage 

identification, an obvious improvement of damage identification results can be observed.  

In each case, the actual damaged element is always predicted to have the most severe 

stiffness reduction, in other words; the structural damage in each case is successfully 

localized.  Also, the corresponding damage severity in each case is nearly accurately 
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predicted.  Therefore, by utilizing the enlarged dataset of frequency measurement from a 

series of closed-loop systems, we can significantly improve the performance of damage 

identification. 

Since measurement noise is inevitable in the natural frequency measurements, it is 

necessary to examine the performance of the proposed approach under the influence of 

measurement noise.  Here we assume that the measured natural frequencies of the 

damaged closed-loop systems are contaminated with measurement noise.  The noise-

contaminated frequency measurement is simulated by using the following equation 

where c
dω  and c

dω  are the noise-contaminated and noise-free natural frequency 

measurements of the damaged closed-loop system, respectively, and R  is a diagonal 

matrix whose diagonal entries are independent, normally distributed random numbers 

with mean 0, variance 1, and standard deviation 1, and [ ]0, 1v∈  represents the noise 

level.  Two different levels of measurement noise, 0.5%v =  and 2.0%v = , are 

considered in the following case studies. 

Figure 3.6 shows the damage identification results by using noise-contaminated 

natural frequencies of the open-loop system, the ad hoc closed-loop systems, and the 

optimal closed-loop systems.  We first assume that the level of the measurement noise is 

0.5%, i.e., 0.5%v = .  Each subplot in the figure compares the damage identification 

results for one case of detecting single element damage.  The horizontal axis and vertical 

axis indicate the index of structural element and its associated stiffness parameter 

reduction in percentage, respectively.  For each case of damage identification, 200 

c c c
d d dv= +ω ω Rω  (3.55)
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independent sets of simulated measurement noise are generated and added to the 

frequency measurements, then the resulting 200 sets of noise-contaminated natural 

frequencies (from the open-loop system, the ad hoc closed-loop systems, or the optimal 

closed-loop systems) are used to perform damage identification, respectively.  By doing 

so, 200 predictions of elemental stiffness parameter reductions are obtained.  The average 

of the resulting 200 predictions of the elemental stiffness reductions is represented by 

different patterns of bars in each subplot, and the ‘T’ marker added on the top of the bars 

represents the standard deviation of the obtained 200 predictions.  As shown in the figure, 

when the natural frequencies of the open-loop system are utilized for damage 

identification, even the structural damage cannot be accurately located for most cases, 

and thus the damage identification performance is quite poor.  The performance of 

damage identification can be improved by using the natural frequencies of the ad hoc 

closed-loop systems, however, the resulting damage identification results are still not 

satisfactory.  Finally, when the natural frequencies from the optimal closed-loop systems 

are utilized, both the location and severity of the structural damage are successfully 

identified in each case.  Moreover, under such situation, the standard deviation of the 

damage identification results due to uncertainties in frequency measurement is much 

smaller.  This clearly indicates that the damage identification results using the optimal 

closed-loop systems are more robust against uncertainties in frequency measurement. 

When the noise level increases to 2.0%v = , the resulting damage identification 

results by using natural frequencies from different systems are presented in Figure 3.7.  

Here we use the same damage scenario for each subplot as that used in Figure 3.6.  As 

can be observed in Figure 3.7, the performance of damage identification using natural 
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frequencies of the open-loop system remains poor.  Unlike the case studies for noise level 

0.5%v = , there is no improvement of damage identification results when the natural 

frequencies of the ad hoc closed-loop systems are used.  That is, the performance of 

damage identification using the ad hoc closed-loop systems becomes poor when the noise 

level increase to 2.0%v = .  When the natural frequencies of the optimal closed-loop 

systems are used for damage identification, the structural damage can still be successfully 

identified in each case, and the standard deviation of the detection results only increases 

marginally under the higher noise level, which again demonstrates the improvement in 

both detection accuracy and robustness.  The above case studies clearly show that the 

damage identification by using natural frequencies of the optimal closed-loop systems 

outperforms that by using those of either the open-loop system or the ad hoc closed-loop 

systems. 

3.6 Summary 

In this chapter, an enhanced frequency-shift-based damage identification method 

using sensitivity-enhancing feedback control is developed.  A feedback controller can be 

designed to enhance the sensitivity of frequency shift to structural damage, which would 

benefit the process of damage identification.  In order to obtain the best performance of 

sensitivity enhancement in the closed-loop system, both the closed-loop eigenvalues and 

eigenvectors should be treated as design variables in the controller synthesis process.  In 

this research, we formulate an algorithm to optimally assign the eigenvalues and 

eigenvectors that yield enhanced closed-loop natural frequency sensitivity, which leads to 



116 

improved damage identification performance.  The problem that is common in frequency-

shift-based damage identification, namely deficiency of frequency measurement data, is 

also addressed by using multiple closed-loop systems with different feedback controller 

design.  A series of numerical studies are performed on an example structure.  It is shown 

that, in order to achieve the best performance of sensitivity enhancement, both the closed-

loop eigenvalues and eigenvectors should be simultaneously optimized.  It is also 

demonstrated that the proposed method is effective in damage identification and is robust 

against uncertainties in frequency measurements. 
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(a) (b)  

(c) (d)  

(e) (f)  

(g) (h)  
Figure 3.5:  Damage identification results using noise-free natural frequencies.  Actual 
stiffness reduction;  Prediction using noise-free natural frequencies of the open-loop 
system;  Prediction using noise-free natural frequencies of the ad hoc closed-loop 
systems;  Prediction using noise-free natural frequencies of the optimal closed-loop 
systems. 
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(a)  (b)  

(c)  (d)  

 (e)  (f)  

(g)  (h)  
Figure 3.6:  Damage identification results using noise-contaminated natural frequencies. 
The noise level is v=0.5%.   Actual stiffness reduction;  Prediction using noise-
contaminated natural frequencies of the open-loop system;  Prediction using noise-
contaminated natural frequencies of the ad hoc closed-loop systems;  Prediction using 
noise-contaminated natural frequencies of the optimal closed-loop systems. 
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(a) (b)  

(c) (d)  

(e) (f)  

(g) (h)  
Figure 3.7:  Damage identification results using noise-contaminated natural frequencies. 
The noise level is v=2.0%.  Actual stiffness reduction;  Prediction using noise-
contaminated natural frequencies of the open-loop system;  Prediction using noise-
contaminated natural frequencies of the ad hoc closed-loop systems;  Prediction using 
noise-contaminated natural frequencies of the optimal closed-loop systems. 



 

Chapter 4 
 

Sensitivity-Enhancing Control Approach for Structural Model Updating 

The major issue of implementing the two enhanced damage identification 

methods proposed in Chapter 2 and Chapter 3, is that both of them require an accurate 

finite element model of the structure for circuit/controller design and system analysis.   

There are two ways to address this issue: (1) one way is to use model updating techniques 

to obtain an accurate finite element model, and hence satisfy this requirement; (2) the 

other way is to use system identification techniques to identify a model directly from 

experimental data for circuit/controller design and system analysis, and hence frees the 

requirement of having an analytical model.  This chapter focuses on the first method of 

using the model updating techniques, and the second method of using system 

identification techniques will be discussed in Chapter 5.  

Although there are a variety of techniques available for model updating, it is 

preferred that the process of model updating utilizes the same hardware setup and 

physical quantity measurement as used for damage identification, which will greatly save 

the time and cost involved in the whole process.  In fact, both of the proposed two 

damage identification methods can be extended for the application of structural model 

updating.  With this, we can use the same set of hardware setup (i.e., integration of 

piezoelectric circuitry for the tunable circuitry approach or sensor-controller-actuator 

architecture for the sensitivity-enhancing control approach) and measure the same 

physical quantity (i.e., natural frequency) for both functions of model updating and 
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damage identification.  Without loss of generality, this thesis will only focus on 

extending the sensitivity-enhancing control approach for structural model updating.  

Therefore, the purpose of this chapter is to utilize the same concept of sensitivity-

enhancing control as used for damage identification in Chapter 3 to develop a model 

updating scheme, so that we can use the same hardware setup (i.e., sensor-controller-

actuator architecture) and measure the same physical quantity (i.e., natural frequency) for 

both functions of structural model updating and damage identification.  Figure 4.1 shows 

the schematic of the sensitivity-enhancing control approach for dual functions of 

structural model updating and damage identification.  From the initial finite element (FE) 

 

 
Figure 4.1: Schematic of the sensitivity-enhancing control approach for dual functions of 
structural model updating and damage identification 
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model, a series of sensitivity-enhancing controls can be designed to enhance the 

frequency sensitivities to the updating structural parameters and/or damage parameters.  

The natural frequencies of the model-based closed-loop systems and those measured 

from the closed-loop systems associated with the healthy structure, can be used to update 

the initial FE model to obtain a refined FE model.  The refined FE model, together with 

the measured frequency changes of the closed-loop systems before and after damage 

occurrence, can then be used to realize structural damage identification.   

Since the structural damage identification using sensitivity-enhancing control with 

a refined FE model has been described in detail and numerically verified in Chapter 3, 

this chapter will only focus on the model updating process using sensitivity-enhancing 

controls.  

4.1 Introduction 

In structural dynamic analysis and control design problems, it is a common task 

for engineers to establish a mathematical model of the structure of interest.  In many 

cases, the finite element method (FEM) is utilized to construct the mathematical model.  

However, it is well known from experience that an initial finite element model always 

differs from the actual structure due to the inevitable modeling errors in material 

properties, geometrical properties, and boundary conditions.  Therefore, to obtain a 

reliable and high-fidelity model, it is imperative to refine the initial finite element model 

by correlating it with the experimentally measured data.  This process is often called 

model updating, model correlation, or model refinement.  The model updating process 
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involves modifications of the mass, stiffness and damping matrices of the mathematical 

model to achieve an improved agreement between the model predictions and the 

experimentally measured data from the actual structure. 

From reviewing the basic concept of model updating, we realize that the problem 

of model updating is quite similar to the problem of damage identification.  Both of them 

aim to identify the discrepancies in structural parameters that are responsible for the 

discrepancies observed in the measurement data.  Structural damage identification aims 

to identify the damage (e.g., cracks, erosions, and delaminations) induced changes in 

structural parameters, based on the observed changes in the measurement data before and 

after damage occurrence.  Similarly, structural model updating aims to find out the 

modeling errors in structural parameters based on the discrepancies between the model 

predictions and the experimentally measured data from the actual structure.  Due to their 

similarity, the methods developed for structural damage identification can be easily 

extended for the application of model updating. 

Similar to the practice of damage identification, the most commonly used 

experimental data for model updating is the modal information (i.e., natural frequencies 

and mode shapes) from vibration tests.  However, it has been pointed out that the use of 

mode shape information for model updating entails three major difficulties [85,86]: (a) 

the mode shape measurement is more sensitive to measurement noise and carries more 

errors than frequency measurement [104,105]; (b) the measured mode shapes are in 

general incomplete in terms of spatial co-ordinates, and this would require either an 

expansion on the measured mode shapes or an reduction on the FE model, both of which 

may introduce additional errors to the measured data or the model; (c) the calculation of 
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mode shape sensitivities is more difficult than that of frequency sensitivities.  Therefore, 

those techniques that require only the measured natural frequencies are more preferred 

for model updating.  However, these techniques encounter the same limitations as 

encountered by the frequency-shift-based damage identification methods, and these 

limitations are, (a) deficiency of frequency measurement data; and (b) low sensitivity of 

natural frequency to the updating structural parameters [85,86,104,105]. 

From reviewing the above limitations of the natural frequency-based model 

updating techniques, one may realize that we can use the same concept of sensitivity-

enhancing control as proposed in Chapter 3 to overcome these limitations.  Therefore, the 

purpose of this chapter is to develop an enhanced frequency-based model updating 

method using the concept of sensitivity-enhancing control.  First, the natural frequency 

sensitivity to model errors in structural parameters can be enhanced by integrating 

sensitivity-enhancing control to the structure.  Second, by including the natural 

frequencies from a series of sensitivity-enhanced closed-loop systems, we can 

significantly enrich the frequency measurement data available for model updating. 

4.2 Iterative Model Updating Method Using the Natural Frequencies of Sensitivity- 
Enhanced Closed-Loop Systems 

In this section, a novel iterative model updating process using the concept of 

sensitivity-enhancing control is presented.  First, the model updating process using the 

open-loop natural frequency is briefly summarized, and its limitations for the current 

practice are discussed.  Second, the concept of sensitivity-enhancing control proposed in 
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Chapter 3, is utilized to develop an enhanced model updating method using natural 

frequencies of the sensitivity-enhanced closed-loop systems. 

4.2.1 Model Updating Using the Open-Loop Natural Frequencies 

For a flexible structure, an initial mathematical model can be constructed by using 

finite element method.  The global mass matrix and stiffness matrix, 0M  and 0K , can be 

expressed as 

   

Where e
jM  and e

jK  are the elemental mass matrix and stiffness matrix of the jth element.  

The natural frequencies associated with this model can be obtained by solving the 

following eigenvalue problem 

Due to the idealizations involved in modeling the material properties, geometrical 

properties and boundary conditions, the mathematical model may differ from the actual 

structure.  Thus, there are always discrepancies between the model parameters (such as 

stiffness and inertial) used in the mathematical model and those of the actual structure. 

The process of model updating seeks to modify the mass and stiffness matrices of 

the initial model so that the updated mass and stiffness matrices will reproduce the 
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measured modal data from the actual structure as close as possible.  The updated mass 

and stiffness matrices can be expressed as the summation of the initial values from the 

finite element (FE) model, 0M  and 0K , and their first perturbations with respect to 

updating parameters jθ  

  

  
where l  is the total number of physical parameters that need to be updated, jδθ  is the 

model error of the physical parameter jθ .  The sensitivity of mass and stiffness matrices 

to updating parameters, jθ∂ ∂M  and jθ∂ ∂K , can be calculated from the initial 

mathematical model. 

Given the natural frequency discrepancy between the initial model and the actual 

structure 

where q  denotes the total number of measured natural frequencies, a first-order 

sensitivity based equation can be formulated to relate the frequency discrepancy vector 

δω  and parameter modeling error vector δθ   
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where q l×∈ℜS  is the frequency sensitivity matrix with respect to the updating 

parameters, and can be computed by using the following equation 

  
Since the number of measured natural frequencies ( q ) is usually much smaller 

than the number of physical parameters that need to be updated ( l ), Eq. (4.7) often 

results in a significantly underdetermined problem, and may not lead to an accurate 

solution of the modeling error vector of δθ .  Moreover, due to the low sensitivity of 

natural frequency to parameter variation, the frequency difference between the 

mathematical model and the actual structure may not be accurately measured in the 

presence of noise.  Because of these, the practice of model updating based on measured 

open-loop natural frequencies often encounters severe limitations. 

4.2.2 Iterative Model Updating Method Using the Natural Frequencies of the 
Sensitivity-Enhanced Closed-Loop Systems  

From reviewing the above limitations of model updating using open-loop natural 

frequency measurements, one may realize that the same concept of sensitivity-enhancing 

control as proposed for damage identification in Chapter 3, can be utilized to overcome 

both of the aforementioned limitations.  In this subsection, we present a novel iterative 

model updating scheme that utilizes the natural frequencies of the sensitivity-enhanced 

closed-loop systems.  

( ) 1,
2 2

i iT
i i

j i j j

i j
ω ω
θ ω θ θ
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K MS u u  (4.8)
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As demonstrated and verified in Chapter 3, an appropriately designed active 

feedback control can be applied to the structure to increase the sensitivity of natural 

frequencies to the structural parameters that need to be updated.  Here we use the same 

controller design scheme as proposed in Section 3.4 of Chapter 3; namely, the 

eigenstructure assignment-based constrained optimization scheme, to design the 

sensitivity-enhancing feedback control for model updating.  The details of this controller 

design scheme will not be reiterated here, one may refer to Section 3.4 in Chapter 3.  

Assuming that we have designed a set of closed-loop systems with enhanced 

frequency sensitivities to updating parameters, the process of updating the structural 

parameters using the closed-loop natural frequencies is illustrated as follows.  For each 

closed-loop system, a sensitivity-based equation can be obtained as 

where δθ  is a vector of modeling errors in physical parameters,  ciδω  is the frequency 

difference between the model and actual structure when the ith feedback control is 

applied, and  ciS  is the frequency sensitivity matrix of the ith closed-loop system, whose 

elements can be calculated using 

where c
iλ , c

iu  and c
iv  are the ith eigenvalue and its associated right and left eigenvectors 

of the closed-loop system. 

Collecting the equations for all closed-loop systems, a combined equation is 

obtained as follows 

ci ciδ δ=ω S θ  (4.9)
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where p  is total number of closed-loop systems that have been designed.  Note that by 

utilizing p  closed-loop systems, the total number of frequency measurement data for 

model updating is increased by p  times compared with the case of using the open-loop 

natural frequencies, whereas the number of updating parameters (i.e, dimension of δθ ) 

does not change.  This means that the deficiency of frequency measurement data can be 

greatly improved by including the natural frequencies from a series of closed-loop 

systems. 

Based on Eq. (4.11), the modeling error vector δθ  can be estimated by 

minimizing the following performance index 

The least-square solution of this minimization problem is obtained using the generalized 

inverse as follows 

The above solution is based on a first-order linear approximation between the 

frequency discrepancies and parameter variations; this, however, may become inadequate 

when high sensitivity is introduced by the closed-loop control, which renders the second 

and higher order effects important.  To obtain a more accurate estimation of the modeling 

errors, an iterative parameter updating process is used to compensate for the nonlinearity 
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of the relation between the frequency discrepancies and the modeling errors. A schematic 

diagram of the iterative process is given in Figure 4.2.   

 

 

The major steps involved in the iterative process are described as follows: 

1. An initial mathematical model ( (0)M ) is constructed.  The physical parameters 

that need to be updated are jθ  ( 1, 2, ,j l= ), and their initial values are (0)
jθ . 

2. Based on the initial mathematical model ( (0)M ), a series of closed-loop 

controls are designed to enhance the frequency sensitivity to the updating 

 

Figure 4.2:  Schematic representation of the iterative process 
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parameters jθ .  The corresponding gain matrices of the closed-loop controls 

are 1 2, , , pK K K . 

3. Apply the closed-loop controls designed in Step 2 to the actual structure, and 

measure the natural frequencies of the resulting closed-loop systems, 

1 2, , ,c c cp
A A Aω ω ω . 

4. Find the model-predicted natural frequencies under the aforementioned series 

of closed-loop controls.  With the current mathematical model ( )iM  ( 0i =  for 

the first iteration), the natural frequencies of these closed-loop systems, 

1 2, , ,c c cp
M M Mω ω ω , are solved based on the corresponding eigenvalue problems.  

Using the modal data obtained for each closed-loop system, the frequency 

sensitivity matrix to the updating parameters jθ  can be calculated by utilizing 

Eq. (4.10), and they are denoted as 1 2, , ,c c cpS S S . 

5. Compare the closed-loop natural frequencies measured from the actual 

structure with those predicted from the  model-based closed-loop systems,  

5.1 If the discrepancies are sufficiently small, an updated mathematical model 

that is sufficiently close to the actual structure is obtained, and the 

iterative process stops; 

5.2 If the discrepancies do not satisfy the criterion, a sensitivity-based 

equation is utilized to estimate the parameter modeling errors in the 

current mathematical model ( )iM . 
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6. We update the physical parameters using ( 1) ( )i i
j j jθ θ δθ+ = + , and an updated 

mathematical model ( 1)iM +  is obtained with the new parameter values, ( 1)i+θ .  

7. Repeat Steps 4-6. 

4.3 Illustrative Example of Model Updating 

In this section, a cantilevered beam is used as an illustrative example to 

demonstrate and verify the proposed model updating method. 

4.3.1 Schematic of the Illustrative Example 

A schematic of the system model used for numerical analysis is given in 

Figure 4.3.  The cantilevered beam is evenly discretized into 10 elements.  Four 

piezoelectric actuators bonded on the upper surface of the beam are used as control input 

actuators, and they are located on the second, fourth, sixth, and eighth beam elements, 

respectively.  The control voltage sources for these four control input actuators are 1V , 

2V , 3V , and 4V , respectively.  Another piezoelectric transducer bonded on the bottom 

surface of the second element is used to excite the structure for frequency response 

measurement, where 0V  is the excitation input voltage.  0V  is in the form of Gaussian 

white noise with zero mean and 50V standard deviation.  The mass density, Young’s 

modulus, and piezoelectric constant of the piezoelectric actuators are, respectively, 

37.6 10pρ = × kg/m3, 105.9 10pE = × N/m2, and 10
31 2.76 10d −= − × N/C. 
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An initial mathematical model of the cantilevered beam is constructed by using 

the FE method.  The global mass and stiffness matrices of the FE model can be written as 

where e
jM  and e

jK  are the elemental mass matrix and stiffness matrix of the jth structural 

element.  jm  and jk  are the mass parameter and stiffness parameter of the jth structural 

element, and are defined as 

where ρ  is the material density, A  is the beam section area, E  is the Young’s modulus, 

and I  is the second moment of area.  The initial values of the mass and stiffness 

parameters are calculated using the nominal values of the following structural 

parameters: beam length 0.40L m= , beam width 2.6w cm= , beam thickness 

3.4t mm= , material density 32410 /kg mρ = , and elastic modulus 10 26.6 10 /E N m= × . 

Due to the idealizations involved in modeling the material and geometry 

properties, the mass and stiffness parameters, jm  and jk , may not be a true 

 

 
Figure 4.3: Schematic of the system model 
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representation of the actual structure.  To obtain a more accurate FE model of the 

structure, we need to find out the model errors in mass and stiffness parameters, i.e., jmδ  

and jkδ , so that the updated system matrices 

reproduce the measured modal data from the actual structure as close as possible. 

In the following, the proposed model updating method is used to update the FE 

model by identifying the model errors in the mass and stiffness parameters.  More 

specifically, a series of closed-loop controls are designed to enhance the frequency 

sensitivities to mass or stiffness parameters.  Then the natural frequencies of these 

sensitivity-enhanced closed-loop systems are utilized to update the mass and stiffness 

parameters in the initial FE model. 

4.3.2 Design of Sensitivity-Enhancing Controls for Model Updating   

In the FE model, the derivatives of the mass and stiffness matrices with respect to 

the mass parameter jm  and stiffness parameter jk , respectively, can be solved as 

where e
jM  and e

jK  are the elemental mass matrix and stiffness matrix of the jth element, 

respectively.  Using Eq. (4.8), the sensitivities of the open-loop natural frequency o
iω  

with respect to the mass and stiffness parameters can be obtained as 
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Then the frequency sensitivity matrices to the mass and stiffness parameters for 

the open-loop system can be constructed as 

For the closed-loop system, the sensitivities of closed-loop natural frequency c
iω  

with respect to the mass and stiffness parameters can be obtained using Eq. (4.10)  

  

where c
iu  and c

iv  are the ith right and left eigenvector of the closed-loop system.  The 

frequency sensitivity matrices to the mass and stiffness parameters for the closed-loop  

system can be constructed as 
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The eigenstructure assignment based method described in Section 3.4 of Chapter 

3 is used to design the closed-loop controls to enhance the sensitivities of natural 

frequencies to mass and stiffness parameters.  Six closed-loop controls are designed to 

enhance the frequency sensitivities to mass parameters, and the resulting sensitivity-

enhanced closed-loop systems are listed in Table 4.1.  In the table, the first column gives 

the system ID, the second column provides information about the use of actuators for 

Table 4.1: Closed-loop systems with enhanced frequency sensitivities to mass parameters

System 
ID 

Actuator 
locations 

Optimization 
parameters First three closed-loop eigenvalues 

CLS-1 2,4,6,8 0 1.0 13C e= , 1.0iw =  1 12.70c oλ λ= ,   2 21.89c oλ λ= ,   3 31.30c oλ λ=  

CLS-2 2,4,6,8 0 1.0 14C e= , 1.0iw =  1 12.99c oλ λ= ,   2 21.62c oλ λ= ,   3 31.52c oλ λ=  

CLS-3 2,4,6 0 1.0 13C e= , 1.0iw =  1 13.00c oλ λ= ,   2 21.54c oλ λ= ,   3 31.28c oλ λ=  

CLS-4 2,4,6 0 1.0 14C e= , 1.0iw =  1 12.75c oλ λ= ,   2 21.11c oλ λ= ,   3 31.26c oλ λ=  

CLS-5 2,4,8 0 1.0 13C e= , 1.0iw =  1 12.71c oλ λ= ,   2 21.79c oλ λ= ,   3 31.46c oλ λ=  

CLS-6 2,4,8 0 1.0 14C e= , 1.0iw =  1 13.00c oλ λ= ,   2 21.43c oλ λ= ,   3 31.23c oλ λ=  
 

 

Table 4.2: Closed-loop systems with enhanced frequency sensitivities to stiffness 
parameters 

System 
ID 

Actuator 
locations 

Optimization 
parameters First three closed-loop eigenvalues 

CLS-7 2,4,6,8 0 1.0 14C e= , 1.0iw =  1 10.91c oλ λ= ,   2 20.98c oλ λ= ,   3 30.65c oλ λ=  

CLS-8 2,4,6,8 0 1.0 15C e= , 1.0iw =  1 10.95c oλ λ= ,   2 20.89c oλ λ= ,   3 30.67c oλ λ=  

CLS-9 2,4,6 0 1.0 14C e= , 1.0iw =  1 10.99c oλ λ= ,   2 20.87c oλ λ= ,   3 30.62c oλ λ=  

CLS-10 2,4,6 0 1.0 15C e= , 1.0iw =  1 10.97c oλ λ= ,   2 20.41c oλ λ= ,   3 30.67c oλ λ=  

CLS-11 2,4,8 0 1.0 14C e= , 1.0iw =  1 10.91c oλ λ= ,   2 20.85c oλ λ= ,   3 30.83c oλ λ=  

CLS-12 2,4,8 0 1.0 15C e= , 1.0iw =  1 10.91c oλ λ= ,   2 20.82c oλ λ= ,   3 30.83c oλ λ=  
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each closed-loop system, the third column gives the parameter setting for the 

optimization process, and the fourth column shows the first three eigenvalues of the 

closed-loop system (i.e., ratios to their corresponding open-loop ones).  Another six 

closed-loop controls are designed to enhance the frequency sensitivities to stiffness 

parameters, and the resulting sensitivity-enhanced closed-loop systems are listed in 

Table 4.2.  For each closed-loop system, the associated actuator usage, parameter setting 

for the optimization process, and the first three eigenvalues are given in the second, third, 

and fourth columns, respectively. 

4.3.3  Model Updating Using the Closed-Loop Natural Frequencies 

In this subsection, we will use the natural frequencies of sensitivity-enhanced 

closed-loop systems in Table 4.1 and Table 4.2 to update the mass and stiffness 

parameters of the initial FE model.  In our numerical analysis, only the first three natural 

frequencies of each closed-loop system are utilized for the model updating process. 

As proposed, an iterative process is utilized to update the mass and stiffness 

parameters based on the frequency difference between the model and the actual structure.  

In each iteration, the mass and stiffness parameters are updated by estimating the 

parameter errors in the current model.  The modeling errors of mass and stiffness 

parameters can be estimated by solving the following sensitivity-based equation 
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where 3 1ciδ ×∈ℜω  ( 1,2, ,12i = ) is the frequency difference of the ith closed-loop 

system (CLS-i) between the current FE model and the actual structure, 3 10ci
m

×∈ℜS  and 

3 10ci
k

×∈ℜS  are the frequency sensitivity matrices to the mass and stiffness parameters, 

respectively. 

In our numerical analysis, a series of random numbers are utilized to simulate the 

modeling errors in mass and stiffness parameters.  With these modeling errors, the actual 

values of the mass and stiffness parameters can be obtained, and then the actual structure 

can be represented by the FE model with the actual values of the mass and stiffness 

parameters.  

In the first example of model updating, the modeling errors in mass and stiffness 

parameters are given as follows: 

   

Note that the modeling errors are given as percentages relative to the parameters’ 

nominal values. 

For the open-loop system without active feedback control, the differences of the 

first three natural frequencies between the initial FE model and the actual structure are 

given in the first row in Table 4.3.  Then we look at the effects of modeling errors on the 

natural frequencies of the sensitivity-enhanced closed-loop systems listed in Table 4.1 

and Table 4.2.  The closed-loop natural frequency discrepancies between the initial FE 

{
}

-3.04%   4.06%   -2.68%   4.44%   -3.33%

6.19%   1.23%   -3.92%   5.15%   1.50%
j jm mδ =

 (4.25)

{
}

-2.73%   3.02%   -5.17%   3.79%   -1.80%

-6.19%   0.33%   4.46%   -3.16%   0.50%
j jk kδ =

 (4.26)
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model and the actual structure are given in Table 4.3.  For each closed-loop natural 

frequency discrepancy, its ratio to the corresponding open-loop natural frequency 

discrepancy is also given as the number in the parenthesis.  It can be easily seen that the 

frequency discrepancies of the closed-loop systems are much larger than their 

corresponding ones of the open-loop system. Therefore, by utilizing the sensitivity-

enhancing feedback controls, the sensitivities of natural frequencies to modeling errors in 

the mass/stiffness parameters are significantly enhanced. 

 

Then the proposed model updating method is used to update the mass and 

stiffness parameters of the initial FE model, and the results are presented in Figure 4.4.  

Figure 4.4(a) shows the estimation of the modeling errors in mass parameters, and 

Table 4.3: Frequency discrepancies of the open-loop and closed-loop systems between 
the initial FE model and the actual structure 

Systems 1δω  ( rad s ) 2δω  ( rad s ) 3δω  ( rad s ) 
Open-loop -1.85 -10.84 -13.14 

CLS-1  6.00 (-3.24)  231.14 (-21.32) -120.72 (9.19) 

CLS-2  4.84 (-2.62)  17.62 (-1.63)  416.12 (-31.67) 

CLS-3  2.90 (-1.57)  20.06 (-1.85)  275.98 (-21.00) 

CLS-4 -62.77 (33.91) -72.93 (6.73) -36.72 (2.79) 

CLS-5  13.31 (-7.19)  74.11 (-6.84) -57.71 (4.39) 

CLS-6  13.29 (-7.18)  19.46 (-1.79) -27.38 (2.08) 

CLS-7 -10.74 (5.80) -74.85 (6.90) -54.06 (4.11) 

CLS-8 -1.92 (1.04) -109.33 (10.08)  33.01 (2.51) 

CLS-9 -15.10 (8.16) -66.41 (6.13)  55.97 (-4.26) 

CLS-10  27.42 (-14.81) -33.14 (3.06)  34.32 (-2.61) 

CLS-11  11.27 (-6.09)  135.27 (-12.48)  260.05 (-19.79) 

CLS-12  10.61 (-5.73) -68.84 (6.35)  72.42 (-5.51)  
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Figure 4.4(b) shows that estimation of the modeling errors in stiffness parameters.  In 

each figure, the horizontal axis represent the index of structural element, the vertical axis 

represents the modeling error in mass/stiffness parameter of that corresponding element.  

It is worth mentioning that the mass parameter of the first element and the stiffness 

parameter of the last element are not included in the updating process.  The reason is that 

even the closed-loop natural frequencies are insensitive to these two parameters.  In each 

figure, the symbols of “■” represent the actual model errors, the symbols of “◊” and “□” 

represent the estimation of modeling errors in the first and second iteration, and the 

symbols of “○” represent the final estimation of the modeling errors after the iterative 

process converges.  From these two figures, we can see that after only five iterations, the 

estimated modeling errors of both mass parameters and stiffness parameters match quite 

well with their actual values. 

To illustrate the importance of enriching frequency measurement data for the 

model updating process, we compared the model updating results by using different 

numbers of closed-loop natural frequencies.  Figure 4.5(a)-(b) shows the model updating 

results for 5 different cases, i.e., using the natural frequencies of two closed-loop system 

(CLS 1,2 or CLS 7,8), four closed-loop systems (CLS 1,2,7,8), eight closed-loop systems 

(CLS 1-4, 7-10), and twelve closed-loop systems (CLS 1-12).  When we look at the 

results in each figure, we can easily find out that increasing the number of closed-loop 

systems used for model updating significantly improves the resulting estimation of the 

modeling errors in both mass and stiffness parameters.  This also verifies the proposed 

idea of using multiple closed-loop controls to enrich frequency measurement data for 

model updating.  
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For a second example of model updating, the actual modeling errors of the mass 

and stiffness parameters are set as follows 

 

 

(a) Estimation of the mass parameter errors  

 

(b) Estimation of the stiffness parameter errors 

Figure 4.4:  Estimation of the modeling errors in mass and stiffness parameters for case I

{
}

5.03%   4.77%   -6.42%   -4.29%   3.60%

-3.49%   1.14%   4.93%   -3.09%   2.61%
j jm mδ =

 (4.27)

{
}

-3.26%   -3.91%   1.07%   -4.27%   2.81%

-5.93%   1.45%   2.51%   -3.20%   -1.95%
j jk kδ =

 (4.28)
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Again, the first three natural frequencies of those sensitivity-based closed-loop 

systems listed in Table 4.1 and Table 4.2 are utilized to update the mass and stiffness 

parameters of the initial FE model.  The results of model updating are given in 

Figure 4.6, where Figure 4.6(a) shows the estimation of the mass parameter errors, and 

Figure 4.6(b) shows the estimation of the stiffness parameter errors.  As shown in both 

 

 
(a) Estimation of the mass parameter errors 

 

 
(b) Estimation of the stiffness parameter errors 

Figure 4.5:  Comparison of the estimated modeling errors by using different numbers of
closed-loop natural frequencies   
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figures, the estimated modeling errors in mass/stiffness parameters converge to their 

actual values after five iterations of parameter updating. 

In real applications, the natural frequency measurements are subjected to various 

types of uncertainties such as the effect of measurement noise.  To evaluate the 

robustness of the proposed model updating method with respect to uncertainties in 

frequency measurement, we add random noise to the frequency measurement and use 

 

 
(a) Estimation of the mass parameter errors 

 
(b) Estimation of the stiffness parameter errors 

Figure 4.6:  Estimation of the modeling errors in mass and stiffness parameters for case II
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noise-contaminated natural frequencies to perform model updating.  The effects of 

measurement noise on the measured natural frequencies are simulated using the 

following equation  

where ci
Aω  is the noise-free natural frequencies of the ith closed-loop system (i.e., 

calculated from the FE model with actual mass and stiffness parameters), ci
Aω  is the 

noise-contaminated natural frequencies to simulate the actual measurement from the 

structural system, R  is a diagonal matrix whose diagonal entries are independent, 

normally distributed random numbers with mean 0, variance 1, and standard deviation 1, 

and [ ]0, 1v∈  represents the noise level. 

 As an illustrative example, here we use noise-contaminated natural frequencies to 

perform model updating for case I. The noise level is set to be 0.1%ν = . 200 

independent sets of random numbers are generated and added to the noise-free natural 

frequencies to simulate the effect of measurement noise, and then the resulting 200 sets 

of noise-contaminated natural frequencies are used to perform model updating, 

respectively. 

The results of model updating are presented in Figure 4.7, where the symbols of 

“○” represent the average of the resulting 200 estimations of parameter modeling errors, 

and the standard deviation of the 200 estimations are represented by the symbols of “Ι” 

across the average.  From the figure, we can see that the mean of the estimated parameter 
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modeling errors (both mass and stiffness parameter errors) matches well with the actual 

modeling errors; moreover, the standard deviation of the results is within an acceptable 

range.  Therefore, the proposed model updating method is robust against uncertainties in 

the natural frequency measurement. 

 

 
(a) Estimation of the mass parameter errors 

 
(b) Estimation of the stiffness parameter errors 

Figure 4.7:  Effects of measurement noise on the model updating results 
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4.4 Summary 

In this chapter, a novel model updating method using natural frequencies of 

sensitivity-enhanced closed-loop system is developed.  The proposed method effectively 

overcomes the well-known limitations of the traditional frequency-based model updating 

technique.  First, closed-loop control is applied to the structure to enhance the frequency 

sensitivity to modeling errors in physical parameters.  Second, the frequency 

measurement data available for model updating can be greatly enriched by including 

natural frequencies of a series of closed-loop systems.  An iterative process is developed 

to update the physical parameters based on frequency discrepancy between the 

mathematical model and the actual structure.  Numerical analysis on a benchmark 

structure is carried out to verify the proposed model updating method.  Results show that 

the model errors in the FE model can be accurately identified by using the proposed 

method. The proposed method is robust to certain level of measurement noise in the 

frequency measurement. 



 

Chapter 5 
 

Experiment Investigation: Structural Damage Detection Using Sensitivity-
Enhancing Feedback Control and Identified Model 

In this chapter, a laboratory experiment is designed and carried out to verify the 

sensitivity-enhancing control approach for frequency-shift-based damage detection 

enhancement.  In this experiment, a system identification technique is utilized to identify 

a mathematical model for controller design and system analysis.  With this, the proposed 

damage detection method using sensitivity-enhancing control no longer requires an 

analytical model, which greatly favors the implementation of this method for applications 

on complex structures that are difficult to model accurately. 

This chapter is organized as follows.  The first section gives an overall description 

of the experimental system including hardware setup, experiment objective, and 

procedure.  In the second section, a system identification technique is utilized to identify 

a state-space model of the structural system from the measured frequency response 

functions (FRF).  After that, the identified model is utilized to design the sensitivity-

enhancing control to enhance the frequency sensitivity to mass variations in the structure.  

Finally, the designed sensitivity-enhancing feedback control is implemented to the 

structure using Simulink/dSpace real-time interface (RTI).  A series of tests are carried 

out to evaluate the sensitivity enhancement performance of the designed controllers. 
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5.1 Experimental Setup and Overall Description 

The overall experimental setup is illustrated in Figure 5.1.  The experimental test 

stand consists of a cantilevered beam structure, dynamic signal analyzer and function 

generator, a laser vibrometer sensing instrument, power amplifier, signal conditioner, and 

dSPACE data acquisition system.  The manufacturer and model information of the above 

instruments used in this experiment is given as follows: 

 Dynamic Signal Analyzer (HP 35665A) 

 Laser Vibrometer Sensing Instrument (Polytec OFV 303 Sensor Head & 

Polytec OFV 3001S Laser Vibrometer Controller)   

 Power Amplifier (PCB Piezotronics 790 Series Power Amplifier) 

 Signal Conditioner (DL Instruments Model 4302 Filter)  

 Data Acquisition System (dSPACE 1103) 

 

 
Figure 5.1: Experimental setup 
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Figure 5.2 shows the schematic of the experimental setup.  As shown in the 

figure, three Macro Fiber Composite (MFC) actuators (a photograph and schematic of the 

MFC actuator is shown in Figure 5.3) are bonded on the bottom and top surfaces of the 

host beam structure.  The MFC actuator boned on the bottom surface is used to excite the 

structure to produce vibrations, and the other two MFC actuators on the top surface are 

used as control actuators for active feedback control.  The key properties of the beam 

structure and the MFC actuators are listed in Table 5.1.  A non-contact laser vibrometer 

sensor is utilized to measure the displacement or velocity at the positions of interest on 

the beam.  A PC-based digital control system, namely, SIMULINK/dSPACE real time 

interface (RTI), is used to implement the active feedback control.   

 

Figure 5.2: Schematic of the experimental setup 
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An overall description of the signal flow in the experiment is summarized as 

follows.  First, the excitation signal generated by the Function Generator (HP 35665A) is 

amplified by the Power Amplifier, and then applied to the MFC excitation actuator to 

excite the beam structure.  The Laser Vibrometer sensor signal (displacement or velocity 

measurement), together with the excitation signal, is sent to the Dynamic Signal Analyzer 

(HP 35665A) to perform FFT analysis for frequency response function (FRF) 

measurement.  Second, the excitation signal and Laser Vibrometer sensor signal are sent 

to the dSPACE data acquisition system, where a real-time controller is embedded to 

 

 

   
Figure 5.3: Photograph and schematic of Macro Fiber Composite (MFC) actuator  

(Source: http://www.smart-material.com) 

Table 5.1: Properties of the beam structure and MFC actuator 

Beam structure MFC actuator (type: M2814 P1) 
Mass density:       32725 /b kg mρ =  Piezoelectric constant: 2

33 4.0 10 pC/Nd = ×  
Elastic modulus:   10 26.6 10 /bE N m= ×  Tensile modulus: 9 2

1 30.34 10 N / mE = ×
Element length:    0.42l m=  Operational voltage range: 500V ~ 1500V− +  
Overall length: 1.4bL cm=  Length: 2.8aL cm=  

Width:                  25.30bw mm=  Width: 1.4aw cm=  

Thickness:            3.10bt mm=  Thickness: 0.3at mm=   
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calculate the required control voltages to the MFC control actuators.  The dSPACE 

system outputs the control voltages through its DAC channels, the control voltage signals 

pass through the Power Amplifier and Signal Conditioner, and are then applied to the 

MFC control actuators. 

In Chapter 3 and Chapter 4, it has been demonstrated and verified that the 

sensitivity-enhancing controls can be designed to enhance the frequency sensitivity to 

both stiffness and mass damage/variation.  Stiffness changes are usually simulated by 

sawing a crack in the structure, which permanently damages the structure without the 

possibility of returning to the original healthy structure.  In addition, it is impossible to 

quantify the amount of stiffness change.  On the other hand, the mass changes are much 

easier to realize and the amount of mass change can be accurately quantified.  Therefore, 

in this experiment we will focus on detecting mass changes in the beam structure.  The 

mass changes are realized by attaching an extra point mass on the surface of the beam 

structure. The objective of this experiment investigation is to design sensitivity-

enhancing controls to enhance the frequency sensitivity to mass changes in the beam 

structure, such that the mass changes will induce more significant frequency-shift of the 

closed-loop system than that of the open-loop system. 

The major steps of the experiment are summarized as follows.  First, system 

identification technique is utilized to identify a state-space model of the structural system 

using the measured frequency response functions (FRF).  Then the identified state-space 

model is utilized to design the sensitivity-enhancing feedback control to enhance the 

frequency sensitivity to mass variations in the beam.  Finally, the designed sensitivity-

enhancing controls are implemented to the beam structure using Simulink/dSpace real 
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time interface (RTI).  A series of tests are carried out to evaluate the sensitivity 

enhancement performance of the designed controllers. 

5.2 System Identification Using the Measured Frequency Response Functions 

The sensitivity-enhancing control approach for damage identification, proposed in 

Chapter 3, requires an accurate finite element (FE) model of the structure for controller 

design system analysis.  To obtain an accurate FE model, the common way is to use the 

model updating techniques (e.g., the one proposed in Chapter 4 using sensitivity-

enhancing controls) to refine an initial FE model by correlating the experimentally 

measured data with the model predictions.  In this experimental investigation, a system 

identification technique is utilized to identify a mathematical model directly from the 

experimentally measured data.  With this, the proposed damage detection method using 

sensitivity-enhancing control no longer requires an accurate finite element model, which 

greatly favors the implementation of this method for practical applications. 

 System identification methods can be broadly classified into two categories: 

parametric model-based methods and non-parametric methods.  Parametric model-based 

system identification methods involve the use of mathematical models to reproduce the 

experimentally measured input-output data in either time or frequency domain.  The 

benefits of using parametric models for structural identification include their direct 

relationship with physically meaningful quantities such as stiffness and mass, and their 

suitability for system analysis and control design [145].  Popular time-domain models 

used for system identification include linear polynomial models (e.g., ARX models and 
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ARMAX models), and state space model with free, canonical and structured 

parameterizations.  Many system identification algorithms are available to estimate the 

parameters of such parametric models; these include prediction error method (PEM), 

least squares estimation (LSE), instrumental variable method (IV), maximum likelihood 

algorithm (MLA), subspace methods, and eigensystem realization algorithm (ERA).  One 

may refer to Ref. [146-148] for a comprehensive overview of the system identification 

theory and algorithms. 

In this experiment, the frequency-domain system identification technique is 

utilized to identify a state-space model of the beam structure integrated with MFC 

actuators, a schematic of which is shown in Figure 5.2.  More specifically, the prediction 

error method (PEM), together with the experimental modal analysis technique, is utilized 

to identify a state-space model with structured parameterization from the measured 

frequency response functions (FRF). 

Considering the cantilevered beam structure integrated with excitation and control 

actuators, as shown in Figure 5.2, the overall system can be modeled as a linear, time-

invariant system (LTI system) with the equation of motion 

where 1n×∈ℜx  is the displacement vector at the points of interest, n n×∈ℜM , n n×∈ℜC  

and n n×∈ℜK  are the mass, damping, and stiffness matrices, respectively, n p
e

×∈ℜB  and 

n r×∈ℜcB  are the influence matrices for the excitation input voltage eV  and the control 

input voltage cV , respectively. 

c c e e+ + = +Mx Cx Kx B V B V  (5.1)
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 Define the state vector as the combination of displacement and velocity, i.e., 

1N×⎡ ⎤
= ∈ℜ⎢ ⎥
⎣ ⎦

x
z

x
 ( 2N n= ), and assume that the system output is the displacement and 

velocity, the equation of motion given by Eq. (5.1) can be written in the standard state-

space form 

where 

 Eq. (5.1) and Eq. (5.2) can be transformed into their equivalent forms in modal 

coordinates.  The generalized eigenvalue problem for Eq. (5.1) can be formulated as 

where ( )2 2 2
1 2, , , ndiag ω ω ωΛ =  is a diagonal matrix containing the squares of the 

system’s natural frequencies, and [ ]1 2 nΦ = φ φ φ  is the eigenvector matrix. 

 The displacement vector x  in Eq. (5.1) can be expressed in modal coordinate as 

= Φx q , where Φ  is the eigenvector matrix, and q  is the vector of modal coordinates.  

Substituting Φ=x q  into Eq. (5.1) and pre-multiplying TΦ  on both sides of the equation, 

Eq. (5.1) can be transformed into its equivalent form in modal coordinates as follows 

c c e e= + +z Az B V B V  

n n n n

n n n n

× ×

× ×

⎡ ⎤⎧ ⎫
= = =⎨ ⎬ ⎢ ⎥
⎩ ⎭ ⎣ ⎦

I 0x
y Cz z

0 Ix
 

(5.2)

1 1
n n n n N N× × ×
− −

⎡ ⎤
= ∈ℜ⎢ ⎥− −⎣ ⎦

0 I
A

M K M C
,  

1
1

n N r
c

c

× ×
−

⎡ ⎤
= ∈ℜ⎢ ⎥
⎣ ⎦

0
B

M B
 and 1

1
n N p

e
e

× ×
−

⎡ ⎤
= ∈ℜ⎢ ⎥
⎣ ⎦

0
B

M B
 

(5.3)

Λ Φ = ΦM K  (5.4)

T T T T T
c c e e⎡ ⎤ ⎡ ⎤ ⎡ ⎤Φ Φ + Φ Φ + Φ Φ = Φ +Φ⎣ ⎦ ⎣ ⎦ ⎣ ⎦M q C q K q B V B V  (5.5)
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If the eigenvector matrix  Φ  is mass-matrix normalized, i.e., Φ  satisfies T
n n×Φ Φ =M I , 

Eq. (5.5) can be further simplified as 

where jω  and jζ  represent the natural frequency and damping ratio of the jth structural 

mode, respectively, m T
e e= ΦB B  and m T

c c= ΦB B  are the influence matrices in modal 

coordinates for the excitation input voltage eV  and the control input voltage cV , 

respectively. 

 Define the state vector as 1N×⎡ ⎤
= ∈ℜ⎢ ⎥
⎣ ⎦

q
η

q
, Eq. (5.6) can be written in the standard 

state-space form 

where 

 From observing Eq. (5.7) and Eq. (5.8), one may find that the parameters in 

system matrix mA  and output matrix mC , i.e., natural frequencies, damping ratios and 

mode shapes, can be obtained from experimental modal analysis.  Then the input 

matrices m
eB  and m

cB  can be identified using the system identification technique.   

2

0 0
2

0 0

m m
j j j c c e eζ ω ω

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ + = +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

q q q B V B V  (5.6)

m m m
c c e e= + +η A η B V B V  

n nm

n n

×

×

Φ⎡ ⎤
= = ⎢ ⎥Φ⎣ ⎦

0
y C η η

0
 

(5.7)

( ) ( )2 2 2
1 2 1 1 2 2, , , 2 , 2 , , 2

n n n nm N N

n n ndiag diagω ω ω ζ ω ζ ω ζ ω
× × ×

⎡ ⎤
= ∈ℜ⎢ ⎥

− − − − − −⎢ ⎥⎣ ⎦

0 I
A , 

1nm N r
c m
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0
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B
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e
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0
B

B
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Therefore, to identify a state-space model with the structured parameterization as given 

by Eq. (5.7) and Eq. (5.8), it involves two major steps: (1) use the experimental modal 

analysis results to determine the system matrix mA  and output matrix mC ; (2) use the 

system identification technique to determine the system input matrices, m
eB  and m

cB . 

 

 The setup of FRF measurement for system identification is shown in Figure 5.4.  

The system inputs include the excitation voltage to the MFC excitation actuator  (Ve) and 

two control voltages to the two MFC control actuators (Vc1 and Vc2).  The system outputs 

are the velocities at two measurement points on the beam, one is located at 12.6 cm away 

from the free end of the beam, and the other is located at 1.4 cm away from the free end 

of the beam.  It is clear that the system can be described as a 3-input (one excitation 

voltage, two control voltages) and 2-output (velocities at two measurement points) 

system.  For such a system, the state-space model with the same structured 

parameterization as given by Eq. (5.7) and Eq. (5.8), can be expressed as 

 

 
Figure 5.4: Setup of FRF measurement for system identification 
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Therefore, the system identification of the integrated system shown in Figure 5.4, 

is equivalent to identifying the unknown parameters in the state-space model given by 

Eq. (5.9).  The major steps involved in the system identification process are summarized 

as follows: 

I. Use the Dynamic Signal Analyzer (DSA) to measure the frequency response 

functions (FRF) between each input/output pair (voltage input on each MFC 

actuator to velocity response at each measurement point); 

II. Use the experimental modal analysis technique to identify modal parameters 

(natural frequencies, damping ratios, and mode shapes) from the measured 

FRFs; 

III. Use the identified modal parameters to construct the system matrix mA  and 

output matrix mC , and use the prediction error method (PEM) in MATLAB 

System Identification Toolbox to estimate the input matrices m
eB  and m

cB . 

IV. Validate the identified state-space model by comparing the measured FRFs with 

the model predictions. 

First, we measure the frequency response functions from the input voltage on each MFC 

actuator to the velocity response at each measurement point.  The total number of FRFs 

obtained from measurement is 3×2=6.  The input voltage to MFC excitation actuator goes 

12
1 21 1 1
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through CH-1 of the power amplifier, and the input voltages to the MFC control actuators 

go through CH-2 and CH-3 of the power amplifier, respectively.  CH-1, CH-2, and CH-3 

of the power amplifier have amplification gains of 29.97, 29.80, and 29.92, respectively.  

The velocity response at each measurement point is measured by the Laser Vibrometer 

sensor, and the sensor gain is set as 10.0 mm/S/V. 

 

Then the FRFs obtained from the input voltage on the MFC excitation actuator to 

the velocity response at two measurement points are used to perform the experimental 

modal analysis.  The commercial software STARMODAL is used to identify the natural 

frequencies, damping ratios, and mode shapes from the measured frequency response 

functions.  The results of the experimental modal analysis are listed in Table 5.2.  With 

these modal parameters, the system matrix  mA  and output matrix mC  can be constructed 

Table 5.2: Experimental modal analysis results 

Frequencies and Damping 
Mode Natural Frequency (HZ) Damping (%) 

1 14.31 193.57e-3 
2 88.81 126.55e-3 
   

Mode Shapes 
Mode (1)iφ  (2)iφ  

1 0.91885e-3 1.46641e-3 
2 1.89878e-3 -5.40915e-3  

 

0 0 1 0
0 0 0 1

=
-8087.395820 0 -0.349729 0

0 -311354.123148 0 -1.330193

m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A  

0 0 0.515589 0.267187
=

0 0 0.824438 -0.734553
m ⎡ ⎤

⎢ ⎥
⎣ ⎦

C  

(5.10)
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Then the identified system matrix mA  and output matrix mC  in Eq. (5.10) are 

utilized to construct an initial state-space model, where the input matrices ( m
eB  and m

cB ) 

are assigned with arbitrary numbers.  Then the prediction error method (PEM) in 

MATLAB System Identification Toolbox is utilized to identify the actual values of input 

matrices ( m
eB  and m

cB ).  The identified values of the input matrices ( m
eB  and m

cB ) are 

given as follows 

From Eq. (5.10) and Eq. (5.11), the final state-space model obtained from system 

identification can be written as 

 Figure 5.5 compares the measured frequency response functions with those 

predicted from the identified model.  ijH  (i=1,2; j=1,2,3) represents the frequency 

0
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=
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response function from the voltage input on the jth MFC actuator to the velocity response 

at the ith measurement point.  From the figure, we can see that the frequency response 

functions estimated from the identified model match well with those from the 

experimental measurement.  Therefore, the identified state-space model is quite accurate, 

and it can be utilized to design the sensitivity-enhancing feedback control. 

5.3 Design of Sensitivity-Enhancing Feedback Control Using the Identified Model 

In this section, the identified state space model (obtained in the previous section) 

is utilized to design the sensitivity-enhancing feedback control to increase the frequency 

sensitivity to mass variations of the beam.  First, to comply with the type of model used 

for calculating frequency sensitivity, the identified state-space model in modal 

coordinates is transformed into its equivalent one in the actual physical coordinates (i.e., 

displacement and velocity at the selected measurement points).  Second, the calculation 

of frequency sensitivity to mass variations also requires that either the mass matrix is 

known or the mass-normalized eigenvector is available.  To achieve this, a series of tests 

are designed and carried out to estimate the frequency sensitivity matrix of the open-loop 

system, and an optimization scheme is developed to estimate the mass matrix based on 

the open-loop sensitivity matrix.  Finally, the controller design approach presented in 

Section 3.4 of Chapter 3, namely, the eigenstructure assignment-based constrained 

optimization scheme, is utilized to design the optimal sensitivity-enhancing control to 

enhance the frequency sensitivity to mass variations in the beam. 
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Figure 5.5: Comparison of the FRFs measured from the experiment and predicted from the
identified model  



162 

For the 3-input 2-output system as shown in Figure 5.4, the equation of motion 

can be expressed as 

where 1x  and 2x  represent the displacement at measurement points 1 and 2, M , C , and 

K  are the equivalent mass, damping, and stiffness matrices, eB  and cB  are the influence 

matrices for the excitation voltage input eV  and the control voltage input 

{ }1 2
T

c c cV V=V , respectively.  For the open-loop system, the eigenvalues and 

eigenvectors can be obtained by solving the following eigenvalue problem 

where iω  and iu  represent the ith natural frequency and its corresponding eigenvector of 

the open-loop system..  

From the eigenvalue sensitivity analysis presented in Section 3.2.2 of Chapter 3, 

the sensitivity of the open-loop natural frequencies to mass variation at one specific 

measurement point can be obtained as 

 For a closed-loop system with control input 1 1
1 2

2 2
c c c

x x
x x

⎧ ⎫ ⎧ ⎫
= +⎨ ⎬ ⎨ ⎬
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V K K , the 

sensitivity of the closed-loop natural frequency to mass variation at one specific 

measurement point can be expressed as 

1 1 1

2 2 2
c c e e

x x x
V

x x x
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2

T
i i

ji i
T

j i i

m
m
ω ω

⎡ ⎤∂
⎢ ⎥∂∂ ⎣ ⎦= −

∂

Mu u
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where c
iω , c

iu  and c
iυ  are the ith natural frequency and the corresponding right and left 

eigenvectors of the closed-loop system. 

 From observing Eq. (5.15) and Eq. (5.16), one may notice that in order to 

calculate the open-loop and closed-loop natural frequency sensitivity to mass variations 

at the selected measurement points, it requires that: (1) the eigenvector iu  is expressed in 

the actual physical coordinates, i.e., the displacement or velocity at the selected 

measurement points; and (2) the mass matrix M  is known unless the eigenvector iu  is 

mass-matrix normalized, i.e., iu  satisfies T
i i =u Mu I .  However, the identified state-

space model obtained in previous section is expressed in the modal coordinates, and the 

eigenvector iu  obtained from experimental modal analysis normally is not mass-matrix 

normalized.  Therefore, before we utilize the identified state space model to design the 

sensitivity-enhancing controls, we need to: (1) transform the identified state-space model 

in modal coordinate into its equivalent one in the actual physical coordinates; (2) estimate 

the equivalent mass matrix M  associated with the identified model. 

  For the identified state-space model in modal coordinates, the following matrix 

transformations are performed to transform it into its equivalent one in the actual physical 

coordinates 

( )
( )2

Tc c
i ic c

ji i
Tc c

j i i

m
m
ω ω

⎡ ⎤∂
⎢ ⎥∂∂ ⎣ ⎦= −

∂

Mv u

v Mu
 (5.16)
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where Φ  is the right eigenvector matrix.  The resulting state-space model has the states 

of displacement and velocity at the two measurement points, and the model is given as 

The next step is to estimate the equivalent mass matrix M  associated with the 

state-space model given by Eq. (5.18).  The key idea for the mass matrix estimation is to 

minimize the difference between the open-loop frequency sensitivity matrix calculated by 

using Eq. (5.15), in which the mass matrix M  is the only unknown, and the one 

estimated from a series of tests on the open-loop system with known mass addition at the 

measurement points. 

First, a series of tests are carried out to estimate the open-loop natural frequency 

sensitivity to mass variations at the two measurement points.  More specifically, we 
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successively add a small amount of mass (2 gram) to each measurement point, and 

measure the frequency response functions of the perturbated structure with mass addition.  

Comparing the natural frequencies of the perturbed structure with those of the original 

structure, the shift of the open-loop natural frequencies due to mass addition at each 

measurement position can be obtained.  Table 5.3 shows the measured natural 

frequencies of the original structure and the perturbated structures.  From the table, we 

can easily see that adding 2g mass to measurement point 1 induces -0.19 HZ shift in the 

first natural frequency and a shift of -0.34 HZ in the second natural frequency; and 

adding 2g mass to measurement point 2 induces -0.53 HZ shift in the first natural 

frequency and -2.36 HZ shift in the second natural frequencies. 

 

On the other hand, the frequency shift of the open-loop system due to 2g mass 

addition at the two measurement points can be calculated using the open-loop sensitivity 

matrix.  Based on the open-loop frequency sensitivity given in Eq. (5.15), the following 

equation can be utilized to calculate the frequency shift 

Table 5.3: Open-loop natural frequencies of the original structure and the perturbated 
structure with mass addition 

Mode Original structure 
Perturbated structure -1 

(2g mass added to  
measurement point 1) 

Perturbated structure -2 
(2g mass added to 

measurement point 2) 
1 14.31 HZ 14.12 HZ 13.78 HZ 
2 88.81HZ 88.47 HZ 86.45 HZ  
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1 1

2 2

1,1 1,2
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S S m
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where 1δω  and 2δω  denote the shift of the first and second natural frequency, 

respectively, 1mδ  and 2mδ  denote the mass variations at the two measurement points, 

respectively, and S  is the open-loop frequency sensitivity matrix, whose elements can be 

calculated using Eq. (5.15) as 

Note that in Eq. (5.20), the natural frequency iω  and eigenvector iu  are known from the 

experimental modal analysis, 
jm

⎡ ⎤∂
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for 2j = , and the only unknown is the mass matrix M .  Based on the experimental 

results of frequency-shift data given in Table 5.3 and the estimated frequency-shift using 

Eq. (5.19), an optimization scheme can be formulated to estimate the unknown mass 

matrix M .  The optimization scheme aims to minimize the difference between the 

frequency-shift from the experimental measurement and the frequency-shift predicted 

using the model-based sensitivity analysis 

After the optimization process converges, it returns the optimal estimate of the mass 

matrix 
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With the state-space model given by Eq. (5.18) and the estimated mass matrix 

given by Eq. (5.22), the design approach of sensitivity-enhancing control described in 

Section 3.4 of Chapter 3 can be utilized to design the sensitivity-enhancing controls to 

enhance the frequency sensitivity to mass variations at the selected measurement points.  

For the open-loop system with state-space model described in Eq. (5.18), applying 

state feedback control with control action c c=V K x , the resulting closed-loop system can 

be expressed as 

where [ ]1 2 1 2
Tx x x x=z  is the state vector, eB  and cB  are the input influence 

matrices for the excitation voltage eV  and the control voltages 1

2

c
c

c

V
V
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

V .   

The eigenvalue problem of the closed-loop system can be formulated as 

where c
jλ  and c

jφ  represent the jth eigenvalue and eigenvector of the closed-loop system.  

From the theory of eigenstructure assignment, the eigenvector c
jφ  associated with the 

closed-loop eigenvalue c
jλ  cannot be arbitrarily assigned, and the admissible space for 

eigenvector assignment can be found by using the singular value decomposition (SVD) 

technique.  

Applying SVD technique to the matrix, |c
j

c
j N cλ

λ⎡ ⎤= −⎣ ⎦S A I B , leads to 

( ) ( )c c e eV t= + +z A B K z B  (5.23)

( ) c c c
c c j j jλ+ =A B K φ φ , where 1, 2j =  (5.24)

*| |c
j

c
j N c j j N r jλ

λ ×⎡ ⎤ ⎡ ⎤= − = ⎣ ⎦⎣ ⎦S A I B U D V0  (5.25)
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where jD  is a diagonal matrix containing all the singular values of c
jλ

S , the columns of 

jU  contain the set of orthonormal left singular vectors, and the columns of jV  contain 

the set of orthonormal right singular vectors. The right singular vector matrix jV  can be 

partitioned in the following form, 
( ) ( )

11 12
( ) ( )

21 22

j j

j j j

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

V V
V

V V
 , where ( )

11
jV , ( )

12
jV , ( )

21
jV  and ( )

22
jV  are 

4 4× , 4 2× , 2 4× , and 2 2×  sub-matrices, respectively.  It can be shown that any 

achievable closed-loop eigenvector must be a linear combination of the column vectors of 

( )
12

jV .  Therefore, any achievable closed-loop eigenvector can be expressed as  

where jβ  is the linear combination coefficient vector used to span the column vectors of 

( )
12

jV  to achieve a
jφ .  

Assume that the closed-loop eigenvalues are assigned as follows: 

where o
jλ  is the jth eigenvalue of the open-loop system, and jγ  denotes the ratio between 

the jth closed-loop eigenvalue and its corresponding open-loop one.  Given the closed-

loop eigenvalues in Eq. (5.27), the associated closed-loop eigenvectors can be assigned in 

their respective admissible space 
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12

a j
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where the column vectors of ( )
12

jV  span the admissible space for assigning the jth 

eigenvector, and jβ  is the corresponding coefficient vectors for eigenvector assignment. 

To achieve a closed-loop system that has the eigenvalues as given in Eq. (5.27) 

and eigenvectors as given in Eq. (5.28), the required control gain matrix can be 

determined by using the following equations 

Where the matrices aΦ  and W  can be expressed as 

For the control gain matrix obtained in Eq. (5.29), the total control effort required 

for the closed-loop control is given by 

where cK  is the control gain matrix, and lP  is the solution to the following Lyapunov 

equation 

in which Z  is the variance matrix of the excitation input. 

A constrained optimization scheme can be formulated to find the optimal 

eigenstructure assignment such that the resulting closed-loop system achieves the best 

performance of sensitivity enhancement with constrained control effort.  More 

specifically, the optimization problem aims to find the optimal values of the design 

variables 
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c

−=K W Φ  (5.29)

* *
1 1 2 2( ) ( )a c c c c⎡ ⎤= ⎣ ⎦Φ φ φ φ φ , where ( )

12
c j
j j=φ V β  

* *
1 1 2 2( ) ( )⎡ ⎤= ⎣ ⎦W w w w w , where ( )

22
j

j j=w V β  
(5.30)

( )T
contr c l cW trace= K P K  (5.31)

( ) ( )T
c c l l c c+ + + + =A B K P P A B K Z 0  (5.32)



170 

that can maximize the sensitivity enhancement performance index, which is defined as 

the summation of element-to-element ratios between the closed-loop and open-loop 

frequency sensitivity matrices, 

under certain constraints on the control effort requirement. 

 In this experiment, three sensitivity-enhancing controllers are designed with 

different constraints on the control effort requirement.  Table 5.4 gives the descriptions of 

these constraints and the corresponding optimal values of the parameters for 

eigenstructure assignment.  With these parameters for eigenstructure assignment, the 

corresponding control gain matrix can be calculated using Eq. (5.29).  The control gain 

matrices for the three closed-loop systems listed in Table 5.4 are given in Eq. (5.35), 

Eq. (5.36), and Eq. (5.37), respectively.  

{ } 6
1 2 1 2, , ,γ γ= ∈ℜp β β  (5.33)
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∑ ∑

S
p
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Table 5.4: Closed-loop systems resulted from different sensitivity-enhancing controls 

Closed-loop 
system ID Constrains Closed-loop 

eigenvalues 
Closed-loop     
eigenvectors 

CLS-1 ( ), 1.0 6cMax i j e≤K  1 11.1577c oλ λ=  

2 21.0043c oλ λ=  
[ ]1 0.4794 0.2777= − −β  

[ ]2 0.1699 0.1548= − −β

CLS-2 ( ), 8.0 6cMax i j e≤K 1 11.4692c oλ λ=  

2 21.0387c oλ λ=  
[ ]1 0.4220 0.0095= −β  

[ ]2 0.2884 0.4594= − −β

CLS-3 ( ), 6.0 7cMax i j e≤K 1 12.4993c oλ λ=  

2 20.9477c oλ λ=  
[ ]1 0.8166 0.4516= −β  

[ ]2 0.2333 0.3740= − −β
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5.4 Implementation of the Sensitivity-Enhancing Control and Experimental Results 

The designed controllers for frequency sensitivity enhancement in the previous 

section are based on full-state feedback, and they are only feasible when all the state 

variables (displacement and velocity at all measurement points) are available for 

measurement. However, the Laser Vibrometer sensor used in this experiment can only 

measure the displacement or velocity at one measurement point.  Therefore, to implement 

the designed sensitivity-enhancing feedback control, a state observer (or state estimator) 

must be developed to estimate the state variables based on the system input and output 

measurement data. 

For a general second-order system written in state-space form 

where x  is the state vector, A  is the system matrix, C  is the output matrix, eB  and cB  

are the input influence matrices for excitation input f  and control input u , respectively.   

The equation for the Luenberger state observer [149,150] is defined as 

1

9.6282e5 9.8370e5 -4.3850e-2 4.2228e-3
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⎣ ⎦

K  (5.35)

2

5.8845e6 4.8171e6 0.1646 0.6187
-7.0588e6 2.0554e6 1.5531 0.3747c
⎡ ⎤
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⎣ ⎦

K  (5.36)

3

5.7165e7 1.9046e7 7.3662 4.2467
-1.6071e7 -1.2520e7 29.5269 8.8395c

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

K  (5.37)

c e= + +x Ax B u B f  
=y Cx  

(5.38)
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where x  is the estimated state vector, and L  is the observer gain matrix.  The 

Luenberger observer simulates the real system presented in Eq. (5.38) and penalizes the 

different between the measured output y  and the estimated output Cx .  From Eq. (5.38) 

and Eq. (5.39), the estimation error equation can be obtained as 

where = −e x x  is the estimation error vector.  From Eq. (5.40), one may notice that the 

estimation error e  has the property that: ( ) 0t →e  as t →∞ , for all ( )0te , if and only if 

the observer is asymptotically stable.  In other words, the estimation error e  will 

asymptotically approach zero if the eigenvalues of −A LC , also named observer poles, 

have negative real parts.  It can be also shown that if the system given in Eq. (5.38) is 

completely observable, one might place the observer poles arbitrarily far in the left-half 

complex plane to obtain fast convergence of the estimation error.  This, however, 

generally must be achieved by make the gain matrix L  quite large in magnitude, which 

in turn makes the observer very sensitive to the measurement noises.  Hence, a 

compromise between the convergence rate of the estimation error and the amplification 

of the measurement noise effect must be found for the observer design. 

 Define the control input u  as c=u K x , assembling the system equation given by 

Eq. (5.38) and the observer equation given by Eq. (5.39) yields the overall equation of 

the coupled system 

( )c e= + + + −x Ax B u B f L y Cx  (5.39)

( )= −e A LC e  (5.40)
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Figure 5.6 shows the block diagram of the above coupled control system with state 

observer. 

 In this experiment, the Laser Vibrometer sensor is used to measure the 

displacement at the measurement point 2 (sensor gain: 8 μm/V), and the measured 

displacement together with the excitation input voltage is sent to the state observer to 

estimate the other states.  With all the system state available, the control voltages required 

on the two MFC control actuators can be calculated using the control gain matrices for 

each controller design (given by Eq. (5.35), Eq. (5.36), and Eq. (5.37)).  
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Figure 5.6: Block diagram of the coupled system with state observer 
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Figure 5.7: Simulink model for implementing the state observer based controller  
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 Figure 5.7 shows the SIMULINK model developed to implement the sensitivity-

enhancing controls.   The left part of the SIMULINK model functions as the state 

observer, where two dSPACE ADC channels (CON1-CH1 and CON2-CH5) are used to 

read the excitation signal from the Function Generator and the measurement signal from 

the Laser Vibrometer.  The right part of the SIMULINK model calculates the control 

voltages using the estimated states and the control gain matrix.  Two dSPACE DAC 

channels (CH1 and CH2) are used to output the control voltages to the power amplifier 

and ultimately to the two MFC control actuators. 

 With the above observer-based controller design, we can implement the designed 

sensitivity-enhancing controls to evaluate their performance of sensitivity enhancement. 

To do this, we compare the natural frequency shifts of the closed-loop systems with those 

of the open-loop system when a point mass is attached to the same position on the beam.  

More specifically, two cases of mass additions are tested for each closed-loop system, 

that is: (1) adding 2g point mass at the measurement point 1, and (2) adding 2g point 

mass at the measurement point 2.  For each closed-loop system given in Table 5.4, we 

measured the FRFs of the closed-loop system for the original structure without mass 

addition, and the perturbated structures with the aforementioned two cases of mass 

additions.   

 Figure 5.8 shows the measured FRFs of the closed-loop system 1 for the original 

structure and the perturbated structure with 2g mass added at the measurement point 1.  

Figure 5.9 shows measured FRFs of the closed-loop system 1 for the original structure 

and the perturbated structure with 2g mass added at the measurement point 2.  Similarly, 

the measured FRFs of the closed-loop system 2 for two cases of mass additions are 
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shown in Figure 5.10 and Figure 5.11, respectively; and the measured FRFs of the 

closed-loop system 3 for the two cases of mass additions are given in Figure 5.12 and 

Figure 5.13, respectively.  From these figures, we can easily see that: (1) for the closed-

loop system 1, which are obtained with the strictest constraints on the control gain matrix, 

the frequency-shift induced by two cases of mass additions are similar to those of the 

open-loop system, and hence almost no sensitivity enhancement is achieved; (2) for the 

closed-loop system 2, which corresponds to the moderate constraints on the control gain 

matrix, only the first frequency sensitivity to mass variation at measurement point 2 is 

significantly enhanced; (3) for the closed-loop system 3, which allows the maximum 

amount of external control input, most of the frequency sensitivities to mass variations 

are significantly enhanced. 

 To quantify the sensitivity enhancement performance of the three closed-loop 

system, natural frequency shifts of each closed-loop system corresponding to the two 

cases of mass additions are compared to those of the open-loop system.  Table 5.5 shows 

the natural frequencies of the open-loop and the three closed-loop systems for the original 

structure without mass addition and the two cases of mass additions.  With these 

frequencies, we can easily obtain the frequency-shift of the open-loop and closed-loop 

systems due to mass addition at the two measurement points.  The results are given in 

Table 5.6.  Again, from the table, we can see that: (1) no obvious sensitivity enhancement 

is achieved for closed-loop system 1; (2) closed-loop system 2 only significantly 

enhances the first frequency sensitivity to mass variation at measurement point 2; (3) 

closed-loop system 3 achieves significant enhancement on most of the frequency 
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sensitivities.  When we use the performance index of sensitivity-enhancement defined by 

Eq. (5.34) to evaluate these three closed-loop systems, it gives the following results 

Note that a value of 4.0 for the performance index denotes no sensitivity enhancement. 

 With the above observations, we can conclude that: (1) the designed controllers 

are effective in enhancing the frequency sensitivity to mass variations in the beam 

structure; (2) the more the control effort allowed for the controller design, the better the 

sensitivity enhancement performance achieved by the resulting closed-loop system. 

 

1 4.40cSE = ;     2 6.36cSE = ;    3 20.37cSE = . (5.42)

Table 5.5: Measured natural frequencies of the open-loop and closed-loop system before and 
after mass addition 

Without mass addition With 2g mass added to 
measurement point 1 

With 2g mass added to 
measurement point 2 System ID 

1ω  (HZ) 2ω  (HZ) 1
Iω  (HZ) 2

Iω  (HZ) 1
IIω  (HZ) 2

IIω  (HZ) 
Open-loop 14.31 88.83 14.10 88.47 13.78 86.45 

Closed-loop 1 15.96 89.10 15.71 88.76 15.35 86.52 
Closed-loop 2 20.46 91.47 20.26 91.04 18.74 89.25 
Closed-loop 3 34.71 84.16 36.58 83.05 30.42 84.64  

 

Table 5.6: Natural frequency changes of the open-loop and closed-loop systems due to 
mass addition at the two measurement points 

With 2g mass added to the 
measurement point 1 

With 2g mass added to the 
measurement point 2 

System ID 
1 1 1
I Iω ω ωΔ = −  

(HZ) 
2 2 2
I Iω ω ωΔ = −  

(HZ) 
1 1 1
II IIω ω ωΔ = −  

(HZ) 
2 2 2
II IIω ω ωΔ = −  

(HZ) 
Open-loop -0.21 -0.35 -0.53 -2.38 

Closed-loop 1 -0.25 -0.34 -0.61 -2.58 
Closed-loop 2 -0.20 -0.43 -1.72 -2.22 
Closed-loop 3 1.87 -1.11 -4.29 0.48  
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 To have a quantitative understanding of the required control effort for each 

closed-loop system, the control voltages to random noise excitation for each closed-loop 

system are plotted in Figure 5.14, Figure 5.15, and Figure 5.16, respectively.  From 

these figures, we can see that the closed-loop system 3, which achieves the best 

performance of sensitivity enhancement, requires higher control voltages (more control 

effort) than the other two closed-loop systems. 

5.5 Conclusions 

In this Chapter, a laboratory experiment is designed and performed to verify the 

sensitivity-enhancing control approach for structural damage detection.  In this 

experiment investigation, a system identification technique is utilized to identify a 

mathematic model for controller design and system analysis, and hence an accurate finite 

element model is not needed.  The eigenstructure assignment based constrained 

optimization scheme is utilized to design the optimal sensitivity-enhancing controls.   

Experiment results show that by applying the sensitivity-enhancing controls to the 

structure, the frequency sensitivities to mass variations in the beam structure can be 

significantly enhanced.  
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Figure 5.8: Measured frequency response functions of the closed-loop system 1 before 
and after adding 2g point mass to the measurement point 1 
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Figure 5.9: Measured frequency response functions of the closed-loop system 1 before 
and after adding 2g point mass to the measurement point 2 
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Figure 5.10: Measured frequency response functions of the closed-loop system 2 before 
and after adding 2g point mass to the measurement point 1 
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Figure 5.11: Measured frequency response functions of the closed-loop system 2 before 
and after adding 2g point mass to the measurement point 2 
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Figure 5.12: Measured frequency response functions of the closed-loop system 3 before 
and after adding 2g point mass to the measurement point 1 
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Figure 5.13: Measured frequency response functions of the closed-loop system 3 before 
and after adding 2g point mass to the measurement point 2 
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Figure 5.14: Control voltages of the closed-loop system 1 to random noise excitation with 
magnitude of 3.96 V rms. (Vc1 magnitude: 1.69 V rms, and Vc2 magnitude: 1.05 V rms) 
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Figure 5.15: Control voltages of the closed-loop system 2 to random noise excitation with 
magnitude of 4.01 V rms (Vc1 magnitude: 5.38 V rms,  and Vc2 magnitude: 3.56 V rms) 
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Figure 5.16: Control voltages of the closed-loop system 3 to random noise excitation with 
magnitude of 3.91 V rms (Vc1 magnitude:7.67 V rms, and Vc2 magnitude: 5.36 V rms) 



 

Chapter 6 
 

Conclusions and Recommendations 

The purpose of this chapter is to summarize the research efforts and achievements 

in this thesis, and to recommend future research directions towards the improvement and 

implementation of the approaches developed in this thesis. 

6.1 Conclusions 

In this thesis, two enhanced frequency-shift-based damage identification methods 

are developed to address the two major limitations of the traditional approach, namely, 

deficiency of frequency measurement data for damage identification and low sensitivity 

of frequency shift to damage effects.  The first method with tunable piezoelectric 

circuitry network can effectively enrich the frequency measurement data for damage 

identification through appropriate tuning of the circuitry elements (i.e., inductors).  The 

second method using sensitivity-enhancing controls can simultaneously achieve the 

enhancement of frequency sensitivity to damage effects and the enrichment of frequency 

measurement data for damage identification.  The research efforts, achievements and 

discussions related to these two methods are summarized in the following two 

subsections.  



184 

6.1.1 Enhanced Method Using Tunable Piezoelectric Circuitry Network 

(1) A new idea of using the tunable piezoelectric circuitries coupled to the 

mechanical structure to enrich the frequency measurement data for damage 

identification is proposed.  By integrating tunable piezoelectric circuitries to 

the structure and appropriately tuning the circuitry elements, one can obtain a 

much enlarged dataset of natural frequency measurements for damage 

identification.  Compared with the previous approaches that use mechanical 

tailoring to enrich frequency measurement data (e.g., mass/stiffness addition 

techniques [111, 112]), this approach utilizes electrical tailoring (i.e., circuitry 

tuning) to alter the system dynamics, and hence is much easier to implement. 

 
(2) Guidelines on favorable inductance tuning that can yield the optimal damage 

identification performance are developed.  Analyses show that when the 

inductances are tuned to accomplish eigenvalue curve veerings between 

system eigenvalue pairs, the enriched frequency measurement data can most 

effectively capture the damage information, and hence, results in the most 

accurate damage identification results.   

 
(3) An iterative second-order perturbation-based algorithm is developed to 

identify the damage features (i.e., location and severity) from the measured 

frequency changes before and after damage occurrence.  This algorithm takes 

into account the damage-induced mode shape changes by including high order 

terms into the eigenvalue perturbation formulation, while actual 
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measurements of mode shapes before and after damage are not required for 

this algorithm. 

 
(4) Numerical analyses and case studies on benchmark beam and plate structures 

are carried out to demonstrate and verify the proposed new method.  

Numerical results show that the damage identification performance can be 

significantly improved by using the proposed new approach with favorable 

inductance tuning. 

 
(5) Compared with the sensitivity-enhancing control approach, this approach is 

passive in nature; therefore system stability is guaranteed and it dose not 

require a sensor-controller-actuator architecture and external control inputs.  

On the other hand, it cannot achieve significant sensitivity enhancement as the 

sensitivity-enhancing control approach.  Therefore, this approach is suitable 

for damage identification problems where the deficiency of frequency 

measurement data is the major concern while the frequency sensitivity issue is 

not so severe.   

6.1.2 Enhanced Method Using Sensitivity-Enhancing Control 

(1) A feedback controller can be designed to enhance the sensitivity of frequency 

shift to structural damage, which would benefit the process of damage 

identification. In order to obtain the best performance of sensitivity 

enhancement in the closed-loop system, both the closed-loop eigenvalues and 
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eigenvectors should be treated as design variables in the controller synthesis 

process. 

   
(2) To achieve the best performance of frequency sensitivity enhancement, a 

constrained optimization problem is formulated to find the optimal 

eigenstructure assignment for the closed-loop system, which leads to the 

optimal sensitivity-enhancing control. 

 
(3) Multiple closed-loop systems can be obtained from different sensitivity-

enhancing controls, and these closed-loop systems provide a much enlarged 

dataset of natural frequency measurements for damage identification.  

Therefore, by designing a series of sensitivity-enhancing controls and utilizing 

the natural frequencies of the resulting closed-loop systems for damage 

identification, both of the two major limitations of the classical frequency-

shift-based damage identification approach can be overcome. 

 
(4) A series of numerical studies are performed on an example structure.  It is 

shown that, in order to achieve the best performance of sensitivity 

enhancement, both the closed-loop eigenvalues and eigenvectors should be 

simultaneously optimized.  It is also demonstrated that the proposed method is 

effective in damage identification and is robust against uncertainties in 

frequency measurements. 

 



187 

(5) This approach requires an accurate finite element model for controller design 

and system analysis.  To fulfill this requirement, the concept of sensitivity-

enhancing control is utilized to develop an iterative model updating method 

using only the measured natural frequencies.  With this extension, the 

proposed approach can be used for dual functions of model updating and 

damage identification. 

 
(6) A laboratory experiment is designed and carried out to verify the sensitivity-

enhancing control approach for damage identification.  The experiment 

utilizes a system identification technique to identify a mathematical model 

directly from test data for controller design and system analysis, and hence 

does not require an analytical model as needed in the original approach.  

Experiment results show that the frequency sensitivity to mass variations in 

the structure can be significantly enhanced by applying the designed 

sensitivity-enhancing controls to the structure.  

6.2 Recommendations for Future Research Work 

In this section, future research work towards the improvement and 

implementation of the approaches developed in this thesis, as well as other promising 

methods for structural health monitoring, are recommended. 
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6.2.1 Further Improvement to the Sensitivity-Enhancing Control Approach for 
Structural Damage Identification 

The experimental studies presented in Chapter 5 have shown that the frequency 

sensitivity to mass variation can be significantly enhanced by integrating sensitivity-

enhancing control to the beam structure.  Through the current activities of experiment 

investigation, we found that in order to achieve substantial enhancement of frequency 

sensitivity, it always requires relatively high control gains.  However, large control gains 

may also amplify the effect of measurement noise, and this may affect the system 

performance and sometime even cause the closed-loop system to be unstable.  In the 

current experiment investigation, both the system model and the controller design are 

based on the assumption of deterministic system behavior, and thus the effect of model 

uncertainty and noise effect are neglected.  Therefore, to improve the current approach, 

the effect of model uncertainty and measurement noise should be considered in system 

analysis and design.  To achieve this goal, stochastic approaches of system identification 

and state estimation are suggested in future experimental investigations. 

 The stochastic system identification problem is stated as: Given input data ( )tu  

and output measurement data ( )ty , find the quadruple system matrices { }, , ,A B C D  (up 

to within a similarity transformation) and the noise covariance matrices W  and V , 

which correspond to the process noise ( )w t  and measurement noise ( )v t , respectively. 

One popular method of system identification for the stochastic state-space model is the 

so-called stochastic subspace identification.  A general overview of the subspace 

identification method (both deterministic and stochastic) is provided by Refs. [151,152]. 
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Subspace methods identify state-space models from input and output data by applying 

robust numerical techniques such as QR factorization, SVD and least squares.  There are 

two types of stochastic subspace identification methods than can be used: Covariance-

Driven Stochastic Subspace Identification [153,154] and Data-Driven Stochastic 

Subspace Identification (SSI-DATA) [155,156]. 

In accordance with the stochastic system model, the state observer should also 

allow for stochastic uncertainties in the system.  For a stochastic system model, the 

optimal state observer is given by the well-known Kaman-Bucy Filter (KBF) [157-160]. 

The Kalman-Bucy Filter is considered to be the optimal state observer in a least-square 

sense and allows for stochastic uncertainties in the system.  

6.2.2 Multifunctional Piezoelectric Sensory Node via Power Electronic Circuit for 
Structural Health Monitoring  

This part of future research work features the practical implementation and 

function extension of structural health monitoring system using variable piezoelectric 

circuitry networking.  The key idea is to use innovative power electronics to develop 

multifunctional adaptive piezoelectric sensory node to realize the tunable inductance 

function, self-sensing actuation, and energy harvesting function.  First, the power-

electronics-based synthetic inductor would have the advantages of high-performance and 

low-power consumption when compared to the traditional op-amp based synthetic 

inductor [122,123].  This will greatly favor the practical implementation of structural 

health monitoring using variable piezoelectric circuitry networking. Second, the power 

electronic circuit can be implemented to realize additional functions besides the tunable 
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inductor for structural health monitoring, and those additional functions include self-

sensing actuation [161-164] and energy harvesting [165-170].   

 Figure 6.1 shows the block diagram of a single sensor node.  In the circuitry 

diagram, the switch-mode inverter circuitry serves as an efficient, general-purpose 

interface to the piezoelectric transducer, allowing all the aforementioned functions to be 

synthesized in an integrated manner [166-169].  The power electronic arrangement is 

coupled with a local controller.  The local controller is designed to synthesize the 

multiple functions of the sensor node, and thus has a different goal than the overall 

structural system controller (shown as the global controller in Figure 6.1), which may be 

designed for the purpose of command following, shape control, and vibration control, etc.  

Voltage and current measurements used by the local controller can also be used to 

determine the structural strain/displacement, which enables the device’s sensing ability. 

  

 

 
Figure 6.1:  Block diagram of single sensor setup 
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6.2.3 Structural Health Monitoring Using the Measured Frequency Response 
Functions 

This thesis has been focused on structural health monitoring using only the 

measured natural frequencies of the structural system.  Another research direction is to 

directly use the measured frequency response function (FRF) data for structural health 

monitoring [171-174].  Although promising, there are some fundamental issues that need 

to be resolved in order to obtain accurate and reliable results of damage identification. 

(1) Selection of frequency points for damage identification.  A major advantage of 

using measured FRF data over using modal data (natural frequencies and 

mode shapes) comes from the fact that FRF data can provide much more 

information in a desired frequency range than modal data.  However, not all 

the information is suitable for structural damage identification, and the 

accuracy and reliability of the damage identification result heavily depends on 

the selection of frequency points from the measured FRFs [172].  Therefore, a 

good research direction is to develop guidelines for frequency selection to 

achieve the most accurate and reliable results of damage identification.  The 

following issues need to be considered when developing the guidelines for 

frequency selection, (i) the effects of modeling errors; (ii) the effects of 

measurement noise and errors; (iii) the sensitivity of FRF magnitude to 

damage effects. 

(2) Non-model based damage identification method.  The traditional FRF-based 

damage identification method requires an accurate finite element model and 

the measurement of FRFs at all the degrees-of-freedom [171-174].  However, 
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these two conditions are practically impossible to meet, especially for large 

complex structures.  Therefore, another good research direction is to develop a 

non-model damage identification method using the measured frequency 

response functions.  One promising solution is to use the measured FRFs 

themselves to calculate the FRF sensitivity for damage identification. 



193 

Bibliography 

 1. Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W. and Nadler, 
B.R., 2003, “A review of structural health monitoring literature: 1996–2001,” Los 
Alamos National Laboratory Report, LA-13976-MS, Los Alamos, New Mexico. 

 2. Chang, F.-K., Structural Health Monitoring 2001: The Demands and Challenges–
Proceedings of the 3rd International Workshop on Structural Health Monitoring, 
DEStech Publications, 2001. 

 3. Chang, F.-K., Structural Health Monitoring 2003: From Diagnosis & Prognostics 
to Structural Health Management–Proceedings of the 4th International Workshop 
on Structural Health Monitoring, DEStech Publications, 2003. 

 4. Chang, F.-K., Structural Health Monitoring 2005: Advancements and Challenges 
for Implementation–Proceedings of the 5th International Workshop on Structural 
Health Monitoring, DEStech Publications, 2005. 

 5. Balageas, D., Structural Health Monitoring 2002: Proceedings of the 1st 
European Workshop on Structural Health Monitoring; SAGE Publications, 2002. 

 6. Boller, C., and Staszewski, W.J., Structural Health Monitoring 2004: Proceedings 
of the 2nd European Workshop on Structural Health Monitoring; DEStech 
Publications, 2004. 

 7. Güemes, A., Structural Health Monitoring 2006: Proceedings of the 3rd 
European Workshop on Structural Health Monitoring; DEStech Publications, 
2006. 

 8. Wu, Z., and Abe, M., Structural Health Monitoring and Intelligent Infrastructure: 
Proceedings of the first International Conference on Structural Health 
Monitoring and Intelligent Infrastructure, Taylor Francis (UK), 2003. 

 9. Proceedings of the SPIE Symposium on Nondestructive Evaluation 2006: Vol. 
6176 - Nondestructive Evaluation and Health Monitoring of Aerospace Materials, 
Composites, and Civil Infrastructure V, Mufti A.A., et al., Editors; Vol. 6177 - 
Health Monitoring and Smart Nondestructive Evaluation of Structural and 
Biological Systems V, Kundu, T., Editor, Vol. 6179 - Advanced Sensor 
Technologies for Nondestructive Evaluation and Structural Health Monitoring II, 
Meyendorf, N., et al., Editors. 

 10. Proceedings of the SPIE Symposium on Nondestructive Evaluation 2005: Vol. 
5767 - Nondestructive Evaluation and Health Monitoring of Aerospace Materials, 
Composites, and Civil Infrastructure IV, Shull, P.J., et al, Editors; Vol. 5768 - 



194 

Health Monitoring and Smart Nondestructive Evaluation of Structural and 
Biological Systems IV, Kundu, T., Editor, Vol. 5770 - Advanced Sensor 
Technologies for Nondestructive Evaluation and Structural Health Monitoring, 
Meyendorf, N., et al, Editors. 

 11. Proceedings of the SPIE Symposium on Nondestructive Evaluation 2004: Vol. 
5393 - Nondestructive Evaluation and Health Monitoring of Aerospace Materials 
and Composites III, Shull, P.J., Gyekenyesi, A.L., Editors; Vol. 5394 - Health 
Monitoring and Smart Nondestructive Evaluation of Structural and Biological 
Systems III, Kundu, T., Editor. 

 12. Proceedings of the SPIE Symposium on Nondestructive Evaluation 2003: Vol. 
5046 - Nondestructive Evaluation and Health Monitoring of Aerospace Materials 
and Composites II, Gyekenyesi, A.L., and Shull, P.J., Editors; Vol. 5047 - Health 
Monitoring and Smart Nondestructive Evaluation of Structural and Biological 
Systems III, Kundu, T., Editor. 

 13. Proceedings of the SPIE Symposium on Nondestructive Evaluation 2002: Vol. 
4702 - Health Monitoring and Smart Nondestructive Evaluation of Structural and 
Biological Systems, Kundu, T., Editor; Vol. 4704 - Nondestructive Evaluation and 
Health Monitoring of Aerospace Materials and Civil Infrastructures, Gyekenyesi, 
A.L., et al., Editors. 

 14. Proceedings of the SPIE Symposium on Nondestructive Evaluation 2001: Vol. 
4335 – Advanced Nondestructive Evaluation for Structural and Biological Health 
Monitoring, Kundu, T., Editor; Vol. 4336 - Nondestructive Evaluation of 
Materials and Composites V, Baaklini, G.Y., et al., Editors; Vol. 4337 - Health 
Monitoring and Management of Civil Infrastructure Systems, Chase, S.B., and 
Aktan, A.E., Editors. 

 15. Cawley, P., 1997, “Long range inspection of structures using low frequency 
ultrasound,” Proceedings of DAMAS ‘97: Structural Damage Assessment Using 
Advanced Signal Processing Procedures, University of Sheffield, UK, pp. 1–17. 

 16. Sikorsky, C., and Stubbs, N., 1997, “Improving bridge management using NDE 
and quality management,” Structural Damage Assessment Using Advanced Signal 
Processing Procedures, Proceedings of DAMAS ‘97, University of Sheffield, UK, 
pp. 399–408. 

 17. Sikorsky, C., 1997, “Integrating modal based NDE techniques and bridge 
management systems using quality management,” Smart Systems for Bridges, 
Structures, and Highways, Proceedings of SPIE, Vol. 3043, pp. 31–42. 

 18. Sikorsky, C., 1999, “Development of a health monitoring system for civil 
structures using a Level IV nondestructive damage evaluation method,” Structural 
Health Monitoring 2000, Stanford University, Palo Alto, California, pp. 68–81. 



195 

 19. Bartelds, G., 1997, “Aircraft structural health monitoring, prospects for smart 
solutions from a European viewpoint,” Structural Health Monitoring, Current 
Status and Perspectives, Stanford University, Palo Alto, California, pp. 293–300. 

 20. Chang, F.K., 1999, “Structural Health Monitoring: A Summary Report on the 
First International Workshop on Structural Health Monitoring,” September 18–20, 
1997, Structural Health Monitoring 2000, Stanford University, Palo Alto, 
California. 

 21. Zak, A., Krawczuk, M., and Ostachowicz, W., 1999, “Vibration of a laminated 
composite plate with closing delamination,” Structural Damage Assessment 
Using Advanced Signal Processing Procedures, Proceedings of DAMAS ‘99, 
University College, Dublin, Ireland, pp. 17–26. 

 22. Jacob, P.J., Desforges, M.J., and Ball, A.D., 1997, “Analysis of suitable wavelet 
coefficients for identification of the simulated failure of composite materials,” 
Structural Damage Assessment Using Advanced Signal Processing Procedures, 
Proceedings of DAMAS ‘97, University of Sheffield, UK, pp. 31–40. 

 23. Ruotolo, R., and Surace, C., 1997, “Damage assessment of multi-cracked beams 
using combinatorial optimization,” Structural Damage Assessment Using 
Advanced Signal Processing Procedures, Proceedings of DAMAS ‘97, Univeristy 
of Sheffield, UK, pp. 77–86. 

 24. Ruotolo, R., and Surace, C., 1997, “Damage assessment of multiple-cracked 
beams: results and experimental validation,” Journal of Sound and Vibration, 
206(4), pp. 567–588. 

 25. Rytter, A., and Kirkegaard, P., 1997, “Vibration based inspection using neural 
networks,” Structural Damage Assessment Using Advanced Signal Processing 
Procedures, Proceedings of DAMAS ‘97, University of Sheffield, UK, pp. 97–
108. 

 26. Mares, C., Mottershead, J.E., and Friswell, M.I., 1999, “Damage location in 
beams by using rigid-body constraints,” Damage Assessment of Structures, 
Proceedings of the International Conference on Damage Assessment of Structures 
(DAMAS 99), Dublin, Ireland, pp. 381–390. 

 27. Williams, E.J., and Messina, A., 1999, “Applications of the multiple damage 
location assurance criterion,” Proceedings of the International Conference on 
Damage Assessment of Structures (DAMAS 99), Dublin, Ireland, pp. 256–264. 

 28. Staszewski, W.J., Biemans, C., Boller, C., and Tomlinson, G.R., 1999, “Impact 
damage detection in composite structures: recent advances,” Structural Health 
Monitoring 2000, Stanford University, Palo Alto, California, pp. 754–763. 

 29. Garibaldi, L., Marchesiello, S., and Gorman, D.J., 1999, “Bridge dynamics 
misinterpretations due to low spatial resolution and closeness of frequencies,” 



196 

Damage Assessment of Structures, Proceedings of the International Conference 
on Damage Assessment of Structures (DAMAS 99), Dublin, Ireland, pp. 411–422. 

 30. Doebling, S.W., Farrar, C.R., and Prime, M.B., 1998, “A summary review of 
vibration-based damage identification methods,” Shock and Vibration Digest, 
30(2), pp. 91-105. 

 31. Doebling, S.W., Farrar, C.R., Prime, M.B., and Shevitz, D.W., 1996, “Damage 
identification and health monitoring of structural and mechanical systems from 
changes in their vibration characteristics: a literature review,” Los Alamos 
National Laboratory Report LA-13070-MS, Los Alamos, New Mexico. 

 32. Park, G., Sohn, H., Farrar, C.R., and Inman, D.J., 2003, “Overview of 
piezoelectric impedance-based health monitoring and path forward,” Shock and 
Vibration Digest, 35(6), pp. 451-463. 

 33. Giurgiutiu, V., and Cuc A., 2005, “Embedded non-destructive evaluation for 
structural health monitoring, damage detection, and failure prevention,” Shock 
and Vibration Digest, 37(2), pp. 83-105. 

 34. Giurguitiu, V., 2005, “Tuned Lamb wave excitation and detection with 
piezoelectric wafer active sensors for structural health monitoring,” Journal of 
Intelligent Material Systems and Structures, 16(4), pp. 291-305. 

 35. Epureanu, B.I., 2003, “Nonlinear and chaotic vibration-based damage detection,” 
Proceedings of the ASME Applied Mechanics Division, Vol. 254, pp. 163-170. 

 36. Epureanu, B.I., Yin, S.-H., and Derriso, M.M., 2005, “High-sensitivity damage 
detection based on enhanced nonlinear dynamics,” Smart Materials and 
Structures, 14(2), pp. 321-327. 

 37. Todd, M.D., Nichols, J.M., Pecora, L.M., and Virgin, L.N., 2001, “Novel 
nonlinear feature identification in vibration-based damage detection using local 
attractor variance,” Proceedings of the International Modal Analysis Conference - 
IMAC, v 1, pp. 438-444. 

 38. Livingston, R.A., Jin, A., and Marzougui, D., 2001, “Application of nonlinear 
dynamics analysis to damage detection and health monitoring of highway 
structures,” Proceedings of SPIE - The International Society for Optical 
Engineering, Vol. 4337, pp. 402-410. 

 39. Rytter, A., 1993, Vibration Based Inspection of Civil Engineering Structures, 
Ph.D Dissertation, Department of Building Technology and Structural 
Engineering, Aalborg University, Denmark. 

 40. Doherty, J. E., Nondestructive Evaluation, Chapter 12 in Handbook on 
Experimental Mechanics, A. S. Kobayashi (Ed.), Society of Experimental 
Mechanics, Inc., 1987. 



197 

 41. Salawu, O.S., 1997, “Detection of structural damage through changes in 
frequency: a review,” Engineering Structures, 19(9), pp. 718-723. 

 42. Cawley, P., and Adams, R.D., 1979, “The locations of defects in structures from 
measurements of natural frequencies,” Journal of Strain Analysis, 14(2), pp. 49–
57. 

 43. Stubbs, N., and Osegueda, R., 1990, “Global non-destructive damage evaluation 
in solids,” Modal Analysis: The International Journal of Analytical and 
Experimental Modal Analysis, 5(2), pp. 67-79. 

 44. Stubbs, N., and Osegueda, R., 1990, “Global damage detection in solids-
experimental verification,” Modal Analysis: The International Journal of 
Analytical and Experimental Modal Analysis, 5(2), pp. 81-97. 

 45. Richardson, M.H., and Mannan, M.A., 1992, “Remote detection and location of 
structural faults using modal parameters,” Proceedings of the 10th International 
Modal Analysis Conference, pp. 502–507. 

 46. Hearn, G., and Testa, R.B., 1991, “Modal analysis for damage detection in 
structures,” Journal of Structural Engineering, 117(10), pp. 3042–3063. 

 47. Williams, E.J., and Messina, A., 1999, “Applications of the multiple damage 
location assurance criterion,” Proceedings of the International Conference on 
Damage Assessment of Structures (DAMAS 99), Dublin, Ireland, pp. 256–264. 

 48. West, W.M., 1984, “Illustration of the use of modal assurance criterion to detect 
structural changes in an orbiter test specimen,” in Proc. of Air Force Conference 
on Aircraft Structural Integrity, pp. 1–6. 

 49. Kim, J.-H., Jeon, H.-S., and Lee, C.-W., 1992, “Application of the modal 
assurance criteria for detecting and locating structural faults,” in Proc. of the 10th 
International Modal Analysis Conference, pp. 536–540. 

 50. Salawu, O.S., and Williams, C., 1995, “Bridge assessment using forced vibration 
testing,” Journal of Structural Engineering, 121(2), pp. 161–173. 

 51. Ko, J. M., Wong, C. W., and Lam, H.F., 1994, “Damage detection in steel framed 
structures by vibration measurement approach,” in Proc. of 12th International 
Modal Analysis Conference, pp. 280–286. 

 52. Pandey, A.K., Biswas, M., and Samman, M.M., 1991, “Damage detection from 
changes in curvature mode shapes,” Journal of Sound and Vibration, 145(2), pp. 
321–332. 

 53. Stubbs, N., J.-T. Kim, and K. Topole, 1992, “An efficient and robust algorithm 
for damage localization in offshore platforms,” in Proc. ASCE 10th Structures 
Congress, pp. 543–546. 



198 

 54. Chance, J., Tomlinson, G.R., and Worden, K., 1994, “A simplified approach to 
the numerical and experimental modeling of the dynamics of a cracked beam,” in 
Proc. Of the 12th International Modal Analysis Conference, pp. 778–785. 

 55. Ho, Y.K., and Ewins, D.J., 2000, “On the structural damage identification with 
mode shapes,” European COST F3 Conference on System Identification and 
Structural Health Monitoring, Madrid, Spain, pp. 677–686. 

 56. Wang, A, Lin, R.M., and Lim, M.K., 1997, “Structural damage detection using 
measured FRF data,” Computer Methods in Applied Mechanics and Engineering, 
147, pp. 187-197. 

 57. Trendafilova, I., 1998, “Damage detection in structures from dynamic response 
measurements: an inverse problem perspective,” Modeling and Simulation Based 
Engineering, Technical Science Press, pp. 515–520. 

 58. Agneni, A., Crema, L.B., and Mastroddi, F., 2000, “Damage detection from 
truncated frequency response functions,” European COST F3 Conference on 
System Identification and Structural Health Monitoring, Madrid, Spain, pp. 137–
146. 

 59. Park, N.-G, and Park, Y.-S, 2003, “Damage detection using spatially incomplete 
frequency response functions,” Mechanical Systems and Signal Processing, 17(3), 
pp.519-532. 

 60. Aktan, A.E., Lee, K.L., Chuntavan, C., and Aksel, T., 1994, “Modal testing for 
structural identification and condition assessment of constructed facilities,” in 
Proc. of 12th International Modal Analysis Conference, pp. 462–468. 

 61. Pandey, A.K., and Biswas, M., 1994, “Damage detection in structures using 
changes in flexibility,” Journal of Sound and Vibration, 169 (1), pp. 3–17. 

 62. Peterson, L.D., Doebling, S.W., and Alvin, K.F., 1995, “Experimental 
determination of local structural stiffness by disassembly of measured flexibility 
matrices,” in Proc. of  the 36th AIAA/ASME/ASCE/AHS/ASC Structures, 
Structural Dynamics, and Materials Conference, pp. 2756–2766, AIAA-95-1090-
CP. 

 63. Reich, G.W., and Park, K.C., 2000,  “Experimental applications of a structural 
health monitoring methodology,” Smart Structures and Materials 2000: Smart 
Systems for Bridges, Structures, and Highways, Proceedings of SPIE, Vol. 3988, 
Newport Beach, California, pp. 143–153. 

 64. Lin, C. S., 1990, “Location of modeling errors using modal test data,” AIAA 
Journal, 28, pp. 1650–1654. 



199 

 65. Lin, C.S., 1994, “Unity check method for structural damage detection,” in Proc. 
of 35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and 
Materials Conference, pp. 347–354, AIAA-94-1717-CP. 

 66. Lin, C., 1998, “Unity check method for structural damage detection,” Journal of 
Spacecraft and Rockets, 35(4), pp. 577–579. 

 67. He, J., and D.J. Ewins, 1986, “Analytical stiffness matrix correction using 
measured vibration modes,” Modal Analysis: The International Journal of 
Analytical and Experimental Modal Analysis, 1(3), pp. 9–14. 

 68. Park, Y.S., Park, H.S., and Lee, S.S., 1988, “Weighted-error-matrix application to 
detect stiffness damage-characteristic measurement,” Modal Analysis: The 
International Journal of Analytical and Experimental Modal Analysis, 3(3), pp. 
101–107. 

 69. Peterson, L.D., Alvin, K.F., Doebling, S.W., and Park, K.C., 1993, “Damage 
detection using experimentally measured mass and stiffness matrices,” in Proc. of 
34th AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and 
Materials Conference, pp. 1518–1528, AIAA-93-1482-CP. 

 70. Salawu, O.S., and Williams, C., 1993, “Structural damage detection using 
experimental modal analysis - a comparison of some methods,” Proceeding of 
11th International Modal Analysis Conference, pp. 254–260. 

 71. Ojalvo, I.U., and Pilon, D., 1988, “Diagnostics for geometrically locating 
structural math model errors from modal test data,” Proceeding of 29th 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 
Conference, pp. 1174–1186. 

 72. Zimmerman, D. C., and Smith, S.W., 1992, Model Refinement and Damage 
Location for Intelligent Structures, Intelligent Structural Systems, H.S. Tzou and 
G.L. Anderson, Eds., Kluwer Academic Publishers, pp. 403-452. 

 73. Hemez, F. M., 1993, Theoretical and Experimental Correlation Between Finite 
Element Models and Modal Tests in the Context of Large Flexible Space 
Structures, Ph. D. Dissertation, Dept. of Aerospace Engineering Sciences, 
University of Colorado, Boulder, CO. 

 74. Kaouk, M., 1993, Finite Element Model Adjustment and Damage Detection 
Using Measured Test Data, Ph. D. Dissertation, Dept. of Aerospace Engineering 
Mechanics and Engineering Science, Univ. of Florida, Gainesville, FL. 

 75. Kabe, A.M., 1985, “Stiffness matrix adjustment using mode data,” AIAA Journal, 
23(9), pp. 1431-1436. 

 76. Berman, A., and Nagy, E. J., 1983, “Improvement of large analytical model using 
test data,” AIAA Journal, 21(8), pp. 1168-1173. 



200 

 77. Smith, S. W., and Beattie, C. A., 1991, “Model correlation and damage location 
for large space truss structures: secant method development and evaluation,” 
NASA report NASA-CR-188102. 

 78. Kammer, D.C., 1988, “Optimal approximation for residual stiffness in linear 
system identification,” AIAA Journal, 26(1), pp. 104-112. 

 79. Zimmerman, D. C., and Kaouk, M., 1994, “Structural damage detection using a 
minimum rank update theory,” ASME Journal of Vibration and Acoustics, 116(2), 
pp. 222-231. 

 80. Kaouk, M., and Zimmerman, D.C., 1994, “Structural damage assessment using a 
generalized minimum rank perturbation theory,” AIAA Journal, 32(4), pp. 836-
842. 

 81. Kaouk, M., and Zimmerman, D.C., 1994, “Assessment of damage affecting all 
structural properties,” Proceeding of the 9th VPI&SU Symposium on Dynamics 
and Control of Large Structures, pp. 445-455. 

 82. Kaouk, M., and Zimmerman, D. C., 1995, “Structural health assessment using a 
partition model update technique,” Proceedings of the 13th International Modal 
Analysis Conference, pp. 1673–1679. 

 83. Zimmerman, D. C., Kaouk, M., and Simmermacher, T., 1995, “Structural damage 
detection using frequency response functions,” Proceeding of the 13th 
International Modal Analysis Conference, pp. 179-184. 

 84. Zimmerman, D. C., Kaouk, M., and Simmermacher, T., 1995, “On the role of 
engineering insight and judgement structural damage detection,” Proceeding of 
the 13th International Modal Analysis Conference, pp. 414-420. 

 85. Mottershead, J.E., and Friswell, M.I., 1993, “Model updating in structural 
dynamics: a survery,” Journal of Sound and Vibration, 167, pp. 347-375. 

 86. Friswell, M.I., and Mottershead, J.E., 1995, Finite Element Model Updating in 
Structural Dynamics, Kluwer Academic Publishers, Dordrecht. 

 87. Link, M., 1999, “Updating of analytical models-review of numerical procedures 
and application aspects,” Proceeding of Structural Dynamics Forum, Los Alamos, 
NM. 

 88. Haug, E. F., and Choi, K. K., 1984, “Structural design sensitivity analysis with 
generalized global stiffness and mass matrices,” AIAA Journal, 22(9), pp. 1299-
1303. 

 89. Fox, R.L., and Kapoor, M.P., 1968, “Rates of change of eigenvalues and 
eigenvectors,” AIAA Journal, 6, pp. 2426-2429. 



201 

 90. Rogers, L.C., 1970, “Derivatives of eigenvalues and eigenvectors,” AIAA Journal, 
8(5), pp. 943-944. 

 91. Ricles, J. M., 1991, “Nondestructive structural damage detection in flexible space 
structures using vibration characterization,” NASA report CR-185670. 

 92. Hemez, F. M., 1993, Theoretical and experimental correlation between finite 
element models and modal tests in the context of large flexible space structures, 
Ph.D. Dissertation, Department of Aerospace Engineering Sciences, University of 
Colorado, Boulder, CO. 

 93. Jung, H., 1992, Structural dynamic model updating using eigensensitivity 
analysis, Ph.D. Thesis, Department of Mechanical Engineering, Imperial College, 
London, UK. 

 94. Lin, R.M., Lim, M.K., and Du, H., 1995, “Improved inverse eigensensitivity 
method for structural analytical model updating,” ASME Journal of Vibration and 
Acoustics, 117(2), pp. 192-198. 

 95. Lin, R.M., and Ewins, D.J., “Model updating using FRF data,” Proceedings of the 
15th International Modal Analysis Seminar, K.U. Leuven, Belgium, 1990, pp. 
141-163. 

 96. Lin, R.M., and Ewins, D.J., 1994, “Analytical model improvement using 
frequency response functions,” Mechanical Systems and Signal Processing, 8(4), 
pp. 437-458. 

 97. Minas, C., and Inman, D.J., 1990, “Matching finite element models to modal 
data,” Journal of Vibration, Acoustics, Stress, and Reliability in Design, 112(1),  
pp. 84-92.  

 98. Zimmerman, D.C., and Widengren, M., 1990, “Correcting finite element models 
using a symmetric eigenstructure assignment technique,” AIAA Journal, 28(9), 
pp. 1670-1676. 

 99. Zimmerman, D.C., and Kaouk, M., 1992, “Eigenstructure assignment approach 
for structural damage detection,” AIAA Journal, 30(7), pp. 1848-1855. 

 100. Lim, Tae W., Kashangaki, Thomas A.L., 1994, “Structural damage detection of 
space truss structures using best achievable eigenvectors,” AIAA Journal, 32(5), 
pp. 1049-1057. 

 101. Lim, Tae W., 1995, “Structural damage detection using constrained eigenstructure 
assignment,” Journal of Guidance, Control, and Dynamics, 18(3), pp. 411-418. 

 102. Gysin, H., 1990, “Comparison of expansion methods for FE modeling error 
localization,” Proceedings of the 8th International Modal Analysis Conference, 
pp. 195-204. 



202 

 103. Lin, C.S., 1990, “Location of modeling errors using modal test data,” American 
Institute of Aeronautics and Astronautics Journal, 28(9), pp. 1650-1654. 

 104. Dascotte, E., 1990, “Practical application of finite element tuning using 
experimental modal data,” Proceedings of the 8th International Modal Analysis 
Conference, pp. 1032-1037. 

 105. Friswell, M.I., and Penny, J.E.T., 1997, “The practical limits of damage detection 
and location using vibration data,” Proceedings of 11th VPI&SU Symposium on 
Structural Dynamics and Control, Blacksburg, VA, pp. 31-40. 

 106. Messina, A., Williams, E.J., and Contursi, T., 1998, “Structural damage detection 
by a sensitivity and statistical-based method,” Journal of Sound and Vibration, 
216(5), pp. 791-808. 

 107. Swamidas, A. S. J., and Chen, Y., 1995, “Monitoring crack growth through 
change of modal parameters,” Journal of Sound and Vibration, 186(2), pp.325-
343. 

 108. Adams, R. D., Cawley,  P., Pye, C. J., and Stone, B. J., 1978, “A vibrational 
technique for non-destructively assessing the integrity of structures,” Journal of 
Mechanical Engineering Science, 20, pp. 93-100. 

 109. Farrar, C.R., Baker, W.E., Bell, T.M., Cone, K.M., Darling, T.W., Duffey, T.A., 
Eklund, A., and Migliori, A., 1994, “Dynamic characterization and damage 
detection in the I-40 bridge over the rio grande,” Los Alamos National Laboratory 
report LA-12767-MS. 

 110. Trivailo, P., Plotnikova, L.A., and Wood, L.A., 1997, “Enhanced parameter 
identification for damage detection and structural integrity assessment using 
“Twin” structures,” Proceedings of the 5th International Congress on Sound and 
Vibration, University of Adelaide, SA, pp. 1733-1741. 

 111. Cha, P.D., and Gu, W., 2000, “Model updating using an incomplete set of 
experimental modes,” Journal of Sound and Vibration, 233(4), pp. 587–600. 

 112. Nalitolela, N.G., Penny, J.E.T., and Friswell, M.I., 1992, “Mass or stiffness 
addition technique for structural parameter updating,” Modal Analysis: The 
International Journal of Analytical and Experimental Modal Analysis, 7(3), pp. 
157-168. 

 113. Lew, J.-S., and Juang, J.N., 2002, “Structural damage detection using virtual 
passive controllers,” Journal of Guidance, Control, and Dynamics, 25(3), pp. 
419-424. 

 114. Hagood, N.W., and von Flotow, A., 1991, “Damping of structural vibrations with 
piezoelectric materials and passive electrical networks,” Journal of Sound and 
Vibration, 146(2), pp. 243-268. 



203 

 115. Wu, S., 1996, “Piezoelectric shunts with a parallel R-L circuit for structural 
damping and vibration control,” Proceedings of SPIE Symposium on Smart 
Structures and Materials: Passive Damping and Isolation, San Diego, CA, Vol. 
2720, pp. 259-269. 

 116. Hollkamp, J.J., 1994, “Multimodal passive vibration suppression with 
piezoelectric materials and resonant shunts,” Journal of Intelligent Material 
Systems and Structures, 5(1), pp. 49-57. 

 117. Hagood, N.W., Chung, W.H., and von Flotow, A., 1990, “Modeling of 
piezoelectric actuator dynamics for active structural control,” Proceedings of the 
31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials 
Conference, long beach, CA, Part 4, pp. 2242-2256. 

 118. Agnes, G.S., 1995, “Development of a modal model for simultaneous active and 
passive piezoelectric vibration suppression,” Journal of Intelligent Material 
Systems and Structures, 6(4), pp. 482-487. 

 119. Tsai, M.S., and Wang, K.W., 1999, “On the structural damping characteristics of 
active piezoelectric actuators with passive shunt,” Journal of Sound and 
Vibration, 221(1), pp. 1-22. 

 120. Tang, J., Liu, Y., and Wang, K.W., 2000, “Semi-active and active-passive hybrid 
structural damping treatments via piezoelectric materials,” Shock and Vibration 
Digest, 32(3), pp. 189-200. 

 121. Tang, J., and Wang, K.W., 2004, “Vibration confinement via optimal eigenvector 
assignment and piezoelectric network,” ASME Journal of Vibration and 
Acoustics, 126(1), pp. 27-36. 

 122. Senani, R., 1980, “New tunable synthetic floating inductors,” Electronics Letters, 
16(10), pp. 382-383. 

 123. Senani, R., 1987, “Generation of new two-amplifier synthetic floating inductors,” 
Electronics Letters, 23(22), pp. 1202-1203. 

 124. Abuelma’atti, M.T., Khan, M.H., 1995, “Current-controlled OTA-based single-
capacitor simulations of grounded inductors,” International Journal of 
Electronics, 78(5), pp. 881-885. 

 125. Cicekoglu, M.O., 1998, “Active simulation of grounded inductors with CCII+s 
and grounded passive elements,” International Journal of Electronics, 85(4), pp. 
455-462. 

 126. Gift, S.J.G., 2004, “New simulated inductor using operational conveyors,” 
International Journal of Electronics, 91(8), pp. 477-483.  



204 

 127. Wong, C.N., Zhu, W.D., and Xu, G.Y., 2004, “On an iterative general-order 
perturbation method for multiple structural damage detection,” Journal of Sound 
and Vibration, 273(1-2), pp. 363-386. 

 128. Leissa, A.W., 1974, “On a curve veering aberration,” Journal of Applied 
Mathematics and Physics (ZAMP), 25, pp. 99-111. 

 129. Kutter, J.R., and Sigillito, V.G., 1981, “On curve veering,” Journal of Sound and 
Vibration, 75, pp. 585-588. 

 130. Perkins, N.G., and Mote, JR C.D., 1986, “Comments on curve veering in 
eigenvalue problems,” Journal of Sound and Vibration, 106 (3), pp. 451-463. 

 131. Pierre, C., 1988, “Mode localization and eigenvalue loci veering phenomena in 
disordered structures,” Journal of Sound and Vibration, 126 (3), pp. 485-502. 

 132. Liu, X.L., 2002, “Behavior of derivatives of eigenvalues and eigenvectors in 
curve veering and mode localization and their relation to close eigenvalues,” 
Journal of Sound and Vibration, 56 (3), pp. 551-564. 

 133. Ray, L.R., Tian, L., 1999, “Damage detection in smart structures through 
sensitivity-enhancing feedback control,” Journal of Sound and Vibration, 227(5), 
pp. 987–1002. 

 134. Ray, L.R., Koh, B.H., and Tian, L., 2000, “Damage detection and vibration 
control in smart plates: towards multifunctional smart structures,” Journal of 
Intelligent Material Systems and Structures, 11(9), pp. 725–739. 

 135. Koh, B.H., and Ray, L.R., 2004, “Feedback controller design for sensitivity-based 
damage localization,” Journal of Sound and Vibration, 273(1-2), pp. 317-335. 

 136. Rogers, L.C., 1970, “Derivative of eigenvalues and eigenvectors,” AIAA Journal, 
8(5), pp. 943-944. 

 137. Plaut, R.H., and Huseyin, K., 1973, “Derivatives of eigenvalues and eigenvectors 
in non-self-adjoint systems,” AIAA Journal, 11(2), pp. 250-251. 

 138. Garg, S., 1973, “Derivative of eigenvalues and eigenvectors for a general matrix,” 
AIAA Journal, 11(8), pp. 1191-1194. 

 139. Cunningham, T.B., 1980, “Eigenspace selection procedures for closed-loop 
response shaping with modal control,” Proceedings of the IEEE Conference on 
Decision and Control, pp. 178-186. 

 140. Shelley, F.J., and Clark, W.W., 2000, “Active mode localization in distributed 
parameter systems with consideration of limited actuator placement, Part 1: 
Theory,” ASME Journal of Vibration and Acoustics, 122(2), pp. 160-164. 



205 

 141. Shelley, F.J., and Clark, W.W., 2000, “Active mode localization in distributed 
parameter systems with consideration of limited actuator placement, Part 2: 
Simulations and experiments,” ASME Journal of Vibration and Acoustics, 122(2), 
pp. 165-168. 

 142. Tang, J., and Wang, K.W., 2004, “Vibration confinement via optimal eigenvector 
assignment and piezoelectric networks,” ASME Journal of Vibration and 
Acoustics, 126(1), pp. 27-36. 

 143. Wu, T.Y., and Wang, K.W., 2007, “Periodic isolator design enhancement via 
vibration confinement through eigenvector assignment and piezoelectric 
circuitry,” Journal of Vibration and Control, 13(7), pp. 989-1006.  

 144. Yen, J., Liao, J.C., Bogju L., and Randolph, D., 1998, “A hybrid approach to 
modeling metabolic systems using a genetic algorithm and simplex method,” 
IEEE Transactions on Systems, Man and Cybernetics: Part B, 28(2), pp. 173-191. 

 145. Petsounis, K.A., and Fassois, S.D., 2001, “Parametric time-domain methods for 
the identification of vibrating structures – a critical comparison and assessment,” 
Mechanical Systems and Signal Processing; 15(6), pp. 1031–1060. 

 146. Ljung, L., Applied System Identification, Prentice Hall PTR, Prentice-Hall Inc., 
1994. 

 147. Ljung, L., System Identification: Theory for the User, Prentice Hall PTR, 
Prentice-Hall Inc., New Jersey, 1999. 

 148. Ghanem, R., and Shinozuka, M., 1995, “Structural system identification I: 
theory,” Journal of Engineering Mechanics, 121(2), pp. 255–264. 

 149. Luenberger, D. G., 1964, “Observing the state of a linear system,” IEEE 
Transactions on Military Electronics, 8, pp. 74-80. 

 150. Luenberger, D. G., 1966, “Observers for multivarinble systems,” IEEE 
Transactions on Automatic Control, 2, pp. 190-197. 

 151. Van Overschee, P., and De Moor, B., Subspace Identification for Linear Systems: 
Theory-Implementation-Applications, Kluwer Academic Publishers, Dordrecht, 
Netherlands, 1996. 

 152. Peeters, B., and De Roeck, G., 2001, “Stochastic system identification for 
operational modal analysis: A review,” Journal of Dynamic Systems, 
Measurements and Control, 123(4), pp. 659-667. 

 153. Akaike, H., 1974, ‘‘Markovian representation of stochastic processes and its 
application to the analysis of autoregressive moving average processes,’’ Annals 
of the Institute of Statistical Mathematics, 26, pp. 363–387. 



206 

 154. Desai, U. B., Pal, D., and Kirkpatrick, R. D., 1985, ‘‘A realization approach to 
stochastic model reduction,’’ International Journal of Control, 42(4), pp. 821–
838. 

 155. Van Overschee, P., and De Moor, B., 1993, ‘‘Subspace algorithm for the 
stochastic identification problem,’’ Automatica, 29(3), pp. 649–660. 

 156. Peeters, B., and De Roeck, G., 1999, ‘‘Reference-based stochastic subspace 
identification for output-only modal analysis,’’ Mechanical Systems and Signal 
Processing, 13(6), pp. 855–878. 

 157. Kalman, R. E., 1960, “A new approach to linear filtering and prediction 
problems,” Journal of Basic Engineering -Transaction of the ASME, Series D, 82, 
pp.35-45. 

 158. Kalman, R. E., and Bucy, R.S., 1961, “New results in linear filtering and 
prediction theory,” Journal of Basic Engineering -Transaction of the ASME, 
Series D, 83, pp.95-108. 

 159. Xie, L., and Soh, Y.C., 1994, “Robust Kalman filtering for uncertain systems,” 
System Control Letters, 22(2), pp. 123-129. 

 160. Sorenson, H.W., 1970, “Least-squares estimation: From Gauss to Kalman,” 
Spectrum, 7(7), pp. 63-68. 

 161. Dosch, J.J., Inman, D.J. and Garcia, E., 1992, “A self-sensing piezoelectric 
actuator for collocated control,” Journal of Intelligent Material Systems and 
Structures, 3(1), pp 166-185. 

 162. Spangler, R.L. and Hall, S.R., 1994, “Broadband active structural damping using 
positive real compensation and piezoelectric simultaneous sensing and actuation,” 
Smart Materials and Structures, 3(4), pp 448-458. 

 163. Simmers, G.E., Hodgkins, J.R., Mascarenas, D.D., Park, G. and Sohn, H., 2004, 
“Improved piezoelectric self-sensing actuation,” Journal of Intelligent Materials 
Systems and Structures, 15(12), pp 941-953. 

 164. Vipperman, J.S., 2001, “Simultaneous qualitative health monitoring and adaptive 
piezoelectric sensoriactuation,” AIAA Journal, 39(9), pp. 1822-1825. 

 165. Clark, W.W. and M.J. Ramsay, 2000, “Smart material transducers as power 
sources for MEMS devices,” International Symposium on Smart Structures and 
Microsystems, Hong Kong, pp. 19–21. 

 166. Sodano, H., Magliula, E.A., and Inman, D.J., 2002, “Electric power generation 
using piezoelectric device,” Proceedings of the 13th International Conference on 
Adaptive Structures and Technologies, Oct. 7-9, Berlin, Germany.  



207 

 167. Ottman, G. K., Hofmann, H.F., Bhatt, A.C., and Lesieutre, G.A., 2002, “Adaptive 
piezoelectric energy harvesting circuit for wireless remote power supply,” IEEE 
Transactions on Power Electronics, 17(5), pp. 669-676. 

 168. Lesieutre, G.A., Ottman, G.K., and Hofmann, H.F., 2004, “Damping as a result of 
piezoelectric energy harvesting”, Journal of Sound and Vibration, 269, pp. 991-
1001.  

 169. Kim, H.W., Batra, A., Priya, S., Uchino, K., Markley, D., Newnham, R.E., and 
Hofmann, H.F., 2004, “Energy harvesting using a piezoelectric ‘cymbal’ 
transducer in dynamic environment”, Japanese Journal of Applied Physics, 
43(9A), pp. 6178-6183. 

 170. Hagood, N.W. and Ghandi, K.  2003, “Electrical power extraction from 
mechanical disturbances”, U.S. Patent 6,580,177. 

 171. Wang, Z., Lin, R.M., and Lim, M.K., 1997, “Structural damage detection using 
measured FRF data,” Computer Methods in Applied Mechanics and Engineering, 
147(1-2), pp. 187-197. 

 172. Park, N-G, and Park, Y-S, 2003, “Damage detection using spatially incompletely 
frequency response functions,” Mechanical Systems and Signal Processing, 17(3), 
pp. 519-532. 

 173. Hwang, H.Y., and Kim, C., 2004, “Damage detection using a few frequency 
response measurements,” Journal of Sound and Vibration, 270(1-2), pp. 1-14. 

 174. Furukawa, A., Otsuka, H., and Kiyono, J., 2006, “Structural damage detection 
method using uncertain frequency response functions,” Computer-Aided Civil and 
Infrastructure Engineering, 21(4), pp. 292-305. 

 

 

 

 

 

 



 

VITA 

Lijun Jiang was born on November 26, 1977, in Liyang, Jiangsu province, China.  

He received his B.S. degree in Theoretical and Applied Mechanics in July 1999, from 

Peking University, Beijing, China.  Then he continued his graduate studies at the same 

university, and received his M.S. degree in Engineering Mechanics in July 2002. 

In August 2002, he joined the Pennsylvania State University for the Ph.D. 

program in Mechanical Engineering.  For the first semester, he worked as a teaching 

assistant at the Department of Mechanical and Nuclear Engineering.  After that, he has 

been a research assistant at the Structural Dynamics and Controls Laboratory (SDCL) 

under the direction of Professor Kon-Well Wang.  The research projects he worked on 

include multifunctional adaptive piezoelectric sensory network for structural health 

monitoring, and agent-based negotiation framework for robust design of piezoelectric 

vibration control network.  His research work has been presented on several international 

conferences organized by SPIE, AIAA and ASME.  He has published four journal papers 

in the IOP journal of Smart Materials and Structures, Journal of Sound and Vibration, 

ASME Journal of Vibration and Acoustics, and ASME Journal of Computer and 

Information Science in Engineering, respectively. 

He is a member of the National Honor Engineering Society of Tau Beta Pi, the 

American Society of Mechanical Engineers, American Institute of Aeronautics and 

Astronautics, Institute of Electrical and Electrical and Electronics Engineers, and the 

Center of Acoustics and Vibration at the Pennsylvania State University. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


